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Introduction

This lecture note is intended to introduce the recently-developed potential theory for

the non-reversible Markov processes and to explain applications of this new theory

to the study of metastability of huge stochastic interacting systems.

Regarding irreducible Markov processes, it is well-known that the distribution

of the process at time t > 0 converges to its unique invariant measure as t → ∞,

regardless of its starting distribution, and this asymptotic behavior is called the

mixing property of Markov processes. The speed of this convergence is one of the

main concerns in the study of Markov processes, as it is related to a multitude of im-

portant problems such as the performance of Markov chain Monte Carlo algorithm,

equilibration of non-equilibrium physical systems, and metastability of random dy-

namics.

In the study of the mixing property of Markov processes, one of the most useful

tools is potential theory, especially the quantity called capacity with respect to the

Markov process under consideration. Capacity is measured for two disjoint subsets

of the state space of the Markov process, and it is inversely related to how well

the corresponding Markov process commutes between these two disjoint sets. Since

the convergence explained above will take a long time if the Markov process cannot

quickly commute between two large (with respect to the invariant measure) sets,

capacity is a useful notion in the analysis of mixing properties.

Classic potential theory is developed only when the underlying Markov process

is reversible with respect to its invariant measure, and has been widely used in the

study of the mixing property of Markov processes (e.g., [11] or [42, Chapters 9, 10]).

In the potential theory of reversible Markov processes, the so-called Dirichlet and

Thomson principles provide a robust way of estimating the capacity via construction

of a test function or a test flow.

Potential theory for non-reversible processes has been developed very recently.

In particular, [24] and [57] established the Dirichlet and Thomson principles for non-

reversible Markov processes, respectively. These formulae are far more involved than

the corresponding principles for the reversible processes, and technical difficulties

arise in the application of these principles. To minimize these technical issues, a

more generalized version of the Dirichlet and Thomson principles were developed in

[37, 56]. In the first part of the current note, we give a comprehensive review on

these recent developments in the potential theory of non-reversible Markov processes

based on [24, 56, 57].

In the second and third parts of this note, we explain two applications of the

recently-developed potential theory to the study of metastability. The metastability

is a ubiquitous phenomenon appearing when a Markov process possesses a poor
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mixing property because of the existence of multiple locally stable sets, or metastable

sets. For example, metastability occurs for the models such as

• small random perturbations of dynamical systems (e.g., [14, 15, 23, 37, 41, 44,

45, 46, 55]),

• interacting particle systems with condensing phenomena (e.g., [5, 9, 25, 26, 35,

36, 54, 56]), and

• stochastic spin systems in the low-temperature regime (e.g., [1, 6, 10, 11, 12,

13, 16, 17, 21, 32, 33, 39, 43, 51, 52, 49]).

Readers are referred to monographs [11, 53] for more comprehensive discussions

regarding the mathematical study of metastability.

The potential theory plays a crucial role in the rigorous analysis of metastability.

In particular, two representative ways of quantitatively analyzing the metastable

behavior are the Eyring–Kramers law [22, 29] and Markov chain model reduction

[2, 3, 4, 36].

The Eyring–Kramers law describes the precise asymptotics of the mean transition

time from a metastable set to other metastable sets. Since such a transition between

metastable sets is the signature behavior of metastability, the Eyring–Kramers law

is clearly a crucial problem. A robust methodology to prove the Eyring–Kramers

law based on the potential theory (known as the potential-theoretic approach) is

developed in [14]. We refer to the monograph [11] for a comprehensive review on

this approach. In Part 2, we derive the Eyring–Kramers law for a stochastic spin

system known as the Ising model on a large, finite two-dimensional lattice without

external field as an application of the potential theory explained in Part 1. This part

is largely based on the recent article [27]. We remark that the article [27] addresses

more general situations. This article not only considers the Ising model on a two-

dimensional lattice but also the Potts model (which is a generalization of the Ising

model) on two- and three-dimensional lattices. In particular, the three-dimensional

model is more cumbersome for carrying out rigorous analyses. Moreover, this article

not only concerns the Eyring–Kramers law but also the precise analyses of the energy

landscape and the typical path of transitions. In this note, we only focus on the

Eyring–Kramers law for the two-dimensional model to convey the overall idea. For

interested readers, we refer to the article [27] for more comprehensive results.

If there are several metastable sets and the transitions between them take place

successively, it is tempting to analyze these successive transitions all at once. A

natural way of carrying this out is to approximately describe, after a suitable time-

rescaling, the successive transitions between metastable sets as a Markov chain whose
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state space consists of metastable sets of the original Markov process. This method-

ology for describing the metastable behavior is a special case of the Markov chain

model reduction. A robust methodology for the verification of this Markov chain

model reduction based on potential theory has been developed in [2, 3, 4], and this

method is called the martingale approach. In Part 3, we combine this approach and

the potential theory for non-reversible processes to analyze the metastable behavior

of non-reversible zero-range processes. This part is largely based on the recent arti-

cle [56]. For conciseness of the discussion, we only consider the asymmetric nearest

neighbor random walk on a cycle, but the discussion given here can be applied to

the general model; we refer to [56] for the interested readers.

Acknowledgement. This lecture note is written with the support of the Sangsan

Lecture Note fund of the Research Institute of Mathematics of the Seoul National

University. The contents of the lecture note have been developed with the support

of the National Research Foundation of Korea (NRF) grant funded by the Korean

government (MSIT) (No. 2017R1A5A1015626 and No. 2018R1C1B6006896). The

author thanks Seonwoo Kim and Jungkyoung Lee for careful reading of the early

version of the note and for helping to clarify the presentation.
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Part I

Potential Theory

In the first part, we review the potential theory of continuous-time Markov pro-

cesses, introduce the Dirichlet and Thomson principles, and then finally explain the

generalized Dirichlet and Thomson principles developed in [56]. Although we ex-

plain the whole theory in the context of continuous-time Markov processes for the

convenience of the discussion, the corresponding results are also valid for discrete-

time Markov chains or diffusion processes. For the discussion of diffusion processes,

we refer to [37].

sectionPotential Theory of Markov Processes

0.1 Markov processes

We start by introducing several relevant notions regarding a continuous-time Markov

process (X(t))t≥0 on a finite set H.

Continuous-time Markov processes

For x ∈ H, we denote by Px the law of the process X(·) starting from x, and by Ex
the expectation with respect to Px. We assume that the process X(·) is irreducible,

in the sense that for all x, y ∈ H1,

Px[X(t) = y for some t > 0] = 1 .

We denote by r : H × H → [0, ∞) the jump rate of the Markov process X(·).
Namely, for x, y ∈ S, the quantity r(x, y) ≥ 0 represents the rate of the jump from

x to y for the Markov process X(·). For convenience, we set r(x, x) = 0 for all

x ∈ H. Denote by

λ(x) =
∑
y∈H

r(x, y) ; x ∈ H (0.1)

the holding rate of the process X(·) at x. Then, the dynamics X(·) can be described

as follows: if X(t) = x, then the process waits for an exponential time of mean

λ(x)−1. Then, it jumps to y ∈ H with probability r(x, y)/λ(x).

1In this lecture note, writing a, b ∈ A always implies that a and b are different elements of a set
A.
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Embedded chain

We denote by (X̂(n))n∈Z+ where Z+ = Z ∩ [0, ∞) the discrete-time Markov chain

with jump probability p(x, y) = r(x, y)/λ(x). This chain is referred to as the

embedded chain of X(·), and represents the jumping dynamics (irrespective of the

exponential waiting time between successive jumps) of X(·). For x ∈ H, denote by

P̂x the law of the embedded chain X̂(·) starting from x, and by Êx the expectation

with respect to P̂x.

Invariant measure and reversibility

By irreducibility of the process X(·), there exists a unique probability distribution

µ(·) on H that satisfies ∑
x∈H

µ(x)r(x, y) =
∑
x∈H

µ(y)r(y, x) . (0.2)

One can readily infer from the irreducibility that

µ(x) > 0 for all x ∈ H . (0.3)

Exercise 0.1. Suppose that the Markov process X(·) is irreducible. Prove that

there exists a unique probability distribution µ(·) on H satisfying (0.2). Then,

prove that this unique µ(·) satisfies (0.3).

The distribution µ(·) is called the invariant (or stationary) distribution since

the marginal distribution of the process X(·) at any later time t > 0 is µ, provided

X(0) is distributed according to µ. We say that the process X(·) is reversible if the

following detailed balance condition holds:

µ(x)r(x, y) = µ(y)r(y, x) for all x, y ∈ H . (0.4)

Note that (0.4) immediately implies (0.2). Such a process is called reversible since

the time-reversed process has the same law with the original process. If the process

X(·) is not reversible, it is called a non-reversible or irreversible process.

In addition, we can readily check that a measure M(·) on H given by

M(x) = λ(x)µ(x) ; x ∈ H (0.5)

is an invariant measure (not necessarily a probability measure) for the embedded

chain X̂(·). Moreover, the chain X̂(·) is reversible, i.e., M(x)p(x, y) = M(y)p(y, x)

for all x, y ∈ H, if and only if the original process X(·) is reversible.
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Generator and Dirichlet form

The generator L associated with the process X(·) is an operator acting on each

function f : H → R in a way that

(L f)(x) =
∑
y∈H

r(x, y)(f(y)− f(x)) ; x ∈ H .

Namely, L f is another real function on H. We denote by L2(µ) the L2 space of

real functions on H with respect to the measure µ. Since H is a finite set, the space

L2(µ) is merely a collection of all real functions on H. 2 Denote by 〈·, ·〉µ the inner

product on L2(µ), i.e., for f, g : H → R,

〈f, g〉µ =
∑
x∈H

f(x)g(x)µ(x) .

The Dirichlet form associated to the process X(·) is defined by, for f : H → R,

D(f) = 〈f, −L f〉µ . (0.6)

This plays an important role in the potential theory. By the summation of parts

and (0.2), we can write

D(f) =
1

2

∑
x∈H

∑
y∈H

µ(x)r(x, y)[f(y)− f(x)]2 . (0.7)

We note that the analyses of the reversible process are far more convenient than

those of the non-reversible one, mainly because the operator L is self-adjoint in the

space L2(µ) in the sense that, for all f, g : H → R,

〈f, L g〉µ = 〈L f, g〉µ .

By the summation by parts and (0.4), we can check that both sides of the previous

identity equal

−1

2

∑
x∈H

∑
y∈H

µ(x)r(x, y)[f(y)− f(x)][g(y)− g(x)] .

2Of course, this is no longer true if we consider the diffusion case.
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Adjoint process

For the non-reversible case, we define the adjoint process (X†(t))t≥0, which is another

continuous-time Markov process on H with rate

r†(x, y) =
µ(y)r(y, x)

µ(x)
; x, y ∈ H .

We shall denote by P†x the law of the adjoint process X†(·) starting from x, and by

E†x the expectation with respect to P†x.

The process X†(·) is a time-reversed process of X(·), and we can notice from

(0.4) that X†(·) is defined by the same law with X(·) in the reversible case; hence

the time-reversing does not change the law. We define the generator for the adjoint

process X†(·) as, for f : H → R,

(L †f)(x) =
∑
y∈H

r†(x, y)(f(y)− f(x)) ; x ∈ H .

The importance of the adjoint process in the context of the potential theory follows

from the fact that L † is indeed the adjoint operator of L in the sense that, for all

f, g : H → R,

〈f, L g〉µ =
〈
L †f, g

〉
µ
. (0.8)

Exercise 0.2. 1. Verify (0.8).

2. Prove that 〈f, L g〉µ = 0 if f is a constant function. In particular, for any

g : H → R, we have ∑
x∈H

µ(x)(L g)(x) = 0 .

Remark 0.3. Inserting g = −f at (0.8), we can observe that the Dirichlet form for

the adjoint process is also given as D(·).

We can also consider the embedded chain of the adjoint process. Write X̂†(·)
the embedded chain with respect to the process X†(·). One can readily verify that

the jump rate p†(·, ·) of the chain X̂†(·) is given by

p†(x, y) =
M(y)p(y, x)

M(x)
; x, y ∈ H , (0.9)

and furthermore M(·) is again the invariant measure for the process X̂†(·). Similarly,

we denote by P̂†x the law of the process X̂†(·) starting at x ∈ H, and by Ê†x the

expectation with respect to P̂†x.
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0.2 Equilibrium potential and capacity

Two crucial notions in the potential theory of Markov processes are the equilibrium

potential and the capacity. In this section, we define these objects and review their

elementary properties.

Equilibrium potential

For A ⊂ H, we denote by τA the hitting time of the set A:

τA = inf{t ≥ 0 : X(t) ∈ A} .

For two non-empty and disjoint subsets A and B of H, we define the equilibrium

potential between A and B with respect to the process X(·) as a function hA,B :

H → [0, 1] defined by

hA,B(x) = Px[τA < τB] ; x ∈ H .

By definition, it is clear that

hB,A = 1− hA,B . (0.10)

The following lemma gives the basic properties of the equilibrium potential hA,B.

Lemma 0.4. For two non-empty and disjoint subsets A and B of H, the equilibrium

potential hA,B satisfies
hA,B ≡ 1 on A ,

hA,B ≡ 0 on B , and

L hA,B ≡ 0 on (A ∪ B)c = H \ (A ∪ B) .

(0.11)

Proof. The first two properties are evident from the definition of hA,B. Let us focus

on the last one. Fix x ∈ (A∪B)c. Then, since the process X(·) starting at x jumps

to y with probability r(x, y)/λ(x), by the Markov property we can write

hA,B(x) = Px[τA < τB] =
∑
y∈H

r(x, y)

λ(x)
Py[τA < τB] =

∑
y∈H

r(x, y)

λ(x)
hA,B(y) .

Multiplying both sides by λ(x) and reorganizing give us L hA,B(x) = 0.

Remark 0.5. Of course, we can define the equilibrium potential h†A,B : H → [0, 1]

with respect to the adjoint process X†(·). Then, an analogue of Lemma 0.4 holds for
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h†A,B. It suffices to replace the last property of (0.11) with L †h†A,B ≡ 0 on (A∪B)c.

Capacity

For two non-empty and disjoint subsetsA and B ofH, we define the capacity between

A and B with respect to the process X(·) as

cap(A, B) = D(hA,B) . (0.12)

By the expression (0.7) of the Dirichlet form and (0.10), it holds that

cap(A, B) = D(hA,B) = D(hB,A) = cap(B, A) . (0.13)

Notation 0.6. If A = {a} or B = {b} (or both), we simply write a or b instead of {a}
or {b}, respectively, in the subscript of hA,B and cap(A, B). For instance, if A = {a}
and B = {b}, we write ha, b and cap(a, b), instead of h{a}, {b} and cap({a}, {b}),
respectively.

Exercise 0.7. Let H = TN = Z/(NZ)(= ZN ) be a discrete torus of length N (i.e.,

a cycle of length N). Define a rate as

r(x, y) =


p if x− y ≡ 1 (mod N) ,

1− p if x− y ≡ −1 (mod N) ,

0 otherwise ,

for some p ∈ [0, 1]. For the Markov process X(·) on TN with rate r(·, ·), answer the

following questions.

1. Prove that the uniform measure µ(·) on TN , namely,

µ(x) =
1

N
for all x ∈ TN ,

is the unique invariant measure for the process X(·), and moreover that the

process X(·) is reversible if and only if p = 1/2.

2. For x, y ∈ TN , compute cap(x, y). (cf. Notation 0.6)

3. For any non-empty and disjoint subsets A and B of TN , compute cap(A, B).

Next, we introduce an alternative expression for the capacity that turns out to

play an important role in using the capacity in various instances. We write τ+
A for
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the return time to the set A:

τ+
A = inf{t > 0 : X(t) ∈ A and X(s) 6= X(0) for some s ∈ [0, t]} .

Namely, this time expresses the first time at which X(t) arrives at A after leaving

its initial location. In particular, if the process starts from x /∈ A, we have τ+
A = τA.

Recall the measure M(·) from (0.5).

Lemma 0.8. For two non-empty and disjoint subsets A and B of H, it holds that

cap(A, B) =
∑
x∈A

M(x)Px[τB < τ+
A ] .

Proof. By (0.6) and (0.12), we can write

cap(A, B) = 〈hA,B, −L hA,B〉µ =
∑
x∈H

hA,B(x) (−L hA,B)(x)µ(x) .

By (0.11), we have hA,B(x) (L hA,B)(x) = 0 for all x /∈ A, and thus we can write

cap(A, B) =
∑
x∈A

(−L hA,B)(x)µ(x) .

Note that we used the fact that hA,B ≡ 1 on A. By the definition of the generator

and (0.10), we can further write

cap(A, B) =
∑
x∈A

∑
y∈H

µ(x)r(x, y)[hA,B(x)− hA,B(y)]

=
∑
x∈A

∑
y∈H

µ(x)r(x, y)[1− hA,B(y)] =
∑
x∈A

∑
y∈H

µ(x)r(x, y)hB,A(y) .

(0.14)

On the other hand, by the Markov property, for x ∈ A we have

Px[τB < τ+
A ] =

∑
y∈H

p(x, y)Py[τB < τA] =
∑
y∈H

p(x, y)hB,A(y) . (0.15)

Since µ(x)r(x, y) = M(x)p(x, y), we can complete the proof from (0.14) and (0.15).

The capacity with respect to the adjoint process X†(·) is given by (cf. Remark

0.3)

cap†(A, B) = D(h†A,B) . (0.16)
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Then, by the same reasoning as above, it holds that cap†(A, B) = cap†(B, A).

Now, we give two important properties of the capacity based on Lemma 0.8. The

first is a somewhat unexpected property in view of the definitions (0.12) and (0.16)

of capacities.

Proposition 0.9. For two non-empty and disjoint subsets A and B of H, it holds

that

cap(A, B) = cap†(A, B) .

Proof. We first claim that, for all x ∈ A and y ∈ B,

M(x)Px
[
τB < τ+

A , τB = τy
]

= M(y)P†y
[
τA < τ+

B , τA = τx
]
. (0.17)

To prove this, we write the left-hand side as

∞∑
T=1

∑
(ωt)Tt=0:ω0=x, ωT=y

M(x)

T−1∏
t=0

p(ωt, ωt+1) , (0.18)

where the summation is carried out for the paths (ωt)
T
t=0 such that p(ωt, ωt+1) > 0

for all t ∈ J0, T − 1K3 and ωt /∈ A ∪ B for all t ∈ J1, T − 1K. By (0.9), we have

M(x)

T−1∏
t=0

p(ωt, ωt+1) = M(y)

T−1∏
t=0

p†(ωt+1, ωt) .

Therefore, we can rewrite (by reversing the path) (0.18) as

∞∑
T=1

∑
(ωt)Tt=0:ω0=y, ωT=x

M(y)
T−1∏
t=0

p†(ωt, ωt+1) ,

where the summation is carried out for the paths (ωt)
T
t=0 such that p†(ωt, ωt+1) > 0

for all t ∈ J0, T − 1K and ωt /∈ A ∪ B for all t ∈ J1, T − 1K. By the same reasoning

as above, this corresponds to the right-hand side of (0.17). Hence, we have proved

(0.17).

3Here, for integers a and b, Ja, bK denotes [a, b] ∩ Z.
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Therefore, by Lemma 0.8,

cap(A, B) =
∑
x∈A

∑
y∈B

M(x)Px
[
τB < τ+

A , τB = τy
]

=
∑
x∈A

∑
y∈B

M(y)P†y
[
τA < τ+

B , τA = τx
]

=
∑
y∈B

M(y)P†y
[
τA < τ+

B
]

= cap†(B, A) .

Now, it suffices to recall (0.13).

Proposition 0.10. Suppose that A′ and B′ are non-empty disjoint subsets of H.

Let A and B be non-empty subsets of A′ and B′, respectively. Then, it holds that

cap(A, B) ≤ cap(A′, B′) . (0.19)

Proof. It suffices to prove that, the capacity is monotone in the second argument,

i.e.,

cap(A, B) ≤ cap(A, B′) , (0.20)

since by the symmetry (0.13), we can proceed as

cap(A, B) ≤ cap(A, B′) = cap(B′, A) ≤ cap(B′, A′) = cap(A′, B′) ,

provided that we have (0.20).

Now, let us prove (0.20). By Lemma 0.8, it suffices to prove∑
x∈A

M(x)Px[τB < τ+
A ] ≤

∑
x∈A

M(x)Px[τB′ < τ+
A ] .

Since B ⊂ B′, we trivially have Px[τB < τ+
A ] ≤ Px[τB′ < τ+

A ].

In the investigation of the mixing property of Markov processes, use of the ca-

pacity defined above is crucial, and its (more of less accurate) estimation is required.

The definition of the capacity given above is easy to understand, but it is not suit-

able for the estimation. Instead, the variational expression known as the Dirichlet

and Thomson principles are typically used in the estimation of the capacity. The

remainder of Part 1 is devoted to explain this strategy.

To explore this advanced strategy to estimate the capacity, we need to reinterpret

the capacity in the context of flow structure explained below. We refer to [24, 57, 40]

for more comprehensive discussions on the flow structure of Markov processes, and

to [37] for the flow structure of diffusion processes.
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0.3 Flow structure for reversible case

Since the flow structure is clearer when the Markov process X(·) is reversible, we

start with this case. The general case will be treated in the next subsection.

Let us assume throughout this subsection that X(·) is reversible, i.e., (0.4) holds.

For x, y ∈ H, we write x ∼ y if r(x, y) > 0. Since r(x, y) > 0 if and only if

r(y, x) > 0, we observe that x ∼ y if and only if y ∼ x. Then, we define the set of

directed edges by

E = {(x, y) ∈ H ×H : x ∼ y} . (0.21)

Note that (x, y) ∈ E if and only if (y, x) ∈ E by the previous remark.

A function φ : E→ R is called a flow if it is anti-symmetric, in the sense that

φ(x, y) = −φ(y, x) for all x, y ∈ H .

Here, φ(x, y) is indeed a shorthand of φ((x, y)). This is called flow, since the

quantity φ(x, y) represents the flux of the flow from site x to y (and hence should

be −φ(y, x)).

The divergence of the flow φ at site x is defined by

(divφ)(x) =
∑
y:x∼y

φ(x, y) ,

and represents the amount of the net flow coming from x. For A ⊂ H, define

(divφ)(A) =
∑
x∈A

(divφ)(x) .

A flow φ is called divergence-free at x ∈ H if (divφ)(x) = 0, and is called divergence-

free on A ⊂ H if (divφ)(x) = 0 for all x ∈ A.

Now, we define an L2-structure on the space of flows. Define the conductance

between the sites as

c(x, y) = µ(x)r(x, y) ; x, y ∈ H , (0.22)

so that c(x, y) = c(y, x) by (0.4). Denote by F the space of flows. For φ ∈ F and

ψ ∈ F, define an inner product

〈φ, ψ〉F =
1

2

∑
(x, y)∈E

φ(x, y)ψ(x, y)

c(x, y)
. (0.23)

The flow norm of a flow φ is naturally defined by ‖φ‖F = 〈φ, φ〉1/2F .
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Example. For f : H → R, we define a flow Ψf as

Ψf (x, y) = c(x, y)[f(y)− f(x)] ; (x, y) ∈ E . (0.24)

The anti-symmetry, i.e., Ψf (x, y) = −Ψf (y, x), is a consequence of (0.4). A crucial

feature of this flow is the fact that

‖Ψf‖2F = D(f) , (0.25)

which follows from (0.7), (0.22), and (0.23). Thus, for any two disjoint and non-

empty subsets A and B of H, we have

‖ΨhA,B‖
2
F = cap(A, B) . (0.26)

This fact will be critically used later to derive the Thomson principle.

Now, we can observe the following elementary properties.

Proposition 0.11. With the notations as above, the followings hold.

1. For all f : H → R and x ∈ H,

(div Ψf )(x) = µ(x) (L f)(x) .

In particular, for two disjoint non-empty subsets A, B of H, the flow ΨhA,B is

divergence-free on (A ∪ B)c.

2. For all f : H → R and φ ∈ F,

〈Ψf , φ〉F = −
∑
x∈H

f(x) (divφ)(x) .

Proof. The proof follows from elementary computations. For the first assertion of

(1),

(div Ψf )(x) =
∑
y:x∼y

Ψf (x, y) =
∑
y∈H

c(x, y)[f(y)− f(x)]

= µ(x)
∑
y∈H

r(x, y)[f(y)− f(x)] = µ(x) (L f)(x) ,

where the second equality holds since for y such that x 6∼ y, we have c(x, y) = 0.

The second assertion of (1) follows directly from (0.11).
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For (2), by the definition of Ψf ,

〈Ψf , φ〉F =
1

2

∑
(x, y)∈E

φ(x, y)[f(y)− f(x)] = −
∑
x∈H

∑
y:y∼x

f(x)φ(x, y)

= −
∑
x∈H

f(x) (div φ)(x) .

0.4 Flow structure for non-reversible case

Now, we turn to the general case that is developed in [24]. We say that x ∼ y

if r(x, y) + r(y, x) > 0. Similarly as before, x ∼ y if and only if y ∼ x. With

this modified equivalence relationship, we define E as in (0.21), and then the flow

is defined as anti-symmetric functions on E. The divergence is also defined in an

identical manner.

The difference now appears at the inner product structure. Recall (0.22) and

define

cs(x, y) =
1

2
[c(x, y) + c(y, x)] =

1

2
[µ(x)r(x, y) + µ(y)r(y, x)] ,

so that cs(x, y) = cs(y, x). Then, the inner product is defined by

〈φ, ψ〉F =
1

2

∑
(x, y)∈E

φ(x, y)ψ(x, y)

cs(x, y)
. (0.27)

Note that this definition is in accordance with (0.23) in the reversible case. Then,

the flow norm is again defined as ‖φ‖F = 〈φ, φ〉1/2F .

Example. For f : H → R, define three flows as

Φf (x, y) = f(y)c(y, x)− f(x)c(x, y) ,

Φ∗f (x, y) = f(y)c(x, y)− f(x)c(y, x) , (0.28)

Ψf (x, y) = cs(x, y) [f(y)− f(x)] = (1/2)(Φf + Φ∗f )(x, y) .

Note that the definition of Ψf is in accordance with (0.24), and moreover we have

Φf = Φ∗f = Ψf in the reversible case. We remark that the relations (0.25) and (0.26)

are still in force in this case. However, unlike the reversible case, the expression (0.26)

for the capacity is not sufficient to derive the Dirichlet and Thomson principles, and

hence the flows Φf and Φ∗f have to be crucially used.

We conclude this subsection with the following proposition, which summarizes

several elementary properties that will be useful later.
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Proposition 0.12. With the notations as above, the followings hold.

1. For all f : H → R and x ∈ H,

(div Φf )(x) = µ(x) (L †f)(x) and (div Φ∗f )(x) = µ(x) (L f)(x) .

In particular, for two disjoint non-empty subsets A, B of H, the flows Φ
h†A,B

and Φ∗hA,B are divergence-free on (A ∪ B)c.

2. For all f : H → R and φ ∈ F,

〈Ψf , φ〉F = −
∑
x∈H

f(x) (divφ)(x) .

3. For all f, g : H → R,

〈Ψf , Φg〉F = 〈−L f, g〉µ and
〈
Ψf , Φ∗g

〉
F

=
〈
−L †f, g

〉
µ
.

Proof. Proofs of (1) and (2) are similar to those of Proposition 0.11 and hence are

left to the readers. For (3), we first consider 〈Ψf , Φg〉F. By part (2), we can write

〈Ψf , Φg〉F = −
∑
x∈H

f(x) (div Φg)(x) .

Applying part (1), we get

〈Ψf , Φg〉F = −
∑
x∈H

f(x) [µ(x) (L †g)(x)] =
〈
f, −L †g

〉
µ
.

Now the proof is completed by recalling (0.8). The proof for
〈
Ψf , Φ∗g

〉
F

is identical

and will be omitted.

0.5 Application of potential theory: an example

Before proceeding further regarding variational expression of the capacity, we explain

an application of the potential theory in the estimate of expected hitting time or

related quantities (see discussions after Proposition 0.14).

We fix two non-empty and disjoint subsets A and B of H throughout this sub-

section. We define the so-called equilibrium measure between A and B on A with

respect to the process X(·) as

νA,B(x) =
M(x)Px[τB < τ+

A ]

cap(A, B)
; x ∈ A .
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By Lemma 0.8, νA,B(·) is a probability measure on A. Similarly, we can define the

equilibrium measure ν†A,B(·) with respect to the adjoint process X†(·):

ν†A,B(x) =
M(x)P†x[τB < τ+

A ]

cap(A, B)
; x ∈ A , (0.29)

where M(x) and cap(A, B) are not changed since M(·) is still the invariant measure

for the embedded chain of the adjoint process and since Proposition 0.9, respectively.

Remark 0.13. 1. Define the boundary ∂A of A as

∂A = {x ∈ A : r(x, y) > 0 for some y /∈ A} .

Note that we have Px[τB < τ+
A ] = 0 for x ∈ A \ ∂A. Hence, the measure νA,B

(as well as ν†A,B) is concentrated on the boundary ∂A.

2. If A = {a} is a singleton, the measure νA,B is merely the Dirac measure on

{a}.

For a probability measure π on H, denote by Pπ the law of the process X(·)
when X(0) is distributed according to π, and by Eπ the associated expectation. The

following proposition is the main result of the current subsection.

Proposition 0.14. For any f : H → R, we have that

E
ν†A,B

[∫ τB

0
f(X(t))dt

]
=

〈
f, h†A,B

〉
µ

cap(A, B)
. (0.30)

Before proving this proposition, we explain several direct applications of this

proposition. First, we take f ≡ 1 to deduce

E
ν†A,B

[τB] =

∑
x∈H h

†
A,B(x)µ(x)

cap(A, B)
. (0.31)

Moreover, by taking A = {z}, the left-hand side becomes the mean hitting time

Ez [τB] (cf. Remark 0.13-(2)), and thus we obtain

Ez [τB] =

∑
x∈H h

†
z,B(x)µ(x)

cap(z, B)
. (0.32)
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Note from (0.11) that∑
x∈H

h†A,B(x)µ(x) = µ(A) +
∑

x∈(A∪B)c

h†A,B(x)µ(x) ≤ µ(A) + µ((A∪B)c) = 1− µ(B) .

(0.33)

Hence, by deriving a lower bound on cap(A, B), we can obtain an upper bound on

the expectation E
ν†A,B

[τB] of the hitting time from (0.31). In the next two sections,

we will discuss how to get a lower and an upper bound on cap(A, B). Of course, in

the real application, we may need more refined estimates than (0.33) by studying

the equilibrium potential.

Next, by taking f = 1C for some C ⊂ H \ B, the previous proposition becomes

E
ν†A,B

[∫ τB

0
1C(X(t))dt

]
=

∑
x∈C h

†
A,B(x)µ(x)

cap(A, B)
.

The left-hand side now measures the amount of time the process spends on C before

arriving at B. For this setting, the numerator of the right-hand side can be trivially

bounded from above by µ(C) since h†A,B ≤ 1. Now, let us return to Proposition 0.14.

The following is from the arguments given in [2, Proof of Proposition 6.10] and [3,

Proof of Proposition A.2].

Proof of Proposition 0.14. It suffices to prove the proposition when f = 1{z} for all

z ∈ H. Let us fix z ∈ H. If z ∈ B, both sides of (0.30) are trivially 0, and hence we

can assume z ∈ H \ B.

Since the embedded chain is obtained from the original Markov process via the

time changing, we have

h†A,B(z) = P†z[τA < τB] = P̂†z[τ̂A < τ̂B] ,

where the hitting time and the return time appearing on the right-hand side are

computed with respect to the process X̂†(·). Write

LA,B = sup{n ≥ 0 : X̂†(n) ∈ A and n < τ̂B} ,

where we use the convention that sup ∅ = −∞. With these notations, we can rewrite
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h†A,B(z) as

h†A,B(z) = P̂†z[τ̂A < τ̂B] =
∞∑
n=0

P̂†z[LA,B = n]

=

∞∑
n=0

∑
y∈A

P̂†z[X̂†(n) = y, n < τ̂B] P̂†y[τ̂B < τ̂+
A ]

=
∑
y∈A

[
P̂†y[τ̂B < τ̂+

A ]
∞∑
n=0

P̂†z[X̂†(n) = y, n < τ̂B]

]
, (0.34)

where the second equality follows from the Markov property.

For u, v ∈ H \ B and n ≥ 0, denote by P (u, v;n, B) the collection of paths

(w0, w1, · · · , wn) such that w0 = u, wn = v, and wi /∈ B for all 0 ≤ i ≤ n. Note

that

(w0, w1, · · · , wn) ∈ P (u, v;n, B) if and only if (wn, wn−1, · · · , w0) ∈ P (v, u;n, B) .

(0.35)

With this notation (noting that we assumed z /∈ B), we can write

M(z)P̂†z[X̂†(n) = y, n < τ̂B] =
∑

(w0, w1, ··· , wn)∈P (z, y;n,B)

n−1∑
i=0

M(wi)p
†(wi, wi+1) .

(0.36)

Hence, we can deduce from (0.9), (0.35), and (0.36) that if y ∈ A, then

M(z)P̂†z[X̂†(n) = y, n < τ̂B] =
∑

(w0, w1, ··· , wn)∈P (z, y;n,B)

n−1∑
i=0

M(wi+1)p(wi+1, wi)

=
∑

(w′0, w
′
1, ··· , w′n)∈P (y, z;n,B)

n−1∑
i=0

M(w′i)p(w
′
i, w

′
i+1)

= M(y)P̂y[X̂(n) = z, n < τ̂B] ,
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Inserting this into (0.34), we get

h†A,B(z) =
∑
y∈A

[
M(y)

M(z)
P̂†y[τ̂B < τ̂+

A ]
∞∑
n=0

P̂y[X̂(n) = z, n < τ̂B]

]

=
cap(A, B)

M(z)

∑
y∈A

[
ν†A,B(y)

τ̂B−1∑
n=0

P̂y[X̂(n) = z]

]

=
cap(A, B)

M(z)
Ê
ν†A,B

[
τ̂B−1∑
n=0

1{X̂(n) = z}

]
, (0.37)

where the second equality follows from the explicit formula (0.29), while the last

equality follows from the Fubini theorem. Since if the original chain X(·) arrives at

z, then it spends mean λ(z)−1 exponential random time there, and hence we can

conclude that

E
ν†A,B

[∫ τB

0
1{z}(X(t))dt

]
=

1

λ(z)
Ê
ν†A,B

[
τ̂B−1∑
n=0

1{X̂(n) = z}

]
.

Inserting this to (0.9), we get

E
ν†A,B

[∫ τB

0
1{z}(X(t))dt

]
=
µ(z)h†A,B(z)

cap(A, B)
.

This completes the proof of proposition when f = 1{z}, and we are done.

Remark 0.15. One can expect that a quantity such as Ea [τB] is closely related with

the mixing of the Markov process X(·). This relation has been explained in [42,

Chapters 9 and 10]. The potential-theoretic notions are closely connected with the

mixing of Markov chains.

0.6 Bound on equilibrium potential via capacities

Let us again fix two non-empty and disjoint subsets A and B of H. We know that

hA,B ≡ 1 on A and hA,B ≡ 0 on B, but the value of hA,B on (A ∪ B)c is described

only in terms of the Laplace equation (cf. (0.11)), and hence the exact value is

almost impossible to compute in most applications. However, in many instances,

we need to bound the value of hA,B on (A ∪ B)c to carry out an estimation. For

example, with such a bound, we can carry out a much better estimate in (0.33).

In this subsection, we present the following useful upper bound on the value

of hA,B on (A ∪ B)c in terms of capacities. This bound will be frequently used in
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various situations. The following proof is an excerpt from [32, Section 3].

Proposition 0.16. We have that

hA,B(x) ≤ cap(x, A)

cap(x, A ∪ B)
for all x ∈ (A ∪ B)c.

Proof. Fix x ∈ (A ∪ B)c. By the strong Markov property, we can write

Px[τA < τB] = Px[τ+
x < τA∪B, τA < τB] + Px[τ+

x > τA∪B, τA < τB]

= Px[τ+
x < τA∪B]Px[τA < τB] + Px[τA < τB < τ+

x ] .

Therefore, we have that

Px[τA < τB] =
Px[τA < τB < τ+

x ]

Px[τ+
x > τA∪B]

≤ Px[τ+
x > τA]

Px[τ+
x > τA∪B]

.

The proof is completed since by Lemma 0.8,

cap(x, A) = M(x)Px[τ+
x > τA] and

cap(x, A ∪ B) = M(x)Px[τ+
x > τA∪B] .

We note that, in view of Proposition 0.9, the same result holds for h†A,B(x) in

place of hA,B(x). In addition, the bound obtained in the previous proposition is

particularly useful since there are numerous robust tools to estimate capacities. We

discuss such robust tools in the following sections.
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1 Dirichlet and Thomson Principles

In the application of the potential theory, it is important to (more or less precisely)

estimate the capacity. Classic tools for this purpose are the Dirichlet and Thomson

principles that we introduce in this section.

Let us fix two disjoint and non-empty subsets A and B throughout the section.

Then, we explain strategies to estimate the capacity cap(A, B).

1.1 Spaces of functions and flows

To explain the variational principles for capacities, we need to define classes of

functions and flows as follows:

• For real numbers a and b, denote by Ca, b(A, B) the set of all real-valued

functions f on H satisfying f |A ≡ a and f |B ≡ b, i.e.,

Ca, b(A, B) = {f : H → R : f(x) = a, ∀x ∈ A and f(x) = b, ∀x ∈ B} .

• For a ∈ R, let Ua(A, B) be the set of all flows φ ∈ F which are divergence free

on (A ∪ B)c, i.e.,

(divφ)(x) = 0 for all x ∈ (A ∪ B)c ,

and satisfy

(divφ)(A) = −(divφ)(B) = a .

In particular, a flow belonging to U1 is called a unit flow.

Example 1.1. The equilibrium potential hA,B belongs to the class C1, 0(A, B).

Exercise 1.2. 1. Suppose that the process X(·) is reversible. Prove that the

flow

ψA,B := − 1

cap(A, B)
ΨhA,B (1.1)

is a unit flow between A and B. (Hint: Proposition 0.11-(1))

2. Suppose that the process X(·) is non-reversible. Prove that the flows

φA,B := − 1

cap(A, B)
Φ
h†A,B

and φ∗A,B := − 1

cap(A, B)
Φ∗hA,B

are unit flows between A and B. (Hint: Proposition 0.12-(1))
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1.2 Dirichlet and Thomson principles: reversible case

We begin with the Dirichlet and Thomson principles for reversible Markov processes.

Hence, in this subsection, we temporarily assume that the process X(·) is reversible.

The Dirichlet principle provides a minimization problem for the capacity.

Theorem 1.3 (Dirichlet principle for reversible Markov processes). We have that

cap(A, B) = inf
f∈C1, 0(A,B)

D(f) ,

and the unique minimizer is given by f = hA,B.4

Proof. Let f ∈ C1, 0(A, B). Then, write g = f −hA,B so that g ∈ C0, 0(A, B). Then,

D(f) = 〈hA,B + g, −L (hA,B + g)〉µ
= D(hA,B) + D(g)− 2 〈g, L hA,B〉µ ,

where at the second equality we used the reversibility which implies the self-adjointness

of L . Since g ≡ 0 on A∪B, and since L hA,B ≡ 0 on (A∪B)c, we get 〈g, L hA,B〉µ =

0. Therefore,

D(f) = D(hA,B) + D(g) ≥ D(hA,B) , (1.2)

and the equality holds only when D(g) = 0, i.e., when g is a constant function.

Since g ∈ C0, 0(A, B), g must be the zero function to obtain the equality in (1.2).

This completes the proof.

On the other hand, the Thomson principle provides a maximization problem for

the capacity.

Theorem 1.4 (Thomson principle for reversible Markov processes). We have that

cap(A, B) = sup
φ∈U1(A,B)

1

‖φ‖2F
,

and the unique maximizer is given by φ = ψA,B (cf. (1.1)).

Proof. Let φ ∈ U1(A, B). By Proposition 0.11, we have〈
ΨhA,B , φ

〉
F

= −
∑
x∈H

hA,B(x) (div φ)(x) = −
∑
x∈A

hA,B(x) (div φ)(x) ,

4Note that hA,B ∈ C1, 0(A, B) as we observed in Example 1.1.
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where the second equality holds since hA,B ≡ 0 on B and div φ ≡ 0 on (A ∪ B)c.

Since hA,B ≡ 1 on A and since (div φ)(A) = 1, we can conclude that〈
ΨhA,B , φ

〉
F

= −1 .

By the Cauchy–Schwarz inequality and (0.26),

1 =
〈
ΨhA,B , φ

〉2

F
≤ ‖ΨhA,B‖

2
F ‖φ‖2F = cap(A, B) ‖φ‖2F .

This proves cap(A, B) ≥ 1
‖φ‖2F

. Since the equality of the previous Cauchy–Schwarz

inequality holds only when φ = cΨhA,B for some c ∈ R, we must have φ = ψA,B
since φ is a unit flow.

Remark 1.5. At this point, it is now clear how to use the Dirichlet and Thomson

principles to estimate the capacity. If we take any test function f ∈ C1, 0(A, B) and

any test flow φ ∈ U1(A, B), we can deduce from Theorems 1.3 and 1.4 that

1

‖φ‖2F
≤ cap(A, B) ≤ D(f) .

If one wants these lower and upper bounds to be sharp, it is necessary to take f and

φ as objects close to the genuine optimizers, namely, as f ≈ hA,B and φ ≈ ψA,B.

For a concrete example of such a construction, we refer to [38].

We note that there is no special technical difficulty in finding such a test func-

tion. On the other hand, constructing an appropriate test flow is fundamentally

more difficult, since the object that we constructed as a test flow must satisfy the

divergence-free condition on (A ∪ B)c, and there is no trivial way of defining such

an object. This issue will be discussed in more detail in the next section.

Remark 1.6. In the reversible case, there is an alternative way, based on a Cauchy–

Schwarz-type argument, of obtaining a lower bound for the capacity without relying

on the Thomson principle. More precisely, if we are able to prove that D(f) is

bounded below by a constant c for all f ∈ C1, 0(A, B) via the Cauchy–Schwarz

inequalities, then by the Dirichlet principle we have the lower bound D(f) ≥ c.

This bound can be sharp if we apply the inequalities in a careful manner. We refer

to [5, 9, 14] for examples of this method. This method is difficult to use when the

underlying energy landscape is complicated.

1.3 Dirichlet and Thomson principles: non-reversible case

The Dirichlet and Thomson principles were known only for the reversible case, but

recently the corresponding principles for the non-reversible case have been revealed.
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The following theorem is a summary of these results. We no longer assume that the

process X(·) is reversible.

Theorem 1.7. The following variational expressions for the capacity hold.

1. It holds that

cap(A, B) = inf
f∈C1, 0(A,B), φ∈U0(A,B)

||Φf − φ||2 , (1.3)

and the unique minimizer is given by

(f, φ) =

(
hA,B + h†A,B

2
, −

Φ
h†A,B

− Φ∗hA,B

2

)
, (1.4)

2. It holds that

cap(A, B) = sup
g∈C0, 0(A,B), ψ∈U1(A,B)

1

||Φg − ψ||2
. (1.5)

and the unique maximizer is given by

(g, ψ) =

(
h†A,B − hA,B
2cap(A, B)

, −
Φ
h†A,B

+ Φ∗hA,B

2cap(A, B)

)
. (1.6)

In the previous theorem, the Dirichlet principle (1.3) and the Thomson principle

(1.5) were established in [24] and [57], respectively. Note also that

−
Φ
h†A,B

− Φ∗hA,B

2
∈ U0(A, B) and −

Φ
h†A,B

+ Φ∗hA,B

2cap(A, B)
∈ U1(A, B)

follows from Example 1.2. We now turn to the proof.

Proof. Let f ∈ Ca, 0(A, B). By Proposition 0.12-(3), we have that〈
ΨhA,B , Φf

〉
F

= 〈−L hA,B, f〉µ =
∑
x∈H

f(x)(−L hA,B)(x)µ(x) .

Since −L hA,B ≡ 0 on (A∪B)c and f = ahA,B on A∪B, we can conclude from the

previous identity that〈
ΨhA,B , Φf

〉
F

= a
∑
x∈A

hA,B(x)(−L hA,B)(x)µ(x)

= aD(hA,B) = a cap(A, B) . (1.7)
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Let φ ∈ Ua(A, B). Then, by Proposition 0.12-(2),〈
ΨhA,B , φ

〉
F

= −
∑
x∈H

hA,B(x) (div φ)(x) .

Since divφ ≡ 0 on (A ∪ B)c and hA,B = 1A on A ∪ B,〈
ΨhA,B , φ

〉
F

= −
∑
x∈A

(div φ)(x) = −(div φ)(A) = −a , (1.8)

where the last equality follows from φ ∈ Ua(A, B).

Now, we first look at (1). If f ∈ C1, 0(A, B) and φ ∈ U0(A, B), then by (1.7) and

(1.8), 〈
ΨhA,B , Φf − φ

〉
F

= cap(A, B) .

By the Cauchy–Schwarz inequality,

cap(A, B)2 =
〈
ΨhA,B , Φf − φ

〉2

F
≤ ‖ΨhA,B‖

2
F ‖Φf − φ‖2F = cap(A, B) ‖Φf − φ‖2F .

Therefore, we get ‖Φf − φ‖2F ≥ cap(A, B). The equality holds only when Φf − φ =

cΨhA,B for some c ∈ R. By carefully analyzing this restriction, we can conclude that

equality holds only for (1.4).

Next, we consider (2). If g ∈ C0, 0(A, B) and ψ ∈ U1(A, B), then again by (1.7)

and (1.8), we get 〈
ΨhA,B , Φg − ψ

〉
F

= −1 .

Thus, by the Cauchy–Schwarz inequality,

1 =
〈
ΨhA,B , Φg − ψ

〉2

F
≤ ‖ΨhA,B‖

2
F ‖Φg − ψ‖2F = cap(A, B) ‖Φg − ψ‖2F .

Hence, we get cap(A, B) ≥ ‖Φg−ψ‖−2
F . One can also readily check that the equality

holds only for the selection (1.6).

Now, Theorem 1.7 can be used to estimate the capacity in the non-reversible

case in the same manner as Remark 1.5. We note that now divergence-free test

flows are needed for both upper and lower bounds, and thus we must address this

technical issue directly to use these principles. Note that, in the non-reversible case,

an argument such as Remark 1.6 does not exist.

Remark 1.8. In fact, Proposition 0.10 for the reversible case is a consequence of

the Dirichlet principle (Theorem 1.3), since we have C1, 0(A′, B′) ⊂ C1, 0(A, B) if

A ⊂ A′ and B ⊂ B′. On the other hand, for the non-reversible case, we do not

have such a simple argument since it holds that U0(A, B) ⊂ U0(A′, B′) instead of
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U0(A′, B′) ⊂ U0(A, B).

1.4 Comparison result for capacity

One can observe from the Dirichlet and Thomson principles that the capacity esti-

mates of non-reversible processes are far more complicated than those of reversible

processes. Hence, if one only needs a rough capacity estimate of a non-reversible

process, it would be very handy if a comparison result between the capacity of a

reversible process and that of a non-reversible one exists. In this section, we provide

such a result based on the Dirichlet principle. This comparison result will be used

in Part 3.

Define a symmetrized rate as

rs(x, y) =
1

2µ(x)
[µ(x)r(x, y) + µ(y)r(y, x)] ; x, y ∈ H ,

and let (Xs(t))t≥0 be a continuous-time Markov process on H with rate rs(·, ·). One

can observe now that the following detailed balance condition holds:

µ(x)rs(x, y) = µ(y)rs(y, x) .

Hence, µ(·) is the invariant measure for the process Xs(·), and furthermore Xs(·) is

a reversible process.

We write hsA,B and caps(A, B) the equilibrium potential and the capacity, re-

spectively, with respect to the process Xs(·), for two disjoint and non-empty subsets

A and B of H. One can easily check that the Dirichlet form of this symmetrized

process is still D(·) (cf. Remark 0.3).

Since Xs(·) is reversible, it could be much simpler to estimate caps(A, B) than

to estimate cap(A, B). The purpose of this subsection is to compare these two

capacities.

Firstly, we can show that the symmetrized capacity is always smaller.

Proposition 1.9. For any two disjoint and non-empty subsets A and B of H, it

holds that

caps(A, B) ≤ cap(A, B) .

Proof. Since hA,B ∈ C1, 0(A, B), by the Dirichlet principle for reversible processes

(Theorem 1.3),

caps(A, B) = inf
f∈C1, 0(A,B)

D(f) ≤ D(hA,B) = cap(A, B) .
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We next investigate the opposite bound. To this end, we have to introduce the

sector condition.

Definition 1.10. A Markov process X(·) is said to satisfy the sector condition with

constant C0 > 0 if

〈f, −L g〉2µ ≤ C0D(f)D(g) (1.9)

for all f, g : H → R.

Heuristically, this is called the sector condition since the eigenvalues of L satis-

fying (1.11) are located on a certain sector at the complex plane originating from 0.

In this sense, one regards a Markov process with the sector condition as a process

which is not far from reversibility. A huge class of Markov processes under con-

sideration satisfies the sector condition. We shall check, for instance, whether the

non-reversible zero-range process considered in Part III satisfies the sector condition

(cf. Proposition 16.1).

Exercise 1.11. If X(·) is reversible, prove that one can write

〈f, −L g〉µ =
1

2

∑
x∈H

∑
y∈H

µ(x)r(x, y)(g(y)− g(x))(f(y)− f(x)) , (1.10)

and therefore X(·) satisfies the sector condition with constant 1.

Remark 1.12. Of course, if X(·) is non-reversible, the expression (1.10) does not

hold, and therefore checking the inequality (1.9) is not trivial at all. To check (1.9),

one usually proves inequality of the form

〈f, −L g〉µ ≤ C1D(f) + C2D(g) (1.11)

for some constant C1, C2 > 0 for all f, g : H → R. We first note that the inequality

(1.9) is trivial if f or g is a constant function (cf. Exercise 0.2). Otherwise, inserting

f :=
√
C2D(g)f and g :=

√
C1D(f)g to (1.11), we get√

C1C2D(f)D(g) 〈f, −L g〉µ ≤ 2C1C2D(f)D(g) .

Therefore, we can conclude that X(·) satisfies the sector condition with constant

4C1C2.

Now, we are ready to establish the opposite bound of the one established in

Proposition 1.9.
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Proposition 1.13. Suppose that a Markov process X(·) satisfies the sector condition

with constant C0 > 0. Then, we have that

cap(A, B) ≤ C0 caps(A, B) .

Proof. We may assume that cap(A, B) > 0, as otherwise the inequality is trivial.

We first note that

cap(A, B) = 〈hA,B, −L hA,B〉µ =
〈
hsA,B, −L hA,B

〉
µ
,

where the second equality holds since L hA,B = 0 on (A∪ B)c and hA,B = hsA,B on

A ∪ B. Therefore, by the sector condition,

cap(A, B)2 ≤ C0D(hsA,B)D(hA,B) = C0caps(A, B)cap(A, B) .

Dividing both sides by cap(A, B) > 0 completes the proof.
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2 Generalized Dirichlet and Thomson Principles

Let us fix two disjoint and non-empty subsets A and B of H. In the previous section,

we explain a general strategy to estimate or bound the capacity cap(A, B) based on

the Dirichlet and Thomson principles. To apply this strategy, one has to construct

suitable test functions or test flows. As we have mentioned earlier, the Thomson

principle for the reversible case and the Dirichlet and Thomson principles for the

non-reversible case require us to construct a test flow which must be divergence-free

on (A∪B)c which is a major technical problem in applications of these method. In

this section, we introduce alternative variational principles that do not require us to

construct a divergence-free flow, and hence are suitable for many applications.

2.1 Reversible case

Let us start by considering the reversible case. Hence, we assume in this subsection

that the process X(·) is reversible. We also emphasize that we do not need to develop

a generalized Dirichlet principle, since the Dirichlet principle for reversible Markov

processes is not involved with the flow structure.

The generalized Thomson principle is given as follows. We write F0 the collection

of non-zero flows, i.e.,

F0 = {φ ∈ F : ‖φ‖F > 0} .

Theorem 2.1 (Generalized Thomson principle: reversible case). It holds that

cap(A, B) = sup
φ∈F0

1

‖φ‖2F

[ ∑
σ∈H

hA,B(x) (div φ)(x)

]2

. (2.1)

Moreover, the optimizers are given by φ = cΨhA,B , c 6= 0.

Proof. By Proposition 0.11-(2), we have that〈
ΨhA,B , φ

〉
F

= −
∑
x∈H

hA,B(x) (div φ)(x) .

Thus, by the Cauchy–Schwarz inequality, it holds that[∑
x∈H

hA,B(x) (div φ)(x)

]2

=
〈
ΨhA,B , φ

〉2

F

≤ ‖ΨhA,B‖
2
F ‖φ‖2F = cap(A, B) ‖φ‖2F .
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Hence, it holds that

cap(A, B) ≥ 1

‖φ‖2F

[∑
x∈H

hA,B(x) (div φ)(x)

]2

.

From the Cauchy–Schwarz inequality, it is clear that the equality holds only for

φ = cΨhA,B , c 6= 0.

The advantage of this generalized Thomson principle is very clear. We no longer

impose the divergence-free condition on test flows, and hence any flow approximating

hA,B (e.g., ΨhA,B) can be used as a test flow. For instance, if one constructed a test

function f approximating hA,B and obtained an upper bound on the capacity by

injecting this test function f to the Dirichlet principle, then one can also use Ψf as

the test flow in this generalized Thomson principle. If we encounter a technical issue

in a certain region, we can modify the flow accordingly in this region to obtain a

test flow. This idea was used in [27] to analyze the metastability of Ising and Potts

models on large, fixed lattices without external fields. For this model, the energy

landscape is extremely complex, and it is very difficult to construct a divergence-free

flow. We explain a special case of this result in Part II.

Clearly, the crucial disadvantage of the generalized Thomson principle is the

appearance of the equilibrium potential in the variational principle. Hence, this

generalized version turns the difficulty stemming from the divergence-free restriction

to the difficulty of handling the equilibrium potential. Of course, Proposition 0.16

plays an important role in controlling the equilibrium potential.

2.2 Non-reversible case

Now, we no longer assume that the process X(·) is reversible. Then, the variational

problem becomes more complicated.

Theorem 2.2. The followings hold.

1. (Generalized Dirichlet principle) We have that

cap(A, B) = inf
f∈C1, 0(A,B), φ∈F

{
||Φf − φ||2 − 2

∑
x∈H

hA,B(x) (div φ)(x)

}
,

(2.2)

and (1.4) is a minimizer.
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2. (Generalized Thomson principle) We have that

cap(A, B) = sup
g∈C0, 0(A,B), ψ∈F0

1

||Φg − ψ||2

[∑
x∈H

hA,B(x) (divψ)(x)

]2

, (2.3)

and the constant multiples of (1.6), i.e.,

(g, ψ) =

(
c
h†A,B − hA,B
2cap(A, B)

, −c
Φ
h†A,B

+ Φ∗hA,B

2cap(A, B)

)
, c 6= 0 (2.4)

are maximizers.

Proof. In the proof of Theorem 1.7, we showed that for f ∈ Ca, 0(A, B),〈
ΨhA,B , Φf

〉
F

= a cap(A, B) . (2.5)

On the other hand, by Proposition 0.12-(2), we have〈
ΨhA,B , φ

〉
F

= −
∑
x∈H

hA,B(x) (div φ)(x) . (2.6)

For part (1), let f ∈ Ca, 0(A, B). Then, by (2.5) and (2.6),〈
ΨhA,B , Φf − φ

〉
F

= cap(A, B) +
∑
x∈H

hA,B(x) (div φ)(x) . (2.7)

Furthermore, by the Cauchy–Schwarz inequality and (0.26) (which still holds for

non-reversible processes)〈
ΨhA,B , Φf − φ

〉2

F
≤ ‖ΨhA,B‖

2
F ‖Φf − φ‖2F = cap(A, B) ‖Φf − φ‖2F . (2.8)

By (2.7) and (2.8),

cap(A, B) ‖Φf − φ‖2F ≥ cap(A, B)2 + 2cap(A, B)
∑
x∈H

hA,B(x) (div φ)(x) .

Thus, part (1) is proved if we check that the equality holds for (1.4).

The proof of part (2) is similar. For g ∈ C0, 0(A, B), again by (2.5) and (2.6), we

have 〈
ΨhA,B , Φg − ψ

〉
F

=
∑
x∈H

hA,B(x) (divψ)(x) .

Hence, by the computations as before, the proof of part (2) is completed.
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Remark 2.3. We did not attempt to characterize all the optimizers in the previous

principles.

When we use these principles, it is important to control terms of the form∑
x∈H

hA,B(x) (div φ)(x) .

For the Thomson principle, we used ψ, instead of φ, to denote the test flow, but

in what follows we denote by φ the flow for the Thomson principle as well for

convenience.

Indeed, this is trade-off in order to avoid the construction of a divergence-free

flow. By the property of the equilibrium potential (cf. (0.11)), this summation can

be decomposed into

(div φ)(A) +
∑

x∈(A∪B)c

hA,B(x) (div φ)(x) .

If we take the test function and flow as a good approximation of the optimizers (1.4)

and (1.6), we have (div φ)(A) ' 0 for the Dirichlet principle and (div φ)(A) ' 1 for

the Thomson principle. Since φ can be approximately divergence-free on (A ∪ B)c,

we also have ∑
x∈(A∪B)c

hA,B(x) (div φ)(x) ' 0 .

Since the equilibrium potential is trivially bounded by 1, we may hope∑
x∈(A∪B)c

|(div φ)(x)| ' 0 ,

but in general it may not be true (since there are too many elements in (A ∪ B)c).

Instead, we need to decompose (A ∪ B)c into two regions C1 and C2 so that∑
x∈C1

|(div φ)(x)| ' 0 ,

but on C2 the summation is small because hA,B is small. To prove that hA,B is

sufficiently small, Proposition 0.16 can be useful.
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3 Collapsed Processes

In this section, we introduce the notion known as the collapsed process, which is

essentially obtained by contracting a subset E ⊂ H to a single point e. This process

was introduced in [24] to study the Dirichlet principle for non-reversible processes.

Moreover, in [40], it is observed that the collapsed process is a crucial notion (along

with the capacity) in the precise estimate of the so-called mean jump rate, which is

key to the martingale approach of metastability (cf. [2, 3, 4]).

In this section, we fix a set E ⊂ H. We note that the contents of the current

subsection are from [40, Section 8].

3.1 Definition of collapsed process

As mentioned earlier, our aim is collapsing a set E into a single point e. To this end,

let us first define the state space H = (H\E)∪{e}. Then, (recalling that µ(·) is the

invariant measure for the process X(·)) define a rate r : H×H → [0, ∞) as
r(x, y) = r(x, y) for x, y ∈ H \ E ,
r(x, e) =

∑
z∈E r(x, z) for x ∈ H \ E ,

r(e, y) = 1
µ(E)

∑
z∈E µ(z)r(z, y) for y ∈ H \ E .

(3.1)

The collapsed process is defined as a continuous-time Markov process (X(t))t≥0 on

H with rate r(·, ·).
Denote by Px the law of X(·) starting from x, and by L and D(·) the generator

and the Dirichlet form corresponding to the collapsed process X(·), respectively.

Define a probability measure µ(·) on H as{
µ(x) = µ(x) if x ∈ H \ E ,
µ(e) = µ(E) .

(3.2)

Exercise 3.1. Answer the following questions.

1. Prove that the measure µ(·) is the invariant measure for the process X(·).

2. Prove that the process X(·) is reversible if the process X(·) is reversible. Is

the converse true?

3.2 Flow space of collapsed process

Next, we investigate the flow structure with respect to the collapsed process X(·).
For x, y ∈ H, we defined the conductance between x and y with respect to the
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original process X(·) as (cf. (0.22))

c(x, y) = µ(x)r(x, y) .

Similarly, for x, y ∈ H, we define the conductance with respect to the collapsed

process X(·) as

c(x, y) = µ(x)r(x, y) .

Then, by (3.1) and (3.2), this conductance c(·, ·) can be rewritten as
c(x, y) = c(x, y) for x, y ∈ H \ E ,
c(x, e) =

∑
z∈E c(x, z) for x ∈ H \ E ,

c(e, y) =
∑

z∈E c(z, y) for y ∈ H \ E .

(3.3)

Define the symmetrized conductance as

cs(x, y) =
1

2
[c(x, y) + c(y, x)] ; x, y ∈ H .

For x, y ∈ H, we write x ∼ y if cs(x, y) > 0. Since cs(x, y) = cs(y, x), we

observe that x ∼ y if and only if y ∼ x. Then, the set of directed edges are defined

by

E = {(x, y) ∈ H ×H : x ∼ y} . (3.4)

As before, we can define a flow structure on the set F of flows on E which are anti-

symmetric functions on E. Then, we can induce the Hilbert space structure on F,

as we did in Sections 0.3 and 0.4. Denote the corresponding inner product and the

flow norm by 〈·, ·〉F and ‖ · ‖F, respectively. In particular, we can write

〈φ, ψ〉F =
1

2

∑
(x, y)∈E

φ(x, y)ψ(x, y)

cs(x, y)
, and

‖φ‖2
F

=
1

2

∑
(x, y)∈E

φ(x, y)2

cs(x, y)
.

For each flow φ ∈ F, define the collapsed flow φ ∈ F by
φ(x, y) = φ(x, y) for x, y ∈ H \ E ,
φ(x, e) =

∑
z∈E φ(x, z) for x ∈ H \ E ,

φ(e, y) =
∑

z∈E φ(z, y) for y ∈ H \ E .

(3.5)
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Exercise 3.2. Prove that{
(divφ)(x) = (div φ)(x) for x ∈ H \ E ,
(divφ)(e) = (div φ)(E) .

(3.6)

The following contraction property of the flow norm is useful later.

Lemma 3.3. For all φ ∈ F and its collapsed flow φ ∈ F, it holds that

‖φ‖F ≤ ‖φ‖F .

Moreover, the equality holds if and only if{
φ(x, y) = 0 if x, y ∈ E , and
φ(x, y)
cs(x, y) = φ(x′, y)

cs(x′, y) if y ∈ E and x, x′ ∈ H \ E satisfies x ∼ y and x′ ∼ y .
(3.7)

Proof. Decompose the flow norm of the flow φ as

‖φ‖2F =
A1

2
+A2 +

A3

2
,

where

A1 =
∑

(x, y)∈E:x, y∈H\E

φ(x, y)2

cs(x, y)
,

A2 =
∑

(x, y)∈E:x∈H\E, y∈E

φ(x, y)2

cs(x, y)
, and

A3 =
∑

(x, y)∈E:x, y∈E

φ(x, y)2

cs(x, y)
.

Then, decompose the flow norm of the collapsed flow φ as

‖φ‖2
F

=
A1

2
+A2 ,

where

A1 =
∑

(x, y)∈E:x, y∈H\E

φ(x, y)2

cs(x, y)
and

A2 =
∑

x∈H:(x, e)∈E

φ(x, e)2

cs(x, e)
.
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By (3.3) and (3.5), we immediately have that A1 = A1.

Therefore, it suffices to prove A2 ≥ A2. For each x ∈ H \ E adjacent to at least

one point of E , by (3.3), (3.5), and the Cauchy–Schwarz inequality, we obtain

∑
y∈E:(x, y)∈E

φ(x, y)2

cs(x, y)
≥

[∑
y∈E:(x, y)∈E φ(x, y)

]2∑
y∈E:(x, y)∈E c

s(x, y)
=
φ(x, e)2

cs(x, e)
.

By adding this inequality over x ∈ H \ E , we obtain A2 ≥ A2, and the proof is

completed.

Exercise 3.4. For f : H → R which is constant over E , prove that the flow Ψf

satisfies the equality condition (3.7).

If a function f : H → R is constant over E , we define a collapsed function

f : H → R as {
f(x) = f(x) if x ∈ H \ E ,
f(e) = the constant value of f on E .

(3.8)

Lemma 3.5. Suppose that the functions f, g : H → R are constant over E, and let

f, g : H → R be the collapsed function of f, g (cf. (3.8)), respectively. Then, we

have

〈g, −L f〉µ =
〈
g, −L f

〉
µ
. (3.9)

In particular, we have

D(f) = D(f) . (3.10)

Proof. Since f is constant over E , we can write

〈g, −L f〉µ

=
1

2

 ∑
x∈H\E

∑
y∈H\E

+
∑

x∈H\E

∑
y∈E

+
∑
x∈E

∑
y∈H\E

µ(x)r(x, y)[f(y)− f(x)]g(x) . (3.11)

Note that the first summation is equal to∑
x∈H\E

∑
y∈H\E

µ(x)r(x, y)[f(y)− f(x)]g(x) , (3.12)

since µ = µ, r = r, f = f , and g = g on H \ E . On the other hand, we have
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f(y) = f(e) for all y ∈ E , and thus the second summation is equal to∑
x∈H\E

∑
y∈E

µ(x)r(x, y)[f(e)− f(x)]g(x)

=
∑

x∈H\E

µ(x)r(x, e)[f(e)− f(x)]g(x) , (3.13)

where the equality follows from the second line of (3.1). Finally, a similar computa-

tion yields that the third summation is equal to∑
x∈E

∑
y∈H\E

µ(x)r(x, y)[f(y)− f(e)]g(e)

=
∑
y∈H\E

µ(e)r(e, y)[f(y)− f(e)]g(e) , (3.14)

where the equality follows from the third line of (3.1) and (3.2). By inserting (3.12),

(3.13) and (3.14) into (3.11), we can conclude that

〈g, −L f〉µ

=
1

2

 ∑
x∈H\E

∑
y∈H\E

+
∑

x∈H\E

∑
y∈{e}

+
∑
x∈{e}

∑
y∈H\E

µ(x)r(x, y)[f(y)− f(x)]g(x)

=
〈
g, −L f

〉
µ
,

and the proof of (3.9) is completed. Now, (0.6) follows from (3.9) by inserting

g = f .

For a function g : H → R, define Φg, Φ
∗
g and Ψg as, for x, y ∈ H,

Φg(x, y) = g(y)c(y, x)− g(x)c(x, y) , (3.15)

Φ
∗
g(x, y) = g(y)c(x, y)− g(x)c(y, x) , (3.16)

Ψg(x, y) = cs(x, y)(g(y)− g(x)) . (3.17)

Lemma 3.6. Suppose that the function f : H → R is constant over E, and let

f : H → R be the collapsed function of f (cf. (3.8)). Then, the flow Φf , which is

the collapsed flow of Φf defined in (0.28), coincides with the flow Φf . Similarly, we

have that

Φ∗f = Φ
∗
f and Ψf = Ψf . (3.18)

Proof. We only prove that two flows Φf and Φf coincide, and leave the proof for

the other two as exercise, since the proofs are quite similar.

41



Since Φf (x, y) = Φf (x, y) for x, y ∈ H\E holds trivially from the definitions, it

suffices to prove that Φf (x, e) = Φf (x, e) for x ∈ H \ E . This can be verified by

Φf (x, e) =
∑
z∈E

Φf (x, z) =
∑
z∈E

[f(z)c(z, x)− f(x)c(x, z)]

= f(e)c(e, x)− f(x)c(x, e)

= Φf (x, e) .

Exercise 3.7. Prove (3.18).

3.3 Capacity and sector condition of collapsed process

For two non-empty and disjoint subsetsA and B ofH,we denote by hA,B : H → R the

equilibrium potential between A and B, and we denote by cap(A, B) and caps(A, B)

the capacity between A and B with respect to the collapsed process X(·) and the

symmetrized process X
s
(·) of X(·) (which is a Markov process on H associated with

the generator 1
2(L + L

†
), where L

†
is the adjoint generator of L ), respectively.

In general, for A, B ⊂ H \ E , it is difficult to compare cap(A, B) and cap(A, B).

Exercise 3.8. Suppose that A and B are two non-empty and disjoint subsets of

H\E . Then, can you prove either cap(A, B) ≤ cap(A, B) or cap(A, B) ≤ cap(A, B)?

However, we have the following identity, which is useful in later discussions.

Lemma 3.9. For any non-empty A ⊂ H \ E, we have

cap(e, A) = cap(E , A) .

Proof. Recall that hE,A(·) denotes the equilibrium potential between E and A. Since

the behaviors of the processes X(·) and X(·) are identical on H\E , we immediately

have that

hE,A(x) = he,A(x) for all x ∈ H \ E .

Since hE,A ≡ 1 on E and he,A(e) = 1, we can conclude that he,A(·) is the collapsed

function of hE,A(·), i.e,.,

he,A = hE,A .

Therefore, by Lemma 3.5, we can conclude that

cap(e, A) = D(he,A) = D(hE,A) = D(hE,A) = cap(E , A) .
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Next, we assert that the sector condition of the original process is inherited by

the collapsed process.

Lemma 3.10. Suppose that the process X(·) satisfies the sector condition with a

constant C > 0 (cf. Definition 1.10). Then, the process X(·) also satisfies the sector

condition with the same constant C. In particular, it holds for any two non-empty

and disjoint subsets A and B of H that

caps(A, B) ≤ cap(A, B) ≤ C caps(A, B) . (3.19)

Proof. For two functions f, g : H → R, define their extended functions F, G : H →
R as

F (x) =

{
f(x) if x ∈ H \ E ,
f(e) if x ∈ E ,

and G(x) =

{
g(x) if x ∈ H \ E ,
g(e) if x ∈ E .

so that

F = f and G = g . (3.20)

Hence, by (3.20), Lemma 3.5, and the sector condition of X(·),〈
f,−L g

〉
µ

= 〈F,−LG〉µ ≤ CD(F )D(G) = CD(f)D(g) ,

and hence the process X(·) also satisfies the sector condition with a constant C > 0.

Now, (3.19) is clear from Propositions 1.9 and 1.13.
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Part II

Two-dimensional Ising Model without

External Field

In this second part of the lecture note, as an application of the general theory

developed so far, we thoroughly analyze the metastable behavior of the Ising model

on large but fixed lattice boxes. In particular, we focus on the model without an

external field, which posed a longstanding mathematical challenge because of the

complexity of the energy landscape. The dynamics is reversible, and the analysis

is based on the Dirichlet principle (Theorem 1.3) and the generalized Thomson

principle (Theorem 2.1).

The contents of the current part is based on [27] which considered more complex

models, namely the Potts model and the model in three-dimensional boxes. We did

not investigate these models in this note, since the two-dimensional Ising model is

enough to deliver the core of our idea.

4 Ising Model on Two-dimensional Lattice

4.1 Model

In this subsection, we introduce the model and review its basic features.

Ising model

For two positive integers K, L, we write

Λ = TK × TL , (4.1)

where Tk = Z/(kZ) is the discrete one-dimensional torus. For the convenience of

the discussion, we assume that K ≤ L and moreover K ≥ 5.

We will consider the spin system on Λ; hence, we consider a spin system on the

box with periodic boundary conditions. The model that we consider in this second

part is defined now.

Definition 4.1 (Ising model on Λ without external field). • Denote by Ω = {+, −}
the set of spins and by X = ΩΛ the space of spin configurations on the box Λ.

A configuration σ ∈ X is written as σ = (σ(x))x∈Λ where σ(x) ∈ Ω denotes

the spin of σ at site x ∈ Λ.
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• For x, y ∈ Λ, let us write x ∼ y if they are neighboring sites in Λ, that is,

‖x−y‖ = 1, where ‖·‖ denotes the Euclidean distance in Λ where the periodic

boundary condition has to be taken into account.

• Define the Hamiltonian H : X → R as

H(σ) =
∑
x∼y

1{σ(x) 6= σ(y)} ; σ ∈ X . (4.2)

Note that there is no external field in this Hamiltonian; only the spin–spin

interaction is considered.

• Denote by µβ(·) the Gibbs measure on X associated to the Hamiltonian H at

inverse temperature β > 0, i.e.,

µβ(σ) =
1

Zβ
e−βH(σ) ; σ ∈ X , (4.3)

where Zβ is the partition function defined by

Zβ =
∑
σ∈X

e−βH(σ) . (4.4)

The spin system on Λ corresponding to the probability measure µβ(·) on Xd is

called the Ising model.

Ground states

We denote by � ∈ X (resp. � ∈ X ) the configuration such that all spins are +

(resp. −), i.e., �(x) = + (resp. �(x) = −) for all x ∈ Λ. We write

S = {�, �} ⊂ X . (4.5)

Note that the Hamiltonian H(·) attains its minimum value 0 (only) at S. Hence,

� and � are the ground states of the model. Based on this observation, we obtain

the following characterization of the partition function Zβ defined in (4.4), as well

as the Gibbs measure µβ as β →∞.

Proposition 4.2. The following hold:

1. The partition function satisfies the asymptotics

Zβ = 2 +O(e−2β) . (4.6)
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2. We have

lim
β→∞

µβ(�) = lim
β→∞

µβ(�) =
1

2
, and thus lim

β→∞
µβ(S) = 1 .

Proof. We can readily observe that H(σ) ≥ 2 for σ /∈ S. The estimate (4.6) comes

directly from this observation along with the expression (4.4). Part (2) of the theo-

rem follows directly from part (1) and the expression (4.3) of µβ.

Continuous-time Metropolis dynamics

We now define a continuous-time Metropolis-type Glauber dynamics which is a

standard heat-bath dynamics in the study of the Ising model (cf. [51]). For x ∈ Λ,

we denote by σx ∈ X the configuration obtained from σ by flipping the spin at site

x.

Definition 4.3. The continuous-time Metropolis dynamics is defined as a continu-

ous time Markov process {σβ(t)}t≥0 on X with transition rates

cβ(σ, ζ) =

{
e−β[H(ζ)−H(σ)]+ if ζ = σx 6= σ for some x ∈ Λ ,

0 otherwise ,
(4.7)

where [a]+ = max{a, 0}.

For σ, ζ ∈ X , we write σ ∼ ζ if cβ(σ, ζ) > 0, i.e., if ζ is obtained from σ by

flipping the spin at a site (or vice versa). Note that the relationship σ ∼ ζ does not

depend on β. Moreover, the following detailed balance condition holds:

µβ(σ) cβ(σ, ζ) = µβ(ζ) cβ(ζ, σ) =

{
min{µβ(σ), µβ(ζ)} if σ ∼ ζ ,
0 otherwise .

(4.8)

Consequently, µβ(·) is the unique5 invariant measure for the Markov process σβ(·),
and furthermore σβ(·) is reversible with respect to µβ(·). We denote by Pβσ the law

of the process σβ(·) starting from σ, and by Eβσ the associated expectation.

Metastability of the model

The primary concern in this second part is the metastable behavior of the process

σβ(·) defined above when β is large. More precisely, by the expression (4.7) of the

jump rate, we can see that the dynamics σβ(·) tends to lower the energy (for large β)

5It is clear that the Markov process σβ(·) is irreducible.
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since it jumps to a configuration with higher energy with exponentially small rate.

Hence, in view of Proposition 4.2, the process σβ(·) starting from a configuration

� may tend to stay in some neighborhood of � for a long time. However, by the

irreducibility of the process σβ(·), it will eventually make a transition to �. Similar

behavior is expected to occur when the process starts from �. Hence, such rare

transitions between � and � will take place successively. This type of behavior is

the metastable behavior of the process σβ(·). In this part, we wish to quantitatively

analyze this behavior to a precise level. For instance, we will give precise asymptotic

of the mean transition time from � to � in the very low temperature regime, i.e.,

when β →∞.

4.2 Main results

We now explain the main results regarding the metastability of the stochastic Ising

model.

Energy barrier between ground states

We first explain the energy barrier between � and �.

• A sequence of configurations (ωt)
T
t=0 = (ω0, ω1, . . . , ωT ) ⊆ X for some T ≥ 0

is called a path if ωt ∼ ωt+1 for all t ∈ J0, T − 1K. A path (ωt)
T
t=0 is a path

connecting two configurations σ and ζ in X if ω0 = σ and ωT = ζ or vice versa.

• The communication height between two configurations σ, ζ ∈ X is defined by

Φ(σ, ζ) = min
(ωt)Tt=0

max
t∈J0, T K

H(ωt) ,

where the minimum is taken over all paths connecting σ and ζ.

• The energy barrier between ground states is defined by

Γ = Γ(K, L) := Φ(�, �) = Φ(�, �) ,

where the last equality holds from the symmetry of the model.

The following result has been verified in [49]. We note that we have assumed L ≥
K ≥ 5.

Theorem 4.4. The energy barrier is given by Γ = 2K + 2.

The proof of this theorem is given in [49] based on combinatorial arguments. We

do not give the proof of this in the current note in order to focus more on the role

of potential theory in the analysis of the current model.
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Eyring–Kramers law

Notation 4.5. In the current part, a collection (aβ = aβ(K, L))β>0 of real numbers

is written as aβ = oβ(1) if limβ→∞ aβ = 0 for all K and L.

By Theorem 4.4 and the large deviation principle, one can deduce (cf. [49]) the

following estimate of the mean transition time Eβ�[τ�] and Eβ�[τ�]:

lim
β→∞

1

β
logEβ�[τ�] = lim

β→∞

1

β
logEβ�[τ�] = Γ . (4.9)

Note that τ� and τ� represent hitting time of the set {�} and {�}, respectively.

Along with the potential theory explained in the first part, we can derive the

precise sub-exponential prefactor of the previous large-deviation estimate to get

sharp asymptotics of the mean transition time.

Theorem 4.6. There exists a constant κ = κ(K, L) > 0 such that

Eβ�[τ�] = Eβ�[τ�] = (1 + oβ(1))κeΓβ . (4.10)

Moreover, the constant κ satisfies

lim
K→∞

κ(K, L) =

{
1/4 if K < L ,

1/8 if K = L .
(4.11)

Precise asymptotics such as (4.10) are called the Eyring–Kramers law (cf. [7] for

more detail) for the Metropolis dynamics σβ(·). The constant κ is explained more

precisely later. Although we have not provided the formula for the constant κ at

this point, there exists a complicated but explicit expression for this constant (cf.

(5.8), Proposition 8.12 and Remark 8.13).

This theorem is the main result for the current part. The proof is divided into

several stages. Firstly, in Section 5, we use the potential theory to reduce the proof

of Theorem 4.6 to a capacity estimate. To estimate the capacity to a precise level, we

need a much more accurate understanding of the energy landscape than that needed

to derive (4.9). This analysis of the energy landscape is carried out in Sections 6-8.

Then, the capacity estimate will be carried out in Sections 9 and 10 based on the

Dirichlet principle and the generalized Thomson principle, respectively.

Remark 4.7. The followings are some comments on Theorem 4.6.

1. If K < L, there is only one direction for the transition between ground states,

whereas if K = L, there are two possible directions. This is the reason for the

dependency in the asymptotics of κ on the relation between K and L.
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2. The constant Γ is model-independent, in the sense that it will be the same for

other Glauber dynamics. However, the constant κ is model-dependent. For

other Glauber dynamics, this constant may be different.
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5 Application of Potential-Theoretic Approach

The proof of Theorem 4.6 is based on the potential-theoretic arguments developed

in [14] and accurate analyses of the energy landscape. In this section, based on the

argument developed in [14] along with the Dirichlet and the generalized Thomson

principle (cf. Theorem 2.1) for reversible Markov processes, we reduce the proof of

Theorem 4.6 to constructions of a test function and a test flow in Propositions 5.2

and 5.3, respectively.

5.1 Main capacity estimate

We first introduce the potential-theoretic notions. These notions are introduced in

Section 0.2, but we rename these objects in the context of the Ising model.

• The Dirichlet form Dβ(·) associated with the reversible process σβ(·) is given

by, for f : X → R,

Dβ(f) =
1

2

∑
σ, ζ∈X

µβ(σ) cβ(σ, ζ) {f(ζ)− f(σ)}2 . (5.1)

• Let P andQ be disjoint and non-empty subsets of X . The equilibrium potential

between P and Q is the function hβP,Q : X → R defined by

hβP,Q(σ) = Pβσ [τP < τQ] , (5.2)

and the capacity between P and Q is defined by

capβ(P, Q) = Dβ(hβP,Q) . (5.3)

The following theorem is the main capacity estimate.

Theorem 5.1. We have that

capβ(�, �) =
1 + oβ(1)

2κ
e−Γβ , (5.4)

where κ is the constant appearing in Theorem 4.6.

Before proceeding to the proof of Theorem 5.1, we first explain the proof of

Theorem 4.6 by assuming Theorem 5.1.

Proof of Theorem 4.6. Since Eβ� [τ�] = Eβ� [τ�] by symmetry, we only focus on the
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estimate of Eβ� [τ�]. By Proposition 0.14, (or more precisely, by (0.32)), we have

Eβ� [τ�] =
1

capβ(�, �)

∑
σ∈X

µβ(σ)h�,�(σ) . (5.5)

By Proposition 4.2 and the fact that h�,�(�) = 1 and h�,�(�) ≡ 0, we rewrite the

last summation as
1

2
+ oβ(1) +

∑
σ∈X\S

µβ(σ)h�,�(σ) .

Since |h�,�| ≤ 1, again by Proposition 4.2, we have∣∣∣ ∑
σ∈X\S

µβ(σ)h�,�(σ)
∣∣∣ ≤ µβ(X \ S) = oβ(1) .

In summary, we obtain ∑
σ∈X

µβ(σ)h�,�(σ) =
1

2
+ oβ(1) .

Now, inserting this and Theorem 5.1 to (5.5), we can complete the proof.

5.2 The constant κ

To explain the main result for the capacity estimate, we first have to introduce the

bulk constant b and the edge constant e. The reason for the choice of the words

“bulk” and “edge” will become clear as we analyze the energy landscape more deeply

(cf. Remark 9.4).

Firstly, the bulk constant b is defined explicitly as

b =

{
(K+2)(L−4)

4KL if K < L ,
(K+2)(L−4)

8KL if K = L .
(5.6)

On the other hand, we do not provide a precise definition of the edge constant e

at this point. This is a complicated constant defined in (8.24) which satisfies (cf.

Proposition 8.12)

0 < e ≤ 1

L
. (5.7)

We stress that these constants depend on K and L even though the dependency is

not highlighted in the notation.
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Now, we define the constant κ as

κ = b + 2e . (5.8)

We note that the bulk constant b is the constant associated to the bulk part of

the transition between � and �, while the edge constant e is related to the edge

behavior of the transition. Since there are two edge parts (around � and around �),

the constant 2 has been multiplied in front of e in (5.8). Moreover, one can readily

observe that, when K (and hence L) is large, the edge constant e is much smaller

than b. Hence, the bulk effect dominates the edge effect. We also note that (4.11)

follows directly from (5.6) and (5.7).

5.3 Capacity estimate

The upper bound estimate is based on the Dirichlet principle for reversible Markov

processes (Theorem 1.3). To use this principle, we will prove the following proposi-

tion.

Proposition 5.2. There exists a function f0 : X → R such that f0 ∈ C1, 0({�}, {�})
and that

Dβ(f0) =
1 + oβ(1)

2κ
e−Γβ . (5.9)

Finding the test function f0 requires a deep insight into the energy landscape, as

well as the typical patterns of the Metropolis dynamics in a suitable neighborhood

of saddle configurations. We construct this test function and prove Proposition 5.2

in Section 9.

To explain the lower bound of the capacity, we use the generalized Thomson

principle (Theorem 2.1). For convenience, we write the flow norm associated with

the process σβ(·) as ‖ ·‖β. We shall prove the following proposition later to establish

the lower bound of the capacity.

Proposition 5.3. There exists a flow ψ0 such that

‖ψ0‖2β = (2 + oβ(1))κ eΓβ and
∑
σ∈X

hβ�,�(σ) (divψ0)(σ) = 1 + oβ(1) . (5.10)

We construct the test flow ψ0 in Section 10 (cf. Definition 10.1), and then verify

in the same section that our test flow ψ0 indeed satisfies (5.10).

We now prove Theorem 5.1 by assuming Propositions 5.2 and 5.3.
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Proof of Theorem 5.1. By Theorem 1.3 and Proposition 5.2, we get

capβ(�, �) ≤ Dβ(f0) =
1 + oβ(1)

2κ
e−Γβ . (5.11)

On the other hand, by Theorem 2.1 and Proposition 5.3, we obtain

capβ(�, �) ≥ 1

‖ψ0‖2β

[ ∑
σ∈X

hβ�,�(σ) (divψ0)(σ)
]2

=
1 + oβ(1)

2κ
e−Γβ . (5.12)

The proof is completed by (5.11) and (5.12).

Hence, to prove Theorem 4.6, it only remains to prove Propositions 5.2 and 5.3.

The proof is given in the remainder of Part II.
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6 Neighborhood of Configurations

For c ∈ R, a path (ωt)
T
t=0 in X is called a c-path if we haveH(ωt) ≤ c for all t ∈ J0, T K.

Heuristically, if two configurations are connected by a (Γ − 1)-path, in a suitable

sense, these two configurations are indistinguishable in the transition scale eβΓ, since

σβ(·) commutes them in a shorter scale. Moreover, if two configurations are not

connected by a Γ-path, the process σβ(·) cannot commute these two configurations

in the transition scale eβΓ. The following definition of neighborhoods is inspired

from these observations.

Definition 6.1 (Neighborhood of configurations). 1. For σ ∈ X , the neighbor-

hood N (σ) and the extended neighborhood N̂ (σ) are defined as

N (σ) = {ζ ∈ X : ∃ a (Γ− 1)-path (ωt)
T
t=0 connecting σ and ζ} and

N̂ (σ) = {ζ ∈ X : ∃ a Γ-path (ωt)
T
t=0 connecting σ and ζ} .

If H(σ) > Γ− 1 (resp. H(σ) > Γ), we set N (σ) = ∅ (resp. N̂ (σ) = ∅).

2. For P ⊆ X , we define

N (P) =
⋃
σ∈P
N (σ) and N̂ (P) =

⋃
σ∈P
N̂ (σ) .

3. A path (ωt)
T
t=0 is said to be a path in A ⊂ X if ωt ∈ A for all t ∈ J0, T K. For

Q ⊂ X and σ ∈ X \ Q, we define

N̂ (σ ; Q) = {ζ ∈ X : ∃ a Γ-path in X \ Q connecting σ and ζ} .

If H(σ) > Γ, we set N̂ (σ ; Q) = ∅.

4. For P ⊆ X disjoint with Q, define

N̂ (P ; Q) =
⋃
σ∈P
N̂ (σ ; Q) .

With this notation, Theorem 4.4 is equivalent to N (�)∩N (�) = ∅ and N̂ (�) =

N̂ (�). Since the transition must take place in the set N̂ (S), analyzing the structure

of this set is crucial in the energy landscape analysis. It will be carried out in Section

8.

The following lemma is useful.
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Lemma 6.2. Suppose that P and Q are disjoint subsets of X . Then, it holds that

N̂ (P ∪Q) = N̂ (Q ; P) ∪ N̂ (P ; Q) .

Proof. Since

N̂ (P ∪Q) = N̂ (P) ∪ N̂ (Q) , (6.1)

N̂ (Q) ⊃ N̂ (Q ; P) , and N̂ (P) ⊃ N̂ (P ; Q) ,

it immediately follows that

N̂ (P ∪Q) ⊇ N̂ (Q ; P) ∪ N̂ (P ; Q) . (6.2)

Let us now prove the reversed inclusion. We now assume that there exists σ ∈ X
such that

σ ∈ N̂ (P ∪Q) \
[
N̂ (Q ; P) ∪ N̂ (P ; Q)

]
. (6.3)

By (6.1), we may assume without loss of generality that

σ ∈ N̂ (P) \
[
N̂ (Q ; P) ∪ N̂ (P ; Q)

]
.

Since σ ∈ N̂ (P) \ N̂ (P ; Q), we have σ /∈ P. Since σ ∈ N̂ (P), we can find a Γ-path

connecting σ and P. Let us assume that (ωt)
T
t=0 is the shortest of all such paths.

We may assume that ω0 = σ and ωT ∈ P.

• Suppose first that ωt /∈ Q for all t ∈ J0, T − 1K. Then the path (ωt)
T
t=0

becomes a Γ-path in X \Q connecting σ and P. This contradicts the fact that

σ /∈ N̂ (P ; Q).

• Suppose next that ωt0 ∈ Q for some t0 ∈ J0, T − 1K. Then, by the minimality

assumption on the length of (ωt)
T
t=0, we must have ωt /∈ P for all t ∈ J0, T−1K.

Consequently, (ωt)
t0
t=0 becomes a path in X \P connecting σ and Q, and hence

we get a contradiction to the fact σ /∈ N̂ (Q ; P).

Therefore, there is no σ satisfying (6.3), and we have proved the reversed inclusion

relation of (6.2).
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Figure 7.1: Canonical configurations for (K, L) = (6, 8). White and gray boxes
correspond to a box with − spin and + spin, respectively. Three figures represent
configurations ζ2, 3, ζup

2, 3 ; 3, 4, and ζdown
2, 3 ; 2, 3, respectively.

7 Canonical Configurations and Paths

Now, we begin to analyze the energy landscape. In this section, we introduce the

canonical configurations and paths, and then investigate their properties. Based on

these, we study the typical configurations in the next section.

7.1 Canonical configurations

Definition 7.1 (Canonical configurations). We refer to Figure 7.1 for an illustration

of examples of the canonical configurations defined below. Before defining compli-

cated notations, we note that k and ` are used to represent elements of TK and

TL, respectively, and v and h are used to denote vertical and horizontal lengths,

respectively.

• For ` ∈ TL and v ∈ J0, LK, denote by ζ`, v ∈ X the configuration whose spins

are + on

TK × {`+ n ∈ TL : n ∈ J0, v − 1K ⊆ Z} .

and − on the remainder. Hence, we have ζ`, 0 = � and ζ`, L = � for all ` ∈ TL.

For v ∈ J0, LK, write

Rv = {ζ`, v : ` ∈ TL} . (7.1)

• For (`, k) ∈ TL ×TK and (v, h) ∈ J0, L− 1K× J0, KK, denote by ζup
`, v ; k, h ∈ X

the configuration whose spins are + on

{x ∈ Λ : ζ`, v(x) = +} ∪
[
{k + n ∈ TK : n ∈ J0, h− 1K ⊆ Z} × {`+ v}

]
and − on the remainder. Similarly, denote by ζdown

`, v ; k, h ∈ X whose spins are +
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on

{x ∈ Λ : ζ`, v(x) = +} ∪
[
{k + n ∈ TK : n ∈ J0, h− 1K ⊆ Z} × {`− 1}

]
and − on the remainder. Namely, the configuration ζup

`, v ; k, h (resp. ζdown
`, v ; k, h)

is obtained from ζ`, v by attaching a protuberance of spin + of size h at the

upper (resp. lower) side of the cluster of spin + of ζ`, v.

• For v ∈ J0, L− 1K, define

Qv =
⋃
k∈TK

K−1⋃
h=1

{ζup`, v ; k, h, ζ
down
`, v ; k, h} . (7.2)

Hence, Qv consists of configurations between Rv and Rv+1.

• Finally, define

C =

L⋃
v=0

Rv ∪
L−1⋃
v=0

Qv .

In the current note, the canonical configurations are the configurations belong-

ing to C.

Remark 7.2. By a direct computation, we can readily verify that H(σ) ≤ Γ for all

σ ∈ C. In particular, we have

H(σ) =

{
Γ− 2 if σ ∈ Rv for some v ∈ J1, L− 1K ,

Γ if σ ∈ Qv for some v ∈ J1, L− 2K .

For the clarity of the discussion, we henceforth assume that K < L. The case

K = L will be discussed in Section 11. Note that the only difference for the case

K = L is that the configuration obtained by rotating a canonical configuration in C
must play the same role, unlike the case K < L. This fact can be readily taken into

account in the computations, and we refer to Section 11 or [27] for further details.

Note that for K < L, the rows and columns play completely different roles.

7.2 Canonical paths

We now explain the crucial role of canonical configurations by describing canoni-

cal paths between � and � consisting of canonical configurations. The following

notation is useful.

Notation 7.3. Suppose that N ≥ 2 is a positive integer.
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Figure 7.2: Example of a canonical path for (K, L) = (6, 8).

• Denote by SN the collection of all connected subsets of TN , i.e.,

SN = {P ⊆ TN : P = Ji, jK for some i, j ∈ TN or P = ∅} . (7.3)

Here, the set Ji, jK ⊆ TN represents the set {i, i+1, . . . , j}. Note that this set

can be defined even for j < i. For instance, for N = 6, the set J4, 2K represents

{4, 5, 6, 1, 2}.

• For two sets P, P ′ ∈ SN , we write P ≺ P ′ if P ⊆ P ′ and |P ′| = |P |+ 1.

• A sequence (Pn)Nn=0 of sets in SN is called an increasing sequence if

∅ = P0 ≺ P1 ≺ · · · ≺ PN = TN .

Note that, for an increasing sequence (Pn)Nn=0 in SN , we have that |Pn| = n

for all n ∈ J0, NK.

Definition 7.4 (Canonical paths). We refer to Figure 7.2 for an example of canon-

ical path defined below.
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1. We first introduce a standard sequence of subsets of Λ = TK × TL connecting

the empty set and the full set Λ.

(a) For P, P ′ ∈ SL with P ≺ P ′, a sequence (At)
K
t=0 of subsets of Λ is called

a standard sequence connecting TK × P and TK × P ′ if there exists an

increasing sequence (Qt)
K
t=0 in SK such that

At = (TK × P ) ∪
[
Qt × (P ′ \ P )

]
for all t ∈ J0, KK .

(b) A sequence (At)
KL
t=0 of subsets of Λ is called a standard sequence connect-

ing ∅ and Λ if there exists an increasing sequence (P`)
L
`=0 in SL such that

AK` = TK × P` for all ` ∈ J0, LK, and the sub-sequence (At)
K(`+1)
t=K` is a

standard sequence connecting TK×P` and TK×P`+1 for all ` ∈ J0, L−1K.

2. A path (ωt)
KL
t=0 in X is called a canonical path connecting � and � if there

exists a standard sequence (At)
KL
t=0 connecting ∅ and Λ such that

ωt(i, j) =

{
− if (i, j) /∈ At ,
+ if (i, j) ∈ At .

It is easy to verify that ω0 = � and ωKL = �. A canonical path connecting �
and � is defined in a similar manner. We say that a path is a canonical path

if it is a canonical path connecting either � and � or � and �.

The following is an immediate consequence of the construction.

Lemma 7.5. A canonical path consists only of canonical configurations. In partic-

ular, for any canonical path (ωt)
KL
t=0 connecting � and �, we have that

max
t∈J0,KLK

H(ωt) = Γ .

Proof. The first assertion follows immediate from the construction. For the second

assertion, it suffices to recall Remark 7.2.

In view of the previous lemma and Theorem 4.4, a canonical path between �
and � is an optimal path achieving the communication height between them. We

emphasize here that the optimal transition may not always occur along this path.

Indeed, transitions from � toR2 and fromRL−2 to � may happen in a more complex

manner, while transitions from R2 to RL−2 should happen along a canonical path.

This issue is the main topic of the next section.
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8 Typical Configurations

The crucial notion in the energy landscape analysis between ground states is the

typical configurations defined in this section. A configuration σ is said to be a

typical configuration if σ ∈ N̂ (S). Therefore, the typical configurations comprise all

the relevant configurations in the study of metastable transition between � and �.

8.1 Typical configurations

Let us start by defining typical configurations.

Definition 8.1 (Typical configurations). We refer to Figure 8.1 for an illustration

of the typical configurations defined below.

• Define

B =

L−2⋃
v=2

Rv ∪
L−3⋃
v=2

Qv . (8.1)

A configuration belonging to B is called a bulk typical configuration. Then,

write

BΓ =

L−3⋃
v=2

Qv = {σ ∈ B : H(σ) = Γ} .

• Define

E+ = N̂ (� ; BΓ) and E− = N̂ (� ; BΓ) . (8.2)

Then, we define E = E+∪E−. A configuration belonging to E is called an edge

typical configuration.

A configuration belonging to B ∪ E is called a typical configuration. Indeed, it holds

that B ∪ E = N̂ (S), and this will be verified later.

Now, we explain the reason why we have decomposed typical configurations into

bulk and edge configurations. A typical transition from � to � of the Metropolis

dynamics can be divided into three stages. Firstly, the process passes through E−

to arrive at B. Then, it goes through B along the canonical configurations to arrive

at E+. Finally, the process reaches at � by passing through E+. The behavior of

the process at the second stage (i.e., in the bulk) is relatively clear, and we can

understand the behavior in great detail. On the other hand, the behavior of the

Metropolis dynamics on E− and E+ is complex, and can be explained in terms of

an auxiliary Markov chain defined in Definition 8.10. We are not able to write the

constant appearing in the Eyring–Kramers law in a simple manner because of this

complex behavior of the Metropolis dynamics in the edge typical configurations.
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Figure 8.1: Structure of N̂ (S) and typical configurations. Regions consisting
of configurations with energy Γ are colored gray. As we will verify in Proposition
8.9, we can observe that N̂ (S) = E− ∪ E+ ∪ B , E− ∩ B = R2, and E+ ∩ B =
RL−2. The hexagonal region enclosed by the blue line denotes the set C of canonical
configurations between � and �. The set E+ of edge typical configurations around
� consists of four regions. The first one is the neighborhood N (�) denoted by
the red-enclosed box and the second one is RL−2. The third one is the region
consisting of configurations with energy Γ which are connected to RL−2 via a Γ-
path in X \ N (�). An example of a configuration belonging to this region is η1.
In particular, the configuration η1 is connected with a configuration in RL−2 via
a Γ-path in X \ N (�) which is obtained by updating six grey boxes by the order
indicated in the figure. The last region is the collection of the dead-ends attached to
N (�). This is a collection of configurations with energy Γ which are not connected
to RL−2 via a Γ-path in X \ N (�). An example of a dead-end configuration is η2

which has energy 14 = 2 · 6 + 2 = 2K + 2. A similar decomposition holds for E−.
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8.2 Characterization of configurations with low energy

To investigate the typical configurations defined above, in this subsection, we fully

characterize the configurations which have energy less than Γ. Write

‖σ‖+ =
∑
x∈Λ

1{σ(x) = +} and ‖σ‖− =
∑
x∈Λ

1{σ(x) = −} (8.3)

which denote the number of sites with spin + and −, respectively.

Proposition 8.2. Suppose that σ ∈ X satisfies H(σ) < Γ. Then, either (1) or (2)

below must hold.

1. The configuration σ belongs to Rv for some v ∈ J2, L − 2K. In particular,

N (σ) = {σ}.

2. The configuration σ belongs to N (�) or N (�).

Remark 8.3. Two neighborhoods N (�) and N (�) are disjoint by Theorem 4.4.

Notation 8.4. • A horizontal bridge (resp. vertical bridge) is a row (resp. col-

umn), in which all spins are identical. If a bridge consists of spin + (resp. −),

we call this bridge a +-bridge (resp. −-bridge). Then, we denote by B±(σ)

the number of ±-bridges in σ ∈ X .

• A cross is a union of a horizontal bridge and a vertical bridge. A cross con-

sisting of spin + (resp. −) is called a +-cross (resp −-cross).

• We denote by r1, . . . , rL the rows and c1, . . . , cK the columns of Λ = TK×TL.

For (v, h) ∈ J1, LK× J1, KK and σ ∈ X , we define

Hrv(σ) =
∑

x, y∈rv :x∼y
1{σ(x) 6= σ(y)} and

Hch(η) =
∑

x, y∈ch:x∼y
1{σ(x) 6= σ(y)} ,

so that we can decompose the Hamiltonian in a way that

H(σ) =
L∑
v=1

Hrv(σ) +
K∑
h=1

Hch(σ) . (8.4)

A horizontal (resp. vertical) edge denotes an edge belonging to a row (resp.

column).

The following lower bound for the Hamiltonian is a consequence of notations and

observations above.
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Lemma 8.5. It holds that

H(σ) ≥ 2 [K + L−B+(σ)−B−(σ) ] .

Proof. The lemma follows directly from (8.4) and the fact that Hrv(σ) ≥ 2 (resp.

Hch(σ) ≥ 2) if rv (resp. ch) is not a bridge.

We are now ready to prove Proposition 8.2.

Proof of Proposition 8.2. Fix σ ∈ X with H(σ) < Γ = 2K + 2. By Lemma 8.5, we

have

2K + 1 ≥ 2
[
K + L−B+(σ)−B−(σ)

]
,

and therefore B+(σ)+B−(σ) ≥ L. Namely, there are at least L bridges. Let us take

one of them and assume without loss of generality that this is a +-bridge. Now, we

consider three cases separately.

(Case 1: σ has a +-horizontal bridge without a +-vertical one) Since

Hch(σ) ≥ 2 for all h ∈ J1, KK, we can observe from (8.4) that Hr`(σ) = 0 for

all ` ∈ J1, LK. This implies that all rows are monochromatic, and therefore all

columns are identical. Thus, again by (8.4), we get Hck(σ) = 2 for all k ∈ J1, KK,
and thus σ ∈ Rv for some v ∈ J1, LK. If v ∈ J2, L − 2K, then it is clear that

N (σ) is a singleton since any configuration obtained from σ by flipping a spin has

energy greater than or equal to Γ. Thus, σ satisfies the requirements of case (1).

On the other hand, if v /∈ J2, L−2K, we can readily observe that σ ∈ N (�) or N (�).

(Case 2: σ has a +-vertical bridge without a +-horizontal one) Since

∆Hrv(σ) ≥ 2 for all v ∈ J1, LK, we obtain from (8.4) that 2K ≥ 2L; hence, we

obtain a contradiction (to the assumption that K < L).

(Case 3: σ has a +-cross) Without loss of generality, assume that TK × {1}
and {1} × TL are +-bridges. Let us update each spin to + in J2, KK × J2, LK in

the ascending lexicographic order. The presence of spin +-bridges ensures that the

Hamiltonian cannot increase in the course of the updates. Since we finally arrive at

�, we can conclude that

Φ(σ, �) ≤ H(σ) < Γ .

Thus, we have σ ∈ N (�).
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8.3 Properties of typical configurations

In this subsection, we investigate the structure of typical configurations introduced

above. We start from two elementary lemmas.

Lemma 8.6. Suppose that σ ∈ B and ξ ∈ X satisfy σ ∼ ξ and H(ξ) ≤ Γ. Then,

the following statements hold.

1. We have ξ ∈ B ∪ Q1 ∪QL−2 ⊆ C.

2. If σ ∈ Rv with v ∈ J3, L− 3K, then ξ ∈ BΓ.

3. If σ ∈ BΓ, then ξ ∈ B.

Proof. We consider two cases separately.

• (Case 1: σ ∈ Rv for some v ∈ J2, L − 2K) Assume that σ = ζ`, v for some

` ∈ TL. We can observe from the illustration given in Figure 7.1 that the only

way of flipping a spin of σ in such a way that the resulting configuration has

energy at most Γ is either to attach a protuberance of spin + to the cluster of

spin + of σ or to attach a protuberance of spin − to the cluster of spin − of

σ. This implies that

ξ ∈ {ζup
`, v ; k, 1 , ζdown

`, v ; k, 1 , ζup
`, v−1; k,K−1 , ζdown

`+1, v−1; k,K−1 : k ∈ TK} .

Hence, ξ ∈ B ∪ Q1 ∪ QL−2. This observation also implies that ξ ∈ BΓ if

v ∈ J3, L− 3K, and hence part (2) is verified here as well.

• (Case 2: σ ∈ Qv for some v ∈ J2, L − 3K) Suppose that σ = ζup`, v ; k, h for

some (k, `) ∈ TK × TL and h ∈ J1, K − 1K. In this case, we can observe that

the only way of flipping a spin of σ without increasing the Hamiltonian is to

expand or shrink the protuberance of spin + attached at ζ`, v, and therefore

ξ ∈ {ζup
`, v ; k, h−1, ζ

up
`, v ; k+1, h−1} .

Therefore, we have ξ ∈ B and hence parts (1) and (3) are now verified. The

same conclusion also holds for the case σ = ζdown
`, v ; k, h.

The previous lemma implies the following result.

Lemma 8.7. It holds that N̂ (B ; C \ B) = B.

64



Proof. Since the energy of configurations belonging to B do not exceed Γ, it follows

immediately that

N̂ (B ; C \ B) ⊃ B .

Now, we claim the opposite inclusion, i.e.,

N̂ (B ; C \ B) ⊂ B . (8.5)

Suppose the contrary that there exists σ ∈ N̂ (B ; C \ B) such that σ /∈ B. Since

σ ∈ N̂ (B ; C \B), there exists a Γ-path (ωt)
T
t=0 in X \(C \B) = (X \C)∪B connecting

B and σ. Then, as ω0 ∈ B, and ωT /∈ B, we can find t0 ∈ J0, T −1K such that ωt0 ∈ B
and ωt0+1 /∈ B. Since (ωt)

T
t=0 is a path in (X \ C) ∪ B, we get

ωt0+1 ∈ (X \ B) ∩
[

(X \ C) ∪ B
]
⊂ X \ C .

On the other hand, since ωt0 ∈ B we must have ωt0+1 ∈ C by part (1) of Lemma 8.6

and thus we have a contradiction. This proves (8.5) and the proof is finished.

Next, we prove that the two sets E+ and E− are indeed disjoint.

Proposition 8.8. We have that E+ ∩ E− = ∅.

Proof. Suppose the contrary that there exists a path (ωt)
T
t=0 is a Γ-path from � to

� in X \ BΓ. Define u : J0, T K→ R as

u(t) = B+(ωt) ; t ∈ J0, T K ,

where B+(·) is defined in Notation 8.4. Then, we have that

u(0) = 0 , u(T ) = K + L , and |u(t+ 1)− u(t)| ≤ 2 for all t ∈ J0, T − 1K . (8.6)

Thus, the following time t∗ is well defined:

t∗ = min {t ∈ J0, T − 1K : u(t), u(t+ 1) ≥ 2} . (8.7)

Note that, since we need to change at least 2K − 1 spins from � to get u(t) ≥ 2, we

have t∗ ≥ 2K − 1. Then, by (8.6), we have B+(ωt∗) = 2 or 3. We divide the proof

into three cases as in Proposition 8.2.

(Case 1: ωt∗ has +-horizontal bridges without a +-vertical one) For this

case, if B+(ωt∗) = 3, we have B+(ωt∗−1) ≥ 2 and thus we get a contradiction to the

minimality of t∗. Hence, we have B+(ωt∗) = 2.
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Since ωt∗ does have both +- and −-vertical bridges, we get Hch(ωt∗) ≥ 2 for all

h ∈ J1, KK. By (8.4) and the fact that H(ωt∗) ≤ Γ = 2K+2, we can readily observe

that ωt∗ ∈ R2 ∪ Q2. Since Q2 ⊆ BΓ and since (ωt)
T
t=0 is a path in X \ BΓ, we can

conclude that ωt∗ ∈ R2. Since H(ωt∗+1) ≤ Γ and u(t∗ + 1) ≥ 2, we are forced to

have ωt∗+1 ∈ BΓ which is a contradiction.

(Case 2: ωt∗ has +-vertical bridges without a +-horizontal one) This case

is similar to (Case 1).

(Case 3: ωt∗ has a +-cross) In this case, ωt∗ cannot have a −-bridge. Thus,

by (8.6), the configuration ωt∗ has at most three bridges. Therefore, by Lemma 8.5,

H(ωt∗) ≥ 2(K + L− 3) > Γ ,

which contradicts the fact that (ωt)
T
t=0 is a Γ-path.

Now, the assertion of the proposition directly follows since if E+ ∩E− 6= ∅, there

must exist a Γ-path from � to � in X \ BΓ.

The previous proposition implies that any Γ-path connecting � and � has to

touch the set BΓ, i.e., has to path through bulk typical configurations.

The next proposition concerns the relationships between bulk and edge typical

configurations.

Proposition 8.9. The following properties hold:

1. It holds that

E− ∩ B = R2 and E+ ∩ B = RL−2 . (8.8)

2. We have that E ∪ B = N̂ (S).

Proof. (1) We only prove the first one of (8.8), as the second one follows in the same

manner.

First, we have B ⊃ R2 from the definition of B. On the other hand, since the

canonical path connecting R2 and � is a Γ-path in X \ BΓ, we also have E− ⊃ R2.

Thus, we have proved that,

E− ∩ B ⊃ R2 . (8.9)

Now, we claim that the reversed inclusion also holds. To prove this claim, we begin

by observing that, since BΓ and E are disjoint by definition (cf. (8.2)), we can

conclude that

E− ∩ B ⊂ B \ BΓ =
⋃

v∈J2, L−2K

Rv .
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For σ ∈ Rv with v ∈ J3, L− 3K, we cannot have a path in X \ BΓ connecting � and

σ by Lemma 8.6-(2). We therefore have σ /∈ E−, and thus we can conclude that

E− ∩ B ⊂ R2 ∪RL−2 . (8.10)

By the same reason with the inclusion E− ⊃ R2, we also have E+ ⊃ RL−2. Therefore,

any configuration σ ∈ RL−2 cannot belong to E− by Proposition 8.8; hence, from

(8.10), we can deduce that

E− ∩ B ⊂ R2 . (8.11)

This proves the claim and we are done.

(2) The inclusion E ⊂ N̂ (S) is obvious from the definition of E , and the inclusion

B ⊂ N̂ (S) also follows immediately from the fact that any bulk typical configura-

tion is connected to � (or �) via a part of a canonical path, which is a Γ-path (cf.

Remark 7.2). Thus, we can conclude that

E ∪ B ⊂ N̂ (S) . (8.12)

Now we prove the reversed inclusion. By Lemma 6.2 with P = C \B and Q = B, we

get

N̂ (C) = N̂ (B ; C \ B) ∪ N̂ (C \ B ; B) . (8.13)

By Lemma 8.12, we have

N̂ (B ; C \ B) = B . (8.14)

Since any configuration in C\B is connected to either � or � via a part of a canonical

path which is a Γ-path in X \ BΓ, we obtain

N̂ (C \ B ; B) ⊂ N̂ (C \ B ; BΓ) ⊂ N̂ (S ; BΓ) = E . (8.15)

By combining (8.13), (8.14), and (8.15), we get

N̂ (C) ⊂ E ∪ B .

Since S ⊂ C, the last inclusion implies the opposite inclusion of (8.12), and we are

done.
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8.4 Characterization of edge typical configurations

As mentioned before, edge typical configurations have far more complex structure

than bulk ones. In this subsection, we study this complex structure in detail.

Our analysis starts with a decomposition of the form

E− = O− ∪ I− and E+ = O+ ∪ I+ ,

where

O± = {σ ∈ E± : H(σ) = Γ} and I± = {σ ∈ E± : H(σ) < Γ} .

Then, we analyze the structure based on this decomposition. For the concreteness

of the discussion, we focus only on E−, as the analysis of E+ is essentially identical.

By Proposition 8.2, we can see that

I− = N (�) ∪R2 . (8.16)

We now construct a graph and a Markov chain which represent the asymptotic be-

havior of the Metropolis dynamics on E−. Heuristically, since the configurations

belonging to N (�) are indistinguishable in the scale eβΓ (as they can be communi-

cated by a much shorter scale), we shall identify all the configurations in N (�) with

� and define

I− = � ∪R2 . (8.17)

With this notation, we can write

E− = O− ∪
( ⋃
σ∈I−

N (σ)
)
. (8.18)

Now, we define a graph structure on the vertex set V − defined by

V − = O− ∪ I− , (8.19)

and define a continuous-time Markov chain on that graph.

Definition 8.10. • (Graph) We introduce a graph structure G− = (V −, E −)

where for σ, σ′ ∈ V −, we say that {σ, σ′} ∈ E − if and only if{
σ, σ′ ∈ O− and σ ∼ σ′ or

σ ∈ O−, σ′ ∈ I− and σ ∼ ξ for some ξ ∈ N (σ′) .
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• (Markov chain) The rate function r− : V −×V − → [0, ∞) is defined by, for

all {σ, σ′} ∈ E ,

r−(σ, σ′) =


1 if σ, σ′ ∈ O− ,
|{ξ ∈ N (σ) : ξ ∼ σ′}| if σ ∈ I− , σ′ ∈ O− ,
|{ξ ∈ N (σ′) : ξ ∼ σ}| if σ ∈ O− , σ′ ∈ I− ,

(8.20)

and we finally set r−(σ, σ′) = 0 if {σ, σ′} /∈ E −. Then, denote by (Z−(t))t≥0

a continuous-time Markov chain on V − with rate r−(·, ·). Since the rate is

symmetric, the Markov chain Z−(·) is reversible with respect to the uniform

distribution on V −.

• We denote by h−·, ·(·), cap−(·, ·), D−(·), and ‖ · ‖− the equilibrium potential,

capacity, Dirichlet form, and flow norm with respect to the Markov process

Z−(·), respectively. In addition, denote by L− the generator of the process

Z−(·) acting on f : V − → R in a way that

(L−f)(σ) =
∑

σ′∈V −: {σ, σ′}∈E−

r−(σ, σ′) {f(σ′)− f(σ)} . (8.21)

We first show that the Markov process Z−(·) approximates in some sense the

Metropolis dynamics σβ(·) in EA.

Proposition 8.11. Define a projection map Π− : E− → V − by

Π−(σ) =

{
ξ if σ ∈ N (ξ) for some ξ ∈ I− ,
σ if σ ∈ O− .

Then, there exists a constant C = C(K, L) > 0 such that

1. for σ, σ′ ∈ O−, we have∣∣∣ 1

2
e−Γβr−(Π−(σ), Π−(σ′))− µβ(σ) cβ(σ, σ′)

∣∣∣ ≤ Ce−(Γ+2)β , (8.22)

2. for σ ∈ O− and σ′ ∈ I−, we have∣∣∣ 1

2
e−Γβr−(Π−(σ), Π−(σ′))−

∑
ξ∈N (σ′)

µβ(σ) cβ(σ, ξ)
∣∣∣ ≤ Ce−(Γ+2)β . (8.23)

Proof. Suppose that σ, σ′ ∈ O−. If σ 6∼ σ′, then the left-hand side of (8.22) is clearly
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0. On the other hand, if σ ∼ σ′ so that {σ, σ′} ∈ E −, then by (4.8) and (8.20),∣∣∣ 1

2
e−Γβr−(Π−(σ), Π−(σ′))− µβ(σ) cβ(σ, σ′)

∣∣∣ =
∣∣∣ 1

2
e−Γβ − 1

Zβ
e−Γβ

∣∣∣
since µβ(σ) = µβ(σ′) = 1

Zβ
e−Γβ. By (4.6), the right-hand side is O(e−(Γ+2)β). This

proves part (1).

Now, we consider part (2). Let σ ∈ O− and σ′ ∈ I−. Similarly, we can assume

{σ, σ′} ∈ E − since otherwise the left-hand side of (8.23) is 0. Then, by (4.8) and

(8.20), we can write∣∣∣ 1

2
e−Γβr−(Π−(σ), Π−(σ′))−

∑
ξ∈N (σ′)

µβ(σ) cβ(σ, ξ)
∣∣∣

=
∣∣∣ 1

2
e−Γβ |{ξ ∈ N (σ′) : ξ ∼ σ}| −

∑
ξ∈N (σ′): ξ∼σ

min{µβ(σ), µβ(ξ)}
∣∣∣

=|{ξ ∈ N (σ′) : ξ ∼ σ}| ×
∣∣∣ 1

2
e−Γβ − 1

Zβ
e−Γβ

∣∣∣ ,
since min{µβ(σ), µβ(ξ)} = µβ(σ) for all ξ ∈ N (σ′). By (4.6), the last line is bounded

by KL×O(e−Γβe−2β) = O(e−(Γ+2)β).

In view of this proposition, we can assert that the equilibrium potential h−�,R2
(·)

approximates the equilibrium potential of the Metropolis dynamics in E−. For this

reason, the equilibrium potential h−�,R2
(·) plays a significant role in the construction

of the test function and flow in the next sections.

Now, we are ready to define the edge constant e introduced in Section 5.2. Define

e =
1

|V −| cap−(�, R2)
. (8.24)

The appearance of cap−(�, R2) is quite natural in that the equilibrium potential

h−�,R2
(·) is the correct approximation of the equilibrium potential of the Metropolis

dynamics in E−. We conclude this section by showing that the constant e is small.

Proposition 8.12. We have that e ≤ 1
L .

Proof. We use the Thomson principle (cf. Theorem 1.4) to prove the proposition.

We define a test flow ψ on V −×V − (with respect to the Markov process Z−(·)) as{
ψ(�, ζup

`, 1 ; k, 1) = 1
KL for (k, `) ∈ TK × TL ,

ψ(ζup
`, 1 ; k, h, ζ

up
`, 1 ; k, h+1) = 1

KL for (k, `) ∈ TK × TL and h ∈ J1, K − 1K .
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We set ψ(σ, σ′) = 0 for all other cases. Notice that ζup
`, 1 ; k, h ∈ O

− for all h ∈
J1, K−1K, and that {�, ζup

`, 1 ; k, 1} ∈ E − since ζup
`, 1 ; k, 1 ∼ ζ`, 1 and ζ`, 1 ∈ N (�), where

the latter is readily follows from the part of a canonical path connecting � and ζ`, 1
is a (Γ− 2)-path. Notice that this is a unit flow from � to R2 since

(divψ)(�) =
∑
`∈TL

∑
k∈TK

1

KL
= 1 ,

(divψ)(R2) =
∑
`∈TL

(divψ)(ζ`, 2) =
∑
`∈TL

∑
k∈TK

−1

KL
= −1 ,

and moreover we can readily check that

(divψ)(σ) = 0 for all σ ∈ V − \ (� ∪R2) .

Therefore, by Theorem 1.4, we get

cap−(�, R2) ≥ 1

‖ψ‖2−
. (8.25)

It remains to evaluate the flow norm ‖ψ‖2− which is indeed equal to (since the uniform

distribution is the invariant measure for the Markov process Z−(·))

∑
`∈TL

∑
k∈TK

[ ψ(�, ζup
`, 1 ; k, 1)2

1/|V −|
+
K−1∑
h=1

ψ(ζup
`, 1 ; k, h, ζ

up
`, 1 ; k, h+1)2

1/|V −|

]
= LK2 × |V

−|
K2L2

=
|V −|
L

.

Injecting this to (8.25) completes the proof.

Remark 8.13. In fact, we can verify that there exist two constants C1, C2 > 0 such

that
C1

KL
≤ e ≤ C2

KL
.

We leave this as an exercise. This can be proven with a more refined test flow.

Remark 8.14. Of course, we can also establish the results corresponding to Definition

8.10, Propositions 8.11 and 8.12 for E+ in the completely identical manner. The

constant e defined for E+ should be in accordance with (8.24) by the symmetry of

the model.
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9 Upper Bound for Capacities

In this section, we construct a test function f0 : X → R appearing in Proposition

5.2. For the convenience of notation, we write

h±(·) = h±�,R2
(·) (9.1)

which is the equilibrium potential between {�} and R2 with respect to the process

Z±(·) (cf. Definition 8.10).

9.1 Construction of test function

Now, we construct a function f0 : X → R. In the end, we shall verify that this func-

tion fulfills all requirements of the function f0 appearing in Proposition 5.2. Before

defining the test function explicitly, we briefly explain the gist of the idea. On edge

typical configurations (i.e., on E±), we choose f0 as a rescale of h±. This construc-

tion mainly comes from the fact that the process Z±(·) successfully characterizes

the behavior of the original process on edge typical configurations by Proposition

8.11. On the other hand, on bulk typical configurations, we define f as a rescale of

the equilibrium potential of a symmetric simple random walk on an one-dimensional

line. This is because the Metropolis dynamics behaves as an one-dimensional ran-

dom walk there thanks to the simple geometry between them.

Definition 9.1 (Test function). We construct a test function f0 : X → R on E , B,

and (E ∪ B)c = X \ (E ∪ B), separately.

1. Construction of f0 on edge typical configurations E = E− ∪ E+.

• For σ ∈ E−, we recall the decomposition (8.18) of E− and define

f0(σ) =

{
1− e

κ(1− h−(σ)) if σ ∈ O− ,
1− e

κ(1− h−(ξ)) if σ ∈ N (ξ) for some ξ ∈ I− .
(9.2)

• For σ ∈ E+, we similarly define

f0(σ) =

{
e
κ(1− h+(σ)) if σ ∈ O+ ,
e
κ(1− h+(ξ)) if σ ∈ N (ξ) for some ξ ∈ I+

.
(9.3)

2. Construction of f0 on bulk typical configurations B. In view of (8.1),

it suffices to define this object in the following two cases.
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• For σ ∈ Rv with v ∈ J2, L− 2K, we set

f0(σ) =
1

κ

[ L− 2− v
L− 4

b + e
]
. (9.4)

• For σ ∈ Qv with v ∈ J2, L− 3K, we can write σ = ζup
`, v ; k, h or ζdown

`, v ; k, h for

some (k, `) ∈ TK × TL and h ∈ J1, K − 1K. For such σ, we set

f0(σ) =
1

κ

[ (K + 2)(L− 2− v)− (h+ 1)

(K + 2)(L− 4)
b + e

]
. (9.5)

3. Construction of f0 on the remainder (E ∪ B)c. We define f0 ≡ 1 on this

set.

Remark 9.2. We note that E− and B are not disjoint and their intersection is R2 by

Proposition 8.9. However, we can easily check that our constructions of f0 on R2 in

parts (1) and (2) of the previous definition agree with the value 1− e/κ. A similar

result also holds for E+ and B.

9.2 Properties of test function

Now, we will confirm that the test function f0 satisfies the requirements of f0 ap-

pearing in Proposition 5.2.

Proposition 9.3. The function f0 constructed in Definition 9.1 belongs to C1, 0({�}, {�})
and satisfies

Dβ(f0) =
1 + oβ(1)

2κ
e−Γβ . (9.6)

Proof. For the simplicity of notation, let us write f = f0. Since we have f(�) = 1

and f(�) = 0 by part (1) of Definition 9.1, we immediately have f ∈ C1, 0({�}, {�}).
Now, it remains to prove (9.6).

Let us divide the Dirichlet form Dβ(f) into[ ∑
{σ, ξ}⊂(E∪B)c

+
∑

σ∈E∪B, ξ∈(E∪B)c

+
∑

{σ, ξ}⊂E∪B

]
µβ(σ) cβ(σ, ξ) {f(ξ)− f(σ)}2 , (9.7)

where all summations are carried out for two connected configurations σ and ξ, i.e.,

σ ∼ ξ.
The first summation is trivially 0 by part (3) of Definition 9.1. Now to consider

the second summation, we recall from part (2) of Proposition 8.9 that E∪B = N̂ (S).

This implies that H(σ) ≤ Γ and H(ξ) ≥ Γ + 1. Therefore, by (4.8), we have

µβ(σ) cβ(σ, ξ) = µβ(ξ) =
1

Zβ
e−βH(ξ) = oβ(e−Γβ) ,
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where we implicitly used the fact that Zβ → 2 as β → ∞ at the last equality.

Moreover, since f(σ) ∈ [0, 1] for all σ ∈ X by our construction, we can assert that

the second summation in (9.7) is oβ(e−Γβ).

It remains to estimate the third summation of (9.7). For A ⊂ X , we write

E(A) =
{
{σ, ξ} ⊂ A : σ ∼ ξ

}
. (9.8)

By part (1) of Proposition 8.9, we can decompose E(E ∪ B) into

E(E ∪ B) = E(B) ∪ E(E−) ∪ E(E+) . (9.9)

Hence, we can further decompose the third summation of (9.7) into[ ∑
{σ, ξ}∈E(B)

+
∑

{σ, ξ}∈E(E−)

+
∑

{σ, ξ}∈E(E+)

]
µβ(σ) cβ(σ, ξ) {f(ξ)− f(σ)}2 . (9.10)

Now, we compute the first summation of (9.10). Decompose

E(B) =
L−3⋃
v=2

E(Rv ∪Qv ∪Rv+1) ,

so that we can write the first summation of (9.10) as

L−3∑
v=2

∑
{σ, ξ}∈E(Rv∪Qv∪Rv+1)

µβ(σ) cβ(η, ξ) {f(ξ)− f(σ)}2 .

This summation can be written as
∑

`∈TL
∑

k∈TK of

µβ(ζ`, v) cβ(ζ`, v, ζ
up
`, v ; k, 1) {f(ζup

`, v ; k, 1)− f(ζ`, v)}2

+

K−2∑
h=1

µβ(ζup
`, v ; k, h) cβ(ζup

`, v ; k, h, ζ
up
`, v ; k, h+1) {f(ζup

`, v ; k, h+1)− f(ζup
`, v ; k, h)}2

+
K−2∑
h=1

µβ(ζup
`, v ; k, h) cβ(ζup

`, v ; k, h, ζ
up
`, v ; k−1, h+1) {f(ζup

`, v ; k−1, h+1)− f(ζup
`, v ; k, h)}2

+ µβ(ζup
`, v ; k,K−1) cβ(ζup

`, v ; k,K−1, ζ`, v+1) {f(ζ`, v+1)− f(ζup
`, v ; k,K−1)}2 ,

and the same form of terms replacing up with down. By (4.6), (4.3), (4.8), (9.4), and

(9.5), this equals 2
∑

`∈TL
∑

k∈TK (where 2 is multiplied since we have to compute
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up/down separately) of

e−Γβ

Zβ
· 4b2

[κ(K + 2)(L− 4)]2
+

K−2∑
h=1

e−Γβ

Zβ
· b2

[κ(K + 2)(L− 4)]2

+
K−2∑
h=1

e−Γβ

Zβ
· b2

[κ(K + 2)(L− 4)]2
+
e−Γβ

Zβ
· 4b2

[κ(K + 2)(L− 4)]2

=(1 + oβ(1))
e−Γβ

2

(2K + 4)b2

(K + 2)2(L− 4)2κ2
= (1 + oβ(1))

b2

(K + 2)(L− 4)2κ2
e−Γβ .

Therefore by (5.6), we can conclude that∑
{σ, ξ}∈E(B)

µβ(σ) cβ(σ, ξ) {f(ξ)− f(σ)}2

= 2 (1 + oβ(1))
L−3∑
v=2

∑
`∈TL

∑
k∈TK

b2

(K + 2)(L− 4)2κ2
e−Γβ (9.11)

= (1 + oβ(1))
2KL(L− 4)b2

(K + 2)(L− 4)2κ2
e−Γβ =

b + oβ(1)

2κ2
e−Γβ .

Next, we calculate the second summation of (9.10). By (8.18), we rewrite this

summation as ∑
{σ1, σ2}⊆O−

µβ(σ1) cβ(σ1, σ2) {f(σ2)− f(σ1)}2

+
∑

σ1∈O−

∑
σ2∈I

−

∑
ξ∈N (σ2)

µβ(σ1) cβ(σ1, ξ) {f(ξ)− f(σ1)}2 .

By Proposition 8.11, this equals 1 + oβ(1) times[ ∑
{σ1, σ2}⊆O−

+
∑

σ1∈O−

∑
σ2∈I

−

] 1

2
e−Γβ r−(σ1, σ2) {f(σ2)− f(σ1)}2 . (9.12)

By (9.2), the last line becomes

e2

κ2

∑
{σ1, σ2}⊆V A

1

2
e−Γβ r−(σ1, σ2) {h−(σ2)− h−(σ1)}2

=
e−Γβe2

2κ2
|V −| cap−(�, R2) =

e

2κ2
e−Γβ . (9.13)
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Therefore, we can conclude that

∑
{σ, ξ}∈E(E−)

µβ(σ) cβ(σ, ξ) {f(ξ)− f(σ)}2 =
e + oβ(1)

2κ2
e−Γβ . (9.14)

Similarly, we get

∑
{σ, ξ}∈E(E+)

µβ(σ) cβ(σ, ξ) {f(ξ)− f(σ)}2 =
e + oβ(1)

2κ2
e−Γβ . (9.15)

Therefore, by (9.10), (9.11), (9.14), and (9.15), we conclude that the first summation

of (9.7) equals
b + 2e + oβ(1)

2κ2
e−Γβ =

1 + oβ(1)

2κ
e−Γβ ,

as desired.

Remark 9.4. The estimates (9.11), (9.14), and (9.15) are the reason why we term b

and e the bulk and edge constants, respectively.

We now conclude the section with a formal proof of Proposition 5.2.

Proof of Proposition 5.2 for d = 2. Since we have verified in the previous proposi-

tion that the function f0 constructed in Definition 9.1 satisfies f0 ∈ C({�}, {�})
and the energy estimate (5.9), the proof is completed.
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10 Lower Bound for Capacities

In this section, we construct the test flow ψ0 appearing in Proposition 5.3. Con-

struction of the test flow will be given in Section 10.1. Then, two properties of

the test flow appearing in (5.10) are verified in Sections 10.2 and 10.4, respectively.

Section 10.3 is devoted to providing some investigations of the equilibrium potential

between � and �, which will be used in the analyses carried out in Section 10.4.

10.1 Construction of test flow

In this subsection, we explicitly construct a test flow ψ0.

We explain the idea before proceeding to the construction. We again use the

convention (9.1) in this section. For the edge typical configurations, recall that the

equilibrium potential h±(·) on E± is the object approximating (up to some rescaling)

the equilibrium potential hβ�,�(·). Hence, we define the test flow on E± as a suitable

modification of (a constant-multiple of) Ψh± . For the bulk typical configurations B,

we know the typical behavior of the Metropolis dynamics very well, and hence we

can define ψ0 as a simple flow from R2 to RL−2, where the flow is constant on each

edge of the transition.

Definition 10.1 (Test flow). In this definition, defining ϕ(σ, σ′) = c for a flow ϕ

implicitly implies that ϕ(σ′, σ) = −c. We now construct a flow ψ0.

1. Construction of ψ0 on edge typical configurations E. We provide an

explicit construction on E±.

• If σ1, σ2 ∈ O± with σ1 ∼ σ2, then we set

ψ0(σ1, σ2) = e r±(σ1, σ2) [h±(σ1)− h±(σ2)] . (10.1)

• If σ1 ∈ O± and σ2 ∈ I
±

, then we set, for all ξ ∈ N (σ2) with ξ ∼ σ1,

ψ0(σ1, ξ) =
e r±(σ1, σ2) [h±(σ1)− h±(σ2)]

|{ξ′ ∈ N (σ2) : σ1 ∼ ξ′}|
. (10.2)

2. Construction of ψ0 on bulk typical configurations B. We need to con-

sider the following two cases:

• For (k, `) ∈ TK × TL and v ∈ J2, L− 3K,

ψ0(ζup
`, v ; k, 0, ζ

up
`, v ; k, 1) = ψ0(ζup

`, v ; k,K−1, ζ
up
`, v ; k,K)

= ψ0(ζdown
`, v ; k, 0, ζ

down
`, v ; k, 1) = ψ0(ζdown

`, v ; k,K−1, ζ
down
`, v ; k,K) =

2b

(K + 2)(L− 4)
.
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• For (k, `) ∈ TK × TL, v ∈ J2, L− 3K, and h ∈ J1, K − 2K,

ψ0(ζup
`, v ; k, h, ζ

up
`, v ; k, h+1) = ψ0(ζup

`, v ; k, h, ζ
up
`, v ; k−1, h+1)

=ψ0(ζdown
`, v ; k, h, ζ

down
`, v ; k, h+1) = ψ0(ζdown

`, v ; k, h, ζ
down
`, v ; k−1, h+1) =

b

(K + 2)(L− 4)
.

3. We set ψ0 ≡ 0 on all the edges which are not considered above.

10.2 Flow norm

The next proposition computes the flow norm of ψ0 to verify the first requirement

in (5.10). In the remainder of the current section, we write ψ = ψ0 for the simplicity

of notation.

Proposition 10.2. For the flow ψ = ψ0 constructed in Definition 10.1,

‖ψ‖2β = (1 + oβ(1)) 2κeΓβ .

Proof. Since the support of ψ is a subset of E ∪ B, by (9.9), we can write

‖ψ‖2β =
[ ∑
{σ, ξ}∈E(E−)

+
∑

{σ, ξ}∈E(E+)

+
∑

{σ, ξ}∈E(B)

] ψ(σ, ξ)2

µβ(σ) cβ(σ, ξ)
. (10.3)

By the definition of ψ, the first summation of (10.3) can be written as

∑
{σ1, σ2}∈E(O−)

ψ(σ1, σ2)2

µβ(σ1) cβ(σ1, σ2)
+
∑

σ1∈O−

∑
σ2∈I−

∑
ξ∈N (σ2):σ1∼ξ

ψ(σ1, ξ)
2

µβ(σ1) cβ(σ1, ξ)
.

By (10.1), (10.2), and Proposition 8.11, this equals (1 + oβ(1)) times

[ ∑
{σ1, σ2}∈E(O−)

+
∑

σ1∈O−

∑
σ2∈I−

] 2e2r−(σ1, σ2) {h−(σ2)− h−(σ1)}2

e−Γβ
.

By the definition of capacity, we can rewrite the last summation as

2e2 eΓβ |V −| cap−(�, R2) = 2e eΓβ .

Since we can apply a similar argument to the second summation of (10.3), we can
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conclude that[ ∑
{σ, ξ}∈E(E−)

+
∑

{σ, ξ}∈E(E+)

] ψ(σ, ξ)2

µβ(σ) cβ(σ, ξ)
= (1 + oβ(1))× 2× 2e eΓβ

= (4e + oβ(1)) eΓβ . (10.4)

Now, we consider the third summation of (10.3). By definition, this summation

is
∑

k∈TK , `∈TL
∑L−3

v=2 of

[ ψ(ζup
`, v ; k, 0, ζ

up
`, v ; k, 1)2

µβ(ζup
`, v ; k, 0) cβ(ζup

`, v ; k, 0, ζ
up
`, v ; k, 1)

+
ψ(ζup

`, v ; k,K−1, ζ
up
`, v ; k,K)2

µβ(ζup
`, v ; k,K−1) cβ(ζup

`, v ; k,K−1, ζ
up
`, v ; k,K)

]
+
K−2∑
h=1

[ ψ(ζup
`, v ; k, h, ζ

up
`, v ; k, h+1)2

µβ(ζup
`, v ; k, h) cβ(ζup

`, v ; k, h, ζ
up
`, v ; k, h+1)

+
ψ(ζup

`, v ; k, h, ζ
up
`, v ; k−1, h+1)2

µβ(ζup
`, v ; k, h) cβ(ζup

`, v ; k, h, ζ
up
`, v ; k−1, h+1)

]
,

and the same-form of terms can be obtained from above by replacing up with down.

By the definition of ψ, (4.8), and (4.6), this expression equals (1 + oβ(1)) times

[ 32b2eΓβ

(K + 2)2(L− 4)2
+
K−2∑
h=1

8b2eΓβ

(K + 2)2(L− 4)2

]
= (32 + 8(K − 2))

b2eΓβ

(K + 2)2(L− 4)2

=
8b2eΓβ

(K + 2)(L− 4)2
.

Hence, by the definition of b, the third summation of (10.3) equals

(1 + oβ(1))×KL(L− 4)× 8b2eΓβ

(K + 2)(L− 4)2
= [2b + oβ(1)] eΓβ . (10.5)

Therefore, by (10.3), (10.4), and (10.5), we get

‖ψ‖2β = 2[b + 2e + oβ(1)] eΓβ = (1 + oβ(1)) 2κeΓβ .

This finishes the proof.

10.3 Equilibrium potential around ground states

It remains to verify the second requirement (5.10) regarding the test flow ψ0. To

this end, we first prove that the equilibrium potential is nearly constant on the

neighborhood of ground states in this subsection. The main tool is Proposition 0.16

regarding the estimate of the equilibrium potential.
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Lemma 10.3. It holds that

max
σ∈N (�)

hβ�,�(σ) = O(e−β) and max
σ∈N (�)

(1− hβ�,�(σ)) = O(e−β) .

Proof. We prove the lemma only for the first estimate, because the second one follows

immediately from the first since 1− hβ�,� = hβ�,�.

By Propositions 0.16 and 0.10, it holds that

hβ�,�(σ) ≤
capβ(σ, �)

capβ(σ, {�, �})
≤

capβ(σ, �)

capβ(σ, �)
. (10.6)

Now, we estimate capβ(σ, �) and capβ(σ, �) separately.

We first give a lower bound of capβ(σ, �) via the Thomson principle (Theorem

1.4). As σ ∈ N (�), there exists a (Γ − 1)-path (ωt)
T
t=0 connecting � and σ, where

T is bounded by a constant depending only on K and L. We define a test flow φ on

X by

φ(ωt, ωt+1) = −φ(ωt+1, ωt) = 1 for t ∈ J0, T − 1K ,

and φ = 0 otherwise. This construction implies that φ is a unit flow from {�} to

{σ}. Since (ωt)
T
t=0 is a (Γ− 1)-path, by Proposition 4.2 and (4.8),

µβ(ωt) cβ(ωt, ωt+1) = min {µβ(ωt), µβ(ωt+1)} ≤
1 + oβ(1)

2
e−(Γ−1)β .

Therefore, we obtain

‖φ‖2β =

T−1∑
t=0

φ(ωt, ωt+1)2

µβ(ωt) cβ(ωt, ωt+1)
≤

T−1∑
t=0

q + oβ(1)

e−(Γ−1)β
≤ Ce(Γ−1)β .

Hence, by Theorem 1.4,

capβ(σ, �) ≥ 1

‖φ‖2β
≥ 1

C
e−(Γ−1)β . (10.7)

Next, we establish an upper bound for capβ(σ, �). To this end, we first observe

from our construction of f0 (cf. Definition 9.1) that f0 ∈ C1, 0(N (�), N (�)). There-

fore, by the symmetry of capacities (cf. (0.13)), the monotonicity of capacities (cf.

Proposition 0.10), and the Dirichlet principle (cf. Theorem 1.3), we have

capβ(σ, �) = capβ(�, σ) ≤ capβ(N (�), N (�)) ≤ Dβ(f0) ≤ C e−Γβ (10.8)

for some constant C > 0, where the last bound follows from Proposition 9.3.
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The proof is completed by (10.6), (10.7), and (10.8).

10.4 Divergence of test flow

Now, we investigate the divergence of the test flow ψ0 constructed in Definition 10.1.

For simplicity, we again write ψ = ψ0 throughout the current subsection. We first

check that this flow is divergence-free on bulk typical configurations.

Lemma 10.4. We have (divψ)(σ) = 0 for all σ ∈ B \ E.

Proof. Let us fix σ ∈ B \ E .

If σ = ζ`, v for some ` ∈ TL and v ∈ J3, L− 3K, then we can write (divψ)(σ) as∑
k∈TK

[ψ(σ, ζup
`, v ; k, 1) + ψ(σ, ζdown

`, v ; k, 1) + ψ(σ, ζup
`, v−1 ; k,K−1) + ψ(σ, ζdown

`+1, v−1 ; k,K−1)] .

By recalling Definition 10.1, this summation is equal to∑
k∈TK

[ 2b

(K + 2)(L− 4)
+

2b

(K + 2)(L− 4)
− 2b

(K + 2)(L− 4)
− 2b

(K + 2)(L− 4)

]
= 0 .

If σ = ζ+
`, v ; k, h for some (k, `) ∈ TK × TL, v ∈ J2, L − 3K, and h ∈ J1, K − 1K,

then we can write (divψ)(σ) as

φ(σ, ζup
`, v ; k, h+1) + φ(σ, ζup

`, v ; k−1, h+1) + φ(σ, ζup
`, v ; k, h−1) + φ(σ, ζup

`, v ; k+1, h−1)

=
b

(K + 2)(L− 4)
+

b

(K + 2)(L− 4)
− b

(K + 2)(L− 4)
− b

(K + 2)(L− 4)
= 0 .

The cases σ = ζup
`, v ; k, h and ζdown

`, v ; k, h can be handled in the same manner. This

concludes the proof.

Next, we show that ψ is divergence-free on R2 and RL−2.

Lemma 10.5. It holds that (divψ)(σ) = 0 for all σ ∈ R2 ∪RL−2.

Proof. We only consider the divergence on R2, since the proof for RL−2 is identical.

Recall the generator L− from (8.21). Then, since the uniform measure on V − is the

invariant measure for the process Z−(·), by the expression (0.14) of capacity,

cap−(�, R2) = − 1

|V −|
∑
σ∈R2

∑
ξ∈V −\R2

r−(σ, ξ) {h−(σ)− h−(ξ)} . (10.9)
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On the other hand, by the definition of ψ, we can write∑
σ∈R2

∑
ξ∈E−

ψ(σ, ξ) = e
∑
σ∈R2

∑
ξ∈V −\R2

r−(σ, ξ) {h−(σ)− h−(ξ)} . (10.10)

By (10.9) and (10.10), we get∑
σ∈R2

∑
ξ∈E−

ψ(σ, ξ) = −e |V −| cap−(�, R2) = −1 , (10.11)

where the second identity follows from the definition of e. On the other hand, by

the definition of ψ,∑
σ∈R2

∑
ξ∈B

ψ(σ, ξ) = L× 2K × 2b

(K + 2)(L− 4)
= 1 . (10.12)

By adding (10.11) and (10.12), we obtain∑
σ∈R2

(divψ)(σ) = 0 .

Since divψ is a constant function onR2 by symmetry, we can conclude that (divψ)(σ) =

0 for all σ ∈ R2.

Next, we show that the flow ψ is divergence-free on O− and O+.

Lemma 10.6. We have (divψ)(σ) = 0 for all σ ∈ O− and σ ∈ O+.

Proof. We only consider the case σ ∈ O− since the case σ ∈ O+ can be handled in

the same manner. By the definition of ψ, we can write

(divψ)(σ) = e (L−h−)(σ) . (10.13)

By (0.11), we can conclude from (10.13) that (divψ)(σ) = 0 for all σ ∈ V A\(�∪R2).

It suffices to observe from (8.17) and (8.18) that V − \ (� ∪R2) = O−.

We can conclude from Lemmas 10.4, 10.5, and 10.6 that the flow ψ is almost a

divergence-free flow.

Proposition 10.7. The flow ψ is divergence-free on X \ N (S).

Proof. We can decompose the set X \ N (S) as

(B \ E) ∪R2 ∪RL−2 ∪ O− ∪ O+ ∪
(
X \ (E ∪ B)

)
.
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Since it follows immediately from the definition that (divψ) ≡ 0 on X \ (E ∪ B), we

can conclude the proof from Lemmas 10.4, 10.5, and 10.6.

Now, we are ready to prove the second requirement of (5.10).

Proposition 10.8. We have that∑
σ∈X

hβ�,�(σ) (divψ)(σ) = 1 + oβ(1) .

Proof. In view of Proposition 10.7, it suffices to prove that∑
σ∈N (�)

hβ�,�(σ) (divψ)(σ) = 1 + oβ(1) and
∑

σ∈N (�)

hβ�,�(σ) (divψ)(σ) = oβ(1) .

(10.14)

We focus only on the former, since the proof for the latter is essentially identical.

By Lemma 10.3, we have∑
σ∈N (�)

hβ�,�(σ) (divψ)(σ) = (1 + oβ(1))
∑

σ∈N (�)

∑
ξ: ξ∼σ

ψ(σ, ξ)

= (1 + oβ(1))
∑

σ∈N (�)

(divψ)(σ) .

Note that, in the previous computation, we implicitly used the fact that neither ψ

nor N (�) depends on β.

Now, we claim that ∑
σ∈N (�)

(divψ)(σ) = 1 . (10.15)

By (10.2), we can rewrite the left-hand side of the previous identity as

∑
σ∈N (�)

∑
ξ∈O−: ξ∼σ

ψ(σ, ξ) = −
∑

σ∈N (�)

∑
ξ∈O−: ξ∼σ

e r−(ξ, �) [h−(ξ)− h−(�)]

|{ξ′ ∈ N (�) : ξ ∼ ξ′}|
.

Since r−(·, ·) is symmetric, we can further rewrite as

−e
∑

ξ∈O−:{ξ,�}∈EA

r−(�, ξ) [h−(ξ)− h−(�)] .

By (0.14) and the definition of e, the last display equals

e |V −| cap−(�, R2) = 1 .

This completes the proof for the first estimate of (10.14) and concludes the proof.
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We conclude this section with the proof of Proposition 5.3.

Proof of Proposition 5.3. Let ψ0 be the test flow defined in Definition 10.1. Then,

the two properties appearing in (5.10) for ψ0 have been verified in Propositions 10.2

and 10.8. This completes the proof of Proposition 5.3.
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11 Comments on Case K = L

Now, we suppose that K = L. We define θ : T2
K → T2

K as

θ(k, `) = (`, k) ; (k, `) ∈ T2
K .

Then, define an operator Θ : X → X as, for σ ∈ X ,

Θ(σ)(x) = σ(θ(x)) ; x ∈ T2
K .

Then, the collection of canonical configurations should be C ∪ Θ(C). Similarly, the

definitions of bulk typical configurations and edge typical configurations should be

extended to B ∪ Θ(B) and E ∪ Θ(E), respectively. With these new definitions of

canonical and typical configurations, we can perform similar computations to prove

the Eyring–Kramers law.
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Part III

Condensing Zero-range Processes

In this third part of the lecture note, we consider a class of interacting particle

systems known as the zero-range processes. The particles comprising this model are

sticky and therefore tend to condensed at a site. The movements of this condensate

are the metastable behavior of this model. To precisely understand the successive

movements of the condensate, we use the Markov chain model reduction technique

in the context of the metastability to analyze this model. According to the general

methodology known as the martingale approach developed in [2, 3, 4], the proof of

the Markov chain model reduction for metastable Markov processes is largely based

on the potential theory.

This connection between the Markov chain model reduction and the potential

theory is relatively clear if the underlying model is reversible. On the other hand, if

the model is non-reversible, not only the estimates of the capacity but also deriving

the Markov chain model reduction from such estimates are complicated.

In this part, we will try to explain the general method for carrying out these tasks

as clearly as possible. We will use the generalized Dirichlet and Thomson principles

for the non-reversible Markov processes (cf. Theorem 2.1) to derive sharp estimates

of capacities between metastable sets, and then use a robust method developed in

[40] to derive the Markov chain model reduction from there.

We note that the current part is largely based on the article [56].

12 Zero-range Processes

In this section, we introduce a class of zero-range processes exhibiting the conden-

sation phenomenon.

Underlying random walk

A zero-range process is a system of interacting particles. We start by explaining the

dynamics of the underlying particles comprising the zero-range process. Let κ ≥ 2

be an integer and denote by

S = Tκ = Z/κZ
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the cycle of length κ. Denote by X(·) the continuous-time Markov process on S with

rate

r(x, y) =


p if y = x+ 1 ,

1− p if y = x− 1 ,

0 otherwise .

We note that the addition and subtraction in Tκ are always carried out modulo

κ. We denote by LX and DX the generator and Dirichlet form associated with the

process X(·). We note that the potential theory of the process X(·) has been analyzed

in Exercise 0.7. We denote by Px, x ∈ S, the law of the underlying Markov process

X(·) starting from a site x ∈ S.

Zero-range processes

The zero-range process is defined as an interacting system of N particles, where

particles basically follow the law of the process X(·) defined above, but interact

through the zero-range interaction explained below.

Let a : N → R and g : N → R (with the convention N = {0, 1, 2, · · · }) be

functions defined by

a(n) =

{
1 if n = 0 ,

nα if n ≥ 1 ,
(12.1)

and

g(n) =

{
0 if n = 0 ,

a(n)/a(n− 1) if n ≥ 1 ,
(12.2)

where the parameter α stands for the stickiness of constituent particles. We assume

that α > 1 in this note. We will discuss this assumption for α in Remark 14.8.

For N ∈ N, define HN ⊂ NS as the space of configurations on S with N particles:

HN =
{
η = (ηx)x∈S ∈ NS :

∑
x∈S

ηx = N
}
.

Here, η ∈ NS represents the entire set of particle configurations on S and ηx, x ∈ S,

represents the number of particles at x.

Now we are ready to define the zero-range process. For N ∈ N, the zero-range

process {ηN (t) : t ≥ 0} consisting of N particles is defined as a continuous-time

Markov process on HN associated with the generator

(LN f)(η) =
∑
x, y∈S

g(ηx)r(x, y)(f(σx, yη)− f(η)) ; η ∈ HN ,
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for f : HN → R, where σx, yη ∈ HN represents the configuration obtained from η by

sending a particle at site x to y (if possible), that is, σx, yη = η if ηx = 0, and

(σx, yη)z =


ηz − 1 if z = x

ηz + 1 if z = y

ηz otherwise ,

if ηx ≥ 1. Of course, we have σx, xη = η for all x ∈ S and η ∈ HN . For η ∈ HN ,

denote by PNη the law of the zero-range process ηN (·) starting from η, and denote

by ENη the corresponding expectation.

Notation 12.1. A function on HN will always be denoted by bold font such as f or

g to distinguish such functions from functions on S.

Heuristically, under the zero-range dynamics defined above, one of the particles at

site x jumps to site y at a rate g(ηx)r(x, y). We can observe two important features

of the dynamics at this point. Firstly, since the rate g(ηx)r(x, y) is independent of

ηz, z 6= x, we can observe that each particle interacts only with the particles at the

same site through the function g(·). This is the reason that this interacting particle

system is called a zero-range process.

Secondly, in view of (12.1) and (12.2), this jump rate g(ηx)r(x, y) decreases as

ηx(≥ 2) becomes larger. Namely, a particle is deactivated as there are more particles

grouped together with that particle. For this reason, we can observe that particles

of the zero-range process are sticky. This sticky interaction eventually causes the

condensation of particles as defined in the next section.

Exercise 12.2. Prove that the zero-range process defined above is irreducible.

Invariant measure

For η ∈ HN , let us write

a(η) =
∏
x∈S

a(ηx) . (12.3)

By Exercise 12.2, the zero-range process has a unique invariant measure. One can

readily verify that this invariant measure µN (·) on HN is given by

µN (η) =
Nα

ZN

1

a(η)
; η ∈ HN , (12.4)

where ZN is the partition function turning µN into a probability measure, i.e.,

ZN = Nα
∑
η∈HN

1

a(η)
.
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Exercise 12.3. 1. Prove that µN (·) is the invariant measure for the zero-range

process ηN (·).

2. Prove that the zero-range process ηN (·) is reversible if and only if p = 1/2.

Define

Γα =
∞∑
n=0

1

a(n)
= 1 +

∞∑
n=1

1

nα
<∞ ,

where the last inequality holds since we have assumed that α > 1. Then, define

Z = κΓκ−1
α . (12.5)

The following proposition explains the appearance of the somewhat unnecessary Nα

term at (12.4).

Proposition 12.4. We have that

lim
N→∞

ZN = Z .

Since our primary concern is the connection between the potential theory and

the metastability of the zero-range processes, we shall not prove all the detailed

properties of the zero-range processes. Instead, we refer to [5] for the proof. For this

proposition, we refer to [5, Proposition 2.1] for the proof.

Dirichlet form

We write DN (f), f : HN → R, the Dirichlet form associated with the zero-range

process ηN (·), i.e.,

DN (f) = 〈f , −LN f〉µN .

By summation by parts, we can rewrite this Dirichlet form as

DN (f) =
1

2

∑
x∈S

∑
y∈S

µN (η) g(ηx) r(x, y) [f(σx, yη)− f(η)]2 .

Equilibrium potentials and capacities

In the investigation of the zero-range process, both the potential theories of the

underlying random walk X(·) and of the zero-range process ηN (·) are important.

Hence, in order to avoid confusion, we have to carefully define potential theoretical

notions for these processes.
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• Denote by τA and τA the hitting times of the sets A ⊂ S and A ⊂ HN ,

respectively. In this part, the subsets of S will be denoted by plain capital

letters, while the subsets of HN are denoted by calligraphic capital letters.

• For two disjoint and non-empty sets A and B of S, we denote by hA,B : S →
[0, 1] and capX(A, B) the equilibrium potential and the capacity with respect

to the underlying process X(·), respectively:

hA,B(x) := Px[τA < τB] ; x ∈ S , and

capX(A, B) := DX(hA,B) .

For two disjoint and non-empty sets A and B of HN , we denote by hA,B :

HN → [0, 1] and capN (A, B) the equilibrium potential and the capacity with

respect to the zero-range processes ηN (·), respectively:

hA,B(η) = hNA,B(η) := PNη [τA < τB] ; η ∈ HN , and

capN (A, B) := DN (hA,B) .

Adjoint and symmetrized processes

Define the adjoint rate r†(·, ·)and the symmetrized rate rs(·, ·) as

r†(x, y) =


1− p if y = x+ 1 ,

p if y = x− 1 ,

0 otherwise ,

and rs(x, y) =


1/2 if y = x+ 1 ,

1/2 if y = x− 1 ,

0 otherwise ,

so that

rs(x, y) =
1

2

[
r(x, y) + r†(x, y)

]
.

Denote by (X†(t))t≥0 and (Xs(t))t≥0 the Markov processes on S with rate r†(·, ·)
and rs(·, ·), respectively.

Exercise 12.5. Prove that X†(·) and Xs(·) are the adjoint and symmetrized pro-

cesses, respectively, of the underlying process X(·).

We write L†X and LsX for the generators of the processes X†(·) and Xs(·), respec-

tively. In addition, we write h†A,B(·) for the equilibrium potential with respect to

the process X†(·).
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Next we define two generators L †
N and L s

N acting on f : HN → R as

(L †
N f)(η) =

∑
x,y∈S

g(ηx)r†(x, y) (f(σx, yη)− f(η)) and

(L s
N f)(η) =

∑
x,y∈S

g(ηx)rs(x, y) (f(σx, yη)− f(η)) ,

respectively. Denote by (η†N (t))t≥0 and (ηsN (t))t≥0 the continuous-time Markov pro-

cesses on HN generated by L †
N and L s

N , respectively.

Exercise 12.6. Prove that η†N (·) and ηsN (·) are the adjoint and symmetrized pro-

cesses, respectively, of the zero-range process ηN (·).

We write h†A,B(·) for the equilibrium potential with respect to the adjoint process

η†N (·). We also write capsN (A, B) for the capacity with respect to the symmetrized

process ηsN (·).
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13 Condensation Phenomenon

In this section, we explain the condensation phenomena of the zero-range processes

defined in the previous section.

Metastable valleys

We first define an auxiliary sequences to concretely define the metastable sets of the

zero-range processes. For two sequences (aN )N∈N, (bN )N∈N of positive real numbers,

the notation aN � bN implies that

lim
N→∞

bN
aN

=∞ .

Let (`N )N∈N be sequences of positive integer such that

1� `N � N (1+α)/(1+(κ−1)α) . (13.1)

We explain later the reason for imposing this complicated upper bound for `N .

For each x ∈ S, the metastable valley or metastable set ExN ⊂ HN is defined as

the set of configurations such that all but at most `N � N (by (13.1) since κ ≥ 2)

particles are condensed at site x:

ExN = {η ∈ HN : ηx ≥ N − `N} .

Define

EN =
⋃
x∈S
ExN and ∆N = HN \ EN . (13.2)

Condensation of particles

The following theorem shows that the zero-range process defined above exhibit a

phenomenon known as condensation of particles.

Theorem 13.1. It holds that

lim
N→∞

µN (ExN ) =
1

κ
for all x ∈ S .

Therefore, the invariant measure µN (·) is concentrated on the metastable sets defined

above in the sense that

lim
N→∞

µN (EN ) = 1 and lim
N→∞

µN (∆N ) = 0 .
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Proof. We refer to [5, display (3.2)] for a proof.

Remark 13.2. This theorem holds for any sequence (`N )N∈N satisfying 1 � `N �
N . The condition `N � N (1+α)/(1+(κ−1)α) appearing in (13.1) is used only in the

investigation of the metastable behavior explained in the next section (cf. conditions

(H1) and (H3) introduced later in (14.5) and (14.7), respectively).

This theorem assert that, with dominating probability (as N gets larger), almost

all particles are condensed at a single site. This phenomenon is called a condensa-

tion of particles. Hence, if the zero-range process starts from any configuration, it

will eventually form a condensate at a certain site. Subsequently, this condensate

will move around sites of S. Such movements of the condensate, which are often re-

ferred to as the inter-valley dynamics, are the metastable behavior of the zero-range

processes and are our main concern that will be discussed in the next section.
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14 Markov Chain Model Reduction

In this section, we introduce the main results regarding the analysis of the metastable

behavior of the zero-range process, and then outline a general framework regarding

the Markov chain model reduction of the metastable behavior that can be applied

to the current model. This general framework is called the martingale approach,

which is developed in [2, 3, 4] and then enhanced in [34].

14.1 Order process

In this section, we introduce the so-called order process which represents the inter-

valley dynamics and hence plays a significant role in the Markov chain model reduc-

tion. All the definitions introduced in the current section can be made for a general

class of Markov processes, but we define them only in the context of the zero-range

processes for the convenience of the discussion.

Trace process

The trace process of the zero-range process ηN (·) on the set EN (cf. (13.2)) is defined

as

T EN (t) =

∫ t

0
1 {ηN (s) ∈ EN} ds ; t ≥ 0 .

This random time represents the total amount of time for which the zero-range

process stays in EN up to time t. We denote by SEN : [0, ∞)→ [0, ∞) the generalized

inverse of the non-decreasing function T EN (·), i.e.,

SEN (t) = sup
{
s ≥ 0 : T EN (s) ≤ t

}
; t ≥ 0 .

The trace process (ηENN (t))t≥0 of the zero-range process ηN (·) on the set EN is defined

by

ηENN (t) = ηN (SEN (t)) ; t ≥ 0 .

By carefully looking at the definition, one can observe that the trajectory of ηENN (·)
is obtained from that of the zero-range process ηN (·) by removing the excursion of

ηN (·) on the set ∆N (cf. (13.2)). This is the reason that the process ηENN (·) is called

the trace process of ηN (·) on EN .

Exercise 14.1. (The answers to the following questions can be found in [2, 3])

1. Prove that ηENN (·) is indeed an irreducible continuous-time Markov process on

EN .
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2. Prove that the invariant measure of the process ηENN (·) is the conditioned mea-

sure µENN (·) of µN (·) on EN , i.e.,

µENN (η) =
µN (η)

µN (EN )
; η ∈ EN .

3. Prove that the Markov process ηENN (·) is reversible if ηN (·) is reversible. Is the

converse true?

Order process

We note that the trace process ηENN (·) includes all the information about the behavior

of the process ηN (·) on EN . However, in view of the metastable behavior, we are only

concerned with the inter-valley dynamics and are not interested in the exact location

in a metastable valley within which the zero-range process is staying. Hence, the

order process is defined as the process obtained from the trace process by discarding

this information.

More precisely, we define a projection function Ψ : EN → S as

Ψ(η) =
∑
x∈S

x · 1{x ∈ ExN}

and then define the order process as

YN (t) = Ψ(ηENN (N1+αt)) ; t ≥ 0 .

To explain the meaning of the order process, we first consider the projected trace

process

WN (t) = Ψ(ηENN (t)) ; t ≥ 0 .

This process WN (t) indicates the label of the valley at which the trace process ηENN (t)

is staying. Hence, this process captures all the relevant information regarding the

inter-valley dynamics of the process ηN (·) on EN . We defined YN (t) as a speeded-up

version of this process, namely,

YN (t) = WN (N1+αt)

since we observe the transitions between metastable valleys in the time scale of

N1+α.

It takes a long time to move a condensate from one site to another since the

particles are sticky and hence tend to keep the condensate. We can also notice that
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this transition time scale N1+α is increasing in α. This is a natural result since the

parameter α corresponds to the stickiness of the particles.

14.2 Markov chain model reduction via convergence of order pro-

cess

Markov chain model reduction

We note here that the order process may not be a Markov process. However, one

can usually prove that, in the metastable situation, the order process converges to a

certain limiting Markov process Y (·) on S. Heuristically, this is mainly because the

process entering a metastable valley will spend long enough time inside the valley to

forget the entering location. This is indeed the case for the zero-range process, and

the following is the main theorem regarding the Markov chain model reduction. We

remark that the limiting Markov process Y (·) for the zero-range process is defined

in the next paragraph.

Theorem 14.2. The following hold:

1. Suppose that ηN (0) ∈ ExN for all N ∈ N for some x ∈ S. Then, the law of

the order process YN (·) converges to the law of limiting Markov process Y (·)
starting at x.

2. For all T > 0, it holds that

lim
N→∞

sup
η∈EN

ENη
[∫ T

0
1{ηN (N1+αt) ∈ ∆N}dt

]
= 0 .

If the zero-range process ηN (·) spends non-negligible amount of time at ∆N =

HN \ EN , then the trace process ηENN (·), which is obtained by turning off the clock

when the zero-range process ηN (·) stays at ∆N , discards too much information re-

garding the inter-valley dynamics of the zero-range process. Part (2) of the previous

theorem implies that, in the scale N1+α, the zero-range process does not spend

meaningful amount of time at ∆N and hence the trace process is indeed a good

approximation of ηN (·) in view of the inter-valley dynamics. This gives authority

to part (1) which asserts that the inter-valley dynamics of the trace process (and

hence the zero-range process by part (2)) is approximated by the limiting Markov

process Y (·). So far, we have explained a general way to derive the Markov chain

model reduction via convergence of order process.

We discuss the strategy to prove Theorem 14.2 in Section 14.4.
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Limiting Markov process

We next define the limiting Markov process Y (·) for the zero-range process. Define

a constant by

Iα =

∫ 1

0
uα(1− u)αdu . (14.1)

Define a : S × S → [0, ∞) by

a(x, y) =
κ

ΓαIα
capX(x, y) ; x, y ∈ S , (14.2)

where we remind here that the notation x, y ∈ S implies that x and y are different.

Note that the capacity capX(x, y) has been computed in Exercise 0.7. Now the

limiting Markov process (Y (t))t≥0 is define as a continuous-time Markov process on

S with rate a(·, ·). We denote by Qx the law of process Y (·) starting at x ∈ S.

Since a(x, y) > 0 for all x, y > 0, the irreducibility is clear for the process Y (·).
Denote by ν(·) the uniform measure on S:

ν(x) =
1

κ
; x ∈ S . (14.3)

Exercise 14.3. Prove that that the unique invariant measure of the irreducible

Markov process Y (·) is ν(·) and furthermore, that the process Y (·) is reversible.

(Hint: use (0.13))

A remarkable fact here is that the limiting Markov process is always reversible,

while the underlying zero-range process is not, especially for p 6= 1/2.

14.3 Markov chain model reduction via convergence of marginal

distributions

An alternative way of describing the Markov chain model reduction was developed

in [34]. This methodology does not discard the excursions of the zero-range pro-

cess on ∆N (and hence does not use the trace and order processes) but proves the

convergence result with a weaker notion of convergence, namely the convergence of

finite dimensional distributions. This is the nature of the problem; without remov-

ing noisy excursions at ∆N , we cannot expect the convergence in path space with

the usual mode of convergence. We refer to [2] for more detail. Instead, the soft

topology introduced in [30] can be used to prove the convergence.

To explain this alternative method, let us define a projection function Ψ̂ : HN →
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S ∪ {0} as

Ψ̂(η) =

{
x if x ∈ ExN ,

0 if x ∈ ∆N .

Then, define a process (ŶN (t))t≥0 as

ŶN (t) = Ψ̂(ηN (N1+αt)) ; t ≥ 0

Then, the process ŶN (·) is a process on Ŝ = S ∪ {0} and may not be a Markov

process. We note that the order process YN (·) is a trace process of ŶN (·) on the set

S.

Define an extended limiting process (Ŷ (t))t≥0 on Ŝ as a continuous-time Markov

process with jump rate

â(x, y) =

{
a(x, y) if x, y ∈ S ,
0 otherwise .

Hence, 0 is merely a cemetery point of the Markov process Ŷ (·). Denote by Q̂x,

x ∈ Ŝ, the law of process Ŷ (·) that starts at x.

Exercise 14.4. Prove that the measure ν̂(·) on Ŝ defined by

ν̂(x) =

{
ν(x) if x ∈ S ,
0 otherwise .

is an invariant measure of the Markov process Ŷ (·).

The following is the second way of establishing a Markov chain model reduction

of the metastable behavior developed in [34].

Theorem 14.5. For all x ∈ S and for all (ηN )N∈N such that ηN ∈ ExN for all N ,

the finite dimensional distributions of the process ŶN (·) under PNηN converges to that

of the law Q̂x, as N tends to infinity.

The proof of this theorem is close to that of Theorem 14.2 and will be explained

in the next subsection.

14.4 Martingale approach

In this section, we explain the general principle developed in [2, 3, 4, 34]. This

principle, which is now called the martingale approach to the metastability reduces

the proof of Theorems 14.2 and 14.5 to the verification of several sufficient conditions.
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To explain the general principle in the context of zero-range process, we now

explain several essential notions.

• Recall that ηENN (·) is a Markov process on EN . Denote by jN : EN×EN → [0, ∞)

the jump rate of the process ηENN (·).

• For x, y ∈ S, the mean jump rate between two valleys ExN and EyN is defined

by

rN (x, y) =
1

µN (ExN )

∑
η∈ExN

∑
ζ∈EyN

µN (η) jN (η, ζ) .

• For each x ∈ S, let ξxN ∈ HN be the configuration such that all particles are

located at site x.

• For x ∈ S, write ĔxN = EN \ ExN .

• For x, y ∈ S, write Ĕx, yN = EN \
(
ExN ∪ E

y
N

)
.

Now we introduce several sufficient conditions for the Markov chain model reduction.

• Condition (H0): For all x, y ∈ S,

lim
N→∞

N1+α rN (x, y) = a(x, y) . (14.4)

Hence, the mean jump rate between two valleys ExN and EyN is approximately

a(x, y)/N1+α. This is the reason that we accelerated the process by a factor

of N1+α in the definition of the order process. This accurate estimate of the

mean jump rate is the crucial and most difficult step in the proof of Theorems

14.2 and 14.5.

• Condition (H1): For all x ∈ S,

lim
N→∞

sup
η, ζ∈ExN

capN (ExN , ĔxN )

capN (η, ζ)
= 0 . (14.5)

This condition implies that, for any η, ζ ∈ ExN , the process starting at η ∈ ExN
hits the configuration ζ ∈ ExN before hitting the set ĔxN , i.e., before arriving at

one of other valleys, with dominating probability. We term this phenomenon

a visiting property. We discuss this further in Remark 14.10.

Exercise 14.6. Prove the last assertion. (Hint: Proposition 0.16)
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• Condition (H2): For all x ∈ S,

lim
N→∞

µN (∆N )

µN (ExN )
= 0 . (14.6)

This condition implies that the set ∆N is negligible compared to ExN with

respect to the invariant measure. We emphasize that this condition is a direct

consequence of Theorem 13.1.

• Condition (H3): For all x ∈ S,

lim
δ→0

lim sup
N→∞

sup
η∈ExN

sup
2δ≤s≤3δ

PNη
[
ηN (N1+α s) ∈ ∆N

]
= 0 . (14.7)

This implies that, if the zero-range process starts from a valley it will still be in

the same valley after a short time. Note that we cannot replace sup2δ≤s≤3δ with

sup0≤s≤δ, since if the process starts at the boundary of ExN , then with a non-

negligible probability it leaves the valley within a few steps. This condition

(14.7) implies that, even after such an escape from the valley, the process

returns to the valley immediately.

The next theorem is a consequence of [3, Theorem 2.1] and [34, Proposition 1.1],

Theorem 14.7. Suppose that conditions (H0), (H1), and (H2) hold. Then, Theo-

rem 14.2 holds. Moreover, if condition (H3) additionally holds, then Theorem 14.5

also holds.

Therefore, to prove Theorems 14.2 and 14.5, it suffices to verify the conditions

(H0), (H1), (H2), and (H3):

• Condition (H0) will be proven in Proposition 16.13. This is the most difficult

part of the current problem. The main components of the proof are the esti-

mate of capacities, the sector condition, and the argument developed in [40]

based on collapsed processes.

• Conditions (H1) and (H3) are proven based on Propositions 17.3 and 17.4,

respectively, based on the estimate of capacities.

• As we have mentioned above, the condition (H2) is a consequence of Theorem

13.1.

Remark 14.8. In fact, Theorem 13.1 holds only for α ≥ 1 (for the critical case

α = 1, we should be more careful about the selection of `N , see [35]) and hence

the metastable behavior must be studied for all α ≥ 1. Below is the history of the

research on this problem in chronological order:
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1. Beltran and Landim [5] first analyzed the reversible case p = 1/2 with α > 1.

2. Landim [31] analyzed the totally asymmetric case p = 1 with α > 3.

3. Seo [56] analyzed the general case p ∈ [0, 1] with α > 2.

4. Landim, Marcondes and Seo [35, 36] analyzed the critical case α = 1 with

p = 1/2.

We note that the articles [5, 35, 36, 56] considered a more general case, i.e., the

particle system on any finite set consisting of any underlying random walk X(·).
The articles [5, 35, 36] assumed the reversibility of the zero-range process. Moreover,

[35, 36] assumed that the invariant measure for the underlying random walk X(·)
is the uniform measure on S. We also emphasize here that [31] is the first rigorous

quantitative analysis of the metastable behavior of a non-reversible Markov process.

Remark 14.9. The current part of this lecture note is mainly derived from article

[56]. With a more refined argument, we are able to weaken the assumption α > 2 of

[56] to α > 1. The critical case α = 1 for the non-reversible case is largely unknown

at this moment. We discuss in the next remark the difficulty of the critical case.

Remark 14.10. If `N is too large, then there are too many configurations inside the

valley and hence the visiting property explained in condition (H1) may not hold.

In fact, the upper bound of `N given in (13.1) is imposed to verify condition (H1).

For the critical case α = 1, in order to ensure that (H1) is in force, we have to take

`N so small that the metastable valley ExN with such `N violates Theorem 13.1 (i.e.,

the condition (H2)). In conclusion, the critical zero-range process cannot satisfy two

condition (H1) and (H2) simultaneously, no matter what value we give to `N . This

is the reason that the critical case cannot be handled with the martingale approach

described here. Recently, [36] developed a new approach based on the analysis of the

solution of certain form of resolvent equations and used this approach to investigate

the metastable behavior of critical case with p = 1/2.

14.5 Outlook of the remainder of Part III

In the remainder of the note, we verify conditions (H0), (H1), and (H3).

• In Section 15, we explain and prove the capacity estimates between valleys.

The proof is based on the generalized Dirichlet and Thomson principles and

hence we need to construct the test functions and flows.

• In Section 16, we prove condition (H0).

• In Section 17, we prove conditions (H1) and (H3).
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15 Estimate of Capacities

In this section, we provide, up to the construction of test objects, the estimate of

the capacity between metastable valleys based on generalized Dirichlet and Thomson

principles.

Main result

For f : S → R, the generator of the limiting Markov process Y (·) on S can be

written as

(LY f)(x) =
∑

y∈S\{x}

κ capX(x, y)

Γα Iα
[f(y)− f(x)] ; x ∈ S . (15.1)

As we have mentioned before, the invariant measure for Y (·) is the uniform measure

ν(·) on S, i.e.,

ν(x) =
1

κ
for all x ∈ S .

Therefore, the Dirichlet form with respect to the process Y (·) acting on f : S → R
such a way that

DY (f) =
∑
x∈S

ν(x) f(x) [−(LY f)(x)] =
1

2

∑
x∈S

∑
y∈S

capX(x, y)

Γα Iα
[f(y)− f(x)]2

Recall that Qx denote the law of the process Y (·) starting from x ∈ S. For two dis-

joint non-empty sets A and B of S, the equilibrium potential and capacity between

A and B with respect to the process Y (·) are defined by

hA,B(x) = Qx(τA < τB) for x ∈ S? and capY (A, B) = DY (hA,B) , (15.2)

respectively.

For a non-empty set A ⊆ S, we write

EN (A) =
⋃
x∈A
ExN .

The following theorem is the main capacity estimate for the zero-range processes

Theorem 15.1. For disjoint, non-empty subsets A, B of S, we have that

lim
N→∞

N1+α capN (EN (A), EN (B)) = capY (A, B) .

In addition, if (A, B) is a partition of S, that is, A ∪ B = S, the equilibrium
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potential hA,B(·) becomes the indicator function on A, and hence by (15.2) we

immediately obtain the following result as a corollary of the previous theorem.

Corollary 15.2. Suppose that two disjoint, non-empty subsets A, B of S satisfy

A ∪B = S. Then,

lim
N→∞

N1+α capN (EN (A), EN (B)) =
1

ΓαIα

∑
x∈A

∑
y∈B

capX(x, y) .

Now we discuss how we can prove Theorem 15.1.

Strategy to prove Theorem 15.1

Let us now turn to the proof of Theorem 15.1, which is based on the generalized

Dirichlet and Thomson principles (cf. Theorem 2.2). We explain how we can apply

these principles in the context of the zero-range processes.

We start from the test functions and flows. Let us first introduce a new parameter

ε > 0 denoting small numbers. The parameter ε will be sent to 0 in the end (after

sending N to ∞).

Remark 15.3. Henceforth, all constants are assumed to depend only on p, κ, α,

and ε and are independent of N . Furthermore, we write a(N, ε) = oN (1) and

b(N, ε) = oε(1) if

lim
N→∞

a(N, ε) = 0 for all ε > 0 and

lim
ε→0

sup
N∈N

b(N, ε) = 0 ,

respectively. The dependencies of the constant and the oN (1) term on the parameter

ε do not incur any problem, as we always send N to infinity first before sending ε

to 0.

Throughout the remainder of the current section, let us fix two disjoint non-

empty subsets A and B of S.

In [56, Section 7], for sufficiently large N ∈ N, two functions

VA,B = VN, ε
A,B : HN → R and V†A,B = V†,N, εA,B : HN → R

approximating the equilibrium potentials hEN (A), EN (B) and h†EN (A), EN (B), respec-

tively, are constructed. It is also verified there that these functions enjoy the follow-

ing properties.

Proposition 15.4. For all small enough ε and large enough N , two functions VA,B

and V†A,B satisfy the following properties:
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1. It hold that VA,B, V†A,B ∈ C1, 0(EN (A), EN (B)). Moreover, for all x ∈ S \
{A, B}, it holds that

VA,B(η) = V†A,B(η) = hA,B(x) for all η ∈ ExN .

2. It holds that

N1+αDN (VA,B), N1+αDN (V†A,B) ≤ [1 + oN (1) + oε(1)] capY (A, B) .

We next construct test flows approximating Φ∗hEN (A), EN (B)
and Φ

h†EN (A), EN (B)

(cf.

(0.28)). The natural candidates are Φ∗VA,B
and Φ

V†A,B
. However, the divergences of

these flows are larger than required along the saddle tube between metastable sets

(cf. [56, Section 7.2]) and hence we need to perform a local surgery to cancel these

divergences out without impacting approximating features of the flows Φ∗VA,B
and

Φ
V†A,B

. This procedure is the most complicated part in the analysis of the zero-

range process. The consequences of this correction procedure can be summarized as

follows.

Proposition 15.5. For all small enough ε and large enough N , there exist flows

ΦA,B = ΦN, ε
A,B ∈ FN and Φ†A,B = Φ†, N, εA,B ∈ FN

enjoying the following properties.

1. The flows ΦA,B and Φ†A,B approximate Φ∗VA,B
and Φ

V†A,B
in the sense that

∥∥∥ΦA,B − Φ∗VA,B

∥∥∥2
= [oN (1) + oε(1)]N−(1+α) and∥∥∥∥Φ†A,B − Φ

V†A,B

∥∥∥∥2

= [oN (1) + oε(1)]N−(1+α) .

2. The divergence of ΦA,B is negligible on ∆N in the sense that∑
η∈∆N

|(div ΦA,B)(η)| = oN (1)N−(1+α) .

3. The divergence of ΦA,B is negligible on ExN , x ∈ S \ (A∪B), in the sense that

(div ΦA,B)(ExN ) = oN (1)N−(1+α) and (15.3)∑
η∈ExN

hEN (A), EN (B)(η) (div ΦA,B)(η) = oN (1)N−(1+α) . (15.4)
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4. The divergence of ΦA,B satisfies

(div ΦA,B)(EN (A)) = [1 + oN (1)]N−(1+α) capY (A, B) and

(div ΦA,B)(EN (B)) = −[1 + oN (1)]N−(1+α) capY (A, B) .

The flow Φ†A,B also satisfies properties (2), (3), and (4).

The proof of this proposition is given in [56, Section 8].

Since the proofs of Proposition 15.4 and 15.5 are too technical and hence are

not suitable as contents of a lecture note, we refer to the interested readers to the

article [56]. Instead, we will now focus on how we can prove the Markov chain model

reduction based on this constructions.

By (2), (3), and (4) of the previous proposition, we have the following estimate

that enables the application of the generalized Dirichlet and Thomson principles.

Lemma 15.6. We have that∑
η∈HN

hEN (A), E(B)(η) (div ΦA,B)(η) = [1 + oN (1)]N−(1+α) capY (A, B) and (15.5)

∑
η∈HN

hEN (A), E(B)(η) (div Φ†A,B)(η) = [1 + oN (1)]N−(1+α) capY (A, B) . (15.6)

Proof. We only consider (15.5) since the proof of (15.6) is identical. The summation

on the left-hand side of (15.5) can be divided into∑
η∈EN (A)

+
∑

η∈EN (B)

+
∑

x/∈A∪B

∑
η∈ExN

+
∑
η∈∆N

. (15.7)

Since hEN (A), E(B) ≡ 1 on EN (A), by part (4) of Proposition 15.5, the first summation

is equal to

[1 + oN (1)]N−(1+α) capY (A, B) .

Since hEN (A), E(B) ≡ 0 and EN (B), the second summation in (15.7) is trivially 0.

The third summation is oN (1)N−(1+α) by the second estimate of (3) of Proposition

15.5. Finally, as |hEN (A), E(B)| ≤ 1, the last summation is oN (1)N−(1+α) by (2) of

Proposition 15.5.

Now by accepting Proposition 15.4 and 15.5, we can complete the proof of The-

orem 15.1.
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Proof of Theorem 15.1. Inspired by the optimizer of Theorem 2.2-(1), let us take

f =
VA,B + V†A,B

2
and φ =

Φ†A,B − ΦA,B

2
. (15.8)

Note that f ∈ C1, 0(EN (A), EN (B)) by (1) of Proposition 15.4. Thus, by the gener-

alized Dirichlet principle (i.e., Theorem 2.2-(1)) and Lemma 15.6, we can write

capN (EN (A), EN (B)) ≤ ‖Φf − φ‖2 + oN (1)N−(1+α) , (15.9)

where ‖ · ‖ = ‖ · ‖F denotes the flow norm with respect to the zero-range process

ηN (·).
Let us write

ΦA,B = Φ∗VA,B
+ ΘN and Φ†A,B = Φ

V†A,B
+ Θ†N , (15.10)

so that we have

Φf − φ = Φ
(VA,B+V†A,B)/2

−
Φ
V†A,B

− Φ∗VA,B

2
+

ΘN −Θ†N
2

.

= ΨVA,B
+

ΘN −Θ†N
2

(15.11)

By (2) of Proposition 15.4, it holds that∥∥ΨVA,B

∥∥2
= DN (VA,B) ≤ [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) . (15.12)

On the other hand, by (2) of Proposition 15.5 and definition (15.10), it holds that∥∥∥∥∥ΘN −Θ†N
2

∥∥∥∥∥
2

= [oN (1) + oε(1)]N−(1+α) (15.13)

Therefore, (15.11), (15.12), (15.13), and the triangle inequality, we can conclude

that

‖Φf − φ‖2 ≤ [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) . (15.14)

Inserting this into (15.9), we obtain the following upper bound of the capacity.

capN (EN (A), EN (B)) ≤ [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) . (15.15)

Now we use the generalized Thomson principle to obtain the lower bound. Based

on the optimizer of Theorem 2.2-(2) and our guess of the asymptotic limit of capacity
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capN (EN (A), EN (B)), we take

To this end, let

g =
V†A,B −VA,B

2N−(1+α) capY (A, B)
and ψ =

Φ†A,B + ΦA,B

2N−(1+α) capY (A, B)
. (15.16)

By (1) of Proposition 15.4, we have g ∈ C0, 0(EN (A), EN (B)). Moreover, by Lemma

15.6, it holds that∑
η∈HN

hEN (A), E(B)(η) (div ψA,B)(η) = 1 + oN (1) + oε(1) .

Therefore, by the generalized Thomson principle (i.e., Theorem 2.2-(2)), we can

conclude that

capN (EN (A), EN (B)) ≥ 1 + oN (1) + oε(1)

‖Φg − ψ‖2
. (15.17)

Now it remains to compute the flow norm ‖Φg − ψ‖2. To this end, using (15.10),

let us write

Φg − ψ = − 1

N−(1+α) capY (A, B)

[
ΨVA,B

+
ΘN + Θ†N

2

]
.

Then, by similar computations as in the upper bound. we can conclude that

‖Φg − ψ‖2 ≤
1 + oN (1) + oε(1)

N−(1+α) capY (A, B)
. (15.18)

Combining (15.17) and (15.18), we can finally obtain the lower bound on the capac-

ity:

capN (EN (A), EN (B)) ≥ [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) . (15.19)

By the upper bound (15.15) and lower bound (15.19), we can conclude that

[1 + oε(1)] capY (A, B) ≤ lim inf
N→∞

N1+αcapN (EN (A), EN (B))

≤ lim sup
N→∞

N1+αcapN (EN (A), EN (B)) ≤ [1 + oε(1)] capY (A, B) ,

where the error terms oε(1) are now dependent only on ε. Since the two terms in

the middle are independent of ε, by sending ε to 0, we can complete the proof.

From the previous proof, the estimate obtained in Proposition (15.4) can be
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strengthened as follows.

Corollary 15.7. We have that

DN (VA,B) = (1 + oN (1) + oε(1))N−(1+α) capY (A, B) .
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16 Estimate of Mean Jump Rates

In this section, we verify (in Proposition 16.13) the condition (H0) for the zero-range

process by estimating the mean jump rate rN (x, y) for x, y ∈ S.

For the reversible case, we can readily reduce the estimate of the mean-jump rate

to that of the capacity between valleys. More precisely, it has been verified in [2,

Lemma 6.8] that, for the reversible case, that is, the case p = 1/2, the mean jump

rate satisfies the following expression

rN (x, y) =
1

2

[
capN (ExN , ĔxN ) + capN (EyN , Ĕ

y
N )− capN (ExN ∪ E

y
N , Ĕ

x, y
N )

]
(16.1)

for all x, y ∈ S. Hence, the estimate of the mean jump rate is a direct consequence

of Theorem 15.1.

Unfortunately, a the relationship (16.1) is no longer valid in the non-reversible

case and the estimation of the mean jump rate rN (x, y) becomes a more challenging

task. The general strategy for this task has been developed in [40, Section 8]. The

following is a summary of this strategy.

1. Define the mean holding rate by

λN (x) =
∑

y∈S\{x}

rN (x, y) .

Then, in [3, display (A.8)], it has been verified that the holding rate λN (x)

satisfies

λN (x) =
capN (ExN , ĔxN )

µN (ExN )
. (16.2)

Therefore, by estimating the capacity capN (ExN , ĔxN ) and applying Theorem

13.1, we can obtain the sharp asymptotics of λN (x).

2. The second step is to compute the sharp asymptotics of rN (x, y)/λN (x) using

the collapsed process introduced in Section 3. More precisely, we fix x ∈ S,

and we consider a process ηN (·) which is the collapsed process obtained by

collapsing the metastable set ExN into a single point e. Denote by PNe the

law of this collapsed process starting from e. Then it has been proven in [3,

Proposition 4.2] that

rN (x, y)

λN (x)
= PNe

[
τEyN

< τĔx, yN

]
. (16.3)

Surprisingly, we can estimate the right-hand side based on the capacity esti-
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mate for the collapsed process along with the sector condition of the zero-range

process which will be verified in Section 16.1.

3. Since we can obtain an estimate of λN (x) and rN (x, y)/λN (x) by (16.2) and

(16.3), we can finally obtain an estimate of the mean jump rate rN (x, y). This

argument is rigorously explained in Section 16.

In order to focus only on the effectiveness of potential theoretic computations, we

will not attempt to prove (16.2) and (16.3) in the current note; we refer to [2, 3].

Instead, we shall directly apply this strategy to verify the condition (H0) for the

zero-range processes. We note that we again assume Propositions 15.4 and 15.5

(and hence all the results obtained in previous sections) throughout this section.

16.1 Sector condition

In this section, we prove the sector condition (cf. Definition 1.10) for the zero-range

process. This sector condition is one of the essential ingredients of the method

developed in [40] which will be applied to the zero-range process in this section.

Proposition 16.1. There exists a constant C0 > 0 such that for all f , g : HN → R,

we have

〈g, −LN f〉2µN ≤ C0 DN (f) DN (g) .

For u ∈ S, denote by ωu = (ωux)x∈S ∈ H1 the configuration with one particle at

site u, namely,

ωux =

{
1 if x = u

0 otherwise.

Therefore, for u ∈ S and η ∈ HN , the configuration η + ωu ∈ HN+1 is the one

obtained from η by adding a particle from site u. Similarly, the configuration η−ωu ∈
HN−1 is the one obtained from η by removing a particle at site u, provided that

ηu ≥ 1.

With this notation, we can observe the following convenient identity: for u ∈ S
and for η ∈ HN with ηu ≥ 1,

µN (η) g(ηu) = aN µN−1(η − ωu) , (16.4)

where aN is defined by

aN =
Nα ZN−1

(N − 1)α ZN
.

By Proposition 12.4, it follows immediately that

lim
N→∞

aN = 1 . (16.5)
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Proof of Proposition 16.1. Fix f , g : HN → R. By (16.4) the change of variable

η − ωx = ζ, we can write

DN (f)

=
1

2

∑
η∈HN

∑
x∈S

∑
y∈S

µN (η) g(ηx) r(x, y) [f(η)− f(σx, yη)]2 (16.6)

=
aN
2

∑
ζ∈HN−1

∑
x∈S

∑
y∈S

µN−1(ζ) r(x, y) [f(ζ + ωx)− f(ζ + ωy)]2 .

By a similar computation,

〈g, −LN f〉µN
=
∑
η∈HN

∑
x∈S

∑
y∈S

µN (η) g(ηx) r(x, y) [f(η)− f(σx, yη)] g(η)

=aN
∑

ζ∈HN−1

∑
x∈S

∑
y∈S

µN−1(ζ) r(x, y) [f(ζ + ωx)− f(ζ + ωy)] g(ζ + ωx) .

(16.7)

For ζ ∈ HN−1, write

g(ζ) =
1

κ

∑
z∈S

g(ζ + ωz) . (16.8)

Since we obviously have∑
x, y∈S

r(x, y) [f(ζ + ωx)− f(ζ + ωy)] = 0 ,

we can deduce from (16.7) that

〈g, −LN f〉µN
=aN

∑
ζ∈HN−1

∑
x∈S

∑
y∈S

µN−1(ζ) r(x, y) [f(ζ + ωx)− f(ζ + ωy)] [g(ζ + ωx)− g(ζ)]

≤ aN
2

∑
ζ∈HN−1

∑
x∈S

∑
y∈S

µN−1(ζ)r(x, y)
(

[f(ζ + ωx)− f(ζ + ωy)]2 + [g(ζ + ωx)− g(ζ)]2
)

=DN (f) +
aN
2

∑
ζ∈HN−1

∑
x∈S

µN−1(ζ) [g(ζ + ωx)− g(ζ)]2 ,

(16.9)

where the last line follows from (16.6) and the fact that
∑

y∈S r(x, y) = 1.
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Then, by (16.8), we can write∑
x∈S

[g(ζ + ωx)− g(ζ)]2 =
1

κ

∑
u, v∈S

[g(ζ + ωu)− g(ζ + ωv)]2 . (16.10)

by the Cauchy–Schwarz inequality,

[g(ζ + ωu)− g(ζ + ωv)]2 =

[
v−1∑
x=u

g(ζ + ωx+1)− g(ζ + ωx)

]2

≤

[∑
x∈S

∣∣g(ζ + ωx+1)− g(ζ + ωx)
∣∣]2

≤ κ
∑
x∈S

[g(ζ + ωx+1)− g(ζ + ωx)]2 .

Inserting this into (16.10) yields that∑
x∈S

[g(ζ + ωx)− g(ζ)]2 ≤
∑
x∈S

[g(ζ + ωx+1)− g(ζ + ωx)]2 .

Therefore, we have

aN
2

∑
ζ∈HN−1

∑
x∈S

µN−1(ζ) [g(ζ + ωx)− g(ζ)]2

≤aN
2

∑
ζ∈HN−1

∑
x∈S

µN−1(ζ)[g(ζ + ωx+1)− g(ζ + ωx)]2

=
aN
2p

∑
ζ∈HN−1

∑
x∈S

µN−1(ζ)r(x, x+ 1)[g(ζ + ωx+1)− g(ζ + ωx)]2

≤aN
2p

∑
ζ∈HN−1

∑
x∈S

∑
y∈S

µN−1(ζ)r(x, y)[g(ζ + ωy)− g(ζ + ωx)]2 =
1

p
DN (g) ,

where the last line follows from (16.6).

Finally, inserting this into (16.9), we get

〈g, −LN f〉µN ≤ DN (f) +
1

p
DN (g) .

By Remark 1.12, we are done.

Henceforth, the constant C0 is always used to denote the constant appearing in

Proposition 16.1. The following corollary is now immediate from the above propo-

sition and Propositions 1.9 and 1.13. We recall that capsN (·, ·) denotes the capacity
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with respect to the symmetrized process.

Corollary 16.2. For any two disjoint, non-empty subsets A, B of HN ,

capsN (A, B) ≤ capN (A, B) ≤ C0capsN (A, B) .

16.2 Capacity estimates for collapsed processes

Another essential ingredient of the method of [40] is the sharp estimate of capacity

with respect to the collapsed processes. In this subsection, we explain this ingredient.

In the remainder of the current section, we will fix x0 ∈ S.

Definition of collapsed processes

We first define collapsed processes and then explain the notation regarding the

collapsed process in terms of the zero-range processes.

Let HN = (HN \ Ex0N ) ∪ {e} be the set obtained from HN by collapsing the

metastable set Ex0N into a single point e. Denote by (ηN (t))t≥0 the collapsed process

on HN which is obtained from ηN (·) by collapsing the set Ex0N to e. Let µN (·) be a

measure on HN defined by{
µN (η) = µN (η) if η ∈ HN \ Ex0N ,

µN (e) = µN (Ex0N ) .

Then, by Exercise 3.1, we get the following lemma.

Lemma 16.3. The Markov chain ηN (·) is irreducible on HN , and its unique in-

variant measure is µN (·).

We now redefine the notation regarding the collapsed process in terms of the

zero-range process

• We denote by L N the generator of the collapsed chain ηN (·), and let L
†
N

and L
s
N denote the adjoint generator and the symmetrized generator of L N ,

respectively (in the space L2(µN )). The continuous-time Markov processes on

HN generated by L
†
N and L

s
N are denoted by η†N (·) and ηsN (·), respectively.

• Let DN (·) be the Dirichlet form associated with the generator L N .

• Denote by PNη , η ∈ HN , the law of process ηN (·) starting from η.

• We denote by FN the space of flow associated with the collapsed process ηN (·).
The inner product and flow norm associated with this flow structure will be

denoted by 〈·, ·〉FN and ‖ · ‖FN , respectively.
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• For each flow φ ∈ FN , we denote by φ ∈ FN the collapsed flow in the sense of

(3.5).

• For each f : HN → R which is constant over Ex0N , we denote by f : HN → R
the collapsed function in the sense of (3.8).

• For f : HN → R we define flows Φf , Φ
∗
f and Ψf as in (3.15)-(3.17).

• For two disjoint non-empty subsets A and B of HN , we denote by hA,B and

capN (A, B) the equilibrium potential and capacity between A and B with

respect to the collapsed process ηN (·). In addition, we write capsN (A, B) for

the capacity between A and B with respect to process ηsN (·).

Remark 16.4. Notice that hA,B and hA,B are different objects. Since the equilibrium

potential hA,B may not be constant on Ex0N , we may not be able to define the

collapsed function hA,B.

By Lemma 3.10 and Proposition 16.1, we get the following proposition where C0

is the constant appearing in Proposition 16.1

Proposition 16.5. The collapsed process ηN (·) satisfies a sector condition with

constant C0. Hence, for any two disjoint non-empty subsets A, B of HN , it holds

that

capsN (A, B) ≤ capN (A, B) ≤ C0 capsN (A, B) .

Capacity estimates

The following lemma, which is a direct consequence of Lemma 3.9 asserts that we

are able to reduce the computation of capacity with respect to the collapsed process

to that of the original zero-range process when one of the sets involved is {e}.

Lemma 16.6. For all non-empty subsets A of HN \ Ex0N ,

capN (A, e) = capN (A, Ex0N ) .

In view of Exercise 3.7, the following estimate is not a simple consequence of

Theorem 15.1 (or Corollary 15.2). We need an independent proof.

Proposition 16.7. For two disjoint and non-empty subsets A and B of S \ {x0}
satisfying A ∪B = S \ {x0}, it holds that

capN (EN (A), EN (B)) = [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) .

The proof of this proposition will be given in next subsection.
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16.3 Capacity estimates for collapsed processes

We now prove Proposition 16.7 by several steps. Throughout this subsection, we

fix two disjoint and non-empty subsets A, B satisfying the condition of Proposition

16.7. Recall the test functions VA,B and V†A,B from Proposition 15.4 and the test

flows ΦA,B and Φ†A,B from Proposition 15.5. Since VA,B and V†A,B are constant

on Ex0N ,we can collapse them; let us write VA,B = VA,B and V
†
A,B = V†A,B. Note

that, by Proposition 15.4 we have that

VA,B(e) = V
†
A,B(e) = hA,B(x0) .

Lemma 16.8. It holds that∥∥ΨVA,B

∥∥2

FN
= [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) .

Proof. By Exercise 3.4 and Lemma 3.6, we obtain∥∥ΨVA,B

∥∥2

FN
=
∥∥ΨVA,B

∥∥2

FN
=
∥∥ΨVA,B

∥∥2
.

It is now enough to invoke Corollary 15.7 to complete the proof.

Let ΦA,B = ΦA,B and Φ
†
A,B = Φ†A,B be the collapsed flow of ΦA,B of Φ†A,B,

respectively.

Lemma 16.9. It holds that∑
η∈HN

hEN (A), EN (B)(η)(div ΦA,B)(η) = [1 + oN (1)]N−(1+α) capY (A, B) and

(16.11)∑
η∈HN

hEN (A), EN (B)(η)(div Φ
†
A,B)(η) = [1 + oN (1)]N−(1+α) capY (A, B) . (16.12)

Proof. It suffices to prove (16.11) as the proof of (16.12) is essentially the same. In

view of Lemma 15.6, it suffices to check

hEN (A), EN (B)(e)(div ΦA,B)(e)−
∑
η∈Ex0N

hEN (A), EN (B)(η)(div ΦA,B)(η) = oN (1)N−(1+α) .

(16.13)

By (3.6) and (15.3), we have

(div ΦA,B)(e) = (div ΦA,B)(Ex0N ) = oN (1)N−(1+α) .
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Thus, the first term at the left-hand side of (16.13) is oN (1)N−(1+α). On the other

hand, the second term is oN (1)N−(1+α) by (15.4). Hence, we have (16.13).

Now we are ready to prove Proposition 16.7 by using generalized Dirichlet and

Thomson principles.

Proof of Proposition 16.7. The proof is similar to that of Theorem 15.1. We begin

by recalling the functions f , g and the flows φ, ψ from (15.8) and (15.16). Then, by

the definition of the collapsing procedure, it is obvious that

f ∈ C1, 0(EN (A), EN (B)) and g ∈ C0, 0(EN (A), EN (B)) .

Since we can write

Φ f − φ = ΨVA,B
− Θ

†
N −ΘN

2
, (16.14)

where ΘN and Θ
†
N are the collapsed flows of ΘN and Θ†N defined in (15.10), respec-

tively. By part (1) of Proposition 15.5 and Lemma 3.3, we have∥∥ΘN

∥∥2

FN
= (oN (1) + oε(1))N−(1+α) and

∥∥Θ
†
N

∥∥2

FN
= (oN (1) + oε(1))N−(1+α) .

(16.15)

Thus, by Theorem 2.2-(1), Lemma 16.8, and Lemma 16.9, we get the following upper

bound:

capN (EN (A), EN (B)) ≤ [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) . (16.16)

For the opposite inequality, we can repeat the same arguments with test function

g and test flow ψ to deduce

capN (EN (A), EN (B)) ≥ (1 + oN (1) + oε(1))N−(1+α) capY (A, B) . (16.17)

By (16.16) and (16.17), the proof is completed.

Exercise 16.10. Prove (16.17) by using the generalized Thomson principle.

Exercise 16.11. In fact, the condition A ∪ B = S \ {x0} in Proposition 16.7 is

redundant. We imposed this condition only because we do not need a general result

without this restriction. Prove the general result without this restriction.

16.4 Estimate of mean jump rate

Now we are ready to estimate the mean jump rate. In view of (16.3), to obtain the

sharp asymptotics of the mean jump rate rN (x0, y) for x0, y ∈ S, the crucial object
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to be estimated is the probability PNe [τEyN
< τĔx0, yN

]. This estimate follows from the

following proposition.

Proposition 16.12. For two disjoint and non-empty subsets A and B of S \ {x0}
satisfying A ∪B = S \ {x0}, we have that

lim
N→∞

PNe
[
τEN (A) < τEN (B)

]
= hA,B(x0) .

Proof. The proof relies on Propositions 16.5, 16.7 and Lemma 16.8. Recall the

equilibrium potential hEN (A), EN (B) between EN (A) and EN (B), with respect to the

collapsed chain ηN (·). Then, by Proposition 16.7,∥∥∥ΨhEN (A), EN (B)

∥∥∥2

FN
= capN (EN (A), EN (B)) = [1+oN (1)+oε(1)]N−(1+α) capY (A, B) .

(16.18)

By Lemma 16.8,∥∥∥ΨVA,B

∥∥∥2

FN
= [1 + oN (1) + oε(1)]N−(1+α) capY (A, B) . (16.19)

By (16.14), (16.15), (16.18), and the Cauchy-Schwarz inequality, we get〈
ΨVA,B

, ΨhEN (A), EN (B)

〉
FN

=
〈

Φf − φ, ΨhEN (A), EN (B)

〉
FN

+ (oN (1) + oε(1))N−(1+α) ,
(16.20)

where f and φ are the objects defined in the proof of Proposition 16.7. By the same

computation as in (2.7), we can write〈
Φ f − φ, ΨhEN (A), EN (B)

〉
FN

= capN (EN (A), EN (B))−
∑

η∈HN\EN (A∪B)

hEN (A), EN (B)(η) (div φ)(η)
(16.21)

Thus, by combining (16.20), (16.21) and Proposition 16.7, we get ,〈
ΨVA,B

, ΨhEN (A), EN (B)

〉
FN

= (1 + oN (1) + oε(1))N−(1+α) capY (A, B) (16.22)
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Define u = hEN (A), EN (B) −VA,B. Then, by (16.18), (16.19), and (16.22) we get

∥∥Ψu

∥∥2

FN
=
∥∥ΨhEN (A), EN (B)

∥∥2

FN
+
∥∥ΨVA,B

∥∥2

FN
− 2

〈
ΨVA,B

, ΨhEN (A), EN (B)

〉
FN

= (oN (1) + oε(1))N−(1+α) .

(16.23)

As u(e) = hEN (A), EN (B)(e) − hA,B(x0) and u(η) = 0 for all η ∈ EN (A ∪ B), we can

write

u =
(
hEN (A), EN (B)(e)− hA,B(x)

)
u0

for some u0 ∈ C1, 0({o}, EN (A ∪B)). With this notation, we can write∥∥Ψu

∥∥2

FN
= DN (u) =

(
hEN (A), EN (B)(e)− hA,B(x)

)2
DN (u0) . (16.24)

By the Dirichlet principle for reversible dynamics (cf. Theorem 1.3) and the sector

condition for the collapsed process (cf. Proposition 16.5), we have that

DN (u0) ≥ cap sN (e, EN (A ∪B)) ≥ C−1
0 capN (e, EN (A ∪B)) . (16.25)

By Lemma 16.6 and Theorem 15.1,

capN (e, EN (A ∪B)) = capN (ExN , EN (A ∪B))

= [1 + oN (1) + oε(1)]N−(1+α) capY (x, A ∪B) . (16.26)

By (16.25) and (16.26), we can conclude that

DN (u0) ≥ C [1 + oN (1) + oε(1)]N−(1+α)

for some constant C > 0. Inserting this and (16.23) into (16.24), we get[
hEN (A), EN (B)(e)− hA,B(x)

]2 ≤ oN (1) + oε(1) .

By taking lim supN→∞ and then lim supε→0, we get

lim sup
N→∞

∣∣hEN (A), EN (B)(e)− hA,B(x)
∣∣ = 0

and we are done.

Now we are ready to verify condition (H0) for the zero-range process.

Proposition 16.13. The condition (H0) holds for the zero-range processes. In other
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words, for all x, y ∈ S,

lim
N→∞

N1+α rN (x, y) = a(x, y) .

Proof. By (16.2), Theorem 13.1, and Corollary 15.2, we get

λN (x) =
capN (ExN , ĔxN )

µ(ExN )
= (1 + oN (1))N−(1+α) κ

ΓαIα

∑
y∈S\{x}

capX(x, y) . (16.27)

Recall from (15.2) the definition of hy, S\{x, y}. Write

τ = inf {t ≥ 0 : Y (t) 6= Y (0)} .

Then, one can observe that

hy, S\{x, y}(x) = Qx (Y (τ) = y) =
capX(x, y)∑

y∈S\{x} capX(x, y)
.

Thus, by (16.3) and Proposition 16.12, we get

rN (x, y)

λN (x)
= (1 + oN (1)) hy, S\{x, y}(x) = (1 + oN (1))

capX(x, y)∑
y∈S\{x} capX(x, y)

.

(16.28)

We can complete the proof by multiplying (16.27) and (16.28).
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17 Conditions (H1) and (H3)

Since we have verified conditions (H0) and (H2), it now remains to verify conditions

(H1) and (H3). Verification of these conditions also use the capacity estimate ob-

tained in Theorem 15.1 and the sector condition obtained in Proposition 16.5. We

again assume the results obtained in Section 15.

We first prove the following lemma.

Lemma 17.1. For any x ∈ S, there exists a constant C such that

inf
η, ζ∈ExN

capN (η, ζ) ≥ C

`
α(κ−1)+1
N

Proof. We fix x ∈ S and η, ζ ∈ ExN . We first find a lower bound for capsN (η, ζ). For

ξ, ξ′ ∈ HN , we denote by RN (ξ, ξ′) the jump rate of the symmetrized zero-range

process from ξ to ξ′:

RN (ξ, ξ′) =
∑
x∈S

∑
y∈S

g(ξx)rs(x, y)1{ξ′ = σx, yξ} ,

where rs(x, y) = 1
21{|x− y| = 1}. Take a path (ωt)

T
t=0 in ExN connecting η and ζ in

the sense that ωt ∈ ExN for all t ∈ J0, T K and moreover satisfies

ω0 = η , ωT = ζ and RN (ωt, ωt+1) > 0 for all t ∈ J0, T − 1K .

The existence of such a path with T ≤ C`N where C is a constant that only depends

on κ is obvious. Define a flow φ ∈ FN by

φ(ξ, ξ′) =


1 if (ξ, ξ′) = (ωt, ωt+1) for some t ∈ J0, T − 1K ,

−1 if (ξ, ξ′) = (ωt+1, ωt) for some t ∈ J0, T − 1K ,

0 otherwise.

Then,

‖φ‖2FN =
T−1∑
t=0

1

µN (ωt)RN (ωt, ωt+1)
. (17.1)

Since g(k) ≥ 1 for all k ≥ 1, if ωt+1 = σx, yωt for some x, y ∈ S with |y − x| = 1,

µN (ωt)RN (ωt, ωt+1) =
Nα

ZN

1

a(ωt)
× 1

2
g((ωt)x) ≥ C Nα

Nα`
α(κ−1)
N

= C
1

`
α(κ−1)
N

, (17.2)
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where we use a trivial bound

a(ξ) = a(ξx)
∏

y∈S\{x}

a(ξy) ≤ Nα`
α(κ−1)
N for all ξ ∈ ExN

and Proposition 12.4 at the inequality of (17.2). Inserting (17.2) and the bound

T ≤ C`N to (17.1), we get

‖φ‖2FN ≤ C`N × `
α(κ−1)
N = C`

α(κ−1)+1
N

Since φ is the unit flow from {η} to {ζ}, by the Thomson principle for the reversible

Markov process (cf. Theorem 1.4),

capsN (η, ζ) ≥ 1

‖φ‖2FN
≥ C

`
α(κ−1)+1
N

.

Now the proof of lemma is completed by Corollary 16.2.

Exercise 17.2. In the previous proof, prove the existence of a path (ωt)
T
t=0 in ExN

connecting η and ζ with T ≤ C`N for some constant C depending only on κ.

Now we verify condition (H1).

Proposition 17.3. The condition (H1) holds for the zero-range processes.

Proof. Fix x ∈ S. For η, ζ ∈ ExN , by Theorem 15.1 and Lemma 17.1, there exists

C > 0 such that
capN (ExN , ĔxN )

capN (η, ζ)
≤ C

`
α(κ−1)+1
N

N1+α
= oN (1) (17.3)

where the last equality follows from the condition (13.1) on `N .

At this moment, we shall check that the condition (H3) is in force for the zero-

range processes.

Proposition 17.4. The condition (H3) holds for the zero-range processes.

Proof. Fix x ∈ S. Recall that ξxN ∈ ExN represent a configuration such that all the

particles are located at site x. By [34, Lemma 3.4], it suffices to verify that

lim
N→∞

sup
η∈ExN

PNη [τξxN > N1+αδ] = 0 for all δ > 0 , and (17.4)

lim
δ→0

lim sup
N→∞

sup
δ<t<3δ

PNξxN [ηN (N1+αt) ∈ ∆N ] = 0 . (17.5)
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For (17.4), by the Markov inequality and (0.32), we have

PNη [τξxN > N1+αδ] ≤ 1

N1+αδ
ENη
[
τξxN

]
≤ 1

N1+α δ

1

capN (η, ξxN )
, (17.6)

where at the second inequality we use the trivial bound hη, ξxN ≤ 1. By Lemma 17.1,

PNη [τξxN > N1+αδ] ≤ C

δ

`
α(κ−1)+1
N

N1+α
.

The proof of (17.4) now follows from the condition (13.1) on `N .

For (17.5), note first from the definition of µN that we have µN (ξxN ) = Z−1
N .

Hence, for t > 0, since µN is the invariant measure,

PNξxN
[
ηN (N1+α t) ∈ ∆N

]
≤

PNµN
[
ηN (N1+α t) ∈ ∆N

]
µN (ξxN )

=
µN (∆N )

µN (ξxN )
= ZN µN (∆N ) .

Hence, (17.5) follows directly from Proposition 12.4 and Theorem 13.1.
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[9] Bianchi, A.; Dommers, S.; Giardinà, C.: Metastability in the reversible inclu-

sion process. Electronic Journal of Probability. 22: 1-34. (2017)

[10] Bianchi, A.; Bovier, A.; Ioffe, D.: Sharp asymptotics for metastability in the

random field Curie-Weiss model. Electronic Journal of Probability. 14: 1541–

1603. (2009)

[11] Bovier, A.; den Hollander, F.: Metastabillity: A Potential-theoretic approach.

Grundlehren der mathematischen Wissenschaften. Springer. (2015)

[12] Bovier, A., den Hollander, F., Nardi, F.R.: Sharp asymptotics for Kawasaki

dynamics on a finite box with open boundary. Probab. Theory Relat. Fields

135, 265–310 (2006)

[13] Bovier, A.; den Hollander, F.; Spitoni, C.: Homogeneous nucleation for Glauber

and Kawasaki dynamics in large volumes and low temperature. Ann. Probab.

38, 661–713 (2010)

[14] Bovier, A.; Eckhoff, M.; Gayrard, V.; Klein, M.: Metastability in reversible

diffusion processes I. Sharp asymptotics for capacities and exit times. Journal

of the European Mathematical Society. 6: 399-424. (2004)

[15] Bovier, A.; Gayrard, V.; Klein, M.: Metastability in reversible diffusion pro-

cesses II. Precise asymptotics for small eigenvalues. Journal of the European

Mathematical Society. 7: 69-99. (2005)

[16] Bovier, A.; Manzo, F.: Metastability in Glauber dynamics in the low-

temperature limit: Beyond exponential asymptotics. Journal of Statistical

Physics. 107: 757-779. (2002)

[17] Cassandro, M.; Galves, A.; Olivieri, E.; Vares, M.E.: Metastable behavior of

stochastic dynamics: A pathwise approach. Journal of Mathematical Physics.

35: 603-634. (1984)

[18] Cirillo, E.N.M.; Nardi, F.R.: Relaxation height in energy landscapes: An appli-

cation to multiple metastable states. Journal of Statistical Physics. 150: 1080-

1114. (2013)

[19] Cirillo, E.N.M.; Nardi, F.R.; Sohier, J.: Metastability for general dynamics with

rare transitions: Escape time and critical configurations. Journal of Statistical

Physics. 161: 365-403. (2015)

123



[20] Cirillo, E.N.M.; Nardi, F.R.; Spitoni, C.: Sum of exit times in a series of two

metastable states. The European Physical Journal Special Topics. 226: 2421-

2438. (2017)

[21] Cirillo, E.N.M.; Olivieri, E.: Metastability and nucleation for the Blume–Capel

model. Different mechanisms of transition. Journal of Statistical Physics. 83:

473-554. (1996)

[22] Eyring. H: The activated complex in chemical reactions. Journal of Chemical

Physics. 3:107–115, (1935)

[23] Freidlin, M.I.; Wentzell, A.D.: On small random perturbations of dynamical

systems. Uspekhi Matematicheskikh Nauk. 25: 3-55. (1970) [English transla-

tion, Russian Mathematical Surveys. 25:1-56. (1970)]

[24] Gaudillière, A.; Landim, C.: A Dirichlet principle for non reversible Markov

chains and some recurrence theorems. Probability Theory and Related Fields.

158: 55-89. (2014)

[25] Kim, S.: Second time scale of the metastability of reversible inclusion processes.

arXiv:2007.05918 (2020)

[26] Kim, S.; Seo, I: Condensation and metastable behavior of non-reversible inclu-

sion processes. To appear in Communications in Mathematical Physics (2020)

[27] Kim, S.; Seo, I: Metastability of stochastic Ising and Potts models on lattice

without external fields. Submitted. (2020)

[28] Kim, S: Metastability of the two-dimensional Blume–Capel model with zero

chemical potential and zero external field. Preprint (2021)

[29] Kramers, H. A.: Brownian motion in a field of force and the diffusion model of

chemical reactions. Physica, 7:284–304 (1940).

[30] Landim, C.: A topology for limits of Markov chains. Stochastic Processes and

Their Applications 125: 1058-1088 (2015)

[31] Landim, C.: Metastability for a Non-reversible Dynamics: The Evolution of

the Condensate in Totally Asymmetric Zero Range Processes. Communications

in Mathematical Physics 330: 1–32. (2014)

[32] Landim, C.; Lemire, P.: Metastability of the two-dimensional Blume–Capel

model with zero chemical potential and small magnetic field. Journal of Statis-

tical Physics. 164: 346-376. (2016)

124



[33] Landim, C.; Lemire, P.; Mourragui, M.: Metastability of the two-dimensional

Blume–Capel model with zero chemical potential and small magnetic field on

a large torus. Journal of Statistical Physics. 175: 456-494. (2019)

[34] Landim, C.; Loulakis, M.; Mourragui, M.: Metastable Markov chains: from the

convergence of the trace to the convergence of the finite-dimensional distribu-

tions. Electron. J. Probab. 23 (2018)

[35] Landim, C.; Marcondes, D.; Seo, I.: Metastable behavior of reversible, critical

zero-range processes. arXiv:2006.04214 (2020)

[36] Landim, C.; Marcondes, D.; Seo, I.: A resolvent approach to metastability: the

reversible, critical zero-range processes. Submitted. (2020)

[37] Landim, C.; Mariani, M.; Seo, I.: Dirichlet’s and Thomson’s principles for

non-selfadjoint elliptic operators with application to non-reversible metastable

diffusion processes. Archive for Rational Mechanics and Analysis. 231: 887-938.

(2019)

[38] Landim, C.; Misturini, R.; Tsunoda, K.: Metastability of reversible random

walks in potential fields. Journal of Statistical Physics. 160: 1449-1482. (2015)

[39] Landim, C.; Seo, I.: Metastability of non-reversible, mean-field Potts model

with three spins. Journal of Statistical Physics. 165: 693-726. (2016)

[40] Landim, C.; Seo, I.: Metastability of nonreversible random walks in a potential

field and the Eyring-Kramers transition rate formula. Communications on Pure

and Applied Mathematics. 71: 203-266. (2018)

[41] Landim, C.; Seo, I.: Metastability of one-dimensional, non-reversible diffusions

with periodic boundary conditions. Annales de l’Institut Henri Poincaré (B)
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