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PREFACE

This is the collection of notes which have been distributed during the lec-
tures on operator algebras in the academic year 1992. The primary purpose of
the lecture was to help the students to catch up current topics in C*-algebras.
It has been assumed that they have backgrounds on abstract measure theory
and elementary functional analysis. After a brief introduction to the general
theory of C*-algebras and von Neumann algebras, we plunge into concrete
examples of C*-algebras such as AF algebras, free group C*-algebras, irra-
tional rotation algebras and Cuntz algebras, which have been studied during
the seventies and early eighties. Through the discussion, we introduce the
notions of tensor product, crossed product and K-theory for C*-algebras. We
refer to the Introduction at the beginning of each Chapter for more detailed
contents of this note.

The author would like to express his deep gratitude to all participants
of the lecture. Special thanks are due to Professors Sa-Ge Lee and Sung
Je Cho who attended the latter part of the lecture. Their criticisms and
encouragements were indispensable to prepare this note.

February 1993






CHAPTER 1

C*-ALGEBRAS AND THEIR REPRESENTATIONS

A C*-algebra is a Banach *-algebra with the norm condition ||z*z|| = ||z
which relates the involution and the norm structures. Two typical examples,
the C*-algebra C(X) of all continuous functions on a locally compact Haus-
dorff space X and the C*-algebra B(H) of all bounded linear operators on a
Hilbert space are presented in §1.1, together with the Banach *-algebra L!(G)
of a locally compact group G with the convolution, which is not a C*-algebra
in general. Note that B(H) is nothing but the matrix algebra when  is finite-
dimensional. One of the basic tools for studying Banach algebras is the notion
of spectra, with which we can formulate the element f(z) = 5 o a,z" from
an element z, for an analytic function f(A\) = Y a,A". If the underlying al-
gebra is a C*-algebra then the continuous function calculus f(z) is possible
for a self-adjoint element z. ’

We note that the Fourier transform converts the convolution of L!(G)
into the pointwise multiplication of C (@), which is much easier than the con-
volution. The Fourier transform may be generalized for arbitrary commuta-
tive Banach algebras to get the Gelfand transform, which turns out to be an
isometric *-isomorphism for C*-algebras. In this way, we see that a commu-
tative C*-algebra is nothing but C(X) for a locally compact Hausdorff space
X. Therefore, the study of commutative C*-algebras is equivalent to that of
locally compact Hausdorff spaces.

The involution naturally induces an order relation as in the cases of ma-
trices. Elementary properties of this order structures are considered in §1.4,
together with the interrelations between order, norm and algebraic structures.
Most interesting is the notion of positive linear functionals, with which we con-
struct a representation of a C*-algebra on a Hilbert space. In other words, we

realize an element of a C*-algebra as a bounded linear operator on a Hilbert
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space. Employing the Hahn-Banach theorem, we see that there are sufficiently
many positive linear functionals on a C*-algebra, and so, every C*-algebra can
be considered as a norm-closed *-subalgebra of B(H) for a Hilbert space H.
The correspondence between pure states and irreducible representations is ex-
plained in §1.6. We conclude this chapter with a brief introduction to the
notions of liminal and postliminal C*-algebras.

1.1. Definition and Examples

Definition. A Banach space A over the complex field with an associative

multiplication is said to be a Banach algebra if

(1.11) leyll < llllllsll, =2y € A.

It follows that the multiplication (z, y) + zy is jointly continuous, and so the .
closure of a subalgebra (respectively an ideal) is again a subalgebra (respec-
tively an ideal).

An involution is a map = — z* of A satisfying

(z+y)*=z"+y*, (az) =az*, (zy)"'=y*z*, 2 ==z

for z,y € A and a € C. A Banach algebra A with an involution is said to be
an involutive Banach algebra if

(11.2) lz*]l = ll=ll,
and a C*-algebra if
(1.1.3) lle*z| = ||z|I?,

respectively. Note that the condition (1.1.3) implies (1.1.2). If A contains the
multiplicative identity 14 then we always assume that

1]l = 1.
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Example 1.1.1. Let H be a Hilbert space and B(H) the Banach space
of all bounded linear operators on H with respect to the operator norm. En-
dowing B(H) with the multiplication by the composition of operators, B(H)
is a Banach algebra. For every z € B(H), we use the correspondence between
bounded sesquilinear forms on H and bounded linear operators on H, to see

that there exists a unique bounded linear operator z* on H satisfying

(z€,m) = (€,2z*n), € neH.

With the involution z +— z*, B(H) becomes a C*-algebra. The relation (1.1.3)
is actually a powerful tool to compute the operator norm of a non-selfadjoint
operator even in the case of finite-dimensional Hilbert space, in which case
B(H) is nothing but the matrix algebra M, of all n x n matrices over the
complex field. We will see later that every finite-dimensional C*-algebra is
the direct sum of matrix algebras.

We can also construct the matrix algebras over given algebras. Let A be
an involutive algebra and denote by M,(A) the set of all n x n matrices with
entries in A. Then M,(A) is again an involutive algebra with operations;

(1.1.4) (ab)ij = Zaikbkj, (@*)ij = a;i*,  a=la], b= [bi;] € Mn(A).
k=1

In order to define a natural C*-norm on M,(A) for a C*-algebra A, we need
" the representation theory of C*-algebras, which will be one of the main topic
of this chapter.

Example 1.1.2. Let X be alocally compact Hausdorff space, and Cy(X)
the Banach space of all complex-valued continuous functions on X vanishing
at infinity with respect to the uniform norm. Defining

(f9)(e) = f(z)g(z), F(z)=f(z), ze€X,

Co(X) becomes a C*-algebra. It is easy to see that Cy(X) is unital if and
only if X is compact. Even if X is not compact, Co(X) is considered as
a maximal ideal of the unital C*-algebra C(X U {oo}), where X U {oo} is

the one-point compactification of X. We can consider every element f of



‘10 1. C*-ALGEBRAS AND THEIR REPRESENTATIONS

Co(X) as a bounded linear operator My on the Hilbert space L?(X, pu) by the

multiplication;

(1.1.5) Ms(€)(z) = f(2)é(z), €€ L*(X,p),z € X,

where p is a positive Borel measure on X. When X is compact and p(X) = 1,

note that the following relation

(1.1.6) | f@du@) = M,020.1x), Fe0x)

holds.

Ezercise 1.1.1. For which measure g, is the map f — My from Cy(X)

into B(L?(X, 1)) an isomorphism or an isometry?

Ezercise 1.1.2. Let p be a positive measure on the real line R. Determine
whether or not there is a vector £ € L(R, 1) with the analogous relation as
(1.1.6);

(1.1.7) /m o(2)du(z) = (M,(€),€), g € Co(R).

Above two examples turn out to be typical among C*-algebras. Every
commutative C*-algebra is Cy(X) for a locally compact Hausdorff space X:
Every C*-algebra is a norm-closed *-subalgebra of B(H) for a suitable Hilbert

space H. These two theorems will be the main topics of this chapter.

Example 1.1.3. For a C*-algebra A and a locally compact space X, de-
note by Cp(X, A) the space of all continuous functions from X into A vanishing

at infinity. Define multiplication, involution and norm by

(f9)(2) = f(2)g(2), f*(z) = (f(2))",
(1.1.8) £l = sup || £(=)Il,
z€X
for f € Co(X) and = € X. Then Cy(X, A) is a C*-algebra.

Ezercise 1.1.3. Show that there exists a *-isomorphism from Co(X, M,,)
onto My, (Co(X)).
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Example 1.1.4. Consider the Banach space L!(R) and define the mul-
tiplication and involution by

(F*9®) = [ fOa(s 1)t seR
f*(s) = f(-s), s€eR.
It is a standard fact that L!(R) becomes an involutive Banach algebra. Again,

every f can be considered as a bounded linear operator on L%(R) as in Example
1.1.2;

(1.1.9) M(E)(s) = (F+€)(s), EeL*R),seR

Note also that this algebra has no identity. But, we have an approximate
identity {u,} in L'(R) in the following sense;

If *un~fllh =0, feL'(R).

We define the Fourier transform fof f as usual;
Fls) = —1-/ f(t)e *tdt, seR
V2r Jr ’ ’

It is also a standard fact that the correspondence f — ffrom L'(R) is norm-
decreasing *-isomorphism into Cy(R). It is easy to see that the following

diagram commutes;
A
IA(R) —— I*(R)

Mz

I(R) —— I(R)
where L?(R) — L?(R) denotes the Plancherel transform.

Ezercise 1.1.4. Show that L'(R) is not a C*-algebra. Discuss the rela-
tions between norms || f||1, ||f||oo, A7l and ||M4| for f € L*(R).

If an involutive Banach algebra A has no identity, then we may embed A

into a unital algebra Ay as was in Example 1.1.2. Ay is nothing but the direct
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sum of A and the complex field C endowed with

(z,a)(y,b) = (zy + bz + ay, ab),
(x’a')* = (m*,E),
I, @)l = l|=]| + lal.
Ezercise 1.1.5. Show that Aj is an involutive Banach algebra with the
identity (0,1). Show also that A is an ideal of Ay under the identification

of z — (z,0). Give an example of a C*-algebra A for which Ay is not a
C*-algebra.

For z € Aj, define the left multiplication L, : A — A by L,(y) = zy.
From the condition (1.1.3), we see that ||z|| = ||L,|| for each z € A. We define
(1.1.10) llz]l = | Lzl T€Ar

Proposition 1.1.1. For a non-unital C*-algebra A, Ay is a C*-algebra
under the norm given by (1.1.10).

Note that we should first show that (1.1.10) defines a norm. Indeed, if
| L(z,a)]| = O for a # O then it is easy to see that —2z is the identity of 4, to
get a contradiction. Also, the condition (1.1.3) follows from the fact that A is
an ideal of A [T, Proposition I.1.5].

Ezercise 1.1.6. Show that there is an isometric *-isomorphism from the
C*-algebra Co(X)s onto C(X U {oc0}) in Example 1.1.2.

1.2. Spectrum and Function Calculus

Definition. For an element z of a unital Banach algebra A, define the

spectrum of z by
sps(z) ={A € C:z— ) is not invertible in A}.
Also, we define the spectral radius r 4(z) of = by

ra() = sup{]A| : A € spa(a)}.



1.2. SPECTRUM AND FUNCTION CALCULUS 13

Note that the spectrum of a continuous function f € C(X) is just the
range of f. For various interesting examples, we refer to [K, §3.2]. If ||z|| <
1 then the sequence y, = 23 z¥ converges to an element y € A by the
completeness, and the relation

(1.2.1) yl—-z)=1-2z)y=1

holds. Especially, if ||z|| < |A| then = — X is invertible, and so A ¢ spa(z).
This means that sp(z) is bounded and

(1.2.2) ra(z) < |lz|l-

The relation (1.2.1) also means that the open ball B(14,1) centered at
14 with radius 1 is contained in the group G(A) of all invertible elements of
A. For z € G(A), consider the left multiplication L, : A — A, which is a
homeomorphism with the inverse L,-1. Because the image of B(14,1) under
L, is an open neighborhood of z contained in G(A), we see that G(A) is open.
From this, it is easy to see that the complement of sp 4(z) is open. From the
relation (1.2.1), we get

11 =2)7 =17 < Dl = |2l = |l=I)~

1

and we see that the map z — z~! is continuous at 1 € G(A). By the similar

1

argument using L., the map z — z™' is a homeomorphism of G(A).

We consider the function

(1.2.3) A p((z =)™, A ¢ spa(z),

for a continuous linear functional p on A. It is easy to see that this function
is holomorphic and vanishing at co. If sp 4(z) is empty, this function vanishes
everywhere by the Liouville theorem, and especially we have p(z~!) = 0 for
each continuous linear functional p on A. It follows that ™! = 0 by the

Hahn-Banach theorem, a contradiction. Summing up, we have the following:
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Theorem 1.2.1. The set sp 4(z) is a non-empty compact subset of the
complex plane.

If p is a polynomial in one variable then the element p(z) € A is well-
defined for x € A. With simple calculations, we see that

sp(p(z)) = {p(A): A e sp(z)}, sp(z™')={A"": A € sp(z)}-

The main purpose of this section is to show that the similar construction
of new elements from given one is possible and the same relation holds for
holomorphic functions (respectively continuous functions) in Banach algebras
(respectively C*-algebras). By the way, if A € sp(z) then A™ € sp(z™), and so
|A"| < ||z"||- Hence, we have |A| < ||z*||= for each A € sp(z), and so

(124) r(z) < liminf ||z"||7.

We digress for a while to discuss vector-valued integration and differenti-
ation. Let f be a function from a measure space (2, ¢) into a Banach space
X such that po f is integrable for each p € X™*, the dual space of X. If there
exists a vector y € X such that p(y) = [,(po f)du for each p € X*, then we

define
y= / fdp.
Q

Same reasoning is applied to differentiation: For a function f :  — X, where
2 is an open subset of C, we say that f is holomorphic on 2 if the limit

L fw) = )

woz  w-—2z
exists for each z € 2. Thisis, in fact, equivalent to say that po f is holomorphic
for every p € X*, and the usual Taylor expansion theorem and the Cauchy
integral theorem hold [Ru2, Theorem 3.31].

Considering the function in (1.2.3), we see that the function

f:Ai—)(].A-—)\LL')-V_l

is holomorphic on a neighborhood of 0, and has the Taylor expansion ) z" A"
whose radius of convergence is (limsup ||z"||=)~!. So, if @ < limsup ||z"||*
then the series does not converge for A = -‘1;, and so 1 — %:z: is not invertible,
that is, a € sp(z). Together with (1.2.4), we have the following:
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Theorem 1.2.2. For an element z in a unital Banach algebra A, we have
. 1
ra(e) = lim|je"|+.

For an element z in a Banach algebra A, let f be a holomorphic function
on a neighborhood (2 containing sp(z), v a smooth closed path in Q enclosing
sp(z). We define

(1.2.5) f@) = 5 / FOYO = 2)1d).

Of course, it can be shown that the above formula is true for a polynomial f.

The proof of the following theorem is easy by calculation.
Theorem 1.2.3 (Holomorphic Function Calculus). Fixz € A. The

correspondence f — f(z) from the algebra of all holomorphic functions on a
neighborhood of sp(z) into A is a homomorphism with f(1) = 1,4 and f(:) = z,
where ((\) = A. If f is represented by the Taylor series Y a, A", then we have

f@) =Y ana™.
Furthermore, we have
(1.2.6) sp(f(z)) = {f() : A € sp(z)}.
If g is a holomorphic function on a neighborhood of sp(f(z)), then we have
(1.2.7) (g0 f)(=) = f(g(z)).

If {fn} is a sequence of holomorphic functions on a neighborhood of sp(z)
converging to f uniformly on compacta then we also have

(1.2.8) lim |fa(z) - f(=)]| = 0.

Now, we turn our attention to special properties of spectra for the case
of C*-algebras. An element z of a C*-algebra A is said to be self-adjoint if
z* = z, normal if z2* = z*z and unitary if *z = zz* = 1 when A4 is unital.
We denote by Ap (respectively U(A)) the real vector space of all self-adjoint
elements (respectively the group of all unitary elements of 4). Every element
z of a C*-algebra can be written as the linear combination of two self-adjoint
elements:

z+x* x—z*

(1.2.9) 2 i—
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Proposition 1.2.4. Let A be a C*-algebra. Then we have the following:

(i) |lz|| = r(z), for a normal element = € A.
(i) sp(z) C R, for a self-adjoint element = € A.
(iii) sp(z) C {A:|\| = 1}, for a unitary element z € A.

The first property together with the C*-norm condition (1.1.3) is a very
powerful tool to compute the operator norm of a bounded linear operator on a
Hilbert space even in the case of finite-dimensional space as was mentioned in
Example 1.1.1, because r(z) is nothing but the largest absolute value among

eigenvalues of the matrix z, and z*z is always self-adjoint.

1 1
1 ¢
t € R. Find the value of ¢ for which the operator norm of A; becomes smallest.

Ezercise 1.2.1. Let Ay = be the linear map between C? for each

Ezercise 1.2.2. Find a 2 x 2 matrix z for which r(z) < ||z||.

The following theorem is a powerful tool when we exhibit an element of
C*-algebra with pre-assigned properties. It also explains why C*-algebras are
much more convenient to deal with than Banach algebras, in which function
calculus is available only for holomorphic functions as was in Theorem 1.2.3.
In the next chapter, we will see that even measurable function calculus is
possible in so called von Neumann algebras. The proof is easy using the
Stone-Weierstrass theorem on the interval [—||z||, ||z||]] by Proposition 1.2.4.

Theorem 1.2.5 (Continuous Function Calculus). Let = be a fixed
self-adjoint element in a C*-algebra A. Then there exists an isometric *-
homomorphism f — f(z) from C(sp(z)) into A. Furthermore, we have

(1.2.10) sp(f(2)) = {f(3) : € sp(2)}.

Moreover, f(z) is normal and if an element y € A commutes with z then it

also commutes with f(z).

If A is not unital, everything can be done in the identification A;. Note
that the resulting function calculus f(z) belongs to Aif z € A. Forz € A
with ||z|| < 1, considering the function f € C(sp(z)) given by

f@®) =t+ivV1-1t2, tesp(z)C[-1,1],

we have the following;:
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Corollary 1.2.6. Every element of a C*-algebra is the linear combina-
tion of at most four unitaries.

As an another important application of Theorem 1.2.5, we state the fol-
lowing proposition which says that the norm structure of a C*-algebra is
uniquely determined by the involution and multiplication. This proposition
will play a réle when we realize every C*-algebra as a norm-closed *-subalgebra
of B(H) for a Hilbert space H.

Proposition 1.2.7. A *-homomorphism 7 : A — B from an involu-
tive Banach algebra A into a C*-algebra B is norm-decreasing. If w is a

x-isomorphism between C*-algebras then it is an isometry.

1.3. Commutative C*-algebras

In this section, we study the Gelfand transform of a commutative Ba-
nach algebra which turns out to be a generalization of the Fourier transform.
Through this transform, we realize abstract commutative C*-algebras as con-
crete ones Cy(X) as in Example 1.1.2. Before going further, we recall the
Fourier transform for locally compact abelian (LCA) group G. A character
xon G is a continuous homomorphism from G into the circle group T. The
set of all characters on G is denoted by c?', which is again an LC A group with
the pointwise multiplication and the compact-open topology. For example, we
have

= Z: Every character on T is of the form e’ — e'™*, for some n € Z.

= T: Every character on Z is of the form n ~ e'™, for some et eT.

=) N) =)

= R: Every character on R is of the form €'t — e'*!, for some s € R.

In general, the dual group of a discrete group is compact, and the dual
group of a compact group is discrete. Note that there is a natural homomor-

phisme:G — G , the evaluation map, defined by

(1.3.1) e(x)(x)=x(z), z€G, xeG.

The Pontryagin-van Kampen duality theorem says that the evaluation map
e is a topological isomorphism from G onto G for every LCA group G. We

also recall that there exists a unique (up to constant multiplication) positive
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regular Borel measure, said to be the Haar measure, on G which is invariant
under translations. We denote by f, the translation of f by y, that is, fy(z) =
f(z —vy).

Now, we endow L'(G) with the operations
(F*g)(z) = /G f(z=y)g(y)dy, f.9€LY(G),
f*(2) = f(=2), feLi(G)

Then L'(G) becomes an involutive Banach algebra as in Example 1.1.4.
For f € L'(G), we define the Fourier transform f by

(132)  f0=¢*00= [ fex(-ade,  xeb.

This transform converts multiplication by a character into translation and vice

versa;

(1.3.3) Fx=Fo R0 =Foox(-v).

Now, we show that every fis a continuous function on G. In fact, this

property characterizes the compact-open topology as follows:

Theorem 1.3.1. Let {x,} be a sequence of characters of G. Then the
following are equivalent:

i) f(x,,) — f(x) for every f € L'(G).

il) {xn} converges to x uniformly on compacta.

The direction ii) = i) follows from the Lebesgue’s convergence theorem.
For the converse direction, observe that y — f, is a uniformly continuous
map from G into L'(G). Take f with f(x) # 0. Use the second relation of
(1.3.3) and 3e-technique to show that {f(xn)(xn(x))} converges uniformly to
{f(x)(x(a:))} on a neighborhood of every point of G. A usual compactness
argument completes the proof.

The above theorem says that every fis a continuous function on G with
respect to the compact-open topology. We show that f vanishes at infinity.
Note that every character x gives rise a continuous complex homomorphism

of L(G) via f — f(x);

(1.3.4) Fralx) = F) 900
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Lemma 1.3.2. Every nonzero continuous complex homomorphism is ob-
tained in this way.

For the proof, note that every continuous homomorphism  is a bounded
linear functional on L'(G) of norm 1, and so it is represented by an L°°-
function.

Now, GU{0} is the set of all continuous homomorphisms of L'(G). Hence,
it follows from the Banach-Alaoglu theorem (or equivalently, Tychonoff theo-
rem) that GuU {0} is compact. From this, it is clear that every f vanishes at
infinity. It is easy to see that

1 Flloo < 11£1ls-

We denote by A(G), the Fourier algebra of G, the image of L!'(G) under
the Fourier transform. Then, A(G’) is a separating self-adjoint subalgebra of
Co(é). It follows from the Stone-Weierstrass theorem that A(@) is dense in
Co(G). Summarizing, we have the following:

Theorem 1.3.3. The Fourier transform f +— f is a norm-decreasing
homomorphism from L*(G) onto the dense subalgebra A(G) of Co(G).

Denote by A the set of all complex homomorphisms of a commutative
unital Banach algebra A. For each z € A, we define the Gelfand transform 7
by

1 (1.3.5) #(h) = h(z), heA.

We endow A with the smallest topology that makes every Z continuous on
A as was in Theorem 1.3.1. The space A is said to be the maximal ideal
space, because every complex homomorphism corresponds to a maximal ideal
of A. In fact, it is clear that Ker h is a maximal ideal of A for each complex
homomorphism A of A. Conversely, if I is a maximal ideal of A then it is easy
to see that I is closed and every nonzero element of the quotient algebra A/I
is invertible. Using Theorem 1.2.1, it is also easy to see that A/I is nothing
but the complex field.

Using the Tychonoff theorem or Banach-Alaoglu theorem, it is easy to
see that A is compact Hausdorff. In fact, the formula A(z — h(z)1) = 0 shows
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that £ — h(z)1 is not invertible, and so |h(z)| < ||z|| by (1.2.2). This means
that

ac II B, ll=ll),

€A
where B(0, ||z||) is the closed ball on the complex plane. The topology on A is
nothing but the subspace topology of the Tychonoff topology on the product
space. Now, the Gelfand transform

(1.3.6) T—T

is a homomorphism from A into the C*-algebra C(A), whose range will be
denoted by A. A Banach algebra is said to be semi-simple if the Gelfand
transform is an isomorphism. The inversion theorem for the Fourier transform
says that L!(G) is semi-simple. We refer to [Ru2, §11.13] for more concrete
examples of the Gelfand transforms.

Using the above correspondence between maximal ideals and compleﬁc
homomorphisms, it can be also shown that the range of the function 7 is just
sp(z), and so we have

(1.3.7) [Zllco = r(z) < ll]-

If A is a commutative C*-algebra then every element of A is normal, and
so the equality holds in (1.3.7) by Proposition 1.2.4 (i). Hence, we have the
following:

Theorem 1.3.4. If A is a unital C*-algebra then the Gelfand transform

is an isometric *-isomorphism whose range is the whole algebra C(A).

Note that the meaning of “+-preserving” is z* = 7, which is a consequence
of Proposition 1.2.4 (ii). From this, we see that the range is self-adjoint, and
so it is dense by the Stone-Weierstrass theorem. Hence, the range is the whole
algebra C(A) by the completeness of A.

Example 1.3.1. Denote by Cy(X) the set of all continuous bounded
functions on a non-compact, locally compact Hausdorff space X. With the
same operations as in Example 1.1.2, C3(X) becomes a unital C*-algebra
whose maximal ideal space will be denoted by 5X.



1.4. ORDER STRUCTURES OF C*-ALGEBRAS 21

Ezercise 1.3.1. Let h, be a complex homomorphism on Cj(X) defined by
the formula h,(f) = f(z), for f € Cp(X). Show that the mapping = — h, is
a homeomorphism from X onto a dense subspace of X.

Now, we look at the case when a C*-algebra A has no identity. We denote
by Ay the maximal ideal space of Aj.

Ezercise 1.3.2. Show that there is a unique hg € Ay such that ho(z) =0
for each z € A. Show also that A can be identified as the ideal {z € C(Ay) :
z(ho) = 0} of C(Ay).

1.4. Order Structures of C*-algebras

One of the main technical advantages of involutive algebras is that there
is a natural order structure; we say that elements of the forms z*z are positive,
as in the cases of Cy(X) and matrix algebras. In the case of C*-algebras, we

use continuous function calculus (Theorem 1.2.5) to show the following:

Theorem 1.4.1. For a self-adjoint element z of a C*-algebra A, the
following are equivalent:

(i) spy,(z)CRY={teR:t>0},
(ii) =z = h? for some h € Ay,
(ili) z = y*y for some y € A.

If A is a norm-closed *-subalgebra of B(H) for a Hilbert space ‘H, then the
above conditions are also equivalent to

(iv) (x€,€) >0 for each £ € H.

The implications (i) = (ii) = (iii) are trivial. For the proof of (iii) =
(1), first note that the condition (i) is equivalent to

(v) ||z — alal| £ a for some a > ||z||.
Using this condition, we see that the relation
(1.4.1) z =z* sp(z) CRY, sp(y) CRtY = sp(z+y)CR™.

holds in C*-algebras. Also, the equality (1 —yz)(y(1 —zy) 'z +1) = 1 shows
that the following simple relation

(1.4.2) sp(zy) C sp(yz) U {0}
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also holds in Banach algebras. We use the decomposition (1.2.9) and the
above two relations (1.4.1) and (1.4.2) to get the following:

Lemma 1.4.2. Ifsp(z*z) C (—00,0] then z = 0.

Now, we assume that = y*y for some y € A and consider the functions
(1.4.3) ut(t) = max{t,0}, u (t)=—-min{t,0}, teR,

and put p = u*(z), ¢ = u=(z). Then it follows that z = p — ¢ and pq = 0,

and so
3

(v9)*(ve) = "y ya = q*"(p— 9)a = —¢°.
Considering the range of the function —(u~)3, we see that yg = 0 by Lemma
1.4.2. Hence, we have ¢*> = 0 and ||g|| = 0 by Theorem 1.2.2 and Proposition
1.2.4 (i), and this completes the proof of (iii) == (i).

For the proof of (iv) = (i), note that if every normal non-invertible -
operator z € B(H) has an approximate eigenvectors {€,}. If A € sp(z) then
we have lim,((z — A){,,€,) =0, and so A > 0. In the course of the proof, we
have shown the following:

Proposition 1.4.3. Every element of a C*-algebra is the linear combi-
nation of at most four positive elements.

The set of all positive elements of A is denoted by A;, and we write
z<yify—z € A,. Theset A} is a norm-closed cone of the real vector space
Ap satisfying Ay N (—Ay) = {0}. If A has the identity 1,4 then it is easy
to express how the notions of positivity, multiplication and norm are related.
Indeed, from the first condition of the above Theorem 1.4.1 and continuous

function calculus, it is easy to see that

(1.4.4) Ay ={z € A llo = lellnall < Jlo]},

(1.4.4) l|lz|| = inf{a € RY : —aly < z < aly},
(1.4.6) —y<a<y= el <l

(1.4.7) r€ AL NG(A) < z > tl, for some t > 0,

which are trivial in the C*-algebra Cp(X).
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The element h in Theorem 1.4.1 (ii) is determined uniquely among positive
elements, and denoted by z%. It can be shown (see [P, Proposition 4.2.8] or
[M, Theorem 2.2.6]) that

which will be useful to construct approximate identities. Note that even if f is
an increasing function in the plain sense, the relation z < y = f(z) < f(y)
does not hold in general.

Now, let B be a C*-subalgebra of a unital C*-algebra A, and denote
A={ueBnNAy:|u| <1}

We can show that the set A is directed, that is, for u;,us € A, there is
u € A such that vy < u and uy; < u. To do this, choose § > 0 such that
(1 + 8)ui]| £ 1,: =1,2. Put

Zn = 1+6(1+6) (ug + ug)".

By using (1.4.8), it is easy to see that u; < z, foreachi = 1,2 and n = 2%,k =
1,2,..., and z, € A for sufficiently large n. It turns out that the set A = {us}

plays the role of an approximate identity for B, in the following sense;
h§n||a: —zuy|| = 1i)1\n |z —uxz|| =0, ye€B.

Theorem 1.4.4. Every C*-algebra A has an approximate identity. If A
is separable, then the net may be chosen to be a sequence.

For the proof, we may assume that ||z|| < 1. If uy > (z*z)+ then we have
0 < z(1 —ux)?z* < 2(1 — ua)z* < z(1(z*z)7 )",

and so

lle = zual? = Jl2(1 — ua)?z*|| < |l2(1 = (a*z) % z*|.

It is easy to see that the last quantity converges to 0 as n — oo from the
continuous function calculus. Note that (a:*:z:)% €A.
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The concept of approximate identity is very useful to deal with ideals of
C*-algebras. It can be shown that every norm-closed two-sided ideal I of a
C*-algebra is self-adjoint, hence a C*-subalgebra. If {u,} is an approximate
identity for I, then the quotient norm may be expressed in terms of {uy} as
follows:

(1.4.9) |z + I|| = H{xl |z — zua|| = 1i/r\n |z —urz|, =€ A.

From this, it is easy to see that the quotient of a C*-algebra is again a C*-
algebra.
A subcone of M of a C*-algebra A is said to be hereditary if

0<z<yyeM =z €M
A C*-subalgebra B is said to be hereditary subalgebra if B, is hereditary in
A,. For a subcone M, denote
LM)={z€ A:z*z € M}.
Theorem 1.4.5. Let A be a C*-algebra. The mappings B— By, M — -
L(M) and L — LNL* are bijective, order-preserving correspondences between

the sets of hereditary C*-subalgebras of A, closed hereditary cones of A, and
closed left ideals of A.

Following proposition provides useful methods to characterize and con-
struct hereditary C*-subalgebras.

Proposition 1.4.6. Let A be a C*-algebra. Then we have the following:
(i) A C*-subalgebra B of A is hereditary if and only if z € A and
y,y' € B implies yzy' € B.
(ii) For z € A4, (zAx)~ is the hereditary C*-subalgebra of A gen-
erated by z.
(iii) Conversely, every separable hereditary C*-subalgebra of A is of
the form (zAz)~ for some z € A4.

Ezercise 1.4.1. Describe all left ideals and hereditary C*-subalgebras of
the matrix algebra M,, in a concrete way, and explain the correspondences
given in Theorem 1.4.5. Show that M, is simple.

Ezercise 1.4.2. Find all hereditary C*-subalgebras and left ideals of the
C*-algebra C(X) for a compact Hausdorff space X.



1.5. REPRESENTATIONS OF C*-ALGEBRAS 25

1.5. Representations of C*-algebras
Let A be a unital C*-algebra. A linear functional ¢ on A is said to be
positive if
#(z*z) > 0, z € A.
Every positive linear functional ¢ induces a sesquilinear form on A by
(z,y) = ¢(y*z), =,y € A4,

especially, we have

(1'5‘1) ¢(y*x) = ¢($*y)7 -73,11 e A7
(15.2) lo(y*2)® < |p(z*2)d(y*y)|, =,y € A

This inner product induces a definite inner product on the quotient space
A/Lg,, where

Ly={z € A:¢(z*z) =0}.
We denote by H, the Hilbert space obtained by the completion of A/L4. For

every z € A, denote by m4(z) the linear map on the pre-Hilbert space A/Ly
induced by the multiplication;

(1.5.3) no(z)(y+ Ly) =zy+ Ly, yEA,
which is well-defined by (1.5.2). The relation z*z < ||z]|?14 implies
(1.5.4) ¢((zy)*zy) = d(y*z*zy) < |lz|*$(y*y),

and so 74(z) extends to a bounded linear map on Hy. Also, if we denote by
- €4 the vector in Hy4 represented by the identity 1 of A, then we have
(1.5.5) $(z) = (mg(x)€p, €9), T € A
A representation of an involutive algebra A is a pair {m, H} of a Hilbert
space H and a *-homomorphism 7 : A — B(H). A set X of vectors in H is
said to be cyclic if the set {m(z)é:z € A,£ € X} is dense in H, and {m,H} a
cyclic representation if there is a single cyclic vector.

Ezercise 1.5.1. Let X be a cyclic set for a representation {r,H} of a

C*-algebra A. Define ¢¢(z) = (n(2)€,€) for z € A and € € H. Show that

@I = sup { 2L ¢ xy e ) # 0
holds for each z € A.
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Theorem 1.5.1. Let A be a unital C*-algebra. For every positive linear
functional ¢, there exists a unique, up to unitary equivalence, representation
{74, Hy} and a cyclic vector €, with the relation (1.5.5).

We say that two representations {m;, H;} and {m2, Hz} of A are unitarily
equivalent if there is an isometry U from H; onto H; such that Um (2)U* =
ma(z) for each z € A. The uniqueness part of Theorem 1.5.1 can be seen easily
from the density of the set {rs(z)€s;z € A} in Hy.

Ezercise 1.5.2. Let ¢ be the linear functional of the C*-algebra C[0,1]
given by the Lebesgue measure on the unit interval. Describe the induced
representation. Do the same question for the normalized trace of the matrix
algebra.

A positive linear functional ¢ is said to be a state if ¢(14) = 1. The
set of all states on A is denoted by S(A). This is equivalent to the condition-
ll#|l = 1 by the following proposition which explains together with (1.4.4) and
(1.4.5) how the norm and order structures are related.

- Proposition 1.5.2. A linear functional ¢ on a unital C*-algebra A is
positive if and only if ¢ is bounded and ||¢|| = #(1.4).

One direction is easy if we use the fact that every positive linear functional
@ is self-adjoint, that is, ¢(z*) = ¢_(z—5, or equivalently ¢(z) € R for each self-
adjoint element z € A. For the converse, we use the continuous function
calculus. As an application of the Hahn-Banach extension theorem together

with Proposition 1.5.2, we have the following essential result.

Lemma 1.5.3. Let = be an element of a C*-algebra A. Then z = 0 if
and only if ¢(z) = 0 for each state ¢ on A.

We consider the direct sum of all representations {74, Hs};

(1.5.6) n(z) = €B (), z € A,

#€S(A)

which acts on the Hilbert space € ses(a) Hg. By Lemma 1.5.3, we have the
following:
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Theorem 1.5.4. If A is a C*-algebra then the above representation 7 is
a x-isomorphism.

Combining with Proposition 1.2.7, we see that every C*-algebra can be
realized as a norm-closed x-subalgebra of B(H) for a Hilbert space H. If A
is not unital then we may consider the representation {m,H} of the unital
C*-algebra A;. By using an approximate identity for A, we see that the cyclic
vector £ for the representation {m,H} is still a cyclic vector for the represen-
tation {r|4,H} of A. The representation in (1.5.6) is said to be the universal
representation of A. By Zorn’s lemma, it is easy to see that every represen-
tation is the sum of cyclic representations, and so it is a subrepresentation of
the universal representation. If A has a faithful state ¢, that is, #(z*z) = 0
implies = 0, then the induced representation {r4, Hg4} is already faithful,
that is, isomorphic.

Ezercise 1.5.9. Let A be a C*-algebra. Show that there exists a unique
norm on the involutive algebra M, (A) in Example 1.1.1 which makes My(A)
a C*-algebra.

For a vector ¢ in a Hilbert space H, we define a positive linear functional
wg on B(H) by the formula

we(z) = (2§, €), z € B(H).
If £ is a unit vector then wg is a state, called a vector state. The relation
(1.5.5) says that ¢ is nothing but the composition of the vector state given
by £ and the *-homomorphism 7. Conversely, if a representation {m,H} is
given with a cyclic unit vector £ and ¢ is a state given by

#(z) = (n(2)E,€), =z €A,
then we see that the induced representation 74 is unitarily equivalent to 7
from the uniqueness part of Theorem 1.5.1. If 7 is the universal representation
given by (1.5.6) then every state of A is of the form w, o 7 for a unit vector
1 in @4escayHo- In other word, every state of 7(A) is a vector state. If
A acts on a Hilbert space then every state of A is the weak* limit of the
finite sums of vector states. This follows from the following theorem which
characterizes weak* dense subsets of the state space in terms of the order and

norm structures.
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Theorem 1.5.5. Let A be a unital C*-algebra and Sy a subset of S(A).
Then the following are equivalent:
(i) Ifze Ay and ¢(z) > 0 for each ¢ € Sp thenz € Ay.
(i) For each z € Ay, we have ||z|| = sup{|¢(z)| : ¢ € So}.
(ii) The convex hull of Sy is weak* dense in S(A).

With a = sup{|p(z)| : p € So}, we see p(als £ z) > 0 for p € Sp. If we
assume (i) then —aly < z <.aly, and ||z|| < a by (1.4.4). In order to show
(if) = (iii), we assume that the weak* closure €68, of the convex hull of Sy
is a proper subset of S(A) and take py € S(A) \ ©6S,. By the Hahn-Banach
theorem, there exist £ € A and a real number a such that Re po(z) > a and
Re p(z) < a for each p € T6S,. If we denote by z, the real part of z in (1.2.9)
then

a < Repo(z) = po(zn) < ||z4|| = sup{|p(z4)| : p € So} < a,

a contradiction. The inclusion (iii) = (i) is an another application of the
Hahn-Banach theorem together with the following decomposition of bounded
linear functionals:

Theorem 1.5.6. If ¢ is a bounded self-adjoint linear functional on a
C*-algebra A. Then ¢ = ¢4 — ¢_ for positive linear functionals ¢, and ¢_
on A with ||@|| = ||¢+|| + ||¢—]||. Hence, every bounded linear functional is the
sum of at most four positive linear functionals.

When A4 is an involutive Banach algebra with a faithful representation,
we define a new norm on A by

(1.5.7) llzlle = sup{||=()I[},

where 7 runs through all representations. By Proposition 1.2.7, we have
|zl < ||lz|| and the completion of A is a C*-algebra, called the envelop-
ing C*-algebra of A. The construction of group algebra L!(G) in §1.3 can be
carried out for every locally compact group G by the following modification;

(@+u)(t) = /G 2(s)y(s~t)ds,
2 () = 6(t)" 2,

(1.5.8)
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where § is the modular function for the left invariant Haar measure. We define
the left regular representation of L'(G) by

(1.5.9) A@)E)(E) = /G 2(s)E(s~H)ds, € € LA(G),z € LXG),

which is always faithful. The enveloping C*-algebra of L'(G) is said to be
the group C*-algebra and denoted by C*(G). The norm closure of the image
MLY(G)) in B(L*(G)) is said to be the reduced group C*-algebra, and denoted
by C3(G).

Ezercise 1.5.4. For the cyclic group Z,,, describe the C*'—algebra Cx(Z,)
as a subalgebra of M,,. Do the same thing for the permutation group S3 on
three elements.

Ezercise 1.5.5. Let G be an LC A group. Discuss the relation between the
Fourier transform f f and the left regular representation f +— A(f). Show
that the extension of the left regular representation A to C*(G) is faithful,
and so C*(G) is *-isomorphic to C}¥(G). Show also that these C*-algebras are
in fact *-isomorphic to the C*-algebra Co(@).

With the above Exercise 1.5.5, it is evident that every positive lineal
functional ¢ on C*(G) is given by a positive measure on G if G is commutative.
The restriction of ¢ to L!(G) is again realized as a function f in L*(G), and
the function arising in this manner is said to be a positive definite function

on G.

Ezercise 1.5.6. What is the positive definite function on G associated

with the point mass on G?
Ezercise 1.5.7. Let f be a function on Z given by
fO=1, f(I)=a, f(-1)=a, f(n)=0, n==42,43,....

Find the condition on a for which f is positive definite. Find the eigenvalues
of the n x n matrix [a;;] given by

aii =1, aiiy1=a, a1 =7 a;; =0 otherwise.

Show that the above condition on « is equivalent to the positivity of the n x n
matrix [f(i — j)]}';=, foreach n =1,2,....
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1.6. Pure States and Irreducible Representations

Let A be a unital C*-algebra. We endow the set S(A) of all states of
A with the smallest topology for which the function ¢ — ¢(z) is continuous
for each ¢ € A as for the case of maximal ideal space A in §1.3. This is the
relative topology of the weak* topology of the dual space A* or equivalently
the relative topology of the product topology on C4. By the Banach-Alaoglu
or Tychonoff theorem, S(A) is compact. Also, by the Krein-Milman theorem
S(A) is the closed convex hull of its extreme points. Recall that a point z of a
convex set S in a vector space is said to be an extreme point of S if z cannot
be expressed as a convex combination of another points in S. An extreme
point ¢ of S(A) is said to be a pure state of A and denote by P(A) the set of
all pure states of A.

Lemma 1.6.1. A state ¢ is pure if and only if every positive linear
functional T with 7 < ¢ is a scalar multiple of ¢.

Recall that every closed ideal of C(X) is of the form
{feC(X): f(z) =0 for each z € K}

for a closed subset K of X. From this and Lemma 1.6.1, it is easy to charac-
terize all pure states of commutative C*-algebras. Note that the equivalence
between (ii) and (iii) of Theorem 1.6.2 is already contained in Exercise 1.3.1
if we consider the C*-algebra C(X) = C(X) when X is compact.

Theorem 1.6.2. Let ¢ be a positive linear functional on the C*-algebra
C(X). Then the following are equivalent:

(i) ¢ is a pure state.
(1) ¢(f) = f(z) for some z € X.
(i) ¢(fg) = ¢(f)d(g) for each f,g € C(X).

Hence, if ¢ is a pure state of C(X) then ¢ is in itself the induced represen-
tation 7,4, which acts on the one-dimension Hilbert space. In the following,
we will study the non-commutative analogue. We begin with the following

simple lemma, which will be used repeatedly.
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Lemma 1.6.3. Let p be the projection of H onto a closed subspace E
of H, and z € B(H). Then we have the following:
(i) FE is invariant under z if and only if zp = pzp.
(ii) E is invariant under z if and only if E* is invariant under z*.
(i) Both E and E* are invariant under z if and only if zp = pz.
Furthermore, E is invariant under a *-subalgebra A of B(H) if and only if
px = zp for each z € A.

Let ¢ be a pure state of a C*-algebra A and {rs, H,s} the induced repre-
sentation. Using Lemma 1.6.1 again, it is easy to see that there is no nontrivial
closed subspace of Hy which is invariant under 74(z) for each = € A. Indeed,
if £ is a closed subspace of Hy which is invariant under 74(4), denote by P
the projection of Hy4 onto E. Then P commutes with m4(z) for each z € A.
Define a positive linear functional by

¥(z) = (rg(z)Ply. PEy),  z € A

We see that

(mg(*2)Ply, Ply) = |Im(z)PEy||* = [|Pm(2)El1” < llmg(2)E||* = d(z*2),

and so we have ¢ = A\¢ for a scalar A\ by Lemma 1.6.1. It follows that

(Pﬂ'¢(.’l))§¢,f¢) = (/\7r¢(a:)§¢,§¢), T € A.

Because {; is a cyclic vector, it follows that P = A1 and P=1or P =0.

In general, a representation 7 of an involutive Banach algebra A on a
Hilbert space H is said to be irreducible if there is no nontrivial 7(4)-invariant
closed subspace of H.

Theorem 1.6.4. Let {ry,H,} be the induced representation of a state
¢ on a C*-algebra A. Then ¢ is a pure state if and only if {m4,Hs} is an
irreducible representation.

For the converse, we need the following lemma which will be easy if we
use the Spectral Resolution in the next chapter (see Remark 2.1.3).
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Lemma 1.6.5. A representation {m,H} of a C*-algebra A is irreducible

if and only if only scalar operators commute with m(A).

Note that one direction has been already proved during the discussion
before Theorem 1.6.4. Now, we assume that 74 is an irreducible representation
and 1 is a positive linear functional on A such that ¢ < ¢. Using this

condition, we may define a bounded sesquilinear form on Hy by

B(7r¢(z)§¢,7r¢(y)£¢) =9(y*z), z,y€ A4,

on the dense subspace {my(z)€4;z € A}. Hence, there exists a unique positive
operator zo on Hy such that

(zo€,m) = B(&,m),  &,n€ Hy.

It is easy to check that zo commutes with 74(z) for each z € 4, and so zg = Al
for a scalar A by Lemma 1.6.5. From this, it is also easy to see that ¢ is a
scalar multiple of ¢, and so ¢ is pure by Lemma 1.6.1.

Because S(A) is the closed convex hull of P(A), it is easy to see from
Lemma 1.5.3 that z = 0 if and only if ¢(z) = 0 for each ¢ € P(A). Therefore,

the representation given by

(1.6.1) @)= P m(2)

$EP(A)
is also a faithful representation of A together with (1.5.6).

Ezercise 1.6.1. Show that every vector state wg on B(H) is a pure state.

Ezercise 1.6.2. Find all pure states of the matrix algebra M,,. Show that
the identity map ¢ : M,, — B(H,) is an irreducible representation, where H,,
is the n-dimensional Hilbert space. Show that every irreducible representation

of M,, is unitarily equivalent to the identity representation ¢ on H,,.

The similar results as in the above Exercise 1.6.2 also hold for the C*-
algebra K(H) of all compact operators on a Hilbert space H. The C*-algebra
K(H) is the norm closure of the ideal of B(H) consisting of all finite rank
operators on H. In the next chapter, we will study the dual space of K(H),



1.6. PURE STATES AND IRREDUCIBLE REPRESENTATIONS 33

and see that the double dual of X(H) is just B(H), as in the case of sequence
spaces; co** = £°. In the course of discussion, we will see that every positive
linear functional on K(H) is of the form

(1.6.2) Z )\iw&,
8

for some orthonormal system {¢;} of H and a nonnegative real numbers with

Yi Ai < oo (see Exercise 2.2.1). From this, we see the following:

Theorem 1.6.6. Every pure state of K(H) is a vector state and every
non-trivial irreducible representation of K(H) is unitarily equivalent to the
identity representation . : K(H) — B(H). If {r,H} is an irreducible rep-
resentation of a C*-algebra A such that n(A) N K(H) # {0}, then we have
m(A) 2 K(H).

For the last assertion, we need the double commutant theorem which will
be discussed in the next chapter (see Theorem 2.1.4).

A C*-algebra A is said to be liminal or CCR (Completely Continuous
Representation) if m(4) = K(H) for every irreducible representation 7, and
said to be postliminal or GCR (Generalization of CCR) if n(A) 2 K(H)
for every irreducible representation w. Note that if a unital C*-algebra is
liminal then every irreducible representation is of finite dimensional. A C*-
algebra is said to be n-homogeneous if every irreducible representation is of
. n-dimensional, and subhomogeneous if every irreducible representation is of
finite dimensional with bounded dimensions. Structures of liminal or postlim-
inal C*-algebras are relatively well known with their spectra, the set of all
irreducible representations with a suitable topology as in the case of com-
mutative C*-algebras. Especially, the structures of liminal C*-algebras with
Hausdorff spectra are completely determined as bundles of matrix algebras or
K(H)’s over their spectra. We refer to Dixmier’s book [D, Chapter 10] for the
details.

On the other hand, a C*-algebra A is said to be antiliminal if the zero ideal
is the only liminal closed two-sided ideal. General structures of antiliminal
C*-algebras are still mysterious and our lecture will focus on several classes
of these algebras.
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We close this section by considering the extensions and restrictions of

states and pure states.

Theorem 1.6.7. Let B be a unital C*-subalgebra of a unital C*-algebra
A. Then we have the following:

(i) Every state of B extends to a state of A.

(ii) Every pure state of B extends to a pure state of B.

(iii) If {m,H} is a representation of B then there is a representation
{p,K} of A such that H C K, H is invariant under p(B) and
p(z)|ly = n(z) for z € B. If w is irreducible then p may be
chosen to be irreducible.

In general, a restriction of a pure state need not to be pure. Actually, it
is easy to find an example of a pure state p of M, and a C*-subalgebra B of
M, such that p|p, is not pure.

Proposition 1.6.8. Let p be a pure state on a unital C*-algebra A with
the center Z(A). Then the restriction p|Z(A) is also a pure state.

NOTE

Every material in this chapter is standard. We usually have followed Kadison and
Ringrose’ book [K] for §1.2, and Rudin’s book [Rul] for the Fourier transforms in §1.3. The
proofs of Theorems 1.4.1 and 1.4.4 were taken from [K, §4.2], and the detailed arguments
for the latter parts of §1.4 can be found in Pedersen’s book [P, §1.5] or Murphy’s book
[M, §3.1, §3.2]. The construction in Theorem 1.5.1 is called the Gelfand-Naimark-Segal
construction, which is actually possible for any involutive Banach algebras with a bounded
approximate identity [T, §1.9], [D, §2.4]. For the detailed argument in the last part of §1.6,
we refer to [D, §4.1]. Following is a list of useful references for this chapter, although they
are not mentioned explicitly.

1. W. Arveson, An Invitation to C*-algebras, Graduate Texts in Math., Vol. 39, Springer-
Verlag, 1976.

2. S. K. Berberian, Lectures in Functional Analysis and Operator Theory, Graduate Texts
in Math., Vol. 15, Springer-Verlag, 1974.

3. J. B. Conway, A Course in Functional Analysis, Graduate Texts in Math., Vol. 96,
Springer-Verlag, 1985.

4. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Pure and Appl. Math.,
Vol. 49, Academic Press, 1972.

5. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Grundlehren Math. Wissen.,
Vol. 115, Springer-Verlag, 1963.

6. L. H. Loomis, An Introduction to Abstract Harmonic Analysis, Univ. Series in Higher
Math., Van Nostrand, 1953.

7. C. E. Rickart, General Theory of Banach Algebras, Univ. Series in Higher Math., Van
Nostrand, 1960.



CHAPTER 2

VON NEUMANN ALGEBRAS

A von Neumann algebra is a unital *-subalgebra of B(H) which coincides
with its double commutant. In §2.1, we introduce a topology on B(H), and
show the von Neumann double commutant theorem: A unital *-subalgebra
is a von Neumann algebra if and only if it is closed under this topology.
Another topologies under which the closures of *-subalgebras coincide will be
discussed. One of them is nothing but the weak* topology if we realize B(H)
as the Banach space dual of the space of all trace class operators on H. In the
course of discussion, we show that the measurable function calculus is possible
in von Neumann algebras, especially von Neumann algebras are abundant in
projections. This fact enables us to study von Neumann algebras in terms of
their projections, and leads us to classify von Neumann algebras into several
types. The arguments are very similar as in the theory of equipotency in set
theory. During the discussion, we will see that every finite-dimensional C*-
algebra is the direct sum of matrix algebras. In order to exhibit nontrivial
examples of von Neumann algebras, we consider three types of constructions;
group von Neumann algebras, tensor products and crossed products. These
are main motivations for the further study of C*-algebras.

2.1. Spectral Resolution and Double Commutant Theorem

We begin with the following fundamental result.

Proposition 2.1.1. Let {z : A € A} be an increasing net of self-adjoint
operators in B(H) which is bounded by a scalar operator c1. Then there exists

an operator ¢ € B(H) with z = supy zx. Moreover, we have

(2.1.1) 1i§n llzA€ — z€|| = 0, EeH.

35
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For each £ € H, the net {(z€,€) : A € A} of real numbers converges to a
real number. By the polarization '

3

1 . . .
(2.1.2) (@a&m) = 7 > ik(@a(€ +i*n), €+ i*n)),
k=0
we see that {(za£,7) : X € A} converges to a complex number B(£,n) in C. It
is easy to see that B is a self-adjoint bounded sesquilinear form, and so there
exists a self-adjoint bounded operator z € B(H) such that

(z€,n) = B(&m), €EneH.

It is clear that supy zx = z from the relation imx(za€, §) = (z€, ). Now, we
have

Iz = 22)¢l1* = lim{(z — 22)%¢,€) < Iz — @all{(= — 22)¢,€),

and the last quantity converges to 0.

Definition. We say that a net {zx : A € A} in B(H) converges to z €
B(H) in the strong operator topology if (2.1.1) holds for each £ € H, and in
the weak operator topology if

(2.1.3) li)r\n(x,\f,n) =0, &neH.

A unital *-subalgebra M of B(H) is said to be a von Neumann algebra if M

is closed under the strong operator topology.

Note that every von Neumann algebra is a C*-algebra and B(H) itself is
a von Neumann algebra. The above proposition says that if we take a net
. {z} of self-adjoint elements in a von Neumann algebra M then sup, z lies
in M. For a locally compact Hausdorff space X, we denote by By(X) the

commutative C*-algebra of all bounded Borel functions on X.

Ezercise 2.1.1. Let X be a compact Hausdorff space. Assume that when-
ever a family F in C(X) has an upper bound, F has the least upper bound.
Show that X is extremely disconnected, that is, the closure of each open set is
open. Show that the maximal ideal space of By(X) is extremely disconnected.
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Theorem 2.1.2. For a given self-adjoint element z in a von Neumann
algebra M, there is a *-homomorphism f — f(z) from By(sp(z)) into M,
which extends the continuous function calculus on C(sp(z)). If {fn} is an
increasing sequence in By(sp(z))s converging to f then f(z) = sup,, fu(z) in
M.

For each { € H, define a positive linear functional y¢ on C(sp(z)) by

(2.1.9) pe(f) = (f(2)6,€), £ € Clsp(2)),

where f(z) is defined by the continuous function calculus. Because sp(z)
is compact, every element f € By(sp(z)) is integrable with respect to the
measure fi¢, and so p¢ extends to a positive (hence, bounded) linear functional
on By(sp(z)). Define a bounded linear functional by

(215)  pea(D =72 Pherialf)  f € Bulon(a).

Now, we fix f € By(sp(z))n. Then B(€,n) = pen(f) defines a bounded
self-adjoint sesquilinear form on H, and so there exists a unique bounded

self-adjoint operator, denoted by f(z), satisfying

(2.1.6) pea(f) = (F@Em),  f € By(sp(2))n-

If fn / f then we see that (fn(z){,€) — (f(z),€) for each £ € H
by the Lebesgue convergence theorem, and so sup, fn(z) = f(z). Recall
[Pe, Proposition 6.2.9] that every f € By(sp(z)) is the limit of an increasing
sequence {f,} in C(sp(z)). Hence, we see that f(z) € M by Proposition 2.1.1.
In order to show that f — f(z) is a homomorphism, it suffices to show that
f2(z) = (f(z))? for f € By(sp(z))+. Again, we take f, € C(sp(z))+ with
fn / f. Then f,%2 / f2, and so we have

(fA(2)6,€) =Hm(fa(2)¢, €) = im(fa(z)?€, &)
=lim || fa(2)¢||* = | f(2)ENI* = (£(2)¢, £),

by Proposition 2.1.1. We extend the map f — f(z) in (2.1.6) to the whole
By(sp(z)) by the complexification.
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For each Borel subset A of sp(z), we may define the projection E(A) by
(2.17) B(4) = (@),

because x4 € Bu(sp(z)). If we denote the complex Borel measure g, on
sp(z) by
pe,n(xa) = (E(A)E, ),

for each £, € H, then it is easy to see that

(2.1.8) (f(2)e,m) = /sp(z) Fden(X),  Enen.

The projections given by (2.1.7) are said to be the spectral projections for the
self-adjoint element z € B(H). If an element y € B(H) commutes with z then
it also commutes with every spectral projection for z. The formula (2.1.8) is
usually expressed as

f(z)= ) FNAEQ),

sp(z

which is said to be the spectral resolution of x, when f(A) = A.

Remark 2.1.3. Now, we are ready to prove Lemma 1.6.5. Assume that
z € B(H) commutes with m(A). In order to show that = A1 for some A € C,
we may assume that z is self-adjoint. Then every spectral projection of
commutes with 7(A4), and so their ranges are all invariant under 7(A). It
follows that every spectral projection is 0 or 1, and this completes the proof
of Lemma 1.6.5.

For a subset S of B(H), we define the commutant S’ by the set of all
elements z € B(H) which commute with every element of S. If {zx} is a net

in S and z) — z in the weak operator topology then we have
(zat, n) =lim(zxat, 1) = lim(azag,n)

=lim(ax€, a*n) = (22, a*n) = (azt, ),

for each a € S', and so z € (S'). The von Neumann’s double commutant

theorem says that the converse also holds for unital *-subalgebras of B(H).
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Theorem 2.1.4. Let A be a unital x-subalgebra of B(H). Then the dou-

ble commutant A" of A coincides with the strong operator and weak operator
closures of A.

Let x € A" and &1, &3,...,€&n € H. In order to show that z is in the strong
operator closure of A, it suffices to find zq € A such that

(219) ”(1‘—1‘0)61“ < € 7‘ = 1,2,...,71.

Denote by H the direct sum of n-copies of H, and £ = (&, . .6n) € H. We

also denote by 7 € B(’ﬁ) the operator (&1,...,&n) — (y&1,...,y€n). Then the
projection P of H onto the closure of the subspace

(2.1.10) {y€:y e A}

commutes with A = {§ : y € A} because the range of P is invariant under A.
If we represent T as the n X n matrix whose diagonals are z then it is easy
to see that € (4)" from the condition z € A". Hence, ¥ commutes with P,
and so the range of P is invariant under Z. Because A is unital, we see that
7€ = 1€ isin this range, which is the closure of the subspace (2.1.10). Hence,
we can find zo € A satisfying (2.1.9).

- Hence, a unital x-subalgebra M is a von Neumann algebra if and only
if M = M". A von Neumann algebra R acting on H is said to be a factor
if RN R = Cl1. It is easy to see that R is a factor if and only if R is a
- factor, especially B(H) is a factor. The center M N M' of M will be denoted
by Z(M).

For an operator € B(H), we denote by p = (w*x)% Then we have
Ip€]| = ||z€|| for each £ € H, and so we have an isometry from p(H) onto z(H)
which sends p{ to €. Denote by v the extension of this isometry to the whole
H by defining v(€) = 0 for £ in the orthogonal complement of p(7). Then we
have

(2.1.11) z = vp, Kerz = Kerv.

An operator v in B(H) is said to be a partial isometry if |[v(€)|| = ||| for each
¢ € (Kerv)t. If w is an another partial isometry satisfying (2.1.11) then it is
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easy to see that v = w. We show that the above polar decomposition of an
operator is possible in von Neumann algebras. Let z be an element of a von
Neumann algebra M acting on H. If u is a unitary operator in M' then we see
that u*vu is a partial isometry satisfying (2.1.11) and so u*vu = u. Hence, v
commutes with every unitary in M', and so v € M" = M. The positive part
p = (z*z)? in the decomposition (2.1.11) will be denoted by |z|.

We close this section with one more important approximation theorem,
so called the Kaplansky density theorem:

Theorem 2.1.5. Let A be a *-subalgebra of B(H). The unit ball (4),
of the strong operator closure of A lies in the strong operator closure (A;). If

z € (A), is self-adjoint then z is in the strong operator closure of A; N Aj.

2.2. Preduals of von Neumann Algebras

In this section, we introduce another topologies on B() under which von’
Neumann algebras are also closed. Let {e; : i € I} be an orthonormal basis of
H. We define the trace by

Tr(z) = ) (zei,e), = € B(H)4.
H
The following relations are easy consequences of the definition. Note that the

above definition of the trace is independent of the choice of the orthonormal
basis by (2.2.2).

(2.2.1) Tr(z*z) = Tr(zz*), z € B(H),
(2.2.2) Tr(uzu*) = Tr(z), z € B(H)4,u € U(B(H)),
(2.2.3) |lz|| < Tx(z), z € B(H)+,

(224)  Te(y'ey) < lwy*lITe(z), = € B(H)s,y € B(H).
We define the sets of trace class operators and Hilbert-Schmidt operators by

T(H) =span of {z € K(H):z >0, Tr(z) < oo},
S(H) = {z € K(H) : Tr(z*z) < oo},
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respectively. From the polarization y*z = 1Y i*(z + iFy)*(z + i*y) as in
(2.1.2), we have

zy =ziziy = %Zik(y +i*1)*z(y + i*1), z € B(H)4+.

Hence, we see by (2.2.4) that Tr(zy) < oo if z > 0, Tr(z) < oo and y € B(H).
Therefore, T (H) is a two-sided ideal of B(H) because it is self-adjoint. From
this and the polar decomposition, it is easy to see that

(2.2.5) T(H) = {z € B(H) : Tr(Jz]) < oo}.
The following easy relation
(2:2.6) (z+y)*(z +y) < 2z"z +y*y)

shows that S(H) is a vector space. Because T(H) is an ideal, S(H) is also an
ideal by its definition. If z,y € S(H) then we see that y*z € T(H) by the
polarization again, and so the formula

(2.2.7) (z,y)1r = Te(y*z), =,y € S(H)

defines an inner product by (2.2.3). It turns out that S() is a Hilbert space
under this inner product.

Now, take z € T(H) and y € B(H). We would like to estimate the
value |Tr(yz)| as follows: If z = v|z| is the polar decomposition of z then
|z|} € S(H) and so (yv|z|3)* € S(H). We use the Cauchy-Schwarz inequality
for the inner product (2.2.7) to calculate

I Tr(yz)® = [Te(yole]t|2]3)[? = (Jz|F, (yole|})* )
< Tr(|) Te(|z| 2 v*y*yole|?) < Te(|z]) ||o*y*yol| Te(|e])
= Jlyll*(Tx(|z]))>2.

Hence, we have

(22.8) Tr(yz)| < llyll Te(lel), = € T(H),y € B(R).
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Using the above relation, it is easy to see that 7(H) is a normed space
under the norm ||z||7r = Tr(]z|). Now, we are ready to determine the dual
space of K(H) as a Banach space. The relation (2.2.8) shows that every
z € T('H) gives rise to a bounded linear functional

(2.2.9) ¢z @y Tr(yz), y € K(H)

on K(H) and ||¢z|| < Tr(Jz|). Conversely, if ¢ is a bounded linear functional
on K(H), then we have

l6@)I* < llgl* wll* < Nloll* wovdme,  w € S(H) S K(H).

Hence, ¢ is a bounded linear functional on S(H), and so there exists a unique

z* € S(H) such that

¢(y) = (y,z*)1x = Te(zy),  y € S(H),

because S(H) is a Hilbert space. Using the polarization again, we see that
Tr(zy) = Tr(yz) for z,y € S(H), and so we have

(2.2.10) ¢(y) = Te(yz),  y € S(H).

Now, for each projection p € B(H) of finite rank, we have
I Te(plz])| = |Tr(pv*z)| = |$(pv*)| < [|4]|-

Hence, we see that |Tr(|z|)| < ||4|| and = € T(H). Therefore, the correspon-
dence z +— ¢, defines an isometry from 7 (H) onto the dual space of KX(H)
by the formulae (2.2.9) and (2.2.10). From this, we also see that T(H) is a

Banach space.

Ezercise 2.2.1. Show that z is a positive (respectively self-adjoint) ele-
ment of 7(H) if and only if ¢, is positive (respectively self-adjoint). Show also
that every positive element of 7 (%) is of the form z = Y°; AiPi with nonnega-
tive real numbers {);} such that ), A; < co and orthogonal projections {P;}.
Show that every positive linear functional on X(H) is of the form (1.6.2).
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Now, we show that the dual space of T(H) is just B(H). The relation
(2.2.8) again shows that each y € B(H) defines a bounded linear functional

(2.2.11) Yy @z — Tr(yz), z € T(H),

and ||¥y]| < ||lyll. In order to show that every bounded linear functional of
T (M) is in this form, we introduce the rank one operator z¢, defined by

(2.2.12) zeq(0) = (M€ CEN,

which is determined by £,n7 € H. Then it is easy to see that

[¥(zen)l < ISILIENNNIL, ¥ € T(R)T,

and so there exists a unique operator y € B(H) such that

Y(xem) = (Em), vl < [1#ll-

By a straightforward calculation, we have

Y(z) = Tr(yz) = Py(z), z € T(H),

and so y — 9, is an isometry from B(H) onto the dual space of T(H). We

summarize as follows:

Theorem 2.2.1. The dual space of K(H) is T(H), and the dual space
of T(H) is B(H).

The weak* topology on B(H) induced by the relation T7(H)* = B(H) is
said to be the o-weak operator topology. By definition, this is the smallest
topology on B(H) for which the map

y— Tr(yz), yeB(H)

is continuous for each z € T(H). Note that the weak operator topology is the
smallest topology on B(H) for which the map y — Tr(yz) is continuous for
each finite rank operator z. Hence, the o-weak operator topology is strictly
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larger than the weak operator topology if H is infinite-dimensional. By Ex-

ercise 2.2.1, we see that every positive o-weak operator continuous functional

on B(H) is of the form

$W) =D (Ybn,bn), v € B(H),

for some orthogonal system {£,} of H and |[¢]| = 3 ||¢n]|?. Similarly, we
see that every o-weak operator continuous linear functional on B(H) is of the

form

Yy Z(yfna nn)a yE B('H),

for some ¢2-summable orthogonal systems {£,} and {n,}. Let A be a unital
*-subalgebra of B(H) and {{,} an ¢2-summable sequence of vectors. By the
same method of infinite amplification as in the proof of the double commutant
theorem, we see that an element z in A" can be approximated by elements of

A in the sense
D i@ = zo)nll® < €

for some zo € S. Applying the Cauchy-Schwarz inequality, we see that A" is
also the o-weak operator closure of A.

We say that a net {zx} of B(H) converges to z € B(H) in the o-strong
operator topology if

lim) [l(zx = 2)6nl> =0, D lIéall® < oo

We have shown in fact that A" is the closure of A with respect to the o-strong
operator topology. If M is a von Neumann algebra acting on H, we denote
by M~ the set of annihilators of M;

M* = {z € T(H) = K(H)* : Tr(yz) = 0 for each y € M}.
From the general theory of the duality between annihilators and quotients, we

see that the dual space of 7(H)/M is just M. We summarize as follows:

Theorem 2.2.2. A unital *-subalgebra M of B('H) is a von Neumann
algebra if and only if M is o-weak operator closed. For every von Neumann

algebra M, there is a Banach space X such that X* is isometrically isomorphic
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to M. The weak* topology on M is identical with the o-weak topology in this
isomorphism.

The converse is also true. More precisely, if a C*-algebra A is the dual
space of a Banach space then there is a faithful representation {,H} of 4
such that 7(A) is a von Neumann algebra acting on H (see [T, §IIL.3]). This
gives an abstract characterization of von Neumann algebras which is free from
Hilbert spaces.

Now, if {, H} is the universal representation of a C*-algebra A, then the
von Neumann algebra 7(A)" generated by m(A) is said to be the enveloping
von Neumann algebra of A. As was noted in §1.5, every state of m(4) is a
vector state, and so extends to a state of m(A)". In this way, we see that every
¢ € A* corresponds to a o-weak operator continuous functional ¢ of m(A)"
such that ¢(z) = ¢(m(z)) for each = € A. It is also easy to see that the map
¢ > ¢ is an isometry by Theorem 2.1.5, and so A* is isometrically isomorphic
with the predual of 7(A4)". Taking the adjoints, we see that m(A)" with the
o-weak operator topology is identified with A** with the weak* topology.

2.3. Type Classification of Factors

From Theorem 2.1.2, we see that von Neumann algebras are abundant
in projections. Actually, the spectral resolution shows that every element
of a von Neumann algebra is the norm limit of finite linear combinations of
projections.

Definition. Let M be a von Neumann algebra acting on H. Two pro-
jections p and g are said to be equivalent and denoted by p ~ g if there exists
v € M such that

*

(2.3.1) p=v*v, g = vo*.

Also, we say that p is weaker than ¢ and denote by p 3 ¢ if p is equivalent to
a subprojection of q.

Note that the element v in (2.3.1) should be found in M. It is easy to see
that such an element is a partial isometry from the range space of p onto the

range space of g and ~ is an equivalent relation. If z = v|z| = v(z*z)? is the
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polar decomposition of z in M, then we have seen that v is the partial isometry
from the range space of z onto the range space of |z|, which is identical with
the range space of z*. Hence, we have

(2.3.2) R(z) ~ R(z*)

for each € M, where R(z) denotes the range projection of z, more precisely,
the projection onto the range space of z.
By a standard argument of Bernstein in set theory, one can show that 3

is a partial order. We show that this is a linear order in a factor.

Lemma 2.3.1. Each pair of nonzero projections in a factor have equiv-
alent nonzero subprojections.

Let p be a nonzero projection in a factor R acting on H and denote by
E the closed subspace of H spanned by {zp€ : z € R,£ € H}. It is easy to
check that F is invariant under R and R'. By Lemma 1.6.3, we see that the
projection onto F is contained in the center of R, and so we see that F = H.
Now, if ¢ is an another nonzero projection in R then the same argument is
applied, and we find z,y € R and £, € H such that

0 # (zp€,yqn) = (qy*zp€,n) = (€, pz*yqn).

By (2.3.2), we see that R(pz*yq) ~ R(gy*zp). Now, using the standard
maximal argument, it is easy to see the following:

Proposition 2.3.2. Any two projections in a factor are comparable each
other.

A projection p is said to be infinite if it is equivalent to a proper sub-
projection of p, and finite if it is not infinite. It should be noticed that the
notion of finiteness depends heavily on the von Neumann algebra in which the

projection p lies. It is clear that a minimal projection is finite.

Definition. A factor R is said to be

(i) of type Iif R has a nonzero minimal projection;
(ii) of type II if R has no nonzero minimal projections, and has a
nonzero finite projection;

(iii) of type IIL if R has no nonzero finite projection.
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We proceed to determine the structures of type I factors. Let g be a
nonzero projection of a type I factor R C B(H) with a minimal projection po.
By Proposition 2.3.2, ¢ has a subprojection go which is equivalent to py. Be-
cause qp is also minimal, we see that every nonzero projection in R dominates
a minimal projection. Considering a maximal family of orthogonal minimal
projections, we see that 13 is the sum of n orthogonal minimal projections,
where n is a cardinal number. We say that R is a factor of type I, in this
case. Let £ be a unit vector in the range space of the minimal projection po,
and denote by ¢ the projection whose range H, is the closure of {z£ : z € R}.
Then, ¢ € R' and zg = gqzq may be considered as an operator acting on Hj.
We show that correspondence

(2.3.3) R — B(Hp):z— zq

is a *-isomorphism. This is an immediate consequence of the following;:

Lemma 2.3.3. Let R be a factor and z € R, y € R' with zy = 0. Then
we havex =0 ory = 0.

Assume that y # 0 and denote by ¢ the supremum of all projections ¢ in
R' such that zg = 0. By Proposition 2.1.1, § € R'. If p is a projection in R'
then we have zpg = prq = 0 and so R(pg) < g. From this, we have

pq = gpq = (qp2)* = (P0)* = qp;

and § € R" = R by the spectral resolution. Because R is a factor we see that
g=1landsoz=0.

If R is a factor of type I,, then it is clear that the Hilbert space Hj in the
above discussion is the n-dimensional Hilbert space and every one-dimensional
projection in B(Hy) corresponds to a minimal projection in R in (2.3.3). This

shows that the range of (2.3.3) is the whole algebra B(Hy) because every one-
dimensional projection is equivalent each other. We summarize as follows:

Theorem 2.3.4. For each cardinal number n, there is only one factor of
type I, up to *-isomorphism. This factor is *-isomorphic to B(H,) with the
n-dimensional Hilbert space H,.
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Let A be a finite-dimensional C*-algebra. It is clear that A has a faithful
representation on a finite-dimensional Hilbert space H and A can be consid-
ered as a von Neumann algebra acting on H. Let {p; : 1 =1,2,...,n} be the

set of all minimal projections in the center Z(A). The correspondence

(2.34) T TPy +Tps+ -+ TPy

defines a *-isomorphism from A onto the direct sum Ap, @ Ap; @ ... Ap,. It
is easy to see that Ap; is a factor acting on the range space of p; for each p;.
In fact, if p is a minimal projection of Z(M) then Mp is a factor because each
central projection in Mp is a subprojection of p in Z(M), and so it is 0 or p.
Together with Theorem 2.3.4, we see the following:

Proposition 2.3.5. Every finite-dimensional C*-algebra is *-isomorphic
to the finite direct sum of matrix algebras.

In the remaining of this section, we discuss the type decomposition of von -
Neumann algebras. Actually, we have already encountered crucial arguments
just before. Let x be an element of a von Neumann algebra M. The central
carrier C, is the greatest lower bound of all central projections g such that
gz = z, or equivalently, the complement of the the least upper bound of all
central projections p such that pr = 0. The same argument as in the proof
of Lemma 2.3.3 shows that zy = 0 if and only if C,C, = 0 for z € M and
y € M'. Also, if q is a projection in M’ then

(2.3.5) Mq— MCy: zq— z2C,

is a x-isomorphism as in (2.3.3). Note that Mgq is a von Neumann algebra
acting on the range space of ¢. It can be shown that (Mgq)' = ¢M'q.

A projection p in a von Neumann algebra M is said to be abelian in M if
the von Neumann algebra pMp is abelian. The notion of abelian projections
corresponds to that of minimal projections in factors. More precisely, A pro-
jection p in M is abelian if and only if p is minimal in the class of projections
in M with the same central carrier.

We say that a von Neumann algebra M is of type I if M has an abelian

projection with the central carrier 1, of type II if M has no nonzero abelian
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projections but has a finite projection with the central carrier 1, and of type
IIT if M has no nonzero finite projections. A von Neumann algebra M is said
to be finite if 1 is a finite projection, and properly infinite if every nonzero
central projection is infinite. A von Neumann algebra of type I is said to be
of type I, if 1 is the sum of n equivalent abelian projections for some cardinal
number n. A von Neumann algebra of type II is said to be of type II; if it is
finite and of type Il if it is properly infinite.

Every von Neumann algebra M has mutually orthogonal central projec-
tions p, (n =1,2,...,00), ¢, r and s, with sum 1, and maximal with respect to
the properties that Mp,, Mg, Mr and Ms are 0 or of type I,,, II;, II, and III,
respectively. Furthermore, every von Neumann algebra of a type may be ex-
pressed as the “direct integral” of factors of the same types. Hence, the study
of von Neumann algebras is reduced to that of factors in some sense. Von

Neumann algebras of type I are closely related with postliminal C*-algebras
as follows:

Theorem 2.3.6. Let A be a separable C*-algebra. Then the following
are equivalent: '

(i) A is postliminal, that is, we have K(H) C n(A) for every irre-

ducible representation .

(i) Every representation m generates a von Neumann algebra of type
I, that is, m(A)" is of type L

(iii) The universal representation of A generates a von Neumann al-
gebra of type L

(iv) Two representations of A with the same kernels are unitarily
equivalent each other.

2.4. Factors Arising from Discrete Groups

In this section, we present several examples of factors which is not of type
L. Let G be a discrete group. We denote by R»(G) the von Neumann algebra
on £*(G) generated by the reduced group C*-algebra C}(G). Recall that the
product and involution in (1.5.8) is nothing but

(2.4.1) Xs ¥ Xt = Xst, Xs* = Xs-1
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for the characteristic functions on singletons. Noticing that {x¢:t € G} is an
orthonormal basis for £2(G), we see that Rx(G) is the von Neumann algebra
acting on £2(G) generated by the operators
Lg: Xt — Xs * Xt = Xst, xt € £2(G).
The von Neumann algebra acting on £2(G) generated by the operators
Ry:Xi > Xe* Xa-t = Xeom1, Xt € £(G),

will be denoted by R ,(G). Although the operators L¢ and R¢ may be defined
similarly for every &,n € £%(G), it is not clear whether they define bounded

linear operators on £2(G). But, it is easy to see the following:

Lemma 2.4.1. If T € B(*(G)) and ¢ € (*(G) satisfy the relation
(Txs, xt) = (€ * X5, X¢) for each s,t € G then we have T = L.

Now, we have concrete descriptions for the elements of Rx(G) and R ,(G)
as follows:

Proposition 2.4.2. We have
RA(G) = {L¢ € B(*(G)) : € € £2(G)},
Ro(G) = {Re € B(*(G)) : € € E(G)},
and RA(G)' = R,(G).

Using Lemma 2.4.1, one can show that the sets in the proposition are
s-subalgebras of B(2(G)). Actually, if £,n € £2(G) and L¢, Ly are bounded
operators on £2(G) then we have

Le+Ly,=1Le¢yy, alg = Lag, LeLy = Lgun, Le* = Ler, Le =1,
(2.4.2) 13 n &+n £ &) Ml §emy g 3
Le=L,=€=n.
Furthermore, if R, is also a bounded operator then we have

(243) LeR, = R, Le,

from which we see that two sets in the proposition are von Neumann algebras

and the last assertion follows.
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Now, we show that Rx(G) and R,(G) are finite von Neumann algebras.
To do this, first note that every characteristic function x, has the following

tracial property;
(2.4.4) (LeLnXsa Xs) = <LnLEXsa Xs)a
(2.4.5) (Txss Xs) = (TXesXe)y T € Ra(G).

If v is a partial isometry in Rx(G) with vv* =1 and v*v = p then we have

(st, Xs) = (U*vXa’ Xs) = (UU*Xs’ Xa) = (Xs’ Xa)v

for each s € G, and so, p = 1.

From the last relation of (2.4.2), it is easy to see that {L, : s € G} is
linearly independent set in R»(G). Therefore, R»(G) is infinite-dimensional
if G is an infinite group. If L¢ € Ra(G) commutes with L, then we have
€*xs = Xs*¢, and so

E(sts™h) = (€% xa)(st) = (xa *E)(st) = £(D).

Hence, we see that if L¢ is in the center of R(G) then € is constant on every
conjugacy class in G.

Now, we assume that G is an i.c.c. group, that is, every conjugacy class of
. anon-unital element is infinite. Under this assumption, it follows that £ = ax.

for some scalar a, for each L € Z(Rx(G)). We summarize as follows:

Theorem 2.4.3. Let G be a discrete group and R(G) the group von
Neumann algebra acting on ¢*(G) generated by {L, : s € G}. Then R)(G) is
a finite von Neumann algebra. If G is an i.c.c. group then Rx(G) is a factor
of type II,.

We have two typical examples of i.c.c. groups: It is well known that the
free group F}, on n generators is an i.c.c. group. Another example is the group
IT of all permutations on integers which fix all but finite integers. It is still
a long-standing question whether Ry(F,) and R(F},) are *-isomorphic or
not for n # m, although Rx(F3) and RA(II) are not *-isomorphic each other
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[K, Theorem 6.7.8]. The group II has an another important property, local

finiteness. The group II may be expressed as

where II,, is the finite subgroup of II consisting of elements which fix integers in
{t € Z: |i| > n}. Note that {L, : s € II,,} generates a finite dimensional C*-
algebras, and so R»(II) is the von Neumann algebra generated by an increasing
sequence of finite dimensional *-subalgebras. Such a von Neumann algebra is
said to be hyperfinite. It is known that there is only one hyperfinite II; factor
on the separable Hilbert space up to *-isomorphism [K, §12.2].

In order to give an example of a factor of type Il.,, we introduce the
notion of tensor products. Let H; and H, be Hilbert spaces. We denote by
Hy1 ® H, the algebraic tensor product of H; and H, as vector spaces. The
Hilbert space tensor product H; @ H, is the completion of of H; ® H, with

respect to the unique inner product satisfying

(2.4.6) (& ®m,& ®m) = (€1,&)(M,n2), 1,82 € Hy, n1,m2 € Ha.

This Hilbert space H; ® Hz is characterized by the existence of a bilinear
map p : Hy X Hy — H; ® H, with the following property: For every bounded
bilinear map ¢ : H; x Hs — K into a Hilbert space K, there exists a unique
bounded linear map ¢ : H; ® H, — K such that ¢ = @ o p. From this
universal property, we may define the tensor product z; ® z2 € B(H; ® Hz)
of z; € B(H;) and z, € B(H;) satisfying

(2.4.7) (z1 ® 22) (€1 ® &2) = 7161 ® z2&a, £ € Hy, 62 € Ha.

Ezercise 2.4.1. Show that ||z1 ® z2|| = ||z1||||z2]| for z; € B(H;), 1 = 1,2.

Let M; and M; be von Neumann algebras acting on Hilbert spaces H;
and H,, respectively. The von Neumann algebra tensor product M,QM,
is defined by the von Neumann algebra acting on H; ® H;, generated by
{z1 @ z2 : 2, € My,z, € M,}. We proceed to deal with M®B(K) more

concretely, where M is a von Neumann algebra acting on H. Let {n; : ¢ € I'}
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be an orthonormal basis of K. Then H ® K is nothing but the direct sum
?é 1 Hi, where H; is a copy of H, by the Hilbert space isomorphism

(2.4.8) U:Y %) 6ani:y Hi>HRK.

i€l iel iel
If z € M and y € B(K) then the operators U*(z ® 1)U and U*(14 ® y)U in
B(ESBG 7 Hi) have the matrix representations

z 0 ... Yuula  yizln
0 T and y2117i y2217{ s

respectively, where [y;;] is a numerical matrix representation of y with respect
to the orthonormal basis {n;}. So, we see that every entries of the matrix
representing an element in U*(M®B(K))U C B(X S, H;) lies in M.
Conversely, let T be an element of B(E?e ;Hi) whose entries are in
M C B(H). Using the matrix unit {e;;} of B(K), it is easy to see that T is in
the strong operator limit of operators in U*(M®B(K))U. Indeed, if the only
nonzero entry of T is T;; € M then T = U*(T}; ® €;;)U € U*(MQB(K))U,
and so we have T = 3 .. U*(Ti; ® e;;)U in the strong operator topology.
Hence, M®B(K) is unitarily isomorphic with the von Neumann algebra con-
siéting of operators in 13(2163e 1 Mi), all of whose entries lie in M in the matrix

representation. From this matrix representation, it is easy to see the following;:
- (2.4.9) (M®B(K)) = M'®Clg,

and so it follows that if M is a factor then M®B(K) is also a factor. Now, it
is easy to see the following:

Theorem 2.4.4. If R is a factor of type II; and K is an infinite dimen-
sional Hilbert space then RRB(K) is a factor of type 1.

Actually, every factor of type I, may be obtained in this way [K, The-
orem 6.7.10], and so the classification of type II factors is reduced to that of
type II; factors. It has been known during sixties that there are uncountably
many non-isomorphic factors of type II;, although the complete classification

of type II; factors is still far from being complete.
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2.5. Factors Arising from Ergodic Theory

Let (X, 1) be a probability space and ¢ an invertible measure preserving
transformation of X. We define the unitary map u and the bounded linear
map mjy for each f € L°°(X), in the Hilbert space L%(X) by

(ms€)(z) = f(2)E(=),
(uf)(z) = £(¢7 (),

for each £ € L?*(X) and z € X, respectively. We show that A = {m; :
f € L*(X)} is a maximal abelian von Neumann algebra acting on L?(X),
that is, A' = A. First of all, note that if f is a measurable function on X
and the multiplication map my defines a bounded linear map on L?(X) then
f € L®(X) with ||f]lec < ||my||. Now, for T € A, put f = T(1x). Then we

have

mg(g) = my(f) = myT(1x) = Tmy(1x) = T(g), g € L*(X).

Because L*°(X) is dense in L?(X), we see that my = T as bounded linear
operators on L?(X), and so it follows that f € L>°(X) and T € A.
From the above definitions, it is easy to see that

(2.5.1) umygu* = Mfog-1, feL®X).

Now, we put H = E?ez M., where H,, is a copy of the Hilbert space L%(X)
for each n € Z. Let My and U be the bounded operators in B(H) whose
matrix representations are ‘

(My)ij = bismyg,  Uij = & j1u,
respectively. In the identification H = L?(X) ® £2(Z), these are nothing but
Mf=mf®1L2(Z), U=u®s,

where s denotes the right-shift operator on ¢2(Z). We denote by M(X, u, ¢)
(abbreviated by just M) the von Neumann algebra on H generated by the
family {M; : f € L*°(X)} and U.
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In order to describe the elements of M in terms of matrices, we first find
the commutants of A® 1 and {U}. Let T be an operator in M’ whose matrix
representation is [Tj;]. Then we see that TU™ = U™T for each n € Z if and
only if

(2.5.2) T,',j+nun = unTi_n’j, t,7,n € Z.

Also we have (A® C1)' = A' ® B(L*(X)) = A® B(L%(X)) by (2.4.9), and so
it follows that T' commutes with A if and only if

(2.5.3) T;j € A, t,j € Z.

Hence, it follows that if T € M’ then Tj; is of the form

(2.5.4) Tij =T (j—i)4+i = uiTo,j._,'u_i = uimfj_,.u_i,
where {f, : n € Z} is taken from L*°(X). Conversely, assume that the matrix
representation of T is of the form in (2.5.4). By a calculation and the relation
(2.5.1), we see that the conditions (2.5.2) and (2.5.4) are satisfied, and so
TeM.

Now, we show that T' € M if and only if its matrix representation is of
the form

(2.5.5) Ty = u'my,

where {g, : n € Z} is also taken from L°°(X). First, we note that T}; is of
the form in (2.5.5) if and only if the following condition is satisfied:

(2.5.6) Tij = Titnjin, WT; €A, i,j,neL

We denote by M, the linear span of {U"M; : n € Z,f € L*(X)}, and
by S the linear subspace of B() consisting of operators T’s whose matrix
representations are of the forms in (2.5.5) or satisfying (2.5.6). Then we
see that My C S, because (U"Mjy);; = 6n,i_,~ui‘jmf by the calculation.
Furthermore, S is weak operator closed by (2.5.6) because the mapping T —
T;j is a weak operator continuous map from B(H) into B(L?(X)). It follows
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that M = M, C S because M, is a *-subalgebra of B(?). Conversely, it is
also easy to see that S C M" = M, using the relations (2.5.4) and (2.5.5).
From now on, we assume that (X, ) is countably separated, that is, there
is a countable family {E, : n = 1,2,...} of nonempty measurable sets with
the property: If z,y € X and z # y then z € E, and y ¢ E,, for some n. For
example, the unit interval with the Lebesgue measure satisfies this condition
with the family {[a,b) : a,b € Q}. Also, we assume that ¢ acts on X freely,
that is, the fixed point set of ¢" is a null set for each nonzero n € Z. From

these conditions it can be shown that
(2.5.7) Anu™A = {0}, n€Z,n#0.

From (2.5.3), (2.5.5) and (2.5.7), we see that A® 1;2(x) is a maximal abelian
x-subalgebra of M. Because every maximal abelian *-subalgebra contains the

center, it follows that
ZM)={m;®1:f € L®(X),u"msu"" = my for each n € Z}.

Hence, we see that M is a factor if and only if m ¢,4-1 = my implies that f is
a constant function almost everywhere. This condition is actually equivalent
to say that ¢ acts on X ergodically, that is, there is no nontrivial invariant
measurable subset in X, where a trivial subset means of course a set of measure
zero. We summarize as follows:

Theorem 2.5.1. Let ¢ be an invertible measure preserving transforma-
tion on a countably separated probability space (X, ) which acts freely. Then
the associated von Neumann algebra M(X, p, ¢) acting on the Hilbert space
L*(X, p) ® £2(Z) is a factor if and only if ¢ acts ergodically.

In order to test the type of M, we introduce the notion of traces as follows:
A unital positive linear functional 7 on a factor R is said to be a faithful trace
if
(2.5.8) T(zy) = 7(yz), z,y € R,
(2.5.9) r(z) > 0, z>0.
It is easy to see that the condition (2.5.8) is equivalent to the condition

(2.5.10) T(zz*) = 7(z*z), z € R,
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as in the case of Tr on B(H) in §2.2. It is clear that if R has a trace then R
is finite. Indeed, if p ~ ¢ < p and v is a partial isometry from p to ¢ then
7(p — g) = 7(v*v) — 7(vv*) = 0 and it follows that p = ¢ from (2.5.9). This
is just the method we used in order to prove that the group von Neumann
algebra is finite in the last section. Actually, it is easy to see that the formulae
(2.4.4) and (2.4.5) defines a faithful trace

T — (TXe, Xe), T € RA(G).

From now on, we assume that ¢ is an ergodic action on (X, x) and so

R = M(X,pu,d) is a factor. We define

T(T) = / gOdiua Te Ra
X
in the matrix representation (2.5.5). We compute

(TT*Yoo = Y Mig_pjzeprs  (T*TDoo = D Mg,z
nez n€zZ

using the rule of matrix multiplication and the relation (2.5.1). Because ¢
is a measure preserving transformation, we see that 7 satisfies the condition
(2.5.10).

If my is a minimal projection in A then it is easy to see that My is also
a minimal projection in R, and so R is a factor of type I. One can also prove
" the converse, that is, if R is a factor of type I then there is an f € L*(X)
such that my is a minimal projection. It is also easy to see that A has a
minimal projection if and only if p({z}) > 0 for a point z € X. We conclude
as follows:

Theorem 2.5.2. Let ¢ be an invertible measure preserving ergodic trans-
formation on a countably separated probability space (X, u) which acts freely.
If u({z}) = 0 for each z € X then R = M(X, p, $) is a factor of type II;.

In order to construct a factor of type III, we should consider a trans-
formation which preserves measurability and null sets but does not preserve
measure. In this case, the operator u in the above construction is not a uni-
tary any more, and should be replaced by another one. We refer the details
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to [K, §8.6]. In the above theorem, note that the range of projections under
the trace is the closed unit interval [0, 1], whereas the range is discrete for the
finite factors of type I. It can be shown that every finite factor has a unique
trace up to a constant multiple, and the range of projections is the unit inter-
val for each factor of type II;. In this sense, a factor of type II; is said to be
a continuous finite factor. We also refer to [K, Chapter 8] for the details.

NOTE

We have followed Pedersen’s book [Pe, §4.5] for the proof of Theorem 2.1.2 and [K,
§5.3.1] for the double commutant theorem. We have also followed [Pe, §3.4] for the proof of
Theorem 2.2.1. We refer to [T, §II.1] for the proof which does not use the notion of traces.
We also refer to Sakai’s book [S] for the developments of von Neumann algebra theory
free from Hilbert spaces, as was mentioned after Theorem 2.2.2. Basic reasoning in §2.3
was adapted from Kadison’s book [K, Chapters 5 and 6]. For the proof of the equivalent
statements for postliminal C*-algebras, we refer to [D, Chapter 9] or [P, Chapter 6]. It
is still a long-standing open question whether the last condition (iv) of Theorem 2.3.6 is
equivalent to another conditions for non-separable C*-algebras. We have followed Kadison’s
book [K, §6.7 and §8.6] for examples in §2.4 and §2.5. These examples of constructions will
be main motivations for the later chapters. The following is a list of references for further
studies on von Neumann algebras.

1. S. Anastasio and P. M. Willig, The structure of factors, Algorithmics Press, 1974.

2. J. Dixmier, Von Neumann algebras, North-Holland Math. Library, Vol. 27, A trans-
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North-Holland, 1977.

. S. Sakai, The theory of W*-algebras, Lecture Note, Yale Univ., 1962.

. J. T. Schwartz, W*-algebras, Gordon and Breach, 1967.

. S. Stratila and L. Zsido, Lectures on von Neumann Algebras, Editura Academiei and
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6. V. S. Sunder, An invitation to von Neumann algebras, Universitext, Springer-Verlag,

1987.
7. D. M. Topping, Lectures on von Neumann algebras, Van Nostrand, 1971.
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CHAPTER 3

APPROXIMATELY FINITE DIMENSIONAL C*-ALGEBRAS

An approximately finite-dimensional C*-algebra (AF algebra) is the in-
ductive limit of an increasing sequence of finite-dimensional C*-algebras. Ev-
ery AF algebra has a standard system of finite dimensional C*-algebras and
*-homomorphisms. This system may be described in terms of the Bratteli di-
agram, which has every information of the corresponding AF algebra. There
is an another invariant, the Ky-group as an ordered group, which classify
AF algebras completely. We introduce Ky-groups for Banach algebras in
§3.3. Because Ko commutes with the inductive limits, it is a simple matter
to describe Ky-groups of AF algebras in terms of inductive limit of ordered
groups. Several examples of AF algebras are tested to get simple descriptions
of their Ko-groups. Finally, we show in §3.5 that two unital AF algebras are
*-isomorphic if and only if their Ko-groups are order isomorphic each other.

3.1. Bratteli Diagrams for AF C*-algebras

A C*-algebra A is said to be approximately finite dimensional or just AF,
if there is an increasing sequence {A,} of finite dimensional C*-subalgebras
of A such that A is equal to the norm-closure of U, A,. Because the resulting
C*-algebra U,A, depends heavily on the embeddings A,, < A, 41, we need a
more precise definition of inductive limits of C*-algebras.

Let

¢ ¢ ¢"— ¢n ¢n
(3.1.1) Ay = Ay o 2 4, o,

be a sequence of C*-algebras and #-isomorphisms. We denote by A the *-
algebra of all sequences in the product [], An of the form

= (Z1,...,Zn-1,%n, dn(Tn), Pnt19n(zn),...)

59
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for some n = 1,2,.... Then ||z|' = limy, ||z,|| defines a C*-seminorm on A.
The inductive limit of (Ap, ¢») is the completion A of the quotient algebra A
by the kernel of the seminorm || - ||', and denoted by A = IEi(An, #n). It is

easy to see that the usual universal properties holds: For each n, there is a *-
isomorphism ¢, : A, — A such that ¢, = tn4105. Also, if there is an another
C*-algebra A’ and a *-isomorphism ¢}, : A, — A’ with ¢/, = ¢!, ¢, for each
n then there is a *-isomorphism n : A — A’ such that ¢, = n, for each
n. Given an another sequence {B,,,} of C*-algebras and *-isomorphisms,

assume that there are *-isomorphisms 6,, : A, — B, such that the following

diagram

P P TR <N TN p——
(3.1.2) lol laz lo,, la,,,u

B % B ¥ ... — B, ¥ By —-

commutes. Then we have a *-isomorphism 6 : ].E)IA,, — li_II)an from the
above universal property. It is also easy to see that A is the norm-closure of
Untn(4y), and vice versa.

Hence, every AF C*-algebra is the inductive limit of the system (3.1.1)
with finite dimensional C*-algebras A,. We are going to find a standard
system {By,%,} with the commuting diagram (3.1.2). Recall that every fi-
nite dimensional C*-algebra is *-isomorphic with the finite direct sum of ma-
trix algebras. So, we may assume that each A, is in this form. For p =
(p1,p2--.,pr) € N", we denote by M(p) = M,,(C) ® My, (C)& - - & M, (C).
A 1 x r matrix D; = (d;,ds,...,d,) whose entries are nonnegative integers
determines a *-homomorphism M(p) — M, by ‘

dp times do times d, times h times
A >

\

Dl . - - ~ ~
(z1,z2,...,2r) — Diag(zi1,...,21,22,...,T2,...

”

yTryeens Try 0,...,0),

where ¢ = pyd; +p2da+---prd-+h. Ifq=(q1,92,.--,4s) € N* then an s x r
matrix D = [d;;] whose rows are given by D;,..., D, determines a canonical
*-homomorphism M(p) — M(q) by

D
(z1,72,...,2r) — (Di(z1,22...,2¢),..., De(z1,22...,21)).
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This map may be expressed by the following diagram:

pr p2 - p;j °** Pr
(3.1.3) M |
a1 92 - Qi - Qs

where there are d;; lines between the points p; and ¢;. This diagram, said to
be the Bratteli diagram, contains every informations on the *-homomorphism
M(p) — M(q) represented by the matrix D. A *-automorphism ¢ : A — A
of a C*-algebra A is said to be an inner automorphism if there is a unitary
u € A such that ¢ = Adu, that is, ¢(z) = uzu* for each z € A. The following
is a key lemma.

Lemma 3.1.1. Given a *-homomorphisms ¢ : M(p) — M(q), thereisan
inner automorphism o of M(q) such that ¢ is a canonical *-homomorphism.

Proof. We may assume that s = 1 so that M(q) is the matrix algebra
acting on C?9. Let {efj :1 < k<r1<1j < p} bethe matrix units
for M(p) = M,, & ---M,_, and put e = 3. ek. For each k¥ = 1,2,...,r,
choose an orthonormal basis {z§ : £ = 1,2,...,d;} for the range of ¢(e¥;)
in C?, and put zf, = ¢(e¥)zk. Then {2% : 1 <1 < pr,1 < £ < di}is
an orthonormal basis for the range space of ¢(e¥) for each k. We add more
vectors y1,¥2,...,Yn to get the ordered orthonormal basis

X17X2’-"aXr,y1ay2"“,yh

of C%, where each X*, k = 1,2,...,r, is the ordered set consisting of the
following prdy vectors;

P times P times pir times
- A - A < r————— —m——
k k k k k k k
xll’w21’-ot,xpkl,xlz’--.,xpkz,--.,xldk,.'o,xpkdko

For a = Y a¥;zk; € M(p), we compute

$la)zle =Y af;d(ef;)d(ef )z

ijk

= 3 (et
i

= Z aigT 5y
i
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Let u be the unitary in M, which send the above basis to the canonical
basis of C?. From the above calculation, we see that ug(a)u* is a canonical
map. [

Corollary 3.1.2. Every x-automorphism of a matrix algebra is inner.

We put B, = A, in the diagram (3.1.2) and let 6; be the identity map.
Take an inner automorphism 6, of A, such that 6,¢,; is a canonical map. Also,
we take an inner automorphism 63 of A3 such that 63¢26; ! is a canonical map.
By induction, the bottom row of (3.1.2) becomes

0201 834265 Brny1606;"
> Ag y A3 — v — Ay ——— Ay — -

Ay

and so, we get the following theorem:

Theorem 3.1.3. Every AF C*-algebra A is x-isomorphic to the induc-
tive limit of (3.1.1), where Ay, is the finite direct sum of matrix algebras and
¢n is a canonical map, for eachn =1,2,....

Therefore, every AF algebra is represented by a tower of Bratteli diagram
(3.1.3). Here are several examples:

(3.1.4)
(a) (b) (c) (d) (e) ®

1 1 1 1 1 11 11
|

2 1 2 1 2 2 2><2 2 1
| | X

3 1 3 1 2 3 4 4 4 3 2
N | | X

4 2 3

o
- 00
(0]
(0]

5 3

Ezercise 3.1.1. For each above diagram, describe the corresponding al-
gebra A,, and the connecting map ¢, in terms of matrix D. Show that the
three diagrams (a), (b) and (c) correspond to the C*-algebras K(H), K(H)r
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and the co-sum @, ; M, of the matrix algebras, respectively. Show that the
two diagrams (d) and (e) generate *-isomorphic AF algebras.

Ezercise 3.1.2. Show that a compact metric space X is totally discon-
nected if and only if C(X) is an AF algebra. Find the Bratteli diagram of
C(X) when X is the usual Cantor set.

If A, is a matrix algebra and ¢, is unital for each n = 1,2,..., the
resulting AF algebra A = UA,, is said to be uniformly hyperfinite, or UHF
C*-algebra. The study of UHF algebras was initiated by Glimm [G160],
and followed by Dixmier [Di67] who considered non-unital UHF algebras,
in which the connecting maps ¢,’s need not to be unital. After the work of
Bratteli [Br72], the class of AF algebras was used to provide useful examples
of C*-algebras, and it is relatively easy to examine their structures via their
Bratteli diagrams or Ky-groups, as we will study in this chapter. Nevertheless,
it is very difficult to determine whether a given C*-algebra is AF or not. We
close this section with the following characterization of AF algebras [Br72,
Theorem 2.2].

Proposition 3.1.4. A C*-algebra A is AF if and only if A is separable
and the following condition is satisfied: Given z1,...,z, € A and € > 0, there
exists a finite dimensional C*-subalgebra B of A and y,,...,yn, € B such that
llzi — yi|| < € for each i =1,2,...,n.

3.2. Ideals and Representations of AF' algebras

We begin with the following simple lemma.

Lemma 3.2.1. Let I be a closed two-sided ideal of the inductive limit
A =UnA, of C*-algebras. Then, we have I = U,(IN A,).

Proof. Note that I contains a closed ideal J = U,(I N A,), and so there
is a surjective *-homomorphism ¢ : A/J — A/I with ¢(a+ J) = a + I.
Because A, N J = A, N I, the restriction of ¢ to (A, + J)/J is decomposed
by *-isomorphisms:

(An + 1)/J = Anf(An N J) = An/(An N 1) = (An + I)/T — A/I.
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Since A/J is the closure of the union of {(A, + J)/J}, we see that ¢ is an
isometry, and it follows that I = J. O

From the above lemma, we see that every closed two-sided ideal of an AF
algebra is again AF'. It is also easy to see that the quotient of AF" algebra is
AF. As an application of K-theory, we know that the converse is also true:
If I and A/I are AF algebras then A is also an AF algebra (see [Ef, Chapter
).

In order to investigate the structures of AF' algebras in terms of their
diagrams, we introduce several terminologies in [LT80]. Let D be the set
of points {(n,i) : n = 1,2,..., 1 < 1 < p,} in the diagram, where p, is
the number of direct summands in A,. We say that the point (n,?) is a
descendant, with multiplicity g, of the point (m,j) if n > m and there are ¢
paths from (m, j) to (n,7) with ¢ # 0. For example, in (3.1.4.b), the point
(3,2) is a descendant of (1,1) with multiplicity 2, whereas the point (3,1) is
not a descendant of (2,1). A sequence {zi : k = 1,2,...} of D is said to be
connected if x4, is a descendant of zj for each k =1,2,....

Now, an ideal I of an AF algebra A = UA,, with the associated diagram
D is of the form I = U(ITN A,). Because an ideal I N A, of A, is again a
subsum of matrix algebras in A,,, we see that I is an AF algebra represented
by a subdiagram X of D. In this way, it is easy to characterize ideals of AF'
algebras as follows:

Proposition 3.2.2. Let A be an AF algebra with the associated diagram
D. A subdiagram K of D represents an ideal of A if and only if the following
two conditions are satisfied:

(i) Every descendant of z € K belongs to K.
(i1) If every descendant of = at the next row belongs to K then z € K.

Furthermore, the subdiagram D \ K represents the quotient algebra A/I.

For example, the right column of (3.1.4.b) represents a closed two-sided
ideal and the quotient by this ideal is represented by the left column.

Corollary 3.2.3. An AF algebra A with the associated diagram D is
simple if and only if for each x in n-th row in D there is m > n such that

every y in m-th row is a descendant of z.
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Now, we proceed to characterize several concepts mentioned at the end of
§1.6. We say that an ideal I of a C*-algebra is primitive if it is the kernel of
an irreducible representation. It is easy to see that if I is a primitive ideal and
I, I, are closed two-sided ideals with I; [, C I then I; C I or I, C I, that is,
every primitive ideal is an prime ideal. It is known that the converse is also
true for separable C*-algebras [P, Proposition 4.3.6]. From this, it is easy to
see that the associated diagram K of a primitive ideal of an AF algebra with
the associated diagram D has the property:

(I,) Every two elements in D\ K have common descendants.

Note that (3.1.4.a) represents the C*-algebra K(H). Conversely, it can
be shown that an AF algebra with the associated diagram D is *-isomorphic
to K(H) if and only if D satisfies the following two properties:

(I2) Every two elements in D have common descendants.

(I3) For each connected sequence {z,} of D there are natural numbers
D, q such that ., is a descendant of z, with multiplicity p for all m > q.

From the above considerations, the following characterizations should be
plausible. We refer to [LT80] for the details.

| Proposition 3.2.4. Let A be an AF algebra with the associated diagram
D. Then we have the following:

(i) A is liminal if and only if D has the property (I3).
(i) A is postliminal if and only if for each connected sequence {z,} of
D, xp4 is a descendant of x,, with multiplicity one for sufficiently
large n.
(iii) A is subhomogeneous if and only if the set of attached numbers
(sizes of matrix algebras) are bounded above.

Now, we focus our attention to the UH F algebra A = U, A,, whose asso-
ciated diagram is given by (3.1.4.d). We have another convenient description
as follows: Each A, is *-isomorphic to the C*-algebra

n times
A

My@My® - ® Mo,
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and the connection map is given by z — z®1: A, — Ap41 as was explained
in §2.4. Recall that this isomorphism is given by

k
(2518 =1 — Z Tij ® eij 1 Mi(Me) = Mye — My ® M,
i,j=1
where {e;;} is the matrix unit for M. Therefore, A is the closure of the linear

span of elements of the form

210220 2, 0101Q@:---.

If {¢.} is a sequence of states of M, then the product state ¢ = ®5%;@n of
{#n} is defined by

(210220 ®TnR®L1RL1® ) = d1(z1)p2(z2) " - Pn(Zn).

It is easy to see that the product state of two pure states is also pure.
Indeed, if ¢; is a vector state given by &; € C? for each : = 1,2, then ¢; ® ¢,
is also a vector state given by (£1,£;) € C* (see Exercise 1.6.1 and 1.6.2). By
induction, we see that if every state ¢,, is pure then their product state ¢ is
also pure. Now, if {m, H} is the G. N. S. construction associated with ¢ then
n(A) = Cly by Lemma 1.6.5. Hence, the von Neumann algebra generated
by m(A) is the whole algebra B(H), and 7(A) is *-isomorphic to A because A
is simple by Corollary 3.2.3.

Next, we consider the case in which every ¢, is the normalized trace on
M,. In this case, the G. N. S. construction {m,H,£{} of ¢ = ®n¢n is also
faithful. We denote by M the von Neumann generated by 7(A). Because ¢
satisfies the tracial property

#(zy) = ¢(yz), =,y €A,
we see that the function
72— (2€,E), TeEM

satisfies the condition (2.5.8) because 7(A) is weak operator dense in M. To
show the condition (2.5.9), suppose that y € M and 7(y*y) = 0, that is,
y€ = 0. For each = € A, we have

lym(2)E|? = (m(z*)y*ym(2)E, €) = (n(z)m(z*)y*yé, €) = 0,
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by the tracial property, and so ym(z) = 0 for each z € A. Because ¢ is a
cyclic vector, it follows that y = 0. Now, we proceed to show that M is a
factor. For a projection p in the center M N M', we consider the another trace
7' on M given by 7'(z) = 7(pz). The restriction of 7' to the UHF algebra
m(A) is again a trace. By the uniqueness of the normalized trace for UHF
algebra (see Exercise 3.2.1 below), we see that 7' = 7(p)7 on 7(A4). It follows
that 7(p)7(1 — p) = 7'(1 — p) = 0, and p is a trivial projection. Summing up,
we have shown that M is a hyperfinite factor of type II;.

Ezercise 3.2.1. Show that there is a unique normalized trace on the ma-
trix algebra. Show that every UH F algebra has a unique normalized trace.

Note that every state of a matrix algebra generates a factor. More gen-
erally, one can show that every product state of a UH F algebra generates a
factor (see Powers’ paper [Po67] or [S, Proposition 4.4.2]). Powers considered
the product state ¢y = @¢p, 0 < A < 1, given by

bn (‘Z Z) = ﬁ(ww), n=1,2...,
and showed that the von Neumann algebras R)’s generated by ¢y, 0 < A < 1,
are non-isomorphic hyperfinite factors of type III. Also, Araki and Wood
[AW68] showed that Ry, ® R», is independent of the choice of ()1, )2) in
most cases, and gives an example of hyperfinite III factor different from Pow-
ers’ factors. There are another examples of hyperfinite factors of type III
arising from ergodic theory which were considered by Krieger [Kr76]. After
the pioneering work of Connes [Co76] with Tomita-Takesaki theory [Ta70],
Haagerup [Ha87] showed that these are all possible hyperfinite factors of type
III, and so we have now the complete list of hyperfinite factors.

3.3. Ko-groups for C*-algebras

AF algebras are completely classified by their Ky-groups as scaled ordered
groups. In this section, we introduce Ky-groups for general C*-algebras. Be-
cause K-theory works for Banach algebras [Tay75] as well as for C*-algebras,
we will start with the definition of equivalence for idempotents. Two idempo-
tents e and f are said to be algebraically equivalent if there are =,y in A such
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that e = zy and f = yz and denoted by e ~ f. This implies

(ezf)(fye) = exfye = cayzye =e* =e,  (fye)(eaf) = f.

Hence, by replacing z and y by ez f and fye respectively, we may assume that

(3.3.1) zy=e, yz=f, s=ex =zf =exf, y = fy =ye = fye.

From this, it is also easy to see that ~ is an equivalence relation and the

following relation

(3.3.2) ex~fi, e2~fr,e1e2=fifa=0 = e1+ea~ fi+ fo

holds

In a unital C*-algebra, two projections p and ¢ are said to be unitarily
equivalent if there is a unitary u € A such that upu* = ¢, and denoted by -
p ~y ¢. It is immediate to see that p ~, g implies p ~ q.

Proposition 3.3.1. Let A be a C*-algebra. Then we have the following:

(1) For each idempotent e, there is a projection p such that e ~ p.
(ii) If p,q are projections and p ~ q then there is v € A such that
p = v*v and ¢ = vv*.

If A is a unital C*-algebra then we have

(iii) If p,q are projections and p ~ q then (1(; g) ~y (g g) in
M,(A).
(iv) If p,q are projections with ||p — g|| < 1 then we have p ~, q.

Proof. (i) Note that z = 1 + (e — e*)(e* — e) is invertible by Theorem

1.4.1, and ez = ee*e = ze. From this, it is easy to check that p = ee*z ™! is a

projection and the relations pe = e, ep = p hold.
(i1) We write p = zy, ¢ = yz with the relation (3.3.1). Put v = p(y*y)lz‘z.
Because y*y commutes with p and zz*, we check that vv* = p and v*v = gq.

(iii) Write P = (g g) and Q = (g g), where v*v = p and vv* = q.

v 1—g¢

Then, U = (1 T ) is a unitary in M3(A) and UPU* = Q.
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(iv) Put v =1—p—g+2gp. Then v*v = 1—(g— p)? is invertible by the
assumption. Because v*v = vv*, we see that u = v(v*v)"% is a unitary. Since
v*v commutes with p, we also see that up = ugq, that is, upu* =¢q. O

From now on, we assume that A is a unital C*-algebra and consider the
sequence of C*-algebras

(3.3.3) M (A) = My(A) > -+ Mu(A) = Mpp(A) = -,
where every embedding is defined by z — g g) for x € M,(A). The

resulting direct limit C*-algebra will be denoted by A®X. In the next chapter,
we will see that this is actually the C*-algebraic tensor product of A and K(H).
Proposition 3.3.1 says that two equivalence relations ~ and ~,, are same on the
projections in A ® K, and the resulting set of equivalence class will be denoted
by D(A). By Proposition 3.3.1 (iv) and the following lemma, a representative
of each equivalence class may be chosen among projections in M,(A) for some
n=12,....

Lemma 3.3.2. Let p be a projection in the inductive limit A = 1i_r)n.An
of increasing sequence {A,}. Then given ¢ > 0 there is a projection g in some
A, with ||p—q|| <e.

Proof. We take a self-adjoint element z € A, with ||p — || small enough.
Then from the estimate

Iz —2?|| < llz = pll +llp—2*|| < lp =l + llp—=llllp+ =]l < llp—=lI(2+ |1,

we see by (1.2.6) that sp(z) lies in the disjoint union of two interval containing
0 and 1. So, the function calculus x %,oo)(z) by the characteristic function is
the required projection. For more precise and simple estimate, we refer to [Ef,
Lemma A8.1]. O

The following analogous lemma also will be useful.

Lemma 3.3.3. Let u be a unitary in the inductive limit A = li_n’lAn of
increasing sequence {A,}. Then given € > 0 there is a unitary v in some A,
with ||u — v|| < e.

Proof. Choose z € A, with ||z]| <1 and ||z —u|| < € with € < 1. Because

lu*z — 1|| < ||lu*(z — u)|| < 1, we see that u*z is invertible. Hence, z is
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1

invertible, and v = z(2*z)~? is a unitary in A,. Since |Vt — 1| < |t — 1| on
the unit interval, we see that

I(e*2)? = 1]l < lle*z — 1| < lla* — w*|lle]l + [lu[lll2 = ul| < 2e,
and 5o, ||u —v|| < Jlu = z|| + ||z = v|| < Jlu = 2|| + |lv]li(s*2)* — 1] < 3e. O

Corollary 3.3.4. If p and q are projections in M,(A) such that p ~ ¢
in AQ K. Then we have p ~ q in My(A) for sufficiently large k.

Proof. By Proposition 3.3.1 (iii), we may choose a unitary u € AQ K
such that upu* = ¢q. By Lemma 3.3.3, we choose a unitary v € My(A) with
large k such that ||u —v|| < 1. Since

llopv™ — gl| = |lvpv™ — upu®|| < [lvpv* — vpu*|| + |lvpu* — upu™|| <1,
we see that p ~, vpv* ~ ¢ in M(A) by Proposition 3.3.1 (iv). O
For [p] and [g] in D(A), we define

[l +ld] = [p& g,

where p® q = (g 2) This is well-defined by (3.3.2) and D(A) becomes a

commutative semigroup with 0.

The Grothendieck construction of D(A) will be denoted by Ko(A). For-
mally, it is the group of formal differences [p] — [g], with the identification:
[p1] = [q1] = [p2] — [g2] if and only if there is [r] € D(A) such that

[1] + [g2] + [r] = [p2] + [@] + [1)-

It should be noted that [p] = [¢] in K((A) does not imply p ~ g, but implies
pOr ~ g@r for a projection r in M,(A). If $ : A — B is a -homomorphism
then we have the induced *-homomorphism ¢, : Mp(A) — M,(B) given by
¢n([aij]) = [#(a;;)]. Hence, we have a *-homomorphism ¢ : AQ K — A®K,
and [p] = [g] in D(A) implies that [¢(p)] = [¢(¢)] in D(B). Furthermore, the
mapping [p] — [¢(p)] is a semigroup homomorphism, and so we get a group
homomorphism ¢, : Ko(A) — Ko(B). The following functorial properties are

immediate:

(]'A)* = lKo(A)a (¢¢)* = ",b*(b*-
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Example 3.3.1. K((C) =Z, Ko(M,) =Z, Ko(B(H)) = 0.

We say that two C*-algebras A and B are stably isomorphic if A ® K is
*-isomorphic to B @ K. It is clear that stably isomorphic C*-algebras have
the same Kj-groups.

Ezercise 3.3.1. Show that A, M,(A) and A ® K are stably isomorphic
each other forn =1,2,....

Now, we consider the order structures of Ky-groups. Recall that an or-
dered group is a pair (G,G4) of an abelian group G and a submonoid G of
G with the properties:

The submonoid G gives rise a partial order z < y by y — z € G,. We write
z<yifz <yand z # y. An element u € G4 is said to be an order unit if
for each z € G there is a natural number n such that z < nu. A subgroup H
of G is an order ideal if

(3.3.5) yeH 0<z<y = z€H.

We also say that an ordered group G is simple if G has no proper order ideal.
It is easy to see that G is simple if and only if every nonzero element in
G+ is an order unit. A scaled ordered group is a triple (G,G4,u) with an
ordered group (G,G4) and a fixed order unit u. A group homomorphism
¢ : (G,G4,ug) = (H,Hy,uy) is said to be positive if $(G4) C H,, and
unital if ¢(ug) = ug. The class of scaled ordered groups forms a category
with unital positive homomorphisms.

We denote by Ko(A)y the set of all elements in Ko(A) with the form
[p] — [0] for some [p] € D(A). It is not true in general that K,(A), satisfies
the condition (3.3.4) [Cu81a]. We say that a C*-algebra A is finite if p < ¢,
p ~ ¢ implies p = ¢ as in the case of von Neumann algebras. If A is unital
then this is equivalent to say that v*v = 1 implies vv* = 1. We also say that
a C*-algebra is stably finite if M, (A) is finite for each n =1,2,....

Ezercise 3.9.2. If A = lim A, then Mi(A) is *-isomorphic to the inductive
limit lim My (Ay) for each k= 1,2,....
n
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Ezercise 3.3.3. Show that every AF algebra is stably finite.

It is an open question whether every finite simple C*-algebra is stably
finite [B188). :

Proposition 3.3.5. Let A be a stably finite C*-algebra. Then the triple
(Ko(A), Ko(A)+,[14]) is a scaled ordered group.

Proof. The first condition of (3.3.4) is clear. To show the second condi-
tion, let p be a projection in M,(A) and [p] € —Ko(A)4+, that is, [p] = —[q]
for a projection ¢ € Mi(A). Then there is a projection r € My(A) such that
PO IO T ~rin Mpiite(A) by Corollary 3.3.4. Because My i4¢(A) is finite,
we see that p=¢=0.

If [p| € Ko(A)+ with a projection p in M, (A) then it is easy to see that

p®(1—p) ~y 1,80, in M,,(A) with the unitary 1 fp 1 ;p , where 1,,
and 0, denote the identity and zero in M,(A). Hence, [p] + [1 — p] = [1,.] =

n[l4] and it follows that n[l14] — [p] = [1 — p] € Go(4)4+. O

Proposition 3.3.6. If A is a stably finite simple C*-algebra then Ky(A)
is a simple ordered group.

Proof. Let [p],[q] € Ko(A)+ with projections in p, g in M, (A). Because
A is simple, we see that there are z1,...,Zm,¥1,...,Ym in Mp(A) with p =
Yo, Tigqyi: Put

x=|% 0 rv= o )]
0 --- 0 ym 0 O

P = Diag(p,0,...,0) and @ = Diag(q,q,...,q) in M,(M,(A)). We check
that £ = QY PXQ is an idempotent which is equivalent to P via PXQ and
QY P. Because E < @, we have [p] < m[g], and so it follows that every
element in Ko(A)4 is an order unit. O

3.4. Ky-groups of AF algebras

In order to calculate Ky-groups of AF algebras, we first show that the

functor Ky commutes with the inductive limits as follows:
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Theorem 3.4.1. Let A = l_i__n_}A,1 be the inductive limit of an increasing
sequence {Ap} of C*-algebras containing 14 with the inclusion maps t, :
A, — A Let 6: l_iglKo(An) — Ko(A) be the induced map from 6, = (tn)x :
Ko(An) — Ko(A). Then 6 is an isomorphism preserving distinguished cones
and order units.

Proof. Let [p] € Ko(A)+ with a projection p in Mg(A). By Exercise 3.3.2
together with Proposition 3.3.1 (iv) and Lemma 3.3.2, we have a projéction q
in Mi(Ap) such that p ~ g in Mi(A). Hence, [g] € Ko(Ar) and [p] = 6.([q]).
This shows that 8 is surjective and preserves distinguished cones.

In order to show the injectivity, let [p] — [g] € Ko(A,) with projections
p,q in Mi(A,) and 6,([p] — [¢]) = 0. It suffices to show that the image of
[p] — [4] is O in the induced map Ko(An) — Ko(Am) for some m > n. The
condition 8,([p] — [g]) = 0 says that [p] — [¢g] = 0 in K((A), and so there is a
projection r in Mp(A) such that p@ r ~ ¢ @ r, where we may assume that ~
is made in My4¢(A) by Corollary 3.3.4. As before, we may also assume that
r € My(Ap,) for some large m > n. Because p@®r and ¢ @®r lies in Mi4e(Am),
we use the same argument as in Corollary 3.3.4 by Exercise 3.3.2, to see that
pBT ~ g®rin Mrye(Apm). Therefore, it follows that [p] = [¢] in Ko(4rp). O

~ Let a unital canonical *-homomorphism (3.1.3) be given. We proceed to
determine the induced unital positive homomorphism

(3.4.1) Ko(M(p)) — Ko(M(q)),

where p = (p1,...,pr) and q = (g1, . .- gs). With the same notations as in the
proof of Lemma 3.1.1, it is easy to see that

r
k
(n1,n2...,n.) E nelers]
k=1
gives rise to a unital order isomorphism

(Zr, (Z+)r’ (pl) see apr)) - (KO(M(p))’ KO(M(p))-H []'M(P)])7

and so the map (3.4.1) is determined by the the matrix D which represents
the diagram (3.1.3). Hence, if A is an AF algebra with the associated diagram
D then Ky(A) is the inductive limit of the ordered groups:

D D

B42) 7O 2zo 2 P

Dn+1
n: Zr(n+1) _— ..

n—l) Zr(n)
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where r(n) is the number of points in the n-th row of D and D,, is the ma-
trix which represents the connecting map A, — Anp4+1. The ordered group
obtained in this way is said to be a dimension group. Although there are
more general methods to obtain concrete realizations of dimension groups
[Ef, Chapter 4], we restrict ourselves to several simple cases in which we have
a concrete realization of the Ky-group as an additive subgroup of R with the
usual order.

First, we consider the UH F' algebra generated by the sequence
(a1) (02)‘ (an-—l)\ (an) (@n41)

My, — M,,a, S Magaya, ——s -

apay - -Qn-1
In this case, The K{-group is determined by the following commuting diagram;

(az) (an-1)

a,)

Z — 7 = ... =7 3B 7 —e.
Ll - o
R = R = ... = R = R =-.-.

where ¢,(z) = — = A generalized natural number n is a map from

apdy ***Qp-1
the set {p;,p2,...} of all prime numbers to {0,1,...,00} and we write n =

2k13k25%s ... in an obvious way, where k; € {0,1,... ,00}. The set N of all
generalized natural numbers has a natural multiplication with the convention
n+ 0o = 0o+ n = oo. The set N of all natural numbers is identified with a
subset of 91 consisting of n such that n(p;) < oo for each i and n(p;) = 0 for
all but finitely many 7. Each n € 9N determines a subgroup G(n) of Q by

G(n) = {-Z- :a €%, beN, b divides n},

where we say that m divides n if m(p;) < n(p;) for each prime p;. For example,
we see that the AF algebra generated by the diagram (3.1.4.d) has the K-
group G(2%°).

Ezercise 3.4.1. Show that G(m) is isomorphic to G(n) if and only if there
are natural numbers p and ¢ such that pn = qgm.

Now, we consider AF algebras generated by systems in which every con-
necting map has the same diagram. Then the corresponding Kjy-groups will

be determined by the commuting diagram;
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D, or D D D

7r 2, L, ... DB, ogr D, g ...
(3.4.3) |= | ltn [
R = R = .- = R = R =

where D is an r X r matrix whose entries are nonnegative integers, and each
tn should be determined by a vector V,, in R" whose entries are nonnegative
real numbers with the property

(3.4.4) (DX,V,) = (X, Vo), XeZ.

We observe that if D is diagonal with the first diagonal entry d then V,, =
($,0,...,0) satisfies (3.4.4). This suggests us to consider eigenvectors of the
transpose of D. We recall Perron-Frobenious theorem (see [Ga, §XIII.2] for
the proof) as follows:

Theorem (Perron-Frobenious). Let A be an irreducible square ma-
trix whose entries are nonnegative. Then A has a positive eigenvalue r such
that |\| < r for each A € sp(A). For this eigenvalue r, there is a corresponding
eigenvector V' whose entries are positive.

Recall that a matrix is reducible if it is of the form 4 0 after same

B C

permutations of columns and rows. Now, we assume that D in (3.4.3) is irre-
ducible, and let r > 0, V = (vy,va,...,v,) be the eigenvalue and eigenvector

1
of the transpose of D with v; > 0 and ) v; = 1. We see that V,, = ﬁV
r
satisfies the condition (3.4.4).

Ezercise 3.4.2. Show that the Ky-group of the AF algebra with the as-
sociated -diagram (3.1.4.e) is isomorphic to the group G(2%°).

For example, let A be the AF' algebra with the associated Bratteli dia-

gram (3.1.4.f). Then the eigenvalue of D = (i (1)) is § = ! +2\/5 and the

1 1
corresponding eigenvector is V = (5, —0-5-) (note that — = 6 — 1). Considering

0

the commuting diagram:
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(3.4.5) 1v 1%" l:‘r"

We see that Ky-group is Z + Z6, and A is not *-isomorphic to any UFH
algebra.
Finally, we consider the AF algebra whose Kj-group is given by

D D D, D, D,
(3.4.6) 7z 272 L. g g T
where D,, = <a1" é) for a positive integer a,, n = 0,1,.... We denote
1
[ag,-..,an] =ao + T
a ————
1+ . ]
o —
Gn

Then we have [ag,...,a,] = %, where p,, and g,, are defined by
n

D1 = 17 g—-1 = 0, Do = Qg, go = 11
(3.4.7)
Pn = QnpPn—1 + Pn-2, qn = Gngdn-1 +qn-2, n=12,...,

or equivalently,

— Pn dn _ a, 1 .. { a0 1 _
019 aum (2 2 ) (7 D)% D). nora

It is well-known that the sequence {[ao,...,an] : n =1,2,...} converges to a
number 6 € R* \ Q. We consider the following commuting diagram;

Dy D
72 22X 7z

l
!
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—P2n-2  P2n-1
whose determinant is 1. The relation (3.4.8) says that the diagram commutes.

where ¢ = 1 and ¢, is given by the matrix (4z,_;)7! = ( f2n-2  —92n-1 )
Ezercise 3.4.3. Show that |Jje tn(Z2) = {(m,n) € Z? : m6 + n > 0}.

Hence, we see that the inductive limit of (3.4.6) is just Z + Z6. Note that

1+vV5

For more interesting examples and further interplay with another fields
of mathematics, we refer to [Ef] and references cited there.

if a, =1 foreachn=1,2,... then we have § = , as before.

3.5. Classification of AF algebras

In this section, we prove the following theorem due to Elliott [E176] which
classify unital AF algebras. For nonunital AF algebras, the order unit should
be replaced by the notion of scales. We refer to [Ef] for the details.

Theorem 3.5.1. Let A and B be unital AF C*-algebras and assume
that there is a unital order isomorphism o : (Ko(A),[14]) — (Ko(B),[1B])
between their Kg-groups. Then there is a *-isomorphism ¢ : A — B with
¢* =0.

We begin with the following lemma which proves the theorem for finite
dimensional C*-algebras. The proof is immediate from Lemma 3.1.1.

Lemma 3.5.2. Let A and B be finite dimensional C*-algebras. Then
we have the following: '

(i) Ifo: Ko(A) — Ko(B) is a unital positive homomorphism then
* there is a unital *-homomorphism ¢ : A — B such that ¢, = o.
(i1) If ¢ and ¢ are unital x-homomorphism from A into B with ¢, =
. then there is a unitary u € B such that y(z) = ud(z)u* for

z € A.

Lemma 3.5.3. Let G be the unital dimension group obtained from the
sequence (3.4.2) with the embedding i, : Z'™ — G. If 7 : Z*¥ - G is a
unital positive homomorphism then there is a unital positive homomorphism
Tn: Z¥ = Z™™ with 7 = 1,7, for some n = 1,2,....
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Proof. For canonical generators {ej,...,ex} of Z¥, find the preimages of

7(e;)’s in some Z™™. O

Proof of Theorem 3.5.1. Put A = li_r)nAn and B = l_i_r_)an, and denote
by tmn (respectively ni¢) the connecting map from A,, to A, (respectively
from By to By). Also, we denote by ¢, : A, — A and n; : By — B the
embeddings. By the above lemmas, there is a unital *-homomorphism ¢, :
A1 — By, such that ng,«¢1« = ot14 for some k;. Again, there is a unital
positive homomorphism w : Bx, — A, such that ¢y, +ws = 071, « for some
ny. This implies that ¢p, «we@1x = 14, and so we may assume that we;, =
t1n,x since Ko(A) is finitely generated. By Lemma 3.5.2 (ii), there is a unitary
u in A,, such that ¢1,,(z) = u(w(¢1(z))u*. We define ¢1(y) = vw(y)u* for
Yy € Bi,. Then we have

lin, = Y161 : A — An.

The following diagram illustrate the situation:

(3.5.1)
Al — e . e — A
Bl _ e e NN Bkz ‘e — A

By the same way, we have a unital *-homomorphism ¢, : A,, — By, such
that ¢211 = N, k,. Continuing inductively, we have unital *-homomorphisms
¢n and v, such that the diagram (3.5.1) commutes, and this gives the desired
unital *-isomorphism ¢. O

Therefore, it follows that two AF C*-algebras A and B are *-isomorphic
each other if and only if there is a unital order isomorphism from (Kg(A4), [14])
onto (Ko(B),[1g]). A natural question is: Which ordered groups may be
Ky-groups of AF' algebras? In other words, we would like to characterize
dimension groups among ordered groups. We say that an ordered group G
is unperforated if nx > 0 for a natural number n implies z > 0. Because
the group Z" is unperforated, the same is true for dimension groups. Also,
it is easy to see that every dimension group satisfies the Riesz interpolation
property: If z; < y; for ¢, = 1,2 then there is z € G such that z; < z <
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y; for ¢,7 = 1,2. Because Z" has this property, the same is also true for
dimension groups. Effros, Handelman and Shen [EHS80] showed that these
two conditions characterize dimension groups as follows:

Theorem 3.5.4. An ordered group G is a dimension group if and only
if G is countable, unperforated and has the Riesz interpolation property.

Instead to prove this, we just mention one important application. Black-
adar [BI81)] construct a simple unital C*-algebra which has no nontrivial
projections. It was a long-standing open question from fifties whether there
is such a C*-algebra.

The Ky-groups of AF algebras have another rich informations. Among
them, we mention about tracial states of AF algebras. If 7 is a tracial state on
a stably finite unital C*-algebra A, then 7 induces a positive homomorphism
7« : Ko(A) — R with 7([14]) = 1 in the obvious way;

mu([p] = [g]) = 7(p) = (),  [p] - [d] € Ko(A).

Under certain conditions, every unital positive homomorphism from Ko(4)
into R arises in this way [Bl, §6.9]. Especially, this is the case for AF algebras.
Indeed, if A = lir_glAn and ¢ : Ko(A) — R is a unital positive homomorphism
then this gives a homomorphism ¢, : Ko(An) = R. f A, =M, &--- My,
then ¢, is defined by a vector (aj,... yQp(n)) € R'_;_("). It is easy to see that
the map 7, : A, — C given by

T i (T1,. .., &) = g Te(z1) + -+ - + . Tr(z,), (z1,...,2r) € An

defines a normalized tracial state 7 on A with 7. = ¢, where Tr denotes the
usual trace of matrix algebras.

For example, let A = li_n)lA,1 be the AF algebra with the associated
Bratteli diagram given by (3.1.4.f). If we define the sequence {g,} of natural
numbers by

90=1 @a=1 ¢n=4¢n-2+Gn-1, n=23,...,
then from the relation (3.4.5) we see that the unique normalized trace 7 of A
is given by

b 1 1
7(2,y) = g (@) + o Tr(y),  (2,y) € An = My, & My, _,,
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as before.

where 6 = _1_+2—\/5

Ezercise 3.5.1. Show that the range of projections under the trace is
[0,1] N (Z + Z6).

Ezercise 3.5.2. Give the explicit formula for the normalized trace of the
AF algebra whose associated diagram is given by (3.4.6).

In general, a unital positive homomorphism of an ordered group (G,u)
is said to be a state of G and the set S,(G) of all states becomes a compact
convex set with respect to the topology of pointwise convergence. If G is
a simple dimension group which is not isomorphic to Z then K = S,(G)
becomes a simplex and G may be realized as a dense subgroup of the additive
group Aff K of all affine functions in C(K,R), which is nothing but R"~! if
K is an r-simplex. In this way, we get concrete realizations of the Kj-groups
for simple AF algebras. Note that examples in §3.4 were special cases with
r = 1. We refer to [Ef] again for the details.

NOTE

General references for this chapter are [Bl], [Ef] and [Go]. The latter part of §3.2 on
representations of the UF H algebra was taken from [M, §6.2]. For a survey on the classifi-
cation of hyperfinite factors of type III, we refer to [Ha85a]. We have followed Blackadar’s
book [BI] for the definitions of equivalence relations in §3.3. Although our definition of
Ky-groups may be applied for nonunital C*-algebras, we should adjust the definition of Ko
in order to obtain the exactness of the sequence Ko(I) — Ko(A) — Ko(A/I), and this
will be done later together with the introduction of K;-groups. Nevertheless, this adjusted
definition will coincide with ours for unital C*-algebras.



CHAPTER 4

TENSOR PRODUCTS OF C*-ALGEBRAS
AND NUCLEARITY

In this chapter, we will construct tensor products of two C*-algebras. The
main difficulty lies in the fact that there is no unique way to define a C*-norm
on the algebraic tensor product of C*-algebras. In §4.1, we introduce the
minimal and maximal tensor products of C*-algebras, and examine their ele-
mentary properties. We also show that these two tensor products are distinct
for the reduced group C*-algebra of the free group on two generators. We say
that a C*-algebra A is nuclear if there is a unique C*-norm on the algebraic
tensor product A ® B for every C*-algebra B. Because the nuclearity passes
to the inductive limits, every AF C*-algebra is nuclear. During the seventies,
a number of characterizations for the nuclearity has been developed. One of
them is the approximation properties with completely positive linear maps
with finite ranks. After discussion of elementary properties of completely pos-
itive linear maps in §4.2, we prove in §4.3 that the nuclearity is equivalent to
the above approximation property. Another characterization is given in terms
of its second dual: A C*-algebra A is nuclear if and only if the enveloping von
Neumann algebra A** is injective. Because the complete proof of this theorem
is beyond the scope of this note, we just discuss circumstances surrounding
the injectivity of von Neumann algebras in §4.4.

A group C*-algebra of a discrete group is nuclear if and only if the group
is amenable. In §4.5, we discuss amenability of locally compact groups and
prove this. More important is the fact that a group is amenable if and only if
the full and reduced group C*-algebras coincide. The free group is a typical
example of a non-amenable group. Exploiting a special property, called the
Powers’ property, of the free group, we show in §4.6 that the reduced group
C*-algebra of the free group is a simple C*-algebra with a unique trace. We

81
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also prove that the full group C*-algebra of the free group is not exact, that
is, the minimal tensoring with this C*-algebra does not preserve the exactness
of a short exact sequence. This depends on the residual finiteness of the free
group. Note that the maximal tensoring always preserves the exactness. With
this example of a non-exact C*-algebra in hand, we produce many another
examples of non-exact C*-algebras in §4.7. The class of exact C*-algebras
form a very stable class of C*-algebras: C*-exactness is preserved under C*-
subalgebras, inductive limits and C*-quotients.

4.1. Minimal and Maximal Tensor Products of C*-algebras

Let A; and A; be C*-algebras and denote by 4; ® A; the algebraic tensor
product of A; and A, as vector spaces. There are unique multiplication and
involution on A; ® A, satisfying:

(a1 ® a2)(by ® b2) = a1b; ® azb,,

(a1 ® a2)* = af R a3,

for a;,b, € A; and ay,b; € A;. A norm v on 4; ® A, is said to be a C*-norm
if the C*-norm conditions

leylly < llelillyll - llz*2lly = Iz}

hold for z,y € A; ® A,. It is clear that the completion A4, @y Az of A; ® A;
with respect to the norm -y becomes a C*-algebra. In this section, we give two
important C*-norms. ,

From now on, we assume that every C*-algebra is unital for the sim-
plicity, although everything below in this section is still true for non-unital
C*-algebras. For representations {m;,M;} of A;, i = 1,2, there is a unique
representation, denoted by m; @ 73, of A; ® A, satisfying

(7!'1 ® 7!’2)((11 ® 02) = 71'1(01) ® 1r2(a2), a; € A,’.

For states ¢; € S(A;), we also define a linear functional ¢; ® ¢ on 4; ® A,
by
(61 ® ¢2)(a1 ® az) = ¢1(a1)p2(az), a; € Ai.
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We first consider the case when A; is a concrete C*-algebra acting on
a Hilbert space H; for ¢ = 1,2. Then A; ® A2 is a normed *-subalgebra of
B(H; ® H;) with the operator norm. For ¢; € S(4;), we have

(4.1.1) (61 ® ¢2)(z) < ||zll, = € A1 ® 4.

Indeed, one may apply Theorem 1.5.5 after showing (4.1.1) for finite sums of
vector states. If {m;,K;} is a representation of A4; for ¢ = 1,2, then we also
have

(4.1.2) (71 @ m2)(2)]|| < |||l z € A1 ® A

Because 7; is the sum of cyclic representations, we may assume that 7; has a
cyclic vector &;. Put

¢i(a) = (Wi(a)gi,§i>7 ace Aia 1= 1’2

By (4.1.1), ¢1 ® ¢2 extends to a state ¢ on the C*-subalgebra A of B(H; ® H2)
generated by A; ® A;. Because

(4-1~3) (61 ® ¢2)(x) = (71 @ m2)(2)(€1 ® €2),& R &), T € A ® Az,

there is a Hilbert space isomorphism from H4 onto K; ® K3 which sends
T(2)€y to (m ® ma)(z)(&1 ® &2), where {my, My, €y} denotes the G. N. S.
construction of A associated with ¢. This shows that ||(m1 @7 )(z)|| = ||74(2)|
for z € A; ® A;, and completes the proof of (4.1.2).

Now, we define the minimal norm on A; ® A, by

(4.1.4) |Z||min = sup ||(m1 ® m2)(2)|], T € A ® Ay,

where 7; runs over all representations of A;, i = 1,2. From (4.1.2), it is
easy to see that the supremum in (4.1.4) is taken if m; and 7y are faithful.
Note also that if m; and 7, are faithful representations then m; ® 7, is also
faithful on A; ® Az. Indeed, if z = 3"} _, ax @by, where {b : k = 1,2,...,n}is
linearly independent in A, and (7, ® m2)(z) = 0, then {m2(b)} is also linearly
independent and ) 7i(ax) ® 72(bx) = 0 as an operator on H; ® H,. From
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this, it is easy to see that m;(ax) = 0 for each k. Because m; is faithful, we
have ax = 0 for each k, and so z = 0. Therefore, if A; is a C*-algebra acting
faithfully on a Hilbert space H;, for = 1,2, then the minimal tensor product
A; Qmin Az is *-isomorphic to the C*-subalgebra of B(H; ® H2) generated by
{a; ® as : a; € A;}, the spatial tensor product of A; and A;. Compare with
the definition of the tensor product of von Neumann algebras in §2.4. It is
easy to see that every *-homomorphism o; : A; — B;, t = 1,2 gives rise to a

unique *-homomorphism ¢; @mumin 02 : A1 @min B1 — A2 @min B2, and
(415) Al g Az, Bl Q Bz = Al ®min Bl g A2 ®min BZ-

Ezercise 4.1.1. Show that M,, ®muin A is *-isomorphic to the C*-algebra
M,(A). Show that Co(X) ®min 4 is *-isomorphic to the C*-algebra Cp(X, A).
Show also that the inductive limit of the sequence (3.3.3) is *-isomorphic to
the C*-algebra K(H)®min 4. Finally, if G; and G are locally compact groups
then show that C}(G1) ®min Cx(G2) is *-isomorphic to C3(G1 x G3). 4

If {mry,Hys,€4} and {my, Hyp, £y} are the G. N. S. construction associated
with states ¢ and ¢ of A and B, respectively, then it is easy to see that

(41.6) (60¢¥)(z)=((mp ®my)(z)(€s ®Ey),€s ®Ey), TEAQB.

as in (4.1.3). From this, it follows that |(¢ ® ¥)(z)| < ||z||min for z € AQ B,
and so ¢ ® 1 extends to a state @ @min 1) of A @min B. Considering the faithful
representation given by (1.6.1), we see that

(4.1.7) l|zllmin = sup{||(7g ® my)(z)|| : 6 € P(A),% € P(B)},

where P(A) denotes the set of all pure states on A as in §1.6. In the corre-
spondence (1.5.3) between states and cyclic representations, we see that
2 $(b*a*abd)
o) = sup{ 2Cr s b ),
because ||b + Lg||2, = #(b*b), or by Exercise 1.5.1. We apply this formula to
(4.1.6) and (4.1.7) to get

¢ @ ¥)(y*z*zy)

(4.1.8) ||z||min =sup{( @80y

y € A® B,¢ € P(A),v € P(B)},
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for each z € A ® B. This gives an another definition of || - ||min in terms of
pure states of A and B. Of course, P(A) and P(B) may be replaced by the
state spaces S(A) and S(B), respectively.

One of the main objects of this section is to show that || : ||min is the
smallest among all possible C*-norms on A ® B. To do this, put

Sa = {(4,%) € P(A) x P(B) : |(¢ @ ¥)(z)| < ||z]la; = € A® B},

for an arbitrary C*-norm a. It is easy to see that S, is a weak* closed subset

. of P(A) x P(B).

Theorem 4.1.1. Ifa isa C*-norm on A® B then we have ||z||min < ||z«
for eachz € A® B.

The proof is reduced to show the equality
(4.1.9) So = P(A) x P(B).

Indeed, for each ¢ € P(A) and ¢ € P(B) the relation (4.1.9) says that ¢ @ ¢
extends to a state d ®4 1) of AQ®y B. For y € A® B with (¢ ® ¢)(y*y) # 0,

the function
(¢ Ra @[’)(y*xy)
(¢ ®a ¥)(y*y)

gives a state of A ® B. Hence, for each 2 € A ® B, we have

(@ Y)y*z*ay) 2
Gevwy "o s el

and so the proof would be complete by (4.1.8).
We begin with abelian C*-algebras. Recall that a state of an abelian
C*-algebra is pure if and only if it is multiplicative by Theorem 1.6.2.

z—n(z)=

Lemma 4.1.2. Let A and B be abelian C*-algebras then the relation
(4.1.9) holds, and there is a unique C*-norm on A @ B.

Proof. If the relation (4.1.9) does not hold, then there are weak* open
subsets U and V of P(A) and P(B) such that

U x V CP(A) x P(B) \ Sa.
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By Theorem 1.6.2, we see that there exist nonzero a € A and b € B such that
$(a)=9(b)=0, ¢ePA\U, v eP(B)\V.

Therefore, we have

lla ® blla = sup{|p(a ® b)| : p € P(4 ®a B)}
= sup{|(¢ ®a ¥)(a ® b)| : (¢,%) € Sa} =0,

which is a contradiction because a ® b # 0, where the second equality follows
from the obvious correspondence between p € P(A ®, B) and (¢,9) € Sq
given by

#(a) = pa(a) :==p(a®1p), a € A, Y(b) = pp(b) :=p(14a®b), be B.
The relation (4.1.9) also shows that
lella = sup{|(¢ ®a ¥)(z)| : ¢ € P(A), € P(B)}, z€ARQDB,

but this is independent of a because (¢Q,9)(z) = (¢@y)(z) forz € A®B. O

Lemma 4.1.3. If p € P(A®qy B) and p4 € P(A) then pg € P(B) and
p=pa®pB.

Proof. For a € A and b € B with 0 < b < 1, we have
pa(a)=p(a®1)=p(a®b)+p(a®(1-1)),

where a — p(a ® b) and a — p(a ® (1 — b)) are positive linear functionals on
A. So, it follows that p(a ® b) = kpa(a) for some scalar k, and k = p(1 ® b).
Hence, we have

p(a®b)=p(1®b)pa(a) = (pa®pp)(a®d), a€A4 beB.

The fact that pp € P(B) is easy. O

Ezercise 4.1.2. Find an example of p € P(M; ® M) such that ppy, is not
a pure state.
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Lemma 4.1.4. If A is abelian then the relation (4.1.9) holds.
Proof. Let ¢ € P(A) be fixed, and put

Po={¢ € P(B): (¢ ®@¥)(@)| <|lz|la) =€ A® B}

For b € By, let C be the abelian C*-subalgebra of B generated by 1 and b.
Then there exists 9 € P(C) such that |p(b)| = ||b||. By Lemma 4.1.2, the
closure of A® C in A ®, B may be identified with A ®min C, and so the pure
state @ ®min Yo extends to a pure state p of A ®, B. Because pgy = ¢ € P(A),
we see that pg € P(B) by Lemma 4.1.3, and we have

leB(B)] = |p(1 @ b)| = (¢ ® %o )(1 ® b)| = |tho(B)] = |[B]l-

By Theorem 1.5.5, we have P, = P(B), and the proof is complete. [J
Lemma 4.1.5. If A is abelian then there is a unique C*-norm on A® B.

Proof. We show that
P(A®qs B) C {¢®at: ¢ € P(A), € P(B)}.

Indeed, if p € P(A ®4 B) then p4 is pure by Proposition 1.6.8, because each
element a® 1 in A ®, B is in the center. By Lemma 4.1.3, p = p4 ® pp with
pB € P(B). Now, we have

llz)|? = ||lz*z||> = sup{(¢ ®a ¥)(z*z) : ¢ € P(A), € P(B)}, z€ A® B,

and the latter is independent of « as in the proof of Lemma 4.1.2. O

Proof of Theorem 4.1.1. As noted before, it suffices to show the relation
(4.1.9). But, the exactly same argument as in the proof of Lemma 4.1.4 works,
if we appeal to Lemma 4.1.5 instead of Lemma 4.1.2. O

Ezercise 4.1.8. Show that
la® blla = |lallljdl, a€A, be B,

for every C*-norm o on A ® B.
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We have the obvious largest C*-norm on A ® B defined by
(4.1.10) ||z||max = sup || ()|l T € A® B,

where 7 runs over all representations of A ® B. If 7 is a representation of
A ® B then we define the restrictions 74 and 7g by

ma(a) = 1(a®1p), np(b) = m(14 ® b), a€ A, beB.

Then the relation 7(a ® b) = m4(a)rg(d) = 7g(b)m4(a) holds for a € A and
b € B. It is clear that the identity map on A @ B extends to a unique *-
homomorphism A ®pax B — A ®min B. The maximal tensor products has the

following universal property.

Proposition 4.1.6. Leto: A — C and 7 : B — C be *-homomorphisms
such that 0(A) and 7(B) commute each other. Then there exists a unique
*-homomorphism 7 : A Qmax B — C such that

(4.1.11) m(a ® b) = o(a)r(b), a€ A be B.

Proof. Note that the bilinear map = : (a, b) — o(a)7(b) induces a *-homo-
morphism with (4.1.11). It is easy to see that this homomorphism extends to
A ®max B because = — ||7(z)|| defines a C*-seminorm on A® B. O

If 0; : A; — B; be a *-homomorphism for i = 1,2, then by the similar
argument as above we see that there is a unique *-homomorphism 07 @max 02 :
A1 ®max B1 — A2 Qmax B2 which extends 0; ® o5.

Proposition 4.1.7. Ifo; : A; — B; is a *-homomorphism onto B; with
kernel I; for t = 1,2, then the kernel of 01 Qmax 02 is the closure of I} ® A; +
I, ® A) in A; Qmax A2

Proof. We denote by J the ideal described in the Proposition and 7 the
natural homomorphism onto (4; ®max 42)/J. It suffices to show that

@l < (01 ® 02)()lImax, = € A1 ® Ao
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Note that (o1(a1),02(az2)) — 7(a; ® a3) is a well-defined bilinear map from
B; X B; and so there is a *-homomorphism p : By ® B2 — (A1 ®max 42)/J
such that

plo1 ® o2)(z) = 7(x), T €A ® A,

It is easy to see that y — p(y) is a C*-seminorm on B; ® B;, and so we have

(@)l = llp(er ® o2)(@)|| < [l(01 ® o2)(2)|Imax- O
We know that if C is a C*-subalgebra of A then every representation 7

of C extends to a representation of A in the sense of Theorem 1.6.7. If C is
a norm-closed two-sided ideal of A then it is not so difficult to see that every
representation m of C extends to a representation p of A on the same Hilbert

space, and 7(C) and p(A) have the same weak operator closures.

Corollary 4.1.8. Let A and B be C*-algebras and J a norm-closed two-
sided ideal of B. Then the following short sequence

is exact.

Proof. We must show that the closure of A ® J in A @max B is just
A ®max J. To do this, it suffices to show that a representation 7 of A ® J
extends to a representation of A ® B. By the above discussion, 7 extends to
a representation p of B so that 7;(J) and p(B) have the same weak operator
closures. Hence, 74(A) and p(B) commute each other, and so m4 ® p is the
required extension of w. [

We note that the above argument does not go well if J is just a C*-
subalgebra of B. In fact, we will see later the corresponding relation (4.1.5)
for maximal tensor products is not true in general.

Ezercise 4.1.4. Show that the full group C*-algebra C*(G; x G2) is *-
isomorphic to the maximal tensor product C*(G1) ®max C*(G2), for locally
compact groups G; and G,.

We say that a C*-algebra A is nuclear if there is only one C*-norm on
A ® B for each C*-algebra B, or equivalently, A ®min B = A ®muax B for each
C*-algebra B. Lemma 4.1.5 says that every abelian C*-algebra is nuclear.
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Note that every finite-dimensional C*-algebra is nuclear because there is only
one C*-norm on M, ® A = M,(A) by Exercise 1.5.3. Every approximately
finite-dimensional C*-algebra is also nuclear by the following easy proposition.

Proposition 4.1.9. If {A;} is an increasing net of nuclear C*-algebras,
then the inductive limit A = U;A; is also nuclear.

Now, we exhibit an example of a non-nuclear C*-algebra. To do this, we
need the following:

Proposition 4.1.10. Let R be a factor on H. If Y .., z;y; = 0 with
z; € R and y; € R, then there exists an n X n matrix [c;;] such that

n n
chka:j=0, k=1,2,...,n, and chkykzy,-, 7=12,...,n.
=1 k=1

Proof. The proof is a modification of Lemma 2.3.3 as follows: Let X be
the operator in the matrix algebra M,(R) acting on the n-direct sum of H
whose first row is {1, ..., 2} and another entries are zeros, and Q = [Cji] €
M, (R') the supremum of all projections @ in M,(R') with XQ = 0. For a
projection p € R', we denote by P the projection in M,(R') whose diagonals
are p. Then by the same argument as in the proof of Lemma 2.3.3, we see
that Pé = QP, and so each entry Cji of 6 commutes with p. Because R is a
factor Cjr = cji is a scalar as desired. The relation X é = 0 implies the first
equations. If we denote by Y € M,(R') whose first column is {y;1,...,yn}
and another entries are zeros then XY = 0 implies that R(Y) < Q, and so
the second equations follow from QY =Y. O

Corollary 4.1.11. Let M be a factor acting on H. Then the map
(4.1.13) T:TQyY— 2y, TeEM, ye M

extends to a *-isomorphism of M ® M' onto the *-subalgebra of B(H) con-
sisting of all finite sums of operators of the form zy, withz € M andy € M'.

Corollary 4.1.12. If A and B are simple C*-algebras then A ®muin B is
also simple.
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Proof. Let 7 be an irreducible representation of A @i, B on H. It suffices
to show that = is faithful. Because m4(A) and 7p(B) commute each other,
we have

WA(A)" n WA(A)I - WB(B)' N WA(A)'
= (14(A) Unp(B)) = m(A ®min B)' = Clg),
and so we see that m4(A)" is a factor. For z = Y a; ® b; € A® B, if
m(z) = Y ma(ai)wp(bi) = 0 then (74 @ 75)(z) = Y ma(a;) ® 75(b;) = 0 by
Corollary 4.1.11. So, z = 0 since 74 ®7 p is faithful. Therefore, ||z||o = ||7(z)||
gives a C*-norm, and it follows that ||z||min < ||z]la = ||7(2)|| < ||2||min by
Theorem 4.1.1 and Proposition 1.2.7. Hence, 7 is faithful. O

We also need the following elementary fact on inner product spaces:

Ezercise 4.1.5. Let ‘H be an inner product space with a unit vector €.
Show that if ||n;|| < 1for i = 1,2 and ||€— (1 +n2)|| < € then ||€ —ni < 2vE
fori=1,2.

Example 4.1.1. The reduced group C*-algebra Cx(F3) of the free group
F3 on two generators is not nuclear.

Recall the factor construction in §2.4. We note that C3(G) and C}(G) are
the C*-algebras acting on £2(G) generated by {L, : s € G} and {R, : s € G},

respectively, where

L(&)(t) = (xs * )(t) = E(s7),

Ry(€)(t) = (€ * x5-1)(t) = &(2s),
for ¢ € L%(G). If we consider the free group F, on two generators then
Cx(F2)" and C}(F,)" are factors. So, ||z||, = |x(z)|| with the *-isomorphism
7 in (4.1.13) gives a C*-norm v on C}(F3)® C(F;). We show that this norm
is not equal to the minimal C*-norm. By Corollary 4.1.11, CX(F3) ®, C}(F3)
is *-isomorphic to the C*-subalgebra 2 of B(¢2(F;)) generated by {L,, R, :
s € F»}. We denote by a and b the generators of F,. Let S be the subset of

F, consisting of all reduced words beginning with a or a=!. Then we observe
the following two properties:

(I) Sua™lSa=F)\ {e}.
(II) The sets S, b~1Sb and bSb~! are mutually disjoint.
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Lemma 4.1.13. The C*-algebra 2 contains a rank one projection onto
the subspace Cye.

Proof. Define a self-adjoint operator z in 2 by
1
T = Z(L“Ra + L;R; + LyRy + Ly R}).

Then z is a contraction and z|c,, = 1. Let £ be a unit vector in (Cx.)' and
put £ = ||§ — z€||. By Exercise 4.1.5, we see that

€ — LaRa€|| < 2% k¥(:= € temporarily).
For M C F3, put A(M) =Y .y |€(s)|?. Then, we have

IA(S) = Ma~1Sa)| = |A(S)? + A(a~1Sa)}|- |A(S)? — A(a~!Sa)}|
<2lléll- 1 1)) = (O le(a sal?)?|

) s€ES s€S
< 20¢ll( [€(s) - E(a sa)?)?
sES

< 2||€llll€ — LaRa€ll < 2]|€]le,
and similarly
IA(S) = A7 SB)| < 2iélle,  [A(S) — A(BSETH)] < 2[€]le.

Now, we have A(a~1Sa) < A(S) + 2||¢]|e, and so ||¢|> = A(a~1Sa) + A(S) <
2(A(S) +]|€|l€) by the property (I). Hence, it follows that A(S) > 1||¢]|2 - ||€][e.
Also, we have A(758) > A(S) = 2l€lle > Sl€]12 — 3]€lle, and similarly for
A(bSb™1). By the property (II), we have

€l > X(S) + A1) + bS8™) > Slell = Tl
and this implies that
(4.1.14) 1= ||€]| < 14e < 42k%.
Therefore, we have x > 427%, and

A = 2)El 2 1€ = =€l = |2 = 1[lI€ll > |~ — (L = W]IE]I,
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for each A € (1 —427%,1) and ¢ € (Cx,)* with ||¢]| = 1. This shows that
(4.1.15) sp(z](Cxe)t) € [-1,1 — 4274,

because |k — (1 — X)| > 0. Consider a continuous function f : [-1,1] — [0, 1]
such that f = 0 on [-1,1 —427*%] and f(1) = 1. Then the function calculus
f(z) is the desired projection. O

Now, because ' C R(F;)' NR,(F2) consists of the scalar operators, we
see that 2 acts irreducibly on ¢2(F;) by Lemma 1.6.5. By Theorem 1.6.6, we
have the following:

Corollary 4.1.14. The C*-algebra 2 contains the ideal K(¢?(Fy)).

Later, we will show that CX(F3) is simple. Assuming this, we see that
CX(F2) ®min C}(F2) is simple by Corollary 4.1.12, and the proof of Example
4.1.1 would be complete. We have an alternative argument as follows: From
Corollary 4.1.14, it is clear that there is no faithful tracial state on 2. More
precisely, note that {L,P.L% : s € F;}, where P, denotes the projection
given by Lemma 4.1.13, is an orthogonal family of projections onto the one-
dimensional subspace Cy,. If 7 is a tracial state of 2, then

(#M)r(Pe) = () LyP.Ly) < 7(1)
seEM
for each finite subset M of F3, and so 7(P.) = 0, where #M denotes the
cardinality of M. On the other hand, we know from §2.4 that there is a
faithful trace 71 and 7 of CX(F:) and C}(F3) respectively. Hence, we see that
" 71 ® 72 extends to a faithful trace on CX(F2) ®min C;(F2), and this completes
the proof of Example 4.1.1. O

NOTE

Tensor product of C*-algebras was first introduced by Turumaru [Tu52] with the
formula which is similar as in (4.1.8). Theorem 4.1.1 together with Corollary 4.1.12, Propo-
sition 4.1.9 and Example 4.1.1 are due to Takesaki [Ta64], whereas the maximal C*-norm
was introduced by Guichardet [Gu65] in which Proposition 4.1.7 was proved. We have
followed Kadison’s book [K, §11.3] for the proof of Theorem 4.1.1. See also [M, §6.4], [T,
§IV 4], [S, §1.22] or [Gu, §4]. Although the norm estimate (4.1.14) was taken from [S,
Lemma 4.3.3], the argument using spectrum (4.1.15) in the proof of Lemma 4.1.13 is due
to S. Wassermann [Wa90]. See also [K, Example 11.3.14]. Corollary 4.1.14 is due to Ake-
mann and Ostrand [AO75), in which they also showed that the ideal K(£2(F3)) is actually
the unique norm-closed two-sided ideal of the C*-algebra 2. This shows that K(£2(F»)) is
*-isomorphic to the ideal of the homomorphism C*(Fz) ®, C}(F2) — C*(F2) ®min C} (F2).
The survey note [Tp81] is a useful reference through this chapter.
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4.2. Completely Positive Linear Maps

Let A and B be C*-algebras and ¢ : A — B a bounded linear map. We
define the linear map ¢, : M,(4) — M,(B) by

(42.1) ¢n(lais]fj=1) = [#(aij)lij=1,  [ais]ij=1 € Mn(A4).
Note that ¢, = ¢®1,, in the isomorphism M,(A) = AQM,, where 1,, denotes
the identity map on M,,. If we consider the transpose map 7 between M,, we

have

T2 ©

= oo+
o O o
[ 2N e i an B en}
—H OO
I
oo
O = OO
oo~ Oo
= o o O

0

and so 7, is not positive although 7 is a positive linear map. We say that a
linear map ¢ is n-positive if the map ¢, is positive, and completely positive
if ¢, is positive for each n = 1,2,.... It is clear that every *-homomorphism
is completely positive. We show that if A or B is abelian then every positive
linear map is already completely positive.

Proposition 4.2.1. Let B be an abelian C*-algebra. Then every posi-

tive linear map ¢ : A — B is completely positive.

Proof. Let p be a pure state of B ® M,,. It suffices to show that po ¢, is
positive. By Lemma 4.1.3 and Proposition 1.6.8, we see that p is of the form
p1 ® p2 for some p; € P(B) and p; € P(M,). Hence, we see that

podn=(p1®p2)0(¢®1n)=(p104)®p2
is positive. [

Proposition 4.2.2. If ¢ is a positive linear map from a commutative
C*-algebra Cy(X) into a C*-algebra B then ¢ is completely positive.

Proof. We may assume that B acts on a Hilbert space H. Note that

pii(f) = (6(f)&, €;) gives rise to a complex measure for vectors &;,¢; in H.
Put p = 37, ;|uij|. Then there is h;; € L'(p) such that py;(f) = [y fhijdp
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for each f € Cy(X). Now, for complex numbers c;, ..., c,, we have
/X FQ - hijeici)du = Y (d(F)Ei, €5)eics
i) %)
= ((HO_citi), (O ci€)) >0
i J

for each f > 0 in Co(X). Hence, we see that ), , hij(z)ci¢j > 0 for p-almost
all z € X. This shows that

St = [ (LT @hs(eutz) 2 0

i,J

for fi,..., fn in My(Co(X)). Because every positive element of M,(A) is the
sum of matrices of the form [a}a;] with a; € A, the proof is complete. O

Here is an another important class of linear maps which are automatically
completely positive. Let B be a unital C*-subalgebra of a C*-algebra A. A
unital positive linear map ¢ : A — B is said to be a conditional expectation if

(4.2.2) #(cab) = cg(a)b, a€ A, bceB.

Proposition 4.2.3. Every conditional expectation ® : A — B C A is
completely positive.

. Proof. First, we assume that B acts on a Hilbert space H with a cyclic
vector €. For {b;:i=1,...,n}in B and {a;:1=1,...,n} in A, we have

Z(‘I’(a;ai)biﬁ, b;€) = Z(b’“-@(a*fai)big, £)
—Z (@(bjaja;b;)E, £)
<I’(Z(b"a*w bi)E, €) >

because ), i j bjaja;b; > 0, and @ is positive by definition. Because ¢ is cyclic,
we have

Z(‘I’(a;ai)éi,ﬁj) >0, &, ¢eH

4,3



96 4. TENSOR PRODUCTS OF C*-ALGEBRAS AND NUCLEARITY

For the general cases, we assume that B acts on a Hilbert space H uni-
versally. By the decomposition (1.5.6), we see that H = @, Ho and $(A)
acts on H, with a cyclic vector. So, the map &, : A — B(H,) given by
®,(a) = ®(a)|#, is completely positive by above. From this, we see that & is
completely positive. 0O

Now, we show the following fundamental theorem.

Theorem 4.2.4. A linear map ¢ from a unital C*-algebra A into B(H)
is completely positive if and only if there exist a representation {r,K} of A
and a bounded linear map from H to K such that

(4.2.3) #(a) = V*r(a)V, a€ A

Proof. For the sufficiency, let [a;;] € M,(A) be positive. Then we have
D (#(aij)s, &) = D (m(ai)VE;, VE) 20, &, €H,
i,J i3

and so we see that [¢(a;;)] is a positive operator on the n-fold direct sum of
H.

Proof of the necessity is a variant of G. N. S. construction as follows:
Consider the algebraic tensor product A ® H and we define

(4.2.4) (@ v) = )_(#(b]ai)éi, n;),

i3

forz =) ,a;®¢ and y = Zj b; ® nj in A ® H. Because ¢ is completely
positive, we see that (4.2.4) gives rise to a positive bilinear form. Now, we

also define the map 7y from A to linear maps on A ® H by
"O(G)(Z a; ®&) = Z(aai) ® &, a€ A
i 1

If we put p(a) = (mo(a)z,z)y then p is a positive linear functional on A, and
so we have

(mo(a)z, mo(a)z) = (mo(a*a)z, z)s = p(a*a) < ||a*alp(14) = |lal|*(z, z)4.



4.2. COMPLETELY POSITIVE LINEAR MAPS 97

As in the G. N. S. construction in §1.5, we see that my induces a repre-
sentation on the Hilbert space K = (A ® H)/Ly. Define

VE=14® &+ Ly, £eH.

Then V is a bounded linear map from  to K, because ||[VE||2 = (¢(14)¢,€) <
ll#(14)]l lI€]|*. The required condition (4.2.3) is easily checked. O

Note that we have shown that

(4.2.5) IVIZ < llg(1a)l

- in the proof of Theorem 4.2.4. Using this, we obtain the following Schwarz
inequality for completely positive linear maps.

Corollary 4.2.5. If ¢ is a completely positive linear map from a unital
C*-algebra A into a C*-algebra B then we have

(4.2.6) ¢(a)*¢(a) < ll4(1a)l|4(a*a), a€ A

Ezercise 4.2.1. Let ¢; be a completely positive linear map from a unital
C*-algebra A; into a C*-algebra B;, for i = 1,2. Show that the map ¢; ® ¢, :
A1®B; — A1®B; extends to a completely positive linear map from A; ®min B1
into A, Qmin Ba.

Now, we say that a linear map ¢ : A — B is n-bounded if ¢,, is a bounded
linear map, and ¢ is completely bounded if each ¢, is bounded with

|Bllcs := sup{||gnll : n =1,2,...} < c.

We also say that ¢ is completely contractive if every ¢, is contractive. The
following simple proposition will be useful later.

Proposition 4.2.6. Let ¢ : A; — A, be a completely bounded linear
map between C*-algebras A; and A;. For any C*-algebra B, the linear map
#®1p : Ay ® B — A; ® B extends to a bounded linear map ¢ ®min 15 :
A1 ®min B — A2 Qmin B. Furthermore, we have ||¢ Qmin 18| < ||8||cs-

Proof. We may assume that B is a C*-subalgebra of B(H) for some
Hilbert space H. For any finite dimensional projection p in B(H), we have

1@ p)(¢@ DDA =D ¢(ai) @ pbip|| < [|$lesll= ]I,
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forz = ) a;®b; € AQB(H). Because the net of finite dimensional projections
in B(H) converges strongly to 1p(3), the conclusion follows. O

Now, we extend Proposition 1.5.2 to see how related positive linear maps
and bounded linear maps are. Assume that ¢ : A — B(H) is a unital contrac-
tion and ¢ is a unit vector in H. Then p(z) = (¢(z)¢, €) defines a bounded
linear functional on A with ||p|| = 1 = p(1). By Proposition 1.5.2, we see that
p is a positive linear functional, and so ¢ is also a positive linear map. The
converse is also true as follows:

Theorem 4.2.7. Let ¢ : A — B be a unital linear map between C*-

algebras. Then ¢ is positive if and only if it is contractive.

Proof. First, we consider the case when A is abelian. We may assume that
B acts on a Hilbert space ‘H. Then ¢ is completely positive by Proposition
4.2.2, and ¢(z) = V*n(z)V, where (7,K) is a representation of A and V' is a
bounded linear map from H to K. Therefore, it follows that

le@I < IVIEI=@)I < lleallllzll = ll=l],

by (4.2.5). The next proposition reduces the proof of the theorem to the case
of abelian C*-subalgebras generated by 14 and unitaries. 0O

Proposition 4.2.8. The unit ball of a unital C*-algebra A is the closed
convex hull of unitaries in A.

Proof. For z € A with ||z|| < 1, the element
Flz, ) = (1 —zz*) (1 + \z)

exists and is invertible for each complex number A with |A\| = 1. Using the

power series expansion of (1 — zz*)™!, we calculate
flz, ) f(z,\)+1 = (l—mm*)'l+(1-—:1:*:1:)_1/_\z"“+(1—xw*)_lz\x+(1—x*m)"l,
and so, f(z,))*f(z,)) = f(z*, A\)*f(z*, X). Therefore, the element

ux = f(z, ) f(*, X))
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is unitary for each A with |A\| = 1. Noting that the function
uN) = (1—ze*) ¥ (A + 2)(1 + Az*)"1(1 - 2*z)?

is holomorphic in a neighborhood of the unit disc, we see that

2n
%/ u(e)dt = u(0) = (1 - zz*)"*z(1 — z*z)?
0
=(1- :c:z:*)_%(l - xz*)%w =z.

This completes the proof, because u(A) = Aujy is unitary and the measure
in the above integral can be approximated by convex combinations of point
masses. [J

Corollary 4.2.9. Let ¢ : A — B be a unital linear map between C*-
algebras. Then ¢ is completely positive if and only if ¢ is completely contrac-
tive.

We close this section to see that the dual of a completely positive linear
map is also completely positive, which will be used frequently in the next
section. We identify M,(A*) with M,(A)* by

(427) $(2)= Y $ij(zij), b =[$ij] € Ma(4*), = = [2:;] € Ma(A).

i,7=1
Proposition 4.2.10. If ® : A — B is a completely positive linear map
_then the adjoint map ®* : B* — A* is also completely positive.

Proof. For x = [z;;] € M,(A) and ¢ = [¢;;] € M,(B)*, we have
(2,(2n)*(¢)) = (Bn(2), ¢) = Z(‘I’(zij), Pis)

= Y (5, @ (65)) = (2. (8)a(0)).

Hence, it follows that (®,)* = (2*), with the identification (4.2.7), and the
proof is complete because the adjoint of a positive map is also positive. [

NOTE

We refer to Effros’ or Choi’s article [Ef78] [Ch82] for the motivations why we should
consider completely positive linear maps rather than just positive linear maps in dealing
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with the order structures of non-commutative operator algebras. Paulsen’s monograph
[Pau] is a useful reference for this section. Proposition 4.2.1 is taken from [St63, Lemma
6.1]. Proposition 4.2.2 together with Theorem 4.2.4 are due to Spinespring [Ss55]. See
also [Pau, §4]. We also refer to [Pau, Theorem 7.4] for the similar result for completely
bounded linear maps. The converse of Propositions 4.2.1 and 4.2.2 holds: If A and B are
C*-algebras such that every positive linear map from A to B is completely positive then
either A or B is abelian [To82]. Choi [Ch72] was the first who exploited the differences
between n-positivity and (n + 1)-positivity. The Schwarz inequality, Corollary 4.2.4, is also
valid for 2-positive linear maps [Ch74]. For further developments on this topic, we refer
to the survey article [Ky92] and the references there. We refer to [Ok70] for an explicit
example of a positive linear map for which Proposition 4.2.6 does not hold. Theorem 4.2.7
is due to Russo and Dye [RD66]. The proof of the essential part, Proposition 4.2.8, was
taken from [P, Proposition 1.1.12]. See also [Pau, §2] for an another proof of Theorem
4.2.7.

4.3. Approximation Properties for C*-algebras

The main purpose of this section is to prove the following characterization

of nuclear C*-algebras.

Theorem 4.3.1. Let A be a unital C*-algebra. Then the following are '
equivalent:
(i) A is nuclear.
(ii) For every representation {m, H} of A, the map

(4.3.1) Z T @ yi — Z (T )yi, Z z;®y; € AR m(A)

extends to a representation of A Qmin 7(A)'.

(ii) The identity map 14 : A — A is approximated by (unital) com-
pletely positive linear maps of finite ranks in the point-weak
(point-norm) topology.

(iv) The identity map 14+ : A* — A* is approximated by completely
positive contractions of finite ranks in the point-weak* topology.

We say that a C*-algebra A has the completely positive approximation
property (CPAP) if A satisfies one of the above approximation properties. We
need some preparations for the proof of Theorem 4.3.1. For a vector space V,

we denote by V¢ the algebraic dual of V. For unital C*-algebras A and B,
put

S(A®B)={p € (A®B)*: ¢(1) =1, ¢(z*z) > 0 for each z € A® B},
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where 1 denotes 14 ® 1g € A® B. The only one obstacle to get the G. N. S.
construction 74 associated with ¢ € S(A ® B) satisfying (1.5.5) is the lack of
the inequality (1.5.4). This may be overcome by the following:

Lemma 4.3.2. As areal subspace of A® B, we have A,®Bj, = (AQ B)},.
If z € (A ® B)4 then there is a positive number a such that = < al.

Proof. Note that A, ® B, C (A® B)y is clear. If z = Y, a; ® b; with
z* = z, then we have

T = %(m+x*)

= %Z((ai +a}) ® (b + b)) — i(a; — a}) ® i(b; — b})) € A ® By

For the second statement, note that if a = a; —a, € A, and b= b; — by € By,
with a; € A} and bj € B, for j = 1,2, then

a®b=(a1—a2)® (b1 — by) < a1 ® by + a2 ® by < 2||a]|[b]|1.

The general case follows from the first statement. O

Now, it is easy to see that

l|zllmin = sup{||74(2)|| : ¢ € S(A® B)n (4* ® B*)},

(4.3.2) l12|lmax = sup{||74()|| : ¢ € S(A ® B)},

for £ € A ® B. One of the basic reasons to consider the tensor product of
vector spaces is the following easy correspondence between a linear functional
¢ € (A® B)? and a linear transformation T from B to A% given by

(4.3.3) Ty(b)(a) = ¢(a®b), a€ A, beB.
Considering the order structures on A and B, we get the following propo-

sition which plays an important réle in the proof of Theorem 4.3.1.

Proposition 4.3.3. Let A and B be C*-algebras and ¢ € (AQB)?. Then
¢ € S(A® B) if and only if Ty is a completely positive linear map from B into
A* and Ty4(1B) is a state of A. Also, the map ¢ — T, is a homeomorphism
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from S(A ® B) to the set CP(B, A*) of all completely positive linear maps
from B into A* with respect to the weak®-topology on S(A ® B) and the
topology of simple weak* convergence on B(B, A*).

Proof. First of all, we have ¢(14®1p) = 1if and only if Ty(15)(14) = 1.
If $ € S(A® B) then we see that T4(B4+) C (A%)4 = (A*)4+ by Proposition
1.5.2. Hence, Ty maps B into A*. Now, the following relation

¢((Z a; ® bi)*(z a; ® b;)) = z Ty(b;b5)(aia;)

completes the proof of the first statement by the correspondence (4.2.7). The
second one is also easy if we note that a net {¢;} in S(A ® B) converges to
¢ in weak? topology if and only if ¢;(a ® b) — ¢(a ® b) for each a € 4 and
b € B if and only if Ty, (a)(b) — T4(a)(b). O

Ezercise 4.3.1. Give an explicit example to show that (M), ® (Mz)+ &
(M ® M>)4.

Now, we proceed to see the relation between the dual space A* and the
commutant 7w(A)’, for a representation = of A. For ¢ € S(A), we denote by
[¢] C A* the complex linear span of the cone

Cy={yp € A*:0< ¢ < a¢ for some a > 0}.

We define

(4.3.4) 3z ®y) = (ymp(2)s, €s), T € A, y € my(A),

where {my, Hy,€y} is the G. N. S. construction associated with ¢. Then we
have ¢ € S(A @ m4(A)).

Proposition 4.3.4. Let A be a unital C*-algebra and ¢ € S(A). Then

we have the following:

(i) Tj:mys(A) — [¢] is a bijection.
(i) Tjand (Tj)"! are completely positive.
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Proof. First of all, we see that T; is completely positive by Proposition
4.3.3. For y € m4(A)" with y > 0, we have

T5(y)(z*z) = (ymp(z*2)€s, &) = IlyEma(a)Es)?
< lylllirg(2)esll* = llyllp(z*z),

for each z € A, and so Tg,(y) € Cy. Conversely, if 1 € Cy then the sesquilinear
form

(mp(x1)€p, mp(22)€s) > P(2321),  z1,2, €A

is positive and bounded on 74(A)€4. So, there is a positive operator y on H,
such that

(4.3.5) Y(z521) = (yrg(z1)€s, me(z2)Es), z1,T9 € A.

Now, it is straightforward to see that

(ymg(z1)mo(22)€s, To(23)Es) = (Yms(z2)Eg, mo(27)mg(23)E0),

for z;,22,73 € A, and so y € my(A)'. Also, since

T3(y)(z) = (ymg(2)€s, &) = ¥(z),  z € 4,

we see that T; maps onto [¢]. It is clear that T} is one-to-one.
It remains to show that (T‘;,)'1 is completely positive. Let 1) = [¢;;] €
M,([¢])+ and

= (mg(x1)€ps. .., Tp(xn)p) E Hp D - -+ B Hy.

Then we have
((T5)Rt)E €)= Z((Ta)'l(lbij)w(zj)fm7f¢($z')€¢)
= Z@bi,-(zij) >0,

by (4.3.5) and the identification (4.2.7). O
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Proof of Theorem 4.3.1. Throughout the proof, we assume that A acts on
a Hilbert space H. The implication (i) = (ii) is clear by Proposition 4.1.6.
For the proof of (ii) = (iii), we assume that z;,...,7n € 4, ¢1,...,¢n € A*
and € > 0 are given. It suffices to show that there is a unital completely
positive linear map V : A — A of finite rank such that

(4.3.6) |¢,(:l:,) - ¢,(V:I:,)| < €, t1=12,...,n.

By Theorem 1.5.6, we may assume that each ¢; is positive and ¢ = }:?=1 o;
is a state. Let {my, Hs,Es} be the G. N. S. construction associated with ¢.
Because ¢; < ¢, we apply Proposition 4.3.4 (i) to see that there is y; € 74(A)
such that
$i(z) = (img(2)€p, &), T E A

By the condition (ii), the functional ¢ in (4.3.4) extends to a bounded linear
functional on A ®min 7¢(A)', which is also denoted by é. By Theorem 1.5.5,
there are vectors 7y,...0m € H ® Hy such that

(4.3.7) |b(z; @ vi) — Z((a:, ® yi)nj,mi)| < € i=12...,n

=1
Because ¢, is a cyclic vector, we may assume that n; € H O 74(A4)¢4, and
write
Pj
ni =Y Exk®@ms(Ti)ls, F=1,2,...,m,
k=1

with £ x € H and z € A. Define linear maps V; and V of A by
Pj

Vi(z) = ) (2. €007 35k, T E A,
k,f=1

m
=3,
i=1
Now, we show that each V; is completely positive. For the brevity, we
write W(z) = 3} -, (z€k, £e)z5zk. Then we have

ST Wiz, &) = Y > (@ibk, zi€e)Tati, zek5)

i,j=1 i, k,€

= (Z 7€k ® ziki, Z zje @ xe€5) > 0,

i,k 5t
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forz;,z; € Aand §;,€; € H. Hence, each Vj is completely positive, and so V' is
also a completely positive linear map of finite rank. Also, it is straightforward
to see that the relation (4.3.7) is nothing but the required inequality (4.3.6),
because

$i(z:) = (yimg(2:)Es, Es) = H(i ® yi),

and
m m Pj
DA@i@uimimid =Y Y (@iix @ yims(2;,k)Es: Eie ® mo(5,))
=1 =1 k,£=1
=Y ¢i(Vizi) = ¢i(Vzi).
=1

Two topologies for approximations are irrelevant, because the set of all
completely positive linear maps with finite ranks is convex. To get an ap-
proximation by unital completely positive linear maps, let 14 = lim; V; in the
point-norm topology. Then we may assume that ||V;(1)—1|| < 1 for each ¢, and
the required net is given by W;(z) = (Vi(1))~#Vi(z)(Vi(1))~ % for z € A. The
implication (ili) => (iv) is easy if we consider the adjoints with Proposition
4.2.10.

For the direction (iv) = (i), let B be a C*-algebra acting on a Hilbert
space K, and J the kernel of the *-homomorphism A ®max B — A ®min B.
Put

So={¢ € S(A®max B) : ¢(z) =0 for z € J}.

Then, Sp is weak* closed in S(A ®max B), and so it suffices to show that S
is weak* dense in S(A ®max B). From the condition (iv), we see that the set
of all completely positive linear maps of finite ranks is simple-weak* dense
in CP(B,A*). Applying Proposition 4.3.3, it also suffices to show that if
# € S(A ®Qmax B) = S(A ® B) and T is of finite rank then ¢ € Sp. But,
every finite rank operator in B(B, A*) is of the form b — Y & gi(b)f; for
some f; € A* and g; € B*,1=1,2,...,n. The equation

Ty(b)(a) = Xn:yi(b)fi(a), ac A, beB

=1
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implies that ¢ = )", fi ® gi, and so ¢ extends to a bounded linear functional
on A ®min B. This shows that ¢ vanishes on J, and completes the proof. O

Now, we turn our attention to the question what happen if we replace the
minimal tensor product in (4.1.5) by the maximal one. This question is closely
related with the characterization of nuclearity in terms of universal enveloping
von Neumann algebras, which will be the topic of the next section. We say that
a unital C*-algebra A is injective if for any unital C*-algebras B C B; with
the common identities and a completely positive unital linear map ¢ : B — A,

there exists a completely positive unital linear map ® : B; — A which extends
é.

Proposition 4.3.5. Let A be a unital C*-algebra. Then the following
are equivalent:

(i) For any C*-algebras B C Bl, we have
(4.3.8) A Omax B C A Omax Bl-

(ii) For each ¢ € S(A), the von Neumann algebra m4(A)' is injective.

Proof. Noting that S(A @max B) = S(4 ® B), we see that (4.3.8) is
the case if and only if every element in S(4 ® B) extends to an element of
S(A ® By). Note that if @ : B — m4(A)' is a unital completely positive linear
map then T;0® € CP(B,A*) and (T; o ®)(1p) is a state of A. Also, note
that if ® € CP(B, A*) and ®(1) € S(A) then ®(b) € [®(1)] for each b € B.
The correspondence in Proposition 4.3.3 together with Proposition 4.3.4 (ii)
completes the proof. O

In the next section, we will see that the conditions in Proposition 4.3.5
are actually equivalent to the nuclearity. We consider the same question on
(4.1.5) in another direction as follows:

Proposition 4.3.6. Let A be a unital C*-algebra. Then the following
are equivalent:

(i) For any C*-algebras A, and B with A C A,, we have

(439) | A ®ma.x B g Al ®max B.
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(ii) For every faithful representation {m,H} of A, there exists a
completely positive contraction ® : B(H) — w(A)" such that
®(7(a)) = 7(a) for each a € A.

Proof. The map ) ;z; ® y; — Y. z;y; extends to a representation of
7(A) ®max T(A)' by Proposition 4.1.6. Assuming (i), there is a representation
o of B(H) ®max 7(A)' on a Hilbert space X containing H such that

syl =o(z®y), zen(4),yen(4),eH,
by Theorem 1.6.7. We define & : B(H) — B(H) by
®(z) = Po(z®1), z€B(H), (€H,

where P denotes the projection of X onto . Noting that H is invariant under

o(r(A) ® 7(A)'), we have

®(z)yt = Po(z ®1)o(1® y)¢ = Po(1® y)o(z @ 1)¢
=o(1®y)Po(z @ 1) = y¥(z)¢,

for £ € H, = € B(H) and y € m(A)'. Therefore, we see that ®(z) € n(A)". It
is also easy to see that ¢(n(a)) = n(a) for a € A.

For the converse, we assume that A; acts on a Hilbert space H univer-
sally, and so, A" may be identified with A**. By the assumption, there is

a completely positive contraction @ : B(H) — A** such that &(z) = z for
z € A. We define

d= (¢|A1)* o ]-A" : A* g A — A;‘
Then we see that
(4.3.10) d(é)|a = ¢, ¢ € A"

If $ € S(A® B) then do Ty € CP(B, A}) and (doTy)(1) is a state of 4;. We
see that the corresponding ¢ € S(4; ® B) with T3 = doTy is an extension of
¢ by (4.3.10), and this completes the proof. O
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We say that a C*-algebra A has the weak expectation property (WEP)
if A satisfies the conditions in Proposition 4.3.6. Later, we will see that WEP
does not imply the nuclearity.

NOTE

The direction (iv) => (i) of Theorem 4.3.1 is due to by Lance [La73] in which the
terminology “nuclear” was introduced. Takesaki [Ta64] called that property T. The proof
of the other direction (ii) = (iii) of Theorem 4.3.1 was taken from [Ki77]. Choi and Effros
[CE78] also proved this independently and showed that CPAP is also equivalent to the
following conditions:

(i) The identity map 14 : A — A is approximated by completely positive contractions of
the form A — M, — A in the point-weak (point-norm) topology.

(ii) The identity map 14+ : A* — A* is approximated by completely positive contractions
of the form A* — M, — A* in the point-weak (point-norm) topology.

Later, R. Smith [Sm85] showed that the following condition which is seemingly weaker
than CPAP is actually equivalent to the CPAP.

(iii) The identity map 14 : A — A is approximated by complete contractions of the form -
A — M, — A in the point-weak (point-norm) topology.

Propositions 4.3.5 and 4.3.6 are taken from [EL77] and [La73], respectively. We refer
to [Ef78] or [La82] for a survey on this topic.

4.4. Injective von Neumann Algebras

Recall that a unital C*-algebra A is injective if for any unital C*-algebras
B C B; with the common identities and a completely positive unital linear
map ¢ : B — A, there exists a completely positive unital linear map @ : B; —
A which extends ¢. First of all, we show Arveson’s extension theorem which
says that B(H) is injective. This is easy if M is finite dimensional from the
correspondences (4.3.3) and (4.2.7), because every positive linear functional
on M, @ B = M,(B) extends to a positive linear functional on Mn(B,). In
order to extend this to the infinite dimensional cases, we introduce a topology
on the space B(B,H) of all bounded linear maps from a C*-algebra B into
B(H). Recall that 7(H)* = B(H) under the relation (2.2.11).

Under the correspondence (4.3.3), every element 7(H) ® B defines a
bounded linear functional on B(B,H) by the duality

(4.4.1) (z®y, ¢) = ¢(y)(z) = Te(d(y)z),
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for z € T(H), y € B and ¢ € B(B,H), because

[z ® y, $)| < [Te($(y)2)| < lldWllllzllme < llSllIyllllz||e

by (2.2.8). If we denote by Z the closure of T(H) ® B in B(B,H)* then we
see that the relation (4.4.1) also defines an isometric isomorphism between
Z* and B(B,H). Indeed, because Z is a separating subset of B(B,H)*, we
have an isometric embedding B(B,H) C Z*. It is also easy to see that this
embedding is onto. We call the weak* topology on B(B,H) arising in this way
the BW -topology. The following lemma justify this name.

Lemma 4.4.1. A bounded net {¢;} in B(B,H) converges to ¢ in the

BW -topology if and only if lim;{¢;:(y)¢,n) = (#(y)¢,n) for each y € B and
§&,neH.

Proof. Recall that T(H) is the closure of the linear span of rank one
operators {z¢n : €, € H} in (2.2.12). The lemma follows from the relation
Tr(yze,n) = (y€,n) for y € B(K). O

By the Banach-Alaoglu theorem, the unit ball B; (B, H) is compact in the
BW -topology. It is also easy to see that CP,(B,H) = CP(B,H) N By(B,H)
is closed in B;(B,H) by Lemma 4.4.1, and so it is also compact in the BW-
topology.

Theorem 4.4.2. The C*-algebra B(H) is injective.

Proof. We denote by P the net of all finite dimensional projections in
B(H). Let ¢ : B — B(H) be a completely positive unital linear map, and
B C B;. Then the map ¢p(-) = P¢(-)P* has a completely positive extension
¥p : By — B(H) for each P € P by the above discussion, because PH is finite
dimensional. From the compactness of CP;(B,H), there is a subnet of {¢p}
which converges to 9 in CP;(B,H). We show that v is the required extension
of ¢. Indeed, for y € B and {,n € H, we denote by P the projection onto
the subspace spanned by £ and 7. Then for any @ > P, we have (¢(y)¢,n) =
(Yo(y)¢,n), and so this completes the proof by Lemma 4.4.1. O

In order to get a more convenient way to characterize injectivity, we need
the notion of projection of norm one.
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Theorem 4.4.3. Let B C A be C*-algebras and 7 : A — B a projection
of norm one. Then 7 is a conditional expectation.

Proof. Considering the enveloping von Neumann algebras and the double
adjoint of 7, we may assume that A and B are von Neumann algebras. Let e
be a projection of B and z € A. Because the set of linear spans of projections

in a von Neumann algebra is dense, it suffices to show
(44.2) en(z) = m(ex), n(z)e = w(ze).

Put f = 14 —e. Then fr(ez) = m(ex) — em(ez) € B, and so fr(fr(ex)) =
frn(exz). Hence, for any A € R we have

A+ 1P| fn(e)|? = || fn(ez) + Mfn(ea)|?
= ||fr(ez + Xfm(ex))|®
< llex + A fm(ex)|?
< llez|l + Pl fr(e)l,

because e and f are orthogonal. This shows that fr(ex) = 0, and so m(ez) =
en(ex). The above argument goes well if we interchange e and f, and so we
also have en(fz) = 0, that is, en(z) = em(ex). This shows the first equality
of (4.4.2). We proceed to show that = is positive. Note that 13 = 7(1g) =
n(1gla) = 17m(14) = m(14). For any ¢ € S(B), we have

igonll < llgll = ¢(18) = ¢ o m(14) < || o 7|,

and so, ¢or is a positive linear functional on A by Proposition 1.5.2. Therefore,
7 is a positive linear map, and so it is self-adjoint. Taking adjoints in the first
equality in (4.4.2), we also get the second equality. O

Therefore, every projection of norm one is completely positive by Propo-
sition 4.2.3, and so the following corollary is immediate.

Corollary 4.4.4. Let A be a unital C*-algebra acting on a Hilbert space
‘H. Then the following are equivalent:
(i) A is injective.
(i) There is a norm one projection from B(H) onto A.
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Ezercise 4.4.1. Show that if a separable C*-algebra A is injective then it
is finite dimensional.

Nuclear C*-algebras have the following second dual characterization as
for the case of postliminal C*-algebras in Theorem 2.3.6.

Theorem 4.4.5. Let A be a C*-algebra. Then the following are equiv-
alent:
(i) A is nuclear.

(ii) The enveloping von Neumann algebra A** is injective.

The complete proof of this theorem is beyond the scope of this note.
Instead, we explain the circumstances surrounding a proof of this theorem.
First of all, we need the notion of standard von Neumann algebras arising
from Tomita-Takesaki modular theory [Ta70]. Let M C B(H) be a von

Neumann algebra. A vector { € H is said to be a tracing vector for M if

(xyf, é) = <y$§,f), T,y € M.

Every von Neumann algebra arising from a discrete group has a tracing cyclic
vector by (2.4.4). If M has a tracing cyclic vector ¢ then we see that the

map z€ — z*£ extends to a conjugate-linear isometry J : H — H with

J=J"1=g"

Ezercise 4.4.2. Under the above situation, show that the mapping = —
.Jz*J is a *-anti-isomorphism from M onto M'.

In general, a von Neumann algebra M C B(H) is said to be standard if
there is a conjugate-linear isometry J : H — H with J = J~! = J* such
that the mapping z — Jz*J is a *-anti-isomorphism from M onto M'. The
Tomita-Takesaki theory says that every von Neumann algebra is *-isomorphic
to a standard von Neumann algebra (see [SZ, §10.15] for example).

Theorem 4.4.6. A von Neumann algebra M on a Hilbert space H is
injective if and only if the commutant M' is injective.

Proof. We assume that M C B(H) is standard and 7 is a norm one
projection from B(H) onto M. Then the map z — Jx(Jz*J)*J is the norm
one projection onto M'. O
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Now, we see that if A is nuclear then the von Neumann algebra m4(A)"
is injective for each ¢ € S(A), by Proposition 4.3.5 and Theorem 4.4.6. From
this, we see that A** is injective, because the direct sum of injective von
Neumann algebras is again injective.

The proof of the converse would be complete by the second statement of

Theorem 4.3.1, if we prove the following theorem.

Theorem 4.4.7. Let M C B(H) be an injective von Neumann algebra.
Then we have

n n
1Y ziwill <UD 2 @ illmin, 7 € M, yi € M.

=1 =1

The proof of this theorem is also beyond the scope of this note, because it
involves much more machinery on von Neumann algebras than we have ever
developed. For example, we need the Takesaki duality theorem [Ta73]. From
this theorem, the proof of Theorem 4.4.7 is reduced to the case of finite von
Neumann algebra, which has always a faithful trace. We close this section

with the following important application of Theorem 4.4.5.

Proposition 4.4.8. Let A be a C*-algebra with a two-sided norm-closed
ideal I. Then A is nuclear if and only if I and A/I is nuclear.

The proof follows from the relation A** = I** @ (4/I)**. We will see
later that a C*-subalgebra of a nuclear C*-algebra need not to be nuclear by
showing that CX(F,) may be embedded in a nuclear C*-algebra (see §5.3).

NOTE

For the more general aspects of injectivity, we refer to [CE77a). Theorem 4.4.2 is
due to Arveson [Ar69] in which he also introduced the BW-topology. We have followed
Paulsen’s book [Pau, §6] for the proof. Note that a positive linear map may not have
a positive extension [Pau, Example 2.13]. Theorem 4.4.3 is due to Tomiyama [To57], a
slightly simpler proof here is taken from [Str, Theorem 9.1]. Von Neumann algebras with
the second property of Corollary 4.4.4 have been studied in [HT67]. See also Tomiyama’s
lecture note [To70] in which Theorem 4.4.6 appears. Theorem 4.4.7 is due to a fundamental
work by Connes [Co76], in which he actually showed that a factor acting on a separable
Hilbert space is injective if and only if it is hyperfinite. For another simple proofs of this
theorem and related topics, we refer to [CE76a], [CE77b], [Co79], [Ha85b], [Pop86] and
[Wa77a). Tomiyama [To70] studied C*-algebras whose second dual satisfies the second
condition of Corollary 4.4.4 and proved Proposition 4.4.8. See also [CE76a] and [CE77b].
From the discussion in this section, we see that the statements in Theorem 4.3.1, Proposition
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4.3.5 and Theorem 4.4.5 are all equivalent, and they imply the WEP of Proposition 4.3.6.
Clearly, every injective C*-algebra has the WEP, but we will see in §4.7 that B(#) is not
nuclear.

4.5. Amenable Groups

Let G be a locally compact topological group. Throughout this section,
we always denote by ds the left invariant Haar measure. For each s € G, we
define A, : L*°(G) — L*°(G) by

(4.5.1) Asf(t) = f(s'), teG.

A state m on the C*-algebra L°°(G) is said to be a mean of G, and the set
of all means of G will be denoted by M(G). A locally compact group G
is said to be amenable if there is a left invariant mean m in the sense that
m(f) = m(Asf) for each s € G and f € L*°(G). The proof of the following
proposition suggests a method to produce a left invariant mean on a group.

Proposition 4.5.1. Every abelian group G is amenable.
Proof. Note that the group G acts on MM(G) by

(4.5.2) (s-m)(f) = m(\f), s€G, meMQG), feL®QG).

Taking any m € M(G) and putting

n
(4.5.3) My = 1 dYos"m, n=12,...,

we see that {m,} has a weak* limit point mo € M(G). For any f € L=(G),
we also have

1
n+1

n+1 2
|(s - ma)(f) — mn(f)| = |(s™F1 - m)(f) = m(f)] < 1l

and so we see that the fixed point set
Fy={m e M(G) : m(f) = m(Asf), f € L¥(G)}

is nonempty for each s € G. From the commutativity of G, we see that

t- Fy C Fg, and by the same argument as above, the transform t|F, also has a
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fixed point. Hence, F; N F, # @, and so the family {F, : s € G} has the finite
intersection property. Therefore, any element of (),cq Fs is a left invariant
mean. [J

Note that every left invariant mean m on G determines a left invariant
finitely additive measure m (with the same notation) on the ds-measurable
subsets of G by m(E) = m(xg) because Xs5 = AoXE. It is also easy to see
that every left invariant finitely additive measure with m(G) = 1 arises in this
way. Therefore, the Haar measure on a compact group is a left invariant mean

in itself, and we see that every compact group is amenable.
Proposition 4.5.2. The free group F; is not amenable.

Proof. For each z = a,a™!,b,b™!, where a, b are the generators of F,, we
denote by E, the set of all words beginning with z. Assume that there is a
left invariant mean m on F3, considered as a finitely additive measure. Then,
we have m(E,) + m(E,-1) = m(E,) + m(aE,-1) = m(F2) = 1, and similarly
for b. Therefore, it follows that

1 =m(F;) =m({e}) + m(E;) + m(E,-1) + m(Ep) + m(Ep-1) > 2,

a contradiction. O

We put 6(G) = {g € L*(G) : g > 0,||g|ls = 1}. Then the convex set
S(G) may be considered as a weak* dense subset of 9(G) by the canonical
embedding L' (G) C L*®(G)*. We also denote by &(G) the set of all continuous
functions on G with compact supports. We define the transformation f — ]7
by

(4.5.4) f(s)=F(s"1), se@G.
Compare this with the definition of f* in (1.5.8). We note that
(455) (f*9)(s)=(fheg) = o, /)= (AT, f),  s€G, f,g€ L*G).

Theorem 4.5.3. Let G be a locally compact group. Then the following
are equivalent:

(i) G is amenable.
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(ii) There is a net {g;} in &(G) such that ||Asg; — gi||s — O for each

seq.

(ii) Thereis a net {f;} in L*(G) with ||fi|| = 1 such that fi*f; — 1g
pointwise.

(iv) There s a net {k;} in R(G) with ||k;||2 = 1 such that k;*k; — 1g
pointwise.

Proof. Let m be a left invariant mean of G. By the above discussion,
there is a net {h;} in &(G) such that (f, h;) — m(f) for each f € L°(G).
Because (Ag-1f,hi) = (f,Ashi) we see that A h; — h; — 0 weakly. Hence,
we can take a net {g;} in the convex combination of {h;} with the desired
property in (ii). Conversely, if there is a net {g;} with ||Asg; — gi||s — O for
each s € G, then A,g; — g; — 0 in M(G) with respect to the weak* topology.
Hence, any weak* limit point of {g;} is a left invariant mean.

For g € 6(G), let f € L%(G) be the pointwise square root of g. Then, we
calculate

1= (f * P = 1(F % 7)) = (F # DR = [, f = M)
<IIf = fI2 = / Vo) - ValT2dt < llg — Al

for each s € G. On the other hand, if f € L%(G) with ||f|z = 1 then
g = |f|? € 6(G), and for each s € G we also calculate

llg = Xoglls = (IF] + Xal 71, 1£] = Aol £1)
<2Y|f = Aefllz = 2(2 — 2Re (£, Xaf))?
<2V2I1- (£, A A)F =2vZ 1= (f + ()L

These two inequalities give the proof of (ii) <= (iii).

It remains to show implication (iii) = (iv). Note that every f € L%(G) is
approximated by {k;} in &(G). From this, it is easy to see that k; * ki — f*f
uniformly on G. O

Note that the relation (4.5.1) defines a unitary representation s — ), of
G on the Hilbert space L?(G) which is continuous with respect to the strong

operator topology. Note that a continuous unitary representation {r, H} of G
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induces a non-degenerate representation m (we use the same notation) of the
Banach algebra L'(G) by the relation

(4.5.6) (r(z),n) = /G 2(8)(n(s)esm)ds s €G, z € I}G), £&,n € H.

Conversely, a non-degenerate representation 7 of L!(G) gives an unitary rep-
resentation of G by

7(s) : w(x)€ — w(Ae2)E, s €G, z € L'(G).
The representation s — \; of G corresponds to the left regular representation
of L'(G) in (1.5.9) in this way.

Proposition 4.5.4. Let ¢ € L°(G) be a continuous function. Then the
following are equivalent:

(i) (¢,z* xx) > 0 for each = € L*(G).
(ii) There exist a continuous unitary representation {m,H} and a
vector £ € H such that

(4.5.7) #(s) = (n(s)E,€),  s€G.

Proof. The condition (i) says that ¢ is a positive linear functional on
L'(G). Hence, with the G. N. S. construction {m,H,¢} of L*(G) associated
with ¢, we have

/ 8(s)2(s)ds = (¢,z) = (n(2)E, €) = / 2(s)(n(s)6,E)ds, = € IMG),
G : g9

from which we infer the relation (4.5.7). Conversely, if ¢ is given by (4.5.7)
then

(¢, z* xz) = L(z* * z)(s)(m(s),&,€)ds = (w(z* x 2)€,€) > 0,

for each z € L(G). O

A continuous L®-function with the properties in Proposition 4.5.4 is said
to be a positive definite function on G; we denoted by P(G) the set of all
continuous positive definite functions on G.
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Ezercise 4.5.1. Show that a continuous function ¢ is positive definite if
and only if the n x n matrix [¢(s; 's;)]? j=1 is positive semi-definite for each
n=12,... and s;,8; € G. If ¢, are positive definite then the pointwise
product ¢t is also positive definite. Show that ||¢||cc = ¢(€) = ||€]|3 in (4.5.7).
Finally, show that ¢ = ¢ for ¢ € P(G).

Every g € &(G) defines a bounded linear operator p(g) on L*(G) by
(4.5.8) p(g)h=h*g, heL*G).

Indeed, it is easy to see that ||k * g|lz < ||[6=%g][1|||l2. From the following
relation

(4.5.9) (9. f*xfy=(f*9,f) =(p(9)f. ),  f.9€R(G),

we see that g € P(G) if and only if p(g) is a positive linear operator. The
following relations

(4.5.10) p(@p(H)=p(f*9), p(@) =p@), fg€RG)

are also easy, and from the first relation of these, we see P(p(g)) = p(P(g))

for a polynomial P, where we take the convolution as the multiplication in
the definition of P(g).

We will write f < g if g — f is positive definite. If f,g € &(G) N P(G)
then from the relations in (4.5.10), we see that f xg = f * g is also a positive
definite, and so it follows that

(£,9) = [ F&™ s = (F+ D) 2 0.
G
Therefore, if 0 € f < g in K(G) then we have

llg — £1I3 = (g, 9) + (£, f) — 2(f, 9)

(4.5.11)
=(g,9) — 2(f,9 — ) = (£, F) < llgll3 = I F1I5-

Note that the relation (4.5.5) says that £ * £e B(G) for each £ € L*(G). The
next proposition deals with the converse.
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Proposition 4.5.5. For each g € (G) N P(G) there exists £ € L*(G)
such that g :5*5.

Proof. We may assume that 0 < p(g) < 1. Let {P,} be an increasing
sequence of polynomials converging to the function /¢ on [0,1]. We denote
by gi = Pi(g), then p(g;) = Pi(p(g)) /* p(g)* in norm, by the continuous
function calculus. Therefore, we see that {g;} is an increasing sequence with
respect to the order <. From the relation p(g;)> < p(g), we also see that
gi * gi < g, and so, ||gill2 = gi * gi(e) < g(e) for each ¢ = 1,2,.... By the
relation (4.5.11), there exists £ € L%(G) such that ||g; — £||z — 0. Now, we
have

h+ € =limhg; = lim p(g:)h = p(g)%h,

in L?-norm for each h € &(G), hence for each h € L?(G). Applying this once
more, we see that h* € x £ = p(g)h = h* g for each h € L?(G). From this, we
finally have g = £ x £ = g*E, as was desired. O

In the above proof, we have shown that p(¢) may define a bounded linear
operator on L%(G), even though £ is not an element of £(G).

Recall that the group C*-algebra C*(G) is the completion of L'(G) with
respect to the norm in (1.5.7);

lelle = sup{lI=(2)l}, =€ L'(G),

where 7 runs through all representations of L!(G).

Proposition 4.5.6. The restriction ¢ — ¢|p1(g) for ¢ € C*(G)* defines
an isometric isomorphism from C*(G)% onto L*(G)%.

Proof. 1t is clear that every positive linear functional of L!(G) extends
to the whole C*(G). If z € L'(G) is a nonnegative function, then considering

the one dimensional trivial representation ¢ of G, we see that
lell = [ a()ds = (=) < lele < el

Hence, it follows that the approximate identity {e;} of L!(G) is also an ap-
proximate identity for C*(G) with ||e;||1 = ||€i]lc = 1. The conclusion follows
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from the general fact that if ¢ is a positive linear functional of an involutive
Banach algebra with an approximate identity {e;} then

(45.12) 6]l = lim g(efer). O

Therefore, we may identify C*(G)% = P(G). It is clear that the left
regular representation A of L!(G) extends to a representation of C*(G) whose
image is the reduced group C*-algebra C}(G). From Theorem 1.5.5, it is easy
to see that C3(G)} is identified with the subset Px(G) of P(G) consisting of
the weak* limits of the positive cone generated by {€ x £ : £ € £(G)}, which
are positive definite functions associated with the left regular representation
in the sense of (4.5.7). From Proposition 4.5.5, we see that B(G) is nothing
but the weak* closure of {¢ £ : € € L*(G)} or {k*k: k € £(G)}. Now, we

are ready to prove the main theorem of this section.

Theorem 4.5.7. A locally compact group G is amenable if and only if
C*(G) = Cx(G).

Proof. First, we assume that G is amenable and let ¢ be a state of C*(G).
It suffices to show that |(¢,z)| < ||A(z)|| for each z € L!(G), from which we
infer that ||z||c < ||A(z)||. By Theorem 4.5.3, we choose a net {k;} in £(G)
with ||k;||2 = 1 such that k; * k; — 1. Because ¢ € PB(G), there is & € L%(G)
such that (k; * I::;)qﬂ =¢ix& by Proposition 4.5.5, and so we have ¢; * £; — ¢.
Now, by the Lebesgue’s dominated convergence theorem, we have

(6,21 = tim] [ a6+ E)s)a
=tim| [ 2()(0E E)ds| = Hm [N, BN < NI,

For the converse, we assume that C*(G) = C3(G). Note that 15 € L®(G)
is a positive definite function on G, that is, 1 € P(G) = Pa(G). From the
above discussion, there is a net {k;} in &(G) such that k; * k; — 1g in the
weak* topology. We may assume that ||k;|| = (ki * k;)(e) = 1. Note that

[k % ki)(s) — (ki % k) (71 8)[2 = [(Aaks, ki = Aok
< ||ki — Aekil|2 = 2 — 2Re (ki * &: )(£).



120 4. TENSOR PRODUCTS OF C*-ALGEBRAS AND NUCLEARITY

Hence, for a compact neighborhood V' of e with measure one, we have
|(xv * ki % ki)(s) = (ki * Bi)(s)| = | /V (ki % Fa)(t™"s) — (R * ka)(s))dt]
< VA [ (1 Re (ki R)(e) b
< V3 (Re /V (1 — (ks + B)(2)dt)? =0,
as 1 — 00, from the weak* convergence. On the other hand, we also have
1—(xv *ki % k;)(s) = /V (1 = (ki % k5)(t1s))dt
= [ = xRy ar o,

as i — 0o. Therefore, (k; * k;)(s) — 1 for each s € G, and this completes the
proof by Theorem 4.5.3. O

From now on, we restrict our attention to discrete groups, and relate the

notion of amenability to that of nuclearity of the group C*-algebras.

Theorem 4.5.8. Let G be a discrete group. Then the following are
equivalent:
(i) The group G is amenable
(ii) The C*-algebra C*(G) is nuclear.
(iii) The C*-algebra CX(G) is nuclear.
(iv) The von Neumann algebra R(G) is injective.

Proof. Every ¢ € PB(G) defines a linear map p — ¢p between P(G) by
Exercise 4.5.1, and this extends to a linear map Vs : C*(G)* — C*(G)*. If
¢(e) = 1 then it is easy to see that the adjoint Vy* : C*(G)** — C*(G)** is
a unital positive linear map, and so ||V,*|| = 1 by Theorem 4.2.7, from which
we infer that Vj is a contraction. Also, it is easy to see that if ¢ has a finite
support then Vj is of finite rank, and ¢; — 1g implies V4 — 1c+(g)+ in the
simple-weak* topology. Now, if G is amenable then there exists a net {¢;} in
PB(G) N &(G) with ¢;(e) = 1 such that ¢; — 1g by Theorem 4.5.3. In order
to show that C*(G) satisfies the condition (iv) of Theorem 4.3.1, it suffices to
show that V3 is completely positive.
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Let [pij] € Mn(P(G))+. It suffices to show that 3, ; Vy(pi;)(aiz;) = 0
for z; € C5(G). We may assume that z; = )_, aisLs, where ), is a finite
sum over s € GG, and so

* ——
T;xTj = E GisajtLg-14.
8,t

Note that L, € C(G) is nothing but x; as an element of L'(G) and (p, xs) =
p(s). Therefore, we have

> Valpis)atzj) = 3 Taand(s™ t)pis(s™)

et
=Y " ¢(sTO)  Tsajepis(s )] 2 0,
s, i,

because [¢(s't)] and [, ; @isa;:pij(s't)] are positive semi-definite matrices
by Exercise 4.5.1.

The implications (ii) = (iii)) => (iv) follow from Proposition 4.4.8 and
Proposition 4.3.5 together with Theorem 4.4.6.

It remains to show (iv) => (i). Let 7 : B(¢?(G)) — Ra(G) be the norm
one projection. Every f € £°°(G) defines a multiplication operator My in
B(€*(G)) in the usual manner. Then we have

m(My,5) = m(LsMyL3) = Lom(My) L3,
by Theorem 4.4.3. Now, we define a state m of £°°(G) by

m(f) = (m(Mg)Xe, Xe), [ €£7(G).
Then we have
m(Asf) = (m(Myp)Lixe, Lyxe) = (1(Mg)Xs-1, Xs-1) = m(f),
by (2.4.5), and so m is a left invariant mean, as was desired. O

We conclude this section with an another characterization of amenability
for finitely generated discrete group G, using the spectrum of an element
of C3(G) as in the proof of Lemma 4.1.13. Following is a generalization of
Exercise 4.1.5.

Ezercise 4.5.2. Let H be an inner product space with a unit vector €.
Show that if ||pil| < 1fori=1,2,...,nand || = L(ni +n2+ - +mn)|| < €
then || — ni|| £ V2ne fort =1,2,...,n.

The following lemma is immediate from Theorem 4.5.3.
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Lemma 4.5.9. Let G be a discrete group. Then G is amenable if and
only if given € > 0 and a finite subset F' of G there is a unit vector ¢ € £2(G)
such that

L —Ela<e, seF

Proposition 4.5.10. Let G be a discrete group with a finite set A of
generators with the symmetric condition: a € A => a™! € A. Let z be the
self-adjoint element of CX(G) given by

(4.5.13) s=-L > L.

Then G is amenable if and only if 1 € sp(z).

Proof. If G is amenable then there is ¢ € £2(G) with ||¢|| = 1 such that
|ILa€ — €|| < € for each a € A. Then we have

e — €] < #—IA- S Lat €l <,

a€A
and so z — 1 is singular. Conversely, if z — 1 is singular then there is a unit
vector € € £2(G) such that ||z€ — €|| < e. By Exercise 4.5.2, we have

|La€ — €|l < V2(F#A)e, a€ A

If s =a,a3...a, with a; € A, then we also have

|ILs€ — E|| < Z lLa, - - . La;_,(La;€ = E)Il < nv/2(F#A)e.

Jj=1
Noting that the last number depends only on the length of s = a; ...a,, the
proof is complete by Lemma 4.5.9. O

NOTE

Every material in this section except Theorem 4.5.8 and Proposition 4.5.10 may be
found in monographs such as [D], [Grf], [Pat], [P] or [Pi]. We refer to Paterson’s book
[Pat] for more general accounts of amenability and relations between another fields of
mathematics. Through a close examination of the latter part of Theorem 4.5.7, we see that
& * é’, — 1 in the weak* topology implies, in fact, the convergence in the compact-open
topology (see [D, Theorem 13.5.2]). Therefore, every convergences in Theorem 4.5.3 may be
replaced by the compact-open topology. Proposition 4.5.6 was taken from [Fe60, Lemma
1.4]. Theorem 4.5.8 is due to Lance [La73]. Although the one direction (i) = (ii) holds
for general locally compact groups (see NOTE of §5.1), the converse (ii) = (i) is not true
in general. We refer to [Pat88] for more information in this direction. Proposition 4.5.10
was taken from [dHRVa], and will be useful in the next section.
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4.6. Group C*-algebras of the Free Groups

We have already met before several times the operator algebras associated
with the free groups. First of all, the von Neumann algebra R»(F3) is a factor
of type II; with a faithful trace 7 given by (2.4.5). Because F; is not amenable,
we see that the natural quotient map A : C*(Fy) — C}(F2), induced by the
left regular representation, has a nontrivial kernel by Theorem 4.5.7. Finally,
neither C*(F3) nor C}(F3) are nuclear by Theorem 4.5.8, or by Example 4.1.1
together with Proposition 4.4.8. In this section, we will first show that C}(F)
is a simple C*-algebra with a unique faithful trace. We denote by a and b the
generators of F5.

Let F be a finite subset of F, \ {e}. Then there exists an integer n such
that the reduced word b"sb™" begins and ends with a non-zero power of b for
each s € F. We denote by A the set of all reduced words in F; beginning with
b~" and put B = F, \ A. For an arbitrary integer N, we denote by

tr = akbm, k=1,2,...,N.

Then we have the following two crucial properties:

(I) sANA=10foreachse€F.
(1) t;BNtgB =0 for j,k=1,2,...,N with j # k.

. We say that a discrete group G is a Powers group if for a given finite
subset F' of G\ {e} and an integer N there exists a partition {4, B} of G and
t1,...,tN € G satisfying the above properties (I) and (II).

Ezercise 4.6.1. Show that every conjugacy class of a non-unital element
in a Powers group is infinite, that is, every Powers group is an i.c.c. group.

Show also that every Powers group is non-amenable.

Theorem 4.6.1. Let G be a Powers group. Then C}(G) is a simple
C*-algebra with a unique trace.

From now on, we assume that G is a Powers group, and translate the above

properties into the language of operators. We need the following elementary
fact.
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Ezercise 4.6.2. Let = € B(H) and p be a projection in B(H) satisfying
(1—p)z(1—p) = 0. Show that |(z¢, £)| < 2||z||||p€]| for each unit vector £ € H.
Lemma 4.6.2. Let z € C}(G) be a self-adjoint element of the form
T = Z asLg,
seF

where F is a finite subset in G \ {e}. Then there are t,,...,t5 € G such that
1g 2
(4.6.1) Iz ; LyzL| < Ellzll-

Proof. Let A, B and ty,...,t5 be with the properties (I) and (II). Let P
be the projection P of 2(G) onto £2(A), and put Px = Ly, (1 —-P)Lt;1 for k =
1,2,...,5. Then the property (II) says that the projections Py, P,,..., Ps are
pairwise orthorgonal. On the other hand, the property (I) says that PL,P = 0
for each s € F, from which we see that '

(1 -—Pk)Ltk:ltLt;1(l—Pk) =0, k=1,2,...,5.

For each ¢ € ¢2(G) with ||€|| = 1, we have

1e 1< 2 <
(g ZLtth;t)&é)I <% > (LazLi6, 6l < 2 >l Peéll,
k=1 k=1 k=1

by Exercise 4.6.2. The conclusion follows from the orthogonality of { P} and
the easy inequality (3} p_, ax)? <nd . alforar e R. O

Proof of Theorem 4.6.1. Recall that the trace T on C%(G) is given by
7(z) = a., for z = Z a,L,.
s€G

By applying the above lemma, we see that 7(z)1 lies in the closed convex hull
of the unitary orbit {uzu* : u € A,} for each z € C}(G). Let I be a two-sided
ideal in C%(G) and z € I with z # 0. Put y = 7(z*z)"'z*z € I. Then

7(y) = 1, and so, given € > 0 there are unitaries u; such that

1 n
11— - Zu;yu:” <e.

i=1
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This shows that z = 2 3" | u;yu} € I is invertible, and I = C%(G). Finally,
if o is an another trace then |0(1 — z)| < ¢, and o(y) = 0(2) =1 =7(y). O
Next, we will show that the following short sequence
(4.6.2)
0 — C*(F2) ®min J = C*(F2) @min C*(F2) = C*(F2) @min Cx(F2) = 0

is not exact, where J is the kernel of the quotient map A : C*(F;) — Cx(F3)
induced by the left regular representation of F,. This shows that Corollary
4.1.8 does not hold for minimal tensor products. Before going further, we in-
vestigate more general situations. For a locally compact group G, we consider
the unitary representation g of G x G on the space L?(G) defined by

(4.6.3) 0G(s1,82)E(t) = E(sy ts2), s1,82,t € G, £ € L*(G).
In other word, 8¢(s1, s2) = L, R,, for discrete groups. This extends to
(4.6.4) g : C*(G) ® C*(G) — B(¢*(G)).

We say that a locally compact group G has the factorization property if the
map ¢ in (4.6.4) extends to a representation of C*(G) ®min C*(G). When
m and my are unitary representations of G, we denote by 7; ® 72 the repre-
sentation of G given by (m; ® m2)(s) = m1(s) ® ma(s) for s € G.

Lemma 4.6.3. If {r,H} is a unitary representation of G then A\ ® 7 is
_unitarily equivalent to a multiple of .

Proof. Consider the unitary isomorphism U : L%(G) ® H — L*(G,H)
defined by U(f ® €)(s) = f(s)n(s71)¢. O

Theorem 4.6.4. Let G be a finitely generated non-amenable group
which has the factorization property. Then the the sequence

(4.6.5) 0= C*(G) ®min J = C*(G) ®min C*(G) = C*(G) @min C3(G) = 0

is not exact in the middle, where J is the kernel of the map C*(G) — C}(G).

Proof. Let A be a symmetric set of generators and put

h= # Y ru(a) € C*(G),

a€A



126 4. TENSOR PRODUCTS OF C*-ALGEBRAS AND NUCLEARITY

where 7, denotes the universal representation of G. If we denote by o the
one-dimensional trivial representation, then mo(1 — &) = 0 and so 1 € sp(h).
On the other hand, we see that sp(p(h)) C [~1,1 — €] for some € > 0, by
Proposition 4.5.10. We take a function f : [-1,1] — [0, 1] such that f(1) =1
and ([-1,1—¢]) = 0, and put z = f(h) € C*(G) then z # 0. Now, we consider
the following diagram

C*G) 5 C*(6)®min C(G) 25 B(2(G))

|10

C*(G) ®min C,(G)
where A is the homomorphism induced by the unitary representation 7, ® 7.

Note that (1 ® p) o A is associated with the representation 7, ® p, which is a
multiple of p by Lemma 4.6.3. So, we have

sp(((1® p)A)(R)) = sp(p(h)) € [-1,1 - €],

from which we have A(z) € Ker(1 ® p) by the choice of f.

Noting that C*(G)®min J C Ker g, it suffices to show that 6(A(z)) # 0
in order to complete the proof. The homomorphism ¢ o A is associated with
the unitary representation a of G on ¢2(G) given by

a(s)E(t) =€(s7'ts), s, teG, £€2(G)
Because the vector x. is fixed by a(G), we see that 0(A(z))(xe) = Xe. O

In order to apply Theorem 4.6.4, we proceed to show that F, has the
factorization property. This depends on the residual finiteness of the free
group F>. We say that a countable group G is residually finite if there is a
decreasing sequence {Ni : k = 1,2,...} of normal subgroups of finite indices
such that (), Nx = {e}.

Ezercise 4.6.3. Show that a countable group G is residually finite if and
only if for each s € G with s # e there is a finite group F' and a homomorphism
¢ : G — F such that ¢(s) # e.

Considering the homomorphism

én : SLa(Z) — SL2(Zy,)
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induced from the quotient map Z — Z, = Z/nZ, we see that SLy(Z) is

residually finite. It is well-known that the matrices ((1) ?) and (; 2)

generate the free group F;. Because ¢,|F, is nontrivial for n > 3, we see that
F; is also residually finite.

In order to prove that every residually finite group has the factoriza-
tion property, we need some preliminaries. For two unitary representations
{m1,H1} and {m2,H2} of a group G, we define the unitary representation
w1 ® 73, said to be the exterior tensor product of m; and 72, of the group
G x G on the space H; ® H, by ‘

(4.6.6) (m1 B ma)(s,t) = m1(8) ® ma(2), (s,t) G x t.

For a unitary representation {7, H} of a group G, we also define the conjugate
representation T of G on the dual space H* by

(4.6.7) (T(s)E,n) = (€, 7(s)"n), SEG, E€H* neH.
Lemma 4.6.5. Let G be a finite group. Then we have

(4.6.8) O = @ TR,
aea

where G denote the set of all irreducible representations up to unitary equiv-
alence.

Proof. For each representation {m,H} of G, we define the linear map
Ve : H* @ H — £2(G) by

Va(®n)(s) = (€, n(s)n), s€G, E€cH* neH.

Then, by a calculation, we see that 6g(s,t) o Vo = Vo (FR 7)(s,t) for each
s,t € G. Furthermore, it is easy to see that V, is an isomorphism if and only
if m is an irreducible representation. Comparing the dimensions in both sides
of (4.6.8), the proof is complete. [

Let {0,K} be a subrepresentation of a representation {m,H} of a C*-
algebra A, that, is, K C H and o(z) = n(z)|x for each z € A. Then every
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state associated with {o, K} is also associated with {m, H}. We say that {0, K}
is weakly contained in {r, H} if every state associated with {7, K} is the weak*
limit of states which are sums of positive linear functionals associated with
{m,H}. We use the same terminology for continuous unitary representations
of a locally compact group G, considering them as representations of C*(G).
Employing the correspondence between C*(G)% and P(G) in the last section,
the following is immediate.

Proposition 4.6.6. Let o and 7 be unitary representations of a discrete
group G. Then the following are equivalent:

(i) o is weakly contained in .
(ii) Every positive definite function associated with o is the limit of

sums of positive definite functions associated with .

If o0 admits a cyclic vector £, then the following condition is also equiva-
lent:

(iii) the function s — (0(s)¢, £) is the limit of sums of positive definite
functions associated with .

Theorem 4.6.7. Every residually finite group G has the factorization
property.

Proof. We denote by m, the universal representation of G. It suffices
to show that 6 is weakly contained in 7, ® 7,. Let {N;} be a decreasing
sequence of normal subgroups of finite indices so that (), Nz = {e}. We
denote by Gx = G/Ni and gk : G x G — G x G the product of the quotient
maps for each k = 1,2,.... By Lemma 4.6.5, 6, o g is contained in 7, Ry,
and so, @:?__1 0, o gk is also contained in 7, ® 7,. Therefore, it suffices to
show that 8¢ is weakly contained in @;o, G, © k- ‘

Note that the representation g admits a cyclic vector x. and the map
(s,t) = (Bc(s,t)Xe, Xe) is nothing but xp, the characteristic function on the
diagonal D of G x G. Similarly, we see that xn,xn, is the the positive
definite function associated with the representation g, o g and the vector
XN, € £3(G), for each k = 1,2,.... From the condition (), Nx = {e}, we

have

XD = lim XNkXNki
k—o0
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and so the proof is complete by Proposition 4.6.6. [J

Corollary 4.6.8. Let G be a finitely generated non-amenable group
which is residually finite. Then the sequence (4.6.5) is not exact.

In the remainder of this section, we just mention another interesting prop-
erties of the C*-algebras C*(F,) and C}(F3). Using the universal property,
Choi [Ch80] showed that C*(F3) has no nontrivial projections, has a faithful
irreducible representation, and has sufficiently many finite-dimensional repre-
sentations. The last property has been extended to another groups such as
the free products of free groups and finite groups [GM90]. See also [EL92].
It is also known that, for a large class of discrete torsion free groups, the
full group C*-algebras do not have non-trivial projections [JP90]. See also
[Va!] for full group C*-algebras with non-trivial projections. Non-exactness
of the sequence (4.6.2) has an interesting implication on the lifting problem:
There is no completely positive linear map ¢ : C}(Fy) — C*(F,) such that
Tod = id : C}(Fy) — C*(F;)/J, where = : C*(F;) — C*(F,)/J is the
quotient. In other word, id : C3(F;) — C*(F;)/J has no completely positive
lifting [Wa77b]. See also [CE76b], [CE77c|, [An78] and [EHa85] for lifting
problems. _

We know that C}(F3) does not satisfy CPAP because it is not nuclear.
It was shown by de Canniere and Haagerup [dCH85] that C%(F3) has the
positive approximation property. From this, it can be shown that there exists
a positive unital linear map ¢ : C3(F;) — B(H) which is not extendable to
'B(f*(F;)) [Ro86]. Compare with Theorem 4.4.2. A positive linear map from
a nuclear C*-algebra into B(H) is always extendable [St86]. We will note in
the next chapter that C}(F;) has no nontrivial projections, and so give an
example of a simple C*-algebra with no nontrivial projections. We will also
see that C3(F3) can be embedded in a nuclear C*-algebra. Therefore, the
nuclearity does not pass to the C*-subalgebras.

NOTE

The simplicity of C5(F2) is due to powers [Po75] exploiting the properties (I} and
(IT). See also [AO76] and [FP, Chapter 2]. The proof of Lemma 4.6.2 here is a variant of
the argument in [PS79a]. For a sharper estimate than (4.6.1) using only three unitaries
L,, we refer to [dHS86]. We also refer to [dH83] for various examples of Powers groups.
For further results in this direction, we refer to [BN88], [NB90], [Be91], [Be] and [NT]. A
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C*-algebra A is said to have the Dixmier property if the convex closure of the unitary orbit
intersects the center for each z € A. In the proof of Theorem 4.6.1, we have shown that
C5(G) has the Dixmier property. This property has close relations with the simplicity and
the uniqueness of a trace (see [Rd82a], [HZ84]). Non-exactness of the sequence (4.6.2) was
first proved by S. Wassermann [Wa76b] where the residual finiteness of the free group has
been exploited. See also [Wa90], [Wa91] for a simpler proof and the further results in this
direction. The proof of residual finiteness of F; is taken from [Va?]. We refer to [Ma69] for
a survey on residual properties. We have followed [dHRVDb] for Theorems 4.6.4 and 4.6.7.
We note that Lemma 4.6.5 holds for compact groups (see [W1, Theorem 2.8.2] for example).
For a certain class of discrete groups (satisfying Kazhdan’s property T), Kirchberg [Ki?]
recently announced that the converse of Theorem 4.6.7 is also valid. Note that the free
group does not satisfy the property T.

4.7. Exact C*-algebras

From now on throughout the remainder of this note, the minimal tensor
product A ®min B will be denoted by simply A ® B, and the algebraic tensor
products AQ B by A® B.

In the last section, we have seen that the sequence
(4.7.1) 0-A®J—>A®B— A®(B/J)—0

need not to be exact. We say that a C*-algebra A is exact if the sequence
(4.7.1) is exact for every C*-algebra B and its norm-closed two-sided ideal J.
Corollary 4.6.8 says that the group C*-algebra C*(G) is not exact if G is a
finitely generated non-amenable group which is residually finite. In order to
deal with the sequence (4.7.1), it is convenient to introduce the notion of slice
maps.

Proposition 4.7.1. For a functional ¢ € A*, there is a unique bounded
linear map Ry : A® B — B satisfying

(4.7.2) R4(a ® b) = ¢(a)b, a€ A, be B.

Furthermore, the map Ry satisfies the following:

@) [Rsll = ll¢ll-
(ii)) (Ry(z),¢) = (z,¢ @ ¢) for each ) € B*.
(iii) Ifz € AQ B and Ry(z) =0 for each ¢ € A* then z = 0.
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Proof. For z =) a; ®b; € A® B, we have

[1Bg(2)ll = sup{[(Ry(2), )| : lI¥ll <1}
= sup{|(z, 6 ® ¥)| : [[¥]| < 1} < ||l|2llmin,

from which we see that R, extends to a bounded linear map on A ® B with
|IRsll < ||4]|. The remaining statements are easy. [

The linear map R4 : A ® B — B in the above proposition is said to be
the right slice map associated with ¢. The left slice map Ly : AQ B — A
associated with ¢ € B* is also defined analogously. When C and D are C*-
subalgebras of A and B respectively, the Fubini product F(C,D,A® B) of C
and D with respect to A ® B is defined by

F(C,D,A® B) = {z € A®B : Ry(z) € D,Ly(z) € C

(4.7.3)
for each ¢ € A* and ¢y € B*}.

Although the Fubini product of C and D depends on A ® B as well as C
and D, we will denote just by F(C, D) if no confusion arise. It is clear that
C® D C F(C,D). When D is a C*-subalgebra of B, we say that the triple
(A, B, D) satisfies the slice map conjecture if F(A, D) = A® D. The following
proposition is immediate from Proposition 4.7.1.

Proposition 4.7.2. The Fubini product F(A, J) is just the kernel of the
homomorphism A® B — A® (B/J) in the sequence (4.7.1).

Therefore, we see that the sequence (4.7.1) is exact if and only if the triple
(A, B, J) satisfies the slice map conjecture. For a pair (B, D) of C*-algebras
with D C B, we introduce the following condition:

(4.7.4) There exists a net {m»} of completely bounded linear maps from B
into D such that sup; ||7a||c» < 00 and lim; ||7a(z) —z|| = 0 for z € D.

If D is a nuclear C*-subalgebra of a C*-algebra B then the pair (B, D)
satisfies the condition (4.7.4) by the first condition in the NOTE of §4.3.

Ezercise 4.7.1. Show that the pair (B, D) satisfies the condition (4.7.4)
if D is a closed ideal or a hereditary C*-subalgebra of B.



132 4. TENSOR PRODUCTS OF C*-ALGEBRAS AND NUCLEARITY
Lemma 4.7.3. Let (B, D) be a pair of C*-algebras satisfying the condi-

tion (4.7.4). Then we have

(4.7.5) C®D=(A®D)N(CQ B),

for any C*-algebras C and A with C C A.

Proof. Let x € C®B and € > 0 be given. Then thereisy = Z:;l a;®b; €
C © B such that ||z — y|| < e. Note that 7A®1: AQ B — C ® B is a bounded
linear map with ||y ® 1|| < M by Proposition 4.2.6, where M = sup; ||ma|| e
Hence, we have

n
Itm2 ® 1)(2) — 2ll < flma @ Ulllz = yll + 3. lima(as) = asllall + Iy = all,

=1
and so0, z = limy(7x ® 1)(z) for z € C @ B. Now, if z € (A® D)N(C ® B)
then (7y ® 1)(z) € C ® D, and so we see that

z= liin(n,\ ®1l)(z)eC®D. O
Proposition 4.7.4. Every C*-subalgebra C of an exact C*-algebra A is
also exact.
Proof. The proposition follows from
F(C,J,C®B)C F(A,JJARB)N(C®B)=(ARJ)N(C®B)=CRJ
by Lemma 4.7.3, for an ideal J of a C*-algebra B. 0O

From this proposition, it follows that every C*-subalgebra of a nuclear
C*-algebra is exact. Especially, we see that B(H) with an infinite dimensional
Hilbert space H is not nuclear.

Ezercise 4.7.2. If {A;} is an increasing sequence of exact C*-algebras and
A =, A; then show that A is also exact.

From now on, we fix a pair (B, D) of C*-algebras satisfying the condition
(4.7.4) with the required net {ry : A € A}. Denote by A(B) (respectively
Ao(B)) the C*-algebra of all bounded functions (respectively functions con-
verging to 0) from A to B. Also, define § : B — A(B) by

(4.7.6) 8(b)a = b —ma(b), be B, A€ A.
Finally, we denote by px the A-th projection from A(B) into B.
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Lemma 4.7.5. Let A be a C*-algebra. Then for each € A® B we
have the following:

(i) € A®D < (14®6)(z) € A® A¢(B).
(i) z € F(A,D,A®B)=> (14 ® §)(z) € F(A4,Ao(B), A® A(B)).

Proof. Note that if z € A ® A¢(B) then (1® py)(2) € Ao(4 ® B). Hence,
if (1® 6)(z) € A® Ao(B) then we have

z—(1@m)(z)=1®pr)(1®6)(z) € Ay(A® B),

from which it follows that z = limx(1 ® ma)(z) € A ® D. This shows the
direction (<=) of (i). The remaining statements are clear. [0

Now, for each natural number n = 1,2,..., we introduce the following
condition on a C*-algebra A as follows:

(Cn) Forany e > 0, there are completely positive contractions ¢,, : M, — A
and ¢, : A — M, such that ||, — 1|| < e.

Lemma 4.7.6. Let E, be a fixed C*-algebra with the condition (C,) for
eachn=1,2,.... Then for z € A® B we have

llzll = sup [I(14 ® V)(2)I|,

where V' runs through the set of all completely positive contractions from B
‘into E,, forn=1,2,....

Proof. 1t is clear that ||(1 ® V)(z)|| < ||z||- For the reverse inequality,
we assume that A and B act on Hilbert spaces M and K, respectively. For
§&;n € HOK with ||| = ||n|]| = 1, choose a finite dimensional projection
p € B(K) such that (1 ® p)(¢) = € and (1 ® p)(n) = 1. Define V: B —
B(pK) = M, by V(b) = pbp|pyx for b € B. Now, given € > 0, choose a
completely positive contractions W, : M,, — E,, and W, : E, — M, such
that |[W, W) — 1|6 < €/||(1 ® V)(z)||- Then we have

[{z€, n) = [(=(1 ® p)¢, (1 @ p)n)| = (1 @ V)(2)¢, m)| < (1 @ V(=)
< W2)1eW)(18 V)(@)|+e< (1@ WiV)(2)|| +e¢,
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and so the proof is complete, because W,V : B — E,, is a completely positive
contraction. [

We denote by E = [],, E, (respectively Ey = @,, Ey) the £°-sum (re-
spectively co-sum) of {E, : n = 1,2,...}, where E, is a C*-algebra satis-
fying the condition (C,) for each n = 1,2,.... We also denote by S the

set of all completely positive contractions V from A(B) into E such that
V(Ao(B)) € Eo.

Lemma 4.7.7. For z € A® A(B), we have the following:
(i) € AQA(B)<= (1QV)(z)€ A® Ep foreachV € S.
(ii) z € F(A,A(B),A®A(B)) = (1QV)(z) € F(A,E),A® E)
foreach V € S.

Proof. Every statement except (<=) of (i) is trivial as in Lemma 4.7.5.
Assume that z € AQA(B)\ A®A¢(B). Then there is a sequence {\(k) : K =
1,2,...} of A such that ||(1®pxk))(z)|| > 2¢ foreach £ = 1,2,.... By Lemma
4.7.6, there exists a completely positive contraction Vi : B — Ep k) such that
(1 ® Vi)(1 ® paky)()|| > € for each k =1,2,.... We define V : A(B) = E
by

V(bA) - (0, e 7‘/1(bA(1))a 0, e ,0, ‘/'g(bA(g)), 0 .o ),
where each Vi(bx(k)) is at the n(k)-th position. Then V' € S. If we denote by

gn : E — E,, the projection onto the n-th component, then we have

11 ® gni)(1 @ V)(@)Il = (1 ® Va)(1 & paw))(@)l| 2 &,

for each k¥ = 1,2,.... This shows that (1Q V)(z) € A® E\ AQ® Ep, and
completes the proof. O

By Lemmas 4.7.5 and 4.7.7, we have the following:
Proposition 4.7.8. Let (B, D) be a pair of C*-algebras satisfying the
condition (4.7.4) and E, Ey as above. Then we have

F(A,E0,AQE)= A® Ey —> F(A,D,A® B) = A® D.
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Theorem 4.7.9. Let E, be a C*-algebra satisfying the condition (Cy)
for each n = 1,2,..., and E = [],, En, Eo = @,, En. We also denote by
M =T, M, and My = @, M. Then, for a C*-algebra A, the following are
equivalent:

(i) (A, B, D) satisfies the slice map conjecture for every pair (B, D)

with the condition (4.7.4).

(i1) (A, B, D) satisfies the slice map conjecture for every hereditary
C*-subalgebra D of a C*-algebra B.

(iii) A is an exact C*-algebra.

(iv) (A,B(H),K(H)) satisfies the slice map conjecture.

(v) (A, E, Ey) satisfies the slice map conjecture.

(vi) (A, M, M,) satisfies the slice map conjecture.

Proof. The implications (i) = (ii) = (iii) = (iv), (iii) == (v) and (iii)
= (vi) are clear. Two implications (v) = (i) and (vi) = (i) follows from
Proposition 4.7.8. Hence, it remains to show that (iv) implies (v). We denote
by H, the n-dimensional Hilbert space for each n = 1,2,..., and put H =
@,, Hn. Then, under the embedding M C B(H) with M, = B(H,), we have
My = B(H)NK(H). It is also easy to see that AQ My = (A M)N(AQK(H)).

Hence, we have

F(A, My, A® M) C (A® M) N F(4,K(H), A® B(H))
=(AQM)N(AQK(H)=A® M,. O

From the non-exactness of B(H), we see that the sequence
(4.7.7) 0—- B(H) @ K(H) — B(H) @ B(K) — B(H) ® (B(H)/K(H)) — 0

is not exact. We also know that (B(H), M, M) does not satisfy the slice map
conjecture. From this, it is not so difficult to see that the sequence

(4.7.8) 0-MRMy—»M®M — M (M/Mg) — 0

is also non-exact.
In the remainder of this section, we show that how approximation proper-

ties are used to infer C*-exactness. There are weaker notions of approximation
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properties than in §4.3: A C*-algebra A is said to have the completely contrac-
tive approximation property (CCAP) if the identity map of A is approximated
by complete contractions of finite ranks in the topology of point-norm con-
vergences. Also, A is said to have the completely bounded approximation
property (CBAP) if the identity map is approximated by a net {mx} of com-
pletely bounded linear maps of finite ranks with sup; ||mx|lct < co. Compare
with the third condition in the NOTE of §4.3. It was shown that the reduced
group C*-algebra C}(F3) of the free group satisfies the CCAP by de Canniere
and Haagerup [dCHB85]. Hence, CCAP is strictly weaker than nuclearity or
CPAP.

Proposition 4.7.10. Let A be a C*-algebra with CBAP. Then the triple
(A, B, D) satisfies the slice map conjecture for every C*-algebra B and a C*-
subalgebra D of B.

Proof. If {m»} is the above net in the definition of CBAP then it is easy
to see that limy ||(7x ® 1g)(z) — z|| = 0 for each = € A ® B. Suppose that '
z € A®B and Ry(z) € D for every ¢ € A*, and we fix . Then (7,Q®15)(z) =
3o, ai ® b;, where {a;} is a finite set of linearly independent elements in
mA(A). For each i = 1,2,...,n, choose ¢; € A* such that ¢;(a;) = 6;;. Then
we have

n

bi=Y (ia;)b; = Rg;(mx ® 18)(z) = Ryiomy(z) € D.
i=1
Therefore, it follows that () ® 1g)(z) = Y, ai ® b; € A® D, and so we have
z =limy(my\®1p)(z) € A®D. O

Hence, we see that the C*-algebra C5(F3) is exact. This also follows from
Proposition 4.7.4 together with the fact that CX(F3) is a C*-subalgebra of a
nuclear C*-algebra as was mentioned at the ends of §4.4 and §4.6.

A C*-algebra A is said to be nuclearly embeddable if there is an isomor-
phic embedding ¢ : A — B such that 7xo0x — ¢ in the point-norm topology for
some nets o) : A — My, and 75 : M, — B of complete contractions. The
similar argument as in Proposition 4.7.10 may be applied by Lemma 4.7.3, if A
is a nuclearly embeddable C*-algebra and D is a norm-closed two-sided ideal
of A [Wa90]. Therefore, every nuclearly embeddable C*-algebra is C*-exact.
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The converse is also true [Ki!]. For a large class of discrete groups G, it is
now known that C(G) is an exact C*-algebra by a work of A. Connes. See
also [QS92]. Some of them do not satisfy CBAP [Ha].

NOTE

The notion of C*-exactness was introduced by Kirchberg [Ki78], where Proposition
4.7.4 and Exercise 4.7.2 were announced. The notions of slice maps and Fubini products
for C*-algebras were introduced by Tomiyama [To67, To75] (see also [Wa76a]), where he
showed that if C is subhomogeneous then F(C,D,A® B) = C ® D. The converse is also
true [Ky85, HK88]. We refer to Huruya’s note [Hu83] or [Ky88b] for a survey on this
topic. Lemma 4.7.3 was taken from [Ky86]. The essential arguments for Proposition 4.7.8
are contained in [Ki83, Ky88a], and used in [HK88] for the proof of Theorem 4.7.9. The
condition (Cpn) appears in [HT83] or [Sm83]. Equivalences between (ii) (iii) and (iv) of
Theorem 4.7.9 are due to Kirchberg [Ki83], whereas the direction (iii) = (i) is found in
[Ac82]. Non-exactness of the sequences (4.7.7) and (4.7.8) are due to Wassermann [Wa78]
and Huruya [Hu80], respectively. Theorem 4.7.9 shows that pairs such as (B(H), K(H))
and (M, M) play réles of testing pairs for the C*-exactness. For more examples of testing
pairs, we refer to [HK91]. Recently, Kirchberg [Ki!] showed that the exactness is preserved
under the C*-quotient. The proof of proposition 4.7.10 is taken from [Wa78]. We refer to
[AB80] and [EHa85] for another conditions related with C*-exactness.



CHAPTER 5

CROSSED PRODUCTS OF C*-PRODUCTS

The crossed product is one of the main tools to construct simple C*-
algebras, together with AF C*-algebras and group C*-algebras as we have
seen before. After examining general properties of full and reduced crossed
products in §5.1, we present two examples arising in this way. One of them
is so called the irrational rotation C*-algebra Ag, which is obtained from the
rotation on the circle by an irrational number 6. We classify these algebras by
showing that the range of the projections under the trace is [0, 1] N (Z + Z6)
as in the case of AF algebras in §3.4. We consider in §5.3 another simple C*-
algebras, called the Cuntz algebra, generated by isometries with orthogonal
ranges. It turns out that these C*-algebras may be considered as the crossed
products by non-amenable discrete groups. In this way, we get an example of
a non-nuclear C*-subalgebra of a nuclear C*-algebra. In §5.4, we give a brief
survey on K-theory for C*-algebras which enjoys the six-term exact sequence.
Using this machinery, we calculate K-groups of irrational rotation C*-algebras
and Cuntz algebras in §5.5.

5.1. Full and Reduced Crossed Products of C*-algebras

A C*-dynamical system is a triple {4, G,a} of a C*-algebra A, a locally
compact group G and a homomorphism o from G into the group Aut(4) of
all x-automorphisms of A such that ¢t — a¢(a) is continuous for each a € A.
We denote by £(G, A) the space of all continuous functions from G into A
with compact supports. For z,y € R(G, A), we define

z*(t) = 8(t) " oa(y(tH)),

611 (e 0)0) = [ s(oaululs D),

138
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for t € G. By a straightforward calculation, we see that £(G, A) is a normed
x-algebra with respect to the above operations and the norm defined by

(5.1.2) =]l = L l=(2)]||dt, z € R(G, A).

We denote by L'(G, A) the Banach -algebra obtained by the completion of
R(G, A) with respect to the norm in (5.1.2). The full crossed product G x o A
is defined by the enveloping C*-algebra of L!(G, A).

A covariant representation of a C*-dynamical system {4, G, a} is a triple
{m,u, H}, where {7, H} is a representation of A and {u,H} is a unitary rep-
resentation of G satisfying the condition

(5.1.3) m(ai(a)) = u(t)r(a)u(t)*, teG, a€ A

For a covariant representation {m,u,H} of a dynamical system {4, G, a}, we
define

(G.14)  (mxu)e)= /G r(@(®)u(d)édt, =€ K(G, A), € € H.

By a direct calculation, we see that m X u is a *-representation of £(G, A) on
the Hilbert space H. Because

[|(m x u)(@)|| < /G [r(z(@)u®)lidt = llzll, = € AG, A),

7 X u extends to a *-representation of L'(G, A), hence to a representation of
G X4 A. Conversely, if {p, H} is a non-degenerate representation of L}(G, A)
then the following pair (7, u) defined by

n(a) = s-lim p(€; @ a), a€A,
u(s): p(f®a) = p(Aef ®as(a)),  s€G, f@®aeLl(G, A) (e,
gives rise to a covariant representation satisfying (5.1.4), where {¢;} is an

approximate identity of L!(G) and f ® a denotes the element of L'(G, A)
defined by ¢ — f(t)a for t € G.
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For a representation {r,H} of A, we define the representation 7 of A on
the Hilbert space L?(G, H) by

(5.1.5) F(a)E)(t) = m(as-1(a))E(t), a€A, teG.

We also denote by X, = A\,®13 the representation of G on the space L%(G )QH,

or equivalently
(5.1.6) QL)) = €(sM),  s,teG, € € L*G,H).

It is easy to see that {7, X, L?(G,H)} is a covariant representation of {4, G, a}.
We denote by Indr = 7 x ). By (5.1.4), we have

GL7) (@O = [ e (e ds,

for z € R(G, A) and ¢ € L?(G,H). _
The reduced crossed product G X or A is the completion of L!(G, A) with

respect to the C*-norm given by

[zl = sup{||(Indm)(2)| },

where 7 runs through all representations of A.
For a state ¢ € S(A) and f € R(G), we define a positive linear functional
¢5 on L'(G, A) by

(5.1.8) ¢5(z) = (Indmy)(2)(f @ &), f ® €4), = € L'(G, 4),

where {74, Hy,Ep} is the G. N. S. construction associated with ¢, and f ®
is an element of L%(G,Hy) given by (f ® £5)(t) = f(t)€s, for t € G. Then it
is easy to see that

(5.19)  és(z) = / F(s~F@ $aer (a(s))dsdt, = € LN(G, A).

Let {0, H} be a faithful representation of A, and ¢; a state given by ¢i(a) =
(o(a)i, &) for a € A and & € H. If ¢ € S(A) is defined by

(5.1.10) | $=> Xgi, Ai>0, > Ni=1,
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then we have
(5 1 11) ¢f(y*;,;*xy) = Z ’\i(fﬁi)f(y*:l:*xy)
< Z Aill(Tndo )(2)]1%(8:) s (w*y) = ¢ 4(y*y)||(Indo)(z)]|?,

for each z,y € L'(G, A), whenever f € &(A). Because o is faithful, every state
is the weak* limit of ¢’s of the form in (5.1.10), and so we see that (5.1.11)
holds for each ¢ € S(A). It is easy to see that {f ® £, : f € &(G)} is cyclic
for the representation Indmy. Because Indr is the direct sum of Indmy’s, we

have ||(Ind7)(z)|| < ||(Indo)(z)|| for each representation m of A, by Exercise
1.5.1. Therefore, we have

(5.1.12) llell- = [I(Indo)(z)ll, = € L'(G, 4),

whenever o is a faithful representation of A.

Ezercise 5.1.1. Let a be the trivial action of G on a C*-algebra A. Show
that G Xo A = C*(G) ®max A4 and G Xqor A = C3(G) Qmin A.

Theorem 5.1.1. If G is an amenable group then we have

G Xq A=G Xy A

Proof. Let ¢ be a state of G x, A. It suffices to show that
(5.1.13) #(z*z) < ||lz*z||, z € L'(G, A).

Let {m,u} be the covariant representation of {4, G, a} associated with the G.
N. S. construction {7y, Hy,€4}. For f € K(G) with ||f|l2 = 1, put

65) = [ (F+ PURu(nba)ds, =€ 1X(G, )
Using the relation (5.1.3), we see that

¢5(z) = / FOf (s ) (m(ae-1 (2())u(t ™" )6, u(t ™ )Eg)dsdt
= ((Indr)(2)¢, €),
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where ¢ € L2(G,H,) is defined by £(s) = f(s)u(s™)és. Hence, it follows
that ¢ satisfies the condition (5.1.13). Now, if G is amenable then 1g is
approximated by f € £(G) with ||f]|2 = 1, and so ¢ itself approximated by
#’s weakly on R(G, A). Therefore, we see that the condition (5.1.13) holds
for z € &(G, A), and this completes the proof. O

Following two exercises correspond to the relation (4.1.5) and Corollary
4.1.8.

Ezercise 5.1.2. Let B be a C*-subalgebra of a C*-algebra A which is
invariant under the action a on A. Show that G X4, B is a C*-subalgebra of
G X or A. If B is a closed ideal then so is G Xqor B.

Ezercise 5.1.3. Let I be a norm-closed two-sided ideal of A which is in-

variant under a. Show that the following sequence
0-Gxo I 2GXaA—>Gxq AT -0

is exact.

Ezercise 5.1.4. Let a be an action of G on a C*-algebra A. Define the
action B on A ®max B or A ®min B by B:(a®b) = ay(a)®@bfora®be AR B.
Show that

G Xg (A ®max B) = (G X o A) ®max B,
G X gr (A Qmin B) = (G Xar A) QOmin B.

Therefore, if G is amenable and A is a nuclear C*-algebra then G X4 A is
also nuclear.

From now on, we will concern exclusively on discrete actions, and so G
will always denote a discrete group.

Let A be a concrete C*-algebra acting on a Hilbert space H, and a a
discrete action of G on the C*-algebra A. Then each element s € G gives
rise to the unitary operator Xs on ?2(G,H) by (5.1.6), which will be denoted
by U,. Also, each a € A defines an operator on ?2(G,H) by the relation
(5.1.5). Then the reduced crossed product G Xor 4 is the C*-algebra acting
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on £%(G,H) generated by {a,U, : a € A,s € G}. This is independent of the
choice of H by (5.1.12). The covariant relation (5.1.3) is written by

(5.1.14) as(a)Us = Usa, a€ A, seq.

From this, we see that the relations

(Z asU,)" = Zas((as-l) WUs,
(Z asU, )(Z bUy) = Z(Z atay(bs-1,))Us

hold, where the summations above are finite. Furthermore, the set of all
elements of the form

ZasUs, as € A

is a dense *-subalgebra of G X o, A.

Note that every homeomorphism o of a compact Hausdorff space X in-
duces a *-automorphism « of the C*-algebra C(X) by a(f)(z) = f(¢~'z). In
this way, a topological dynamical system {X,G,a} induces a C*-dynamical
system {C(X), G, a}.

Ezercise 5.1.5. Let the cyclic group Z, act on itself by the translation.
Show that the resulting crossed product is *-isomorphic to the C*-algebra M,
of n X n matrices.

Ezercise 5.1.6. Let the permutation group Sz act on the space X =
{z1,22,73}. Show that S3 X4, C(X) is not simple.

Proposition 5.1.2. Let G be a discrete group and s € G. Then the map
T z(s): HG,A)— A

extends to a bounded linear map from G X4, A to A.

Proof. It suffices to show that

l=()Il < llzllr, = € £(G, A).
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Let € > 0 be given and {m, "} a representation of A. Choose a unit vector
€o € H such that ||7(z(s))]| = ||7(z(s))|| — €. If we define £ € £2(G,H) by
E(s71) = & and £(t) = 0 for t # s, then ||¢]| =1 and

|(Indm)(2)¢]l = (Indm)(@)E)(e)]| = lIm(z(s))oll 2 [I(z(s)I — e

Hence, it follows that ||(Ind7)(z)|| > ||=(z(s))|| — €. Because m and e were
arbitrary, this completes the proof. [

From the above proposition, every £ € G X4 A corresponds to the set
{z, € A: s € G}, which is said to be the Fourier coefficients of z. Indeed, it
is easy to see that z = 0 if and only if z, = 0 for each s € G. It is also easy
to see that the map

(5.1.15) E:zw— z,, T2€GKar A

is a positive faithful norm one projection from G x4, 4 onto A.

Now, we will consider the question when the reduced crossed product
G X or A becomes a simple C*-algebra. We say that a C*-dynamical system
{A,G,a} is G-simple if there is no nontrivial closed two-sided ideal of A
which is invariant under the action a. By Exercise 5.1.2, we see that this is a
necessary condition for the simplicity of G X, A. Exercise 5.1.6 shows that
this is not sufficient.

Theorem 5.1.3. Let G be a discrete group and a C*-dynamical system
{4, G, a} satisfy the following condition: Given {s; € G\{e} :i=1,2,...,n},
{a; € A:1=0,1,...,n} with ap > 0 and € > 0, there is an element a € A4
with ||a]| = 1 such that

llagoal| > |lacll —€,  [lagias(a)|| <€, 1=1,2,...,n.
If A is G-simple then G X o A is simple.

Proof. Let  be a *-homomorphism then we see that 7|4 is faithful be-
cause (Kerm) N A = 0, from the condition of G-simplicity. Let z = ) a,U,
be a positive element in £(G,A) and a € A be the element given by the
assumption with ag = a.. Then we have ||7r(aa.q)|| = ||aa.al|, and

lIm(aasUsa)l| < llaasUsal| = ||laasas(a)Us|| < llaasas(a)ll, s # e
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Therefore, we have

Iw(@)ll 2 l|m(aza)l| 2 |In(aaea)|| — ) ||r(aa,Usa)|

s#e

> ||laacal| - Y llaasas(a)]] 2 flac|l - (n + 1)e = || E(z)| - (n + L),
s#e

where n is the number of s € G\ {e} with a, # 0. Because £(G, A) is dense in
G Xar A, it follows that ||7(z)|| > ||E(x)|| for each z € (G Xor A)+. Because
E is faithful we see that = is also faithful, and this completes the proof. O

We say that a topological dynamical system {X, G, o} is minimal if every
orbit O(z) = {os(z) € X : s € G} of z € X is dense in X.

Ezercise 5.1.7. Show that a topological dynamical system {X,G,c} is
minimal if and only if there is no nontrivial o-invariant closed subset of X.
Also show that {X,G,o} is minimal if and only if the corresponding C*-
dynamical system {C(X), G, a} is G-simple.

Let o be a homeomorphism of a compact Hausdorff space X whose fixed
point set X7 = {z € X : oz = z} is nowhere dense. For f, € C(X)4 and € >
0, it is easy to find f € C(X)4 such that ||f fo|| > || fol|—€ and |f(z) f(o71z)| <
e for z € X. The following corollary is an immediate consequence of Theorem
5.1.3 in this way.

Corollary 5.1.4. Let {X,G,0} be a topological dynamical system with
‘a discrete group G. Then G X, C(X) is simple if the action is minimal and
every fixed point set X° = {x € X : 05(z) = z} is nowhere dense for s # e.

If o is a Z-action on X consisting of infinitely many points, then every
point z € X is aperiodic. Therefore, we get the following:

Corollary 5.1.5. Let X consists of infinitely many points. Then the
C*-algebra Z X o C(X) is simple if and only if the action is minimal.

Topological dynamical systems are one of the main source to construct
simple C*-algebras together with reduced group C*-algebras and AF alge-
bras. The irrational rotation on the circle is a typical example, which will be
considered in the next section.
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NOTE

General theory for the crossed products in this section is standard, and may be found
in monograph [P] or papers [Tka75], [Zm68]. See [Ku88] for related results with Exercise
5.1.2. A stronger result than Exercise 5.1.4 is in [Gr78, Proposition 14]. See also [Ra92]
for related topics. It should be noted that the converse of Theorem 5.1.1 does not hold.
Indeed, there is a C*-dynamical system {A, G, a} with a non-amenable group such that
G Xa A= G Xar A is simple [Sp91], [QS92] (see also §5.3). Also, note that Theorem 5.1.1
together with Exercise 5.1.1 says that C*(G) is nuclear for an arbitrary locally compact
amenable group G. Proposition 5.1.2 is taken from [Zm68, Théoréme 4.12]. We refer to
[To87, §3.2] or [To92, Theorem 1.3] for an another approach. Theorem 5.1.3 is found in
[OP82], where it is also shown that the assumption is satisfied if o is an properly outer
action for each s # e. The reduced group C*-algebra C}(F2) shows that the converse of
Corollary 5.1.4 is not true. If G is an amenable discrete group then the condition on the
fixed point set is also necessary [KT90]. See also [AS]. A proof of Corollary 5.1.5 is found in
[Pow78]. Another important notion for simplicity is that of central shift, for which the full
crossed product is simple [JL]. We refer to [EH67], [To87] or [To92] for more informations
on the C*-algebras arising from topological dynamical systems.

5.2. Irrational Rotation Algebras

We denote by T the quotient space R/Z. For an irrational number 6 in
the unit interval, we also denote by o4 the homeomorphism of T given by the
rotation g : £ — z + 6. This gives rise to a Z-action on the commutative
C*-algebra C(T), and we denote by Ay the C*-crossed product defined by the
associated C*-dynamical system {C(T),Z, a}. It is a standard fact that this
action is minimal, and so Ay is a simple C*-algebra. Also, note that Ay is
nuclear by Exercise 5.1.4. Let {r,H} be a representation of C(T) and U a
unitary of B(H) satisfying the covariant relation

(5.2.1) m(a(f)) =Ur(HU*,  feC(T),
then this gives rise to a faithful representation of Ay, because Ay is simple.
For each fixed z € T, we denote by n, the representation of C(T) on ¢2(Z)
defined by

7z(f)(en) = f(o™x)en, n € Z,
where {e, : n € Z} denotes the usual orthonormal basis of ¢2(Z). Then, 7,
together with the bilateral shift S : e, — €541 on ¢2(Z) satisfies the condition
(5.2.1), and so we get a faithful representation 7, of A on ¢%(Z).

Ezercise 5.2.1. Show that 7, is an irreducible representation for each
z € T. Show that 7, and 7, are unitarily equivalent if and only if z =1 — y.
Show also that Ag is not postliminal.
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Let C(T) act on L*(T) by the multiplications My for f € C(T). We also
denote by U the unitary of L2(T) given by

(5.2.2) Ut)=¢E(o7 ') =¢&(t—6), €€ L¥T), teT.

Then, we see that Ay is the C*-subalgebra of B(L*(T)) generated by {M; :
f € C(T)} and U. The finite sums of the form Y M; U™ form a dense
*-subalgebra of Ag. We also note that the formula

(5.2.3) () M U™) = /0 1 fo(t)dt

defines a faithful trace, where dt is the usual Lebesgue measure.
Ezercise 5.2.2. Show that 7 is the unique trace on Ag.

Theorem 5.2.1. For each § € [0,1] N (Z + Z6), there is a projection
P € Ay such that T(P) =p

Proof. We may assume that 0 < 8 < -;- Consider the following element
P = Ma-m(-g-)U_m + My + MgUm,

where f is self-adjoint, and m is a nonzero integer. Then, we see that P is a
projection if and only if the following conditions are satisfied:
(i) g(t)g(t —mb) =0,
(il) g(O){1- f(t) - f(t—-mb)} =0,
(iii) f(£)(1 = £(£)) = lg(O)® + |g(t + mO)[>.
Choose € > 0 with 0 < e < mf < mf + € < -% Let f be the piece-wise

linear function on [0, 1] connecting the points (0, 0), (¢, 1), (m6, 1), (mf + ¢,0)
and (1,0). Also, let g be a continuous function whose support lies in the

interval [mé, mé + €| where g(t) = \/f(¢)(1 — f(t)). Then, we see that f and
g satisfy the above conditions and 7(P) = fol f(®)dt=mb. O

We denote by V' the multiplication by the function ¢t — e2™. Then we
see that

(5.2.4) 2™V = v,
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where U is the unitary in (5.2.2), and Ay is generated by U and V.

Ezercise 5.2.8. Show that any C*-algebra generated by two unitaries with
the relation (5.2.4) is isomorphic to Ag.

Recall that every irrational number 6 in [0,1] has a unique continued
fraction expansion [a;,az,...] as in (3.4.7). Let By be the unital AF algebra
whose Ky-group is Z + Z6. Note that the associated Bratteli diagram of By is
determined by the sequence (3.4.6). More explicitly, Bs = l_ir_n)(B,,, #n), where
B, =M,, & M,,_, and

a, times

n: Mg, &M, , — M, . &M, :(z,y) — (Diag(z,...,,y), ).

The figure (3.1.4.f) represents the Bratteli diagram for By in the case ap, =1
for each n = 1,2,.... In the following, we find unitaries U and V in By
satisfying the relation (5.2.4). This would give an embedding of A4 into Bg.
We denote by {e; : j € Z,, } the usual orthonormal basis for C?~. Let U, and
V. be the unitaries in M, given by

Up:ej— ejy, Vo i ej = Mej, JE€Z,,,

where A, = exp(21ri§2). We will find a unitary Wy, in M, such that
n

a, times
. % ~ * 4
(5:25)  [|Un~ Wa(Diag(Un-1, -, Un-1, Un-2))W3ll < —,
a, times
| —— . ™ 4n
(5.2.6) "Vn - Wn(Dlag (Vn—-l, ceey Vn—-]_, Vﬂ—z))Wn” < +

On—2  Qn-1
Now, we define the map

a, times

Yn : Bp = Bpy : (2,y) = (Wy(Diag(z, ..., z,y))W,,z).

Since Y 31;- < 00, the sequences {(Upn,Un—1):n=1,2,...} and {(Vo,Vh_1):
n =1,2,...} converge to the unitaries U and V, respectively, in the inductive
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limit C*-algebra li_r)n(Bn,z/),,), which is *-isomorphic to By by the discussion
in §3.1. The easy relation
VaUn = exp (21ri&) UnVa, n=1,2,...

an

would give the required relation (5.2.4), because lim,, %ﬁ = 6. In order to find
W, with (5.2.5) and (5.2.6), we need the following lemma:

Lemma 5.2.2. Let T be an operator in B(H) and {e;, f; : 1 =0,1,...,n}
an orthonormal set of H with Te; = €;41,Tfi = fiy1 for1 =0,1,...,n— 1.
Then there is an operator S € B(H) such that
(i) S¢=TEforze{e,fi:i=0,1,...,n—1}4
(ii) S™eo = fn and S™fy = ey,
(i) |IS-T) < =.

Proof. Let M, be the subspace spanned by {ej, f;} for j = 0,1,...,n.
Let U; be the unitary from M; onto M;4, defined by ((1) (1)) with respect to
the given bases. Define
v=(ive ve) o on) (2 20%%)
1/vV2 -1/v2)\0 ™" J\1/v2 -1/v2
We define S on M; to be the unitary VU; for j = 0,1,...,n. From the
relations V" = ((1) (1)) and ||V —1|| = |e™/" —1| = 2sin —

< _7_r_’ it is easy to
2n n
see that the required properties hold. O

For the brevity, we only consider the case when a, = 1 for each n =
1,2,..., because the general case is similar. We fix a natural number s with

dn-2 <s< q"—2_2- This is possible if n > 5. We also denote by b the integral

4
part of In—1 nd put ¢ = gn—1 — b. We apply Lemma 5.2.2 to the unitary

U, and the bases {e_p,e_pt1,...,€—bts} and {ec,€ct1,-..,€cts}, to get U},
which send the subspace M; spanned by {e_yj, ec+;} onto the subspace M;,
spanned by {€_p+j+1,€ctj+1}, for § = 0,1,...,s — 1. We also denote by
{e} :i € Z,,_,} and {e : i € Z,,_,} for the usual orthonormal bases for
Cin-1 and C?"-2, respectively. Define the unitary W, : Ci»-t ¢ Ci~-2 — C?»
by

Wa(ei) = firv mod gn1,  Wa(ef) = gira mod gn-2,
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where
P { (UDk(ee), 0<k<s-—1,
= .
€—btk> 8 < j <dgn-1,
{ (U4 e—p), 0<L<s—1,
ge =
€Ec+e, § <Ll< gn_2,
) _ T
and d is chosen so that [A\¢ — A%, | < . We see that
n—2

U, = W,(Diag (Un—1,Upn—2))W;,

4
il . Put

and get the inequality (5.2.5) because il <
S dn—-2

V= Wa(Diag (Va-1, Va-2))Wy.

It remains to show that

b o 4z

(5.2.7) +

Ve = Vall < p

n—2 dn--1

Recall the following basic properties for the sequences {p,} and {g.};

Pndn—-1 — gnpn-1 = *1,
Pn  Pn-2
q_n - qn-2
For k with s < k < g,_1, we see that

DPn-1  Pn-2| _ 1

< = .
dn—-1 dn-2 dn—29n—-1

(Ve = Vad(e—paill = IAZPHE = A2

= |exp 2mi(—b+ k) (p—" - p"_l) -1

v dn  4n-1
2ri(—=b+ k 2
dndn-1 dn-1

For £ with s < ¢ < ¢,,—2, we also have

IV = ViX(eerdll = PDHE = 2734 = [A5H = 274

n—2 n—2
£
An—2|

< PG = ALl + I -
< - +exp 21ri€(p—"—p"——2>—1|

A+ AR5 = A

dn-2 dn dn-2
27l 2
S is + |exp e _ 1| S e + Yis )
dn—-2 dn—19n—2 dn-2 dn-1
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Finally, it remains to estimate ||V,,— V|| on the subspace M;, which is invariant
under V, and V,,, for j = 0,1,...,s—1. Considering the vectors i = (UL (ec)
and g; = (U})’(e-3) which lies in M,, we see that Volum; has eigenvalues
A237 (= Agt) and A %E7. Also, note that V|, has eigenvalues A-t+7 and
A¢ts. Now, we have

“Vr,;IM,' - anM,‘ ” < ”Vri!Mj - Afl+j1Mj ” + ”’\fz-”le - VnIM,' "
< max{AE - ASH| AT —acH |} 4 g0 g
2 T 2r 2
, + +
dn—-1 gn-2 dn—-1
T 4=

< max {
dn-1

B dn-2 dn-1 ’

where the third inequality follows from the former calculations and

b . 2 27
AR = A= =1 = fexp = - 1] <

n dn

This completes the proof of (5.2.7), and we get the following:
Theorem 5.2.3. There is a x-isomorphism p from Ay into By.

Combining Theorems 5.2.1 and 5.2.3, we see that the range of the projec-
tions in Ag under the trace is exactly [0,1] N (Z + Z6). It is easy to see that
0,1]N(Z+2Z6) =[0,1]N(Z+2Z6') if and only if 6 = 6 or § = 1 — §'. Because

Ag and A;_g is *-isomorphic each other, we obtain the following classification.

Theorem 5.2.4. Let § and ' be two irrational numbers in the unit
interval. Then Ag and Ag is *-isomorphic if and only if 0 =6 or6 =1—6'.

Now, we turn our attention to the cases of rational rotations. Let § = %
be a rational number in the umit interval with (p, ¢) = 1. Then the rotation o
by 6 defines a Z,-action on the torus T. For a complex number A with [A| = 1
and z € T, the unitary Uy in M,(C) given by

U,\(Cq_l) = Aeg, U(ei)zei-{-la izo,lv'“,q—'za
and the g-dimensional representation of C(T)

wz(f):eih—)f(aia:)ei, 1=0,1,...,g—-1
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satisfy the covariant relation m,(a(f)) = Usm-(f)UX, and they give rise to
the irreducible representation m x Ux. It can be shown that every irreducible
representation arises in this way and two irreducible representations 7, x Ux
and m, x U, are unitarily equivalent if and only if A = p and the orbits of z
and y are identical. In this way, we see that A is a g¢-homogeneous C*-algebra
with the spectrum T? [To87, Theorem 4.2.1]. Actually, every homogeneous
C*-algebra with the spectrum T? is *-isomorphic to A ® My (C) for a rational
number 6 in the unit interval and a natural number n [DR85]. The rational
rotation C*-algebras are also classified as in Theorem 5.2.4.

We also consider more general construction which includes the rotation
algebras. Let G be a discrete group then a character x of G induces a unique
+-automorphism a,, on the C*-algebra C5(G) by

ay(Ls) = x(s)Ls, seq.

In this way, we get a Z-action on C}(G) and consider the C*-crossed product
Z X o, C3(G). These C*-algebras are completely classified when G is a free
group with finite generators, a finite group, or the free abelian group with
two generators [Yi90]. If G = Z then the every character x is determined
by a complex number e2™8_ for a number 6 € [0,1]. The induced action ay
on C*(Z) = C(T) is nothing but the action induced from the rotation by 6,
and gives rise to the rotation algebra Ag. If G is a discrete subgroup of T
then the inclusion map ¢ : G — T is a character in itself. It is easy to see
that this character defines a minimal action on C-', and so we get a simple
C*-algebra Ag = Z X4, C (@) The irrational rotation algebra Ay corresponds
to an infinite cyclic subgroup of T. If G is an infinite torsion subgroup of T
then Ag is the weighted shift algebra considered in [BD75]. For countable
subgroups G; and G, of T, two C*-algebras Ag, and Ag, are *-isomorphic if
and only if G; = G, [Rd82b]. The similar situation has been considered in
[dBZ84] for an arbitrary discrete abelian group G.

We conclude this section to mention another interesting properties of the
irrational rotation algebras Ag. First of all, the set of all invertible elements
of Ag is dense [Rd85], [AP89], [Pu90]. This is equivalent to say that the
topological stable rank of Ag is 1 [Rf83]. There is an another notion of rank.
A unital C*-algebra is said to be of real rank zero if the set of invertible
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self-adjoint elements are dense in set Aj of all self-adjoint elements [BP91].
There are several equivalent conditions, and we just mention two of them:
A has the property (FS) if the self-adjoint elements with finite spectra are
dense in Aj; A has the property (HP) if every hereditary C*-subalgebra of A
has an approximate identity consisting of projections. It is known that every
irrational rotation algebra Ay is of real rank zero [CEI90], [BKR92], [EE].
From Proposition 4.2.8, we see that every element z in the unit ball A; of a
unital C*-algebra A is the limit of the convex combinations of unitaries in A.
It was shown that if the invertible elements are dense in A then every z € 4,
is the convex combination of two or three unitaries [KP85]. In the case of

irrational rotation algebras, two unitaries are not sufficient [PR88].

NOTE

For more informations on the representations of the irrational rotation algebra Ay, we
refer to [Bk84]. For the conditions for crossed products to be postliminal, we also refer to
[Zm68], [AT]. Theorems 5.2.1 and 5.2.3 are due to Rieffel [Rf81] and Pimsner-Voiculescu
[PV80a], respectively. We have followed [Da84] for the proof of Theorem 5.2.3. See also
[L091] for more systematic approach. The embeddability of G X o C(X) into an AF algebra
is characterized by Pimsner [Pm83]. See also [Kj81], [Kj84] for another relations between
Ag and By. The rational rotation algebras are classified in [HkS81]. See also [Yi86] and
the references cited there for another ways to classify rational rotation algebras. There are
another homeomorphisms of T, called Denjoy homeomorphisms. Crossed products arising
from these homeomorphisms are classified in [PSS86].

5.3. C*-algebras Generated by Isometries

Let Sy, 52, ..,Sn (n > 2) be isometries on an infinite dimensional Hilbert
- space H satisfying the relation

(5.3.1) S$187 + 5255 + -+ SnS,, = 1.

We will denote by C*(S;) the C*-algebra generated by Sy,...,Sn. We also
denote by U the bilateral shift on £2(Z) which sends e; onto e;;, where {e; :
i € Z} is the usual orthonormal basis of £2(Z). If we put T; = S; Q U for i =
1,2,...,n, then {T; : 1 = 1,2,...,n} is also a family of isometries satisfying
the relation (5.3.1). We also denote by C*(T;) the C*-algebra generated by
T,...,Th.

For k = 1,2,..., let I'; be the set of all ordered sets p = (p1,p2,---,Pk)

whose elements come from {1,2,...,n}, and put V, = T, T}, ... Tp, for each
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p € I't. We use the convention I'y = {0} and V; = 1. It is easy to see that
the operators {V,V}* : p,q € ['t} form a matrix unit, and so the linear com-
binations of them form a C*-subalgebra By of C*(T;) which is *-isomorphic
to Mpx(C). Because By C Byy; and 1 € By for k = 1,2,..., we see that
B = Uy By, becomes a UHF C*-subalgebra of C*(T;). Now, we define a linear
map ¢ : C*(T;) — B(H Q ¢*(Z)) by

+oo
(5.3.2) $(z)= Y EukE;,
i=—00
where E; = 13 @ p;, and p; € B(¢%(Z)) is the one-dimensional projection onto
Ce;, for i € Z. Note that the right side of (5.3.2) converges to a bounded
linear operator on H ® ¢%(Z) by Proposition 2.1.1. For any = € C*(T), we
have

#(z)*¢(z) = ZE,-:I:*E',-;I:E; < ZEix*a:E’,- < |lz*z|| ZEi = ||z|%1,

and so ¢ is a contraction. It is also easy to see that o(VpVy) = V) if
P, q € Tk, whereas ¢(V, V) = 0 if p € T and g € T'p with k # £. Because the
linear combinations of V,V;* form a dense *-subalgebra of C*(T;), we see that
¢ in (5.3.2) defines a conditional expectation of C*(T;) onto B by Theorem
4.4.3. It is also easy to see that ¢ is faithful.

Lemma 5.3.1. Put Ry = TTF, and Uy = Eper‘k VpR V) for k =
1,2,.... Then we have ¢(z) = limg_.o UtzUy for each z € C*(T;), in the
norm topology.

Proof. Because UiU; = EpEFk VPV;,* = 1, each U is an isometry and
{Ut : k = 1,2,...} is uniformly bounded. Hence, it suffices to show the
equality for z = VoVy. If p,qg € Ty then we have UVpViUe = VV) by a
calculation. From the relation By C By, for £ < k, we see that limg U, ;72U =1z
for each * € B, and £ = 1,2,.... The equality follows from the relation
#(z) = z in this case. Now, we assume that p € T and ¢ € I'p with £ < k.
Then we have

UiViVyUr = ) RV ViRV = > V,RIV;RV)V,S
JET JETk_y
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Note that RfV; # 0 only if V; = ToT¥ 7!, in which case RLV; = (T})tH.
Therefore, we see that Uy V, VUi = 0 since T}T, = 0. For m > k the relation
UnVpV{Um = 0 also follows similarly. O

Let I be a non-zero closed two-sided ideal of C*(T;). Because ¢ is a
faithful conditional expectation, we see that ¢(I) is also a nonzero ideal of B,
which is closed. Because every U H F algebra is simple by Corollary 3.2.3, we
see that ¢(I) = B. By Lemma 5.3.1, 1 € ¢(I) C I, and so C*(T;) is a simple
C*-algebra.

Theorem 5.3.2. The C*-algebra C*(S;) is simple. If Si,...,S, are
another isometries with the relation (5.3.1) then there is a *-isomorphism of
C*(Si) onto C*(S!) which sends S; to S! for eachi =1,2,...,n.

Proof. Note that C(T) is the C*-algebra generated by U. Let ¢ : C(T) —
C be the x-homomorphism given by the evaluation map at 1 € T. Then 1Q 1
is a *-homomorphism from C*(T;) onto C*(S;), which is an isomorphism from
the simplicity of C*(T;). For the second assertion, put S = S; & S!. Then
the map z @y — z gives rise to a x-isomorphism from C*(S}') onto C*(S;) as
before. O

. We denote by O,, the C*-algebra generated by n isometries S;,S, ..., S,
with the relation (5.3.1). This is said to be the Cuntz algebra. The Cuntz
algebra arises naturally from the crossed product constructions.

Let G be the free product Z; * Z, 1, (n > 2) of the two cyclic groups,
that is, G is generated by a and b with the relations a? = e and "' = e.
We denote by X the set of all sequences z : N — {a,b,b%,...5"} such that
zk = a if and only if zx4; = b’ for some i = 1,2,...,n. Then X is a compact
Hausdorff space with respect to the Tychonoff topology. We define two maps
04 and oy from X into X by

(z1,22...), T = a,
oa(z0,21,...) =

(a,zo, z1,...), To="b,i=12,...,n,
(bny’xla--')) Zo = a,
Ub((l?o,.'l']_,...) = (21,'1,.’152,...), Tog = bn,

(bi+laxlaw2’-.-)’ xozbi’izl’z,...,n—‘l-
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It is easy to see that o, and o, are homeomorphisms of X satisfying the
relations (0,)% = (0p)"*! = 1x. Therefore, we have the topological dynamical
system {X,G,0}.

It is easy to see that two points z and y in X are in the same orbit if and
only if there is a natural number m such that z,, = yp4n, for sufficiently large
n, and so we see that the system {X, G, o} is minimal. Next, we show that the
fixed point set X * is nowhere dense for each s € G. Because X't = g,(X*),
it suffices to consider conjugacy classes. It is easy to see that the set of

conjugacy classes is represented by
{a}u{p:i=1,2,...,n}UA, UA,,

where A, (respectively Ap) is the set of all reduced words which begin with
a power of b (respectively a) and end with a (respectively a power of b). We
also note that s € G is of finite order if and only if it is conjugate to a or b’ for
some i = 1,2,...n, for which the fixed point set X is empty. For s € A,UA, -
we define two points z4(s) and z_(s) in X to be the periodic sequences with
periods given by the letters in the reduced words of s and s™!, respectively.
It is easy to see that X° consists of the two points z4(s) and z_(s). From
Corollary 5.1.4, we have the following:

Proposition 5.3.3. The C*-algebra G X, C(X) is simple.

Let p be the characteristic function on the subset Xo = {z € X : 29 = a}
of X which is closed and open. If we identify G with its image in G X, C(X)
then we have the following relations:

p+apa=1,

5.3.3
( ) p+bpb 4. 4 b0"ph" = 1.

Therefore, every covariant representation of {C(X), G, a} gives rise to a uni-
tary representation of G and a self-adjoint projection p with the relations
(5.3.3). Conversely, every covariant representation of {C(X),G,a} arises in
this way. To show this, let {u,H} be a unitary representation of G with a
projection p with the relations (5.3.3). Because the family {o,(Xj) : s € G}

forms a base of X consisting of clopen subsets, the characteristic functions
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{Xe.(X0) : $ € G} generate the C*-algebra C(X). We see that the mapping
Xe,(Xo) — u(s)pu(s)* defines a representation of C(X) by the relations (5.3.3).
It is clear that this representation together with u is covariant.

Proposition 5.3.4. The C*-algebra G x4 C(X) is *-isomorphic to the
C*-algebra M,(O,,).

Proof. With the generators a, b and p of Gx ,C(X) satisfying the relations
(5.3.3), define generators of M>(0,,) by

St 0\ _ & 0 0\ _
(0 0)‘“5“ (10)‘““

for k =1,2,...,n. Conversely, for the generators Sy, ..., S, of O, put

_(r oY __(0o1) ,_(0 Sx
P=Ro 0)’ “T\1 0) °T\s SSt+---+8,5%,)

Then, it is easy to see that a,b and p satisfy the relation (5.3.3). O

By Theorem 5.3.2 and Proposition 5.3.4, we see that the full crossed
product G X, C(X) is simple, and so we have

(5.3.4) G Xo C(X) =G Xar C(X).

This gives an another proof of Proposition 5.3.3. Note that the group G
" contains a copy of the free group F, on two generators. For example, two
elements abab and ab?ab? generate a copy of F;. By Proposition 4.5.2, G is
not amenable. Therefore, we see that the converse of Theorem 5.1.1 does not
hold. We will also show that G o, C(X) is nuclear, from which we infer that
the converse of Exercise 5.1.4 also fails. Because C}(G) is a C*-subalgebra
of G Xqor C(X), this also gives an example of non-nuclear C*-subalgebra of
a nuclear C*-algebra as was mentioned at the end of §4.4. To do this, we
consider the another crossed product construction as follows:

Let 7™ be the UHF algebra generated by the sequence

My, > M2 oo M. ...
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Then F" may be described as an infinite tensor product of copies N;’s of
M, as was explained in §3.2. We denote by 4; = ®2;N, and consider the
embeddings

Ay — A 1= . A_j— ...

given by z — e;1 @ 2 : Aj — Aj_;. The resulting inductive limit Cy, is *-
isomorphic to the C*-algebra K(H)® F". Because we may continue the above
embeddings to the left-side for positive integers and all A; are isomorphic, we
may consider the *-automorphism « induced by the shift to the left. Then
the crossed product Z K o Cy, has a unitary u with the relation a(z) = uzu*
for z € C,.

Let P be the identity of Ay sitting in the C*-algebra Z X ,, C,,. Because
uPu* = e;; ® P € M,, ® A;, we have the relation uP = PuP. If we put
v = uP, then we see that

P(Z u'z; + zo + Z a:;u‘)P = Z v'Pz;P + PzoP + Z Pz;Pvt,
i<0 i>0 i<0 i>0
for z; € C,,. This says that G, = P(Z Xqr C,)P is generated by PC,P = Ap
and v. If we put S; = (e;; ® P)v for i = 1,2,...,n, then we have the relations
S;Si=P, S187 + -+ SaS, = P.
For k-tuples (p1,...,pk) and (g1, ...,qx) in Tk, we see that

(Spr---Sp)(Sqr---Sgu)* = €p1g1 @ ®Ep,q, ®P € Ag = M ®- - QM Q A

Therefore, it follows that the C*-algebra Ay is generated by the elements of the
form (Sp, ... Sp,)(Sq, ---Sq.)*, and so G, is generated by Si,...,S,. Hence,
G 1s *-isomorphic to O,,. If we denote by Pj the identity of Ax C Z X4 Cp
for k =0,—-1,-2,..., then Z X 4, Cp, is the inductive limit of the sequence

Po(Z X ar Cn)Po — P_l(Z X o Cn)P__l — .. .P_k(z X ar Cn)P-—k —....

It is also easy to see that Px_1(Z X orCpn)Pr—1 is generated by Pi(Z X orCp)Pi
and the subset {e;; ® Pr : 4,5 = 1,2,...,n} of Ax_;. Therefore, we have the

following;:
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Proposition 5.3.5. The C*-algebra Z X 4, C,, is *-isomorphic to the C*-
algebra K(H) ® O,,.

By Exercise 5.1.4, we see that the Cuntz algebra O,, is nuclear. Note
that the identity 1 of the Cuntz algebra is an infinite projection. This is a
sharp distinction from simple AF algebras or irrational rotation algebras. It
is known that O,, is not the inductive limit of postliminal C*-algebras [Cu77].
On the other hand, it was recently shown [EE] that the irrational rotation
C*-algebra is isomorphic to the inductive limit of a sequence of direct sums of
two matrix algebras over C(T). The construction of O, has been generalized
to the C*-algebras generated by partial isometries [CK80, Cu81c].

We close this section with an extension of the Cuntz algebra by the com-
pact ideal (), which will be useful to compute the K-groups of the Cuntz
algebras. We denote by D the C*-subalgebra of O, generated by Sy, ..., Sy,
and by J the closed ideal of D generated by the projection P =1-% . S;S¥.
As before, put V, = S;,5p, ... Sp, for p = (p1,p2,...,pk) € k. Then J is
the closure of the linear span of elements of the form VPV, with p,q € Ty,
k=1,2,.... From the easy relations

(GPVVoPV)* = 6,V,PVE,  (V,PVp)* = VPV,

we have the following:

Proposition 5.3.6. The ideal J is x-isomorphic to K(H), and we have
the following short exact sequence:

(5.3.5) 0—-J —>D— 0, —0.

NOTE

The C*-algebra O, was studied by Cuntz [Cu77], in which Theorem 5.3.2, Proposi-
tions 5.3.5 and 5.3.6 have been proved. For the proof of Theorem 5.3.2, we have followed
a simpler method in [dSvD81]. The construction of the topological dynamical system
{X, G, 0} was taken from [Sp91]. The embedding of C}(Z3*Z3) into the nuclear C*-algebra
O3 is due to Choi [Ch79], in which he showed that if n = 2 then G Xor C(X) = M3(03) is
actually isomorphic to Q2 (see also [PS79b]). Later, Blackadar [B185] showed that every
non-postliminal C*-algebra contains a nonnuclear C*-subalgebra. See also [Ki!].
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5.4. K-theory for C*-algebras

In this section, we introduce the notion of K-theory for C*-algebras which
is periodic with period two, and so enjoys the six-term exact sequence. Because
the theory is now standard, we just define the K-groups and state the results.
Detailed arguments are found in monographs such as [Bl, Chapter IV] or [M,
Chapter 7]. Recall the definition of Ko(A) for a unital C*-algebra A in §3.3.
We denote this group by K{(A) for a moment. Thus, an element of Ky(A) is
a formal difference [p] — [g], with the identification [p;] —[q1] = [p2] — [¢2] if and
only if there is an idempotent r € M,,(A) such that p; + g2+ ~p2+q1 + 7.
For a C*-algebra, unital or non-unital, let A; denote the algebra obtained
from A by adjoining the identity, and 7 : Ay — C the canonical quotient map.
We define

(5.4.1) Ko(A) = Ker[ K)(Ar) — K}(C)].

Therefore, every element of Ky(A) is written as a formal difference [e] — [f],
where e, f € M,(Ar) with e— f € M,(A). It is easy to see that we may assume
that f = p, for some large n, where p, denotes the identity of M,(Ay). It is
also easily seen that if A is unital then Ky(A) = K{(A), and so there is no
confusion. It is not so difficult to see that Theorem 3.4.1 holds for this new
Ky-group. The following is one of the reason to consider the Kj-groups for
non-unital C*-algebras.

Proposition 5.4.1. Let
(5.4.2) 0=J—A—A/J—0
be a short exact sequence of C*-algebras. Then the sequence
Ko(J) = Ko(4) = Ko(4/7)

is exact.

Two *-homomorphisms ¢, : A — B are said to be homotopic each other
if there is a family {¢; : ¢ € [0,1]} of *-homomorphisms from A to B such
that ¢o = ¢, ¢1 = ¢ and the map ¢ — ¢¢(a) is continuous for each a € A.
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Proposition 5.4.2. If ¢, : A — B are homotopic each other then we
have @, = ..

Another important property of the Ko-group is the stability. If p is a
one-dimensional projection in C*-algebra K(H) of compact operators, then
the map ¢ : A — A @ K(H) defined by

#(a) =aQ® p, a€ A
is a *-homomorphism, which induces a group homomorphism
P : Ko(A) = Ko(A Q K(H)).

Proposition 5.4.3. The above homomorphism ¢, is independent of the
choice of the projection p, and defines a group isomorphism between Ko(A)
and Ko(A @ K(H)).

For a C*-algebra A, we denote by
Un(A) = {u e U(Mp(A])) : u -1, € M,(4)},

where 1, denotes the identity of M, (Ar). This is a topological group with the
norm topology. We also denote by U,(A)o the connected component of the
_ identity, which is a normal open subgroup of U,(A). We embed U,b(A) into
Un+1(A) by u +— Diag(u,1). Let Ux(A) and Us(A)o be the inductive limits
obtained in this way. Now, we define

(5.4.3) K1(A) = Uso(A)/Uoo(A)o = EmUn(4)/Un(A)o.

Another description of K;(A) would be useful. For a C*-algebra A, we define
the suspension SA by

SA={feC([0,1],4): f(0) = £(1) = 0},

which is an ideal of C[0,1] ® A.
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Proposition 5.4.4. For a C*-algebra A, we have

For u € Un(A), let (2¢)efo,1) be a path in Us,(A) from ((1) (1)) to

( 1(; ugl ) . For example, we may put

. (u 0) (coslz"-t —-sin%t) (u"l O) ( cos Jt sin%t)

t = . . :
01 sin 51 cos 5t 0 1 —singt cos %t

If we define e; = z;pp2; ' for t € [0,1], then e = (et)tefo,1) is an idempotent

in M3,((SA)r), where p, = <(1) 8) is the projection in M,(Ar). One can
show that the map

(5.4.4) 84 : [u] > [e] — [pn] : K1(4) — Ko(SA)

gives a group isomorphism from K;(A) onto Ko(SA), where py, is the constant

function in M3, ((SA)s) with the value ((1) g .

Ezercise 5.4.1. Show that the K;-group of an AF algebra or a von Neu-
mann algebra is {0}. Show also that K;(C(T)) = Z.

In the above description of the K;-group, the groups U,(4) and U,(A)o
may be replaced by the group GL,(A) of all invertible elements and GL,(A)o,
respectively. Now, we define the connecting map K1(A4/J) — Ko(J), to get
a long exact sequence. For u € GL,(A/J), let w € GLy,(A) be a lift of

( u 0 ) Then the map given by

0 u?!
(5.4.5) 0: [u] = [wpaw™] = [pa] : K1(A4/JT) = Ko(J)

defines a well-defined group homomorphism from K;(4/J) to Ko(J). If A is
a unital C*-algebra and a unitary u in A/J lifts to a partial isometry v € 4

then (g uf’_l) lifts to the unitary w = (1 —vv"‘v 1 :}fv ) Hence, we

have

o = lomw~) - )= (7 B R
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If A = B(H) and J = K(H) then the map O sends a unitary in the Calkin
algebra B(H)/K(H) to its Fredholm index. Recall that an operator = € B(H)
is said to be a Fredholm operator if both Ker z and Im z are finite dimensional.
It is well-known that z is a Fredholm operator if and only if the image of z in
the Calkin algebra is invertible. In this sense, the map 8 in (5.4.5) is said to
be the index map.

Proposition 5.4.5. For the short exact sequence (5.4.2), we have the

following long exact sequence;
L T o L T
Ky(J) — Ki(A) — E1(A/J) — Ko(J) — Ko(A) — Ko(A/J).

Ezercise 5.4.2. What is the K;-group of the Calkin algebra ?

The higher K-groups are defined inductively: K,(A4) = K,,_;(SA4). We
define a group homomorphism 84 : Ko(A) — K;(SA) as follows: Put

QA ={f € C([0,1), 4): £(0) = F(1)}.
Then we have the following split exact sequence
(5.4.6) 0o SA— Q45 40,

where 7 is the evaluation at 1, and so we see that K;(SA) = Kern,.. For
a projection p € My(Ay), we define f,(t) = e*™*p + (1 — p) for t € [0,1].
Then f, € Q(GLn(Ar)) = GLo(UAf)). If [p] — [g] € Ko(A) then we see that

fof;! € GL,(QA) and n*([fpfq—l]) = 0. Now, we define

(5.4.7) Ba:[pl =g~ [fpf; '] : Ko(A) = K1(SA) = Ky(A).
Theorem 5.4.6. The map (4 is a group isomorphism.

Corollary 5.4.7. For the short exact sequence (5.4.2), we have the fol-

lowing six-term exact sequence:

Ko(J) = Ko(4) =5 Ko(A/J)

(5.4.8) Ta 13
Ki(A)J) & Ki(A) < K (J)
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If [¢] — [pn] € Ko(A/J), where e is an idempotent in M,((A4/J)r) with
n(z) = e for z € Mp(As), then we see that exp(27miz) € Mn(Jr). We define

(5.4.8) exp : [e] — [pn] — [exp(2riz)] : Ko(A/J) — Ki(J).
: _ [ exp(2mitz) 0 . . . )
Note that 2z, = 0 exp(—2ritz) is a path in Uz,(A) which con
10 exp(2miz) 0 .
nects (0 1) and ( 0 exp(-—27ria:))' From this, we see that the
following diagram commutes: '
Ko(A/J) =5 K (J)
lﬂA/J 10.1

Ki(S(A/7) = Ki(54/87) 2 Ko(ST)

In this sense, The connecting map 8 : Ko(A/J) — Ki(J) is said to be the
exponential map.

5.5. K-theory for Crossed Products of C*-algebras

We apply Corollary 5.4.7 to get six-term exact séquences for the crossed
products of C*-algebras. To do this, we consider the twisted tensor products
by the C*-algebra Oy, for n = 1,2,..., where O; = C(T) denotes the C*-
algebra generated by a single unitary S; whose spectrum is the whole circle,
and O,, with n = 2,3,... is the Cuntz algebra. For a C*-algebra A acting on
a Hilbert space H and a family # = (U;,Us,...,Uy) of pairwise commuting
unitaries in B(H), we define the twisted tensor product A xy Op by the C*-
subalgebra of B(H) ® O,, generated by A® 1 and U; ® S1,...,Un @ Sp. If
n = 1 then this reduces to the usual crossed product Z x,, A with a single
*-automorphism a = AdU;.

We denote by £ the C*-subalgebra of B(H) ® Op41 generated by A® 1
and U; ® S1,...Un, ® Sp. We define a canonical endomorphism @ of On41 by

n+1
d(z) = Z Siz S}, z € Ont1.
i=1
Then {®(S1),...,®(Sr)} is a family of isometries with pairwise orthogonal
ranges such that ) i, ®(S:;)®(S:)* < 1. Applying Theorem 5.3.2, we see that

=1
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the map
(5.5.1) ¢ :aU; ® Si — alU; @ ®(S;), ac€A i1=12,...,n

extends to an isomorphism from € into B(H) ® Op4+1. We denote by £ the
C*-algebra generated by £ and ¢(£). We also define the map § on £ by

(552) ,3(16) = (1 QR Sn+1)$(1 ® Sn+1)*, z€E,

then from the relation S;41S554; =1— E" S;S}, we see that

i=1
(5.5.3) B(z) = ¢(z) — ia ® 5i)2(1® S)* € £.
=1

Therefore, the C*-algebra £ is nothing but the C*-subalgebra. of B(H) ® Op 11
generated by £ and B(€). We denote by T (respectively 7 ) the closed ideal of
€ (respectively 7) generated by B(A ® 1) (respectively B(€)). We also denote
by K = K(H) the compact ideal of B(H).

Proposition 5.5.1. We have the following short exact sequences:

(5.5.4) 07T
(5.5.5) 07

~ where T (respectively 7 ) is *-isomorphic to K ® A (respectively K ® £). These
two sequences are related by the following commuting diagram;

KA ~ T g 4 A xy O,
(5.5.6) 1id®k lj lid

-~

K& ~ T 5 £ L Axyo0,
Wherek:A—»é'istheinclusionmapgivenbyav—»a®1,a.ndj:8—+§is
also the inclusion map.

Proof. First, we show that Z ~ K @ A. This follows from the similar
argument as in Proposition 5.3.6 if n > 2. When n = 1, it is clear that 7 is



166 5. CROSSED PRODUCTS OF C*-ALGEBRAS

the closure of the linear span of elements of the form (U; ® S )! 8(z)(U ® Sy )*/
forz € Aand 4,5 =1,2,.... Therefore, the map

(U1 ® $1) B(z)(U1 ® S1)* - €i; ® B(x)

extends to an isomorphism from Z onto K ® #(A® 1) ~ K ® A, where {e;;}
is the canonical basis for the compact ideal X.

Consider the the short exact sequence (5.3.5), here we also take account
into the case n = 1 as well as n > 2 by the above argument. By Proposition
4.4.8, the C*-algebra D is nuclear, and so we have the following short exact
sequence:

0-BH)®T »BH)®D — BH)® 0, —0

by Proposition 4.1.8. From the relation (B(H) ® J)NE = Z, we get the short
exact sequence (5.5.4). The isomorphism 7 ~ K ® £ and the exactness of ;
(5.5.5) are similar as above. The commutativity of the diagram (5.5.6) also .
follows from the uniqueness of the C*-algebra 4 xy O,. O

On the K-groups levels, it is easy to see that the following diagrams

K4(T) LN K4(€) K4(T) N K4(€)
(5.5.7) 'zl lid :l lid
Ky(4) — Ky(€) K4(®) — Kp(®)

commute. We apply the six term exact sequence (5.4.8) to the short exact
sequences (5.5.4) and (5.5.5). By (5.5.6) and (5.5.7), we have the following
commuting diagram,;

(558) ,
Ky (A) 25K (6) 25K (A xu 00) -5 Ko(A)25 Ko(6)25 Ko( A Xy 0n)-2

b el b e e

Ki(£) 25Ky (B) T Ky (A xy 00)-25 Ko(€) 22 Ko (8) T Ko (A xuu On)-2

with exact rows. In order to get the six term exact sequence for 4 xy O,, from
the diagram (5.5.8), we need the following;:
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Lemma 5.5.2.

(i) The homomorphisms k.« : Ky(A) — K (£) are injective.

(i) The homomorphisms B, : Ku(E) — Ku(£) are equal to the
homomorphisms (id — Z,_l(a"l) ) 0 j«, where @; denotes the
automorphism Ad (U; ® 1) of €.

Before the proof of Lemma 5.5.2, we state and prove the following funda-
mental theorem.

Theorem 5.5.3. Let A be a C*-algebra. Then we have the following
commuting diagram;

Ko(A) 2 Ko(A) = Ko(4 xu0,)

E ls
Ki(AxyOn) < Kj(A) < K1 (A)

where 0 =id — Y1, (a7 ). and ¢ : A — A xy Oy, is the inclusion a — a ® 1.

Proof. First, we compare two homomorphlsms ,3,.., Jx : Kp(€) — K#(S)
in the diagram (5.5.8). Because the map @; : £ — £ sends € into itself, we
see that ImfB, C Imj, by Lemma 5.5.2 (ii). Now, we show that j. is an
epimorphism. For z € K#(g), we have qu(z) = ¢«(y) = G 0 j«(y) for some
y € K4(€). Because

z —j*(y) € Ker gy = Im B, C Im .,

we have z — j.(y) = j«(2) for some z € Kx(£), and so z = j.(y + z) with
y+z € Ku(E).

Because k, is a monomorphism by Lemma 5.5.2 (i), we apply the Five
lemma of homological algebra to see that all vertical arrows in (5.5.8) are
isomorphisms. We identify K4(€) and K4(£) in the bottom row with K (A)
by the isomorphisms k, and j,ok,, respectively. Then it is easy to see that 3,
and . become id — Y 1, (@; ')« and tx by Lemma 5.5.2 (ii), respectively. O

Proof of Lemma 5.5.2. We first show that k. : K;(A) — Ki(€) is a
monomorphism. It is easy to see that we may work with A and £ instead with

the matrix algebras. Let v and v; be unitaries in A such that k«[ve] = kx[v1].
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This says that there is a continuous function t — w; € U(E) such that we =
vo®1 and w; = v; ® 1. Put

wy = w(8(we)* +1® Snt1Spyy), tE[0,1],
where 6 is an endomorphism of £ defined by

U:®S; HU{@S;(I-—S"+1S;+1), 1=1,2,...,n.

Then we have w} = v; ® Sp+15541 +1® (1= Sa41Sn4,) for j = 0,1. It is also
easy to see that w} lies in the C*-algebra Iy generated by Z and the identity
of £. This shows that [ve] = [v1] in K1(T) = K1(4).

We replace A and Uy,...U, by QA =C(T)® A and 1Q Us,...1Q Uy,
respectively, to get an another monomorphism

Note that the split short exact sequence (5.4.6) gives the isomorphism
K (Q4) ~ K,(SA) & K1(A) ~ Ko(A) & K1 (A),

by Theorem 5.4.6. From this we see that k. : Ko(A) — Ko(€) is also a
monomorphism.

For the proof of the second statement, we may also work on £ and £. Let
p be a projection in £. Then by the relation (5.5.3) we see that ¢(p) is the
orthogonal sum of the projections A(p) and (1® S;)p(1® Si)*, ¢ =1,2,...,n.
As elements of Ko(£), we have

[(1® Si)p(1 @ $i)*] = [a; (U ® Si)p(U: ® Si)*)]
= (@7 ):[(Us ® Si)p(Us ® Si)*] = (@ )u[p),

and so it follows that

(5.5.9) $u =B+ D (@ u 0y

=1
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on the Ky-group level. This is also the case on the K;-group level, because
#(u) is the product of the unitaries

Bluw)+(1-871), (1SS -1-1®S8:S)), i=1,2,...,n,

for a unitary u in €.

It remains to show that ¢, = j. by (5.5.9). To do this, we show that
¢,7:€E— £ are homotopic each other. If we denote by W = Z:';:ll SiS; S!Sy
then we have ¢(U; ® S;) = (1@ W)(U; ® S;) for : = 1,2,...,n. It is not so
difficult to see that 1 ® W is a self-adjoint unitary in £ Let W=E-—F be
the spectral decomposition of W and put W; = E + e™F for t € [0,1]. We

deﬁne¢t:8—>§by

a®l—a®l, a€aA,
Ui®Si— (10 W)(U; ® Si), t=12,...,n,

for t € [0,1]. Noting that ¢ and j coincide on A®1 C £, we see that ¢;: £ — £
is a continuous path of homomorphisms with ¢p = j and ¢; = ¢. O

Now, we apply Theorem 5.5.3 to the case when A is the trivial C*-algebra
Cl and U; = :-- = U, = 1. Then the twisted tensor product is nothing but
the Cuntz algebra itself. Therefore, we have the following commuting diagram:

Ko(C) =5 Ko(C) =5 Ko(Op)
[ K
K\(0n) = Ki(C) & Ki(C)
Noting that Ko(C) = Z and K;(C) = 0, we have the following:
Corollary 5.5.4. We have Ky(O,,) = Z,,—; and K1(0,) =0.

This classify the Cuntz algebras. Note that the Ky-group of the Cuntz
algebra is not an ordered group. See Proposition 3.3.5. Next, we consider the
case of n = 1, in which the twisted tensor product reduces to the usual crossed
product Z X, A as was mentioned before. Then Theorem 5.5.3 reduces to
the following:
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Theorem 5.5.5. For a C*-algebra A with a Z-action a, we have the

following six-term exact sequence;

Ko(A) L) Ko(A) —ft—) Ko(ZD(aA)

[ L
Ki(ZxqA) = Ki(4) < Ki(A)

where 0 = (14)x — (@—1)x-

Now, we apply Theorem 5.5.5 to the irrational rotation C*-algebra Ay =
Zx ¢ C(T). It is easy to see that both of two ¢’s in Theorem 5.5.5 become the
zero maps, and so we have the following exact sequence:

7z 27 — Ko(Ag)

[o o
Ki(4g) — Z Z

Hence, we see that Ko(Ag) ~ K1(Ag) ~ Z @ Z. Especially, Ag is not an AF
algebra by Exercise 5.4.1. It can be shown that K;(Ag) is generated by [U] and
[V], where U and V are unitaries with the relation (5.2.4). By the discussion
in §5.2, we also see that the unique trace of Ay induces an isomorphism of
Ko(Ag) onto the group Z + Z6.

We close this section to state a generalization of Theorem 5.5.5 to the

free group F,, on n generators.

Theorem 5.5.6. Let F, be the free group with generators a;,...,an,
and a an action of F, on a C*-algebra A. Then we have the following six-

term exact sequence;

(Ko(A)" 2 Ko(4) 5 Ko(FaXarA)
I I
Ky(Faxar 4) <= Ki(4) & (Ka(A)"
where f(n &+ © Tn) = Ljea (75 — (@, )u5).

If A = C1 and a is the trivial action then F}, X4, C is nothing but the
reduced group C*-algebra C}(F,). Hence, we see that Ki(C(Fn)) = Z".
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Because the inclusion C 5 F,, X4 C induces an isomorphism ¢, on the K-
level, we also see that Ko(CX(F,)) = Z with the generator [1]. Therefore, we
have the following.

Corollary 5.5.7. There is no nontrivial projection in C5(Fy).

NOTE

Theorem 5.5.3 is due to Cuntz [Cu81b], who combined and simplified his former
argument [Cu81a] for Corollary 5.5.4 and Pimsner and Voiculescu’s argument [PV80b] for
Theorem 5.5.5. The sequence (5.5.4) is said to be the Toeplitz extension. For an another
proof of Theorem 5.5.5, we refer to Blackadar’s book [Bl, §10] together with further results
on the K-theory of the crossed products by finite groups or continuous groups such as T and
R. See also the survey article [Rf85]. Theorem 5.5.6 is also due to Pimsner and Voiculescu
[PV82]. Corollary 5.5.7 gives us an example of a simple C*-algebra without nontrivial
projections. See also the paragraph just after Theorem 3.5.5. For a history and survey
surrounding the question of nontrivial projections, we refer to the article [Va89].
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