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HEIGHTS

1. Basic Properties of Heights.
Let K be a field. An absolute value v on K is said to be proper if

(i) for any finite extension E of K, we have

[ K] = Y[B. : K

wlv
where the sum is taken over all extension of w of v,

(ii) if charK = 0, then the restriction to Q is either trivial, ordinary absolute
value or p-adic absolute value.

A set My of absolute values on K is said to be proper if
(i) every absolute value in My are proper,

(ii) two distinct absolute values are indenpendent, i.e, they define different
topology,

(iii) for any nonzero element z of K, there are only finitely many v in My
such that |z|, # 1,

(iv) satisfies the product formula, i.e, for z € K we have

II Iz}, =1.

vEMy

Let E/K be a finite extension. We will denote Mg the set of all extensions
of M. If Mk is a proper set of absolute values of K, then so is Mg. We will
be interested in the following two cases.

Case 1. Let K = Q. For primes p, £, we define

I ={1 ifp#¢,
P 1/¢ ifp=24.

Then Mg which consists of all | |, together with the ordlnary absolute value
is a proper set of absolute values.
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If K is a number field, then M consists of all extensions of Mg ; for z € K,
and for a finite prime p,
ordy(z)
1 (4
z|l, = | =——
el = (557)

where N(p) = [Ok/p : Z/p). If v = o0,
lzllo = l=2

where €, = 1,2 depending on whether o, is a real or complex emmbeding.

Case 2. Let K be a perfect field, W be a projective variety in P" nonsin-
gular in codimension one :.e, for any irreducible subvariety p of W, Ow,, is a
discrete valuation ring. Let c be a real with 0 < ¢ < 1. Let K = k(W), the
function field of W, and Mk be the set of absolute values defined by

|z|, = crde@deg(e) 4 e g

for each prime (=irreducible) divisors p of W which is defined over k. Here we
remark that deg(gp) depends on the projective emmbeding of W in P". The
set of absolute values Mk is proper.

For a divisor D = 3" n, g, we will use the notation

Deg,,(D) = n,, - deg(p) = ord,(D) - deg(p).

Let K be a field with a proper set of absolute values Mg. The projective space
P% consists of the points

(zo,.--,Zn), ; € K, not all z; are zero,

with the identification (zo,...,zs) = (azo,...,az,) for nonzero a in K. For
P = (zo,...,z,) € Pk, we define the (multiplicative) height of P relative to

Mg by
Hg(P)= ]I sup|lzil..
vEMyy
Note that Hg (P) does not depend on the choice of coordinates by the product

formula. When K is a number field (respectively, function field) the logarithmic
height is defined by
hk(P) = logHk (P)

where log is the usual logarithm (respectively, log with base 1/c).
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Proposition 1. Let K C F CE be finite extensions with their proper set of
absolute values. For P € P}, we have

Hg(P) = Hp(P)FF),

Proof. For w € Mg, v € MF, let N, = [E,, : K,], and N, = [F, : K,].
Since N,, = [E,, : F,,]N,, we have

SN, =N, [E,: F,)= N,[E : F).

wlv w

Therefore we have,

Hg(P) = ] IIsuplz:ill* = I sup Iwal(zw)m

veEMpwlv ! vEMp
[E:F) .
= (I supleil™)™" = Hp(P)IE. o
vEMp *

Proposition 2. Let K = k(W) where W is a projective variety in P" non-
singular in codimension 1. Let (yo,...,yn) € Pk and let

mir = (2)"

Proof. We may assume that one of the y; is equal to 1. In the product defining
the height, we will have a nontrivial contribution if p is a pole of one of y;.
For such a pole p, we have

—(ordpyi)(de
sup clordeyi) deg(e) sup (l) (ordpyi)(deg )
i i \c¢

c

( 1 )sqp(—ordpyi)(des ®)

Now our assertion is obvious. "

If P € P; and P € P} for some finite extension F' of K, then we define
the absolute height by

H(P) = Hg(P)Y/IE:F],
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The logarithmic height (or simply height) is defined, as before,
h(P) = logH(P)

where log is taken with a proper base. Note that H(P) > 1 since we can
always choose one of the coordinates to be 1.

Let F/K be a finite extension and o be an emmbeding of F over K, then
we have

Hp(P) = Hp-(P°).
Therefore we have H(P) = H(P°).

For z € K, we define its height by the height of (1,z) € P, i.e,
H(z)= [ sup(1, |lz[l.)-

‘UGMK

If 0 # = € K, then by the product formula we have
H(z) = H(z™),
and for a positive integer n, we have
H(z") = H(z)".
Further since sup(1, ||zy||,) < sup(1, ||z||,)sup(1, ||¥|l.) we have
H(zy) < H(z)H(y).

2 . Number field Case

Let K = Q, a € Q, a = a/b where a, b are relatively prime. Then we have
a
i (3) = H(b,0) = [Tsup(laly, [8],) = sup(lal, [&).
)

The last equality is true because for p < oo, |a|, < 1, ||, < 1 and one of them
= 1.
More generally, if P = (zo,...,z,) € PFo where z; are relatively prime,
then
Ho(P) = sup |z;].
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Therefore if b is a positive number then {P € Pyl H(P)<b } is a finite set.

Now suppose K is a number field, P = (zo,...,z,) € Pk. We may assume z;
are algebraic integers. As in the case for Q, we have

Hg(z)= ] sup|lz:|.

V€S !

where S is the set of infinite places.

Proposition 3. If 0 # a € K with (a) = a/b where a, b are relatively prime

ideals, then
Hg(a) = N(b) [T sup(1,[lel.).
V€S

More generally if a is the fractional ideal generated by zo,...,z, in K, then
the height P = (zo,...,z,) € Pk is given by

Hyg(P)=N(a)™" ] sup|lz:l..

V€S

Proof. It suffice to show [] sup(l,||a|,) = N(b). We have ||a|, > 1 if and
p<oo
only if p|b. Write

(o) =a/TIp¢ = a/(I] %)

where 7; is a local paramater at p;. Then
E
™

Proposition 4. Let K be a number field and £ € K be nonzero. Then
H(z) =1 if and only if z is a root of 1.

1N

s

p

= p’* = N(p). .

P

Proof. If z is a root of 1, then trivially we have H(z) = 1. Conversely suppose
H(z) = 1. Then for a finite place v, we have ||z]|, < 1 ; hence z € Ok. If
v is an infinite place, we also have ||z||, < 1. Hence the coefficients of the
irreducible polynomial and its degree is bounded. Therefore such z’s are a
finite subgroup of K*. Hence z is a root of unity. "
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Theorem 1. If ¢,d > 0 are constants, then

{P=(20,...,20) € P| H(P) < c,[Q(P): Q] < d }
is a finite set.

Proof. We already know this for Q-points. If H(P) < c and [Q(P) : Q] < d,
then H(z;) < c and [Q(z;) : Q] < d. Hence it suffices to show that the set

{(,2) e Py H(z) < ¢, [Qz): QI =d }

is finite. Let z,,...,z4 be the conjugates of z, and 1 = sg, s;,...,54 be the
elementary symmetric polynomials of z;. We have

f@) =3 (-1 st =T[(t — =)

is the irreducible polynomial of z over Q. Since f is determined by s, ..., sg
and H(s;) are bounded, there are only finitely many possible f’s. Hence there
are only finitely many x’s with bounded height and bounded extension degree,
as desired. =

3 . Geometry of heights

Let K be field, Mk a proper set of absolute values of K. Let V be a normal
projective variety over K. Let A, \’ be real valued functions on a set of points on
V. We say that A and X' are (multiplicatively) equivalent if there are constants
¢ and ¢ such that

caA(P) < N(P) < e\(P),

for all points P of our consideration. Taking logarithm, we say that A, \’ are
(additively) equivalent if A — X' is a bounded function. If this is the case,we
will use notation

A~ N,

Let V be a variety defined over K, and let ¢:V — P" be a morphism
defined over K. Since the morphism ¢ is defined over K, the image of the set
of all K-points Vi is in P. For P € Vi, we have

Hko(P) = Hr(p(P))  and  H,(P)= H(e(P)).
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Their logarithmic heights will be denoted by kg, and k., respectively.
If f:U -V, g:2V — P" are morphisms, then trivially we have

Hyf = Hyjof  and hgof = hyof.

Let V C P" be a variety over K and let A= (a;;)(0<i<m, 0<j < n) with
a;; € K. Corresponding to A we define a rational map

AV - P

by sending P = (zo,...,%,) to AP given by matrix multiplication. We call
this map a linear projection defined by A.

Proposition 5. Let V be a projective variety in P* over K. If ¢:V — P

is a linear projection, then there is a constant ¢ (depending only on ¢) such
that

H,(P) < cH(P)
for all P € V& on which ¢ is defined.

Proof. Let ¢ be defined by the matrix (a;;). Let Sk be the set of all v such
that |a;;|, # 1 for some a;; or v is an infinite place. Let P = (zo,...,z,) € P%

n
where F' is a finite extension of K, and let y; = Y a;;z;. For w € M over
i=0

v € Sk, we have
lvilw < 3 lasilulesle < (0 + 1) sup (Jaiilu, 1)] sup |21
. 1,2 J
Letting ¢, = (n + 1) sup (Ia,-jl,,, 1), we have
i

sup |yilw < ¢y sUp |-
J

For v ¢ Sk, since |a;;|y = 1, we have
lyilw < E |$j|w < sup |wj|w
i
where w € MF is over v. Hence

sup |yilw < sup |z
i J
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, then we have

Therefore if we set ¢ = [ I M

] 1/[K:F]
vEMg wlv

H,(P) < cH(P). .

Let f:V — P", g:V — P™ be two morphisms. Let f = (fo,..., f.),
9 =(go,---,9m). We define

f® g:V — Prt)(m+1)-1 by (f®9)i; = fig;.
Then we have
Higy = HfH, and htgg = hy + hy.
These follow from the equality,

sup |z;y;|, = sup |zi|, sup |y;l..
1] 1 J

In particular, if ¢:P* — PV is given by (Mo, ... , Mn) be the monomials of
degree d in zo,...,z,, then '

H,=H* and h, = dh.

Proposition 6. Let fo,..., f, be homogeneous polynomials of degree d in
To,...,Tn. Let f =(fo,..., fn) be a rational map on P" to P™. For P € P%
on which f is defined, we have

h(P) < dh(P) + e
for some constant ¢; independent of .

Proof. We will omit the routine of the dependence of the field. We estimate
H(f(P)) = [Isup |fi(P)lv < [] esup|zils = cH(P)

where c is a constant depending on the number of monomials of f’s and their
coeflicients. n
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Proposition 7. Let V C P" be locally closed with respect to Zariski topol-

ogy. If f:V — P™ is a morphism over K, then there are constants c;, ¢, such
that

hf S C]h + Cy.

Proof. By compactness of V, it suffices to prove the statement locally. Near a
point P € V, f is represented in the form
f= (‘PO’“-’Som)a po =1,

where ¢; = fi/fo (1 = 0,...,m) and f; are homogeneous polynomials of the
same degree in zy,...,z,. Then we have

sup fi(P)
H,(P) = HSlip lp:i(P)] = IT m < cH(P)*.

Here in the second equality we used the product formula, [T|fo(z)l, =1. =

Theorem 2. Let f:P" — PV be a morphism of degree d, 1i.e,
f=(fo,..., fn) where f; are homogeneous of degree d. Then we have

hy ~ dh.

Proof. One inequality was proved in Proposition 7. We need to show H(P) <
cH(f(P)). Since f is a morphism, the set of common zeros of fi, ..., fn is the
origin. By Hilbert Nullstellensatz, there are g;; € K|[zo,...,z,] such that

gt = > gijf; for some m > 0.

We may assume g;; are also homogeneous of degree m since we can discard
those monomials of degree# m. Further by multiplying some ¢ which is integral
in K, we may assume the coefficients of g;; in cz™*** = ¥ g;; f; are integral in
K. Let P = (zo,...,z,) € Py with z; integral in K.

If v € Mk is non-archimedian, then

2 = [ 0i(P)Si(P)|, < maxlgis(P)I, 1£(P),

Since g;; are homogeneous polynomials of degree m with integral coefficients,
we have

|l

l9i;(P)], < max ;.

11
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Hence we get

max
1

|, < max|zil2|f5(P)L-
Now let v be an archimedian place. We estimate,

[eer ] < Slass (P 1f5(P)] < Cilas|™ max | £;(P)|
J
where C; is a constant depending on the coefficients of g;; and number of
monomials in g;;. Hence we get

|e|max|z;|™** < Cy max |z:|™ max | f;(P)|.
i 3

Now take N,~th power and then take the product over all v to get
Hg(P)™* < cHk(P)"Hk(f(P)),

as contented. 7 n

3.1. Line Bundles and Divisors

Let V be a projective variety over a field K. To fix the idea we assume V
is nonsingular. A line bundle L consists of the following datum ; there is an
(affine) open covering {U;} of V and isomorphisms

fi:Ler — Oy,.
Write U;; = U; N U; and fii = (filv;)o(filv;)™". Then f;; is an isomorphism
fii:0vu;; — Ouy,;.

Hence ftJ can be considered as a unit on U;; ; f;; € Oy, For these isomor-
phisms, we get the following cocycle condition,

fi=1id,  fijfik = f.
Hence {f;;} gives rise to an element of H'(V, O}). In fact, the map so described

is isomorphism,

{ Isomorphism class of } =N HI(V, ox).

line bundles under @
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If Ly = {fi;}, L2 = {gi;}, then under the isomorphism above L; ® L, corre-
sponds to the cocycle {fi;jgi;}.

A Cartier divisor D consists of {(U;, f;)} where {U;} is an open cover of V
and f; € k(U;) = k(V), and such that f;/f; € O;}ij i.e, a Cartier divisor is
a global section of X*/O} where K is the sheaf of total ring of quotients of
V. We can view a Cartier divisor as an Oy-subsheaf of K* locally generated
by fi. A Cartier divisor is said to principal if D is globally given by a rational

function. If D = {(U;, f;)} is a Cartier divisor, then we can associate a line
bundle L(D) which is given by

L(D)|, = fOu,.

In terms of cocycle, L(D) is given by {fi; = fi/f;}. For a nonsingular variety
V, it is known [H] that the map so described is an isomorphism,

{ Cartier divisors on V } =R {Isomorphism classes}
modulo principal divisors of line bundle

A Weil divisoris a formal sum 5" n;D; where n; € Z and D; is an irreducible
divisor on V. A principal Weil divisor is, by definition, a divisor of a rational
function. If D = (U;, f;) is a Cartier divisor, we can associate a Weil divisor

by
(Ui, fi) — ; vy (fi)Y

where the sum is taken over the irreducible divisors Y and ¢ can be chosen any
index such that U;NY # 0. Then one can check this is a well defined map.
For a nonsingular V' (more generally for locally factorial), this association is
an isomorphism,

{ Cartier divisors } —» { Weil divisors }.

Under this isomorphism, principal divisors correspond to principal divisors.
Finally we have isomorphisms

Weil divisors Cartier divisors .
2 = { Isomorphism classes

modul'o .pnnc1pa.l modul.o ‘prmc1pa,l of line bundle } .
divisors divisors
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Example. Let V = P, and let U; = {P = (zo,...,2z,) € P"| z; # 0 }.
The line bundle Oy (1) is defined by

Ov(Dlv; = 2:0v,,
i.e, the section of Oy (1) on U; is of the form

!
where f is a homogeneous polynomial of degree m. In terms of cocycle Oy(1)
is given by {z;/z;}.

Consider the Cartier divisor (U,-, %’:,—?) (¢=0,1,...,n). The corresponding

Weil divisor is o
Sor(Z)Y =Yo

where Y; (¢ = 0,...,n) is the hyperplane given by z; = 0. Also note that the
divisor Y; — Y} is a principal divisor. The line bundle corresponding to the
Cartier divisor is given by

which is Oy (1) describe as above. We define Oy (k) to be the k-fold tensor
product of Oy(1). For example a Cartier divisor which coresponds to Oy (k)

ok
can be given by (U.-, ;2—) (z=0,...,n).

A Weil divisor D is said to be linearly equivalent to 0 if D is the divisor of
a rational function. Two divisors D; and D, are linearly equivalent (written
Dy ~ D,) if D; — D, is linearly equivalent to 0. As we noted before two
divisors D; and D; are linearly equivalent if and only if L(D;) and L(D;) are
isomorphic. Intuitively, D; and D, are linearly equivalent if D; and D; can
be parametrized by P'. In fact, these two notions are equivalent. See [F] for
more details.

An effective (positive) Weil divisor D (D = Y n;D; with n; > 0 and D;
are irreducible divisors) is said to be algebraically equivalent to 0 if there is a
nonsingular variety T' and a divisor D on V x T such that D = D(¢,) — D(t,)
for some to,t; € T. It is known that we may restrict T' to be a nonsingular
curve. Since we can choose T' to be P!, we see that linear equivalence implies
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algebraic equivalence. Arbitrary divisors D; and D, are said to be algebraically
equivalent if there is a divisor E such that D; + F and D; + F are effective and
they are algebraically equivalent. The equivalence relation on Div(V), the set
of all divisors, generated by algebraic equivalence just described is denoted by
=. For more details see [F].

We have a chain of subgroups
Div,(V) C Div,(V) C Div(V)

where Div,(V') (respectively, div,(V)) is the group of divisors linearly (alge-
braically) equivalent to 0. The group Div(V) /Diva(V) is called the Néron—
Severi group which is denoted by NS(V). It is known that NS(V) is a finitely
generated abelian group. The group Div(V) /Dng(V), denoted by Pic’(V), is
called the Picard variety of V, which is an abelian variety over K. For more
details we refer [F].

To get intuitive idea, let’s consider the case K = C. We have the exponen-
tial sequence,

0—Z—0y B0 —0

which gives us an exact sequence
We quote the facts [G-H] :

(1) Two divisors are algebraically equivalent if and only if they are homolo-
gous.

(2) (Lefeschetz (1,1) theorem) A cycle in H?(V,Z) comes from an algebraic
cycle if and only if it belongs to H'*(V).

Hence we have
Image of ¢; = H"'(V)(H*(V,Z).
In particular, we see that NS(V) is finitely generated. We also have

Pic’(V) = H'(V,Ov) [H'(V, Z).
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3.2. Line bundles and Morphism

Let L be a line bundle on V. We say that the global sections {so,...,s.}
generate L if {so(z),...,s.(z)} generate L, as Oy,—module for all z € V.
Since L is a line bundle, this is samething to say that the sections so,...,s,
have no common vanishing points. Let ¢;:L|ly, — Oy, be an isomorphism
giving the line bundle, and let = € U;. We define

U; — P" by sending z to (p;i(so(z)),-..,pi(sx(z))).

If z € U;NUj, then since p;;(z) € Oy ,, we see that (¢i(so(z)),...,pi(s.(z)))
and (p;(so(z)),-- ., pj(sn(z))) differ by a nonzero constant ;;(z). Hence we
get a map V — P". Conversely, if ¢:V — P" is a morphism, then ¢*Opn(1)
is a line bundle with the set of sections ¢*(zo),...,9*(z,) which generates
¢*Opn(1) and gives rise to the morphism ¢. Hence we have shown,

Proposition 8. Giving a morphism V — P" is the samething as giving a
line bundle L and a set of global sections {so,...,s,} which generates L.

3.3. Ampleness

A line bundle L is said to be very ample if there is an embedding p:V — P"
such that L = ¢*O(1). In particular, if L is very ample, then L is generated by
sections. A line bundle L is said to be ample if L™ (= n-fold tensor product) is
a very ample line bundle. A divisor D is said to be very ample (respectively,
ample) if the corresponding line bundles are very ample (respectively, ample).

Let L be a line bundle. Let S = {so,...,s,} and T = {to,...,t,} be any
two sets generating L. If B = {by,...,bn} is a base of the global sections
[(V,L), then s; = 3 ay;b; and t; = ¥ fB;;b; where o, B;; are in K. We have

a commutative diagram

/%—‘
v ¥p
\%*

R Ry

where f and g are linear projections determined by («;;) and (8;;). Hence by
Proposition 5, we have
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Proposition 9. If L is a line bundle and S and T are generating sections of
L, then

hy. ~ hy

s T

Hence we will simply write ¢, without specifying the generating set of
sections. Let L, M be line bundles with the sets of generating sections S and
T respectively, then L ® M is a line bundle with a set of generating sections
{sit;} ( where the multiplication is done with proper identification with Oy).
By the remarks following Proposition 5, we have

hrem ~ hp + hy.

Now we want to extend the definition of hj, to all line bundles. If L is a line
bundle on V, then Serre’s theorem [H] says that L @ Oy (n) is generated by
sections. We define

hr = hL®oV(n) - hov(")'

up to a bounded function. Summing up we have shown,

Theorem 3. Let V be a nonsingular projective variety over a field K. Then
there is a unique group homomorphism

Real valued functions on V(K) }

modulo bounded functions

Pic(V) — {

such that if L is very ample, it corresponds to hy. Further, if f:V — W is a
morphism of varieties defined over K, then

h f*L= hLOf.
Two real valued functions Ay, Ay are said to be (multiplicatively) quasi-
equivalent if given € > 0, there are constants ¢;, ¢, depending on ¢ such that
ClAi_e S /\2 S 62A1+€.

Additive quasi—equivalence is a logarithmic version of this ; for any ¢ > 0,
there are ¢, c; such that

(1 —6)/\1 —C S /\2 S (1 +E)A1 + cs.
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Theorem 4. Let V be a nonsingular variety over K. If X, Y are ample divi-
sors which are algebraically equivalent, then A, and h, are quasi-equivalent.

For a proof of this, we quote the following fact without proof. For a proof
see [L].

Proposition 10. Let V be as in the theorem and X be an ample divisor on
V. Then there is a positive integer e such that eX + Z is very ample for all
divisor Z which is algebraically equivalent to 0.

Proof of theorem 4. By the above proposition, there is ¢ > 0 such that
Z, =n(X —Y)+ eX is very ample for all n. Hence

(n + e)hx =nh, + hz,.’

up to a bounded function. Dividing by n we have
e 1
—|h,=h,+—h
(1 + n) X vt n

up to a bounded function. Since h, > 0, by choosing n so that % < € we can
find ¢ such that

c+(1+€e)h, >h,.
The other inéqua.lity is obtained by symmetry. .

Corollary 1. Let X, Y be ample divisors which are algebraically equivalent.

Then
m P
hy (P)=oo h, (P)

Corollary 2. Let V be a nonsingular complete curve and X, Y be divisors
of degree d, d’ respectively. Then h, and (d/d’')h, are quasi—equivalent.
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3.4. Arakelov’s View Point

Let K be a number field and R its ring of integers. For z € Py, there is unique
map ¢:SpecR — P}, extending the K—point = by properness of P’z :

SpecK < -~ Pz

i

'r ‘P 1
SpecR _ SpecZ

Example. Let z = (2,3) € Py,. PP}, is covered by two standard open sets

U, = SpecZ [g] and U, = SpecZ [%] ,
with the identification on U; U, given by

Z H Y= g, [2] .
] z
Choose an open covering V;, V, of SpecZ ;
Vi1 = SpecZ [é—] and V2 = SpecZ [%] .
Define ¢;:V; — U; by giving maps

o =ef] w ol =2l

wherep, (%) = %, P2 (%) = % Then ¢, and ¢, coincide on Vi V3, and they
glue together to get ¢. L

Let p be a line bundle on R, i.e, p is a projective module of rank 1. We
say that p is a metrized line bundle if for every v € Se, there is a hermitian
metric || - ||, on p ®r C (tensor product is taken with respect to the embedding
v:R — C) such that for complex conjugate embeddings the corresponding
metrices are the same. The degree of a metrized line bundle p is defined by

deg(p) = log# (b /pR) — 3 eulog]pll,

V€S
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where p € p is a nonzero element, and ¢, = 1 or 2 depending on whether v
is real or complex. One checks that this definition is independent of choice of
P € p by using the product formula. ‘

On the line bundle O(1) of Pg, we have a metric defined by

f(z)

If(@)llo = min . 2= (0,...,2n)

0<i<n
z;#0

v

where f is a section of O(1). Let z € p} and ¢p:SpecR — P7 be the corre-
sponding map. Then ¢*O(1) is a metrized line bundle on Spec(R).

Proposition 11. h(z) = ———=degy*(O(1)).

[K Q

Proof. Let (zo,...,z,) € P%. We may assume zo # 0 so ¢*(zo) is a nonzero
section of p*O(1). For v € Mk, we have

To

" (o)l = gmin |
£0

:'v'c

On the other hand, since
¢"O(1) =Y Re; and ¢*O(1) 2R =Y Rz, [Raq = ZRx’ /R
1=0

we have

# (go"@(l)/a:oR) = NK/Q(ZRz ) = [[ max

v<00

To

Therefore,

degp*O(1) = log# (cp*@(l)/Rxo)— Y~ logmin T

UGM°° t .'L'"

= > logm:mx = =[K: Q]h( ..,Eﬁ)

vEMK 0 Zo

= [K : QJh(z). .

v
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4 . Heights on Abelian varieties

Let A be an abelian group. A map h on A to an abelian group where mul-
tiplication by 2 map is an isomorphism, is said to be quadratic (respectively,
quadratic form) if

Ah(z,y) = h(z +y) — h(z) — h(y)

is bilinear (respectively, Ah is bilinear and h is even ; h(—z) = h(z)). If A is
quadratic, then ’

h(z) — —;—Ah(x,x)

is linear. Hence any quadratic function is a sum of a quadratic form and a
linear map. If h is even and h(0) = 0, then the linear part must be 0.
A map L on A x A is called quasi-bilinear if

AiL(z,y,2z) = L(z+y,z)— L(z,z) - L(y,z)  and
A;L(z,y,z) = L(z,y+2)— L(z,y) — L(z, 2)

are bounded.

Lemma 1. (i) If L is a quasi-bilinear, then there is a unique bilinear map
L' such that L — L' is bounded. In fact,

L(2"z,2"

L’(x, y) — Jing.o __(::—y)'
(ii) If h is quasi—quadratic (i.e, Ah is quasi-bilinear), then there are uniqu-
ely determined quadratic form ¢ and a linear function £ such that h — ¢ — ¢
is a bounded function. Furthermore, if h is quasi—even, then £ = 0.
. L(2",2"y .
Proof. (i) Let L,(z,y) = AT) Then L, is a Cauchy sequence. Hence
converges to L'(z,y). It is easy to check that this is bilinear. For uniqueness,
if L" is another one, then since both are bilinear, L' — L” is unbounded which
is a contradiction.
.. . h(2"z
(i1) We can set ¢(z) = lim .

n—00

We recall some facts on abelian varieties. For the proofs see [M].
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Theorem 5. [Theorem of Square] Let A be an abelian variety over a field
K, and L a line bundle on A. For a € A(K) let t,:A — A be the translation
by a map. Then we have

(tipsl) @ L 2L @ £ L.

In terms of divisors, this means that D,y + D and D, + D, are linearly
equivalent.

Theorem 6. [Theorem of Cube] Let
Ty, M2, W3, W12, M13, T23, 7r123:A XAXA—A

be the maps projecting onto the indicated components and then adding. (e.g,
ma3(a,b,c) = b+ c etc.) Then

Tl @ L ' @ m L ' @ ms L' @ niL @ w3 L @ w3 L

is isomorphic to the trivial line bundle.

First, we draw consequences of these theorems. Let ¢ € Pic(A), a € A(K).
First note that ¢, is algebracally equivalent to c. Hence we have a map

¢ A(K) — Pic’(A)

sending a to ¢, — c. Now the theorem of square implies that ¢, is a group
homomorphism.
We quote another fact whose proof we also refer [M].

Proposition 12. Let D be a divisor on an abelian variety A. Then D is
algebraically equivalent to zero if and only if D, — D is linearly equivalent to
zero for all a € A.

Therefore we have an exact sequence
0 — Pic°(A) — Pic(A) — Hom(A4, Pic’(A)).
(Pic®°(A) is called the dual abelian variety of A.)
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Proposition 13. Let a, 3:A — B be homomorphisms of abelian varieties
and c € Pic(B). Then the map
D.:Hom(A, B) x Hom(A, B) — Pic(A)
defined by D.(a, #) = (a + 8)*(c) — a*(c) — B*(c) is bilinear.
Proof. We need to show

(a1 + o2 + @3)"(c) — (1 + a2)*(c)
—(az + @3)"(c) — (a1 + 03)"(€) + 03 (€) + 5(c) + a5(c)
is the zero class in Pic(A). Let a = (a1, a2, @3) be a map from A x A x A to
B x B x B. Then the above class is the same as
o (iza(c) — mi5(€) — mia(c) — m33(c) + mi(c) + m3(c) + m3(c))-
The theorem of cube implies the class inside the parenthesis is zero. As desired.

Theorem 7. For any ¢ € Pic(A), the height A, is quasi-quadratic. There

are unique quadratic form ¢. and a linear function £, such that Ec = q.+ L.
is equivalent to k.. That is , there a unique homomorphism

. quadratic real vall_led}
Pic(4) — { functions on A(K)

which sends c to its canonical height Re. Further, if a:A — B is a morphism
of abelian varieties, then

~

Roee = hoo0r.
Proof. Apply Proposition 13 with w5, 71, 73:A X A = A, 73 = T + m5. We
have
hc(P + Q) - hc(P) - hc(Q)
= haty (@ (P) = by (o) (P, Q) = g (o) (P, Q)
= hwl'z(c)—r;(c)—wz'(c)(P) Q)
Now Proposition 13 implies that 77,(c) — 7j(c) — 73(c) is zero in Pic(A).

To prove functoriality note that Ag+, = h.oa + O(1), by Theorem 3. Hence
O(1) is a bounded quadratic function which must be zero. .

The sum &, = gc+£. which is uniquely determined by c is called the Néron—
Tate height or the canonical height. Now we derive some easy consequences.
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Proposition 14. (i) If ¢ is even (respectively, odd), then he = g. (respec-
tively, he = £). ~
(ii) hey(z) = he(z — a) — he(—a) where ¢, = t* ,(c).

Proof. (i) follows from the properties of quadratic functions. For (ii), we
compute

he(z) = @c(x —a)+0(1)
= he(z) + he(—a) + Ahe(z,—a) + O(1)
= h(z) + Aho(z,—a) + O(1).

As before the bounded function O(1) is a sum of quadratic and linear func-
tions. Hence it must be zero. u

Let A be an abelian variety, and ¢ € Pic(A). Then by Proposition 13, the
map Z — Pic(A) sending n to n*c is a quadratic function.

Proposition 15. If  is a quadratic function on Z, then

n(n+1)
2

n —1)

h(n) = h(1) + ——h(-1).

In particular,

n*e = {nzc if ¢ is an even class in Pic(A)

nc if ¢ i1s an odd class.

Proof. For this use the facts that if h is a quadratic form, then
h(z +y) + h(z — y) = 2h(z) + 2h(y),

and a quadratic function is a sum of quadratic form and a linear function. =

Proposition 16. Let A be an abelian variety, and ¢ € Pic(A) be an even
ample class. Then A, is a positive quadratic form.

Proof. By multiplying ¢ by a large integer, we may assume c is very ample.
Hence k. > 0 + O(1). If h(P) # 0, then

ho(nP) = nho(P) + O(1).
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Therefore h.(P) > 0. .

Before we proceed further, we digress to generalities on Picard varieties
and Jacobians. Let X be a Riemmann surface (=nonsingular algebraic curve

over C). Then the Jacobian of X can be described as follows : Consider the
exponential sequence

0 — Z — Ox =B 0% — 0.
This induces cohomology exact sequence
.- — HY(X,Z) - H'(X,0) —» H}(X,0*) & H¥(X,Z) — - -
By Serre duality H'(X,0) = I'(Q)* where I'() is the global holomorphic

1—forms. We know that I'(2) is a g dimensional complex vector space where
g is the genus of X. For v € H'(X,Z) we define ¢, € I'(Q2)* by

bqy(w) =[y“"

Then A = {¢, | v € H(X,Z) } is a lattice in the g—dimensional C-vector
space. The Jacobian of X is then

T(Q)* /A

which is isomorphic to Pic®(X) (=kernel of c;). Hence the set of line bundles
of degree zero form an abelian variety of dimension g over C.

Now let X be a complete nonsingular curve over a field K. Then the
elements of H'(X, OX) are represented by the line bundles over X. We have a
bijection

{ divisors on X }
. defined over K

" {linear equivalence}

{ I line bundles on X } )
defined over K

The bijection is given by D — L(D) and given a line bundle L we correspond
a divisor of zeroes of a section. For D = Y n;P;, P, € X (T(_), we define the
degree of D by

deg(D) = Y niK(P) : K).



26 Sung Sik Woo

Example. Let f € K[t] be an irreducible polynomial of degree d. Consider
div(f) on Py. Then f has zero on p; the prime ideal (f) in SpecK[t]. And f
has pole at oo of order d. Hence

div(f) = (ps) — d(o0)
deg(div(f)) = [K[H1/(f) : K] —d =0.

Hence we see that a divisor of a rational function on a curve is of degree zero

(by pulling back).

‘Now we define

{divisors of degree zero on X defined over K}

Pic’(X) =

linear equivalence
q

Theorem 8. Let X be anonsingular curve with a K-rational point P,. Then
there is an abelian variety Jx defined over K and of dimension g (g=genus
of X)) such that there is a functorial isomorphism

Pic®(X) — Jx.
In this case there is a natural embedding
v: X — Jx

sending P to P — P,, which is defined over K.

Let A, A be abelian varieties over a field K and 6§ € Div(A x A). We say
that the pair (A 6) is a Picard variety or the dual variety of A if for any field

extension F' /K we have isomorphisms
AAF e PiCO(A) F
which sends y to §/A4 x {y}.

Theorem 9. For any abelian variety A over K the Picard variety (A, 6) of A
exists and is uniquely determined up to a K ~1somorph1sm And § is uniquely

determined in Pic(A x A). Furthermore, A A.
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For the proofs of these theorems see [M].

The divisor ¢ is called the Poincaré divisor and the corresponding line
bundle is called the Poincaré line bundle which we denote by the same symbol
6. By the uniqueness of § we see that

(-1)*6=4.
That is 6 is even. The Poincaré divisor § satisfies the properties
(1) 6|{0}x2 is trivial and 8| ax(a) lies in Pic®(Ax(q)).

(i1) For any variety X over K and a line bundle A x X such that Lloyxx 1s
trivial and L|sx (s} lies in Pico(Ak(,,_)) then there is a unique morphism
f:X — A such that (1 x f)*6§ = L.

If Jx is the Jacobian of a curve of genus > 2, then we have a nice description
of duality. Let © be the divisor (of Jx) © = X + --- + X where the sum is
taken (¢ — 1) times in Jx. We will denote the class of © by .

Let 6 = 71,0 — 770 — 70.

Theorem 10. The pair (J, ) is dual for J. Hence the Jacobian of a curve
is self dual. In particular the map Jx — Pic’(J) sending a to [@, — O] is an
isomorphism.

For an embedding 4:X — J and let a € J, X - (@, — ©) is a divisor on X.
Hence gives us a class in Pic’(X) (= Jx, which we will denote by S(X-(6,—6)).
Then we have

S(X - (0, —a)) =a.

Now we return to the analysis of height functions.

Proposition 17. Let A be an abelian variety and (2, 8) be the dual of A.
Then

hs(z,0) = hs(0,y) = 0.
The height hs(z,y) is bilinear.

Proof. For the first statement, we compute

hs(z,0) = hs(m1(2,Y)) = hs|4y 0, () = 0
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since 6| 4x {0} = 0. Similarly for (0, y).
For the second statement, let u, v € A x A. Let

Ls(u,v) = hs(u + v) — hs(u) — hs(v).
For z € A, y € A, let L(z,y) = Ls((z,0), (0,y)). Then
hb'(x’ y) = Ls((l’, 0)’(0,y))

Ls((=,0),(0,y)) + hs(z,0) + hs(0, y)
= Ls((,0),(0,y))

is bilinear. (]

Proposition 18. Let é§ be the Poincaré divisor class on the Jacobian of a
curve X. Then hs(z,y) is symmetric bilinear. And if 0 is the class of ©, then

—hg(a:,a:) = ho(w) + hg(-—:l?).
Therefore the quadratic form —hs(z, z) is positive.

Proof. Symmetry of hs follows from the symmetry of § and the functorial
property of the height functions. For the second statement, we compute :
Let d:J — J x J be the diagonal map. Then

—d'(6) = d'(m},0 — 770 — 7,0) = (m12d)*0 — 20
2% —-20=30+0" —20
= 0+6-

by Proposition 15. Therefore
—hs(z,z) = —hsod(z) = he(z) + ho(—z).

Now the facts that § + 6~ is even and ample gives us the result. "

We will use the following fact without proof. For a proof see [L].

Proposition 19. Let §xxx be the restriction of § on J x J via an embedding
¥:X — J sending P to [P] — ¢y where ¢ is a divisor class of degree 1. Then

6xxx =[A—{c} X X — X x {co}]
where A is the diagonal on X x X.
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The corresponding statement for height function is

Proposition 20. For z, y € X, we have

_h6x,(x(x7 y) + hA(SL', y) = th((l?) + hCo(y) + 0(1)

If z # y, then
—he(2,9) < heo(2) + heo(y) + O(1).

Proof. Notice that
heoxx(2,Y) = hryey(2,Y) = heo(2) + O(1).
Similarly, hxxe, (2,Y) = heo(y) + O(1). Hence
hoxxx(Z:Y) = ha(z,y) = heo(2) — heo(y) + O(1).

The last statement follows from the fact that the height function correspond-
ing to a positive divisor is bounded below off the support of the divisor.
(cf. Proposition 16) .

Let X be a curve and ¢y be a divisor class of degree 1. Let ¢:X — J be
the embedding given by sending z to [z] — co. Let Sy: Pic(X) — J be the map
sending 3" n;z; to ¥ ni([z;] — co). We will use the following fact.

Proposition 21. If O is the divisor introduced before, then
Sp((0+67) - X) =k +2¢
where & is the canonical class and O~ = O_,.
We can choose ¢ so that © is even. In fact, we can choose ¢y so that

(29 — 2)co = k. If cg is chosen in this way, we will say that the corresponding
emmbeding is normalized.

Proposition 22. If ¢ is normalized, then —hs,, ,(z,z) = 2ghe,(z) + O(1)
where z € X.
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Proof. We compute

—hs(z,z) = hoyo-(T) = hoyac () = 2gh,(z) + O(1). .

We have seen that —hs(z,y) is symmetric bilinear on J x J. Now we define
forz,y € J, '

<z,y>= —hs(z,y) and |z| = <z, z>.

Theorem 11. [Mumford] For z, y on a curve X we have
29 <z,y> +2gha(z,y) =<z,2>+ <y,y> +0(1).

If z # y, then
29 <z,y>< [ef* + |y + O(1).

Proof. Multiply 2g to both sides of the equality (Proposition 20)
—hs(z,y) + ha(z,y) = hey(7) + heo(y) + O(1)

and use Proposition 22 to get the result. L]

Now we consider the abelian varieties over a number field. Let A be an
abelian variety over a number field. For ¢ € Pic(A) we let h. = h. be the
canonical height. We define

<ZT,Y>c. = hc(w + y) — he(z) - hc(y)
|zle = /<z,z>. (if defined).

Theorem 12. Let A be an abelian variety over a number field K. Let ¢ be
an ample even divisor class on A. Then |z|. = 0 if and only if z € A(Q)q,.

Proof. Since c is even we have |z|. = n|z|.. Let £ € A be defined over a
finite extension F' of K. Then nz is also defined over F for each n. Now we
notice the fact that A is projective and there are only finitely many points of
bounded height in a finite extension of K (Theorem 1). Hence if |z|. = 0 then
{nz|n € Z} must be a finite set. .
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Theorem 13. Let A be an abelian variety over a number field K. Let (A, 8)
be the dual of A. Then

(i) Each side of the kernel of
AxA—R
sending (z,y) to hs(z,y) is Asr and Ay, respectively.
(ii) The kernel of the map
Pic(A) — {quadratic functions on A(Q)}
is precisely (Pic(A))tor-
Proof. See [L]. .

5. Mordell-Weil Theorem

In this section, we will prove Mordell-Weil Theorem.

Theorem 14. [Mordell-Weil Theorem] Let K be a number field and A an
abelian variety defined over K. Then A(K) is a finitely generated abelian
group.

‘To prove this it will suffices to prove,

Theorem 15. [Weak Mordell-Weil Theorem] Let K be a number field and
A an abelian variety over K. Then A(K)/nA(K) is a finite group for an
integer n > 1.

To show Theorem 15 implies Theorem 14, we need

Proposition 23. [Infinite descent] Let I' be an abelian group such that
(1) T'/nT is finite for some n > 1.
(2) There is a symmetric bilinear pairing I’ x I’ =3 R such that

(i) <a,a>>0onT.
(ii) {a € | <a,a>< C} is finite for all constant C > 0.
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Then T is finitely generated.

Proof. Let ay,...,a, be the representatives of I'/nI". First we claim that there
is a constant C such that whenever <a,a>> C, then

<a-—aa—a;><2<a,a> (1=1,...,s).

To see this note that the Schwartz inequality

<a,a;><+/<a,a>\/<ai,a;>
holds since <a,a>> 0. Since
<a-—aj,a—a;>=<a,a>-2<a,a;>+ <a;,a;>

we see that <a—a;,a—a;> increase asymtotically as <a,a > for <a,a>— oo.
Hence the claim.

Now let M = {a1,...,a,}U{a € | <a,a> < C}, where C is the constant
chosen above. Let I’y be the subgroup generated by M. We want to show
o =T. Assume the contrary. Choose = ¢ I’y and < z,z > is minimal. (The
set {a € T'| <a,a>< C+ N} will be finite for a positive integer N.) Obviously
<z,z>>C. Let £ — a; = nb for some b € I" and a; € M. Then

1 2
<bb>=—= <zr-ai,7-a;>< = <z,T><7T,7>.
n n
By minimality of <z,z> we have b € I'y. Hence z = nb+ a; € I'y. A contra-
diction. n

Now we will explain why weak Mordell-Weil theorem implies the Mordell-
Weil theorem. Choose an even (very) ample divisor class ¢ on A. Hence h, is
a positive quadratic form (Proposition 16). Define

<z,y>= h(z +y) — he(z) — he(y).

Therefore < &,z >= 2h.(z). By theorem 1, there are only finitely many points
of bounded height and of bounded degree. Hence the pairing meets all the
conditions of Proposition 23. Hence A(K) is finitely generated.

Now we will prove weak Mordell-Weil theorem in several steps. As before
we let A be an abelian variety defined over a number field K. Let

A, = {z € A(K)|nz = 0}
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for any group variety A. If A is an abelian variety, then A, = (Z/ nZ)* where
g is the dimension of A and A, = pn if A = K*. For the rest of this section
we will assume A, C A(K). This can be achieved by a finite extension and
obviously it suffices to prove the Mordell-Weil theorem for a finite extension

of K.

For z € A, let K(n™'z) be the field by adjoining all coordinates of n~'z,
the inverse image of x under the multiplication by n map. Then we first
notice that K(n™'z) /K is an abelian extension of exponent n. In fact,if o is a
conjugate of K(n~1z) over K and if ny = z, then n(o(y)) = o(ny) = . Hence
the extension is normal. Write a, = o(y) — y € A, so that o(y) =y +a,. If

7 is another conjugate, then we have 7o(y) = y + a, + a,. Hence K(n~'z)/K
is abelian of exponent n.

Let B be subgroup of A(K) containing nA(K). Let
Ly =K ({n""blb€ BY}).

Then the above observation shows that Lp /K is abelian of exponent n. Let
Gp be the Galois group of Lp /K . Define the bilinear pairing

G x B3 A, by <o,b>=0(n"1b)—n"'b.

One can check easily that the definition does not depend on the choice of
n~1b. If <o,b>= 0 for all b € B, then o is an identity since Lp is generated
by n~'b, b € B. On the other hand, if < 0,b >= 0 for all ¢ € Gp, then
n~'b € A(K) i.e, b€ nA(K). Hence we have a nondegenerate bilinear
pairing

Gp x B /nA(K) — An.
Therefore we have proved ;
Proposition 24. Let A be an abelian variety over a number field K. Assume
A, C A(K) and let B be a subgroup of A(K) containing nA(K). Then

K(n™'B) is an abelian extension of exponent n. Further K(n~'B) is a finite
extension if and only if B/nA(K) is a finite group.

If A is the multiplicative group K*, then we have more precise information.
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Proposition 25. Let K be a number field containing the n—th roots of unity
pn. Let F' be a maximal abelian extension of K with Galois group H. Then
we have a nondegenerate pairing

Hx K*/K*" — u, defined by (G,E)H%)-.

Hence there is a bijection

{ E/ Kl abelian extension

L Xn
of exponent } — {B CK I subgroups containing K }

The bijection being given by
Ew G(F/E)" and B+ K(n"'B).

Furthermore, we have [Ep : K] = [B : K*"] where Ejp is the abelian extension
corresponding to B.

Proof. See Lang’s Algebra. .

According to Proposition 24, to prove Weak Mordell-Weil theorem we need
to show K(n"'A(K)) is a finite abelian extension of K. We need some Néron
model theory. Let R be the ring of integers of a number field K, and A an
abelian variety over K.

Theorem 16. There is an open set Y of SpecR and a group scheme A over
Y such that

(1) A x, SpecK = A.
(ii) For every y € Y, the fiber ﬁy is an abelian variety.

(1ii) ﬁ(Y) ~ A(K) i.e, the group of Y-points of A is isomorphic to the group
of K-points of A.

Proof. See [N]. .

Let z € A(Y). Then n~'z is a finite (affine) scheme over Y. The natu-
ral projection n~'x — Y is étale over all y € Y whenever char k(y)tn. Let
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S be the set of primes dividing n and the primes excluded in Theorem 16.
Then it follows that for y € n~'z, K(y) D K is unramified outside S. Hence
K(n™'z) D K is an abelian extension of exponent n unramified outside S.
Accordingly so is K(n"!A(K)) over K. Therefore to complete the proof of
Mordel-Weil theorem, it suffices to show

Proposition 26. Let K be a number field containing u,. Let L be a max-
imal abelian extension of exponent n unramified outside the finite set of
primes S. Then L/K is a finite extension.

To prove this we quote a fact whose proof we refer to [L].

Proposition 27. Let v be a discrete valuation on K and n a positive integer
prime to the characteristic of the residue field of v. Then v is unramified in

K ({/a) if and only if n|ord,(a).

Hence if Ep is the Kummer extension belonging to B C K*, then Ep is
unramified outside S if and only if for any b € B, there is an S-ideal b such
that (b) = nb. Now if B, C K* belongs to a maximal abelian extension of K
of exponent n unramified outside S, then

B, = {b€ K*| there is an S-ideal b such that (b) =nb}.

If we write C,, for the n-torsions of S—ideal classes and Us for the S—units,
then we have an exact sequence

0 — Us/Ug — B,/K*™ — C, — 0.

From number theory we know that Ug is a finitely generated abelian group
and hence Ug/U7 is finite. Also we know that the S-ideal class group is also
finite. Therefore B, /K*™ is finite. Now Proposition 25 finishes the proof of
Proposition 26. Thereby finishing the proof of Mordell-Weil Theorem.

6. Roth Theorem

Let a be a real number which is not rational. We want to approximate a by

rational numbers p/q but p and ¢ not too large. Classical Dirichlet theorem
says
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Theorem 17. [Dirichlet] Let « € R — Q. Then

o
7'14 q

Proof. See Silverman [S] .

i1s an infinite set.

But Liouville theorem says the approximation cannot be arbitrarily close.

Theorem 18. [Liouville] Let a € Q — Q be of degree d. Then there is a
constant C such that for any p/q € Q, we have

C

> =
qd

- -«

|p
q

Proof. See Silverman [S]. .

Let 7(d) be a positive real valued function on rational numbers. We say
that a number field K has an approzimation exponent 7 if for any o € K of
degree d over K, for any v € Mk (extended to K () in some way) and for any
constant C the set

{z € K| |z - al, < CHk(z)"®}

is finite. Note that |z — o, is something about topology of K and Hg(x)
has something to do with arithmetic of K. Liouville’s theorem says that Q
has an approximation exponent 7(d) = d + £, € > 0. Here are some list of
improvement.

Liouville 1851 r(d)=d+e¢

Thue 1909 7(d)=2"'d+1+e¢
Siegel 1921 7(d) =2Vd+¢
Gelfond, Dyson 1947 7(d) = v2d +¢
Roth 1955 7(d)=2+¢

In view of Dirichlet’s theorem, Roth’s theorem is the best possible.
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Theorem 19. [Roth] Let K be a number field and S be a finite set of places.
For each v € S, let a, be algebraic over K. Extend v to K in some way. Let
k& > 2 be a real. Then the set

. 1
{ﬂ € K|££mf(1, law — Blls < —_—H(ﬂ)"}

is of bounded height.

For a proof of Roth’s Theorem we refer [L]. However we will show how to
reformulate Roth’s Theorem in a geometric form which we will use to prove
Siegel’s theorem. Here is a preliminary version.

Proposition 28. Let G(y) € K[y] be a polynomial such that the multiplicity
of roots of G is bounded by r. Let S be a finite set of places and C > 0, & > 2
be constants. Then the set

) C
{se 51 st el < 75}

is of bounded height.

d
Proof. We may assume G has leading coefficient 1. Write G(y) = [[(y — :)*.
=1
Extend v in S to K in some way then

d d
I1 inf(1, IG(B)s) = TI TTinf(1, 18 — esllu)* = TT ITinf(1, 16 — asllu)"-

vES vES =1 veS =1

Roth’s theorem implies that

{ﬂl 11 fIinf(l, 18 = eills)” < ;}

vES 1=1 H('B )m’
is of bounded height. Therefore the set of solutions to the original inequality
is also of bounded height. "

Using this we will prove the first geometric formulation of the Roth’s the-
orem.
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Theorem 20. Let W be a complete nonsingular curve. Let z,y be noncon-
stant rational functions on W. Let r be the maximum of the order of zero of
z and let y be defined on the set of zeroes and poles of z and y takes distinct
values at zeroes of z. Let k > 2, C > 0. Then the set

Q is not a zero or pole of z and }

{Q €WK )’ ILinf(L, [2(Q)ll) < w5
is of bounded height (with respect to H,).

Proof. We may assume K(W) = K(z,y) for otherwise we may take the non-
singular model of K(z,y). Next we may assume ||y(Q)||, are bounded for all
v € S for otherwise we can make a coordinate change

l=ay+b
Y cy+d

(a, b, ¢, d € K)

so that y’ satisfies the same property as y and ||y'(Q)||, are bounded.

Let ® be the zero set of 2. Since y has no poles on ®, we see that y
is integral over K[z](,y which we denote by . Let F(y) be the irreducible
equation of y over O and let G(y) € K[y] be such that G(y) = F(y)(mod z).
Then by hypothesis y maps ® into K injectively. Hence we conclude that the
multiplicity of roots of G(y) is bounded by r. Write

F(y) = G(y) + zA(z,y), A(zy) € O[y].

Since A(0,y) is defined, A(z(Q), y) is also defined for small ||2(Q)||,. Since we
may assumed ||y(Q)||. are bounded, the value ||A(2(Q),y(Q))||, are bounded.
Since 0 = F(y) = G(y) + zA(z,y) we have

IGE @Dl < "ll2(@IA(Q), y( @)l < l2(Q)ll. (v € S)

for some constant ¢’. Take the product to get,

[ inf(1, |G(y(@)lo) < ¢ TT inf(1, 2(@)Il2) < e/ H(y(@))™"

vES vES

Using Theorem 19, one can easily check that the points satisfying the inequal-
ity of the theorem is H,~bounded. n
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Theorem 21. Let W be a nonsingular curve over K. Let ¥ € K(W) be a
nonconstant function and r be the maximal order of pole of 1. Let £>2, ¢>0
and S be a finite set of places. Then the set

@ is not a pole of ¥ and
{Q € W [ sup(t, I9(Q) > H (@) }

is of bounded height.
Proof. Choose z = 1/% in the previous theorem and take the reciprocals. =

We will prove the Siegel’s theorem on finiteness of integral points on an
affine curve. Even though Siegel’s theorem is overwhelmed by Faltings’ proof
of Mordell conjecture we will follow the classical line of proofs.

Using weak Mordell-Weil theorem we can improve the Roth theorem as in

Theorem 22. Let K be a number field and v € Mk. Let C be a projec-
tive nonsingular curve of genus> 1 which is defined over K. Let ¢ be a
nonconstant rational function on C. Let p, ¢ > 0 be constants. Then the set

P is not a pole of ¢ and
(el L ey ™)

is of bounded height.
To prove this we need

Proposition 29. Let C be a nonsingular curve over a number field K and
let J be its Jacobian. Let m be an integer with J(K) /mJ (K) is finite.

Then there is a nonsingular curve U over K and a map w:U — C which is
unramified such that How is quasi—equivalent to H™.

Proof. Let m:J — J be the multiplication by m map. Then m is unramified.
Let U be the pull back of C. Assume we have a projective embedding J C PV
and let X be a hyperplane section. Then since X is algebraically equivalent to
an even class, we have that m*X is algebraically equivalent to m2X. By func-

toriality How is equivalent to H,»x = H+x. Hence How is quasi-equivalent
to H™. "
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Proof of Theorem 22. Let € > 0. Choose m large enough so that
m?p>kr and  m?p(1 —€) > kr.
Then there is a constant ¢; such that
How(P) > ¢ H(P)™ -9,
Rasing p-th power we have inequalities with some constant c;,
(@) = caHow(P)? > clch(P)"‘(l_‘)p > e H(P)™.
Hence we have V
{Q e Ul ¥(Q) 2 aH(Q)}SA{Q € U| [$(Q)| 2 crc:H(P)™}.

and the latter is of bounded height. Therefore the former is also of bounded
height. This complete the proof of theorem 22. .

Theorem 23. Let K, C, ¢ be as before. Let S be a finite set of places
containing all infinite places. Let R be the S—integers. Then the set

R = {P € C(K)| P is not a pole of ¢ and ¢(P) € R}
is of bounded height.

Proof. Assume the contrary. Let ®; be a sequence of points of ® whose height
tends to infinity. We have (H = Hk)

H(e(P)) = [T sup(L, le(P)l.)-

vES
Let s be the number of places in S. Then for any P € R;, there is v € S such
that
H(p(P)) < |e(P)l;.

Since S is finite and R, is infinite, we can find an infinite subset R; of £, and

v € S such that
H(p(P)) < |e(P)I;

for all P € R,. View ¢ as a section of the line bundle corresponding to the
divisor (¢)c and let r = deg(¢)co. Let r be the degree of C (in a projective
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embedding). Then by Corollary 2 to Theorem 4, we have that (Hop)? and H"
are quasi-equivalent. Hence for any € > 0, there is ¢; such that

H(P)"1=* < i H(p(P)).
Then for any P € R;, there is p = % (5 - 6) > 0 such that
le(P)lo = c2H(P)".

This contradicts to our previous theorem. "

Theorem 24. [Siegel] Let K be a number field, R be the ring of integers.
Let C be an affine curve over R with genus> 1. Then the number of integral
points of C is finite.

Proof. We have embeddings
CCcA™cCcP
Let z4,...,z, be the coordinates of A”. Then
C(R) = {P € C(K)| z:(P) € R for all 1}

is of bounded height. But the set of points of bounded height in P} is finite
by Theorem 1. : .
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§1. A and finitely generated A—modules

Let Z, be the ring of p-adic integers and let A = Z,[[T]] be the ring of power

series in T'. Then A is a topological Noetherian local ring with the maximal
ideal

m = Z,([T]] - Z,[[T)|* = pZ, + TZ,[[T]] = (p, T).

The topology on A is the product topology ﬁZp, so fi(T) = Y aniT™ ap-
0
proaches to f(T) = Y a,T™ if and only if a,x — a, in Z, for all n.

Definition 1.1 Let f(T) € A. By u(f), we mean the highest power of p
dividing f(T). Let f(T) = ao + a1T + a2T? + ---. Then A(f) is defined to
be the first index ¢ whose p-adic valuation is u(f) i.e., p*ftlq; for k =
0,1,...,A(f) — 1, but p”(f)'l'l*a)\(f).

Theorem 1.1 (Euclidean Algorithm) Let f(T') € A with u(f) =0, A(f) =
n. Then for any g(T') € A, there are unique ¢(T) € A and r(T) € Z,[T] of

degree < n such that
9(T) = ¢(T)f(T) + r(T).

Proof. Refer to [9] Chapter 7, section 1. .

Some Consequences

(1) I u(f) =0, then Z,[[T]]/(f) ~ Z} as Z,~modules, where A = A(f).

(2) (Weierstrass Preparation Theorem)
If u(f) = 0, then there are unique U(T) € A* and a distinguished
polynomial P(T') of degree A = A(f) such that f(T') = U(T)P(T).

A polynomial A(T) = ap+ a;T + - - - + a;x T* is distinguished if
pla; for 0 < i < k —1 and play.

More generally, for any f(T) € A, f(T) = p*U(T)P(T), where U(T) €
A*, P(T) is a distinguished polynomial of degree A\(f) and u = u(f).

Proof. It is enough to show the first half. Let g(T') = T* and apply the division
algorithm ;
T = oT)f(T)+r(T), degr <A
T = ¢(T)T*fi(T)+ r(T)modp,
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3)

(4)

Proof.

()

Proof.

Jae Moon Kim

cee A-1 .
where f,(T) = f=(ao+a,T ;,\ + T ), f(T) =Y a;T*. Hence
7(T) = Omod p. Therefore, P(T) = T* — r(T) is a distinguished polyno-
mial. By reading the coefficients of T*(mod p), we obtain 1 = ¢(0) f,(0).
Hence ¢(0) € Z) and ¢(T) € A*. Let U(T) = 1/¢(T). Uniqueness
follows from the uniqueness of ¢ and r. "

Suppose u(f) =0, so f = UP as before. Then the natural injection
Z,[T]/(P) — A/(f)

is an isomorphism.

A is a unique factorization domain having p and irreducible distinguished
polynomials as prime elements.

Since A/(p) ~ F,[[T]] is an integral domain, (p) is a prime ideal, hence
p is a prime element. If P(T') is an irreducible distinguished polynomial,
then
A/(P(T)) = Z,[T]/(P(T))

is again an integral domain, so P(T) is a prime element. Let f(T) € A.
Then f(T) = p*P(T)U(T) for some distinguished polynomial P(T) and
unit U(T'). Since Z,[T] is a U.F.D, we can factorize P(T) as P(T) =
Py(T)*r--- P,(T)*r in Z,[T], where P;(T)’s are irreducible polynomials
in Z,[T]. By reading this mod p, we have T* = P}' --- P, mod p, thus
P; = T"mod p for some );. Hence P; is dlstmgulshed and 1rredu01ble in
A. n

Suppose f(T') and g(T) are relatively prime in Z,[[T]]. Then A/(f,g) is
a finite set. .

One of f or g is not divisible by p, say pt f. Write f(T') = P(T)U(T), and
9(T) = p*Q(T)V(T), where P(T), Q(T) are distinguished polynomials
and U(T),V(T) € A*. Then (f,g9) = (P(T),p Q(T)) Since f and g
are relatively prime in A, so are P(T) and Q(T') in Z,[T]. Since Q,[T]
is a principal ideal dornam there exist R(T'),S(T) € Q,[T] such that
RP 4+ 5Q = 1. By clearmg the denominators, we get p° = B, P + $,Q
for some integer ¢ > 0. Hence

¢ = R P(T) + 51p°Q(T) € (P(T),p"Q(T)) = (£, 9)-
Hence (p**¢, f) C (£, g). Since A/(p**e, f) is finite, so is A/(f, g). .
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Now we study finitely generated A-modules.

Lemma 1.1 Suppose that X is a finitely generated A—module such that
fX = gX = 0 for some relatively prime elements f,g € A. Then X is finite.

Proof. Let g1,9s,...,g- be a set of generators of X. Then we have a surjection
A" — X defined by (f1,...,f;) — figi +- -+ f-g,. This map factors through
(A/(f,9))" — X. Since A/(f,g) is finite, so is X. .

Definition 1.2 A A-module homomorphism ¢:X — Y is called a pseudo-
isomorphism if kery and cokery are finite. When there exists such a ¢, we
say that X and Y are pseudo-isomorphic and write X ~ Y.

Remark. (i) X ~ X,
(i) X ~Y and Y ~ Z implies X ~ Z,
(ili) X ~ Y does not imply Y ~ X. For example, m = (p,T) — A is a

pseudo-isomorphism but there is no pseudo-isomorphism A — m. The
proof is left as an exercise.

Proposition 1.1 Supposethat X, Y are finitely generated torsion A—modules.
Then X ~ Y implies Y ~ X.

To prove this proposition, we need two lemmas.

Lemma 1.2 Suppose that X is a finitely generated torsion A-module, say
FX =0. Let g € A be relatively prime to f. Then X %5 X is a pseudo—
isomorphism.

Proof. Since f(kerg) = g(kerg) = 0, kerg is finite. And since f(X/g(X)) =
9(X/9(X)) =0, X/g(X) is finite. .

Lemma 1.3 Suppose that B is a finite A—-module. Then for any element
9(T) in m = (p,T), we have g"B = {0} for all n > 0.
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Proof. Take b € B. Since Ab is a finite set, g"b = ¢g™b for some n < m. Thus
g"(1 —g™™)b=0. Since 1 — g™ ™™ € A*, we have g"b = 0. Since B is finite,
we have ¢°B =0 for s > 0 "

Proof of Proposition 1.1. Let X -2+ Y be a pseudo—isomorphism. Let A =
kerp, Z = Imyp. Suppose that f;X = f,Y = 0 for some fi, f € A. Choose
g € m relatively prime to both f; and f,. Then the composition of following
maps gives a desired pseudo-isomorphism :

Y L 2=X/A55 X, .
n»0 m»0
Theorem 1.2 (Iwasawa) Let X be a finitely generated A—module. Then

X ~ N DD A/(f)

=1

for some prime elements fi,...,f, €A, r > 0. And r, f&*,..., fer are unique
up to ordering.

Proof. X can be shown to be isomorphic to a direct sum of free part A" and
torsion part ¢(X). And the rank of the free part is invariant. Furthermore,
the torsion part is pseudo-isomorphic to a A-module which has no finite sub-
module i.e.,
H(X) ~ t(X)/A,

where A is the maximal finite submodule i.e., the sum of all finite submod-
ules. Therefore, we may assume that X is a torsion A—-module without finite
submodules.

Step 1. Since X is a finitely generated torsion A~-module, there is a polynomial
[ € Z,[T] such that fX = 0. Write f = ¢{* --- ¢°" where ¢, is either p or an
irreducible distinguished polynomial. Let

X(¢:)={r€ X : ¢z =0 for some m € N}.

Then X ~ @ X(q:).
Proof. Suppose that 3"z, = 0 with z,, € X(g). Let ¢F = —q-é Then for

ann > 0¢g"(Tz,) = ¢z, = 0 and ¢™z,, = 0. Thus I{mq,. is finite,
hence is 0 and z,, = 0. This means that the map @ X(¢;) - X defined by
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(+++, g, ++) — 3 Tq; 1s injective . Since ¢i*(¢7 X) =0, ¢; X C X(g:) C Ime.
Let a be the ideal of A generated by g},...,q*. Then aX C Imy and X/Imep
is finite by the following lemma.

Lemma 1.4 Let a be an ideal of A whose greatest common divisor is 1, that
is, a is not contained in a proper principal ideal. Then A/aA is finite.

Proof. Let f € a be a polynomial of the smallest degree in a. Write f = p*Q,
where @ is distinguished. Let g be any element in a. By Euclidean algorithm,
g =qQ +r, degr < deg@ or r = 0. But since the degree of pr € a is smaller
than deg@, r must be zero. Hence g = ¢Q). Since the greast common divisor
of ais 1, Q = 1. Hence f = p*. Take h € a which is not divisible by p. Then
(p*,h) C a C A and A/(p?, h) is finite. .

Step 2. Let ¢ be one of ¢; in Step 1. There are z1,...,z, € X(g) such that
X(q) ~ B Az;.

Proof. Localize A and Y = X(q) at the prime ideal (¢). We get a A(;—module
Y(,). Since A(y) is a principal ideal domain,

Yo 2 Az1 © -+ D Ag)Ts

for some z;,...,z5 € Y. The map
(...,f,-a:,-,...) — Zf,':l,','
is an injection, since @Az; C @ A)zi =~ Y(,). Let 71,...,Z; be generators

of Y/Imy for some z;,...,2, € Y. Note that for each z € Y C Yy, 2
can be written as z = Z%xi with glg;. Let ¢ = [1gi, ¢* = *’% Then

gz = Y. g fiz; € Imp. Hence gz = ¢z = 0. Thus AZ is finite. Apply this
argument to each generator of Y/Imy to conclude Y/Ime is finite. .

Step 3. So far we have proved

X ~PX(g) ~ DDAz
qlf alf
Hence it remains to show that for each z € X(g), Az ~ A/(¢°) some e > 0.
Proof. The map A — Az defined by h — hz is a surjection. Let a be the
kernel of this map and ¢° be the smallest power of ¢ such that ¢°z = 0. Then
(¢°) C a. It is easy to show that (¢°) = a. .
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§ 2. Iwasawa Invariants y, A and v

Let k be a number field (i.e., [k : Q] is finite) and p be a prime number. A
Z,—extension of k is a tower

k=khChchkhC - Ckc-
such that k,/k is Galois and cyclic of order p". Let ko, = K = ( k.. Then

n>0

Gal(K/k) ~ imZ/p"Z ~ Z,. We also say that K/k is a Z,-extension. One
often denotes the Galois group Gal(K/k) by I' and we will use this notation.

Facts from Local Class Field Theory

Let F be the completion of a number field at some finite prime. Let E be
a finite abelian extension of F'. Then there is a surjection

F* = Gal(E/F)
a — (a,E/F)

with the following properties :
(1) Suppose that FF C E C D for some abelian extension D of F. Then

(a,D/F)|, = (a,E/F).

(2) The kernel is Ng/p(E*), so F*/Ngp(EX) ~ Gal(E/F).
3) Let Ur = Of be the group of units in the ring of integers of F. Then
F
(Ur,E[/F) = Tr/r = inertia group.

(4) If E is an unramified extension of F, then (Ur, E/F) = {1} and thus
Ur is in the norm group Ng/r(E*). So F*X — Gal(E/F) induces Z —
Gal(E/F) since F* ~ Ur x Z.

(5) There is a one-to-one correspondence between

{ finite abelian } . {open subgroup H C F* }
extension F of F of finite index

E — Ngp(EX)
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We now return to Z,-extensions. Let k be a number field and K be a
Z,-extension of k.

Proposition 2.1 Let v be a prime (may be infinite) of &k such that v{p. Then
v is unramified in K.

Proof. Let w be a place of K extending v. Then
T(wlv) C Z(w|v) C T = Gal(K/k),
where Z(w|v) is the decomposition group. And Z(w|v) ~ Gal(K,/k,). By
the class field theory, Up — T'(w|v) is surjective. Note that
Uy, ~ finite X Z;k":Q‘], where [ is the prime such that v|l.

Since Uy, has no factor gfoup isomorphic to Z,, T(w|v) = {1}. If v|oo, then

Z(w|v) ~ Gal(K,/k,) = order 1or 2 CT.
Therefore, Z(w|v) = T'(w|v) = {1}, and v splits completely in K/k. .

Since the Hilbert class field of k is finite over k, we have :

Corollary. Some prime above p must ramify.

Let I, = Gal(K/k,), thus Gal(k,/ko) ~ T'/T,. We consider the group

ring Z,[I'/T] and its projective limit lim Z,[I'/T',] under the natural surjection

(restriction) I'/T,, — I'/T, for m > n. Let v be a topological generator of T.
Then the following map can be easily shown to be an isomorphism.

Z,[L/Ts] = Z,[T)/(wa(T))
ymodI, + 1+ T'mod(w,(T)),

where w,(T') = (1 + T)?" — 1 which is a distinguished polynomial. Moreover,
the following diagram commutes : for m > n

Z,[T/Tr] = Z,[T]/(wn) fmodwp,

l ! !
Z,[T/T.] = Z,[T)/(w,) fmoduw,

Hence

lim Z, [T/ T] = Bm Z, [T}/ (wn) = Bm Z,{[T]}/(w,).
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Proposition 2.2 (Serre) LimZ,[[T]]/(w.) ~ Z,[[T]).

Proof. We have a natural map

Z,[[T]] — UmZ,[[T]]/(wn)
f — (...,fmodwm...)

Check w, € m™*! by induction. Hence if f — 0, then f € Nm"*! = (0).
Let (--+, fa," ) € imZ,[[T])/(w,). Then foy1 = fomod w,, hence mod m™**.

This implies that coefficients of {f,} of given degree are Cauchy and thus
lim f, = f exists and f+— (---, fn," ). "

Now we describe an important A-module. For each number field F', let Hg
be the Hilbert class field of F, that is, the maximal abelian extension of F,
unramified at all places. Then Gal(Hp/F') ~ CI(F) = ideal class group of F.
Let E be an extension of F'. Then the following diagram is commutative :

Gal(HE/E') E) Gal(HF/F)

) )
CI(E) ’%" CI(F)

So N:CI(E) — CI(F') is surjective if and only if restriction map is surjective
if and only if EN Hf = F. Thus, especially, N:Cl(E) — CI(F) is surjective if
E[F is totally ramified at some prime. We apply this to the Z,-extension K/k.
By Corollary 2, K/k,, is totally ramified at some prime for some no. Hence
N:Cl(k,) — Cl(k,) is surjective for all m > n > ng. Let A, be the Sylow
p-subgroup of Cl(k,,J. Then N:A,, — A, is surjective for all m > n > ny. Let
H,, be the subfield of H k. such that Gal(H,/k,) ~ A,. Let

X =lim A, = lim Gal(H,/k,) = lim Gal(K H,/K) = Gal(L/K),

where L = J KH,. Gal(k,/k) = /T, acts on Cl(k,), hence on A,. T'/T,
n>0

also acts on E}al(Hn /k,) by inner automorphisms. And these two actions are
compatible in the sense that

(a, Ha/k)" = (a7, Ho/ks), for all 0 € /T, a <k,
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Hence A, is isomorphic to the Sylow p-subgroup of Gal(H,/k,) as Z,[I'/T,]-
modules. Therefore

limA, ~ limGal(H,/k,) as lLimZ,[l/T,]-modules.
— — — P

| | |
X Gal(L/K) A

Exercise. Check actions are compatible with the maps involved in lim.

Theorem 2.1 X is a finitely generated torsion A-module.

Proof. For a while, we assume that primes of k that ramify in K are totally
ramified. (One can ensure this by replacing k by k,, for some ng). Let o
be a topological generator of I', so 7o corresponds to 1 + T under the map
Z,[[I)]=A = Z,[[T]]. Let G = Gal(L/k) and let Lo the maximal abelian
extension of kin L. Then Gal(L/Lo) = G’ is the closure of the commutator
subgroup of G. Take a lift of 4o in G, call it 7o again. Let ['y = <75 > be the
subgroup of G generated by 7o in G. Since Iy is an inertia subgroup of some
prime, we have

FonX={1}, XFO=POX=G,

since we are assuming that K is totally ramified over k.
Let g, h € G, write g = zv§, h = yy{ with z, y € X. Then

ghg™'RTt = sdyvire T oty !
z(0y75°) (e 0 )y~
2y (27 oy !

_ -1, —1\E-1
yo T (7))

1

I

So G is generated by {y%~'} C X. Since y%~! = (1 +T)* - 1)y € TX,
G' =TX and thus G’ = G' = TX. Therefore Gal(L/Lo) = TX. Let vy,...,v,
be the primes of k that ramify in K, hence in Lo and L. Let T; be the inertia
group of v; in Lo/k. Since the fixed field of < Ti,...,T, > is the maximal
unramified extension over k, T} ---T, = Gal(Lo/H,) is a finitely generated
Z,-module. Since Gal(Ho/k) is finite, Gal(Lo/k) is a finitely generated Z,-
module and so is its submodule Gal(Lo/K). Therefore X/TX = Gal(Lo/K)
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is a finitely generated Z,-module, hence a finitely generated A-module. Let
zymodTX,...,z,mod T X be generators of X/T X as A-module. Then

X = Azy+--+Az, +TX
Azi+ -+ Az, + T(Az1 + -+ + Az, + T X)
:A$1+'+A$n+T2X

= Az;+-- -+ Az, + T"X

But for any neighborhood V of 0 in X, 7" X C V for n > 0. Hence Az, +---+
Az, is dense in X. So Az; +--- + Az, = X is a finitely generated A-module.

Now we have to prove that X is a torsion A-module. Note that a finitely
generated A-module Y is torsion if and only if Y/AY is finite for some h € m.
Let Y, = Gal(L/KH,), so that A, ~ X/Y,. Let T\ = T?" be the inertia
group of v; in L/k,. Then

n

Gal (L/Hy) = X T . T, 4, = o

and Y. =X X‘Yn—lTl("') T,

Since T; C G = XT,, for each generator o; of T;, 0; = ;70 for some z; € X.
8 il

Here 7, is taken to be a topological generator of 7;. So topological generator

of T™ is

B n
P _ (Pt o l+vtedy _pt
o =(zin)’ == Yo

Hence

T = <ol > = <o’} > = <"y >,
where 6, =1+ +---+7% *. So

Gal(L/H,) = X™7'< 9,25V, ..., Toryn >

-1 ;
= X" <y, 2b >

= X"l s <ot ><y, >

And

Y, X Gal(L/H,) = X"'<afr > <zl >
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W, W,
= <w,X,—z9,...,—2T5>
Wo Wo
Wy
= —< weX,T3,...,Ts>
Wo
Wy,
= —Y.
Wo

Therefore w
A, =Gal(KH,/K)~ XY, ~ X/w—"YZ).
o

Note that if there is only one prime in k that ramifies in K, then Y, = w, X

w
and A, = X/w,X. Since — € m and since
Wo

X/ 22, = A,
Wo

is finite, X is a torsion module because &Yo - ﬁX . Even if we do not
Wo Wo

assume that all vy, . . ., v, ramify totally, there is no such that K/k,, is totally

ramified. Hence

55

wno+n
Antng = X[ Yooin,  Yogin & —Yn,. u

no

Theorem 2.2 Let #A, = p°*. Then there are integers p, A, and v (g, A > 0)
such that e, = up" + An + v for n > 0.

Wp 1+T)" -1
Proof. Let En = Wy_y = (1 + T)p"-—l -1

nomial of (pn — 1 over Z,.

be the distinguished irreducible poly-

Lemma 2.1 Let Z ~ ®A/qf where ¢; are primes in A. Let f = [Jq;".
Suppose the maximal finite submodule Z° of Z is 0. Then for all n > 0,

#(2/6.2) =[] f(¢ — 1) - (unit in Z)
¢

where ( runs over all prmitive p"-th roots of 1.

Proof of Lemma. Apply Snake Lemma to :
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0—Z—®A/¢¢ — B—0
. |& e
0—Z7Z—0A/¢¢ — B—0
By taking n > 0 so that &, and f are relatively prime, we have
0 — ker(B — B) = Z/£,Z — ®A/(¢f*,&n) — Coker(B — B) — 0.

Since B is finite, #ker(B — B) = #Coker(B — B). Thus

#Z/6.Z =# & A/(‘If‘,ﬁn)-

Note A/(én) = Z,[T)/&4(T) and Z,[T)/&.(T) =~ Z,[(pn] under the map sending
T to (pn — 1. Under this isomorphism, we obtain

Zo[T)/ (g5, &n) = Zp[Cal /(g5 (Cpm — 1)).
Hence # (A/(€n,47) = Ny, (48 (G — 1)) x unit in Z,. Therefore
#(Z2/6.2) = NQ,(Cp")/pr(cp" —1) x (unit in Z,)
= [[f(¢-1) x (unit in Z,). "

Lemma 2.2 Let Z and f be as before. Write f = p*(ao + a;T + a,T? +
corayTr + - 2) with g = p(f), A= A(f). Then

#(Z/6,2) = p"®" P for > 0.
Proof. For n > 0, |f(¢m — 1|, = lp“((pn - 1)’\|p. Hence

N(f(¢-1) = p"(”"“”"_l)“ X unit in Z,. a

Apply the above lemma to X ~ Gal(L/K).

Lemma 2.3 Y? = {0} for m > 0.

Proof. First take n large enough so that s relatively prime to f for all
w

n
t > n. For such an n, consider Y?. For each z € Y2, there exists an in-

teger m = m(z) such that Zm . =0. The existence of such an m(z) is left
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as an exercise. Let m = max{m(z)|z € Y}. Then EU—’—"~Y,? = 0. With this
z wn

choice, we claim that Y2 = 0. Take y € Y,°. Since Y, = ﬂ"—I-Yn =0, we can
Wn

. W .
write y = —y' for some y’ € Y,. Then it suffices to show that y' € Y?.
w

Since fX C X° f¥X = 0for N > 0. Hence fNy’ = 0. Since Y? is finite,

there exists A in m which is relatively prime to f such that AY,> = 0. Hence
hw—my' = 0. Therefore both fV and h=™ annihilates Ay’. Since hE™ were
w w Wy,

n n
chosen to be relatively prime to f, Ay’ is a finite set. This proves the claim. =

Proof of Theorem. Take n > 0 so that Y2 = 0. Since ¥, ~ X ~ ®A/(¢),
We can apply Lemma 2.2 to obtain

[An : Anc1] = #(Yao1/Ys) = #(Yno1 /€ Ynor) = pH@7 7774

. Wn,
since Y,, = —Y,,. Hence
no

en = en-1 = p(p" = p" 1) + X = (up" + Mn) = (up" 7! + Mn — 1))

Therefore e, = up™ + An + v for some integer v. .
Now we give a criterion of vanishing of the invariants x4 and A.

Corollary. (i) 4 = 0 if and only if ranky,A,/pA, is bounded as n — oo.
(i1) A = 0 if and only if exponent of A, is bounded as n — co.

Proof. (i) Note that g = 0 if and only if p{f and rankA,/pA, is bounded if
and only if rankY,/pY, is bounded, where Y,, = Y,, /6, Y,,, 6, = ::n . Sup-

pose that p = 0. So plf and thus X/pX is finite. Therefore Y, /pY,, is
also finite. Hence rankY,/pY, = rankY,,/(p,6,)Ys, is bounded by the rank
Yy, /pYr,- Conversely, suppose rankY,, /pY,, is bounded. Then rankY /§,Y is
bounded, where Y =Y, /pY,,,. Hence §Y = §,,,Y for some n. Thus we have

6,,(1—%*—1)?:0. Butl—‘%’?‘*—l=1——7“%—’l§:1‘1=l € A*. Therefore 6,Y =0,

and Y =Y, /pY,, is a finite set. Thus X/pX is also finite andp/f.
(i) If A = 0, then X ~ @A/(p*). Thus there exists an M such that pM X =0,
hence that p™ A,, = 0. Conversely, if p™ A,, = 0 for some M, then p™(X/6Y,,) =
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0. Thus pMX C 8Yy, for all n > ng, hence pM X C N6,Y,, = {0}. Therefore
A=0. n

Remark. (i) As was mentioned earlier, if only one prime ramifies and totally
ramifies in K/k, then A, ~ X/w,X. So Ag = {0} if and only if X = TX
if and only if X = 0 if and only if A, = {0}. Therefore p|ho if and only if
plhn, where h means the class number of appropriate level. Examples of such
extensions are

(a) k=Q((), K = Q((pe) = nL>J1 Q(¢pn) where p is an odd prime.
(b) k=Q, K =Q_ =Q, where Q, is the subfield of Q((pn+1) such
that [Q,: Q] =p*.
(c) k= Q(¢s), K =Q(¢n) = U Q(Gar)-
(i1) Let ¢y m:A, — A, be the natural map induced by the map sending the

ideal a,, of K, to a,0k,, for n < m, where Ok, is the ring of integers of K,,.
We leave the commutativity of the following diagram as an exercise ;

A B a,
il I

X/6nYny, = X/6,Y,,
So we have the following exact sequence with commuting diagrams :

0 - 611 Y;Lo — X — An - O

lwm/w,. lwm/wn lin,,..

0—->6mYno_—>X——>Am——+O

Choose m > n > 0 so that (6,Y;,)° = 0 and ker(X wm/yn X) = X°. Then by
appling the Snake lemma, we have

X° ~ ker(A, Inm A,) for m>n>0.

(iii) Suppose k is a C.M. field i.e., totally complex quadratic extension of
a totally real field k*. Then its Z,-extension is also a C.M. field over K+
and K+/k" is a Zy-extension. Suppose p is an odd prime. Let AF = {c €
Anlje=c}and A; = {c€ A, |jc= —c}, where j is the complex conjugation.
Then A, = A} @ A since ¢ = %J-c + 1—5—1& Hence X = lim4, =
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lim A} ®limA; = X+ @ X~, where X* = l}_IPAff. So we can define p*, A\
and v* sothat p=pt 4+ 4=, X=Xt + A\~ and v = v+ 4+ 1.

Definition 2.1 A Z,-extension K/k is called a basic ( or cyclotomic) Z,-

extension if K = kQ.,, where Q_, /Q is the Z,-extension explained in the
above remark.

Theorem 2.3 Suppose p is an odd prime and K/k is a cyclotomic Ly-
extension over a C.M. field k. Then tnm:A, — A is injective. Hence

(X7)° = (X% = {0}.

Proof. It is enough to show that i, n41:4; — A, is injective. Suppose
i(a) = 0 for some a € A;. Write a = 2b for some b € A7, so a = (1 — j)b
and i(b) = 0. Take an ideal b such that [b] = b. since i(b) = 0, b = ()
for some B € k,41. Let a = b7 and o = B9, Then [a] = a. Let o be a
generator of Gal(k.11/k,). Since a” = a, (@) = (@). Hence ! = is a
unit in k4. By taking the norm of 5 from ki to k. +1, we have N(n) =
N(a”™') = N((8°7")'77) = 1. Since kis a C.M. field, this implies that |n|, = 1
for any archimedian place v. Therefore 5 is a root of 1 and its norm to k,
is N(n) = N(a”') = 1. Since H(< o>, {root of 1 in k,4;}) =0, n = ¢°-1
for some £, a root of 1. Hence a®! = ¢°71, s0 a = €aq for some ap € k,.
Therefore a = (a) = (ao). .

Corollary. Let K/k as in the theorem. If X~ # 0, then either A\~ or p > 0.
Hence, in particular, if A; # 0 for some n, then A~ or x~ > 0.

Remark. (i) Let k = Q({,). Since p|h* implies p|h=, if p is irregular, then
AT >0.

(ii) The structure of X+ is not well understood even when k = Q(¢,). We
introduce two conjectures.

(a) Greenberg’s conjecture: A\* = 0 for every C.M. field K/k.
(b) Vandiver’s conjecture: p{hd when k = Q((,).

§ 3. Stickelberger Theorem

Let m be a positive integer not congruent to 2 mod 4. Let k = Q((,,) and
G = Gal(k/Q). In this section, we will find elements of Z[G] which annihilate
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the ideal class group CI() of k under the obvious action of G on Cl(k).

We need some properties of power residue symbol and its Gauss sum. Let
q be a prime congruent to 1 mod m so that ¢ splits completely in k. Let q be
one of the prime ideals of k above ¢. Since ¢ splits in k, O/q ~ Z/q, where
O is the ring of integers of k. Then (0O/q)* =~ (Z/q)* is a cyclic group of
order ¢ — 1. Since m|g—1, (O/q)* has a unique subgroup of order m. We
can take pu,, = {(},|0 < i < m} as a set of representatives in © for this
unique subgroup of (O/q)* of order m, since ¢}, # ¢J mod q if i # j. For any
z €O —aq, (xg;»_l)’" = 1 mod q. Hence "= = ¢ mod q for some ( € 7

Definition 3.1 The m th power residue symbol (a) is a map

m

(a) : 0 — q — pu,, satisfying (%) = 2% mod q.

Definition 3.2 For any integer a, the Gauss sum g,(q) attached to (a) is
defined by "

(@) =-% (—)mc

=1 q

Note that g.(q) is an algebraic integer in Q({;m). And if m = 2, (E) is

just the Legedere symbol, and g¢,(q) is the usual Gauss sum. Thus it is not
suprising to expect that g,(q) enjoy those properties satisfied by the Gauss
sums coming from Legedere symbol or other characters. In the following propo-

sitions, we state some properties of (a) and g,(q) without proofs.
m

el . Ty T Y
Proposition 3.1 1) | —= = |- =1 .
P ()(q>m (q)m(q)m

(ii) For o € G = Gal(k/Q), G) - (qi) if z € Z.

Proposition 3.2 (i) If m|a, then g,(q) = 1.
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(1) If m{a, then 9.(9)9.(q) = ¢
9at(q) ift=1modgq

(é) 9.(q) if t =1 mod m.

m

(iii) oga(q) = {

Now assume that m{a. Since g,(q) depends on ¢ mod m, we may also
assume that 1 < a < m. From Proposition 3.2 (ii), the prime ideals of Q({ym)
that can divide the principal ideal (g,(q)) are those above q. We will find
the explicit factorization of (g.(q)) in Q({ym). Let P be the prime ideal of
Q({ym) above g and i be the power of P in the factorization of (g.(q)), i.e.,
(92(q)) = P'b for some ideal b prime to B. Note that P is totally ramified over
q and so Q((,.) is the inertia field of Q({;m ) for P over q. Thus for any algebraic
integer a in Q((;m) and for any o,with ¢t = 1 mod m, we have ot = a mod P.
This congruence is also valid when we take « from the ring of integers Oy of
Ky, the completion of K = Q({;m) at P, i.e., o’ = a mod POy for every

a € Op. We take a = 5&% Then a € Q((ym). If we view a as an
element of Ky, a is a unit in (’);. Thus ot = a mod POgy. Since « is a unit,

(¢4 e
we can write this congruence as — = 1 mod P$Og. By Proposition 3.2 (iii),
a

t\™* ga(q) o’ (t)““(1—cq)" .
ot = | — -. Hence — = | — = 1 mod POy. Since
“ (q) (1= ¢ o T\ \I-¢ i

q

is a unit in Og, we have

1— ¢t
t\™"_ (1- g;)‘ .
- = = t' mod POy.
(5) =(i=¢) = moasos
Since (—:-) € Q(¢m), (%) = t' mod q. Therefore % (%) = ¢/ mod q, hence

qg—1

mod q. If we take a generator of (Z/qZ)* for t, we obtain (—a) =imod ¢g—1.

By Proposition 3.2 (ii), ¢ is less than ¢ — 1. Hence i = (¢ — 1) <___f‘_> where
m
< z > denotes the real number such that 0 <<z>< 1 and z— <z > is an
integer. Thus we have found that ¢ = (¢ — 1) <—i> is the power of P in the
m

factorization of (g.(q)). We use this for the complete factorization of (g,(q))
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in the following proposition .

5 2 (=)
Proposition 3.3 (g¢,(q)) = 7t€C .

Proof. As was mentioned, the only prime ideals of Q({ym) that can divide

(9a(q)) are those above g. Let 9’ be one of those. Then P’ = P for some

oy, t = 1 mod g. If j is the power of P’ in (g.(q)), then j is the power of
at

(%) = in 04(92(a)) = gue(6). Hence j = (g — 1) (=), Therefore

(@) = [T = [T 005D = . .

Now we are ready to find annihilators of Cl(k). For any integer a, deﬁne a
Stickelberger element 8(a) by

Then 6(a) is an element in the group ring Q[G]. Let S’ be the Z[G]-submodule
of Q[G] generated by 0(a),a € Z, and let S = S'NZ[G]. Then S is an ideal in
Z[G) which is called the Stlckelberger ideal of k. In Theorem 1, we will show
that elements in S annihilate Cl(k). First we describe elements of S more
explicitly.

Lemma 3.1 S is the abelian group generated by {6(a) — af(1)},q € Z.

t t
Proof. Since <_a_> —a <—T—n-> € Z, 0(a) — af(1) € S. For the converse, note

that 0.0(a) = 6(ca) for any o. € G. Hence any element in S is of the
form }” z,60(a) for some integer z,. Since ¥ z,0(a) = Y za(0(a) — ab(1)) +
(X az,)0(1), and since (a) —af(1) € S, Y z,0(a) € S if and only of T az, is
divisible by m. But —m#(a) = 8(m + 1) — (m + 1)0(1). Therefore if 3" z,6(a)
is in S, then it is of the form Y y,(6(a) — a6(1)). This proves the Lemma. m

Theorem 3.1 (Stickelberger Theorem) S annihilates CI(k).
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Proof. By Lemma 3.1, it is enough to show that 6(a) — af(1) annihilates Cl(k)
for any integer a such that m{a. Let C be any ideal class in Cl(k). One
can choose, for a representative of C, a prime ideal q such that the residue
class degree f(q) = 1 by the Tchebotarev density theorem. Let q be the
prime in Z below g, so ¢ = 1 mod m. We have to show that gf(®)-26(1) g
principal. Let P be the prime ideal of Q({;n) above q. Then by Proposition
3.3, (9a(q)) = Pa~V9), Hence

9a(9) _ pla-1)(e) — m(q-1)(e(a)-a(=v(1)) _ qe(a)—-ae(l)
gl(q)a m(q—l)e(l)a :

9.(q)

Therefore our theorem follows once we check that ===~ is in k. For this, let

g1(9)°
t =1 mod m. Then

. <ga(q)) _ ({) %@ _w@
“\g:(q)* ((%)'1 gl(q))a 91(q)°

This finishes the proof. .

Remark. (i) K. Iwasawa proved that when m is a prime power, [Z[G]~ : §~] =
h~, where the superscript — has the same meaning as in §2 and A~ = s is
the relative class number. W. Sinnott generalized this to arbitrary m. Namely,
[Z[G)~ : §7] = 2*h~, where a is an integer depending on the number of prime
divisors of m. These formulas are algebraic interpretation of the so called an-
alytic class number formula. There is a similar algebraic interpretation for A+
by using cyclotomic units. For detail, we refer [3], [8].

(ii) One can generalize Stickelberger theorem to the case when k is any abelian
field. More generally, even when K is an abelian extension of a totally real
field F', one can define some kind of Stickelberger ideal S,(K/F) coming from
Hurwitz zeta function so that S,(K/F) annihilates K-groups. For more dis-
cussions, refer [1], [6].

As an application of Stickelberger theorem, we introduce Herbrand theo-
rem. Let G be a finite abelian group and G be its character group. For each
X € G, define €, by

1 -
Ex = TCT' Z X(O’)O’ 1.

c€EG
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Then ¢, is an element of Q[G], or an element of any group ring R[G] if R
contains all the values x(o) and if |G| is invertible in R. The followings are
easy to check.

Proposition 3.4 (i) &2 =¢,.
(1) exey = 01if x # 1.
(iii) Te, = 1.
X
(iv) exo = x(0)ex.

Because of the properties (i) and (ii) €,’s are called orthogonal idempotents
of Q[G] or of R[G] for suitable R. Let M be a Q[G]-module or an R[G]-module
for suitable R. Then ¢, M = M, is a submodule of M. In fact, by the prop-
erty (iv), it is the eigenspace with the eigenvalue x(o) of the automorphism
o:M — M. By (iii), M is the sum of these eigenspaces. Since ¢, s are orthog-
onal idempotents, M = @ e, M

X

We apply this discussion to the following situation. Let k= Q((,) for an
odd prime p. Let A be the Sylow p-subgroup of the ideal class group of k. Then
A is a Z,[G]-module, where G = Gal(k/Q). Let w:G — Z, be the Teichmiiller
character so that w(o,) = w(a) = a mod p. Then @ = {w' [0 <:<p-2}. We
abbreviate ¢, by ¢; for 0 < ¢ < p — 2. The above discussion shows that A ~

p—1
©®A;, where A; = ¢;A. We will analyze each A;. Let § = 0(1) = 1 Eaa
. a.—l
Then

€0 = (i? Zaw“i(a)) I Bl,w_ae,-

and so '
gi(c—0c)0 = (¢ — w™'(c)) By u-ici,

where B, ,-i is the first Bernoulli number associated to the character w™".
Since (c — 0.)0 annihilates A by the Stickelberger theorem, (¢ — w™(¢))By .,
annihilates A; for all integers c. We examine this for various i’s case by
case. If 7 is nonzero and even, then B;,-i = 0. Thus we get no informa-
tion. If ¢ = 0, then B;,- = i. Thus °;1 annihilates Ag. But we can

2
certainly choose ¢ so that c—;—l— is prime to p. Therefore Ag = 0. This is
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also clear since g9 = p%lNorm. Suppose ¢+ = 1. We take ¢ = 1 + p. Then

-1
(¢ —w(c))Byw-1 = pByy-1 = pz aw™(a) = p— 1 mod p. Hence A; = 0. Fi-
a=1

nally, suppose i is odd, not equal to 1. We take c so that c—w™(c) # 0 mod p.
Then B, ,-i annihilates A;. So if A; # 0, then B, ,-i = 0 mod p. Since

By ,-i=—% ~* mod p, we have the following theorem.
p—1

Theorem 3.2 (Herbrand theorem) Let i be odd with 3 <: < p-2. If
A; # 0, then p|B,_;.

Remark. (i) The converse of Herbrand theorem is also true. This much

deeper theorem was proved by Ribet: if p|B,_; for some odd 7, 3 <i < p—2,
then A; # 0.

(ii) The number of such 7’s is called the index of irregularity, i.e.,

i(p) = index of irregularity = #{i|: =o0dd, 3 <:<p-—2, p|B;}.

. . l—o_ - .
Clearly, dimy, A~ /pA~ > i(p) since ¥ & = 5 L A= P Ai. Itis
1=odd i=odd
an open question whether or not dimy, A~/pA~ =i(p). Vandiver’s conjecture

(pth*) is known to give an affirmative answer to this question.
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1. Prologue

1.1 Golay Code

Definition 1. A binary code of length n is a subset C of F,. For z,y € C,
let d(z,y) be the distance of z,y in C defined to be the number of coordinates
in which = and y differ.

Definition 2. The distance d(C) of a code C is defined by
d(C) = min{d(z,y) : =,y €C, z #y}.

We introduce Golay code G C F2*. G is a 12-dimensional subspace of F2*
spanned by the rows of the matrix

‘1 I, 0 H
(0_ (1)1 1_ l) € Mi2x24(F2)

where 1 = (1,1,---,1) , 0 = (0,0,---,0) € F}' and H € My;(F;) is defined

as follows : .

Let Q = (¢ij), ¢ij = (zl_lj) , 1 <1,7 <11, where (—) is the extended Legen-
dre symbol. H is the matrix obtained from @) — I;; by replacying 1 by 0 and
—1 by 1. It is not hard to show d(G) = 8. So G give us a very good error

correcting code which can correct up to 3 errors ; for e € F2*, there exists a
unique ¢ € G such that d(e, c) < 3 if exists.

1.2 Sphere Packing

Definition 3. A lattice L of rank n is a discrete subgroup of R™ such that
R"/L is of finite volumn.

Let I, 1, - -, 1, be a Z-basis of L. We set AL, = (a;j), ai; =<l;,1;>, where
<, > is the Euclidean inner product. Then A is symmetric, positive definite
n X n matrix. Observe that

vol(R™/L) = \/ detApL.

Also note that L can be regarded as a positive definite quadratic module.
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Definition 4. A sphere packing S on L is a packing of (n — 1)-spheres of
the same diameter centered at lattice points of L without overlapping. The
density é,(S) of a sphere packing S on L is defined by

6,(S) = vol((n — 1)-sphere)// detAp.

Definition 5. The dense sphere packing on L is the sphere packing on L with
the maximal density.

Let 6, be the density of the dense sphere packing on L. Then

6, = vol((n — 1)-sphere of diameter \)/4/ detAL,

where A = min{<[,I>: l € L — {0}}.
So if rank(L) and detAr are given, then density gets larger as the minimal
vector gets longer.

Question. For a given rank n, find a lattice on which the densest sphere
packing is possible after normalizing L to have detAp = 1.

Remark 1. Among 24 dimensional even unimodular lattices, the so called
Leech lattice gives the densest sphere packing.

1.3 Leech Lattice

Definition 6. Let L be a lattice on R". L is unimodular if A, € GL,(Z). L
is even if <l,1>€ 2Z for any l € L.

Fact 1. (1) Let L be an even unimodular lattice on R*. Then 8 divide n.

(2) The Leech lattice is even unimodular on R** and it contains no vector of
length 2. In fact, this is the only such lattice on R** (up to equivalence).

Remark 2. There are 23 other classes of even unimodular lattices on R**
(Niemeier). They all have vectors of length 2. We give the definition of Leech
lattice A. A is the set of the points

1 1
(042 +4z), ——(1+2+4
2\/é-(_+ ¢+ 4z) 2\/5(_+ c+4y)

Where_(_)_= (07"'a0)) 1= (L"'al)a T = (xlv"’ax24) a'ndyz (yla"'1y24) €
R** such that ¥ 2; = 0(mod?2), Yy = 1(mod?2), and ¢ € G, Golay code.
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1.4 Theta Functions

Let L be an even unimodular lattice on R". We set
rom)=|{le L: <l >=2m}|

and define
95(g) = D r(m)g™ (1.1)

m>0

It is not hard to check that J7(q) is holomorphic on the open unit disc {qg €
C:|q| < 1}. We substitute ¢ = ¢>™* and get

9,(z) =9} (q) = 3 rp(m)e”™ ™. (1.2)

m>0
Then 9, (z) is holomorphic on the open upper half plane
H={z€C:Imz > 0}.

And ¥, (z) is also holomorphic at co. We call 9, (z) the theta function associ-
ated to L. Observe that

9,(2) =) e"<"">* z€H. (1.3)
z€L
We also have :
§,(z41) =0,() and 9,(=3) = (~iz)"9, (), (1.4)

. . . n .
These two conditions characterize ¥, as a modular form of weight —, with

respect to SLy(Z). The first equality is obvious. The second equality can be
proved by using Poisson summation formula. For a rapidly decreasing smooth
function f(z) on R", Poisson summation formula gives

> i@ =1 % f, (1)

€Ll yeL*

where L is a lattice on R", L* is the dual of L, v = vol(R"/L) and

fw) = [, < f(a)de

71
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is the Fourier transform of f(z). Since L is unimodular, we have v = 1 and
L = L*. 1t suffices to prove the equality for z = it, ¢t > 0. We now let
f(z) = e=™<®*>_ Then

f(y) — / e~ 2z Y> —n<T,8> 10 e~ <>
]Rﬂ
. . P —gey2 o« .
because the Fourier transformation of e™™*" is e™™" . Combining all these, we

have
‘!9L(Zt) — Z e—1r<z,:z:>t — Z e—7r<z,a:>-
z€L reVIL
Clearly

vol(R"/v/1L) = t™? and (ViIL)* = %L.

Therefore, by the Poisson summation formula,

) _ _ _ _ _ 1
19L(zt) — ¢~ /2 Zl e~ T<YY> _ 4—n/2 ZLe <y y>ft _ t n/219L(__E),
ve L Y€

and hence ﬂL(—%) = (—12)"?9,(2) by replacing z = it, as desired.

Remark 3. On R**, we know there are 24 even unimodular lattices L. To
each of them, one can correspond ¥,(z). One notable fact is that this corre-
spondence is not one to one. There are only 19 distinct theta functions that
can be corresponded.

2. Modular Forms
2.1 The Modular Group

Let § = {z € C: Imz > 0}. For M = (Z Z) € SLy(R) and z € £ , we
set +h
az
Mz = et (2.1)
Since ImMz = ﬁ%—rz > 0, we have Mz € §). So SLy(R) acts on £). We set
d
J(M, z) = M= ! (2.2)

dz (cz+d)?
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Since (—01 _01) = —1I, acts trivially on £, PSL,(R) = SLz(R)’/ifz acts

faithfully on §. PSLy(R) is actually the set of all the holomorphic automor-
phisms on §). Let G = PSLy(Z) = SLy(Z)/+I,. G is called the modular group.

LetT=(y 1)ands=(" {)eG. Then

T(z) = z+1 and S(z) = -%. (23)

It is well known that T, S generate G ; G =<T,S : (ST)® = S* = I,>.

Definition 7. Let A be a group acting on a topological space X. A funda-
mental domain of this action is a closed subset D of X satisfying

(i) AD=X
(ii) For di,d; € D and a € A, if ady = d3, then either a = 1 or dy,d, € 8D.

One can easily check that

1 1
D={zeH:|z|>1, —-—2-<Rez§—2-}
is a fundamental domain of the action (2.1).
7
D
e21ri/3 wi/3

P =e (2.4)

I
—
[ SN
|
N =

1

We now give the stabilizer G, = {M € G: Mz = z} for each z € §. From
direct computations, we obtain

Gi={I,S}, G, = {I, ST, (ST)?), G5 = {I,,TS,(TS)’}  (2.5)

and G, = {I,}, for any z # i, p, —p, where p = e2™/3,
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2.2 Modular Forms
Let k be an integer and let I' be a subgroup of G.

Definition 8. A weakly modular function of weight k for I' is a meromorphic
function f on §) satisfying

F(Mz) = (cz + @} f(z), M = ( © 3) €T.
If —I; € T and k is odd, then f = 0 trivially. Note that if f is a weakly
modular function of weight k, k even, for T, then f(z)(dz)*/? is I-invariant,
i.e.,

F(Mz)(dM2)*? = f(z)(dz)**
for any M € I". This is because

L\ M2
) = (e + 7)1 (0) = () @)

We fix k and ' = G for the moment. For a meromophic function f on §,
f is a weakly modular function of weight k for G if and only if

f(z+1) = £(z) and f(~3) = (~2)*f(2).

When a meromorphic function f on §) satisfies f(z + 1) = f(z), then f can
be written as a function of ¢ = e¥™*, which will be denoted by f*. f* is
meromorphic on {¢g € C: |¢| < 1} — {0}.

Definition 9. If f* extends to a meromorphic function at the origin, then
we say f is meromorphic at infinity. A weakly modular function f is called a
modular function if f is meromorphic at infinity.

For a modular function f, f* has a Laurent series expansion
(9= Z amq™.
m>N

Definition 10. A modular function f is called a modular form if f is holo-

morphic on §)o, = HU {co}. In this case, we have f*(q) = Y. anmq™. We set
m=0

f(o0) = f*(0) = ao. A modular form f is called a cusp form if f(oo0) = 0.
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For a modular form f, we have

f(Z) — Z ameZm'mz, PE= f.)oo,

m>0

which is called a Fourier series expansion of f.

Example. For an even unimodular lattice L of rank n,

"91,(2) = E "'L(m)e%imz

m>0

satisfies 9, (z + 1) = J(z) and 191,(_%) = (—iz)"*9 (z). See (1.2) and (1.4).
Since 8|n, the second equality is nothing but 9, —%) = (—2)™*J (z). There-
fore 9,(z) is a modular form of weight k = g for G. But this is not a cusp

form since r, (0) = 1.

2.3 Construction of Modular Forms

Let f: $9 — C and let k be an even integer. Consider
f(z) = J(M,2) 2 f(Mz), Yz€$, for M€QG. (2.6)

The condition (2.6) is called the automorphic condition of weight k for M € G.
It is easy to see that J(M;M,,z) = J(My, M3z)J(M,, z) for any My, M, € G
and z € §). Let ¢ : H — C be a function. Then

flz) =Y J(M,2)**¢(Mz) (2.7)

MeG

satisfies (2.6) for any K € G if it converges. Indeed, for any K € G,
f(Kz2)

3 J(M,Kz)¥* (MK z)
MeG .
= Y J(MK,z)"*J(K,z)""*¢(MKz)
MeG
= J(K,2)™? Y J(MK,z)¥*$(MK>)
MeG
= J(K,2)Mf(2).



76 Myung Hwan Kim

Let P be a subgroup of G and let ¢ : § — C satisfy (2.6) for any A € P.

Then
flz)= 3 J(M,2)**¢(Mz) (2.8)
MeP\G
satisfies (2.6) for any K € G if it converges. This follows immediately from

the above. We now apply this for P =< T >= {(é i)) : be Z} and

¢ = 1. It is easy to see that ¢(Tz) = J(T,z)"*/24(z) and there is a one-to-one
correspondence between P\G and {(c,d) € Z? : gcd(c,d) = 1} /£ 1. We set

Ei(z) = 1 Yo (ez+d)7F, z€e9H (2.9)
2 (c,d)ez?
ged(ce,d)=1

Then Ej(z) satisfies (2.6). Ej(z) is called an Eisenstein series of weight k. Let

Gk(z) = Z’ (cz +d)’k = Z E (cz +d)'k

(c.d)ez? m21  (c,d)eZ?
ged(c,d)=m
= 2 m™ 3 (dz+d)F=2(k)Ew(2).
m>1 (c’,d')€Z2
ged(c',d’)=1

It is well-known that Gi(z) is holomorphic on £, and Gr(o0) = 2¢(k) if
k > 2. ( Recall our assumption that k is even. In fact, if £ is odd, then
Gi(z) = 0.) Therefore we have Ej(z) holomorphic on $., with Ei(oc0) =1 for
k =4,6,8,---. In particular, they are modular forms of weight k for G.

2.4 Space of Modular Forms

Let M} be the vector space over C of modular forms of weight k for G. Let
M be the subspace of M; consisting of cusp forms. From the map My — C
defined by f — f(00), one obtains dim¢(My/M?) = 0 or 1. Recall that M, = 0
if k is odd. So we extend our assumption that k is even. Let f(z) Z0 be a
meromorphic function and let v.(f) be the order of f at 7 € Ho. From the
residue theorem, we have

=t R ST (2.10)

2mi TEG\H
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where Y°* means a summation over the orbits of 7 € §) distinct from the orbits
of 7 and p.

(2.11)

T

Note that v,(f) = v,,.(f), YM € G. Since poles and zeros are isolated,
there exist R > 0 such that there are no poles and zeros in

{z€9H:Imz > R, —%<Rez<%}

and there are only finitely many zeros and poles in D¢ so that the righthand
side of (2.10) make sense. Integrating the lefthand side of (2.10), we get

1 1 * k
voo(f) + 5ui(f) + 30(f) + 2 0e(f) = 13- (2.12)

TEG\H

We set A = E3 — EZ. A is a modular form of weight 12 for G. Moreover,
A is a cusp form since A(co) = E4(00)® — Eg(00)? = 0. It is easy to see that
A has no zeros in §) and a simple zero at co. We now investigate the dim¢ M}

for k even. For f € My, v,(f) > 0 for any 7 € Hoand hence k can not be
negative and hence we have :

Theorem 1. dim My = 0 for k negative or odd.
For k = 0,2,4,6,8,10, from (2.12) it follows immediately that :

Theorem 2. dim My = 1, dim M, =0, and dim M, =1 for k =4,6,8,10.
More precisely, My = C, M, =0, and My = CE;, for k = 4,6,8,10.

Consider the map M; — Mp,,, defined by f — fA. This map is an
isomorphism since A has no zeros on §) and has a simple zero at co. Actually,

7
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this is true for any positive integer k. Since Ex € My — MP for k > 4, we
have dimg(Mi/M}) = 1. In other words, dim cMi = dim, M0 + 1 for k£ > 4.
From the above, dim Mk = dim cMk-12 s0 that dim M = d1m cMr-12+1 for
k > 12. This gives us :

£ f k=2 (mod12
Theorem 3. dim M, = { [:] l‘f (mod12) (2.13)
[7] 1 ifk#2 (modl2)
where k is nonnegative even.
We close this section with the following :
Clz,yl~ P M, (2.14)
k>0
k €ven

via a map defined by z — E* y — E® In particular, M) has a basis
consisting of monomials of the form E"‘Eﬁ with 4a+68 = k, «, 3 nonnegative
integers.

3. Fourier Coefficients

3.1 Fourier Coefficients of E|

2
eps z _ T k+1
Definition 11. Let =1 =1 5 +Z( -1) ng(%) We call By, the
k-th Bernoulli number for k = 1,2, -
1 1 1 1 5 691
B = — B = — = — B = — = — = —
2 6’ 4 30, BG 42) 8 30’ BlO 66, BIZ 27307
7 3617 43867 1
314—5, B = S0 Bs= g B, =3 Bogiz = 0.
Remark 4. Let k be a positive integer. Then
(1) BreQ.
(27r)2k
2 2 = By;..

3) C@Rk+1)=7
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We prove (2) in the following :

2z (22)%*
- =1—1z - B
e2iz — | =1-uz Z 2k (2k)'

From

follows @ )2k
2zz z
zcotz = 1 iz=1-— Eng @R

On the other hand, from the Weierstrass factorlzatlon theorem follows

k
zcotz=1-—2 Z z (n21r2) .

n=1 k=1

Comparing the two expressions of zcotz, we get (2).

Theorem 4. Let k be a positive even integer > 4. Then

2 o2mi)k &
( 1))' E Ok— 1(m

m=1

Gi(z) = 2¢(k) +

where ¢ = e¥™* 2 € H, and ox_1(m) = ¥ d*"L. In particular,
I

Gi(2) (=1)**2k 1)’°/22k

Flz)=——~=14 ——— op—1(m
(Proof) mcotrz = -z— E_ =
.
Tz el z+m
COST 2 .q+1 . . "
weotmz = szmq—l = ——m—27rzZq .
Thus,
1 & 1 ) R,
z mz_: <z+m z—m) B —7rz—27rz§;:lq '
Differentiating (k — 1)-times, we obtain

1)k—1

= —(2mi)k Z nkF-1gn.

n=1

> (k—1)(—

<z (z+ m)*

(3.1)

(3.2)

79
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Hence,
1 ( 27”‘) k 1 n
,féz<z+m)k G=n PO

Gi(z) = Y = 2((k) +222m

(c,d)eZ? (CZ + d)k c>1deZ

— 2<(k)+22 (27”) Z k-1 cn

c>l n-l

= 2k + 2(2’” ,f:ak_l(m

This proves (3.1). (3.2) follows immediately. (]
Remark 5. (1) ByEx(2) € Z[[q]], k=4,6,8, -,

(2) Ey(z) =1+ 240 i o3(m)q™, (3.3)
Es(z) =1 — 504 ‘; os(m)q™, (3.4)
Eio(2) =1 — 264 2_: o9(m)q™, (3.5)

(3) Elo = E4 . Ee implies
m—1
26409(m) = 50405(m) — 24003(m) + 120960 > o3(k)os(m — k).
k=1

3.2 Ramanujan 7-Function

Recall that A = E} — E? is a cusp form of weight 12. We now normalize
it for convenience : we reset

E3 _ E2 00 m
A= 41728 ¢ =Y r(m)g™ (3.6)
m=1

It is easy to see that 7(1) = 1. The map defined by m — 7(m) is called the
Ramanujan 7-function. (m =1,2,3,---)
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Theorem 5. A =¢ [[(1 - ¢")* = ¢ — 24¢° + 252¢° — 1472¢* + - - -.

n=1

(Proof) The righthand side is a cusp form of weight 12. Since MY, is of dimen-
sion one, it should be a multiple of A. Comparing the first nonzero coeflicients,
one gets the equality. (]

Observe that 7(m) € Z, Ym = 1,2,3,---.
Conjecture. (Lehmer) 7(m) #0, "m =1,2,---.

Consider

65520 &=
Eig(2) = 1+ —57= ) ou(m)q™ (3.7)

m=1

{A, E;.} is good for a basis of M;;. We go back to an even unimodular lattice
L on R?*. Since 9, € M, we have

9, = a, B+ B,A (3.8)

for some a,, B, € C. Recall that J,(z) = § r,(m)¢™ and r (0) = 1.
m=0
65520

Therefore a, = 1 for any such L, and hence 3, = r (1) — TR If L =A,
the Leech lattice, then £y = —623?0 because r, (1) = 0. So we have
65520
rA(m) = W(au(m) - T(m))7 v m=1,2,---. (39)

In particular, 7(m) = o,,(m)(mod 691).

It turns out that there are exactly five pairs {L, L'} with r (1) =r (1),

among 24 even unimodular lattices on R?**. So we get only 19 distinct theta-
sreies because

TL(]'):TLI(I) = ﬂLZIBLI :,‘91,'_‘:191,;'

Anyway one can find the explicit formula for r, (m) for m = 1,2, - - - as in (3.9).

Also note r, (1) # 0 if L % A.
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3.3 Estimation of Fourier Coefficients

Let f(2) = Z anq" be a modular form of weight k, k even > 4. If f = Gy,
then there exist A B > 0 such that

An*! < a,| < BnF L ' (3.10)
k
For, a, = (—1)k/2A0k-1(n) for A = (1(27?)' > 0, and hence

lan] = Aog_1(n) > AnF1.
On the other hand,

Ian'
nk-

Adzl:dk 1 —Azdk = AC(k-1).

Taking B = A-((k—1) > 0, we get |a,| < B-n*! as desired. Therefore
the order of magnitude of a, is nF~!. The following theorem due to Hecke
estimates the growth of a, when f is a cusp form.

Theorem 6. Let f be a cusp form of weight k. Then a, = O(n*/?).
(Proof) f(z) = 5 ang™ = q( § anq"!). So we have
n=1 n=1

If(2)| = 0(e™*), y=Imz as z — ico (y — o).

Let ¢(z) = |f(z)|y*¥/?. Then one can easily show that ¢(z) is invariant under
G, e,

#(Mz) = ¢(z) forall M € G.

Moreover, ¢(z) is bounded on D, the fundamental domain described in (2. 4).
&(z) is bounded on ), 1.e, there exists a constant M > 0 such that |f(z)| <
M y'k/ 2 V2€$H. By Cauchy Theorem,

oo L 10, }4 1) d
" 27rz q"'H = 2mi

c
where C is a circle about the origin in the unit disc. Now, since dq = 27igdz
and a line segment [ : 0 < z < 1 with a fixed y > 0 gives a circle about the
origin in a unit disc via the substitution ¢ = €?™*, we get

a, = = f(z)d = / f(z) dz, (dz =dz + idy = dz).

=0
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So
|f( )I —-k/2, e2m n
|n|</ _mnd r < My v
By setting y = %, we obtain |a,| < M-n*/2.e2™ = M'n*/? as desired. (]

Remark 6. (1) Let f be a modular form of weight k. Then f = oGy + h for

some a € C, h a cusp form. From above, we may conclude that the
order of magnitude of a,, is nF~! .

(2) 7(n) = O(n®). So 7, (m) = 5, (m) + O(m®).

(3) Theorem 6 can be improved. Indeed, Deligne proved a,, = O(nkz;lao(n))
by proving the famous “Weil conjecture”. This implies :

an = O(nk_;l“), for e > 0. (3.11)

(4) Ramanujan conjectured |t(p)| < 2p'*/?, and this also was first proved by
Deligne. (See (3) above.)

3.4 L-Functions

Let f(2) = § a,q" be a cusp form of weight k, k even > 4. We set
n=1

D(f,s) = E Z" seC (3.12)

n=1
and call it the Dirichlet series associated to f.

Theorem 7. D(f,s) converges uniformly and absolutely on compact subset if

Re(s) > 1+ 126—

roo ,8)| < ayln™® < n ~% for some n > 0. So the
Proof) |D(f z; S M - nkl2p=s § So th

n=1

theorem follows if Re(s) — g > 1. m
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Definition 12. We define the L-function associated to f by

L(f,s) = (27)"*I(s)D(f,s), s € C (3.13)

—vs 00

where T'(s) = es I+ %)'lea/" is a I'-function that is known to be a

n=1
meromorpluc functmn with simple poles at s = 0,—1,—2,---. Here v =

Iim ((1+ ? +- ) — logn) is the Euler constant.

Note that I'(1) = 1 since e” = ﬁ 1+ %)‘1 "™ and that [(n + 1) = n! for

nonnegative integers n. We may deﬁne s!=T(s+1)for s # -1,
The following facts are consequences of direct computations :

Fact 2. (1) D and L extend to entire functions and satisfy
L(f,k —s) =i L(f,s). (3.14)

(2) Hecke also proved the converse : For a Dirichlet series D(s) = Z apn=*

converging uniformly and absolutely on compact subsets in some right
half plane, if L(s) = (2r)~°T'(s)D(s) extends to an entire function sat-

isfying (3.14) for even positive integer k, then f(z) = f anq™ is a cusp
n=1
form of weight k.

Remark 7. We know ((s) = = H(l — p~*)"'. The right hand side is

called the Euler product of ¢ (s) S1m11ar quest1on can be made : Does D(f,s)

have Euler product ? Sometnnes the answer is yes | We will see it later in
Chapter 4.

4. Hecke Operators

4.1 Modular Forms of Higher Levels
Let I' be a subgroup of SL3(Z) of finite index and k € Z. For f:§ — C,

a b
g= (c d) € GL}(R), we set

(f1c9) (2) = (det 9)*/*(cz + d)™* f(g2). (4.1)



Classical Theory of Modular Forms 85

Note that
f|k91‘k92 = flkglgh for V91’92 € GL‘;(R) (4-2)

Definition 13. A meromorphic function f : §§ — C is called a modular
function of weight k for T' if

(1) flyy=f, Yverl.

(2) f is meromorphic at each cusp.

Here cusps are the points in QU {oo}.

Let s be a cusp. Then it is easy to show that there exists p € SLy(Z) such
that ps = co. Weset I'y = {y€I': ys =s }. Then

pLop~ Y (+1;) = {:I: (é 1;)“ ‘m e z}

for some positive integer h. Clearly pI';p~! fixes co. We call h the width of the
cusp s. To explain the meaning of the second condition in the above definition,
known as the cuspidal condition, we set f, = f|,p~!. Firstly, assume k even.

sen = 4((5 ")) =r(3 )

= (g 1) = (5 1)

= f|k7/’—1 = flk'YlkP_l = flkp_l = fs(2), 7 €T,
So f,(z) = f,(e*™/*) = f*(¢"/*). So (2) means that f*(¢'/*) is meromorphic
at ¢ = 0. Secondly, let k£ be odd. If —I, € T, then f = 0. So assume

e et (08 (32 0 (1)

generates pI',p~!, then since we again have f,(z + k) = f,(z), (2) means

f*(¢*’") is meromorphic at ¢ = 0. If (

0 -1
—1 —h\2

( 01 _’1’) = ((1) 21}‘) Since we have f,(z + 2h) = f,(z), (2) means
fr (ql/ 2") is meromorphic at ¢ = 0. Note that the above argument is indepen-
dent of the choice of p and it depends only on T,.

generates p[';p~!, we use

A modular function is a modular form if f is holomorphic on $ and at
cusps. Modular forms of weight & for I" form a finite dimensional vector space
over C. We denote the space by M(T).
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4.2 Hecke Operators
Definition 14. Let A be a group and B be its subgroup. We set

Commy(B) = {a cCA: aBa™' B is of finite }
a(B) = :

index in both aBa™! and B

We call this the commensurator of B in A.

It is easy to see that Comm4(B) is a subgroup of A containing B. Let T’
be a subgroup of SLy(Z) and let A = GL}(R). Then it is known that

Commy(T') = R- GLF(Q).
Theorem 8. Let T' and A be as above.
(1) If g € Comm,(T), then 'gl’ = Ul'g;, g; € Comm, ('), where the union

1
is finite. Here | means a disjoint union.

(2) If f € Mp(T), then 3 fleg: € My(T).
(See Definition 15 below : f € My(T) = f|xT, € Mi(T), Yg € Comm, (T)).

(Proof) (1) Let I’ = G(g‘lrg NT)é; for 6; € T'. Then we have
1=1

[ [
Iyl = (JTgé = (JTgi,

=1 =1

where g; = ¢g6; € Comm,(T'), 1 =1,...,pu.
(2) 2 flegiley = X flegiv = T flevigi = & flevilkgi = T flrgi, for 4,7 € T.

1 1 1
The cuspidal condition is easy to check. [

Definition 15. Let T, = I'gl' = Ul'gi, g,9; € Comm,(T'). We set f|;T, =
> flegi for any f and g as above. T, is a linear operator on the space of

modular forms of weight k for T', which is called a Hecke operator.

Remark 8. Consider the vector space over C spanned by T,, g € Commy(T).
FElements can be written in the form Uaif‘gi. In fact, it is a ring with the
1
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multiplication defined by (\Ja;I'g:)(Ub;T'h;) = \Ja;b;L'g;h;. The addition is of
® 1 )

course |J This ring is called the Hecke ring. We are not going into this ring.
We will study Hecke operators in a classical way.

Definition 16. Let N be a positive integer. We set

rv) = {v=(% ]

Ty(N) = { =(“ b)eSLz(Z):aEdE l(modN),CEO(modN)},

) € SLy(Z) : v = I(mod N)} ,

c d
To(N) = {»,:(Z S)ESLz(Z):cEO(modN)}.

['(N) is called the principle congruence subgroup of SLy(Z) of level N. A sub-

group of I' of SLy(Z) containing I'(N) is called a congruence subgroup of level
N.

Note that My C Mi(To(N)) C Mi(T1(N)), YN > 1. If N = 1, then they
are the same space.

[';(N) are congruence subgroups of level ¢ for < = 0,1. Let

MI(N) = {(Z 3) € My(Z) : ad— be = n,a = 1,c = 0(mod N)} . (43)

Then it is not hard to see that

M) = U nwe (g ), (44

ad=n, a,d>0
(a,N)=1
0<b<d-1

-1
where o, € SLy(Z) such that o, = (a 0) mod V.

0 a
Let I' = T'1(N) and f € Mi(T') from here on. We set
- a b
AT() = n®7 S flo (& 1) (4.5)
a,b,d

where the summation is over a, b, d as described in (4.4). From (4.4), one can

easily recognize that T'(n) = MJ(N) =TM}(N)I' = | Tgl'= U T,, for
f

inite finite
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some g’s in M}'(N), up to a constant multiple of n(+¥/2)-1,

[ is a normal subgroup of I'o(V) such that ['o(N)/T ~ (Z/NZ)*. For any
d € (Z/NZ)*, we set

=1 (5 ) forany (2 J)erom). @)

b

In fact, [d] = T, = T'4T where v = (Z d

the well-definedness of (4.6).

) € T'o(N). One can easily check

We let e: (Z/NZ)* — C* be a Dirichlet character. f is said to be of type ¢
if f|,[d] = e(d)f. We denote the subspace of My (T') consisting of the forms of
type € by Mi(T,¢). Then it is well-known that

Mk(I‘) = @Mk(I‘,s). (47)

Note that My (T, 1) = Mi(To(N)).

We introduce one more Hecke operator : For f € M,(T,¢) and (n,N) =1,
we set f|,T(n,n) = e(n)n*~2f. For f € My(T), write f = >f, fe €
M(T,€). We define T'(n,n) by

fliT(n,n) =Y felyT(n,n) = Ze(n)nk_zfs- (4.8)

£

The algebra over C generated by T'(n), [d], T'(n,n) is called the Hecke alge-
bra of Hecke operators acting on M (T'). This algebra is, in fact, a commutative
algebra.

4.3 Action on Fourier Coefficients

Definition 17. Let d be a positive integer. For ¥ a,q™ € C((q)), we define

: Vd(zamq”‘) = Zaqum and Ud(Zamqm) = Zamqm/d.

dlm
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Let f(2) = Y anq", q = €*™*. Then obviously,

1 d-1
Vi(f(z) = f(dz) and  Uu(f(2) zf<

b—O

The second equation follows from
-1 -1
2 f (Z + b) Zamq? (E ezmbm/d) _ dzamq
b=0 b=0 djm

Let f € M(T',¢) where I' = T';(N). We make a convention :
€(a) =0if (a,N) # 1. Then

SELT) = ¥ Y flon (G g) =n T @l (§ g)

a,b,d a,b,d 0 d
= p/2)-1 Z e(a) (ad)k/2d_kf (az + b)
a,b,d d
= ¥l Y g(a)d* (Z f (“z + b))
ad=n b=0
a,d>0
(a,N)=1

where a, b, d run over those described as in (4.4). On the other hand,

Y (@) (UnaoVa)(f(2) = Ye(a)a*Uu(flaz)) (d=2)

aln aln a

= Yeaatd? zf (=)

ajn

o g e (B

ad=n b=0
a,d>0
(a, N)-l

So we may conclude that for any f(z) € My(T,¢),

F@T(n) = 3 e(a)a™ " (Vs Va)(f(2)), (4.9)

aln

n
where d = —.
a
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Theorem 9. Let f(z) = 3 amq™ € Mi(T,¢) and let f(2)|,T(n) = l§°§ big'.
m=0 =0

Then b= 3 e(c)cFamye.
cl(i,n)

(Proof) We use the above formulas.

FELT(n) = S e(e)F 1 Y amge™/ /o),

cln 2lm
+ b “ mim(cz cm
VeV () = 5 1 (Z28) = 5 (Samermcrrt) = 5 ot
b=0 b=0 dlm
n cm In m l ctm
whered=—. —— =1l => m=—and —=-€Z = c|l. Weset | = —
¢ nfc c? nfc ¢ n

f@),T(n) = X:E(c)ck_l Zaln/czq' = Z e(c)ck'laln/cqu. n

cln cfl c|(n.l)
Corollary. In Theorem 9, if n = p a prime, then b = ay, if ptl and
b= aip, +e(p)p*tayy, i pll.

Theorem 10. Let f(z) = Z amq™ € Mi(T,e) (T = Ty(N)) such that
f(z) #0 and f(2)|,T(n) = )\(n)f(z) for all positive integers n. Then

(1) an = A‘nal Vn Z 1.
(2) a=0 = k=0.
(3) a0 #0,k>0 = X\, =3 e(d)d* 1.

dln
(Proof). (2) is clear from (1). From
fliT(n) = A, E amq™ = Z big', by = Z e(d)dk_la,n/dz = \a;
m=0 =0 d|(I,n)

follow by = a, = Aua; (putting [ = 1) and by = Map = Ydln e(d)d¥taqg
(putting [ = 0). This proves (1) and (3). ]
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Remark 9. In the above theorem, normalize f(z) so that a; = 1 if a; # 0.

Then a, are eigenvalues of f(z) with respect to T'(n) for all n > 1. Moreover,
if ag # 0, then

f(z) =ao+ i (E e(d)dk'l) q".

n=1 \d|n
Note that if e = 1, then

f(2) = a0+ Y- oka(m)g”

n=1

Hence if ag = (—1)"’2%, then f(z) is nothing but a normalized Ey(z), k even
> 4.

Remark 10. Let N = 1. Then My = Mi(To(1)) = M(I'1(1)) and € = 1.
(1) fl,T(n) € My if f € My. So from Theorem 9 follows :
fliT(n) € M if f€ My, since b= c*'ap=0. (4.10)

cln

(2) A is an eigenfunction of T'(n) with the eigenvalue 7(n), Yn > 1.
A(z)|,T(n) € MY, and dimM7, = 1. So A(z)|,T(n) = A(n)A(z),
Yn > 1. Since 7(1) = 1, we may conclude that 7(n) = A(n) Yn > 1.

(3) Ej is an eigenform of T'(n) with the eigenvalue oy_;(n), “n > 1.

4.4 Action on Lattices

s L is a lattice on C and
Definition 18. Let ®,(N) = {(t,L) 't € C/L is an N-division point}’
where N is a positive integer. t € C/L is called an N-division point if Nt =
0 in C/L and N is the smallest among such positive integers. C* acts on

Ri(N) : (t,N) — (M, L), X € C*. Consider

Sy - R(N), 2z (%, (z,1}) (4.11)
where {z,1} denotes the lattice Z-1 + Z-z. Then we have

where the latter is called the moduli space of elliptic curves with N division
points.

91
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. az+b a b
Toseethls,let*yz—cz+dw1thz€.6and7—-(c d

1 [az+b 1 [cz+d
—Jzzr = d
(N’{cz+d’1}> (cz+d) ( N ,{az +b,cz + })

= (cz+d)™! (cz; 1 1})

since d(az + b) — b(cz + d) = z and —c(az + b) + a(cz + d) = 1.
cz+d_l_cz+d—le{ 1}

N NN ooh

(1 faz+b _ __1(1 )_ -1
@w(vz)—(N,{cz+d,1})~(cz+d) S 21)) = (2 + d) (o).

One can show the converse so that ¥(t,L) € ®,(N), 3z € § such that
®n(7z) = A(t, L) for some A € C* and v € T';(N). n

) € I'1(N). Then

Since

Let V be a vector space over C with basis ®; (V).
We define T'(n), [d],T(n,n): V — V by

T(n) :(t,L)—n! z]: (t,L').
L':L]=n
[d] : (¢, L) — (dt, [L), de (Z/NZ)*. (4.12)

T(n,n) :(t, L)~ n%(t,n'L), (n,N)=1.
Theorem 11. (1) [d],T(n,n) commute with all the above.
(2) T(ninz) = T(n)T(ny) if (ny,ns) = 1.
(8) T(p") = (T(p))" #f pIN where p is a prime.

(4) T(p")T(p) =T(p") +p-T(p"*)T(p,p) if piN.
(Proof) We prove (2). Others are proved similarly.

mneT'(ning) : (4, L) ). (¢, L) (4.13)
[L:L)=nyn,
mT(ni)naT(ng) : (4, L) — ). (¢,L)) (4.14)
[L":L)=n,

[L':L")=n,q
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Let L'/L be an abelian group of order nyn,. Since (ny,n;) = 1, there exists
a unique subgroup L” of L' such that [L"” : L] = n,. (L"/L is the Hall
subgroup of L'/L of order n,;). So every (¢,L') in the right hand side of
(4.13) appears in that of (4.14). The other direction is trivial. Therefore
T(nlng) = T(nl)T(nz) = T(ng)T(nl) ]

Remark 11. (3),(4) indicate T'(p") is a polynomial of T(p) and T(p, p). So we
may conclude that the algebra generated by T'(n),[d],T(n,n) is commutative.
Note also that T'(p)’s generate T'(n).

Consider F : R,(N) — C such that F(M,AL) = A\ *F(t,L). Let f =

Fo®y. For v = (Z S) € To(N) and (d, N) = 1, we set

AF@NE) = Fd (5 (10) = F (5 4:1})

= F(CZ;d,{az+d,cz+d})

_ 1 (az+d
e varse (B fezd )
= (cz+d) " Fo®n(y2) = (cz +d) ™" f(72)
= flov = Fld. (4.15)
Assuming [n]F = ¢(n)F, Y(n,N) =1, we set X

T mF@nE) = F (07 (3. 1)) = F (3 {Z2])

n*F (%, {z, 1}) =nkF ([n] (%, {z,l}))
= nF[n]F(®n(2)) = nfe(n)Fodn(z) = nFe(n) f(2).

Therefore
T(n,n)F(®n(2)) = f|,T(n,n) (4.16)
where f € Mi(T,¢) and I' = I';(N). Finally, we set
1 1
T(p)F(®n(2)) = F (pT() (=, {z,1})) = F I
PT(R)F@(:) = F (5T0) (3 {:1}) ) ([Lgl( + ))

b
where L = {z,1}. L’ are of the form {ﬁ—,l} (6=0,1,2,---,p—1) or
p

)
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If p|N, then 71V is an N-division point of C/L/, for L' = {Z—'};—b, 1} ,b=
0,1,---,p—1, and not for L' = {z,ll-,}. So

pT(p)F(®n(2)) = F(pf (%{z_}—bl}))

_ p-l . z+b
B Z%F (I)N( P )
_ p-l z+b
- ;:;f( p )
Thus L
TG)POME) = 53] ( . ") = U,f(2). (4.17)
If p{N, then

PT(p)F(en(2)) = F (:é (%’{i}ﬁ’l}) * (%{Z%}))
1

= pU () + 2 F (£ (92, 1))

= pU,f(z) + pe(p)Fo®n(p2)
pUf(2) + p*e(p) f(p2)
= pU,f(2) + p*e(p)V, f(2).

Hence

T(pF (éN(Z)) = Upf(2) + p*'e(p)V, f(2)
= D e(d)d"Wee Upaf(2) = f(2)I,T(p) (4.18)

dlp

with f € Mi(T,e). See (4.9). Therefore Fo®y = f enables us to study
Hecke operators on f in terms of operator on ®;(N). See Remark 11 and the
starement below (4.8). We summarize :
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Remark 12. Hecke operators T(n), T(n,n), [d] acting on Mi(T,€), where
I'=I1(N) and ¢ is a Dirichlet character : (Z/NZ)* — C*, generate a commu-
tative algebra.

4.5 Euler Products of L-Functions

Let f be a simultaneous eigenform with respect to all T'(n), n > 1, in
M (T, ¢) with T' = I';(N), normalized to have a; = 1, where f(z) = X anq™.
m=0

Then from Theorem 10 follows a, = \,, Yn > 1, where f(2)|,T(n) = A.f.
From Theorem 11, we have

(1) @nyny = @n,@n, if (nq,n3) =1,

(2) apn = (ap)™ if p|N, and

(3) agn = apns - @y — P e(p)aynor.
So we obtain,

Theorem 12. Let D(f,s) = io: ann~*. Then
n=1

D(f,s) =TI(1 — app™®)™* TT (1 — app™ + e(p)p* 7).
PIN p‘tN

(Proof) For p|N, io apmp™ ™ = io(app‘s)’" = (1 — app~*)~". For piN, we
prove ™= "=
(Z a,,me) (1 —a,T + e(p)pk_sz) = 1.
m=0

Obviously the constant term is 1. Coefficient of T is a, — a, = 0. Coefficients
of T™ (n > 2) are

Apn — Qpn—1 - Qp + apn..zs(p)pk_l =0.

So substituting T' = p~*, we have

Z apmp™*™ = (1—ap~° + e(p)pk_l_zs). =

m=0
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We now come back to My (N =1). Let v = (—1)"”%, k even > 4, and
let f(z) = yxEx. Then

D(f.) = S22 (1 - st +57 ) w)
Moreover, L1 ) )

= ((s—k+1){(s)
where Re(s)>k.

For A € MY,, which is also a simultaneous eigenform of weight 12 with
respect to all T'(n), n > 1, with eigenvalues A\(n) = 7(n), we also have an
Euler product for D(A,s) :

o -1
S~ =TI (1 -r(p)p~ +p"7%) .

n=1 p

Remark 13. (1) o4_1(n) satisfies 0x_1(n1n3) = o%—1(n1)0ok—1(n2)

for (n1,n2) =1 and 64_1(p") = o4—1(p" V) os-1(p) — pk"lak_l(p"‘z).

(2) T(ning) = 7T(n1)7(ny) for (ny,n2) = 1 and 7(p") = 7(p" )7 (p) —
pir(p"7?).

(3) f(z) = § anq™ € M} such that f(z) is a simultaneous eigenform with re-
n=1

spect to all T(n) and ay = 1. Then D(f,s) =11 (1 —app™* +pk_l—s)—l'
P

Petersson conjectured : If (1 — a,T + p*~17?) = (1 — o, T)(1 — B,T), then
o, and B, are complex conjugates. In other words,

Iap' = |:3pl = P(k_l)/2 = lapl < 2P(k—1)/2-

This is a generalization of of a Ramanujan conjecture : |7(p)| < 2p''/2. This
was proved by Deligne : |a,| < n(F=1/2g4(n).
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5. Epilogue

5.1 Positive Definite Quadratic Forms

Let Q = 1<Z< a;;z;x; be an integral positive definite quadratic form, i.e,
_l,]_m

@ = (ai;) is a semi-integral (diagonal entries and the twice of non-diagonal
entries are integers), positive definite m X m symmetric matrices. We define
the theta-series of Q) by

9(z,Q) = 3 XMz () (5.1)
X €M, 1(Z)
= > r(n,Q)¢", (g= ),
n=0
where r(n,Q) = |{X € Mn1(Z) | 'XQX = n}|. (5.2)

It is known that 9¥(z,Q) is a modular form of weight k = %1 for T'o(g) of

type x4, which is a Dirichlet character modulo ¢ determined by Q. (See [8])
Here ¢ is the level of @ , the smallest positive integer such that ¢(2Q)~?! is
integral with even diagonal entries.

Note that ¢ =1 when @ is even unimodular, whence 8|m. We define

the class of @ = {Q'|Q" = *XQX for some X € GL.(Z)}
= ds(Q)
the genus of @ = {Q'|Q' = ‘XQX for some X € GL(Z,) p}
= gen(Q)
where Z, is the ring of p-adic integers. It is known that
gen(Q) = {Q'|Q' = ‘XQX (mod8D?), D =det Q = det Q'}.

It is well known that the number of classes in the genus is finite. Note
that if @' € cls(Q), then ¥(z,Q") = ¥(z,Q), i.e, the theta-series is uniquely
determined by cls(Q). But two distinct classes may give the same theta-
series. We set the generic theta-series of @) as follows : Let Qy,---, Qs be the
representatives of all the distinct classes in the genus of Q.

10D = (X 19,00 m3', z € 9 (53

=1 "t
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h
where ¢; = |{X € GLn(Z)|Q: = 'XQ:X}| < o0 and m, = ¥ %, which is
i=1
called the mass of Q.

Fact 3. (1) ¥(z,[Q)) is a simultaneous eigenform(normalized) with respect to
Hecke operators T'(n) for all n > 1.

(2) IfQ is even unimodular, then ¥(z,[Q]) € M,,/;. Furthermore, ¥(z,[Q]) =
Em/Z(Z)'

5.2 Siegel Mass Formula
Let Q be even unimodular so that J(z,Q) € M; where k = 2 Then

2
9(z,Q) = Ex + fq, where fg € M. Note that 8|m.

Siegel proved: Let Q1,- - -, @Qn be the full set of representatives of the classes
in gen(Q). Then the weighted average of fg’s is zero, i.e.,

5 fei =0 (5.4)
=1

This is, in fact, exactly same as Fact 3-(2) above:

h
9z, 1Ql) = Dk + L2

i=1 & €

)m;l = Fy;

Finally, we introduce Minkowski-Siegel Mass Formula which reads :

Bm/2 (m/2)—1 B2]
m, = I

m G

(5.5)

5.3 Even Unimodular Lattices

Let Q be an even unimodular lattice in R™, whence 8|m.

Case m = 8:
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k= 5'-2’- = 4 and imM, = 1. E; € M. Thus 9(z,Q) = E4(2),
r(n, Q) = 24005(n), Yn > 1. (E4(z) — 14240 3 ag(n)q".)
n=1

(2 0 -1 0 0 0 0 0 \
0 2 0 -1 0 0 0 0
-1 0 2 -1 0 0 0 O
s = 0 -1 -1 2 -1 0 0 0 even unimodular
8 o 0 0 -1 2 -1 0 O :
0 0 0 0 -1 2 -1 0
0o 0 0 0 0 -1 2 -1
\o 0o 0 0o 0 o0 -1 2 )

e(Ts) = 214-35.52.7, mg = 2714375572771,
Therefore I's is the only even unimodular lattice in R® (Mordell).

Case m = 16:

k= % — 8 and dim Mg = 1. Es € M. Thus 9(z,Q) = Es(2),

r(n, Q) = 48007(n), “n>1. (Eg(z) =1+480 f m(n)q".)
n=1

['s ® I's, ['i6: even unimodular (I's & I's % I'6).

C(I‘s b Fg) = 229°310'54°72 e(I‘m) = 215(16')

= 691.2-30.3-10.5-4.7-2.11-1.13"! !

e(Ps o) Fs) 6(F16) '
So Fg @ TI's, T'16 are the only even unimodular lattices in R (Witt).

It is easy to see that 9(z,['s & Fg) = J(z, F8)2 = ¥(z,T'16). So we have
E4(2)* = Es(z) and hence (1 + 240 Z a3(n)q" ) = (1 + 480 5'3 ay(n)q"),
n=1

which yields useful identities between ag(n) and o7(n).

Case m = 24:

= — =12 and dlmM12 = 2 El'z,A S M12. Thus 0(Z,Q) = E12 +

BoA(z), (1, Q) = o g1y (m) + fgr(n) ¥ > 1
65520

:BQ = T(la Q) -

oL since 7(1) = 1. Bg # 0 because 7(1,Q) € N and
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691165520.
Q=A :r(L,A)=0 = By= —@. (A : Leech lattice).
691 432000
Q=F3@F3@F8 : T(I,FS@F8®F8)=720’ ﬂFB®F8®F8=
697344 691
Q =T : 7‘(1, F24) = 1104, Br,, = Wa R

There are 24 distinct classes (Niemeire 1957).

e(A) = 22.3%.5%.72.11-13-23 = 8,315,553,613,086,720,000.

mg =~ 8 x 10715,

Let G = O(A) = {X € GL24(Z) : A = *XAX}. Then G/{£1} is a simple
group (Conway).

Case m = 32:
k= 16, dimM32 = 2, EIG, AE4 € M16- Thus

¥(z,Q) = Ei6 + BoA-Eyy.

mgq ~ 4.03 x 10". Therefore there are more than 80 million classes !
Case m = 40:

mq = 4.39 x 10°!. There are more than 8 x 10! classes !
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1 Classical Theory of Hilbert Modular Forms.

1.1 Notations and Conventions.

GLf(R) = {a € My(R) : deta> 0 } acts transitively on
$H={z==z+1y| y >0 } by linear fractional transformations

(a b) __az+b
c d z—cz-l-d'

Similarly, GL$ (R)™ acts componentwise on $)™. These actions are obviously
transitive, and the transformation group is

~ (GLF(R)/R*)™ » (SLy(R)/{x1})™.

By convention, for z = (z1,-:+,2m) € ™, r = (r1,-++,7m) € Z™, t € C,
put 2" =z - 2pm, bz = (tz1, -, t2m), Tl =1l - ry)) and e(w) = €2 for
we C.

1.2 Automorphisms of $™.

Lemma 1.1 (Cartan Uniqueness Theorem) Let D be a bounded do-
main, 0 e D CC", t-DC Dforte Cwith|t| < 1. ff:D — D is
holomorphic, f(0) = 0, Jac(f)|, = identity, then f = identity on D.

Proof. In a neighborhood of 0, we have f(z) = z + F(z) + ---, where
F = (F,---,Fy) and is a homogeneous polynomial of degree p > 1. Then
f(f(2)) = 242F(z)+--- and in general the k-th iterate fi(2) = z4+-kF(2)+- - -.
Let gx(t) = fu(tz) for |t| < 1. Then ¢, i-th component(0) = kF;(z)p!. But
by the Cauchy estimate, |g,(f ),i-th(0)| < p!M/R?, where M depends only on
D. Since R =1, we obtain |kF;(z)p!| < p!M or |kF,(z)| < M for all k. Thus
Fi(z) = 0 and hence f is the identity in a neighborhood of 0. By the identity
theorem the same is true for D. .

Lemma 1.2 : If g € Aut(D) and ¢(0) = 0 for the same D as in Lemma 1.1,
then g(z) = Az with A € GL,,(C).
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Proof. For t € C — {0}, |t| <1, put f(z) = g7 (t7'g(tz)). Then
f:D — D, f(0) =0, Jac(f)|, = identity.

By Lemma 1.1, g~}(t"g(tz)) = z for all z € D, so that g(tz) = tg(z) for all

t, [t| <1, z € D. Write g(z) = %O: Gy (z), where G, is homogeneous of degree
n=1

n. Then

t3°Ga(z) = 3 Galt2).

n=1 n=1

By viewing this as a power series in ¢, we conclude that g(z) = G1(z). u

Theorem 1.1 If ® = {z | |z|<1}, then D™ =~ H™ analytically, and from
this we get

Aut(H™) = (GL;"(R) /Rx)m - { permutations on m letters}

(a semidirect product).

Proof. © ~ §) by a fractional linear transformation (i.e., z —— i _T_ Z is such a

map of D onto ) and note that its inverse is given by z + —2 (%ﬁ—%—) ) hence
also ®™ ~ $H™. This induces

Aut(®™) ~ Aut(H5™)

and takes (GL;(R) /Rx)m to a subgroup G C Aut(®™), which is necessarily

transitive on D™. Let f € Aut(D™), f(0) = a. By transitivity, there exists
g € G such that g(a) = 0. By Lemma 1.2, gof is given by a nonsingular linear

map A on C™, say A = (a;;) with respect to standard basis.
Since A € Aut(D™),

lai1z1 + -+ + @imzm|<1 for all |z;|<1.

Thus A induces a bijective map of D onto itself and maps D™ onto itself.

Since |ainzi + -++ + Gimzm| < |aal + -+ + |aim| for all |z;] < 1 and for
5 = Zl y Ty Rm = Z 3 |ailzl+”’+aimzm| = |ai1|+"’+ Iaiml < 1,
1

we must have |a;| + -+ + |aim| = 1. Fix jo (1 < jo < m). If |z;,| = 1 and
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zj = 0 for j # jo, then one of |ayjo|,--,|amj,| must be 1, say |a;;| = 1.
Then from |aiy1]| + -+ + |ai,m| = 1 we conclude that a;,; = 0 for j # jo. So
with some permutation 7 of coordinates in C™, 704 is a diagonal and hence
in G (with our choice of o the automorphism z + €?z of D corresponds to
cos gz + sin &

2 . :
7 — T Tcos? of §). Therefore gof € G - {permutations} = f €
G - {permutations} => the desired result by lifting back. "

1.3 Hilbert Modular Groups and Modular Forms.

Let F' be a totally real number field of degree m over Q, with ring of integers
O. Fix an ordering of real embeddings o1, - -, 0,, of F in R. Via o; we have an
embedding GL3(F') — GLy(R)™ given by g — (019, ,0mg) = (91, ", gm)-
Let GL] (F) (respectively, GLF(O)) denote the set of elements of GLy(F) (re-
spectively, GL;(O)) with totally positive determinant. The action of GL} (R)™
on ™ induces that of GL{ (F) on H™ via o;. The group GL7 (O) is called the
full Hilbert modular group.

Definition 1.1 For any non-zero ideal n of O, define the principal congru-
ence subgroup of level n as

I'(n) = {'y € GL{(O) | y=1; mod n }

A congruence subgroup (of GL](F) ) is a subgroup I' of GL} (F) such that
Z(O)T contains some I'(n) with finite index, where Z(0) = O is the center
of GL}(0).

Definition 1.2 For g = (Z 2) € GLI(R) and z € £, put

u(g, 2) = (detg)~*(cz + d).

For g=(g1, -, 9m) € GLT(R)™, z=(21, -+, 2m) € H™ and k=(ky, - - - ykm) in
Z™, write

w(9,2)* = T w5, 5)".

i=1
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For a function on ™, define

(fle9)(2) = f(g(2))ulg,2)7*.

Then it is immediate to see that f|, gk = (f|,9)|,h, for g,k € GL} (R)™.

Definition 1.3 For a congruence subgroup I', k € Z™, x:I' — C* a charac-
ter such that x(I') is a finite group, define

Wim(T,k,x) = {f holomorphic on $H™ | f|,v = x(7)f, Vv €T},
Wim(T, k) {f holomorphic on H™ | fl,y=f, Vy €T},

Wim(k) = U  Wim(T, k).
subgroups T

I

Proposition 1.1 Let I' be a congruence subgroup, and let

A={u€F ‘ (1 ”) eZ(O)r}.
0 1
Then f € Wifm(T', k) has a Fourier expansion

f(z) = ) ceexp(2miTr(£2)),

EEA*

where A* = {¢ € F' | Tr(éA) C Z} is the dual Z-module of A. Moreover, the
Fourier series is absolutely convergent and uniformly so on compect subsets

of H™.

Proof. Note that A contains some nonzero ideal n. Since f(z +u) = f(z) for
u € A and f is smooth as a function of z (z = z + ty), f has a Fourier series
expansion
flz+iy) = 3 ce(y)exp(2miTr(¢))
EEA
which is absolutely convergent and uniformly so for z in some compact subset
of H™. Since f is holomorphic for z € $™, the Cauchy-Riemann equations
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must be satisfied. For each j, we must have
. . . Oc :
i Y ce(y)(2mit;)exp(2miTr(éz)) = Y ——65(—Qexp(27rzTr(§:c)).
€A gear 9Yi

By the uniqueness of Fourier expansions in z,

-zws,-q(y):ic;;(j?—) — cely) = ceexp(—2xTr(ey))

for some constant ¢;. Thus f(z) = Y ceexp(27iTr(€z)) and the Fourier series
EEA*

is nicely convergent as asserted. .

Definition 1.4 f € Wim(T, k) is called a holomorphic Hilbert modular form
of weight k with respect to T if, for every g € GL} (F), the Fourier expansion

(Fleg)(z) = ZCe(g Jexp(2miTr(¢2))

has c¢(g) = 0 unless £ = 0 or £ > 0 (totally positive). Here one has to
observe that if f € Wfm(T, k) and g € GL$ (F) then g~'I'g is a congruence
subgroup so that f|,g € Wim(g~'I'g, k). Define

_ f is holomorphic Hilbert modular form }
Mfm(T, k) = {f \ of weight £ with respect to I’ ’
Mfm(k) = (J Mifm(T, k).

congruence
subgroups T

f € Mfm(T', k) is a holomorphic Hilbert modular cuspform of weight k with
respect to I if, for every g € GL}(F), the Fourier expansion

(Flx9)(2) Z ce(g)exp(2miTr(€2))

has c¢(g) = 0 unless ¢ > 0. Cfm(T', k) and Cfm(k) will denote the obvious
C-vector spaces.

Remark 1.1 As contrasted to the case F = Q, the Koecher’s principle says
that Mfm(T', k) = Wfm(T, k) for [F:Q] > 1.
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Theorem 1.2 (Koecher’s Principle) Let m = [F:Q]>1, feWfm(T,k, x).
Then in the Fourier expansion of f,

f(2) = 3 c(€)exp(2miTr(€z))

3

we have ¢(£) = 0 unless £ =0 or £ > 0.
Moreover, ¢(0) = 0 unless k; = ky = --- = k,,,.

Proof. Note first that I' contains a subgroup of the form

{ﬁ - (n n”‘)

where U is a subgroup of O* with finite index. Next we see that for n € U

nEU},

p(i, z)™% = p*, ii(2) = n’=.

Thus f(n’z) = x(Mn~*f(2) = e(n72€) = x(Mn~*c(§) = ¢(0) =0,
unless k; = k; = -+ = kn,. (By the unit theorem we can choose n € U such
that |gi|® ---|pm|* # 1). In the notation of the proof of Proposition 1.1,

ce(y) = c(€)exp(—2nTr(¢y)) is given by
vol(R™/A)™! /m o f(z + iy)exp(—2miTr(€x))d.

Suppose that ¢ is nonzero and not totally positive, say & <0.
Fix y; = --- = ym = 1. Then there exists M > 0 (independent of ¢) such that
|c(€)e=2T7®)| < M from the above integral representation of c¢(y). Now,

() = In*e(n™2E)| < Mn*|e> T
— MH Iﬂjlk,' 627r(171_251+'-~+77;.25m).

Since m > 1, one can choose 7 € U such that |n1|<1, |pa], -, |7m| > 1 by the
unit theorem (cf. for example Janusz, Algebraic Number Fields.) Put in g™
for n and let n be large. Then the right hand side — 0 and ¢(¢) = 0. n

Corollary 1.1 Suppose that [F:Q] = m > 1. Then Wfm(k) = Mfm(k), and
Wim(k) = Cfm(k) unless all k,’s are equal.

Proof. Apply the above theorem to f|xg for any g € GL} (F). "
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1.4 Cusps and Class Numbers.

GL,(C) acts on P' = {(:) eC’ - {O}} /C* by matrix multiplication on
the left. As usual, we write
P' = CU {ico = the point at infinity}.

Then the above action is just the linear fractional transformation action on
the extended plane. Similarly, GLy(C)™ acts on (P')™, componentwise and

ﬁm C Cm C (Pl)m.

Definition 1.5 The cusps of GL} (F) are the points
(o1, oma) = (o1, +,an) €R™ CIH™ c C™ c (PHY™
for a € F, plus the point ico = (ioo,- - -,ic0) € (P')™.

Remark 1.2 GLy(F) clearly stabilizes the set of cusps. For a subgroup T’
of GL (F), we say that two cusps k; and k, are I'-equivalent if xk; = yx, for
some v € I'.

Theorem 1.3 Let SLy(0) C I' C GL(O). Then there is a bijection between
the ideal class group of F' and I'-equivalent classes of cusps, given by

(w0 + v0) (:j) o
In particular, the number of I-inequivalent cusps is h,.

Proof. For any pairs (u,v), (v/,v") € F? — {0}, they are in the same ideal
/
class if and only if (:) € GL,(0) (:') F*. We will show that if uO + vO

and v'O + v'O are in the same ideal class then (Z) C* and (Z') C* are

I'-equivalent. The converse is easy to see. Without loss of generality, we may
assume that 4O + v0 = v'O 4+ v'0 =a. Put a = (uy,v), o/ = (v,v'). Let
<&,y >= T1y1 + T2y, be the usual pairing on F?2. <a,0?>=a = <
a,a”10?>= 0 = 3 vy €a~'0? such that <a,y>= 1. Since a €a0?, 1 =<
a,7>€<a0? y>C<a0?,a710?>= 0 = <a0%v>=0. Put M = {z €
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a0? | <z,v>=0}. Then we claim that a0? = Oa ® M. For z €a0?, write
z =<z,7> a + (z— <z,7> a) and see that z € Oa + M. The rest of claim is
trivial. Now, a0? = Oa® M = O’ @ M' with M’ analogue for o/. According
to the structure theorem for finitely generated modules over Dedekind domain,
every finitely generated torsionless module over a Dedekind domain R is of the
form R"®m for an ideal m whose isomorphism class is uniquely determined,
and for a uniquely determined 0 < n € Z. Thus M =mfB3, M' =m’3’, m~m’
(they are in the same ideal class) for some ideals m, m’ of O and for some
B,8 € F? — {0}. By adjusting ' we may assume m = m’. Since A2F? is
one-dimensional over F, a A 3 = o' A - (unit). By replacing ' by 8- (unit),
we have aAB = o' AR and Oa®dmfB = a0? = Od’@mp’. Define A € GLy(F)
by Aa =o', AB = f'. Then A € SLy(F) and also A € GLy(O), since both A
and A~! send aO? and hence O? to itself. Thus A € SLy(0O). .

Corollary 1.2 For any congruence group I', there are only finitely many I'-
inequivalent cusps. Let {k1,---,k,} be a set of irredundant representatives.

Then GL}(F)=UT§P (disjoint union),

where P is the group of upper triangular matrices in GL] (F) and é; € SLy(F)
is such that 6;(00) = «;.

Proof. Assume that Z(O)I' D I'(n) for some nonzero ideal n. Then there are at
most h,v' I'(n)— and hence I-inequivalent cusps, where v’ = [GL} (O) : ['(n)].
Let g € GL3(F). Then g(i00) = & for some cusp K = there exist v € I and
i (1 <14 <) such that yg(ic0) = 7(k) = ki == 6 yg(ioco) = 6 (k;) = ico.
Since P is the isotropy group of ico in GL} (F),

§-'vg € P = ge 6P .
Corollary 1.3 Let f € Wim(I', k) and let

(flkg)(2) = 3 ce(g)exp(2miTr(€z))

3

for g € GLI (F). Let {6;} be a finite set of representatives for '\GLJ (F)/P.
Then f is a cusp form if and only if c¢(g) = 0 for € not totally positive merely
for g € {6:}.
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Proof. Let ¢ € Wim(T', k) with the Fourier series expansion
p(2) = 3 c(€)exp(2miTr(E2)).

13
Thenforp=(g Z)EP,
_(a 3 o iT az b
(elep)(2) = 3) C(é exp | 2miT'r £<d +3))>

; {( ) (‘j ) exp (27riTr (35)) } exp(2miTr(€2)).

Thus the Fourier coefficients of ¢ vanish for ¢ not totally positive <= those
of plgp do. For g € GLI(F), g = 46;p for some v € T, p € P and hence
flkg = (f|x6:)|kp. Note the above observation yields the result. .

Remark 1.3 Suppose that [F:Q] = m > 1. In this case we saw that
Wim(T, k)

= Cfm(T, k) unless all k;’s are equal. Thus Corollary 1.3 is useful only when
m =1 (elliptic modular case) or m > 1 and equal weight case.

113

1.5 Siegel sets (An Approximate Fundamental Domain).

Definition 1.6 A standard Siegel set is defined to be a subset of §™ of the
form

S = {Zeﬁm | Re(z) € R, Im(zj) 2B, ;= 1,"'7m},
where R is a compact set in R™ and B > 0.
Theorem 1.4 Let I' be a congruence subgroup. Let {ki,---,k,} be repre-
sentatives for the I-inequivalent cusps and §; an element of SLy(F) such that

8;(100) = k; for each j = 1,---,v. Then there exists a standard Siegel set S
such that H™ = I‘(U(SjS).
J

Proof. We may as well assume that I' contains Z(O), since Z(O) acts trivially
on H™. We saw that

GL}(F) = Urajp = GL}(F)=|J P6;'T.
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Lemma 1.3 For every z € )™, there exist ¢,d € O (not both zero) so that
loj(c)zj + oj(d)|* < Ky; (j =1,---,m), where K is a constant such that

K > 4DI,%/7r and y; = Im(z;).

Proof of Lemma 1.3. Consider the lattice A = Oz 4+ O c C™.
Pick a Z-basis wl, -+, wm of O, so that A is generated by (w(l) . w,(cm)) and

(zwM, - ,zmw{™) for k= 1,--+,m. Here w{) = o;wy. Then
wgl) s w®
: : *

(m) .. m

vol(C™/A) = | ™1 m m

(578 ol e g™

ymwgm) T ymw,(;"')

= (1. -Ym)DF.

For a constant K, the volume of the convex open set
V={ueC"|u* < Ky, }
is 7™ K™(y1...Ym). So by Minkowski’s theorem if
1
T"K™(y1...ym) > 2" Dr(y1-..Ym) i.e., K > 4DF /7

then there exist ¢,d € O (not both zero) such that

loj(c)z; + o;(d)|* < Kyj, 5 =1,---,m. .
Take a,b € F so that g = (‘Z f’l) € SLy(F). Then

_ Im(z;) 1
o) = s + o@P ~ F

There exist p = (p(1)1 Zn) € P, v € T, and some 1, such that g = pé; 'y,
22

which implies that (¢ d) = pas(c; d;)y with 67 = (: ; )
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Lemma 1.4 There is some nonzero ideal 1 of @ (depending on I') such that
entries of 4 € I lie in n™!

Proof of Lemma 1.4. For some ideal m, T’ contains I'(m) with finite index. If
{7;} is a finite set of coset representatives for I'/T(m) and n is a nonzero ideal
of O such that all the entries of every 4; lie in n~!, then such an n is a desired
one. .

From py;(ci di)y = (c d) and the Lemma 1.4, we obtain

p22(ciO0 + d;0) C n7Y(cO + dO)

lNormF/szle(C;O +d;0) > Nn‘lN(c(’) + dO)

[Normp/gpzz| ™" < N(¢;O + d;O)Nn/N(cO + dO)
< N(¢;O + d;O)Nn.

Put A = max N(¢;O + d;O)Nn. Then |Normg/gpa:|™ < A. .

Lemma 1.5 There exist c,c’ > 0 (depending only on O) such that for every
a € F there exists n € O* such that

c|Normp/Qa|% <oi(na)| < c'|NormF/Qa|?1vT.

Proof of Lemma 1.5. Take independent units €;,---,€,-1 € OX and consider
the system of equations

o)

m—1
> zilog |€(V)| = log a0

k=1

forv=1,---.m

Clearly, the last equation is dependent on the (m — 1) previous ones and
the absolute value of the determinant of the coefficient matrix of the first
(m —1) equations is the regulator of F'. Thus the system has a unique solution

Ty, +*,Tm—1. Choose yx € Z so that |z —yi| < %, fork=1,---,m—1. Then,

Na)m

Sonis|e?| o 00| < e -l o] < 3 5 ot

)
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forv=1,---,m. Put M = max, %E log |6£V)”. Then the inequalities hold
k

withc=e™M, ' =eM, p=el-..e¥"} € OX. .

By applying Lemma 1.5 with a = p,,,

e — 1
|o;(np22)| ™" < ¢7'|Normpygpaz| ™ < ¢ 1A

with 7 = (17 77) € Z(0), replacing p by pii and v by 77! we may assume
that |oj(p22)|™* < ¢c"'Am. Combining this with
K™ <Im((g2);) = Im((p6; "y2);) = Im((67"72);) /03 (p22)?, (5 =1,-+-,m),
we get
Im((6;7172);) > K™ '0;(ps)? > K™ '*PA™ ™

a; b

¢ d;

6~<1 u)é_l_(1+ngiu d?u )
*\0 1) — —ctu 1—cdiu/’

So we may choose an ideal n of O sufficiently small so that I'(n) C I" and

6; ((1] Qlt) 671 €T for all u €n and for all i. Let R be a compact subset of
1 u

R™, so that R+n=R™. Put & = ( 01
so that

for g =1,---,m. Note that if6{’1=( )then

) € I'(n) C T, for u en. Choose u €n,

(W 'y)z € S = {z € H™ | Im(z;) > KlPA™=, Re(z) € R} .
Here one should note that Im(8;'v)z = Im(@é;'v)z. Since §;ué;" € T,

;' =679, forsomey €I = (§7'y'7)z€S = z€I(|J6S5). =

1.6 Finite Dimensionality of Spaces of Cuspforms.

(k1y.. -, k) € Z™.
0 if some k; < 0 or

Theorem 1.5 Let I" be a congruence subgroup, k
Then dimcCfm(T, k) is finite. Moreover, Mfm(T', k)
some k; = 0 and some k; > 0, and Mfm(T,0) = C.
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Corollary 1 of Proof : For a fixed congruence subgroup I' and weight k, and a
cuspform f(z) = Y ¢(§)exp(2niTr(£z)) € Cfm(T, k), there is a constant ¢; > 0
‘ 14

such that |¢(¢)] < 5.

Corollary 2 of Proof : Given a cuspform f of weight k, there exists a constant
¢z > 0 so that for any = + iy = z € H™, ¥*?|f(2)| < ca-

Corollary 3 of Proof : Given a Siegel set S and a cuspform f of weight &, there
are constants c3,cy > 0 so that for z =z +1y € S,

1
y*?|f(2)| < caexp(—cay™).
Lemma 1.6 Take a,c > 0.
a

(i) sup,soyexp(—cy) = (Z)".

(ii) Fory > 0, y* < (%)aexp(cy).

(iii) For y1,...,ym > 0,

3=

inf{Zf,;y,- | é1,...,6m >0, H{i >n>0}= mn= (Hyi)

For the proof of Theorem 1.5, the following ingrediants will be needed. Let
{K1,...,k,} be the set of [-inequivalent cusps, and choose é; € SLy(F') so that
8;(i00) = k; with 6 = 15. Let f € Cfm(T', k). If for each ¢, A; is the lattice of
translations in z leaving f|xd; invarient, A} the dual lattice with respect to Tr,
and A} the set of totally positive elements of A}, then by Koecher’s principle

(flsdi)(z) = 3 ci(€)exp(2miTr(¢z)).

¢eat

Let S be a Siegel set for I so that ™ = I'(J6:S5), where

S={z€eH™ | Im(z:) >n >0, Re(z) is in a fixed compact subset of R™}.
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Lemma 1.7 Assume that f € Cfm(T, k) is such that ¢;(¢) = 0 for all indices
tand N¢ =[[; & < n(>0). Then

sup{y?|f(2)| | 2 € 5™} = sup{yf(2)| | = € J &:S}

is finite and the supremum is attained.

Proof. Note first that y| f(2z)| is I'-invariant and hence that the asserted
equality holds. Put d = sup{1,k,...,kn}. For any £ = (£,,...,¢&n) with all
& >0, N6 >¢g(>0),and z+ 1y € S,

k

- P () < mh ()

i \7 i \7

PN
< "ztﬂ(zemﬂ X exp(rTr(€y)

am

A d \? _a
< =¥ (52) " o tewtaTrie)

(by applying (ii) of Lemma 1.6 with y = yﬁ", a= g—, c=mwén ).

By assumption in the Fourier expansion of f|.é; only those coefficients ci(§)
with ¢ € A}, N¢ > n appear and there exists € > 0 such that N £ >n+efor
such £’s. By the above estimate, taking z € S,

Im(8;2)%|f(6:2)] = y? |(f1s6:)(2)|
< i Y a(é)lexp(=2nTr(ey))

¢ent
Ne¢>nte
< =¥ (=) n 7 Sle@lesp(rTr(en)

which is convergent as being the series of the absolute values of (f |x6:) (5—)

Since each term goes to zero as y; — 0 for yi > 1 > 0, the series itself tends to
zero by the dominated convergence theorem for series. Thus the supremumm is
finite and is attained. This also shows the Corollary 2 of proof. "
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Lemma 1.8 M = sup{exp (rmn# l'[y,#) x | f(2)|

nite and is attained.

z=:c+iy€.5'} is fi-

Proof. As in the proof of Lemma 1.7,

f(2)= Y. ca(€)exp(2miTr(¢z)) for some & > 0.

gent
Né¢>nte

For any ¢ € A} with N¢ > n + ¢, by (iii) of Lemma 1.6

3=

m”'_l"‘lzly"# - (nie)

< () e

Thus exp(rmnm IZIy?)If(z)i
< Tla(@les (vr (==

= ; |ex(€)lexp (“” {2 - ( p );} Tr(éy)) ’

n+e¢

x m(n + s)# Hy,-'%'_

Bl

)" Tr(es)) expl-2rTr ()

which is convergent as being the series of absolute values of the terms of the
1
Fourier series at %7!‘ {2 - (ﬁ—g) "'} z € H™. To finish up the proof, apply

the same reasoning as in the proof of the Lemma 1.7. "

Corollary of Lemma 1.7, 1.8 : There are constants cs,cs > 0 such that

yglf(z)| < C4exp(—-c3y%) forz=z+1iy€S.

Proof. By the proof of Lemma 1.7, for z € S,

yglf(z)| < > |ea(é)lexp(—nTr(Ey)) for some ¢ > 0.
13
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Then by the proof of Lemma 1.8,
exp (o [T ) 15!
< X le@lers ( (A

< CTlate ewp (- {1 (2 }Td@ﬂ

from which the result follows. "

)% T T(&y)) exp(—7Tr(¢y))

Proof of Theorem 1.5. By Lemma 1.7, there exist ¢ and zg = zo +1yo € S such
that

y*21f(2)] < Im(8:20)*/* x | (8iz0)| = yo'*|(f116:)(20)]
for z € ™. By applying Lemma 1.8 to f|;.6; instead of f we may assume that
for any z € H™,

_k E 1 L
()| < v 4y Mexp(—rmn [ uif).

Note that
1 1 1
m[lvs; = Ilvéi+-+1lvs
m—1 E S m=—1 i
2 N myn -t +n T yom
m—1 1 1
o (Y5 + o+ Yo
Thus
k 1 1
(+) 1£(2)] < y~ 3y Mexp(—m(ny™ )= 3" yi7).
Now,
lea ()]
= exp(2rTr(€y))|vol(R™/A;)7! /n'"/A exp(—27Tr(¢z)) f(z + iy)dz
1
(%%) < exp(ZWTr(fy))sup{lf(m +1y)| | z € R™/A}
< exp(2rTr(Ey))y~Fyé M x exp(—n(ng™ )% S ud).
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If some k; < 0, then by letting y; — 0+ we get ¢;(¢) for every € i.e., Cfm(T, k) =
0. We will use the fact that there exist not identically zero cuspforms for some
suffciently small congruence group. The proof will be given in section 1.9. Let
¢ € Mfm(T', k) with some k; < 0, and let f be some cuspform not identically
zero. Then ¢"f is a cuspform with some negative weight component for large

enough n and hence p"f =0 = ¢ = 0. By replacing y by %— in (),

|c1(£)§_§| < exp(27mm)yg ML x exp( Zyo,)

which proves the Corollary 1 of proof. If ¥ = 0 and ¢ € Mfm(I',0), then
granting the assertion of the theorem for k > 0, ¢"f € Cim(I'NI", k") for any
not identically zero f € Cfm(I", ') and every 0 < n € Z. Since these can not
be linearly independent, there is a nontrivial relation

Y f=0=>) " =0

—> ¢ is algebraicover C = ¢ isa constant. If some k; = 0 and some
k;j > 0, then f is a cuspform and | f(z)|y2 attains its maximum at a certain
point z(o) € H™ by Lemma 1.7. We may assume k; = 0.

km
(o1, 20, 2Oyt y(o) SRR
L7} km
< G z§°>, LA PF 0
= | f (21, 29 ... , 2| < |f(z(0) e, 20 for all z; € 9.

Thus z; — f(z1, z§ ) .. +,219) is constant by maximum modulus principle. Let
A be the lattice of translation in z and let @ € A. Then

f(zgo),---,zfr?)) = f(zlazg))?" (0))
flzr 4 a1, 27 + ag, -+, 29 + a)
= f(z21,2) + ag,-- ()+am)
Since A — R™! given by a +— (as, - -,a,,) has dense image, f only depends

on the imaginary part of z. Since f is holomorphic, it is constant and hence
zero. Finally, we consider the case that every k; > 0. From (*) and using (i)
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of Lemma 1.6,

_ka ok m—1yL L
Yy~ Myg exp(—m(nn™ 7)™ 3 yg)
y"gMHsup{tmk‘/zexp(—ﬂ(nnm'l)#t) |t > 0}

A O

172

IN A

IN

This yields

lea(€)] < exp(2rTr(éy))

vol(R™/A;)~ /n o, OXR(=2mT7(62)) f(a + iy)do

< exp(2rTr(Ey))y™ ’-MH{mk ( . >#}"‘"‘/2.

2re \ npm-1
. 1\ mki/2
4me; kif2 mk; 1 m
<
(o) el < T (5E) ST 2 (2 ,

by minimizing over {(y1,"--,ym) | y; > 0} ((i) of Lemma 1.6). Put

1y mki/2
- 471.—6),%/2 mk; 1 m
M = H ( k; X I:I 2me \npm-1 '

1

Let w = u + v be the point in S where
M = sup{exp(ﬂ'mngn' Hy,-#) X|f(2)||z=z+wy € S’}
is attained. Then
f) = Mexp(~mmn* [ of)

< Tla(@les(-2rTr(c)

< MM'ZH{?exp(—?wTr(fv)) by (kxx).
€ i
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ki
By (ii) of Lemma 1.6, [] ¢ < {H(ki/‘irev;)k‘ﬂ} exp(%—rTr(fv)).
As in the proof of Lem;na 1.8, thezre exists € > 0 such that
1 L n -
m "< |—) T
o T < (=) e

for ¢ € A with N¢ > n. Hence

Mexp(—ﬂ'mn%n' H vt#) < MM ze: {H(ki/wevi)k‘ﬂ} exp(—g-ﬂ'Tr(fv)).

1

Then we have
1< M {H(k,- /m,-)'w/z} > exp(—n {% - (- - ) #} Tr(¢v))
< M {H(k,- /Wev;)k‘/z} ; exp(—%‘rrnTr(f))

< M {IiI(ki /7rev,-)k"/2} o,

where o = Eexp( - %WUTT({)) < oo and depends only on I'. By using the
13

expression for M’,

mk;

} e (2T

mk;

(@

[
IN
Q
Ve
S
N———
Sk
e N,
INE
x|
VS
=
B -
L
N—
[

Ul

L k L mzk'
Y o kil2 4\ 2% | mk; 1 \m
S < il
" _a]_;[ n 2me \ pm—1 ’

where the right hand side depends only on I' and k, not on n nor on f. Thus
there is a constant n’ (depending only on I' and k) such that ¢;(¢) = 0 for
all : with ¢ € Af N¢ <n’ = f =0 identically. Since ¢;(¢) depends only

AN
—
S |
N——

Nk
—N—

N R

a5
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on ¢ modulo a subgroup U of O* of finite index and {¢ € A} | N¢ < n'}/U
is finite, there are only finitely many vanishing conditions on the Fourier co-
efficients of f which assure that f is identically zero. Now, elementary linear
algebra consideration completes the proof. ]

1.7 Quotient Space X1 =I'\(%™)*
Put (™) = H" U F U{ioco} = H™ U{ cusps of GLT (F)}. Then (™)* carries

a unique topology with the following properties;
(a) The topology induced on $H™ is the usual one.
(b) H™ is an open dense subset of ($H™)*.

(c) If x is a cusp and g € GL}(F) is such that gk = 400, then the sets
g (Um)U{k}, M >0, with Ups = {z € H™ | N(Im(2)) = [] Im(z;) >
=1
M} form a basis for the neighborhood of «.

Remark 1.4 (a) The system of sets ¢~} (Up ) U{k}, M > 0 does not de-
pend on the choice of g.

(b) Since GL(F) acts on the set of cusps, I acts on ($™)* for any con-
gruence subgroup I'.

Consider now the quotient space Xr = I'\($™)*, equipped with the quo-
tient topology.

Theorem 1.6 For any congruence subgroup I', the quotient space Xr is a
locally compact Hausdorff space. The canonical mapping

Lioo\Un (J{ico} — T\(H™)"

is an open imbedding for sufficiently large M > 0.

This system is a neighborhood basis of the class of i00.
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Remark 1.5 For any g € GL}(F) , the transformation z gz induces a
homeomorphism Xr=X,r,-1. Thus we may restrict our attention to the
local structure of Xr at the cusp ioo.

Lemma 1.9 Given a compact set K C H™, & a cusp of I', there exists a
neighborhood U of « such that TUNK = 0.

Proof. We may assume that x = ico. There are constants A, B > 0 such that
A<N(Im(z))<B for all z € K. Since I' is a congruence subgroup, {N(detg) :
g € T'} is a finite set and hence

sup{N(detg): g€} =a>0

For the same reason, there is a constant c. such that

a b
(c d)EF, c#O}ZcP.

Then for v = ((cl Z) €' withc#0and z € H™,

inf{]NcI

N(Im(yz)) = N(dety)N(Im(z))/|N(cz + d)|*
N(dety)|Ne|"2N(Im(z))™?

act' N(Im(z))™2.

IAIA I

Put M = max(aB, acf’/A). Let z€ K. If y = (Z 2) € I' with ¢ =0, then

N(Im(yz)) = N(dety)N(Im(z)) < aN(Im(z)) < aB.

On the other hand, if v = (‘cl 3) € I' with ¢ # 0, then N(Im(yz)) <

acr?A™Y. Thus if U = {z€H™ | N(Im(z))>M} U{ico}, then TUNK = 0. =

Lemma 1.10 For I-inequivalent cusps k3, £ of T, there exist neighborhoods
Uy, U; of ks, K3, respectively, such that TU; U, = 0.

Proof. We may assume that k; = ico. For U with [O*:U]<oo, there exist
¢,c’ > 0 (depending only on ) such that for every a € F' there exists neu
such that

cINormrq(a)| = < |(7a))| < ¢|Norm/q(a)|.
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This can be proved as in Lemma 1.5 by taking independent units in &. Since
F is dense in R™ by the approximation theorem,the above inequality says that

given z € H™ there exis'cs(6 5"1) € Z(O)' (e € O%) such that

eN(Im(z))= < Im(ez)¥) < ¢dN(Im(z))=, for all j.

Let P be a fundamental domain for R™ /b, where b is an ideal of F' such that
Z(O)Xro { ((1) Il)) be b}. Note that P is compact. Put

K={z€ 9™ |Re(z) € P, N(Im(z)) = 1, and ¢ < Im(")) < ¢, Vj}.

Then K is compact and by Lemma 1.9, there are connected neighborhoods
U, of 00 and U, of k3 such that TU; N K = I'U;NK = 0. Note also that
I'-K2{z€e$H™ | NIm(z)) =1}, from which U; and U, are disjoint. Since
N(Im(z)) is a continuous function of z on C™,

Up — {ioo} C {z € ™ | N(Im(z)) > 1},

Uz — {2} C {z € H™ | N(Im(z))<1}.
Assume now that zo € YU; N U; for some v € I'. Then N(Im(z)) > 1. Since
U, is connected, vk; # too is a cusp with N(Im(yk3)) = 0, there exists
z1 € 7U; such that N(Im(z)) = 1. But this implies that
z €YU (\TK = TU (K #0,

a contradiction. Thus T'U; N U, = 0. "

Lemma 1.11 The space [';o,\Upr U {10} is compact for M > 0.

Proof. First we must show that I';,, acts on Ups U {ico}. Put

t = {a€R" |z 2+a liesin T},
A = {e€R)™|z—€ez+b liesinT for some b € R™}

Then A=Z™ Y 1272,
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Clearly, A acts on t by (¢,a) — ea = (e1a1, - ,Emam). The linear map
R™ — R™ (a ~ €a) has determinant Ne, and the matrix of the linear map
with respect to a basis of the lattice is integral. So Ne = 1. This implies
that T acts on Ups U {ico}. Secondly, we will show that T;oo \Ups U {i00}
is compact. A subset P of an n-dimensional real vector space is called a
parallelotope if there exists a basis ay,- - -, an, with the property

P={a|la=) tja;, 0<t;<1,1<j5<n}.

If P is a fundamental parallelotope for ¢t and @ that for logA in the space
{veR™|Tr(v)=vi+---+ vm =0}, then I'ix - V = Uy, where

V={ZEUM z € P, log

Y
1=<al.
m Ny
Let [%/c,o0] denote a compact interval in the extended real axis. Since the
following map is continuous, the image contains V U{to0}, Tico\Unm U {ico}
is compact. The map is [ /M, 00] x P x Q — Up U {ico} given by
tzl {x+ity if t<oo '
(t,2,logy) = 100 ift=o00 -

Proof of Theorem 1.6. As I'\$)™ is Hausdorff [See the Chapter 1 of [S1]], any
two non-cusps can be separated. If  is a cusp and z, € ™, then choosing
a compact neighborhood K of z, in ™ we can find a neighborhood U of &
such that TUN K = @ by Lemma 1.9. So « and zo can be separated. Any two
inequivalent cusps can be separated by Lemma 1.10. Then Xt is Hausdorff.
Xr is also locally compact, since I'\$)™ is also locally compact and each class
of cusps has a compact neighborhood by Lemma 1.11.

Tico\Unm U {100} — T\(H")"

is clearly continuous and open. For injectivity,we have to show that I';oc\Upr —
T'\$H™ is injective for M sufficiently large. Namely,

N(Im(z)) > M, N(Im(yz))>M, yeI' = ~v€Tli,

which follows from the proof of Lemma 1.9. Namely, if M = y/a/c.,vy €
'\ T,z € H™ with N(Im(z2)) > M, then

N(Im(72)) € az?N(Im(2)) " <ac;(e,/Va) = Vale, i,
Tioo = {7 €T | UM (\Unm # 0} with M = v/a/c. .
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Remark 1.6 I'\($H™)* = Xr is a complex analytic space in a natural way.
With an imbedding into some PV, it becomes a normal projective variety.
To accomplish this imbedding, let k¥ = (k,k,---,k), and let {fo, -, fn} be a
basis of Mfm(T, k). then the map H™ — PV given by z — (fo(2),--, fn(2))
is well-defined if not all f;’s are zero at any point. Further, this induces
T\H™ - PV (2 (folz),- , fn(2))), because under I' each f;(z) changes

by the same factor.

Theorem 1.7 Given any congruence subgroup I, there exists B such that
if k> B, k € 2Z, then I'\($™)* — P" is biregular.

Proof. See [B]. .

Remark 1.7 If m = 1, then we get a compact Riemann surface :.e., a non-
singular variety. But for m > 1, any fixed points in §™ (= elliptic fixed
points) or any cusps, give singularities. For details, the reader is referred to
[F, pp. 10-11,14-18,30-32].

1.8 Volume Computation of SLy(O)\$H™.

dp = ﬁ d—x-?/\—% is a SLy(R)™-invariant measure on $™, which induces a

Jj=1 J

measure on SLy(O)\$H™, also denoted by dp.

Theorem 1.8 The volume of SLy(O)\$H™ with respect to p is

dy = 27~ ™D3(.(2),
/SLQ(O)\:)M p=2n""Dz2(,(2)

where D is the absolute value of the absolute discriminant of F'.

Lemma 1.12 (a) Let m be a non-zero fractional ideal of F'. For each ideal
class of F', choose an integral ideal a; in the class, and let oy, 8; € O
be generators for a;. Then (m? — {0}) /SLy(O) has irredundant repre-
sentatives (o, 5;)A where 0 # A € ma;'/O*. Moreover, m? — {0} =
H Mai, B:)(Ti\T'), where I' = SLy(0), I; = {y € T'| (e, Bi)y = (s, B5) },

and the right hand side consists of distinct elements.
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(b) There exist p;,¢; € a;' such that g; = (Z’i 7;) € SLy(F).
(c) giligi" = {(é T) P TE ai_z}-

Proof. (a). (Z) — a0 + bO of F? — {0} to fractional ideals of F' gives a

one-to-one correspondence between m% — {0} /SL2(O) and the fractional ideals
contained in m. The rest of (a) is clear from this.

(b). Since ;O + B0 = a;, aa7t + a7t = O = 3Ip;,q; € a7 such that

Bipi — cuigqi = 1b-
(c). Let (Z d) € I';. Then

pi ¢\ (a b Bi —a
_ (;ia f ;?C(;ib(fl')qt'(duai ﬁipi )“Qi (1 u
B ( o; Bi )(—ai Pi>_(0 1)’

where u € a;%, and one notes that

d

(Z Z) EF‘:(ahﬂi)(_c ;b> = (i, Bi)

and hence the (1,1)-enrty is

(pi, i) (Z Z) (_ﬂ;) = (pi, i) (__ﬂ;) =1.

On the other hand,

_( B “'%')(1 u)(Pi Qi>_(1+aiﬂiu Biu )
7_(—a,- pi 0 1 o Bi) —alu 1 — a;fiu er.

And

(Z: ;i)7= ((1) zll) (pi %i):(aiaﬂi)’Y’—'(ai,ﬂi):"/eI‘;. .

(27}
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Proof of Theorem 1.8. Let ¢ be an SO(2)™ -invariant Schwartz function on
(R*)™. For each z € H™, choose g, € SLz(R)™ so that g,(i) = z. Here g, is
determined right-modulo SO(2)™. Let m be a nonzreo fractional ideal of F'.
Define

(*) Zgim)= [ 5 wleg:)dulz).

\H™ 0#£em

We will make use of all the items in Lemma 1.12. In addition, we will put
(a0, Bo) = (0,1) for a particular index. On the other hand,

Zpm) = 2% [ P((0, \)gig:)dp(2)

T\H™ ,\ema‘”l/OX
=22 I/ > ¢((0, )g:)dp(=),

ang, l\me

by replacing z by g '(z). (Here a factor of 2 occurs, since £1, acts trivially

1
on HH™, and —1, ¢ I';.) By taking g, = ((1) T) (y02 y%),

Zipim) =2 volR™/ar?) x 5 [ Ny7p(0,\y™H)dy/Ny,

Aema;l/Ox

where the integral is over (0,00)™, and Ny = y1 - - Y.
By changing variables, y — A2y,

Z((,o,m)—22volRm/a‘2)x S NA / Ny~1(0,y~¥)dy/Ny.
AemaTl/Ox

(Here we use the fact that SO(2)™-invariance of ¢ implies
O(- ki) = @( 21y ).)
Since vol(R™/a;?) = Dz Na;?,
> vol(R™/a;?) x > N2

— D%ZENQ_2=D15 Z Na_2 =D%Nm—2CF(2)’

i %k 0#aCm
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where 3~ is taken over all nonzero A € ma;'/O* and ¥ is taken over all

nonzero aC m, a~a;. Thus

Z(p;m) = 2DENm™¢, (2) [ Nye(0,y%)dy/Ny.
On the other hand, by the Poisson summation formula,
Z(p;m)
= ,)d — (0 d
Jogm X #les:)iu() = 0(0) [ dutz)

éem?

= Vl®" /w7 [ S e (=)~ 0(0) [ du(z)

fe(mt )2 F\ﬁm

= vol(R*™ /m?)~! /]F Y G(grt)du(z)

V9™ ogee(me)
I(R™/m? 0) — (0 )s
Hvol(R™ /m!)3(0) ~ p(O)] [, d

where m* = {a € F | Trp/g(am) C Z}.

Notethatforgzz(o 1)(3/2 , )’ g7t(6) = =((1) —Ol)z.

Replacing z by —z7! i.e., replacing z by (_?1 (1)) z,

Z(p;m) = vol(R™/m?)'Z(g;m")

R*™/m?)7'5(0) — du(z).

HvOI(R™ /) 3(0) — pO)] [ du(z)

By taking m= O and combining these two calculations
2D¥G,(2) [ Nye(0,y5)du/Ny

,OO

= 203,2) [ Nyg(0,y¥)dy/Ny +[D7E(0) = p(0)]vol(T\5™)

,OO

=

Now, we have to take an SO(2)™-invariant Schwartz function ¢ on R*™,
with D713(0) # ¢(0), with t > 0, t £ D=, put ¢(z) = exp(—nt||z||?). Then
@(x) =t ™p(t7'z), and the above equality is

2D7(,(2)(nt)™™ = 2D3(,(2)r™™ + [D71™ — 1]vol(T\H™).
This implies that vol(T'\H™) = 2Dix=m(, (2). .
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1.9 Eisenstein Series.

Definition 1.7 Let m be a nonzero fractional ideal of F, and 1<k € Z.
The inhomogeneous holomorphic Eisenstein series of weight 2k = (2k, - - -, 2k),
attached to m, is defined to be

*

E(z;m,2k) = D (cz+ d)™*  (a multi-index notation)
= Y N(cz+ d)~%*,

where Y% is taken over (c,d) € {(a,8) € m? | aO+BO = m}/O*. The homo-
geneous holomorphic Eisenstein series of weight 2k = (2k,---, 2k), attached
to m, is defined to be

E*(z;m,2k) = E(cz +d)” Z N(cz + d)™ %,
where Y** is taken over (c,d) € m? — {0}/O*.

Proposition 1.2 E(z;m,2k) and E*(z;m,2k) are holomorphic on $™ for
2k > 2, and are Hilbert modular forms of weight 2k for any congruence
subgroup I' with GL}(0) DT D SLy(0).

Proof. Since the defining series for E is a subseries of that for E*, it will
suffice to consider E* only. Consider 3**|cz + d|™" for 0<r € R. Take a
compact subset K C H™. Then there exists M > 0 such that for all z € K
and j, |cjz; +d;| > M(c2 +d2)2 and hence |cz +d|”" < M~ N(c* + d?)~"/2.
Let L = F(z). Then

Z*|cz +d|T" < MT™Y " Nyjolci + d)T2

Claim: The convergence of the latter sum is equivalent to that of >~ N a~"/2,
a integral
ideal of L

Since the class number of L is finite, the convergence of Y N a "/ is
a integral

equivalent to that of Y. Na~"/2. Since [0} :0f]<oo by the Dirichlet unit

a principal
integral

theorem, we get the desired equivalence. Since (, (r/2) is absolutely convergent
precisely for r > 2, *(cz 4+ d)™" is absolutely convergent for r > 2, and hence
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it, being a uniformly convergent sum of holomorphic functions on compacta,

is holomorphic. Let v = (Z 3) € GL}(O). Note that
7,2)" = H/t(’rj,zj)”‘ N(det 7)™ (cz + d)** = (cz + ).

Now,

> ( az+b 2k
E*(yz;m,2k)u(y,2)™* = ) (p + q) (cz +d)™*
o \ cz+ d

= S M(pa + qo)z + (pb + qd)]
= Y(pz+q*

If [F:Q] > 1, by Koecher’s principle it is a Hilbert modular form. The case
F = Q is classical. .

Proposition 1.3 For a congruence subgroup I' with
GL}(0) D T D SL,(0), 2k > 2,

define Eis(T',2k) to be the subspace of M fm(I',2k) spanned by all of the
above Eisenstein series. Let {m; | i =1,---, hr} be any set of representatives
for the ideal classes of F'. Then both

{E(z;m;,2k) |i=1,---,h,} and {E*(z;m;,2k)|i=1,---,h,}
are basis for Eis(T, 2k) .

Lemma 1.13 Let wy,---,w, be the ideal class characters of F'. Put
3 Nm2*E(m,;) 3 Nm#* E*(m,)
FE = : , E* = : I
Nm# E(my) Nwm#*E*(my,)
A(2k) = diag[L(2k,w;),- -+, L(2k,w,)], and Q = (ﬁwj(mi)). Then we have

the following fundamental relations;

E*=QACK)QT'E, QO =1
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Proof. For any non-zero fractional ideal a,

E'(@) = Y Bm) =Y Y E(m)

mCa i mCa

m~m;
=Y > E(am)= ZENCY 2k E(m,)
i agam;! /O i
a#0
= D E(m)((2kam?),
where (( ;n) is the partial zeta function ((s;n) = ¥ [N(a)|™".
: aen/OX*
a#0
If L(s,w) = Y w(m)Nm~?, then we see that
mCo
((s;m) =A™ w(n)Nn~*L(s, w).
Thus Na*E*(a) = Ay w(amY)L(2k, w)Nm2*E(m;)
e Nm,z’“E*(ml) = p7! Z wj(m,mi'l)L(2k, wj)Nm?"E(m,-)
1,5
This implies that E* = QA(2k)Q'E and QO =1. .

Lemma 1.14 For 6 = (’r’ Z) € GL}(F), let

(Blyd)(2) = 3 ecoxp(2niT(€:).

Then ¢, = 0 if m is not in the same ideal class as pO + rO, and ¢, # 0
otherw1se where £ = E( ;m,2k).
Proof. Clearly, for z = (i), ---,4)\) with A > 0, }im (E|,16)(z) = ¢,. Because
¢, = 0 unless { =0 or { > 0. Now,

(Blud)(z) = L N(elpz +q)r=+ 5™ +.d) (o2 + 57 x N (dets)*

= N(det§)* 3 N(c(pz +q) + d(rz +5))*
= N(det5)k Z N((ep+dr)z + (cq + ds))“zk.
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Now,
. . 2k _ 0 ,if ep+dr #0,
)\li»r{olo N((ep +dr)id + (cq + ds))™ = { N(cg+ds)™* >0 ,ifcp+dr=0.

By direct calculation and the Theorem 1.3, cp+dr =0 <= cO+dO0=m
and pO + rO are in the same ideal class. ]

Proof of Proposition 1.3. For a € F*,
E(aa) = Na~?*E(a), E*(aa)= Na *E*(a),
so that {£(m;)} and {E*(m,)} respectively span the space spanned by
{E(n) | nis a nonzero fractional ideal of F}

and that spanned by

{E*(n) | n is a nonzero fractional ideal of F'}.

Since k > 1, the matrices appearing in the fundamental relation of Lemma 1.13
are nonsingular, and hence { E(m;)} and { E*(m;)} generate the same space. It
only remains to see that {E(m;)} is linearly independent. Each g € GL] (F)
gives rise to the linear functional on Mfm(T,2k), given by L,f= the 0-th
Fourier coefficient of f|,, 9. Let m; = p;O + r;0, and choose ¢;, s; € F so that
5= (fff q‘) € GL}(F). Then

Sq

Zh: a;E(mi) =0

=1

h h
- sz (; a;E(m,-)) = ; a,'ng(E(m,')) = a,-ng(E(mj)) =0

= q; = 0,
by Lemma 1.14. .
(Corollary of Lemmas). For a congruence subgroup I' with GL}(O) O T >

SLy(O), f € Mfm(T,2k), there exists an E € Eis(T,2k) such that f — E €
Cfm(T, 2k).
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Proof. By the Theorem 1.3 and its corollary, there are §; (5 = 1,---,h,)
of GLF(F) such that {6;(ic0)} is the set of I-inequivalent cusps. If §; =

(I;j Zj ) , then (I(Z) € (P")™ is 6;(i00) and {m; = p;O+¢;O} is a collection of
representatives for the ideal classes. Moreover, f € Cfm(T,2k) <= Ls,f =
0-th Fourier coefficient of f|,,6; is zero for all j. Put

E,' = E( ;m;,Zk), E = ZLg'.f(LgiEi)—lEi.

Then for all j, Ls,(f — E) = Ls,f — Ls,f =0 i.e., f — E € Cfm(T,2k). =

Proposition 1.4 (The Fourier ezpansion at Infinity)

E*(z;m,2k) = Y No~#* 4 D5 Nm™1[(—2mi)® /T(2k)]™
a€m—{0}/Ox*
X Y ox-1(¢;m)exp(2miTr(€z)),
0 <{%y

where D is the absolute discriminant of F', and

sz-l(f;m)= Z |NF/Q5[2k—1-
Sem*/O*
£/6em

Lemma 1.15 For Re(s) >0, Im(z) >0, z = z + 1y,

(%) /Rz“‘exp(—27rz’tx)da; = {[(‘27’i)8/r(5)183_1exp(—27Fty) : ; 2 8

Proof. By Fourier inversion formula, it is enough to see that
/]Rf(t)exp(27rita:)dt = (z +1y)~°,
where f(t) is as in ().

/Rf(t)exp(27rit:c)di = [(——21ri)’/F(s)]/ooot"lexp(27ritz)dt
= [(—273)*/T(s)][(—273)2]°T'(s) = 2™°. =
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Proof of Proposition 1.4.

E*(z;m,2k) = Y N(cz+d)™* =Y N(cz+d)"*+> N(cz+d)*
c=0 c#0
= Y Ne®t Y NeH TN+ D)7
a€m—{0}/Ox cem—{0}/Ox dem ¢

Since E*(z;m,2k) is a modular form of weight 2k for GL} (0O), its Fourier
coefficients can be indexed by O*. For ¢ € O*, the {-th Fourier coefficient of

{2 N(E+9)"Vis

dem

LV Ll

SN(e+ 9 e

dem

./n"‘/o exp(—27riTr(§x)){

= D3 exp(-27riTr(§x)){ > N(z + i) _2k}d:c
R™ dem/cO c

D% > exp (27riTr(§i—)) /nm exp(—2miTr(€x))N(z) *de,

dem/cO

where by Lemma 1.15, the integral is
{ [(=2m4)%* [T (2k)]™ N&*texp(—27Tr(8y)) ,€>0
0

, otherwise.

0 ,€/cgm* =m~1O*
[Ne]Nm~t | €/c e m*.
For ¢ € O~ totally positive, the £-th Fourier coefficient is

Moreover, the sum is

D~ Nm™[(—2mi) "2 /T(2k)|" N¢*exp(—2xTr(Ey)) S N[~
0#cem/OX
tecm*

= D iNm™'[(=2mi) ™ /T(2k)"exp(~2nTr(éy)) > |N (g)rk—l

§/cem* /O
€/(¢/c)em

= D INm [(—2mi) % /T(2k)|"exp(—2xTr(¢y)) Y. |N§*?

0#bem* /O*
£€sm

= D ENm[(=2mi)"%*/T(2k)]"exp(—2rTr(€y))oae—1(£; m).
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Therefore,
E*(z;m,2k) = ((2k;m)+ D™ 7 Nm™Y[(—2mi)~%/T(2k)]™
X Y. ou-1(&m)exp(2miTr(£z)). n
0KEe0

We generalize the previous considerations to any congruence subgroup I

Definition 1.8 Let I' be a congruence subgroup, 2<k € Z.
For a € GLj (F), define an Eisenstein series of weight (k,---, k) by

Eo(z)= > platy,2)7

YE€(aPa—1NC)\T

Remark 1.8 (a) F, is well defined, if it is convergent. As we saw in the

proof of Lemma 1.11, for any congruence subgroup IV, N (E) =1, if

d

0 d
and

wa16y,2)™" = pla 6,07 yz) Fu(aly, 2) 7

a\k _ _ _ _
N(E)’ﬂ(a Y,2)™F = plaly,2)7E

(b) E, is absolutely convergent for k > 2.

(c) Eq € Mfm(T, k). It is so by Koecher’s principle for m > 1, and the case
m =1 is classical.

Proposition 1.5 For § € GL{(F), let (Ea|.6)(z) = ¥ c,exp(2miTr(£z)).
4
Then ¢, = 0 if TaP # I'6P and ¢, # 0 otherwise. If T'aP = I'SP, then

E, = cEp for some ¢ > 0. In particular, none of these Eisenstein series are
identically zero.

Corollary 1.4 There exist cusp forms which are not identically zero.

Proof of Proposition 1.5. Note that

(Eali0)(2) = 3 _n(a™y,82) 7 u(8,2) ™" =3 p(a™'v6,2)7*.
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For z = (iX,---,i)), A > 0, Alirn (Eal)(2) = ¢,, since ¢, = 0 unless £ = 0
or { is totally positive. For v € GLI(F), )}im p(7,2)* =0 <= 4 ¢ P.

Thus ¢, = 0 if o146 ¢ P for all v t.e., § € TaP. On the other hand if
667 aPand6€7 anor71,72 EF then for some p € P, vy lap =

k)

v la e, 1t € FﬂaPa ie., (CNaPat)y, = (TNaPa” 1)72 This
means that if 6P = 'aP then there is precisely one term of (E,|,§)(z) which
does not vanish as A — oo. Thus ¢, # 0 in this case. Assume that T'aP = T'8P.
Then there exist § € I, p € P such that 5ap = . Then

Ep(z) = ) p(B71y,2)F =3 u(p a6y, 2)7E

'ye(ﬁPﬁ-l AD\r
k
= ( ) Z” ~lg! 7,2 =N(%)2E¢¥(Z))

since (BPB™'NTI)a — (aPa'NT)6 a gives a one-to-one correspondence be-

tween (BPB'NI\T = (6aPa 6 *NT)\T and (aPa~' NT)\T. n

Proof of Corollary 1.4. If I' = I'(n) with a proper ideal n of O, then 0 and oo
are inequivalent cusps. Let E, and Ez be two Eisenstein series of weight
(4,---,4) for T, associated with distinct double cosets T'aP, TSP. Then
f = E,Ep is a cuspform for I' of weight (8,---,8). .

Theorem 1.9 Let I' be a congruence subgroup, and 2<k € Z. For any
choice of representatives {g;} for I'\GLJ (F)/P,

E(z)= 3 g2

v€(9:Pg7* (D\C
form a basis of Eis(T', k)=the space spanned over C by all E,.
Mfm(T, k) = Eis(T', k) & Cfm(T, k).

1.10 Petersson Inner Product.

Definition 1.9 Let £ € Z™, T a congruence subgroup.
For fi, fo € Mfm(T', k), define

<ufa>= [ ARGy dady
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Proposition 1.6 If at least one of f; and f; is a cuspform, then the inte-
gral defining <fi, f > is absolutely convergent. With this inner product
Cfm(T, k) is a finite dimensional Hilbert space.

Proof. It is easy to see that fi(z)fa(z)Im(z)F is T-invariant as a function of
z € H™. Let S be a standard Siegel set and {§;} a finite set of elements of

GL(F), so that ™ = F(U&-S). Put ¢(z) = 3 Zrz/)(é,-_l'yz) for z € H™,
i i €

with the characteristic function ¢ of S. Then ¢ > 1 on all of ™. The integral
for < fi, f > is dominated by

Sy PN o) 4y dady

= 2 [ Z ¥ AOR ) mr2)ydody

= 3 [ ARGy dady

= 3 [ @Ry dady

= 3 [ \6i2) a2 ltmbie) oy dmdy

= 5 [ Ak Salb )l y dady

Suppose that fi is a cuspform and fix 5. Then there exist ¢, C > 0 such that
yEI(fulk8i)(2)] S Cexp(—ey™),
YEI(Sls6)(2) | < Ceoxp(—cy™),

where ¢, is the 0-th Fourier coefficient of f;|,6;. From these, the result follows. m

Proposition 1.7 If f € Cfm(T, k) and F € Eis(T', k), then <f, E >= 0.

Proof. It suffices to prove the assertion for E = E,, since Eis(T', k) is spanned

by E,. Note that

<f,Ey> = /F

f(2) Z p(a~1y, z)~*Im(z)*Fy~2dzdy

m
\H ~vy€aPa~ 1N\l
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I

foge 65 2 ey

~YEPNa~To\a~ T

flaz) 3> p(yo?,az)~*Im(az)fy~*dzdy

v€PNa~Ta\a~ T

/ flez)u(e, 2FIm(az)t 3 u(y,2) *Fy*dedy

-1 m
La\% ~yePNa~T'a\a~ T«

N /a-lra\:a'"f (az)p(e,2) *(Im(2))* D p(v,2) *y 2dzdy

YEPNa~T'a\a~ T«

a=1Ta\H™

= [ Th0E) 3l )H(Im(=)) y P dedy

YEPNa~Ta\a~T'a

Thus by replacing I' and f by o 'Ta and f|ra, we may assume that a = 1.
Moreover, we may assume that I' = I'(n). Then

<fE> = / Lf(2) Y ulr,2) Yty dady
9™ " Jepar\r

/1"\-6"‘ Y- f(v2)u(v, 2)Im(yz2) y 2 dedy

yePNI'\I'

= *y~2dzdy .
Joroyg Ty dady

Let U={a € O :a=1 (mod n)}, T = (0,00)™. Then

k —2d — k, —2
/anm f(z)y"y™*dzdy /T\U< Rm/nf(Z)dw) Yy dy,

since PNT\$H™ has a bijective correspondence with R™/n x T'/U in an obvious

manner. Now, the inner integral / ) f(2)dz is clearly zero, since
R™/n

=y c.exp(2miTr(£z))

gent
€30

141

is a cuspform. "

1.11 Poincare Series.
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Lemma 1.16 Let {f;} be a sequence of holomorphic functions on an open
subset U of C". Then {f;} converges uniformly on a compact set C of U if
and only if it converges in the L'-sense on C (with Lebesgue measure).

Definition 1.10 For a congruence subgroup I' D T'(n), a totally positive
element v € n*, and for k = (ky,-- -, kn), define the v-th Poincare series of
weight k£ with respect to I as

P(zik,v) = 3 p(y,2) " exp(2miTr(v(v2))),
V€T \T'

1 =z
where I', = {(0 1) EF}.

Proposition 1.8 If all k; > 2, then the above series is absolutely and uni-
formly convergent on compact subsets of ™ and defines a cuspform.

Proof. For convergence, it is enough to show that
(+) _/l;\ﬁm y§ E le(v, Z)'k exp(2miTr(v(v2))) |y 2dzdy<oo
Y

in view of Lemma 1.16. k
(Here one should observe that y= ¥ |u(7, 2) ™ exp(2miTr(v(y2)))| is T-invariant.)
vy

Now, (s [\ %g\r(lm(z))%m(v,z)r’“lexp(zmr(uwz»)ly-2dxdy

= [in X (m(y2))tlexp(@niTr(v(y2)))ly~dedy
= /F\ﬁm(Im(z))g|exp(27riTr(1/z))[y"2dxdy
- = 3 — -2
- /xm/A"””/m,w)my lexp(—27Tr(vy))ly~dy
m o[ M _
= VOL(R /A)HA yjz lexp(_27‘_yjy])y] ldyj,
, e

m|f1l =«
where A = {wElR ’(0 I)EFOO}.
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k.
Here each integral is absolutely convergent if and only if 5] —1>0¢ze., k; >2.

Note that  P(v'z;k,v) = Y pu(y,7'z) "exp(2niTr(v(77'2)))
Y€l \P
= u(s2)* Y w(rvs2) Fexp(2miTr(v(y7'2)))
Y€l o\
= p(7,2)*P(z; k,v).
Thus P( ;k,v) € Mfm(T', k) by Koecher’s principle for m > 1 and by classical

result for m = 1. To show that P( ;k,v) € Cfm(T', k), it is enough to see that
for every g € GLI(F), Alim (flkg)(ZX) = 0. Note that

(*)  (flig)(@r) = Z\ (7, 9(iX)) " exp(2miTr(v(vg(i))))u(g, i) ™*
Y€ \I'

= Y w(vg,iX)"*exp(2miTr(v(vg(iA)))).
’vel‘m\I‘

For a € GLI(F) with a = (Z z),

|u(e, iX)*exp(2miTr(v(a(i)))))|
= (deta)?|ciX + d| exp( — 2m(det &)\ /|ci) + d|*).
So if vg is not upper triangular, u(vg,iA\)™F — 0 as A — oo. If it is, then

the exponential term tends to 0 as A — oo. In either case, the convergence is
monotone and therefore (*) tends to 0 by the monotone convergence theorem. =

Proposition 1.9 Let k;>2 for j = 1,---,m, f(2) = ¥ c,exp(2miTr(£z)) €
3
Cfm(T, k), and P( ;k,v) as before. Then

< £, P( ;) >= e, Fvol(R™/A) [] (4r)'-5T(k; — 1),

i=1

mlf1l =x
WhereA:{:cER KO 1)€I‘}.
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Proof.

<HPCikn)> = [ f(2) ¥ w2 Fexp@riTe(v(v2))yty dedy
O™ yero\r

- /I‘\ﬁm f(z) 32wy, 2)Fexp(@miTe(v(v2)))|n(y, 2)**

'Yeroo\r
X (Im(y2) "y ~*dzdy

/F\’ﬁm weg\lf (v2)exp(2miTr(v(72)))(Im(72))"y~*dwdy

= / > cexp(2miTr(éz — vz))y*y 2dzdy
Feo\O™ 7%

= 27T — v2\dz v¥y~2d
/(o,oo)m /m"‘/A;c&eXp( miTr({z — vz))dz y "y dy

= ¢, vol(R™/A) I] /0 exp(—47vy;)y;’ " dy; Jy;
Jj=1

= ¢, vol(R™/A) ﬁ(47ruj)l_k"1"(kj —-1). m

i=1
Corollary 1.5 The Poincare series span the space of cuspforms.

Proof. The orthogonal complement of the space spanned by Poincare series is
0. .

1.12 Reproducing Kernel for Cuspforms.

Theorem 1.10 Let T' be a congruence subgroup, £ = (k1,---,kn) € Z™.
For z,w € H™, define

Q(z,w) = Y p(v,2) *(vz + w) ™"

~el

If every k; > 2, then this series is absolutely and uniformly convergent for
(z,w) in compact subsets of H™ x H™. For each z,w € H™, Q( ,w) €

b
Cfm(T, k) and Q(z, ) € Cfm(I" k), where (Z Z) = (cci Z) and I =
{#* | v € T}. Also,

< £,0( ,—w) >= 11:11{“ (%)k G L 1)} % f(w).
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Proof. As in the case of Poincare series, for convergence of this series it is
enough to show that

k - - -
[ ¥E Tt 2™z + ) My~ dady < oo.
r\$™ " et

(Here one notes that y3 ¥ |u(y, 2)~*(vz + w)~*| is T-invariant.)
~€r

= [y SOOI+ )y ddy

~er
k -k -2
= [ttty

5
2

= H/ Y; |z]+wjl 2d:cjdy,~. ]
j=1"

Lemma 1.17 /ﬁyglz + wl—ky'zda:dy is convergent for k > 2, where z 41y =
z, u+iv=w € N.

Proof. Replacing = by z — u and then z by z(y + v), the given integral is

fa*+ 178 [ (o) tyE
0

The first integral is clearly convergent for £ > 2. In the second integral , by
replacing y by yv we get

y5-1
) / (1 + T+y) 'y
Recall that the Beta function is defined by

B(z,y) = /Olt"'“l(l—t)y‘ldt (Re(z), Re(y) > 0)
du

u® .
= A m: (by puttmg u = t/(l - t))

Also, we have

B(z,y) = T(2)T(y) /T(z +y),
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which is convergent for Re(z), Re(y) > 0. Thus
[k k
(*)—'U B<§—1,§)

is convergent for g— -1>0. .

This shows that the series defining Q(z,w) is uniformly and absolutely
convergent on compact subsets.

<£QU,=m) >= [ f(2)(z - w) ™y dady.
Consider the integral
() /ﬁexp(27ri{jz)(x — iy — w;) " Miyk~2dzdy.
The integral in z is

. . p, (2mi)bighiT! .
[ exp(@mitia)(z — iy — w;) o= —exp(2miu;Jexp(~2nt;y)

by Lemma 1.15. Thus

2 ] kj l?j—l (oo d
(=) = %exp(?wifjwj) /0 exp(—47r€jy)y'°"“?/"’i

ik I (k; —1)
S g i)

= (47) (%)kj e 1_ l)exp(27ri§jwj).

This implies that

<£,Q( ,—m) >=1] {47r (%)k e L 1)} x f(w).

i=1

Note that for y = (: 3) er,

w(7,2)(vz+w) = (det ’y)"%(cz +d) [Zj_ts + w]
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-1 dw+b
= (dety) 2(cw + a) [cw Ta + z]

= p(7w)(y'w + 2).

Thus if Q( ,w) € Cfm(T, k), then ¥ p(+y", w)~*(yw + 2)~* is a cuspform in
~er
w with respect to I'! and therefore Q(z, )€ Cfm(I, k).

PutFooz{((l) f)er}, Az{wl((l) ”l”)er}. Then

Qlz,w) = Y > u(67y,2)7K(Evz +w)*

Y€Too\T" 6€T 0o

Yo w(12)7F Y (rz+w)7H

Y€l o\ 6€T o0

= X wrn)F Y (1w )7

YET o \I' PYIN

I

By Poisson summation formula and Lemma, 1.15,

S(yz+w+N)F = vol(R™/A)! S II [( 27r1,)’°:/1"(k )] ¢t

A€A EA*
€30

xexp(2miTr(€(vz + w))).
Thus

Q(z,w) = vol(R™/A)™! H {(}2(7;:; j] Z{:{k_lexp(%riTr({w))

x{ X uly,2)  exp(2riTr(¢(y2)))}
€L\

= vol(R™/A)™ H [( rzz:z;k ]

X Z ¢F- lexp(27rzTr(£w))P(:z:; k, &)
13

is a cuspform in z. .
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1.13 Analytic Properties of Eisenstein Series.

Definefor k€ Z, k> 2, ze€ H™, s € C,
Ex(z) =Y*(cz+d)7F (a multi-index notation)
(*) Ei(z,s) =3Y*(cz+d)*|cz+d|™" (a multi-index notation)
where 3" is over (c,d) € O? — {0}/OX.

Remark 1.9 (a) The same method applies to Ei(z) to show that Ej is
holomorphic on ™ for k € Z, k > 2 and that it is a Hilbert modular
form of weight k for any congruence subgroup I' with GL§(O) DT D

SL,(0).

(b) The second term in (x) will be used as a convergence factor, using

s — 0, for example.

To obtain the Fourier expansion one may use, in the order of generality ;

(1) Partial fraction expansion of cotrz.

(2) Lipschitz formula.

(3) Confluent hypergeometric functions (a special case gives Bessel func-

tions).
2
(1) Let m = 1 Recall that —ngz(z + n)‘2 = -sir71r2 p— = a—dt-(ﬂ'cot';rz),
2miz 1 1
Also, mcotmz = 7ri:2m.z iﬁ 1= Z-_*- =mi(l—2 Z q"), with ¢g=e
n=0

Differentiating both of the above succesively

(—1)F(k = 1)) (2 + n)™* = —(2mi)* i kg,

neZ
for k > 2. Let k be even and k& > 2. Then

Ey(z) = E*(mz +n)F =2 io: n* 42 i Z(mz +n)~F

n=1 m=1neZ
= 2((k)+2 'Zanlm"
" m=1n=1

27rz

= 2((’6 +2 1)'Zd'k 1(n
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where o4_;(n) = ¥ d*1.
dln
d>0

(2). Note that I'(s) 3= (—27i(z + n))~* is well-defined for z € §, Re(s) > 1,
n€Z

by specifying a branch of w™* = e™*16% Pyt
f@) = [ fmemie=a,
an

where <t,z>=73t;r;, f continuous, and f € L*(R™).

Theorem 1.11 (a) f € L}(R™) = f(z) = ‘/mmf(t)e""“”;dt almost ev-
erywhere.

(b) If f is continuous, f = O(|z|~™~*) for some & > 0 as |z| — oo (and
hence f € L'(R™) and f is meaningful) and |f| = O(|z|~™~?) for some

B > 0, then ) |
E f(.'l: + a) = Z f(b)ez"”<b"">_

a€Z™ bezZ™

In particular, we have the Poisson summation formula

> fla)= 3 f(b). .

a€Z™ bez™

s—1_2mizz :
Example 1.1 Let f(z) = {“ T g : zg where Im(z) > 0,
Re(s) > 1. Then , 7

Jy= [ f@e e = [ 2t 0z = T(s) [-2i(z - ]

and we get the Lipschitz formula

i n®~le?mins — [(s) Z [-27i(z+n)]”°,

n=1 neZ

which can be used as before to get the Fourier expansion of Ej(z).
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Remark 1.10 By Fourier inversion formula

s—1 e21ria:z

7 v(s) [=2mi(s = )] it = {‘” ‘
Put v = 27i(t — 2z). Then

1 pebico e, [z T(s) , >0
27ri/c v dv_{ 0 z <0,

, if >0
, 1if z<0.

at least for Re(s) >0, ¢ >0 .

(3). (Confluent Hypergeometric Functions)
We will give the Fourier expansion for Y"*(mz + n)~*(mz + n)~?, where 3" is
taken over (m,n) € Z* — {(0,0)}.

Theorem 1.12 (Mellin Inversion Formula)

) o+ioo
G(s) = /0 F(z)z* 'dz if and only if F(z) = —l—/a G(s)z™°%ds

271 —100
for z € R, s € C, and F such that the integral converges nicely.

Proof. Let z = e*, s = 27w(c + t) for fixed c € R, G(s) = ®(¢). Then

o(t) = G(s) = /o; F(eu)ezru(cﬁt)du — /oo F(eu)e%ucezr{tudu

—00

and hence by Fourier inversion formula
F(e¥)e?™e = / 7 G(or(c + it))e~ gy
and thus
oo . 1 o+4ioco
— vy — : —27(c+it)u _ -5
F(z)= F(e") /_00 G(2r(c+1t))e dt 57 /a_ioo G(s)z™%ds

where o = 27c = Re(s). n

Remark 1.11 Note that Mellin inversion formula is just a Fourier inversion
formula in different coordinates.
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Example 1.2 (a) Let F(z) = e™*. ThenI'(s) = /oo e ?z° 'dz, Re(s) > 0,
0
o+1i00
so that e™® = 2L I'(s)z™°ds, o >0.

71 Jo—ico

(b) Let f(z) = io: an,e?™* Then f(iy) = § ane” ™ so that
n=0 n=0

A [f(iy) - ao] ys—ldy = Z an/o e"2ﬂ'nyys.—1dy

n=1

= T(s)(2r)° i:l a,n”’.

Then by Mellin inversion formula

fliv) — a0 = s [ B(s)yrds,
where R(s) = I'(s)(27)~°L(f, s) (Riemann).

For the following discussion, one is referred to Shimula’s papers [S2,53].
For y > 0, «, 3 € C, put

o) o t\a—-
o(y,o,B) = /0 (u+1)* P levidy = y P A (1 + 5) p-1mtgy.

This is convergent for Re(8) > 0 and o(y,1,8) = y~PTI'(8). It can be shown
that 04) .

(e2m'ﬁ - l)d(y, a, IB) = y_ﬁ (1 + _)a_ltﬁ_le—tdt’

© )

(0+)
where / denotes / with the Hankel contour C.
c

oo

an c
R
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This shows that (e — 1)o(y,a, ) can be analytically continued to a
function holomorphic for all (a, 8) € C* and

-7

19 (0+)
_I(1 - B) / (1 +y~ 1) 1eP et e,

e

y’T(B)'o(y, e, B) =

27

Recall here that T'(s)['(1 — s) = =—-—

sinws’

. (04)
Example 1.3 (2 —1)['(8) = / uPle " du.

Lemma 1.18 Let a, 3 be complex numbers such that Re(a) > 0, Re(8) >
0, Re(a+ ) > 1. Then for z + 1y = z € 9,
X Em)TEEm T = 3 r(,ap)e

m=—00 n=—oo

where 7,(y, a, B) is given by

nt e~ g (4rny, o, B) if n>0,
1°7P(2m) " T(a)T(B)r, (y, 0, B) = In|***7 e~ Mg (4r|nly, B,a) if n<0,
D(a+ B —1)(4ry)t—>P if n=0.

Proof. Put f(z) = 27*z7# for z + 1y = z with a fixed y. By the Poisson
summation formula, for Re(a + 3) > 1,

Y(+m)zZ+m) =3 flz+m) =Y f(n)e*™re,

meEZL meZL ne€L

where f(t) = / 277 P74y Putting v = iz = y + iz,

—00

y+ico
v (2y — v) e ™ dy

f(t) — iﬁ—a—lezwty/ ‘
y—1i00
v_ﬁe'z’”t"{/oo e_g(zy_")fa_ldf}dv
0

= iﬁ-—a—lemrtyr o -1
()7 [
(for Re(a) > 0)
— B—o-1 2nty -1 [® a—1_-—2y¢
? e“™I'(a) /0 £ e {/y

y+i00
—100
y+ico

v'ﬁe(e‘z’rt)”dv}d{.

—100
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By Remark 1.10, for Re(8) > 0,

/y+i°° oBeM iy — {ZWiAﬁ“lI‘(,B)"l if A>0,
y 0 if A <0.

Puttlng é = 27rp and u = max(o, t),
() 7t = @it m(a) () [ i - ety

which holds for Re(a) > 0, Re(8) > 0 and Re(a + 3) > 1.
For t > 0, put p —t = tq. Then (x) is

(2m)**HPif=2e 2D () TIT(B) M+ /0 T(14g) g et dg
= (2m)* PP (0) 1T (B) P o (dmty, o, B).
For ¢ < 0, put p = |t|g. Then (%) is
(27)2 P3P~ 2 VT (o) 1T (8) 1 ¢ /0 °°(1 + q)f1getem 4l gg
= (2m)**Pif e T (a)TIT(B) Tt o (4 tly, B, @)
For t =0, (x) is
(2" T(@) ' T(8) [ p ey
= (2m)**PP=°T(a)'T(B) 7} (4ry) I (a + B - 1). =

Lemma 1.19 The function y°T'(8)"'o(y, , B) is invariant under the trans-
formationa—1-46, f—1-a.

Proof. Consider the Mellin transform of o(y, , 3) :
/oo U(y, a, ﬁ)ys_ldy = /oo /oo(u + 1)a—luﬁ—le—yuys—ldydu
0 o Jo

— T(s) /0 Zu+ 1) Py
= I'(S)IB-s)I1l—-—a—-B+s)/T(1-a),

for Re(s) >0, Re(8 —s)>0and Re(l —a—f3+s) > 0.
( Recall here that for Re(z), Re(y) > 0,

B(e,y)= [ w(1 + u)*"*du = D(@)T(w)/T(z +y). )

153
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By Mellin inversion formula
1 fotioo
D(1 - a)o(y,o8) = 5= [ D(S)I(B-)T(1 —a =+ s)yds,
for ¢ > 0 with Re(a + 8 — 1) < ¢ < Re(B). Put S = s — 3. Then we get
1 /"P+"°° L(=S)['(S+pB)I(S+1~
211 Jop—ico I'(l1 —a)T(B)

if 0 < p < min{Re(1 — @), Re(B)} (—p = ¢ — Re(B)). Such a number p can
be found whenever Re(3) > 0, Re(l — a) > 0. Thus y*T(8) to(y,a, ) is
symmetric under @ — 1 — 3, B — 1 — a with the restriction Re(8) > 0 and
Re(1 — @) > 0. To get rid of this restriction, define

1 et T(=s)[(s+ B)(s+1—-a) _,
q’(y, a, IB) = o - /q-—ioo F(,B)F(l _ a) )

2w

VT(B) oy, B) = )y ~sas,

ds,

for ¢ > 0, ¢ € Z. Using Stirling’s formula one shows that the above integral
is convergent. Choose ¢ so that Re(8) > —¢ and Re(1 — a) > —q.

-p [q] iq

The contour integral of
(*) D(=s)L(s + B)L(s +1 — a)y™/T(B)T(1 - a)
over C gives
& — y’T(B)'o(y,a,B) = Y_ Residues between Re = —p and Re = g.
The only nonholomorphic part of () is I'(—s), and

'm+1—-38) = (m—s)(m—1—=35)---(1 =3s)(—s)['(—s)
= Res(T(=s)) = Jim(s~m)l(=s) = (~1)""/m
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Thus the sum of the residues is

[d] m—1
(-1t _ . T(m+1-a)l(m+pB)
g;:, ml 7 T(B)L( - a)

and hence

A T(m +1— a)T(m + B) (—y)™™

VI Mol f) = Y Tt

2w

for Re(f) > —q and Re(1 — a) > —q. Thus for given a, B we simply choose ¢

large enough and get our result.

1 /q+"°° L(=s)I(s +1 - )l(s + B)
g—ioo I'(1 - a)I(B)

155
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2 Automorphic Forms on Classical Domains.

2.1 The Four Families of Classical Domains and Groups
Acting on Them.

TypeI:
D = D(p,q) = {z|p X qcomplex matrix with 1, — 2"z > 0 },
G=U(pq) = {9€GLy,(C)|g"Hg=H},

where H = (_01 P 10 ) and A > 0 means that A is positive definite (Hermi-
q9

tian). For a matrix v of suitable size, put H{v} = v*Hwv.

Remark 2.1 (a) z € D(p,q) < H{(lz;)}>>0.

(b) For g € GLy4(C), g € U(p,q) <= H{g}=H.

Write each element g € U(p, q) by using a block decomposition g = (i Z) )

where ais px p, bis px ¢, cis ¢x pand dis ¢ X q. Then G acts on D by a
linear fractional transformations

(: fl) (2) = (az + b)(cz + d)™".

Indeed, first for z € D, g = (Z 3) € G,

() = o () =m{(E1a)}
= (cz4+d)*(cz +d) — (az + b)*(az + b).

Then (cz + d)*(cz + d) > 0, since H {(12 )} is positive definite and (az +
q

b)*(az +b) is positive semi-definite. This implies (cz+d) € GL,(C). Secondly,

H{(gf))} = ((ez+d)7)"H {g (f;)} (cz+d)™!
= ((ez+ d)*)*H{(fq)} (cz+d)' > 0.
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Then g(z) € D(p, q). The isotropy group of the point 0 € D is

#={(* &)

To see this, note that g = (Z 3) € K= (Z 2) (0) =bd~' = 0 and

ki € Ulp), ks € U(q)}.

a*a—-c'c=1,
H{g}=H <= {dd-bb=1,.
a*b = c*d
From these notations, b =0, ¢ =0, a*a = 1, d*d = 1, t.e., g = (8 g)
with @ € U(p), b € U(q). Finally, we demonstrate that the action of G on D

is transtive so that D is diffeomorphic to U(p, q)/U(p) x U(q). For any z € D,

put . .
y = ( (1, —zz*)"7  2z(1,— z*z)‘f)

(1, — 2*2)"72* (1, — 2*z)"3

Then v, € G and 7,(0) = z.

Remark 2.2 (a) One easily shows that for z € D,
Z*2(1y — 22")7 = (1, — 2*2) 'z z

By using this we see that 1, — zz* = (1, 4+ 2(1, — 2*z)~'2*)"! and hence
that 1, — z2* > 0. Thus D(p, q) is also given by

D(p,q) = {z | p X ¢ complex matrix with 1, — zz* > 0}.

(b) 2(1,—2"2)7 = (1, — 22*)7z is needed to show that v, € G, whose proof
is left to the reader.

In the following, note that the groups and domains of Types II and III are
subgroups and subdomains of Type I groups and domains.

Type II:
D={z€D(n,n)|z'=-2}, G={g9€U(n,n)|g¢'Eg=E},

where E = ((1]" (1)") For a matrix of suitable size, let us put E[v] = v'Ev.
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Remark 2.3 Note that 2! = -2z <— E[(lz )] = 0.

G acts on D by linear fractional transformations
a b -1
(c d) () = (az + b)(cz + d) ™.

Let g = (: Z) € G, z€ D. Then G(z) € D(n,n) and

E[(gg))] = (cz+d)'E [g<lzn)] (cz + d)!

= (cz+d)'E [(;)} (cz +d)™
= 0.

Thus g(z) € D.
Remark 2.4 (a) Note that g € U(p,q) < ¢~! = H 'g*H i.e., writing
a b —1 a* —c*
g=(c d we have g =(—b"‘ & )

(b) Thus for g = ((z S) € U(n,n),

g €EG < g_1=EgtE=(ct :

o={(5 2)

The isotropy group of 0 € D is K = { (k k‘t)
of G on D is transitive. To show this, note first that

a b a b\7! at b
(_B a)EG < (—B &) =(—Bt at)EG

< ad'—bb'=1,, ab'=—ba'.

da—bh=1, ab= —bta} .

ke U(n)} The action
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For any z € D, find A € GL,(C) so that A(1, — zzt)A* = 1,,. Then

_(A —{lz
“\4Az A

Therefore D is diffeomorphic to G / K.

) € G and ¢(z)=0.

Type III:
D={z€D(nn)|=z2}, G={geU(nn)|gJg=J},

where J = ((1)" _01” > . Then G acts on D by linear fractional transformations

(Z 3)(z)=(az+bxcz+1n-%

o={(; )

The isotropy group of 0 € D is

K:{(kkq)kGWM}

The action of G on D is transitive and hence D is diffeomorphic to G / K.

Type IV:

D = {z|2xgq real matrix with 1, —*zz > 0},
G = S00(2,q) = the identity component of

{gestan®ly (71 L )e= (7" L)}

G acts on D by linear fractional transformations

(Z 3) (2) = (az + b)(cz +d)7,

where ais 2 X 2, dis ¢ X ¢, etc. The isotropy group of 0 € D is

k={(" )

adla —b'b=1,, a'b= b*a} .

a €80(2), b€ SO(q)}.

159

The action of G on K is transitive, which can be shown as in the Type I case.

Thus D is diffeomorphic to G / K.
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2.2 Cayley Transforms and Unbounded Models of The
Classical Domains.

Recall that
SU(1,1) = U(1,1) N SLy(C) = { (Z 2)‘ laf? — B = 1 }

acts on the unit disk D = {z € C: |z| < 1} as a linear fractional transforma-

tions. Put ¢ = % (1 i ) Then the Cayley map D — ) given by the linear

fractional transformation
zrc(z) = (z2419)(iz + 1)_1

is a diffeomorphism and ¢SU(1,1)c™! = SLy(R). This has generalizations to
the classical domains.

Type III:
Put

1 /1, 1,
c = 7§ (’Lln ].n ) € GLG(C),

D, = {z€ D(n,n)| 2" =z},

On —ln On _ln
G, = {gESU(n,n) gt(ln 0'n>g=(1'n On)},

Hn = {zEMn(C)lzt=z, (z——Z)/2i >>0},

o) = foeonamly (% 3)o- (% )}

where §), is called the Siegel upper half plane of genus n. Just as in the
classical case the map D,, — $),, given by the linear fractional transformation
z+ c(z) = (2 4+ 11,)(22 + 1,) 7! is a diffeomorphism and ¢G,c™! = Sp(n,R).
Further, for g € G, z € D,, c(g(2)) = (cgc™!)(c(2)). First, we have to verify
that (iz + 1,) is nonsingular for z € D,. Assume that (iz+ 1,)v = 0 for some
veC" ie.,

2v=1v = 2z0= —iv and v’z = v
= vi(l,—22)0 =00 — 05 =0

= v=0,
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since 1, — 2z > 0 and thus iz +1, is non-singular. Next, note that for z € D,,,

o(2)! = (1z+ 1) Nz + i1,) = (2 +ila) (12 + 1,) 7! = ¢(2).

) {c‘1 <12;) } =(z— z*)/i, we get
s - (%) (1)

= (7" (L) iz} >0

for z € D,. Also, we see cG,c™! = Sp(n,R) easily. Since the analogous things
can also be proved for the inverse map §, — D, (2~ (z—1il,)(—iz+ )™,
we are done with this type.

Finally, from the identity (_1"

1.
"ln

Remark 2.5 (a) $, is a Siegel domain of first kind, which is also called
a “tube domain”. We explain this briefly in the following. Let U be
a vector space over R of positive dimension. A nondegenerate open
convex cone in U is a non-empty open set () of U satisfying :

Z,ye€N <<= Iz+uye

for any positive real numbers A, y and, in addition, not containing any
straight line. Then a Siegel domain of first kind is

S)=U+iQ1={ueUc|Im(u)e},

for such a nondegenerate open convex cone 2 in U ( with vertex at the
origin).
(b) 1. Let ©; be the set of all real positive definite symmetric matrices

n+1
of size n. Then §; is a cone in Symm(n,R) = R , where

Symm(n,R) is the real vector space of all n x n real symmetric

matrices. Thus §(Q;) = 9,.
2. Let §2; be the set of all complex positive definite Hermitian ma-

2
trices of size n. Then €); is a cone in Herm(n,C) = R" , where
Herm(n, C) is the real vector space consisting of all n x n complex
Hermitian matrices. As we will explain in a moment, S(Q2;) = J,
is the Hermitian upper half space.

161
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TypeI (A special case) :
Define the Hermitian upper half space

Tn={z€Ma(C) | (2—2")/2i >0 }.

Let Un = {g € GL24(C) | g*Hg = H } with H = (2.01“ "0’1"
on J, by linear fractional transformations, U, = cU(n,n)c™?
(with the same c as in the above), ¢(D(n,n)) = J,, and the Cayley map
D(n,n) — J,, (z +— c(z)) is a diffeomorphism and is equivariant with re-
spect to U(n,n) and U,.

). Then U,, acts

Type I (General case) :
Consider the domain D(p,q) and the group U(p, q) for p > ¢ (without loss of
generality). Put

1.1 0 11l
V21t V2t

c= 0 lp_q 0 € GLp+q(C).
Fily 0

Use the coordinates (z,u) for (i) € M,,(C), where z is ¢ x ¢ and u is
(p—q) x g. For |
0, 0 —il,
H=|0 1,., o |,
i, 0 0,

Upg = {g€ GLp+q(C) | g*Hg = H}'

Then one verifies that z +— ¢(z) gives a diffeomorphism

define

D(p,g) — {(z,w) | (= = #)/2 ~ Ju"u>0 ).

Indeed, for w € D(p, q),

(" HEN>0 = o(7 ) e {e(5)} >0

- (—H){(c({;’))}>o.
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)

= {(zu) | (z—2")/2i — %u*u > 0}.

Thus
c(D(p,q)) = {(z, u)

Also, cU(p,q)c™ = U,, and the Cayley map is equivariant with respect to
U(p,q) and U, ,.

Remark 2.6 (a) ¢(D(p,q)) is a Siegel domain of second kind. Let 2 be
a nondegenerate open convex cone in a vector space U over R of pos-
itive dimension, and let V be a vector space over C. Assume that a
Hermitian map H:V x V — Ug (C-linear in the 2™ component and
C-antilinear in the 1) is given, which is Q-positive i.e., H(v,v) € Q
for all v € V. Then for such U, V, Q, H, the Siegel domain of second
kind § = S(U,V,Q, H) is given by

S ={(u,v) € Uc x V | Im(u) — H(v,v) € Q }.

(b) f V = {0}, then we obtain the tube domain S(2). Also, any Siegel
domain §(U, V,Q, H) contains a tube domain as the zero section {v=0}.

(c) Let U =R, V =C", and let H be the standard Hermitian form
H) = LIl (0= () € ).
Then the associated Siegel domain
§ = {(u,v) € C™ | Im(uw) = 3oy > 0 )
=1
is holomorphically equivalent to the ball

B""’1 =: {(21, ce ,Zn+1) € Cn+1 | |21|2 +-- 4+ Izn-l-l!z <l1 }

Indeed, by changing variables z; = t—’j—_—_}_——:;, 2 = %3-:_;} (k=2,...,n+

n+1

1), (u,0) €S <= 1-% |zl = —2o(Im(u) — 3 o) > 0.
k=1 |U+l| j=1
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(d) For U = Herm(q,C) (so that Uc = M,(C)),V = M,_,,4(C),
D={uelU|u>0}, H(u,v)= %u*v, we see that
S(U,V,Q, H) = ¢(D(p,q))

for p > gq.

2.3 Examples of Holomorphic Automorphic Forms.

Define a discrete subgroup

I =Sp(n,Z) = {g € GLG(Z)\gt (fn ‘"3")9 = (10 -3)}

called the Siegel modular group, of Sp(n,R). Then Sp(n,Z) acts discontinu-
ously on §),. For g = (Z Z) € Sp(n,R), z € H,, k € Z, define

(g, z) = det(cz + d)*.

A holomorphic Siegel modular form of weight 2k is defined to be a holomorphic
function f on $3, with the property : for all v € ' and z € $),,

f(r(2) = p(7,2)f(2)
(plus a growth condition if n = 1).
n!n+ )

~ 1
Let Symm(n,R) =2 R™ 2 be the real vector space of all n X n symmetric
matrices. Then consider the pairing

Symm(n,R) x Symm(n,R) — R given by (A, B) — Tr(AB).
Theorem 2.1 The dual lattice A* to the lattice A of all n x n integral sym-
metric matrices is

. ¢ is symmetric n X n, diagonal entries of { are in Z
A" = ¢ 8
and the off-diagonal entries are in ;7
{€ | € is semi-integral}. ’
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Proof. Let ¢; be the matrix with 1 at (z,:) and 0 elsewhere, for: = 1,2,... n.
Let ¢;; be the matrix with 1 at (z,7) and (7,¢) and with 0 elsewhere, for each
it < j. Theneg; (1 =1,2,...,n) and ¢;; (i<j) form a basis of A. A = (a;;) €
Symm(n,R) belongs to A* if and only if Tr(Ae;) € Z for : = 1,2,...,n, and
Tr(Ae;;) € Z for 1 < j. But Tr(Ae;) = ai; and Tr(Aei;) = aij + aji = 2a;. =

Since I' contains the subgroup

v={ 1)

flz+u+iy)= f(z+y) for all z =z +1y € H, and n X n integral symmetric
u, and hence

u=u'isnxn integral} ,

flz+iy) = 3 c (y)exp(2miTe({z)).

e
Note that TI'({.’B) = El El&'jxij =2 ; gijxij +Z§ii$ii for é = (gij), Tr = (xij)-
1=1j= 1<J H
Thus the holomorphy of f implies
) .0c,(y) )
4 i —_ (4 f
mi€ijc,(y) zaayij ori <]
2riticy(u) =~ fori=1,2,...,m,
Yii

and hence c,(y) = c,exp(—27Tr(£y)). Thus we have
f(z) = > cexp(2miTr(€2)).
éenr

Define discrete subgroups of G(R) = {g € GL2,(C) | ¢*Hg = H} as
follows, where H = (z? _:)1"). Let K be a imaginary quadratic field with
the ring of integers O. Then Hermitian modular group (depending on O) is

T = {g € GLyn(O) | ¢*Hg = H} = GL2n(O) N G(R),

which is again a discrete subgroup of G(R) and hence acts discontinuously on
Jn. Write the elements z of J,, = {z € M,(C) | (z — 2*)/2¢ > 0} as

=eri= () 1i(55).
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so that =, y are hermitian and y > 0. For g = (Z Z

Z, u(g,z) = det(cz + d)?*.
Then a holomorphic hermitian modular form of weight 2k is defined to be a
holomorphic function f on J, with the property : for all z € J, and v € T,

f(1(2)) = p(v,2) f(2)

(plus a growth condition if n = 1). Consider the pairing

)eG(R),zeJn, ke

Herm(n, C) x Herm(n,C) — R given by (A4, B) — Tr(AB),
where Herm(n, C) & R™ is the real vector space of n X n hermitian matrices.
(Note : Tr(AB) = Tr(AB)* = Tr(B*A*) = Tr(A*B*) = Tr(AB).)
Put A = {n X n hermitian matrices with entries in O}. Then we see that

A* = { ¢ ¢ is n X n hermitian, diagonal entries in O* }
- and off-diagonal entries in O* ’

where O* = {a € K | Trg/g(aO) C Z} and the dual lattice A* is with respect
to the above pairing. Since I contains the subgroup

v={( 1)

f(m +1y) = Z c.(y)exp(2miTr(éx)).

{eAr

u = u* is an n X n matrix
with entries in O ’

we have

For f to be holomorphic, it must be that the Fourier coefficients (as functions
of the imaginary part y of z € J,,) are of the form

¢(y) = ccexp(—2nTr(£y)).

So the Fourier expansion of a holomorphic hermitian modular form has the
form

f(z) = ZE: cexp(2miTr(¢z)).
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2.4 Koecher’s Principle for Siegel Modular Forms.

Let f be a holomorphic Siegel modular form on $), (with respect to I' =
Sp(n,Z)). Let f(z) = ¥ c.exp(2miTr(£z)), where £ runs over semi-integral
13

symmetric matrices.

Theorem 2.2 (Koecher’s Principle) Suppose that n > 1. Then the Fourier
coefficient ¢, of a Siegel modular form of weight 2k is zero unless £ is positive
semi-definite (semi-integral).

Proof. Note that I' contains the subgroup

r={(4 Ao_t)IAe GL.(Z) } .

Since det(0z + A™%)%* =1, f(AzA?) = f(z) for all z € H,, A € GL,(Z) i.e.,
> cexp(2riTr(éz)) = Y cexp(2miTr(EAzAY))
14 14

= Y c€exp(21riTr(At€Az))
13

and this implies ¢(A*¢A) = ¢(€) for all A € GL,(Z).
Consider the subseries of f(A:l,) with A € R0 :

S = Y. c(A¢A)exp(—2rATr(A*A))
A€GLA(Z)
= c() >, exp(—2rATr(A%¢A)).

A€GLA(Z)

If ¢(€) # 0 and £ is not positive semi-definite, then N = {v € R" | v*¢v < 0 }
is open and closed under multiplication by numbers in R*. Thus one can find
infinitely many A € GL,(Z) so that the columns of A lie in N. For such an
A= (A'A?... A",

Tr(A*A) = (A" €A + -+ + (A™) €A™ < 0.

Thus we have exp(—27ATr(A’¢A)) > 1 and this implies S is divergent. ]
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3 Adelic Viewpoint.

3.1 Analysis on Adeles.

Let K be a number field, M; the set of all places of k.
Given v € My, let || ||,: k, — Ryo be the unique absolute value inducing :

If v < 00, then it is the v-adic topology such that ||r||, = 7]1; (7 a uniformiz-
er of k,, g, = cardinality of the residue field of k).

Ifv=o00 ie., k =RorC, then ||:c“.,={{ﬂ2 ’ :iﬁ:i%

1°. Then we have the product formula: [] |z|l, =1, for 0 #z € k.
vEM;,
2°. Let p be an (additive) Haar measure on k.

For a € k), let p1,(U) = p(alU). Then p, = || @]]ope-
Proof. Check this directly for k, = R, C. For v finite,

Pr(w—lokv) = Z /‘(; + Ok,,) = Qvﬂ(ok,,)' "

z€0k, /()

The ring of adeles ky of k is defined as follows : As a set,

ks = {x = (z,) € H k, | |zo]]» <1 for all but finitely many v }
vEM),

ks is a ring under componentwise multiplication and addition. We may
regard k as a subring of k, under the “diagonal embedding”

g (oyz,m,3, ) k- Ky,

Topology for kj :
Let S be any finite subset of M}, containing all infinite places. Then

kA,,g:: Hk,,x H(’)kv, kA=UkA,sg H kv.

vES vgS S vEM)

Since Ky s is the product of finitely many locally compact groups and infinitely
many compact groups, ka s is locally compact in the product topology, and
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the addition and multiplication are continuous.

Topology on kj is defined by declaring all subgroups kj s to be open. So ka

is again locally compact, and addition and multiplication are continuous. A

neighborhood base at 0 for the topology of kais the collection of sets U =
M U,, where0 e U, C k, and U, = Ok., for almost all v.

vEM; open
Facts 1 (a) k C ka is discrete in k.
(b) ka/k is compact.

The group of ideles J; of k is defined as follows : As a set,

Ji = {x =(z,) € [ k) | llzo]lo =1 for all but finitely many v }
‘UEMk

Let S be a finite subset of M} containing all infinite places. Then
x .
'Hk,s =: [k x I1 Ol)é,,’ Jp = LSJ']IIC,S‘

vES vgS

J ks is locally compact and multiplication is continuous when it is equipped
with the product topology.

Jt is equipped with topology by declaring each subgroup J ks to be open, so
that it is also locally compact and multiplication is continuous. A neighbor-
hood base of 1 for the topology of J L is the collection of sets U = [] U,,

vEM}
where 1 € U, C k) and U, = OZ for almost all v.
open v
kK C J, via x = (T, T, T, ).
| iy = Rso (z = |lz|| = II |lzvllo ), called norm, is a continuous
vEMk

homomorphism. Put J) =:ker(|| ||:J; — R.o).
Fora € J,, and be ks, abe k, ((ab)y, = ayb, ) and hence we have :

J; x ks — ka ((a,b) — ab) is continuous.

Note that for each a € J;, b ab: ky — kj is a continuous automorphism.
Let p be an additive Haar measure on ky. For a € J,, define p,(U) = p(al)).
One can check that p, = ||a||p.
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Facts 2 (a) k" is discrete in J,.
(b) J3/K* is compact.

(c) The compactness of J/k™ implies the finiteness of class number and
the S-unit theorem. In particular, the Dirichlet unit theorem follows
from the compactness of J7/k*. Recall the S-unit theorem :

Let k be a number field, S a finite set of places of k containing all
infinite places, s = #S, ky ={z € k| ||z||, =1 for all v ¢ S}. Then
%/ {":f::t;f is free of rank s — 1.

For the rest of this section, one can refer to :

Chapter XV of [C], Chapter III of [GGP] or Chapter VII of [W].
1° Normalization of additive Haar measures for local fields :

da = the usual Lebesgue measure for k, = R,
da = twice the usual Lebesgue measure for k, = C,

da = that measure for which O, gets (N 51,)'% for v < oo.

(Here O, = Ok,, for simplicity, and §, is the absolute local different of

k..)

Note If v < co and 7 is a uniformizer of k,, then

-1
measure(r"0,) = ¢, "Néb, 2

and
measure(0,) X measure(6;') = 1.

2° Normalization of multiplicative Haar measure for local fields :
For v = 00, d*a=da/|| |-

For v < 00, d*a = that measure for which O gets 1.

Put ks and J, “ product” measures.

3% Additive characters of ky :
For v = oo, 7,(z) = exp(2miTry, 5(z)).
For v < 00, 7,(z) = exp( — 2mi(the fractional part of Trk.,/Q,,(x)))’
where v lies over p.
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For z € ka, we put 7(z) = I 7o(zy).
‘UGMk

Facts 3 (a) Then the set of all the additive characters (a continous map
x:ka = C, |x| =1, x(a+b) = x(a)x(b)) of ka is given by
{T,, | a € ka, 7o(z) =:7(azx) forall z € kA}.

This just says that ky is self-dual i.e., k: = ka.
Proof. Theorem 3.2.1 in [T]. n

(b) (ka/B)™ =k

Proof. Define )\,:Q, — R/Z as follows, for each prime p of Qincluding co. If
p = 00, then Ao:R — R/Z is the canonical map.
If p < oo, then

2:Q, - Q,/Z, - Q/Z X R/Z,

where the middle map is defined by taking the fractional part of each element
of Q,. Put, for z = (z,) € K,

A@) = 3 2 (5 Tk, (7))

p<oo

Then 7(z) = exp(27iA(z)) for = € ks. Now, for « € k,

Ala) = Z A (ETrkv/Q (a)) ; Ap (Trk/Q(a)).

p<oo

Thus (for EeQ, E Ap(€) =0 (mod 1)) = A(a) =0 (mod 1) for a € k.
But for each ﬁxed prime g, E Ap(€) = Z Ao(€) + (Ag(€) + €) is a g-adic in-
teger. Thus (ka/k) D Kk, and (ka/E)N 1sq;, vector space over k. Since ky/k is
compact, (ka/k)" is discrete and hence [(kA/ k)~ ] < oo = (ka/k) = ku

For an integrable C-valued function f on k,, define Fourier transform
( and its inverse transform ) by

) = /k,, f(@)T(z8)dz, fY(¢) = /k., f(z)7y(z)dz.



172 Dae San Kim

For integrable functions f on kj,
ANE) = F(éx)dz, fY(€) = dz.
() /,CA f@)F(Ex)da, £Y(€) /,CA f(z)r(Ex)da
Also, for integrable functions f on ky/k, define

) = /kA/k f(z)7(z)dz, fY(€) = /kA/k f(z)7(z€)dz.

Definition 3.1 On kj, consider functions ¢ that are representable as the

product ¢ = [] ¢,, where the factors ¢, satisfy the following conditions :
UEMk

(a) For v = 00, ¢, isof C* and all partial derivatives of ¢, decrease faster
than any power of 1 + ||z, as ||z|l, — oo.

(b) For v < 00, ¢, is compactly supported and locally constant.

(c) For almost all finite places v, ¢, is the characteristic function of O,.

Such functions will be called elementary functions. Schwartz-Bruhat func-
tions are those ones that are representable as finite linear combinations of
elementary functions. S(k,) will be used to denote the set of all Schwartz-
Bruhat functions on k. One can show that for every ¢ € S(k,),

/ l(a)|da < co.
ka

Theorem 3.1 (Fourier Inversion Formula) For Schwartz-Bruhat function

f on ka or k,,
fAV — f — fVA

Proof. We just prove the first equality for functions f on ka. Since Fourier
inversion Formula holds up to constants, we only need to check this for one
non-trivial function, say

—mé?
py(€) = e™™ for v real ,
f=TI #v, where @u(€) = e 2P for v complex ,
vEM, ¢y, = the characteristic function of O, for v < co.
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Now, ([T¢.)" =1 ¢~ and hence this problem is local.

For v real,
@) (€) = / e~ =T gy o=

e o]
—00
For v complex,

eo(u+iv) = / / 6_2”(’:2“’2)6_4"i(’“”””)2da:dy

(/oo —2nz? —4riuc ) ( ot —271y? +4mivy
= 2 e dz / e dy
—o00 —o00

_ (/oo e_1r.1;2-21ri(\/§u)zdw) (/°° e_ﬂy2+21ri(\/2-v)ydy)

= 2+
For v < oo,
@3(&) = | 7(z)da.
Now, if £ € O}, then
Trku/Qp({:v) € Z, for all z € O, => ¢(£) = measure(O,).
If ¢ ¢ O, then there exists zo € O, such that Trk,,/@,,(f‘”o) ¢Z, ie.,

= L) L1 o e) = a6,

by replacing z by c +z¢ =  @(¢) =0.
Thus ¢} = the characteristic function of O} x measure(O, ).
It only remains to compute ¢,V (¢). But we see that

WN©) = [ rl(et)de

= (the characteristic function of O,)

xmeasure(O},) X measure(O,).

Since measure(0,) x measure(O}) =1, poY = ¢,. n

Theorem 3.2 (Poisson Summation Formula) For a Schwartz-Bruhat func-

tion f on ka,
D FE) = ().

¢ek ¢ek
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Proof. Consider the function ¢(z) = Y- f(z + v). Then this is a function on
v€E
ka /k which can be expanded as a Fourier series :

o(z) = 3 (zv) /kA/ | P()7(uv)du.

vek
Thus for = = 0,
> 1) =p0) =% /,c P (uv)du.
Now, u)F(uv)du = u 7(uv)du
Ji g 70N /kA/k X Sl O)riuo)d
= [ f@)r(w)du = ().
A
And Ek f(v) = Euek A (v). .

Corollary 3.1 For a Schwartz-Bruhat function f on kja, and for A € J,,

Proof. For g on kj defined by g(z)=f ()\x) we only need to see

9(z) = ||/\”f(/\" z).
Indeed,
PO = [, d@ra)z = [ fOa)(Ea)ds
= Al /kAf(x)f(ﬁA z)dz = A7 FAAE). .

Example 3.1 [The Mellin Transform of Schwartz-Bruhat Functions]
The Tate Formula : Let m be a quasi-character of J, i.e., a continu-

ous multiplicative mapping of J, into C*. Then 7 = [] =,, where 7, is a
vEM

. X . . . . .
quasi-character of k, and unramified i.e., T, is trivial on OX, for almost

all finite v. Conversely, if 7, is a quasi-character of k: which is unramified

for almost all finite v, then [] , is a quasi-character of J,.
‘UEMk
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One can show that if 7 is a quasi-character of J, which is trivial on kK,
then m(A) = 6(A)||A||* for some s € C and a Gréssencharacter (also called
Hecke character) § i.e., 6 = [] 60,, where 0, is a character of k: such that

‘UEMk

(1) 0, is unramified for almost all v,

(2) 6N = II 6,(0\) =1, for X €k.
vEM}

i.e., a continuous homomorphism 8 of J; into S* = {z € C | |z| = 1} such
that

(1) ()) =1 for X € k¥,

(2) There is a finite set S of places of k contaning infnite places such that
0(\)=1if A\, =1forve Sand [A\,|,=1forv¢&S.

Fix a Schwartz-Bruhat function ¢ on k.
For a quasi-character = on J,/ k™, define the “Mellin Transform” of ¢ by

o(r) = [ pNm()d,

where d*)\ is the product measure of the previously normalized measures on
k). If 7 = 0] ||° for a Grossencharacter 8 and s € C, then we also write

B(r) = 8(6,5) = [ G(NIN)|Nd*\.
Tk
We will confine ourselves to elementary functions . Then

2(6,9)= I1 [ OBOINLE,

vEM;

Clearly, each factor of this product converges for Re(s) > 0. For almost all
finite places v, 0,(A,) = |A,|}v for some ¢, € R and ¢, is the characteristic
function of O,. For such a place v,

= —(s+1 n 1
S OBl h = 3 (g54)" = P Cng

n=0 1
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Since [] (1 —q; (’+“")) s absolutely convergent for Re(s) > 1, ®(4,s)

defines an analytic function of s in the domain Re(s) > 1 for fixed ¢ and 6.
Split ®(6, s) into the sum of two integrals :
®(0,s) = d*(0,s) + 9 (0, s),
where
®¥(0,5)= [ o)A
(0,5 = [ eV d

Observe that ®*(6,s) is an entire function of s. Let E be a fundamental
domain of { A € J; | ||A|| <1} relative to k*. Then

2 (8,5) = [ 5 w00 AI*d.

aekx

By the Poisson summation formula,

Y. #(Aa) = Z ¢"(\ ')
oy’ I/\II

gxw(xahﬁwm o>+“AII £ #'07%)

and hence

2°(0,5) = [ T ¢" O a)d) A1

aekx

+0"(0) [ OOV A= (0) [ )IIAI*a,
where the first term is

AN A = @M (07,1 — s
A BY ( )
and ®” is the Mellin transform of ¢". Now, if § is not trivial on Jj, then

s—-1 3%y __ _ s X
LoItan=0= [ o0)xl-d*x.
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Otherwise, we may assume that § = 1 and
1
LI = vol @7k [ #d /i = vol(3Y/F* )%,
where vol(J}/k*) = 2" (27)2hR/w and

(7, : the number of real embeddings,
r, : the number of complex embeddings,

< k  : the class number of k,
R : the regulator of k,
d : the absolute discriminant of k,
{w : the number of roots of unity in k.
Thus N
&7 (8,5) = B (67,1 5) + ¢ (f‘@’ - ﬁ@) /
0 if 0 is not trivial on J3,
where 0= { 2" (2m)2hR/w.

Thus ®(0,s) (defined for Re(s) > 1) admits an analytic continuation to an
entire function of s, unless 6 is trivial, in which case it has singularities at
s = 0,1 with their respective residues —egp(0), 49" (0). Moreover,

S

8(0,5) = ®*+(0,5) + B (67,1 — 5) + €5 (%A____(_‘_)i)_ _ &)

yields the functional equation (Tate’s formula) :
®(0,s) = d"(07',1 — ).

As an illustration, choose ¢ = [] ¢, where
vEM},

{ ¢u(z) = ™™ for v real,

_ 1 _—orzf?
pu(T) = 5-e for v complex,
¢, = the characteristic function of O, for v < co.
Then for 6, = 1,

1 o
@(00,3) = (/Rx e—1r32|xls_1dx) (% /Cx 6—27r|zl2|z|2(s—1)dz)
Ao2d*,
<1l (/IMISII | )

v<00

_ (,,—%p@)" ((27)™°T(5))" (),
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where (i(s) is the Dedekind zeta function of k.
By the computation in the proof of the Fourier inversion formula,

=11 o7,
veMk
where { = ¢, for v real and complex,
¢s = measure(O,) X the characteristic function of OZ.

Thus we see that
@(80,) = (x71(3)) " (27)°T()) " dI~Hu(s)

Thus |d|? (7:"§I‘(%))T1 ((27)=*T'(s))™ ¢k (s) is invariant under s «— 1 —s and
admits an analytic continuation to C, with simple poles at s = 0, 1
(respective residues are —2"hR/w, 2" hR/w) as their only singularities.

3.2 Comparison of Classical and Adelic View Points.

Proposition 3.1 Let T be a discrete subgroup of SLy(R)™, k € Z™. Then
there is a one to one correspondence between

{fen” | fly=f,VyeT}

wi {pesL@py: POSHD) =gt forcT

g € SLy(R)™, k(6) € SO(2)™
where for 6 = (64,...,0,,) € R™, k(0) denotes

(( cos 6, s1n01>,”.’( cos b, s1n49m>) € SO(2)™.

—sinf; cosb, —sinb,, cosb,,
Proof. For such a function f on ™, define the function f* on SLy(R)™ by

fM(9) = f(g(3))u(g,5)™  for g € SLy(R)™.
Then



An Introduction to Hilbert Modular Forms 179

Filrgk(0)) = f(rg(i))n(rgk(8),5)™

(F1e7) (9(2)) (7, 9(8)) " m(vgk(6), 1)~
= f(9(:))u(g, 1) €™

= flg)e™.

Conversely, for such a function ¢ on SLy(R)™, define ' on $H™ by

¢h(x+iy)=y"’“'%°(((l) T) (yO% yg%))’

for z € R™, y € (0,00)™. Let z = z + 1y, v(2) = z; + iy, for a fixed v € I.

Then 1 :
GO )o-6 D)o
and hence
GO0 -G ()

for some § € R™. Then

(#1.7) (2) = @(v(2)n(r,2)7"

(1 .
But w(r,2) = p(nv ’(0 :”1‘) (yl 2 )d)
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1
= Yy

Thus |,y = ¢, for all vy € T.
Now, it is easy to see that (f)' = f, (o) = . .

Remark 3.1 (a) It is useful to observe that every element g € SLy(R)™
can be written, in a multi-index notation, as

=( D)5 ,5)w.

for unique z € R™, y € (0,00)™, k(6) € SO(2)™.

(b) Let F be any number field, with ring of integers O, adeles A, ideles J.
For any commutative O-algebra R, put

GL,(R) {9 € My(R) | detg € R* },
P(R) = {g € GLy(R) | g is upper triagular },

vR) = {u@)= (g 7)|zer},
r(R) = {tw=(} 7)[ver},

Z(R) = {(3 2)'7:@3"}.

Note that

GLy(A) = {g € My(A) : detg € J}
= {g:(g,,) € H GL(F,) : g» € K, for almost all finite places v },

v<oo
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GLz(OU) , for v < oo
where we put K, = ¢ SO(2) , for v real

SU(2) , for v complex.
Take subsets of the form

{ U= H U, U, C GL,(F,) is open and U, = K, }

for almost all finite places v
v<oo

as a neighborhood base of 1 for the topology of GLy(A).

Remark 3.2 (a) For any place v, we have the Iwasawa decomposition
GLy(F,) = P(F,)K, = U(F,)(Z(F,)T(F,))K,
and the Cartan decomposition

GLy(F,) = K,(Z(F,)T(F.)K,.

(b) Similarly, one can define SL;(A) and more generally the adele group
G(A) can be defined for any linear algebraic group G defined over F.

(c) For a general discussion about strong approximation, the reader is re-
ferred to [KN]. For a number field F, G a linear algebraic group defined
over F', G(A) the adele group, G(F)( C G(A)) the F-rational points of
G, the S-component Gs(CG(A)) = I'[S G(F,) for S a finite set of places

vE

of F'. The problem of strong approximation is as follows :

Under what conditions on G and S is GgG(F) dense in G(A)?
As a special case of the strong approximation theorem for SL,,, we have

SL,(F)SL,(F) is dense in SL,(A),

where F,, = [] F,. ! Note that the above assertion is not true for

SL,, replaced f;o GL,. Indeed, recall the fundamental exact sequence
from the global class field theory :

1 — FXFX, — Jp — Gal(F,;/F) — 1,

where FX, denotes the connected component of the identity element
of FX and Fy; is the maximal abelian extension of F.

Lef. Appendiz A.8 of [G1].
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(d) Let F be a totally real number field. If T is a congruence subgroup of
SL,(F), then there is a compact open subgroup K of SL;(Ay) such that
I' = SLy(F) N SLy(Fs) K, where Ay is the finite adeles of F.
Conversely, if K is such, then I' = SLy(F') N SLy(Fw) K is a congruence
subgroup of SLy(F).

Proposition 3.2 For any I and K just as above,
is a homeomorphism under I'g — SLy(F)gK.

Proof. This is well-defined, since

I'g =Ty
= g =g for some vy € SLy(F,) and vk € SLy(F) for some k € K
= g=19kg'k™! = SLy(F)gK = SLy(F)¢'K.

Suppose that ygk = ¢’ for v € SLy(F), 9,9’ € SL2(F), k € K. Then for
each finite place v, the v-component of vk is 1, :.e.,

% € SLy(F)(\SLa(Foo)K =T.

This implies that yg = ¢’ inside SL3(F&) and hence that the map is injective.
Since SLy(F)K is open in SLy(A), by the strong approximation theorem

SL2(A) = SLy(F)SLy(Fuo)(SLy(Foo) K) = SLy(F)SLy(Foo ) K.

This implies that the fnap is surjective. =

Corollary 3.2 There is a one to one correspondence between

{ lcp is a function on SLz(R)™ and ¢(vgk(0)) = ¢(g)e*?, }
7 for v €T, g € SLy(R)™, k(6) € SO2)™

and

{v

1 is a function on SLy(A) such that it is left SLy(F)-invariant, }
right K-invariant, and right SO(2)™-equivariant by k(0) — e*~?
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Proof. For such a ¢, define the function ¢! on SLy(A) by @!(ygk) = ¢(g), for
v € SLy(F), g € SLy(F), k € K. Then it is well-defined (in view of the
above homeomorphism) and satisfies the required invariance and equivariance
properties. Conversely, if ¢ is such a function, then define the function ' on
SL,(R)™ as the restriction ¥ = ¢|sr,(F..)- .

For a nonzero ideal n of O, define

K(mn) = {y€8SLy(d)|~=1, modulon},
Koo(n) = {7 € SLy(0) l*y - (Z 3) with b= c= omodn},
Kmn) = {v € GLy(D) |y = 1; modulo n},
Koo(n) = {7 € GLy(0) \7 _ (‘; 3) with b= c = omodn}.
Proposition 3.3 There is a homeomorphism :

Z(Foo)GLy(F)\GL3(A)/Koo(n) & | | Z(Foo)T¢\GLY (Foo),
€

where ¢ runs over a finite set X of elements of GL;(A) so that {det{ : { € X }
forms a set of representatives for the narrow ideal class group J/FX, F* O
and T is the discrete subgroup of GLJ (F.) given by

T'e = GL (F)(\ GLf (Fwo )¢ Kao(n)€ ™.
Proof. Define the map
0| | Z(Foo)Te\GL] (foo) = Z(Fao)GLa(F)\GL2(A)/Koo(1)
by C (B(Fe)Teg) = ZUFw)GLa(F)gt Ron()

This is well-defined, since Z(Fo)T¢g = Z(Foo)T¢g’ implies that g = z7¢' for
some z € Z(Fy), ¥ € GLF(Fw) and vék&™! € GL}(F) for some k € Koo(n).
Then

g€ = 27EkE 1 g€k => Z(Foo)GLa(F)g€Koo(1) = Z(Foo)GLa(F)g'é Koo ().
Moreover, Lgl(Z(Foo)FE\GL;(Foo)) = LsJZ(Foo)GL2(F)GL;(Foo)ﬁfoo(n)-

By the strong approximation theorem,

SL2(A) = SLy(F)SLy(Foo)é Koo(n)¢™!
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and hence
Z(F o) GLy(F)SLy(A)GL} (Foo ) Koo() = Z(Foo) GLy(F)GLY (Foo ) Koo (1)
Also, we see that LEJZ(FOO)GLz(F)SLz(A)GL;'(Fw)ffoo(n) = GLy(A), by tak-

ing determinants.Thus ¢ is surjective.
Since UZ(Fo)GL2(F)GLY (Fo ) Koo(n) is a disjoint union, it is enough to
14

show that

Z(Foo)Te\GL} (Foo) —  Z(Foo)GLo(F)GL} (Fuo)€Koo(n)
(Z(Fu)Teg +—  Z(Fo)GLy(F)g€Koo(n))

is injective. Suppose that ¢'{ = zyg¢k, for g,¢' € GLI (Fw), 2 € Z(Fy), 7 €
GLg(F), ke I(oo(n). Then

v € GLa(F) (| GLS (Foo)¢Koo(n)E ™ = T,
since v = Z-lg'(fk_lﬁ_l)g_l — z—lglg—l (fk_lf_l).
Thus inside GL] (Fy.), ¢’ = z7g. n
Corollary 3.3 Z(F.)GLy(F)\GL;(A)/Koo(n)SO(2)™ is a finite disjoint uni-
on of quotients of ™ by congruence subgroups. =

Fix n and {¢} as in the above. Note that
Roo(n) = (O/n)* (O /n)* ((Z 2) — (amod 1, dmodn))

is an epimorphism with kernel K (n). Thus IA(/oo(n)Df(’ (n), and Eoo(n) / K (n)
is finite abelian. Also, if we put

Ty¢ = GL§(F) () GL (Fo)ER (n)E7Y,
then

T¢ = GL (F) (| GL} (Fo)éKoo(n)E™" —  Koo(n)/K(n)
(Te 3 4¢k67 (7 € GLf (Fuo), k € Koo(n)) +— kmod K(n))
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is an epimorphism with kernel I';¢. Thus
M(Flf’n) = @M(F& K, X)7
X

where f ' . .
M(Tye, k) = { unctions on GLj (F,,) which is le t} ,

I'y¢ — invariant and of weight «

M(F€’K7 X) = {f € M(FlfaK’) fOI.-fE;YE qu, gxe(’g{s'g()ﬁ’m) } ’

and x runs over the characters of I'¢/T';¢ (viewed as characters on I'; which
are trivial on I'y¢ ). For a character x of Koo(n)/K(n), put

—~ functions on
M(n,k,x) = { GLy(A)

f is left Z*GL,(F) — invariant, of weight &, }
f(gk) = x(k)f(g) for k € Koo(n) ’

where Z7* is the connected component of the identity in Z(F,). Let x be a
character of Koo(n)/K (n) which is trivial on elements of the form

t 0 =
¢ ) € Roo(n).
Corollary 3.4 Then there is a bijection
eM(n, 5, x) = @ M(Te, k, X¢) given by o(f)e(9) = £(9¢),
£

for g € GL} (F,), where x¢(7) = x( finite part of £198).

Proof. For g € GL;(A), go, goo denote respectively its finite and infinite part
so that ¢ = gogoo = googo. For v € T,

WFe(v7'9) = f(72'96) = F(v " g706)
= f(970¢€) = f(g¢€¢ " 10€) = f(g€(¢7 7€)o)
= f(g&)x((€7€)o) = F(g€)xe(7) = 1(F)e(9)xe(7)- =

Let ﬂ(n,x,x,w) = {fé H(n,n,x): f(((t) g)g) =w(t)f(g)}.

Since w =1 on FX,F*{a € 0% : a = 1(modn) }, we can decompose :
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Corollary 3.5 M(n,&,x) = @ M(n, K, X,w), where w runs over the charac-

ters of the “ ray class group modn” i.e.,

J/FX, F*{a € 0% | a = 1(modn)}. .

Remark 3.3 (a) Since y is trivial on (3 (1)) € Koo(n) and on K(n), x
is determined by its values on Z(@*) and hence by w.

(b) The finite part of the conductor of w divides n, since w is trivial on

{a € O% | a = 1(modn) }.

Let F be a totally real number field. For a finite place v of F' and a Hecke
character w, unramified at v,

GL,(0,) -invariant, (Z,,w)-equivariant,

H=H,,={¢:GL(F,)—C
compactly supported modZ,

¢ is continuous, left and right }

with multiplication given by the (right) convolution
(pr0)@) = [, . eloh™ V()

Zu\GLy(F.
where Z, is the center of GLy(F,) and dh is the Haar measure on GLy(F,)
giving GL2(O,) measure 1.

Foroy€ H=H,,, aright GLg(O,,)-invaria,nt, (Z,,w)-equivariant, measur-
able function f on GLy(F,), define

(*) @ho) = [, flgh™)p(h)dh.

Z,\GL(F.)
Put

right GL,(O,)-invariant, f({g) = w(¢)f(g)
for ( € Z(A), and < f,f>< o0

where V(v,w) has the inner product given by

<f1,f2>=/ fl(g)?@dg-

Z(A)GLz(F)\GL2(4)

V(v,w) = {f:GLg(A) - C

f is continuous, left GL,(F)-invariant, }
7

Then H = H,,, acts on V(v,w) by the same formula as in (*).
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Theorem 3.3 (i) H = H,,, is closed under convolution, and the algebra
H, with convolution, is commutative.

(i) The operators T, form a commutative ring of bounded operators on
V(v,w), which is closed under adjoint with respect to <,>. In fact, the
adjoint of T, is Ty, with ¢*(g) = ¢(g1).

Corollary 3.6 If V is a finite dimensional subspace of V(v,w) invariant un-
der the action of H = H,,, then V has an orthogonal basis consisting of
simultaneous eigenvectors for H.

Proof of Theorem 3.3. Write, for brevity, G = GLy(F,), Z = Z(F,), K =
GL2(0O,) and A = { diagonal elements of G }.

(i) It is left to the reader to check that H is closed under convolution. We claim
that for f € H, g € G and with g > g° the transpose on G, f(g°) = f(g).
With ¢ € A, kl,k2 € K, g = kltkz,

f(9) = f(katky) = f(t) = f(t°) = f(k51°K]) = f(g").
By the above claim, for ¢, 9 € H,

(p*x¥)(9) = (px¥)(97)
= [ #@H )

/Z PO WY(AT)dh  (replacing h by h™)
- /Z o PMB(h7g%)dh  (replacing h by 7" h)
- /Z . o(h*)p(h°"¢°)dh  (replacing h by h?)
- /Z o #(B¥(gh™)dh  (by the above claim)

(¥ * »)(9).

(ii) Check that T, is a bounded operator of V(v,w). It is formal to see that
for ¢, ¢ € H, T,Ty = Tyuy and hence that T, Ty = TyT, by (i). For a, b in
V(v,w),

<Ta,b> = [T,(a)(9)K(9)dg
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= [[ algh™)e(h)B(g)dhdg

= [[ algh")e(h)b(g)dgdh

= [[ alg)o(®)blgh)dgdn

= / / a(9)e(h)b(gh)dhdg

/ / a(g)p(h™1)b(gh~")dhdg (by replacing h by h1)

= [alo) ( / ¢(h—1)b(gh—1)dh)dg

= <a,Tb>,

where g and h are respectively over Z(A)GLy(F)\GL2(A) and Z\G. .

Remark 3.4 Let v, w be distinct finite places of F'. If f € V(v,w)NV(w,w),
then TyT,(f) = T,Ty(f), for all ¢ € Hy o, ¢ € Hy.

Definition 3.2 Let f be a left GLy(F)-invariant continuous function on

GL,(A). For ¢ € F, the ¢-th Fourier coefficient of f is the function W;
on GL;(A) given by

We(g) = /F\A?(fx)f(u(x)g)d:c.

Moreover, such an f is called a weak cuspform if Wy(g) = 0 for almost every
g.

Proposition 3.4 (i) For u(z) € U(A), We(u(z)g) = 7({x)We(g).
(i) f(9) = ¥ Welg).
¢EF
a b .
(iii) For p = (0 d) € GLy(F), We(g) = W,-14(pg). In particular,
We(g) = Wa(£(§)g) for all 0 # £ € F.

Proof. (i)
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We(u(z)g) = /F\A 7(éa) f(u(a + z)g)da
- /F‘\A 7(¢(a — ) f(u(a)g)da
= 1({x)We(g)-

(i1) For each fixed g € GL(A), ¢(z) = f(u(z)g) is a continuous function
on A which is F-invariant. Thus

e(z) =Y 7(tx) F\A?(Ea)cp(a)da i.e.,

¢EF

flu(z)g) = Y m(éx)We(g) = Y_ We(u(z)g)

(EF ¢EF
by (i). Thus we have f(g) = Y W¢(9).
133

(iii) Wa-14¢(pg) = /F\AF(a_ldfx)f(u(x)pg)d:c
/F\A 7(a7'dz) f(u(a™ dz)g)dw

= /F\AF(ﬁw)f(u(w)g)d:c (by replacing = by ad~'z)
= Welg)- ]

Remark 3.5 (a) Writing W = W;, we see that

f(g) =Wol9) + X W(k&)9)-

EEFX

(b) Let f be a holomorphic Hilbert modular cuspform of weight « with
respect to GL}(0O), where O is the ring of integers of a totally real
number field F' of narrow class number 1. If f(z) = ¥ ¢(£)e?™Tr(¢)

¢eo0”

€50
then it corresponds to the function ¢ on GL] (F,,) given by

w((3 )G )=t 5 o e e, e

3%
€30
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and further to the function ¢ on GL;(A) given by ¢({ygk) = @o(g),
for ( € Z(Fx), v € GLy(F), g € GL}(F.),k € GLy(O). Now, for
y € (0,00)™, £ € O* with ¢ > 0,

() - el )
= o T (u(x) (V) e

(Recall here that F\A = (O\R™) x [] O..)

v< oo
= y5 Y c(¢)e ¥ TrEY) 2 TrE =0z g,
{'eo O™
£'>0

= gy T

(where we normalized the Haar measure dz on A so that A/F gets total
measure 1).

Theorem 3.4 Let f € V(v,w) (for a Hecke character w, unramified at

v < 00) be such that Wy(g) = 0 for almost all g, and such that it is an

eigenfunction for H,,. Let f(g) = ¥ W({(£)g), and let € H,, be given
§eFx

by :
n (GLz(Ou) (a a) (t 1) GLz((')v)) _ {w(oc’v), for ord,t = —

else

Assume that T, f = Af. Then W(g) = W'(¢")W"(g"), where ¢’ is the non-v
part of g € GL3(A), ¢" € GLy(F,), g = g'g". Moreover, for any € € OX,

W"(f(ex™6)) = { W (£(8)) x (@™ + a'”-;ﬂ +-tafm + ) : m i g

where 7 is a local uniformizer at v, § a generator for the local inverse
different at v, and «,f are the roots of 22 — N;'\w(7)z + w(m)N;1 = 0
(Ny = [0,:7O,)).

Proof. Since we have the Iwasawa decomposition

GLy(F,) =U(F,)Z(F,)T(F,)K.,,
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and W is left (U(F,), 7)-equivariant, right K,-invariant, (Z(F,),w)-equivari-
ant, W is completely determined by its values on the elements of the form
g'l(y). We will show that W (g'f(6)) together with the eigenvalue A determines
W completely. Observe that T,,f = Af implies T, W = AW.
For u(z) € GL,(0,),
W(gtlly)) = W(d'lyu(z)) = W(g'lyz)e(y))
= W(l(yz)g'l(y)) = r.(yz)W (g'(y)).

This implies that W(g'l(y)) =0 if y & 60, = O%. Now,

AW(g'l(y)) = ) W(g't(y)h™")n(h)dh

/Z.,\GLg(F.,
W (d't(yx)h~"n(h)dh
/zv\zumu (g'€(y)h~")n(R)

- v (7))

Y W(g’f(y)((l, _lb)(l w‘l))

beO, /7O,

= W(lly/m)+ Y w(=)r(-by)W(g'l(yr))
b€, /TO,

where o = (1 ﬂ_) in the second integral. ( Note here that W (g"¢(y)h~1)n(h)

is left K,-invariant in A and

Kv(l 7‘_)KU=K1,(1 W)U( U Ku((l) :)) (disjoint). )

bEO, /7O,
Thus
AW (g'(7™8)) = W(g'(x™16)) + w(m) " N, W (g't(x™*16)), for m > 0.
Put a,, = W(g'l(x™8)) for m > —1 (Note that a_; = 0),

A= (Aw(q)/Nv —w(g)/Nu)_ Then

(am+l)=A( A ) =>(am+l)=Am+1(a0)
A (L7 | Ay a_i
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and «, [ are the eigenvalues of A with respective eigenvectors ( Cly) , ( ﬂ) i.e.,

1
(G- )
— (D= D )
— e ) ()

Therefore, a,, = (@™ +a™ 18+ -+ + af™ 1 + )W (g'4(5)). "

Remark 3.6 Under the assumption that F' has narrow class number 1, we
will demonstrate the equivalence of the classical and adelic versions of Hecke
operators. Recall that under this restriction on F' we have

SLy(O)\SLy(Fwo) = SLy(F)\SLa(A)/SLy(O)
Z¥GL}(O)\GL}(F,)
Z(Fo)GLy(F)\GL2(A)/GL2(O).

For a left Z+*GL} (O)-invariant function f on GL} (F,,), we define a function
f# on GLy(A) by f#((vgk)=F(g), where (€ Z(F.,), 7v€GLy(F), g€GL] (F.),
k€GL2(O). Then f# is well-defined, left Z(F.,)GLy(F)-invariant, and right

GL3(O)- invariant. Let n be an ideal of O such that n = p™ for a prime
ideal p. Put

R 1R 1R

A(n) =:{g € M>(O) | detg > 0, (detg) = n}.

For a left GL} (O)-invariant function f on GL] (F.,), the action of the “clas-
sical” Hecke operator T, on f is defined by

(Tuf)9)= Y f(%9)

§€GLI (0)\A(N)

Also, put A'(n) =:{g € Mz(0,) | (detg) = n0O,},

where the finite place v corresponds to p. If ¢ is the characteristic function of
Z,A'(n), and if A is left Z(A)GL,(F)-invariant and right GL,(O, )- invariant,
then T A is defined by

(T A)(g) = /ZV\GLQ(F,,)A(gh_l)tp(h)dh.
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Then we claim that for a left Z+*GLJ (O)-invariant function f on GL} (F.),
(T.f)* = To(F%).
Proof. It is enough to show that (T, f)#(g) = (T.(f#))(g), for g € GL} (F.).

Let = be a totally positive generator of p C O so that n = #™0O, and let
T, be the image of 7 in F,. As representatives for GL,(O,)\A'(n), we may

choose :
X = {(a b) a, d are nonnegative powers }
“W\0 d/| of 7, ad=17™, be O,/dO, |~
Thus T.(f*)(9) = X f*(g87").

1.4

By the strong approximation theorem, there exists an upper triangular ma-
trix p € A(n) € GLI(F) such that pf~' € GLy(0O,) (when projected to
GL,(Fy)), p € GL3(0O,,) (when projected to GLy(F,) for finite places w # v).
Note that

#(967") = f*(pg6™") = f*(Peogpod™) = f*(Po9) = f(Poo9)-

Since a map X — GL}(O)\A(n) given by § +— p is a bijection,

T.(f*)(9) = 3 f#(967) = Y F(pog) = (Tuf)(9) = (Tuf)*(9). =

seX seX

Now, suppose that f is a twice differentiable function on $™ such that
flsy = f, for some k € Z™ and all v € T in some discrete subgroup I' of
SLy(R)™. Now, f# is the lifting of f to a function on SLy(R)™ i.e., f#(g) =
f(g(8))n(g,8)~".

Proposition 3.5 Let L; be the Maass lowering operator

- a 0 10
_uef, 9 . 0 10
bi=e (yjawj 5y 2505)

on the j-th factor of SLy(R)™. Then f is holomorphic in 2; if and only if
Lif*¥ =0.

193
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(Here we use the Iwasawa coordinates for SLy(R)™ i.e.,
(1 x) yz 0 ( cos @ sm0)
0 1 —sinf cosf

(1 xl (5 ) (6y),.. ((1) x{n)(y: yg%)k(am)) )

Proof. Note that

# y% 0 cos 0 sin0) _ N5 ind
f ((0 1)(0 Y~ )(—-sinO cos = f(z +iy)yze™.

Put § =(0,...,0,1,0,...,0), with 1 at j-th entry. Then
K . m 9 2 5-6 eiﬁe
ik0 f y 6 (fy ) f 3 ( ))

=

Ljf# = enzw(@hy

dz; 9y, 2 Y 00;
: = 0f
= 6—210 y; y m9 f +Z mey ~J
( J y;e ay]

m E_ 1 /. ik
+iyje ”f( k) E 0 — = fyE (in;)e™)
mo f af

= e y;yfe +ig—
’ (3 Zj ayj)

-4l ‘IK, f

= 2 20?]]3/2 ea—

Proposition 3.6 Let Y; be the Casimir operator

: L[ & 52
Yi=y; (3:1:12 + 6y2> - y"axjao,-

J

on the j-th factor of SLy(R)™. If f is holomorphic in z;, then

1 =z I 0 cosf sind

c# y

Proof. Y;f ((0 1)(0 y-%)<-—sin0 coso))
22
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x ;g0 f 0% f of «
_ 2 £ ikl m& — mG 5=6
= y; (yze £ 2+e By 2+n, ——ayjy2
ki (ki inf p, E— . £ Of .
+?J(?] — l)e afyz 26) —1K;Y;Y? ——e 0

6:::,-
52 Py
= ylyie™ (a ]: + ayf)

1 1 1 «z o0 cosf siné
# Y
tarilgn = 1)1 ((0 1)(0 y—%>(—sino cosO))
1 1 1 =z 0 cosf sinf
— # Y
- 2n,( )f ((0 1)(0 Y3 (—sin0 cos0>)’

since f is holomorphic in z;, and hence

Remark 3.7 Let G be the Lie algebra of G = GLy(R) i.e.,
g = {9 € My(R)|Tx(g) = 0}.

For v € G, we have the differential operator X,, on C*(@) defined by :

(X2f)(9) =

d ty oo
& Joen, 1€C(@)

t

Note that every such an operator X, is left G-invariant i.e., if we define

£(g)f(h) = f(g7'h), then £(g)X,f = X +£(g)f. Then by using Iwasawa coor-

dinates

1 z\[yz 0 cosf siné
(0 1)(0 y"%)(—sina cose) (z €R, y € Rso, GER/%TZ)
for SLy(R), the Maass (raising and lowering) operators are defined by
: 0 0 190
—_ 2:0 v
Ro=e ( Yos " YWay T3 aa)

o 0 .0 18
— —210 il 2
L= (-”ax“yay 260)

195
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Also, define the Casimir operator by

, [ 0% 0? 0?
Z=y (6:1:2 + 6y2) ~Yoz00°

Then one can show that :

(a) Z is left and right SL;(R)-invariant, commutes with R and L, and
satisfies ’

27 = RoL + LoR — —1-—(?-%-
- 2002

(b) R and L are left SLy(R)-invariant.

(c) If f is of weight & (k € Z) i.e., f(gk(#)) = f(g)e**?, then Rf and Lf
have respectively weights £ + 2 and & — 2.

A general definition of adelic automorphic forms on GL,(A) (F' is here
totally real) can be given as follows :

(1) f is a C-valued, left GLy(F)-invariant function on GLy(A).

(i1) f has a central character w i.e., f({g) = w({)f(g) for all { € Z(A), g €
GL2(A), with some Hecke character w.

(iii) f is right K-finite i.e., the span over C of {g — f(gk) |k € [I K,}is
v<oo

finite dimensional.

(iv) Viewed as a function of G, alone, f is smooth and Z-finite, where Z
denotes the center of universal enveloping algebra of G.

(v) f is slowly increasing i.e., for every ¢ > 0, compact subset X of GLj(A)
there exist C, N > 0 such that f(¢(y)g) < C|ly||N,forallge X, y € J
with ||y]| > e.

f is a cuspform if further it satisfies :

(vi) /F\A f(u(z)g)dz = 0 for almost all g € GL2(A).
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Remark 3.8 (a) (iil) is equivalent to saying that the span over C of

{g— f(gk) | ke ] K, =GLy(0)}
and that of
{9+ f(gk) | ke ] K. =50(2)"}

V=00

are finite dimensional, respective of which are referred to as right Kj-
finiteness and right K-finiteness. Note that right K,-finiteness <=
right K-invariance, where K is a compact open subgroup of GL3(Ay)
and that right K,-finiteness <= f = " f is a finite sum of functions
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of weight . Here a function h on GL;(A) is of weight x € Z™ if

h(gk(8)) = h(g)e™® for g € GLy(A), k(8) € SO(2)™.

(b) If f is of weight x = (K1,...,Km), then we see that the central character
w must satisfy w(—1;) = (=1)% (¢ = 1,2,...,m), where —1; denotes the
idele which is 1 at all places except the i-th infinite place, where it is

—1.

(c) (iv) is equivalent to saying that f = 3 fy is a finite sum of functions
of eigenvalues A. Here h has eigenvalue ) if there exists an algebra
homomorphism A\:Z — C such that Yh = A(Y)h, for all Y € Z. Recall
that the center of the universal enveloping algebra of SL,(R) (i.e., the
left and right invariant differential operators on SLy(R)) is C[Z], where

Z is the Casimir operator.

(d) As remarked in (a), f is right GLy(O,)-invariant, for almost all finite
places X of F. Primes of X are often called good primes or unramified
primes, or primes not dividing the level. If f is an eigenfunction for all
Hecke operators T, (¢ € H,,) for all v € X, then we say that f is a

Hecke eigenfunction at good primes.

e) If /
(e) Z(A)GLy(F)\GLy(A)

square integrable.

Assume now that f is a cuspform on GL;(A) with central character w,
right GL2(O,)-invariant for v ¢ S (S is a finite set of places of F including all

|f(g)°dg < oo with respect to any right GL,(A)-
invariant measure on Z(A)GLy(F)\GL2(A), then we say that f is
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infinite places), a Hecke eigenfunction at v ¢ S. Let x be a (not necessarily
unitary i.e., x = X,|| || for some unitary Hecke character x,, and s € C) Hecke
character, unramified at v € S. Then the standard L-function associated with

(f,x) is given by :
LX) = [ x@I)dy
= fouyX®) X WEEw)d

EeFX
= /Jx Y)W (L(y))d™y.

Let t = (t,) be an idele so that ¢, =1 for v € S, t, is a generator for local
inverse different for v ¢ S. Then we further have :

L) = [ X@W )y

g 1;st(tv)(l — ayx(m)) (1 = Bux(my)) 7!
- / X)W (Eyt)dy x TT x(t.) x Ls(f, %),

where
Ls(f,x) = Igg[(l — e x(m))(1 = Bux ()]

I1(1 = (e + Bo)x(mo) + w(m) N x()?)

vgS

is called the L-function associated with (f, x) at good primes. Note that

Ls(f,x) H det(1; — x(m,)®, )'
vgS

Ay

where @, = ( 0 ﬂv),forv¢5.

Also, if p is a finite dimensional representation of GL,(C) , then the higher
L-function associated with ( fyp,x) is given by :

s(fr0,x) = ]] det(1 = x(m,)p(2.)) ™"

vgS



An Introduction to Hilbert Modular Forms

Remark 3.9 (a) Note that Ls(f, p,x) = Ls(f, p1, X) Ls(f, p2, ) if p = p1 &

p2 and that Ls(f,p,x) = Ls(wx||||) if p(g) = det(g), where the latter
is the abelian L-function associated with the Hecke character wy/|||.

(b) Let fi (i =1,2,...,n) be a cuspform as above, which is a Hecke eigen-

function at v € S with associated matrix ®,;. Then the tensor product
L-function is defined by

(*) L(fl ® et ® f'n7 X) = H det(l - X(ﬂ-u)@v,l ®--- ® Qv,n)—l-
vgS

Under the additional hypothesis that these cuspforms are eigenfunc-
tions for invariant differential operators, it is conjectured that all such
L-functions have analytic continuation to meromorphic functions in C
with finitely many poles and have functional equations.

In 1938, Rankin found the analytic continuation of (%) to a meromor-
phic function in C for n = 2 and in 1986, Garrett did that of (%) to a
meromorphic function in C for n = 3. See [G2].

It is known that all holomorphic representations of GL2(C) are of the
form
g — det(g)™ x Sym"(g),

where Sym” is the representation of GL,(C) given by

(9P)(z,y) = P((z,y)9)

with P a homogeneous polynomial of degree n in two variables. Under
the assumption that f is an eigenfunction for invariant differential op-
erators, Ls(f,Sym", x) has meromorphic continuation to C for n < 5

(F.Shahidi).
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