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LECTURE NOTES ON GEOMETRIC ANALYSIS

PETER LI

§0 INTRODUCTION

This set of lecture notes originated from a series of lectures given by the author at a
Geometry Summer Program in 1990 at the Mathematical Sciences Research Institute in
Berkeley. During the Fall quarter of 1990, the author also taught a course in Geometric
Analysis at the University of Arizona. For that purpose, the lecture notes were revised
and expanded. During the author’s visit with the Global Analysis Research Institute at
Seoul National University, he was encouraged to submit these notes in the present, but
still rather crude, form for publication in their lecture notes series. The readers should
be aware that these notes are meant to address the entry level geometric analysts by
introducing the basic techniques in geometric analysis in the most economical way. The
theorems discussed are choosen sometimes for their fundamental usefulness and sometimes
for purpose of demonstrating various techniques. In many cases, they do not represent
the best possible results which are available. Moreover, little time was spent on historical
accounts and chronological ordering.

The author would like to express his gratitute to the Global Analysis Research Institute
and the Mathematics Department of Seoul National University for their hospitality. In
particular, special thanks to Professor Dong Pyo Chi, Professor Hyeong In Choi, Professor
Hyuk Kim, and the geometry graduate students for making his visit a memorable one.

§1. FIRST AND SECOND VARIATIONAL FORMULAS FOR AREA

Let M be a Riemmannian manifold of dimension m with metric denoted by ds®. In
terms of local coordinates {z;,...,Zx} the metric is written in the form

ds? = g;jdz;dzj,

where we are adopting the convention that repeated indices are being taken the summation
over. If X and Y are tangent vectors at a point p € M, we will also denote their inner
product by

ds*(X,Y) = (X,Y).
If we denote S(TM) to be the set of smooth vector fields on M, then the Riemannian
connection V : S(TM) x S(TM) — S(TM) satisfies the following properties:

(1) V(f1X1+szz)Y = flVX1Y+f2VX2K forall X;,X,,Y € S(TM) and for all f], f2 €
C(M);
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(2) Vx(a1Y1 + ¢2Y2) = X(91)Y1 + 91 VxY: + X(92)Ya + g2V x Y3, for all X,n,Y; €
S(TM) and for all g1,9; € C®(M);

(3) X(Y,Z) = (VxY,X) + (Y,Vx2), for all X,Y,Z € S(TM); and

(4) VXY —Vy X = [X,Y], for all X,Y € S(TM).
Property (3) says that V is compatible with the Riemannian metric, while property (4)
means that V is torsion free. The curvature tensor of the Riemannian metric is then given
by

‘ RxyZ =VxVyZ —VyVxZ —VxyZ,

for X,Y, Z € S(TM). The curvature tensor satisfies the properties:

(1) RxyZ = -RyxZ, for all X, Y,Z € S(TM);

(2) RxyZ +RyzX + RzxY =0, for all X,Y,Z € S(TM); and
(3) (RxyZ,W) = —(RzwX, Y), for all X,Y,Z, W € S(TM).

The sectional curvature of the 2-plane section spanned by a pair of orthonormal vectors
X and Y are defined by

K(X,Y) = (RxyY, X).

If we take {e1,...,em} to be an orthonormal basis of the tangent space of M, then the
Ricci curvature is defined to be the symmetric 2-tensor given by

Rij =Y (Reiesekses)-
k=1

Observe that
Rii = Z K(ei,ex).

k#i

Let N be an n-dimensional submanifold in M with n < m. The Riemannian metric ds%,,

defined on M when restricted to N induces a Riemannian metric ds% on N. One checks
easily that for vertor fields X,Y € S(TM), if we define

V&Y = (VxY)
to be the tangential component of VxY to N, then V! is the Riemannian connection of

N with respect to ds%;. The normal component of V yields the second fundamental form
of N. In particular, one defines

—TH(X,Y) = (VxY)"

and checks that it is tensorial with respect to X,Y € S(TM). Taking the trace of the
bilinear form IT over the tangent space of N yields that mean curvature vector, given by

trﬁ = _}_I'

In the remaining of this section we will derive the first and second variational formulas
for the area functional of a submanifold. Let N* C M™ be a n-dimensional submanifold of
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a m-dimensional manifold M with m > n. Consider a 1-parameter family of deformations
of N given by Ny = ¢(N,t) for t € (—¢,€) with Ng = N. Let {z1,...,2,} be a coordinate

system around a point p € N. We can consider {z1,...,Zn,t} to be a coordinate system
of N x (—¢,¢€) near the point (p,0). Let us denote e; = dé¢ (-3—‘2-_7) for: =1,...,n and

T = d¢ (%). The induced metric on N; from M is then given by gi; = (ei,ej). We
may futher assume that {z;,...,z,} form a normal coordinate system at p € N. Hence
9ij(p,0) = &;j and V,,e;(p,0) = 0. Let us define dA; to be the area element of N; with
respect to the induced metric. For ¢ sufficiently close to 0, we can write dA; = J(z,t) dA,.
With respect to the normal coordinate system {zi,...,zn}, the function J(z,t) is given

by
Izt = Y&
" Ve(=,0)

with g(z,t) = det(gij(z,t)). To compute the first variation for the area of N, we compute
J'(p,t) = %{-(p,t). By the assumption that g;;(p,0) = &ij, we have J'(p,0) = 14'(p,0).
However, ,

g = det(g,'j)
n
= Z 915 €15
Jj=1

where c;; are the cofactors of g;;. Therefore

d'(,0) =Y g1;(p,0)c1(p,0) + D _ g15(p, 0) ¢} (p, 0)

y=1 j=1
= g;l(pv 0) + c’ll(pa 0)
By induction on the dimension, we conclude that ¢'(p,0) = >_i, g On the other hand,
ggi = T(ei’ ei)

= 2(Vrei,e;)

=2(V,,T,e;)
because {Z1,...,Zn,t} form a coordinate system for N x (—¢, €). Let us point out that the
quantity Z (V. T, e;) is now well-defined under orthonormal change of basis and hence

=1
is globally defined. If we write T' = T* + T™ where T" is the tangential component of T' on
N and T™ its normal component, then

S (VeTyei) = S VaTe) + 3 (VuT™ e
i=1 =1 i=1

= div(T") + Y eT" &) = D (T", Vesed)

i=1 i=1

= div(T") + (T, H)
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where H is the mean curvature vector of N. Hence the first variation for the volume form
at the point (p,0) is given by
d . n

T4 A (p0) = (divT* + (T", H ))d Ao 5,0)-
However, the right hand side is intrinsically defined independent on the choice of coordi-
nates and this formula is valid at any arbitrary point.

If T is a compactly supported variational vector field on N , then using the divergence
theorem the first variation of the area of NV is given by

d n
ZAN) B =/N(T ,H).

This shows that the mean curvature of N is identically 0 if and only if N is a critical point
of the area functional. Such a manifold is said to be minimal.

When N is a curve in M that is parametrized by arc-length with unit tangent vector e,
then the first variational formula for length can be written as

l
d = (T‘,e)lé —/ (T",V.e)
=0 ’ 0

Et-L

l
= (T, - / (T, V.e).

We will now proceed to derive the second variational formula for area. Let ¢: N x
(—¢€,€) x (—€,€) — M be a 2-parameter families of variations of V. Following the similar
notation, we denote d¢(’a%7) = ¢; for i = 1,...,n, and we denote the variational vector

fields by d¢(Z) = T and d¢(£) = S. In terms of a general coordinate system, the first
partial derivative of J can be written as

%t{(:z,t,s) = Z 99V, T,e;) J(x,t,s),
=1

where (g'/) denotes the inverse matrix of (9i;)- Differentiating this with respect to s and
evaluating at (p,0,0) we have

(L1) = Y S (Ve e))

=1

= Y (SENVeT )T+ 3 69 (S(VeiT,e5)) 7

ij=1 i,j=1

£ 3 (VT e)S()

3,J=1

= Z (Sgij)(ve‘T, ej) + zn: S(Ve,T,e;)

1,j=1 i=1

+ (Z(VeiT, e.-)) (Z(ve,. S, ej)) :

=1 j=1
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Differentiating the formula Y"y_, ¢**gx; = 6ij, we obtain

S (SgM)g; = =D 9" (Sgwi).
k=1 k=1
Hence

Sg7 =- " ¢*(Sgu)g"”
k=1
= —5¢ij
= —S(ei,€;)
= —(Vsei,e;) — (Vsej, ei)
= —(Ve S e} — (Ve; S, €i).
The first term on the right hand side of (1.1) becomes

n n n
Z (Sgij)(veiT’ e.i) = Z (Ve, S, ei)(ve;T’ ej) - Z (Vej S, ei><ve.'T’ ej)'
ij=1 ij=1 i=1

The second term on the right hand side of (1.1) can be written as

=1

zn: S<VeiT7 ei) = i(vsve;T, ei) + ‘Z(VG;T, Vse,‘)
=1 =1

= Z(RSe;Ta ei) + Z(V“VsT, ei} + Z(Ve.’T’ VC.'S)
=1 =1

=1

where the term (Rse,T,e;) on the right hand side denotes the curvature tensor of M.
Therefore, we have

62J n n
(1.2) v il i;(ve,.s, e} (Ve Trej) — .-;(Ve’ S,e) (Ve T, e;)
+ Y (Rse,T,ei) + D (Ve VsT,ei) + ) (Ve T, Ve, S)
=1 =1 =1
+ (Z(VC‘.T,e.-)> (Z(v,j S, ej)) .
i=1 j=1

When N is a geodesic parametrized by arc-length in M with unit tangent vector given
by e, the second variational formula for the length is given by

0L

0s0t

l
2/0 {~(V.S,e)(V.T,e) + (Rs.T,e)}

(3,!):(0,0)

1
+ / {(VeVsT,e) + (VeT,V.S)}.
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If we futher assumed that N is a geodesic, ie. V.e =0, then we have

8’L

!
350 =/0 {—(e(S,e))(e(T,e)) + (Rs.T,e)}

(s,t)=(0,0)
l

+ / (e(VsT,e) + (V.T, V.5)}
0

= /o {(VeT, VeS) + (RseT, €) — (¢(S, ) )(e(T, ¢}
HVsT,e)lp.

When N is a general n-dimensional manifold and if the two variational vector fields are
the same and are normal to N, then (1.2) becomes

8%J
(1.3) e

Z (VeiT,e5)* = > (Ve; T e)(Ve, T €5)
t,5=1

t=0 ',j=l

+ f:(RTe.T &) + 3 (Ve VrT e

=1

+ Z IveaT|2 + (Z(VeeT’ ei))

i=1 i=1

= — Z (VC‘T, Cj)2 - Z (VejT') ei)(ve-’T’ ej)

i,j=1 i,j=1

- zn:(Re.'TT1 ei) + div(vTT)t + ((VTT)n’ ﬁ)

i=1

+ 2": IVe.T|? + (T, H)?.

i=1

On the other hand, if {ep+41,...,€m} denotes an orthonormal set of vectors normal to N

in M, then
n
D (VT V., T) = Z(V T, ej) +Z Z (Ve.T,e,).

=1 i,j=1 =1 v=n+1

Also

(Ve.-T,vej) =(T,T1;)
=(V;T,e;)

where I1; j denotes the second fundamental form with value in the normal bundle of N.
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Hence, (1.3) becomes

o?J

| = —(T,T1;;)* - > (RerT,e:) + div(V7T)"
t=0

=1

(T 4Y S (VuT,e)? + (T EY
i=1 v=n+1

Therefore, the second variational formula for area in terms of compactly supported normal
variations is given by

Eam| = [ (- @I - YR + (D )

=1

+/N{Z Z (Ve.‘TaeV)z'*'(T’_I?)z}'

i=1 v=n+1

For the special case when N is an orientable codimension-1 minimal submanifold of an
orientable manifold M, we can write any normal variation in the form T = ¢em where e,
is a unit normal vector field to N. Then the second variational formula can be written as

d?
FA(Nt)

- /N {-(T,11;)? -R(T,T)+zn:<ve.-T, em)?}
t=0 =1
- /N {- ‘bzh?j —$*R(em,em) + [V[*}

where T[).- ; = hij em, R(T, T) denotes the Ricci curvature of M in the direction of T, and
we have used the fact that

(Ve;Tyem) = ¥(Veibmsem) + €i(P){€m, em)
= ei(¥).
If we further assume restrict the variation to be given by hypersurfaces which are constant
distant from N, the variational vector field is then given by en with V., em = 0. This
situation is particularly useful for the purpose of ientroling the growth of the volume of
geodesic balls of radius r. In this case, if we write H = H e, the first variational formula

for the area element becomes

(1.4) %‘1{—(3:,0) = H(z) J(z,0),

and the second variational formula can be written as

2 m—1
(1.5) —aa—tg-(w,O) = - Z h?j(a:) J(2,0) — R(em, em)(z) J(z,0) + H*(z) J(2,0).

i,j=1
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§2 BISHOP COMPARISON THEOREM

In this section, we will develop a volume comparison theorem originally proved by Bishop
(see [B-C]). Let p € M be a point in a complete Riemannian manifold of dimension m. In
terms of polar normal coordinates at p, we can write the volume element as

J(8,r)dr A d6

where df is the area element of the unit (m — 1)-sphere. By the Gauss lemma, the area
element of submanifold 8B,(r) which is the boundary of the geodesic ball of radius r is
given by J(6,r)d6. By the first and second variational formulas (1.4) and (1.5), if z = (6, r)
is not in the cut-locus of p, we have

1) 76 =0,
= H(8,r) J(6,r)

and
. 9%J
(2.2) J"(6,r) = 55 (6,7)

== "i hii(6,r) J(8,r) = R,r(8,7) J(6,7) + H*(8,7) J(8,r)

=1

where R,, = 'R(Ea;, %), H(6,r), and (h;j(6,r)) denote the Ricci curvature in the radius
direction, the mean curvature and the second fundamental form of 0B,(r) at the point
z = (0,r) with respect to the unit normal vector %, respectively.

Using the inequalities

m-—1 m-—1
(2.3) Z h%; > Z h;

ij=1 i=1
P 2
(£)
> =1
- m-1
H2
Tm-1
we can estimate (2.2) by
(2.4) <P 2p2y g g
m-—1

- %E—f(J'f IR,
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By the fact that any metric is locally euclidean, we have the initial conditions
J(6,r) ~ ™1

and

J'(8,r) ~ (m — l)r""z,

as r — 0. Let us point out that if M is a simply connected constant curvature space form
with constant sectional curvature K, then all the above inequalities become equalities. In
particular (2.4) becomes '

J" = g—:%u')? J7 = (m— DK J.

Theroem 2.1. (Bishop [B-C]) Let M be a complete Riemannian manifold of dimension
m, and p a fixed point of M. Let us assume that the Ricci curvature tensor of M at any
point z is bounded below by (m —1)K(r(p, z)) for some function K depending only on the
distance from p. If J(6,r) d6 is the area element of 0B,(r) as defined above and J(r) df is
the solution of the ordinary differential equation

= M =2 = g=1
J -—m(]).] —(m—-l)KJ
with initial conditions _
J(r) ~r™1

and -

7 (r) ~ (m = )2,
J(8,r)
- . J(r)
of r. Also, if H(r) = -{,— , then H(8,r) < H(r) whenever (6,r) is within cut-locus of p.

In particular, if K is a constant, then Jd corresponds to the area element on the simply
connected space form of constant curvature K.

Proof. By setting f=J T (2.1) and (2.4) can be written as

asr — 0, then within the cut-locus of p, the function is a non-increasing function

fle—sHf
m—1
and
< R
<-Kf

The initial conditions become
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and
f'(6,0) = 1.
- =1 - -
Let f = J™ ' be the corresponding function defined using J. The function f satisfies
f'=-K7,
f0)=o,
and o
FO)=1

Observe that when K = constant the function f > 0 for all values of r € (0,00) when
K <0, and for r € (0, ——k) when K > 0. In general, f > 0 on an interval (0, a) for some
a > 0. At those values of r we can define

f(r)
We have P .
F=f"(fff-ff)
and
F'=F " —2f fF-F T +2f ()
<-2f T F.
Hence

FrYy=FF" +27 7 F)
<0.
Integrating from € to r yields

——2

F(r)<FOT(OF (r)
= (F(&) f() - F(F(N T *(r).
Letting € — 0, the initial conditions of f and f implies that
F'(r) <0.
In particular, f f' — f f < 0, which implies
H(,r) < H(r).

J(8,r)

Moreover, F' is a non-increasing function of r implies that &)

is also a non-increasing
function of r. ‘

By computing the area element and the mean curvature of the constant curvature space
form explicitly, we have the follow corollary.
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Corollary 2.1. Under the same assumption of the theroem, if K is a constant, then

(m— DVEK cot(VKr), for K >0
H<L (m—-1)r', forK=0
(m — 1)\/—_K-coth(\/:-_K_r), for K <0,
and
J(8,r)
I(r)

is a non-increasing function of r, where

sin® " Y(VKr), forK>0
J(r) = r™ 1l for K=0
sinh™ !(v-Kr), for K <O0.

Let us take this opportunity to point out that this estimate implies that when K > 0,
one must encounter a cut point along any geodesic which has length 7"}-? In particular,
this proves Myers’ theorem.

Corollary 2.2. (Myers) Let M be an m-dimensional complete Riemannian manifold with
Ricci curvature bounded from below by

R,'j >(m-— 1)K

for some constant K > 0. Then M must be compact with diameter d bounded from above
by

e
d < —.
- VK

Corollary 2.3. Let M be an m-dimensional complete Riemannian manifold with Ricci
curvature bounded from below by a constant (m — 1)K. Suppose M is an m-dimensional
simply connected space form with constant sectional curvature K. Let us denote Ap(r) to
be the area of the boundary of the geodesic ball 8B,(r) centered at p € M of radius r and
A(r) to be the area of the boundary of a geodesic ball B(r) of radius r in M. Then for

0 <ry <1y < 00, we have

(2.5) Ay(r1) A(rs) > Ap(r2) Alr).

If we denote V,(r) and V(r) to be the volume of B,(r) and B(r) respectively, then for
0<r; <rgyr3 <ry < oo we have

(26) (Vp(r2) = Vp(r1)) (V(ra) = V(r3)) = (Vi(ra) = V(1)) (V(r2) = V(1)) -
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Proof. Let us define C(r) to be a subset of the unit tangent sphere S,(M) at p such that

for all § € C(r) the geodesic given by y(s) = exp,(sf) is minimizing up to s = r. Clearly
for r; < r; we have C(ry) C C(ry). By Theroem 2.1, we have

J(0,r1) J(r2) > J(8,r2) T(r1)

for § € C(r;). Integrating over C(r;) yields

/ J(8,71)d8J(rs) 2/ J(8,75)d8J(r)
C(r2) C(r2)
= Ap(rg) J(T]).

On the other hand

Ay(re) = / J(6,r1)d8
C(r)

> / J(6,r1)d8.
C(r2)

Hence, together with the fact that
A(r) = apm-y J(7)

with a,,—; being the area of the unit (m — 1)-sphere, we conclude (2.5). »
To see (2.6), we first assume that r; < ry <r3 < ry, in which case we simply integrate
the inequality

Ap(t1) A(t2) = Ap(t2) A(th)

over ry <t; <y and r3 <ty < ry. For the case when ry <r3 < ry <1y, we write

(Va(rz) = Vp(r1)) (V(re) — V(rs))
= (Vp(rs) = Vp(r1)) (V(r2) = V(r3)) + (Vp(rs) = Vp(r1)) (V(rs) — V(r2))
+ (Va(r2) = Vp(r3)) (V(r2) = V(r3)) + (Vi(r2) — Vp(r3)) (V(re) = V(r2))
> (Vp(r2) = Vp(r3)) (V(r3) = V(r1)) + (Vp(ra) — Vi(r2)) (V(r3) = V(1))
+ (Va(r2) = Vp(r3)) (V(r2) = V(r3)) + (Vp(ra) = Vp(r2)) (V(r2) — V(3))
= (Vp(re) = Vp(r3)) (V(r2) = V(r1)) .

Let us point out that equality in (2.6) holds if and only if C(r;) = C(r4) and J(6,r) =
J(r) for all 0 < r < rq and 8 € C(ry). In particular, if r; = 0 then J(6,r) = J(r) for all
r <r4 and 6 € Sp(M). This implies that Bp(rs) is isometric to B(r4).
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Theorem 2.2. Let M be an m-dimensional complete Riemannian manifold with non-
negative Ricci curvature. Then the volume growth of M must satisfy the following esti-
mates:

(1) (Bishop) If am-1 is the area of the unit (m — 1)-sphere, then

Am—1
< m
Vp(r) < —

forallp € M andr > 0.

(2) (Yau [Y 2]) For all p € M, there exists a constant C(V,(1)) > 0 depending only on
the volume of the geodesic ball centered at p of radius 1, such that

Vo(r)2Cr
for all r > 2.
Proof. Applying (2.6) to r; =0 =r; and ry =, we have

Vp(r2) Vi(r) > Vp(r) V(ry).

Observing that
lim p("2) 1,
T2 —0 V(r2 )

and the upper bound follows.

To prove the lower bound, let = € 0B,(1+p). Then (2.6) and the curvature assumption
implies that

2 + m _ ,m
Va(2+p) = Ve(p) < Ve(p) (——El—)),,,—';-
However, since the distance between p and z is r(p,z) = 1 + p, we have B,(1) C (Bz(2 +

p)\ Bz(p)). Hence
Vo(1) £ V(2 + p) = Vi(o)-

Also B.(p) C By(1+ 2p), we have
Vz(p) < Vp(1 4 2p).

Therefore, we conclude that

V(1) < V(1 +20) BER 2T

The lower bounded follows by setting r = 1 + 2p and observing that

2+p" —p"

o = O0(p-1)

as p — 00.
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We would like to remark that if we assume that for a sufficiently small € > 0 the Ricci
curvature has a lower bound of the form

Rij(z) > —e(1+r(p,z)) 72,

then one can show that M must have infinite volume. On the other hand, if the Ricci
curvature is bounded from below by

Rij(z) 2 ~Co(1 + r(p,2))*~°
for some constants Cp,§ > 0, then and the upper bound is also valid and is of the form
Ve(r) < Cr™

where C(Cy,6,m) > 0 is a constant depending on Cy, § and m.
It is also a good exercise to show that if a complete manifold has Ricci curvature bounded
from below by
' Rij 2 er(p,z)™"

for some constant € > % and for all » > 1, then M must be compact.
The next theorem shows that when the upper bound of the diameter given by Myers’
theorem is achieved, then the manifold must be isometrically a sphere.

Theorem 2.3. (Cheng [Cg]) Let M be a complete m- dimensional Riemannian manifold
with Ricci curvature bounded from below by

Rij 2 (m—-1)K
for some constant K > 0. If the diameter d of M satisfies

d= _"_

(_—K b
then M is isometric to the standard sphere of radius 71?

Proof. By scaling, we may assume that K = 1. Let p and ¢ be a pair of points in M which
realize the diameter. The volume comparison theorem implies that

d, V(d)
Vo(d) S Vp(5) =~
P P 2 V(g)
The assumption that d = 7"? implies that
V@) _,
1467)

hence

V() < 253,
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Similarly, we have

Va(d) < 2v(3).

However, by the triangle inequality and the fact that d = r(p, ¢), we have Bp(%) N Bq(%) =
@. Therefore,

2V (M) = Vy(d) + Vy(d)

<2V(3) + ()
<av(u)

where V(M) denotes the volume of M. This implies that the inequalities in volume com-
parison theorem are in fact equalities. Hence by the remark following Corollary 2.3 M
must be the standard sphere.

§3 BOCHNER-WEITZENBOCK FORMULAS

The Bochner-Weitzenbock formulas, sometimes referred to as the Bochner technique, is
one of the most important techniques in the theory of geometric analysis. There are many
formulas which can be derived for various situations. In this section, we will only derive
the formula for differential forms so as to illustrate the flavor of this technique.

For convenience sake, we will also introduce the moving frame notation. Let {e1,...,em}
be locally defined orthonormal frame fields of the tangent bundle. Let us denote the dual
coframe fields by {wy,...,wm}. They have the property that w;(e;) = é;;. The connection
1-forms w;; are given by exterior differentiating the w;’s, and are given by the Cartan’s 1st
structural equations

dw; = w; j Aw;
where

wij +wjii = 0.
Cartan’s 2nd structural equations yield the curvature tensor

dwij = wik A wkj + Qij,

with 1
Q,’j = E'R,‘jk( wy N\ wg.
Now let us consider the case that N is an n-dimensional submanifold of M. Let {ey,...,em}

be an adopted orthonormal frame field of M such that {e;,...,en} are orthonormal to N.
We will now adopt the indexing convention that 1 < 4,5,k <nandn+1<v,p<m. The
second fundamental form of N is given by

wyi = hijwj.
Relating the two notations, we have the formulas

wii(ek) = (Vekei? ej)’
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Rijkt = (Reie; €15 €k),

and

hY = (TH(ei e5), e4).

The sectional curvature of the 2-plane section spanned by e; and e j is given by R;j;; and
the Ricci curvature is given by

Rij =Y Rikjk.
k=1

Let f € C°°(M) be a smooth function defined on M. Its exterior derivative is given by

(3.1) df = fiw;.
The second covariant derivative of f can be defined by
(3.2) fijwj =dfi + fjwji.

Exterior differentiating (3.1), and applying the 1st structural equations, we have
0 = df; Aw; + f; dw;
= dfi Awi + fiwij Aw;
= (dfi + fijwji) Awi

= fij wj A w;.

This implies that f;; — fj; = 0 for all i and j. The symmetric 2-tensor given by (fijw;j Aw;)
is called the hessian of f. Taking the trace of the hessian, we define the Laplacian of f by

Af = fi.
The third covariant derivative of f is defined by
fijkwi = dfi; + frj Awii + fix A wy;.
Exterior differentiating (3.2) gives
df,'j Aw; + f,'j de' = dfj Awj; + fj dwj,-.
However, the 1st and 2nd structural equations imply that
0= —df,'j Awj— f,‘j dwj + dfj Awji + fj dwj;

= —dfij Awj — fijwjk Awi + dfj Awji + fjwjk Awri + f; Qj

= —(dfij + fixwrj) Awj + (dfj + frws) Awji + fj Qi

= —(dfij + fikwrj) Awj + fikwe Awji + f; Qi

= —(dfij + fik wij + frjwi) Aw; + £ Qi

1
= —fijkwk Awj + §fj Rjikiwi A wg.
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This yields the Ricci identity
1
fijk — fixj = '2-fz (Riijk — Riik;)
= fiRiij-
Contracting the indices k and i by setting k = ¢ and summing over 1 <1 < m, we have
fiji — fiij = fi Ruk-
For p < m, we will now take the convention on the indices so that 1 < ¢,5,k,l < m,

1<a,B,y<p,andl1<abc,d<p—1.Letwe€ AP(M) be an exterior p-form defined on
M. Then in terms of the basis, we can write

W= Gy iy Wiy A Awiy

where the summation is being performed over the multi-index I = (iy,...,1p). With this
understanding, we can write

=ajwy.
Exterior differentiating yields
dw = day Awy + ardwy
=da; Awy +a1(—1)P_awip A-osANdwi, A Aw;y

=dar Awr + ajwi,j, ANwi, A+ Awj, A Aw;,

= (dar + @iy jo..ip Wjaia) ANWI-
One defines the covariant derivatives a;,,..i,,; by

m
E Qi .0y, W5 = daiy, i, + E Qi ...jaip Winia

Jj=1 1<a<p
Ja

for each multi-index I = (41,...,1p). Similarly, for (p — 1)-forms, we have

ail-..£’—lyj wJ = dail...l'p_l + a"l..~j¢vc-ip—1 wjaia'

Exterior differentiating this, we have

dai,. i,y Nwj+Gip iy k Wk AW5 = dag, . jo..ipoy NWjgi, + @iy janipoy Wiak A Wki,

+ 5 %irdaip Rjaiaktlwi A wk.



18 PETER LI
The left hand side becomes

da, . ip_y,j AW + @iy iy kWE AWj
=da;,. i, i ANWj + iy ik WE A W5
= Qiy gy, jk Wk AWG — @iy kg iy, Whaia AN W)
= @iy iy, ik Wk AWj +dag ki A Wi,
+ Z Qi ...fpekannipoy Whpiy N Wkqig
b#a
F Ciyfaipoy Wiaka A Wkgi, -

Equating to the right hand side gives

Rjaialk Qiy...jq..ip-y Wk AWy,

N =

Qi ...ip_y,jk WE AWj + _S_ Qiy...jpkaunip—y Wiyiy, A Wkai, =
b#a

We now claim that the second term on the left hand side is identically 0. Indeed,

E Qi .5y kannipoy Wiyiy N Wk,i, = E Qi ...jykoip_1 Wiyiy N Wkai,
b#a - b<a

+ E Qi ..jyeikgipoy Wipiy N Wkaig,
b>a

and the claim follows by interchanging the role of k, and j, in the second term. Hence

Ciy.ipo 1,k Wk AW = SRy intk Qg gy iy Wk AW

2
which implies that
Qi sip 1 0k — Giy iy g K= Rjiglk Giy o joip_y -
Similarly, for p-forms, we also have |
(3.3) Giy.ciip,jk = Giy.ip,kj = Rigiajk iy g ip-
Let us now compute the Laplacian Aw = —déw — §dw for p-forms. First we have

dw = arjwj Awr

= Z Z . sgn(0) apwi,, A--- Aw;y,

11 <i2< - <dp41 0(i1,...ipt1)

where o(21,...,ip41) denotes a permutation of the set (i1,...,i,+1) and sgn(o) is the sign
of 0. Recall that if w is a p-form then

bw = (=1)mPDH gy,



LECTURE NOTES ON GEOMETRIC ANALYSIS 19
The linear operator * : AP(M) — A™™P(M) is determined by
#(wi, A Aw;,) = sgn(o(LI))wi, Ao Awiyy,,

where o(I, I¢) denotes a permutation by sending

(ip,...il,im,...,ip+1) — (1,...,m).

Let us now define

ﬁ = %W
= Q4 iy sgn(o (L, I))wi, A--- Awi,.
By setting bk, ...k,._, = sgn(o(,I%))ai, i, with K = (k1s- o km—p) = (lpt1,- -5 0m) = I%
we can write
B =bgwk

and

dg = b}(,jwj Awg
= (dbky...kmep T Oky.ookm—p Wiske) A WK

for 1 < 8 < m — p. On the other hand, we also have

dp = sgn(o(I,I%))da;, . i, Awi,, A+ Awi,

+ bkln-jo...km_, Wigks NWK

=sgn(o(I,I) ai,..ip,j Wi AWi, As Awiy
—sgn(o(1, 1) aiy..jq..ip Winia NWim A Awi,y,
+ bky...joekm, Wigke N Wiy, Ao Awiyy,

= sgn(0(I,1°)) @iy..iq..ipria Wia AWin Ao Awip g,
—sgn(o(I, K)) ai,..ju..ip Winia AWip A+ Awiyy,
+ bk jokmp Wigke N Wiy Avos Awipy .

However
bky..jokmp = 0,
“unless jg = i, for some a, and

bkl...ia...km_p = Sgn(a(ip’ ] k07 .. °ai17 km—py se 7iom B kl))ail e kg

.eelp
athslot

= _ngl(o(ip’ ey il,ima LR im—p)) QiyJoa-ip®

Using the skew symmetry wi_ k, = —Wk,i,, We have

dB = sgn(o(I,1%) @i, ..iq..ipia Wia NWin Ao Awipy,.
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Hence
*dB = sgn(o(I,1°)) sgn(0(iay tmy - - - yipt1rips -+ - r ey - o+ 51))
X iy g yiq Wiy A AW, A Awyy
— (_l)m—a+p(m—p)ailmimia Wi, Ao Ay Ao Aw;y.
Therefore

41 -
bw = Z (=1)+r Qi .igipyia Wip Nt AWi, Ao Aw;, .
1<alp

Computing directly gives,

wgpA---Ad);aA---Aw;I]

wipia

2
—Aw = 5(0.,‘1”_,-’,1' wiAwi, A--- A w,'!) + d[(_1)0+P +1a.~1,
2 N
= (—-—1)°'+(”+1) +lCl,,'lm,',”_j,'ar wj /\w,-, Ao Awi, A-- Aw;y,
2
+ (=1 wi, A Ay,

2 ~
+ (=1)>*? +lai,...i,,i,,j wiAwi, Ao A, A+ Aw;,.

However, by (3.3),

iy .ipjiaj = Giy.ip,jia T Rigigiaj Gir...kp...ip-
Hence
2 ~
Aw = (=1)" P Rigiginj Giy.okgonip @i Ao Aiy Avoe Awiy +aiy i, jiwiy A Awiy
= —Rigigjaia Bir.kg.ip Wip Ao Awj, A+ Awiy +ag jjwr.
If we define
E(w) = Rigipjaia Gir.kp..ip Wi, A+ Awjy A= Awj,

and the Bochner Laplacian by
V*Vw = ag,jjwiI,

then
Aw = V*Vw — E(w).

Remark 3.1. If w = f is a smooth function, then
m
Af =) fa
i=1
Remark 3.2. Ifw = a;w; is a 1-form, then

E(w) = Ryiji ar w;
= Rji ar wj.
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Lemma 3.1. If M is compact, the operator § is the adjoint operator to d, ie.
[ o = [ (.om)
M M
for all w,n € AP(M).

Proof. Note that by the definition of *, we have

*x (Wi, A--- A w;, ) = *(sgn(o (I, I)) wi,, A~ Awiyy,
=sgn(o(I%,I))sgn(o(I, I°))wi, A -+ Awi,.

On the other hand, it is clear that
sgn(o(I, I%)) = (~1)™PPsga(a(I°, I)).
Hence, we have the formula that ** = (—1)(m=P)? on p-forms. We also observe that

(w.-‘P /\---Aw,-l)/\ *(w,-,/\---Aw,-l) =sgn(o(L,I))wi, A Awiy Awi, Ao Awipy,

=wi A Awp.
Also by linearity, if w = ajwy and § = bywy then

wA (0 =arbfwi A+ Awp,
= (w, 0)dV.

Let us now consider w € AP~}(M) and n € AP(M), then

(dw,n) = dw A *n
=dwA *n)+(-1)’wA dx*n
=d(wA *)+ (-1)P (=1)mPEEDy A xxdxq
=d(wA *n)+wA xén
=d(wA *n) + (w, bn).

Integrating both sides over M and the lemma follows from Stoke’s theorem.

Lemma 3.2. (Bochner [B]) Let w =Y ajwr be a p-form on M. Then

Alw]? = 2(Aw,w) + 2|Vw|? + 2(E(w),w).

' Proof. The norm of w is given by

jol? = al.
1

21
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Let us choose an orthonormal coframe in a neighborhood of z € M by parallel translating
an orthonormal frame {e;,...,en} at the point z. Hence at z, we have w,; = 0. More-
over, V¢ e; = 0 along the geodesic tangent to e; which implies that V., V..e; = 0 at z.
Computing

Alwl? = (a])j;
= 2ay (ar)j; +2((ar);)".
Note that in general, (ar); # ar,; and (ar)j; # ar,jj since the terms on the left denote
differentiations of the function a; while the terms on the right denote covariant differenti-
ations of the p-form. However, by the choice of our frame,
(ar); = dar(e;)
= A5 = iy iy Wiaia(€5)
= aI,J
at the point z. Similarly
arjj = dai, ..i,,j(€;)
= dldar(e;) + @iy...jo...i, Wiaia (€5)](€;)
= (a1)jj + Gir...ju...iy €j(Wiaia(€;))
at z. On the other hand,
ej(wja ta (eJ)) = ej (Vej eja I e"a)
= (Ve,' Vei€jaria) + (Ve; €505 Ve;ei,)
=0
at z. Therefore,
Alw]? = 2(V*Vw,w) + 2|Vw|?
= 2(Aw,w) +2|Vw|? + 2(E(w),w)
at the point z. Now we observe that both sides of the equation is globally defined, hence
this formula is valid on M.

Theorem 3.1. Let M be a compact m-dimensional Riemannian manifold without bound-
ary. Suppose R;j > 0, then any harmonic 1-form w must be parallel and R(w,w) = 0. In
particular, this implies that the first betti number b;(M) of M must be at most m. If in
- addition there exists a point £ € M such that the Ricci curvature is positive, then b; = 0.

Proof. Let w be a harmonic 1-form. By the Bochner formula and Remark 3.2, we have
(3.4) Alw|? = 2|Vw|? + 2(E(w),w)

= 2|Vw|? + 2(R;k aj wi, a; w;)

= 2|Vw|? + 2(R;; a; a;)

= 2|Vw|? + 2R(w,w),
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which is nonnegative. Hence, by the maximum principle and the fact that M is compact,
|w[? must be identically constant. Moreover, (3.4) implies that

[Vwl> =0
and
R(w,w) =0

on M. Since the dimension of parallel 1-forms are at most m, we conclude that the di-
mension of harmonic 1-forms are at most m. The betti number bound follows from Hodge
decomposition theorem. If we further assume that R(z) > 0 for some point z € M, then
the fact that R(w,w) = 0 implies that w(z) = 0. On the other hand, since |w|? is constant,
this show that w = 0. Hence b, (M) = 0.

We would like to remark that if w is a parallel 1-form on M, then by the deRham
decomposition theorem, the universal covering M of M must be isometrically a product of
R x N, where R is given by w. Hence, if M is a compact manifold with nonnegative Ricci
curvature, then its universal covering M must be a product of R¥ x N for some manifold
N with nonnegative Ricci curvature and k = bi(M).

Definition. The curvature operator of a Riemmanian manifold is a linear map S :
A?(M) — A*(M) given by
S(wi Awj) = Rjirtwi A w.

Theorem 3.2. Let M be a compact manifold. If the curvature operator is nonnegative
on M, then any harmonic p-form must be parallel. Hence the p-th betti number of M is
at most (':) Moreover, if there exists a point € M such that §(z) > 0, then by(M )=0.

Proof. Similar to the case of 1-forms, we have the identity
Alof? = 2IVwl? +2(B(w),w),

where
(BE(w),w) = Ripipjaia Gir...kp..ip Lire.ja-ip

Let us now define the 2-form @ = a;,.. j,...ip Wja A Wi, - By the definition of S, we have
S@) = Rigjukl iy ..jo..ip W1 N Wk-
Hence,

(S@),@) = (Rinjukl Ciy...jo.ip WI N Wky Giy__jg.ip Wip A Wis)

= Ripjaipis Fireojorrrip Cir.wdp..ip

= (E(w),w)-

The theorem now follows from the argument of Theorem 3.1.
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Definition. A vector field X = a;e; is a Killing vector field if a; ; + a;; = 0 for all
1<, <m.

Lemma 3.3. The infinitesimal generator of a 1-parameter family of isometries of M is a
Killing vector field on M.

Proof. Let ¢ : M — M be a 1-parameter family of isometries parametrized by ¢ € (—¢, €).
If {e1,...,em} is an orthonormal frame at a point z € M given by the normal coordinates
centered at x. Then the fact that ¢, are isometries implies that

(ddi(ei), ddile;)) = (eire;s)
= bij.

Differentiating with respect to t and evaluate at t = 0, we have

d
(3:5) 0 = Z(ddu(e), ddule)emo
= (Vrdpe(ei), dde(e;)) + (Vrdde(e;), dde(ei)),
where T is the infinitesimal vector field given by ¢;.

However, since one can view {%, e1,...,em} as tangent vectors given by a coordinate
system of (—e¢, €) x M, we have the property that

[T,dée(ei)] =0
for all 1 < ¢ < m. Hence we can rewrite (3.5) as
0= (VT e;) +(V;T,e;)

which is exactly the condition that T is a Killing vector field.

Theorem 3.3. Let M be a compact manifold with nonpositive Ricci curvature. Then
any Killing vector field on M must be parallel. Moreover, if there exists a point ¢ € M
such that the Ricci curvature satisfies R(z) < 0, then there are no non-trivial Killing
vector fields. In particular, this implies that M does not have any 1-parameter family of
isometries. :

Proof. Let X = a;e; be a Killing vector field. Its dual 1-form is given by w = a; w;. The
commutation formula yields
Alw|2 = 2(1?,]- + 2(1,',]')' a;
= 2|Vw]2 - 2a;,ij a;

= 2|Vw[? - 2R(X, X).

We now apply the same argument as in the proof of Theorem 3.1.
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§4 LAPLACIAN COMPARISON THEOREM

Let M be a complete m-dimensional manifold. Suppose p is a fixed point in M, let
us consider the distance function r,(z) = r(p,z) to p. When there is no ambiguity, the
subscript will be deleted and we will simply write r(z). The distance function in general is
not smooth due to the presence of cut-points. However, it can be seen that it is a Lipschitz
function with Lipschitz constant 1. In particular, we have

Vr? =1
almost everywhere on M. Though r might not be a C? function, one can still estimate its
Laplacian in the sense of distribution.
Theorem 4.1. Let M be a complete m-dimensional Riemannian manifold with Ricci
curvature bounded from below by
Rij > (m-1)K

for some constant K. Then the Laplacian of the distance function satisfies

(m— VK cot(VKr), for K >0
Ar(z) < (m=1)r"1, forK=0
(m —1)V=K coth(V—Kr), for K <0

in the sense of distribution.

Proof. For a smooth function f, let = € M be a point such that V f(z) # 0. Then locally
the level surface N of f through the point z is a smooth hypersurface. Let {e1,...,em—1}
be an orthonormal vector field tangent to N. Let us denote e,, to be the unit normal vector
to N. The Laplacian of f at z is defined to be

m—1

Af(z) =Y (eiei = Veiei) f(@) + (emem — Venem) f(2)

=1

m—1 m-—1
= Z (eiei — (Vesei)t)f(z) - Z(Ve:ei)nf(x) + (emem — Ve, em) f(2)

i=1 i=1
= ANf(2) + B f(2) + (emem = Venem)f(2)
= ﬁf(:l?) + (emem - Vemem)f(m)
where Ay denotes the Laplacian of N with respect to the induced metric and H denotes

the mean curvature vector of N. If we take f = r, then for the point  which is not in the
cut-locus of p, we have N = 8B,(r). Moreover, the unit normal vector e,, = £ . Hence,

Ar(z) = H(z)
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where H(z) is the mean curvature of dB,(r) with respect to 2. Therefore according to
Corollary 2.1 the theorem is true for those point which is not in the cut- locus of p.
Using the same notation as in Theorem 2.1, let us denote

(m — 1)VK cot(VKr), for K >0
H(r)= (m-1r7!, for K=0
(m —1)V=K coth(V—Kr), for K < 0.

To show that Ar has the desired estimate in the sense of distribution, it suffices to show
that for any nonnegative compactly supported smooth function ¢, we have

| @ors [ 480,

In terms of polar normal coordinates at p, we can write

/M¢F(r)= /0 ” /C (r)qﬁ—H—(r) J(6,r)dé dr.

On the other hand, for each 6 € S,(M) if we denote R(6) to be the maximum value of
r > 0 such that the geodesic ¥(s) = exp,(s6) minimizes up to s = r, then by Fubini’s
theorem we can write

R()
/ ST (r) J(6,r)d8 dr = / / $H(r) J(8,r) dr db.
C(r) Sp(M) Jo

However, for r < R(6), we have

H(r)J(8,r) > H(G r)J(G r)
= EJ(O,T)

/ ¢H(r)>/’(M)/R(0)¢—drd€

R(6)
/ / 8¢Jd do + / (6 J]E® qp
Sp(M) Sp(M)

= [ ot . 0 RO) TO RO 0
- [ (v8,9n),
M

- where we have used the fact that both ¢ and J are nonnegative and J (6,0) = 0. On the
other hand, since r is Lipschitz, we have

- [ (V6,97 = | @or,

Therefore,

which proves the theorem.

We are now ready to prove a structural theorem for manifolds with nonnegative Ricci
curvature. Let us first define the notions of a line and a ray in a Riemannian manifold.
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Definition. A line is a normal geodesic 7 : (—00,00) — M such that any of its finite
segment |2 is a minimizing geodesic.

Definition. A ray is half-line, which is a normal minimizing geodesic v4 : [0,00) — M.
Theorem 4.2. (Cheeger-Gromoll [C-G]) Let M be a complete manifold with nonnegative
Ricci curvature of dimension m. If there exists a line in M, then M is isometric to R X N,

the product of a real line and an (m — 1)-dimensional manifold N with nonnegative Ricci
curvature.

Proof. Let 4 : [0,00) — M be a ray in M. One defines the Buseman function 4 with
respect to y4 by

Ba(z) = Jim (¢~ r(x4(t), ).

We observe that 84 is a Lipschitz function with Lipschitz constant 1. Moreover, by the
Laplacian comparison theorem,

AB4(z) 2 — lim (m — Dr(y+(t),2) ™
— 00
=0
in the sense of distribution. If v is a line, then vy4+(t) = ¥(t) and v_(¢) = y(—t) for t > 0
are rays. The corresponding Buseman functions 84 and - are subharmonic in the sense
of distribution. In particular, B— + B is also subharmonic on M. On the other hand, since
~ is a line, the triangle inequality implies that
2t = r(v(-1),2(1))
< r(7(—t)1 .'t) + r(7(t)$ :L')
Hence
t —r(y-(t),z) +t —r(14(t),2) <0,
and by taking the limit as ¢ — oo we have

B—(z) + B4(z) < 0.

Moreover, it is also clear that

B-(z) + B+(z) =0
for all z on . However, by the strong maximum principle, since the subharmonic function
B— + B4 has an interrior maximum, it must be identically constant. In particular, both
B_ and B4 are harmonic and B = —f;. By regularity theory, 85 is a smooth harmonic

function with |VB4+| < 1, and |VB4| = 1 on the geodesic . For simplicity, let us write
B = B4+. The Bochner formula gives

A|VBI* = 287 + 2R:; Bi B +2(VB, VAB)
> 0.

Hence by the fact that 8 achieves its maximum in the interrior of M and the maximum
principle for subharmonic functions, 8 =1on M, f;; =0,and VB is a parallel vector field
on M. This implies that M must split, which proves the theorem.
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Corollary 4.1. Let M be a complete m-dimensional Riemannian manifold with nonneg-
ative Ricci curvature. If M has at least 2 ends, then there exists a compact (m — 1)-
dimensional manifold N of nonnegative Ricci curvature such that

M=RXxN.

Proof. The assumption that M has at least 2 ends implies that there exsits a compact
set D C M such that M \ D has at least 2 unbounded components. Hence there are 2
unbounded sequences of points {z;}2; and {y;}{2;, such that the minimal geodesics 7;
joining z; to y; must intersect D. By compactness of D, if p; € v; N D and v; = ~!(p;),
then by passing through a subsequence we have p; — p and v; — v for some p € D. We
now claim that the geodesic v : (—00,00) — M given by the initial conditions v(0) = p
and 4'(0) = v is a line.

To see this, let us consider an arbitrary segment Ylla,5) of 7. By continuity of initial
conditions of second order ordinary differential equation, we know that Yilte,) = Ya,p)
because (pi,v;) — (p,v). However, by the assumption, %il[a,5) are minimizing geodesics,
hence 7|[q 4] is also minimizing. Therefore,y is a line.

Theorem 4.2 now implies that M = R x N. The compactness of N follows from the
assumption that M has at least 2 ends.

Another application of the Laplacian comparison theorem is the eigenvalue comparison
theorem of Cheng.

Theorem 4.3. (Cheng [Cg]) Let M be a compact Riemannian manifold of dimension m.
Assume that the Ricci curvature of M is bounded by

Rij 2 (m—-1)K

for some constant K. Let us consider M to be the simply connected space form with
constant curvature K. Suppose M has boundary OM. Let us denote u;(M) to be the first
nonzero eigenvalue of the Dirichlet Laplacian on M and i to be the inscribe radius of M. If
B(3) is a geodesic ball in M with radius i and p;(B(3)) its first Dirichlet eigenvalue, then

p1(M) < p(B(2)).

When M has no boundary, let us denote A\1(M) to be the first nonzero eigenvalue of
the Laplacian and d to be the diameter of M. If —B_(g) is a geodesic ball in M with radius

-% and yl(F(g)) its first Dirichlet eigenvalue, then
- d
M) < i (BE)

Proof. Let us first consider the case when M has boundary. Let B,(z) be an inscribed ball
in M. By the monotonicity of eigenvalues, it suffices to show that

#1(Bp(i)) < p1(B(2))-
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Let % be the first Dirichlet eigenfunction on B(i). By the uniqueness of ¥, we may assume
that @ > 0. If we denote p € B(3) to be its center and T to be the distance function to p,
then %(F) must be a function of 7 alone. By the fact that @ > 0 and (i) = 0, the strong
maximum principle implies that %(i) < 0. If there is some value of ¥ < ¢ such that %g >0
then this would imply that @ has a interrior local minimum. However, this violates the
strong maximum principle. Hence, @' = %g <0.

Let us define a Lipschitz function on B,(i) by u(r) = @(r), where r denotes the dis-
tance function to p. Clearly, u satisfies the Dirichlet boundary condition. Computing the
Laplacian of u gives

Au =T Ar +@"|Vr|?
>TAr+7'.

On the other hand, if we denote A to be the Laplacian on M, then

A
w’

~m(B()7

F+u.
By Theorem 4.1 and the fact that @' < 0, we conclude that
Au > —pi(B(3)) u

in the sense of distribution. Hence, by the Rayleigh principle for eigenvalues, we conclude
that

fB,(.') [Vul?
I,

3 _fB,(i) uAu

B fB,(i) u?

< m(B(i)).

Nl(Bp(i)) <

To prove the upper bound for the case when M has no boundary, we consider the disjoint
balls B,(%) and B(£) centered at a pair of points p and ¢ which realize the diameter. By
the above estimate,

By < m B
and

in(Bo(5) < i (BE))

We now claim that A;(M) < max{pi (M), p1(Mz)} for any disjoint pair of open subsets
M,, M, C M. This will establish the theorem by setting M; = B,(%) and M, = By(3).
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To see the claim, let u; and uy be nonnegative first Dirichlet eigenfunctions on M; and
M, respectively. By multiplying a constant, we may assume that [, M, i =1lfori=12
Let us define a Lipschitz function on M by

Uy, on M,
u={ —usg, on M,
0, on M \ (M] U Mz)

Clearly, [ um ¥ = 0. Hence by the Rayleigh principle,

o ([, o, 5) -hom [
< /M |Vul?

=/ |Vu1|2+/ |VUQ|2
M, M,

=ﬂ1(M1)/ uj +ﬂ1(M2)/ uj
M, M,

< max{ys (1), s (1)} [+, ).

This establishes the claim.

§5 POINCARE INEQUALITY AND THE FIRST EIGENVALUE

In this section, we will obtain lower estimates for the first eigenvalue for the Laplcian
on a compact manifold. For the moment, we will primarily concern with the case when
M has no boundary. The following lower bound was proved by Lichnerowicz [Lz] while
Obata [O] considered the case when the estimate is achieved.

Theorem 5.1. (Lichnerowicz and Obata) Let M be an m-dimensional compact manifold
without boundary. Suppose that the Ricci curvature of M is bounded from below by

Rij2(m-1)K

for some constant K > 0, then the first nonzero eigenvalue of the Laplacian on M must
satisfy

Al _>_ mK.
Moreover, equality holds if and only if M is isometric to a standard sphere of radius #
Proof. Let u be a nonconstant eigenfunction satisfiying

Au = —)u,
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with A > 0. Consider the smooth function

A

Q = |Vul’ + —u

m

defined on M. Computing its Laplacian
2\
AQ = (2ujuji + —"—zuuii)i
2 2

= 2u§,~ + 2ujuji + —r_r-z—uf + i

2\ 2\
= 2u§i + 2R;juiuj + 2uj(Au); + 7n—-|\7u|2 + -;u(Au)

where we have used the Ricci identity and the convention that summation is being per-
formed on repeated indices. On the other hand

m m
2 2
E : uj 2 z uk;
i=1

i,j=1

Hence, by the assumption on the Ricci curvature, we have

2,2
(5.1) AQ > %“— +2(m — DE|Vul® — 2A[Vaul® + %wﬁ’ -

=2(m—1) (K - %) |Vul?.

22242

If A < mK, then Q is a subharmonic function. By the compactness of M and the maximum
" principle, @ must be identically constant and all the above inequalities are equalities. In
particular, the right hand side of (5.1) must be identically 0. Hence A = mK because u is
nonconstant. Moreover,

Val? + 22 = 2l
m m

where |u|oo = supyy |u|. If we normalize u such that |t|o = 1, and observe that at the
maximum and the minimum points of u its gradient must vanish, then we conclude that
maxu = 1 = —minu and

Vol _
e = VE
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Integrating this along a minimal geodesic v joining the points where v = 1 and u = —1,
we have

>/1 du
T o1 V1 —u?
=

where d denotes the diameter of M. However, by Cheng’s theorem (Theorem 2.3), M must
be the standard sphere.

We will now give a sharp lower bound for the first eigenvalue on manifolds with nonneg-
ative Ricci curvature. The estimate of Lichnerowicz becomes trivial in this case, since the
Ricci curvature does not have a positive lower bound. However, one could still estimate
the first eigenvalue in terms of the diameter of M alone.

Let A; be the least nontrivial eigenvalue of a compact manifold and let ¢ be the corre-
sponding eigenfunction. By multiplying with a constant it is possible to arrange that

a—1=inf¢, a+1l=supd
M M

where 0 < a(¢) < 1 is the median of ¢.

Lemma 5.1. (Li-Yau [L-Y]) Suppose M™ is a compact manifold without boundary whose
Ricci curvature is nonnegative. Then the first nontrivial eigenvalue satisfies

1(2

N Trae

where d is the diameter of M.

Proof. Setting A = A1 and u = ¢ — a the equation becomes
Au = —A(u + a).

Let P = |Vu|? + cu? where ¢ = M(1 + a). Let 7o € M be the point where P is maximum.
If [Vu(zo)| # 0 we may rotate the frame so that u;(zo) = |Vu(z¢)|. Differentiating in the
¢; direction yields

’ 1

oFi = umumi + cuu;

so at x¢

0= (751 (u“ + cu)

and

(5.2) uijui; > ul; =l
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Covariant differentiating with respect to e; again, using the commutation formula, (5.2),
the definition of P, and evaluating at o, we have

1
0> §AP
= Umilmi + UmUmii + cul + culu
> u? + um(At)m + Rmptimup + cul — chu(u + a)
> c?u? — M + cud — AAu(u + a)
=(c— ) (u} + cu?) —achu
> aA\P(zg) — acA.

Hence, for all z € M
(5.3) [Vu(z)[2 < M1 +a) (1 - u(z)?).

Also (5.3) is trivially satisfied if Vu(zo) = 0.

Let v be the shortest geodesic from the minimizing point of u to the maximizing point.
The length of 7 is at most d. Integrating the gradient estimate (5.3) along this segment
with respect to arclength, we obtain

d\K(1+a)Z\/)\(l+a)Lds?_L%_>_ _1\/1_d——tj—u—2=m

In view of Lemma 5.1 and known examples, Li and Yau conjectured that the sharp

estimate )

T
> —
/\l‘d2

should hold for compact manifolds with nonnegative Ricci curvature. In fact, if the first
eigenspace has multiplicity greater than 1, this was verified in [L 2]. This conjecture was

finally proved by Zhong and Yang by applying the maximum principle to a judicious choice
of test function.

Lemma 5.2. The function

z(u) = 2 (arcsin(u) +uyv1-— u2) —u

™

defined on [—1, 1] satisfies

(5.4) tut+il-ut)+u=0
(5.5) 2254220

(5.6) 2z —zu+120;
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and

(5.7) (1 —u?) > 2|z|.

Proof. Differentiating yields
= :1-\/1 —u?-1
T

and

Clearly (5.4) is satisfied.
To see (5.5), we have

- 225+ s= ;r—lilﬁ {4 (ﬂ-{—uarcsm(‘@) -(1 +u2)}

Since the right hand side is an even function, it suffices to check that
4
- (\/ 1—u?+4 uarcsin(u)) —(1+u?) >0

on [0, 1]. Computing its derivative

du { (‘/i“—“z““"arcsm(u)) ¢ +u2)} =

which is nonpositive on [0,1]. Hence

(\/ 1—u?+u arcsm(u)) -(1+u?)> [% \/ 1—u? 4+ uarcsin(u)) -1+ uz)]

= 0.

R

arcsin(u) — 2u

=1

Inequality (5.6) follows easily because

4
2z—zu+1= -—arcsm(u)+ 1-—u
which is obviously nonnegative.

To see (5.7), we will consider the cases -1 < u < 0and 0 < v < 1 seperately. It is
clearly that the inequality is valid at —1, 0, and 1. Let us set

flu)=1-u?— % (arcsin(u) +uyV1-— u2) + 2u.

Then

f=-2u— %(2\/1 —u?) 42,
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fe2—e
- 1—u?
and 8
f= (1 —u?)?

When —1 < u <0, f < 0. Hence f(u) > min{f(—1), f(0)} = 0. For the case 0 < u < 1,
f > 0. Hence

f < max{£(0), f(1)}
8
= max{2 — - 0}
=0.
Therefore f(u) > f(1) which proves (5.7).

Lemma 5.3. Suppose M is a compact manifold without boundary whose Ricci curvature
is nonnegative. Assume that a nontrivial eigenfunction ¢ corresponding to the eigenvalue
) is normalized so that for 0 < a < 1, a+ 1 = sup¢ and a — 1 = infp ¢. By setting
u = ¢ — a, its gradient must satisfy the estimate

(5.8) |Vul? < A(1 - u?) + 2arz(u)

where
(5.9) z(u) = % (a.rcsin(u) +uyv1-— u2) - u.

Proof. We will first prove an estimate similar to (5.8) for u = ¢(¢ — a) where 0 < e < 1.
The lemma will follow by letting ¢ — 1. By the definition of u, we have

Au = —\(u + €a)
with —e < u < e. By (5.3) we may assume a > 0. Consider the function
Q = |Vu|? = ¢(1 — u?) — 2a)z(u),

where by (5.3) and (5.7) we can choose c large enough so that supy @ = 0. The lemma
follows if ¢ < X, for a sequence of € — 1, hence we may assume that ¢ > A. »

Let the maximizing point of Q be zo. We claim that |Vu(zo)| > 0 since otherwise
Vu(zo) = 0 and

0 = Q(z0)
= —c(1 —u?)(zo) — 2aXz(z0)
< —(c—an)(1-¢)
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by (5.7), which is a contradiction.
Differentiating in the e; direction gives

(5.10) ;—Q, = Uy Umi + CUU; — aAAZU;.

At z¢, we can rotate the frame so uy(z¢) = |Vu(z,)| and using Q; = 0, we have

(5.11) Umitlmi > ud; = (cu — adz)?.

Differentiating again, using the commutation formula, @(z¢) = 0, (5.7), (5.10), and (5.11),
we get
1
0 ZgAQ(fvo)
=Umilimi + UmUmii + cul + culdu — adsu? — adzAu
=Umilmi + Um (AU)m + Rmpmup + (¢ — alz) ul 4 (cu — aAz) Au
> (cu — arz)’ + (c — X — ari) [e (1 — u?) + 2a)z]
— A(cu — aAz) (u + €a)
= —acA {(1 — uz)fé +uz + eu} +a?)\? {—2z2 + 22+ ez'}
+aX(c— A) {—uz + 22+ 1} + (c — A)(c — al).
However by (5.4), (5.5), and (5.6),we conclude that

02> acA(l — €)u—a?X?(1 —€)z + (c — A)(c —a))
> —acA(1 - €) = N (1 = (= ~ 1) + (¢ ~ la)(c - aA)
> —(c+A)A1—€) +(c— A~

This implies that

c</\{2+(1—e)+\/(1—e)(7-—e)}.
= 2

Clearly, when € — 1 this yields the desired estimate.

Theorem 5.2. (Zhong-Yang [2-Y]) Suppose M is a compact manifold without boundary
whose Ricci curvature is nonnegative. Let a > 0 be the median of a normalized first
eigenfunction with a + 1 = sup ¢ and a — 1 = inf ¢, and let d be the diameter. Then the
first nontrivial eigenvalue satisfies

6 /7 4
>+ -(=—=1) o> 731+ .0242).
&EN>n +7r(2 l)a > 7%(1+ .02a%)
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Proof. Arguing with u = ¢ —a as before, let y be the shortest geodesic from the minimizing
point of u to the maximizing point with length at most d. Integrating the gradient estimate
(5.8) along this segment with respect to arclength and using oddness, we have

dr? ZA%/ds
v

S |Vulds
T Jy /1 —u? +2az(u)

1
1 1
2> + d
/0 {\/I—u2+2az \/1—u2—-2az} .
1 2.2
1 3a*z
> [ o4 %%
_/0 ,—-—1_u2{ +1_u2}du

2

1
ZW+302(/ .L_)
0o V1—u?

This technique applies to manifolds with boundary. Let M™ be a compact manifold
with smooth boundary whose Ricci curvature is nonnegative. Suppose that the second
fundamental form of OM is nonnegative. Then the first nontrivial eigenvalue of the Lapla-
cian with Neumann boundary conditions also satisfies the inequality (5.8). The proof runs
the same as Lemma 5.3 except that the possibility of the maximum of the test function
Q at the boundary must be handled. In fact, the boundary convexity assumption implies
that the maximum of @ cannot occur on the boundary.

The next theorem gives an estimate of the first eigenvalue for general compact Rie-
mannian manifold without boundary. The estimate depends on the lower bound of the
Ricci curvature, the upper bound of the diameter, and the dimension of M alone.

Theorem 5.3. (Li-Yau [L-Y]) Let M be a compact m-dimensional Riemannian manifold
without boundary. Suppose that the Ricci curvature of M is bounded from below by

Rij 2 —(m—-1)R

for some constant R > 0, and d denotes the diameter of M. Then there exists constants
Ci(m), C2(m) > 0 depending on m alone, such that, the first nonzero eigenvalue of M
satisfies

A > %exp(—cgd\/}_l).

Proof. Let u be a nonconstant eigenfunction satisfying

Au = =Au.

—)\/ u=/ Au =0,
M M

By the fact that
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u must change sign. Hence we may normalize u to satisfy minu = —1 and maxu < 1. Let
us consider the function
v = log(a + u)
for some constant a > 1. The function v satisfies
Av = Au B [Vul?
at+u (a+u)
-A
= u — IVU'Z.
a+u

Let us define Q(z) = |Vv|*(z). Differentiating Q in the e; direction gives
Q,‘ = 2vjv,-,~.
Its Laplacian is given by

(5.12) AQ = 2v%; + 2v,vj;;
> 20} + 2(Vv, VAv) — 2(m — 1)R|Vo[2.

However, similar to the proof of Theorem 5.1, we have

o > (Amv)2
2
= (3+9)
> % (Q’ + %Q)
Also,
(Vv, VAv) = —A <vv,v (aiu + Q)>
- -a(:\uQ — (Vo,VQ).

Hence (5.12) becomes

2 o, (4 2(m + 2)ak
(513)  AQ+2(Vy,VQ) 2 ~Q"+ (7,; mAm DRy )
S %Q2+ (%_2(171—1)12— %@Si) :

If o € M is a point where Q achieved its maximum, then

0> AQ(z0) + 2(Vv, VQ)(zo).
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Hence, we have

0> %QQ(%) + (4;:— ~2(m-1)R~ 2—(,,%:2—)%5) Q(20),

which implies that

Q(z) < Q(zo)
— (22 — m(m — 1)r = P+ 2)ar
<= (- mim-vr- )
=(—m—;zj_—_—%%t—z—i——m(m—l)R

for all € M. Integrating Q% = |Vlog(a + u)| along a minimal geodesic v joining the
points at which u = —1 and u = maxu, we have

a a-+ maxu
— )< —_—
log(a__l)_log( a—1 )
S/lVlog(a+u)|
Y

Sd\/%—m(m—l)lz

for all @ > 1. Setting t = 2=1, we have

a ?

2
(m+2)A>t (:}2— (log %) —m(m — 1)R)

for all 0 < t < 1. Maximizing the right hand side as a function of ¢ by setting ¢ =
exp(—1 — 1/1 + m(m — 1)Rd?), we obtain the estimate

A (1 + /1 +m(m — 1)Rd?)exp(—1 — /1 + m(m — 1)Rd?)

2
ZmiD@
> % exp(—C2dVR)

as claimed.

We would like to point out that when M is a compact manifold with boundary, there are
corresponding estimates for the first Dirichlet eigenvalue and the first nonzero Neumann
eigenvalue using the maximum principle. In fact, Reilly [R] proved the Lichnerowicz-Obata
result for the Dirichlet eigenvalue on manifolds whose boundary has nonnegative mean
curvature with respect to the outward normal vector. Recently, Escobar [E] established the
Lichnerowicz-Obata result for the first nonzero Neumann eigenvalue on manifolds whose
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boundary is convex with respect to the second fundamental form. There are analogous
estimates to that of Theorem 5.3 for both the Dirichlet and Neumann eigenvalues on
manifolds with boundary. In general, the estimate for the Dirichlet eigenvalue [L-Y] will
depend also on the lower bound of the mean curvature of the boundary with respect to
the outward normal, and the estimate for the Neumann eigenvalue will depend also on the
lower bound of the second fundamental form of the boundary and the e-ball condition (see
[Cn]). However, when the boundary is convex, the Neumann eigenvalue has an estimate
similar to manifolds without boundary.

Corollary 5.1. (Li-Yau [L-Y]) Let M be a compact m-dimensional Riemannian manifold
whose boundary is convex in the sense that the second fundamental form is nonnegative
with respect to the outward pointing normal vector. Suppose that the Ricci curvature of
M is bounded from below by

Rij 2 —(m-1)R

for some constant R > 0, and d denotes the diameter of M. Then there exists constants

C1(m), C2(m) > 0 depending on m alone, such that, the first nonzero Neumann eigenvalue
of M satisfies

> —gz—l-exp(—-ng\/I_Z).

Proof. In view of the proof of Theorem 5.3, it suffices to show that the maximum value for
the functional @ does not occur on the boundary of M. Supposing the contrary that the
maximum point for @ is zo € OM. Let us denote the outward pointing unit normal vector

by em, and assume that {ej,...,em—1} are orthonormal tangent vectors to M. Since Q
satisfies the differential inequality (5.13), the strong maximum principle implies that
em(Q)(zo) > 0.

Howeyer,
em(@) =2 (eiv)(emev).
i=1

Using the Neumann boundary condition on u, we conclude that e,,v = 0. Moreover, since
the second covariant derivative of v is defined by

vij = (eiej — Ve, e;5) v,

we have

m—1
em(Q) =2 z(eav)(vm,, + V,,.€qv)
a=1
m—1
=2 Z (ea?) (Vam + Ve, eqv)
a=1
m-—1
=2 E(eav) (eatmv — Ve emv+ V,_eqv).

a=1
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Using emv = 0 again, the fact that the second fundamental form is defined by

hop = (Veaefmeﬂ)?
we conclude that

m—1

m-—1
em(@) =-2 Y (eav)hap(esv) +2 Y (ca®Veneares)(esv)
Q,ﬂ:l a,ﬂ:l

m—1

<2 ) (eav)(Veneares)(epv)-

a,f=1
On the other hand, since
(Vemeasep) = —(Ve.€8:¢€a),
we conclude that

m-—1 m—1
2 3" (ea)(Venearep)(egv) = =2 3" (eat)(Venes, ead(egv).

a,f=1 a,f=1

Hence
5m(Q) < Ov

which is a contradiction.

When M is a complete manifold, it is often useful to have a lower bound of the first
eigenvalue for the Dirichlet Laplacian on a geodesic ball. This is provided by the next
theorem.

Theorem 5.4. (Li-Schoen [L-S]) Let M be a complete manifold of dimension m. Let
p € M be a fixed point such that By(2p) N M = @ for 2p < d. Assume that the Ricci
curvature on By(2p) satisfies

Rij 2 —(m — 1)R

for some constant R > 0. For any a > 1, there exists constants Cy(a), Cy(m,a) > 0, such
that for any compactly supported function f on By(p)

[ 19tz Cexp(-Cat+ oV [ 151
By (p) By(p)
In particular, the first Dirichlet eigenvalue of By(p) satisfies

p1 > C1p~2exp(—Ca(1 + pVR)).

Proof. Let q € OB,(2p). By the triangle inequality B,(p) C (Bq4(3p) \ By(p))- Theorem 4.1
implies that

Ar < (m— 1)\/R—coth(r\/§)
< (m—-1)(r"" +VR)
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for r(z) = r(q,z). For k > m — 2, we have

Ar~* = —kr=F1Ar 4+ k(K + 1)r %2
> —k(m —1)r ™1+ + VR) + k(k + 1)r—*2

=kr~*1((k +2 = m)r~! — (m — 1)VR)
> k(3p)*71((k +2 - m)(3p)~! — (m — 1)VR)

on By(p). Choosing k = m — 1 4 3(m — 1)pv/R this becomes
(5.14) Ar~*% > k(3p) k2

on B,(p).
Let f be a nonnegative function supported on By(p). Multiplying (5.14) with f and
integrating over B,(p) yields

KB H? [ f< / fark
By(p) Bp(P)

=- / (Vf,Vr=¥)
Bp(P)

<k [V flr—*-1
Bv(ﬂ)

< kpt-1 / V.
BP(P)

Hence

/ V1> Cip~ exp(~Co1+ pVE) [ F.
BP(P) Bp(P)

This shows the case when a = 1 by simply applying the above inequality to |f].
For a > 1, we set f = |g|*. Then we have

a=1

1 a=1
a( / |Vg|) ( / |g|°) >a / 191~ |Vg]
B,(p) By (p) By (p)

= / IVg?]
BP(P)
> Cip " exp(—Ca(1 + p‘/I_i))/ lgl®,
BP(P)

which implies the desired inequality.
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§6 GRADIENT ESTIMATE AND HARNACK INEQUALITY

In this section we will derive a gradient estimate and Harnack inequality of Yau [Y 1]
for positive harmonic functions on a complete Riemannian manifold. As consequences,

Liouville type theorems can be proved for complete manifolds with nonnegative Ricci
curvature.

Theorem 6.1. (Yau [Y 1]) Let M be a complete Riemannian manifold of dimension m.
Assume that the geodesic ball B,(2p) N OM = (). Suppose the Ricci curvature on By(2p)
is bounded from below by

Rij 2 —(m—-1)R
for some constant R > 0. If u is a positive harmonic function on B,(2p), then there exists

a constant C(m) > 0 depending only on m such that
sup |Vlogu|? <C(R+p7?).
By (p)

In particular,

sup u < ( inf u) exp(C(p~! + pR)).
B, (p) By (p)

Proof. If we set the function v = logu, then
(6.1) Av = —|Vvl2.

Let us define a cut-off function ¢(r(z)) given by a function of r(z) = r(p, z) alone, such

that
1, forr<p

9(r) = {0, forr > 2p

with ¢ > 0,0 > (¢')2¢~! > Cp~2, and |¢"| < Cp~? for some constant C > 0.

Consider the function @ = |Vv|? which is supported on By(2p). Let Xy € B,(2p) be
a point at which @ achieves its maximum. Since the distant function is not smooth in
general, we observe that @ is only smooth when z is not in the cut-locus of p. Let us first
assume this is the case. Computing the Laplacian using the Ricci identity and the lower
bound of the Ricci curvature, we have

AQ = (A4)[Vol* +2(V4, V|Vol?) + $(A|Vo]*)
= ¢ (A)Q +2671(V9,(VQ ~ V§)|Vu[*)) + ¢(20]; + 2v;vjii)
> ($71(A¢)) — 2677 |V4I)Q + 2671 (V4, VQ) + 24v];
—2(m — 1)RQ + 2¢(Vv, VAv).
However (6.1) and the inequality

Ji m
Q2

m
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implies that
AQ < (671(A¢) - 207 |Vg|* — 2(m — 1)R)Q + 267 (V 4, VQ)

+ %W‘QZ —2(Vv,VQ) +2¢71Q(Vv, V).

Hence, evaluating at the maximum point zo and using VQ(z¢) = 0 and AQ(zo) < 0, we
conclude that

0> Q-+m (586 =47 IV4P — (m—1R) +m(V3, V),
unless Q(z¢) = 0 and the theorem follows. However,

2
[m(V8, 90} < 5Q + T4~V 4P

implies that
Q <m(2(m - 1)R+ (24 m)¢ V4|2 — Ag).

On the other hand, the assumption on ¢ and the Laplacian comparison theorem assert
that

¢~ VeI* = ¢71(¢')”

<Cp~?
and
A¢ = ¢'(Ar) + ¢"
> ¢'(m—1)(r~' + VR) + ¢"
> —Cp~%(1 + pVR).
Hence

C(p~ + R) > Q(z0)

> sup ¢|Vu|?
By (2p)

> sup |Vlogul®.
By (p)

When z, is a cut-point to p, we consider a minimizing geodesic v joining p to zo with
7(0) = p and y(r(zo)) = zo. Let ¢ = y(¢) for sufficiently small € > 0. Clearly, zq is not a
cut-point to ¢q. Let us define the function

P(z) = P(re(z) +€) >
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Since v is a non-increasing function, and because

rq(z0) + € = rp(z0)

and
rq(z) + € =r¢(z) +7p(q)
S- rl’(z))
we have
#(z) = ¢(z)
with

P(z0) = P(z0).

Therefore zy is also a maximum point for the function %|Vv|? which is now smooth. The
theorem now follows by performing the above computation on 1|Vv|? and letting € — 0.

To prove the Harnack inequality, one simply consider the minimal geodesic v joining
any 2 points in Bp(p). We observe that by the triangle inequality, the length of v must
be at most 2p. The Harnack inequality now follows by integrating the upper bound of
|Vlogu| along .
Corollary 6.1. Let M be an m-dimensional complete noncompact Riemannian manifold

without boundary. Suppose the Ricci curvature of M is nonnegative. Then any positive
harmonic function on M must be constant.

Proof. By Theorem (6.1) and the curvature assumption, we have

sup |Viegul|®> < Cp~?
By (p)
for any p > 0. Taking the limit as p — oo yields

sup |Viogul® <0
M
which implies log u = constant.

Corollary 6.2. (Cheng) Let M be a m-dimensional complete noncompact Riemannian
manifold without boundary. Suppose the Ricci curvature of M is nonnegative. Let u be a
sublinear growth harmonic function on M, ie.

[u(z)| = o(rp(z))
with respect to some fixed point p € M. Then u must be identically constant.

Proof. For any p > 0, the function u + sup B,(20) |u| is a positive harmonic function on
B,(2p). Hence Theorem (6.1) implies that

sup |Vlog(u + sup |u])> < Cp~2.
)

B, (p) B,(2p
In particular,
sup |Vu|> <Cp~? sup (u+ sup |u|)?
By (p) By (p) By(2p)
<2Cp™? sup |uf?
By (2p)

which tends to 0 as p — oo by the assumption on u. Hence u must be identically constant.
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87 MEAN VALUE INEQUALITY

We will prove a version of mean value inequality which is adopted to the theory of
subharmonic functions on a Riemannian manifold. Let us first prove a theorem of Yau.

Lemma 7.1. (Yau [2]) Let M be a complete Riemannian manifold. Suppose p € M is a
point such that the geodesic ball B,(2p) centered at p of radius 2p satisfies B,(2p)NOM # 0.
Let f be a nonnegative subhamounic function defined on B,(2p). Then for any constant
a > 1, there exists a constant C(a) > 0 depending only on a such that

[ ogrvipsest [ g
By (p) By(2p)

In particular, if M has no boundary, then there does not exist any nonconstant, nonnega-
tive, L* subharmonic function.

Proof. Let ¢(r(z)) be a cut-off function given by a function of r(z) = r(p,z) alone. We

may take ¢ to satisfy
1, forr<p

9(r) = {0, for r > 2p
with ¢ > 0, and 0 > (¢')2¢~! > Cp~? for some constant C > 0. Let us now consider the

integral
0> / S feIASf
B, (20)

= —(a—1 2 =217 f|2 _ o
(a )/BM)M vl /w

P

¢f*7H(V$, V).
P)
However, an algebraic inequality implies that

2 / 45>V, Vf)
B,(20)

a—1 - 2
<t [ erviee 2 [ v,
B, (2p) : @ = 1JB,(20)

Hence, we have

a-—1 a— a—1 -
S st [ gy
B, (p) B, (20)

2
< — Ve[ fe
a-1 Bp(zﬂ) I l

o
p (a - 1) B,(2p)

o

If M has no boundary, we simply take p — oco. The fact that f is L* implies that the
integral

/ fo2VAR =0,
M

which implies that |V f| = 0. Hence f must be a constant function.
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Theorem 7.1. (Li-Tam [L-T]) Let M be a complete Riemannian manifold of dimension
m. Let p € M be a fixed point such that the geodesic ball By(4p) centered at p of radius
4p satisfy B,(2p) NOM = 0. Suppose f is a nonnegative subharmonic function defined on
B,(4p). Assume that the Ricci curvature on By(4p) is bounded by Ri; > —(m — 1)R for
some constant R > 0. Then there exists constants C3, C4(m) > 0 with C4 depending only
on m such that

sup 2 < Cs(1+exp(CopV R4 [ 1.
z€By(p) By(4p)

Proof. Let h be a harmonic function on B,(4p) obtained by the solving the Dirichlet
boundary problem

Ah =0 on B,(2p),

and

h=f on 0B,(2p).
Since f is nonnegative, by the maximum principle & is positive on the ball B »(p). Moreover,
f < h on Bp(p).

The Harnack inequality (Theorem 6.1) implies that

sup h > ( inf h) exp(C(p~! + pR)).
By (p) By (p)

Hence, in particular, we have.

(7.1) sup f2 < sup A?
By (p) Bp(p)
< exp(2C(p + PRV [ 2
By(p)

We will now estimate the L2-norm of h in terms of the L?-norm of f. By triangle
inequality, we observe that

7.2 h? <2 h—f)?+ 2

( ) /;p(P) ‘/;P(P)( f) /;p(l’) f
<2 h— )+ Z,
- ‘/Bp(zl’)( f) ‘/;p(4p) f

However, since the functions h — f vanishes on dB,(2p), the Poincaré inequality (Theorem
5.3) implies that

(1.3) [ g sadepcaar B [ 90 9P
B,(Zp) Bp(

2p)
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for some constants C; > 0 and Cy(m) > 0. By triangle inequality again, we have

/ IV(h - F)P <2 / VAP 42 / V5.
By(26) B,(20) B, (20)

The fact that a harmonic function minimizes Dirichlet integral among functions with the
same boundary data asserts that

/ V(b - FP <4 / VAP
B,(2p) By (2p)

P

Now the argument in Lemma (7.1) implies that

/ V2 < Cp? £
B,(2p) By(4p)

for some constant C' > 0. Hence together with (7.1), (7.2), (7.3), and the volume compar-
ison (Corollary 2.3), the theorem follows.

Let us point out that the fact that the constant in the mean value inequality depends
only on the lower bound of the Ricci curvature and the radius of the ball is essential in some
of the geometric application. In fact, it is well known that one can prove another version of
the mean value inequality by using an iteration method of Moser. However, the constant
in this case will depends on the Sobolev constant which, unlike the first eigenvalue, cannot
be estimated by the Ricci curvature and the radius alone.

We will now give an application of this mean value inequality to study the space of
harmonic functions on a certain class of manifolds. This result can be viewed as a gener-
alization of Yau’s Liouville theorem. Let us first prove a lemma.

Lemma 7.2. (Li [L 1]) Let H be a finite dimensional space of L? functions defined over
a set D. If V(D) denotes the volume of the set D, then there exists a function fy in H
such that

dim™ [ 12 < V(D)sup £
D D

Proof. Let f1,..., fr be an orthonormal basis for H with respect to the L? inner product.
Let us consider the function

k
F(z)= Y fi(z)

=1

which is well-defined under orthonormal change of basis. Clearly

dimH = /D F(z).

Now let us consider the subspace M, of H which consists of functions f vanishing at
p € D. The space is clearly of at most codimension 1. Otherwise, there are f; and f; in
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the compliment of H, which are linearly independent. This implies that both f; (p) #0
and fy(p) # 0. However, clearly the linearly combination

fH(p)f2 — f2(P)f1

is a function in H,, which is a contradiction. This implies that by a change of orthonormal
basic, there exist fo in the orthorgonal compliment of H, and has unit L%-norm, such that

F(p) = fa(p).

Hence, in particular, if we choose p € D such that F' achieves its maximum then

dimH = /D F
< V(D)F(p)

= V(D)f§(p)
= V(D)sup 3

This proves that lemma.

Theorem 7.2. (Li-Tam [L-T]) Let M be an m-dimensional complete noncompact Rie-
mannian manifold without boundary. Suppose that the Ricci curvature of M is nonnegative
on M \ B,(1) for some unit geodesic ball centered at p € M. Let us assume that the lower
bound of the Ricci curvature on B,(1) is given by

Rij 2 —(m—-1)R

for some constant R > 0. If we denote H'(M) to be the space of functions spanned
by the set of harmonic functions f which has the property that when restricted to each
unbounded component of M \ D is either bounded from above or from below for some
compact subset D C M, then H'(M) is of finite dimensional. Moreover, there exists a
constant C(m, R) > 0 depending only on m and R, such that, the dimension of H'(M) is
bounded from above by C(m, R).

Proof. By the definition of H'(M), there exists Rg > 1 such that

m

f=Zvi,

=1

where each v; is bounded on one side of each end of M \ B,(Ry). Let E be an end of
M \ B,(Ry). If v is a harmonic function defined on M which is positive on E and if z is

a point in E with r(p,z) > 2Ry, then by applying Theorem 6.1 to the ball B,(-r—(;’—’)) and
using the curvature assumption, there is a constant C' > 0 independent of v, such that

(7.4) [Vo|(z) < Cr"l(p,x)v(m).
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Since all the v}s are bounded on one side on E, there are constants ay, - - - ,0m and € = +1
such that the harmonic functions u; = a; + €;0; are positive on E. Hence, by applying
(7.4) to uy, -+ ,um, we can estimate the gradient of f by

m
(7.5) VA <Y IVl

i=1

= |Vuil

i=1
<Cr(p,z) ) ui(z).
=1

This implies that for any given § > 0, using the fact that |V f| is a subharmonic function
on M \ By(1), the maximum principle implies that

IV£l(z) - (s;lg(lVfI)) <Cs (}: ui(z) + 1)

=1

for all z € E. Letting § — 0, we conclude that
sup(|V f) < sup(|V f]).
E 9E
Since E is an arbitrary end of M \ B,(Ry), we have

(7.6) sup  ([VF]) < sup (|VS])
M\ B, (Ro) 9By (Ro)

In fact, we claim that

sup |Vf| < sup |Vf].
M\B,(1) 8B,(1)

This follows from applying the maximum principle to the subharmonic function |Vf| on
the set M \ By(1) and (7.6). In particular, this implies that

(1.7) sup [Vf| < sup |Vf].
M B,(1)

Let us now consider the codimension-1 subspace H,(M) of H'(M) defined by
M, (M) = {f € H'(M)|f(p) = 0},

Clearly H,(M) = H'(M)\ constant. For any f € H,(M), the fundamental theorem of
calculus implies that

sup f2 <4 sup [Vf|%

B,(4) B, (4)
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Together with (7.7), we have
Y <4 sup VP
B,(4) By(1)

Applying the gradient estimate (Theorem 6.1) to the function f + supp (5 |f] yields

sup f <4 sup |Vf2
By(4) B,(1)

B,(1

2
< 4C sup (f+ sup |f|
) By (2)
< 16C sup f2.
B, (2)

However, this together with the mean value inequality (Theorem 7.1) when applied to the

nonnegative subharmonic function |f| asserts that there exists constants C3,C4(n) > 0
such that

(7.8) Vp(4) sup f2 < Cs exp(C.;\/ic_)/ i
B,(4) By(4)

On the other hand Lemma 7.2 implies that for any finite dimensional subspace H of
H} (M), there exists a function fo such that

aimH [ f2<Vy(4) sup f2.
Bp(4) By(4)

Hence applying (7.8) to fo yields the estimate

dim M < Cs exp(CyVk).
Since this estimate holds for any finite dimensional subspace H, this implies that

dim H; (M) < C3 exp(Cs V).
Therefore,
dimH*(M) < C; exp(CyVE) + 1

as to be proven.
Let us remark that if M has nonnegative Ricci curvature, then (7.7) can be written as

sup [Vf| < [V£|(p).
M

However, since |V f| is a subharmonic function on M, the maximum principle implies that
|V f| must be identically constant. If f is not a constant function, we can apply the Bochner
formula to |V f| again, and conclude that Vf is a parallel vector field. This implies that
M must split and that f is a linear growth harmonic function. In particular, f cannot be
a positive harmonic function. Hence f must be identically constant, which recovers Yau’s
theorem.
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88 REILLY’S FORMULA AND APPLICATIONS

We will discuss a few applications of the integral version of Bochner’s formula derived
by Reilly [R]. In particular, this formula is useful in the studying of embedded minimal
surfaces and surfaces with constant mean curvature. Let us first point out some standard
formulas about submanifolds in R™*+! and S™+1!,

Lemma 8.1. Let {z;,... ,Zm41} be rectangular coordinates of R™*!, and let us denote
the position vector by X = (z1,... ,Zm+1). If M is a submanifold of R™*! with the

induced metric and if ﬁ and ﬁ denotes the second fundamental form and the mean
curvature vector of M, then

Hy(X)=-T11

and
AuX =-H,

where Hp(X) and Ap(X) are the Hessian of X and the Laplacian of X computed on M.
Proof. Let H(X) be the Euclidean Hessian of X, then we have

H(X)=0

since the z;’s are coordinate functions. On the other hand, if e; and e; are tangential to

M, then
H(X),'J' = (e,-ej - Ve,-ej)X
= HM('X)!] - <Veiej,eu)XV
= Hu(X)i; + (T, o)
= Hu(X)i; + I1;. "

Hence, the lemma follows.

Corollary 8.1. A submanifold M of R™*! is minimal if and only if the coordinate func-
tions are harmonic. In particular, there are no compact minimal submanifolds in R™+!
other than points.

Lemma 8.2. Let N be an n-dimesnional submanifold of the standard unit sphere S™, then
N is minimal if and only if all the coordinate functions of S™ C R™*! are eigenfunctions
of N satisfying

AnX = —nX.

Proof. By Lemma 8.1, and using the fact that the position vector X is also the unit normal
vector on S™, we have

Hsm(X) = —1I1
= —6;X.



LECTURE NOTES ON GEOMETRIC ANALYSIS 53

Appying the formula that

—
Hsm(X)ap = HN(X)ap + TIN(X)
for tangent vectors e, and eg which are tangential to N, and by taking the trace, we have
-nX =AnX + ﬁN(X)
= AnX + Hy.

This proves the lemma.

The following integral formula was proved by Reilly in his work of repoving Aleksan-
drov’s theorem.

Theorem 8.1. (Reilly)Let D be a manifold of dimension m + 1 with boundary given by
a smooth m-dimensional manifold M. Suppose f is function defined on D satisfying

Af=g on D

and

then

m

e /MH(fu)’+2 /MquMu+ /M

where H and hep denote the mean curvature and the second fundamental form of M with
respect to the outward unit normal v, Ay is the Laplacian on M, and R;j is the Ricci
curvature of D. Moreover, equality holds if and only if

Z haﬂuauﬁ+LRijfifj

a,f=1

98
f"—m+1

on D.

Proof. Let us consider the Bochner formula

%Alvfl2 = f& + fifijs
= fL + fi(Af)i + Rijfif;
= i+ (V£,Vg) + Rijfif;.
Using the inequality
m+1 , (E:':l'l ,.'.)2
E fi; 2 Tmrl

iy=1
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we have

1 2 92
- > i f
SAIVIP > —Fe +(V1, V) + Risfif;

Integrating this over D yields

1 1
81) 2 Lawitz = [+ [wrva+ [ Ross

Integrating by parts, the last term on the right hand side becomes

forva=-[ ¢+ [ ot

where v is the outward unit normal to M. Hence (8.1) becomes

(8.2) 5 [ AvsP - [+ [ ato+ [ Rusiss

On the other hand, if we pick orthonormal frame {e;, ..., emn41} near the boundary of D
such that {e;,...,en} are tangential to M, and v = e,,;; is the outward unit normal
vector, then divergence theorem implies that

m+1

%/DAIVfl2 = /M Z(e.‘f)(em+1€if)~

i=1
Using the boundary data of f, and choosing V.,,,,em+1 = 0 at a point, we conclude that

m+1

(8.3) Z (eif)(emtreif) = (em+1f)(€m+lem+l f+ Z(eaf)(em+leaf)

=1 a=1

= (em-Hf) (Af - Z faa) + Z(eaf)(em+leaf)

a=1 a=1
= fu(g —-Hf, - AM‘“) + E(eaf)(em+leaf)
a=1

where Ay is the Laplacian on M and H is the mean curvature of M with respect to the
unit normal v. However,

’ (84) €m+1 eaf = eo,em...]f + Vem+leaf - Vea 6m+1f
= eaem+1f + Z(vem+1eaa eﬂ)fﬂ - Z(vea €m+41, eﬂ)fﬂ,
p=1 p=1
because
(Ve,,,.H €a, em-f—l) = "(ea, Vem.H em+1>

=0
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and

1
(veaem+laem+l) = 'z_eﬂlcm'*‘l‘z

= 0.
Using (8.3), (8.4), and the fact that
(Vealmt1,€8) = —(€m+1, Ve, €8)
= haﬂ,

we can write

(8.5) % / AVF
- / ofs - / H(f,) - / fulu + f 3 (caf)eatmen)

a=1
+ Z / (vem+x €ay€p forfﬂ / Z haﬂuauﬂ
a,f=1 a,f=1
On the other hand,

J.

Z (Vem+1emeﬂ)fafﬂ = / Z (€a, V em41€ ) fafp

a,f=1 o ﬂ-
/ Z (Vemii€ares) fafs
a,f=1

implies that it must be identically 0. Also integrating by parts yields

/ Z(eaf)(eaem+1f) /M fv Apmu.

a=1

Combining this with (8.2) and (8.5), we have

/ H(fv)2_2/ quMU—/ Z haﬂuau5>———+—l- g +/DRijfifj

a,f=1

which was to be proved. Equality case is clear from the above argument.

Theorem 8.2. (Aleksandrov-Reilly) Any compact embedded hypersuface of constant
mean curvature in R™*! is a standard sphere.

Proof. Let M™ be compact embedded hypersurface in R™*! with constant mean curvature
H. By compactness, it is clear that H > 0. After scaling, we may assume that H = m.
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The assumption that M is embedded implies that M must enclose a bounded domain D
in R™*!. Let us now consider the solution f of the boundary value problem

Af=-1 onD

and

f=0 onM=20D.
Applying Theorem 8.1 to f, we have

Schwarz inequality now implies that
aon [ £22(f £y
=([ Af)?
([ an
=V*(D),

where A(M) is the area of M. Therefore, together with (8.6), we obtain the inequality
(8.7 AM) > (m+1)V(D).

On the other hand, if X = (z1,... ,Zm+1) are the coordinate functions of R™*+!, then
one checks that their Euclidean Hessian is identically zero. Hence, in particular,

m
0=) Xoa
a=1
=AMX+HXpn
=AmX +mXmy1.

Now, let us consider
0= / (X,AX)
= [oxP+ [ (% Xni)
=~ + VD) - - [ (X,80%)

= —(m+1)V(D) + l/ IVmX[®
mJm
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where we have used the fact that |[VX|2 =m + 1 and |[Vy X|? = m.
Hence, the inequalities which were used to derive (8.7) are all equalities. In particular,

5,','

— D.
o on

(8.8) fij=-—
and
fm+1 = constant on M.
Computing the difference between the Hessian of f on M and the Hessian of f on D, and
using the fact that f =0 on M, we have
f af = haﬁf m+1

for all 1 < @, 8 < m, where hqg is the second fundamental form of M. Applying (8.8), we

conclude that
dap

Tmtl = ho,pfm+1-
Using that the mean curvature of M is m, we obtain
1
fm+1 = “mil
and
haﬂ - 6aﬂ-

The Gauss curvature equations implies that M has constant sectional curvature 1. In
particular, by Lichnerowicz theorem, the first non-zero eigenvalue of M satisfies

(8.9) A(M) > m.
Now, let us consider the embedding function X. We compute that
(8.10) AMX = —me+1
= —M€m41,

where we have used the fact that the Euclidean Hessian of X is 0 and the mean curvature
of M is m. On the other hand, we have

(8.11) mA(M) = /M Va X2
—- [ x.aux)
M

=m [ (Xem)

() ([ )

() v

INA
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Without loss of generality, we may choose the origin to be the center of gravity of M, so
that |, m X = 0. Under this assumption, the Poincaré inequality assets that

[ 1vux 2200 [ ixr
M M

Applying this and (8.9) to (8.11), we have

1
A < o [ 19uxP
mJm
< A(M).
Hence, all the inequalities becomes equalitites. In particular,
/\I(M) =m,

which implies that M is isometric to the unit m-sphere. Moreover, X satisfies the equation
AmX = —mX. Hence together with (8.10), we conclude that X = €m+1- This implies
that | X| =1 on M, and M is the unit sphere.

Theorem 8.3. (Choi-Wang [C-W]) Let M™ be a compact embedded oriented minimal
hypersuface in a compact oriented Riemannian manifold N™*1. Suppose that the Ricci
curvature of N is bounded from below by

Ri; > mR

for some positive constant R. Then the first non-zero eigenvalue of M has a lower bound

given by

A (M) > 1”55.

Proof. The assumption that N has positive Ricci curvature implies that its first homology
group H'(N,R) is trivial. By an exact sequence argument, we conclude that M divides
N into 2 connected components N; and N, with ON; = M = dN,. Let us denote D to be
one of the component to be choosen later. If u is the first nonconstant eigenfunction on
M, satifying

Apu = -\ (M)u,

then let f be the solution of
‘ Af=0, on D,

with boundary condition
f=u, onM.

Applying Theorem 8.1, we have

0> —2A1(M)/Mufu'+A4haﬂuaup—{-mR/DIVflz.
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2/Mufu =2/M ff
= [ o
=2/D|Vf|2.

On the other hand

Hence, we have

(8.12) (2M1 (M) - mR) /D VP> /M hagtiatp.

Let us observe that the right hand side is independent of the extended function f. If we
choose a different component of N \ M to perform this computation, the second funda-
mental form will differ by a sign, hence we may choose a component, say Ny, so that

/ hapuaug > 0.
M

Hence together with (8).12, we conclude that either A\;(M) > BE, or V§ = 0 on M.
However, the latter is impossible because f has boundary value v which is nonconstant.

This proves the estimate.

§9 ISOPERIMETRIC INEQUALITITES AND SOBOLEV INEQUALITIES

In this section, we will show that a class of isoperimetric inequalities which occur in
geometry are in fact equivalent to a class of Sobolev type inequalities. The relationship
between these inequalities were exploited in the study of eigenvalues of the Laplacian
as early as the 1920’s by Faber [F] and Krahn [K]. The equivelence was first formally
established by Federer-Fleming [F-F|] (also see [Bm]) in 1960. In 1970, Cheeger [C] observed
that the same argument can apply to estimating the first eigenvalue of the Laplacian.

We will first define the isoperimetric and Sobolev constants on a manifold. Let us
assume that M is a compact Riemannian manifold with or without boundary OM.

Definition 9.1. If 8M # ¢, we define the Dirichlet a-isoperimetric constant of M by
A(0Q)

oclSH_, V(Q)=

IDL (M) =

where the infimum is taken over all subdomains @ C M with the properties that 02 is a
hypersurface not intersecting OM.

Simillarly, we define the Neumann d—isoperimetric constant of M.
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Definition 9.2. The Neumann a-isoperimetric constant of M is defined by

INL(M) = inf - A(S) T
o vsor, min{V (), V(Q)}=

where infimum is taken over all hypersurfaces S dividing M into 2 parts denoted by Q;
and ;. Note that in this case, there is no assumption on whether M has boundary or
not.

Definition 9.3. If M # 0, we define the Dirichlet a-Sobolev constant of M by

- S IV S
SDQ(M) - liﬂlﬁlf(u) (f;:l’fla)é_

Iorm=0

where infimum is taken over all functions f in the first Sobolev space with Dirichlet bound-
ary condition.

We also define the Neumann a-Sobolev constant of M.
Definition 9.4. The Neumann a-Sobolev constant of M is defined by
\Y
SNo(M)= _inf — Iy IV 11 ;
feH,,1(M) (infrer fM |f — k|*)=

where the first infimum is taken over all functions f in the first Sobolev space, and the
second infimum is taken over all real numbers k. Again, there is no assumption on whether
M has boundary or not.

Theorem 9.1. ID,(M) = SD,(M).

Proof. To see that IDo(M) < SD(M), it suffices to show that for any Lipschitz function
f defined on M with boundary condition flaa = 0, we have

[ 1v412 Do) ( / ma) -

Without loss of generality, we may assume f > 0. Let us define M; = {z € M| f(z) > t}.
By the co-area formula,

(9.1) /M IVf| = /o ~ A(oM,)dt

> ID,(M) / ” V(M,)=dt.

We now claim that for any s > 0, we have the inequality

(/0 V(M,)%dt)a > a/o’ta—IV(M,)dt.
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This is obvious for the case s = 0. Differentiating both sides as functions of s, we have

(9.2) dii; ( /0 | V(Mt)z%dt)a =a ( /0 | V(M,)-érdt)a—1 V(M,)=
and
(9.3) ;?; (a /0 ’ t““V(Mt)dt) = 05" V(M,).

Observing that foa V(Mt)ﬁdt < sV(M,)%, because M, C M; for t < s, we conclude that
(9.2) is greater than or equal to (9.3). Integrating from 0 to oo yields the inequality as
claimed.

Applying this inequality to (9.1) yields

/M |Vf| > IDo(M) (a /0 ” t""lV(Mt)dt)é :

However, the co-area formula implies that

o % gy [ dA,
2" 1V(M, dt=/ ——] / dsdt
a./o (M0) o dt Jo Jovimy IVSI °

*© dA;
= te —\dt
/0 /:;V(M,) V£ !

- / £
M
This proves IDo(M) < SDo(M).
We will now prove that ID4(M) > SDa(M). Let  be a subdomain of M with smooth
boundary 9 such that Q2 N IM = ¢. We define

N, = {z € Q|d(z,09) < €}.

Note that for € > 0 sufficiently small, d(z, Q) is a smooth function. Define

0, on M\Q
fe(X) = %d(:c,aQ), on N,
1, on Q\N,,

Clearly f. is a Lipschitz function defined on M with Dirichlet boundary condition. More-
over,

/M Vfl= /0 f %A(@Nt \ OQ)dt.
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On the other hand, we have

[ = so0n ([ 15t

> SD(M)V(Q\ NJ)=.

=

Hence 1 re
! / A(DN,\ 8Q)dt > SDa(M)V(Q\ No)E.
0
Letting € — 0 yields
A(09) > SDL(M)V(Q)5.
Since Q is arbitrary, this proves ID,(M) > SD.(M).

Theorem 9.2.. INo(M) < SNo(M) and SNo(M) < max{1,21~¥}IN,(M) for all & >
0. _

Proof. Let f be a Lipschitz function defined on M. Let k € R be chosen such that
M, ={z € M|f(z) - k > 0}

and

M_ = {z € M|f(z) - k < 0}

satisfy the conditions that V(M) < 1V(M) and V(M) < 3(M). To show that
SNo(M) > INy(M), it suffices to show that

[, 1wtz v ([ ul)

for u = f — k. Note that if
M = {z € M|u(z) > t}

R

then for ¢t > 0, we have ’
V(M) S V(My) < SV(M).

This implies that
min{V(M,), V(M \ M;))} = V(M,).

Hence, A(OM;) > IN,(M)V(M,). Therefore by the same proof of Theorem 9.1, we have

/M+ Vu| > INo(M) ( /M+ Iul") . .

The same argument also gives

[ 1vulz o) ( | 1u|“> i
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Hence

Jomwzman (L) (L)

v )
This proves SNo(M) > INa(M).

To prove that max{1,2!~=}IN,(M) > SN,(M), we consider any hyppersurface S
dividing M into two parts denoted by £; and 3. Let us assume that V(Q;) < V(Q,).
For € > 0 sufficiently small, let us define

Ne={z € Q:|d(z,5) < €}

and the function
1, on

f(z)=4¢1- %d(z, S), on N,
0, on - N,
Let k. be choosen such that

J == gt [ 1= e

Clear, 0 < k. < 1. By using a similar argument to the proof of Theorem 9.1, we have

Jvei= [ 1
> SN, (M) ( J 15~ ker’) ;

ZSNa(M) <‘/{; Ife“ke|a+[) \N |ffe“ke|a)

> SNa(M)((1 = k)*V(Q1) + k2V(Q2 \ N))*
> SNo(M)((1 - k)™ + k) T V(R \ NO*.

[+

We now observe that, (1—k)*+k* > 21" forall0 < k < land a > 1, also (1—k)*4+k> > 1
forall 0 < k < 1and o < 1. Hence by taking € — 0, the left hand side of (9.4) tends to A(S)
while the right hand side of (9.4) is bounded from below by SN, (M) min{1,2"5*}V(Q,)%.
This establishes the inequality max{1,2!~a }INo(M) > SNq(M).
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Let us point out that when the dimension of M is m and o > ™4, then by the fact
that the volume of geodesic balls of radius r behaves like

Ump—1
V(r)~ —r™
() ~ 22ty
and the area of the their boundary is asymptotic to
A(T) ~ apmor™ 1

it is clear that both ID,(M) = 0 = IN,(M). Hence it is only interesting to consider those

a < .
— m-—1

Corollary 9.1. (Cheeger [C]) Let M be a compact Riemannian manifold. If 8M # 0,
let us denote py(M) to beo the first Dirichlet eigenvalue on M and A\(M) to be its first
nonzero Neumann eigenvalue for the Laplacian. When M = @, we will denote the first
nonzero eigenvalue of M by A\i(M) also. Then

IDy(M)?

m(M) > 4

and INy(M)?
A (M) > ‘—i)—.

Proof. By Theorem 9.1, to see that
ID(M)?
(o) > T2
it suffices to show that for any Lipschitz function f with Dirichlet boundary condition, it
must satisfy
2
/ IV£? > M/ f2.

M 4 M
Applying the definition of SD;(M) to the function f%, we have
(9.4) [ wrizsoan [ £

M M

On the other hand,

Jvet=z [ 1o

() (o)

Hence, the desired inequality follows frbm this and (9.4).
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For the Neumann eigenvalue, we simply observe that if u is the first eigenfunction
satisfying
Au = A\ (M),

then u must change sign. If we denote My = {z € M|u(z) > 0} and M_ = {z € M|u(z) <
0}, then

p(My) = M(M) = p(M-).

Let us assume that V(My) < V(M_). In particular, this implies that ID;(My) >
IN;(M). Hence by our previous argument,

A(M) = pa(My)
, IDy(M, )"
- 4
S IN,(M)? .
- 4
This proves the corollary.

Corollary 9.2. Let M be a compact Riemannian manifold with boundary. For any
function f € Hy2(M) and f|am = 0, we have

[wsez (552maan) ([, |f|52-25)2_7a -

Proof. By applying Theorem (9.1) and the definition of SDq(M) to the function |f ‘7-2'5,

we obtain N
/M IVI£|7=| > IDa(M) (/M |f|z%%> "

On the other hand, Schwarz’s inequality implies that
[ i = 52 [ nm=vn
1

<52 (L) (Lwse)

This proves the corollary.

§10 LOWER BOUNDS OF ISOPERIMETRIC INEQUALITIES

The purpose of this section is to give lower bounds of the isoperimetric inequalities in
terms of the diameter, the volume, and the lower bound of the Ricci curvature of the
manifold. The estimate was proved by Croke [Cr] with the aid of Berger-Kazdan’s lemma
[Bs], Santalo’s formula [S], and the notion of visibility angle first considered by Yau [Y 3].
Let us first explain the lemma of Berger-Kazdan.



66 PETER LI

Let v : [0,7] — M be a normal geodesic on M with length 7. Assume that there are no
conjugate points on 7. Let {e;,e2,... ,en} be a parallel orthonormal frame field defined
on v with e; = '. The Jacobi equation along 7(s) is given by
(10.1) VeVe,V-R.ves =0.
In particular, if V; is solution of (10.1) with initial conditions

Vi(0) =0

and
Vi(0)=e
for all 2 < i < m, then one deduces that (e, V;) = 0 for all s. Hence, we can express
) .
Vi=) bije;
i=2

and (10.1) becomes

m m
"
D biex = > biaReye,e1 =0.
k=2

k=2

Taking the dot product with e, this implies that the matrix-valued function B = (b;;)
satisfies

B"+BR =0

with
R=Ri)= ((Relekej’el))'

Moreover, B satisfies the intitial conditions
B(0)=0, and B'(0)=1I.

Note that R is symmetric and B is invertible by the assumption that v has no conjugate
points. Let A be the transpose of B. Clearly, by the symmetry of R, A satisfies

(10.2) A" fRA=0
with inifia.l conditions
(10.3) A(0) = 0 and A'(0) = I.

Moreover, the solutions V; is given by V; = Ae;.
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Lemma 10.1. (Berger-Kazdan [Bs]) Let A;(s) be a (n xn)-matrix valued function defined
on [0,7]. Suppose A; satisfies (10.2) with initial conditions A:(t) = 0 and Ai(t) = I.

Assume that R is symmetric on [0, 7], and Ao(s) is invertible for all s € [0,x]. If p(s) >0
is a continuous function defined on [0, 7] satisfying p(m — s) = p(s), then

/Ow/tvrp(s—t)detAt(s)dsdtz/(;r/t"p(s__t)sinn(s_t)dsdt‘

Equality holds if and only if R(s) = I on [0,7] and A.(s) = sin(s —t)I.

Proof. Let us denote A = Ay, and A* to be its adjoint. Taking the adjoint of (10.2), we
have (A*)" + R*A* = 0 Since R = R*, we have (4*)" + RA* = 0. In particular, this
implies that

((A#)IA _ A*AI)I —_ (A*)"A—' AtAII
=0.

Hence, together with the initial conditions of A we conclude that
(10,4) (A*)A=A=AA"
We now claim that A,(s) is given by
(10.5) A¢(s) = A(s) (/ (A*A)"l(‘r)dr) A*(2).
t

Indeed, A¢(t) =0 and

ai(6) = 4 ([ (47 ()ar ) 40 + A4 ) )40
= 4 ([[warier) a0+ @ o,
which implies that A}(t) = 0. Also
#0) = 47 ([ (aray e ) a0

+ A'(s)(ATA) 7 (5)A%(t) + (A7) T1)(5)A"(2)
= —R(s)Ai(s) + (A'(s)A71(s)(A*) 7! (s) + (A1) 7)) A*(2).

On the other hand, differenitating the identity A*(A4*)~! = I yields

(A*)I(A*)—l + A*((At)—l)l =0.
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Hence applying (10.4), we conclude that
(A7) = —(4")71(Aa7)'(4") ™
— _(A*)—-IA#AIA—I(A*)—I
=-—A'A"1(4*)"L

This established (10.5).
Let us denote ¢ = (det A)%. Applying Jensen’s inequality, we have

(10.6)

( /t | ¢~2(r)df) " et ( /t S(A*A)"l(r)qﬁz(r)dr)
= det (( /t ‘ d)_z(T)dT) N ( /t a(A*A)_l(T)¢2(T)¢—2('r)dr))
> ( /t ) ¢“‘2(T)d7') - ( /t | det ((A*A)-‘¢2)¢—2dr>

([ s2ar) " ([ -2t aesccaraycopar)

1.

I

Hence

det Aq(s) = det A(s) det ( /t ’(A*A)—l(r)dr) det A(t)
<o ([ o7nar)
and
(det o) 2 o(s1600) ([ 672rar).
On the other hand, Holder inequality implies that

(10.7)

(/o7r /t"/’(s —t)det At(s)det> . (/0" /;r p(s —t) sin™(s — t)dsdt> ot

2 /0" /“" p(s —t)(det At(x))% sin™ (s — t)dsdt.
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Therefore,

(10.8)
/01r /t ﬂ”(s — t)det A,(s)ds dt

> ( Ji [ s - taewsinna -0 [ "472(r)drds dt)"

x (/o" [ pls — t) sin™(s — t)ds dt)l_n.

Clearly, equality holds if and only if equality holds on both (10.6) and (10.7). Equality
holds on (10.6) if and only if Ag = (A*A)~!¢? is a constant matrix on [0, 7]. Differentiating
Aj' and using (10.4), we have

0=(A*)A$™2 + A*A'¢™2 — 24" A¢™3¢'
— 2A*Al¢-2 _2A*A¢—-3¢I'
= 2(A%6™1)(447Y)'.

This implies that A¢~! = A, is a constant matrix. Taking the determinant of A = ¢4,
we conclude that det A; = 1. Using the initial condition (10.3), we conclude that

I=A'(0) = ¢'(0)A;,

hence A; = I and A = ¢I. On the other hand, equality on (10.7) implies that det A¢(s) =
sin®(s — t). In particular, this implies that A(s) = sin(s)I.
In view of (10.8), to prove the lemma, it suffices to show that the functional defined by

@)= [ [ ote-vpa)oe)sinm s -0 [ 42 wyardsa

satisfies the property that
G(¢) = G(sin),

because of the identity
’ sin(s —t)

8
/ sin~3(7)dr = ———=.
¢ sinssint
Observe that the definition of ¢, the assumption that A is invertible on (0,7), and the
fact that A satisfies (10.2) implies that ¢ has at most zeros of order 1 at 0 and . Hence,
we may write ¢(s) = (sin s)(exp u(s)), where u(s) is bounded from below and blows up at
most at the order of log at 0 and =. Hence we may apply Jensen’s inequality and conclude
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that

@) = [ [ oo - e~ ) | emdrasa
= /0’r /t7r /ts p(s —t)exp(u(s) + u(t) — 2u(r))sin™ (s — t)§i—:%§i7_iﬁ df dsdt
> u@esp {u @ [* [ [ oo~ 0006) + 00 - 2067

sinssint }

x sin" (s — t) 7—drdsdt
T

sin

with Q = {(T,s,t)ItS’rSs,tSsSw,OgtSﬂ'} and

n kg 8 . .
w(2) = / / / p(s —t)sin® (s — t)s—lg_s—:l—n—tdr ds dt.
o Ji Ji sin® 7
Hence, we have reduced to showing that
T kg 8 . . t
/ / / p(s — t)(u(s) + u(t) — 2u(r))sin (s — t)sirl_fjldr dsdt =0.
o Je Ji sin 1
Let us define n(s) = p(s)sin""(s). Clearly, n(s) = n(x — s). Let us rewrite the integral
T k. 8 . .
/ / / (s — t)(u(s) + u(t) - 2u(r))-s—li,s—§in—tdr dsdt
o Ji Ji sin® 7
- / / / n(s — tyu(s) 22222 4 g it
0 t t sm- T
~ T 8 . .
+ / / / n(s — t)u(t)§m—.8$—tdr dsdt
o Ji Ji sin® 7
n x S . .
- / / / n(s — tyu(r)SBSS0 4 g gy,
o Ji Ji sin® 7

The first term on the right hand side can be written as

™ © 8 : . ” ™
/ / / n(s — t)u(s)im,s—jm—{d*r dsdt = / u(s)/ n(s — t)sin(s — t)ds dt.
o Jt Jt sm- T 0 t

By changing the order of integration, the second term on the right can be written as

/ / / n(s—t)u(t)&;m—tdrdsdt=/ / n(s — t)u(t) sin(s — t)ds dt
o Ji Ji sin® T 0o Ji _

- /0 " u(t) /0 (s — £)sin(s — t)dt ds.
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Also the third term can be written as

—2/ / /n(s—t)u(r)-s—l-l—l;%md‘rdsdt
o Jt Jt sin® T
=2/ u(T)/ / r](s—t)ﬂg_i;—m—tdtdsdﬂ
0 + Jo sin® T

/0" /tw /t’n(s — t)(u(s) + u(t) — 2u(7-))£§i—;-i—;i—7_r—lldr dsdt |
- /0 " u(t)sin=2(t) f(£)dt

Hence

where
g t
f(s) = sinz(t)/ n(s —t)sin(s — t)ds + sinz(t)/ 7(t — s)sin(t — s)ds
¢ 0
T pt
- 2/ / n(s — 7)sinssinrdr ds.
t Jo

We now claim that f is identically 0 on [0, 7]. Clearly, f(0) = 0. Computing its derivative,

n

f'(t) = 2sintcost /" n(s — t)sin(s — t)ds + sin? t/ %(n(s — t)sin(s — t))ds
¢ ¢

)

t
+ 2sint cost/ n(t — s)sin(t — s)ds + sin® t/ E(n(t — s)sin(t — s))ds
0 0

T

t
+ 2/ n(t — 7)sintsinr dr — 2/ n(s —t)sinssintds
0 t
= 2sint/ n(s — t)(cost sin(s — t) — sin s)ds
t 5
— sin? t/ = (n(s — t)sin(s — t))ds
t as
t
+ 2sint/ n(t — s)(cost sin(t — s) + sin s)ds
0
i)
— sin? t/ = (n(t — s)sin(t — s))ds
0 as
= —2sin? t/ n(s — t) cos(s — t)ds — sin® t(n(r — t) sin(m — t))
t
t
+ 2sin? t/ n(t — s) cos(t — s)ds + sin” ¢(n(t) sin(t)).
0
Using the fact that n(t) = n(w —t) and sin(t) = sin(r — 1), we conclude that
t

sin~2t f'(t) = —2/ n(s —t)cos(s — t)ds + 2/0 n(t — s) cos(t — s)ds.
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If we set F(t) =sin"2¢ f'(t), we observe that F(0) = 2 [, n(s) cos s ds. Using the symme-
try of 7 and the fact that cost = — cos(x — t), we have F(0) = 0. Differentiating F with
respect to t, we obtain

F'(t) = -2 ‘/:r gt—(n(s —t)cos(s —t)) ds + 2[; gt—(n(t — s) cos(t — s)) ds + 4n(0)

= -2 /t" _gg(n(s —t)cos(s —t)) ds — 2/‘; ag;(q(t — s) cos(t — s)) ds + 4n(0)
= 2n(7 —t) cos(w —t) + 2n(t) cost
=0.

This implies that F(t) = 0 for all ¢ € [0, 7], and hence f(t) = 0 on [0, 7]. This proves the
lemma.

We are now ready to give an estimate on the isoperimetric inequality IN (M) for
compact manifolds without boundary. Let us first set up the following notation. Let M
be a manifold with boundary dM. The unit tangent bundle of M is denoted by SM, and
m: SM — M is the projection map. Given any unit vector v € SM, we denote 7,(s) to
be the normal geodesic with initial conditions 7,(0) = 7(v) and 7,(0) = v. The geodesic
flow (* : SM — SM on SM is given by

¢(v) = 7(1).

Let us define £(v) to be the smallest value of t such that 7,(¢) € M. Clearly, if the geodesic
7v is confined in the interior of M, then #(v) = co. The map (!(v) is obviously defined for
all ¢t < ¢(v). We also define
: £(v) = sup{t|y, minimizes up to ¢ and ¢ < {(v)}.
Observe that £(v) < oo because M is compact, and £(v) < £(v). The set of unit tangent
vectors v € SM such that the geodesic v_, minimizes up to the boundary is given by

UM = {v € SM |{(—v) = {(—v)}.

Let us denote U, = 77! |ypm(p) to be the preimage set of 7 when restricted to UM. If Sy
is the unit tangent sphere at the point p, then the relative measure of U, is denoted by

_ m(Up)
)= ey
Definition 10.1. The visibility angle of M with respect to its boundary M is defined
by w(M) = inf ,e p wp(M).
Let p € OM be a point on the boundary, we denote v, to be the inward pointing unit -
normal vector to OM at p. Define
S*tOM = {v € SM|r(v) € OM and (v, Vn(v)) 2> 0}

to be the set of inward pointing tangent bundle over 9M. The volume of the standard

unit m-sphere is denoted by am,. It is clear that, the volume of the set STOM is given by
V(StoM) = “";‘ V(aM).

The following integral formula was proved by Santalé [S)].
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Proposition 10.1. (Santald) Let f be an integrable function defined on U.M. Then

./UM flv)do = /S+3M /ol(u) FCT(w)){u, vr(uy)dr du.

In particular, by setting f = 1, we have
VUM) = / 0(u) (4, ) du.
StoM

Theorem 10.1. Let M™ be a complete manifold with boundary, M. Then
A™(OM) > CLw™ T (M) V™M),

where Cy; = 2™ o™ _,al7™. Equality holds if and only if w(M) =1 and M is isometric
to a hemisphere of the standard sphere.

Proof. Let J(v,t) be the area element of By(y)(t), the boundary of the goedesic ball
centered at m(v) with radius t, at the point (u,t) in terms of normal polar coordinate at
w(v). For any p € M, we have

V(M) = /S /0’(”) J(v,t)dt dv.

Integrating over all points p € M, this implies that

(10.9) V(M) = /M /S ’ /o “ o0yt dvdp

£(0)
= / / J(v,t)dt dv
sm Jo

£(0)
2 / J(v,t)dt dv
uM Jo

Lu) ¢ (w))
= / / / J(C(u), t) dt (u, pir(u))dr du
StoM Jo 0

by Proposition (10.1). We now observe that £({"(u)) > £(u) — r, hence by (10.9), we have

Qu) pl(u)—r
(10.10) VIM > / / / T(C™ (), £) dt (uy pgu)dr .
StoaM Jo 0
Let us now observe that by rescaling the metric by t—(’;—), and setting

det A-(t) = J(¢"(u), t + 1)
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along the geodesic v,, Lemma 10.1 implies that

u) pl(u)—r
/ / J(¢"(w), ) dt dr = Cy 7+ (u),
0 0

where

T 8
Cs = x—(m+1) / / sin™ 1 (t — s) dtds
o Jt

—o-1 -m -1
=27 amm Mo, .

Hence (10.10) becomes
(10.11) V(M) > C / ™ () (4, ve(w))) du.
StoM

On the other hand, Holder inequality implies that

(10.12)

(/S+8M Wi, u,,(,,))du> (/S+3M fu, V"("))du)'.n 2 (/s+aM £(u)(u, Vwr(u))du) "

= V™t (UM)
> (am_1w(M)V(m))™*! .

Evaluating the integral

o

S Un(w))du = —=A(OM
/S+3M(UV()) 5, AOM)

and applying (10.12) to (10.11), the desired estimate follows. It is clear that equality holds
if and only if w(M) = 1,£€(u) is identically constant for u € STOM, and equality holds for
Lemma 10.1. This is equivalent to M being a hemisphere of the standard sphere.

With the aid of Theorem 10.1, we are ready to estimate the isoperimetric inequality for
some cases in terms of the lower of the Ricci curvature, the upper bound of the diameter,
and the lower bound of the volume. The following argument for estimating the visibility
angle was first proved by Yau in [Y 3].

Corollary 10.1. Let M™ be a compact Riemannian manifold without boundary. Suppose
the Ricci curvature of M is bounded from below by R;; > (m — 1)K, for some constant
K. Let d = d(M) and V(M) be the diameter and the volume of M, respectively. Then

V(M)) e
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where V(d) denotes the volume of a geodesic ball of radius d in the simply connected space
1—-m

form of constant K sectional curvature, and Cy = 2~ Qe O™

Proof. Let S be a hypersurface dividing M into two components M; and M;. Let us
assume that V(M;) > V(M;), hence V(M;) > 2V(M). By Theorem 10.1, we have
A™(S) __A™(S)
min{V(M,),V(M)}m-1 ~ Vm=1(M,)
> Cw™t (M),
On the other hand, for any point p € My, if v is a minimizing geodesic joining p to a
point € M; then 4'(0) must be in U,. Hence if we write the metric in terms of normal
polar coordinates at p, we can estimate the volume of M; by

V(MI)S/Od/U’ J(v,r) dv dr

d
< m(U,,)/o J(r)dr
= wy( M) V(d).

The corollary follows by using the assumption that V(M;) > 2V(M) and the definition of
SN_m_(M).
m-1

Corollary 10.2. Let M™ be a complete Riemannian manifold. Let us assume that the
geodesic ball of radius R centered at a point p € M satisfies that B,(R)NOM # . Suppose
the Ricci curvature is bounded below by R;; > (m — 1)K on B,(R) for some constant K.
Then for any 0 < r < R, we have

mt1
ID 2 (By(r)) 2 CfF (%}%%)@>

where V (r+ R) denotes the volume of a geodesic ball of radius r+ R in the simply connected
space form of constant K sectional curvature.

Proof. By the definition of ID_m_(By(r)) and Theorem 10.1, it suffices to estimate w(D)

for any proper subdomain of B,,(r) However, it is clear that w(D) > w(Bp(r)) because
D C By(r). Hence

ID;,L_":T(BP(T)) 2 Clm‘*’ ™ (B,,(r)).

Following the same argument as in the proof of Corollary 10.1, for any = € B,(r), we have

Vo(R) = Vp(r) < /0r+R /U,, J(v,r)dv dr

r+R
< m(U,)/0 J(r)dr
< w,(B,,(r))f/(r + R).

Hence the corollary follows.
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§11 HARNACK INEQUALITY AND REGULARITY THEORY OF DE GIORGI-NASH-MOSER

In the section, we will present Moser’s version of the De Giorgi-Nash-Moser’s regularity
theory, which was first discovered independently by De Giorgi and Nash. The iteration
procedure of Moser was particularly useful in the theory of geometric analysis. We will
attempt to cover this in most generality and keep explicit account on the dependency of
various geometric and analytic constants. In applying this type of argument in the study
of geometric PDE, often the explicit geometric dependency is crucial. As a result of these
estimates, one derives a mean value inequality for nonnegative subsolutions and a Harnack
inequality for positive solutions of a fairly general class of elliptic operators. In particular,
it gives a C'“ estimate for solutions of any second order elliptic operators of divergence
form with only measurable coefficients. This regularity result was the original motivation
for the development of this theory. We shall point out that the mean value inequality
and the Harnack inequality derived from this argument applies to a slightly more general
class of equation, while the ones given in earlier sections has less geometric dependency
but requiring more smoothness on the operator. Both approaches are important in the
theory of geometric analysis, while each is more suitable for different type of situation. The
following account of Moser’s argument which has been adopted to a more geometrically
setting is a modification of the lecture notes of Schoen in [Sc].

In terms of notations, let us define the average value of a function f defined on a geodesic

ball B,(R) by |
][ FdV =V,(R)™! / fav.
B,(R) B,(R)

When the point p is fixed, the average Lf-norm of f over B,(R) is defined by

# Fllor = (7[3 o dV)

and the regular L9-norm is defined by

1
1fllor = ( /B (R)de) .

Lemma 11.1. Let M be a complete manifold of dimension m. Let us assume that the
geodesic ball By(R) centered at p with radius R satisfies B,(R) N OM = §. Suppose that
u € Hy,2(Bp(R)) is a nonnegative function defined on B,(R) such that

1
q

Au > —fu.

Let us defined the value v = 7 form > 2, adn 1 < v < oo be arbitrary for m = 2. Assume
that the function f is nonnegative on B,(R) and its LY norm is finite for some v < ¢ < oo,

with .
= = q
A= fllor ( /B ., )
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for v < ¢ < oo and
A= |flloo,g = sup f
By(R)

for ¢ = oo. If p is the conjugate of v such that -1; + i— =1, then let C, > 0 be a constant
such that the Sobolev inequality takes the form

C Il‘-
vt > 22 f W)
7[B»(R)l | R"'( B,(R)d)

for all compactly supported function defined on By(R) which is is Hy 2(B,(R)). Given a
6 < 1, let us assume that

Vo(6R) = 77

then for any k > 0, there exists constant Cs > 0 depending only on k,v,q,C,, and C, such
that

lelln.on < Cs (4B +(1-0)72)F fullen.

Proof. By rescaling, without loss of generality, we may assume that V,(R) = 1. For any
arbitrary constanta > 1, the assumption of u implies that

/¢2fu2a > _/¢2u2a—lAu’

for any compactly supported Lipschitz function on B,(R). Integrating by parts, the right
hand side yields

- / Fu 1 Ay = 2 / pu21(V4, Vu) + (20 — 1) / 2ure=?|Tuf?
> / 60?1 (Ve, Vu) + a / 6222 V2.
However, using the identity
J 19 = [19orie 4 20 [ (06,90 + @ [ oo,
we have

(11.1) a/¢2fu2“ +/|V¢|2u2“ > /|V(¢u"‘)|2

> 2 (f (¢"'u2")")%-
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Let us choose ¢(r) to be the Lipschitz cut-off function depending only on the distance to
p, given by

0 on  By(R)\By(p+0)
+o—r
$={E2"" o0 Byp+0)\Byp)
1 on By(p).
When ¢ = oo, (11.1) implies that there is a constant C; > 0 depending only on C, and
C, such that
n 1
() <o (fir)
By (p)
2
<C; (aA R* + 83-) / u?e.
g By (p+o)
Hence,
m %
(11.2) (1 (aar + ) lulase 2 e

When 2 < ¢ < 00, by the Hélder inequality, we have

g=1

(11.3) a / $2fu?® < ad ( / (¢2u2“);£—1) )

sa(foe) T (Juoanr) T

However, applying the inequality
2€ < 6§z 4 fete (% - 1) :

#(g—1)—q
g(p—1)

e = (@avemh# (o) (| () -

by setting e = and

we have

< Tentt (o) (f (¢2“2“)">-% roats (7-1).
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(o

L (1 C,
serts (1) = 5o
(11.3) and (11.4) becomes

7(1_:'{‘7:7 (-1 : %
a / #* fu < Gy (-}%) (a4) R D% ( / ¢2u2“) + 5%‘7 ( / (¢2u2“)“)

for some constant C; > 0 depending only on p,q and C,. Hence together with (11.1), we
have

Multiplying through by

and choosing 6 so that

1
-1 R2 2a
(115) (ctat Y + BN e 2 s
In any event, (11.2) and (11.5) imply that we have the inequality
9 R2 'il‘u‘
(116) (Cxtat B + )™ Nulhuto 2 lulzan

with a = ;&f_—;ﬁ—q. Let us now choose the sequences of a;, p;, and 03, such that

_k L T

00=2""(1-6)R, 01=2"2(1-6)R, ---, 0;=2"0*)1_@)R, ...,
and
p-1=R, po=R—o0a9, p =R—-09—01, -+, pi =R—ZGJ‘,
j=0
Observe that lim; .o p; = §R. Applying (11.6) to a = a;, p = p;, and o = 0;, and iterating
the inequality, we conclude that
i RN\ |
Ilzes < T (Catos 7297 4 Z) ™
j=0 :
On the other hand, we have the inequality
=1 . -1
‘l_lfgo V(6R) i+ “u”2ai+1,p.‘ 2 'l_ffrolo V(6R) 2°‘+1.llu“2ae+1,93

= [lulloc,0-
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Therefore, letting : — oo, we conclude that

1

b EAR? pi\* 84F O\ Fw°
< I | .
lufloo,or < U (02 ( 5 ) + a- 0)2) lullx,r

The product can be estimated by using the fact that

ﬁB"" = B7*T

=0

and the fact that ) 220 iu~" is finite. Hence we have

I (o0 (HARA)", 8 )™

i 2 (1-6)?

a o .
3 2\a 1 vt
<ol (urr+25)"
;vhere C3 > 0 depends only on k,u,q and C, alone. This proves the desired inequality for
> 2.

For those values of k < 2, we begin with the case k = 2. In that case, the inequality
takes the form

e 1 Hee) 1

Iellene < € (AR + i)™ IullaaVo(0R)
2o 1 p~-1 k 1-k _1
<O ((Arye+ )™ il ol vacom) S,

for any 6R < p < R, and n < 1. Let us choose the sequences of p; and 7; to be

po=06R, p=6R+27'(1-6)R, ---, p;=6R+(1 —)RY 277, ...,
i=1
and
Nipi = Pi-1.
Applying (11.7) to the pair p; and 7; and iterating the inequality yields-
(11.8) |
(1-4%) : 2\ 2 Ty -1 -8
llulloo,r < llulloo £ Ci |(ARP)* + —— s lull RVp(6R) ™=
. (1-6)’R '

j=
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Letting ¢ — oo, the term

(1~—
llelleo

and

(-kyi-t
H lull% = [lullx,r-
Hence, (11.8) implies that

1

ol < Cs (AR + gz ) uliao(eR) .

Substituting the values of o and the fact that u = ¥, the desired inequality follows.

Lemma 11.2. Let M be a complete manifold. Suppose that the geodesic ball B,(R)
centered at p with radius R satisfies B(R)NOM = . Let u > 0 be a function in
H, 2(B,(R)), satisfying the inequality

Au < Au

in the weak sense for some constant A > 0 on B,(R). Let us denote v = %3t form > 2,
and 1 < v < 0o be arbitrary when m = 2. If u is the conjugate of v such that X + % =1,
then let C, be the Sobolev constant such that

\v/ 2 0 2pn “’
7[3,(3)‘ e (7[8,<R)¢ )

for all compactly supported Hy2(Bp(R)) functions. Let us assume that the first non-zero
Neumann eigenvalues \; (£) and A\ (£) of the balls B,(£) and B,(%) satisfy the estimate

. [R? R\ R? R
wn{ 0 (2) 0 (B)

for some constant C, > 0. Also, let us denote the upper of the ratio of the volumes of balls
by
v, (R)
Vo(E) T
Then for k > 0 sufficiently small, there exists constant C > 0 depending only on the
quantities k,v,C,,C,,C,, and (AR? + 1) such that

< Cy.

ﬂu”k,% < Cyo Binf;l u.

P16
Proof. The function u™! satisfies

Au~! = —uT?Au + 2u"¥|Vu?
> —Aul.
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By applying Lemma 11.1 to u™!, we have

-1
(11.9) inf u = sup u”!
By ({%) By(&)

< Cs(AR® + 1)Efu™||; 2.
Clearly, the lemma follows if we can estimate the product
fulen - Hulle g

from above for some value of k > 0.

To achieve this, let us consider the function

w=/L+logu
where g = — | B,(R) log u. The function w satisfies
2
puw = B _ 19
u u
<A- 'lez’
hence

(11.10) [Vw|* < A - Aw.

Let 9(r) be a cut-off function defined by

0 on M\ By(R)
2(R—r) R
={ R on By(R)\ Bp(g)
1 on Bp(g)'

Multiplying (11.10) by %? and integrating, we have
/ ¥?|Vul? < / Y24 - / Y2 Aw
- /¢2A + 2/1/)(V2/),Vw)
< [wtasz [roup+5 [vrvur
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We deduce that
(11.11) / Vuwl? < /¢2|Vw|2
By(%)
<24 w4 [oup
14V,(R)
<24 VP(R) + -——-—1-%2—*-—
However, the Poincaré inequality and the choice of 8 implies that

%‘1/ w? S/ [Vw|2.
By(%) B,(%)

Hence, we have
(11.12) / w? < CsV,(R)
By (%)

where C¢ > 0 is a constant depending only on C, and (AR? + 1). Applying the Schwarz
inequality, we also have

(11.13) / ol < ¢V, (R).
By(8)

On the other hand, let ¢(r) to be the Lipschitz cut-off function depending only on the
distance to p, given by

0 o0 B(P)\Bylp+o)
p={ pto-—r

> on By(p+9)\ By(p)

1 on By(p).

Then multiplying ¢?|w|?*~2 to (11.10) for a > 2, and integrating by parts yields
(11.14) /¢2|w|2“_2|Vw|2 < A/¢2|w|20—2 _ /¢2|w|2“"2Aw
< A/¢2|w|2a_2 n 2/¢|w|2“'2(v¢,Vw)
+@a=2) [Pl

Using (11.11) and the inequalities,

/¢2|w|2a-—2 S/ |w|2a-—2’
By (pt+o)
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/ Blw*~2(V, Vi) < / & Vwllwl?*? + 4 / V[ e~?

<q [Emetpte S [ e,
4 7% JBy(pto)

and
(a=2) [ @l (Vo < 3 [ PloIVal + (0~ 127 [ #(vor
< g [EuPvup +@a-12 [ (vup,
4 Bp(pt+o)

(11.14) becomes
(11.15)

/ 62w 2|Vl < (2A %) / o[22 + 2(8a — 12)20= / Vol?
4 p(P"l“c) Bp(P+°')
8
—

< (2A+ )/ I ‘Za—Z
By (p+o)

+ 4(8a — 12)%23 (A + ;2> Va(R).

By settinga =2, p= %, and o = %, and combining with (11.12) we have
/ w? [Vul? < C;R-2V,(R)
By(9)
for some constant C7 > 0 depending only on Cj, and (AR? + 1). On the other hand,

1
wZV'w2=-—/ V (sgn(w) w?) |2
Loigy 21908 =5 [,y 19 (et w?)]
2
1 R R\7!
> -\ (——-)/ (sgn(w) w? -V, (—-) / sgn(w) wz)
47 \4) s, N4/ s
e R\ ’
= w4—V(—-) / sgn(w) w?
’ (/B,@ol e ) 5
4c R\ ’
> P 4 _ o 2 )
TR ( o(& o K’("‘) (/Bp(%)w> )

Hence combining with (11.12), we have

(11.16) / ol < CoVy(R)
B, (&

Pl 4
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for some constant Cs > 0 depending on Cjp, (AR? 4 1) and C,,. Using Schwarz inequality,
we also conclude that

(11.17) [ WP <civm.
B, (%)
For general a > 2, the Schwarz inequality implies that
V(¢ [w])? < 2[V[2[w[** + 2a?$?|w]**~2|Vuw|?.
Combining this with (11.15), we conclude that

2 4 e
[vewmrsZ [ e (A+ —.,,-) [ qupe
7% JBy(p+o) %/ JBy(p+0)

+ 8(8a — 12)2e1 (A + ;2> Vy(R).

Using the inequality
w72 < Jw?* +1,

[P < (A+ = ol

+ C1o(8a — 12)221 (A + =+ ) V,(R)

we have

R2?

for some universal constants Cg,Cjo > 0. Hence, applying the Sobolev inequality

A ( L. |w|2°“) o 2% ®? ( [@pey) '
< [Iv@ P,

l we conclude that

2

1
R %2a
Huwlloanp < CFak (AR2 n —) Heollzapro
1 2 R2 2a
+ C (8a) (AR 14 ;)

where C11,C12 > 0 are constants depending only on C, and C,. Consider the sequences
of a;, p; and o; given by

a0=2) 0,1—‘—’—2#, T ai=2ﬂ, T,
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00 =2"*R, 0;=27°R, ..., g;=2"0UHIR ...
and )
—_— R — R U . — _‘_Ri g ' a’.
Po = 4 g0, P1 = 1 Og 1y y PP = 4 par I

If we adopt the convention that p_; = %, then applying the inequality to a;, p; and o;, we
have

Hwllapitr o, < (2p*) %7 224 cH Hwllapi pi, +16p 227 CfL°.

where C}3,C14 > 0 are constants depending only on C,, C,, and (AR? +1). Iteratiﬁg this
by running ¢ =0,--- , £ gives

14
ok 4 L
fwllgpesr p, < H(zl‘ )2 227 Cff Hw"4,€=

i=0
-1 ' ;L L. ) it 1
+ 36w 2% ol T (w2t o)
=0 J=i+1
1+ 16ul 2 C %7

Using the equality 372, p~* = 2, and the fact that Yoioo(3+1¢)p" is finite, we conclude
that

£
_ati
(11.18) Hwllgpesr p, < Cis (ﬂwlh’% + Z (p' 2247 ))

=0

< Cio (Holly g +4)
where the constants Cys5,C1¢ > 0 depend only on m, C,, C,, and (AR? +1).

For each integer j > 4, let £ be such that 4uf < j < 4x¢+1, Using the fact that p, > 182-,
Holder inequality and the estimate (11.18) implies that

wher
7[ ol < f Iwr‘“‘“)
By(&) B, (&)

< Cls(h w"4,l} +3).

Hence together with (11.12), (11.13), (11.16), and (11.17), we have

o0
; klw| _ -1 —lkj]L J
][ e = 7! w
j§ 0:( ) |w]

By (%) o (2)

<Ciz + Z(j!)"l (Ciskj)?,

=5
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where Ci7,C1s > 0 are constants depending only on Cp, Cy, and (AR? + 1). However,
using Stirling’s inequality j7 < jle’, we conclude that

klw| S ]
w j
7[3,,(96 < Cir + Y (Ciske).

=5

Therefore, by choosing k& < (Cige)~!, the infinite series converges and we obtain the
estimate

(11.19) / bl < Gy
By(%)

where C19 > 0 is a constant depending on m, Cp, Cy Cs, and (AR? +1).
Let us now observe that

ekﬂuk — ekw

< eklvl
and
e—kBy—k — o—Fw
< eklwl
imply that

2
Bl x - fulles < f ekl |
ks e B,(&)

The lemma now follows by applying (11.9) and (11.19).
By combining Lemma 11.1 and Lemma 11.2, we obtain the following Harnack inequality.

Theorem 11.1. Let M be a complete manifold of dimension m. Let us assume that the
geodesic ball B,(R) centered at p with radius R satisfies B,(R) N M = §. Suppose that
u € H; 2(Bp(R)) is a nonnegative function defined on By(R) such that

|Au| < Au.

Then there exists a constant Cz; > 0 depending on the quantities (AR? + 1), m,C,,C,,
and C, such that

sup u<Cy inf wu.
B,(16R) By(16R)
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Corollary 11.1. Let M be a manifold of dimension m. Suppose that ds? is a complete
metric on M such that there is a point p € M and for all R, the quantities Cp,Cs, and
C, are all bounded independent of R. Then for any ds® metric on M which is equivalent
to ds2, there does not exist any nonconstant positive harmonic functions for the Laplacian
with respect to ds®. In particular, any manifold which is quasi-isometric to Euclidean space
endowed with the standard flat metric has no non-constant positive harmonic functions.

Proof. To see this, we first observe the properties that Cp,C,, and C, are uniformly
bounded is a quasi-isometric invariant. Hence one Theorem 11.1 implies that any pos-
itive harmonic function u defined on M must satisfies the Harnack inequality

sup u<Cqy inf wu.
B,(16R) By(16R)

On the other hand, since u is positive, by translation, we may assume that infy;u = 0.
Hence, by taking R — oo, we conclude that

sup u SCglinf‘u:O.
M M

Therefore, u must be identically 0.

Corollary 11.2. Let M, dsj, and ds? satisfy the hypothesis of Corollary 11.1. Suppose
u € Hy 2(By(1)) satisfies the differential inequality

|Auj < A

in the weak sense for some constant A > 0. Then u must be Hélder continuous at the point
p. '

Proof. Let us denote s(R) = sup B,(r) % and {(R) = infp (g) u. Applying Theorem 11.1 to
the functions s(R) — u and u — i(R), we have

. R R
o(B) ~i(55) < Cus (B) — o 5))
and R R
“(59)— i) < Car (52 - im)).
Adding the two inequalities yield

w(R) + w(-l%) <Cxn (w(R) - ‘-'-’(1%‘))

where w(R) = s(R) — i(R) denotes the oscillation of u on By(R). This implies that

w(12) < w(R)

for v = %ﬁi—}- < 1. Iterating this inequality gives
w(167%) < vFw(1).

Setting r = 16, we see that u is Holder continuous with Holder exponent —,10%3%.
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