

Infinitely Large Neural

Networks

Ernest K. Ryu

Research Institute of Mathematics

Seoul National University, Seoul 08826, Korea

Lecture Notes in Mathematics Number 58

Lecture Notes Series in Mathematics

58

Infinitely Large Neural
Networks

Ernest K. Ryu

Published by the
Research Institute of Mathematics
Seoul National University, Seoul 08826, Korea
Lecture Notes in Mathematics

Research Institute of Mathematics
Seoul National University

Ernest K. Ryu
Department of Mathematical Sciences and Resesarch Institute of Mathematics
Seoul National University
Seoul 08826
Korea

2020 Mathematics Subject Classification. 46S99, 68T99, 90C25.

© Copyright 2023 by the Research Institute of Mathematics, Seoul National University.
All rights reserved.
The Seoul National University retains all rights.
Printed in Korea
2023. 1. 10.

Infinitely Large Neural
Networks

Ernest K. Ryu
Department of Mathematics, Seoul National University

January, 2023

ABSTRACT

During the week of December 20-24, 2004, the author is one of two principal
lecturers at the Winter School 2018 of Gauss-Hilbert Theory. In this lecture I
attempt to set forth some of the recent developments that had taken place in

Gauss-Hilbert Theory.

Contents

1 Universal approximation theory for wide neural networks 1
1.1 Cybenko’s proof . 1
1.2 Applications of Stone–Weierstrass 5
1.3 Interpolation . 11
1.4 Density in Lp spaces . 13
1.5 Quantitative approximation guarantees by probabilistic method 15
1.6 Approximation capabilities of deeper neural networks 21

1.6.1 Approximating compactly supported functions 21
1.6.2 Universality of 3-layer wide neural networks 22
1.6.3 Depth separation . 23

2 Positive definite kernels 25
2.1 Building blocks of kernels . 26

2.1.1 Inner products of feature maps 26
2.1.2 Operations preserving PDKs 27
2.1.3 Shift invariant kernels and Bochner’s theorem 29

2.2 Reproducing kernel Hilbert space (RKHS) 31
2.2.1 Completion argument of Moore–Aronszajn 37
2.2.2 Discussion . 39

2.3 Kernel trick in shallow learning 40
2.3.1 Feature maps . 41
2.3.2 Kernel trick and kernel SGD 42
2.3.3 Finite-sum problems . 44
2.3.4 Representer theorem . 45
2.3.5 Kernel ridge regression 47
2.3.6 RKHS with finite-dimensional feature vector and and

corresponding 2-layer neural networks 50
2.4 Kernel as linear operators . 52

2.4.1 Mercer kernel and Mercer’s theorem 53
2.5 Matrix-valued PDKs and vector-valued RKHSs 56

2

2.5.1 Tensor products . 57
2.6 Random feature learning . 58

2.6.1 Kernel approximation . 58
2.6.2 Function approximation 60

3 Continuous-Time Training Dynamics 63
3.1 Gradient flow as a model for stochastic gradient descent 63
3.2 Continuous-time analysis of gradient flow 69
3.3 Second-order dynamics as a model for SGD with momentum . . 70

4 Gaussian process 78
4.1 Neural network Gaussian process 79

5 Neural tangent kernel 83
5.1 Kernel gradient flow via the chain rule 84

5.1.1 Formal calculations for gradient flow 85
5.1.2 Rigorous derivation of kernel gradient flow 85
5.1.3 Special case: Quadratic function, empirical risk 87
5.1.4 Tangent space interpretation 88
5.1.5 Convergence properties of kernel gradient flow 89

5.2 NTK at initialization . 90
5.3 Some preliminaries . 95
5.4 Invariance of NTK . 96
5.5 Quadratic case . 101

6 Wasserstein distance 103
6.1 Optimal transport formulations 103

6.1.1 Monge formulation . 103
6.1.2 Kantorovich formulation 105
6.1.3 Wasserstein distance . 107

6.2 Duality . 108
6.2.1 Kantorovich–Rubinstein duality 110
6.2.2 Preliminaries: Convex conjugates 112
6.2.3 Brenier’s theorem: W2 112

7 Weak solution of differential equations and Wasserstein
gradient flow 115

7.1 Weak solution to ODE . 115
7.2 Weak solution to PDE . 116

7.2.1 Formal derivation of weak formulation 117

3

7.3 Continuity equation . 118
7.3.1 Formal derivation of weak formulation 119
7.3.2 Properties of the continuity equation 120

7.4 Wasserstein gradient flow . 121
7.4.1 Metric gradient flow . 121
7.4.2 Prelminaries: First variation 122
7.4.3 Wasserstein gradient flow 123

8 Mean-field theory 125
8.1 Convergence of risk . 126
8.2 Population dynamics from gradient flow 127
8.3 Global convergence . 130

8.3.1 Differential geometry background 135

9 Universal approximation theory: Deep neural networks 137

10 Neural ODE 142
10.1 Backpropagation for neural ODE 144

10.1.1 Warmup for continuous-depth backprop 144
10.1.2 Backprop via adjoint equations 146

4

Chapter 1

Universal approximation theory
for wide neural networks

1.1 Cybenko’s proof

Let Ω ⊂ Rd be compact. Let σ : R → R. Let fθ represents width-N 2-layer
neural networks:

fθ(x) =
N∑
i=1

uiσ(a
⊺
i x+ bi), (1.1)

where θ ∈ Θ(N) and

Θ(N) = {(a1, . . . , aN , b1, . . . , bN , u1, . . . , uN) | a1, . . . , aN ∈ Rd, b1, . . . , bN , u1, . . . , uN ∈ R}.

To clarify, Θ(N) ∼= RdN+2N .

Theorem 1. Let Ω ⊂ Rd be compact. Let σ : R→ R be a continuous function
satisfying

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1.

The class of functions ⋃
N∈N

{fθ}θ∈Θ(N)

is dense in (C(Ω), ∥ · ∥∞), i.e.,

closure(span({σ(a⊺x+ b)}a∈Rd, b∈R)) = (C(Ω), ∥ · ∥∞).

The consequence of this theorem is that for any f⋆ ∈ C(Ω) and ε > 0, there
exists a large enough N and network parameter θ ∈ Θ(N) such that

sup
x∈Ω
|fθ(x)− f⋆| < ε.

1

Smaller ε will likely require larger N , but this theorem or its proof will not
allow us to make any quantitative claims. Moreover, this is an existence result;
it does not tell us how to find N and θ ∈ Θ(N).

Pseudo-proof in dimension 1. Let d = 1. Note that

σ

(
a

δ
x− b

δ

)
→ 1[b/a,∞)

as δ → 0, i.e., for small δ, we have a smooth approximation of the step function.
(Note for x = b

a
, we do not have convergence. Remember that this is not a

real proof.) Then

1[t0,t1] ≈ σ

(
1

δ
x− t0

δ

)
− σ

(
1

δ
x− t1

δ

)
for small δ > 0.

Given a smooth function f⋆, find a piecewise constant approximation to it.
Then form a smooth approximation of the piecewise constant approximation.

The actual proof of Theorem 1 will be done in two steps, with the following
Lemmas 1 and 2. We say σ is discriminatory if[
µ ∈M(Ω) such that

∫
Ω

σ(a⊺x+ b) dµ(x) = 0, ∀ a ∈ Rd, b ∈ R
]
⇒ µ = 0.

In functional analysis, one often views an object in a primal and a dual way. In
the primal view, we view µ ∈M(Ω) as mapping that assigns a “volume” to any
measurable set. In the dual view, we instead view the action of Lµ : C(Ω)→ R
defined by

Lµ[f] =

∫
Ω

f(x) dµ(x).

Under this view, σ is discrminatory if the fact that Lµ[σ(a
⊺ ·+b)] = 0 for all a

and b implies that Lµ[f] = 0 for all f , i.e., to determine whether Lµ = 0, it is
sufficient to check all inputs of the form σ(a⊺ ·+b).

We quickly provide some non-examples. Let d = 1 and Ω = [−10, 10].
Then σ(x) = 1 is not discriminatory since

µ = −δ−1 + δ1 ̸= 0,

where δr is the Dirac delta measure centered at r ∈ R, satisfies∫
Ω

σ(ax+ b) = 0, ∀a ∈ Rd, b ∈ R.

2

Likewise, σ(x) = x is not discriminatory since

µ =
1

2
δ−1 − δ0 +

1

2
δ1 ̸= 0

satisfies ∫
Ω

σ(ax+ b) = 0, ∀a ∈ Rd, b ∈ R.

One can show that all polynomials are not discriminatory.

Lemma 1. Let Ω ⊆ Rd. If σ is discriminatory, then {fθ} is dense in (C(Ω), ∥·
∥∞).

Proof. Let S = span({σ(a⊺x + b)}a∈Rd, b∈R) ⊆ C(Ω), and let S be its closure
in (C(Ω), ∥ · ∥∞). Assume for contradiction that S ̸= C(Ω). Then pick g ̸= 0,
g ∈ C(Ω)\S and define the linear form L on S ⊕ span(g) as

L[s+ λg] = λ, ∀ s ∈ S, λ ∈ R.

This makes L a bounded linear operator1 such that L = 0 on S but L ̸= 0.
Using the Hahn–Banach theorem, we can extend L to L : C(Ω)→ R such that
L is bounded and linear. Since L ∈ C(Ω)∗ ∼=M(Ω), there exists µL ∈ M(Ω)
such that L(h) =

∫
Ω
h dµL. However, L = 0 on S, so∫

σ(a⊺x+ b) dµL(x) = 0

for all a, b and µL = 0 and L = 0 by the hypothesis. L = 0 contradicts the
construction L[s+ λg] = λ, so we conclude S = C(Ω).

Lemma 2. A σ satisfying the condition of Theorem 1 is discriminatory.

Proof. Define
φa,b = σ(a⊺x+ b)

and

Ha,b = {x | a⊺x+ b > 0} (open half-space defined by (a, b))

∂Ha,b = {x | a⊺x+ b = 0} (boundary of the half space)

1In the current setup, dist(g,S) > 0, since S is closed, and ∥s+ λg∥ = |λ|∥(1/λ)s+ g∥ ≥
|λ|dist(g,S). So |L[s+ λg]| = |λ| ≤ 1

dist(g,S)
∥s+ λg∥, and L is bounded.

3

for all a ∈ Rd and b ∈ R. Then

φa
δ
, b
δ
+t(x) = σ

(
a⊺x+ b

δ
+ t

)
δ→0→ γt =


1 if x ∈ Ha,b

σ(t) if x ∈ ∂Ha,b

0 otherwise

pointwise. By the Lebesgue dominated convergence theorem (since σ is bounded)∫
Ω

φa/δ,b/δ+t(x) dµ(x)→
∫
Ω

γt(x) dµ(x) = σ(t)µ(∂Ha,b) + µ(Ha,b).

Since the question is whether σ is discriminatory, consider the scenario where
all of these integrals vanish. Then σ(t)µ(∂Ha,b) + µ(Ha,b) = 0 for all t ∈ R,
a ∈ Rd, and b ∈ R. Since σ is not a constant function, this implies µ(∂Ha,b) =
µ(Ha,b) = 0. If this implies that µ = 0, then σ is discriminatory.

We now show µ = 0. For a ∈ Rd, consider

Fa,µ[h] =

∫
Ω

h(a⊺x) dµ(x),

which is linear. We have

Fa,µ[1[−b,∞)] =

∫
Ω

1[−b,∞)(a
⊺x) dµ(x) = µ(∂Ha,b) + µ(Ha,b) = 0.

We define step functions to be functions of the form

N∑
i=1

ci1[ti,ti+1)

with N ∈ N, t1 < t2 < · · · < tN , and c1, . . . , cN ∈ R. By linearity,

Fa,µ[h] = 0

for all step functions h. There exists a sequence of step functions h1, h2, . . .
such that

|hi(x)| ≤ | sin(x)|, hi(x)→ sin(x), ∀x ∈ R.

By the Lebesgue dominated convergence theorem,∫
Ω

sin(a⊺x) dµ(x) = 0.

We can make the same argument with cos(x). Combining the two cases, we
get

µ̂(a) =

∫
Ω

eia
⊺x dµ(x) = 0.

Since the Fourier transform of µ is zero, we conclude µ = 0.

4

But what if the function we wish to approximate is discontinuous? For
example, what if we wish to approximate a function f⋆ : Ω→ {1, . . . , k}. While
one can approximate continuous functions with discontinuous functions, one
cannot approximate continuous functions with discontinuous ones in the ∥·∥∞-
norm.

However, we can have the continuous function approximate the discontin-
uous function is most of the domain.

Theorem 2 (Lusin’s theorem). Let Ω ⊆ Rd be compact. Let f : Ω → R be
a measurable function. For any ε > 0, there exists a continuous function
fε : Ω→ R and Ω′ ⊆ Ω such that Vol(Ω\Ω′) < ε and such that

f(x) = fε(x), ∀x ∈ Ω′.

(Here, Vol denotes the “volume” defined by the Lebesgue measure.)

Theorem 3. Consider the setup of Theorem 1. Let f⋆ : Ω → {1, . . . , k} be a
(measurable) decision function. For any ε > 0, there exists an fθ and Ω′ ⊆ Ω
such that Vol(Ω\Ω′) < ε and

|f⋆(x)− fθ(x)| < ε, ∀x ∈ Ω′.

Proof. By Lusin’s theorem, we find fε and Ω′ such that fε = f⋆ on Ω′. Then
we appeal to Theorem 1 to find an fθ such that fθ ≈ fε on Ω. Then fθ ≈ f⋆
on Ω′.

1.2 Applications of Stone–Weierstrass

Theorem 4 (Stone–Weierstrass). Let Ω ⊂ Rd be compact. Let F ⊆ (C(Ω), ∥ ·
∥∞) be a subalgebra that contains the non-zero constant function. Then F is
dense if and only if for any distinct x, y ∈ Ω there exists an f ∈ F such that

f(x) ̸= f(y).

For the following class of functions (not 2-layer neural networks, but im-
plementable) the Stone–Weierstrass theorem immediately applies.

fθ(x) =
N∑
i=1

ui

Mi∏
j=1

σ(a⊺ijx+ bij). (1.2)

Lemma 3. The class of functions of the form (1.2) for all N,M1, . . . ,MN ∈ N
is an algebra.

5

Lemma 4. Let Ω ⊆ Rd be compact. If σ : R→ R is a continuous nonconstant
function, then functions of the form (1.2) is dense in (C(Ω), ∥ · ∥∞).

Proof. The statement follows from the Stone–Weierstrass theorem. By the
previous lemma, it remains to establish the separation requirement. Since σ
is nonconstant, there exists r1, r2 ∈ R such that σ(r1) ̸= σ(r2). Then for any
distinct x, y ∈ Ω, there exists a ∈ Rd and b ∈ R such that

a⊺x+ b = r1, a⊺y + b = r2.

Then σ(a⊺x+ b) ̸= σ(a⊺y + b).

Theorem 5. Let Ω ⊂ Rd be compact. Let σ = sin. The class of 2-layer neural
networks (1.1) is dense in (C(Ω), ∥ · ∥∞).

Proof outline. The class of functions of the form (1.2) is dense by Lemma 4.
Using the trigonometric identity

2 sin(a) sin(b) = sin
(
a+ b− π

2

)
− sin

(
a− b− π

2

)
,

we can convert functions of the form (1.2) into functions of the form (1.1).
Therefore,

{functions of the form (1.2)} ⊆ {functions of the form (1.1)},

so functions of the form (1.1) is also dense.

Theorem 6. Let Ω ⊆ Rd be compact. If µ ∈M(Ω) such that

µ̂(a) =

∫
Ω

eia
⊺x dµ(x) = 0

for all a ∈ Rd. Then µ = 0.

Proof. Homework exercise.

Next, we will established the following further general universality result.

Theorem 7 (Leshno [2]). Let σ ∈ C(R) be non-polynomial. Let Ω ⊂ Rd be
compact. Then span{σ(a⊺ ·+b) | a ∈ Rd, b ∈ R} is dense in (C(Ω), ∥ · ∥∞).

The first step of our proof will be to reduce the universality in the d-
dimensions to 1-dimension. For any σ : R→ R, define

S1 = span{σ(s ·+t) | s ∈ R, t ∈ R}

and
Sd = span{σ(a⊺ ·+b) | a ∈ Rd, b ∈ R}.

6

Lemma 5. Let σ : R→ R be continuous2 such that S1 is dense in (C(K), ∥·∥∞)
for any compact K ⊂ R. Then Sd is dense in (C(Ω), ∥ · ∥∞) for any compact
Ω ⊂ Rd.

Proof. Since span{sin(a⊺ ·+b) | a ∈ Rd, b ∈ R} is dense in C(Ω) by Theorem 5,
there exists ∣∣∣∣∣f⋆(x)−

N∑
i=1

ui sin(a
⊺
i x+ bi)

∣∣∣∣∣ < ε

2
, ∀x ∈ Ω.

Let
D = sup

x∈Ω
i=1,...,N

|a⊺i x|.

Since S1 is dense in C([−D,D]), there exists∣∣∣∣∣ui sin(a⊺i x+ bi)−
Mi∑
j=1

vijσ(sij(a
⊺
i x)− tij)

∣∣∣∣∣ < ε

2N
, ∀ i = 1, . . . , N, x ∈ Ω.

By the triangle inequality, we conclude∣∣∣∣∣f⋆(x)−
N∑
i=1

Mi∑
j=1

vijσ(sij(a
⊺
i x)− tij)

∣∣∣∣∣ < ε, ∀x ∈ Ω.

Lemma 6. σ ∈ C∞(R) is a polynomial of degree at most k ∈ N if and only if

σ(k+1)(t) = 0, ∀ t ∈ R.

Lemma 7. Let σ ∈ C∞(R). Let K ⊆ R be compact. Then3

rkσ(k)(t) ∈ S1

for all k ∈ N and t ∈ R, where the closure is taken in (C(K), ∥ · ∥∞).

2The proof really only requires σ : R → R to be measurable. However, we assume σ is
continuous so that S1 ⊆ C(K) and Sd ⊆ C(Ω) for K ⊂ R and Ω ⊂ Rd.

3Since σ : R→ R, we allow t ∈ R, rather than restricting t to the interior of K. The set
K ⊆ R is used for defining the notion of convergence rather than for restricting the input.

7

Proof. Let S1 = span{σ(sr + t) | s ∈ R, t ∈ R}. Then

rσ′(t) =
d

ds
σ(sr + t)

∣∣∣
s=0

= lim
h→0

σ(hr + t)− σ(t)
h

∈ S1.

We do need to verify that the convergence is uniform on compact K. Since

σ(hr + t)− σ(t)
h

− rσ′(t) =
r

h

∫ h

0

(σ′(ηr + t)− σ′(t)) dη

=
r2

h

∫ h

0

∫ η

0

σ′′(νr + t) dν dη,

we have

sup
r∈K

∣∣∣∣σ(hr + t)− σ(t)
h

− rσ′(t)

∣∣∣∣ ≤ h

(
sup
r∈K

r2
)(

sup
r∈K
|σ′′(r)|

)
<∞, ∀h ̸= 0.

Likewise,

rkσ(k)(t) =
dk

dsk
σ(rs+ t)

∣∣∣
s=0
∈ S1.

Corollary 1. Let σ ∈ C∞(R) and assume σ is not a polynomial. Then S1 is
dense in (C(K), ∥ · ∥∞) for any compact K ⊆ R.

Proof. For any k ∈ N, there is a t ∈ R such that σ(k)(t) ̸= 0, by Lemma 6,
and implies rk ∈ S1, by Lemma 7. Since S1 contains all monomials, S1 is
dense in C(K) by Stone–Weierstrass. (S1 is not an algebra, but it contains the
subalgebra of polynomials, which is dense in C(K) by Stone–Weierstrass.)

Let

Ψ(t) =

{
exp

(
− 1

1−t2
)

for t ∈ (−1, 1)
0 otherwise

be our smooth “bump” function. Such a function is also referred to as a
mollifier. Define

ϕδ(t) =
1

δ
∫
R Ψ(t) dt

Ψ(t/δ).

Then ϕδ ∈ C∞ is supported on [−δ, δ] and
∫
R ϕδ(t) dt = 1. For any σ ∈ C(R),

define

σδ(r) =

∫
R
σ(r − t)ϕδ(t) dt.

8

Lemma 8. For any σ ∈ C(R) and any compact K ⊆ R,

sup
r∈K
|σδ(r)− σ(r)| → 0

as δ → 0.

Proof. Define K ′ = [(infK)− 1, (supK) + 1]. (So K ′ is compact but slightly
bigger than K.) By the Heine–Cantor theorem, for any ε > 0, there exists
a δ0 > 0 such that for all r1, r2 ∈ K ′ such that |r1 − r2| < δ0, we have
|σ(r1)− σ(r2)| < ε. Therefore, for any δ ≤ min{1, δ0}, we have

|σδ(r)− σ(r)| ≤
∫ δ

−δ
|σ(r − t)− σ(r)|ϕδ(t) dt < ε, ∀ r ∈ K.

Therefore,
lim sup
δ→0

sup
r∈K
|σδ(r)− σ(r)| ≤ ε.

Since this holds for all ε, we conclude the statement.

Lemma 9. For any σ ∈ C(R) and δ > 0, σδ ∈ C∞(R).

Proof. With a change of variables, we can also write

σδ(r) =

∫
R
σ(t)ϕδ(r − t) dt.

Then

d

dr
σδ(r) = lim

h→0

∫
R
σ(t)

ϕδ(r + h− t)− ϕδ(r − t)
h

dt

= lim
h→0

∫ r+2δ

r−2δ

σ(t)
ϕδ(r + h− t)− ϕδ(r − t)

h
dt

=

∫ r+2δ

r−2δ

σ(t) lim
h→0

ϕδ(r + h− t)− ϕδ(r − t)
h

dt

=

∫ r+2δ

r−2δ

σ(t)ϕ′
δ(r − t) dt

=

∫
R
σ(t)ϕ′

δ(r − t) dt

By Lebesgue dominated convergence theorem, since∣∣∣∣ϕδ(r + h− t)− ϕδ(r − t)
h

∣∣∣∣ ≤ ∥ϕ′′
δ∥∞.

9

By the same reasoning, we have

σ
(k)
δ (r) =

∫
R
σ(t)ϕ

(k)
δ (r − t) dt.

Lemma 10. Let σ ∈ C(R). Then σδ ∈ C∞(R) and σδ ∈ span{σ(r − t) | t ∈ R},
where the closure is taken in (C(K), ∥ · ∥∞) for any compact K ⊆ R.

Proof. Consider the Riemann sum approximation

σδ(r) =

∫
R
σ(r − t)ϕδ(t) dt ≈

2δ

N

N∑
i=1

ϕδ

(
−δ + i2δ

N

)
σ

(
r + δ − i2δ

N

)
.

To complete the proof, one must show uniform convergence

lim
N→∞

sup
r∈K

∣∣∣∣∣2δN
N∑
i=1

ϕδ

(
−δ + i2δ

N

)
σ

(
r + δ − i2δ

N

)
− σδ(r)

∣∣∣∣∣ = 0.

As N →∞,∣∣∣∣∣2δN
N∑
i=1

ϕδ

(
−δ + i2δ

N

)
σ

(
r + δ − i2δ

N

)
− σδ(r)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

2δ

N
ϕδ

(
−δ + i2δ

N

)
σ

(
r + δ − i2δ

N

)
−

N∑
i=1

∫ −δ+ i2δ
N

−δ+ (i−1)2δ
N

ϕδ(t)σ(r − t)dt

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

∫ −δ+ i2δ
N

−δ+ (i−1)2δ
N

(
ϕδ

(
−δ + i2δ

N

)
σ

(
r + δ − i2δ

N

)
− ϕδ(t)σ(r − t)

)
dt

∣∣∣∣∣
≤

N∑
i=1

∫ −δ+ i2δ
N

−δ+ (i−1)2δ
N

∣∣∣∣ϕδ (−δ + i2δ

N

)
σ

(
r + δ − i2δ

N

)
− ϕδ(t)σ(r − t)

∣∣∣∣ dt
(i)

≤
N∑
i=1

∫ −δ+ i2δ
N

−δ+ (i−1)2δ
N

∣∣∣∣ϕδ (−δ + i2δ

N

)
− ϕδ(t)

∣∣∣∣ ∣∣∣∣σ(r + δ − i2δ

N

)∣∣∣∣
+

∣∣∣∣σ(r + δ − i2δ

N

)
− σ(r − t)

∣∣∣∣ |ϕδ(t)| dt
(ii)

≤
N∑
i=1

∫ −δ+ i2δ
N

−δ+ (i−1)2δ
N

∣∣∣∣ε sup
r∈K
|σ(r)|+ ε

1

δ

∣∣∣∣ dt = 2ε(δ sup
r∈K
|σ(r)|+ 1).

10

Inequality (i) follows from the argument |ab − cd| = |(a − c)b + c(b − d)| ≤
|(a− c)b|+ |c(b− d)|. Inequality (ii) follows from the following two arguments:
by the Heine–Cantor theorem, for any ε > 0, there exists a large enough N ∈ N
such that |ϕδ(x)− ϕδ(y)| < ε and |σ(x)− σ(y)| < ε for any x, y ∈ B(K, 2δ/N)
and |x − y| < 2δ/N ; also, supr∈R |ϕδ(t)| ≈ 0.83/δ ≤ 1/δ. Since this bound
holds for any ε > 0, we conclude the convergence is uniform.

Lemma 11. Let σ ∈ C(R) be non-polynomial. Let k ∈ N. There is a δ > 0
such that σδ is not a polynomial of degree at most k.

(σδ is probably not a polynomial in most cases, for any δ > 0. However,
we leave open the possibility that σδ is a polynomial of large degree; since
σδ → σ uniformly, there must be a sufficiently small δ such that σδ is either
not a polynomial or a polynomial with degree larger than k.)

Proof. The set of polynomials of degree at most k is a closed subspace in
(C(K), ∥ · ∥∞) for any compact K ⊂ R. If σδ is a polynomial of degree at most
k for all δ > 0, then the limit σδ → σ as δ → 0 must be a polynomial of degree
at most k. This contradicts that assumption that σ is not polynomial, and we
conclude the statement.

Lemma 12. Let σ ∈ C(R) be non-polynomial. Then span{σ(sr+b) | s ∈ R, t ∈
R} is dense in any C(K) for any compact K ⊆ R.

Proof. By Lemma 10,⋃
δ>0

span{σδ(sr + t) | s ∈ R, t ∈ R} ⊆ span{σ(sr + t) | s ∈ R, t ∈ R}.

For any k ∈ N, by Lemma 11, there exists a δ > 0 such that σδ is not a
polynomial of degree at most k − 1, and, by Lemmas 6 and 7, rk is in the
LHS. Since the LHS and the RHS contains all monomials and therefore all
polynomials, the RHS is dense by Stone–Weierstrass.

1.3 Interpolation

Let us now address the question of interpolation: given X1, . . . , XN ∈ Rd and
Y1, . . . , YN ∈ R, is there an θ such that fθ(Xi) = Yi for all i = 1, . . . , N? The
idea is that we have the observations f⋆(Xi) = Yi for i = 1, . . . , N of the true
unknown function f⋆. Instead of approximating f⋆ on all possible inputs, the
goal of interpolation is to match f⋆ only on the observed points.

11

Let h1, . . . , hN be functions mapping fromA to R. We say {hi}Ni=1 is linearly
independent as functions if there does not exist a nonzero u ∈ RN such that

h(a) =
N∑
i=1

uihi(a) = 0, ∀ a ∈ A.

Lemma 13. Let h1, . . . , hN be functions from A to R. If {hi}Ni=1 are linearly
independent as functions, there is a1, . . . , aN ∈ A such that M ∈ RN×N defined
by Mij = (hi(aj)) is invertible. Furthermore, for any Y1, . . . , YN ∈ R, there is
a u ∈ RN such that

Yj =
N∑
i=1

uihi(aj), ∀ j = 1, . . . , N,

i.e., [
Y1 Y2 · · · YN

]
=
[
u1 u2 · · · uN

]
M.

Proof. Define H : A → RN as

H(a) =


h1(a)
h2(a)
...

hN(a)

 .
Then {hi}Ni=1 is linearly independent if and only if for u ∈ RN ,

[uTH(a) = 0, ∀ a ∈ A] ⇒ u = 0.

Also,
M =

[
H(a1) H(a2) · · · H(aN)

]
∈ RN×N

for any a1, . . . , an ∈ A.
We establish the claim by induction. By linear independence, there is an

a1 ∈ A such that
v(1) = H(a1) ̸= 0.

Next, for i = 1, . . . , N − 1, assume {v(1), . . . , v(i)} is linearly independent as
vectors in RN . Define V (i) = span{v(1), . . . , v(i)} ⊂ RN and find a nonzero
u(i) ∈ (V (i))⊥. Then there is a ai+1 ∈ A such that (u(i))⊺H(ai+1) ̸= 0. With
v(i+1) = H(ai+1), {v(1), . . . , v(i+1)} is linearly independent. (Since u(i) is or-
thogonal to all vectors in V (i), (v(i+1))⊺u(i) ̸= 0 implies v(i+1) /∈ V (i).) When
this process concludes at i = N ,

M =
[
v(1) · · · v(N)

]
=
[
H(a1) H(a2) · · · H(aN)

]
is invertible.

12

Theorem 8 (Interpolation). Let σ ∈ C(R) be non-polynomial. Let X1, . . . , XN ∈
Rd be distinct data points with corresponding labels Y1, . . . , YN ∈ R. There ex-
ists a1, . . . , aN ∈ Rd, b1, . . . , bN ∈ R, and u1, . . . , uN ∈ R such that

Yj =
N∑
i=1

uiσ(a
⊺
iXj + bi), ∀ j = 1, . . . , N.

Proof. Define hi : Rd × R→ R as

hi(a, b) = σ(a⊺Xi + b)

for i = 1, . . . , N . If {hi}Ni=1 are linearly independent as functions, then we are
done by Lemma 13.

Now assume for contradiction that {hi}Ni=1 is linearly dependent, i.e., there
is a nonzero (u1, . . . , uN) ∈ RN such that

N∑
i=1

uiσ(a
⊺Xi + b) = 0, ∀ a ∈ Rn, b ∈ R.

If we define

µ =
N∑
i=1

uiδXi
, Lµ[f] =

∫
Ω

f(x) dµ(x)

then

Lµ[σ(a
⊺ ·+b)] =

∫
Ω

σ(a⊺x+ b) dµ(x) = 0, ∀ a ∈ Rn, b ∈ R.

Then Lµ : C(Ω)→ R is a bounded linear form and it vanishes on

span({σ(a⊺ ·+b) | a ∈ Rd, b ∈ R}) = C(Ω).

So Lµ = 0 and, by the Riesz–Markov–Kakutani representation theorem, µ = 0.
This is a contradiction, and we are forced to conclude that {hi}Ni=1 is linearly
independent.

1.4 Density in Lp spaces

Now that we have established density of

Sd = span{σ(a⊺ ·+b) | a ∈ Rd, b ∈ Rn}

13

in (C(Ω), ∥·∥∞) for any compact Ω ⊆ Rd, one may wonder whether Sd is dense
in Lp spaces.

For p ∈ [1,∞), the usual Lp space with respect to the Lebesgue measure is
defined as the vector space of (equivalence classes of) functions f such that

∥f∥pLp =

∫
Rd

|f(x)|p dx <∞.

However, Sd cannot be dense in Lp.

Theorem 9. [Chui, Li, Mhaskar (1994)?] Let d ≥ 2. For any (Lebesgue
measurable) σ : R→ R, any nonzero g ∈ Sd satisfies

∥g∥Lp =∞

for all p ∈ [1,∞).

The proof of this result seems somewhat tricky, so we omit it. The issue is
that 2-layer neural networks cannot effectively approximate (in ∥·∥∞ or ∥·∥Lp)
a function compact support. We return to this point when we discuss 3-layer
neural networks.

However, Sd is dense in Lp(µ) for p ∈ [1,∞). Let µ ∈ M+(Rd) be a finite
nonnegative measure. For p ∈ [1,∞), the Lp(µ) space is defined as the vector
space of (equivalence classes of) functions f such that

∥f∥pLp(µ) =

∫
Rd

|f(x)|p dµ(x) <∞.

(Note the Lebesgue measure is not a finite measure.)
Finally, we point out that Sd cannot be dense in L∞(µ) since the continuous

functions on Sd cannot approximate discontinuous functions in the ∥ · ∥L∞(µ)-
norm.

Theorem 10. Let p ∈ [1,∞). Let µ ∈M+(Rd). Let σ : R→ R be a continu-
ous function satisfying

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1.

Then Sd is dense in Lp(µ).

Proof. Since µ is finite, Sd ⊂ Lp(µ). Assume for contradiction that Sd is not
dense in Lp(µ). We use the Hahn–Banach extension theorem as in Lemma 1
to obtain a nonzero bounded linear functional L : Lp(µ)→ R such that

L[f] = 0, ∀ f ∈ Sd.

14

Let q = p/(p− 1), with q =∞ for p = 1. Since (Lp(µ))∗ = Lq(µ), there is
a g ∈ Lq(µ) such that

L[f] =

∫
Rd

fg dµ, ∀ f ∈ Lp(µ).

Let dν = gdµ, i.e.,

ν(A) =

∫
A

g dµ, ∀ measurable A ⊆ Rd.

By Hölder’s inequality, ∥g∥L1(µ) ≤ µ(Rd)∥g∥Lq(µ) < ∞. Therefore g ∈ L1(µ),
and ν is a finite signed measure, i.e., ν ∈M(Rd). Then∫

Rd

σ(a⊺x+ b) dν(x) = L[σ(a⊺ ·+b)] = 0, ∀ a ∈ Rd, b ∈ R.

However, σ is discriminatory by Lemma 2, so ν = 0. This contradicts the
construction of L as a nonzero linear form. Therefore, we are forced to conclude
that Sd is dense in Lp(µ).

1.5 Quantitative approximation guarantees by

probabilistic method

Our prior results on approximation capabilities are existence results; they
come with no quantitative bounds on how large N must be to attain an ε-
approximation. Let us now consider a probabilistic construction (still not a
practical construction) to obtain quantitative results.

The probabilistic method is a proof technique pioneered by Paul Erdös.
We separately illustrate the technique with the following example.

Fact 1. 10% of the surface of a sphere is colored blue, the rest is red. Show
that, there is an inscribed cube with all its vertices touching red.

Proof. Let Br be the event that the r-th vertex of a randomly selected cube
is touches blue and note that P(Br) = 1/10. By an application of the union
bound,

P [At least one corner touch blue] = P

[
8⋃
r=1

Br

]
≤

8∑
r=1

P(Br) =
8

10
< 1

15

and therefore

P[All corners touch red] = P

(8⋃
r=1

Br

)∁
 = 1− P

[
8⋃
r=1

Br

]
> 0.

Since there is positive probability all vertices touching red, there must exist a
(non-random) configuration with all vertices touching red.

For B ∈ (0,∞), define the L2(B)-norm ∥ · ∥L2(B) as

∥f∥2L2(B) =

∫
B(0,B)

(f(x))2 dx.

where B(0, B) is the closed ball of radius B centered at 0. (So L2(B) = L2(µ)
where µ is defined by dµ = 1B(0,B)dx.)

We approximate a given f⋆ via the probabilistic method with the following
outline. First, find a f̃⋆ ≈ f⋆ such that

f̃⋆(x) = E(w,b)∼P [c(w, b)σ(w
⊺x+ b)] =

∫
Rd×R

c(w, b)σ(w⊺x+ b) dP (w, b)

for some c(w, b) ≤ C <∞ and probability measure P on Rd×R. Then, sample
(w1, b1), . . . , (wN , bN) ∼ P i.i.d. and form

fθ(x) =
N∑
i=1

c(wi, bi)

N
σ(w⊺

i x+ bi).

Since E[fθ] = f̃⋆, and

Eθ∥fθ − f̃⋆∥2L2(B) ≤
Variance

N
,

there exists a θ such that

∥fθ − f̃⋆∥2L2(B) ≤
Variance

N
.

(The variance will be finite under the given assumptions.)

Theorem 11. Let B ∈ (0,∞). Let σ : R → R be a continuous function
satisfying

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1, |σ(r)| ≤ 1, ∀ r ∈ R.

16

Let f⋆ : Rd → R be a function with an absolutely integrable Fourier represen-
tation f̂⋆ : Rd → C, i.e.,

f⋆(x) =

∫
Rd

e−iw
⊺xf̂⋆(w) dw, ∀x ∈ Rd,

∫
Rd

|f̂⋆(w)| dw <∞.

Further assume that

Q =

∫
Rd

∥w∥|f̂⋆(w)| dw <∞.

Then for any N ∈ N, there exists

fθ(x) =
N+1∑
i=1

λiσ(w
⊺
i x+ bi)

such that

∥fθ − f⋆∥2L2(B) ≤
5Q2B2Vol(B(0, B))

N
.

As an aside, the assumption Q < ∞ is a sufficient condition ensuring the
gradient exists and can that it can be evaluated under the Fourier integral (by
Lebesgue dominated convergence theorem):

∇f⋆(x) = ∇
∫
Rd

e−iw
⊺xf̂⋆(w) dw

=

∫
Rd

∇e−iw⊺xf̂⋆(w) dw

=

∫
Rd

−iwe−iw⊺xf̂⋆(w) dw.

We establish Theorem 11 via the following lemmas.

Lemma 14 (Maurey, Pilsner, Jones [3, 1]). Let H be a Hilbert space. Let
(W , P) be a probability space.4 Let h : W → H such that ∥h(w)∥ ≤ H < ∞
for (P -almost) all w ∈ W. Assume

f =

∫
W
h(w) dP (w) = Ew∈P [h(w)].

Then, for any N ∈ N, there exists h1, . . . , hN ∈ H, such that

f̃ =
N∑
i=1

1

N
hi

4We use W to represent the sample space, rather than the more common Ω, since Ω
denotes a compact subset of Rd for us. We omit specifying the σ-algebra.

17

satisfies

∥f̃ − f∥2 ≤ H2

N
.

Proof. Sample w1, . . . , wN ∼ P i.i.d. Then

f̂ =
N∑
i=1

1

N
h(wi)

has
E[f̂] = f

and

E[∥f̂−f∥2] = 1

N
E[∥h(w1)−f∥2] =

1

N
(E[∥h(w1)∥2]−∥f∥2) ≤

H2 − ∥f∥2

N
≤ H2

N
.

Since f̂ is a random variable with variance at most H2/N , there is a particular
(non-random) instance f̃ such that ∥f̃ − f∥2 ≤ H2/N .

Lemma 15. Let B and f⋆ satisfy the assumptions of Theorem 11. Then there
exists φ : Rd → [0, 2π) and a probability measure P on Rd × R such that it is
absolutely continuous with respect to the Lebesgue measure and

f⋆(x)− f⋆(0) = 2BQ

∫
Rd×R

sin(b− φ(w))1{w⊺x+b≥0} dP (w, b)

for all x ∈ B(0, B).

Proof. Define φ(w) ∈ [0, 2π) such that f̂⋆(w) = e−iφ(w)|f̂⋆(w)|. Then,

f⋆(x) =

∫
Rd

e−iw
⊺x−iφ(w)|f̂⋆(w)| dw

= ℜ
∫
Rd

e−iw
⊺x−iφ(w)|f̂⋆(w)| dw

=

∫
Rd

cos(w⊺x+ φ(w))|f̂⋆(w)| dw,

and

f⋆(x)− f⋆(0) =
∫
Rd

(cos(w⊺x+ φ(w))− cos(φ(w)))|f̂⋆(w)| dw.

18

Next, we have

cos(w⊺x+ φ(w))− cos(φ(w))

= −
∫ w⊺x

0

sin(b+ φ(w)) db

= −
∫ B∥w∥

0

1{w⊺x−b≥0} sin(b+ φ(w)) db+

∫ 0

−B∥w∥
1{−w⊺x+b≥0} sin(b+ φ(w)) db,

where the two terms correspond to the cases where w⊺x ≥ 0 and w⊺x < 0. We
also use w⊺x ≤ ∥w∥∥x∥ ≤ B∥w∥ to restrict the integration boundaries. Then
we have

f⋆(x)− f⋆(0) = −
∫
Rd

∫
R
1{w⊺x−b≥0} sin(b+ φ(w)) 1{0≤b≤B∥w∥}|f̂⋆(w)| dbdw

+

∫
Rd

∫
R
1{−w⊺x+b≥0} sin(b+ φ(w)) 1{−B∥w∥≤b≤0}|f̂⋆(w)| dbdw

= −
∫
Rd

∫
R
1{w⊺x+b≥0} sin(−b+ φ(w)) 1{−B∥w∥≤b≤0}|f̂⋆(w)| dbdw

+

∫
Rd

∫
R
1{w⊺x+b≥0} sin(b− φ(w)) 1{−B∥w∥≤b≤0}|f̂⋆(w)| dbdw

= 2

∫
Rd

∫
R
1{w⊺x+b≥0} sin(b− φ(w)) 1{−B∥w∥≤b≤0}|f̂⋆(w)| dbdw

= 2BQ

∫
Rd×R

sin(b− φ(w))1{w⊺x+b≥0} dP (w, b)

where we used the property that f̂⋆(w) = f̂⋆(−w) since f⋆ is real. For the final
step, define dP ∝ 1{−B∥w∥≤b≤0}|f̂⋆(w)| dbdw with the normalization factor

2

∫
Rd

∫
R
1{−B∥w∥≤b≤0}|f̂⋆(w)|dbdw = 2B

∫
Rd

∥w∥|f̂⋆(w)|dw = 2BQ.

Lemma 16. Let σ satisfy the assumptions of Theorem 11. Let |s(w, b)| ≤ 1
for all w and b. Let

h(x) =

∫
Rd×R

s(w, b)1{w⊺x+b≥0} dP (w, b),

where P is a probability measure that is absolutely continuous with respect to
the Lebesgue measure. Then for any δ > 0, there are sδ, such that |sδ(w, b)| ≤ 1
for all w and b, and a probability measure P δ such that

hδ(x) =

∫
Rd+1

sδ(w, b)σ(w⊺x+ b) dP δ(w, b)

19

satisfies
∥hδ − h⋆∥L2(B) → 0

as δ → 0.

Proof. By the Lebesgue dominated convergence theorem, we have∫
Rd+1

(s(w, b))2
(
σ

(
w⊺x

δ
+
b

δ

)
− 1{w⊺x+b≥0}

)2

dP (w, b)→ 0

as δ → 0. Finally, we use the change of variables w̃ = w/δ and b̃ = b/δ, let
sδ(w̃, b̃) = s(δw̃, δb̃), and let P δ be the probability measure on w̃ and b̃. Then∫

Rd+1

s(w, b)σ

(
w⊺

δ
x+

w

δ

)
dP (w, b) =

∫
Rd+1

sδ(w̃, b̃)σ
(
w̃⊺x+ b̃

)
dP δ(w̃, b̃).

Proof of Theorem 11. By Lemma 15, we can find

f⋆(x)− f⋆(0) = 2BQ

∫
Rd+1

s(w, b)1{w⊺x+b≥0} dP (w, b)

such that |s(w, b)| ≤ 1 By Lemma 16, we can find

∆̃f ⋆(x) = 2BQ

∫
Rd+1

sδ(w, b)σ(w⊺x+ b) dP δ(w, b)

such that |sδ(w, b)| ≤ 1 and

∥∆̃f ⋆(·)− f⋆(·) + f⋆(0)∥2 ≤
(
√
5− 2)2B2Q2Vol(B(0, B))

N
.

Then by Lemma 14, we there exists a

fθ′(x) =
N∑
i=1

λiσ(w
⊺
i x+ bi)

such that

∥fθ′ − ∆̃f ⋆∥2 ≤
4B2Q2Vol(B(0, B))

N
.

Finally, we let λN+1 = f⋆(0)/σ(bN+1), wN+1 = 0, and bN+1 ∈ R be such that
σ(bN+1) ̸= 0, then

fθ(x) =
N+1∑
i=1

λiσ(w
⊺
i x+ bi)

satisfies, by the triangle inequality,

∥fθ − f⋆∥2L2(B) ≤
5B2Q2Vol(B(0, B))

N
.

20

1.6 Approximation capabilities of deeper neu-

ral networks

Consider 3-layer neural networks of the form

fθ(x) = A(3)σ2(A
(2)σ1(A

(1)x+ b(1)) + b(2)) + b(3), (1.3)

where N1, N2 ∈ N, A(1) ∈ RN1×d, b(1) ∈ RN1 , A(2) ∈ RN2×N1 , b(2) ∈ RN2 ,
A(3) ∈ R1×N2 , b(3) ∈ R1, σ1 : R → R, σ2 : R → R, and σ1 and σ2 are applied
elementwise.

Since 2-layer neural networks are already universal approximators, why
consider 3-layer or deeper neural networks? The empirical observation is clear:
deeper neural networks perform far better than 2-layer neural networks.

Although our theoretical understanding of the effectiveness of depth is far
from complete, there are some known results on their approximation capabil-
ities. In this section, we quickly introduce some, mostly without providing
complete proofs.

1.6.1 Approximating compactly supported functions

As discussed in Theorem 9, 2-layer neural networks cannot effectively approx-
imate compactly supported functions on all of Rd. However, 3-layer neural
networks can.

To understand why, consider the following example. Let

A =


a⊺1
a⊺2
...
a⊺m

 ∈ Rm×d, b =


b1
b2
...
bm

 ∈ Rm.

Consider the indicator function on the convex polytype

1{x |Ax≤b}(x) =

{
1 a⊺i x ≤ bi, for all i = 1, . . . ,m
0 otherwise,

where the inequality in Ax ≤ b is elementwise. Let

s(r) =

{
0 for r < 0
1 for r ≥ 0.

be the step function. Then

s

(
m∑
i=1

s(bi − a⊺i ·)−m+
1

2

)
= 1{x |Ax≤b}.

21

If σ : R→ R is a continuous function satisfying

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1,

then

σ

(
1

δ

(
m∑
i=1

σ

(
1

δ
(bi − a⊺i ·)

)
−m+

1

2

))
→ 1{x |Ax≤b}(x)

as δ → 0 for almost all x.

1.6.2 Universality of 3-layer wide neural networks

Universality of wide neural networks of depth 3 or deeper, requires a little bit
of additional work to establish.

Theorem 12. Let Ω ⊆ Rd be compact. Assume σ2 ∈ C∞(R) and σ1 ∈ C(R)
are non-polynomial. Then the class of 3-layer neural networks of the form
(1.3) are dense in (C(Ω), ∥ · ∥∞).

Proof. Since σ2 is non-polynomial, there is a point r0 such that σ′
2(r0) ̸= 0.

For any 2-layer neural network h ∈ span({σ1(a⊺ · +b) | a ∈ Rd, b ∈ R}), we
have

fθ(x) =
1

εσ′
2(r0)

(σ2(εh(x) + r0)− σ2(r0))→ h(x)

uniformly for x ∈ Ω as ε→ 0. Therefore,

span({σ1(a⊺ ·+b) | a ∈ Rd, b ∈ R}) ⊆ {functions of the form (1.3)}.

The left-hand side is dense by Theorem 7, so is the right-hand side.
Finally, it remains to establish the claimed uniform convergence. Let Ω′ =

{εh(x) + r0 |x ∈ Ω, ε ∈ [−1, 1]}. Since

σ2(εh(x) + r0)− σ2(r0)
εσ′

2(r0)
− h(x) = h(x)

εσ′
2(r0)

∫ ε

0

(σ′
2(ηh(x) + r0)− σ′

2(r0)) dη

=
(h(x))2

εσ′
2(r0)

∫ ε

0

∫ η

0

σ′′
2(νh(x) + r0) dν dη,

for |ε| ∈ (0, 1), we have

sup
x∈Ω

∣∣∣∣σ2(εh(x) + r0)− σ2(r0)
εσ′

2(r0)
− h(x)

∣∣∣∣
≤ ε

σ′
2(r0)

(
sup
x∈Ω

(h(x))2
)(

sup
r∈Ω′
|σ′′

2(r)|
)
<∞.

22

1.6.3 Depth separation

Depth separation results establish that certain tasks cannot be done by shal-
lower networks while deeper networks can. Since L-layer neural networks are
universal approximators for L ≥ 2, depth separation results often focus on
quantitative approximation capabilities.

Consider the target function f⋆ = 1B(0,1). One can approximate 1B(0,1) with
a 3-layer neural network, by approximating ∥x∥2 = x21 + · · ·+ x2d with 2-layers
and then approximating 1{r | r≤1} with the third layer.

Theorem 13 (Safran and Shamir [4], Informal). Assume σ : R → R satisfy
some conditions. For any µ ∈M+(Rd) and ε > 0, there exists a 3-layer neural
network of the form (1.3) satisfying

∥fθ − 1B(0,1)∥2L2(µ) < ε

with width max{N1, N2} ≤ O(d2/ε) as d→∞.

Surprisingly, however, approximating this rather simple function via a 2-
layer neural network requires an inordinate width.

Theorem 14 (Safran and Shamir [4], Informal). Assume σ : R → R satisfy
some conditions. There exists µ ∈ M+(Rd) such that any 2-layer neural net-
works of the form (1.1) satisfying

∥fθ − 1B(0,1)∥2L2(µ) < O(1/d4)

must have width at least N ≥ Ω(exp(Cd)) as d → ∞, where C is a constant
only depending on σ.

Let d = 1 and

∆(x) =


2x for x ∈ [0, 1/2)
2− 2x for x ∈ [1/2, 1)
0 otherwise.

Define
∆k = ∆ ◦∆ ◦ · · · ◦∆︸ ︷︷ ︸

k times

.

Then ∆k exhibits a fractal-like behavior; ∆k has 2k−1 triangular peeks of height
1 and width 1/2k−1 in [0, 1]. Roughly speaking, these exponentially many ups
and downs can only be created through depth.

23

Theorem 15 (Telgarsky [5]). Let L ≥ 2. Then ∆L2+2 is a ReLU network
with 3L2 + 6 nodes and 2L2 + 4 layers. However, any ReLU network fθ with
at most 2L nodes and L layers cannot approximate it:∫ 1

0

|∆L2+2(x)− fθ(x)| dx ≥
1

32
.

Here, “node” refers to the sum of the widths of all layers.

24

Chapter 2

Positive definite kernels

“In mathematics, a kernel is an object to which the author assigns
the name K.” — Jan 6, 2022, Sam Power (@sp_monte_carlo)1

Let X be a nonempty set. Let K : X ×X → R. We say K is symmetric if
K(x, x′) = K(x′, x) for all x, x′ ∈ X . Given x1, . . . , xN ∈ X , let G ∈ RN×N be

Gij = K(xi, xj), i, j ∈ {1, . . . , N}.

We call G the kernel matrix or the Gramian matrix of K. Then K is a positive
definite kernel (PDK) if G is symmetric positive semidefinite for any N ∈ N
and x1, . . . , xN ∈ X . Equivalently, K is positive definite if it is symmetric and

N∑
i=1

N∑
j=1

cicjK(xi, xj) ≥ 0

for all N ∈ N, x1, . . . , xN ∈ X and c ∈ RN .
The inconsistent naming warrants some clarification. A matrix G ∈ RN×N

is symmetric positive definite if all eigenvalues are strictly positive (>) and
symmetric positive semidefinite if all eigenvalues are nonnegative (≥). In
contrast, a strictly positive definite kernel, as defined below, refers to the
strict notion (>) while positive definite kernels correspond to the non-strict
notion (≥).

We say K : X × X → R is a strictly positive definite kernel if for any
N ∈ N and distinct x1, . . . , xN ∈ X , the corresponding Gramian matrix G
is symmetric (strictly) positive definite. Equivalently, K is strictly positive

1https://twitter.com/sp monte carlo/status/1478783658714673159

25

definite if it is symmetric and

N∑
i=1

N∑
j=1

cicjK(xi, xj) > 0

for all N ∈ N, x1, . . . , xN ∈ X and nonzero c ∈ RN .
PDKs arise in several separate instances within machine learning. Con-

fusingly, “kernel” is perhaps the most inconsistently overused word in mathe-
matics. Entirely unrelated uses include kernel as the input that produces the
0 as the output, nonnegative kernels (used in the Nadaraya–Watson estima-
tor), convolutional kernels, kernels of operating systems facilitating interac-
tions between hardware and software components, and GPU compute kernels
containing code to be executed on GPUs.

2.1 Building blocks of kernels

We now discuss the building blocks of PDKs. This machinery will allow us to
construct PDKs and to identify PDKs.

2.1.1 Inner products of feature maps

Let ϕ : X → H for some Hilbert space H (not necessarily an RKHS) equipped
with inner product ⟨·, ·⟩H and induced norm ∥ · ∥H. We call ϕ a feature map
for reasons that we discuss soon. Then, K : X × X → R defined as

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H

is a PDK, since, for all N ∈ N, x1, . . . , xN ∈ X , and c ∈ RN ,

N∑
i=1

N∑
j=1

cicjK(xi, xj) =
N∑
i=1

N∑
j=1

cicj⟨ϕ(xi), ϕ(xj)⟩H

=

〈
N∑
i=1

ciϕ(xi),
N∑
j=1

cjϕ(xj)

〉
H

=

∥∥∥∥∥
N∑
i=1

ciϕ(xi)

∥∥∥∥∥
2

H

≥ 0.

26

Example: Linear kernel. The simplest instance is X = Rd, H = Rd,
ϕ(x) = x, and

K(x, x′) = ⟨x, x′⟩Rd .

Example: Tensor product. Let f1, . . . , fP be functions from X to R.
Then, K : X × X → R defined as

K(x, x′) =
P∑
i=1

fi(x)fi(x
′)

is a PDK. Using the notation of tensor products, which we further discuss
later, we can equivalently write

K =
P∑
i=1

fi ⊗ fi.

This is analogous to expressing a matrix as a sum of P rank-1 outer products.
The sum of P tensor products is actually an instance of a PDK defined through
the feature map

ϕ(x) =


f1(x)
f2(x)
...

fP (x)

 ∈ RP .

Example: Min kernel. Let X = [0,∞). Then, K : X × X → R defined as

K(x, x′) = min(x, x′)

is a PDK. To see why, for L2(R) = {f : R → R | (
∫
|f(x)|2dx)1/2 < ∞}, let

ϕ : X → L2(R) be defined by ϕ(x) = 1[0,x]. Then

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩L2(R) = ⟨1[0,x],1[0,x′]⟩L2(R) = min(x, x′).

2.1.2 Operations preserving PDKs

Given simple PDKs, we can construct more complex PDKs through operations
preserving positive definiteness: nonnegative scalings, sums, products, limits,
and integrals with respect to nonnegative measures. Let K1 and K2 be PDKs
mapping X × X to R. Then

• αK1 for any α ≥ 0,

27

• K1 +K2, and

• K1K2

are PDKs. The first two claims are clear. The third claim meansK3 : X×X →
R defined by

K3(x, x
′) = K1(x, x

′)K2(x, x
′), ∀x, x ∈ X

is PDK, and it follows from the Schur product theorem.

Theorem 16 (Schur product theorem). Let A ∈ RN×N and B ∈ RN×N be
symmetric positive semidefinite. Then the Hadamard product C = A⊙B, de-
fined by Cij = AijBij for i, j ∈ {1, . . . , N}, is symmetric positive semidefinite.

Proof. Let

A =
N∑
i=1

λiuiu
⊺
i , B =

N∑
i=1

νiviv
⊺
i

be the eigenvalue decompositions of A and B with respective orthonormal
eigenvectors u1, . . . , uN and v1, . . . , vN . Since ⊙ is bilinear,

C = A⊙B

=

(
N∑
i=1

λiuiu
⊺
i

)
⊙

(
N∑
j=1

νjvjv
⊺
j

)

=
N∑
i=1

N∑
j=1

λiνj (uiu
⊺
i)⊙

(
vjv

⊺
j

)
=

N∑
i=1

N∑
j=1

λiνj(ui ⊙ vj)(ui ⊙ vj)⊺

is a sum of N2 (rank-0 or rank-1) symmetric positive semidefinite matrices and
therefore is symmetric positive semidefinite.

Let {Ki}i∈N be a sequence of PDKs mapping X × X to R. If

K∞(x, x′) =
∞∑
i=1

Ki(x, x
′)

exists for all x, x′ ∈ X , then K∞ is a PDK. Let {Kw}w∈W be a family of PDKs
mapping X × X to R. Let µ be a nonnegative measure on W . If

K(x, x′) =

∫
W
Kw(x, x

′) dµ(w)

is well-defined (measurable and integrable) for all x, x′ ∈ X , then K is a PDK.

28

Example: Polynomial kernel. Let X = Rd and p ∈ N. Then, K : Rd ×
Rd → R defined as

K(x, x′) = (⟨x, x′⟩+ 1)p

is a PDK.

Example: Exponential kernel. Let X = Rd. Then, K : Rd × Rd → R
defined as

K(x, x′) = exp(⟨x, x′⟩) =
∞∑
p=0

1

p!
(⟨x, x′⟩)p.

is a PDK.

Example: Cosine kernel. Let X = R. Then, K : X × X → R defined as

K(x, x′) = cos(x− x′) = cos(x) cos(x′) + sin(x) sin(x′)

is a PDK.

Example: Kernels with integers. Let X = N. Then, K : N × N → R
defined as

K(x, x′) = 2xx
′
= e(log 2)xx

′

is PDK.

2.1.3 Shift invariant kernels and Bochner’s theorem

Let X = Rd. We say K : Rd × Rd → R is shift-invariant if there exists a
function κ : Rd → R such that

K(x, x′) = κ(x− x′).

Theorem 17 (Bochner). A shift-invariantK : Rd×Rd → R such that K(x, x′) =
κ(x− x′) is a PDK if and only if

κ(t) =

∫
Rd

e−iω
⊺tdµ(ω)

for some (real) nonnegative finite measure µ ∈M+(Rd).

29

Proof of (⇐).

K(x, x′) =

∫
Rd

e−iω
⊺(x−x′) dµ(ω)

= ℜ
∫
Rd

e−iω
⊺(x−x′) dµ(ω)

=

∫
Rd

cos(ω⊺(x− x′)) dµ(ω)

=

∫
Rd

(cos(ω⊺x) cos(ω⊺x′) + sin(ω⊺x) sin(ω⊺x′)) dµ(ω).

We omit the proof of (⇒) which requires more work.

Example: Sinc kernel. Let B > 0 and X = R. Then, K : R × R → R
defined as

K(x, x′) = 2Bsinc(B(x− x′)) =

{
2 sin(B(x−x′))

(x−x′) if x ̸= x′

0 if x = x′

is a PDK, since

2Bsinc(B(t)) =

∫
R
e−iωt1[−B,B](ω) dω.

Example: Gaussian kernel. Let σ > 0 and X = R. Then, K : R×R→ R
defined as

K(x, x′) = e−
(x−x′)2

2σ2

is a PDK, since

K(x, x′) = e
xx′
σ2 e−

(x)2

2σ2 e−
(x′)2

2σ2 .

The first factor is the exponential kernel while the second and third factors are
a tensor product.

Alternatively, we can conclude K is PDK through

e−
t2

2σ2 =
σ√
2π

∫
R
e−iωte−

σ2ω2

2 dω.

Example: Laplace kernel. Let γ > 0 and X = R. Then, K : R × R → R
defined as

K(x, x′) =
1

2
e−γ|x−x

′|

30

is a PDK, since
1

2
e−γ|t| =

1

2π

∫
R
e−iωt

γ

γ2 + ω2
dω.

(Integral can be evaluated via contour integration.)

2.2 Reproducing kernel Hilbert space (RKHS)

Let X be a nonempty set (No further assumption on X yet). Let H be a
Hilbert space of functions f : X → R equipped with inner product ⟨·, ·⟩H and
induced norm ∥ · ∥H. (By definition, ∥f∥H = 0 if and only if f(x) = 0 for all
x ∈ X . We say K : X × X → R is a reproducing kernel (RK) of H if

K(x, ·) ∈ H, ∀x ∈ H,

and K has the reproducing property

f(x) = ⟨f,K(x, ·)⟩H, ∀x ∈ X , f ∈ H.

If H has a RK, it is a reproducing kernel Hilbert space (RKHS).

Example: Band-limited functions. Let B > 0 and X = R. Let

H =

{
f : R→ R

∣∣∣∣ ∫
R\[−B,B]

|f̂(ω)|2 dω = 0, ∥f∥H <∞, f̂ = F [f], f = F−1[f̂]

}
,

⟨f, g⟩H =

∫
R
f(x)g(x) dx =

1

2π

∫ B

−B
f̂(ω)ĝ(ω) dω

where F and F−1 are the forward and inverse Fourier transforms, be the
Hilbert space of band-limited L2 functions. Then, H is an RKHS with RK

K(x, x′) = 2Bsinc(B(x− x′)) = 1

2π

∫
R
e−iωx

′
eiωx1[−B,B](ω) dω.

To see why, note that

K̂(x, ·)(ω) = eiωx1[−B,B](ω),

so K(x, ·) ∈ H for all x ∈ R, and

⟨f,K(x, ·)⟩H =
1

2π

∫ B

−B
f̂(ω)e−iωx dω =

1

2π

∫
R
f̂(ω)e−iωx dω = f(x),

so K has the reproducing property.
RKHSs can be equivalently defined by continuity of point evaluation.

31

Theorem 18. Let X be a nonempty set. Let H be a Hilbert space of functions
from X to R. H is an RKHS if and only if the evaluation functional Lx,
defined as Lx[f] = f(x), is bounded (continuous) for all x ∈ X .

Proof. Assume H is an RKHS. For any x ∈ X ,

|Lx[f]| = |⟨f,K(x, ·)⟩H|
≤ ∥f∥H∥K(x, ·)∥H, ∀ f ∈ H

and ∥K(x, ·)∥H is well defined and finite since K(x, ·) ∈ H. So Lx is bounded.
Next, assume Lx : H → R is bounded in H. By the Riesz representation

theorem, there exists a hx ∈ H such that

Lx[f] = ⟨hx, f⟩H, ∀ f ∈ H.

Let K(x, x′) = hx(x
′) for all x, x′ ∈ X .

Interestingly, there is a one-to-one correspondence between PDKs and
RKHSs. First, we establish uniqueness: if a H exists for a K, then it is
unique; and if a K exists for a H, then it is unique.

Theorem 19. If H is an RKHS, its reproducing kernel K : X × X → R is
unique.

Proof. Let K and K ′ be two RK of an RKHS H. Then for any x ∈ X ,

∥K(x, ·)−K ′(x, ·)∥2H = ⟨K(x, ·)−K ′(x, ·), K(x, ·)−K ′(x, ·)⟩H
= ⟨K(x, ·), K(x, ·)−K ′(x, ·)⟩H − ⟨K ′(x, ·), K(x, ·)−K ′(x, ·)⟩H
= K(x, x)−K ′(x, x)−K(x, x) +K ′(x, x)

= 0.

Therefore, K = K ′.

Theorem 20. If K : X × X → R is a reproducing kernel, its Hilbert space H
is unique.

Proof. Let H be an RKHS of a reproducing kernel K. Let

S = span{K(x, ·) |x ∈ X}.

We claim S = H, which holds if and only if 0 is the only element in H
orthogonal to all vectors in S. Indeed, if h ∈ H satisfies

⟨h,K(x, ·)⟩ = 0, ∀x ∈ X ,

then h(x) = 0 for all x ∈ X , by the reproducing property, and h = 0. Since,
any RKHS of K is precisely characterized by S = H, it is unique.

32

In machine learning, we want to evaluate functions to make predictions,
but point evaluations are not well-defined for Lp spaces, since elements of Lp

spaces are equivalence classes of functions whose values may differ on a set
of measure zero. Therefore, the requirements of RKHSs that the evaluation
functional is continuous is, in some sense, a natural requirement.

We now complete the proof of the one-to-one correspondence between
PDKs and RKHSs by showing existence: there exists a H exists for a K;
and there exists a K for a H.

Theorem 21 (Moore–Aronszajn Theorem). Let X be a nonempty set. Then
K : X × X → R is a PDK if and only if it is an RK of an RKHS H.

Proof. (⇐) Assume K is an RK of an RKHS H. Then K is symmetric,
since K(x, x′) = ⟨K(x, ·), K(x′, ·)⟩H = ⟨K(x′, ·), K(x, ·)⟩H = K(x′, x) for all
x, x′ ∈ X . Then for any N ∈ N, x1, . . . , xN ∈ X and c ∈ RN , we have

N∑
i=1

N∑
j=1

cicjK(xi, xj) =
N∑
i=1

N∑
j=1

cicj⟨K(xi, ·), K(xj, ·)⟩H

=

〈
N∑
i=1

ciK(xi, ·),
N∑
j=1

cjK(xj, ·)

〉
H

=

∥∥∥∥∥
N∑
i=1

ciK(xi, ·)

∥∥∥∥∥
2

H

≥ 0.

So K is a PDK.
(⇒) Let K : X × X → R be a PDK. Define H0 to be the (not necessarily

complete) vector space

H0 = span{K(x, ·) |x ∈ X}

=

{
N∑
i=1

αiK(xi, ·)
∣∣∣N ∈ N, x1, . . . , xN ∈ X , α1, . . . , αN ∈ R

}
.

For

f =
N∑
i=1

αiK(xi, ·), g =
N ′∑
i=1

βiK(x′i, ·),

define

⟨f, g⟩H0 =
N∑
i=1

N ′∑
j=1

αiβjK(xi, x
′
j).

33

Clearly, ⟨·, ·⟩H0 : H0 × H0 → R is symmetric and bilinear. The value of
⟨·, ·⟩H0 is independent of the representation of f via x1, . . . , xN , α1, . . . , αN and
g via x′1, . . . , x

′
N ′ , β1, . . . , βN ′ , since

⟨f, g⟩H0 =
N∑
i=1

αig(xi) =
N ′∑
j=1

βjf(x
′
j).

(So ⟨·, ·⟩H0 is well-defined.) Since K is a PDK, we have ⟨f, f⟩H0 = α⊺Gα ≥ 0,
where α = (α1, . . . , αN) and G ∈ RN×N is the kernel matrix for x1, . . . , xN .
So ⟨·, ·⟩H0 is a semi-inner product (it is an inner product, but we have so far
shown that it is a semi-inner product.) so Cauchy–Schwartz inequality holds
by Lemma 17. We do have the reproducing property

⟨f,K(x, ·)⟩H0 =
N∑
i=1

αiK(xi, x) = f(x), ∀x ∈ X , f ∈ H0.

Therefore,

|f(x)| ≤ |⟨f,K(x, ·)⟩H0| ≤ ∥f∥H0∥K(x, ·)∥H0 ≤ ∥f∥H0

√
K(x, x),

and ∥f∥H0 = 0 implies f(x) = 0 for all x ∈ X , i.e., f = 0. Therefore, H0 is a
pre-Hilbert space (a vector space equipped with an inner product).

Finally, we complete the space to get H by considering Cauchy sequences
in H0. We defer the arguments to Section 2.2.1.

Lemma 17. Cauchy–Schwartz inequality holds for semi-inner products.

Proof. Let V be a real vector space and let ⟨·, ·⟩ : V × V → R be a semi-inner
product, i.e., it is a bilinear map satisfying ⟨f, f⟩ ≥ 0. Then,

0 ≤
∥∥∥∥⟨u, v⟩∥u∥

u− ∥u∥v
∥∥∥∥2 = ∥u∥2∥v∥2 − (⟨u, v⟩)2.

Example: Linear kernel. Let X = Rd and

H = {fw(·) = ⟨w, ·⟩Rd , w ∈ Rd}, ⟨fw, fv⟩H = ⟨w, v⟩Rd

be the space of linear functions. The evaluation map

Lx[fw] = fw(x) = ⟨w, x⟩Rd = ⟨fw, fx⟩H

34

has the representation fx ∈ H, and the reproducing kernel is

K(x, x′) = fx(x
′) = ⟨x, x′⟩Rd .

Note that f· : Rd → H defines a feature map one can use to establish that
K is PDK, since

K(x, x′) = ⟨fx, fx′⟩H.

However, is it not the only feature map. Another example is ϕ : Rd → Rd

defined as ϕ(x) = x, since

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩Rd = ⟨x, x′⟩Rd .

While PDK and RKHS have one-to-one correspondences, feature maps ϕ : X →
H and kernels do not. However, we do have a one-to-one correspondence if we
require ϕ : X → H to map to an RKHS H.

Example: Quadratic kernel. Let Sd×d be the set of d × d symmetric
matrices. For S,R ∈ Sd×d, define

⟨S,R⟩Sd×d =
d∑
i=1

d∑
j=1

SijRij = Trace(S⊺R) = Trace(SR).

For x ∈ Rd, we can use the “trace trick” to get

⟨S, xx⊺⟩Sd×d = Trace(Sxx⊺)

= Trace(x⊺Sx)

= x⊺Sx.

(The identity
∑

i

∑
j SijRij = Trace(S⊺R) holds even when S and R are not

symmetric.)
Let X = Rd. For any S ∈ Sd×d, define fS : Rd → R as

fS(x) = x⊺Sx = ⟨S, xx⊺⟩Sd×d .

Let
H = {fS |S ∈ Sd×d}, ⟨fS, fS′⟩H = ⟨S, S ′⟩Sd×d .

Then the evaluation map

Lx[fS] = fS(x) = ⟨S, xx⊺⟩Sd×d = ⟨fS, fxx⊺⟩H

35

has the representation fxx⊺ ∈ H, and the reproducing kernel is

K(x, x′) = fxx⊺(x
′) = ⟨xx⊺, x′(x′)⊺⟩Sd×d = (⟨x, x′⟩Rd)2.

Note that while

H = span{K(x, ·) |x ∈ Rd} = span{fxx⊺ |x ∈ Rd}

(the span is already complete without any need for completion), there exists
f ∈ H such that f ̸= αK(x, ·) for any α ∈ R and x ∈ X .

Example: Gaussian kernel. Let σ > 0 and X = R. Let

H = {f : R→ R | ∥f∥H <∞}, ⟨f, g⟩H =
1

(2π)3/2σ

∫
R
f̂(ω)ĝ(ω)e

σ2ω2

2 dω.

Then, H is an RKHS with the Gaussian RK

K(x, x′) = e−
(x−x′)2

2σ2 .

To see why, note

K̂(x, ·)(ω) =
√
2πσeiωxe−

σ2ω2

2 ,

so

∥K(x, ·)∥2H =
σ

(2π)1/2

∫
R
e−

σ2ω2

2 dω <∞

and

⟨f,K(x, ·)⟩H =
1

2π

∫
R
f̂(ω)e−iωx dω = f(x).

One can also show that H is a class of all functions in L2 (so Fourier and
inverser Fourier transforms are well-defined) that are infinitely differentiable
with all derivatives in L2.

Example: Exponential kernel. Let X = R. Consider the exponential
kernel

K(x, x′) = exx
′
.

While we know that

H = span{K(x, ·) = ex· |x ∈ R},

a nice analytical characterization of H and ⟨·, ·⟩H seems to be unknown. Given
a PDK K, it is not always straightforward to characterize the corresponding
RKHS H, and vice versa.

36

By now, it should be clear that ϕ : R → H defined by ϕ(x) = K(x, ·) is a
feature map we can use to establish that K is PDK, since

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H.

However, another feature map (mapping to a Hilbert space that is not an
RKHS) is ψ : R→ ℓ2

ψ(x) = (1, x/
√
1!, x2/

√
2!, x3/

√
3!, . . .) ∈ ℓ2,

since

K(x, x′) = ⟨ψ(x), ψ(x′)⟩ℓ2 =
∞∑
i=0

(xx′)i

i!
= exx

′
.

2.2.1 Completion argument of Moore–Aronszajn

We now complete the completion argument of the Moore–Aronszajn theorem.

Pointwise convergence and definition of H. Let H0 be the pre-Hilbert
space as constructed in the initial part of the proof of Theorem 21. Let
{fk}k∈N ⊂ H0 be a Cauchy sequence with respect to the ∥ · ∥H0-norm. For
any x ∈ X ,

|fm(x)− fn(x)| = |⟨fm − fn, K(x, ·)⟩H0|
≤ ∥fm − fn∥H0∥K(x, ·)∥H0

= ∥fm − fn∥H0

√
K(x, x)

→ 0

as min{m,n} → ∞. So, for all x ∈ X , {fk(x)}k∈N ⊂ R is a Cauchy sequence
and converges to a limit. We define f∞ : X → R to be the pointwise limit of
{fk}k∈N, i.e.,

f∞(x) = lim
k→∞

fk(x).

We define H as the space of all pointwise limits of Cauchy sequences in H0.
Clearly, H is a vector space. Moreover, H0 ⊆ H, since for any f ∈ H0, the
Cauchy sequence fk = f for all k has the limit f .

Definition of ⟨·, ·⟩H. Let f∞, g∞ ∈ H with Cauchy sequences {fk}k∈N ⊂ H0

and {gk}k∈N ⊂ H0 respectively converging to them. Define

⟨f∞, g∞⟩H = lim
k→∞
⟨fk, gk⟩H0 .

37

For this definition to be well defined, the limit must exist and the limit must
not depend on the Cauchy sequence converging to f∞, g∞ ∈ H. First,

|⟨fm, gm⟩H0 − ⟨fn, gn⟩H0 | = |⟨fm − fn, gm⟩H0 − ⟨fn, gn − gm⟩H0 |
≤ |⟨fm − fn, gm⟩H0|+ |⟨fn, gn − gm⟩H0|
≤ ∥fm − fn∥H0∥gm∥H0 + ∥fn∥H0∥gn − gm∥H0

→ 0

as min{m,n} → ∞. (Note that {fk}k∈N ⊂ H0 and {gk}k∈N ⊂ H0 are bounded
since they are Cauchy.) Next, let {f ′

k}k∈N ⊂ H0 and {g′k}k∈N ⊂ H0 also be
Cauchy sequences respectively converging to f∞ and g∞. Then

|⟨fn, gn⟩H0 − ⟨f ′
n, g

′
n⟩H0| = |⟨fn − f ′

n, gn⟩H0 − ⟨f ′
n, g

′
n − gn⟩H0|

≤ |⟨fn − f ′
n, gn⟩H0 |+ |⟨f ′

n, g
′
n − gn⟩H0 |

≤ ∥fn − f ′
n∥H0∥gn∥H0 + ∥f ′

n∥H0∥g′n − gn∥H0

→ 0

as n→∞.

⟨·, ·⟩H is an inner product. That ⟨·, ·⟩H is symmetric and bilinear is clear.
Also, ∥ · ∥H is nonnegative, since

∥f∞∥H = lim
k→∞
∥fk∥H0 ≥ 0

for {fk}k∈N ⊂ H0 converging to f∞. For ⟨·, ·⟩H to be an inner product on H,
it remains to verify positive definiteness of ∥ · ∥H, i.e., that ∥f∞∥H = 0 only if
and only if f∞(x) = 0 for all x ∈ X .

If f∞ = 0, then ∥f∞∥H = 0 since 0 ∈ H0 and {fk}k∈N ⊂ H0 with fk = 0
converges to f∞ = 0. Conversely, assume {fk}k∈N ⊂ H0 converges to f∞ and
∥f∞∥H = 0. Then, for any x ∈ X ,

|f∞(x)| =
∣∣∣ lim
k→∞

fk(x)
∣∣∣ = ∣∣∣ lim

k→∞
⟨fk, K(x, ·)⟩H0

∣∣∣ ≤ lim
k→∞
∥fk∥H0∥K(x, ·)∥H0 .

Since ∥fk∥H0 → ∥f∥H = 0, we conclude f∞(x) = 0 for all x ∈ X .

H is complete. While Cauchy sequences in H0 have limits H by definition,
it remains to establish that Cauchy sequences in H have a limit in H. We
use the standard argument that the set of all equivalence classes of Cauchy
sequences is complete.

38

Let f
(1)
∞ , f

(2)
∞ , . . . be a Cauchy sequence inH, and let {f (1)

k }k∈N, {f
(2)
k }k∈N, . . .

be Cauchy sequences inH0 with respective limits f
(1)
∞ , f

(2)
∞ , Let {k(j)}j∈N ⊆

N be a sequence such that ∥f (j)
k(j) − f

(j)
∞ ∥ → 0 as j →∞. Then

∥f (i)
k(i) − f

(j)
k(j)∥H0 = ∥f

(i)
k(i) − f

(j)
k(j)∥H

≤ ∥f (i)
k(i) − f

(i)
∞ ∥H + ∥f (i)

∞ − f (j)
∞ ∥H + ∥f (j)

∞ − f
(j)
k(j)∥H

→ 0

as min{i, j} → ∞. Therefore, {f (j)
k(j)}j∈N is a Cauchy sequence in H0 and it

has a limit f ∈ H. Finally,

∥f − f (j)
∞ ∥H ≤ ∥f − f

(j)
k(j)∥H + ∥f (j)

k(j) − f
(j)
∞ ∥H → 0

as j →∞. Since the Cauchy sequence f
(1)
∞ , f

(2)
∞ , . . . in H converges to a limit

f in H, we conclude H is complete.

K is an RK for H. We have established that K has the reproducing prop-
erty for H0 and that K(x, ·) ∈ H0 ⊆ H for all x ∈ X . It remains to show that
K has the reproducing property for all ofH. Let f∞ ∈ H and let {fk}k∈N ⊂ H0

be a Cauchy sequence converging to f∞. Then

fk(x)︸ ︷︷ ︸
→f∞(x)

= ⟨fk, K(x, ·)⟩H0︸ ︷︷ ︸
→⟨f∞,K(x,·)⟩H

.

2.2.2 Discussion

RKHS norm quantifies smoothness. The norm of a function in an RKHS
controls how fast the function varies over X with respect to the (pseudo-
)metric dK , defined as below. Alternatively, one says, ∥f∥H quantifies the
“smoothness” of f . In the context of machine learning and optimization,
“smoothness” often refers to the variation of the function, and does not directly
refer to (infinite) differentiability. Specifically, for f ∈ H,

|f(x)− f(x′)| = |⟨f,K(x, ·)−K(x′, ·)⟩H|
≤ ∥f∥H∥K(x, ·)−K(x′, ·)∥H
= ∥f∥HdK(x, x′),

so f is ∥f∥H-Lipschitz continuous as a map from (X , dK) to (R, | · |).

39

2.3 Kernel trick in shallow learning

Many classical shallow learning techniques can be enhanced through the kernel
trick. In particular, they can learn non-linear decision boundaries (despite
being linear in the feature vectors) and can learn arbitrary decision boundaries
if the kernel is “universal” (the estimator is statistically consistent). The full
scope of the kernel trick is beyond the scope of this course. Rather, we will
briefly present the core idea, the kernel trick.

The canonical example of this is logistic regression, where we have data
X ∈ Rd and label Y ∈ {−1,+1} and we solve

minimize
θ∈Rd

E(X,Y)∼P [ℓ(Y θ
⊺X)],

with
ℓ(z) = log(1 + exp(−z)).

The idea is that, once trained, sign(θ⊺X) will predict the corresponding label
Y . In the following, we consider a slightly generalized formulation.

In the following, we consider the one-pass SGD setup, where each data
point is used only once in training. The finite-sum formulation, which occurs
more often in practice, will be discussed later.

Basic SGD. Let X ∈ Rd, Y = R, θ ∈ Rd, and hθ(x) = θ⊺x. (So hθ : Rd →
R.) Let P be a probability distribution for data-label (X, Y) pairs. Consider
the optimization problem

minimize
θ∈Rd

E(X,Y)∼P [ℓ(hθ(X);Y)].

The idea is that the loss function ℓ is chosen appropriately so that the optimized
hθ(X) serves as a predictor for Y . (For logistic regression, sign(hθ(X)) predicts
the corresponding label Y ∈ {−1,+1}.)

Stochastic gradient descent (SGD) uses IID samples of data-label pairs
(X1, Y1), (X2, Y2), . . . , (XN , YN) ∼ P to execute

θk+1 = θk − αk+1∇θkℓ(hθ(Xk+1);Yk+1)

= θk − αk+1ℓ
′(hθk(Xk+1);Yk+1)︸ ︷︷ ︸

=βk

Xk+1

= θk − βk+1Xk+1

for k = 0, . . . , N − 1, where α1, . . . , αN ∈ R are learning rates and ℓ′ denotes
the 1-dimensional derivative with respect to the first input. For the sake

40

of simplicity, consider the starting point θ0 = 0. The gradient computation
follows from the chain rule and

Dθ(hθ(Xk+1)) = Dθ(θ
⊺Xk+1) = Xk+1.

This approach can be generalized/enhanced through the use of a feature map.

Feature vector SGD. Next, let X be a nonempty set, ϕ : X → Rd, Y = R,
θ ∈ Rd, and hθ(x) = θ⊺ϕ(x). (So hθ : X → R.) Consider the optimization
problem

minimize
θ∈Rd

E(X,Y)∼P [ℓ(hθ(X);Y)].

SGD with the feature map uses IID samples of data-label pairs to execute

θk+1 = θk − αk+1∇θℓ(hθk(Xk+1);Yk+1)

= θk − αk+1ℓ
′(hθk(Xk+1);Yk+1)︸ ︷︷ ︸

=βk+1

ϕ(Xk+1)

= θk − βk+1ϕ(Xk+1).

The only difference with the prior formulation is that that all instances of Xk+1

have been replaced with ϕ(Xk+1).

2.3.1 Feature maps

When performing machine learning with data X, it is often advantageous to
compute features derived from the data X and provide it to the machine
learning algorithm. (In the past, such features were often hand-engineered,
while in modern times, these features are often learned via deep learning.)

The feature map ϕ : X → Rd maps data to its features. A feature map
with a large feature set can allow the machine learning system to learn more
complicated decision boundaries, but the increased number of features will
incur a computational cost. Ideally, we want the feature map to bee one that
is sufficiently high-diemensional (even infinite-dimensional) while having a nice
kernelized form. We will return to this point when we discuss the kernel trick.

Example: Linear kernel. Let X = R. The linear kernel

K(x, x′) = xx′

arises from the feature map ϕ : R→ R defined as

ϕ(x) = x.

This feature map essentially corresponds to using the learning algorithm di-
rectly on the data without creating any new features.

41

Example: Quadratic kernel. Let X = R. The quadratic kernel

K(x, x′) = (xx′ + 1)2 = x2(x′)2 + 2xx′ + 1.

A feature map for this kernel is ϕ : R→ R3 defined as

ϕ(x) =

 x2√
2x
1

 .
This feature map provides x2 (and the constant 1) as additional features for
the learning algorithm. Using the feature x2, the learning algorithm can learn
non-linear decision boundaries.

Example: Exponential kernel. Let X = R. The exponential kernel

K(x, x′) = exx
′

arises from the feature map ϕ : R→ ℓ2

ϕ(x) = (1, x/
√
1!, x2/

√
2!, x3/

√
2!, . . .) ∈ ℓ2.

Compared to the prior feature maps, this feature map contains all powers of
x and therefore has the potential to learn a much more expressive function.
However, now the feature vector is infinite-dimensional, so we cannot use the
feature vector as is. The kernel trick is needed.

2.3.2 Kernel trick and kernel SGD

Hilbert space SGD. Let X be a nonempty set, H a Hilbert space (not
necessarily an RKHS), ϕ : X → H, K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H, Y = R, θ ∈ H,
and hθ(x) = ⟨θ, ϕ(x)⟩H. (So hθ : X → R.) Consider the optimization problem

minimize
θ∈H

E(X,Y)∼P [ℓ(hθ(X);Y)].

SGD without the kernel trick would have to execute

θk+1 = θk − αk+1∇θℓ(hθk(Xk+1);Yk+1)

= θk − αk+1∇θℓ(⟨θk, ϕ(Xk)⟩H;Yk)
= θk − αk+1ℓ

′(hθk(Xk+1);Yk+1)︸ ︷︷ ︸
=βk+1

ϕ(Xk+1)

= θk − βk+1ϕ(Xk+1).

42

Again, let θ0 = 0. This is the same formulation as before, except that θk now
resides in a Hilbert space. If H is infinite-dimensional, then this SGD, as is, is
not implementable on a computer.

The issue is resolved by the kernel trick, which expresses an algorithm in
terms of inner products of the feature map outputs without directly using the
output of a feature map:

hθk(x) = ⟨θk, ϕ(x)⟩H,

(
since θk = −

k∑
i=1

βiϕ(Xi)

)

= −
k∑
i=1

βi⟨ϕ(Xi), ϕ(x)⟩H

= −
k∑
i=1

βiK(Xi, x).

Even if H is infinite-dimensional, if evaluation of K is implementable, then the
Hilbert space SGD is implementable as follows:

hθk(Xk+1) = −
k∑
i=1

βiK(Xi, Xk+1).

βk+1 = αk+1ℓ
′(hθk(Xk+1);Yk+1)

Storage← (βk+1, Xk+1)

for k = 0, . . . , N − 1. Once training via SGD is complete, perform inference
via

hθN (x) = −
N∑
k=1

βkK(Xk, x).

RKHS SGD. Let X be a nonempty set, H an RKHS on X with RK K,
and Y = R. Consider the optimization problem

minimize
f∈H

E(X,Y)∼P [ℓ(f(X);Y)].

SGD in the RKHS is

fk+1 = fk − αk∇fℓ(f
k(Xk+1);Yk+1)

= fk − αk∇fℓ(⟨fk, K(Xk+1, ·)⟩H;Yk+1)

= fk − αkℓ′(fk(Xk+1);Yk+1)︸ ︷︷ ︸
=βk

K(Xk+1, ·)

= fk − βkK(Xk+1, ·),

43

where we set f 0 = 0.
The RKHS SGD can be implemented identically as before with

fk(Xk+1) = −
k∑
i=1

βiK(Xi, Xk+1)

βk+1 = αk+1ℓ
′(fk(Xk+1);Yk+1)

Storage← (βk+1, Xk+1)

and

fN(x) = −
N∑
k=1

βkK(Xk, x).

2.3.3 Finite-sum problems

Although we considered the one-pass setup for the sake of simplicity, it is
actually more common to access a single data point multiple times throughout
SGD (i.e., one often performs multiple epochs of training). In such a setup, it
is more natural to think of minimizing a finite-sum objective, also called the
empirical risk, rather than an expectation, also called the true risk. Discussing
the statistical implications of minimizing the finite-sum, rather than the true
expectation, is beyond the scope of this course. Here, we briefly show that the
kernel trick applies in the same manner for the finite-sum setup as well.

Let, X be a nonempty set, H an RKHS on X with RK K, and Y = R. Let
X1, . . . , XN ∈ X and Y1, . . . , YN ∈ Y be fixed data and labels. Consider the
optimization problem

minimize
f∈H

1

N

N∑
i=1

ℓ(f(Xi);Yi),

SGD on the finite-sum formulation samples random indices i(1), i(2), . . . ∼
Uniform{1, . . . , N} and performs the update

fk+1 = fk − αk+1∇fℓ(f
k(Xi(k+1));Yi(k+1))

= fk − αk+1ℓ
′(fk(Xi(k+1));Yi(k+1))︸ ︷︷ ︸

=βk+1

K(Xi(k+1), ·)

= fk − βk+1K(Xi(k+1), ·)

44

for k = 0, 1, . . . , K−1. Again, let f 0 = 0. The RKHS SGD can be implemented
identically as before with

fk(Xi(k+1)) = −
k∑
j=1

βjK(Xi(j), Xi(k+1))

βk+1 = αk+1ℓ
′(fk(Xi(k+1));Yi(k+1))

Storage← (βk+1, i(k + 1))

and

fK(x) =
K∑
k=1

βkK(Xi(k), x).

2.3.4 Representer theorem

Interestingly, both RKHS SGDs in the one-pass and finite-sum formulations,
produce solutions within

span({K(Xi, ·)}Ni=1).

Is this optimal? An obvious answer is that the solution is not optimal. Since
SGD converges to the optimal solution (under certain assumptions) but does
not arrive at a solution in a finite number of iterations, the solutions produced
by the RKHS SGDs are not optimal.

For the finite-sum setup, however, restricting the search to within span({K(Xi, ·)}Ni=1)
is optimal, since an optimal solution provably lies within the said subspace.

Theorem 22 (Representer theorem). Let X be a nonempty set, K : X ×X →
R a PDK, H the corresponding RKHS, X1, . . . , XN ∈ X , and Y1, . . . , YN ∈ R.
Consider the optimization problem

minimize
f∈H

L({(Xi, Yi, f(Xi))}Ni=1) +Q(∥f∥H)

where Q : R+ → R is a strictly increasing function. Then, if a minimizer
exists, any minimizer must be in

span({K(Xi, ·)}Ni=1).

Proof. Let
S = span({K(Xi, ·)}Ni=1) ⊆ H.

In homework 3, you are to show that f ∈ S⊥ implies f(Xi) = 0 for all i =
1, . . . , N .

45

Let f ⋆ be a minimizer. Let

f⋆ = s+ t

such that s ∈ S and t ∈ S⊥. Then

L({(Xi, Yi, f
⋆(Xi))}Ni=1) = L({(Xi, Yi, s(Xi))}Ni=1)

while

Q(∥f ⋆∥H) = Q

(√
∥s∥2H + ∥t∥2H

)
≥ Q(∥s∥H),

where equality holds if and only if t = 0. Since f ⋆ is assumed to be a minimizer,
we conclude t = 0.

In the absence of a regularizer, we have a non-strict version of the repre-
senter theorem.

Theorem 23 (Non-strict representer theorem). Let X be a nonempty set,
K : X × X → R a PDK, H the corresponding RKHS, X1, . . . , XN ∈ X , and
Y1, . . . , YN ∈ R. Consider the optimization problem

minimize
f∈H

L({(Xi, Yi, f(Xi))}Ni=1) +Q(∥f∥H)

where Q : R+ → R is a non-decreasing function. (So Q = 0 is possible.) Then,
if a minimizer exists, there is a minimizer in

span({K(Xi, ·)}Ni=1).

Proof. Homework exercise.

The representer theorem tells us that one can find a global optimum in

span({K(Xi, ·)}Ni=1)

for the finite sum setup. Therefore, there are kernel methods that parameterize
the solution into the form

f =
N∑
k=1

βkK(Xk, ·)

and then optimize over β1, . . . , βN using optimization methods such as SGD,
or even things like Newton’s method.

46

2.3.5 Kernel ridge regression

Before starting the main content, quickly establish the following identity.

Lemma 18 (Push-through identity). Let γ > 0, U ∈ Rm×n, and V ∈ Rn×m.
Then

(γI + UV)−1U = U(γI + V U)−1,

assuming (γI + UV) is invertible.

Proof. Clearly,
U(γI + V U) = (γI + UV)U.

Left-multiply (γ + UV)−1 and right-multiply (γ + V U)−1.

Let X be a nonempty set. Let X1, . . . , XN ∈ X , Y1, . . . , YN ∈ R, ϕ : X →
Rd, and λ > 0. Let

Φ =


ϕ(X1)

⊺

ϕ(X2)
⊺

...
ϕ(XN)

⊺

 ∈ RN×d, Y =


Y1
Y2
...
YN

 ∈ RN .

Consider the ridge regression2 problem

minimize
θ∈Rd

1

N

N∑
i=1

(hθ(Xi)− Yi)2 + λ∥θ∥2,

where hθ : X → R is defined as hθ(x) = ϕ(x)⊺θ. Equivalently,3 we write

minimize
θ∈Rd

1

N
∥Φθ − Y ∥2 + λ∥θ∥2.

Because the objective function is convex, the solution θ⋆ is found by setting
the gradient to 0

0 =
2

N
Φ⊺(Φθ⋆ − Y) + 2λθ⋆,

2Regression with ℓ2-regularization is referred to as ridge regression in classical statistics.
3Linear regression is an instance of the finite-sum formulation and its goal is to obtain

a prediction function hθ⋆ (which is linear in θ but need not be linear in x) rather than to
obtain the parameters θ.

47

which solves to

θ⋆ = (Φ⊺Φ + λNI)−1︸ ︷︷ ︸
d×d

Φ⊺Y︸︷︷︸
d×1

= Φ⊺︸︷︷︸
d×N

(ΦΦ⊺ + λNI)−1︸ ︷︷ ︸
N×N

Y︸︷︷︸
N×1

= Φ⊺ (G+ λNI)−1Y︸ ︷︷ ︸
=φ⋆∈RN

,

where we used the kernel matrix G ∈ RN×N

Gij = ϕ(Xi)
⊺ϕ(Xj)

and the push-through identity. Once “training” is complete, i.e., θ⋆ has been
computed, we make predictions on new data x ∈ X with

hθ⋆(·) = ϕ(·)⊺θ⋆

=
N∑
i=1

φ⋆iK(·, Xi).

Next, consider the same linear regression setup with the prediction func-
tion in an RKHS as the explicit optimization variable. Let X1, . . . , XN ∈ X ,
Y1, . . . , YN ∈ R, λ > 0, K : X × X → R be a PDK, and H the corresponding
RKHS. Consider the kernel ridge regression problem

minimize
f∈H

1

N

N∑
i=1

(f(Xi)− Yi)2 + λ∥f∥2H.

When H is infinite dimensional, this is an infinite-dimensional optimization
problem. By the representer theorem, a minimizer has the expression

f(x) =
N∑
j=1

φjK(x,Xj),

so we plug this form in to get a finite-dimensional optimization problem

minimize
φ∈RN

1

N

N∑
i=1

(
N∑
j=1

φjK(Xj, Xi)− Yi

)2

+ λ

∥∥∥∥∥
N∑
j=1

φjK(Xj, ·)

∥∥∥∥∥
2

H

.

48

Using the kernel matrix G ∈ RN×N , we equivalently write

minimize
φ∈RN

1

N
∥Gφ− Y ∥2 + λφ⊺Gφ.

The solution is found by setting the gradient to 0

0 =
2

N
G(Gφ⋆ − Y) + 2λGφ⋆

and solves to
φ⋆ = (G+ λNI)−1Y.

(For the sake of simplicity, let us assume G is invertible. When G is not
invertible, φ⋆ is a solution, but not the unique one. More on this in the
homework assignment.) So, we have

f ⋆(·) =
N∑
j=1

φ⋆jK(·, Xj).

This is exactly the same prediction function as before, except that we did not
need to have a finite-dimensional feature map.

Kernelized implementation. To conclude, givenX1, . . . , XN ∈ X , Y1, . . . , YN ∈
R, λ > 0, and a PDK K : X × X → R, we can implement kernel ridge regres-
sion in a kernelized manner by forming the kernel matrix G ∈ RN×N (requires
N(N + 1)/2 evaluations of K(·, ·) but no need to explicitly form a feature
vector) and perform linear algebra computations to solve

φ⋆ = (G+ λNI)−1Y.

Then, prediction on new data x ∈ X can be made with

f ⋆(x) =
N∑
j=1

K(x,Xj)φj.

When λ = 0. When λ = 0, i.e., when there is no ℓ2-regularizer, the same
line of analysis and derivation can be carried out with the Moore–Penrose
pseudoinverse. In particular, one arrives at

φ⋆ = G†Y.

49

2.3.6 RKHS with finite-dimensional feature vector and
and corresponding 2-layer neural networks

Let ϕ : X → Rd and write

ϕ(x) =


ϕ1(x)
ϕ2(x)

...
ϕd(x)

 .
Assume ϕ1, . . . , ϕd are linearly independent as functions. Consider K : X ×
X → R defined as

K(x, x) = ⟨ϕ(x), ϕ(x′)⟩Rd .

Let
H = span{ϕk}dk=1.

For

f =
d∑

k=1

αkϕk, g =
d∑

k=1

βkϕk,

define the inner product

⟨f, g⟩H =
d∑

k=1

αkβk.

(If ϕ1, . . . , ϕd are not linearly independent, the inner product is not uniquely
defined.) It is relatively straightforward to show that H is a Hilbert space.
We claim that H is the RKHS corresponding to K. We provide two separate
justifications.

First, we provide a direct verification. Clearly,

K(x, ·) =
d∑

k=1

ϕk(x)︸ ︷︷ ︸
=γk

ϕk(·) ∈ span{ϕk}dk=1 = H

for all x ∈ X . Next,

⟨f,K(x, ·)⟩H =
d∑

k=1

αkγk =
d∑

k=1

αkϕk(x) = f(x).

So we have the reproducing property. Therefore, K is the RK of H.

50

On the other hand, the construction of the Moore–Aronszajn Theorem and
Lemma 13 tells us

H = span{K(x, ·) |x ∈ X}

= span

{
K(x, ·) =

d∑
k=1

ϕk(x)ϕk(·) |x ∈ X

}
= span{ϕ1, . . . , ϕd}.

The Moore–Aronszajn construction further tells us that for

f =
N∑
i=1

α̃iK(xi, ·), g =
N ′∑
j=1

β̃jK(x′j, ·)

we have

⟨f, g⟩H =
N∑
i=1

N ′∑
j=1

α̃iβ̃jK(xi, x
′
j).

We can simplify as

f =
N∑
i=1

α̃i

d∑
k=1

ϕk(xi)ϕk(·) =
d∑

k=1

N∑
i=1

α̃iϕk(xi)︸ ︷︷ ︸
=αk

ϕk(·)

and

g =
N ′∑
j=1

β̃j

d∑
k=1

ϕk(x
′
j)ϕk(·) =

d∑
k=1

N ′∑
j=1

β̃jϕk(x
′
j)︸ ︷︷ ︸

=βk

ϕk(·),

so

⟨f, g⟩H =
N∑
i=1

N ′∑
j=1

α̃iβ̃j

d∑
k=1

ϕk(xi)ϕk(x
′
j)

=
d∑

k=1

N∑
i=1

α̃iϕk(xi)
N ′∑
j=1

β̃jϕk(x
′
j)

=
d∑

k=1

αkβk.

51

Absence of independence assumption. If we do not assume that ϕ1, . . . , ϕd
are linearly independent as functions, then the RKHS corresponding to

K(x, x) = ⟨ϕ(x), ϕ(x′)⟩Rd

becomes H = span{ϕk}dk=1 with the so-called variation norm

∥f∥2H =

 minimize
θ∈Rd

d∑
k=1

γ2k

subject to f =
∑d

k=1 γkϕk

 .

Connection to 2-layer neural networks. Let X = Rd. Let ϕ1, . . . , ϕN be
defined as

ϕk(x) = σ(a⊺kx+ bk).

Then

H =

{
N∑
k=1

ukσ(a
⊺
kx+ bk) |u1, . . . , uN ∈ R

}
,

i.e., H is the set of 2-layer nerual networks with hidden layer weights and biases
fixed to a1, . . . , aN and b1, . . . , bN . Performing kernel SGD or kernel ridge
regression corresponds to training the output layer weights of a 2-layer neural
network with the hidden layer weights and biases fixed (and not trained).

2.4 Kernel as linear operators

Let ν ∈M+(X) and consider L2(ν). (So ν is nonnegative.) For K : X ×X →
R, define the linear functional

LK [f] =

∫
X
K(·, x′)f(x′) dν(x′)

for f : X → R. Clearly, LK is linear, but we need additional assumptions to
ensure that the integral is well-defined. In particular, we will show that the
following RHS∫

X
|K(x, x′)f(x′)| dν(x′) ≤ ∥K(·, x)∥L2(ν)∥f(·)∥L2(ν)

is finite under appropriate assumptions.

52

2.4.1 Mercer kernel and Mercer’s theorem

We say a PDK K : X × X → R is a Mercer kernel if X is a nonempty a
compact metric space (or more generally a compact Hausdorff space) and K
is continuous as a function (with respect to the Borel topology).

If K is a Mercer kernel, then

LK : L2(ν)→ L2(ν).

to see why, first note that

∥K(·, x)∥2L2(ν) =

∫
X
(K(x, x′))2 dν(x′)

≤ sup
x,x′∈X

(K(x, x′))2ν(X) <∞.

Therefore, for f ∈ L2(ν), LK [f](x) is well defined (pointwise) for all x ∈ X . It
remains to show that LK [f] ∈ L2(ν). This follows from the fact that LK [f] is
a bounded function:

|LK [f](x)| =
∣∣∣∣∫

X
K(x, x′)f(x′) dν(x′)

∣∣∣∣
≤ ∥K(·, x)∥L2(ν)∥f(·)∥L2(ν)

≤
√
ν(X) sup

x,x′
|K(x, x′)|∥f(·)∥L2(ν)

<∞.

Theorem 24. Let X be a compact metric space (or more generally a compact
Hausdorff space) and K : X × X → R a continuous positive definite Mercer
kernel. Let ν ∈ M+(X) and assume supp(ν) = X , i.e., ν(U) > 0 for any
nonempty open U ⊆ X . Then there exists an eigenfunction expansion

K(x, x′) =
∞∑
i=1

λiψi(x)ψi(x
′),

where λ1 ≥ λ2 ≥ · · · ≥ 0 and {ψi}∞i=1 are continuous functions that are or-
thonormal in the L2(ν) inner product. The convergence is absolute for each
x, x′ ∈ X and uniform on X × X .

Proof outline. If K is a Mercer kernel, then LK : L2(ν)→ L2(ν) is a compact,
self-adjoint, nonnegative bounded linear operator. We then appeal to the
spectral theorem.

53

Feature map via eigenfunctions. Assume a PDK K : X × X → R has a
series expansion

K(x, x′) =
∞∑
i=1

λiψi(x)ψi(x
′)

or, more concisely,

K =
∞∑
i=1

λiψi ⊗ ψi

with nonnegative λ1, λ2, Define ϕ : X → ℓ2 with

ϕ(x) =


√
λ1ψ1(x)√
λ2ψ2(x)

...

 .
Then ϕ is a feature map for K:

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ℓ2

(Since K(x, x) <∞, we have ϕ(x) ∈ ℓ2.)

RKHS. Assume a PDK K : X × X → R has a series expansion

K =
∞∑
i=1

λiψi ⊗ ψi

with nonnegative λ1, λ2, Assume that λ1 ≥ λ2 ≥ · · · > 0 and that {ψi}i∈N
is linearly independent as functions. Then the corresponding RKHS is

H =

{
f =

∞∑
i=1

αiψi
∣∣ ∥f∥H <∞

}
,

and for

f =
∞∑
i=1

αiψi, g =
∞∑
i=1

βiψi

the inner product is

⟨f, g⟩H =
∞∑
i=1

αiβi
λi

.

54

Covariance kernel. Assume a PDK K : X × X → R has the integral form

K(x, x′) = Ew∼P [ψ(x;w)ψ(x′;w)] =
∫
W
ψ(x;w)ψ(x′;w)dP (w),

where w ∈ W is a random variable. More concisely, we can view ψ(·;w) as
random function (randomness determined by w ∈ W) and write

K = Eψ[ψ ⊗ ψ].

Assume a {ψ(·;w)}w∈W are linearly independent as functions. This implies a
function

f =

∫
W
α(w)ψ(·;w) dP (w)

is uniquely identified by α, in the sense that∫
W
α(w)ψ(·;w) dP (w) =

∫
W
α′(w)ψ(·;w) dP (w)

if and only if α = α′ P -almost everywhere.
Then the corresponding RKHS is

H =

{
f =

∫
W
α(w)ψ(·;w) dP (w)

∣∣∣ ∥f∥H <∞
}
,

and for

f =

∫
W
α(w)ψ(·;w) dP (w), g =

∫
W
β(w)ψ(·;w) dP (w)

the inner product is

⟨f, g⟩H =

∫
W
α(w)β(w) dP (θ).

An example of interest to us is

K(x, x′) = E(a,b)∼P [σ(a
⊺x+ b)σ(a⊺x+ b)].

In this case, the RKHS contains functions of the form

f(x) =

∫
α(a, b)σ(a⊺x+ b) dP (a, b),

which can be viewed as infinite-width 2-layer neural networks.

55

2.5 Matrix-valued PDKs and vector-valued RKHSs

Let X be a nonempty set. Let K : X × X → Rd×d. We say K is symmetric
if K(x, x′) = (K(x′, x))⊺ for all x, x′ ∈ X . Then K is a matrix-valued positive
definite kernel (mvPDK) if it is symmetric and if for all N ∈ N, x1, . . . , xN ∈
X , and c1, . . . , cN ∈ Rd, we have

N∑
i=1

N∑
j=1

c⊺iK(xi, xj)cj ≥ 0.

Clearly, if K1 : X ×X → Rd×d and K2 : X ×X → Rd×d are mvPDKs, then
K1 +K2 is as well. Let K : X × X → Rd×d and k : (X × {1, . . . , d}) × (X ×
{1, . . . , d})→ R such that

(K(x, x′))ij = k((x, i), (x, j)).

ThenK is a mvPDK if and only if k is a (scalar-valued) PDK. (This equivalence
will be established in a homework assignment.)

Let H be a Hilbert space of functions from X to Rd with inner product
⟨·, ·⟩H and induced norm ∥ · ∥H. We say K : X × X → Rd×d is reproducing
kernel (RK) for H if

K(·, x)w ∈ H, ∀x ∈ X , w ∈ Rd.

and K has the reproducing property

⟨f,K(·, x)w⟩H = w⊺f(x), ∀x ∈ X , w ∈ Rd.

If H has an RK, it is a vector-valued RKHS (vvRKHS).

Theorem 25. There is a one-to-one correspondence between mvPDKs and
vvRKHSs.

Example: Kronecker product. Let k be a scalar PDK and M ∈ Rd×d a
symmetric positive semidefinite matrix. Then

K = k ⊗M,

defined as
K(x, x′) = k(x, x′)M

56

is a mvPDK. To see why, for all N ∈ N, x1, . . . , xN ∈ X , and c1, . . . , cN ∈ Rd,
we have

N∑
i=1

N∑
j=1

c⊺iK(xi, xj)cj =
N∑
i=1

N∑
j=1

c⊺iMcjk(xi, xj)

=
N∑
i=1

N∑
j=1

Nijk(xi, xj)

= Tr(NG) ≥ 0,

where we use the fact that N ∈ RN×N defined as Nij = c⊺iMcjk is symmetric
positive semidefinite and the fact that the inner product between two symmet-
ric positive semidefinite is nonnegative. (In convex analysis, one says the PSD
cone is self-dual.) Alternatively, and essentially equivalently, one can show
that the Kronecker product between M ∈ Rd×d and G ∈ RN×N is symmetric
positive semidefinite.

Example: Outer product. Let f : X → Rd. Then

K = f ⊗ f

defined as
K(x, x′) = f(x)f(x′)⊺

is a mvPDK. To see why, for all N ∈ N, x1, . . . , xN ∈ X , and c1, . . . , cN ∈ Rd,
we have

N∑
i=1

N∑
j=1

c⊺iK(xi, xj)cj =
N∑
i=1

N∑
j=1

(c⊺i f(xi))(f(xj)
⊺cj)

=
N∑
i=1

(c⊺i f(xi))
N∑
j=1

(c⊺jf(xj))

≥ 0.

2.5.1 Tensor products

The tensor product is an operation generally defined between two vectors and
vector spaces. For the sake of notational simplicity, we will use special instances
of this notation. We simply point out, but do not justify, that our notation is
consistent with the general tensor product operation.

57

Let f : X → Rm and g : Y → Rn and

F = f ⊗ g : X × Y → Rm×n

is defined as
F (x, y) = f(x)g(y)⊺.

In particular,
F = f ⊗ f : X × X → Rm×m

is defined as
F (x, x′) = f(x)f(x′)⊺.

If f : X → R and m ∈ Rd, then

F = f ⊗m : X → Rd

is defined as
F (x) = f(x)m.

(The Kronecker kernel was defined with this notation.) Finally, if µ ∈ M(X)
and ν ∈M(Y), then

µ⊗ ν ∈M(X × Y)
is defined as

(µ⊗ ν)(A×B) = µ(A)ν(B)

for measurable A ⊆ X and B ⊆ Y∫
X×Y

f(x, y)d(µ⊗ ν) =
∫
Y

∫
X
f(x, y)dµ(x)dν(y)

for (measurable and integrable) f : X × Y → R. In particular, if µ and ν are
probability measures respectively for random variables X and Y , then µ⊗ν is
the probability measure for (X, Y) such that X and Y are independent random
variables with respective marginal probability distributions µ and ν.

2.6 Random feature learning

2.6.1 Kernel approximation

Let X = Rd. Let K : X × X → R be defined as

K(x, x′) =

∫
W
e−iw

⊺(x−x′) dP (w)

=

∫
W
(cos(w⊺x) cos(w⊺x′) + sin(w⊺x) sin(w⊺x′)) dP (w),

58

for some real nonnegative probability measure P . Consider using M IID ran-
dom features with w1, . . . , wM ∼ P and b1, . . . , bM ∼ Uniform[0, 2π]:

ϕ(x) =

√
2√
M


cos(w⊺

1x+ b1)
cos(w⊺

2x+ b2)
...

cos(w⊺
Mx+ bM)

 .
Then

K̂(x, x′) ≈ ⟨ϕ(x), ϕ(x)⟩RM =
1

M

M∑
i=1

2 cos(w⊺
i x+ bi) cos(w

⊺
i x

′ + bi)

(∗)→ K(x, x′).

Loosely speaking, (∗) follows from a law-of-large-number type of argument,
since

Ew,b[2 cos(w⊺x+ b) cos(w⊺x′ + b)] = Ew,b[cos(w⊺x+ b) cos(w⊺x′ + b) + sin(w⊺x+ b) sin(w⊺x′ + b)]

= Ew[ℜe−iw
⊺(x−x′)]

= Ew[cos(w⊺x) cos(w⊺x′) + sin(w⊺x) sin(w⊺x′)]

= K(x, x′),

where the first equality follows from uniformity of b.
Precisely speaking, (∗) is in the following sense.

Theorem 26 (Informal). Let Ω ⊂ Rd be compact. Let δ > 0. With probability
1− δ,

sup
x,x′∈Ω

∣∣∣K̂(x, x′)−K(x, x′)
∣∣∣ ≤ small.

In practice, one would use K̂ in place of K for computational efficiency.
Kernel ridge regression or any kernelized method requires storing allX1, . . . , XN

and prediction with a new x requires N additional kernel evaluations. On the
other hand, using K̂ does not require storing all data and prediction only
requires O(Md) operations, as we discuss now.

Kernelized learning with K̂ is equivalent to estimating θ ∈ RM of the
prediction function

fθ(x) =
M∑
i=1

θi cos(w
⊺
i x+ b),

59

since fθ parameterizes all functions within the RKHS corresponding to K̂.
(The factor

√
2/M is absorbed into θ). This is a 2-layer neural network with

cosine activation functions. The hidden layer’s weights and biases are randomly
initialized and not trained. The “output layer weights” θ ∈ RM are trained.

More generally, consider a PDK K : X × X → R with an integral form

K(x, x′) = Ew∼P [ψ(x;w)ψ(x′;w)] =
∫
W
ψ(x;w)ψ(x′;w) dP (w),

where w ∈ W is a random variable and P is a probability measure. Consider
using M IID random features with w1, . . . , wM ∼ P :

ϕ(x) =
1√
M


ψ(x;w1)
ψ(x;w2)

...
ψ(x;wM)

 .
Then we can expect

K̂(x, x′) = ⟨ϕ(x), ϕ(x′), ⟩RM → K(x, x′)

by the law of large numbers. Kernelized learning with K̂ is equivalent to
estimating θ ∈ RM of the prediction function

fθ(x) =
M∑
i=1

θiψ(x;wi).

This includes 2-layer neural network with activation function σ

fθ(x) =
M∑
i=1

θiσ(a
⊺
i x+ bi),

where a1, . . . , aM and b1, . . . , bM are initialized randomly and fixed.

2.6.2 Function approximation

However, approximating the kernel K̂ ≈ K, in whatever sense, is not the end
result we desire. The desired end result is to find a prediction function fθ that
either approximates the true unknown funciton f⋆ well, or attained “low risk”.

Let X1, . . . , XN ∈ X be IID samples from a probability measure µ ∈
M+(X). Let

Remp[f] =
1

N

N∑
i=1

(f(Xi)− f ⋆(Xi))
2

60

and
Rtrue[f] = EX∼µ[(f(X)− f ⋆(X))2] = ∥f − f ⋆∥2L2(µ).

In machine learning, the goal is usually to find a prediction function f with
small true risk Rtrue[f]. With finite data, this is accomplished by instead
minimizing the empirical risk Remp[f].

Consider prediction functions of the following form. Let ψ(x;w) be a ran-
dom feature function such that |ψ(x;w)| ≤ 1 for all x ∈ Rd and w ∈ W . Let

P ∈M+(W) be a probability measure and sample w1, . . . , wM
IID∼ P to form

fθ(x) =
M∑
i=1

θiψ(x;wi).

Finally, we solve

minimize
θ∈Rd

Remp[fθ] =
1

N

N∑
i=1

(fθ(Xi)− f ⋆(Xi))
2

to obtain the solution θ̂.
Since θ̂ minimizes the surrogate objective, rather than the true objective,

there is no reason to expect θ̂ to minimize Rtrue[fθ]. However, we will establish
that θ̂ is close to optimal (for the true objective) in the sense that

Rtrue[fθ̂] ≈ inf
θ
Rtrue[fθ].

Theorem 27. Let

f⋆ =

∫
W
ψ(·;w) dQ(w),

where Q ∈ M(W) is a (signed) measure absolutely continuous with respect
to P .4 Let µ ∈ M+(X) be any probability measure. Let δ > 0. Then, with
probability 1− δ, there exists a θ̃ ∈ RM such that

Rtrue[fθ̃] = ∥fθ̃ − f
⋆∥2L2(µ) ≤

supw |dQ/dP (w)|2

M

(
1 +

√
2 log(1/δ)

)2
.

Proof outline. Let

f̂ ⋆(x) =
M∑
i=1

1

M

dQ

dP
(wi)︸ ︷︷ ︸

=θ̃i

ψ(x;wi),

4We sample from P while f⋆ is represented with Q. In practice, we do not know Q, so
we cannot sample from it. The probabilistic argument by Jones requires sampling from Q
and therefore is not algorithmically implementable.

61

where dQ
dP

is the Radon–Nikodym derivative. Then

E[f̂ ⋆] = f ⋆, E[∥f̂ ⋆ − f ⋆∥2] ≤ sup
w

∣∣∣∣dQdP (w)

∣∣∣∣2 .
The claim follows from considering the variance obtaining the probability 1−δ
guarantee with McDiarmid’s inequality.

Theorem 28 (Informal). Assume some additional conditions. Then, with
probability δ > 0, we have

|Rtrue[f]−Remp[f]| ≤ O(1/
√
N).

Proof outline. Proof uses the notion of Rademacher complexity.

We now conclude

Rtrue[fθ̂] ≈ Remp[fθ̂]

≤ Remp[fθ̃]

≈ Rtrue[fθ̃]

= small,

where the chain of reasoning follows from Theorem 28, by definition of θ̂,
Theorem 28, and Theorem 27. To clarify, θ̃ is a parameter configuration that
exists, and we use it only for our theoretical arguments, not θ̃ in our algorithm.
Rather, θ̂ is obtained and used algorithmically.

62

Chapter 3

Continuous-Time Training
Dynamics

3.1 Gradient flow as a model for stochastic

gradient descent

Consider a neural network fθ : X → R with parameter θ ∈ Rp, dataX1, . . . , XN ∈
X , and Y1, . . . , YN ∈ Y = R. Let L : Rp → R be the loss function of the form

L(θ) = 1

N

N∑
i=1

ℓ(fθ(Xi), Yi).

Gradient descent (GD) updates the parameters with

θk+1 = θk − α∇L(θk)

for k = 0, 1, . . . , where θ0 ∈ Rp is a starting point and α > 0 is the learning
rate. In general, the learning rate α can depend on the iteration, but let us
consider the constant stepsize case for the sake of simplicity.

Stochastic gradient descent (SGD) updates the parameters with

θk+1 = θk − α∇θℓ(fθ(Xi(k)), Yi(k))
∣∣
θ=θk

= θk − α(∇L(θk) + εk)

for k = 0, 1, . . . , where i(k) ∼ Uniform({1, . . . , N}) is an IID sequence of
random indices. Here, εk = ∇θℓ(fθ(Xi(k)), Yi(k))

∣∣
θ=θk
−∇L(θk) is a martingale

difference sequence, i.e.,
E
[
εk | θk

]
= 0.

63

In deep learning theory, one often considers the simplified training dynam-
ics through gradient flow (GF):

θ̇(t) = −∇L(θ(t)),

where θ(0) = θ0.
In what sense does the continuous-time deterministic process (GF) approx-

imate the the discrete-time stochastic algorithm (SGD) well? The differential
form of the intuition is that for GD,

θ̇(t) ≈ θk+1 − θk

α
= −∇L(θk),

where t = αk. The idea is that we view α as the discretization step, so the
total ellapsed “time” is the number of iterations k times the discretization size
α. The integral form of the intuition is

θk = θ0 − α
k∑
i=0

∇L(θi) ≈ θ0 −
∫ t

0

∇L(θ(s)) ds.

For SGD, the integral form is more easily interpretable:

θk = θ0 − α
k∑
i=0

∇L(θi) + α
k∑
i=0

εi︸ ︷︷ ︸
O(

√
kα)=O(

√
tα)

≈ θ0 −
∫ T

0

∇L(θ(d)) ds.

To bound the noise term, we assume E[∥εk∥2 | θk] < τ 2 <∞ and argue that

Var

(
α

k∑
i=0

εi

)
≤ kα2τ 2 = αtτ 2 → 0

as α→ 0, fixed t, and k = ⌊t/α⌋.

Theorem 29. [GD→GF] Assume L : Rp → R is differentiable. Assume
∇L : Rp → Rp is L-Lipschitz continuous and M-bounded.1 For α > 0, let
{θk(α)}k=0,1,... be the GD sequence generated with learning rate α starting from

θ0, i.e.,
θk+1
(α) = θk(α) − α∇L(θk(α))

1This assumption is meant to simplify the analysis, but, in general, it is sufficient to
exclude cases where ∇L varies too rapidly, such as θ2 sin(1/θ). One can establish the
same result under the assumption ∇L(θ) ≤ C1 + C2B(∥θ∥), where C1 > 0, C2 > 0, and
B : R+ → R is an increasing function.

64

with θ0(α) = θ0. Let θ(t) be the gradient flow starting from θ(0) = θ0. Then for
any T <∞,

sup
t∈[0,T]

∥θ(t)− θ⌊t/α⌋(α) ∥ → 0

as α→ 0.

Proof. For notational simplicity, we drop the subscript and write θk for θk(α).
For k ∈ N ,

Ek = θ(kα)− θk

to denote the error between GF and GD. Note, E0 = 0. Then,

Ek+1 = θ((k + 1)α)− θk+1

= θ(kα)−
∫ α

0

∇L(θ(kα+ s)) ds− θk + α∇L(θk)

= Ek −
∫ α

0

∇L(θ(kα + s))−∇L(θ(kα)) ds− α
(
∇L(θ(kα))−∇L(θk)

)
.

Then we have

∥Ek+1∥ ≤ ∥Ek∥+ α∥∇L(θ(kα))−∇L(θk))∥+
∫ α

0

∥∇L(θ(kα+ s))−∇L(θ(kα))∥ ds

≤ ∥Ek∥+ αL∥θ(kα)− θk∥+ L

∫ α

0

∥θ(kα+ s)− θ(kα)∥ ds

= (1 + Lα)∥Ek∥+ L

∫ α

0

∥∥∥∥∫ s

0

∇L(θ(kα+ t))dt

∥∥∥∥ ds

≤ (1 + Lα)∥Ek∥+
MLα2

2
.

65

Setting C = 1 + Lα and P = MLα2

2
gives,

∥E0∥ = 0

∥E1∥ ≤ P

∥E2∥ ≤ (1 + C)P

...

∥Ek∥ ≤ (1 + C + · · ·+ Ck−1)P

=
Ck − 1

C − 1
P

=
Mα

2
((1 + Lα)k − 1)

≤ Mα

2
(eLαk − 1)

≤ (eLt − 1)M

2
α,

where t = αk. Therefore, for any T <∞,

sup
t∈[0,T]

∥E⌊t/α⌋∥ = sup
t∈[0,T]

∥θ(⌊t/α⌋α)− θ⌊t/α⌋∥ → 0

as α→ 0. Since

∥θ(t)− θ(⌊t/α⌋α)∥ = ∥
∫ t

⌊t/α⌋α
θ̇(s)ds∥ ≤M |t− ⌊t/α⌋α| ≤Mα,

we conclude

sup
t∈[0,T]

∥θ(t)− θ⌊t/α⌋∥ ≤ sup
t∈[0,T]

∥E⌊t/α⌋∥+ sup
t∈[0,T]

∥θ(t)− θ(⌊t/α⌋α)∥ → 0 as α→ 0.

as α→ 0.

Theorem 30 (SGD≈GD). Assume L : Rp → R is differentiable. Assume
∇L : Rp → Rp is L-Lipschitz continuous and M-bounded. For α > 0, let
{ϕk(α)}k=0,1,... be the SGD sequence generated with learning rate α starting from

ϕ0, i.e.,
ϕk+1
(α) = ϕk(α) − α(∇L(ϕk(α)) + ϵk)

with ϕ0
(α) = ϕ0. Assume εk satisfies E[εk |ϕk(α)] = 0 and E[∥εk∥2 |ϕk] ≤ τ 2 <∞.

For α > 0, let {θk(α)}k=0,1,... be the GD sequence generated with learning rate α

starting from θ0 = ϕ0. Then for any T <∞, we have

sup
t∈[0,T]

E∥ϕ⌊t/α⌋
(α) − θ

⌊t/α⌋
(α) ∥

2 → 0

as α→ 0.

66

Proof. For notational simplicity, we drop the subscript and write ϕk for ϕk(α).

Denote the (deterministic) gradient descent iterates as

θk+1 = θk − α∇(θk),

with θ0 = ϕ0. By Theorem 29, we have

sup
t∈[0,T]

∥θ(t)− θ⌊t/α⌋∥ → 0

as α → 0. Thus, it is enough to show that supt∈[0,T] ∥ϕ⌊t/α⌋ − θ⌊t/α⌋∥ → 0 as
α→ 0 with probability 1. For k ∈ N , define

Ek = E
[
∥θk − ϕk∥2

]
.

Note, E0 = 0. Then,

E
[
∥θk+1 − ϕk+1∥2 |ϕk

]
= ∥θk − ϕk∥2 − 2α⟨θk − ϕk,E[∇L(θk)−∇L(ϕk)− εk |ϕk]⟩

+ α2E[∥∇L(θk)−∇L(ϕk)− εk∥2 |ϕk]
= ∥θk − ϕk∥2 − 2α⟨θk − ϕk,∇L(θk)−∇L(ϕk)⟩

+ α2(∥∇L(θk)−∇L(ϕk)∥2 + τ 2)

≤ ∥θk − ϕk∥2 + 2α∥θk − ϕk∥∥∇L(θk)−∇L(ϕk)∥
+ α2∥∇L(θk)−∇L(ϕk)∥2 + α2τ 2

= (1 + αL)2∥θk − ϕk∥2 + α2τ 2.

By taking the full expectation and using the tower property of total expecta-
tion, we have

Ek+1 ≤ (1 + αL)2Ek + α2τ 2.

With an inductive reasoning similar to that of Theorem 29, we get

Ek ≤
(1 + αL)2k − 1

(1 + αL)2 − 1
α2τ 2 =

((1 + αL)2k − 1

(αL2 + 2L)
ατ 2

≤ (e2kαL − 1)τ 2

αL2 + 2L
α =

(e2tL − 1)τ 2

αL2 + 2L
α→ 0

as α→ 0.

Combining

Corollary 2 (SGD→GF). Consider the setup of Theorem 30. For any T <∞,
we have

sup
t∈[0,T]

E∥ϕ(t)− ϕ⌊t/α⌋
(α) ∥

2 → 0

as α→ 0.

67

Proof. This immediately follows from combining Theorems 29 and 30.

Corollary 3. Consider the setup of Theorem 30. Further, assume ∥εk∥2 ≤ τ 2

almost surely. For any T <∞, we have

sup
t∈[0,T]

∥ϕ(t)− ϕ⌊t/α⌋
(α) ∥

2 → 0

as α→ 0 in probability.

Proof outline. This requires a probabilistic argument. Let N ∈ N and ε > 0.
δ > 0?? Let

E(t) = ∥ϕ(t)− ϕ⌊t/α⌋
(α) ∥

2

Let ti = Ti/N for i = 1, . . . , N . Then with probability 1− δ, we have

E(ti) < ε/2

for all i = 1, . . . , N . By the boundedness assumptions, we have

|E(ti)− E(ti + s)| < ε/2

for all s ∈ (0, T/N). Therefore,

sup
t∈[0,T]

E(t) < ε.

However, this approximation removes all dependence on noise. Therefore,
one can consider the update

θk+1
(α) = θk(α) − α∇L(θk(α)) +

√
αεk.

In integral form, we have

θk(α) = θ0 − α
k−1∑
i=0

∇L(θi(α)) +
√
α
k−1∑
i=0

εi

≈ θ0 −
∫ ⌊t/α⌋

0

L(θ(s)) ds+
√
2B(t),

where B(t) is a Brownian motion. The argument follows from reasoning similar
to Donsker’s theorem. In this case, under suitable assumptions, the process
{θ⌊t/α⌋(α) }t≥0 converges in distribution to the solution of the stochastic differential
equation

dθ = −∇L(θ)dt+
√
2dB(t)

This follows from Donsker’s theorem. However, the SDE analysis is beyond
the scope of this course, so we do not pursue it.

68

3.2 Continuous-time analysis of gradient flow

We have established that gradient flow approximates SGD. Now let us analyze
the continuous-time dynamics of gradient flow

θ̇ = −∇L(θ), θ(0) = θ0.

In general, the training loss of finite deep neural networks is non-convex.
However, the loss becomes convex in the infinite-width (NTK) limit, so we
study the convex setup.

Theorem 31. Let L : Rp → R be a differentiable convex function. Assume a
minimizer θ⋆ exists. Then the solution to gradient flow {θ(t)}t≥0 exhibits the
rate

L(θ(t))− L(θ⋆) ≤
∥θ(0)− θ⋆∥2

2t
.

Proof. Consider the energy function (also called a Lyapunov function)

E(t) = t(L(θ)− L(θ⋆)) + 1

2
∥θ − θ⋆∥2.

Then

Ė(t) = (L(θ)− L(θ⋆)) + t⟨∇L(θ), θ̇⟩+ ⟨θ − θ⋆, θ̇⟩
= L(θ)− L(θ⋆) + ⟨θ⋆ − θ,∇L(θ)⟩ − t∥∇L(θ)∥2

≤ −t∥∇L(θ)∥2

≤ 0,

where the first inequality follows from convexity of L. Since Ė ≤ 0, we conclude

t(L(θ)− L(θ⋆)) ≤ t(L(θ)− L(θ⋆)) + 1

2
∥θ(t)− θ⋆∥2 = E(t) ≤ E(0) = 1

2
∥θ0 − θ⋆∥2.

The training loss in deep learning are usually non-convex and non-differentiable
(due to ReLU activation functions). The “gradient flow” dynamics of non-
differentiable functions can be formalized using the notion of subgradients,
but we will not pursue that direction in this course. We will instead consider
the dynamics of non-convex differentiable losses.

69

Theorem 32. Let L : Rp → R be continuously differentiable. Assume infθ∈Rp L(θ) >
−∞. If a solution to the gradient flow ODE exists, then∫ ∞

0

∥∇L(θ(t))∥2dt <∞.

So if θ(t) converges, then ∇L(θ(t))→ 0.

Proof. Consider the energy function

E(t) =
∫ t

0

∥∇L(θ(s))∥2 ds+ L(θ(t)).

Then from θ̇ = −∇L(θ),

d

dt
E(t) = ∥∇L(θ)∥2 +

〈
∇L(θ), θ̇

〉
= 0.

Thus, E(t) is constant as a function of time and L(θ(t)) is monotonically
nonincreasing. Finally,∫ ∞

0

∥∇L(θ(t))∥2dt = L(θ(0))− lim
s→∞
L(θ(s))

≤ L(θ(0))− inf
θ∈Rp
L(θ) <∞.

3.3 Second-order dynamics as a model for SGD

with momentum

The gradient descent with momentum updates the iterates with

θk+1 = θk + β(θk − θk−1)− α∇L(θk),

where β > 0 is the momentum coefficient, α is the stepsize, and θ0 = θ−1 are
the starting points. We can equivalently describe the algorithm as

vk+1 = βvk −
√
α∇L(θk)

θk+1 = θk +
√
αvk,

with initial condition θ0 ∈ Rd and v0 = 0. The equivalence can be established
by basic induction.

70

Let β = 1− γ
√
α. Then

vk+1 − vk√
α

= −γvk −∇L(θk)

θk+1 − θk√
α

= vk

and we obtain the limiting ODE:

v̇(t) = −γv(t)−∇L(θ(t))
θ̇(t) = v(t),

with θ(0) = θ0, v(0) = 0, and t =
√
αk. Equivalently, we can express this as a

second-order ODE:
θ̈(t) + γθ̇(t) +∇L(θ(t)) = 0

with θ(0) = θ0 and θ̇(0) = 0.
This second-order ODE has a physical interpretation. If there is a particle

with mass 1 subject to potential L and friction with friction coefficient γ > 0,
then the dynamics of such a particle is governed by the same ODE.

Theorem 33. Let L : Rp → R be continuously differentiable. Assume infθ∈Rp L(θ) >
−∞. If a solution to the momentum gradient flow ODE exists, then∫ ∞

0

∥θ̇(t)∥2dt <∞.

So if θ̇(t)→ 0, then ∇L(θ(t))→ 0.

Proof. Then we have

E =
1

2
∥θ̇∥2 + L(θ) + γ

∫ t

0

∥θ̇∥2 ds

is a conserved quantity. Since L(θ) > infθ∈Rp L(θ), we have∫ ∞

0

∥θ̇(t)∥2dt <∞.

If θ(t) converges, then θ̇(t)→ 0 and θ̈(t)→ 0. Then ∇L(θ) = 0.

71

Theorem 34. Assume L : Rp → R is differentiable. Assume ∇L : Rp → Rp is
L-Lipschitz continuous and M-bounded. Let {θk(α)}k=0,1,··· be the GD sequence

generated with momentum β = 1− γ
√
α and step size α starting from θ0, i.e.,

θk+1
(α) = θk(α) + β(θk(α) − θk−1

(α))− s∇L(θ
k
(α)),

with θ0(α) = θ−1
(α) = θ0. Let θ(t) be the solution of momentum ODE starting

from θ(0) = θ0 and θ̇(0) = 0. Then for any T <∞,

sup
t∈[0,T]

∥θ(t)− θ⌊t/
√
s⌋

(α) ∥ → 0

as s→ 0.

Proof. For notational simplicity, we drop the subscript and write θk for θk(α).

vk+1 = βvk −
√
α∇L(θk)

θk+1 = θk +
√
αvk,

The ODE can be written as

v̇(t) = −γv(t)−∇L(θ(t))
θ̇(t) = v(t),

Lemma 19. Under said assumptions, supt∈[0,T] max{∥v(t)∥, ∥v̇(t)∥} = C <
∞.

For k = 0, 1, . . . , denote

Ak = ∥θk − θ(k
√
α)∥, Bk = ∥vk − v(k

√
α)∥

whose initial values are A0 = B0 = 0. First, we have

Ak+1 =
∥∥θk+1 − θ ((k + 1)s)

∥∥
=

∥∥∥∥∥θk +√αvk − θ((k√α))−
∫ √

α

0

θ̇(k
√
α + t) dt

∥∥∥∥∥
≤
∥∥θk − θ(k√α)∥∥+ ∥∥√αvk −√αv(k√α)∥∥+ ∥∥∥∥∥

∫ √
α

0

v(k
√
α + t)− v(k

√
α) dt

∥∥∥∥∥
≤ Ak +

√
αBk +

1

2
Cα,

72

where the last inequality follows from∥∥∥∥∥
∫ √

α

0

v(k
√
α + t)− v(k

√
α) dt

∥∥∥∥∥ ≤
∫ √

α

0

∫ t

0

∥v̇(k
√
α + v)∥ dvdt ≤ 1

2
Cα.

Next, we have

Bk+1 = ∥vk+1 − v((k + 1)
√
α)∥

=

∥∥∥∥∥βvk −√α∇L(θk+1)− v(k
√
α)−

∫ √
α

0

v̇(k
√
α + t) dt

∥∥∥∥∥
=

∥∥∥∥(1− γ√α)(vk − v(k√α))
−
√
α∇L(θk+1) +

√
α∇L(θk)−

√
α∇L(θk) +

√
α∇L(θ(k

√
α))

+ γ

∫ √
α

0

v(k
√
α + t)− v(k

√
α) dt+

∫ √
α

0

∇L(θ(k
√
α + t))−∇L(θ(k

√
α)) dt

∥∥∥∥
≤ (1− γ

√
α)Bk + Lα∥vk∥+

√
αLAk + γ

1

2
Cα+ C

1

2
Lα

≤ Bk + L
√
αAk + C ′α

for some constant C ′ < ∞. The last inequality follows from ∥vk∥ ≤ ∥v0∥ +
k
√
αj ≤ TM .
Let

U =

[
1

√
α

L
√
α 1

]
=

[
−1 1√
L
√
L

]
︸ ︷︷ ︸

=V

[
1−
√
Lα 0

0 1 +
√
Lα

]
︸ ︷︷ ︸

=diag(λ1,λ2)

[
−1/2 1/(2

√
L)

1/2 1/(2
√
L)

]
︸ ︷︷ ︸

=V −1

.

Then we have [
Ak+1

Bk+1

]
≤ U

[
Ak
Bk

]
+

[
0
C ′α

]
.

73

So we have [
Ak
Bk

]
≤ (U0 + U1 + · · ·+ Uk−1)

[
0
Cα

]
= V

[
1−(1−

√
Lα)k√

Lα
0

0 (1+
√
Lα)k−1√
Lα

]
V −1

[
0
C ′α

]
=

C ′α

2
√
αL

[
(1 +

√
Lα)k + (1−

√
Lα)k − 2

(1 +
√
Lα)k − (1−

√
Lα)k

]
≤ C ′√α

2
√
L

[
exp(
√
Lαk)− 1

exp(
√
Lαk)

]
=
C ′√α
2
√
L

[
exp(
√
Lt− 1

exp(
√
Lt)

]
.

This converges to 0 as α→ 0.

Theorem 35. Assume L is differentiable. Assume ∇L : Rp → Rp is L-
Lipschitz continous and M-bounded. For s > 0, let {θk(s)}k=0,1,··· be the SGD
sequence generated with monentum coefficient β and step size s starting from
θ0 and θ1 = θ0 − s∇L(θ0) , i.e.,

θk+1
(s) = θk(s) + β(θk(s) − θk−1

(s))− s(∇L(θk(s)) + ϵk),

with θ0(s) = θ0 and θ1(s) = θ1.Assume εk satisfies E[εk | θk(β)] = 0 and E[∥εk∥2 | θk] ≤
τ 2 <∞. Assume β satisfies the following condition as function of s:

1− β = r
√
s+O(s) as s→ 0

Let θ(t) be the solution of limiting ODE starting from θ(0) = θ0 and θ̇(0) = 0.
Then for any T <∞,

sup
t∈[0,T]

E∥θ(t)− θ⌊t/
√
s⌋

(s) ∥2 → 0

as s→ 0.

Proof. For notational simplicity, we drop the subscript and write θk for θk(s).

Denote the (deterministic) gradient descent iterates as

ϕk+1 = ϕk + β(ϕk − ϕk−1)− s∇L(ϕk)

74

with ϕ0 = θ0. By Theorem 34, we have

sup
t∈[0,T]

∥θ(t)− ϕ⌊t/β⌋∥ → 0

as β → 0. Thus it is enought to show that supt∈[0,T] E∥θ⌊t/β⌋ − ϕ⌊t/β⌋∥ → 0 as

β → 0. Let Φk+1 = ϕk+1−ϕk
s

and Θk+1 = θk+1−θk
s

for k ∈ N≥0. Then iterates
are equivalent to

Φk+1 = βΦk −∇L(ϕk)
ϕk+1 = ϕk + sΦk+1

and

Θk+1 = βΘk −∇L(θk)− ϵk

θk+1 = θk + sΘk+1

with ϕ0 = θ0 and Φ0 = Θ0 = 0. Denote by ak =
√

E∥ϕk − θk∥2 and bk =√
E∥Φk −Θk∥2, whose initial values are a0 = b0 = 0.

1) Using Cauchy-Schwarz inequality, we obtain

a2k+1 = E∥ϕk+1 − θk+1∥2

= E∥ϕk − θk∥2 + 2|E⟨ϕk − θk, sΦk+1 − sΘk+1⟩|+ s2E∥Φk+1 −Θk+1∥2

≤ a2k + 2sakbk+1 + s2b2k+1 = (ak + 2sbk+1)
2.

Hence, ak ≤ ak−1 + bk ≤ · · · ≤ sSk where Sk = b0 + b1 + · · ·+ bk.
2) Since ϵk is independent with ϕk, θk,Φk and Θk, we can get

b2k+1 = E∥Φk+1 −Θk+1∥2

≤ E∥βΦk − βΘk∥2 + 2|E⟨βΦk − βΘk,∇L(ϕk)−∇L(θk)− ϵk⟩|
+ E∥∇L(ϕk)−∇L(θk)− ϵk∥2

(i)

≤ β2b2k + 2βLbkak + L2a2k + τ 2

(ii)

≤ (bk + Lak)
2 + τ 2

≤ (bk + LsSk)
2 + τ 2

Inequality (i) follows from L-Lipschitz continuity of ∇L and Cauchy-Schwarz
inequality. Inequality (ii) follows from β ≤ 1.

For bounding ak, we define sequence ηk as

c2k+1 = (ck + LsDk)
2 + τ 2

75

where Dk = c0 + c1 + · · · + ck with c0 = 0. Then, bk ≤ ck and ck ≤ ck+1 is
obvious. Since ck is increasing sequence, we get

c2k+1 = (ck + LsDk)
2 + τ 2 ≤ (ck + Lskck)

2 + τ 2 = (Lsk + 1)2c2k + τ 2.

Due to k
√
s ≤ T , bound is changed to c2k+1 ≤ (LT

√
s+1)2c2k+τ

2. By induction
on k, it holds that

c2k ≤ τ 2 + (1 + TL
√
s)2τ 2 + · · ·+ (1 + TL

√
s)2(k−1)τ 2

=
P k − 1

P − 1
τ 2

, denoting by P := (1 + TL
√
s)2. Hence, with Cauchy-Schwarz inequality, we

obtain

Dk ≤
√
k(c20 + · · · c2k) ≤

√
k

(
P k+1 − 1

(P − 1)2
− k + 1

P − 1

)
Thus,

ak ≤ sSk ≤ sDk ≤

√
(P k+1 − 1)ks2

(P − 1)2
− (k + 1)ks2

P − 1

Using following arguments, this yields ak = O(
√
s) as s→ 0.

• (Pk+1−1)ks2

(P−1)2
= k

√
s((TL

√
s+1)2k+2−1)

(T 2L2
√
s+2TL)2

√
s→ 0 as s→ 0 for k ≤ ⌊T/

√
s⌋

(lims→0(TL
√
s+ 1)2k+2 has limit eT

2L <∞)

• (k+1)ks2

P−1
= k

√
s(k

√
s+

√
s)

T 2L2
√
s+2TL

√
s→ 0 as s→ 0.

Let µ > 0. Let L : Rp → R be differentiable. We say L is µ-strongly convex
if

L(φ) ≥ L(θ) + ⟨∇L(θ), φ− θ⟩+ µ

2
∥φ− θ∥2, ∀φ, θ ∈ L.

Equivalently, L is µ-strongly convex if L(θ)− µ
2
∥θ∥2 is convex.

For µ-strongly convex functions, momentum gradient flow exhibits an ac-
celerated rate over gradient flow without momentum.

Theorem 36. Let L : Rp → R be a differentiable µ-strongly convex function.
If a solution to the gradient flow ODE (without momentum) exists, then

L(θ(t))− L⋆ ≤ e−2µt(L(θ(0))− L(θ⋆)) = O(e−2µt)

76

Proof outline. Consider

E(t) = e2µt (L(θ(t))− L(θ⋆))

and use the inequality

L(θ)− L(θ⋆) ≤
1

2µ
∥∇L(θ)∥2

to show d
dt
E(t) ≤ 0.

Theorem 37. Let L : Rp → R be a differentiable µ-strongly convex function.
Let γ = 2

√
µ. If a solution to the momentum gradient flow ODE exists, then

L(θ(t))− L⋆ ≤ e−
√
µt

(
L(θ(0))− L(θ⋆) +

1

2

∥∥∥θ̇ +√µ(θ − θ⋆)∥∥∥2)
= O(e−

√
µt)

Proof outline. Consider

E(t) = e
√
µt

(
L(θ(t))− L(θ⋆) +

1

2

∥∥∥θ̇ +√µ(θ − θ⋆)∥∥∥2)
and show d

dt
E(t) ≤ 0.

77

Chapter 4

Gaussian process

Let X be a nonempty sample space. We say {f(x)}x∈X is a stochastic process
if f : X → Rd is a random function.1 We say {f(x)}x∈X is a Gaussian process
(GP) if for any N ∈ N and x1, . . . , xN ∈ X , the joint marginal distribution

(f(x1), . . . , f(xN)) ∈ RNd

is a Gaussian distribution. The distribution of a Gaussian process is charac-
terized fully by its mean and covariance.

µ(x) = Ef [f(x)], Σ(x, x′) = Ef [(f(x)− µ(x))(f(x′)− µ(x′))⊺] ∈ Rd×d.

The covariance kernel Σ(x, x′) is necessarily a mvPDK.

Theorem 38. Let X be a nonempty set. Let µ : X → Rd be an arbitrary
function and let Σ: X×X → Rd×d be a mvPDK. Then there exists a probability
space (W ,F ,P) and f(·; ·) : X×W → Rd such that {f(x;w)}x∈X is a Gaussian
peocess with mean function µ and covariance kernel Σ.

The precise meaning of the “existence” of GPs may be difficult to grasp
for those who are not already familiar with measure-theoretic probability the-
ory. If you do not have the background, there is no need to worry. For our
purposes, you can accept this existence result as a statement that GPs are
mathematically well-defined.

1More precisely, let there be a probability space (W,F , P), where W is is the sam-
ple space, F is the event space (the σ-algebra), and P is the probability measure. Then
f(·; ·) : X ×W → Rd, and given random outcome w ∈ W, we view f(·;w) : X → Rd as the
instantiation of the random function. Alternatively, the sample space W is itself be a space
of functions, such asW = C(X), and F is a σ-algebra (the “cylindrical” σ-algebra), and P is
a probability measure assigning probabilities on sets of realizations of the random function
f ∈ W.

78

Proof outline. The key step is to extend the probability space of the joint
marginals using the Kolmogorov consistency theorem.

We write f ∼ GP(µ,Σ) to denote that f is a Gaussian process with mean
µ and covariance kernel Σ, i.e., for any x ∈ X , we have

Ef∼GP(µ,Σ)[f(x)] = µ(x), Ef∼GP(µ,Σ)[(f(x)−µ(x))(f(x′)−µ(x′))⊺] = Σ(x, x′).

4.1 Neural network Gaussian process

Let us characterize neural networks at initialization as Gaussian processes.
Consider the depth-L multilayer perceptron

fθ(x) = yL

yL = zL, zL = ALyL−1 + bL ∈ RnL

yL−1 = σ(zL−1), zL−1 = AL−1yL−2 + bL−1 ∈ RnL−1

...

y2 = σ(z2), z2 = A2y1 + b2 ∈ Rn2

y1 = σ(z1), z1 = A1x+ b1 ∈ Rn1

where x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ , and nL = 1. (To clarify, σ is
applied element-wise.) Assume the parameters are initialized via the “LeCun
initialization”

(Aℓ)ij ∼ N (0, σ2
A/nℓ−1), (bℓ)i ∼ N (0, σ2

b).

The input x is considered non-random. In the following, we establish that fθ is
a Gaussian process in the infinite-width limit at initialization. In this infinite
limit, n1, . . . , nL−1 →∞, but n0 and nL remain finite.

The conclusion will be that {fθ(x)}x∈X is a GP. To get there, we charac-
terize the distribution of each “pre-activation value” {zℓ(x)}x∈X as GPs.

First layer. Note that

(z1)i(x) = (A1)i,:x+ (b1)i =

n0∑
j=1

(A1)i,jxj + (b1)i

is a (finite) sum of independent zero-mean Gaussians and is therefore a zero-
mean Gaussian. Moreover, the n0 components

{(z1)1(x)}x∈X , {(z1)2(x)}x∈X , . . . , {(z1)n1(x)}x∈X

79

are independent in the sense that (z1)i(x) and (z1)j(x
′) are independent random

variables for any i ̸= j and x, x′ ∈ Rn0 .
We now characterize the mean and covariance. The mean is zero:

E[(z1)i(x)] = 0

for i = 1, . . . , n1. The different components are independent:

E[(z1)i(x)(z1)j(x′)] = 0

for i ̸= j. The non-trivial correlations:

E[(z1)i(x)(z1)i(x′)] = E[((b1)i)2] + E[((A1)i,:x)((A1)i,:x
′)]

+ cross terms zero since A and b are independent

= σ2
b + E[Trace((A1)i,:x

′x⊺(A1)
⊺
i,:)]

= σ2
b + E[Trace(x′x⊺(A1)

⊺
i,:(A1)i,:)]

= σ2
b + Trace(x′x⊺E[(A1)

⊺
i,:(A1)i,:])

= σ2
b + Trace

(
x′x⊺

σ2
A

n0

I

)
= σ2

b +
σ2
A

n0

x⊺x′

:= Σ(1)(x, x′)

for i = 1, . . . , n1. Note that n0 ↛ ∞. So far, there is no infinite-width
argument yet.

From this analysis, we conclude that {(z1)1(x)}x∈X , . . . , {(z1)n1(x)}x∈X are
n1 IID scalar-valued GPs and

(z1)i ∼ GP(0,Σ(1))

for i = 1, . . . , n1. This also means

z1 ∼ GP(0,Σ(1) ⊗ In1),

where In1 ∈ Rn1×n1 is the n1 × n1 identity matrix. To clarify, {z1(x)}x∈X is a
Rn1-valued zero-mean GP and with covariance kernel

(Σ(1) ⊗ In1)(x, x
′) = diag(Σ(1)(x, x′), . . . ,Σ(1)(x, x′)).

80

Intermediate layers. Note that

(z2)i(x) = (A2)i,:y1 + (b2)i =

n1∑
j=1

(A2)i,j(y1)j + (b2)i

is a sum of non-Gaussians. ((y1)j is not a Gaussian, and even if it were a
Gaussian, the product (A2)i,j(y1)j would not be Gaussian.) We will later take
the limit n1 →∞ so that (z2)i converges to a Gaussian. The n2 components

{(z2)1(x)}x∈X , {(z2)2(x)}x∈X , . . . , {(z2)n2(x)}x∈X

are independent.
We now characterize the mean and covariance. The mean is zero:

E[(z2)i(x)] = 0

for i = 1, . . . , n1. The different components are independent:

E[(z2)i(x)(z2)j(x′)] = 0.

for i ̸= j. The non-trivial correlations:

E[(z2)i(x)(z2)i(x′)] = σ2
b + E[((A2)i,:σ(z1(x)))((A2)i,:σ(z1(x

′)))]

= σ2
b +

σ2
A

n1

E[σ(z1(x))⊺σ(z1(x′))]

= σ2
b +

σ2
A

n1

n1∑
k=1

E [σ((z1(x))k)σ((z1(x
′))k)]

= σ2
b + σ2

AEf∼GP(0,Σ(1))[σ(f(x))σ(f(x
′))]

:= Σ(2)(x, x′)

for i = 1, . . . , n1. Finally, let n1 →∞. Since

(z2)i(x) =

n1∑
j=1

(A2)i,j(y1)j + (b2)i

is a sum of n1 IID random variables, it converges to a Gaussian with covariance
described by Σ(2)(x, x′) by the central limit theorem.

From this analysis, we conclude that {(z2)1(x)}x∈X , . . . , {(z2)n2(x)}x∈X are
n2 IID scalar-valued GPs and

(z2)i ∼ GP(0,Σ(2))

81

for i = 1, . . . , n2. This also means

z2 ∼ GP(0,Σ(2) ⊗ In2).

Recursively, we have

Σ(ℓ+1)(x, x′) = σ2
b + σ2

AEf∼GP(0,Σ(ℓ))[σ(f(x))σ(f(x
′))]

for ℓ = 1, . . . , L−1. From this analysis, we conclude that {(zℓ)1(x)}x∈X , . . . , {(zℓ)nℓ
(x)}x∈X

are nℓ IID scalar-valued GPs and

(zℓ)i ∼ GP(0,Σ(ℓ))

for i = 1, . . . , n2. This also means

zℓ ∼ GP(0,Σ(ℓ) ⊗ Inℓ
)

for ℓ = 2, . . . , L. In particular, we conclude

fθ ∼ GP(0,Σ(L)).

82

Chapter 5

Neural tangent kernel

Let X ⊆ Rd be nonempty. Consider the setup with training dataX1, . . . , XN ∈
X and corresponding labels Y1, . . . , YN ∈ Y . For the sake of concreteness and
simplicity, let Y = Rk and Yi = f⋆(Xi) for i = 1, . . . , N for some true unknown
f⋆.

1 Consider a neural network fθ(x) ∈ Rk that is continuous in both the
input x and parameter θ and, furthermore, continuously-differentiable in the
parameter θ in the sense that ∇θfθ(x) is well defined for all θ and x and is
continuous both in θ and x.2 Let P ∈ P(X) be a probability measure that
is compactly supported.3 The primary example to consider is the empirical
distribution

Pemp =
1

N

N∑
i=1

δXi
,

where X1, . . . , XN are the training data. Consider the risk R : L2(P ;Rk)→ R
defined as

R[fθ] = EX∼P [ℓ(fθ(X); f⋆(X))],

where ℓ : Rk × Y → R is continuous.4 Consider training through

minimize
θ∈RP

R[fθ].

1The assumption that labels are deterministic is not necessary, and is merely made to
simplify notation.

2These continuity assumptions can be relaxed, but it is a simple and realistic assumption
that ensures the integrals and expectations we consider are well defined (measurable and
integrable).

3Compact support is not necessary, but it is a simple assumption that ensures the inte-
grals and expectations we consider are well defined (integrable).

4Continuity of ℓ is not necessary, but it is a simple and realistic assumption that ensures
the integrals and expectations we consider are well defined (measurable and integrable).

83

To clarify, L2(P ;Rk) is the equivalence class of Rk-valued square integrable
functions with respect to P . For any f, g ∈ L2(P ;Rk), the associated inner
product is

⟨f, g⟩L2(P ;Rk) = EX∼P [f(X)⊺g(X)].

(The fact that L2(P ;Rk) is a space of equivalence classes, rather than functions,
will revisited later.) Let C(X ;Rk) be the vector space of continuous functions
from X to Rk. We do not equip C(X ;Rk) with a metric.5 Note that fθ ∈
C(X ;Rk) ⊂ L2(P ;Rk) (with some abuse of notation).

Notation. i : RX → L2(P ;Rk), i(f) = equivalence class containing f ∈
L2(P ;Rk)
i+ : L2(P ;Rk)→ RX , i(f) = equal to f on X , 0 otherwise
LΘt : RX → RX , LΘt [f](x) =

∫
Θ(x, x′)f(x′)dP (x′)

L
(1)
Θt

: L2(P ;Rk)→ RX , L
(1)
Θt

= LΘt ◦ i+

L
(2)
Θt

: L2(P ;Rk)→ L2(P ;Rk), L
(2)
Θt

= i ◦ LΘt ◦ i+

L
(3,x)
Θt

: L2(P ;Rk)→ Rk, L
(3,x)
Θt

= Lx ◦ LΘt ◦ i+ where Lx is evaluation at x.

5.1 Kernel gradient flow via the chain rule

We analyze the training dynamics induced by gradient flow

dθ(t)

dt
= − (∇θR[fθ])

∣∣∣
θ=θ(t)

.

For notational conciseness, we often omit the time dependence and write

dθ

dt
= −∇θR[fθ].

A key abstraction of the NTK theory is to analyze the dynamics of the predic-
tion function fθ(t), rather than the parameters θ(t). Translating the gradient
flow dynamics of θ(t) to dynamics of the prediction function requires some
chain-rule calculations.

To effectively understand these calculations, we carry it out three times.
First, we will do so formally (non-rigorously), proceeding as if we can just
apply the chain rule of vector calculus. Second, we rigorously and carefully
define the relevant notion of derivatives and properly carry out the derivation.
Third, we carry out the derivation in a simpler, more concrete, instance and
observe agreement.

5However, we will consider pointwise limits when defining things like d
dtfθ(t). So we are,

in effect, implicitly consider the topology of point-wise convergence.

84

5.1.1 Formal calculations for gradient flow

We shall carry out formal calculations, proceeding as if we can just apply the
chain rule:

dθ

dt
= −∇θR[fθ] (P × 1)

= −(DθR[fθ])
⊺ (1× P)⊺

= −
(
∂fθ
∂θ

)⊺(
∂R

∂f

)⊺

(P × dim(f))(dim(f)× 1).

Further proceeding,

dfθ
dt

=
∂fθ
∂θ

dθ

dt
(dim(f)× P)(P × 1)

= − ∂fθ
∂θ

(
∂fθ
∂θ

)⊺

︸ ︷︷ ︸
=Θt

(
∂R

∂f

)⊺

(dim(f)× P)(P × dim(f))(dim(f)× 1)

= −Θt

(
∂R

∂f

)⊺

(dim(f)× dim(f))(dim(f)× 1).

We call
dfθ(t)
dt

= −Θt

(
∂R

∂f

)⊺

= −Θt∇fR

kernel gradient flow in contrast to (regular) gradient flow in the function space

d

dt
ft = −

(
∂R

∂f

)⊺

= ∇fR.

The (regular) gradient flow often has better convergence properties than
kernel gradient flow, as discussed in Section 5.1.5, but it does not model reality.
In practical deep learning, we update θ through SGD, and this induces an
update on fθ. Kernel gradient flow models this. However, regular gradient flow
directly updates the prediction function f , but there is no practical mechanism
for directly updating the prediction function.

As another aside, kernel gradient flow can be considered a gradient flow
with the descent direction preconditioned by Θt. The preconditioning takes the
gradient ∇fR into an appropriate tangent space, as discussed in Section 5.1.4.

5.1.2 Rigorous derivation of kernel gradient flow

Now let us carry out the same derivation rigorously. Assume the riskR : L2(P ;Rk)→
R is (Fréchet) differentiable at any point f0 ∈ L2(P ;Rk) with derivative

∂fR|f0 ∈ L2(P ;Rk),

85

which is also called the functional derivative of R at f0. Specifically, ∂fR|f0 is
the derivative of R at f0 defined via

R[f0 + δ] = R[f0] + ⟨∂fR|f0 , δ⟩L2(P ;Rk) + o(∥δ∥L2(P ;Rk))

for small δ ∈ L2(P ;Rk). For simplicity, we often write ∂fR = ∂fR|f0 .
We apply the chain rule on training via gradient flow:

dθp
dt

= − d

dθp
R[fθ]

= −
〈
∂fθ
∂θp

, ∂fR

〉
L2(P ;Rk)

for p = 1, . . . , P . This chain rule requires some additional assumptions, but
it does hold when P has finite support. (Cf. Homework problem.) For any
x ∈ X , we again apply the chain rule to get

d

dt
fθ(x) =

∂fθ(x)

∂θ

dθ

dt

=
P∑
p=1

∂fθ(x)

∂θp

dθp
dt

= −
P∑
p=1

∂fθ(x)

∂θp

〈
∂fθ
∂θp

, ∂fR

〉
L2(P ;Rk)

= −
P∑
p=1

∂fθ(x)

∂θp
Ex′∼P

[(
∂fθ(x

′)

∂θp

)⊺

∂fR(x
′)

]

= −Ex′∼P

[
P∑
p=1

∂fθ(x)

∂θp

(
∂fθ(x

′)

∂θp

)⊺

∂fR(x
′)

]
= −Ex′∼P [Θt(x, x

′)∂fR(x
′)]

= −LΘt [∂fR](x).

To clarify, θ = θ(t), i.e., θ is time-dependent, but we suppress the time-
dependence to simplify the notation. Here, we define the neural tangent kernel
(NTK) as

Θt(x, x
′) =

P∑
p=1

(
∂fθ(x)

∂θp

)(
∂fθ(x

′)

∂θp

)⊺

=

(
∂fθ(x)

∂θ

)(
∂fθ(x

′)

∂θ

)⊺

86

or equivalently

Θt =
P∑
p=1

∂fθ
∂θp
⊗ ∂fθ
∂θp

.

In conclusion, we have the kernel gradient flow

d

dt
fθ = −LΘt [∂fR],

which contrast with the regular gradient flow

d

dt
ft = −∂fR.

5.1.3 Special case: Quadratic function, empirical risk

For the sake of concretentess, consider the empirical risk minimization with
quadratic loss

Remp[fθ] =
1

N

N∑
i=1

1

2
∥fθ(Xi)− f ⋆(Xi)∥2.

Then, gradient flow on the parameter is

dθ

dt
= − 1

N

N∑
i=1

∇θ
1

2
∥fθ(Xi)− f ⋆(Xi)∥2

= − 1

N

N∑
i=1

(
∂fθ(Xi)

∂θ

)⊺

(fθ(Xi)− f ⋆(Xi)).

Kernel gradient flow becomes

d

dt
fθ(x) =

∂fθ(x)

∂θ

dθ

dt

= − 1

N

N∑
i=1

∂fθ(x)

∂θ

(
∂fθ(Xi)

∂θ

)⊺

(fθ(Xi)− f ⋆(Xi))

= − 1

N

N∑
i=1

Θt(x,Xi)(fθ(Xi)− f ⋆(Xi))

= −Ex′∼Pemp [Θt(x, x
′)(fθ(x

′)− f ⋆(x′))]
= −LΘt [fθ − f ⋆](x).

In conclusion, kernel gradient flow is

d

dt
fθ = −LΘt [fθ − f ⋆].

87

5.1.4 Tangent space interpretation

In the space of function C(X ;Rk), the space of configurations of the neural
network fθ

M = {fθ | θ ∈ RP} ⊂ C(X ;Rk)

can be viewed as a something like a manifold of dimension P . For fθ0 ∈ M,
the tangent space is

Tfθ0 =

{
d

dt
fθ(t)|t=0

∣∣∣ θ(t) such that θ(0) = θ0

}
.

Since
d

dt
fθ(t) =

∂f

∂θ

dθ

dt

and since dθ
dt
|t=0 ∈ RP can be arbitrary, we have

Tfθ0 = span

{
∂f

∂θp

∣∣∣
θ=θ0

}P
p=1

=

{
∂f

∂θ

∣∣∣
θ=θ0

v
∣∣∣ v ∈ RP

}
.

The linear map LΘ defined by the neural tangent kernel at θ0

Θ(x, x′) =

(
∂fθ
∂θ

(x)
∣∣∣
θ=θ0

)(
∂fθ
∂θ

(x′)
∣∣∣
θ=θ0

)⊺

is a mapping into the tangent space in the sense that LΘ[h] ∈ Tfθ0 for all

h ∈ C(X ;Rk). The regular gradient flow

d

dt
ft = −∂fR

generates a trajectory that escapes the manifoldM. Therefore, the dynamics
of gradient flow represents is not something we can mimic or realize using our
neural network fθ. However, kernel gradient flow

d

dt
fθ(t) = −LΘt [∂fR]

generates a trajectory that stays within the M, because LΘt maps the func-
tional derivative ∂fR onto the tangent space. In hindsight, however, that fθ(t)
stays withinM is not surprising, since fθ(t) is simply fθ with θ = θ(t) plugged
in.

88

5.1.5 Convergence properties of kernel gradient flow

For regular gradient flow
d

dt
ft = −∂fR

if R is convex and if a minimizer f⋆ exists, then we have global convergence of
the risk value

R[ft]−R[f⋆] ≤
∥f0 − f⋆∥2

2t

by arguments identical to that of Theorem 31. The assumption that R is
convex is realistic; many commonly used loss functions such as the mean-
squared error loss or the cross-entropy loss are indeed convex. The existence
of a minimizer is arguably a mild assumption that holds in most cases.

However, kernel gradient flow

d

dt
fθ(t) = −LΘt [∂fR],

in general, does not enjoy the same convergence properties. The risk does
monotonically decrease, since

d

dt
R[fθ(t)] =

〈
∂fR,

d

dt
fθ(t)

〉
L2(P ;Rk)

= −Ex∼P [(∂fR)(x)
⊺(LΘt [∂fR])(x)]

= −Ex,x′∼P [(∂fR)(x)
⊺Θt(x, x

′)(∂fR)(x
′)]

≤ 0.

However, we cannot draw any conclusion regarding global convergence, i.e., it
is possible that limt→∞R[fθ(t)] > R[f⋆].

This is to be expected, since minimizing R[fθ] with respect to θ is non-
convex optimization, which is an NP-hard problem class.

Since kernel gradient flow is not a real algorithm, it is not inconceivable that
a continuous-time flow converges to global minima of non-convex functions. If
so, the continuous-time process would require exponentially many steps to
approximate with a discrete, implementable algorithm unless P=NP. (The
overdamped Langevin equation, an SDE model of SGD, “converges” to the
global minima but the convergence takes exponentially long.) In any case,
kernel gradient flow does not converge to the global minimum, so one should
not expect the discrete counterparts, GD and SGD, to do so either.

At a surface level, the roadblock in the analysis is that the kernel Θt is
time-dependent; the time-dependence of θ(t) causes Θt to change (or “twist”)
as a function of time. A remarkable discovery of the NTK theory is that, in

89

the infinite-width limit, the kernel becomes time-independent, i.e., Θt = Θ as
width→∞. In this case, the kernel gradient flow

d

dt
ft = −LΘ[∂fR]

does converge to the global minimum with rate

R[ft]−R[f⋆] ≤ O(1/t)

by arguments identical to that of the homework problem.

5.2 NTK at initialization

Consider the depth-L multilayer perceptron (MLP)

fθ(x) = yL

yL = zL, zL =
σA√
nL−1

ALyL−1 + σbbL ∈ RnL ,

yL−1 = σ(zL−1), zL−1 =
σA√
nL−2

AL−1yL−2 + σbbL−1 ∈ RnL−1 ,

...

y2 = σ(z2), z2 =
σA√
n1

A2y1 + σbb2 ∈ Rn2 ,

y1 = σ(z1), z1 =
σA√
n0

A1x+ σbb1 ∈ Rn1 ,

where σA > 0, σb > 0, x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , and bℓ ∈ Rnℓ . (We do not
assume nL = 1.) Assume the parameters are initialized as

(Aℓ)ij ∼ N (0, 1), (bℓ)i ∼ N (0, 1).

This initialization is “equivalent” to the LeCun initialization we had see in the
prior discussion of NNGPs.

Theorem 39. In the limit n1, . . . , nL−1 →∞,

fθ ∼ GP(0,Σ(L) ⊗ InL
),

where

Σ(1)(x, x′) =
σ2
A

n0

x⊺x′ + σ2
b

and
Σ(ℓ+1)(x, x′) = σ2

AEf∼GP(0,Σ(ℓ))[σ(f(x))σ(f(x
′))] + σ2

b

for ℓ = 1, . . . , L− 1.

90

However, the scaling is different. The limiting GP is identical at at initial-
ization, but the scaling will alter the training dynamics of gradient flow. In a
homework assignment, you will be see what happens when we use the usual
scaling.

Since fθ = zL outputs a length nL vector, its covariance is expressed by
a matrix-valued (RnL×nL-valued) PDK. (The covariance between fθ(x) and
fθ(x

′) always defines a mvPDK, even for finite values of n1, . . . , nL−1.) The
limiting covariance kernel, however, is a tensor product of a scalar-valued PDK
and the nL × nL identity matrix Σ(L) ⊗ InL

, i.e.,

cov(fθ(x), fθ(x
′))→ Σ(L)(x, x′)InL

.

This means that, in the infinite-width limit, (i) (fθ(x))i and (fθ(x))j are un-
correlated and hence independent for i ̸= j and (ii) (fθ(x))1, . . . , (fθ(x))nL

are
IID scalar-valued zero-mean Gaussian processes with identical scalar-valued
covariance kernel Σ(L).

For ℓ = 1, . . . , L, define

θ(ℓ) = (A1, b1, A2, b2, . . . , Aℓ, bℓ)

to represent the neural network parameters up to and including layer ℓ. So,
θ(L) = θ. For ℓ = 1, . . . , L, define

Θ
(ℓ)
t (x, x′) =

(
∂zℓ(x)

∂θ(ℓ)

)(
∂zℓ(x

′)

∂θ(ℓ)

)⊺

,

So Θt = Θ
(L)
t .

Next, we analyze the training dynamics of the MLP in the infinite width-
limit by characterizing the limiting kernel. First, we show that the NTK has
a very nice limit at initialization, i.e., at time t = 0.

Theorem 40. Assume σ : R→ R is Lipschitz continuous. In the limit n1, . . . , nL−1 →
∞,

Θ
(L)
0 → Θ

(L),∞
0 ⊗ InL

in probability. Furthermore,

Θ
(1),∞
0 = Σ(1)

and
Θ

(ℓ+1),∞
0 = Θ

(ℓ),∞
0 Σ̇(ℓ+1) + Σ(ℓ+1), ℓ = 1, . . . , L− 1,

where Σ(ℓ) is as defined in Theorem 39 and

Σ̇(ℓ+1)(x, x′) = σ2
AEf∼GP(0,Σ(ℓ))[σ

′(f(x))σ′(f(x′))], ℓ = 1, . . . , L− 1.

91

To clarify, σ′ denotes the derivative of σ, and Θ
(ℓ),∞
0 Σ̇(ℓ+1) denotes the

pointwise product of two scalar-valued PDKs, so

Θ
(ℓ+1),∞
0 (x, x′) = Θ

(ℓ),∞
0 (x, x′)Σ̇(ℓ+1)(x, x′) + Σ(ℓ+1)(x, x′).

Proof of Theorem 40. Throughout the proof, we set t = 0 and drop the time
dependence to simplify the notation. We establish the claim via induction on
the depth ℓ = 1, . . . , L. For the sake of simplicity, we will consider taking the
limits

(n1 →∞), (n2 →∞), . . . , (nL−1 →∞)

sequentially, i.e., we consider the limit

lim
nL→∞

lim
nL−1→∞

· · · lim
n2→∞

lim
n1→∞

.

The claimed result holds more generally under the limit n1, . . . , nL−1 → ∞,
i.e., under the limit

lim
min{n1,...,nL−1}→∞

,

but we will not present the argument here.
First, we have

Θ
(1)
kk′(x, x

′) =

n1∑
i=1

n0∑
j=1

∂(z1)k(x)

∂(A1)ij

∂(z1)k′(x
′)

∂(A1)ij
+

n1∑
i=1

∂(z1)k(x)

∂(b1)i

∂(z1)k′(x
′)

∂(b1)j

=
σ2
A

n0

n1∑
i=1

n0∑
j=1

xjx
′
jδikδik′ + σ2

b

n1∑
i=1

δikδik′

=
σ2
A

n0

x⊺x′δkk′ + σ2
bδkk′

= Σ(1)(x, x′)δkk′ .

So, Θ(1) = Σ(1) ⊗ In1 . (This holds without n1 →∞.)
Next, consider the limit n1, . . . , nℓ−1 →∞. We have

Θ
(ℓ+1)
kk′ (x, x′) =

nℓ+1∑
i=1

nℓ∑
j=1

∂(zℓ+1)k(x)

∂(Aℓ+1)ij

∂(zℓ+1)k′(x
′)

∂(Aℓ+1)ij
+

nℓ+1∑
i=1

∂(zℓ+1)k(x)

∂(bℓ+1)i

∂(zℓ+1)k′(x
′)

∂(bℓ+1)i

+

(
∂(zℓ+1)k(x)

∂θ(ℓ)

)(
∂(zℓ+1)k′(x

′)

∂θ(ℓ)

)⊺

.

92

For the first two components, we have

nℓ+1∑
i=1

nℓ∑
j=1

∂(zℓ+1)k(x)

∂(Aℓ+1)ij

∂(zℓ+1)k′(x
′)

∂(Aℓ+1)ij
+

nℓ+1∑
i=1

∂(zℓ+1)k(x)

∂(bℓ+1)i

∂(zℓ+1)k′(x
′)

∂(bℓ+1)i

=
σ2
A

nℓ

nℓ+1∑
i=1

nℓ∑
j=1

σ((zℓ)j(x))σ((zℓ)j(x
′))δikδik′ + σ2

b

nℓ+1∑
i=1

δikδik′

=
σ2
A

nℓ

nℓ∑
j=1

σ((zℓ)j(x))σ((zℓ)j(x
′))δkk′ + σ2

bδkk′

→ σ2
AEf∼GP(0,Σ(ℓ))[σ(f(x))σ(f(x

′))]δkk′ + σ2
bδkk′

= Σ(ℓ)(x, x′)δkk′ .

For the third component, we have

∂(zℓ+1)k(x)

∂θ(ℓ)
=

∂

∂θ(ℓ)

(
σA√
nℓ

(Aℓ+1)k,:σ(zℓ(x)) + σb(bℓ+1)k

)
=

σA√
nℓ

(Aℓ+1)k,: diag(σ
′(zℓ(x)))

∂zℓ(x)

∂θ(ℓ)

=
σA√
nℓ

nℓ∑
j=1

(Aℓ+1)kjσ
′((zℓ(x))j)

∂(zℓ)j(x)

∂θ(ℓ)

Then, we have(
∂(zℓ+1)k(x)

∂θ(ℓ)

)(
∂(zℓ+1)k′(x

′)

∂θ(ℓ)

)⊺

=
σ2
A

nℓ

nℓ∑
i=1

nℓ∑
j=1

(Aℓ+1)ki(Aℓ+1)k′jσ
′((zℓ(x))i)σ

′((zℓ(x
′))j)

(
∂(zℓ)i(x)

∂θ(ℓ)

)(
∂(zℓ)j(x

′)

∂θ(ℓ)

)⊺

→ σ2
A

nℓ

nℓ∑
i=1

nℓ∑
j=1

(Aℓ+1)ki(Aℓ+1)k′jσ
′((zℓ(x))i)σ

′((zℓ(x
′))j)Θ

(ℓ),∞(x, x′)δij

=
σ2
A

nℓ
Θ(ℓ),∞(x, x′)

nℓ∑
i=1

(Aℓ+1)ki(Aℓ+1)k′iσ
′((zℓ(x))i)σ

′((zℓ(x
′))i)

→ Θ(ℓ),∞(x, x′)σ2
AEf∼GP(0,Σ(ℓ))[σ

′(f(x))σ′(f(x′))]δkk′

= Θ(ℓ),∞(x, x′)Σ̇(ℓ+1)(x, x′)δkk′ .

So Θ(ℓ+1) → (Θ(ℓ),∞Σ̇(ℓ+1) + Σ(ℓ+1))⊗ Inℓ
.

93

Since fθ = zL outputs a length nL vector, its kernel Θ
(L)
0 is indeed matrix-

valued (RnL×nL-valued). The limiting kernel Θ
(L)
0 → Θ

(L),∞
0 ⊗ InL

, however,
has the simpler structure of a tensor product of a scalar-valued PDK and the
identity matrix. The diagonal structure of Θ

(L)
0 implies that

d

dt
fθ = −LΘ

(L)
0

[
∂R
∣∣
fθ

]
splits into

d

dt
(fθ)i = −LΘ

(L),∞
0

[
(∂R)i

∣∣
fθ

]
, i = 1, . . . , nL.

To clarify, ∂R : X → RnL and (∂R)i : X → R is the ith coordinate of the
∂R. To put it differently, (∂R)i ∈ L2(P ;R) and (∂R)i(x) = e⊺i ∂R(x), where
ei ∈ RnL is the ith unit vector, for i = 1, . . . , nL. So the gradient flow dynamics
at initialization (and for time t > 0 as we later establish) split into nearly
independent dynamics, still coupled through all coordinates of fθ affecting
(∂R)i. If, furthermore, the risk splits across the output coordinates, i.e., if

R[f] =

nL∑
i=1

Ri[fi]

then we have

d

dt
(fθ)i = −LΘ

(L),∞
0

[
∂(Ri)

∣∣
(fθ)i

]
, i = 1, . . . , nL

and the gradient flow dynamics completely splits.
One interpretation of the diagonality of the kernel is as follows. Note that

R[f0 + δ ⊗ ei] = R[f0] + ⟨(∂fR|f0)i, δ⟩L2(P ;Rk) + o(∥δ∥)

for small δ ∈ L2(P ;R), where ei ∈ RnL is the unit vector. To clarify,

(f0 + δ ⊗ ei)(x) =



(f0(x))1
(f0(x))2

...
(f0(x))i−1

(f0(x))i + δ(x)
(f0(x))i+1

...
(f0(x))nL


.

94

In other words, (∂fR|f0)i is the derivative of R with respect the infinitestimal
changes in the ith output of the input function f0. Therefore, the kernel
gradient flow splitting as

d

dt
(fθ)i = −LΘ

(L),∞
0

[
(∂R)i

∣∣
fθ

]
, i = 1, . . . , nL

means the derivative direction in the ith output of fθ only affects the ith output
of fθ. (For finite neural networks, the kernel is not diagonal, so (∂fR|f0)i affects
the parameter θ, which in turn affects all of (fθ)1, . . . , (fθ)nL

.

5.3 Some preliminaries

We define the following order in probability notation. Let X1, X2, . . . be a
sequence of scalar-valued random variables and a1, a2, . . . ∈ R a sequence of
deterministic scalars. We say

Xn = Op(an)

if for any ε > 0, there exists an M > 0 such that

lim sup
n→∞

P(|Xn/an| > M) < ε.

If
Xn = Op(1)

then we say X1, X2, . . . is stochastically bounded. If X1, X2, . . . is stochastically
bounded and limn→∞ bn =∞, then

Xn/bn → 0

in probability.
Let L : V → W be a linear operator mapping from a normed vector space

V to a normed vector space W . (Assume V is non-trivial, i.e., contains a
nonzero element.) Then the operator norm of L is defined as

∥L∥op = sup
v:∥v∥V =1

∥L(v)∥W .

If L is a bounded (continuous) linear operator, then ∥L∥op <∞. In this case,
we have

∥L(v)∥W ≤ ∥L∥op∥v∥V , ∀ v ∈ V.

95

Lemma 20 (Grönwall’s lemma). Let T > 0 and let E : [0, T]→ R be differen-
tiable on (0, T). Let β : [0, T]→ R. Assume

E ′(t) ≤ β(t)E(t)

for all t ∈ (0, T). Then,

E(t) ≤ E(0) exp
(∫ t

0

β(t) dt

)
for all t ∈ [0, T].

5.4 Invariance of NTK

Theorem 41 (NTK invariance). Assume σ : R → R is Lipschitz continuous
and has bounded second derivative. Let T > 0 be fixed and consider the limit
n1, . . . , nL−1 →∞. Assume∫ T

0

∥∥∥∂fR|fθ(t)∥∥∥
L2(P ;RnL)

dt

is stochastically bounded. Then

Θ
(L)
t → Θ(L),∞ ⊗ InL

in probability, uniformly in t ∈ [0, T] and pointwise for inputs (x, x′).

Note that the right-hand side of the limit is time-independent. As a corol-
lary, we expect the functional dynamics in the infinite-limit follow

d

dt
fθ = −LΘ(L,∞)⊗InL

[∂fR].

The proof of this result requires a somewhat arduous recursion argument.
Therefore, for the sake of simplicity, we shall prove the result in the simplified
2-layer setup.

Proof of Theorem 41 for the 2-layer setup. Consider the depth-2 MLP

fθ(x) = y2

y2 = z2, z2 =
σA√
n1

A2y1 + σbb2 ∈ Rn2 ,

y1 = σ(z1), z1 =
σA√
n0

A1x+ σbb1 ∈ Rn1 ,

96

where σA > 0, σb > 0, x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , and bℓ ∈ Rnℓ

From the proof of Theorem 40, we have

Θ
(1)
t = Σ(1) ⊗ In1

for all t (even before taking any infinite width limit). Notably, the right-hand
side is time-independent.

Next, note that

(Θ
(2)
t (x, x′))kk′ =

n2∑
i=1

n1∑
j=1

∂(z2)k(x)

∂(A2)ij

∂(z2)k′(x
′)

∂(A2)ij
+

n2∑
i=1

∂(z2)k(x)

∂(b2)i

∂(z2)k′(x
′)

∂(b2)i

+

(
∂(z2)k(x)

∂θ(1)

)(
∂(z2)k′(x

′)

∂θ(1)

)⊺

.

To clarify, A1, b1, A2, b2 are time-dependent, while x and x′ are considered fixed
inputs. Consequently, z2(x) and z1(x) are also time-dependent. For the first
two components,

n2∑
i=1

n1∑
j=1

∂(z2)k(x)

∂(A2)ij

∂(z2)k′(x
′)

∂(A2)ij
+

n2∑
i=1

∂(z2)k(x)

∂(b2)i

∂(z2)k′(x
′)

∂(b2)i

=
σ2
A

n1

n2∑
i=1

n1∑
j=1

σ((z1)j(x))σ((z1)j(x
′))δikδik′ + σ2

b

n2∑
i=1

δikδik′

=
σ2
A

n1

n1∑
j=1

σ((z1)j(x))σ((z1)j(x
′))δk′k + σ2

bδkk′

?→ σ2
A

n1

n1∑
j=1

σ((z1)j(x))σ((z1)j(x
′))

∣∣∣∣
t=0

δk′k + σ2
bδkk′

= σ2
AEf∼GP(0,Σ(1))[σ(f(x))σ(f(x

′))]δk′k + σ2
bδkk′ .

The limit in question,
?→, holds if (z1)j(x; t)→ (z1)j(x; 0) at a rate uniform in

97

j = 1, . . . , n1. For the third term,(
∂(z2)k(x)

∂θ(1)

)(
∂(z2)k′(x

′)

∂θ(1)

)⊺

=
σ2
A

n1

n1∑
i=1

n1∑
j=1

(A2)ki(A2)k′jσ
′((z1(x))i)σ

′((z1(x
′))j)

(
∂(z1)i(x)

∂θ(1)

)(
∂(z1)j(x

′)

∂θ(1)

)⊺

=
σ2
A

n1

n1∑
i=1

n1∑
j=1

(A2)ki(A2)k′jσ
′((z1(x))i)σ

′((z1(x
′))j)Θ

(1)
ij (x, x

′)

= Θ(1),∞(x, x′)
σ2
A

n1

n1∑
j=1

(A2)kj(A2)k′jσ
′((z1(x))j)σ

′((z1(x
′))j)

So, to put it differently, we have(
∂z2(x)

∂θ(1)

)(
∂z2(x

′)

∂θ(1)

)⊺

= Θ(1),∞(x, x′)
σ2
A

n1

n1∑
j=1

(A2):,jσ
′((z1(x))j)σ

′((z1(x
′))j)(A2)

⊺
:j

?→ Θ(1),∞(x, x′)
σ2
A

n1

n1∑
i=1

(A2):,jσ
′((z1(x))j)σ

′((z1(x
′))j)(A2)

⊺
:j

∣∣∣∣
t=0

= Θ(1),∞(x, x′)σ2
AΣ̇

(2)(x, x′)In2

The limit in question,
?→, holds if (z1)j(x; t) → (z1)j(x; 0) and (A2):j(t) →

(A2):j(0) at rates uniform in j = 1, . . . , n1.
For notational simplicity, let us suppress the x dependency and write zℓ or

zℓ(t), rather than zℓ(x; t). Since

d

dt
(A2)i,j(t) = −

〈
∂fR|fθ(t) ,

∂z2
∂(A2)i,j

〉
L2(P ;Rn2)

= − σA√
n1

〈
∂fR|fθ(t) , σ((z1)j(·; t))ei

〉
L2(P ;Rn2)

= − σA√
n1

〈
(∂fR|fθ(t))i, σ((z1)j(t))

〉
L2(P ;R)

= − σA√
n1

⟨(∂fR)i, σ((z1)j)⟩L2(P ;R) ,

98

where ei ∈ Rn2 is the ith unit vector, and

d

dt
∥(A2):,j(t)− (A2):,j(0)∥2 ≤

∥∥∥∥ ddt(A2):,j(t)

∥∥∥∥
2

=
σA√
n1

∥∥∥(⟨(∂fR)i, σ((z1)j)⟩L2(P ;R)

)n2

i=1

∥∥∥
2

≤ σA√
n1

∥∥(∥(∂fR)i∥L2(P ;R)∥σ((z1)j)∥L2(P ;R)
)n2

i=1

∥∥
2

=
σA√
n1

∥∥(∥(∂fR)i∥L2(P ;R)
)n2

i=1

∥∥
2
∥σ((z1)j)∥L2(P ;R)

=
σA√
n1

∥∂fR∥L2(P ;Rn2)∥σ((z1)j)∥L2(P ;R).

Next, let θ
(1)
p be a pth parameter among A1 and b1. Then,

∂θ
(1)
p

∂t
(t) = −

〈
∂fR

∣∣
fθ(t)

,
∂fθ

∂θ
(1)
p

〉
L2(P ;Rn2)

= − σA√
n1

〈
∂fR

∣∣
fθ(t)

, A2 diag(σ
′(z1))

∂z1

∂θ
(1)
p

(·; t)

〉
L2(P ;Rn2)

= − σA√
n1

〈
∂fR,A2 diag(σ

′(z1))
∂z1

∂θ
(1)
p

〉
L2(P ;Rn2)

Using calculations analogous to what we did to obtain the kernel gradient flow,
we get

d

dt
z1(t) = −

σA√
n1

LΘ(1),∞⊗In1
[σ′(z1)A

⊺
2∂fR]

and

d

dt
(z1)j(t) = −

σA√
n1

LΘ(1),∞ [σ′((z1)j)(A2)
⊺
:,j∂fR].

99

Let κ = supx∈R |σ′(x)|. Then,

d

dt
∥(z1)j(t)− (z1)j(0)∥L2(P ;R) ≤

σA√
n1

∥∥LΘ(1),∞ [σ′((z1)j)(A2)
⊺
:,j∂fR]

∥∥
L2(P ;R)

≤ σA√
n1

∥LΘ(1),∞∥op
∥∥σ′((z1)j)(A2)

⊺
:,j∂fR

∥∥
L2(P ;R)

≤ σA√
n1

κ∥LΘ(1),∞∥op
∥∥(A2)

⊺
:,j∂fR(·)

∥∥
L2(P ;R)

≤ σA√
n1

κ∥LΘ(1),∞∥op
∥∥∥(A2):,j∥2∥∂fR(·)∥2

∥∥
L2(P ;R)

=
σA√
n1

κ∥LΘ(1),∞∥op∥(A2):,j∥2
∥∥∥∂fR(·)∥2∥∥L2(P ;R)

=
σA√
n1

κ∥LΘ(1),∞∥op∥(A2):,j∥2
∥∥∂fR(·)∥∥L2(P ;Rn2)

.

Again, let κ = supx∈R |σ′(x)| and define

E(t) = ∥σ((z1)j(0))∥L2(P ;R)+κ∥(z1)j(t)−(z1)j(0)∥L2(P ;R)+∥(A2):,j(0)∥2+∥(A2):,j(t)+(A2):,j(0)∥2.

Then
E(t) ≥ ∥σ((z1)j(t))∥L2(P ;R) + ∥(A2):,j(t)∥2

and

d

dt
E(t) ≤ σA√

n1

(
∥σ((z1)j)∥L2(P ;R) + κ2∥(A2):,j∥2∥LΘ(1),∞∥op

)
∥∂fR∥L2(P ;Rn2)

≤ σA√
n1

max{κ2∥LΘ(1),∞∥op, 1}∥∂fR∥L2(P ;Rn2)E(t).

Then we apply Grönwall’s lemma to get

E(t) ≤ E(0) exp
(
σA√
n1

max{κ2∥LΘ(1),∞∥op, 1}
∫ t

0

∥∂fR∥L2(P ;Rn2) dt.

)
Therefore,

E(t)− E(0) ≤ Op(1/
√
n1),

so
∥(z1)j(t)− (z1)j(0)∥L2(P ;R) ≤ Op(1/

√
n1)

and
∥(A2):,j(t)− (A2):,j(0)∥2 ≤ Op(1/

√
n1)

for all j = 1, . . . , n1.

100

Thus, we have

δk′k

∥∥∥∥∥σ2
A

n1

n1∑
j=1

σ((z1)j(x))σ((z1)j(x
′))− σ2

A

n1

n1∑
j=1

σ((z1)j(x))σ((z1)j(x
′))

∣∣∣∣
t=0

∥∥∥∥∥
≤ δk′k

σ2
A

n1

n1∑
j=1

∥∥∥∥σ((z1)j(x))σ((z1)j(x′))− σ((z1)j(x))σ((z1)j(x′))∣∣∣∣
t=0

∥∥∥∥
≤ δk′k

σ2
A

n1

n1∑
j=1

∥∥∥∥σ((z1)j(x))σ((z1)j(x′))− σ((z1)j(x))σ((z1)j(x′))∣∣∣∣
t=0

∥∥∥∥
≤ δk′k

σ2
A

n1

n1∑
j=1

(∥∥∥∥∥(σ((z1)j(x))− σ((z1)j(x))
∣∣∣∣
t=0

)σ((z1)j(x
′))

∥∥∥∥∥
+

∥∥∥∥∥σ((z1)j(x))(σ((z1)j(x′))− σ((z1)j(x′)))
∣∣∣∣
t=0

∥∥∥∥∥
)

= δk′k
σ2
A

n1

n1∑
j=1

Op(1/
√
n1)→ 0

5.5 Quadratic case

Again, consider the empirical risk minimization with data X1, . . . , XN ∈ X ,
empirical distribution

Pemp =
1

N

N∑
i=1

δXi
,

and quadratic loss

Remp[f] =
1

N

N∑
i=1

1

2
∥f(Xi)− f ⋆(Xi)∥2

=
1

2
EX∼Pemp

[
∥f(x)− f ⋆(x)∥2

]
=

1

2
⟨f − f ⋆, f − f ⋆⟩L2(Pemp;RnL).

Then
∂fRemp = f − f ⋆ ∈ L2(Pemp;RnL).

101

Consider the limiting kernel gradient flow with Θ = Θ(L),∞ × InL
:

d

dt
ft = −Lt[fθ − f ⋆],

the dynamics is described by

ft = f ⋆ + e−tLΘ [ft − f ⋆].

(See homework 5.) In particular, if Θ is strictly positive definite, then

ft(Xi)→ f ⋆(Xi), for i = 1, . . . , N.

Finally, we check the stochastic boundedness assumption. For finite width,
we have

d

dt
fθ(t) = −LΘ

(L)
t
[fθ(t) − f ⋆],

with the time-dependent kernel Θ
(L)
t , and we still have

d

dt
Remp[fθ(t)] ≤ 0.

Since

∥∂fRemp|fθ(t)∥ =
√

2Remp[fθ(t)] ≤
√

2Remp[fθ(0)],

the value ∫ T

0

∥∂fRemp∥ dt ≤ T
√

2Remp[fθ(0)]

is stochastically bounded as n1, . . . , nL−1 → ∞, for fixed T > 0, if Remp[fθ(0)]
is stochastically bounded as n1, . . . , nL−1 →∞. This is the case, since

Remp[fθ(0)]→
1

N

N∑
i=1

1

2
∥f(Xi)− f ⋆(Xi)∥2

in distribution with f ∈ GP(0,Σ(L)), and convergence in distribution implies
stochastic boundedness.

102

Chapter 6

Wasserstein distance

Let Θ ⊆ Rp and Φ ⊆ Rp. Write P(Θ) and P(Φ) for the spaces of probability
measures on Θ and Φ, respectively. Write Pp(Θ) ⊆ P(Θ) and Pp(Φ) ⊆ P(Φ)
for probability measures with finite pth moment. For p ∈ [1,∞), the pth
Wasserstein distance

Wp : Pp(Θ)× Pp(Φ)→ R

is defined as
Wp(µ, ν) = (E[∥θ − ϕ∥p])1/p .

We are primarily interested in the W1, as it is used in WGANs and other
deep learning setups due to its Kantorovich–Rubinstein duality variational
formulation, and W2 as it is used in the mean-field theory.

6.1 Optimal transport formulations

We start with the general setup in which Θ and Φ be nonempty metric spaces
and add further assumptions on Θ and Φ when necessary. In this section,
we describe the mathematical formulations for “transporting” µ ∈ P(Θ) to
ν ∈ P(Φ).

6.1.1 Monge formulation

Let T : Θ → Φ be measurable. We say T is a transport map from µ to ν if
ν = T#µ. One can picture µ as a pile of sand and grains of sand at θ ∈ Θ are
transported to T (θ) ∈ Φ. The pushforward measure ν = T#µ represents the
resulting pile of sand.

103

Pushforward measure. We briefly review the notion of the pushforward
measure. The pushforward of µ with respect to T is denotes as

T#µ = µ ◦ T−1

and is defined by

(T#µ)(B) = (µ ◦ T−1)(B) = µ(T−1(B))

for all ν-measurable B. The integral with respect to ν = T#µ can be under-
stood via the change-of-variables formula∫

Θ

f(T (θ)) dµ(θ) =

∫
Φ

f(ϕ) dν(ϕ).

To put it differently,

Eθ∼µ[f(T (θ))] = Eϕ∼ν [f(ϕ)],

i.e., if θ ∼ µ and ϕ = T (θ), then ϕ ∼ ν.
Monge’s optimal transport problem is

minimize
T : Θ→Φ

∫
Θ

c(θ, T (θ)) dµ(θ),

subject to ν = T#µ,

where c(θ, ϕ) is cost of transporting mass from θ to ϕ. The particular setups
of interest to us are Θ = Φ ⊆ Rd and c(θ, ϕ) = ∥θ − ϕ∥ or c(θ, ϕ) = ∥θ − ϕ∥2.
One can picture incurring a cost of

c(θ, T (θ))× (mass of grain)

for transporting the grain of sand from θ to T (θ), and the integral corresponds
to the sum of the incurred costs for all grains of sand. The constraint ν = T#µ
corresponds to the requirement that the initial profile of sand µ must become
ν after the transport is completed.

This formulation is, while easily interpretable, difficult to work with as
the optimization problem is non-convex. (Convexity is useful not just for
obtaining a computationally efficient algorithm; convexity also provides many
theoretically favorable properties.) Furthermore, an optimal transport map T
will in general not exist. An easy counterexample is µ = δ0 and ν = 1

2
δ−1+

1
2
δ1.

104

Example: Book shifting. Consider two discrete measure µ = 1
N

∑N
i=1 δi

and ν = 1
N

∑N
i=1 δi+1 with Θ = Φ = R and c(θ, ϕ) = ∥θ − ϕ∥. Here are two

optimal transport maps:

1. T (θ) = θ for θ = 2, · · · , N and T (1) = N + 1

2. T (θ) = θ + 1 for θ = 1, · · · , N .

Thus, the optimal transport map need not be unique. (While optimality should
be intuitively clear, you will rigorously establish it via duality in the home-
work.) Also, the value of T outside of supp(µ) is irrelevant.

Here is a suboptimal transport map:

T (θ) =

{
θ + 2 for θ = 1, · · · , N − 1
2 for θ = N.

So not all (feasible) transport maps are optimal.

6.1.2 Kantorovich formulation

We now consider Kantorovich’s relaxed formulation. Consider a measure

π ∈ P(Θ× Φ)

Let PΘ : Θ × Φ → Θ be PΘ(θ, ϕ) = θ and PΦ : Θ × Φ → Φ be PΦ(θ, ϕ) = ϕ
be the projection operators. Then PΘ#π and PΦ#π are the marginals in the
sense that ∫

Θ×Φ

f(θ) dπ(θ, ϕ) =

∫
Θ

f(θ) d(PΘ#π)(θ)

and ∫
Θ×Φ

f(ϕ) dπ(θ, ϕ) =

∫
Φ

f(ϕ) d(PΦ#π)(ϕ).

Kantorovich’s formulation of the optimal transport problem is

minimize
π∈P(Θ×Φ)

∫
Θ×Φ

c(θ, ϕ) dπ(θ, ϕ),

subject to PΘ#π = µ
PΦ#π = ν.

In a probabilistic formulation, one can equivalently write

minimize
π∈P(Θ×Φ)

E(θ,ϕ)∼π[c(θ, ϕ)],

subject to θ ∼ µ
ϕ ∼ ν.

105

Since π = µ ⊗ ν is a feasible point of the optimization problem, the optimal
value is less than +∞, provided that

∫
Θ×Φ

c(θ, ϕ) dµ(θ)dν(ϕ) <∞. If c(·, ·) ≥
0, then the optimal value is greater than −∞.

Theorem 42 (Disintegration theorem). Let π ∈ P(Θ × Φ) and µ = PΘ#π.
Then, there exists a family of conditional probability measures {ν̃θ}θ∈Θ ⊂ P(Φ)
(defined for µ-almost all θ) such that

dπ(θ, ϕ) = dν̃θ(ϕ)dµ(θ),

i.e.,∫
Θ×Φ

f(θ, ϕ) dπ(θ, ϕ) =

∫
Θ

∫
Φ

f(θ, ϕ) dν̃θ(ϕ)dµ(θ), ∀measurable f.

The disintegration theorem (which actually has a more general form) en-
sures that conditional probability measures are well defined. We can interpret
the disintegration∫

Θ×Φ

c(θ, ϕ) dπ(θ, ϕ) =

∫
Θ

∫
Φ

c(θ, ϕ) dν̃θ(ϕ)︸ ︷︷ ︸
=
unit cost of transporting

sand at θ to dν̃θ(ϕ)

dµ(θ),

as distributing the sand at θ (we have dµ(θ) of sand at θ) to Φ with propor-
tion dν̃θ(ϕ). Therefore, if T : Θ → Φ is feasible for the Monge formulation,
then δT (θ)(dϕ)µ(dθ) is feasible for for Kantorovich formulation. Thus the Kan-
torovich formulation has a smaller optimal value than the Monge formulation.

As an aside, if π = µ⊗ ν, then the disintegration is

dπ(θ, ϕ) = dν(ϕ)dµ(θ),

and the transport by π takes any infinitesimal grain of sand, regardless of which
position θ it came from, split and distributes it according to profile ν(ϕ). This
is likely inefficient, as you would probably want to transport the grain of sand
differently depending on which initial position θ it came from.

While Monge’s formulation is arguably more interpretable, Kantorovich’s
formulation has better theoretical properties: Kantorovich’s formulation often
has a solution when Monge’s doesn’t and Kantorovich’s formulation leads to
a nice duality framework. In any case, the two formulations yield the same
optimal transport cost under the following generic condition.

Theorem 43. If µ has no atoms, i.e., µ({θ}) = 0 for all θ ∈ Θ, then the opti-
mal values of the Monge and Kantorovich’s formulation are the same. (How-
ever, it is possible for the Kantorovich formulation to have a solution while the
Monge formulation does not.)

106

6.1.3 Wasserstein distance

Let Θ ⊆ Rd and Φ ⊆ Rd. For p ∈ [1,∞), define

Pp(Θ) = {µ ∈ P(Θ) |Eθ∼µ[∥θ∥p] <∞}
Pp(Φ) = {ν ∈ P(Φ) |Eϕ∼ν [∥ϕ∥p] <∞}.

For p ∈ [1,∞), define the pth Wasserstein distance Wp : Pp(Θ)× Pp(Φ) → R
as

(Wp(µ, ν))
p =

 minimize
π∈P(Θ×Φ)

∫
Θ×Φ

∥θ − ϕ∥p dπ(θ, ϕ),

subject to PΘ#π = µ
PΦ#π = ν.

 .

Theorem 44. Let Θ = Φ ⊆ Rd and p ∈ [1,∞). Then Wp is a metric on
Pp(Θ).

Proof. First, we consider the three explicit axioms of metrics. ThatWp(µ, ν) =
0 if and only if µ = ν is clear from the probabilistic formulation. That
Wp(µ, ν) = Wp(ν, µ) is also clear. The triangle inequality

Wp(λ, ν) ≤ Wp(λ, µ) +Wp(µ, ν), ∀λ, µ, ν ∈ Pp(Θ)

follows from an argument based on the disintegration theorem. We defer the
argument to a homework assignment.

Finally, we verify the fourth implicit axiom of a metric, that Wp(µ, ν) <∞
for any µ, ν ∈ Pp(Θ). This follows from∫

Θ×Φ

∥θ − ϕ∥p dπ(θ, ϕ) ≤
∫
Θ×Φ

2p−1∥θ∥p + 2p−1∥ϕ∥p dπ(θ, ϕ)

= 2p−1

∫
Θ

∥θ∥p dµ(θ) + 2p−1

∫
Φ

∥ϕ∥p dν(ϕ)

<∞.

In intuitive terms, the triangle inequality is a very natural conclusion.
When transporting from λ to ν, you always have the option of transport-
ing from λ to µ and then from µ to ν. Going through the intermediate step µ
should increase the cost.

107

6.2 Duality

As the Wasserstein distances are defined through (infinite-dimensional) con-
strained convex optimization problems, they have a rich duality theory. The
the dual of W1, specifically referred to as the Kantorovich–Rubinstein dual,
is used commonly in modern deep learning, most notably in the WGAN. The
dual of W2 leads to Brenier’s theorem, which is used in the characterization of
Wasserstein gradient flows and the formulation of the mean-field limit of wide
2-layer neural networks.

Let Ω and Φ be nonempty metric spaces. Let c : Ω×Φ→ R+. For µ ∈ P(Ω)
and ν ∈ P(Φ), define

W (µ, ν) =

 minimize
π∈P(Θ×Φ)

∫
Θ×Φ

c(θ, ϕ) dπ(θ, ϕ),

subject to PΘ#π = µ
PΦ#π = ν.

 .

DefineW (µ, ν) =∞ if there is no π ∈ P(Θ×Φ) that makes the integral finite.
Given a measurable function f and a measure µ, write ⟨f, µ⟩ = ⟨µ, f⟩ =

∫
fdµ

to denote the corresponding integral.
Let

L(π, φ, ψ) = ⟨c, π⟩+ ⟨µ− PΘ#π, φ⟩+ ⟨ν − PΦ#π, ψ⟩.

Note that L is convex in π and concave in (φ, ψ). (In fact, linear in π and
linear in (φ, ψ).) Define the primal problem

W (µ, ν) := inf
π∈M+(Θ×Φ)

sup
φ∈C0(Θ),ψ∈C0(Φ)

L(π, φ, ψ)

and the dual problem

W (µ, ν) := sup
φ∈C0(Θ),ψ∈C0(Φ)

inf
π∈M+(Θ×Φ)

L(π, φ, ψ) ≤ W (µ, ν).

Using the general weak duality principle, we get

sup inf ≤ inf sup .

We let φ ∈ C0(Θ) because (C0(Θ), ∥·∥∞) is the pre-dual space of (M(Θ), ∥·
∥TV). The same reason holds for ψ ∈ C0(Φ). This careful pairing of (topo-
logical) dual spaces is necessary for applying the Fenchel–Rockafellar duality
theorem and obtaining strong duality (although we omit this discussion).

108

Primal problem. The primal problem recovers the Kantorovich formulation

W (µ, ν) = inf
π∈M+(Θ×Φ)

sup
φ∈C0(Θ),ψ∈C0(Φ)

⟨c, π⟩+ ⟨µ− PΘ#π, φ⟩+ ⟨ν − PΦ#π, ψ⟩

= inf
π∈M+(Θ×Φ)

{
⟨c, π⟩ if µ− PΘ#π = 0, ν − PΦ#π = 0
∞ otherwise.

= W (µ, ν).

Here, we use the fact that µ = PΘ#π implies that π has total mass 1, i.e.,
π ∈M+(Θ× Φ) and PΘ#π ∈ P(Θ) implies π ∈ P(Θ× Φ).

Dual problem. Consider

L(π, φ, ψ) = ⟨c, π⟩ − ⟨π, P †
Θ#φ⟩ − ⟨π, P

†
Φ#ψ⟩+ ⟨µ, φ⟩+ ⟨ν, ψ⟩

= ⟨c− P †
Θ#φ− P

†
Φ#ψ, π⟩+ ⟨µ, φ⟩+ ⟨ν, ψ⟩

with ⟨PΘ#π, φ⟩ =
∫
Θ
φd(PΘ#π)(θ) =

∫
Θ×Φ

φ(θ)dπ(θ, ϕ) = ⟨π, P †
Θ#φ⟩. So we

can view the adjoint operator P †
Θ# : C0(Θ)→ C0(Θ×Φ) as the pedantic oper-

ation mapping φ(θ) and φ(θ, ϕ) = φ(θ). In less abstract notation, we have

L(π, φ, ψ) =

∫
Θ×Φ

c(θ, ϕ)− φ(θ)− ψ(ϕ) dπ(θ, ϕ) +
∫
Θ

φ(θ) dµ(θ) +

∫
Φ

ψ(ϕ) dµ(ϕ).

We now characterize the dual problem

W (µ, ν) = sup
φ∈C0(Θ),ψ∈C0(Φ)

inf
π∈M+(Θ×Φ)

⟨c− P †
Θ#φ− P

†
Φ#ψ, π⟩+ ⟨µ, φ⟩+ ⟨ν, ψ⟩

= sup
φ∈C0(Θ),ψ∈C0(Φ)

{
⟨µ, φ⟩+ ⟨ν, ψ⟩ if c− P †

Θ#φ− P
†
Φ#ψ ≥ 0

−∞ otherwise.

To clarify,
P †
Θ#φ+ P †

Φ#ψ ≤ c

means
φ(θ) + ψ(ϕ) ≤ c(θ, ϕ), ∀ θ ∈ Θ, ϕ ∈ Φ.

Finally, we write

W (µ, ν) =

 maximize
φ∈C0(Θ),ψ∈C0(Φ)

∫
Θ

φ(θ) dµ(θ) +

∫
Φ

ψ(ϕ) dν(ϕ),

subject to φ(θ) + ψ(ϕ) ≤ c(θ, ϕ), ∀ θ ∈ Θ, ϕ ∈ Φ.


If µ and ν are compactly supported, then equivalently have

W (µ, ν) =

 maximize
φ∈C(Θ),ψ∈C(Φ)

∫
Θ

φ(θ) dµ(θ) +

∫
Φ

ψ(ϕ) dν(ϕ),

subject to φ(θ) + ψ(ϕ) ≤ c(θ, ϕ), ∀ θ ∈ Θ, ϕ ∈ Φ.


109

Strong duality and complementary slackness. Through convex duality
theory (specifically, using the Fenchel–Rockafellar duality theorem) one can
establish strong duality

W (µ, ν) = W (µ, ν).

In the interest of time, we skip this proof, but we will accept the result and
write

W (µ, ν) = W (µ, ν) = W (µ, ν).

An additional useful consequence of strong duality is complementary slack-
ness. If π⋆ solves the primal problem and (φ⋆, ψ⋆) solves the dual problem,

W (µ, ν) = inf
π∈M+(Θ×Φ)

sup
φ∈C0(Θ),ψ∈C0(Φ)

⟨c− P †
Θ#φ− P

†
Φ#ψ, π⟩+ ⟨µ, φ⟩+ ⟨ν, ψ⟩

= sup
φ∈C0(Θ),ψ∈C0(Φ)

⟨c− P †
Θ#φ− P

†
Φ#ψ, π

⋆⟩+ ⟨µ, φ⟩+ ⟨ν, ψ⟩

≥ ⟨c− P †
Θ#φ

⋆ − P †
Φ#ψ

⋆, π⋆⟩+ ⟨µ, φ⋆⟩+ ⟨ν, ψ⋆⟩
≥ ⟨c− P †

Θ#φ
⋆ − P †

Φ#ψ
⋆, π⋆⟩+W (µ, ν)

Since W (µ, ν) = W (µ, ν) = W (µ, ν) by strong duality, we have

0 ≥ ⟨c− P †
Θ#φ

⋆ − P †
Φ#ψ

⋆︸ ︷︷ ︸
≥0

, π⋆︸︷︷︸
≥0

⟩,

and we conclude complementary slackness:

φ⋆(θ) + ψ⋆(ϕ) = c(θ, ϕ), ∀ (θ, ϕ) ∈ supp(π⋆).

6.2.1 Kantorovich–Rubinstein duality

Assume for simplicity that µ and ν have compact support. Assume Θ = Φ ⊆
Rd. We shall obtain the Kantorovich–Rubinstein dual by simplifying the dual
problem for W1:

W1(µ, ν) =

 maximize
φ∈C(Θ),ψ∈C(Φ)

∫
Θ

φ(θ) dµ(θ) +

∫
Φ

ψ(ϕ) dν(ϕ),

subject to φ(θ) + ψ(ϕ) ≤ ∥θ − ϕ∥, ∀ θ ∈ Θ, ϕ ∈ Φ.


Let (φ, ψ) be feasible. This implies

ψ(ϕ) ≤ inf
θ∈Θ
{∥θ − ϕ∥ − φ(θ)}.

110

Define
φc(ϕ) = inf

θ∈Θ
{∥θ − ϕ∥ − φ(θ)}.

Then, (φ, φc) is also feasible, i.e., φ(θ)+φc(ϕ) ≤ ∥θ−ϕ∥, and φc is the largest
feasible ψ given φ. Certainly, ψ ≤ φc, and replacing (φ, ψ) with (φ, φc) can
only improve the objective, since ν is a nonnegative measure. Define

φcc(θ) = inf
ϕ∈Φ
{∥θ − ϕ∥ − φc(ϕ)}.

Then (φcc, φc) is also a feasible point and φcc is the largest feasible φ given φc.
Replacing (φ, φc) with (φcc, φc) can only improve the objective.1 We can now
restrict the optimization problem to

Γ = {(φcc, φc) |φ ∈ C(Θ), φc > −∞}

(here, φc > −∞ meaans φc(ϕ) ̸= −∞ for all ϕ ∈ Phi) and write

W1(µ, ν) =

(
maximize
(φcc,φc)∈Γ

∫
Θ

φcc(θ) dµ(θ) +

∫
Φ

φc(ϕ) dν(ϕ)

)
.

Now we further characterize Γ. Note that (φcc, φc) ∈ Γ are 1-Lipschitz
continuous, since

φc(ϕ) = inf
θ∈Θ
{∥θ − ϕ∥ − φ(θ)}

is an infimum of 1-Lipschitz continuous functions, and ditto for φcc. Con-
versely, if φ is 1-Lipschitz, then

φc = −φ, φcc = φ.

This follows from
−φ(ϕ) ≤ ∥θ − ϕ∥ − φ(θ),

implied by 1-Lipschitz continuity, and

inf
θ
{∥θ − ϕ∥ − φ(θ)} ≤ −φ(ϕ)

because the infimum is no larger than simply plugging in θ = ϕ. Therefore,

Γ = {(φ,−φ) |φ ∈ L1(Θ)}.

and we conclude

W1(µ, ν) =

 maximize
φ

∫
Θ

φ(θ) dµ(θ)−
∫
Φ

φ(ϕ) dν(ϕ)

subject to φ ∈ L1

 .

1The mapping φ 7→ φc defined by φc(ϕ) = infθ∈Θ{c(θ, ϕ)−φ(θ)} is called the c-transform
and it generalizes the conjugacy of convex functions in some sense. One can show that
φccc = φc, so there is no need to further continue this process.

111

6.2.2 Preliminaries: Convex conjugates

We say a function f : Rd → R ∪ {∞} is convex if

f(ηx+ (1− η)y) ≤ ηf(x) + (1− η)f(y), ∀x, y ∈ Rd, η ∈ (0, 1).

In convex analysis, the class of regular (nice) convex functions most commonly
considered is called closed, convex, and proper (CCP) functions. To clarify
CCP functions are, in general, extended real-valued, i.e., the output can be
∞.

In this course, however, we will not fully define the notion of CCP, as we
do not need it. Rather, we will say a function f is convex and finite if it is
convex and f(x) <∞. Convex and finite functions are CCP, continuous, and
are differentiable almost everywhere.

The convex conjugate of f : Rd → R ∪ {∞} is defined as

f ∗(u) = sup
x∈Rd

{⟨u, x⟩ − f(x)},

where f ∗ : Rd → R∪{∞}. If f is CCP, then f ∗ is CCP and f ∗∗ = f . However,
even if f is convex and finite, f ∗ is not guaranteed to be finite.

From the definition of the convex conjugate, we immediately have the
Fenchel–Young inequality

⟨u, x⟩ ≤ f ∗(u) + f(x), ∀x, u ∈ Rd.

Also, if f is CCP, f is differentiable at x, if

⟨u, x⟩ = f ∗(u) + f(x),

then u = ∇f(x). (This does not follow from simply differentiating both sides
with respect to x.) To see why,

⟨u, x⟩ − f(x) = f ∗(u)

= sup
z∈Rd

{⟨u, z⟩ − f(z)},

so u = ∇f(x).

6.2.3 Brenier’s theorem: W2

Assume for simplicity that µ and ν have compact support and that Θ = Φ =
Rd. Let us obtain Brenier’s theorem by simplifying the dual problem for W2

W 2
2 (µ, ν) =

 maximize
φ∈C(Θ),ψ∈C(Φ)

∫
Θ

φ(θ) dµ(θ) +

∫
Φ

ψ(ϕ) dν(ϕ),

subject to φ(θ) + ψ(ϕ) ≤ 1
2
∥θ − ϕ∥2, ∀ θ ∈ Θ, ϕ ∈ Φ


112

Let (φ, ψ) be feasible. Define

φc(ϕ) = inf
θ∈Θ

{
1

2
∥θ − ϕ∥2 − φ(θ)

}
= − sup

θ∈Θ

{
⟨θ, ϕ⟩ −

(
1

2
∥θ∥2 − φ(θ)

)}
+

1

2
∥ϕ∥2

= −
(
1

2
∥ · ∥2 − φ

)∗

(ϕ) +
1

2
∥ϕ∥2,

where ∗ denotes the convex conjugate. Likewise, define

φcc(θ) = inf
ϕ∈Φ

{
1

2
∥θ − ϕ∥2 − φc(ϕ)

}
= −

(
1

2
∥ · ∥2 − φc

)∗

(θ) +
1

2
∥θ∥2

= −
(
1

2
∥ · ∥2 − φ

)∗∗

(θ) +
1

2
∥θ∥2.

From the same reasoning as before, (φcc, φc) is feasible, and it achieves an
objective value no worse than (φ, ψ). Define

Γ = {(φcc, φc) |φ ∈ C(Θ), φc > −∞}

and write

W 2
2 (µ, ν) =

(
maximize
(φcc,φc)∈Γ

∫
Θ

φcc(θ) dµ(θ) +

∫
Φ

φc(ϕ) dν(ϕ)

)
.

Now we further characterize Γ. Let φ ∈ C(Θ), such that φc > −∞. Then,(
1
2
∥ · ∥2 − φ

)∗
is convex (since it is a conjugate function) and finite (since

φc(ϕ) > −∞). Define τ =
(
1
2
∥ · ∥2 − φ

)∗∗
, which is also convex (since it is a

conjugate function) and finite (since φcc ≥ φ > −∞). Conversely, let τ be
convex and finite function such that τ ∗ is also finite. Define φ = 1

2
∥ · ∥2 − τ .

Then, φc = 1
2
∥ · ∥2 − τ ∗ and

φ(θ) + φc(ϕ)− 1

2
∥θ − ϕ∥2 = ⟨θ, ϕ⟩ − τ(θ)− τ ∗(ϕ) ≤ 0

by Fenchel–Young. Therefore,

Γ =

{(
1

2
∥ · ∥2 − τ, 1

2
∥ · ∥2 − τ ∗

) ∣∣∣ τ convex, τ and τ ∗ finite

}
.

113

and

W 2
2 (µ, ν) =

 maximize
τ : convex

∫
Θ

φ(θ) dµ(θ) +

∫
Φ

ψ(ϕ) dν(ϕ),

subject to φ = 1
2
∥ · ∥2 − τ, τ finite

ψ = 1
2
∥ · ∥2 − τ ∗, τ ∗ finite

 .

Transport plan. Assume µ is absolutely continuous (with respect to the
Lebesgue measure). Then, τ is differentiable µ-almost everywhere. Let πopt
and τopt be optimal primal and dual solutions for W2. We claim that

T = ∇τopt

is an optimal transport plan.
By complementary slackness,

φopt(θ) + ψopt(ϕ) = c(θ, ϕ) ⇔ ⟨θ, ϕ⟩ = τopt(θ) + τ ∗opt(ϕ)

πopt-almost everywhere, which implies

∇τopt(θ) = ϕ

πopt-almost everywhere. Therefore,

supp(πopt) ⊆ {(θ,∇τopt(θ)) | θ ∈ Θ}

and the disintegration of π simplifies to

dπopt(θ, ϕ) = dµ(θ)dδ∇τopt(θ)(ϕ)

for the optimal τopt. Therefore, πopt corresponds to an optimal transport map
T = ∇τopt.

114

Chapter 7

Weak solution of differential
equations and Wasserstein
gradient flow

7.1 Weak solution to ODE

Consider the ODE
Ẋ = f(t,X), X(0) = X0.

If f : R × Rd → R is continuous, then X(t) ∈ C1([0,∞);Rd), and hence a
solution is well defined. But what is the definition of a solution? Obviously, if
you can plug in the solution to the differential equation and it verifies, then it
is a solution.

However, what if f is discontinuous? For example, if

f(t,X) =

{
0 for t ≤ 1
1 otherwise,

then

X(t) =

{
0 for t ≤ 1
t− 1 otherwise.

Right? However, the solution X(t) is non-differentiable at t = 1? To generalize
the notion of what constitutes a solution, we define X to be a solution if it is
an integrable function such that

X(t) = X(0) +

∫ t

0

f(s,X(s)) ds.

115

We have now completely dropped all requirement that X be differentiable.
Now, we never directly differentiate X and we only access f through integra-
tion.

Another approach, however, is as follows. For all test functions φ ∈
C∞c ((0,∞)), ∫ ∞

0

φ(t)f(t,X(t)) dt = −
∫ ∞

0

φ′(t)X(t) dt,

then X is a solution. (Since φ is compactly supported on (0,∞), rather than
[0,∞), limt→0+ φ(t) = 0.) This formulation via test functions is not yet nec-
essary, but it will be the standard approach for defining weak solutions for
PDEs.

7.2 Weak solution to PDE

Consider the following example with the first-order wave equation

∂u

∂t
+
∂u

∂x
= 0, u(0, x) = u0(x) ∀x ∈ R.

As an example, the initial condition,

u(0, x) = e−x
2

yields the solution
u(t, x) = e−(x−t)2 .

We can simply plug in the solution to the PDE and verify that is satisfies
the equation. (Solution is unique, but let us not worry about that.) More
generally, if

u(0, x) = κ(x)

where κ ∈ C1(R). Then
u(t, x) = κ(x− t)

solves the PDE.
However, if

u(0, x) = exp(−|x|),

then does
u(t, x) = exp(−|x− t|)

solve the PDE? The answer is no. If

u(0, x) = 1[−1,1](x),

116

then does
u(t, x) = 1[−1,1](x− t)

solve the PDE? These initial conditions do not yield strong solutions to the
PDE.

7.2.1 Formal derivation of weak formulation

Assume u(t, x) is a continuously differentiable solution to the PDE, i.e., u is a
strong solution. For φ ∈ C∞c ((0,∞)× R),

0 =

∫ ∞

−∞

∫ ∞

0

φ(∂tu+ ∂xu) dtdx

=

∫ ∞

−∞

∫ ∞

0

φ∂tu dtdx+

∫ ∞

0

∫ ∞

−∞
φ∂xu dxdt

= −
∫ ∞

−∞

∫ ∞

0

(∂tφ)u dtdx−
∫ ∞

0

∫ ∞

−∞
(∂xφ)u dxdt

= −
∫ ∞

−∞

∫ ∞

0

(∂tφ+ ∂xφ)u dtdx

Therefore, a continuously differentiable function u(t, x) solves the PDE if and
only if u(0, x) = u0(x) and

0 =

∫ ∞

−∞

∫ ∞

0

(∂tφ+ ∂xφ)u dtdx, φ ∈ C∞c ((0,∞)× R).

Finally we extend the definition of a solution as follows. We say a (possibly
non-differentiable) function u(t, x) is a weak solution to the PDE if u(0, x) =
u0(x) and

0 =

∫ ∞

−∞

∫ ∞

0

(∂tφ+ ∂xφ)u dtdx, φ ∈ C∞c ((0,∞)× R).

As we have established, a strong solution is a weak solution. However, there
are some weak solutions that are not strong solutions.

What we have seen is the general template for defining a weak solution of
PDEs. First, assuming the solution is sufficiently smooth, find an equivalent
integral characterization of the solution via a smooth, compactly supported
test function, often using integration by parts or the divergence theorem. This
first step is called the formal derivation since we are performing calculations
as if the solution is sufficiently smooth (even if it is not) without justifying

117

whether the formal rules such as integration by parts are actually mathemat-
ically valid. Second, we define a weak solution as a function (or a measure)
that satisfies the integral form of the equation. Since the integral form was
formally derived with mathematically valid rules, if the solution is sufficiently
smooth, a sufficiently smooth weak solution is automatically a strong solution.

7.3 Continuity equation

Let ρ(t, x) be a density of particles (e.g. air molecules) at time t and position
x ∈ Rd. Let v(t, x; ρ(t, ·)) be the velocity of the particles at position x and
with global particle profile ρ(t, ·). For now, assume ρ(t, x) is continuously
differentiable in t and x and that v(t, x; ρ(t, ·)) is continuously differentiable
in x. Our formulation informally assumes:

(i) Particles are indistinguishable, i.e., two particles at the same position and
time will move under the same velocity. (Say, in a game-theoretic setup,
it would be reasonable to consider two agents with different personalities.
If so, the two agents would behave differently even under the exact same
environment.)

(ii) Particles have long-range interactions, i.e., the v at (t, x) depends on
ρ(t, ·), not just ρ(t, x). If particles, say, exert gravitational force, then
it would make sense that the dynamics of one particle depends on the
global arrangement of other particles.

Note that the global profile can affect the velocity. As an example, if particles
exert gravitational attraction, then the force experienced at position x will de-
pend on the global particle profile ρ(t, ·). Let ρ(t, x)v(t, x) be the flow velocity.
The flow velocity captures the amount of flow. (For points where density ρ is
zero, the flow velocity ρv becomes zero and the velocity v becomes irrelevant.)

Many physical systems possess certain conservation laws: mass, charge,
and neurons are examples of conserved quantities. In our equations, u = ρv
describes the flux of particles. By the conservation law, the change in the
number of particle in a volume V is equal to the number of particles escaping
through its surface ∂V :

∂t

∫
V

ρ dV = −
∫
∂V

ρ(v · n̂) dS = −
∫
V

∇x · (ρv) dV,

where the first equality follows from the physical modeling and the second
equality follows from the divergence theorem. Assume ∂t

∫
V

=
∫
V
∂t. Since

118

the volume V is arbitrary, we arrive the continuity equation:

∂tρ+∇x · (ρv) = 0, ρ(0, x) = ρ0(x).

The velocity v = v(t, x; ρ(t, ·)) is pre-specified; it is a known function (detem-
rined by the physics or SGD algorithm) of t, x, and ρ(t, ·). The unknown,
defined by the PDE, is ρ(t, x) for t > 0.

One use of the continuity equation is to describe the dynamics of (com-
pressible) fluid flow. In this case, ρ(t, x) is the density of particles at (t, x),
v(t, x; ρ(t, ·)) is the velocity of particles at (t, x), and ρv describes the flux of
the fluid.

7.3.1 Formal derivation of weak formulation

Assume ρ is continuously differentiable. For φ ∈ C∞c ((0,∞)× Rd),

0 =

∫
Rd

∫ ∞

0

φ ∂tρ dtdx+

∫ ∞

0

∫
Rd

φ ∇x · (ρv) dxdt

= −
∫
Rd

∫ ∞

0

∂tφ ρ dtdx−
∫ ∞

0

∫
Rd

ρ((∇xφ) · v) dxdt.

(You will show the second equality in a homework assignment.) Thus, we get

0 =

∫ ∞

0

∫
Rd

(∂tφ+∇xφ · v) ρ(x, t) dxdt, ∀φ ∈ C∞c ((0,∞)× Rd).

We now generalize the notion of solution to measures. We say a family of
measures {ρt}t≥0 ⊂ P(Rd) is a weak solution to the continuity equation

∂tρt = −∇x · (vtρt), ρ0 ∈ P(Rd)

with vt = v(t, x; ρt), if

0 =

∫ ∞

0

∫
Rd

(∂tφ+∇xφ · vt) dρt(x)dt, ∀φ ∈ C∞c ((0,∞)× Rd).

In particular, we don’t explicitly define the meaning of ∂tρt or ∇x · (vtρt).
Rather, we view the “differential” equation as a shorthand for the weak for-
mulation.

119

7.3.2 Properties of the continuity equation

The name “continuity equation” implies that it induces a “continuous flow”,
and particles or mass are not allowed to “teleport”. As an example, let η ∈
C∞c (R) satisfy η ≥ 0, η(x) = 0 for |x| ≥ 1/3, and∫ 1/3

−1/3

η(x) dx = 1.

Let
ρ(0, x) = η(x)

Then
ρ(t, x) = η(x− t), for t ∈ [0, 1], x ∈ R.

is the resulting flow if vt = 1. However,

ρ(t, x) = (1− t)η(x) + tη(x− 1), for t ∈ [0, 1], x ∈ R

is not a solution of the continuity equation no matter the choice of v. You
will work out the argument as a homework assignment. The argument follows
from the use of the divergence theorem.

The following is a more concrete parameterization of the solution of the
continuity equation. For each x ∈ Rd, let X(·, x) be the solution to the ODE

Ẋ(t, x) = v(t,X(t, x), ; ρt) X(0, x) = x.

Then,
ρt = (X(t, x))#ρ0.

We can directly verify this. For any φ ∈ C∞c ((0,∞)× Rd),∫ ∞

0

∫
Rd

(∂tφ(t, x) +∇xφ(t, x) · vt(t, x; ρt)) dρt(x)dt

=

∫ ∞

0

∫
Rd

(∂tφ(t,X(t, x)) +∇xφ(t,X(t, x)) · vt(t,X(t, x); ρt)) dρ0(x)dt

=

∫ ∞

0

∫
Rd

d

dt
φ(t,X(t, x)) dρ0(x)dt

=

∫
Rd

φ(∞, X(∞, x))− φ(0, X(0, x)) dρ0(x)

= 0.

Under mild assumptions, X(t, ·) : Rd → Rd is a diffeomorphism. (In ODE
theory or differential geometry, the flow of a vector field mapping the initial
point x to its position at time t is a diffeomorphism.) In this case, if supp(ρ0) =
Rd, then supp(ρt) = Rd.

120

7.4 Wasserstein gradient flow

7.4.1 Metric gradient flow

Let f : Rd → R be differentiable. As considered in one of the homework
problems, gradient flow

ẋt = −∇f(xt)
can be defined as the interpolation of

x̃t+ε = argmin
x∈X

{
f(x) +

1

2ε
∥x− x̃t∥2

}
in the sense that

{x̃⌊t/ε⌋ε}t≥0 → {xt}t≥0

as ε→ 0 in the topology of uniform convergence on compacta.
Next, let f : X → R where (X , d) is a metric space. Defining a gradient

flow with respect to f initially seems impossible. How can we even define a
gradient for f? A most general formulation of a gradient is

f(x) ≈ f(x0) + ∂f |x0 [x− x0],

where the approximation is “accurate ” when x ≈ x0 and the linear function

∂f |x0 : X → R

is the “gradient” of f at x0. For this formulation to make sense, X needs to
be a vector space so that x− x0 is defined, X needs to have a nice dual space
so that ∂f |x0 ∈ X ∗, and f needs to be “differentiable”. Banach spaces meets
these requirements. However, the ODE ẋt = −∇f(xt) does not make sense in
Banach spaces as we would expect

ẋt = lim
h→0

1

h
(xt+h − xt) ∈ X

but
∇f(xt) ∈ X ∗.

To define and analyze gradient descent and gradient flow in Banach spaces,
the “mirror descent” formulation provides one resolution. However, we shall
take a different route.

Remarkably, gradient flow in metric spaces can be defined through the
following variational formulation. For ε > 0, let

x̃t+ε = argmin
x∈X

{
f(x) +

1

2ε
d(x, x̃t)

2

}
,

121

where f : X → R∪{∞} and X is a metric space. We say {xt}t≥0 is a gradient
flow with respect to f with starting point x0 if

{x̃⌊t/ε⌋ε}t≥0 → {xt}t≥0

in the topology of uniform convergence on compacta for some sequence {εk}k∈N ∈
R++ such that εk → 0.

Although existence and uniqueness of such gradient flows is not always
guaranteed, even for Banach spaces, we do have existence and uniqueness for
the Wasserstein gradient flow that we consider. (Because the loss functions we
consider are λ-semiconvex.)

7.4.2 Prelminaries: First variation

Let Θ ⊂ Rd be nonempty. Consider P(Θ) ⊆M+(Θ). (So P(Θ) is not a vector
space.) Let L : P(Θ)→ R. We call

δL
δρ

∣∣∣
ρ
∈ C(Θ)

a first variation of L at ρ if

d

dh
L(ρ+ hν)

∣∣∣
h=0+

=

〈
δL
δρ

∣∣∣
ρ
, ν

〉
=

∫
Θ

δL
δρ

∣∣∣
ρ
(θ) dν(θ)

for all ν such that µ+ hν ∈ P for sufficiently small h > 0.
The definition of a first variation is similar to, but not the same as, the

Fréchet derivative. Precisely, δL
δρ

is not a Fréchet derivative as P(Θ) is not a

vector space. We are also requiring that the first variation is in C(Θ), rather
than M∗(Θ), as would be required by a Fréchet derivative. We impose this
requirement because M∗(Θ) is a very difficult space to work with. The first
variation may or may not exist, and it is not unique. In our setup, we will
only consider nice functions for which the first variation exists, and it will be
unique only up to a constant, as the admissible variations ν must be a signed
measure with total mass 0. So

L(ρ+ hν) ≈ L(ρ) + h

∫
Θ

δL
δρ

∣∣∣
ρ
(θ) dν(θ)

= L(ρ) + h

∫
Θ

(
δL
δρ

∣∣∣
ρ
(θ) + C

)
dν(θ)

for any constant C ∈ R.

122

Theorem 45. Assume supp(µ) = Θ. Write τopt for the solution of the dual
problem forW2(µ, ν). (Although we did not prove this, a solution exists.) Then
we have the first-variation

δ

δµ
W2(µ, ν)

2 =
1

2
∥ · ∥2 − τopt.

(Although τopt is not unique, the optimal transport plan T = ∇τopt : Θ→ Φ is
unique except on a µ-null set.)

Proof outline. The proof roughly relies on the principle of the envelope theo-
rem. Assume everything is differentiable. If

V (α) = sup
β
U(α, β)

= U(α, β(α))

where β⋆(α) ∈ argmaxβ U(α, β). We assume the maximizer exists. Then,

d

dα
V (α) =

d

dα
U(α, β⋆(α))

=
∂

∂α
U(α, β⋆(α)) +

∂

∂β
U(α, β⋆(α))︸ ︷︷ ︸

=0

dβ⋆(α)

dα

=
∂

∂α
U(α, β⋆(α)).

Since

W 2
2 (µ, ν) = sup

τ

{∫
1

2
∥ · ∥2 − τdµ+

∫
1

2
∥ · ∥2 − τ ∗dν

}
,

we conclude the statement.

7.4.3 Wasserstein gradient flow

The Wasserstein gradient flow is defined through

ρ̃t+ε = argmin
ρ∈P(Θ)

{
L(ρ) + 1

ε
W2(ρ, ρ̃t)

2

}
.

We assume L has a first variation. For now, assume supp(ρ0) = supp(ρt) = Θ.
Then

C =
δL
δρ

∣∣∣
ρt+ε

+
1

ε

(
1

2
∥ · ∥2 − τopt

)
,

123

for some constant C, i.e.,

C =
δL
δρ

∣∣∣
ρt+ε

(θ) +
1

ε

(
1

2
∥θ∥2 − τopt(θ)

)
, ∀ θ ∈ Θ.

This follows from

0 =
d

dh
L(ρt+ε + hν) +

1

2ε
W 2

2 (ρt+ε + hν, ρt)

∣∣∣∣∣
h=0

=

〈
δL
δρ

∣∣∣
ρt+ε

+
1

ε

(
1

2
∥ · ∥2 − τopt

)
, ν

〉
for all ν ∈ P(Θ) such that ρt+ε + hν ∈ P(Θ) for small enough h > 0, i.e.
ν is an admissible perturbation. Since ν has zero total mass, the vanishing
directional (Gateaux) derivative means the first variation is a constant. We
further take the gradient of the first variation to get

0 = ∇θ
δL
δρ

∣∣∣
ρt+ε

+
1

ε
(I − T),

i.e.,

0 = ∇θ
δL
δρ

∣∣∣
ρt+ε

(θ) +
1

ε
(θ − T (θ)), ∀ θ ∈ Θ,

where T = ∇τopt is the optimal transport plan from ρt+ε to ρt (not the other
way around). So

vt(θ) =
1

ε
(θ − T (θ))

is the negative displacement (t+ε, θ) 7→ (t, T (θ)), or, equivalently, the positive
displacement (t, T (θ)) 7→ (t+ε, θ). (Mind the sign.) So as ε→ 0, vt(θ) becomes
velocity of particles at (t, θ). Therefore,

∂tρt + div(vtρt) = 0 vt = −∇
δL
δρ
.

Bibliographical notes

A good reference is: Geometric Flows for Applied Mathematicians Xiaohui
Chen http://publish.illinois.edu/xiaohuichen/files/2020/12/geometric_flows.pdf

Also, Lenäıc Chizat’s course notes. https://lchizat.github.io/ot2021orsay.html
Also { Euclidean, Metric, and Wasserstein } Gradient Flows: an overview

Filippo Santambrogio https://arxiv.org/abs/1609.03890

124

Chapter 8

Mean-field theory

We are now ready to talk about the mean-field theory, which considers the
population dynamics of the infinitely many neurons. Let X ⊆ Rd be nonempty.
Consider the setup with training data X ∈ X and corresponding labels Y ∈ Y .
For the sake of concreteness and simplicity, let Y = R and Y = f⋆(X) for some
true unknown f⋆. We focus on the square loss function, although we do set up
the notation to allow for further generality. Let P ∈ P(X) be a probability
measure on the data.

Consider the risk function R : L2(P)→ R+ defined as

R[f] = EX∼P
1

2
∥f(X)− f⋆(X)∥2 = 1

2
⟨f − f⋆, f − f⋆⟩L2(P).

Note, ∂fR|f0 = f0 − f⋆.
LetM be the number of neurons. Let θi = (ui, ai, bi) ∈ Rd+2 be parameters,

and we collectively denote them by θ = (θ1, . . . , θM). Let Φ: Rd × Rd+2 → R
be defined as

Φ(x; θi) = uiσ(a
T
i x+ bi)

for some σ : R→ R. Then the M -wide 2-layer MLP f
(M)
θ is defined by

f
(M)
θ (x) =

1

M

M∑
i=1

uiσ(a
T
i x+ bi) =

1

M

M∑
i=1

Φ(x; θi).

Now, consider training through

minimize
θ

R[f
(M)
θ].

125

8.1 Convergence of risk

The parameter θ = (θ1, · · · , θM) are initialized as IID samples from ρ0 ∈ P(Θ).
The neural network is rewritten as

f
(M)
θ =

∫
Φ(·; θ)dρ(M)

0 (θ), ρ
(M)
0 =

1

M

M∑
i=1

δθi .

(By LLN, ρ
(M)
0 ⇀ ρ0 a.s. as M →∞.) For notational simplicity, write∫

Φ(·; θ)dρ(M)
0 (θ) =

∫
Φdρ

(M)
0

Then,

R
[
f
(M)
θ

]
→ R

[∫
Φdρ0

]
by the law of large numbers. Then, f

(M)
θ (x) converges to

∫
Φ(x; θ)dρ0(θ) point-

wise.
To see why, note

R
[
f
(M)
θ

]
=

1

2
EX∼P

[∫
Φ(X; θ)dρ

(M)
0 (θ)

∫
Φ(X; θ′)dρ

(M)
0 (θ′)

]
− EX∼P

[∫
Φ(X; θ)dρ

(M)
0 (θ)f⋆(X)

]
+

1

2
EX∼P

[
f⋆(X)2

]
=

1

2

∫ ∫
EX∼P [Φ(X; θ)Φ(X; θ′)]︸ ︷︷ ︸

=U(θ,θ′)

dρ
(M)
0 (θ)dρ

(M)
0 (θ′)

−
∫

EX∼P [Φ(X; θ)f⋆(X)]︸ ︷︷ ︸
=V (θ)

dρ
(M)
0 (θ) +

1

2
EX∼P

[
f⋆(X)2

]
→ R

[∫
Φdρ0

]
where the second equality follows from Fubini.

Define

U(θ, θ′) = EX∼P [Φ(X; θ)Φ(X; θ′)]

V (θ) = EX∼P [Φ(X; θ)f⋆(X)] .

(Then U : Rd+2 × Rd+2 → R is a PDK.) Define R̃ : P(Rd+2)→ R as

R̃(ρ) = R

[∫
Φdρ

]
=

∫
Rd+2

∫
Rd+2

U(θ, θ′) dρ(θ)dρ(θ′)−
∫
Rd+2

V (θ) dρ(θ) + C.

126

where C is a constant independent of ρ. Then

R
[
f
(M)
θ

]
= R̃(ρ

(M)
0).

It is straightforward to show that δR̃
δρ

∣∣
ρ
(·) =

∫
U(·, θ′) dρ(θ′) − V (·). (Cf.

Homework exercise.)

8.2 Population dynamics from gradient flow

Derivation for quadratic loss. We first derive the result for the setup with
quadratic loss. We start with M <∞. Let

ρ
(M)
t =

1

M

M∑
i=1

δθi(t)

with the parameters governed by gradient flow

θ̇ = −M∇θR[fθ]

θ̇i = −M∇θiR
[
f
(M)
θ

]
= −MEX∼P

[(
f
(M)
θ − f⋆(x)

)
∇θif

(M)
θ (x)

]
= −EX∼P

[(∫
Φ(x; θ) dρ

(M)
t (θ)− f⋆(x)

)
∇θiΦ(x; θi)

]
= −

∫
EX [Φ(x; θ)∇θiΦ(x; θi)] dρ

(M)
t (θ) + EX [∇θiΦ(x; θi)f⋆(x)]

= −∇θi

(∫
U(θi, θ

′)dρ
(M)
t (θ′)

)
+∇θiV (θi)

= −∇θi

δR̃

δρ

∣∣∣∣
ρ
(M)
t

(θi)

This result describes the velocity of the ith particle at position θi. Therefore,
the population dynamics (of the M neurons) is described by the continuity
equation

∂tρ
(M)
t = div

(
ρ
(M)
t ∇

δR̃

δρ

∣∣∣∣
ρ
(M)
t

)
.

We will more rigorously justify this soon in Lemma 21.

127

General derivation for general loss. We now derive the result in the
further general setup:

θ̇i = −M∇θiR
[
f
(M)
θ

]
= −M∇θiR

[
1

M

M∑
j=1

Φ(·; θj)

]
= −

〈
∂fR| 1

M

∑M
j=1 Φ(·;θj)(·),∇θiΦ(·; θi)

〉
L2(P)

= −∇θi⟨∂fR,Φ(·; θi)⟩L2(P)

= −∇θi

δR̃

δρ

∣∣∣∣
ρ
(M)
t

(θi)

where the second line follows from a chain-rule type of argument. (Cf. Home-
work assignment.) For notational simplicity, define the mean potential

J(θ|ρ) = δR̃

δρ

∣∣∣∣
ρ

(θ) =
〈
Φ(·; θ), ∂fR|∫Rd+2 Φ(·;θ′) dρ(θ′)(·)

〉
L2(P)

.

Then

θ̇i = −∇θiJ(θi|ρ
(M)
t)

and the population dynamics is governed by the continuity equation:

∂tρ
(M)
t (θ) = div(ρ

(M)
t (θ)∇θJ(θ|ρ(M)

t))

or, more concisely,
∂tρ

(M)
t = div(ρ

(M)
t ∇J(·|ρ

(M)
t)).

Let us prove this rigorously.

Lemma 21. Let θ(t) = (θ1(t), . . . , θM(t)). The dynamics

θ̇i = vt(θi; ρ
(M)
t), ∀ i = 1, . . . ,M

satisfies the continuity equation

∂tρ
(M)
t = −div(ρ(M)

t vt(·; ρ(M)
t)).

128

Proof. For any φt(θ) ∈ C∞c
(
(0,∞)× Rd+2

)
,∫ ∞

0

∫
Rd+2

(∂tφt(θ) +∇θφt(θ) · vt) dρ(M)
t (θ)dt

=
1

M

M∑
i=1

∫ ∞

0

∂tφt(θi(t)) +∇θφt(θi(t))θ̇i(t)dt

=
1

M

M∑
i=1

∫ ∞

0

d

dt
(φt(θi(t))) dt

=
1

M

M∑
i=1

(φt=∞(·)− φt=0(·))

= 0.

Remember that ρ
(M)
0 ⇀ ρ0 as M →∞. Define ρt to be the solution of

∂tρt = div(ρt∇J(·|ρt))

with initial condition ρ0 at time t = 0. Then, for any t ≥ 0, ρ
(M)
t ⇀ ρt as

M →∞, although we do not prove this. The following (kind of) commutative
diagram captures this idea:

ρ
(M)
0 ρ0

ρ
(M)
t ρt

(1)

(2) (3)

(4)

(1) Follows from the law of large numbers.

(2) Denotes the time evolution of ρ
(M)
t induced by gradient flow, which is

equivalent to the continuity equation by Lemma 21.

(3) Denotes the definition of ρt via the continuity equation.

(4) Follows from the fact that the PDE is well posed and thus the time
evolution of the continuity equation is continuous (in the weak topology)

with respect to the initial condition, i.e., ρ
(M)
0 ⇀ ρ0 implies ρ

(M)
t ⇀ ρt,.

If we can show that ρt “converges” to a desired result, we can conclude the
parameter population of the finite neural network ρ

(M)
0 will also “converge” to

the same result, if M is sufficiently large. We analyze the dynamics of ρt.

129

8.3 Global convergence

Throughout this section, assume ρt is the solution of

∂tρt = div(ρt∇J(·|ρt)).

with initial condition ρ0. Assume for simplicity that ρ0 has full support,
i.e., that supp(ρ0) = Rd+2. Then a weak solution to the continuity equation
uniquely exists, although we do not show this.

Lemma 22. R̃(ρt) is a nonincreasing function of t.

Proof outline. The variational characterization of {ρt}t≥0 via Wasserstein gra-
dient flow leads to

R̃(ρ̃t+ε) +
1

ε
W 2

2 (ρ̃t+ε, ρ̃t) ≤ R̃(ρ̃t)

Hence,
R̃(ρ̃t+ε) ≤ R̃(ρ̃t)

and with some additional arguments, we conclude

R̃(ρt+ε) ≤ R̃(ρt).

Since {R̃(ρt)}t≥0 is a nonincreasing real-valued sequence, it will converge.
Without further assumptions, however, this does not imply that {ρt}t≥0 (weakly)
converges. Therefore, we will assume the convergence of the measures.

Theorem 46. Assume ρt ⇀ ρ∞. Then ∇J(θ, ρ∞) = 0 for all θ ∈ supp(ρ∞)

Proof. By continuity arguments, we have that

0 = ∂tρ∞ = div(ρ∞∇J(·|ρ∞)).

Formally using integration by parts (even though J(θ|ρ∞) is not smooth and
compactly supported), we get

0 =

∫
Rd+2

J(θ|ρ∞)div(ρ∞(θ)∇J(θ|ρ∞)) dθ

=

∫
Rd+2

J(θ|ρ∞)div(∇J(θ|ρ∞)) dρ∞(θ)

= −
∫
Rd+2

∥∇J(θ|ρ∞)∥2 dρ∞(θ).

and thus, ∇J(θ|ρ∞) = 0 ρ∞-almost everywhere.

130

As we will discuss soon, supp(ρt) = Rd+2, but ρ∞ may have a smaller
support. However, the stationarity condition on ρ∞ does not imply global
optimality.

Since R̃(ρ) is a convex function of ρ (for the losses we consider), all local
minima of R̃ are global, and one may expect the gradient flow to converge to
global minimum. This is true for the gradient flow associated with the total
variation metric. However this is not true for the Wasserstein gradient flow.
While there exists a notion of convexity for Wasserstein gradient flows, namely
geodesic convexity, but R̃ is not geodesically convex in our setup.

Lemma 23. Let R̃ :M+(Θ) → R and let ρ⋆ ∈ M+(Θ). Assume δR̃
δρ
|ρ⋆(·) =

J(·|ρ⋆) exists. Then ρ⋆ minimizes (globally) R̃ if and only if

J(θ, ρ⋆) = 0 for θ ∈ supp(ρ⋆)

J(θ, ρ⋆) ≥ 0 for θ /∈ supp(ρ⋆)

Proof outline. This is an infinite-dimensional version of the homework prob-
lem.

Lemma 24. Let R̃ : P(Θ)→ R and let ρ⋆ ∈ P(Θ). Assume δR̃
δρ
|ρ⋆(·) = J(·|ρ⋆)

exists. Then ρ⋆ minimizes (globally) R̃ if and only if

J(θ, ρ⋆) = c for θ ∈ supp(ρ⋆)

J(θ, ρ⋆) ≥ c for θ /∈ supp(ρ⋆)

Proof outline. This is an infinite-dimensional version of the homework prob-
lem.

To establish global convergence, we need further assumptions. We will
utilize the homogeneity of the ReLU activation function.

Let σ be the ReLU activation function. This makes Φ(x; θ) = uiσ(a
T
i x+bi)

is nonnegative 2-homogeneous in θ. We can use homogeneity by reparameter-
izing each particle θi in polar coordinates as

θi = riηi, with ri ∈ R and ηi ∈ Sd+1.

Using 2-homogeneity, we have

f
(M)
θ (x) =

1

M

M∑
i=1

Φ(x; θi) =
1

M

M∑
i=1

r2iΦ(x; ηi).

131

Then, probability measure ρ(M) = 1
M

∑M
i=1 δθi ∈ P(Rd+2) then corresponds to

the nonnegative measure

ν(M) =
1

M

M∑
i=1

r2i δηi ∈M+(Sd+1)

in the sense that

f
(M)
θ (x) =

∫
Rd+2

Φ(x; θ) dρ(M)(θ) =

∫
Sd+1

Φ(x; η) dν(M)(η)

or more concisely

f
(M)
θ =

∫
Rd+2

Φ dρ(M) =

∫
Sd+1

Φ dν(M).

More generally, given ρ ∈ P(Rd+2), define ν ∈M+(Sd+1) via∫
Sd+1

h(η) dν(η) =

∫
Rd+2\{0}

∥θ∥2h(θ/∥θ∥) dρ(θ) (8.1)

for all bounded measurable h : Sd+1 → R. Then∫
Rd+2

Φ dρ =

∫
Sd+1

Φ dν.

Note that by 2-homogeneity of Φ,

J(·|ρ) = J(·|ν) =
〈
Φ, ∂fR|∫ Φ dν

〉
L2(P)

with ρ and ν corresponding in the sense of (8.1).

The flow θ̇i = −∇θiJ(θi|ρ
(M)
t), induces the dynamics:{

ṙi = −2riJ(ηi|νt)
η̇i = −(I − ηiη⊺i)∇J(ηi|νt)

with νt =
1

M

M∑
i=1

r2i δηi .

To see why,

ri = ∥θi∥

ṙi =
⟨θi, θ̇i⟩
∥θi∥

= − 2

∥θi∥
J(θi|ρ(M)

t)

= −2riJ(ηi|ρ(M)
t)

= −2riJ(ηi|ν(M)
t).

132

Likewise,

ηi =
θi
∥θi∥

η̇i =
θ̇i
∥θi∥

− θi
∥θi∥2

d

dt
∥θi∥ =

1

∥θi∥

(
θ̇i −

θi
∥θi∥2

⟨θi, θ̇i⟩
)

=
1

∥θi∥
(
−∇J(θi|ρ(M)) + ηiη

⊺
i∇J(θi|ρ(M))

)
= −(I − ηiη⊺i)∇J(ηi|ρ(M))

= −(I − ηiη⊺i)∇J(ηi|ν(M)),

where we use the fact that 2-homogeneity of J(·|ρ) implies 1-homogeneity of
∇J(·|ρ) and the Euler identity.

We now derive the PDE describing the dynamics of ν. For now, consider
ν
(M)
t corresponding to ρ

(M)
t in the sense of (8.1). Consider a smooth test

function h : Sd+1 → R. Then∫
Sd+1

h(η) dν
(M)
t (η) =

1

M

M∑
i=1

r2i h(ηi),

and we have

d

dt

∫
Sd+1

h(η) dν
(M)
t (η) =

1

M

M∑
i=1

2riṙih(ηi) +
1

M

M∑
i=1

r2i∇h(ηi)⊺η̇i

= − 1

M

M∑
i=1

4r2i J(ηi|ν
(M)
t)h(ηi)−

1

M

M∑
i=1

r2i∇h(ηi)⊺(I − ηiη
⊺
i)∇J(ηi|ν

(M)
t)

= −4
∫
Sd+1

h(η)J(η|ν(M)
t) dν

(M)
t (η)−

∫
Sd+1

∇h(η)⊺(I − ηη⊺)∇J(η|ν(M)
t) dν

(M)
t (η).

This yields the PDE

∂tν
(M)
t (η) = −4J(η|ν(M)

t)ν
(M)
t (η) + div(ν

(M)
t (η)Pη∇J(η|ν(M)

t)) (8.2)

where we use the Theorem 48 and div is the divergence on the Riemannian
manifold Sd+1 and Pη = I − ηη⊺ is the projection onto the tangent space for
η ∈ Sd+1.

A similar argument can be carried out to obtain the PDE

∂tνt(η) = −4J(η|νt)νt(η) + div(νt(η)Pη∇J(η|νt))

for a general ν ∈ M+(Sd+1) corresponding to ρ ∈ P(Rd+2) in the sense of
(8.1).

133

Theorem 47. Assume the function Φ : Sd+1 → R is (d+1)-times continuously
differentiable. Assume ν0 is a nonnegative measure on the sphere Sd+1 with
finite mass and full support. Then the flow defined in PDE (8.2) is well defined
for all t ≥ 0. Moreover, if νt converges weakly to some limit ν∞, then ν∞ is a
global minimum of the function ν 7→ F (ν) = R(

∫
Sd+1 Φ (η)dν(η)) over the set

of nonnegative measures.

Proof. The existence and uniqueness of the flow (νt)t≤0 can be proved. By
Lemma 24, to show that global minima ,we are enough to show that J(η|ν∞) =
0 on the support of ν∞ and J(η|ν∞) ≥ 0 on the entire sphere.

1. The support of ν∞ The representation of the solution of PDE (8.2)
as

νt = X(t, ·)#
(
ν0 exp

(
−4
∫ t

0

J(X(s, ·)|νs)ds
))

where X : [0,∞) × Sd+1 → Sd+1 is the flow associated to the time-dependent
vector field−Pη∇J(·|νt), i.e. it satisfiesX(0, η) = η and d

dt
X(t, η) = −Pη∇J(X(t, η)|νt)

for all η ∈ Sd+1. Under regularity assumptions, some previous results for ODEs
guarantee that X(t, ·) is diffeomorphism of the sphere at all time t. Thus, im-
age measure of νt is same as measure of the form ν0 exp (·) which has full
support. Thus vt has full support.

2. global minimum We assume that the flow converges to some measure
ν∞. Then, ∂tνt(η)|t=∞ = 0 = −4J(η|ν∞)ν∞(η) + ∇ · (ν∞(η)Pφ∇J(η|ν∞)).
Multiplying both side of the equation by J and integrate, then we get

0 =

∫
Sd+1

J(η|ν∞) {−4J(η|ν∞)dν∞(η) +∇ · (ν∞(η)Pφ∇J(η|ν∞))} dη

=

∫
Sd+1

−4J2(η|ν∞)dν∞(η) +

∫
Sd+1

J(η|ν∞)∇ · (Pφ∇J(η|ν∞))dν∞(η)

= −4
∫
Sd+1

J2(η|ν∞)dν∞(η)−
∫
Sd+1

(Pφ∇J(η|ν∞))T (Pφ∇J(η|ν∞))dν∞(η)

Thus, J and Pφ∇J is zero on the support of ν∞ and no condition beyond the
support of ν∞. For contradiction, assume that infη J(η|ν∞) < 0. Then, by
Sard’s Theorem there is negative j such that j >

∫
η
J(η|ν∞) and the gradient

Pη∇J(η|ν∞) does not vanish on the
{
η ∈ Sd+1|J(η|ν∞) = j

}
. we now con-

sider the set K = {η|J(η|ν∞ ≤ j}, which has some boundary ∂K, such that
Pη∇J(η|ν∞) · n̂ > 0 where η ∈ ∂K and outward normal vector n̂.

Since νt converges weakly to ν∞, there exists t0 such that for all t ≥ t0 and
η ∈ K, J(η|νt) < j/2 and Pη∇J(η|νt) · n̂ > 0. Thus, for all t > t0 and test

134

function φ = 1η∈K ,

d

dt
νt(K) =

d

dt

∫
K

dνt(η) = −4
∫
K

J(η|νt)dνt +
∫
∂K

Pη∇J(η|νt) · n̂dνt

≥ −2jνt(K).

Since νt0(K) > 0 (because νt0 has full support), νt(K) diverges, which is a
contradiction with the convergence of νt.

8.3.1 Differential geometry background

Let M be a compact Riemannian manifold1 of finite dimension with empty
boundary and g be the corresponding metric. (In this note, we consider only
M = Sd+1 case.) Let φ : Sd+1 → R be the test function and V : Sd+1 → Rd+2

1. φ : Sd+1 → R is smooth if and only if there exists smooth function
φ̃ : Rd+2 → R such that φ̃|M = φ.

2. V = (V1, V2, · · · , Vd+2) : Sd+1 → Rd+2 is smooth if and only if Vi is
smooth for all i = 1, 2, · · · , d+ 2

3. Let p be a point of M . A linear map v : C∞(M) → R is called a
derivation at p if it is satisfies

v(fg) = f(p)vg + g(p)vf for all f, g ∈ C∞(M).

4. The set of all derivations of C∞(M) at p, denoted by Tp(M), is a vector
space called the tangent space to M at p. An element of TpM is
called a tangent vector at p.

5. (Existence of Local Orthonormal Frames). For each p ∈ M, there is a
smooth orthonormal frame (E1, · · · , Ed+1) on a neighborhood of p.

6. Then, the vectors (E1|p, ·, Ed+1|p) form an orthonormal basis for Tp(M)

7. Pη : Rd+2 → Tη is orthogonal projection. In linear algebra sense,
Pη = I − ηηT for η ∈ Sd+1

8. Define gradient ∇f on Sd+1 as a ∇f(η) = Pη(∇f̃(η)) ∈ Tη ⊂ Rd+2.

9. For a, b ∈ Tη, define inner product ⟨·, ·⟩Tη as ⟨a, b⟩Tη = aT b.

1Riemannian manifold is a real, smooth manifold M equipped with a positive-definite
inner product ⟨·, ·⟩g on the tangent space at each point.

135

10. Define divergence of V as ∇·V =
∑d+1

i=1
∂⟨ei,Ṽ ⟩
∂ei

where Ṽ : Rd+2 → Rd+2

is smooth function such that Ṽ |Sd+1 = V and e1, · · · , ed+1 are orthonor-
mal basis for Tη(M).

Theorem 48 (Integration by parts). Let (M, g) be a compact Riemannian
manifold with boundary, let g̃ denote the induced Riemanninan metric on
∂M, and let N be the outward unit normal vector field along ∂M. Then,
for f ∈ C∞(M) and smooth vector field X, this satisfies div(φX) = φdivX +
⟨gradφ,X⟩g. Furthermore, this satisfites the following ”integration by parts”
formula: ∫

M
⟨gradφ,X⟩gdVg =

∫
∂M

φ⟨X,N⟩gdVg̃ −
∫
M
(φdivX)dVg.

Then, Theorem 48 yields∫
M
∇ · (φV) dη =

∫
∂M
⟨φV, n⟩ dS = 0

=

∫
M
φ∇ · V dη +

∫
M
⟨∇φ, V ⟩Tηdη.

Consequently,∫
Sd+1

∇φ(η)(I − ηηT)∇J(η|ν) dν(η) =
∫
Sd+1

⟨∇φ(η),∇J(η|ν)⟩Tη dν(η)

= −
∫
Sd+1

φ(η) (∇ · ν(η)∇J(η|ν)) dη

Lemma 25 (Sard’s Theorem). Suppose M and N are smooth manifolds with
or without boundary and F :M → N is a smooth map. Then the set of critical
values of F has measure zero in N .

Lemma 26 (Euler identity). If F : Rd → R is 2-homogeneous function, then
2F (θ) = θT∇F (θ) for θ ∈ Rd.

136

Chapter 9

Universal approximation theory:
Deep neural networks

Let σ : R→ R and d ∈ N. Define NN σ
d,m be the class of MLPs with input Rd,

output R, m intermediate neurons, and arbitrary finite depth. The activation
function σ is applied after all layers, except the final layer. We will now show
universality of NN σ

d,m under a very mild assumption on σ.

Lemma 27. Let σ : R → R be a continuous function that is continuously
differentiable at at least one point, with nonzero derivative at that point. Let
K ⊆ R be compact. Then a neuron with activation function σ may uniformly
approximate the identity function on K.

Proof. Let r0 be the point at which σ′(r0) ̸= 0 exists. Define τM : R→ R as

τM(r) =
1

Mσ′(r0)
(σ(r0 +Mr)− σ(r0)) .

As M → 0, this uniformly approximates the identity function.

137

Theorem 49. Let σ : R → R be continuous non-polynomial function which
is continuously differentialble at at least one point, with nonzero derivative at
that point. Let Ω ⊂ Rd be compact. Then NN σ

d,d+2 is dense in (C(Ω), ∥ · ∥∞).

Proof. Define NN σ,τ
d,m be the class of MLPs similar to NN σ

d,m, except that we
have the freedom to choose either σ or τ for the activation function. Let τ be
the identity function.

By Lemma 27, we have NN σ,τ
d+2 = NN σ

d+2. Since σ is non-polynomial, the

classical universal approximation theorem tells us that
∑L

l=1 ulσ(a
T
l x + bl) is

dense. Finally, consider the architecture:

138

Lemma 28. Let σ : R→ R be any nonaffine polynomial. Let K ⊆ R be com-
pact. Then a neuron with activation function σ many uniformly approximate
the quadratic function κ : x 7→ x2 on K.

Proof. Fix r1 ∈ R such that σ′′(r1) ̸= 0, which exist as σ is nonaffine. Define
κM : R→ R by

κM(r) =
σ(r1 +Mr)− 2σ(r1) + σ(r1 −Mr)

M2σ′′(r1)
.

As M → 0, this uniformly approximates the quadratic function κ.

Lemma 29. Using the square and the identity activation functions, the mul-
tiplication operation (x, y) 7→ xy for x, y ∈ R can be represented with 2 inter-
mediate neurons and one additional neuron storing the output.

Proof. Consider the architecture:

139

Theorem 50. Let σ : R→ R be nonaffine polynomial. Let Ω ⊂ Rd be compact.
Then NN σ

d,d+3 is dense in (C(Ω), ∥ · ∥∞). (With a tighter analysis, the width
d+ 3 can be reduced to d+ 2.)

Proof. Define NN κ,τ
d,m be the class of MLPs similar to NN σ

d,m, except that we
have the freedom to choose either κ or τ for the activation function. Let κ
be the square function and τ be the identity function. By Lemmas 27 and
28, NN κ,τ

d,d+3 ⊆ NN σ
d,d+3. If we show that NN κ,τ

d,d+3 contains any polynomial
(of d variables) then we are done, since the algebra of polynomials is dense in
(C(Ω), ∥ · ∥∞) by Stone–Weierstrass.

Consider any

f(x1, . . . , xd) =
M∑
i=1

βimi, mi =
d∏
j=1

x
αj

j

for i = 1, · · · ,M and αi ∈ N. Consider the architecture:

We designate d neurons to copy the input and 2 neurons to perform the mul-
tiplication operation described in Lemma 29. The computation neurons carry
out the products forming the monomials m1, . . . ,mM . Then the out-register

140

neurons accumulate the result of these M monomials by performing addition
M times.

141

Chapter 10

Neural ODE

Consider the depth-L residual network

hθ(X) = zL

zL = zL−1 + f(zL−1, θ, L− 1)

...

z2 = z1 + f(z1, θ, 1)

z1 = z0 + f(z0, θ, 0)

z0 = X

where z0, . . . , zL ∈ RD, θ ∈ RP , and f : RD × RP × N → RD. Note that θ is
shared across all layers. Consider the loss function

loss =
1

N

N∑
i=1

ℓ(hθ(Xi), Yi).

For simplicity, assume N = 1 and write

L = ℓ(hθ(X), Y),

where L loosely denotes the output scalar loss value.
The neural ODE is a continuous-depth (or infinite-depth) analog:

hθ(X) = z(1)

ż(s) = f (z(s), θ, s) for s ∈ [0, 1]

z(0) = X,

where z(s) ∈ RD for s ∈ [0, 1], θ ∈ RP , and f : RD×RP × [0, 1]→ RD. Assume
f is continuous in (z, θ, s) and continuously differentiable in (z, θ). The idea is

142

that f(z, θ, s) is represented by a neural network. More precisely, {z(s)}s∈[0,1]
is a solution to this ODE if

z(s) = X +

∫ s

0

f (z(s′), s′, θ) ds′, s ∈ [0, 1].

For simplicity, assume that the ODE has a unique solution.1

We refer to s ∈ [0, 1] as “pseudo-time” to distinguish it from “time”;
pseudo-time corresponds to the progression of depth while the time corre-
sponds to the progression of training iterations. In this lecture, we will not
consider training iterations of the neural ODE, so time will not appear.

Generally, one considers the loss function

loss =
1

N

N∑
i=1

ℓ(hθ(Xi), Yi),

where hθ(Xi) is the solution to the ODE at pseudo-time s = 1 with initial
condition z(0) = Xi at pseudo-time s = 0. For simplicity, assume N = 1 and
write

L = ℓ(hθ(X), Y),

where L loosely denotes the output scalar loss value.
The 2018 neural ODE paper by Chen, Rubanova, Bettencourt, and Duve-

naud ignited an exciting line of empirical and theoretical research. From the
empirical side, neural ODEs have found many interesting applications with
strong benchmark results. In fact, research on and using neural ODEs is pri-
marily experimental rather than theoretical. From the theoretical side, neural
ODEs can be viewed as an infinite-depth limit of the ResNet, but the neural
ODE, by itself, does not provide any trainability guarantees. In this lecture,
we will discuss how to perform the continuous-depth analog of backpropaga-
tion on neural ODEs. In practice, Neural ODEs are trained using SGD with
gradients computed via the following approach.

As a warmup exercise, let us carry out backpropagation of the discrete-
depth ResNet. Assume the forward pass has been performed, i.e., z1, . . . , zL
have been sequentially computed and their values been stored in memory. For
notational simplicity, denote

al =
∂L
∂zl

=
∂L
∂zL

∂zL
∂zL−1

· · · ∂zl+2

∂zl+1

∂zl+1

∂zl
, l = 0, . . . , L.

1In practice, f will be represented by a neural network with continuous activation func-
tions, so it is reasonable to assume f is locally Lipschitz continuous. By the Picard–Lindelöf
theorem, local Lipschitz continuity implies that a solution exists for s ∈ [0, ε) for some small
ε > 0, but there is no a priori guarantee that z(s) does not blow up within s ∈ [0, 1].

143

Then we have

∂L
∂θ

=
∂L
∂zL

∂zL
∂θ

=
∂L
∂zL

(
∂f

∂θ
(zL−1, θ, L− 1) +

∂f

∂zL−1

(zL−1, θ, L− 1)
∂zL−1

∂θ
+
∂zL−1

∂θ

)
= aL

∂f

∂θ
(zL−1, θ, L− 1) +

∂L
∂zL

∂zL
∂zL−1

∂zL−1

∂θ

= aL
∂f

∂θ
(zL−1, θ, L− 1) + aL−1

∂f

∂θ
(zL−2, θ, L− 2) + aL−1

∂zL−1

∂zL−2

∂zL−2

∂θ

=
L∑
l=1

al
∂f

∂θ
(zl−1, θ, l − 1).

Next, we will obtain an analogous formula for the neural ODE.

10.1 Backpropagation for neural ODE

10.1.1 Warmup for continuous-depth backprop

The full derivation of the continuous-depth backprop will be carried out soon
in Theorem 51. However, let us carry out a smaller computation as a warmup
to familiarize ourselves with the key technique.

We first introduce the some machinery and notation. For s, t ∈ [0, 1], define
the flow operator (also called the time evolution operator) F s,t : RD → RD as

F s,t(z) = z(t)

ż(s′) = f (z(s′), θ, s′) for s′ ∈ [s, t]

z(s) = z.

Then
z(1) = F0,1(X) = F s,1(F0,s(X))

for any s ∈ [0, 1].
The flow operator can evolve the initial condition forward in pseudo-time

(t > s) and also backwards in pseudo-time (t < s), since the ODE can be
solved both forwards and backwards in pseudo-time. In fact, if z(1) is known,
then the initial condition z(0) = F1,0(z(1)) can be recovered through solving
the ODE

ż(s) = f (z(s), θ, s) for s ∈ [0, 1]

z(1) “initial” condition.

144

This was not the case in the discrete-depth ResNet; knowledge of zL does not
necessarily allow one to recover zL−1 or z0. For continuous-depth neural ODE,
obtaining z(0) from z(1) is no more difficult than obtaining z(1) from z(0).

Define
∂L
∂z(s)

= D(L ◦ F s,1)(z(s)) = ∂L(F s,1(z))
∂z

∣∣∣∣
z=z(s)

and
∂z(t)

∂z(s)
= D(F s,t)(z(s)) = ∂F s,t(z)

∂z

∣∣∣∣
z=z(s)

for s, t ∈ [0, 1]. Then, we have the chain rule

∂L
∂z(s)

= D(L ◦ F s,1)(z(s)) = D(L ◦ F t,1 ◦ F s,t)(z(s))

= D(L ◦ F t,1)(z(t)) ·D(F s,t)(z(s))

=
∂L
∂z(t)

∂z(t)

∂z(s)

for s, t ∈ [0, 1]. So ∂L
∂z(s)

represents the infinitesimal change in L if the neu-

ral ODE started at pseudo-time s with initial value z(s) + δ, where δ is an
infinitesimal perturbation.

Let

a(s) =
∂L
∂z(s)

∈ R1×D, s ∈ [0, 1].

Then

ȧ(s) = −a(s)∂f
∂z

(z(s), θ, s), s ∈ [0, 1]

a(1) =
∂L
∂z(1)

and {a(s)}s∈[0,1] can be solved by solving the ODE backwards in pseudo-time
with “initial condition” a(1). (ODE solver is given a(1) and solves for a(s) for

145

0 ≤ s < 1.) This follows from

ȧ(s) = lim
ε→0

a(s+ ε)− a(s)
ε

= lim
ε→0

a(s+ ε)

ε

(
I − ∂z(s+ ε)

∂z(s)

)
= lim

ε→0

a(s+ ε)

ε

(
I − ∂

∂z(s)

(
z(s) +

∫ s+ε

s

f(z(s′), θ, s′) ds′
))

= − lim
ε→0

a(s+ ε)
∂f(z(s), θ, s)

∂z(s)
+O(ε)

= − a(s)︸︷︷︸
1×D

∂f

∂z
(z(s), θ, s)︸ ︷︷ ︸
D×D

.

Ultimately, we want ∂L
∂θ
. However, infinitesimal changes of θ to θ+δ affects

the update as
z(s+ ε) ≈ z(s) + εf(z(s), θ + δ, s)

and making sense of this precisely and correctly is tricky. Therefore, we employ
another technique of converting θ into an initial condition of an augmented
ODE.

10.1.2 Backprop via adjoint equations

Theorem 51. Consider the neural ODE. The solution to the ODE

ȧ(s) = −a(s)∂f
∂z

(z(s), θ, s), for s ∈ [0, 1]

ḃ(s) = −a(s)∂f
∂θ

(z(s), θ, s), for s ∈ [0, 1]

a(1) =
∂L
∂z(1)

∈ R1×D

b(1) = 0 ∈ R1×P

yields ∂L
∂θ

= b(0).

Proof. Augment the ODE as follows:

ż(s) = f(z(s), φ(s), s), for s ∈ [0, 1]

φ̇(s) = 0, for s ∈ [0, 1]

z(0) = X

φ(0) = θ.

146

Define the augmented notation

zaug(s) =

[
z(s)
φ(s)

]
∈ R(D+P)×1

faug(zaug(s), s) =

[
f(z(s), φ(s), s)

0

]
∈ R(D+P)×1.

Then

żaug(s) = faug(zaug(s), s), for s ∈ [0, 1]

zaug(0) =

[
X
θ

]
.

For s, t ∈ [0, 1], define the augmented flow operator F s,taug : RD+P → RD+P

as

F s,taug(z, φ) = (z(t), φ(t))

żaug(s
′) = faug(zaug(s

′), s′), for s′ ∈ [s, t]

zaug(s) =

[
z(s)
φ(s)

]
.

Then define

aaug(s) =
∂L

∂zaug(s)
=
∂L(F s,1aug(zaug))

∂zaug

∣∣∣∣
zaug=zaug(s)

∈ R1×(D+P)

(i)
=
[

∂L
∂z(s)

∂L
∂φ(s)

]
(ii)
=
[
a(s) b(s)

]
,

where (i) defines ∂L
∂z(s)

and ∂L
∂φ(s)

and (ii) defines a(s) and b(s). Alternatively,
we can define

a(s) =
∂L
∂z(s)

=
∂L(F s,1aug(z, φ))

∂z

∣∣∣∣ z=z(s)
φ=φ(s)

b(s) =
∂L
∂φ(s)

=
∂L(F s,1aug(z, φ))

∂φ

∣∣∣∣ z=z(s)
φ=φ(s)

.

The meaning of ∂L
∂z(s)

remains essentially unchanged. The meaning of ∂L
∂φ(s)

is the infinitesimal change in L if the neural ODE started at pseudo-time s

147

with initial value (z(s), φ(s) + δ) = (z(s), θ + δ), where δ is an infinitesimal
perturbation. Since the loss L ultimately only depends on z(1), we have

∂L
∂φ(1)

= 0.

The gradient we wish to obtain is

∂L
∂θ

=
∂L
∂φ(0)

.

By the same reasoning as before, we have

ȧaug(s) = −aaug(s)
∂faug
∂zaug

(zaug(s), s)

= −
[
a(s) b(s)

] [∂f
∂z
(z(s), φ(s), s) ∂f

∂θ
(z(s), φ(s), s)

0 0

]
.

Multiplying out this leads to the stated result.

Finally, we are ready to describe the algorithm to perform backpropagation
with the neural ODE.

Step 1. With initial condition z(0), call an ODE solver to compute z(1).

Step 2. With initial condition (z(1), a(1), b(1)), with z(1) computed from step 1,
a(1) = ∂L

∂z(1)
, and b(1) = 0, call ODE solver (backwards in pseudo-time)

to compute (z(0), a(0), b(0)). Return b(0) = ∂L
∂θ
.

The ODE solver call of Step 2 requires the values of {z(s)}s∈[0,1] at appropriate
discrete points. One option is to store the values of {z(s)}s∈[0,1] computed in
Step 1. Another option, is to compute {z(s)}s∈[0,1] anew from z(1) together
with the computation of {a(s)}s∈[0,1] and {b(s)}s∈[0,1]. This second option,
described in the above algorithm, is much more memory (storage) efficient,
although it does require slightly more computation.

148

Bibliography

[1] Lee K. Jones. A Simple Lemma on Greedy Approximation in Hilbert
Space and Convergence Rates for Projection Pursuit Regression and Neural
Network Training. The Annals of Statistics, 20(1):608–613, 1992.

[2] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation function
can approximate any function. Neural Networks, 6(6):861–867, 1993.

[3] Gilles Pisier. Remarques sur un résultat non publié de b. maurey. Séminaire
Analyse fonctionnelle (dit, pages 1–12, 1981.

[4] Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating
natural functions with neural networks. In International conference on
machine learning, pages 2979–2987. PMLR, 2017.

[5] Matus Telgarsky. Benefits of depth in neural networks. In Conference on
learning theory, pages 1517–1539. PMLR, 2016.

149

	Universal approximation theory for wide neural networks
	Cybenko's proof
	Applications of Stone–Weierstrass
	Interpolation
	Density in Lp spaces
	Quantitative approximation guarantees by probabilistic method
	Approximation capabilities of deeper neural networks
	Approximating compactly supported functions
	Universality of 3-layer wide neural networks
	Depth separation

	Positive definite kernels
	Building blocks of kernels
	Inner products of feature maps
	Operations preserving PDKs
	Shift invariant kernels and Bochner's theorem

	Reproducing kernel Hilbert space (RKHS)
	Completion argument of Moore–Aronszajn
	Discussion

	Kernel trick in shallow learning
	Feature maps
	Kernel trick and kernel SGD
	Finite-sum problems
	Representer theorem
	Kernel ridge regression
	RKHS with finite-dimensional feature vector and and corresponding 2-layer neural networks

	Kernel as linear operators
	Mercer kernel and Mercer's theorem

	Matrix-valued PDKs and vector-valued RKHSs
	Tensor products

	Random feature learning
	Kernel approximation
	Function approximation

	Continuous-Time Training Dynamics
	Gradient flow as a model for stochastic gradient descent
	Continuous-time analysis of gradient flow
	Second-order dynamics as a model for SGD with momentum

	Gaussian process
	Neural network Gaussian process

	Neural tangent kernel
	Kernel gradient flow via the chain rule
	Formal calculations for gradient flow
	Rigorous derivation of kernel gradient flow
	Special case: Quadratic function, empirical risk
	Tangent space interpretation
	Convergence properties of kernel gradient flow

	NTK at initialization
	Some preliminaries
	Invariance of NTK
	Quadratic case

	Wasserstein distance
	Optimal transport formulations
	Monge formulation
	Kantorovich formulation
	Wasserstein distance

	Duality
	Kantorovich–Rubinstein duality
	Preliminaries: Convex conjugates
	Brenier's theorem: W2

	Weak solution of differential equations and Wasserstein gradient flow
	Weak solution to ODE
	Weak solution to PDE
	Formal derivation of weak formulation

	Continuity equation
	Formal derivation of weak formulation
	Properties of the continuity equation

	Wasserstein gradient flow
	Metric gradient flow
	Prelminaries: First variation
	Wasserstein gradient flow

	Mean-field theory
	Convergence of risk
	Population dynamics from gradient flow
	Global convergence
	Differential geometry background

	Universal approximation theory: Deep neural networks
	Neural ODE
	Backpropagation for neural ODE
	Warmup for continuous-depth backprop
	Backprop via adjoint equations

