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§0. Introduction

This note was based on the lectures given at the Daewoo Workshop on
Differential Geometry held at Kwang Won University, Chunchon, Korea from
13th till 17th July, 1992. .

The purpose of this note is to introduce along with the works by A. D.
Alexandrov, Y. Burago, M. Gromov and Perelman [A], [BGP] the Geometry
of Alexandrov spaces to non-specialists of Riemannian geometry including
graduate students with minimum back ground on Riemannian geometry. An
Alexandrov space is a complete and locally compact length space with cur-
vature bounded below or above and introduced by A.D.Alexandrov. The
Busemann G-spaces are special Alexandrov spaces admitting geodesic com-
pleteness, where the notion of curvature bounded below or above are defined
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2 KATSUHIRO SHIOHAMA

by a similar (but different) manner. The most important problem discussed
by these pioneers was if the differentiability assumption in Riemannian re-
sults is really essential. This problem was one of the motivation of the fantas-
tic book [B] by H.Busemann, and influenced to many geometers in 40-50th.
decade who tried to prove Riemannian results under weaker differentiabil-
ity assumptions. For instance, P.Hartman discussed geodesic parallel circles
on C2-Riemannian manifolds of dimension two, S.B.Myers proved his fa-
mous compactness theorem for complete C?-Riemannian manifolds whose
curvature is bounded below by a positive constant, and V.A.Toponogov ex-
tended the Myers compactness theorem to C?-Riemannian manifolds, using
the most powerfull and important tool:the Toponogov comparison theorem.
Busemann extended the Cohn-Vossen theorem on the total curvature of com-
plete open Riemannian 2-manifilds to the Busemann G-surfaces admitting
total excess. Since 60th decade people discussed only C*°-Riemannian man-
ifolds and forgot this important problem, except perhaps A.D.Alexandrov
and H.Busemann. This sleeping period lasted almost twenty years until a
sudden break brought by M.Gromov. Inspired by a series of striking re-
sults by Gromov, Alexandrov spaces got footlight because they are obtained
as the Hausdorff limits of complete Riemannian manifolds belonging to a
certain class determined by geometry. An exciting recent work by Burago,
Gromov and Perelman [BGP] is the most important one and contains many
fruitful ideas. However it is not easy to read. The motivation of this note is
to smooth their discussion in [BGP] and to make it understandable even for
students. The discussion developed in sections 4, 5, 6, 7 and ‘9 of [BGP] is
introduced here in sections 2, 3, 6, 7 and 8 with detailed proofs. The work
of A. D. Alexandrov [A] is introduced in §§2,4.

The organization of this note is stated as follows. In §1 we introduce length
spaces and Hausdorff topology on a class of compact metric spaces. The Gro-
mov precompactness theorem and convergence theorem are explained as the
background of giving the motivation of this topic (compare [GLP], [F]). In §2
Alexandrov spaces with curvature bounded below or above are introduced by
using the same principle determined only by distance function. The notion
of curvature bounded above was first introduced by A. D. Alexandrov [A] by
using Rg-domain, which is different from ours. It turns out that they are
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equivalent (see Theroem 4.7 in §4). In §3 angles are naturally introduced
on Alexandrov spaces with curvature bounded below. This is based on the
fact that geodesics on such an Alexandrov space do not have branch. In §4
the notion of upper angles is defined for Alexandrov spaces with curvature
bounded above. Examples of Alexandrov spaces with curvature bounded be-
low or above are provided in §5. They all are obtained as the Hausdorff limits
of Riemannian manifolds. The Toponogov compz;,rison theorem is proved in
§6. The idea of the proof of it is basically the same as the original one given
by Toponogov. Some modifications are needed to adjust proof technique to
Alexandrov space with curvature bounded below. A simpler than that in
[BGP] will be exhibited here. The notion of strainers and strained points are
introduced in §7, where we discuss the dimensions of Alexandrov spaces with
curvature bounded below. In §8 we introduce the basic tools, such as tangent
cones, the space of directions, cut locus and exponential map on Alexandrov
spaces with curvature bounded below.

I would like to express my thanks to Hyeong In Choi for his constant
encouragement and to T.Shioya, M.Tanaka and T.Yamaguchi for reading
the first draft of this note and for their criticisms, and also to Miss Chae
Won Park for her nice typing skill.

§1. Length Spaces

A length space X is by definition a locally compact and complete metric
space with the Menger convexity. The Menger éonvexity of X means that
for distinct points z,y € X there exists a point z # z,y on X such that
d(z,z)+d(z,y) = d(z,y), where d is the distance function. By iterating this
procedure we finally obtain by completeness of X a curve v : [0,d(z,y)] — X
joining z to y such that the length L(y) of v is d(z,y). Thus the Menger
convexity is equivalent to state that there exists for every points =,y € X
a curve v joining = to y whose length realizes d(z,y). We call such a v a
geodesic. We also denote by zy a geodesic joining z to y. The Hausdorff
limit of complete Riemannian manifolds is a length space, (see Lemma 1.2).

We next define Hausdorff distance on the space of compact metric spaces
(see [GLP]). For subsets A, B in a metric space Z we define

d%(A, B) := inf{e > 0; B(4,¢) D B, B(B,¢) D A},
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where B(A,e) = {z € Z : d(z,A) < ¢} is an e-ball around A. For metric
spaces X, Y and Z we define

du(X,Y) = inf{dG(f(X),g(¥))i f : X — 2

and g :=Y — Z are isometric embeddings}.

Here the infimum is taken over all metric spaces Z and all isometric embed-
dings of X, Y into Z. It is easy to check that dy(X,Y) = dyg(Y,X) > 0
and dg(X,Y) = 0 if and only if X is isometric to Y, and that the triangle
inequality holds for dy. Let X be the set of all isometry classes of compact
metric spaces. Then (X, dy) is a metric space.

A subset Y C X is by definition an e-net iff B(Y,e) = | J B(y,e) =

- y€eY

A subset Y C X is said to be e-discrete iff d(y;,y,) > € for every y1,y2 €Y
with y; # y2. Every bounded set U in a length space admits a maximal e-net
for every € > 0 which is e-discrete.

We now define the Lipshitz distance between metric spaces X and Y. Let
d L(X , Y) be
inff:X—-»Y {llog SUPg, #z, Y%;(:!;Z,igtz I

dx (F = (91) £~ (92))
di(X,Y) := o Hlogsupy, »y, g v |}

oo (if there is no homeomorphism
{ f: XY

Here the infimum is taken over all homeomorphisms between X and Y. The
dj, defines the metric of the set of all isometry classes of compact metric
spaces. We see from definition that dz(X,Y’) = 0 if and only if X is isometric
toY.

Proposition 1.1. Let {X;} be a sequence of metric spaces converging to a
metric space X with respect to the Hausdorff distance. For every €' > ¢ >
0 and for every e-net N(¢) in X there are ¢'-nets N;(¢') in X; such that
hm dL./V(e ) = N(¢). Conversely, if sup{d1a.m(X ), diam(X)} < oo and if

there exists for every € > 0 and for every e-net N(¢) in X, an e-net Ni(e) in
X; such that hm iy Ni(e) = N(g), then hm g Xi = X.

The proof is omitted here (see Proposition 3.5 in [GLP]).
As a consequence of the above Proposition 1.1 we have the (see Proposition
3.8 in [GLP)).
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Lemma 1.2. If a sequence {X;} of length spaces converges to a complete
metric space X with respect to dy then X is a length space.

Proof. We only need to prove the Menger convexity of X. Let z,y € X be
distinct points. For an arbitrary small positive ¢ with d(z,y) > ¢, there is
a number i(¢) such that di(X;, X) < ¢ for all i > i(¢). There are isometric
embeddings f; : X; — Z; and ¢; : X — Z; for some metric space Z; such
that

d% (fi(X:), 9:(X)) < 2.

We then choose z;,y; € X; for ¢ > i(e) such that dZ (fi(zi),gi(z)) < 2
and dg‘(f.-(y,-),gg(y)) < 2¢. If z; € z;y; is the midpoint of z;y; in X;, then
there is a point 2. € X such that d%( fi(zi), 9i(ze)) < 2¢. Therefore we
have d(z,z) = d%(gi(z), 9i(2¢)) < d%(gi(z), fi(w:)) + dZ(fi(z:), fil=z)) +
dz‘(f;(z;),g;(ze)) < d(:v,-,zg) +4ec = -;—d(a:,-,y,-) + 4e.

Also we have

d(zi, yi) < dZ(fi(w:), 9i(2)) + d% (gi(z), 9:(v)) + 4% (gi(y), fi(ys))
< d(z,y) + 4e.

Therefore,

d(z,2.) < %d(:v,y) + 6e.

Similarly d(y, z.) < %d(m, y) + 6¢, and hence we find a point z = lirr(l) ze with
d(z,z) = d(z,y) = 1d(z,y). This proves Lemma 1.2. O

The pointed Hausdorff convegence is discussed for noncompact length
spaces. Let X; and X be noncompact length spaces and o; € X j,» 0 € X be
the base points. Then 'l_i_*m dx (X, 0j) = (X; 0) means that for all sufficiently
large fixed r > 0 and fér :il €; > 0 with lime; =0,

lim dy(B(oj,r +¢j), B(o,r)) =0.
j—oo
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A practical approach to the Hausdorff distance is stated as follows, (see [F]).
A map f : Y — Z between compact metric spaces ¥ and Z is called an
e-Hausdorff approzimation map for € > 0 iff

ldz(f(y1), f(y2)) —dy(y1,y2)| <€ foryi,y2 €Y

and
B(f(Y)’ 5) =2

Here f is not reguired to be continuous. We then define
du(Y,Z) := inf {6 > 0 : there exsit e-Hausdorff
approximation maps f : Y =+ Z and g: Z — Y}

Then dy satisfies that dH(Y Z) = dHLZ Y) > 0 and dy(Y,Z) = 0 if and
only if Y is isometric to Z. Moreover dy(Y,Z) < 2{dH(Y W)+ du(W, Z)}
holds for all compact metric spaces. Then (X, dy) gives a metrizable uniform
structure. We may talk about the convergence with respect to dy in X'.

Theorem 1.3. (The Gromov precompactness theorem). For given n > 2,
k € R and D > 0 we consider the M(n,k, D) of all complete Riemannian
n-manifolds where Ricci curvature is bounded below by (n — 1)k and whose
diameter is bounded above by D. Then the closure of M(n,k,D) with
respect to dy in X is compact.

We see that the Hausdorff limit of Riemannian manifolds belonging to
M(n,,D) is a length space. If the class is restricted then the Hausdorff
limit of Riemannian manifolds becomes a Riemannian manifold, as stated

(see [GLP], [GW], [Pe]),

Theorem 1.4. (The Gromov convegence theorem). For given integer n > 2
and k,D,V > 0 let M(n,x,D,V) C (X,du) be the set of all complete
Riemannian n-manifolds whose diameter is bounded above by D, volume
bounded below by V and whose sectional curvature in absolute value is
bounded a bove by k. Then every convergent sequence {M;} in M(n,&,D,V)
with respect to dy has a limit N which is a C*-compact n- mamfo]d with
CY*-Riemannian metric for 0 < a < 1.

In view of the above theorems it is important for the study of curvature and
topology of Riemannian manifolds to investigate the topology of Alexandrov
spaces. This also gives an important motivation for the study of Alexandrov
spaces.
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X) , _p. Mg(k) ]3

FIGURE 2-1.

§2. Alexandrov spaces

Let X be a complete locally compact length space. For a tripple of points
P,q,7 € X a geodesic triangle A(pgr) is by definition a tripple of geodesics
joining these two points. We denote by M™(k) the m-dimensional complete
simply connected space of constant sectional curvature k. For a geodesic
triangle A(pgr) in X we denote by A(p§7) a geodesic triangle sketched in
M?(k) whose corresponding edges have equal lengths as A(pgr). If & > 0
we always assume for a moment that the circumference of A(pgr) is less
them 27 /v/k. This assumption in the case of positive lower curvature bound
will be removed later in Theorem 6.2 by showing that every A(pgr) has its
circumference not greater than 27 /+/k if X has curvature bounded below by
k> 0.

Definition 2.1. The definition of Curv(X) > k (Curv(X) < k respectively).
X is said to have curvature bounded below (above, respectively) by k (and
hencefore this will be denoted by Curv(X) > k (Curv(X) < k, respectively))
iff for every point z € X there exists an open set U, around z such that for
every geodesic triangle A(pgr) whose edges are contained entirely in U, the
corresponding geodesic triangle A(p §7) sketched in M?(k) has the following
property: For every point z € gr and for 5 € §7 with d(g,2) = d(§,7) we
have (see Figure 2-1)

d(p,z) > d(,3), (d(p,z) < d(5,3), respectively)
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We denote by Zp§7 the angle at § of A(p§7). For convenience we often
write A(pqr) instead of A(j§7) and also Z pqr instead of Z j §+.

We now discuss X with curvature bounded below. Let Curv(X) > k.
Let a : [0,a] = X and 3 :[0,b] — X be geodesiés emanating from a point
p = a(0) = B(0) and A, := A(a(s)pB(t)) for 0 < s <aand 0 <t < b. Set
¢ = a(a) and r = B(b). Let O(s,t) be the angle at f of A, := A(a(s)p B()).
Then the Alexandrov convexity property for angles at p is stated as follows.

2.2. The local version of the Alexandrov convexity (concavity)
property.

For every = € X there exists an open set U, around z such that for any
geodesic triangle A(pgr) contained entirely in U, having a and 3 the angle

0x(s,t) is monotone non-increaing in the following sense (see Figure 2-2)

Ok(s1,t1) > O(sz,t2) for 0< s <82<a, 0<%, <t <b

M*(k) a(s)

S

B()

FIGURE 2-2.

Notice that if a complete Riemannian manifold M has its sectional cur-
vature founded below by k, then (the local version of) Alexandrov convexity

property holds.



AN INTRODUCTION TO THE GEOMETRY OF ALEXANDROV SPACES 9

Proposition 2.3. Curv(X) > k holds if and only if the local version of
Alexandrov convexity holds for every point p € X and for every geodesics
a,  emanating from p.

Proof. 1t is clear to show that Curv(X) > k implies the Alexandrov convexity
property. Assume that the local version of Alexandrov convexity property
holds. Let p € X and a, be geodesics emanating from p. It suffices to
prove that if 6x(sy,t) > Gk(32,t) for 0 < s; < 52 < a, then d(B(1),a(s1)) >
d(B(t), &(s1)) for a(sl) € pa(sy) with d(d(sy),p) = d(p, a(sy)) = ;.

Let S(, s1) be the geodesic (smooth) circle in M2(k) around $ with radius
s1, and parametrized by angle 6 € [0,27]. By identifying 6 with the pomt
w € s(p,.sl) such that Zwp,B(t) = 6, we observe that 6 — d(B(t),6) is
strictly increasing in 6 € (0, ) (see Figure 2-3).

a(s2) a(s;)  2(s2)

(1)

" FIGURE 2-3.

If 4 € pa(sz) is the point of intersection with S(p,s;), then d(B(t), i) <
d(B(t),(s;)) follows from the assumption that Ok(sl,t) > 0,(s2,1). Here we
use the property that

(21) 6 d(6,A(t)), 6€][0,n]
is strictly increasing, and
(2-2) 0 /50B(2)

is strictly decreasing for ¢ > s;.
Thus the proof is complete. O

Remark 2.1. It follows from definition that if k; > ks, then Curv(X) > k,
implies Curv(X) > k,.
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x)
r(t)

FIGURE 2-4.

Lemma 2.4. If Curv(X) > k, then any geodesic in X does not have a
branch point.

Proof. Suppose that there exists a branch point z of some geodesic, e.g., =
belongs to an iterior point of geodesics pr and pq such that pr N pg = pz
and such that zr C pr, zq C pq and zr N zq = {z}. Choose points r; € zr
and ¢; € zq such that d(z,r;) = d(z,q1). Clearly, the corresponding triangle
Z&(pql r1) is a nondegenerate isoceles triangle. If 2; € p7, and &2 € p€; are
chosen such that d(p,#;) = d(p,z) = d(p, &2), then d(21,2;) > 0 leads to a
contradiction to the assumption Curv(X) > k. This proves Lemma 2.4. [

We now discuss the case where X has curvature bounded above by k. It
follows from Definition 2.1 that if A(pgr) C U, and if ¢(s) € pg and r(t) € pr
are chosen such that

d(p,q(s)) = s € [0,d(p, q)], d(p,r(#)) =1 € [0,d(p,r)]
and if §(s) € p§ and 7(t) € 7 p are chosen such that
d(p,4(s)) = s, d(B,7(t)) =1,

the£1 d(q(s),r(t)) < d(q(s), th)) < d(§(s),7(¢)) ,Ssee Figure 2-4).
A(pgr(t)) = A(P§7(t)), Alpgr) = A(F§T), Alpg(s)r(t)) = A(P§(s) 7())
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Therefore if wk(s,?) is the angle at p of A(F(s)7(t), (e.g., wi(s,t) =
£i(t) p§(s)), then wi(s,t) is monotone non-decreasing in s and ¢, and hence
the limit of wi(s,t) as s,t — 0 exists. We define the upper angle Z rpq as
this limit in §4. However upper angles do not have nice properties because
of the existence of branch points on geodesics. The behavior of geodesics on
an Alexandrov space with Curv(X) < k is quite different from the case of

" lower curvature bound.

The monotone non-decreasing property of w(s,t) in s and t is called the
local version of the Alezandrov concavaty property for pg and pr. We do not
have the global version of the Alexandrov concavity property. The following
Proposition is clear and its proof is omitted.

Proposition 2.5. Curv(X) < k is equivalent to state that the local version
of the Alexandrov concavity property holds for every point ¢ € X and for
every geodesic ¢y and zz contained in U,.

Lemma 2.6. (The existence of fundamental length). If Curv(X) < k, then
any points p,q € U, for some z € X are joined by a unique geodesic. In
particular X does not admit sufficiently small geodesic biangles.

Proof. Suppose o and 3 are distinct geodesics joining p to ¢ in U,. Here p and
g are chosen in é-ball B(z, ) around x, where B(z,26) is contained entirely
in U;. If r € B, r' € a are the midpoints of them, then a contradiction is
derived. In fact the corresponding geodesic triangle A(pgr) is degenerate in
M?(k), and hence d(r,r') < d(7,#') = 0. This proves Lemma 2.6. 0O

Lemma 2.7. (The existence of strongly convex balls). Let Curv(X) < k.
Let R > 0 be a positive constant (R < n/2Vk, if k > 0) with the property
that B(z,2R) C U,. Then B(z, R) is strongly convex in the sense that any
points in B(z, R) can be joined by a unique geodesic lying in B(z,R). In
particular, the distance function to ¢ is convex in B(z, R).

The convexity property of d(z,-) on B(z, R) is a direct consequence of the
Definition 2.1 of Curv(X) < k, because a continuous midconvex function is
convex. The proof is omitted.
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§3. Angles

Throughout this section let X be an Alexandrov space with Curv(X) > k
for some k € R. For two geodesics @ and  emanating from a point p,
the monotone property of the angle 6(s, t) at f of the triangle A(pa(s)B(t))
corresponding to A(pa(s)B(t)), for sufficiently small s, ¢ implies the existence
of the limit of 8x(s,t) as s,t — 0. This makes it possible to define a natural
angle at p between a and f.

Definition 3.1. The angle Z gpr for g € a, r € § is defined by
Lqpr:= a%:l_l)lo O (s,1).

We observe from Definition 3.1 that

hm Or(s,t) = hm 0x(s,s) = 2sin™ % ( i d(a(s) ﬂ(S)))
Moreover,

(3-1) 2sin~! % (...—»o M) = }1_% 6o(s,3).

Remark. If r is an interior point of a geodesic pq, then Zprq = w. We shall
prove in Lemma 3.5 that if z € X\pq then Zzrp+ Larq = .
Making use of the property of angles as stated in the above Remark, we

have the local version of the Toponogov comparison theorem.

Theorem 3.1. (The local version of the Toponogov theorem). If Curv(X) >
k, and if A(pgr) is sufficiently small, then

Lpqr> Zpgr, Lqrp > Zqrp, Lrpg > Zrpg.

The proof of Theorem 3.1 is straightforward and omitted here. We also
have an equivalent statement of Theorem 3.1 which is called hinge theorem.
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Theorem 3.1°. (Hinge theorem). Let Curv(X) > k and a : [0,a] — X,
B : [0,0] - X be geodesics with a(0) = B(0). If a* : [0,a] — M?(k),
B* : [0,8] — M?(k) are geodesics with a*(0) = 8*(0) and Z(&*(0), 8*(0)) =
Za(a)pB(b), then

d(a(s), B(¢)) < d(a”(s), B*(t))

for all s € [0,a] and t € [0,].

In Riemannian geometry the local version of the Toponogov theorem is
equivalent to the Alexandrov convexity property if the sectional curvature
of a complete Riemannian manifold is bounded below by k. However, an
angle between two geodesics in an Alexandrov space is not defined without
curvature assumptions. Therefore Theorem 3.1 is not equivalent to the (local
version of) Alexandrov convexity property. By assuming the existence of

angles with certain properties, we shall prove the

Proposition 3.2. Assume that a length space X has the property that the
angle Zpqr at q of gp and gr exists in such a way that if p is an interior
point of qr, then Zxpq+ £ zpr = 7 holds for all z € X. Assume further that
for every x € X there exists an open set U, around z such that if A(pgr) is

contained entirely in U,, then
Lpgr > Zpgr, Lqrp> Zqrp, Lrpg > Zrpg.
Then for every point m € qr we have
d(p, m) 2 d(p, ),
where 1 € {7 is taken such that d(q,m) = d(q, ﬁz)

Proof. Suppose that d(p,m) < d(p,m) holds for some point m € ¢r and for
some A(pgr),(see Figure 3-1).
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X)

FIGURE 3-1.

Apgr = A(p§F), Apmr = A(prif), Apgm = A(p )

It follows from what we have supppsed that /> and m are contained in
A(p §7), and hence (2-1) implies that Zpm § < Zpm§. Therefore the local
version of the Toponogov theorem implies that Z$m§ < Zpmyg, and thus
we have Zpmq > Zpm§. Similarly we have Zpmr > Zpm 7 from A pmr
and A p7m. Summing up these two angles gives

T=~Lpmr+ZLpmg> Lpmi+LpmG=m,
a contradiction. This proves Proposition 3.2. 0O

The angles of X with Curv(X) > k has the following properties.

Lemma 3.3. Let {p:},{qi},{ri} be sequences of points in X such that
lim p; = p, limgq; = q and limr; = r and such that lim p;q; = pq, lim p;r; = pr,
lim ¢;7; = ¢qr. Then we have

Zqpr < lim inf Z ¢;p;r;.
1—00

Proof. For an arbitrary fixed € > 0 we choose a sﬁfﬁciently small § > 0 such
that if y € pq and z € pr satisfy § > d(p,y) =: s, § > d(p, z) =: t, then

Or(s,t) < Lgpr < 6k(s,t) +e.
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R

FIGURE 3-2.

Since p;q; and p;r; both converge to pq and pr there exists a number i, such
that if ¢ > 4., and if y; € p;q; and 2; € p;r; are taken such that s = d(p;,y;),
t = d(pi, i), then

|0i(s,t) — 8k(s,t)| <& forall s,te(0,8).
Here 6i(s,t) is the angle at p; of A(p;giz;). Therefore we get

> 0i(s,t) > Oi(s,t) —e > Lqpr — 2.

lim 0;;(3,t) = éq;p;ri
38,t—0
This concludes the proof since € > 0 is arbitrary. O

Lemma 3.4. Let a,f,7 be geodesics emanating from p € X, and take a
point a on a, b on B and c on vy. Then

Lape < Lapb+ £bpc.

Proof. From the definition of angles we see that they do not exceed n. Thus
we only need to prove the case where Z apb+Z bpc < w. All geodesic triangles
under consideration are sufficiently small and shrinking to a point p. In view
of the equation (3-1) we may consider corresponding triangles sketcked on
R2. For a sufficiently small s > 0 we take a triangle A(pa(s)7(s)) on R?
such that d(p, a(s)) = d(p, 7(s)) = s and Za(s)pA(s) = Lapb + Lbpc (see
Figure 3-2).
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Let B(t) € @(s)¥(s) be taken such that

L&(s)pA(t) = Lapb, LA(s)p () = £ bpe.

Notice that A(p &(s)7(s)) forms a nondegenerate isosceles triangle because
of Lapb+ Lbpc < .
Notice also that t/s is constant. Then

d(B(t), o(s))

Fd(a(s), B(t))s = lim =222 d(ﬂ(t),*r(S))

, Fd(B(),3(5))s =

and
d(a(s), B()) + d(B(t),4(s)) = d(&(s),7(s))-

We now denote by 6i(s,t,u) the angle of a geodesic triangle in M?(k) with
edge lengths s,t and u opposite to the edge of length u. Then

HII(I) Or(es,et,eu) = Oy(s,t,u) and Oq(es,et,eu) = bo(s,t,u).
With this notation we see
L ape =l 8u(s, , d(a(s),1(s))) = lim (1,1, L2y

and

d(a(S),‘r(s)) d(a(s), A(t)) + d(B(2), 1(s))
< lim

a—-»O — 8—0

R COYON d(ﬂ(t), i(s))
_ d(@E(), ()

Therefore we have -
ZLape < 6y(1,1, M) = Zapb+ £Lbpc.

This proves Lemma 3.4. 0
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Lemma 3.5. If r € X is an interior point of a geodesic pq and if z € X,
z #r, then |
Lprz + Lqrz = .

Proof. 1t follows from Lemma 3.4 that Zprz + Zqrz > Zprq = 7. Here
£ prq = 7 is trivial from the definition of angles. Thus we only need to show

Lprz + Lgrz < 7.

For sufficiently small s > 0 we choose points p,, ¢, € pg and z, € rz such
that d(r,p,) = d(r,qs) = d(r7$3) = 3. Let A(1”3%378) = A(Ps g ,s). Let
7 € Psfs be the midpoint of ,§, and set A(p,ra:,) = A(p, T &), Z&(q,rz,) =
A(§s 7 &) (see Figure 3-3). From assumption for curvature we see

d(7,&,) < d(F,7.), d(7,&,) < d(F,7").

Ps

FIGURE 3-3.

By means of (2-1), d(§s,%s) < d(s,%,) and d(ps,%s) < d(ps,7"). These
inequalities mean that A(p,7 ,) and A(§,7Z’) do not intersect at their
interior points, and hence Zp, 7 £, + £§,7 " < m holds for all sufficiently

o~y

small s > 0. Therefore Zprz + Lqrz = lin(l)(ép?', Fil + £§,7z") < m. This
8—+

proves Lemma 3.5. O
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FIGURE 3-4.

Lemma 3.6. For three distinct geodesics pa, pb and pc we have

Zapb+ Lbpc+ Lcpa < 2w.

Proof. Fix interior points b' of pb and ¢' of pc and a, of pa with d(p,a,) = s
for small s > 0, (see Figure 3-4). Then Lemma 3.4 implies that Zb'a,c’ <
basp+ Zc'a,p and hence Zaa,b’' + Zaasc' + Lbasd! < (Laagh' + Lbasp) +
(£ aaysd + £ agp) = 2w, The last equality is due to Lemma 3.5.
Lemma 2.4 now implies that lim,_¢ b'a, = b'p, lim,_¢ c'a; = c'p.
Apply Lemma 3.3 to {b'a,s} and {c'a,s} to obtain that
lir% inf Zaasb' > Zapb' (= £ apb)
lin}) inf Zaa,c' > ZLapc' (= Lapc)
liminf Zb'a,c’ > £Lb'pc' (= £ bpe).

This proves Lemma 3.6. O

Consider the following property for a length space X.

The Four Points Property. For every € X there is an open set U, around
z such that if a,b,c,d € X and ab, bc, cd, da, ac,bd C U, then

Zbac + Z cad + Z dab < 2.



AN INTRODUCTION TO THE GEOMETRY OF ALEXANDROV SPACES 19

X) ? M2 (k) p

A(par) = A(p#' ), A(pzg) = AG#F '), Alpgr) = A(H§F)
FIGURE 3-5.

lemma 3.7. Let X be a length space. Then Curv(X) > & is equivalent to
‘the Four Points Property.

Proof. Assume that X satisfies Curv(X) > k. Then the Alexandrov con-
vexity property holds, and the local version of the Toponogov comparison
theorem is valid. Therefore we have

Zbac+ Zcad + Z dab < /bac + £ cad + Z dab.

Since the right hand side of the above inequality does not exceed 27 by
Lemma 3.6, the Four Points Property is satisfied.
Assume that the Four Points Property holds on X. Take an interior point
z € gr for a sufficiently small triangle A(pgr). From assumption it follows
that
prq+2pzr+2qa:r < 2m.

Since A(gzr) is degenerate, so is A(gzr) and thus we observe Z gzr = .
The above inequality reduces to

Zp:z:q+2pzr§7r.
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Suppose that d(p,z) < d(p, &), for some & € §7 and z € qf' with d(g,z) =
d(§,%), where A(pgr) = A(p§7). Let A(pzr) = A@EF ), Alpzq) =
A(p3'§') and &' € pi be chosen such that d(p,z) = d(p,Z'), (see Figure
3-5). Cosine rule implies 0 = cos £Zp & § + cospE 7. From d(p,3') < d(p,z)
it follows that cos Zp#'§ + cos ZpF'F < 0, and hence Zpzq + Zpar =
Lpi'§ + £LpZF'F > =, a contradiction. O

Remark. In 2.7;[BGP] it is stated that a length space X has the property
Curv(X) > k if and only if every point £ € X has a neighborhood U, with
the property that if p,q,r,z € U, are any points then they are embedded
isometrically into M3(R') for some k' > k. Here the k' depends on the choice
of four points in U,, (for detail, see [ABN]). This property is not discussed

here since it is not used in this note.
§4. Upper Angles

The work of A. D. Alexandrov [A] is introduced to define upper angles
between geodesics on a length space. Throughout this section let Y be a
length space and p,¢,r € Y be distinct points. Geodesics emanating from p
and joining to ¢ and r are expressed by s +— ¢(s), t — r(t) where s and t are
arc length parameters.

For an arbitrary fixed constant k let A(pg(s)r(t)) = A(H,§(s)7(t)) be
the triangle in M?(k) corresponding to A(pg(s)r(t)). Then the upper angle
Z(pq, pr) at p of pg and pr is defined by

Z(pq, pr) = 8131_510 sup Zq(s)pr(t).

It follows from definition that Z(pq, pr) € [0, 7] and this angle is independent
of k. With these notations we first prove the
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Lemma 4.1. If we set

cos Zg(s)pr(t) =: ~— d(q(ts),r(t)) +e

)

then, ’I.im e=0.

8 —’0
Proof. By setting w := Zq(s)pr(t) and u := d(r(t),¢(s)) we use the cosine
rule for hyperbolic trigonometry to obtain

cosh kt — coshku  cosh kt(cosh ks — 1)
sinh ks - sinh kt sinh ks - sinh kt

Cosw =

Making use of cosh kt — cosh ku = 2sinh k(t; “) sinh k(t;' %) and
coshks — 1 = 2sinh? -"2—’, sinh ks = 2sinh 52—’ cosh % the above equations

reduces to

2sinh k("; %) . sinh k(’;" ¥ sinh 521 - cosh ks
sinh ks - sinh kt sinh ks - cosh %‘- )

COSW =

Because of t — 0 and £ — 0 the second term of the right hand side in

the above equation tends to zero. Since |s —u| < tand |1 - %] =% - 0,
. sinhﬂ’;"—“Z 1 and & 2sinhl"-§"i_,_—“l S=U e
we get im ———=— =1 and lim - = . erefore i
8 =0 sinh ks s—0  sinhkt t
=0
€ 1= cosw — *5*, then lim £ = 0. This proves Lemma 4.1. O
t—0
£.—)0

We now want to prove the

Lemma 4.2.

Z(pg,pr) =Lm sup Zr(t)pg(s).
=0 5€[0,d(p,q)]

A basic inequality used in this section is:

(4-1) s+ s —d(r(t),q(s)), s €[0,d(pg)]
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is monotone nondecreasing for each t € [0,d(p,r)].

Lemma 4.1 and (4-1) 1mply that

(4-1)* Zr(t)pa(s) < Zr(t)pg(s'), 0 < ' < s < d(p, 9)-
Proof. In view of above discussion we observe that

é(pq,pr)<hm{ sup Zr(t)pq(s)}.

t=0 | s€0,d(p,g)]

For the proof of Z(pg,pr) > lim—o {supsE[O,d(p,q)] Zr(t)pq(s)}, we choose
for t > 0 and &(t) | 0 an s(t) > 0 such that

|Zr(t)pa(s(t)) — sup ér(t)Pq(3)|<6(t)

s€[s,d(pg)]

If there exists a decreasing sequence {t;} | 0 such that lim s(¢;) = 0, then
t—0o0

we have

Z(pg,pr) = lim sup Zr(t)pg(s)

> Fm [Zr(®pa(s(t:) - e(t)

=Ti}3{ ‘sup Zr(t)PQ(S)}-

t—=0 | s€[0,d(p,9)]

Therefore, we only consider the case where there exists a positive number
a > 0 such that s(t) > a for all t > 0. It suffices to prove

Z(pg,pr) 2 lim Zr(t)pa(s).
s>a

If t — 3(t) is chosen so as to satisfy 3(t) > 0, hm 3(t) =0 and hm (tt) 0,
then we may consider s(t) > a > 3(t) for all small t > 0. Then (4—1) and the
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cosine rule of plane trigonometry imply the existence of an ¢ = £"(t) > 0
with lim e"(t) = 0 such that

Zr(t)pg(s(t)) < Zr(t)pa(s(t)) + "

By taking the limit of the above inequality, we have

I {335 Zr(t)pq(s)} < Iim { Zr(0pa(s(t)) + (1))
< Z(pq, pr).

This proves Lemma 4.3. O

As a direct consequence of the above discussion we have the

Corollary 4.4. With the same notations as in Lemma 4.2 we have
(1) cos Z(pg,pr) < lim 2= d(qis)’r(t))

t—0

&—)0

(2) For every fixed se [0, d(p, q)] we have

Sd(a(s), ()| _ > cos Z(pa, pr).

(3) If  is an interior point of pq and if y # x, then Z pzy + Z qzy > .
(4) If pa, pb and pc are geodesics emanating from p, then

Zapb+ Zbpc > Z ape.

Proof. The proofs of (1), (2) are clear from the discussion in the proof of
the previous Lemma, and omitted. To prove (3) we choose sufficiently small
s,t > 0 such that p, =: p(s) € pz, ¢, =: ¢(s) € gz, y¢ =: y(t) € zy as in
Figure 3-3. For a fixed s > 0 we have from (1)

25 — {d(p(s),y(®)) + d(a(s), v} _
) <

cos Zpry + cos Z qry < lim
t—0
-0
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For the proof of (4) we take a(s) € pa, b(t) € pb, c(u) € pc such that
d(p,a(s)) = s, d(p,b(t)) = t, d(p,c(u)) = u, and corresponding points
in M2(k) so as to satisfy A(pa(s)b(t)) = A(Ba(s)b(t)), A(pb(t)e(w)) =
A(pb(t) &u)). Then o

Zapb+ Lbpc = lzm0 sup Z a(s) pb(t) + tlimo sup Z b(t) p &u).
3,t— yU—> i
If ¢ is chosen so as to satisfy b(t) € a(s)&(u), then

Z apb + £ bpc > lim0 sup Z a(s)p é(u).
s, u—

If A(pa(s)c(u)) = A(Ha(s)é(u)), then d(a(s),é(u)) > d(a(s),é(u)) implies
that
l'i‘rﬁ0 sup Za(s)pé(u) > ’l'i‘mo sup Z d(s)p &(u) = ZLapc.

This proves Corollary 4.4. 0O

Lemma 4.5. For a nondegenerate geodesic triangle A(pgr) in X we have

d -~
4 Zr(0pas)
- ’ ~ sinh ——ka ifk<0
> cos qu(.?)rgt) - cog ZLpg(s)r(t) «{1 fk=0
sin Z(pq(s)r(t))

-n—\/y’?;— ifk>0

Proof. Let A(pg(s)r(t)) be the corresponding. triangle to A(pg(s)r(t))
sketched in M2(K), where K = —k? < 0, K = k* > 0 or K = 0. Let
@, 3,7 be upper angles at p, g(s), r(t) between pq(s) and pr(t), ¢(s)p and
g(s)r(t), r(t)g(s) and r(t)p respectively and ak,Bk,7K the corresponding
angles of A(pg(s)r(t)) in M2(K). Set z = z(s,t) = d(q(s),r(t)).

Then these angles are functions on s and t and we assert

Oak S cos B — cos Bk Kk

ds — sin Bk sinh ks (if K <0)
cosfB—cosfx 1 i _

sin Bk s (if K =0)

cos 3 — cos Bk . k (K > 0)

sin S sin ks
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For the proof of assertion we may set ¢ = ks, y = kt, z = kz. The
hyperbolic cosine rule implies

coshz = coshz - coshy —sinhz - sinhy - cosa k.

The monotone property of z implies that z = z(s,t) is differentiable almost
all s and ¢ values. Thus

) 0z ) .
sinhz - —— =sinhz - coshy — coshz - sinhy - cosak

Oz
+sinhz -sinhy - sinhag - %f

makes sense for almost all s and ¢.

The second term on the right hand side of the above equation can be
coshz - coshy — cosh z

replaced by - , and hence
sinhz
0z . . cosh z(cosh z cosh y — cosh z)
—a—x—-smhz—smha: coshy — oha
. . . aOt K
+ sinhz - sinhy - sinag - e

Using again the cosine rule,
coshy = coshz - coshz — sinh z - sinh z - cos Bk

and substituting this into the right hand side,
0z sinhz - sinh 2z - cos Bk

— -sinhz = -
Oz sinh z

The sine rule implies that

. . . 6aK
+sinhz -sinhy-sinag - —.

Oz

sinhy - sinag = sinh z - sin By,

and hence 5
=2 cos Bk + sinh z - sin B - K > cos f.
Oz Oz »
From Corollary 4.4, (2) we have
z —
= > .
35 = 08 B

Therefore by rewriting ¢ = ks,

dag _ cosB—cosBx k
2> - -
0s ~— sin Bg sin ks

This proves Lemma 4.5. 0O
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Lemma 4.6. For a non-degenerate geodesic triangle A(pqr) and for every
€ > 0 there exists a constant a = a(e, K, A) such that if

Zpg(s)r(t) - Zpa(s)r(t) 2 e,

then there exists an s' € (0,s) such that

Za()pr(t) - Za(s")pr(t) > a log >

Proof. Setting Bx := Zpq(s)r(t) and B := Zpq(s)r(t) we see from Lemma
4.5 that

cos B — cos Bk S cos(Bk — €) — cos Bk
sin Bk - sin Bk
=sine — (1 — cos¢) cot fk.

From Bk > € follows — cot fx > — cot €, and hence

cos B — cos Bk

. €
- > sine — (1 — cose) cote = tan ~.
sin Bk

2

Therefore we get

9K + tan €. >
Os — a.n2 sinh ks

and in particular we find a constant b > 0 such that

0, se€(0,d(p,q)l,

ks
>
- b forall se€l0,d(p,q)],

and hence 5 : ; p

oK € e

—— > [ R -—) e — .

55 2 (btan 2) . (btan 2) ds(logs)

We conclude the proof by
* d

ak(s,t) —ag(s',t) > / a- Z;(logs)ds = a(log s — log s').

L]
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Theorem 4.7. For every geodesic triangle A(pgr) let [k(pqr) be the cor-
responding triangle sketched in M*(K) (for K = —k?,0 or k?). Let & :=

a(s,t), B(s,t), 7(s,t) be upper angles of A(pq(s)r(t)) at p,q(s),(t) and
ak(s,t), Br(s,t), 7k(s,t) the corresponding angles of A(p, q(s)r(t)). If

v = lub{a(s,t) + B(s,t) + ¥(s,t) — (ak(s,t) + Bk (s, 1) + 7k (s, 1))
:0<s<d(p,q), 0<t<d(p,r)},

then

a(s,t) —ak(s,t) <v forall (s,t) € [0,d(p,q)] x [0,d(p,r)].

Proof. If A(pgr) is degenerate, then the conclusion is obvious. We may
assume that A(pgr) is nondegenerate. Suppose the conclusion is false. Then
there are t > 0 s > 0, and € > 0 such that

a(s,t) —ak(s,t) > v+ 2.
By assumption we ha.vel
(IBK(S’t) - B(S’t)) + (7K(3at) - '7(3’t)) 2 &(s,t) - aK(3>t) —v 22,

and hence either

Br(s,t) — B(s,t) > ¢
or else

7K(3’t) - 7(3at) 2 E.
Lemma 4.6 and vk (s,t) — ¥(s,t) > ¢ imply the existence of a constant a > 0
and ¢’ € (0,t) such that

' t
ak(s,t) — ak(s,t') > alog m >0,

and similarly from Bi(s,t) — B(s,t) > ¢ implies the existence of a constant
a > 0 and s’ € (0,s) such that '

ak(s,t) —ak(s',t) > alog ;37.
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By taking the mean value, we find an s' € (0,s) and ¢’ € (0, t) such that

(4-2) ak(s,t) —ak(s',t') > alog ?’—7 > 0.

Thus we see
a(s',t') — ak(s',t') > a(s,t) — ak(s,t) > v+ 2¢.

The triangle A(pg(s')r(t')) plays the same role as A(pg(s)r(t)), and the above
argument shows the existence of t" € (0,%') and s" € (0,s') such that

(4-3) a(s",t") —ag(s",t")>v+2¢
and such that

(4-4) ak(s,t) — ak(s",t") > alog — s

tll n’

In view of (4-1)* there exists a positive constant C > 0 which is the lower
bound of all the product s"t" with the properties (4-3) and (4-4). Then there
exists a sequence of pairs (sy,t,) of positive numbers such that hm Spln =
C, and {s,}, {t.} are decreasing and satisfy (4-3) and (4-4). By setting
s = lergo spand t = nle t, we see from contmulty of logarismic function
that ?s t) satisfies (4-3) ao.rid (4-4). The above argument shows the existence
of 3 < 3 and ¥ < t such that (3',%') fulfills (4-3) and (4-4), a contradiction

to the choice of C > §'t'. This proves Theorem 4.7. O
Alexandrov defined in [A: §3] the notion of curvature of a length space Y’
bounded above by k as follows.

Definition 4.8. The curvature of Y is bounded above by k iff at each point
y € Y there exists a convex neighborhood Uy, in such a way that if A(pgr) is
contained entirely in Uy, then

Zgpr + Zpgr + Zqrp — (Zgpr + Zpgr + Zqrp) < 0

(If £ > 0 then the circumference of every geodesic triangle is assumed to be

less than 27/Vk).
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2 q

A(pgr) = A(p§7), Aprs) = AF '), A(pgs) = AFGS)
FIGURE 4-1.

We now want to show that a length space Y satisfying Definition 4-8 is
equivalent to Y satisfying the Alexandrov concavity property. The Alexan-
drov concavity property implies Definition 4.8 because the function ay(s,t)
is monotone nondecreasing and Zgpr = ar(d(pg),d(pr)) > Zgpr. Assum-
ing Definition 4.8 for Y, Theorem 4.7 yields Zqpr < Zqpr, Zpqr < Zqpr
and Zgrp < Zgrp. If follows from Corollary 4.4-(3) that if z € gr, then
A(pgz) = A(H§3') and A(per) = A(p z' #') has the property that (see Fig-
ure 4-1) : ’

7 < Lpzr + Zpxq < LpE' T+ LpF §,
and hence we have
d(p,z) < d(p, &)
for & € §7 with d(%, §) = d(z, q).

Remark. It turns out that we only need to take the limit in the definition of
upper angle for an Alexandrov space with curvature bunded above, as stated

Lqpr = lim0 Zq(s)pr(t).
In fact the monotone property of ax(s,t) for s € (0,d(p,q)], t € (0,d(p,7)]

has been established by showing the equivalence of Definition 4.8 and the
Alexandrov concavity property.
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For a sufficiently small geodesic triangle A = A(pgr) in Y and for a
constant k we denote by AF a geodesic triangle in M%(k) corresponding to
A, and by o(AF) the area of A¥ C M?(k). We denote the angles by

Il
N!
2
Il
NI

o‘z::qur, B:
ay : = Zqgpr, Br

qrp
rgp.

par,
paqr, Vi -

R

k
I
Nt

Let 6x(A) := @+ B +7 — (ak + Br + 7). With there notations an equivalent
condition for Y to have curvature bounded above is stated as follows.

Theorem 4.9. For a length space Y, the following (a) and (b) are equiva-
lent.

(a) Curv(Y) £ K.

(b) For every point y € Y there exists a strongly convex neighborhood Uy
around y in such a way that for every sequence {A,} of geodesic triangles in
U, shrinking to a point p € U,

. 60(4;)
fim s 245

<K.

Remark. From definition we observe §o(A) — 6x(A) = ar + B + & — 7, and
hence from the Gauss-Bonnet theorem we have

K - o(AF) = 6p(A) — 6x(A).

Proof of (a) = (b). From definition 3.1 it follows that 6x(A) < 0 for all
A C Uy, and hence
K - o(A%) > §,(A).

Therefore, by setting A; := o(A9)/a(A%) we have

BBy, (A))
B2 5@ =4 @y

Clearly lim A; =1, and (b) is derived.
j—00
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FIGURE 4-2.

Proof of (b) => (a). For an arbitrary fixed small positive number & and for
an arbitrary small A C Uy, the condition (b) implies

8o(A) < (K + €)a(A0).

Thus we have

(K +€)o(A%) = (K +¢) - a(AM) - _——U((I(AAH)e)
o(A°
= sty 2L,

Notice that if K +¢ > 0, then 0(A%) < o(A¥+¢) and if K + ¢ < 0, then
o(A%) > o(AK+¢), and hence
a+pf+7—m=06(A)< (K +e)o(A%)
< (K +€e)a(AKF) = ap + B + 7 — .
This proves Theorem 4.9. O

The following result is due to Alexandrov [A].

Theorem 4.10. Let Curv(Y') < k. If a geodesic triangle A(pqr) contained
in Uy for some point y € Y_has the property that one of the upper angles,
say Zqpr at p, is equal to Zqpr, then there exists a unique smooth tatally
geodesic surface S in Y of constant curvature k which is bounded by A(pgr).

Proof. 1t follows from assumption that if € ¢r and Z € §7 are taken such
that d(q,z) = d(g, £), then d(p,z) = d(p,&). In view of Corollary 4.4, (3)
we have Zpzq = /piq and Lpzr = /p,% 7, and by letting z — ¢, z — r we
observe Zpgr = Zpqr and Zprq = Zprq. -'
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If z € pq and Z € p§ are taken such that d(p,z) = d(pZ), then d(r,z) =
d(, %) and 7 # intersects §# at a unique point @ (see Figure 4-2). If w € pz
is a point with d(p,w) = d(p %), then d(r,%) = d(7 ¥) and d(z,w) = d(%, W)
follows from the fact that A(prw) = A(p7 @) and A(pzw) = A(pZ %) having
the same corresponding edge angles at p and p. Therefore d(r, w)+d(w, 2) =
d(r,z) and hence w € rz. This fact means that if a : [0,d(g,r)] — X
and B : [0,pg] — X are the edges with a(0) = B(0) = g, a(d(q,r)) = r,
B(d(p,q)) = p, then a natural maps f : [0,d(p,q)] x [0,d(g,r)] — X and
F:[0,d(p,q)] x [0,d(q,r)] = A(p§F) is defined as follows. To each (u,v) €
[0, d(p, q)] X [0,d(g, )] a point f(u,v) (respectively, f(u,v)) is asigned as the
intersection of geodesics pa(u) NrA(v) (respectively, pa(u) N7 B(v)), where @
and § are the edges of A(f§ ) corresponding to a and f. The two geodesics
pa(u) and ¢B(v) (respectively, pa(u) and G B(v)) divide A (respectiely, A)
into four small geodesic triangles, all these corresponding triangles have the
properties that all the corresponding edge lengths and angles are the same.
Therefore we see that E := fo f1: A - X is an isometric embedding.
This map is totally geodesic in the sense that any two points on E(A) are
joined by a unique geodesic which is contained entirely in E(A). This proves
Theorem 4.8. 0O

Remark. The proof of Theorem 4.10 is valid for Alexandrov spaces with
curvature bounded below. In this case the Alexandrov concarity property
is replaced by the Alexandriv convexity and the property of complementary
angles in Corollary 4.4 (3) is replaced by Lemma 3.5. A careful treatment
is needed because the fundamental length does not exist. This property is

proved in Lemma 6.4 and used for the proof of the lemma on narrow triangles.
§5. Examples

We shall exhibit examples of Alexandrov spaces with curvature bounded
below and above.

5-1. First of all Alexandrov sapces with curvatue bounded below are givne

as follows.
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(1) Every complete Riemannian manifolds whose sectional curvature is
bounded below are Alexandrov spaces of curvature bounded below.

(2) Every convex body in R"*! has its boundary X with inner distance
induced from R"*! is an Alexandrov space whose curvature is bounded below

by 0, but not bounded above at vertices. We denote it by
0 < Curv(X) < +o00.
(3) The double of unit balls B"(1) Usgn(1) B"(1) = X joined along with
their common boundary unit sphere S"~! ¢ R" with inner distance induced
from R" is an Alexandrov space with

0 < Curv(X) < +00.

(4) For alength space X with diameter d(X) < = the cone K(X) generated
by X with vertex at o € K(X) is defined as follows.

K(X) := {(z,t);z € X,t >0, (z,0) = o for all z € X}.

The distance p of K(X) is introduced by

p(21,11), (22, 12)) = \ /] + 8 — 212, cos (s, y).

It is not difficult to check the triangle inequality for points on K(X). There
is a natural embedding ¢ : X — K(X) such that ¢(z) := (z,1) for z € X. If
(plp(X))* is the interior metric on X induced through p, then d = (p|p(z))*.
In fact, if z,y € X then (plp(X))*(z,y) = 1/2 — 2cosd(z,y) = 2sin ﬂ%’l.

Therefore we have

im (Pl (@y)
d(z.y)—0  d(z,y) '
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K(X) : R?)

FIGURE 5-1.

Theorem 5.1. (Theorem 3.7 in [BGP]). Let X be a length space with
d(X) < n. Then K(X) is a length space. Moreover the following (a) and (b)
are equivalent.

(a) K(X) has curvature bonnded below by 0,

(b) X has curvature bounded below by 1.

Proof. For the proof of K(X) being a length space it suffices to show that
K(X) satisfies the Menger convexity. Let u = (,s), v = (y,t) be points
on K(X) such that z,y € X and s,t > 0. Let z be in interior point of a
geodesic zy in X and w € K(X) with W = (z,1) be taken in such a way
that if A(o*u*v*) is a plane triangle with d(o*,u*) = s, d(0*,v*) =t and
Zu*o*v* = d(z,y) and if w* € uFv* is taken such that Zu*o*w* = d(z,2),
then [ := d(o*,w*). From the definition of distance on K(X) we see p(u, w) =
d(u*,w*), p(v,w) = d(v*,w*) and p(u,v) = d(u*,v*), and hence w € K(X)
satisfies p(u, w) + p(w,v) = p(u,v).

The above discussion means that for every z,y € X and for every geodesic
zy the set {w = (2,t) : z € zy, t > 0} is isometric to the plane sector whose
vertex angle is d(z,y).

Finally we take u = (z,s),v = (y,t),w = (2,]) € K(X) and corresponding
points u*,v*, w* € R® with the origin o* such that d(o*,u*) = s, d(o*,v*) =
t, d(o*,w*) = | and Zv*o*v* = d(z,y), Lu*o*w* = d(z,z), Lv*o*w* =
d(y, z), (see, Figure 5-1).
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Let z € $2(1)No*u*, § := S%(1)No*v*, # = S?(1)No*w*. Then A(zyz) =
A(#§%). If p= (m,h) € vw is an arbitrary point, then m € yz and we
find corresponding point p* = (v, k) to p on v*w* with d(v*,p*) = d(v, p).
Therefore Curv(K (X)) > 0 implies p(u,p) > d(u*,p*), and in particular
d(z,m) > d(%,7) means that Curv(X) > 1. This proves (a) = (b). The
converse is now clear. This proves Theorem 5.1.

(5) the cone K(RP"~!) generated by the real projective (n — 1)-space
of constant curvature 1 is obtained as the pointed Hausdorff limit of the
following sequence of Riemannian (n + 1)-manifolds. Consider R"*! = R x
R"™ 5 (t,z) and let g. = R™*! — R"* for every ¢ > 0 be a fixed point free
isometry such that g.(t,z) = (¢ +¢, —z). Let (g.) be the group of isometries
over R"*! generated by g, and set M, := R™1/(g,). The pointed Hausdorff
limit of {M,}¢|o is the K(RP"™!) with base point at the origin 0* of R**+!
and o € K(RP™!) its vertex.

lim (M.,o0*) = (K(RP"™1),o).
e—0 dy
This cone has an essential singularity at o, appeared as the result of a col-
lapsing phenomenon. ,

(6) The spherical suspension. The spherical suspension (X ) of an Alexan-
drov space X with Curv(X) > 1 is obtained as follows. Let $(X) :=
{(z,t);z € X, 0<t < 7,(2,0) = (y,0), (z,7) = (y,= =) for all z,y € X}.
Then p the distence function on £(X) is defined as the cosine rule of spherical
trigonometry:

cos p((21,t1),(22,t2)) = costy - costy +sinty - sint, - cosd(z,y).

By using the same isometry group (g.) acting freely on R x S®~1, we observe
that if Ne =Rx Sn—l/<ge> then lime-—-»() dyg Ne = E(R‘Pn_l)- a

Remark 5.1. X = Bz(l)U2B(l) B?(1) as in example (3) does not have cur-
vature bounded above. In fact suppose that therse exists a K > 0 such that
Curv(X) < K. Let p,q € dB?(1) be taken such that d(p, q) < 7/v/K. There
exist two distinct geodesics a;,a; : [0,d(p,q)] — X joining p to ¢ with the
angle Z(ay,a;), at p being equal to 2sin™? d—(’;’—q). If m; = a;(d(p,q)/2) for
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i = 1,2, then d(m;,mz) > 0. If A(pmiq) = A(ﬁr’hltj) and if g, is the
midpoint of pg, then Curv(X) < K implies |

0< d(ml,mg) < d(ﬁ‘l.l,fhz) =0,

a contradiction.

5-2. We next show exaraples of Alexandrov spaces with curvature bounded
above.

(7) Every complete Riemannian manifold with sectional curvature bounded
above is an Alexandrov space with curvature bounded above.

(8) The complement X of a closed convex body in R" is an Alexandrov
space with curvature bounded above by 0 but not bounded below.

0 > Curv(X) > —oo.
(9) The double of the complement of B”(1) C R". Let X be such that

X :={R"\B"(1)} |J {R"\B"(1)}.
8B*(1)

Then 0 > Curv(X) > —oo0.

Remark 5.2. Let X = {R*\B?(1)}Uppz1){R?\B?*(1)}. We then see from
Figure 5-2 that 0 > Curv(X).

X) N - R

]

B*(1) p

[¢1]

ST

FIGURE 5-2.
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__ R™\B™(1)
/) O

o
.
.
H
H .
.

R™\B"(1)

FIGURE 5-3.

Suppose that Curv(X) > —k? for some k > 0. Let A(rpq) be an isosceles
triangle in X with p,q € dB%(1) and Zprq = 6 being sufficiently close to 7 /2
such that pr and ¢r are tangent to the unit circle at p and ¢ respectively.
Then we get d(p,r) = d(q,r) = cot 6 and d(p,q) = 7 — 26. If m € pq is the
midpoint of the geodesic pg, then d(r,m) = cosecd — 1. Setting h := d(F, i),
where A(pgr) = A(p§) and € p§ is the midpoint of pq in M%(k?), we

have
cosh(k cot 6)
cosh k(% —6)

Setting t := I — 6 > 0, the above equation is rewritten as

coshAkh =

cosh kh = cosh(k tan t)’
cosh kt
and Curv(X) > —k? means that ed(r,m) > d(#,7) = h. Thus we have
1—cost >h
cost
On the other hand,
1 —cost

0 = cosh kh-cosh kt —cosh(k tant) < cosh k(

p— )-cosh kt— cosh(k tant).

However the last term is negative for sufficiently: small positive ¢, a contra-
diction.
(10) X = {R"\B"*(1)} U S~ x [0,1] U {R™\B™(1)} as in Figure 5-3 has
curvature
0 > Curv(X) > —oo.
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Remark 5.9. As is seen is the above examples X with curvature bounded
above may allow its geodesics having branch points. Also X with curvature
bounded below may admit suppiciently small geodesic biangles.

The following example (11) shows that the curvature property does not
preserve on the Hausdorff limit of Riemannian manifolds.

(11) For given ¢ > 0 let M, be the surface obtained by gluing a flat
cone with a flat forus S1(e) x S(¢) in such a way that ¢/4-ball is removed
from S(¢) x S'(€) and also from a flat cone whose center is at the vertex 0
and that M, has negative Gaussian curvature in a neighborhood around the
g/4-circle.

Taking a base point o € M, on the flat torus, we see that

lim (M,;o0) = (C;0"%)

e—0 dyg .

The Gaussian curvature of M, is nonpositive but C has curvature bounded
below by O. |

In the case of lower curvature bound we have the

Theorem 5.2. (Grove-Petersen-Wu [GPW)). If {M;} is a sequence of com-
plete Riemannian n-manifolds of sectional curvature uniformly bounded be-
low by k and diam(M;) < D for a constant D > 0, and if X is its Hausdorff
limit, then we have

Curv(X) > k,

and
dimX <n.

For the proof of dim X < n in Theorem 5.2 we need the notion of strainer
by which the dimension of an Alexandrov space with curvature bounded
below is well defined as a positive integer. This will be discussed in §7. More
generally we can prove that if {X;}; is a sequence of Alexandrov spaces such
that Curv(X;) > k, and if X is the Hausdorff limit of {X;}, then X is an
Alexandrov space with Curv(X) > k.



AN INTRODUCTION TO THE GEOMETRY OF ALEXANDROV SPACES 39

Curv(X) = 400 at corners outside, Curv(X) = —o0 at corners inside

FIGURE 5-4.

A prismblock in R? as in Figure 5-4 is an example of a length space whose
curvature is neither bounded above nor below.

All examples as above are obtained as the Hausdorff limits of certain
sequence of complete Riemannian manifolds. A natural question arising from
these examples is if every Alexandrov space with curvature bounded below
(or above) can be obtained as the Hausdorff limit of a certain sequence of
complete Riemannian manifolds.

We next provide an example of a length space obtained as the Hausdorff
limit of complete surfaces of nonpositivé curvature in R3, at some points on
which curvature is not defined.

(12) Let o = ¥(—1,0,0) and o, = *(1,0,0) and C;, C; be cones with
vertices at 01, 02 generated by half-lines passing throug o; and o, (see Figure
5-5)

Let X be the union of C; Uoy0, UC;. Clearly X is a length space obtained
as the Hausdorff limit of complete surface of revolution aroung z-axis of non-
positive curvature. Geodesics passing through o, and 0, and containing these
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03

FIGURE 5-5.

points in interiors have branch points at these points. Moreover there exist
arbitrary small geodesic biangles in C; and C; around ¢; and o, respectively.
Thus we see that curvature bound is not defined in any neighborhood around
o; for : = 1,2. This example also shows that the dimension of a length space
is not constant. The gap of dimensions is caused by collapsing phenomenon.

(13) Let M be a smooth complete noncompact,Riemannian n-manifold of
nonnegative sectional curvature, and fix a base point 0 € M. For every rays
v,0 : [0,00) = M and for sufficiently large t > 0 let a;, b, > 0 be defined as

a; := sup{u > 0;d(y(u),0) = t}, b; := sup{v > 0;d(o(v), 0) = t}.

We then say that v and o are equivalent if and only if (Kasue [K])

b doan,o(b)) _

t—oo t

This equivalence class Rpys/ ~ on the set of all rays Ry on M defines an
ideal boundary M(oo) equipped with a metric do, : M(00) X M(00) — [0, 00)
as follows. If z,y € M(o0) and if ¥ € z and o € y, then

d(ery) i lim 20@0:0()

— 00 t

Let R, for p € M be the set of all rays emanating from p. A ray v, €
R, is said to be asymptotic to v € R, iff there exists a sequence {v;} of
minimizing geodesics whose starting points converge to p and whose end
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points are on ¥([0,00)) such that lim;_. 7;(0) = 7,(0). We then observe
from the Toponogov comparison theorem that

o 5®) _
t

t—o00

This fact means that the equivalence class M,(o0) := R,/ ~ coincides with
M(o0). Notice that the asymptotic relation between two rays is not in general
an equivalence relation because it is not symmetric.

We then define the distance p, on M,(o0) as follows. Let z,y € M,(o0).
It then follows from the Alexandrov convexity property that if v,0 € R,
such that 4(co0) € x and o(00) € y, and if 8(s,t) for s,# > 0 is the angle at
6 of A(oy(s)o(t)) then 6(s,t) is monotone non-increasing for s and ¢. Thus
the limit of 6(s,t) as s, — oo exists. Let

po(z,y) = lim 6(s,1).

For any z,y € M(o0) and for any v € z, ¢ € y we choose asymptotic rays
Yo € R, and 0, € R,. Then we have p(z,y) := po(7,(00), 0o(c0)), and
define the Tits metric p on M(cc0). The Toponogov comparison theorem
implies that

p(z,y)
-

Let AM for A > 0 be the sacling by ) of the metric of M. It follows from
Lemma 1.2 and Theorem 5.1 that the pointed Hausdorff limit of {AM} as
A — 0 is an Alexandrov space with curvature bounded below by 0. We then

doo(z,y) = 2sin

prove a result by Gromov (see [BGS]),

Theroem 5.3. If M is a complete noncompact Riemannian manifold of
nonnegative curvature then

lim (AM; 0) = K(M(o0), p); 0*),

where o* is the vertex of the cone. Moreover (M(00),p) is an Alexandrov
space with .
Curv(M(o0),p) 2 1
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Proof. We only need to prove that limy_o(AM;0) = K(M(o0); p);0*). Let
u,v € K(M(00),p). Then u = (z,a) and v = (y,b) for some z,y € Ro
and for a,b > 0. Let v € z, 0 € y. Then A(oy(A~*a)a(A71d)) for suf-
ficiently small posiitve A sketched in R? has an angle at 6 (A~1a,A71b),
and limy_o 8(A"1a, A71b) = doo(z,y) follows from the definition of the Tits

metric. Thus we conclude the proof by
}‘irrh dam(y(A71a),a(A71b)) =.p(u,v).

O

A similar result can also be proved for a finitely connected complete open
surfaces admiting total curvature (finite or infinite). The ideal boundary of
such a surface is investigated in [Sy-2] and [Sy-2], by which we can prove
the following: Let S be a finitely connected complete open surface with total
curvature (finite or infinite). Then for an arbitrary fixed base point o € S,

we have

lim 4, (253 0) = K((S(0), ), 0%)

Here o* is the vertex of the cone.
§6. The Toponogov Comparison Theorem

Throughout this section let X be an Alexandrov space with curvature
bounded below by k. We want to prove the

Theorem 6.1. (The Toponogov Comparison Theorem) For every geodesic

triangle A = A(pgr) there exists a corresponding geodesic triangle A =
A(pqr) in M?*(k) such that

Lqpr > Zqpr, Lpqr > Zpgr, Lqrp > Zqrp.
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Theorem 6.2. Ifk > 0, then every geodesic triangle in X has circumference
not greater than 2r/vk. In particular, if there exists a geodesic triangle
with circumference 27 /V'k, then the diameter d(X) of X is equal to m/\/k.
Moreover X is isometric to either the spherical suspension ¥(X;) of some
Alexandrov space X; with Curv(X;) > k if d(X) = n/V/k, or else the double
suspension ¥2(X;) of some Alexandrov space X, with Curv(X;) > k if the
geodesic triangle with length 2 //k has all of angles equal to .

The following lemma on limit angles plays an essential role for the proof
of Theorem 6.1. We employ the original idea of Toponogov (see [T-1]) for
the case of Alexandrov spaces. Therefore some modification is needed. We
employ the property of geodesic biangles which states that if {a;, 8;}i=1,2,... is
a sequence of geodesic biangles with common starting point p = a;(0) = 5;(0)
such that the limit of lengths of a; converges to 0, then the limit of angles
between a; and B; at p tends to 0 as ¢ — oo (see Lemma 8.5).

Lemma 6.3. (Lemma on limit angles) Assume that Curv(X) > k. Let v be
a geodesic with 4(0) = p and y(a) = q. For a point r € X if 0} is a geodesic
from ~(s;) to r for sj € (0,a) with sj | 0, then

lim0 sup £ry(s5)q < £Lrpg,
8§ —

where the right hand side in the above inequality means the angle at p be-
tween v and any geodesic joining p to r.

Proof. Suppose that the conclusion is false. Then there exists a sequence
{o;} of geodesics joining v(s;) to r and a geodesic 7 joining p to r such that
lim;j_, $; = 0 and such that

a:= lim Zry(sj)g > Lrpg = £(v,7) =: a.
j—oo

Let o be the limit geodesic of {0} and fix a small positive ¢ € @ —a. Then
there exists a large number j(¢) such that if j > j(¢), then there is a point
zj € oj with the property that

Lzjpy(s;) € (a —€,a +¢).
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In fact, we define I := {t € [0,d(r,v(s;))]; every geodesic po;(t) has the
property Zo;(t)py(sj) < a —¢e}. Clearly 0 € I and there is an interval
Iy = [0,t;) C I such that t; < d(r,0(s;)) and t; belongs to the boundary of I.
Then there exists either a geodesic poj(t;) with Za(t;)py(s;) € (a—¢,a+¢),
or a geodesic biangle (aj, 8;) with corners at p and o(t;) whose angle at p
is not less than 2¢. Suppose that there is a sequence of geodesic biangles
(aj, B5)}; such that a;(0) = B;(0) = p and &;(l;) = Bj(l;) = 0;(t;) and
such that the angle at p is not less than 2¢, where l; = d(p,0j(t;)). Because
{oj(tj)}; converges to p we see ]l_l_’rgo l; = 0. This contradicts to Lemma
8.5 in §8. Choose a point y; € 7 and z; € o; such that (see Figure 6-1)
d(p, z;) = d(p,y;) = d(zj, ;).

FIGURE 6-1.

From triangle inequality we see

d(p’ xj) + d(xja 7‘) 2 d(p, 7’) = d(pa yj) + d(yj, 7'),

and hence
d(xj’r) _>.. d(yjar)

Similarly we get

d(r,y;) + d(yj,7(s;5)) 2 d(r,7(s;)) = d(r, =) + d(z;,7(s;))-
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Since U, contains the points z;,y;,¥(s;) for all j > j(e),

d(zj,7(s5)) = d(y;,7(s;)) + O(es;)
and .
d(p, zj) = 2d(p, z;) - sin % + O(es;j),

where ©; := Zpz;vy(sj) tends to @ — a since limo; = o and the geodesic
triangles {A(pz;y(s;))}, converge to a plane triangle with angles a, 7 — @
and @ — a. Summing up above computations we see

d(r,y;) = d(r,z;) + O(es;).
Finally we see
d(p,r) < d(p, z;) + d(z;,7)
= d(p, z;) + d(zj,r) — d(zj,z;)
= d(p, zj) + d(r,y;) — d(zj, 2;) + O(es;)
= d(p, z;) + d(pr) — d(yj, p) — d(z;, zj) + O(es;)
= d(p,r) — 2d(p, z;)(1 — sin %) + O(es;j).

This is a contradiction for large j. O

A geodesic triangle A(pgr) is called a narrow triangle iff

pqUpr C U u.n U U,
z€pq yEpr

is satisfied. The lemma on narrow triangles (see Lemma 6.5) plays an essen-
tial role for the proof of Theorem 6.1 and the proof of it is different from the
Riemannian case. For the moment we assume Lemma 6.5 and see how to
proceed the proof of Theorem 6.1.

The proof of Theorem 6.1 by assuming Lemma 6.5..
Let A(pgr) be a geodesic triangle with edges o, # and v in X. If k > 0,
then we assume that the circumference of A is less than 27 //7. We prove
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i+

FIGURE 6-2.

Zrpq > Zrpq. Let v : [0,d(pg)] = X be the edge joining p = ¥(0) to
g = 7(d(p, q))- Choose a sufficiently fine partition 0 = 50 < 1 <...,<sN =
d(p, q) of [0,d(p, q)] in such a way that for every i = 0,--- ,N — 1 there is a
narrow triangle A; = A(v(s;)v(si+1)r) with edges v|[si, 8i41], i := ry(s;)
and B; := ry(si+1) (see Figure 6-2). Here a; for every ¢ = 0,...,N —1is
chosen as the limit of ry(s) as s | s;, and therefore lemma 6.3 implies that
Z(Bi=1,7)ly(s) = £(@iy¥)|y(s)- In particular ap may be different from a.
Because Lemma 6.3 implies Zrpg = Z(a,7)|p = £(@0,7)|p, we need to prove

L(ao,7)p = Zrpa.

By setting v(si) = ¢; (p = go, ¢ = gn) We see from the lemma on narrow
triangle, |

£7qigiv1 > 2 7qigiv1, LTqiv1Gi > Z7qiv1gi.

The sum of angles at ¢; of A;_; and A; does not exceed 7. The points
,§i—1,G; and §;4+1 form a convex quadrangle, if they are placed in such a
way that A;_; and A; do not overlap and they have the common edge i,
(see Figure 6-3).
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M?(k)

gi-1 G di+1 Gi-1 §i+1

| FIGURE 6-3.

Therefore if A(r gi—1¢i4+1) = A(F i1 dit1), then Zrgi_1giys > £7Gi—yd;
Z éi’:éi_.l é,’+1 and sirmlarly, ZT'QH.]Q,'_I Z ZFQ,‘+1@,‘-1. By iterating this
procedure we have

Lrpg 2 Lo, Y)lp = Lrqoqs > L7 GoGa > -+ > Zrpg.

This completes the proof of Theorem 6.1. O

We see from the above discussion that if A(rpy(s)) = A(757(s)), then
s + Zrpy(s) is monotone non-increasing in s € [0,d(p,q)]. Therefore the
Alexandrov convexity property holds for any two geodesics in X emanating
from a common point.

For the proof of the lemma on narrow triangles we need Lemma 6.4 which
deals with the critical case where the angles of a narrow triangle A are equal
to those of the corresponding triangle A.

Lemma 6.4. Let a : [0,a] = X and B : [0,b] — X be geodesics with
a(0) = B(0) = p such that

o([0,a) UB(0,8) € | Vs U Useo-

s€[0,a] te[o,b]
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Assume that there are so € (0,a) and to € (0,b), and a geodesic a(so)B(to)
such that

(1) the Alexandrov convexity property holds for all angles of A(pa(s)B(t))
for s € [0, 3], t € [0,0].

(2) ZpB(to)a(so) = ZpBlt)a(so).

Then there exists a totally geodesic smooth surface of constant curvature
k bounded by the geodesic triangle A(pa(so)B(to)).

Proof. : -
P wwy N
B(v)
B(v)
Blto)
a(sg) () B(to) 0
a(so)
- FIGURE 6-4.

Let v : [0,c] = X be the edge of A(pa(so)B(te)) such that the angle
beween 7 and B at B(ty) = 7(0) is equal to Z pB(ts)a(so). For each u € [0, c]
we see from (1) that

d(p,v(v)) = d(p,7(u))
and also for each v € [0, %],

d(a(s0), B(v)) = d(&(s0), B(v)),

and therefore we have

d(y(u),B(v)) = d(3(u), B(v)), forall (u,v) € [0,c] x [0,%].
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First of all we assert that Z pa(s0)B(te) = £ pa(s0)B(te) and Z a(se)pB(te)
= Z a(30)pP(to). Because A(pf(to)y(u)) and A(py(u)a(s,)) have all angles
not less than the corresponding angles, 7 = Z py(u)B(to) + £ py(u)a(se) >
Zpy(u)B(to) + Zpy(u)a(se) = m implies that for all u € (0,¢) and for all
M(u) =Tu

£py(w)B(to) = Zpy(u)B(te), £py(w)a(so) = Z pyr(u)a(so).

Since hm Tu = a | [0, s0], this proves

£ pa(s0)B(to) = £ pa(so)B(to)-

The same discussion leads to £ a(so)pB(te) = Z a(se)pB(te).

The above fact implies that for every u € (0,c) and for every v € (0,1,)
the angles of A(B(%0)y(u)B(v)) are the same as the corresponding angles.

Secondly, we prove that for an arbitrary fixed u € (0,c) and for a fixed
geodesic 7, : [0,0,] = X with 7,(0) = p, 7u(lu) = 7(u), L, = d(p,v(w)),
there exists for each v € (0,%9) a unique geodesic o, = [0,m,] — X with
04(0) = B(v), o,(my) = a(so), my, = d(a(s¢), B(v)) such that o, meets 7, at
a unique point. In fact, if &, = [0,m,] — M?2(k) is a geodesic corresponding
to oy, then G, meets 7, at a unique point, say, 7n(z) = &,(w).

It follows from what is discussed in the last paragraph and from the
Alexandrov convexity property for the angle at p of A(py(u)B(to)) we have

d(B(v),7u(2)) = d(B(v), u(2)),
and similarly from A(py(u)a(so)),

d(a(so), Tu(2)) = d(@(s0), 7u(2)),
d(B(v), a(s0)) = d(B(v), &(s0))-

This proves the second assertion.
Finally let o, for each v € [0,,] be the geodesic joining B(v) to a(sq) such
that o, intersects 7, at a point 7,(z) = o,(w). Set

Fu i= {2 € 04([0,d(a(s0), B(v))]); v € [0,%0]}

where o4, = 7. By the same manner as in the proof of Theorem 4.8 we obtain
an isometric embeddmg of A into X which is smooth and totally geodesic.
This proves Lemma 6.4. O

and also

Remark. Under the assumptions in Lemma 6.4 we know that for every s €
[0,30] and t € [0,%0] the number of geodesics joining B(t) to a(s) is equal
to that of geodesics joining B(tg) to a(sg), and is equal to that of totally
geodesic smooth surfaces of constant curvature k¥ bounded by ([0, s9]) and
B([0,t0]). Every geodesic a(s)ﬂ(t) lies on some Fu.
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Lemma 6.5. (Lemma on narrow triangles) Let a : [0,a] — X and 3 :
[0,5] — X be geodesic s with a(0) = 8(0) = p, a(a) = g, B(b) = r such that

A(pgr) forms a nondegenerate geodesic triangle and such that

o([0,a)) UA(0,8) € |J Uapn | Uso-

s€[0,a] 't€[o,b]

Then the Toponogov conparison theorem holds for every geodesic triangle

A(pa(s)B(t)) and for all s € [0,a], t € [0,b].

Proof. For sufficiently small positive s and ¢t we have A(pa(s)B(t)) C Up. Let
s* € [0,a] and t* € [0, b] be defined as follows: For every s € [0,s*) and for
every t € [0,t*), the Toponogov comparison theorem holds for A(pa(s)A(t))
and a(s*)B(t*) C Ug(e+) N Up(s+). Definition 2.1 ensures that s* and * exist
with s* > 0, t* > 0. Let L be the least upper bound for the sum s* + t* of

such pairs (s*,t*). We only need to prove
L=a+b

Suppose that L < a+b. Then there is a pair (s*,t*) such that L = s*+t*.
Without loss of generality we may assume that

s* < a.

There exists for a sufficiently small ¢ > 0 some numbers s’ and ' near s*
and t* such that for every s € [s*,s* + €],

a(s)ﬁ(t*) - Ua(s') N Uﬂ(tr).

By means of the choice of s* and t* we see that A(pa(s)B(t*)) for every
s € (s*,s* + €] does not have angles greater or equal to the corresponding
ones, and hence we have from A(B(t*)a(s*)a(s)) C Uas'y N Upery,

(6-1) £pB(t*)a(s) < ZpB(t*)a(s).
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Taking the limit of Z pB(t*)a(s) as s | s*, we see £LpB(t*)a(s*) < ZpB(t*)a(s*).
The opposite inequality is guaranteed by the choice of s*,t*, and hence for
every geodesic a(s*)3(t*) we have

£pB(t*)a(s*) = ZpB(t*)a(s").

Thus Lemma 6.4 implies that A(pa(s*)B(t*)) for every geodesic a(s*)A(t*)
has all angles equal to the corresponding angles of A(pa(s*)3(t*)) and that
there exists a smooth totally geodesic surface of constant curvature ¥ bounded
by o([0, s*]), B([0,t*]) and a(s*)B(t*). It should be noted that there is no
such a geodesic a(s*)B(t*) that satisfies Z pB(t*)a(s*) > ZpB(t*)a(s*). The
existence of such a geodesic violates the choice of s* and #*.

Setting ¢* := a(s* + ¢), we find a number s; € (0,s*) with the property
that the angle comparison holds for every geodesic triangle A(B(t*)a(s)g*)
for all s € (s1,s* +¢). In fact, A(a(s*)g*B(t*)) C Uo(sy implies that
A(a(s)g*BA(t*)) is also contained in Ugy(y) for all s < s* sufficiently close
to s*. Thus the angle comparison holds for such A(a(s)g*B(t*)). The in-
equality (6-1) implies that if s} is the infimun of such s € (0, s*) that satisfies
the angle comparison for A(a(s)g*B(¢*)), then st > 0.

Because s} > 0 every geodesic triangle A(a(s2)g*8(t*)) for s; < s being
taken sufficiently close to s} has the property that the angle comparison does
not hold for this triangle. The previous discussiéon then implies that every
geodesic B(t*)a(s}) has the property that

LBt )a(s1)g" = Z B(t")a(s})q"

La(sDAE)e" = Za(s))B(E)"

La(s)a"B(E) = Za(st)a*A(t")
and that there exists a smooth totally geodesic surface F* of constant curva-
ture k bounded by A(B(t*)a(s})q*). Because £ pa(s})B(t*) = £ pa(s})B(t*)
the F* can be extended to a smooth totally geodesic surface of constant cur-
vature k bounded by af([0,s* + ¢]), #([0,¢*]) and g*B(t*). This fact means
that ZpB(t*)¢* = £LpB(t*)q*, a coniradiction to (6-1) for s = s* + . This
proves Lemma 6.5. 0O

The Alexandrov convexity and hinge theorem holds for all A, and stated
as follows. This is a direct consequence of Theorem 6.1 and the proof is
omitted.
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Theorem 6.6. Let a : [0,a] — X and § : [0,b] = X be geodesics with
a(0) = B(0) = p. If Ox(s,t) for s € [0,a] and t € [0,d] is the angle at p
of the triangle A(pa(s)B(t)), then 6x(s,t) is monotone non-increasing. In
particular if &, are geodesics on M?(k) with the same starting point and

the same lengths as o, 3 and have the same angle Z(&, ﬁ) = £(a, B)|p, then

d(a(s), B(%)) < d(a(s), (1))

for all s € [0,a] and t € [0, b).

Proof of Theorem 6.2. First of all we prove that if k > 0, then d(X) < 7/Vk.
Suppose that d(X) > n/vk. Then there are points p,q € X with d(p,q) >
n/ Vk. Let m € pq be the midpoint of a geodesic pq and take a point z near
m such that z ¢ pg and A(pmz) and A(gmz) have circumfence less than
2n/ Vk. Then, the hinge theorem 6.6 implies that if §,7,§ are on a great
circle and if & € M?(k) is taken such that d(m,%) = d(m,z), LZpmi =
Zpmz and £ §m i = £qmaz, then d(p, i) > d(p,z) and d(§,&) > d(g,z). It
is clear that on M2(k), we have d(p, Z)+d(§, %) < d(p,m)+d(g, ™) (see Figure
6-5). Thus d(p,q) > d(p, %) + d(§,Z) > d(p, z) + d(g, z), a contradiction.

FIGURE 6-5.
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We next prove that if p,q € X are chosen such that

d(p, g) = d(X),

then ¢ is uniquely determined for p. In fact, suppose ¢; € X satisfies q; # ¢
and d(p, ¢1) = d(p, q) = d(X). By taking the midpoint m of ¢¢; and choosing
a constant k; € (0, k) such that the circumference of A(pqq; ) is less than (but
sufficiently close to) 2r/1/k; we see that the corresponding geodesic triangle
A(pqqy) sketched on M 2(k1) has the property that if 172 is the midpoint of
4 g1, then d(p,m) > d(p,§). Theorem 6.6 then implies that d(p, m) > d(p, n).
This is ridiculons.

Now, we prove that A(pgr) for every p,q and r in X has circumference
not greater than m/vk. We have already established that each edge has
length not greater than m/v/k. Suppose that the circumference L of A(pgr)
is greater than 27 /v/k. There is an interior point m of gr such that d(p, q) +
d(g,m) = d(p,r) + d(r,m) = L/2. Choosing a constant k, € (0,k) as in the
last paragraph, we observe that

d(p,m) > L/2 > | Vk,

which is a contradiction.
Finally, if the circumference of a triangle is 27/v/k, then the above argu-
ment implies that d(X) = 7/v%. Let p,q € X be such that

d(p,q) = 7/Vk.

For every point r € X\{p,q} we have d(p,r) + d(p,q) = n/vk and hence
there exists a unique geodesic joining p to ¢ and passing through r. Let

E:={ze€ X :d(p,z)=d(q,z)}.

If z,y € E satisfy d(z,y) < 7/2Vk, then zy is contained entirely in E
and moreover Zpzy = Lqry = Lpyz = Lqyz = /2. Therefore Lemma
6.4 implies the existence of a totally geodesic smooth surface of constant
curvature k bounded by two geodesics joining p to ¢ and passing through z
and y. This means that X is isometric to the spherical suspension Y (X) of
E, where E is a totally geodesic Alexandrov subspace with Curv(E) > k.
If d(E) = n/\Vk, then E is isometric to a spherical suspension. This proves
Theorem 6.2. O

The Toponogov splitting theorem holds for Alexandrov spaces with cur-
vature bounded below by 0. A similar discussion is seen in Theorem 5.8 in

[GP].
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Theorem 6.7. (The Toponogov splitting theorem.) If Curv(X) > 0 and
if X admits a straight line v : R — X, then X is isometric to the metric
product X; x R, where X; is an Alexandrov space with Curv(X 1) 2> 0.

A Busemain function F, : X — R for a ray o : [0,00) — X is used for
the proof of Theorem 6.7. Let

F,(z):= tl_i_glo[t —d(o(), )]

Since t — d(o(t), z) is monotone non-increasing in t > 0 and bounded above
by d(c(0), z), F,(z) is well defined. The Alexandrov convexity property then
implies that F, is midconvex in the following sense. If a : [0,1] = X is any
geodesic, then F, o0 o(s) + Fy 0 a(t) > 2F, o a(3(s + 1)) for all s,t € [0,1].
Since a continuous midcenvex function is convex, so is Fg, e.g., F is convex
along every geodesic in X.

Proof of Theorem 6.7. Fix an arbitrary point p € X\y(R) and choose the
arclength parameter of ¥ so as to satisfy that d(p,v(0)) = d(p,7(R)). If
Fy := Fyo,00) and F_ := F,|(_co,0], then triangle inequality implies that
Fy(p) + F-(p) £ 0. On the other hand Theorem 6.1 for A(py(0)7(t)) and
A(py(0)y(—t)) implies that (by letting t — o), F1.(p) = F—(p) = 0. Namely
we have F, + F_ = 0, and hence there exists a unique straight line v, :
R — X passing through p along which both F 0+, and F_ o0+, are linear.
In particular v, and vy make the same angle 7 with py(0) at p and 7(0)
respectively. A slight modification of Lemma 6.4, then implies the existence
of a flat totally geodesic strip bounded v, and 7. This fact means that a lenel
set F1;({0}) is isometric to all the other level sets of Fy.. Since F 1({t}) for
every t € R is totally geodesic, we see that X; := F; '({0}) is an Alexandrov
space with Curv(X;) > 0. This proves Theorem 6.7. O

§7. Strainers and Dimension

Throughout this section let X be an Alexandrov space with Curv(X) > k.
The purpose of this section is to prove that there exists an open dense set in
X each point of which has an open set homeomorphic to an open set in R"
for some positive integer n < co. Thus the dimension of X is defined here.
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Definition 7-1. A point p € X by definition an (n, §)-strained point for a
sufficiently small é iff there exist n pairs of points (a;, b))%, € M\{p} such
that for all 2,5 = 1,...,n with  # j,

Za,'pb,' > =4, Zaipaj > g— )
Z aipb; > 3’- — 8, Zbipb; > g—a.
We also say that such an (ai, b; ) "1 is an (n, §)-strainer at p.

The original idea of strainers will go back to the proof of a differentiable
sphere theorem (see [OSY]) which states that if a complete Riemannian n-
manifold M has its sectional curvature Ky > 1 and if dg(M, S™(1)) is suffi-
ciently close to 0, then M is diffeomorphic to S™. In fact S™(1) has a global
(n + 1,0)-strainer each pair a}, b} of which is obtained as the intersection
of S™(1) with the i-th coordinate axis. Hausdorff closeness between M and
S™(1) then implies that M has a global (n + 1, §)-strainer, each pair a;, b; of
which is the image of a}, b7 under a Hausdorff approximation map. Then the
map & : M — R"*! defined by ®(z) := (cosd(ay,z),...,cosd(an+17)) can
be approximated by a smooth regular map whose image is C!-close to S™(1)
in R™*!. Applying this idea in a small neighborhood around a strained point
p € X, a bilipschitz homeomorphism between such a neighborhood and an
open set in R™ will be established.

It should be remarked that for an (n,é)-strainer (a;,b;) at p we observe
from Theorem 6.1 nd Lemma 3.6 that

7-1 £—6<Za,‘pa-Séa,'pa~§27r—éa.-pb'—éa-pb'<£+26
2 J J J 157 2

Also the set of all (n,§)-strained points is open in X. By means of the
Alexandrov convexity property we see that if (a;, b)), is an (n,§)-strainer
at p and if a} € pa;, b} € pb;, then so is (a},b;)" ;. We can therefore choose
an (n, 6)-strainer at p as close to p as desired.

Also notice that n-pairs of points (a;i,b;)"; is an (n,d)-strainer at p, if

and only if forallz,5 =1,...,n with: #j
(71-2) { Laipb; >m—96, Laipb;> 35 —9§
Lbipb; > 5 -6, La;pa; > F — 6.

In fact, if (a;,b;)f.; satisfies the above inequalities then by choosing a} €
pa;, b € pb; sufficiently close to p, we observe that |Za;pb; — Z alpbl| and
|£ a,pb -7 a;pb;|, e.t.c., are sufficiently close to zero, and (af, b})%_, satisfies
the definition of an (n, 6) strainer. The converse is clear from Theorem 6.1.



56 KATSUHIRO SHIOHAMA

Definition 7.2. Let Y and Z be metric spaces and U C Y an open set. A
map ¢ : U — Z is by definition an ¢-open for an ¢ > 0 iff for any z € U
and for any z € Z such that if {w € Y;dy(z,w) < 1dz(y(z),2)} C U then
there exists a point y € U such that ¢(y) = z and such that dy(z,y) <
Liz(p(2), 2)

An e-open map ¢ : U — Z is open. In fact for any open set V C U and
for any fixed point z € V' there exists an r > 0 such that B(z,r) C U. We
only need to show that B(p(z),er) C (V). If z € B(¢(z),er), then there is
a point y € U such that ¢(y) = z and such that dy(z,y) < 1dz(p(z),2) < r.
This proves B(yp(z),er) C (V).

If o : U — Z is a continuous and 1 — 1 ¢-open map, then ¢ : U —
(V') is a homeomorphism. Moreover ¢! is locally Lipschitz with Lipschitz
constant 1. For the proof of ¢! being locally Lipschitz homeomorphism
with Lipschitz constant e =1, we set rp, := d(p,Y\U) foreveryp e U (if U = Y
then rp := 00). For a fixed r € (0,7,) we set V1 :="(B(p,r))NB(p(p), (rp—
r)) and V := ¢~'(V1) = B(p,r) N ¢~ (B(¢(p), §(rp — 1)). We prove that
¢~ v, is Lipschitz continuous with Lipschitz constant ¢~!. Let z,y € V.
Then {z € Y;dy(z,z) < ldz(¢(z),¢(y))} C {z € Y;dy(z,2) < rp —r}
follows from d.(¢(x),p(y)) < d(V1) < €(rp —r), and the right hand side of
the above implication is contained in B(z,r, —r) C B(B(p,r),rp — 1) =
B(p,rp) C U. Thus

dy (p~H(w), 97 (2))
dz('w, z)

5% forall: w,z € Vq.

Theorem 7.3. Ifp € X is an (n, 6)-strained point with a strainer (a;, b;)%_,
for § < 1/2n, then there exists an open set U around p. Further a map
@ : U — R" defined by ¢(q) := (d(a1,9),...,d(an,q)) € R™ is an %‘ﬁ -
open map. Moreover, if U does not admit any (n+ 1, 7(8))-strained point for
7(6) with ]11_1_}% 7(8) = 0, then there is an open set V C U around p on which

¢ is a bilipschitz homeomorphism.

The following lemma 7.4 is used for the proof of the second statement in
Theorem 7.3. .
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Lemma 7.4. Let Curv(X) > 0 and a,b,c,d € X be points such that (see
Figure 7-2) for sufficiently small positive numbers € and ¢,

d(b,d) < € - min{d(a, b),d(c,b)}, Zabc > — ¢,
d(a’ b) ) d(b’ C) 1
d(a, ) > €2,

Then there is a constant T(e) := \/e+4¢ such that Z abd—Z abd, Z adb—Z adb,
Zcbd — Z cbd and £ cdb — Z cdb are all bounded above by 7(€) + 2¢;.

Proof of Lemma 7.4. From assumption we may assume that Zbad <
2sin Z bad < 2529 < 2¢, and similarly, Z bed < 2.

d

FIGURE 7-1.
From A(abd) and A(cbd) we see
(7-3) Zabd+ Zadb+ Zcbd + Z cdb > 21 — 4e.

We now assert that Z ade > 7 — VE —€1. In fact

~ _ d(a, b)? + d(b,¢)? — d(a,c)?

cos(m —€1) > cos Labe = 2d(a,b) - d(b.0) .

From assumption |d(a,b) — d(a,d)| < d(b,d) < € *d(a,b) follows
(1 - e)d(a, b) < d(a’ d) < (1 + e)d(a, b)

and similarly
(1 —¢€)d(e,b) < d(c,d) < (1+¢€)d(c,b).



58 KATSUHIRO SHIOHAMA

Therefore above three inequalities reduce to

1—-¢\? (d(a,d)? + d(c,d)? — d(a, c)?
1+ c-:) { 2d(a,d) - d(c,d)
“d(a,c)? €
T dad) - ded 5}

— COSE > (

, . d(a, c)?
From assumption we have ———L—’—)—— < ¢~ ¥ and hence

d(a,d)d(c, d)
Zachw—\/E——el.

Theorem 6.1 then implies together with Lemma 3.6 that Zabd — Z abd is
bounded above by £ abd + £adb+ £ cbd + £ cdb — (£ abd + Z adb + Z cbd +
Zedb) < (2m — Labe) + (21 — Lade) — (2 —4e) < (m+ 1) + (7 + e +
€1) — (27 — 4¢€) = \/e + 4 + 2¢; = 7(¢) + 2¢. Thus the proof of Lemma 7.4
is complete. 0O

Corollary to Lemma 7.4. In addition to the assumption as in Lemma 7.4
if |d(a,b) — d(a,d)| < € - d(b,d) and if z € bd, then

min{Z azb, Z axd, Z cxb, Z czd} > g— — 7(€) — 3er.

Proof. The additional assumption means that A(abd) is sufficiently close to
an isosceles triangle, and hence there is a 71 (&) with lir% 71(€) = 0 such that
1h

Zabd < >+tm (¢). Hence we get from Lemma 7.4 Zabzr < Labz = Labd <
Zabd+ (7(e) +2¢1) < 5 + 72(€) + 2¢1. All the other angles are estimated by
a similar manner. This proves Corollary to Lemma 7.4. O

Proof of Theorem 7.3. The norm of R" is defined as ||z|| := Y-, |z;| for
every ¢ = (&1,...,Zpn). We first assert that ¢ is (1—2né)-open with respect to
the above norm. Take a point § € X sufficiently close to p and set z := ¢(q).
For any point z € R taken sufficiently close to z, we prove that there is a
point ¢ € X such that p(q) = z and d(q,§) < 7=5=5/lz—2||. The ¢ is obtained
as the limit of a sequence {g;}, which we now want to construct. Since all
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FIGURE 7-2.

points under consideration are taken sufficiently close to p, we may sketch all
the corresponding geodesic triangles in R?. Set ¢; := ¢ and assume that g;j_;
is well defined. Then g; is defined as follows: First, choose an o = 1,...,n
such that |d(aq,qj-1) — 2%| = max{|d(ag,gj—1) — z°| : B = 1,...,n}. Let
¢j € Gagj—1 U gj—1ba be chosen such that d(gj,as) = 2*. We may assume
gj € gj—1bq, since the other case is easier. The Alexandrov convexity implies
that Zaaq,-_lqj > Zaaqj_lba > 7 — 6, and hence d(aq,gj-1) < d(aq,q;)-
Thus [d(aa g51) — 2%] = d(Gayd;) — d(aa,gj-1) > d(gj-1,4;) - cosd (see
Figure 7.2)

From (7-1) we have 7 — 6 < quqj_la,' < £¢jgj—1a; < 5 + 26 for every

i # a. The cosine rule for plane triangles then implies that for i # a,

Id(aia q]) - d(aia qJ—l)l
d(Qj’ qj—l)
= d(ai, ;) + d(ai, gj-1)

{d(qj,Qj—l) + 2d(ai, gj-1) - | cos Zai(lj—l‘b‘l} :

Since —sin2§ < cos Z(ain_1Qj) < siné, the right hand side of the above
inequality is bounded above by

d(gj,95-1)% + 2d(ai, gj—1) - d(gj, gj—1) - sin 26
d(aia qj—l) + d(aia QJ)

< 26-d(gj-1,9;)-



60 KATSUHIRO SHIOHAMA

Here we notice d(gj,gj—1) <« & by the choice of z, and hence
2d(aiaqj-l)
d(ai, Qj—-l) + d(ai’ qj)

(7-4) |d(as, ¢) — 2']
< |d(ai, g5) — d(ai, gj—1)| + ld(as, gj-1) — |
< 254(«11, gj-1) + |d(ai, gj—1) — 2|

Id(aa’ qJ-—l) - zal + |d(an QJ—I) -z l

= 1. Therefore we have for every i # a,

cos 6

By setting A; := [l¢(g;) — 2|, we have from the choice of a that \; =
Y iza ld(ai, gj) — 2|, and also

26 @
Aj < zos_s(n - l)ld(aaa Qj—l) - zal + ’\j—l - |d(a'onqj—1) -z I

Therefore, we have from 6 < % that

26(1‘& 1) . . a
Aj—1 = 2 {1- Wﬂd(aa?‘b-l) - 2%
> {cosé — 26(n — 1)}d(gj, q;j-1)

> (1 —2né)d(gj,gj-1)-

On the other hand, from the choice of a it follows that

n

Ajo1 = Z |d(a;,gj—1) — 2*| < nld(aa,gj-1) — z°|.

=1

Using above two inequalities we get

26(n—1) o
Aj<Ajiaa—(1- _—;);6_) -|d(aa,gj—1) — 27|
25(71 - 1) A y—1
<Aj-1—(1- !
sh--( cosé ) n
Here we used the assumption cos§ > 6§ > cosz= > 1 — 5-'; and hence

cos 6

< " ;__ < n. This means that

26(n — 1)) 1

. 1-26
~| < Xjm(1-—==).

L < il —(1 —
A S A |1-( cosé ‘n
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FIGURE 7-3.

Therefore {A;} is a strictly decreasing sequence and has a limit. To show
: ¢

that {g;} is a Cauchy sequence we compute d(gx,qs) < Z d(gj-1,95) <
i=k+1
i Aj—l - A] — Ak-l-l - Al
1—-2né 1-2né
a=k+1
that ¢(q) = 2. This proves the open property of ¢.
The local Lipschitz constant of ¢! is oftained by

de' (@) '(2)) _ d@9) . X d(gj-1,95)
Iz = =|l lz==l = 2=
< Ay 1 1
1-2n6 |lz—2|| 1-2né’

. Therefore {g;} has a limit, say, ¢ € X such

and hence
dp @) . 1
drn(z,2) ~ /n(1 - 2né)’

Clearly ¢ is continuous. For the proof of the final statement we only
need to show that ¢ is 1-1 if there is no (n + 1,4¢)-strained point in some
neighborhood around p. Let V' C X be a neighborhood around p such that
every point in V is a strained point with a strainer (a;, ;)™ , and such that

d(V) < mln{d(l’? ai)a d(p7 bi); 1=1,..., n}'

Suppose that |V is not 1-1. Then there are points z,y € V, = # y such
that (see Figure 7-3)

d(ai,z) = d(ai,y), i1=1,...,n.



62 KATSUHIRO SHIOHAMA

Then, Corollary to Lemma 7.4 implies that there is a 7(6) with }in‘l’ T(6) =

0 such that if z € zy is the midpoint of zy, then all the angles. Z aizz, Z,aizy,
Z b;zx, Z b;zy are bounded below by /2 — 7(§) for all i = 1,...,n. Setting

an+1 := = and bpyy =y, we see that (a;, b)) is an (n + 1, 7(6))-strainer at

z € V, a contradiction. This proves Theorem 7.3. U

A point z € X is said to be a manifold point iff there exists an open set
around z which is bilipschitz homeomorphic to an open set in R". As is seen
in the proof of Theorem 7.3 we can construct an (n,§)-strainer at a point p’
sufficiently close to any given point p € X. Thus .we have proved the

Corollary to Theorem 7.3. The set of all manifold points on X forms an
open and dense set in X.

We now want to discuss the topological dimension of X. We consider a
normal space Y. The covering dimension dim Y of a normal space Y is defined
as follows. We say that dimY < n if and only if for every finite open cover
Gy, -+ , G, of Y there exists a refinement Hy,- - , H, with | J;_; H; =Y such
that H; C G; for i = 1,..., s and such that ﬂ;‘:f :ng = ¢ for every subclass
{H;;} of n + 2 members of Hy,--- ,H,. We say that dimY = n if and only
if dimY <n and dimY < n — 1 does not hold.

The large (respectively, small) inductive dimension IndY (respectively,
indY) of Y is defined as follows. IndY = —1 (respectively, indY = —1) if
and only ify = ¢. Suppose that IndY < n—1 (respectively,indY < n—1) has
been defined for a normal space Y. Then IndY < n (respectively, indY < n)
if and only if for every closed set F C Y and for every open set G C Y
with F C G there exists an open set H C Y such that F C H C G and
Ind(H\H) < n — 1 (respectively, for every y € Y and for every open set
G C Y with y € G there exists an open set H CY suchthat z € H C G and
ind(H\H) < n—1). It is well known that these dimensions are all topological
invariants.

If Y is metric, then dimY = IndY is due to Katétov and Morita. If ¥
is separable metric, then indY = IndY (see [HW]). Moreover we have the
countable sum theorems for separable metric spaces as follows (see [E]). If
a separable metric space Y is expressed as a countable sum of closed sets
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F,---,andif dimF; <nforalli =1,2,---, then dimY < n. Similarly, if
Y = | J Ui for open sets Uy, - , and if dimU; < n for all i = 1,2,--- , then

i=1

dimY < n.
Now our length space X satisfies the second countability axiom since it is
locally compact metric, and it is separable. Therefore we have

dimX =Ind X =ind X.

It is not easy to deal with the large and small inductive dimensions of X,
because the treatment of the boundary of an open set H is complicated. We
only deal with the covering dimension. We want to prove that

dim A =dimyg A

for every bounded open or closed set A C X, where dimp A is the Hausdorft
dimension of A. Notice that the Hausdorff dimension is not a topological
invariant. The existence of a strained point in A with an (n,§)-strainer
implies that dimg A > n. In order to establish dimA = dimy A = n by
assuming the existence of an (n,d)-strainer in A, the following notion of a
strained number at a point is needed.

Definition 7.5. A nonnegative integer n is by definition the strained num-
ber at p € X iff for every § > 0 and for every neighborhood U of p there exists
an (n, 6)-strained point in U and U does not contain any (n + 1, §)-strained
point. The strained number at p is by definition oo iff there is no such n.

We now introduce the rongh volume and rough dimension of a bounded
set A in a metric space Y. Let ®,(A) for € > 0 be the set of all converings
of A such that

®.(A) := {{Bi};d(Bi) < e, ACUB;}.
The a-dimensional Hausdorff volume of A is given as

Ha(4) = lim {B‘}g‘m) > d(By)",

i
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and the Hausdorff dimension of A as
dimyg A :=inf{a > 0; H,(A) = 0} = sup{a > 0; H,(A4) = oo}

Clearly Ha(UA;) < 3°;Ha(A;) and H, defines an outer measure. We then
see that H,(A) > 0 implies dimy A > 0, and ,dimy A > a implies that
Ha(A) = 400, Ha(A) < oo implies that dimy A < a and finally dimp(4) <
a implies H,(A) = 0. Similarly the rough a-dimensional volume V;, (A) of A
is defined by

Vr.(4) := lim supe®Ba(e),

where f4(¢) is the maximal (finite) number of e-discrete points contained
in A. We then see from the definition that if 0 < V,,(4) < +oo, then
Vi(A) = 0 for all b > a and V, (A) = oo for all ¢ < a. Therefore there
exists for A a change-over point ag such that V;.,(4) = oo for all @ < a¢ and
Vi (A) = 0 for all b > ag. The rough dimension dim, A of A is defined by
dim, A := inf{a > 0;V;,(4) = 0} = sup{a > 0;V,, (4) = o0}. It is easy
to check that:(1) V;,(A) > 0 implies dim, A > a, (2) dim, A > a implies
Vr.(4) = oo, (3) Vi, (4) < oo implies dim, A < a, dim, A < a implies
Vr.(A) =0, and A C B implies dim, A < dim, B.

Lemma 7. 6 Let X be an Alexandrov space with Curv(X) > k. Then
Vra(A) > 3=Ha(A) for every a > 0 and for every bounded set A C X. In
particular, we have dim, A > dimg A.

Proof. Let {z; }?;‘l(e) be the maximal system of ¢-discrete points in A. Then

{B(z.,s)}ﬂ’( 9 is a covering of A and belongs to ®;.(A). Thus Bx(e) >
#{B.}, and hence
{B-}G‘I’zc(A)
Vr.(4) = lim supe®Ba(e)

> 1 e* - #{B,
P o B

> lim inf Z( d(B ))a

e—0 {B; }E‘ch 4)
1 .. ) e
= 5 i {B;}é%f,.<A>z,.:d(B')

1
= 52 Ha(4).
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a

Remark. (1) We denote by AX the scaling of X by A > 0. Then V,, (4; M\d) =
A% - V. (A;d) and also Ha(A,Ad) = A\* - H4(A). Both dimy and dim, are
invariant under the scaling of metric.

Remark. (2) If amap f : Y — Z is Lipschitz on a bounded set 4 C Y,
then dimy f(A) < dimy A and dim, f(A) < dim;, A. In particular if f is a
bilipschitz homeomorphism then

dimp(f(A)) = dimyg A, dim, f(A) = dim, A.

In fact, we may consider, by taking a suitable scaling of Y, that f is a
contracting map. Then, Bf4)(¢) < B4(e) implies V;, (f(4)) < V. (A4), and
hence dim, f(A) < dim, A. If {B;} € ®.(A), then {f(B:)} € ®.(f(4))
implies H,(f(A)) < Ha(A). The rest of the proof is now clear.

Lemma 7.7. Let X be an Alexandrov space with Curv(X) > k. Ifu,v € X
and U,V C X are open sets around u and v whose diameters are bounded,
then '

dim, U = dim, V.

Proof. From Corollary to Theorem 7.3 and Lemma 7.6 we see that dim, V' >
0. For a fixed a € (0,dim, V') we have V, (V) = lim.—q supe®By(e) = +oo,
and hence we find for any ¢ > 0 a decreasing positiv sequence {¢;} tending
to 0 such that for all ¢,
ef - Pv(ei) 2 c

Choose an ¢;-discrete points {ci,...,cn;} in V. such that N; = By(e;).
Choose an R > 0 such that B := B(U,R) C U and set D := sup{d(u,z) :
reV}

For each j = 1,...,N; we take a point b; € uc; N B such that d(u,b;) =
%d(u, ¢;j), (see Figure 7-4). The Alexandrov convexity property then applies
to A(ucjci) to obtain a constant K = K(k, D, R) such that

d(bj’bk) 2 %K : d(cj,ck)’ Jk=1,...,N;.
This means that (by setting &} := Z£ . ¢))

(e¥)*Bu(e;) > Const(R, D, k) - €? - N; > Const - c.

Therefore V, (U) = oo since c is arbitrary large and hence dim, U > dim, V
is proved. The opposite inequality is obtained by the symmetric property of
the discussion. O
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Ck

" FIGURE 7-4.

Lemma 7.8. If an open set U C X around a point p € X has a bounded

diameter, and if n is the strained number at p, then

n = dim, U = dimg U.

Proof. We first prove in the case of n = oo.

There exists for any § > 0 and for any positive integer m a point p; € U
sufficiently close to p such that p; is an (m, §)-strained point. Then Theorem
7.3 implies the existence of an openset Uy C U a round p1 and an open bilip-
schitz map ¢ : Uy — R™. Thus we have dim, U > dim, U; > dim, ¢(U;) =
m. Similarly we get dimy U > dimy U; > dimg ¢(U;) = m. The proof in
this case is complete.

Assume now that n < oco. If n = 0, then the conclusion is trivial. If n > 1,
then a point p; near p and an open set U; around p; is chosen so as to satisfy
that U, is bilipschitz homeomorphic to an open set in R®. Thus dimyg U >
dimg U; = n. It follows from Lemma 7.7 that dim, U; = dim, U = n, and
from Lemma 7.6 that dim, U > dimyg U. This proves Lemma 7.8. O
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Corollary to Lemma 7.8. The strained numbers are constant on all the
manifold points on X and coincides with dimg X.

We finally want to prove that the covering dimension dim X of X coincides
with dimy X. By means of the sum theorem (as stated fefore) and lemmas
7.6-7.8 we need to prove that if n is the strained number as stated in Corollary
to Lemma 7.8 and if U is an open bounded set in X, then

dimU =dimyg U = n.

The following Lemma 7.9 holds for all nonempty open sets in X.

Lemma 7.9. If the strained numbers are n on all the manifold points of

X, then the covering dimension dimU of every nonempty open set U C X
satisfies dimU = dim X = n.

Proof. Let Sing(X) C be the set of all singular points on X. Then, Corol-
lary to Theorem 7.3 implies that X \Sing(X) is open and dense in X and
every point on X \Sing(X) is a manifold point with strained number n. Let
G1,-+,G, be a finite open cover of U. Then it is also a finite open cover
of U\Sing(n) which is a countable union of domains in R™. Therefore there
exists a refinement H,,---,H, with U,_1 H; D U such that H; C G; for
i =1,.--,sand such that ﬂj_l (H;; \Sing(X)) = ¢ for every subclass of n+2
members of {H},--- , H,}. Notice that G;;\H;; forevery j =1,--- ,n+2and
for every i is contained entirely is some domain in R™, and hence Sing(X )ﬂ U
is contained in J7X7 Hi;. Suppose that ()} H;; # ¢. Then N2 |,

j=1 J=1 j=1
contained entirely in Slng(X )NU. However this is ridiculous since ﬂ;';"f H

is open which containes a manifold point. This proves dimU < n. Because
U containes an open set bilipschitz homeomorphic to an open set in R,
dimU < n — 1 does not hold, and hence dimU = n. This proves Lemma
79. O

We conclude this section by introducing an interesting problem proposed
in [BGP2] which is still open to us.
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Problem. Let X be an Alexandrov space with Curv(X) > k. Assume that
the covering dimension of X is n < oco. Then is it true that the strained
number is n on an open dense set of X7

§8. Fundamental Tools

In this section let X be an n-dimensional (2 < n < 00) Alexandrov space
with curvature bounded below by k. We discuss the space of directions at
a point on X, the tangent cone K (E ) at p, the cut locus C(p) to p and
the exponential map exp, : D, — X, where D, C K(3_,) is a set which is
star-shaped with respect to the vertex o of K (Z ). The boundary of X" is
also discussed.

8.1 The existence of angles of geodesics emanating from a point p makes
it possible to define an equivalence relation among all geodesics emanating
from p. Two geodesics pr and py are said to be equivalent iff Z zpy = 0. We
denote by pz ~ py iff Zzpy = 0. Namely, pr ~ py iff one is contained in the
other (for, geodesics have no branch points). Let Z' = {pg;q € X\{p}}/ ~.
The angles Z define the metric of E Let 3, be the completion of (E AR
and K(3_,) the cone with vertex at o generated by (3°,,4)- The K (Z )
equipped w1th the distance defined in Example (4) in §5 is a length space,
where the diameter of }° ) is not greater than , (see Corollary 8.6).

Notice that if M is a Riemannia,n manifold then the tangent space T, M
to M at a point p is obtained as the pointed Hausdorff limit of the scaling
of metric. Namely we have

(T,M;0)= _lim (AM;p).
A—oo dyg

Therefore the } corresponds to the unit hypersphere S,(1) C T, M centered
at the origin O of T, M, and the K(3_,) to the tangent space to M at p. The
{(AM;p)} converges uniformly on every metric ball around p. The uniform
convergence with respect to the pointed Hausdorff distance is guaranteed by
the compactness of Sp(1).

We want to prove that (Z /) is a compact Alexandrov space of dimen-
sion n—1 with curvature bounded below by 1, and that K(3_ ) has curvature
bounded below by 0. The compactness of E is crucial to prove that the
pointed Hausdorff limit of the scaling of metric of X is isometric to K (25)

Jlim (AX; p) = (K(Zp); 0)-
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Theorem 8.1. If dimX = n < oo and if Curv(X) > k, then }_, for every
point p € X is compact.

It suffices for the proof of Theorem 8.1 to show that Z; is precompact, e.g,.,
that E; admits finite e-net and e-discrete sets for all € > 0. The following
Lemmas 8.2 and 8.3 are needed for the proof of the precompactness of I,

Lemma 8.2. Let {pa;}i=1,..n be a finite number of geodesics emanating
from p. Then there exists for any fixed § > 0 a neighborhood U around p
such that for every q € pa; NU and for every r € paj N U we have

6> Lqpr — qur, épqr—qur, érpq—erq.

Proof. We only need to prove the case where k = 2. Setting a := a; and
b := a; we choose an R > 0 such that Za'pb' — Za'ph' < /2 hold for
all ' € pa N B(p,R) and b' € pbN B(p,R). We then choose an R; with
0 < R; < éR such that for any points a; € pa N B(p,R;), b; € pbN B(,Ry)
and for b, € pb with d(p, b2) = R, we have

Za1p61 — Zalpbg, Zalbzbl - Za1b2p S 6/2

We then apply the Gauss-Bonnet theorem to the triangles A(al pb),
A(aybyb,) and A(aypby) := A(ﬁ&lf;z) to get, (see Figure 8-1)
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(Zaypby — Zayphy) + (£ arboby — qubzp)
= (Zpalbg - Zpa1b1 - Z blalbz) + (7!' - Zpblal - Zalblbz).

From the Alexandrov convexity property we see that all the bracket terms
in the above equality are nonnegative. Replacing © by Zpbia; + Za1biby
we observe that Zpbja; — Z pbia; is bounded above by the left hand side
of the above equality, which is less than §. Becaus of the symmetry of the
discussion we also have £ pa;b; — Z pa;b; < 6. This proves Lemma 8.2. O

Lemma 8.3. Fix an n > 1. For every integer m with 0 < m < n and
for every € > 0 there exist a positive number § = §(m,€) and an integer
N = N(m,e¢) such that if X is an n-dimensional Alexandrov space with
Curv(X) > k then X does not admit points p,a;, b; and cjfor1<i<m
and for 1 < j < N with the properties that

(ai, b))~ is an (m, §)-strainer at p
(81 Lcjpa; > 5 —6, Zejph; > X — 6
Zc]-pcjr >¢ecforalli=1,...,mandall j,j'=1,...,N.

Proof. We fix n and employ the reverse induction on m = 0,...,n. First of
all consider the case m = n. We then set N(n,¢) = 1 and § := 1/1000n.
Suppose that points p, a;, b; and c on X satisfies (8-1),. Then a point p' € pe
near p admits an (n + 1,26)-strainer consisting of a;, b; and p, c¢. This is a
contradiction to dim X = n.

Suppose by inductive assumption that Lemma 8.2 is true for m = n,...,
m+1. Then there exist forany ¢ >0a é = §(m+1,¢) and M = N(m+1,¢)
with the required properties. We now fix §(m, ) and N(m,¢) as follows.

(a) 6(m,e) < e-é6(m+1,6/2) - 1955

(b) 3(N(m,€) — 3N(m +1,¢/2)) > 10 N(miL3)

Thus é(m,e) < 1 and N(m,e) > 1. Su’ppose there exist for ¢ > 0
points p,a;,b; and ¢j in X with ¢ =1,...,m and j = 1,...,N = N(m,e¢)
such that they satisfy (8-1),, for § = §(m,e). We want to construct an
(m+1,26)-strainer. Setting am4; := ¢y and b, 41 := p we observe that if p €
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@m+1bm+1 is taken near b,,41, then the points p’,a;,b;, fori =1,...,m+1
has the properties that p := p' is an (m + 1,26(m,€))-strained point with
strainer (a;, b;)i=1,...,m+1- By the assumption of induction on m + 1, X does
not admit points p, a;, b;, c; satisfying (8-1)m41. Thus, if we set

- m - m

A:=#{j: Lams1pc; > 5~ 36(m,€), £ bmy1pcj > ol 36(m,e)},
.~ T

B := #{]; éam+1pcj < '2— - 36("71, 6)}7

C:= {]; Z bm+1pCj < '721 - 36(m, 8)},

then A+ B+ C = N(m,e) — 1 and A < N(m + 1,¢) follows from inductive
assumption on m + 1. It follows from the choice of N(m,¢) that B+ C >
N(m,e) — 3N(m + 1,5). Without loss of generality we may assume B >
C. Then B > 3(N(m,e) —3N(m +1,£)) > 1000 - N(m + 1, %) - 6(m,e).
By setting ¢; := Zamyipcj for j = 1,...,N(m,e) — 1 we find a subset
J C {1,2,...,N(m,¢e) — 1} such that #J > N(m + 1, %) and such that
lpi — @il < é%'—:—;’f—) for all j,j' € J. Because @; > Z amy1pc; and d(p, ami1)
and d(p, c;) are sufficiently small, we see |p;—@;/| < é(m,€), and in particular
#{j;0; < T —6(m,e)} > B >1000- N(m +1,£) - §(m,e)~!. By dividing
[0, F — 6(m, )] into 1000 - 6(m,e)~! subintervals with equal lengths, we find
a subinterval I which contains at least N(m 41, $) members of ¢;:,, and the
length of I is less than §/100. We now fix a point p; € pan+1 sufficiently
close to p and choose a point ¢; € pc; for each j € J in such a way that
d(p, ¢;) cos p; = d(p, p1) (see Figure 8-2).
By means of Lemma 8.3 we see that

Zami1p1%; > % —é(m+1, %)
me+1péj > g - 6(m + 1’ ';')

for all j € J.

We finally assert that the points p;,a;,b;,¢; fors =1,...,m + 1 and for
J € J satisfy (8-1)m+1 (and a contradiction will be derived).

Clearly (a;, b)) is an (m + 1,8(m + 1, §))-strairer at p;.



72 KATSUHIRO SHIOHAMA

FIGURE 8-2.

We next show that Z&;piéy > €/2. Because &; € picj, &y € pcjr and
ZLejpcjr > € by what we have supposed and because |p; — ¢j/| < §/100 it
follows from the continuity of angles that Z &;p,&; > 5

We finally show that Za.-pléj > 5 —6m+1,3)forali=1,...,m
and for all j € J. In view of the Corollary to Lemma 7.4 we only need to
prove that |d(p1,ai) — d(¢j,ai)| < d(p1,¢;) for all i = 1,...,m and for all
j € J. It follows from (8-1),, that § —26 < Zaipp < 7 +46and 7 —26 <
Zaipc; < § + 46. Therefore we have |d(a;,p) — d(a;,p1)| < 46 - d(p,p1)
and |d(a;,p) — d(¢j,a;)| < 46 - d(p,¢;), and hence |d(p1,a;) — d(Cj,a;)| <
|d(p1,a:) — d(p, as)| + |d(ai, p) — d(s,as)| < 46(d(p,p1) + d(p,5)).

On the other hand |d(p,p1) - tanp; — d(p1,¢;)| = O(6%) and |d(p, ¢;) -
sin g —d(p1,¢;)| = O(6?) follows from the corresponding triangles on M2 (k).
Therefore d(p, p1)+d(p, €;) > d(p1, ¢;j){cot ¢ j+cosecp;}—0(6?) and cot ¢+
cosecp; < 2. Since § = §(m,¢) is chosen as in (a), we have

86(m,¢) 86(m+1,%)

Id(pl’ai) - d(E]’ ai)l < d(pl7EJ) ) 1000

< d(pl,éj) :

This proves the final requirement for (8-1)m,41, and a contradiction is de-
rived. O
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Proof of Theorem 8.1. For every point p € X and for every ¢ > 0 let ®(p,¢)
be the maximal system of e-nets which is e-discrete in Z; By virtue of
Lemma 8.3 for m = 0, we see that the number of elements in ®(p,¢) does
not exceed N(n,e) < +oo. This proves the precompactness of E;, and the
proof of Theorem 8.1 is complete. [

Lemma 8.4. If }  is isometric to S™~1(1), then p € X is a manifold point
of X.

Proof. Since )., is isometric to S§"~1(1), there exists an (n,0)-strainer
(ai, bi)jy of 3, such that d(a;,b;) = = and d(a;, b)), d(ai, a;), d(bi, ;) =
n/2 for all i,7 = 1,...,n, 1 # j. The density property of E; in Ep then
implies that there exists for any 6§ > 0 an (n,§)-strainer (af,b!), of Z;
such that

d(a}, ¥) > 7 — 8, d(d},a}), d(al, b)), d(b}, b)) > = — &
for all 3,5 = 1,...,n, 1 # j. Therefore p is a strained point with an (n, 6)-

strainer generated by (a},b.)™ . This proves Lemma 8.4. O

8-2. We now define the exponential map and cut locus at a point p € X.
Let D, C K(3_,) =: Kp be defined by

D, := {(a,t) € K,; there exists a geodesic pz such that pz belongs to the
equivalence class of a and such that ¢t = d(p,z)}. Clearly, D, is star-shaped
with respect to the vertex o of K. The exponential map exp, at p is defined
as follows. exp, : D, — X, exp,(a,t) := exp,ta = z. Recall that Ep is
identified with (3_,,1) C K.

Next we define the cut locus C(p) to p by C(p) := {z € X; there exists a
geodesic pz which is not properly contained in any other geodesic emanating
from p}, and also C, C K, by C, := exp,'(C(p)). Clearly C, = 0D,
and exp, |(D,\Cp) is a homeomorphism between Dp\C, and X\C(p), and
€xp, !: X — D, is multivalued.
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Theorem 8.5. Let p € X be a fixed point. The pointed Hausdorff limit of
the scaling (AX;p) of X is isometric to (Kp;o);

Jim 4, (AX;p) = (Kp; 0).

Proof. For an arbitrary fixed R > 0 we denote by B(R) C K, the R-ball
centered at o and By(R) C AX the R-ball of AX centered at p. Thus
B)(R) coincides with A—!R-ball in X centered at p. We only need to prove
that ,\llrgo iz BA(R) = B(R). In view of Proposition 1.1 we construct for
every e-discrete net AN(e) in B an (¢ + c¢()))-discrete net Ny(e + ¢(})) in
By (R) such that )‘ll-»nc:o iy Na(e + ¢(X)) = N(e). Here ¢(A) > 0 converges
to 0 as A — oo. From compactness of ) we see that N (e) is a finite
set, say N(e) = {w1,...,wn}, where w; = (§i,ti) for & € Ep and t; €
[0, R]. Since Z; is dense in ) there is a large number A(¢) such that there
exists for all A > A(e) an (¢ — ¢()))-discrete net {w?,...,wX} in AD, N
B(R) such that w} = (€} ¢t;), &} € Z; and p(w;, w}) < ¢(A) for all i =
1,...,N. Because every geodesic triangle A(exp, A™'t:£}, p,exp, A71t;£})
is small we have (Ad(exp, A1t} exp, A71t£}) — p(w}, w})| < ¢(X) for all
i,j = 1,...,N. Therefore by setting 2} := exp, A™'t;{} € Ba(R) we see
that My(e —¢())) := {z},...,2x} is an (¢ — ¢(\))-discrete (¢ + ¢(\))-net of
B)(R) such that Al_i_’rr;o 4 Na(e —((X)) = N(e). This proves Theorem 8.5. 0O

Corollary 8.6. The tangent cone K, at each point p € X has curvature
Curv(Kp) > 0. If dim X > 2, then Curv(}_,) > 1.

Proof. Because AX has curvature bounded below by A~2k, its pointed Haus-
dorff limit has curvature bounded below by 0. The rest follows from Theorem
5.1, where we agree that X with dimension 0 has Curv(X) > k and also 1-
dimensional X has Curv(X) > k (in case of k£ > 0 the length of X is not
longer than 27/vk).
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Corollary 8.7. Let p € X. Then

dmK,=dimX and dim) =dimX -1
4

Proof. Fix an R > 0. The hinge theorem 3.1’ implies that if p* is a point on
M™(k) and if B*(R) C M™(k) is an R-ball around p*, then

eXp e o(exp;} |AD, N B(R))™! : BA(R) — B*(R)

is an expanding map, and hence dim By(R) < dim B*(R) = n. If (&, m)?f__? B(R)
is a (dim B(R), §)-strainer at a point z € B(R), then Lemma 1.2 and The-
orem 8.5 imply that there exists a A(6) > 1, such that By(R) admits a
point zy € By(R) and (dim B(R),26)-strainer (£} ,n,")?_’_? B(R) at 2, such
that hm X (€}, n}) = (&i,m:) and hm zx = 2. Thus the strained number
at z) for every A > A(6) is not less than dim B(R), and hence dim B A(R) >
dim B(R). - Since the dimension is invariant under homothety, this proves
dim X = dim AX = dim K. The rest is now clear.

The following Lemma 8.8 is used for the proof of the Lemma on limit

angles 6.3. Notice that discussion throughout this section is local in nature.

Lemma 8.8. Let (a;,f;)i=1,2,... be a sequence of geodesic biangles such that
p = a;(0) = Bi(0), ¢; = ai(€;) = Bi(4:), £i = d(p,¢;). If lim ¢; = 0 and if 6;
is the angle at p between «; and ;, then lim sup8; = 0.

Proof. Let X; :=£;'X, i =1,2,.... Then we have ‘11’1{.10 i (Xi;p) = (Kp;0).
If exp;, : £7' D, — X is the exponential map at p of X;, then a;(t) = exp:, &,
Bi(t) = exp:, tn; for 0 <t <1, where §;, n; € Ep is the tangential directions
to a;, B; respectively. It follows from assumption that a;(1) = Bi(1) = ¢;
for all i = 1,2,...,. If £ and n are the limits of {¢;} and {n;} (by taking a
subsequence if necessary) then { = . This proves Lemma 8.8. O

In Riemannian case the injectivity radius of the exponential map of a
complete Riemannian manifold is positive at each point on it. However, as
is seen in the Example 5-B(3), this property does not hold at points on the
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boundary of a disk, because such a point is a vertex of geodesic biangles of
arbitrary small lengths. Notice that the cut locus distance to p € X is not
necessarity continuous in the tangential directions of geodesics emanating
from p. The limit of cut points to p is not necessarily a cut point to p,
because the regularity of the exponential map is not guaranteed. X may
admit a sequence of geodesic biangles with a conver at p € X with arbitrary
small angles at p, while their lengths do not converge to 0.

8-3. The boundary and interior points of X is now discussed. A point on a
manifold M is an interior point iff there exists a neighborhood homeomorphic
to an open set in a Euclidean space. However a point p € X may not have
any neighborhood homeomorphic to an open set in R". For instance, the
vertex of a cone generated by RP™ is such a point. In view of Zp being
an Alexandrov space with Curv(3_ ) > 1 and with dim)_, = n — 1, we can
define an interior (and a boundary) point of X by induction. Let p € X and
p1 an arbitrary point on EP. Then the space Em of tangential directions at
p1 to ) is an (n — 2)-dimensional Alexandrov space with Curv(}_, ) > 1.
If p,—2 is an arbitrary point of Epn—a’ then dim Epn_2 = 1. Because one-
dimensional Alexandrov space is either a circle or a segment, we say that
p € X is an interior point iff zpn_z is a circle for any choice of points
PLE€Y P2 €)Y, ,---,Pn—2 €Y, .. Alsoapoint p € X is by definition
a boundary point of X iff Epn_ is a segment for some choice of points

PLEY - sPn2€2 .
We conclude this section by introducing a recent result due to Plaut [P-1].

2

Theorem 8.9. (Plaut;[P]). X is isometric to the standard unit n-sphere if
Curv(X) > 1 and if X admits a global (n+1,0)-strainer (a;, b;)"_, such that
d(a,-,b,-) = and d(a,-, bj), d(ai, aj), d(b,',bj) Z 7l'/2.

~ Proof. It follows from Theorem 6.2 that X is isometric to the spherical sus-
pension Y (E;) of the equidistance set E; := {z € X;d(a1,z) = d(b1,z)}
and E, is a totally geodesic (n — 1)-dimensional Alexandrov subspace with
Curv(E;) > 1. Since E; admits a global (n,0)-strainver (a;,b;)i>2 E; is
isometric to ) (E;), where E; := {z € Ei;d(az,z) = d(b,z)} = {z €
X;d(a;,z) = d(b;,z);t = 1,2,}. Thus we conclude the proof by induc-
tion. O
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