|
°î¼±ÀÇ Á¤ÀǶõ ¹«¾ùÀΰ¡?
±è¿µÈÆ (¼¿ï´ëÇб³)
2010. 12. 02. °î¼±Àº
¹æÁ¤½Ä, ¸Å°³ÈµÈ °î¼±ÀÇ µ¿Ä¡·ù, ¸ðµâ µîÀÇ ´Ù¾çÇÑ °üÁ¡¿¡¼ Á¤ÀÇµÉ ¼ö ÀÖ´Ù. ¹Ì²öÇÑ °î¼±ÀÇ °æ¿ì´Â ¸ðµç Á¤ÀǵéÀÌ
º»ÁúÀûÀ¸·Î µ¿µîÇÏ... |
|
The significance of dimensions
in mathematics
Heisuke Hironaka (Kyoto Univ./¼¿ï´ë)
2010. 11. 25. |
|
Fermat's last theorem
ÃÖ¼Çö (Ä«À̽ºÆ®)
2010. 11. 18.
|
|
It all started with Moser
Paul Rabinowitz (Univ. of Wisconsin/Æ÷Ç×°ø´ë)
2010. 11. 04. We
survey work on a class of nonlinear elliptic PDEs that was initiated
by Moser. Methods from PDE, dynamical .. |
|
On some nonlinear elliptic problems
Yuri Egorov (Paul Sabatier University, Toulouse)
2010. 10. 28.
|
|
Topology and number theory
±è¹ÎÇü (Univ. College London/Æ÷Ç×°ø´ë)
2010. 10. 21. We
will review a number of topological themes in number theory,
starting with homology and ending with a discussion arithmetic
.. |
|
Conservation laws and differential
geometry
Marshall Slemrod (Univ. of Wisconsin)
2010. 10. 14. A
fundamental problem in differential geometry is to characterize
intrinsic metrics on a two-dimensional Riemannian manifold M2
.. |
|
ÇкÎÇлýÀ» À§ÇÑ °¿¬È¸: ±âÇÏÇаú ¿ìÁÖ·Ð
À̳²ÈÆ (È«ÀÍ´ë)
2010. 09. 30. ¿ì¸®ÀÇ
Á÷°ü¿¡ ÀÇÇÏ¸é ¿ìÁÖ´Â 4Â÷¿øÀ¸·Î ÀÌ·ç¾îÁ®ÀÖ´Ù. ´Þ¸® ¸»ÇÏ¸é ¿ì¸®°¡ ¾î¶² »ç°ÇÀ» ±â¼ú ÇÒ ¶§ ³× °³ÀÇ ¼ýÀÚ(°ø°£3
+ ½Ã°£1) À̸é ÃæºÐÇÏ´Ù´Â °Í .. |
|
Zeros of linear combinations of
zeta functions
±âÇϼ (¿¬¼¼´ë)
2010. 09. 09. We
will introduce the behavior of zeros of linear combinations
of zeta functions. Those linear combinations are related to
the .. |
|
Counting circles in Apollonian
circle packings and beyond
¿ÀÈñ (Brown Univ.)
2010. 05. 27.
|
|
Sheaf quantization of Hamiltonian
isotopies and non-displacability problems
Masaki Kashiwara (Kyoto Univ./¼¿ï´ëÇб³)
2010. 05. 20.
|
|
Limit computations in algebraic
geometry and their complexity
Çöµ¿ÈÆ (POSTECH)
2010. 05. 13. Given
a one-parameter family of algebraic varieties, its .. |
|
ÇкλýÀ» À§ÇÑ °¿¬: Introduction to partial
differential equations
º¯¼ø½Ä (¼¿ï´ëÇб³)
2010. 05. 06. We
discuss on why we study partial differential equations.
|
|
Symmetry Breaking in Quasi-1D Coulomb
Systems
Paul Jung (¼°´ëÇб³)
2010. 04. 29.
|
|
Partial differential equations
with applications to biology
ȲÇüÁÖ (POSTECH)
2010. 04. 01. |
|
ÇкλýÀ» À§ÇÑ °¿¬: A combinatorial formula
for information flow in a network
±¹¿õ (Univ. of Rhode Island/¼¿ï´ëÇб³)
2010. 03. 18.
In 1989, Stephenson and Zelen derived an elegant formula ... |
|
Gaussian free field and conformal
field theory
°³²±Ô (¼¿ï´ëÇб³)
2010. 03. 11. Ward's
identities and the related concept of the stress-energy tensor
are standard tools in conformal field theory. I will present
... |
|
<
2013
2012
2011
2010
2009
> |