ÃÖ±Ù µ¿¿µ»ó
¼öÇа­¿¬È¸
Ưº°°­¿¬
´ëÁß°­¿¬
ÀÔÇÐÀü Ưº°°­Á (°¡)
Àι®»çȸ°è¸¦ À§ÇÑ ¼öÇÐ
¼öÇÐ ¹× ¿¬½À 1
±âÃʼöÇÐ
°øÇмöÇÐ

¼öÇа­¿¬È¸ µ¿¿µ»óÀÔ´Ï´Ù.


°î¼±ÀÇ Á¤ÀǶõ ¹«¾ùÀΰ¡?
±è¿µÈÆ (¼­¿ï´ëÇб³)
2010. 12. 02.

°î¼±Àº ¹æÁ¤½Ä, ¸Å°³È­µÈ °î¼±ÀÇ µ¿Ä¡·ù, ¸ðµâ µîÀÇ ´Ù¾çÇÑ °üÁ¡¿¡¼­ Á¤ÀÇµÉ ¼ö ÀÖ´Ù. ¹Ì²öÇÑ °î¼±ÀÇ °æ¿ì´Â ¸ðµç Á¤ÀǵéÀÌ º»ÁúÀûÀ¸·Î µ¿µîÇÏ...
The significance of dimensions in mathematics
Heisuke Hironaka (Kyoto Univ./¼­¿ï´ë)
2010. 11. 25.

  
Fermat's last theorem
ÃÖ¼­Çö (Ä«À̽ºÆ®)
2010. 11. 18.

 
It all started with Moser
Paul Rabinowitz (Univ. of Wisconsin/Æ÷Ç×°ø´ë)
2010. 11. 04.

We survey work on a class of nonlinear elliptic PDEs that was initiated by Moser. Methods from PDE, dynamical ..
On some nonlinear elliptic problems
Yuri Egorov (Paul Sabatier University, Toulouse)
2010. 10. 28.

 
Topology and number theory
±è¹ÎÇü (Univ. College London/Æ÷Ç×°ø´ë)
2010. 10. 21.

We will review a number of topological themes in number theory, starting with homology and ending with a discussion arithmetic ..
Conservation laws and differential geometry
Marshall Slemrod (Univ. of Wisconsin)
2010. 10. 14.

A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2 ..
ÇкÎÇлýÀ» À§ÇÑ °­¿¬È¸: ±âÇÏÇаú ¿ìÁÖ·Ð
À̳²ÈÆ (È«ÀÍ´ë)
2010. 09. 30.

¿ì¸®ÀÇ Á÷°ü¿¡ ÀÇÇÏ¸é ¿ìÁÖ´Â 4Â÷¿øÀ¸·Î ÀÌ·ç¾îÁ®ÀÖ´Ù. ´Þ¸® ¸»ÇÏ¸é ¿ì¸®°¡ ¾î¶² »ç°ÇÀ» ±â¼ú ÇÒ ¶§ ³× °³ÀÇ ¼ýÀÚ(°ø°£3 + ½Ã°£1) À̸é ÃæºÐÇÏ´Ù´Â °Í ..
Zeros of linear combinations of zeta functions
±âÇϼ­ (¿¬¼¼´ë)
2010. 09. 09.

We will introduce the behavior of zeros of linear combinations of zeta functions. Those linear combinations are related to the ..
Counting circles in Apollonian circle packings and beyond
¿ÀÈñ (Brown Univ.)
2010. 05. 27.

 
Sheaf quantization of Hamiltonian isotopies and non-displacability problems
Masaki Kashiwara (Kyoto Univ./¼­¿ï´ëÇб³)
2010. 05. 20.

 
Limit computations in algebraic geometry and their complexity
Çöµ¿ÈÆ (POSTECH)
2010. 05. 13.

Given a one-parameter family of algebraic varieties, its ..
ÇкλýÀ» À§ÇÑ °­¿¬: Introduction to partial differential equations
º¯¼ø½Ä (¼­¿ï´ëÇб³)
2010. 05. 06.

We discuss on why we study partial differential equations. 
Symmetry Breaking in Quasi-1D Coulomb Systems
Paul Jung (¼­°­´ëÇб³)
2010. 04. 29.

 
Partial differential equations with applications to biology
ȲÇüÁÖ (POSTECH)
2010. 04. 01.
ÇкλýÀ» À§ÇÑ °­¿¬: A combinatorial formula for information flow in a network
±¹¿õ (Univ. of Rhode Island/¼­¿ï´ëÇб³)
2010. 03. 18.

In 1989, Stephenson and Zelen derived an elegant formula ...
Gaussian free field and conformal field theory
°­³²±Ô (¼­¿ï´ëÇб³)
2010. 03. 11.

Ward's identities and the related concept of the stress-energy tensor are standard tools in conformal field theory. I will present ...
<    2013   2012   2011   2010   2009     >


¼ö¸®°úÇкÎ
±³¾ç¼öÇРȨÆäÀÌÁö(Á¶±³½Ç)
¼öÇеµ¼­°ü
¼öÇבּ¸¼Ò
BK21 ¼ö¸®°úÇлç¾÷´Ü
PARC