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PREFACE

This lecture notes is an extended version of my lecture series given at the workshop in
the Department of Mathematics, Seoul National University, in Seoul in November, 2009.

It surveys the theory of proper holomorphic mappings between balls. This theory was
originated from Poincaré’s work in 1807: any non-constant holomorphic map f : U — V
satisfying f(U N OB?) C VOB? is a map in Aut(9B?), where U,V are open subsets of C*.
Over time many mathematicians made contribution to this theory.

In Chapter 1, we introduce some background information.

In Chapter 2 we introduce the first gap theorem, which was initiated from 1979 by
Webster, and is an accumulative result by many mathematicians over 20 years.

In Chapter 3, we illustrate a lots of examples of proper holomorphic mappings between
balls, from which a general conjecture about gap phenomenon is formulated. All constructed
examples seem to be polynomial maps, nevertheless, not every proper rational map between
balls can be equivalent to polynomial maps. A criterion, which tells when a proper rational
map can be equivalent to a polynomial one, is introduced. To illustrate the method that
used to study the classification problem, we first show a new proof for Faran’s theorem on
classification of maps from B? to B?, and then outline how to find complete classification for
proper holomorphic rational maps from B? to BY with degree 2.

In Chapter 4, we start with a result on maps from B" to B?*~!. We list five main
facts in the ingredient of the proof, and discuss its generalization for higher codimensional
case. As a result, by using analytic approach, we shall demonstrate applications of these
generalizations, including the rationality problems, and the proof of the second gap theorem.

In Chapter 5, besides the analytic approach, we also introduce a geometric approach:
the Cartan’s moving frame theory in differential geometry, as well as its applications.

The author thanks the Department of Mathematics, Seoul National University, for the
wonderful hospitality during the workshop. The author is particularly indebted to Professor
Chong-Kyu Han for his kind invitation to attend the workshop. The author also thanks Mr.
Yao, Lu who helped to correct some typos in the notes when the author gave lectures in the
Capital Beijing Normal University in December, 2009.
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Chapter 1

Real Hypersurfaces

1.1 Domains and Their Boundaries

Geometry and analysis on domains in C™ and on their boundaries are closely related. We
start with several theorems concerning domains in C" and their boundaries.

Theorem 1.1.1 [Fe7/[[B43] Let Dy,Dy C C™ be smooth strongly pseudoconver domains
with C™ boundaries. Then the following statements are equivalent:

(i) There exists a biholomorphic map f : Dy — Ds.

(ii) There is a C* CR isomorphism F : 0Dy — 0D;.

Theorem 1.1.2 (i) [CJ96] If Q is a bounded simply connected domain in C"** with con-
nected smooth spherical real analytic boundary, then Q is globally biholomorphic to the unit
ball B+,

(ii) [HJ98] The “simply connected” condition can be dropped if the boundary is defined
by a real polynomial.

One could pass problems in domains into the ones in boundaries. Conversely, one could
pass problems in boundaries into the ones in domains.

Siegel upper-half space and Heisenberg hypersurfaces For a domain D C C7, its
boundary 9D is a real hypersurface in C".

[Example 1.1 A]

1. Let
B" = {z=(21,...,20) €EC" | |2]> = |aa* + ... + |za]* < 1}

7



8 CHAPTER 1. REAL HYPERSURFACES

be the unit ball. Its boundary
OB" = {z = (21,...,20) €C" | |2 =1}
is the unit sphere.

2. Let
H" := {(2,w) € C"' x C: Im(w) > |2|*}

be the Siegel upper-half space. Its boundary
OH" := {(2,w) € C"' x C: Im(w) = |2|*}

is the Heisenberg hypersurface. When n = 1, H! is the upper-half plane {w €
C | Im(w) > 0} and OH! = {w € C | Im(w) = 0} is the z-axis. Among all (non-
degenerate) boundaries of domains in C" with n > 2, the most simplest one is the
OH".

[Example 1.1 B]

1. More generally, we can define
7 o=1{(z,w) € C" ' x C | Im(w) > |2|?}
where |2]2 == — Z§:1 | |* + Z;L;Z1+1 |z;|%. Its boundary
OH} = {(z,w) € C"' x C | Im(w) = |2}, z€C"}, (1.1)

is also called the (Levi) nondegenerate hyperquadric.

Notice that the pair (/,n — 1 — £) is completely determined by ¢. Hence, in what
follows, for brevity, we call £ the signature of the above hypersurface M.

When ¢ = 0, we call OH} strongly pseudoconver. When ¢ > 0, (1.1) is the model
example of a real hypersurface which is Levi nondegenerate but is not strongly pseu-
doconvex.

2. We can also define
B} = {(2,w) € C""' x C | 2]} + |w|* < 1}. (1.2)

Its boundary is
OB} = {(z,w) € C" ' x C | |2|? + |w|* = 1}. (1.3)
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Cayley transformation By the Cayley transformation, we mean a biholomorphic map

(1.4)

.
v, H — B, \I!.n(z,w):< 2 “w)

1—w’ 1—idw
With ¥,, we can identify B} with Hy and identify OH} with oB}. To verify this, it suffices
to show that ¥, : 0H} — 0B}, i.e., to verify

2 . 2
ij—zw €+ i;—Z: =1, YIm(w) =z}, (1.5)
i.e. to verify that V Im(w) = |z[2,
g fmwP = il
(i —w) ”—i—ﬁ) (i—i—w)(”—H—w) ,
1+ iw —‘Lw'*' wi*  1-iw +“i'u7+ |w|®

i.e., to verify
4|z} + 2iw — 20 =0, V Im(w) = |2[7,

ie.,

422 — 4Im(w) = 0, ¥ Im(w) = |27,

which is trivially true.

Automorphism group By an automorphism, we mean a biholomorphic map F: By —
Br. Let us denote by Aut(B}) the group of automorphisms of By. Also we define Aut(0By)
where F € Aut(0B}) if F € Aut(B}) such that it maps the boundary OB} onto itself.

We can define Aut(H}) and Aut(0H}) similarly. By Cayley transformation, we can
identify Aut(0B}) with Aut(HY}), and identify Aut(0By) with Aut(OHy).

The group Aut(0HY) is transitive, i.e., for any two points P,Q € OHy, there exists a
map F € Aut(0H") such that F(Q) = P. To prove this, we can assume @ = 0. We write
P = (20,wp) € C"! x C, and then we can take

F(z,w) = (2 + 20, w + wo + 2i(2,%0)¢).- (1.6)

¢
where (2, w)e = — 3, Zjwj + D 5_g41 %W)-
For simplicity, we only consider the case where ¢ = 0.
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Isotropic subgroup We define
Autog(OH") = {F € Aut(6H") | F(0) = 0}.

which is called the isotropic subgroup of Aut(9H"). It is known that any F = (f,g) €
Auty(0H™) is of the form

o Az + @)U
fEw) =1 2@ — (r + (@, 3w
o5, w) = o 2w

T 1-2i(z,8) — (r + @ a)w
where 0 = £1,A > 0,7 € R,d € C*™!, Uis an (n— 1) x (n — 1) matrix satisfying (2U,zZU) =
o(z,z), Vz € C™.

Here we verify such (f, g) € Auto(0H"), i.e., to verify

Im(g) = |fI?, VIm(w) = |z]%,

i.e. to verify that for any Im(w) = |z|?,

o\ w oW
1-2i(z,d@) — (r+i(@,a)w 1+ 2i(z,a@) — (r —i(d@,a))w
Mz + aw)U 2

1 —2i(z,@) — (r +i(d,a)w
i.e., to verify

oNw (1 +2i(z,@) — (r — (@ @)W] — oNT[1 - 2i(2,8) — (r + i@ D))w] (17)

=2i[Az +aw)U|*, V¥ Im(w) = |2
Notice _
Az + @w)U|* = (\(z + @)U, Az + aw)T).
Motivated from the equation Im(w) = |2|2, we define the weighted degree:
deg(?’) = deg(z’) = j and deg(w*) = deg(w*) = 2k. (1.8)

To prove the equality in (1.7), we first prove the equality involving all terms of weighted
degree 2 (i.e., the 2%, 22,22 w and W terms) in (1.7):

oXNw — oXW = 2i\}(2U, ZU), ¥ Im(w) = |2|%
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Since U is unitary, we need to show
oNw — o N = 2iN%0 (2, Z), ¥ Im(w) = |z|?,

which is true.
Secondly, we prove the equality involving all terms of weighted degree 3 (i.e., the zw, Zw,
Zw and 2w terms) in (1.7):

oN2w2i(zZ, @) — oNW(—2i)(z, @) = 2i(\2U, \awU) + 2i(\awU, XzU), ¥V Im(w) = |z|%,
Since U is unitary, the above is equivalent to
oN2w2i(z,d@) — oNW(—2i)(z, @) = 2iN’0(z,aw) + 2iN’0(Gw, Z), ¥ Im(w) = |2,

which is true.
Finally we prove the equality involving all terms of weighted degree 4(i.e., the ww terms)
n (1.7), which is the highest weighted degree case:

—oX2(r — i@]?)|w]? + o N2 (r + i@ |w]? = 2i(AawU, AawU), vV Im(w) = |2[;,
Since U is unitary, divided by |w|?, the above is equivalent to
—oX(r —i|d@]?) + oA (r +i|@%) = 2ioNY@*> ¥ Im(w) = |2,

which is true.

1.2 Levi nondegenerate real hypersurfaces

Defining functions Let M be a smooth real hypersurface of C", i.e., M is a subset of C"
such that for any point p € M there exists a neighborhood U of p and a smooth real-valued
function r defined in U such that

MNU={(z,w) eUN(C" ' xC) | r(z,w,z,w) =0}

with dr # 0in U. The function r is called a defining function of M at p. Notice that defining
function is not unique. Any hr is also a defining function where h is smooth real-valued
function without zero.



12 - CHAPTER 1. REAL HYPERSURFACES

[Example 1.2 A] For 9H", we can take a defining function

— n—1
r(z,w,z,W) = Im(w) — |2|* = w;zw - Zzﬁ;. O
j=1

[Example 1.2 B] If r(z, Z) is real analytic near 0 € C", we can write it as a power series

r(2,Z) = Z Co 5228
a,p

where a = (o, ..., ), 2% = 20" - ... - 22" and 2% = Z[™ - ... - Z;°*. Then r is real-valued if
and only if
Z Cap?®2B = Zm?azﬂ, Vz near 0
B o,
ie.,
r(z,Z) =7(Z,2), Vz near 0,

ie.,

Cap = Cha, Vo, . (1.9)
O

We denote by T'M the tangent bundle of M, and by CTM = CQT M the complezification
of the tangent bundle of M. We define

TYM = CTM NnTC",

which is called the bundle of (1,0) vectors on M. Similarly we can define TO'M = CTM N
T%1C".

First, after a local change of coordinates, we assume that
p=0, TuM = {v =0}, T"M = {w =0},

where we use (z,w) € C"! x C for the coordinates of C" and write w = u + iv. Then M
near 0 is the graph of the function

v=p(z,Z,u) with p(0) =0 and dp(0) = 0.

Since p is real-valued, by (1.9), we can write p as Taylor series

n—1 n—1 n—1 n—1 n—1

p = Z akzzkz_g + Z bngng + Z b_kem + Z bkzku + Zl;k_z;u + cu2 + 0(3),

k=1 k=1 k=1 k=1 k=1
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where ¢ € R, O(3) = O(|(z,w)
v = p(z,Z,u) can be written as:

) = O0(|(z,u)]*), A := (ay) is a Hermitian matrix. Then

n—1 n—1
w —2R€(Zbky~k2/+26k~ku)+ 32 kZ(‘}“CU +O( )
k

kf=1 £=1
Since Re(z) = Imf(iz), the above becomes
n—1 n—1 n—1
Im(w) = 2Im( Z brezize + 1 Z bkzku> + Z a2k + cu® 4+ O(3),
kf=1 k=1

ie.,

n—1 n—1 n—1
Im (w — 21 Z brezize — 21 Z bkzku> —cu? = Z a26Z + O(3).

k=1 k=1 kf=1
Since w = u +iv = u +ip(z,Z,u) = u+ O(2), we have v = w + O( ) = 0O(2) and
u? = u(w + 0(2)) = uvw + O3) = w? + O(3) = W? + O(3) so that u? = wzg = 4 O3) =

Re(w?) + O(3) = Im(iw?®, O(3)) and that

n—1 n—1 n—1
Im <w — 2 Z brezize — 21 Z brzpw — icw2> = Z a262 + O(3),

k=1 k=1 k=1

Then we define a local holomorphic coordinate change

2 =z,
{w’ =w—2i Z:;il brezrze — 21 22;11 brzpw — ciw?,
In the (2/,w') coordinates, M can be expressed as the graph of the following function:

V=Y a0l (W) = AT+ 02, w)[)

where A = (a,7) = A’ is a Hermitian (n—1) x (n — 1) matrix and w" = v’ 4+ 7v'. Write
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where I is a certain non-singular (n — 1) x (n — 1) matrix and A is a diagonal matrix. Then

v = Z/FA(Z/F)t +O0((2, w")).
2" =2T
w’ =w'.
-1

Z i1+ 0((Z", w")?)

Let

We have

where w” = u” +v”. We say that p = 0 is a Levi nondegenerate point of M if A; # 0 for
each j (cf. Example 1.2 B). !

Assume in what follows that M is Levi nondegenerate at 0. Then without loss of gener-

ality, we can assume that
VIN1ZS

where ¢; = —1if j </;ande; =1if j > ¢+ 1. Let

(i (T

n—1 2

€ +O(/(", w")P),
j=1

by

wl// — wl/.

Then in the (2", w") coordinates, M is the graph of the following function:

n—1
"= €l +003).
J=1

"

. Then by changing some order of indices, M is defined by:
v=2fi + O(|(z,w)l?), (1.10)

Still write z for 2" and w for w

where

|2[; == — Z|ZJIQ+ Z |z]’2 (1.11)

j=t+1

'The most simplest real hypersurface is a hyperplane M = {(z,w) € C*~! x C | Im(w) = 0}, but it is
not interesting. We will focus on Levi nondegenerate real hypersurfaces.
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In the above expression and for the rest of this section, when ¢ = 0, we regard the first
term after the equality sign to be zero. Replacing (z,w) by (ze41, - s Zn-1, 21, 2, —w) if
necessary, we can assume that ¢ < %l The integer ¢ (sometimes the pair (/,n —1 —¥¢)) is
called the signature of M at 0, which is a holomorphic invariant.

Therefore, among all Levi nondegenerate real hypersurfaces in C", the nondegenerate
hyperquadrics OH} in Example 1.1 B above are the most simplest one.

1.3 Segre family and Segre variety

Let M C C" be a local real analytic hypersurface containing 0. Let U be a small neighbor-
hood of 0 in C*, and M = {z € U | 7(2,Z) = 0}, with dr never vanish, where 7(2,%) is a
real analytic function defined on U.

Let M = {(z,¢) € U x Conj(U) | r(z,() = 0} be Segre family of M — the complexi-
fication of M——which is also complex manifold of complex dimension 2n — 1 in C* x C",
where Conj(U) = {Z | z € U}. Here we may shrink U if necessary, so that the power series
r(z,¢) is convergent. Sometimes, we denote it as M = {(z,w) € U x U | r(z,W) = 0}

Write r as a local power series near 0:

r(z,Z) = ZTIJZIEJ. (1.12)
1,0 :
Since r is real-valued, we have

r(z,2) =1(2,2) =7(Z,2), Vz (1.13)

which implies
rrJ Im, VI, J (114)

and then

r(z,w) =r(w,z) =T(W, 2). (1.15)

Lemma 2.3 (i) M is independent of the choice of the defining function v of M.

(ii) A function holomorphic on M which vanishes on M also vanishes on any connected
open subset of M which contains a point of M. ;

(i) Let f - U — U’ be a biholomorphic map where U,U" C C™! are open subsets.
Suppose f maps M into another real hypersurface M’ with real analytic defining function

!/

r'. Denote M and M’ be the corresponding Segre families of M and M', respectively.
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Denote F(z,@) := (f(z2), f(W)), called the analytic continuation. Then F(M) C M'. When
f(M) =M, we have F(M) = M'.

Proof (i) If 7’ is another defining function of M, then 7/(2,%2) = s(z,%)r(2,%), where s is
some real analytic function on U which never vanish on U, where U is sufficiently small.
(ii) Consider the power series of r(z,%) and 7(z,¢) and use the property of real analytic
functions.
(iii) We have
P (), (@) = s(z D) (2, ) (1.16)
with s # 0 as in the proof of (i). From this (iii) follows. [J

[Example 1.3 A] Let 9H" be the Segre family of OH". Let us consider the automor-
phism group Aut(0H"). It is proved in [HJ07] that if ® is a local holomorphic Segre self-
isomorphism of (9H",0), then ® is of the following form:

F(Z7§) = (S(Z)vT(g) = (51(2)7 sy Sn—l(z)vsn(z)aTl(é)a 1Tn—1(§)7Tn(§))
= (5(2), 52(2), T(€), Tu(6))

where
S AR +aw)U B w
(Z) - 1— Qi(z’,é} + enw7 Sn(z) - 1 . 2i<2/,é> n en’U)’ (117)
Fiey € +enV
e =13 2i(€'.a@) + (en + 2i(¢,a))1’ (1.18)
Ta(§) = A (1.19)

T3 20€,3) + (en + 2020
where U, V' are non-singular (n— 1) x (n — 1) matrices of complex numbers with U - V* = Id,
ad=(ai,...,an-1), €= (€1, ....,en_1) € C""L, X € C*, e, € C, (Z,7) = Z-if for any &, 7 € C*L.
Also, F'is uniquely determined by the data \, @, €, e,, U. O

Let M C C" be a local smooth real hypersurface such that MNU = {z € U | 7(z,%) = 0}
where r is a defining function. For any w € U, we define its Segre variety with respect to
M by

Quw:={z€U|r(z,w) =0}

[Example 1.3 B] Consider Heisenberg hypersurface M = dH" which is defined by

n—1

_ w—w
r(z,2) = 5 _5_ |22
i=1
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Let p = (29, wp) € OH". Then the Segre variety

1

: J— n—1
Q,= {(z,w) eC!'xC| b ;,wO - sz%: 0}.
j=1

@, is a complex hyperplane, which can be identified with the holomorphic tangent space to
OH™ at p. When p =0, Qo = {(2,0) € C"~! x C}. Locally p determines Q,; conversely, @,
determines p uniquely.

The most important property for @), is its invariance property.

Proposition 3.3 (1) r(z,w) =7(W, z) = r(w, Z).

(2) z€ Qu & w e Q,.

(8) ze M & 2z € Q,.

(4) Q. is invariant under local biholomorphisms, i.e., if f is biholomorphic map such
that f(M) = M', then f(Qu) = Q-

Proof (1) Since r is real, r(z,w) = Y apz/w’ = Y ajz'w’, where a;; = @y, VI, J.
Then 7(w,2) = Z@z‘]) = Zg_ﬂz‘lﬁ = Zauzlw and r(w,z) = ZauwI? =
Scarwlz! =Y ayzlwl =3 apglw’.

(2) We apply (1) to see z € Q, © (2, W) =0 =7(w,Zz) & w € Q..
B)zeMer(z,z)=02€Q,.

(4) Write M = {z | 7(2,2) = 0}, M' = {2/ | P(2/,2") = 0}, 2’ = f(2) and v’ = f(w).
Assume that r = f o7’ is a defining function of M. Then Qrw) = {7 | (7, f(w)) =0} =
{f(2) | 7'(f(2), f(w)) = 0} = f({z | r(2,w) = O}) = f(Qu). O

1.4 CR manifolds

Foundation of CR geometry CR geometry originated from a work by Poincaré in 1907
below. N. Tanaka [T62] extended this result to high dimensional case.

Theorem 1.4.1 (Poincaré [P07]) Any non-constant holomorphic map f : U — V satisfying
f(UNOB?) C VNIB? is a map in Aut(OB?), where U,V are open subsets of C2.
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Proof:(Sketch)  Assume the local map f is biholomorphic, otherwise shrinking U. Since
f(Qu) C Qs where @, is the Segre variety of B", f maps hyperplanes into hyperplanes.
By the fundamental theorem of classical projective geometry, f must be projective linear
transformation between CP™. Therefore f must be linear fractional. [

Poincaré-Tanaka theorem could be regarded as a CR analogue of the following classical
Liouville’s Conformality Theorem. In the Euclidean space E" with n > 3, the only conformal
mappings are inversions, similarity transformations, and congruence transformations. More
precisely, let U, V be open subsets in R™ with n > 3, equipped with the flat metric w, and
f:U — V asmooth map. Then f is conformal (i.e., if f*(w) = e%w for some continuous
function w) if and only if f is a Mobius transformation: A composition of the following type
of transformations: (i) translations, (ii) rotations, (iii) scalings and inversions.

By E. Cartan [Ca32]-Chern-Moser[CM74]’s work, complete invariants for local Levi non-
degenerate real hypersurfaces are constructed.

These two pieces of work laid down the foundation of CR geometry.

CR manifolds
[Example 1.4 A] Let M be a smooth real hypersurface in C*. For any p € M, we define
a complex vector space
Vp :=CT,M N Tz?’l(C".

The complex dimension dim¢ V), = n — 1 for any point p € M. Then V = UpepV, defines a
subbundle of CT'M satisfying [V,V] C V and VNV = {0} where V =: CTM NT*°.

Such M is called a CR manifold in C* with CR dimension n — 1. The bundle V is called
a CR structure (bundle) on the manifold M. The complex dimension dim¢ V,, independent
of p, is called the CR dimension. A section of V is called a CR vector field over M.

Let us find a basis of CR vectors fields over M as follows.

Recall a real hypersurface M in R™ defined by p(x) = 0. Let v: [0,1] = M , t — ~(t) =
(m(2), ..., 7 (t)), be any curve insider M. Then p( (t)) =0,Vt e [O 1]. By the chain rule,

P a%ﬂd;’ =0, Vt € [0,1]. Then the vector (551, . B—BT& T(M), a normal vector. Let

L= Z;’:l JE' Then 377, jBQI% =0iff (by,...,b,) L (5‘?—& a—a&) iff L is a tangent vector
of M.

Now consider a real hypersurface M in C defined by p(2,Z) = 0. We regard Cr =R
and (z,%) as a basis of vectors of R*" over the field R. Let L = Y7, b; 82 + > ik azk'

Then L is a tangent vector of M if and only if

n

9 _
Zb]azj +; Yoz Zk
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Consequently, for a (1,0)-vector Ly = Z?zl bJ'é%? it is a tangent vector of M if and only if

For a (0, 1)-vector Ly =Y ;_, Ck5%7 it is a tangent vector of M if and only if

dp
;"“az—k =0. (1.20)

Let M locally be defined by p = v — ¢(z,%,u) = 0 near 0 where (z,w) is holomorphic
coordinates of C" and w = u + iv. Define

0 . b5 0

.= — — -
Tz tige 0w

1<j<n (1.21)

where we denote ¢z = % and ¢, = % In fact, as we did in (1.20), we just need to verify
that L;(p) = 0 where p = %% — ¢(z,%, “32). Then

— (9 ¢z 0 \[(w-—w _w+W
L](p)—(gfj—Qzl-}—quu%)( 2% —¢(Z7Z? 2 ))

= ¢ — 2i i3 (—i %%):0.

Trio\ 2
{Li,...,L,_1} form a basis for the CR bundle V. [

A CR manifold is a differentiable manifold together with a geometric structure modeled
on that of a real hypersurface in C". More precisely, a CR manifold is a differentiable
manifold M together with a subbundle V of the complexified tangent bundle CTM = TM&C
such that

W,V CV, and VNV = {0}.

The bundle V is called a CR structure on the manifold M. V @V is called the complex
tangent bundle of M. The complex dimension dim¢ V,, independent of p, is called the CR
dimension. A section of V is called a CR vector field over M. A C! - smooth function f
is called a CR function if it locally annihilated by any CR vector field. A CR mapping is a
smooth mapping F between CR manifolds (M, Vy) and (N, Vy) such that df (V) C (Vn).
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[Example 1.4 B] Let M = dH" C C" be the Heisenberg hypersurface. We can take a
defining function

p2) = Im(w) = |27 = 22T 3|

of OH". From Example 1.4 A, ¢ = |2|? so that ¢z = z;j and ¢, = 0, and that

— 0
Li=——2i 1<ji<n-1
i 02 s j<n
be a basis of V = CT*(9H"), and
0 0
Li=—+2iz;—, 1<j<n-1
j 8zj+ zz]aw, J<n

be a basis of V = CT°(6H").
Also, from Example 1.4 A, the following vector field
2.0
ow Ow
is a tangent vector field of M. Such T is a real vector, i.e., T = T. T is called a Reeb vector

field. The vector fields {L;, Lj, T}1<j<n—1 form a basis of the tangent vector bundle T'(M).
O

T =

[Example 1.4 C] Let M be a smooth real submanifold in C" of real codimension d. If
d =1, it is the hypersurface case (see Example 1.4 A). Let us consider d > 1. Then for any
point p € M, there is an open subset U of C" such that

MNU={zeU|pi(z,%)=0,..,pa(2,Z) = 0}

where p = (p1, ..., pa) is a real-valued smooth function defined on U such that dp,(2), ...,
dpa(z) are linearly independent Vz € U. 2
We define a complex vector space

V, == CT,M N T'C",

*To apply the Implicit Function Theorem, one needs the condition “ dp;(z), ..., dpq(z) are linearly
independent”, i.e., dp1(2) A ... Adpa(z) # 0, Vz. Notice

dpr Ao Ndpg #0 < but & Ipr A... NOpg #0

If Op1 A ... A Opq # 0 holds, we say that M is generic.
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When d = 1, the complex dimension dim¢ V, = n — 1 is independent of p € M. However,
whend > 1, dlmc V, may dependonp € M. Let us put a condition that dim¢ V, = constant.
Then V = UV, defines a subbundle of CT'M satisfying [V,V] C V and VN Vy = {0}.
Then M is a CR manifold in C* with CR dimension dim¢ V,. [

Remarks:

1. A CR manifold defined in Example 1.4 A or 1.4 C is called an embedded CR manifold,
while a CR manifold (without mention of C") is called an abstract CR manifold.

2. For an abstract CR manifold M, when the CR dimension = n — 1, or codimension 1,
M is called a CR manifold of hypersurface type.

3. For any CR manifold, the complex tangent bundle V & V is a subbundle of complex
codimensional d in CT M.

4. For a CR manifold M C C" as in Example 1.4 A, its CR dimension can be calculated
by the following formula:

) (1.22)
J 1<j<n,1<k<d

=J T v

dim¢ V, = n — ranke (%(p,ﬁ)

In particular, by the formula above, for a real hypersurface M = {p(z,%) = 0}, its CR
dimension

dim¢ V, = n — rankc (g—;@,@) =n-—1
1<j<n

J

always holds.

[Example 1.4 D]  Let M be a complex manifold. Let V = T%'M be a subbundle of
CTM. Then the CR dimension = n, V +V = CTM and

L. Y,Vjcv
2. VNV = {0}

hold so that M is a CR manifold with CR dimension n. f is a CR function < T'(f) = 0 for
any CR vector filed T' & g_ﬁ:-_ =0Vj & f is a holomorphic function. [
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[Example 1.4 E] A CR manifold M with CR dimension 0 is called totally real. For
example, M =R x R C C%. TIts defining functions cane taken as

_ Az I
pPL=Y = 5 P2 =Y2 = %
Then inlﬂ = —%, Q%l =0, 0—‘2}% =0, %_% = —% so that its CR dimension can be calculated
by
-1 9
dimCVp:Z—mnkc( OQi _L> =2-2=0.
2

By the definition, any C* function over M is CR function.

Contact form and Reeb vector field A real nonvanishing 1-form 6 over M is called a
contact form if 6 A (d§)™ # 0. Let M be as above given by a defining function . Then the
1-form 6 = i0r is a contact form of M.

Associated with a contact form 6 one has the Reeb vector field Ry, defined by the equa-
tions: (i) df(Ry,-) =0, (ii) 6(Re) = 1. As a skew-symmetric form of maximal rank 2n, the
form df|z,, has a 1- dimensional kernel for each p € M?"*1. Hence equation (i) defines a
unique vector field By on M. The unique real vector field is defined by the normalization
condition (ii).

[Example 1.4 F] Let M = 9H" C C" be the Heisenberg hypersurface with the defining

function p(2) = —Im(w) + |2|* = -2 + 2;:11 |z;]%. We can take a contact form 6 to be 3

n—1

1
j=1

3The defining function p can have two choices with + signs, and we chose it so that H* = {p < 0}. Also
contact form 6 can have two choices with & signs, and we choose it so that df = ih «B a2 A dz# where (hop)
is positive definite.
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1.5 Levi forms

Levi form For a CR manifold (M, V) and a point p € M, its Levi form at p is a map (cf.
[Bog91]) _ _
hp: Vo — {TP(M)l ®C}H (V@ V)
vp 5mp{[v, 7]}
where v is any vector filed in VY that equals v, at p, and 7, : T,(M)®C — {T,(M)®C}/(V®
V) is the natural projection. The definition of h,, is independent of choice of v.

If M is an embedded CR manifold, we can take V = TH%(M) and identify the quotient
space {T,(M) ® C}/(V, ® V,) with X, the complexified totall real part of the tangent
bundle.

hy: H(M) —  Xp(M)
Up = %Wp{[vﬁ]}
It also regard the Levi form of an embedded CR manifold M C C" as

byt HYO(M) —  Ny(M)
v g7p(J[00]))
where v is any H'(M)-vector field extension of v,, Np(M) is the normal space of M at p,
J is the complex structure map for T,(C"), and 7, : T,(C") — N,(M) is the orthogonal
projection map.
Let M = {p = 0} be a smooth real hypersurface. Let p € M and, by scaling, |7 p(p)| = 1
which is a unit base for N,(M). Then the Levi form is given by

7 _ 8*p(p) v Lo(
hy(W) = — J;acjaﬁw’w’“w YW = Zwk eH (M). (1.23)

In this case, M is called strictly pseudoconvez at p if the Levi form at p is either positive
definite or negative definite.

Levi form in terms of a contact form We could define Levi form in terms of a contact
form 6.
Fixing a contact form 6, for (M, 6), we define the Levi form

ho(v, w) == —df(v, @) = O([v,@]), Yv,weVSV. (1.24)
Here we used the Cartan formula

(do,v AW) = v(0, W) —w(h,v) — (b, [v,)).
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and the fact that (§,7) = 0,vT € V @&V so that (§,w) = (§,v) = 0. The Levi form
of M can be regarded as a Hermitian 2-form, or a metric, on V := T'9M defined by
ho : TYOM @ TY'M — C. (M, 0) is said to be Levi nondegenerate at p if hy(v,, w,) = 0 for
all w, implies v, = 0. (M, ) is said to be Levi nondegenerate if hy is Levi nondegenerate
at every point of M. (M, ) is said to be strongly pseudoconvez if hy is positive definite (or
pseudoconver in case hy is positive semidefinite).

[Example 1.5] Let M C C" be a smooth real analytic hypersurface. Locally we consider
MNU={z€U|p(z,%Z) =0} where U is an open subset of C".
We choose a contact form 6 to be

0 = —idp
so that from (1.24) we obtain hy(v,w) = —(df,v A W), i.e
hg = —df = —id0p = i00p.

In particular, if M = 9H" and p = —Im(w) + |2|2, we find

n n—1
%) ia(%d@-{-szdz_j) = iZdzj A dz;
=1 j=1

Then (0H™, §) is strongly pseudoconvex.

138

1.6 Holomorphic extension of CR functions

Theorem 1.6.1 (Bochner’s Extension Theorem, 1943 [B43]) Let Q C C" be a bounded
open subset, n > 1, with C* boundary M := 0Q and suppose that C* — Q is connected. If
f € C®°(M) is a CR function, there is a unique function F € C®(Q) such that F|y = f
and F' is holomorphic on Q.

Bochner’s Extension Theorem is global. The first local version was proved by Lewy in
1956 (cf. [Bog91], p.198).

Let M = {z € C" | p(z) = 0} be a hypersurface where p is a C*-smooth defining function
with dp # 0 on M with 2 < k < oo. If p is scaled so that | 7 (p)p| = 1, Vp € M. The Levi
form of M at p is the map

(5 Polp) ) 0 o
4 ( ];acjack)w’w’“ v olp), VW = ZwJaCJGH (M).




1.6. HOLOMORPHIC EXTENSION OF CR FUNCTIONS 25

When we speak of the eigenvalues of the Levi form of M at p, we are referring to the ones

of the matrix (a?i:a')‘ Let Qt = {p > 0} and Q™ = {p < 0}.

Theorem 1.6.2 (Lewy extension theorem, [Bog91], p,198-199) Let M C C" be a C*-smooth
real hypersurface with 3 <k < oo andn > 2. Let p € M be a point.

1. If the Levi form of M at p has at least one positive eigenvalue, then for each open
set w in M with p € w, there is an open set U in C" with p € U such that for each
C'-smooth CR function f on w, there is a unique function F' which is holomorphic on
UNQF and continuous on U NQF such that Flyay = f.

2. If the Levi form of M at p has at least one negative eigenvalue, then the conclusion
above holds with 2t replaced by Q.

3. If the Levi form of M at p has eigenvalues of opposite sign, then for each open set w in
M with p € w, there is an open set U in C* with p € U such that for each C'-smooth
CR function f on w, there is a unique function F which is holomorphic on U such
that F|Um]w = f

To illustrate the extension problem, we prove the following result.

Theorem 1.6.3 Let M C C™ be a real analytic hypersurface, p € M and f a CR function
in a neighborhood of p of M. Then the following two statements are equivalent:

(1) f extends to a holomorphic function on a neighborhood of p in Crtl,

(2) f is real analytic in a neighborhood of p in M.

Proof:  Locally we assume that M is given by the equation
v=¢(z2,Z,u)
where z = (21, ..., 2), W = u + 1v, ¢ is real analytic with
¢(0) = 0,d¢(0) = 0.
We know that the map
(2,Z,u) = (z,w) = (z,u+1¢(2,Z,u)) (1.25)

is a parametrization of M with parameters (z,%,u) € C" x C" x R.
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From Example 1.4 A, we know that a local basis of CR vector fields is given by

0 w0
oz 1+i¢, 0w’

1<j<n, (1.26)

where we denote ¢ = %’; and ¢, = %'
Now we define

F(z,w) = f(2,%,()
where ¢ satisfies ( + i¢(2,%,{) = w. Hence ¢ = ((z,Z,w) is uniquely determined by the

equation with Implicit function theorem. 4 Also, by taking differentiation on the both sides
of the equation ¢ +i¢(z,z, () = w, we obtain

¢ . L 0C
6z_j+z¢z_j+z¢<%j =0. (1.27)

Also, we see F|y = f because F(z,u+ i¢(z,%Z,u)) = f(2,Z,u) for any (z,w) € M.
To complete the proof, is suffices to prove that F is a holomorphic function.

Since ¢ = ((2,Z,w) is real analytic function without @ terms, F is holomorphic in w.

Then it is sufficient to prove that F' is holomorphic for each z;, 1 < j < n.
In fact, for any 7,

oF _0f oroc

55 05 T aCo5
of iz Of
T (woan)
Lif  (by the formula of L; above)
0.  (because f is a CR function)

Il

Il

The proof is complete. [

Let F' = (Fy,..,F,) : M — N be a real analytic CR map between real analytic hy-
persurfaces M, N C C"*!. Since each F; is CR function, by Theorem above, F extends
holomorphically on a neighborhood of M.

“In general ¢ may not be real-valued. But when w € M, then ¢ = Re(w) is real-valued.
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1.7 Hopf Lemma

Lemma 1.7.1 (Hopf lemma) Let Q@ C C" be a bounded domain with C* boundary, a € Q,
and v(a) the inward normal to O at a. Then for any subharmonic function u on ) with
u < 0 on Q must satisfy
— u(z)
lim——— < —¢
|z —al

for some constant ¢ > 0, where the limit superior is as z — a along v(a).

Proof:  Since 09 is of C? smoothness, we can take a ball Bg(zy) with center zy and radius
R in C™ such that it is tangent to 92 at a and Bg(zp) C Q. Such 2, can be chosen in a fixed
compact subset of 2.

For any 0 < r < R, define a function on Bg(29) — By (20):

—Az—20)% _ e—)\Rr‘).

9(z)=e
When )\ is sufficiently large compared to r, this function ¢ is a subharmonic function. In fact,
a;?;zjg = aizj <—)\(Ej —Zoj)e‘Mz‘zOP) = )\(/\lzj—,zoj|2—l)e"“z'zol2 > 0 holds Bg(zy)— B, (20)

as A >> 0.

Clearly g = 0 holds for |z — 29| = R.

Since u < 0 on £, by taking sufficiently small € > 0, u + g < 0 on the boundary of
Br(z0) — B.(2). Thus we can apply the maximum principle to conclude u(z) < —eg(z),
ie., 1—9‘% < —¢, for r < |z — 29| < R. It remains to show that

u(z)

|2 |

u
< constant - —=

as z — a along the vector v(a). Since u < 0, it is enough to prove g(z) < constant - |z — al.
This can be done by Taylor series expansion of g. [

Corollary 1.7.2 Let Q, a and u be as above. If u <0 on 02 and ii—rﬁz_,a% =0, where z
goes to a along the normal vector direction, then u = 0.

Proof  Suppose u Z 0, by applying the maximun principle, 4 < 0 holds on Q. By Hopf
lemma above, lim:{z—g < —& < 0, which is a contradiction. O

As application, we have the following result.
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Theorem 1.7.3 (Burns-Krantz [BK 98]) Let g(z) : H' — H' be a holomorphic function
such that g(w) = w + o(|w[?) as w — 0. Then g(w) = w.

Proof:  Consider the harmmonic function h(w) := I m(% g(w ) defined on H!. Clearly

h(w) = o(|w|) as w — 0.
We claim
li—mw——we(R*'Uoo)h(w) > 0.

In fact, when z € R with = # 0, we write g(w) = U(w) + iV (w) and w = u + tv. Then

h(w) = Im | — L Vv Y
N ut+iv U+iV )  u2+02  U2+4+V2

converges to 0 + - e >0, a8 w — r € R with z # 0.
When = = 0, we have

(1 - o) = 1B < gDy — o, as o

w g(w) wg(w) wg(w)
When z = oo, h(w )—Im<$—;(17)>=—#W+U—§%—>O+[f2—"i‘%>0asw—>oo

Claim is proved.

Take a linear fractional biholomorphic map f : B! — H!. By the maximun principle
and the above Claim, the harmonic (hence subharmonic) function —ho f < 0 on B. By
Corollary 1.7.2; since limwﬁr—"%’f)(—w) = 0 by above calculation, one concludes —ho f =0

so that h =0, i.e. ————O Hence g(w) =w. O

Y w g(w)

1.8 Three classes of CR submanifolds

{CR submanifolds in hyperquadratic} - {Embeddable CR manifolds} - { CR ma,nifolds}

It has long been known that generic 3-dimensional CR manifolds are locally not embed-
dable, and that all strictly pseudoconvex CR manifolds of dimension 7 and higher are locally
embeddable, but the 5- dimensional strictly pseudoconvex case remains open.

Forstneri¢ [Fo86b] and Faran [Fa88] proved the existence of real analytic strictly pseudo-
convex hypersurfaces M?"*! C C"*! which do not admit any germ of holomorphic mapping
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taking M into sphere OB *! for any N. We may compare this with the Cartan-Janet the-
orem which asserted that for any analytic Riemannian manifold (M",g), there exist local
isometric embeddings of M™ into Euclidean space EV as N is sufficiently large.

On the other hand, by Webster [W78b], any Levy nondegenerate real-algebraic hyper-
surface is holomorphically embeddable into a nondegenerate hyperquadric OH}.

From above, it leads us to concentrate on a subclass of the set of all CR manifolds:
{CR submanifolds in a sphere OB '}

S.-Y. Kim and J.-W. Oh [KOO06] gave a necessary and sufficient condition for local em-
beddability into a sphere OBY*! of a generic strictly pseudoconvex pseudohermitian CR
manifold (M?"*1 6) in terms of its Chern-Moser curvature tensors and their derivatives.

Zaitsev [Za08] constructed explicit examples for the Forstneri¢c and Faran phenomenon
above.

Ebenfelt, Huang and Zaitsev [EHZ04] proved rigidity of CR embeddings of general M*"+!
into spheres with CR co-dimension < %, which generalizes a result of Webster that was for
the case of co-dimension 1 [W79]. Here by rigidity, we mean that for any two smooth CR
immersions f and f : M2"t! — gB"4+! with d < 2, there exists ¢ € Aut(dB"'**) such

that f = ¢o f.

Very recently, Ji and Yuan [JY09] proved that if a CR submanifold M with hypersurface
type of OB and with zero CR second fundamental form, then M is the image of a sphere
by a linear map.

The most basic and non-trivial example of CR submanifolds in a sphere OB is the image
M = F(0B") where
F:0B" — 0B"
is a proper holomorphic map that is C?-smooth up to the closed ball B". Here the C%-smooth
condition allows the map F restricted on the sphere to become a CR mapping

F : 0B" — OBV,
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1.9 Proper Holomorphic Maps Between Balls

Recall that a continuous map f : X — Y where X and Y are topological spaces is called
proper if for any compact subset K C Y, f~1(K) is compact in X.

Proposition 1.9.1 Let D,D’ C C" be bounded domains and f : D — D' a holomorphic
map. Then f is proper if and only if for any sequence z, which converges to a point in 0D,
the image sequence {f(z,)} tends to dD'.

Proof: (=) Suppose that {f(z,)} does not tend to dD’. Then there is a subsequence {z,, }
such that {f(z,,)} is relatively compact in D', which is a contradiction to the properness of
f ' ;

(<=) Suppose there is a compact subset K C D’ such that f~!(K) is not compact in D.
Then there is a sequence {z,} converging to dD but {f(z,)} C K does not tend to 0D’
0.

From the last section, it leads us to concentrate on a subclass of the set of CR subman-
ifolds in a sphere:

Prop(B",B") := {proper holomorphic map F : B" — BV},

Prop(B",BY) := Prop(B",BY) N C*(B"),
Rat(B",BY) := Prop(B",B") N {rational maps}.
Poly(B",B") := Prop(B",B") N {polynomial maps}.

We say that F,G € Prop(B",B") are equivalent, denoted as F = G, if there are au-
tomorphisms ¢ € Aut(B") and 7 € Auto(B") such that F = 70 G o g, i.e., the following
diagram commutes

]B"——g%BN
Te O |71

B* I, BV,

Theorem 1.9.2 (H. Alezander [A77]) Any proper holomorphic map from B™ onto B" must
be an automorphism when n > 2.

The condition that n > 2 is crucial. In fact, when n = 1, we have
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Proposition 1.9.3

m
P?"Op(Bl,]Bl)Z{F(Z):ewa ‘;]z’ with Iaj|<l}.
=t

Proof:  If f is proper, f~'(0) is compact: f~'(0) = Z;VZI m;la;] where a; € B' and

m; € ZT. Let
N —a
_ j
H(l—aJ >

Jj=1

To show: i = constant and 1%[ = 1, which implies f = €“g.

In fact, both 5 and % are meromorphic and have only removable singularities. Then
both
f g

=, = are holomorphic in B!

We apply Proposition 1.9.1 to know that for any € > 0, there is 4 > 0 such that

f(z)
—_—) VY 1-46.
—eslypl s V>
By applying the maximum principle,
1
1—e§|f—(z—)\g Y]zl <14
9(2)

Hence *5 = constant. By letting e — 0, \ggg\ =1.0

Bochner and Martin [BM48] found a necessary and sufficient condition for mappings
in Prop(B",BY) in terms of its power series centered at the origin. More precisely, if
F = (fi,..., fn) is written as power series

fi(z) = Zaﬁf]) A g J=1h

then F maps OB* into OB" if and only if

Zaf,’%)l mkagfl) mp =0, for (my —n)? + ..+ (mg —ng)? >0,
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and

2 (44!

= An s

o)
n1! s nk!

ny-ony,

j=1

where Ay are suitable nonnegative numbers.

It was discovered in the early 80’s (cf. [Fo93][H99]) that Prop(B", BV) is much larger than
Propy(B",BY) in general. In fact, there are some mappings F € Prop(B™,B"™) N C°(B")
but they are neither in Prop,(B”, B"*!) nor in Rat(B",B"+!).

For any F' € Propy(B™™',BV*!), it induces a C? smooth CR map from OB"*! into
8]BN+1.

Webster was the first to investigate the geometric structure of proper holomorphic maps
between balls in complex spaces of different dimensions. In 1979, he showed [W79] that
a proper holomorphic map F' € Props(B",B"*!) with n > 2 is indeed a linear fractional
embedding.

Forstneri¢ shown [Fo86] that
PTOpN——n+1(Bna IBN) = Ra’t(Bn7 BN)
Moreover, such F* has no poles on dB™ by Cima-Suffridge [CS90].

J.P. D’Angelo did lots of work on polynomial and monomial mappings in Prop,(B",BY)
[DA88|[DA92][DA93], in particular he found the structure of proper holomorphic polynomial
mappings between balls.



Chapter 2

Earlier Result: The First GGap
Theorem

2.1 The First Gap Theorem

Theorem 2.1.1 (The First Gap Theorem) For N < 2n—1, any map F € Prop,(B", BY)
is equivalent to the linear map (z,0,w).

0 1 2 n 2n -1

2n

This theorem is a result by many mathematicians over 20 years.

In 1979, S. Webster proved [W79] that any mapping in Props(B", B"*!) with n > 3 must
be equivalent to a linear map (z,0,w).

33
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In 1982, J. Faran [Fa82] proved that there are exactly four maps in Props(B?, B?), up to
equivalence class.

Next year, A. Cima and T.J. Suffridge [CS83] improved the above results of Webster
and Faran by replacing “Props” with “Prop,”. In the same paper [CS83], A. Cima and T.
J. Suffridge conjectured that any mapping in Propy(B",B") with n > 3 and N < 2n.— 2
should be equivalent to the linear map (z,0,w).

In 1986, Faran [Fa86] proved the Cima-Suffridge’s conjecture under the assumptlon that
F is holomorphic in a neighborhood of B". :

In the same year, F. Forstneri¢ [Fo86] proved Propy_n.1(B",BY) = Rat(B",B") and
later Cima and Suffridge [CS90] shown that any mapping in Rat(B",BY) must be holo-
morphic on the boundary. As a consequence, the First Gap Theorem is proved for any
F € Propy_ns1(B",BY) with N < 2n — 1.

In 1999 X. Huang [Hu99] proved that any mapping in Prop,(B", BY) with N < 2n —2
is equivalent to the linear map (z,0,w).

Outline of the Proof for the First Gap Theorem:
Step 1. if N < 2n — 1, it implies that its geometric rank ko = 0

e (analytic proof) Use Uniqueness theorem (see Corollary 2.11.1 and Theorem 2.11.2
below).

o (geometric proof) Use the formula

(2n — kg — 1)Ko
2

N>n+

for any F' € Prop,(B",BY) with geometric rank kg. In fact, if N < 2n — 1, the above
inequality forces kg = 0.

Step 2. Show: kg =0 <= F is a linear fractional map.

e (analytic proof) The first order PDE argument (see Theorem 2.10.1 below).

o (geometric proof) ko = 0 <= the CR second fundamental form II); =0 <= F is a
linear fractional map. [J
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We need to explain the following:

1. What is the geometric rank ko of a map F' ? (see (2.74) below, or [HJ01])
2. Why N >n+ @—nﬂg_& ? (see Corollary 4.2.2, or [HO3])
3. Why ky if and only if ITp; = 0 ? (see Corollary 5.7.3, [JY09][HJ09])

4. Why II; = 0 if and only if F is a linear fractional map (see Theorem 5.2.1, [JY09]).

2.2 Passing from 0B" to 0H"

Recall the Heisenberg hypersurface
OH" := {(z,w) € C" ! x C: Im(w) = |2]*}

and the Cayley transformation

2 141
On : H" — Bn7 pn(Z,'lU) _ ( z +ZT,U)

1—dw’ 1—15w

We can define the space Prop(H", HY), Propy(H",H") and Rat(H", HN).

We can identify a map F' € Propy(B", BY) or Rat(B",B") with py' o F o p, in the space
Propy(H", HY) or Rat(H",H"), respectively.

We say that F' and G € Prop(H",HY) are equivalent if there are automorphisms o €
Aut(H") and 7 € Aut(H") such that F =70Goo.

B" L BN
Tpn O Lpy

-1
H» py oFopn NN
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2.3 Differential Operators on OH"

The vector fields {L1, ..., L,_1 }, where L; := 2iZ;-2-4-2- form a global basis for the complex
7 Jow ' Oz

tangent bundle CT"9H" over JH", and their conjugates {Ly, ..., L,_1}, called CR vector
fields, form a global basis for the complex tangent bundle CT? 18]HI" over OH". Recall that
for z; = z; + 1y; and for w = u + v, we have

& 1,9 .0

2 L2 2 9
825]'-2 8xj 8’y] ’ 82]_2

and
0 1,0

) 1
50 =25 "5 7~ 2030 Tigy)-

There is a real vector field which is transversal to CT(:O9H™ + CTO:D HH"

0 0 0 0
= ORe(w) ~0u 0w 5w (2.1)

which is the Reeb vector ﬁeld
The vector fields {L1, ..., L,_1, Ly, ..., Ly_1, T} forms a basis of CTOH,,.
Lemma 2.3.1 (i) TL; = L;T, TL; = L;T, and L;Ly = LyL; for all1 < j,k <n —1.

(it) For any continuous CR function h over an open subset My C OH", T h is a CR
distribution over My. For any 1 < j,k <n —1, Ly(Ljh) = —[L;, Lg]h = 2i6;T h.

(i) Let h be a C? CR function over OH" and x a C' function over OH". Then for any
integer k > 0, we have

~

Li(Li(h)x) = 4iLi(T (h))x + LE(h) Li(x),

Li(Le(T(h))x) = 2T%(h)x + Le(T(h)) Lx(x)
in the sense of distribution.
(i) For any k,l,j and any C? CR function h, we have

Ly LiLjh = 2i6, T L;h + 2364, T Lyh
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in the sense of distribution. In particular, we have

0, when k #1 and k # j;

2T(Lih), when k= j+#1;
2(T(L;jh), when k=1%# j;
4iT(Lgh), when k=j=1.

oL Lih =

Proof of Lemma 2.3.1 : (i) For any differentiable function f(z,z,w,w),

o 9. 0f of ’f _of of . 0%
T(Lif) = Gy + 55 (55, + 2550) = puns, T ¥55u2 * G205, + 2% putn

) o.0f of  Of . _of  Pf . 0
LT = (o 4 25,) G+ 35) = Gwos, T 25 gur * Fwos, T 2 bwow

Then TL; = L;T and hence TL; = L;T. Similarly, L;Ly = LyL;, V1 < jk <n—1.

(ii) The first statement follows from (i): Th is CR because L;Th = TL;h = 0. The
second statement follows from the following calculation:

(L Ll = (55 ;T2 ) (5% — 2imgs) = (5% — 2ag%) (5% + 2% ;)
= —Qidjka_ 216]k3 = —225k]T

(iii) It is sufficient to prove (iii) for any holomorphic polynomial h by a lemma below.
By (ii), we know that Th is CR and that LyLih = 2iTh. This follows the second identity.
To prove the first identity, it is sufficient to prove

TiL2h = 4L, Th, ¥ C? CR function h. (2.2)
In fact, LyL?h equals to

([T, L) + LiLy) Lih = 28T Lyh + Li([Ly, Lt) + LiLg)h = 20T Lyh + 2Ly Th + 0 = 4iT Lih.

(iv) Tt is sufficient to prove (iv) for any holomorphic polynomial h as above.
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Consider

TuLeLih = ((Tr, L) + LLy) L;h
= 200 TLjh + Ly(LxLj)h = 2i04¢TLjh + Ly([Lk, L;] + L; L) h
= 2Z5kgTL]h + Le2’l/5kJTh +0= QiékgTLjh + 2Z(5kJTL[h

0, if k5, k ¢,
UTLeh if k=3,j#¢,
ATLh if k=10,
LTLih k=j=".

by using the similar computation. [

Let h be a C*-smooth function and then D; (k) is a C%-smooth function for any differential
operator D; of degree v. Let Dy be another differential operator. In general DyD;(h) does
not make sense. However if Dy D;(h) can be written as D3(h) where Djs is of degree v. Then
DyD;(h) is still a C° function. This fact is presented by a lemma below. As an example,
L;Lh = 2i6;Th. Tt can also been seen in Lemma 2.3.1 (ii) and (iii).

Lemma 2.3.2 Let h be a C*-smooth CR map from a neighborhood of M in 8H, into CV.
Let Di(h) = H(p, D, L*LPT"(h))ja|+|8/+h1<v with H holomorphic in its arqgument where p €
OH,,. Let Dy = L* LA1T™ be a differential operator along M. Suppose that there is a certain

holomorphic function Hy in its argument such that for each polynomial map h* from C" into
CV,

Dyo(Dy(R*)) = Ho(p, B, L*2LPT"2(h*)) a4 8al 4 sl <v

Then the distribution Dy(Dy(h)), acting on C*(M), coincides with the continuous function
Ds(h) == Ho(p, P, L** L%T(h)) ag|+18s |+ s <o-

Proof of Lemma 2.3.2: Tt is an immediate application of the Baouendi-Treves approximation
theorem. Here we outline the proof. There is a sequence of holomorphic polynomial maps
{hm}2_; which converges to h in the C¥-norms over M. Hence D,(h,,) — Di(h) in the
C%norm over M, and Dy(Di(hm)) — Do(Di(h)) in the sense of distribution. By the
assumption, Dy(D;(hy,)) converges also to Ho(p, P, L*LPT"(G))a|+|/+r|<v 1 the C°-norm
over M.
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2.4 Equations Associated with F

Let F = (f,¢,9) = (f,g9) : My N OH" — 9HY be a non-constant C*- smooth CR map
with F(0) = 0, where M, is an open subset of OH". We denote f = (fi,..., fa-1), & =
(¢1,...,dn-n) and f = (f,¢). The basic equation is

Img:f?t = <]?7?>7 V(Z,’LU) € M,

1.e.,
_ n—1 N—n
g — .
22,9 =S UG+ Y0 1657 Yz w) € My with Im(w) = |2, (2.3)
j=1 j=1

By the Lewy Extension Theorem (see Theorem 1.6.2), F' extends holomorphically to a
certain pseudoconvex side of M; denoted.

Let us differentiate (2.3) by L; and T. First we consider the first order differential
~ =
operators: Lyand T, 1 <l <n-—1: % = L,;f - f where we denote by ! the transport, i.e.,

L —t —t ~ F
~2179 =Y Lifj-Fi + Y Ligi- ¢ =Lif - f, V(z,w) € My, (24)
J J
Tg—Tg
2i
We consider the second order differential operators LyL;, TL; and T?, 1<k,l<n-1

= Tf'ﬁ"‘ fﬁt, V(z,w) € M. (2.5)

L’“TL;Q- = L(Lf) - T V(zw) € M. (2.6)
1 = L~ —
gT(ng) =T(Lf)- f +L(f)-Tf, Y(zw) e M (2.7)
Im(T?%g) = 2 Im(iT%f - f1) + 2/TF]2, ¥(z,w) € M. (2.8)
STalig = Telaf - '+ L L', ¥(z,w) € My (29)

In particular, if £ = [, by using L,L, = 2iT, we obtain

Tg=2(Tf, f) +|L;fI*, Y(z,w)€ M,. (2.10)
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Next we consider the third order differential operators L—ijLl, 1<k jlsn-1:

ST (La9) = T, (L) -F + Ly(af) Taf - .11
When k = j and k£ = [, by Lemma 2.3.1(iv), (2.11) becomes
Li(Lf) Taf =0. (2.12)
When k = j =1, by Lemma 2.3.1 (iv), (2.11) becomes
T(Lig) = 2T(Lif) -f +Ly(Luf) T (213)

When k =1 = j, by Lemma 2.3.1 (iv), (2.11) becomes

—t _—t
T(Ljg) = 2T(L;f) -f + Lu(L;f) -Lif - (2.14)
When k£ = j = [, by Lemma 2.3.1(iv) again, we have
—t _—t
2T(Lig) = 4T(Lif) -f + Li(Lif) -Lif . (2.15)
Since F'(0) =0, by (2.4) and (2.6), we obtain
dg 0%g
29 = =0. 2.1
8zj 8Zk821 p 0 ( 6)

25 TheAssociated M ap ' of F

From (2.9), since F(0) = 0, we have
1

5D Ligh=Lif b -Lif b

By Lemma 2.3.1, we have
1— 1.
ZLkL]gIQ = 5’1:2l(5k]Tgl0 = /\5kj

where
A=Tg| > 0. (2.17)
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In fact, by (2.10), Tgp = 2i Tfj b+ [LifFl=ILfF,>0.

Remark Another way to take look at the formula T'g |, = A > 0 is to use Hopf lemma. We
n-1 N
apply the maximum principle to the subharmonic function - Im(g)+  |f; F+
j=1 i
over Q, we conclude F(Q2) HY. Then we apply Hopf lemma to obtain

-n

1|¢st0

8 / n-1 N-n B 8 ;
STy @t WFreF =gy m
o 0 g-39
ow oW 2

=i

Then we have the orthogonal property:

Lifh ‘Kﬂo = Aji-

Denoting

o () Oh Oy 981 Db

! 62[ 8zl""’ 621 ’le""’ 6zl o’
and

Y ow ow’”™ ow Tow'TT dw O

Then it has orthogonal property:
Tt
Bde s (2.18)
We extend {%, vy EJ‘TI} to a certain orthonormal basis of ¢V~ 1:

%,...,%{,Cl,...,clv_n . (2.19)

Now we define a new map F = (f,,¢,,9 ) = H F where H  Aut(H"), which is
equivalent to F, defined by

1, —t —t 1
fl - Xf 'El ) d)k - “%f 'Cky g = Xg (220)
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F™* satisfies some initial conditions at O:

ofr o dg* ag*
F*(0) = A -1 Il = =0, =1. 2.21
=072 =858 05| —0.%| (221)
In fact, for example,
afr . 1~ — 1 = —= 1 —t 1
8;1 lo=Lifflo=Li(5f - Ej)lo= S Luf - By = SBlo- Ej = T = 0.

. of* oy
It is not good enough because we need to take care of the terms a_{f;l , and —5%| 0 We
need further normalization.

Since L;lo = 5=|o and Ty = 2 1o, by taking differential and by the chain rule, we have
J

Y 1o 1 o=t
(1) lOZXka'Et|0=XLk(f)'Ll(f)|o=5l,

(#) o= Bl = 37D Ll

(1) o= 51aF Tl =0

(62) o= S Tl = J=T() T
(#) o= (Bo 207 F )u=0. 25 20)

() o= 5 (r9=277 7 Jlo=1. By 10)

w

Besides, other formulas up to degree 2 are given as follows.

" 1 L — § " 1 ~ =t
(ff) lo =S Lwluf - Lif o, (fz) lo= L T(f) - Lu(f) o,

Zjw

" 1 - —t n 1 - ;
* 2 * 2k
<fj) w2|0 = XT [ Lif lo, (%) lo= 7XLkLlf - Cj'lo,

2K21
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n "
1 ~ — 1 ~
* =—TL.f-C; o, * =—T%*f.C; |o,
<¢J) zkwlo \/X of ! IO <¢]> w2|0 \/X d ! |0

" 1 ' =t
(9*) lo = X (LlLkg — 2L Ly f - f )Io =0, (By(26))
212k

(

" 1 = e
(g*) ' lo = X(TQQ —0T°f-f —2Tf -Tf >|0-

Q

) 1 =\ 2 . o
lo = XLI Tg—2Tf-f | = XLlf -Tf o,
2w

2.6 The Associated Map F** of F

We want to define F** = (f**,g**) = (f*,¢™, ¢") = (f*,¢;*,9**) = G o F*, for some
G € Aut(OHY), such that this normalization F** satisfies the following properties:

8Zj |0 - 6l]7 8’11) |0 - 07 82[ |0 - Oa 81,0 lO - 07 (92;'0 - Oa 8w|0 - 17 (222)

F*(0) =0,
and

829** | _ 829**

920z Ow?

This can be done by defining (cf. [H99])

lo = 0. (2.23)

(z* — aw*, w*)

* *) A N )

G = i my + (= ey < Wel0H) (2.24)
where
/ TF L] Tf.C'
a = F* = ) —J ) ’ ) - )" > = gy eeey Up— 7ba '7b -n)y
(7))o= (5 N
1 " =
r:= -Re <g*> lo = -;XRe<T2g — 20T f - f) : (2.25)
w? 0
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The the normalization is defined by F** := G o F*.

- _Ji — o (2.26)
T 14 2i(fx, @) + (r —ilal?)g*

¢; — big”
- _ . 2.27
T +2i(f*, @) + (r — ia]?)g* (221)
- 7 . (2.28)
1+ 2i(f*, @) + (r —ila?)g"

It implies (2.22).
To prove (2.23), by taking differential and by the chain rule, we continue to calculate

( f;*) lo = ( f;> lo — 2id}@ — 2i8}ay (2.29)

2Kzl zkzl

1 ~ T 215] ot 215 Tt
= LLif - Lif lo— SETF - Liftlo — 52T - Lifio.

"

f) |o—(f;) |o~al(g*) Io—5’[21(f) o-a+ (r —ifa)|Jo

f;*) o—a (g ) lo— 8filal? + rllo

1 Zjw o
= 3L e sz o — (Tf Lif > (Ljf'Tf >|o

~ =t
e, - ﬂRe(ng 2iT2f-f)lo.

We can say more about this important formula which will be used to define geometric
rank ko. Applying T? to the basic equation Im(g) = lﬂQ, we get 0 = 2i[m(iT2f- ft) +
20T f|> —i Im(T?g) on OH" by (2.8), i.e.,

~ 1 ~ =t
ITf? = 5Im <T2g — 2%T2f - f > (2.30)

Combining this to the above, we get
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" - — ) . —t " —=t
( f*) o= L, TF Lif lo %(Tf L7 ) (Ljf 7] >|0

2 o (2.31)
—%(T?g —%T*f - | )10.

( ’**> ;'0 - (f’*)”zlo __al_(g*>:,~zlo (2.32)

~ =t ~ =t ~ = ~
AT LT - % (Tf L7 ) (129 - 2mF T 207 )l

" " " o
$eok — * —b — * ' =_1_LL ~.‘_t .
( ! >ijk|0 <¢l>mk|0 1(97)%2 = (sz)zﬂk‘o =LiLif-Ci'lo (2.33)
Here we used the fact that (g%),,, o = 0.

n n"
( Z“) lo= (925?) lo = bu(g7)%, wlo
zZjw zZjw

ok T o= ~ =
= %TLjf'CltIO“ﬁ TF.- T Lj<Tg—-2in.f>10 (2.34)

~ — ) ~ ~ =t
= &rf - (077 ) (6717 )

() )
w? w2 w2 (235)

~ ~ ~ = ~
= 1T Tlo- (17 o) (17— 21 T - 2T

"
<g**> lO — O,
ZjZk

" n —t — ,\t
(9**> lo= (g*) lo — 2ia; = L ifTflo— —Tf if los

7 zZjw
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14 n
() e ), s
w? w?
1 ' =t =
- 3(r9-2rf. f)b——[ﬁﬂ2 3he(12a— 217 7 ) |
1 27 T 72
= XJm(Tg 2A4T2f - o = X|Tf| |, =0.
This implies (g**):;2|0 = 0. Here we used (2.30). Then (2.23) are proved.

2.7 The Chern-Moser Operator

If F = F** € Propy(0H", 0H"), then we have

f=z+f, g=w+g with f,5,6=0(=w)P). 2L o=29,—0. (230
- y §= g 4, - zZ,w 3 BZlaZkO—(?wQO_ . .
Then we obtain
) n—1 ) N-—n
mw+9) =Y |z + 7+ Y 6,17, ¥(z,w) € OH". (2.37)
=1 j=1

Let M; C OH" be an open subset. For a function f on M, we denote h € 0y;(s) if

h(tz, 2w, tz, t*w
im (tz, t?w, tZ, t*W)

t—0t ts

— 0

uniformly with respect to (z,w) ~ (0/,0) € C™ x C. In other words, we define weighted
degree by (see also (1.8))
degui(2Fuw') = k + 21.

We write F as

m—1 m

fi= Zf}s)vLowt(m—l), §=>_ 9" + 0w qu( +ouw(m—1), 1>2, (2.38)

s=2 s=3

where we denote by A®) the homogeneous polynomial of (z,w) of weighted degree s.
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Substituting these into (2.37), we obtain

Im(w) + Im(3) = > (= + f) (& + ;) + Z(qu(s)(ZWk)
;
|z|2+2<zjf]+f}zy+|f, +Z Zaﬁ‘” (Zcb“)
= |+f*+ me@zr EEORDIIED OIS J(Xol). VIm(w) = [<f*
Here we used the fact a +@ = [m(2ia) for any a € C. Then
Im(@) = Im(2i(z. /) +177 + 3 (3 67)( Zczf“, VIm(w) = |2f*

Then for any [ < s < m, we collect terms in the above equation of weighted degree s to
obtain the following equation:

N-n s—I
Im( (s) _ 27, f(s 1) 2 Z(ﬁ(s P ¢(P) G(s (z,w) c OH" (2.39)

J
j=1 p=l

where G® is weighted homogeneous polynomial of weighted degree s contributed by f (e—1)
and ¢\7), 0 < s — 1. Here we denote ¢® = 0if s < 0. The operator

L(f.g) = Im(g - 2i(Z, f))

is called the Chern-Moser operator.

We notice G = 0 if f©=1) = ¢g(©) =0 for 0 < s — 1. Let us consider the following two
cases.

Case 1: s = 2k We suppose s = 2k < m. If the following additional conditions are
satisfied
fo N =¢@ =0, foro<2k-1, (2.40)

then

Im (g (2, w) — 2i(z, =D (2 w)) Z ¢(k)¢ V(z,w) € M;. (2.41)
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Case 2: s =2k+1  We suppose s = 2k + 1 < m. If the following conditions are satisfied
fe V=909 =0 foro <2k, (2.42)

then
Im(g®+(z,w) = 2i(z, [ (z,w)) = 0, W(z,w) € M. (2:43)

Lemma 2.7.1 Let F = F** € Props(H",H") be as above. Then
(i) O =0, f® = a®(2)w, ¢@(z,w) = ¢D(2), ¢ = g =0,

(i) —2i(aM(2),2) 2> = 1" |61 (2) ]2

Proof:  Consider s = 2 and (2.39). Since both sides of the equality are zero, the equation
(2.39) is trivially true.
Consider s = 3 and m = 3 in the identity (2.43):

Im(g® —2i(z, fP)) =0 on H". (2.44)

We claim
g =0and @ =o. (2.45)
In fact, write f?(z,w) = a®(2) and g®(z,w) = ¢®(2) + ¢ (2)w. Substituting into (2.43),
we have
Im(c®(2) + ¢V (2)w — 2i(z,a?(2))) = 0, VIim(w) = |z)*.
Since w = u + i|z[?, it follows that ¢V)(2) = 0, ¢®(2) = 0 and a®(z) = 0. Hence Claim is
proved.
Consider s =4 and m =4 in (2.41):

N—-n
Im(gW = 2i(z, f@)) = 3" 8P, Vim(w) = |2, (2.46)

Jj=1
We claim
2 2
99=0, ¢ =67(2), O =a (2,

N-n

—2i(aV(2),2) 2 = > 6P (2), (2.47)

Jj=1

where a!)(z) is a certain holomorphic homogeneous polynomial of weighted degree one. In
fact, write
FOz,w) = aV(@w +aP(2), ¢ (z,w) =bP(2)
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and g (z,w) = c®(2) + ¢®(2)w. Here we used %lo = 0. Substituting into (2.41),

N-n
Im(c®(z) + @ (2)w — 2i(z, aV (2))|2]* — 2i(Z, a® 1657 ( D)2, V(z,w) € M.
i=1

Since w = u + i|2|? and z,u are independent variables, we consider u® and u terms to get
three identities:

2

Im(c9(2) + i (2)) 212 + 2(z, WV (2))w — 2i(z,a®)(2))) = n|b(2)( )2,

Im(c?(z) — 2i(z,aV(2)))u = 0,

Then ¢ (z) = 0 and Im(2i(Z,aV(2))) = 0. Thus from the first one, ¢¥)(2) = 0 and
a®(2) = 0 so that the claim is proved. [ .

By Lemma 2.7.1, we obtain:

Theorem 2.7.2 ([H99], Lemma 5.3) Let F € Prop,(H",HY), 2 <n < N with F(0) = 0.
Then there is an automorphism ™* € Auto(HY) such that F** := 7** o F = (f**,¢**, ¢**)
satisfies the following normalization:

f** =z+ %a**(l)(z)w + Owt(3)7 (b** = ¢**(2)(Z) + Owt(2)7 g** =w+ Owt(4)a (248)

(z,a" V()2 = o™ P (2) .

2.8 The Associated Map F, of I

Let N
= (fa ¢’g) = (f’g) = (fla -"afn—l)(bly -“7¢N—n>g)

be a non-constant C? smooth CR map from M; C 0H" into M, C 9HY as above.

For any point p € M, we have an associated CR map F), from a small neighborhood of
0 € OH" to OHY with F,(0) = 0, defined by

F,=1FoFod?, 2.49
P~ 'p P
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peoH” L 5HN 5 F(p)
Top Ly
Fp:=1foFooy
0 € OH" L OHN 30
where o) € Aut(H"), p = (20, wp), given by
op(z,w) = (2 + 20, w + wo + 2i(2, %)), (2.50)

and 7/ € Aut(HY) is given by

TPF(z*,w*) =(z"— f(zo,wo), w* — g(zo, wo) — 2i{z*, f(z0, wo))). (2.51)

Notice that F'(0) may not be 0, but we always have F,(0) = 0. By the similar calculation
of F* and F**, w have the following formulas.

)\( ) = ’L.ﬂQ(p)a for a'HY.j € {1,...,Tl - 1}a

(95)%]0 = Lig(p) — 2iLif(p) - f(p) =0 (because (2.4)),
(9p)lulo = Tg(p) = 20T F(p) - flp) = |L;F(0), 1<j<n-—1,

(fp) o= Lu(0),

A

) o= TL(F)(p),

(fp> o= T2,

(9p)2z lo = LiLrg(p) — 2L, Ly, f(p) ‘%t =0, (By(26))

t

(@)hlo = L (Tg<p) _2uTF(p) - T) ) — %L () TT () .

t

(612l = T29(p) — 2TF(p) - Tp) — 2T F(p) - TH(p) -
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=
Here for the second equality about (g,).

wzy?
TLig= QZTLpf . f +2iL,f - Tf*. Notice that there are two formulas for (9p) o lo-
We define Fy = (f,,g;) given by

=(f,0509,) = (f,l,fbm»gp)

where

1 ~ |
fpl - fP El(p) pk: = —\/—‘——)\—-fp ' Ck(p) » Gp = /\_gpv
P P

where 1 <! <n—1 and 1 <k<N-—-n. F; satisfies the following properties:

F2(0) =0, (f ) o= (ab;,j) 0 =0, (g;;) 0 =0, (g;;) o1

As before, we can choose vectors Cy(p), ..., Cn—n(p) € CV=! so that

{E1(p)t E,_1(p)'
T A

form an (N — 1) x (N — 1) unitray matrix.

i) cN-.n<p)‘}

e =wanyd 1

) Lif(p) - Ex(p) =X

) 1
o)
Y 1 1wy T
(5) o= 557wl BT = 53557 (P2 - L)

L(f)(p) - L(f)(p) = oF,

<¢;,z> lo = = Lkﬂp/) 'C_l@—)t =0,

Y _ 1 st b et
¢) o= =) T = =T G

=t

Lig(p) - 2L - Fp) ) —0, (By (24))

) =i
) lo= 5= (1o - 277 To ) =1, (By (210)

51

we used the fact that g — g = 22']7- f and then

(2.52)

(2.53)

(2.54)

(2.55)
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(f;,j) o= 5 bl o) LT () b= 55 BT LD

J

t

(55) o= 57T T (6) o= —=tatsFio) G50

(632) o= =TT (65,) o= =T T,

(5) o= 5355 (Batasto) - 2itataf - T ) =0, (Butz)

)
< > A(lp LI<T9 p) - 22'Tf(p)-f(p)) =%L,f(p).:rﬂp),
i)

1 2 = ey =
( - W( (p) — 26T%f(p) - f(p) — 2T f(p)- Tf(p) >
We define
T 1+2iz",a(p) + (r(p) — ila(p) 2w
where

a(p) = (ﬁ) lo = (a(p), b(p)) = (a1(p), -, an-1(p), b1(p), ., bn-n(p)) =

=t ~ P

_ ( . ’Tf(p)k-(]f)j ®) ... ’Tf(p)/{(i;(p) ) (2.57)
)=y () o= grsre(To) -2 T ). @)

In particular, because A = (%., C}) is a unitary matrix,
AP = | Eu(p)* = —— [TF(p). (2.59)

Ap) Alp)
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We then define the normalization
F;* = (f;*a ;*) (f )¢p ’ p ) = GP °© F; (260)
[ _Jr—au®gy , (2.61)
1+ 2i(f;,a(p)) — (=r(p) +ila(p)*)g;
g = Ppj b(p)g; : ) (2.62)
1+ 2i(f;.a(p)) — (—r(p) + ila(p)?)g;
9 ‘ _ (2.63)
—r(p) +ila(p))|*)g;

g** — ———
To1+2i(f;,a) — (
The purpose of this normalization is that F;* must satisfy the following properties

"

f**—z) ,<f;*) ,(¢;*) ,<¢>§2*) v(g$*> »(9;*~w> ’(92*> )

F (5 )
and <g;*> all vanish at (z,w) = 0. (2.64)
From (2.61) (2.62) and (2.63), we have
(¢;§j’})'zl|o =0, (¢ ) | = (¢;,) J(P) =0,
(95)%10 =0, (g)ulo =0
~ 2i0}ay(p) — 2idjax(p) (2.65)

( ;:;) lo= (fm)
S L Lif(p) - LT () — 38 TH) - Lif()' - SBTTw) - L) =0,

Here we used the fact that (g3)7 ., lo = 0. The last equality holds because of Lemma 2.7.1

l\D

().
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(f;:z): o= (5) lo-at (g)l =8 |2l 3+ (0) ~ o))

J Zjw

(f;,,)" o — aulp) (9)1 — i) + (o)

Zjw J

- L LT L) - %(Tﬂpmﬂp)t) (Ljﬂp) ‘T}”(p)t)

R
iy dit 0 T2 =t
Sy TT0 = gsre(Ta(s) ~ 27°50) ) ).

We can say more about this important formula which will be used to define geometric
rank o. Applying T2 to the basic equation Im(g) = 712, we get 0 = 2iIm(iT2f - fH+
2|Tf|2 — i Im(T?g) on OH" by (2.8). Combining this to the above, we get

(57) o= htst o) L) - s (750 1700 ) (1) 7700

jW

— t) (2.66)
5 () - 227 T ).

<f;,7) |o=(f;:,l) 1o—az<p)(gp) o
w? w? (2.67)

= A(1,[,)T2f( )-sz(p) YL (Tf Llfw) T?g — %T2f . f —22|Tf[2)(p)

” Vi ) "
R —
o] o= <¢*,z> lo = bulgp)y,, = < *,z> lo=——=L;Lif(p) - Ci(p) -
( p >zm D . P/ zj2k p - VA®)

(2.68)

Here we used the fact that (g7) =0.

ZZ;J
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" "
( ;;jz) o= (q&;:,l) o= BB (G), ulo
zjw zZjw

= = TLf) T — i (770 - O 1,(ots) - 270 ) )

L) T~ e (170 T ) (170 17 ).

(2.69)

" " "
( ;7) lo = <¢;§,z> lo — bj(p) (%) 2|0
w? w? w

= 1) T~ s (70 T ) (T9te) 27 0) i) - 27T ).
(2.70)

=

(9;:*) o= (92) 'lo—2z'm=X%Ljﬂp)-:rf(p)t—ﬁ—Tﬂp)'Ljﬂp) —0,

(g)l _ (g)l 2l + 10|
- (TQg(p) — 2T f(p) - f1 (p)t)
_A—é—) [ile(p)F + %Re <T2g(p) — 2T f(p) - f(p)

The above two equalities equal to zero because of Lemma 2.7.1 (i).

)

By the similar calculation of F* and F**, we can define F; and FJ* with the following
theorem.
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Theorem 2.8.1 ([H99], Lemma 5.8) Let F € Prop,(H",HV), 2 < n < N with F(0) = 0.
For each p € OH", there is an automorphism 77* € Auto(HY) such that Fr=r1*0F,=

kK

( o Py ' 9p *) satisfies the following normalzzatzon
. ‘ o *x Kk *k
fp =z 4 5% (1)(z)w + Owt(3)’ ¢p = ¢p (2)(2) + owt(2), g =w+ Owt(4), (2.71)

(7,00 (2))|2* = oy (2) . (2.72)

2.9 Geometric Rank of F

We denote a5V (2) = 2.A(p) where

62 *?
A(p) = —2i( b )
®) azjawlo 1<j,i<n—1

is an (n — 1) x (n — 1) matrix. A(p) 1s Hermitian. In fact, (2.72) can be written as
2AP)Z |2 = 67D (2) P, V2. Then 2A(p) |]? = |¢**3)(2)|? so that 2(A(p) — Ap))z =
0, Vz. This implies that A(p) = A(p)t, i.e., A(p) is Hermitian. Also, from (2.72), the matrix
A(p) is semi-positive.

We define [HO3]
Rkp(p) :== Rank(A(p)), (2.73)

which is called the geometric rank of F at p and is a lower semi-continuous function on .
We also define
Ko = Klo(F) = ma:vpeaHanF(p) (274)

which is called the geometric rank of F.

Remarks (i) ko(F) is an invariant.
(i) 0 < Ko(F) <n—1.
(iil) ko(F') = o if and only if at a generic point p € OH", F = F;* that satisfies

fip =2+ P 0 4 0,(3), 1< < ko, pi(p) > 0

f]*;‘,—z,+owt(3), ko+1<ji<n—-1,

G5 = 0" (2) + 0u(2),
9" = w + 0w (4).
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(iv) When ko(F) = n — 1, the image submanifold F/(0H") “occupies more room” in the
target space OHY so that it is the most complicated case. In fact, when ko(F) < n —2, F
has “semi-linearity” properties.

2.10 Maps with Geometric Rank ) =0
Theorem 2.10.1 (Linearity Criterion, [H99])

ko = 0 <= F is equivalent to the linear map.

To prove this theorem, let us first prove two lemmas.
Lemma 2.10.2 Let m and n be any positive integers. Let X = (f1,..., fm) be a vector-
valued differentiable function defined in a neighborhood of 0 in R™ satisfying
DX = A(z)X*, X(0)=0,
where D = (2, ..., 32) and A(z) is a matriz of continuous functions. Then X =0 holds

in some neighborhood of 0 in R™.

Proof of Lemma 2.10.2: ¥p € R™ near 0, we denote X,,(t) := X (tp) = (f1(tp), ..., fm(tD))
for 0 <t <1. Then

ax, d _ 6f1 8fm _ _ ¢
5 —( 2 f1(tp), s = fm(tP)) = (. 50,7 22 B, p;j) =pDX, = pA(tp) X,(t)".
Since X,(0) = 0, we get X,(t) = [) pA(1p)X,(7)tdr. Hence || X,|| < C||p||||X || for some

constant C' > 0 which is 1ndependent of p. It follows that X, =0 once [jp|| <. O

Lemma 2.10.3 We have
(i) For any p € OH",

LeLif(p)- LT (p) =278 (Tf (») - Lif (p)t> +2v—14] (T flp)- ka(p)t)-
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(i) For any fized j and k, if (¢}*)7 .. lo = 0 for any p € OH™, then

Litaf) = 202 (170 1700 ) e + 252 (T 1400 ) )

"

Proof (i) By the construction of F**, we know that ( ;}‘) lo = 0. By (2.65), we have

2j2g

5V}

) ]C ~ . ~ ~

o) 1 y =t 207 —= t j t_
(f)l — S i) LT ) 3 5TT0) L) - 25 TT0) - Lufo) =o.

Then (i) follows.

(ii) By the formula (2.68), we see that (¢;*)7 , lo = 0 if and only if LiLif(p) - C(p)t =

0. Then LiL;f(p) is perpendicular to the subspace span{C(p)} so that they are linear
combination of the vectors E4(p): LkLlf(p) = 3271 A3, Eq(p), and hence LeL.f(p) ~mt =
Z:;ll A3, Es(p) ~mt = AX},. Here we have used the orthogonal property: E, - —E—jt = Adg;
in (2.18). Finally we use (i) to obtain the desired identity. OJ

Proof of Theorem 2.10.1: By the normalization condition, we assume F' = F**

If we can show ¢ = 0, then (f,g) : OH" — OH" is a C%-smooth CR map. By Poincaré-
Tanaka theorem, (f, g) € Aut(0H") = Aut(H") so that (f, g) must be linear fractional. This
implies that F'(z,w) is a linear map.

Since ¢(0) = 0, it suffices to show X¢ = 0 for any tangent vector field X over OH".
Since L;, L; and T form a basis for T(0H") and ¢ is CR, it suffices to show that Lip=0
and To=0foralll1 <j<n-—1

By applying Lemma 2.10.2, it is enough for us to prove

{ Li(Li(8)) = Aj(z,w)Li(9) + Ap(z,w)L;();
TLy¢ = Bi1(z,w)Li(¢) + Bia2(z,w)T(9); ' (2.75)
T?¢ = Cy1(z,w) Li(9) + Cr (2, w)T(¢),

where Ay, By 1, B2, Cr1 and Cy o are continuous function defined in a neighborhood of 0 in
OH".

Notice that the geometric rank xo = 0 if and only if (657)% 210 = 0, Vi, k. In fact, by (2.72), this
condition implies A(p) = 0. ‘
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Notice rg = 0 <= (¢;*);.,, =0, Vp € OH". From Lemma 2.10.3(ii), we obtain

2j 2k

Li(Lr(9)) = A;j(z, w) Li(9) + Ak(z, w) L;(6), (2.76)

where Ay = BIPLD which are C*(OH™). Then the first equality of (2.75) is proved.

A(z,w)
Puttmg j = k in (2.76), we get L}(¢) = 2A4xLi(¢). Applying Ly and by Lemma
2.3.1(ii) (iii), we have

TLep = 2

Li(¢) + AT (¢) = Br1Li(¢) + Bi2T(9), (2.77)

where By, := L—’“"l’i € C°(0H") and By := Ay € C'(OH"). We have proved the second
equality of (215)
Applying L; again to (2.77), we obtain

20T(¢) = (LkBia) Li(9) + (Bra2i + LiBr2)T(¢) = CiaLi(0) + Cr2T(9),  (2.78)

where Ck,? = Bk)12i +L_kBk’2 € CO(8H") because of Bk72 S CI(BH"), and Ck,l = L_kBk,L
It remains to prove the following claim: Cj; is continuous. In fact, when j = k, apply
2
Lemma 2.10.2(ii) and take the component f, as we did for (2.76), we get Ay = 5%—:{/%
Then

Bry = 5 Li(Ay) = l,L_(ﬁ—))B(fk) + ot T L (fi)

2.79
= 2(Lk((fk))2 k(fk) + Tnl TLk(fk) ( )
= b1 Li(fr) + bk,QTLk(fk)

where by 1, by 2 € C*(OH"). Thus
Oy = LBy = Li(bra LR(fe) + b2 Li(f1))
= Lyby1 - L3 fi, + 4ibg 1 LiT fi + Libyz - TLi(fr) + 2ibe 2T2( f) (2.80)

€ CO(HH").

Hence the claim is proved so that the third equality in (3.11) is proved. O

2.11 Analytic Proof of the First Gap Theorem

By Theorem 2.10.1, in order to complete the proof of the First Gap Theorem, we need to
show



60 CHAPTER 2. EARLIER RESULT: THE FIRST GAP THEOREM

Corollary 2.11.1 Let F € Props(B",BY) with2 <n < N <n—2. Then F has geometric
rank kg = 0.

Proof:  Let F € Propy(B",B") with 2 <n < N < n — 2. Then for any p € 6H", F;*
satisfies the normalization condition in (2.72) and

(2,0, V() |2* = |6, @ (2) .
Since n < 2n — 2, by a uniqueness theorem 2.11.2 below, it implies
¢7P =0 and o™ =0. (2.81)
Thus ko(F) =0. O
Theorem 2.11.2 ([H99], [EHZ05]) Let ¢;,v; be holomorphic function near the origin of

C, 1 <j <k n>1 Suppose that H(z,Z) is a real analytic function defined in a
neighborhood of 0 € C™ such that

k
H(z,2)|2 =) ¢j(2)¥;(2) for z€C" near 0,. (2.82)
Suppose k <n —1. Then H(z,Z) =0 and Z] L 0i(2)0;(2) =
Proof:  Complexifying the identity, we have

H(z,0)(z,C) = quj (2)9;(C) (2.83)

where z, ¢ are independent variables. Assume that ¢; # 0 for each 1 < j < k. We can find
a point zp near the origin such that ¢;(z9) = €; # 0 for each j.

Consider the complex variety V., = {2 | ¢,;(2) = ¢;(20), 1 <j < k}. Since k <n—1,
this variety V., has complex dimension at least 1. For each z* € V,, there exists a complex
hyperplane K, = {¢| (z*,{) = 0}. Then for any ¢ € K,., we have Zf e;(¢) = 0.
Since dim¢ V,, > 1 and dim¢ K, = n — 1, such ( fills in an open subset of C". Hence
Zf e;0;(C) = 0, or Yi(z) + -2 94, (2) = 0. Multiplying with 1 (2) and subtracting this

0 (2.82 ), we obtain =
k-1
oi(2) | ¥
7= 3 (00 o)

J
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Then applying an induction argument, it follows easily that ) @EZ; =0and H=0. O

Theorem 2.11.2 can be extended into a more general version by induction as follows.

Corollary 2.11.3 Let ¢j,, %5, 1 < j <n—1,0 <p < q, be holomorphic functions near
the origin of C* with n > 1. Suppose that H(z,Z) is a real analytic function defined in a
neighborhood of 0 € C™ such that

q

HEOEDM =Y (Z@p(z wc)) (=02, for z~0and ¢ ~O0.

p=0

Then H(z C)—OandZ] 1¢Jp( ¢Jp(<)—0;1§pSQ-
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Chapter 3

Construction and Classification of
Rational Maps

3.1 Gap Phenomenon

A map F € Prop(B",BY) is called minimum if F is not equivalent to a map of the form
(G,0) where G € Prop(B",B"') with N’ < N.
Recall the First Gap Theorem in Lecture 1:

Any F € Propy(B", BY) where N < 2n — 1 is equivalent to a linear map
(z,w) — (2,0,w).

This theorem can be restated as
Theorem 3.1.1 (The First Gap Theorem) There is no minimum map in Prop,(B", BY) if
Nel)={meZ" |n<m<2n-1}.

0 1 2 n 2n -1 3n 4n—6
& N & P & B
® PR )l € P
2n 3n—3

Furthermore, it is proved by Huang-Ji-Xu [HJX06] that if F € Props;(B",BY) with
2n < N < 3n — 3, then F is equivalent to another map (G,0) where G € Rat(B",B*"). As
above, this theorem can be rewritten as

63
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Theorem 3.1.2 (The Second Gap Theorem) (Huang-Ji-Xu, [HJIX06]) There is no mini-
mum map in Props(B", BY) if n > 4 and

NeL={meZ"|2n<m<3n-3}.

Theorem 3.1.3 (The Third Gap Theorem, Huang-Ji-Yin, preprint) There is no minimum
map in Props(B",BY) ifn > 7 and

NeL;={meZ" | 3n<m<4n—6}.

In general, we formulate the following: For the integer n > 0, let
t(t+1 '
K(n) := max{t € Z* | % <n}.

For integer k with 1 < k < K(n), let

Iy = {m€Z+ | kn<m<(1€+»1)n—‘k(k2+1)}

[Example]
Ifn>2 then K(n)>1. Takek=1andZy = {m € Z* | n<m < 2n — 1}.
If n >4, then K(n) > 2. Take k=2and Z, = {m € Z* | 2n < m < 3n — 3}.
If n>7, then K(n) > 3. Take k =3 and I3 = {m € Z* | 3n < m < 4n — 6}.

Theorem 3.1.4 (Huang-Ji-Yin, [HIY09]) For n > 2, let K(n) be as above. For each k
with 1 < k < K(n), let I, be as above. Then for each N > n with

N ¢ Uk,

there exists a minimum monomial map in Rat(B",BY).

Conjecture: Forn > 2, let K(n) be as above. For each k with 1 < k < K(n), let I be as
above. Then for each N > n, the following two statements are equivalent:

(i) There exists no minimum maps in Propy(B", BY).

(1)) N € Iy for some k with 1 <k < K(n).

Recently, D’Angelo and Lebl (2007) found out that there is no gap phenomenon for
mappings in Rat(B",BY) when N > T(n) =n? — 2n + 2.

Based on the above conjecture, it would imply that there is no gap phenomenon for
mappings in Rat(B",BY) when N > n’/2.
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3.2 Examples of Minimum Maps
Let us survey some important minimum maps. :

e N = n > 2, Alexander’s theorem. [A77], any map in Prop,(B",B") = Aut(B") is
equivalent to the identity map F(z,w) = (z,w).

en < N < 2n —1, the first gap theorem, any map in Prop,(B", BY) is equivalent to the
linear map F(z,w) = (z,0,w).

e N = 2n—1 with n > 3, Huang and Ji (2001) [HJO1], F' is equivalent to the linear map
F(z,w) = (2,0,w), or F' is equivalent to Whitney map:

Wn71 = (2/7u72) where z = (Z/,'U)) c (Cn—l % C

e N =2n — 1 =3 with n = 2, Faran (1982) [Fa82], four equivalent classes of maps:

(z,w,0); (z,2w,w?), (2%, VZ2w,w); (2, V32w, w?).

o N = 2n, D’Angelo family [DAS8S].
Fy = (2, wcos, zywsind, ..., Zn_qwsing, wsinf), with 0 <0 < %,

is a family of proper holomorphic monomial maps from B" into B?". Here Fy is equivalent
to Fy if and only if 6 = ¢'.
Denote W, 1(2;h, \) = (2, Azn, V1 — A22,h(2)) where z = (2/,2,) € C ' xC, A€ [0,1]

and h is a holomorphic map from B" into BY ". In particular, when h(z) = z, the maps
Woi(z;2,A) = (2, Azn, V1 — N22,2)
is the D’Angelo’s family.

e 2n < N < 3n — 3 with n > 4, by the second gap theorem [HJX06] any F' €
Props(B", BY) is equivalent to a map (Wn_yl(z; z,A),0) where X € [0, 1].

The proof of Theorem 3.1.4 is based on the construction of the following minimum maps.
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[Example A][HJY09] Let

(/le = (zla \/§Z2a ceey ﬂzky Zh41y ooy Z’n)7
V2 = (22, V223, e V22, Zk 11, o0s Zn),

Vk-1 = (261, V22k, 2kt 1y -or) 2Zn),
Y = (Zk72k+1, ~~,Zn),
(Vk+1 = (Zks1, ) 20)-

Let
Wn,k(z) = Wn,k(zla ey Zn) = (zﬂ/}l, ey Zkl/)k,lbk+1)~

This map, called generalized Whitney map, is a quadratic polynomial minimum map in
Prop(B", BY) where
N = (k+1)n— k—@—;—l)
When n =1, W,; : B* — B> is given by
Whi(z1, ..., 2n) = (2191, 19) = (zl(zl, vy Zn), (29, ...,zn)).
We can verify |W,,1(21, ..., 22)|> = 1, V|z1> + ... + |2,]? = 1. In fact,
2Pz + -+ ) + (222 + 2?7 =1, Va2 + ..+ |2,]2 =1,
|21|2+(|zzl2“—f—...+|znl2) = 1
When n =2, W, , : B® — B3 is given by
Wh2 = (2191, 2292, ¥3)

where ¢y, = (21,\/522,23,...,2’”), Yo = (22,.,2,) and 3 = (z3,...,2,). We can verify
Waa(21, . 22) P = 1, V|21 2 + ... 4 |20)? = 1. In fact, V|21 |2 + ... + |2,]> = 1, we have

l212(J1]? + 2|20 + |23 + .. + |2al?) + 222 (|22 + oo + [20]2) + (22 + oo + |2f?) 7 =1,
21 P(1+ |22?) + 1222 (|22 + oo+ [20]?) + (232 + oo + |20]?)
212 + |22 (|21 + |22 + . 4 |20 ]2) + (J23]2 + oo + |20]?)

|z1]2+[22|2+|23|2+...+|zn|2 = 1
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W,1 can also be written as (z,w) — (z,w(z,w)) where (z,w) € C"~! x C, which is the
classical Whitney map.

[Example B] [HJY09] Let Let ¢; be defined as above. Let 7 be an integer with 1 <7 <k
and \; € (0,1) with 1 < j < 7. We define

VVn,k(z; Ala meey )‘7') = (21;;1/7 cey zk';l;l;albk’-i-la /\lzlv sey )\TZT)
where

(lgl = (\/1 it /\%Zl, \/1 — /\% -+ M%QZQ, ceey \/1 — /\% + )\szk, \/1 — /\%Z[H_l, RV 1-— )\%Zn),

1[)2 = (\/1 - )\%ZQ, \/1 - )\% + /L%ng, ceey \/1 - /\% -+ A%kzk, \/1 — /\%ZIH—I, Vi 1-— )\%Zn),

{ET = (/1 — A2z, \/1 - A2+ ,ui(ﬂ_l)zf“, ey \/1 — A2 4+ A2, 2, \/1 — A22k11, s
1= Az,), forT<k

Ur = (V1= Nz, /1 = XN2py1, o V1 — A22),  for 7 =k,

(Y=, if T<j<k

where pj; = /1 — A for j <1< 7and pj=1forl>r.
This map is a quadratic polynomial minimum map in Prop(B", BY) where

N =(k+1)n-

k(k; D + 7.

[Example C] [HJY09)] Let F : B* — B"" be a proper polynomial minimum map
with F(0) = 0. Then we define a new map W, x(2; F, A1, ..., A\;) by modifying the map
Wi i(z; M1, ..y Ar) in the following way: while keeping all other components the same, re-
placing 151 with

B1 = (1= M1 P 1= Xty o 1= A+ Mz /1= Mz, 1= M),

This map is a polynomial minimum map in Prop(B",B") where

k(k+1) iy

N=N"—1+(k+1n-——
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Lemma 3.2.1 [HJY09] Let F : B" — B™k=%0) be o minimum proper polynomial map with
k> ky >0 and F(0) =0. Then a new map

Wn,ko(z; F,/\l7 ey ,\T) - B — BN,

with
k‘o(k;’() + 1)

N=(k+1)n- 5

,and 0 <7 <ky<n

s a proper polynomial minimum map.

Proof of Theorem 3.1.4: We need to construct minimum proper monomial map from B”
into BY under the assumption that either (k + 1)n — k(k +1)/2 < N < (k + 1)n with
k< K(n)or N> (K(n)+1)n— K(n)(K(n) + 1). Apparently, K(n) < v/2n.

Let k¥ < n. By Example C, we see the existence of minimum proper monomial maps
from B" into BY when (k+ 1)n —k(k+1)/2< N < (k+1)n—k(k—1)/2. If k—1> 0,
applying Lemma 3.2.1 with kg = k—1and 7 =0, ..., k — 1, we see the existence of minimum
proper monomial maps from B into BY with (k+ 1)n — k(k —1)/2 < N < (k+ 1)n —
(k—1)(k —2)/2 — 1. Again, applying Lemma 3.2.1 with ko = k£ — 2 (if £ — 2 > 0) and
7 = 0,...,k — 2, we see the existence of minimum proper monomial maps from B" into
BY with (k+ 1)n - (k—1)(k—2)/2—-1 < N < (k+1)n—(k—2)(k—3)/2—-1. By
an inductive use of Lemma 3.2.1, we see the existence of the required maps for N with
(k+1n—k(k+1)/2<N<(k+1)nfork<n.

Next, letting & = n + 1 in Lemma 3.2.1 and inductively applying Lemma 3.2.1 with
ko = mn,n — 1,...,, we conclude the existence of the required maps when (n + 2)n — n(n +
1)/2 =1 < N < (n+2)n. In particular, this would give the existence of the required maps
when (n 4 1)n < N < (n + 2)n. Applying an induction argument, we easily conclude the
existence of the required maps for any N > (n+1)n. 0O

3.3 Rational and Polynomial Map

All examples above are polynomial maps. Nevertheless, not every map in Rat(B",B") can
be equivalent to a polynomial map.

Let us introduce a criterion which tells whether or not a rational map can be equivalent
to a polynomial one as follows.
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= (Plé‘q"@ € Rat(B",BY) where (P;)}_;, ¢ are holomorphic polynomial

Py, ..., Py,q) = 1. We define

Let F =
functions and

—~= v

deg(F) = max{deg(P;)N;=1,deg(q)}.

Then F induces a rational map from CP" into CPV given by

z
F(lz1: otz i t]) = [tkP(t) tkq(t)]
where z = (21,...,2,) € C" and deg(F) = k > 0. F' may not be holomorphic in general.
Denote by Sing(F') the singular set of F', namely, the collection of points where F' fails
to be (or fails to extend to be) holomorphic. Then Sing(F') is an algebraic subvariety of
codimension two or more in CP". We denote B} := {[z : ... : z, : 8] € CP™ | 37, [2]* <

£}

Theorem 3.3.1 [FHJZ2010] Let F be a non-constant rational holomorphic map from B"
into BY with N,n > 1. Then F is equivalent to a holomorphic polynomial map from B" into
BY, namely, there are o € Aut(B") and 7 € Aut(BY) such that T o F o o is a holomorphic
polynomial map from B" into BY, if and only if there exist (complez) hyperplanes H C CP"
and H' C CPYN such that HNB} =0, H' NBY =0 and

F(H\ Sing(F)) c H', F (C]P’"\(H u smg(ﬁ))) c CPM\H'.

Proof: If F is a non-constant holomorphlc polynomlal map, then F = [t*F(2),*] with
deg(F) =k > 0. Let H=Hy and H' = . Then they satisfy the property descrlbed in
the theorem.

If F is equivalent to a holomorphic polynomial map G, then there exist 6 € U(n +
1,1),7 € U(n+1,1) such that F' = 70 G o6. Let H = 6'(Hy) and H' = #(H.,). Then
they are the desired ones.

Conversely, suppose that F, H and H’ are as in the theorem. By a lemma below, we
can find 6 € U(n+1,1) and 7 € U(n +1,1) such that 6(H) = Hw and 7(H') = HL. Let
Q=ro Fo6~1. Then Q induces a rational holomorphic map @ from B" into BY. If Q
where (P,q) =1 and deg(Q) = k > 0, then

= [t*P()

- ) : thg(2 )l
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Suppose that g # constant. Let z € C" be such that g(2) = 0 but P(z) # 0. Then
[20 : 1] & Sing(Q) U Hy and Q([z : 1]) € H.,. Notice that Q(H \ Sing(Q)) C H., and
Q ((C]P’”\(Hoo U Smg(Q))) C CPN\H!,. This is a contradiction. Thus, we showed that Q
is a polynomial. [J

Lemma 3.3.2 For any hyperplane H C CP" with H N B} = 0, there is a 0 € U(n + 1,1)
such that o(H) = Hoo = {[21: -+ : 2,, : 0] € CP"}.

Proof: Assume that H : Z?zl a;jzj — a1t = 0 with @ = (ay,...,an41) # 0. Under the

assumption that H NB? = @), we have an; # 0. Without loss of generality, we can assume
that a,+1 = 1. Let U be an n X n unitary matrix such that

(ay,...,a,)U = (\,0,...,0),
U o0 .
for some A € C. Let 0 = 0o 1) Then o(H) = {[z: t] € CP" | Az; —t =0} with [A\] < 1.
Let T' € Aut(B") be defined by

a-x JIo _|/\|2z’)

T "=
(ZI’Z) <].—/\2517 1—/\2:1
with 2/ = (23, ..., 2,). Then T € U(n + 1,1) is defined by
T([z1: 2 1)) = [21 — At : /1 — | A2 : ¢ — Az

Now, it is easy to see that T o & maps H to H,,. O

1-az’ 1-az

Example D[FHJZ2010] Let G(z,w) = (zz, V22w, w(EL, ¥ 1—[a|2w)>7 la] < 1, be a map

in Rat(B?, B*). G is equivalent to a proper holomorphic polynomial map in Poly(B?,B*) if
and only if a = 0.

In fact, we have
G = |(t—a2)2: (t —a2)V2zw : w?(z — at) : w?y/1 — |a?w : (£ ——EtQZ)J.

Suppose there exist hyperplanes H = {121 + pow+ pot = 0} C CP? and H' = {Z;zl Ajz5+
Aot’ = 0} C CP* such that

HnBZ =0, H'nB =0, G(H \ Sing(G)) c H', & (CIPQ\(H U Smg(é))) C CP\H'.
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Then
A (t —@2)22 + Ao(t — @2)V22w + Ngw?(z — at) + Mw?/1 — |a2w
+o(t3 —at?2) = (w2 + pow + pot)®  V[z:w: t] € CP~

Apparently A\ # 0. Hence we can assume that \p = 1, yp = 1. By comparing the coefficient
of 2%, w?, wit?, 2t2, 2%, zwt, 2*w, zw?, w?t, respectively, in the above equation, we get

pd = —ahy, o= My/1—al?, 3u2 =0, 3, = —a, 3ui = A,
6uipe = V2o, 3udts = —V2Xe@, 3pip3 = A3, 3p3 = —aks.

We then have Ay = As = Ay = pig = 0. If @ # 0, then g1, A\ # 0. From pf = —a); and
3u? = A\, we get u; = —3a. Since 3y, = —a, we get @ = 0. This is a contradiction. Notice
that when a = 0, F is a polynomial. By Theorem 3.3.1, we see the conclusion. U

1-aw ’ 1—-aw

Example E[FHJZ2010] Let F(z',w) = (z’,wz_’,wQ(—Vl_‘alzzl ’—”:—“—)> with |a| < 1 be a

map in Rat(B",B*2). F is equivalent to a proper polynomial map in Poly(B",B*"?) if
and only if a = 0.

By the criterion in Theorem 3.3.1, it is also proved that
Theorem 3.3.3 [FHJZ2010] A map F € Rat(B?,B") of degree two is equivalent to a
polynomial proper holomorphic map in Poly(B% BY).

Recently, J. Lebl claimed in a preprint ([Le09], theorem 1.5):

Theorem 3.3.4 Let F € Rat(B",BY) with n > 3 and deg(F) = 2. Then F is equivalent
to a monomial map.

[Example F][FHJZ2010] Let F € Rat(B* B°) be a rational mapping given by F =
(f, o1, 2, ¢3,9) defined as follows:

2+ (5 —i)zw 22
fzw) = 1—iw— jw?’ 91(zw) = 1—iw— jw?

o) = ey = S ey = 2
Z,W) = ———7— qw)=—3 " g(z,w) = — .
2B = T T — T PO T T Ty — L IO T T T — T
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Then this mapping F' is indeed equivalent to the polynomial map

G(z,w) = (—?(—2 +4z + 27), ——?(1 + 2+ 2%), \1/—25(5 + 3z)w, ?611)2, %z(l - z)w)

3.4 Degree of Rational Maps between Balls

In order to outline a proof for Faran’s theorem (see next section), we need to introduce the
degree problems for maps in Rat(B",B").

For any rational map H # 0, write H = (Pl—’"é’ﬁm—), where P;, R are holomorphic polyno-
mials and (P, -, P,, R) = 1. We then define

deg(H) = max(deg(P;)j=1, m,deg(R)).

(When H = 0, we set deg(H) = —o0).
D’Angelo raised a conjecture [DKR 03]: For any F' € Rat(B",BY), does it satisfy

N -3, ifn=2,

deg(F) < {L\’__—_l ifn>3 (3.1)

n—1"
Both of the above bounds are sharp. In fact, when n = 2, the degree bound 2N — 3 is
achieved (see p.173 and p. 189 in [DA93]) for the polynomial map F € Rat(B? B2*")
defined by F(z,w) = (2% 1, ..., c,220~w®, ..., w?+!) where c, are certain constants. When
n > 3, we consider the Whitney map h(z,w) = (z,w(z,w)) : B® — B?**~! with degree 2. By
letting (z,w) — (z,wh), we get a proper polynomial map from B" into BY with N = 3n—2
of degree 3. Inductively, we can construct a proper polynomial map from B" into B with
N = kn — (k — 1) of degree k. Hence =1 = k so that the bound in (3.1) is sharp.

[Example] We can show that any F € Rat(B? B°) has degree deg(F) < 7. We have
classified all degree 2 maps in F € Rat(B? B®). For higher degree maps, the situation
should be very complicated. D’Angelo classified all monomial maps in F' € Rat(B?,B%). He
find out

(degree 3: 31 isolated maps or continuous families;

degree 4 : 47 isolated maps or continuous families;
degree 5: 24 isolated maps or continuous families;

degree 6 : 5 isolated maps or continuous families;

(degree 7: 3 isolated maps;

For example, maps with degree 7 in Rat(B? B®) are
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1 (27,7, %wzi %w%, %wz)

2. (27, w", Vw2, V14w? 23 /Tw?2)

3. (27,07, VTw?2®, VTwz?, VTw’z)

e Forstneri¢ proved that for any F' € Rat(B",BY), its degree deg(F) < N*(N —n +1)
in [Fo86).

e Huang-Ji-Xu proved [HIJX06]: Let F' € Rat(B",B") with geometric rank ko = 1 and
n > 3. Then deg(F) < % For the proof, see § 4.2.

To illustrate the idea how to deal with degree deg(F'), we present a lemma and a theorem
below.

Lemma 3.4.1 ([HJ01], lemma 5.4) Let H = Q%Pm) be a rational map from C™ into C™,
where Pj, R are holomorphic polynomials with (P, ,Pp,R) =1 (m>n>1). Assume
for each p € OH™ close to the origin,

deg(H|g,) <k

with k > 0 a fized integer, where Q¢ = {(z,w) | %L = ;:11 zjT; } is the Segre variety of
OH™. Then deg(H) < k.

Theorem 3.4.2 Let F € Rat(B? B?). Then deg(F) < 3.

Proof: By Cayley transformation, we consider F' € Rat(H? H*). By Lemma 3.4.1, it
suffices to prove that deg(F|g, ) <3 for any py € OH".
It is equivalent to show that for every p € OHy, we have

deg(F;*lo,) < 3. (3.2)

Here Qo = {w = 0}. In fact, deg(Flg,) = deg(Fls,qn) = deg((F o op)lg,) = deg((o o
(Fy) o 7)lq,) = deg((F;™)]qo)- , 4

Write Fr* = (f,¢,9) where f = z+3 5, ajpdw, ¢ = 3 s bjrziw*, and g =
WY i cirziwk,

Applying L and L? to the basic equation 9—? = ff + ¢p, we get

LLg=Lf - F+Lo-5,
L= L2 -T+ 1%,
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ie.,

'2% [522] = I:.[Ijéff [{;QQ;:I % ’ v(sz) € 8H2

where L = % + 2i§5%.
We complexify this identity so that

5] - [Een ge e

holds for any point (z,w,(,n) € OH? where £ = % + QiCB% and OH? = {(z,w,(,n) €

C* | %1 = 2(} is the Segre family of 9H?.
Since (0,0, ¢,0) € OH?, we have

(Ef](o,o,c,o) =1,

Lélo0,c0) =0,

Lgl0,0,¢c0) = 2i¢,

L2f(0,0,¢,0) = —8ao2(? + dian(,
L2¢|(0,0,¢c,0) = —8bo2(? + 4111 + 2bog,
(£%9l0,0¢0) =0,

S

so that o L 07
detl: :det[ =Qb 790
£2f £2¢_ (0,0,0,0) 0 2b20J 02
Then we obtain
z<<,0>] _ L[z cf]‘l ‘ gg]
¢(C7 0) 22‘ _E f £ ¢ (0,07(,0) _£ g (070,(10)

1 2i¢ ¢
=E 2i¢(8aga¢® —dia1s¢) | = ¢(8a02¢?—4ia1;¢)

—8b02(2+4ib11¢+2bo2 —8bga(2+4ib1 1 +2bo2

This implies
4agz2> + 2ia72?

z,0) =z, 0) = —— —_.
[20)=2 660 = = e

Also we put (0,0, ¢,0) into the identity Q(L)f(ﬁ’—"—) = f(z,w)f(¢,n) + é(z,w)p(C,n) to get
g(2,0) = 0. Thus (3.2) is proved. O

By similar argument, we are able to prove the following.
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Theorem 3.4.3 ([HJ01], lemma 5.2) Let F € Propy(B",B*!) with n > 3. Then F is
rational and deg(F) < 2.

Proof: By Cayley transformation, we consider F' € Prop,(H",H?>"1). By Lemma 3.4.1,
it suffices to prove that deg(F|q,,) < 2 for any p, € OH".
It is equivalent to show that for every p € 0H,,, we have

deg(Fy™lq,) < 2 (33)

Here Qo = {w = 0}.
By the normalization, for any F € Propy(Hy,Ha,_1), we knew that F;* = (f,¢,9)

satisfies
F0,w) = (0,w),
fi =21+ izw + 2100 (2)w + 0ui(4),
fi=z+ou(4), 2<1<n-1, (3.4)
¢; = 212 + bjziw + b§3)(z) +0,(3), 1<ji<n-—1,
g=w+o(|(z,w)).

g9(z,w) — g(¢,n)
21

ZflzwflCﬂ +Z¢zzw¢zC77) (3.5)
Applying £; and £1L; to the above equation, using (3.4) and letting (z,w) =0, = 0, we

get .
G

. (I(n_l)x(n_l) 0 ) <f(CaO)> '
Cno—l Am-1x(n-1) Bw-1)xn-1)/ \¢(¢,0)

Here I(n—1)x(n—1) is the identical (n — 1) x (n — 1) matrix,

-2¢ 0 0
Apm-1)x(n-1) = A= —G 8 g and
5 0 0
2+ 4ibi(y 4iboly . 4iboa G
2ibiG;  1+42iboly .. 2ibpaG

Bn-1)x(n-1y = B =

2biCoy  2ibsCn1 .. 1+ 2iby_1Cnt
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This implies

~ Z1Z

f(z,0) = (z, - — ) (3.6)
1—=2i) 5,052

Finally, by putting z = w = n = 0, we get g(¢,0) = 0 by (3.4). Hence, it is clear that

F(z,0) can be written as the quotient of a vector-valued quadratic polynomial with a linear

function. Hence (3.3) is proved. O

By similar method, the following results are proved.

Theorem 3.4.4 (1) [JX04] Let F € Rat(B",B") with geometric rank kg, 1 < kg <n —2,
and with N =n + @L_—'%——m Then deg(F) < ko + 2.
(2) [HIX05] Let F € Rat(B? B®) with geometric rank ro(F) = 2. Then deg(F) < 4.

3.5 Classification of Maps from B? to B

Theorem 3.3.3 is proved based on the classification of maps of Rat(B% B") with degree 2
(see Theorem 3.6.1).

To illustrate techniques used to study the classification problem, we first give a proof for
the following Faran’s theorem [Fa82]:

Theorem 3.5.1 (Faran, 1982) Any map F € Rat(B? B?) must be equivalent to one of the
following maps:

degree 1: (z,w,0);

degree 2: (z,zw,w?), and (2%, V22w, w?);

degree 3 : (2%, v/3zw,w?).

The proof here is given in [J09] which is different from Faran’s original Proof. The
difficulty to study Rat(B? B?), comparing study Rat(B",B") with high n and N, is that we
have less numbers of equations.

We already shown in Theorem 3.4.3) that deg(F) < 3. Since maps in Rat(B? BY) with
degree < 2 can be classified (see Theorem 3.6.1), it suffices to show: there exists exactly one
map F € Rat(B? B?) with degree 3.
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The normal form F*** of F' 1, still denoted as (f, ¢, g), becomes

2 — 2ib 2%+ (ieg +1/2) 2w — 4bpe2® + By 2°w + Apzw? + Aggw?

f= 1 — 2ib112 + ieqw — 4bgez? + Fi1zw + Egw? + Eo1 22w + Fiazw? + Egzw?’
B 22 + by 2w + boow? + By 2*w + Biazw? + Bozw?

¢= 1 — 2ib11 2 + ieqw — 4bpe2? + Ey1zw + Egw? + Eo 22w + Eiozw? + Egzw’’

4= w — 2ibyy 2w + ieyw? — 4bgez?w + Eqyzw? 4+ Cozw®

1= 2ib1z +ieqw — 4bgez? + Eqzw + Eguw? + Ea1 22w + Erpzw? + Egyw®’

with bUQ >0 and e; € R.

Consider the basic equation: Im(g) = | f|?+|4|?, VIm(w) = |z|?, we obtain all algebraic
equations about the parameters. Among these equations, we find

erIm(b3)) = 0. (3.7)
By (3.7), we consider

Case Al : Im(bu) =

0
C A: 0=
ase s {Case Ay Re(by;) = 0.

Case B :e; =0.

In Case Ay, we list all the equations about the parameters:

1 5 1
Ay = Eyy — 3 Zel - §b2, bi1 = b is a real parameter,

1
boo determined by -2—61 + 4e,b% + e% + 121)(2)2 + 4bgeb?® = 0,

1 3 1, 3
By =i(7+ 50+ v?), B = i(b+ e+ b*),

4
1 3
By = ibog(i + 56 +b?), Cos = Epp — %, e1 # 0 is a real parameter,
1
Ey = §b + e1b + 2b® — 8bbgy,  Eia = —i(eb + 2bbys),
: 15 Ly 2 2,92 41
E21 = —2Zb02, E02 = E + Zel + 'Q‘b ‘IL 2602 + 3elb + Zel + b )

1
Eo3 = 1(:2‘6% - |b02|2)-

1For the definition of F***, see § 4.1. It means here that the coefficient of the 22 term of ¢ is 1.
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From the equation for byy above, we obtain

(L4 \/(% + 4b2)2 — 4(1202, + 4bp2b?)
2

(A
Since e; is a real number, we must have (3 + 4b%)% — 4(12b3, + 4bg2b®) > 0, i.e.,

1 N\ 4, A
_ — > — .
(2+4b> +3b _48(b02+6

* %k k%K

If we consider F,** = (f;™*, ¢3™*, g;**), it is of the same form

o 2 — 2iby 2% + (ie +1/2) 2w — 4bg2® + B 22w + Ajgzw? + Aggw®
h = 1 — 2iby1 2z + ieyw — 4bge2? + Ei12w + Egow? + Esy 22w + Eipzw? + Eggw’’
oor 2% + by zw + bogw? + By 2*w + Bigzw? 4+ Bosw®
%"= 1 — 2iby1 2z + ieyw — 4bgez? + Ei12w + Egow? + Fo1 22w + Eipzw? + Egsw?’
- w — 2iby 2w + ieyw? — 4bgez?w + Fi1zw? + Cozw?
T 2ib112 + jeqw — 4bgez? + Erizw + Egw? + Ea1 22w + Erazw? + Egswd’

with bgy > 0 and e; € R. Here all coefficients, Ais, bi1, ..., are functions of p € OH?. From
above calculation, all of the coefficients (as functions of p) of F;** are bounded when [by:(p)|
is bounded.

Similar conclusion holds for Case A, and Case B.

Then we take a sequence p,, € OH? so that the associated map Fy»* satisfies

Jlim by (pm) = igf{bu(p)}-

Then we show B
F is equivalent to F = lim (F, )*".

Here we have to take care of the facts that p,, could go to co: [0 : a : b] € OH? and the
equivalence is not obvious.

The limit map F' has the minimum property for its parameter b1;, namely, if we denote
by b11(p) the corresponding coefficient of the map (F},)*** and p = (20, wo) = (20, uo +1|20|%),
we find

|b11.(p)? = [b1a|? — i(bu1 + 2b11rer + 12b11boz + 4b11|b11|*) 20
+i(b11 + 2b11e1 + 12b11bg2 + 4b11|b11|2)z_0 -+ 32b02Re(b11)Im(b11)u0 + 0(1)
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Since the critical point of the function by;(p) is zero by the minimum property, it gives the
desired extra equation:

Im(bu)Re(bn) = 0, and E + 261E + 4b_11]b11l2 + 12b02b11 =0. (38)

It leads us consider Case(C): by; = 0 and Case(D): by # 0.
Finally we consider all cases:

Case A1 C | cannot occur
Case A2 C | cannot occur
Case B C | 3 a unique map
Case A1 D | cannot occur
Case A2 D | cannot occur
Case BD cannot occur

The only map in Rat(H?, H?) of degree 3 is of the normalized form F = F*** = (f, ¢, g):

f_z-l-%zw—%zuﬂ ¢_22+§22w _w+%w3 (3.9)
1+ tw?r _1+1—16'w2’g_1+11—6w2' '

We notice that it is too complicated to find (3.9) directly by the definition of F***.
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3.6 Classification of Maps from B2 With Degree Two

The classification problem for maps in Rat(B*,BY ) with degree 2 has been solved.

Theorem 3.6.1 [z09] (i) Any nonlnear map in Rat{B?,BY ) with degree 2 is equivalent
twamap (F,0) where F  Rat(B?,B°) is of one of the folbwing fom s:
(D:F =(G.,0) where G, Rat{(B?,B*) is defined by

Guz,w)= (2%, 1+cos2tzw,(costw?,(sinw), 0= t< /2. (3.10)

(A):F = (F ,0) where F Rat(B?,B*) is defined by

F (z,w) = (z,(cos )w,(sin )zw,(sin )w?), 0< = 5 (3.11)
(IC):F =Fg ppme,= 5= F  2=(£, 1, 2, 3.9 Rat(H?, H?) isof the form :
c z+ (3 + de)zw 3 z
14 dew + ew?’ YT 14 dew + ew?’

G ZW cw?

1+ iew +ew2’ >

_ _ wtigw?
Tltimwtew? O 1+ iew tew?’

where o, > 0,-e,,-6 2 0,86, =G, - - g = ; + &, satisfying one of the olbwing
conditions: either

R+ P)— ErE)-aE —Er @) Er@)_ac
o = &) 2(4 &) 4é,e2: +J&) 2(‘1 ) 4c§, (3'12)
0< 4@5 (%-}—c?l)z,
or
—degn @droad | -Ged)- Eidroag
{ &= 2 &= 2 ' (3.13)

(i) Any two maps in Ra{B?,B°) in the form of types (I), (IIA), and (IIC) above are
equivaknt if and only if they are identical

In Faran’s Theorem on R at{B?,B?), there are four maps, up to automorphisms, which are
isolated. Nevertheless, for Rat(B?,B" ) with N > 3, there exists a continuous family of maps,
up to automorphism. For example, D’Angelo constructed F, = (z,w cos t,(w sin t)z)
Rat(B",B**) with t (0,5) satisfies: F¢ is equivalent to Fy if and only if t= s. To classify
continuous family of maps, we have to use different technique.
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3.7 Proof of Theorem 3.6.1 - Part 1

As a reduction in the proof of Theorem 3.6.1, Huang-Ji-Xu [HJX06] proved: Any map F in
Rat{H2,HY) with deg(F) = 2 is equivalent to a map (G ,0) where G = (£, 1, 2, 3,9
Rat{H?,H°®) is of the form (see also Lemma 2.3 below)

z- 2i2? + (3 + ig)zw

f 1 - 12
(zw) 1+ iew + ew? - 2ibz
(zw) = z? + bzw
BT b iew + ew? - 2i2 ]
ow? + g zw
Z(ZIW) = . 2 I}
1+ iew+ew?- 2iz
ow?
B(ZIW) = . ’
1+ iew + ew? - 21z
w + i w? - 2iew
g(z,w) =

T 1+ iew + ew? - 2ie’

where b,— e,,- &,,¢,G, ,G are real non-negative numbers satisfying e;e, = G+, —e - & =
1+P+3 - =ag,and g=0if g =0.

Since band ¢, are determined by ¢ ,c;,e; and e,, a map in the above form is determined
by ¢ ,c,e and e,. We denote a map of the above form, which is determined by ¢ ,c; &
and &, to be

Faoee) K. (3‘14)

It was unclear which of the coefficients e;,e,,¢ and ¢ of F are independent parameters.

Let us show why F is equivalent to another map (G ,0) where G Rat(B?,B®).

Let F = (£, 1, 2,9) be a proper rational map of degree two from 0H? into OHY.
Assume that F(0) = 0 and 0 is a generic point of F, namely, ¢(0) = 1. Without loss of
generality, we assume that N = 4. By Lemma 3.1 in [HO3], we have Auty(dH?) and

8Auty(dHY ) such that F |, still denoted by F = (£, ,g), takes the following form:
9%f

g=w +o,(4), (3.15)
1 =2 +Azw +Bw  +E 20+ -,
5 =0wt(2)/ j= 2.

Replacing ( 2,--++ 5-2) by ( 2.7+, n—2) U with U a certain (N - 3)x (N - 3) unitary

matrix, we can assume that ;= Ajzw +Bsw?+0o( [z,w)F) for j= 2andA;=0for j = 3.

f=z+ Elzw + a,e(3),
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In a similar manner, we can assume that B; = 0 for j >4 (if N > 6). Making use of the
assumption that F' has degree 2, we can thus assume in (3.15) that

da =Arzw + Byw?® + o(|(z, w)|?),
¢3 =Bsw® + o(|(z, w)|?), (3.16)

3.8 Proof of Theorem 3.6.1 - Part 2

In[CJX06], by obtaining an extra equation, we got a more clearer picture on the maps as
above.

Let us describe how to obtain this extra equation.

For any F' € Rat(H? HP) with deg(F) = 2, F is equivalent to another map F***
Rat(H?, HP) of the above form. Also we can associate a family of maps F, € Rat(H?, IHI5)
for any p € OH?, as well as the associated maps (Fp)*** that is of the above form.

We define a real analytic function

W(F;**) = Cl(P)2 —e1(p) — e2(p)

where c1(p), e1(p) and ex(p) are the coefficients of Fr**:

z — 2ib(p)2® + (% +ie1(p)) 2w

) = e e T eap) e = 2ib(p)7 (8.17)
- _ 2%+ b(p)zw
iy (w) = 1 +iei1(p)w + eqw? — 2ib(p)2’ (3.18)
¢***( ) 62(p)w2 + cl(p)zw (319)

1 +iei(p)w + es(p)w? — 2ib(p)2’

o w _c3(p)w?
3p (2, 0) = 1 +iei(p)w + ea(p)w? — 2ib(p)2” (3:20)
w + ie; (p)w? — 2ib(p)zw

9" (2 w) = 1 +iei(p)w + eqw? — 2ib(p)z”
Here b(p), e1(p), e2(p), c1(p), c2(p), c3(p) satisfy

kK

(3.21)

cap)er(p) = ) + ), —eaxp) = 7 +erp) + 5 (0) + ),

and —b(p)ea(p) = c1(p)ea(p), cs(p) = 0 if ¢1(p) = 0, with
c1(p), c2(p), b(p) 2 0, e2(p), ex(p) < 0.
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We observe that as long as W(F,;**) is bounded, all

e1(Pm), €2(Pm); c1(Pm), c2(Pm), c3(Pm), b(Pm)

are uniformly bounded for all m. In fact, since ¢1(pm), —€1(Pm), —€2(Pm) are non-negative,
c1(Pm), e1(Pm) and es(p,,) are uniformly bounded for all m. From —ei(pm) — ea(pm) =
1+ 0%(pm) + (pm), b(pm) is uniformly bounded for any m. Finally, from e1(pm)e2(pm) =
c(pm) + (pm), c2(pm) and c3(pm) are uniformly bounded.

The desired extra equation is obtained by moving up p to the extremal value as follows.
We choose a sequence of p,, € OH? such that

Pm — po € OH2 and LmW(F;™) = inf {W(F;™)} (3.22)
m m pESH2-Ep
where Zp is a proper real analytic variety such that Vp € 0H? — Ep, F, has geometric rank
one at 0 so that W(F,*) is well defined.

Then F is equivalent to F,>* which is of the above form and with the minimum property
W(F;O**) = infpeaHQ_EF W(F;**)

A key lemma used to prove convergence of the limit map is the following result.

Lemma 3.8.1 ([CJX06] lemma 2.5) Let F € Rat(0H?, 0HP) with F(0) = 0 and deg(F) =
2. Suppose that p,, € OH? is a sequence converging to 0, F, is of rank 1 at 0 for any m
e, Oein,  OCem

32¢***
and F;** converges such that -5+ lo, 550, zzalo and 5|0 are bounded for all m.

Then
(a) F is of geometric rank 1 at 0: Rkr(0) =1, and hence F*** is well-defined.
(b) F;:I* — F***' .
(c¢) If we write F;** = Gam © T, © F 00y, 0 Gim where op,,, and 7, = T are as in

[CIX06, (3)], él,m and C~¥2,m are as in [CIX06, (7)], then él,m and Gam are convergent to
some Gy € Auto(OH?) and Gy € Auto(OH?) respectively.

Proof:(Sketch)  (a) Suppose that F' has rank 0 at 0. We’ll seek a contradiction.
Denote F** = (f**, ¢**, g**). We only need to prove the following claim:

82f** 82¢** ( ) _ a2¢**
ow? 022 ~ 0z0w

In fact, by Lemma 2.4 [CJX06], F must be linear but this is a contradiction with deg(F) = 2.
Write

(0) =0, (0) = (0,0,0). (3.23)

(Fpm)*** = (ﬁm gm’gm)
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and also (£}, )" =71"o ((F);j‘n)** o 0, where
((F);:;)** = (fmaggm,gm)a

( ) _ )‘m(z + amw)ljm /\2w
omiS W =\ 20(@m, 2) + (rm — tlan])w’ 1 — 2i(@y,, 2) + (T — i]am|>)w

and

T = — — .
’ 1= 2i(a7,, 2%) + (rf, — dilay, w1 = 2i(ay,, 2*) + (?" — ifa,[*)w*

In order to prove Claim (3.23), it is enough to show that
0 fm 8 pm 52¢m
ow? Bz 022 |

Then by the construction of F*** (see § 4.3), Om and 7, satisfy the following properties.

— 0, o — (0,0,0), !0 —(0,0,0), as m — oo. (3.24)

N o N
(l) 82811}'0 - ™ 95w |07
P fm 2fm 5 8 fm

(1) B lo = i,\fnam
62&771[ /\ U2 62¢m

|0U + A Ut

(Z“) 922 mo 5,2 lOU;‘Z,nw
P a2¢m ) N -
(iv) 8z6w|0 = A5 100mUnUss 1 + AU mbUm,m,
0* P a O . m | 1. Pm, ..
(v) w2 lo= )‘ma?nWlOUzz['le + zAiamUmmbUzzm + )‘f’n w2 IOU22,m'

From (i), since F' has rank 0 at 0, we see B f'" =|y — 0. Recall that F,, has rank one at 0

and is of the form in § 3.7. Then 3%’{;!0 5 8O that Am — 0 as m goes to co.

From (ii), since af’" 2o = 0, we know that A2.a,, is bounded.

From (iii), since )\m — 0 and a;¢m lo =[1,0,0], we see a¢m|0 — =10,0,0].

From (iv), the second term in the right hand side goes to zero for )\ — 0, and the first
term in the right hand side is A, 222 22 |oamU2Usy m = ’\—?fi—m[l,o, 0JUUs, - Recall from (ii)
that A2 a,, is bounded. On the other hand, ‘3 ‘gm o is bounded. All of these imply that A2,a,,

2 * ok
must go to zero. Then from (u), aw2 2]y — 7“% =0.

82¢**
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From (v), the second and the third terms on the right hand side converge to zero because
of A\, and a, A2, — 0. The first term on the right hand side is bounded and can be

om
written as %ﬂ%loUiU;‘Q’m. This implies that A\,a, — 0. Then from (iv), it proves

gi?g;’”o - 36:3?1} =[0,0,0]. Our claim (3.24), as well as (3.23), is proved. N
The part (b) is already included in the above proof. For the part (c), Gy, is convergent

because of the normalization procedure of F*** from F (cf. [Hu03]) and because of the part
(a). O

The minimum property for W(F;**) implies the vanishing of derivatives of the function
W(F,;**) at po, which derives the extra equation.

In order to get this extra equation, we have to compute the first order derivatives of the
function W(F,;**), which is done by the following lemma. The proof of this lemma used the
differential formulas for F; and Fj* listed in Chapter 1. Although the computation is long,
since every time it only counts for derivative at 0 so that lots of higher order terms can be
dropped, the calculation is manageable.

Lemma 3.8.2 ([CJX06], lemma 3.1) Let F' = F, 5 ¢, ¢, and F;™* be as above. Then for
p = (20, wo) = (20, Up + i|20|?) € OH? near 0, we have real analytic functions

b%(p) = b — 4b(2ey + ) I(20) + o(1), c3(p) = 3 + 4er(ber + 2¢2)S(20) + o(1),
ea(p) + e1(p) = ea + €1 + 8b(er + e2)(z0) + 0(1),

W(F,™) = c2(p) —ei(p) —ex(p) = — ey —eg + <4cl(bcl + 2c5) — 8b(ey + 62)> 3(20)
+o(1)
where we denote o(k) = o(|(z0, u)|).
If ¢; = 0, by the minimum property, it implies that the coefficient of J(z9) must be zero.

Then we obtain
—8b(€1 + 62) =0.

Since —e; —eg = i +b? # 0, it implies b = 0.
If ¢; > 0, by the minimum property of F' = Fj**, it implies that
401(01b + 202) - 8b(€1 -+ 62) =0.

Since —e; — ey = i +b% + c% #0and ¢1,b,c0, —e1, —e9 > 0, it implies b = ¢y = 0.
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To study F', we distinguish two cases:

Case (I) 1 = b=0;
Case (II) c; #0 and b= ¢, = 0.

It was proved in [CJXO06] that F' is equivalent to a new map F, c;e e, that is of the
form in one of the following types (from Case (I), we obtain (I); from Case (II), we obtain
(ITA)(IIB) and (IIC)):

(I) F0,0761,62 = (fa ¢la ¢27 ¢37 g) is Of the form

f o2 A+ze;)zw 22
1+1elw+%2w2 ’ ¢1 1+zelw+e2w2 ’ (325)
¢ — cow ¢ — O — w+zelw2
2 T+ierwtesw?’ ¥3 9= 1+ieiw+egw?

where ejey = 2 and —e; — ey = %. Here e, € [—}1, 0) is a parameter. It then corresponds to
the family {G}}o<i<n/2 in (3.10). When e; = ~%, Fo .61, corresponds to Gy, i.e. (z,w) —
22, v/22w,w?,0); when ey — 0, Fyge, e, g0€S t0 Grj2 = Frpo, ie., (Z,w) — (2, 2w, w?).

(IIA) FC] ,0,e1,0 = (fa ¢17 ¢27 ¢37 g) iS of the form

2+ (2 +ier)zw b1 = 22 _czw
7

1+ iew T 1tdew’ P 1+iew

f: ) ¢3:07 g=w (326)
where —e; = 2 +¢f and ¢; € [0,00) is a parameter. It corresponds to the family {Fp}o<o<r/2
n (3.11). When ¢; = 0, F, o, 0 corresponds to Fy/; when ¢; — oo, Fi ., 0 goes to the
linear map, i.e., (z,w) — (z,w,0).

(IIB) Fc1 ,0,0,e0 = (f’ ¢1) ¢2a ¢3; g) is of the form:

z+ taw b = 22 crzw w
1= —_— = =
1+e w?’ 1+ eqw?’

f___

(3.27)

where —ey = 41 +¢? and ¢; € (0,00) is a parameter. Notice that when ¢; — 0, the map

F., 00, goes to the map Gy, i.e. the one in type (I) when e; = —%1.

(IIC) FC17C3761762 = (fa ¢1’ ¢27 ¢3y g) iS Of the form:

24+(E+ie))zw 22
f= e 1=

T 1+ieiwtesw?’ 1+ieq w+e22w2 ’

¢ — clzw ¢ c3w wieiw? (328)
2 Ttrierwtesw?’ ¥3 = Tfieqwtesw?’ 9= 1+iejw+esw??
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where ¢, c3 > 0, —e1, —ep > 0, ejeg =ci, —e1—ey=1+0ci

For any map F., c; ¢, ¢, in one of these four types, we denote F, c;e; ey OF (c1,c3,€1, €2),
€ K1, Kr14, K118, and Kyjc, respectively.

At this moment, it is not clear whether different such maps are not equivalent.

3.9 Proof of Theorem 3.6.1 - Part 3

It is proved by Ji-Zhang [JZ09] that the case (IIB) never occur.

We denote by K the collection of all such maps Fi, ;e e,- We may identify a map
F., cze1.0o With a point (c1, cs, €1, €2) in R%.

The set K is equal to a disjoint union

K=K;UKs

where K = {Fyy cse1.00 € K | Fereaeres 15 0f form (I)}, etc. The set K is also equal to a
disjoint union

K = Kr 11144642650 U K1 1111460126250 U K 1144601262500
_ 2
where K7 17 144e,12350 = (K1 UKr) N{(c1, 3, €1,€2) | 1+ deg +2¢7 > 0}, ete.

Lemma 3.9.1 ([JZ09], lemma 3.1)

(a) If (c1,c3,€1,€2) € K1 1114460426505 then locally the function W((FC1,03,€1,62);**) 18
increasing as p moves along any ray from 0 in OH2.

(b) If (c1,c3,€1,€2) € Krprripaesrac2=0, then locally the function W((Fey ese102)p”) 18
constant as p moves along any ray from 0 in OH? .

(c) If (c1,c3,€1,€2) € Kppritae42e2<05 then locally the function W((Fc,,cg,el,e',);**‘) 18
decreasing as p moves along any ray from 0 in OH? .

Lemma 3.9.2 ([JZ09], lemma 3.2) (i) Ki1ei<e; C Kr11144ep428250, 004
Kirei=es © Kp11144e24263>0-

(11) Let (c1,c3,€1,€2) € Kirey>e,- Then

(a) (c1,c3,€1,€2) € Kp 11144042250 Uf and only if 124l <4g < (3 +¢2)? holds.
(b) (c1,c3, €1, €2) € Ky 111 14ep422—0 of and only if 3¢ +ci = 4c3 holds.

(c) (c1,¢3,€1,€3) € Kp 11144051220 if and only if 0 < 4c3 < 1c2 + ¢} holds.
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By last section, we can consider F, ., , ., satisfying the minimum property (3.22). Such
map £, ;e e, Will contradict with the statement in Lemma 3.9.1(c). Therefore, it follows:

Lemma 3.9.3 ([JZ09], lemma 3.4) Let (cy,cs,e1,€2) € Ky UKyr. Then F., ey, satisfies
(322) if and only if Fc1,63,e1,€2 €K =K UKy - ’CI,II,1+462+2<*§<0'

This proves the part (i) of Theorem 3.6.1. From the definition of K, e; and e, are
determined by c; and c3 through a quadratic equation. This show how we obtain the
domain of the parameters ¢; and c3 in Theorem 3.6.1.

We may outline the idea for the proof of Lemma 3.9.1 here. The monotonicity in Lemma
3.9.1 (a) means

dW(F7) i WL an) — WEER)
—_— = im
dt At—0 At

>0, vt e [0,d]. (3.29)

For any 0 < t < ¢ and sufficiently small At > 0, if we can write

Fitony = (F;;;;) (330)
q(t,At)

for some differentiable map ¢(t, At) € OH?, then from Lemma 3.8.2 we should have

W(ETE an) = WERE) + [401(601 +2¢p) — 8b(e1 + 62)} (C)S(qu(£) At + o(|At]),

(3.31)
where we write g(t, At) := (qi(t), ¢2(t)) At + o(|At]). Notice that [4ey(be; + 2¢y) — 8b(ey +
e2)|(I'(t)) > 0 always holds because ¢y, ¢z, —e1 — 3 > 0. Then (3.29) follows if S(gy(t)) >0
holds. In particular, if [4c; (bey + 2¢;) — 8b(eq + €2)](I'(¢)) # 0 for any fixed ¢ € [0,4), and if
the following condition is satisfied:

S(q(t) >0, Vtelo,d], (3.32)

then the strict inequality (3.29) holds. To prove (3.29), it suffices to prove (3.32). (3.32) is
proved by local calculation of J(gy(t)).
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3.10 Proof of Theorem 3.6.1 - Part 4

As the final step to complete the proof of Theorem 3.6.1, it is proved by Ji-Zhang [JZ09] that
the cases (I)(ITA) and (IIC) indeed give a complete classification for mappings in Rat(B2, BY)
with degree 2, up to equivalent classes.

To solve the classification problem, by Lemma 3.9.3, we need to show: for maps Fi; o ¢/ e
and Foy enen e in K*, we have

Fu o et e, 15 equivalent to For o on o <= (¢}, ¢4, €}, e5) = (cf, ¢3¢, €5). (3.33)
We first prove a local version of (3.33).

Lemma 3.10.1 For any P = (¥, " e\” &) € K*, there is a neighborhood U of P©
in K* and a constant ¢ > 0 such that for any point (cy,cs, €}, €5), (¢}, c5, €l e5) € U with
Furerenen = (Fu e )3 where p = (a,b+ilal*) € OH?, a € C, b € R, |p| := max{[al, [b]}
< ¢, we have

(Cll,? Cgv e,ll’ 6/2/) = (cll’ Cg, 6,1v 6/2) (3.34)

To prove this, we use the monotone property in Lemma 3.9.1 to show:

W(Fy cyer.e,) = WIEFe cer.0,)10) S WIFe .04 )107) = WEg e erey),  (3:35)
and

W(Fc’,’,cg’te’l’,ef_,’) = W((FC"/,Cg,e’,’,efz’ 11:?3)) < W((ch',cg,e’(,eg)%?;*)) - W((Fc’l,cg,e’l,eg)' (336)
By (3.35) and (3.36), it follows that the function W((Fy ¢ e, e, )F) = constant. Then it
implies that (F ¢ e ,6/2)1’2"22‘) is constant. Since Fur oo = (Foy o et )y, Lemma 3.10.1 is
proved.

Next, we prove the global version of (3.33). We need to show: if ch°>,cg°>,eg°>,e;°> and
FESO) 20 0 0 in K* are equivalent, then

0 0 0 0 0 0 0 0
@0, & &0 &) = (e, el ). (3.37)

— _ 2
Let & := {(c1,c3,e1,02) € KUK | (Feycseren)y”™ = Fereserens VP € OH? near 0}. We
0) (0) (0) (0 :
assume that (c(1 ) ,cé ),eg ),eg )) & £ ; otherwise chm o0 0 o © and FESO),EQO),E‘P,EQO) cannot be

equivalent.
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Since F (o) (0) (0 (0 and F.o) o) ~0) 0) are equivalent,
€y ,C3 .81 4€3 € ,C3 ,€] €3
FE(IO) 7&430)5&0) 7,é;o) =Vo cho)’cgo)yego)’ego) 0O (3.38)

where © € Aut(H?) and ¥ € Aut(HP).
We take a real analytic curve L = L(s) € K* — &, 0 < s < 1, where £ is a such that
L(0) = (c(lo),cgo), 6(10)’ eéo)). In fact, since (cgo),cgo),egﬂ), ego)) ¢ &€ and & is closed, L could be

taken in a neighborhood of (c§°) , cgo), e, eéo)).

We shall use some deformation. By using automorphisms of balls, we can take a real
analytic family of automorphisms ©, € Aut(0H?), ¥, € Aut(0H®), s € [0,1], such that
when s = 0, ©g = 6, ¥y = ¥; when s € (0,1), ©,(0) # oo, ¥, 0 Fi) 0 O4(0) = 0; when
s=1,0; =Id, ¥; = Id. Then we define

Lo(s) := ¥y 0 Fi(5) 0 O, € Rat(H? H*), 0<s<1,

such that Lo(s)(0) = 0 for all s, Fioo = Vo Fre) 0O and Lo(1) = L(1). Our goal is to

show: Lo(s) = L(s), Vs € [0,1], so that Lo(0) = L(0), i.e., (3.37) holds.

Even though (F} )™ is in K for any s € (0,1], it may not be in K* because the
minimum property (3.22) may not be satisfied. We claim that (F} )™ is equivalent to
another map Fﬁ( 5 € KC*. More precisely, we want to find g(s) € OH? so that

As points in K, we show
dist <Fl:(s)’ FEO(S)) —0, ass—1, (3.40)
ie.,
diSt(Fi(s), FL(3)> — 0, as s — 1.

Since both Fj, € K* and Fy) € K* — € where s € (80,1] for some sy > 0 such that
0 <1 — sq is sufficiently small, by the local version of Theorem 3.6.1, we conclude

Fi(s) = Frs), Vs€ (so, 1].

Repeating this process. Finally by continuity F i) = Fr(s), Vs € [0,1]. When restricted at
0, Fio0) = Fi0) = FL0), so that (3.37) is proved.



Chapter 4

More Analytic Approaches

4.1 Five Facts in a Model Case

Theorem 4.1.1 [HJ01] Let F € Propy(H",H**"!). Then F is equivalent to a map that is
either linear, or Whitney map: Wy 1(z,w) = (2, w(z,w)) where (z,w) € C"' x C.

Here is the main ingredient of the proof:
1. F** can be further normalized into F™*** = (f, ¢, g):
i
f1 =2z + 52110 + Owt(?’)a
fi=2z+o0u(3), 2<j<n-1,
¢; = 212zj +0u(2),2<j<n—1,
g =w+ 0u(4),
2. Show: The geometric rank o = 1.
3. Furthermore,
i
fi=z+ AW + 0wt (3),
szzj’ 2<j<n-—-1,

¢j =212j+0wt(2),2§j Sn—l,
g=uw,

91
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4. F' is equivalent to a map that satisfies
F= (211?1, 22,-~~>Z‘n1721$1;---,Zlan—l,w)‘
Here ® = (f1, 1, ..., an_l) defines a biholomorphic map from H" onto B".

5. In particular, the restriction F|{,,—¢} is linear fractional.

4.2 Generalization of the Five Facts
The above five facts are generalized into the following results:

1. Theorem 4.2.1 ([H03]) Let F € Propy(H",H). Then F is equivalent to a map

Ey = (f7, 05, 95" of the following form:

KKK K * « . i5j

fl,p = Z]i]_ ijlj(zyw), flj(sz) = 527 + _2me + O(‘(Z, w)l2), l S Ko:
ip =2itouw3), ko+tl<j<n-—1

¢f1:,2 = wrzze + 0wt (2), YV (Lk) €S;

g=w+ Owt(4)7

where
So={(,):1<j<koj<l,1<I<n-1}
is the index set for those ¢y that have non-zero coefficients of the z .z, terms,

(2n — m;, - 1)@}

S:zSOU{(j,l) | j=ko+1,ko+1<I<N-n-—

is the index set for all ¢y p, and

i = ij‘*”Mh fOT'j,lSK)O,j?él, (41)
’ 1, if j<kgandl> kgorif j=1< k. .
J

(To see the outline of the proof, see Theorem 4.3.1 and its proof).

oKk

2. Due to the existence of the non-zero 2z terms of ¢y}, above, which “occupy the room”
in OBY, as application of Theorem 4.2.1, we immediately obtain the following result,
which generalizes the second fact of the above five ones.
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Corollary 4.2.2 Let F € Prop,(H", H"Y) with geometric rank ro. Then

KJO(QTL — Ky — 1)

N>
2 n+ 5

This inequality is sharp.

(Its proof will be found in § 4.3.)

[Example] If F' € Propy(B",B**™!) with n > 3, then ko < 1. In fact, this follows
from the inequality 2n — 1 > n + '“’(2";2"0'1)- O

3. Theorem 4.2.3 ([HJX06], theorem 3.1) Let F € Props(H",H") with geometric rank
ko < n—2. Then F is equivalent to a map F;** = (f;**, 5", g;**) of the following
form:

( pasx * * j i)

= gz w), filzw) =6 + 5w+ O(|(z,w)P), 1< ko
=%, kot+l<j<n—1
3 ¢71:;> = k212K + 2;11 zj(pzkkj,p) (Z)z(lcj,p(za w) = 0yt(2), for (I,k) € So;

By = 2o Zi%ikip = Oz, w)*) for (k) € S = So;

L9, = w;

Let us outline the idea to prove g, = w and f77* = zj, Veot+1<j<n-—1.

EET g

First we consider to prove g5** = w. It needs the following lemma:

Lemma 4.2.4 Let F = F** € Prop,(H", HV). If we further assume that g(0,w) = w,
then g = w.

Proof: ~ Write g = > °_, g™ where ¢(™ is a weighted homogeneous polynomial of
weighted degree m.

Considering the weighted 2k order terms in the basic equation Im(g) = |f~|2 over
Im(w) = |2|%, we obtain

2k—1n-1 2k—1 N—n

Im(g®) =33 AT Y0 ol (4.2)

I=1 j=1 =1 j=1

<
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whenever Im(w) = |z|?. Since the right hand side doest not contain the z’ terms with
|I| = 2k, g®*) cannot contain the z! terms with |I| = 2k. Since g(0,w) = w, g%
cannot contain the w* terms. Hence

k-1
g(%):z Z crzlw?.

p=1 |I|=2k-2p

Since ¢(0,w) = w, from the basic equation Im(g) = |]7|2 on OH,,, it implies f(O, w) = 0.

Then f does not contain the w? terms for any p > 1. By comparing the z/u” terms in
(4.2) where |I| = 2k —2p, ¢; = 0. Thus g®**) = 0. Similarly, we obtain that g%+ =0
for k > 1. Therefore g(z,w) = w. O

We suppose that F, in addition, is C®-smooth on OH", and want to show that if the

Hokk  —

map F;** is as constructed in Theorem 4.2.1, then it satisfies g, = w. In fact, by
Hopf lemma 1.7.3 and Lemma 4.2.4, it is sufficient to prove Lemma 4.2.5 below.

Lemma 4.2.5 ([H03]) Let F be a C3-smooth map from M C 0H,, into OHy satisfying
the condition for F;** in Theorem 4.2.1 with 1 < kg <n —2. Then

9(0,w) = w +o(|wl?).

Next we show that f; = z; for ko +1<j<n-—1.

At this moment, we would like to assume the following “semi-linearity” property (see
the fact five, or [H03]):

F(0,...,0, 2kg41y -y 201, W) = (0, .., 0, Zgt+1y s Zn-1, 0, ..., 0, w). (4.3)

From (4.3), we can write f; = >3,° zf5 and ¢ = >7)°) z¢;. Then from the above

3 : Kkk
sections, we can write F;** = (f, g) as

fr=237722115(2), 1< kg

fe=2+ 2;21 zifr;(2), k>kKo+1;
G = 2z + 350 280 (2), (LK) € So;
Pst = Z;il Zj¢:t,j(z)) (37t) €S —S;

g=w.
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Substituting these into the equation Im(g) = |f | Fix k > ko + 1. Considering the
terms Zxzu' (for arbitrary I and i) in Im(g) = | f|?, we have

KO
0=z Z zifrj(z,u+ i|z|?).
j=1

Hence 3 7%, fi i(2) = 0. This implies fy = z; for Ko +1 <k <n—1.

4. Theorem 4.2.6 ([HJX06], p.523) Let F € Props(B",B") with 3 < n < N and

geometric rank kg < n — 2. Then F is equivalent to a proper holomorphic map of the
form

H= (Z], vy Bn—ko» Hl, caey HN—n+no)7

where H; = > _ror1 2 H 1 with Hj, holomorphic over Br. When ko = 1, F €
Propg(]B" BY) is equivalent to a new map (2, wh) where h € Rat(B",BY 1),

5. Theorem 4.2.7 [H03] Let F € Props(H",HY) with geometric rank ko < n — 2. The
Vp € B", 3 affine (n — Ko)-dimensional complex subspace S; containing p such that

Flsg is linear fractional.

4.3 How to Construct F**?

Recall for any F' € Prop,(H",HY), F is equivalent to F** = (f**, ¢**, g**) such that
fr=z+ %a**(l)(z)w +ow(3), 0 =67 (2) + om(2), g = w+owm(d), (44

(z, W (2) 2> = |97 (2) .
We can further normalize this map to get more properties while it preserves the above
properties of F™**.

How to define F*** in Theorem 4.2.1 from the map F** preserving the property (4.4) ?
Consider o € Auto(H,) and 7 € Auto(Hny):

_ (Mz+aw) - U, Yw)
C1-2i(@, z) + (r —ila]P)w

(4.5)
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where A > 0,7 € R, ais an (n — 1)-tuple and U is an (n — 1) x (n — 1) unitary matrix. Let

()\*(Z* + a*w*) . U*, )\*2w*)
* * * — - 4‘
(W) 1 —2i(a*, z*) + (r* — i|a*|?)w* (4.6)

where A* > 0, 7* € R, a* is an (N — 1)-tuple and U* is an (N —1) x (N — 1) unitary matrix.

Theorem 4.3.1 [H03] (A) Let F = (f,$,9) and F* = (f*,¢*,g*) be C?-smooth CR map
from a neighborhood of 0 in OH" into OHY (N > n > 1), satisfies the condition (4.4).
Suppose that F* = 1* o F o o where o and 7* are as in (4.6) and (4.6). Then it holds that

* -1 * -1 * * -2 * U—l 0
NM=A"al=—-X"0a-U a;=0,r"=-\""r, U= . (4.7)
0 Uj

where a* = (a},a}) with a} its first (n— 1) components, Uy, is an (N —n) x (N —n) unitary
matriz. Conversely, suppose T* and o, given as above, are related by (4.7). Suppose that F
satisfies the condition (4.4). Then F* :=1* o F' o o also satisfies the (4.4).

(B) Let F and F* := 7* o F o o both satisfy the condition (4.4). Let us denote

f(zw) = 2 + §zAw + %%J(,}u? +o(|(z,w)[?),
F(z,w) = 2 + Lz A*w + 1 5L [ow? + o(| (2, w)[?).

and
— 2
P(z,w) = 32(B, ...,, BN")z" + zBw + %5;‘*%|02w2 +o(|(z,w)|?),
1 - 1 9%¢*
¢*(z,w) = 22(B*, ..., BN ™)zt + 2Bw + 25 [ow? + o(|(z,w)[?),
where ‘
3% fi Rl
0210w 0210w
A=-2i] : :
_.Qz.fL._ e ._a_i'li 0
Ozp—10w Ozp—10w
is the (n — 1) x (n — 1) matriz,
Py Péwy . P
Bz% 021022 02102n-1
2P %1 . 021
Bk = '8212821 ' 6222 ‘C')zzazn_]A , 1 < k S N —n,
: : : 0
) ¢y . %y

Ozpn—1021 Ozp-—-10z2 anz -1
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are (n — 1) x (n — 1) matrices, and

%¢(1) o Pd(N=n)
Oz10w Oz10w
B=1 : :
8%¢1) L 2PN —n) 0
Ozp—10wW 0zp—10w
is an (n — 1) x (N —n) matriz. A*, B* B* are defined similarly. Then
A= NUAUY,
*f 2 1 30 et
52 (0) = iXaUAU" + A W(O)U :
2(B*, ..., B*N"")zt = \2U(BY, ..., BN "")U"2'Us,,
B* = \U(B',.., BN""U''Us, + NUBU3,, ( (4.8)
L1298 — 13aU(BY, ..., BN-")U'aU3, + N2aUBU3, + X° 540Uz,

(C) Let Fy be a non-constant C? CR map from M C OH, into OHy. Assume that
Fy =710 F o0 with o € Aut(H,) and 7 € Aut(Hy). Then

Rsz (p) = RkF1(a(p))~

The normalization F*** in Theorem 4.2.1 is constructed by 7 o F o ¢ for appropriate
choice of 7" and o.
Proof of Theorem 4.2.1:  (a) (b) By Theorem 4.3.1.

(¢) Since f; already are as in (2.8.1), from (2.72), we get 72, plz*[21* = 32, |¢§2)(z)|2.
Write ¢§2)(z) = k< agjl)zkzl. Then (2.8.1) becomes

S wilzPlel? =Y o aphzenz
J=1 J
Write o, = (a§}), . a%v—n)). We have
0, if (k1) # (K1),
pe + p, if kU< ko k #1L, (k1) = (K1),

Pk ’Lf k < Ko, I > Ko, (k7l) = (kl,l,)?
e, if k=1<rko, (k1) = (K1),

<ak‘,la W> =
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Hence {a;1},)es, is a linearly independent system. This implies that N —n > |Sy|. We
extend {la”l} to an (N —n) x (N —n) unitary matrix U;, and we replace ¢ by ¢~U_2*2t. From
the first identity of (4.8), we are done. [J

Proof of Corollary 4.2.2: It follows from N —n > |Sp|. O

4.4 Where is the Condition x5 <n — 2 used ?

In Theorem 4.2.3 above, a very crucial condition is K9 < n — 2. This condition indeed
produces exact equations for the map F. In fact, by the normalization F**, we have the
curvature information:

(z, 0,V (2))2* = |62 (2)]” (4.9)
Write ap"(2) = 2.4, where
82f
Ap = 2 <8z]6w )

is an (n — 1) X (n — 1) Hermitian matrix.
Remarks
e The matrix A, is semi-positive because of (4.9).

e (4.9) can be written as

2AZ 3 = 1670 )P

Then for a non zero vector z, we have

6P =0 <= 247 =0
< 2A4,=0  (because A, > 0)
= @) =0

e We define a vector space &, := {£(p) € C"™ | {(p) - A, =0} # 0. Then

Ep) €&, = ¢ (Ep) =0

From these equations, it derives more equations by taking differentiation that make
Theorem 4.2.3 possible.
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4.5 Structure Theorem For Rank 1 Maps

As an application of Theorem 4.2.3, we have the following structure theorem on maps with
geometric rank one. The key condition here is kg < n — 2, which allows the maps have more
rigidity property.

Theorem 4.5.1 ([HJX06], theorem 1.2) Let F € Props(B",B") with 3 < n < N and
geometric rank 1. Then F is equivalent to a proper holomorphic map of the form

H = (Zlv"' 7Zn—~17H17." 7HN—11+1)7

where (Hy, -+ ,Hy_ny1) = w-h with h € Rat(B",BN=""1). Both H and h are affine linear
maps along each hyperplane defined by w = constant.

In fact, from Theorem 4.2.3, when xg = 1, we have

4 " i
= afi(zw), fizw) =1+ 5w+ O0(|(2,w)]?),

fiyr=2%, 2<j<n-1

Q Bis, = k2126 + 21071y Drip(2, W) = 0u(2), for 1<k <n-—1

Py = 2Py = O(|(z,w)]?) for2<¢<N-2n+1,

(g =w.

By Cayley’s transformation to obtain a new map H : B" — BV:
H = (Hh Ry ey An—1s Hn7 L) HN—nv w)

We can make change on variables in the following way:

| e Zn
{227"'7 Zn—-l} s {Zlv'“vz’n-—Q}
w - Zp—1

so that
H = (z17 ey Zn—1s H17 H?? ceey HN—‘n+1)~

As an application, we show the following result.

Theorem 4.5.2 [HJX06] Let F € Rat(B",BY) with geometric rank ko = 1 and n > 3.
Then deg(F) < =1
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Proof::  For each N > n > 3, there is a unique positive integer k such that k(n —1)+1 <
N < (k+1)(n —1). We use induction on k. When k = 1, F € Rat(B",B*"2), by the first
gap theorem, so that deg(F) =1 < % holds. Assume deg(F') < % holds for any k.

Consider k + 1, by Theorem 4.2.6, F is equivalent to (z,wh) where h € Rat(B",BN-"*1).

. N-n+1)-1 -
Then by the assumption, deg(F) < 1+ deg(h) <1+ % =

4.6 Proof of the Second Gap Theorem

The second gap theorem can be restated as

Theorem 4.6.1 [HIX06] Let F € Prop;(B",BY) with4 <n < N <3n—4. Then F is
equivalent to (Fy,0) where

Fy = (2, wcos 0, zywsin 0, ..., zn_1wsin 0, w’sin 0)
for some 6 € [0, 5].
e In 2005, Hamada proved that any F € Props;(B", B?") is equivalent to Fy for some
0 €[0,7].
e By the inequality N > n+ M—;ﬁgﬁ, under the condition N < 3n —4, it implies that

the geometric rank kg of F'is <'1.

e Applying the structure theorem 4.5.1 for rank 1 maps, we can write
H:= (21,';’ s2n1, Hi, -+  HN ny1),
where (Hy, -, Hy_ny1) = w - h with b € Rat(B", BV ~"*1). Here
N-n+1<3n-4-n+1=2n-3.

Then we can apply the first gap theorem to implies h is linear map.
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4.7 Rationality Problem

In 1989, Forstneri¢ proved [Fo89] that if F' € Propy_n+1(B™,BY), then F must be a rational
map with degree deg(F) < N?(N —n +1).

Theorem 4.7.1 ([HJX05], Corollary 1.8) If F € Props(B",BY) with either ko <n —1 or
N < @, then I must be rational.

e In order to prove that F' is rational, by a theorem of Frostneri¢, it suffices to prove
that F' is smooth on OH,.

e Under the hypothesis, F' has partial k-linear property: for any point Z € B" — E
where E is an affine subvariety, there is a unique k& dimensional complex subspace Sz
on which F is linear fractional.

e Assume that 0 € B" — E and Sy = {z | k41 = ... = 2, = 0}.

e Construct a holomorphic map ¥ from a neighborhood of a rectangle (—1 —€,1 +¢€) x
(—€,€) in C¥ x C"* to a neighborhood of (=1 —¢,1+¢) x {0} in C*¥ x C"~* such that

— U|g, = Id. (= V¥ is locally biholomorphic when e is small)

— For each line segment L ) that (i) passes through the point (¢,7) and (ii) L,r
and Sy are parallel, we have

U(Lwry) C Son)-
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T v

e For each fixed 7, since
Fls,,, = linear fractional,

we have

F(r)+ 5, A1)t
1+ 35 bi(n)t

On the other hand, we take a power series at the origin:

Fo¥(tT)=

FoV¥(tT)= ZC’Q(T)t”‘ is holomorphic near (0,0).

Calr) s Lofomorphic A;(7),b;(7) and F(r) are holomorphic of 7 near 0.

e FoW(t,7) is holomorphic of (¢,7) whenever 7 ~ 0 and for any ¢.

e By the construction, F o ¥(t, ) is holomorphic is holomorphic of (¢,7) whenever (¢, 7)
in the rectangle (—1 —€,1 4 €) X (€, €).

e Choose Z; in the rectangle such that F(Z;) € 0B". Then
F=(FoW)o (¥

is holomorphic near F(Zj).
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e F is C* near F(Z)), so is on OB™.

e By Forstneri¢ Theorem, F' is rational.
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Chapter 5

More Geometric Apprdaches

5.1 Cartan’s Moving Frame Theory

Invariants of a surface in E® at a point[IL03] Let us consider (S,p) where S is a
smooth surface in E3 and p € S is a point. To study (S, p), we could put (S, p) into a better
position (normalized position). Namely, by taking a rotation and a translation, we can move
S so that p = (0,0,0) is the origin and the real surface S as a graph of a function f and
that the tangent plane of S at 0 is the zy-plane:

z = f(z,y), £(0,0) =0, f,(0,0) = f,(0,0) =0. (5.1)
Geometrically, we moved the (S,p) into a “normalized position”. Analytically, we have
chosen a special coordinate system. Such normalization position for S is not unique; in fact,
the above properties are preserved if we take any rotation in the xy-plane.
Suppose

2= fle,y) =) apa’y,
gk

where a9 = f,(0) = %ﬂo, az0 = 3 fox(0) = %%Io, etc.

If a function h(a;x) is invariant under any rotation in the zy-plane, h(aj;i) is called a
differential invariant.

For example, we consider Hessian

Jaz fyz
Hess(0,0) = [fzy fyy] (0,0)
to define
{Km, 0) = det(Hess(0,0)) = (frafyy = foufys)(0,0), 52)
H(0,0) = 3Trace(Hess(0,0)) = 1(foz + f4y)(0,0). '

105
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We can verify that K(0,0) and H(0,0) are differential invariant. In fact, they are the value
of theGaussian and mean curvatures at the origin.

In the above, we fix a coordinate system (i.e., x-y-z ) and the origin, which may be called
a frame. Roughly speaking, a “frame” means: a choice of coordinate system, or a better
position, or a normalized position, or an orthonormal basis of the tangent plane with the
origin. In other words, we fix a frame at 0 of S.

Moving frames Consider a curve C' in the space E3. Recall the Frénét-Serret frame: at
any point at C, it has three vectors T, N and B, where T is the unit vector tangent to the
curve, pointing in the direction of motion, N = 4T /||4L || is the derivative of T with respect
to the arclength parameter s of the curve, and B = T x N is the cross product of T and N.
It has

dT _

= kN,

9‘% = —xkT + 7B,
8 _—  _rN,

ds
where k is the curvature of the curve and 7 is the torsion of the curve.

We see that at every point p of the curve, there exists a frame (T, N, B),. These frames
are continuous (or differentiable) of p. We call such frames moving frames along the curve.
In this situation, every point is treated equally (no point is more special) and every frame
is treated equally. x and T are invariants.

Cartan’s moving frame theory will study submanifolds in which every point and every
frame will be treated equally and that we should obtain some invariants.

Klein’s Erlanger Programn Let G be a Lie group, and H C G a closed Lie subgroup. Let
X := G/H, the set of left cosets of H, is a homogeneous space with the induced differential
structure from the quotient map. For material in this section, we refer [ILO3].

By Klein’s Erlanger Programn, we’ll study geometry of submanifolds M C X = G/H,
where two submanifolds M, M’ C X are equivalent if there is some g € G such that g(M) =
M.

G

s/ l
M — X=G/H

[Example] Let us go back to real surfaces S — E3:

G = ASO(3)

F 7
S — E*=G/H
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Here i : S — E3 is the inclusion map,

G = ASO(3)
the group of motions in E?

the space of orientated orthonormal frames of E?

— the bundle of oriented orthonormal bases of E?
= All adapted coordinates in E?

_ &M=<12)JGR{BESWQ}
H = 50@3)

= all rotations.
F = A first-order adapted lift (or a section)
= A choice of adapted coordinates

= A normalized position

Write a lift F(p) = (eo(p),e1(p), e2(p), es(p)) where eo(p) = [1,z,y,2]" where p =
(z,y,2)t €S, (e1, ez, e3)(p) are orthonormal, and span(ei(p), e2(p)) = T,S. We said that F'
is a first-order adapted lift.

If we fix one lift F(p) = [11) Iod] , then any other first-order adapted lift F of S is of the

form

100
F=F|0 R 0| =Fr (5.3)
00 1

where R : U — SO(2) is a smooth function.

For each fixed point, we regard F(p) is a frame (or normalized position) for S, regard
another adapted lift F(p) as another frame (or normalized position) for S, and regard the
matrix-valued map r(p) is a rotations in the zy-plane. A section F' is regarded as a family
of frames (moving frames). O

In order to find differential invariants which are independent of choice of any such map
r, we reformulate (5.3) in terms of Cartan’s moving frame theory. One key idea to do this
or to carry out the Klein’s Erlanger Programn is the following theorem.

Theorem 5.1.1 (Cartan’s theorem, [IL03]) Let G be a matriz Lie group with Lie algebra g
and Maurer-Cartan from w over G. Let M be a manifold on which there exists a g-valued
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1-form ¢ such that dp = —¢ A ¢. Then Vx € M, there ewists a neighborhood U of x and a
map F : U — G such that F*w = ¢. Moreover, any two such maps F' and F must satisfy
F = LgoF for some fixed a € G, where L, is a left translation of G.

Lie group and Lie algebra Let V' be a real vector space of dimension n. Let GL(V) C
End(V) denote the group of all invertible linear maps. Let G be a Lie group. A linear
representation of G' is a group homomorphism p : G — GL(V). If V is endowed with a
basis, we call the image p(G) a matriz Lie group.

Let gl(V) = End(V) = V ® V*. We identify gl(V') with the set of n x n matrices where
n = dim(V). We define a skew-symmetric multiplication [, ] on gl(V) by

[X,)Y]=XY -YX,
where XY is the usual matrix multiplication. One can verify the Jacobi identity
(X, [V, 2] + [V, [Z, X]| + [2,[X, Y]] = 0, VX, Y, Z € gl(V).

A Lie algebra is a vector space g equipped with a skew-symmetric bilinear operation
[,]:9%xg— g, called a bracket, that satisfies the Jacobi identity.

Let G be a Lie group. For each g € G, we define the left translation:
Ly:G— G, h— gh,

which derives
(Lg)* . ThG d TghG.

A left-invariant vector field is a vector field X over G such that
(Lg) X =X, VgeQaG.

Since Lie bracket of two left-invariant vector fields is also left-invariant, the space of left-
invariant vector fields T*(T'G) is a Lie algebra of I'(TG).

A left-invariant vector field is determined by its value at just one point (say, at the
identity element e € G) because it is given at all other points by pushforward under left-
translation. Thus we may identify ['‘(TG) with T.G. We define g = I':(T'G) ~ T.G to be
the Lie algebra of G.

If G € GL(V) is a matrix Lie group, then g ~ T.G C gl(V) = End(V) is a matrix Lie
algebra.
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Maurer-Cartan form —— the intrinsic definition = Maurer-Cartan form is defined
over a Lie group G. It is not a standard one-form, but rather a g-valued one-form. If V' is a
vector space and M is a manifold, then a V-valued one-form is a collection of smooth maps:
T.M — V. In other words, it is a smooth section of T*M ® V. (If V =R or C, it is the
standard one-form. In our case, V = T,G where e is the identity element of G.)

The Maurer-Cartan form w is a g-valued one-form on G defined by

w: T,G — T.G
v o~ w() = (dLy- )

In other words, given an arbitrary Lie group G, we let g denote its Lie algebra, which
may be identified with T,G (i.e., with the space of left-invariant vector fields). The Maurer-
Cartan form w of G is the unique left-invariant g-valued 1-form on G such that w, : T.G' — g
is the identity map.

Maurer-Cartan form — the extrinsic definition If G C GL(n) by a matrix valued
inclusion g = (g; ), then one can write w explicitly as

w =g 'dg,
where dg : T,G — gl(V') is the inclusion.

When G is a matrix Lie group, since w = g~1dg is a left-invariant g-valued 1-form such
that w. : T.G — g is the identity map, then by the uniqueness, these two definitions of
Maurer-Cartan form are the same.

We have the Maurer-Cartan equation:
dw = —w A\ w. (5.4)
In fact, 0 = d(Id) =d(g-g~') =dg-g~' + gdg~'. Then dg~' = —g~'dg - g" so that

dw=d(g7'dg) =dg ' Ndg=—g7'dg- g7 Ndg = —w Aw.

Transformation formula We consider the following diagram commutes:

G

F/ |n
M < G/H
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Given a lift F of f, any other lift F : M — G must be of the form

for some map a : M — H. It satisfies

F*(w) = a ' F*(w)a + o~ da. | (5.6)

[Example] Going back to a surface S .C E3.

G = ASO(3)

F/ X
S < E=G/H

10

; B) .t € R:,B € SO(S)}, H = SO(3) and F is a

Here G = ASO(3) = {M = (

first-order adapted lift.

Write a lift

F(p) = (eo(p), €1(p), e2(p), e3(p)) = E? B(()p)J

where eg(p) = [1,,y, 2", p = (z,y,2)" = (z,y,2(z,y))! € S, (e1, eq, e3)(p) are orthonormal,
and span(e(p), e2(p)) = T,5.

Since ¢ := F~'dF is a g-valued one-form satisfying the equation dp = —¢ A ¢, as in
Theorem 5.1.1. Then F*w = ¢, where w is the Maurer-Cartan form over G.

We calculate ¢ = F~'dF which equals to

0O 0 0 O 0O 0 O 0
1 0] o o] _[ o 0 ] _[6" o ¢ o5 _|¢8 0 —¢F —¢
p B| |dp dB|~ |B7ldp B7B|” |¢* ¢ ¢ 2|  |#® 2 0 —¢3
¢ & o3 o3| |6 ¢ 0

Then dF = F¢, i.e.,

0 0 O 0
¢t 0 —¢5 —¢}
deg, dey, des, e3) = (eg, €1, €9, €
(0 1 23) (60123)¢2¢% 0 _¢%

¢ & ¢ 0
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Hence dey = e1¢! + e3¢? + e3¢®. On the other hand, dey = (0,dz,dy,dz(z,y))" is in the
tangent space, i.e., in span(e;,e;). Therefore, we have dey = ei¢! + e3¢?, ie., deg =
e1 F*(w') + ea F*(w?) so that

¢ = F*(w®) =0, and ¢* A ¢* = F*(w' AW?) #0, VpeS. (5.7)

By (5.7), 0 = F*(w3) implies
0 = F*(d?).

By dw = —w Aw, we get 0 = —F*(w} Aw! +wi Aw?). By (5.7) F*w! and F*w? are linearly
independent, we apply Cartan lemma ! to obtain

3 1
(Wi _ o (P11 P12 « (W
e G (@)

where h;; = hj; are some functions. We denote by hp = F*(h;;) the matrix-valued function:

3 1
« (W) o fw
F (wg) — heF (w>

If F is another adapted lift, we must have

F=F

S O

0 0

R 0] =Fr,

0 1

where R : U — SO(2) is a smooth function. Then from F*(w) = F'dF and F*(w) =

F~1dF, we have

F~Y'dF = (Fr)"'d(Fr) = r"{(F'\dF)r + v 'F~'Fdr
0 0 0 0

1 1 2 .3 1 0
~| rr |p|v, O e R |+| R4R
1 w® wi 0 —wj 1 0
Wb oWl Wl 0
In particular,
S (W -1 w! (3 3 3 3
F* w2 = R F* w2 s F*(w17w2) = F*(wl,w2)R. (58)

ICartan’s lemma: Let vy, ..., v; are linearly independent vectors and let wy, ..., w;, are vectors such that
wy Avy + ... +wp Avg = 0, then w; = 37, hyjv; where hy; = hyji, 1 < 4,5 < k.
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Since R~! = R?, we also have
hz = R-'hgR. (5.9)

Then we obtain two invariants: the mean curvature H := %tmce(hp) and Gauss curvature
K := det(hp), which are well defined on U or M.

The case of n-dimensional submanifolds in E"**  For high dimensional situation, we

consider
1 0

G=ASO(n+s)———{M:(t e

) teR"™ Be SO(n+s)}
which is the group of Euclidean motions,
H=50(n+s),
which is the group of rotation and
X =E"* = ASO(n + s)/SO(n + s).
Let M C E"*5 be an n-dimensional submanifold.

A map

s = (eg, ej,€p) = E 103] M -G (5.10)

is called a first-order adapted lift if ey = (1,z)', € M, (ej, e;) are orthonormal,
span{e;(z)} = T,M

and ep(x) are normal to M. Consequently,
s*dz = 0 mod{z, e;}. (5.11)

Let F! denote the subbundle of ASO(n + s)| of orientated first-ordered frames for M.
If 5 is another first-order adapted lift, then § = s - g where

0
0

ol o

1
g=10
0 u

o Q

where (g;) € SO(n) and (ug) € SO(s). In other words, the motions in the fiber of F' are
given by such g.
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As the same argument in Example above, the Maurer-Cartan form over ASO(n + s) is
of the form

0 0 O
w=|uw i w]. (5.12)
wt Wi wy

ds = s(s*w). We have

dz = ejw’ + eqw™.

Then pulling back by s, by (5.11), we obtain s*w® = 0 so that

s'dw® = 0. (5.13)
From dw = —w A w:
0 0 0 0 0 O 0 0 O
dw' dwli dwp | =—|W W oW AW oWl W] (5.14)
dw® dw§  dwy w* Wi wy w Wi wy

and by (5.13), we obtain
—s"(wj A wl) =0.

By Cartan’s lemma, we write
* a __ pa %,
s'wi = hijs'w

where h{; = hj;. It can be verified that hi;s*w's*w! ® e, is independent of choice of first
order adapted lifts. Therefore it defines the second fundamental form of M
Iy = hfjs*sz*wj ®e, € T(M,S*T*M @ NM)

where N M denotes the normal bundle of M.

5.2 Flatness of CR Submanifolds

In Euclidean geometry, for a real submanifold M™ C E"**, M is a piece of E" if and only if
its second fundamental form I1; = 0.

In projective geometry, for a complex submanifold M™ C CP"**, M is a piece of CP" if
and only if its projective second fundamental form Iy, = 0 (c.f. [IL03], p.81).

In CR geometry, we prove the CR analogue of this fact in this paper as follows:
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Theorem 5.2.1 (Ji-Yuan [JY09]) Let H : M’ — OBN*! be a smooth CR-embedding of a
strictly pseudoconvexr CR real hypersurface M’ C C™™1. Denote M := H(M'). If its CR
second fundamental form 11y = 0, then M C F(0B"!) C OBN*! where F : B*+! — BN+!
s a certain linear fractional proper holomorphic map.

It was proved by P. Ebenfelt, X. Huang and D. Zaitsev ([EHZ04], corollary 5.5), under
the above same hypothese, that M’ and hence M are locally CR-equivalent to the unit
sphere OB™*! in C"*!. This result allows us to consider

G =SU(N +1,1)

s/ I
F:0H""! - M = F(OH"*!) —  OoBN*' =G/H

There are several definitions of the CR second fundamental forms Iy of M. We have
to prove that the above theorem is true for all of these definitions.

e Definition A, intrinsic one (Webster).
o Definition B, extrinsic one (cf. Ebenfelt-Huang-Zaitsev(2004)).
e Definition C, Cartan moving frame theory, with the group G = GLY(CN + 2).

e Definition D, Cartan moving frame theory, with the group G = SU(N +1,1).

5.3 Definition A, the CR Second Fundamental Form

Let (M, ) be a strictly pseudoconvex pseudohermitian manifold where 6 is a contact form.
Associated with a contact form 6 one has the Reeb vector field Ry, defined by the equations:
(1) dO(Ry,-) =0, (il) O(Ry) = 1.

If there are n complex 1-forms 6* so that {6, ...,6"} forms a local basis for holomorphic
cotangent bundle and

o =i hz0°NO° (5.15)
a,f=1

where (h,3), called the Levi form matriz, is positive definite. Such #* may not be unique.
Following Webster (1978), a coframe (6, 6*) is called admissible if (5.15) holds.
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Theorem 5.3.1 (Webster, 1978) Let (M?*1,0) be a strictly pseudoconvez pseudohermitian
manifold and let 87 be as in (5.15). Then there are unique way to write

Ao =Y 0" AW +ONT, (5.16)

=1

where T are (0, 1)-forms over M that are linear combination of 6% = 02, and w? are 1-forms
over M such that _
0= dha'ﬁ' — hﬁwg - haqw%. (5.17)

We may denote w,5 = h.zw] and Wgs = hoﬁwg. In particular, if

hag = 0ap, (5.18)

the identity in (5.17) becomes 0 = —w,5 — Wpa, i-e.,
0=w’+ w%. (5.19)

Lemma 5.3.2 ([EHZ04], corollary 4.2) Let M and M be strictly pseudoconvez CR mani-
folds of dimensions 2n + 1 and 2n + 1 respectively, and of CR dimensions n and n respec-
tively. Let F': M — M be a smooth CR-embedding. If (0,0%) is a admissible coframe on
M, then in a neighborhood of a point D Eer (M) in M there exists an admissible coframe
(9, 64) = (0,0%,0*) on M with F*(0,0%,6%) = (0,6%,0). In particular, the Reeb vector field
R is tangent to F'(M). If we choose the Levi form matriz of M such that the functions hz
in (5.15) with respect to (0,0%) to be (3,3), then (6,64 can be chosen such that the Levi
form matriz of M relative to it is also (045). With this additional property, the coframe

(g, gA) is uniquely determined along M up to unitary transformations in U(n) x U(n — n).

If (9,6%) and (,64) are as above such that the condition on the Levi form matrices in
Lemma 5.3.2 are satisfied, we say that the coframe (6, 64) is adapted to the coframe (6,6%).
In this case, by (5.19), we have § = F*0, * = F*6*, and

n
do* = 0 AwS+OAT, 0= wi+uS, Vi<a,B<n,
=1

and

do* =N 0O NGE+ONF 0= D5 +a5, VI<ABLN.
B=1
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For simplicity, we may denote F*# by wi. We also denote F*& 45 by w45 where w5 = w5.
Write w } = wa”ﬂﬁﬂ. The matrix of (w 5 1 <a,B8<n,n+1<pu<h, defines the CR
second fundamental form of M. It was used in [W79] and [Fa90].

5.4 Definition B, the CR Second Fundamental Form

Let F: M — M be a smooth CR-embedding between M C C"*! and M C CN*+! where M
and M are real strictly pseudoconvex hypersurfaces of dimensions 2n + 1 and 2n + 1, and
CR dimensions n and 7, respectively. Let p € M and p = F(p) € M be points. Let p be a
local defining function for M near the point p. Let

Ex(p) = spanc{L’(pz o F)(p) | J € (Z+)",0 < |J| < k} C T;°C*,

where pz := 0p is the complex gradient (i.e., represented by vectors in C¥*! in some local
coordinate system Z' near p). Fy(p) is independent of the choice of local defining function
p, coordinates Z’ and the choice of basis of the CR vector fields Lz, ..., Lz.

The CR second fundamental form 11y, of M is defined by (cf. [EHZ04], §2)

I1y(X,,Y,) = (XY (57 o f)(p)) € TyM/Ex(p) (5.20)

where p = 0p is represented by vectors in CN*! in some local coordinate system Z' near
p, X,Y are any (1,0) vector fields on M extending given vectors X,,Y, € T °(M), and

T T{]\/.T — Tzi,M/El(p) is the projection map.

5.5 Definition C, the CR Second Fundamental Form

Groups and geometry In Euclidean geometry, we consider

G = ASO(n + s)
s/ Il .
M — E"*=AS0(n+s)/SO(n+s)

In projective geometry, we consider

G = GL(CN+Y)

s/ I
M < CPV
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In CR geometry, we will consider

G = GLR(CN+?)

s/ UK
M < OHN+1

in this section and

G =SU(N +1,1)

s/ L

in the next section.

Construction of the group GL?(CN*?)  We consider a real hypersurface @ in CN*?
defined by the homogeneous equation

(2,2):= 277 + %(WZN“ _ Z978) =, (5.21)
A

where Z = (2°, 24, ZN+1)t € CN*2. Let
mo : CN*2 — {0} — CPY*Y, (20, ey 2v41) = (20 0 et 2N, (5.22)

be the standard projection. For any point z € CPN+!, 75! (z) is a complex line in C¥N*2—{0}.
For any point v € CN*2 — {0}, mo(v) € CPNT! is a point. The image m(Q — {0}) is the
Heisenberg hypersurface 9HN 1 ¢ CPVFL.

For any element A € GL(CN*2):

0 0 0
aé,) ag) agv)ﬂ
b dV W
A=(ag,.,ani1) = | ! N+l e GL(CN*?), (5.23)
N+ (N4 N+1
al™ gV Y

where each a; is a column vector in CN*+2 0 < j < N +1. This A is associated to an
automorphism A* € Aut(CPV*!) given by

N+1 N+1 N+1
* N
A <[zo Y TR zN+1]) = [Zago)zj : Zagl)zj D Zag +1)zj]. (5.24)
j=0 j=0 j=0
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When a(()o) # 0, in terms of the non-homogeneous coordinates (wy, ..., w,), A* is a linear
fractional from CV*! which is holomorphic near (0, ..., 0):

ZN+1 a(l)wj ZN+1 (N+1)wj

. . Z.
A (wq, ..., wnyr) = ( =0 J_J == ), where w; = —L. (5.25)
( S e P "

We denote A € GL?(CN*2) if A satisfies A(Q) C Q where we regard A as a linear
transformation of CN*2. If A € GL?(CN*?), we must have A*(OHN*!) C 9HN*!, so that
A* € Aut(OHN*Y). Conversely, if A* € Aut(OHN*1), then A € GLO(CN+?).

We define a bundle map:

T GL(CN+2) — CPN*!
A= (ag, Agyeeny (IN+1) = 71'0((10).
Then by (5.24), for any map A € GL(CV*?), A € 77 (mo(ap)) <= A*([L:0:..:0]) =
mo(ap). In particular, by the restriction, we consider a map
T GLQ(CN+2) N EV+1
A = (ag, ay, . ang1) + To(ag).

We get OHVt! o~ GL?(CN+2) /P, where P, is the isotropy subgroup of GL?(CN+2?). Then
by (5.24), for any map A € GL?(C"+?),

Aen(m(ag)) <= A*([1:0:...:0]) = mo(ao). (5.27)

(5.26)

CR submanifolds of OHV*!  Let H : M’ — OHV*! be a CR smooth embedding where
M is a strictly pseudoconvex smooth real hypersurface in C"*!. We denote M = H(M").

Let Ry be the Reeb vector field of M’ with respect to a fixed contact form on M’. Then
the real vector Ry, generates a real line bundle over M’, denoted by Rj;. Since we can
regard the rank n complex vector bundle TH°M’ as the rank 2n real vector bundle, over the
real number field R we have:

TM' =T°M & Ryp ~ TYOM & Ry (5.28)

given by
0

(aja_a:j’

Since H is a CR embedding, we have

0 0
b]a—) + CR]V[/ = (aj + ’Lb])— + CR]\,[I, Vaj, bj,C € R. (529)
Yj 8zj

H(TYM") =T"M c TY°(0HN*Y), TM ~ H (T*°M") & H,(Ryy) C T(OHN ). (5.30)
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Lifts of the CR submanifolds Let M = H(M') C 9HN*! be as above. Consider the
commutative diagram ’
GLR(CN+?)
e/ lm
M 3]HIN+1

Any map e satisfying 7 o e = Id is called a lift of M to GL2(CN*2).

In order to define a more specific lifts, we need to give some relationship between geometry
on OHN+! and on CV*2 as follows. For any subset X € HN*!, we denote X := 75! (X)
where 7y : CV*2 — {0} — CPV*! is the standard projection map (5.22). In particular, for
any € M, % is a complex line and for the real submanifold M?"*! the real submanifold
M?"+3 ig of dimension 2n + 3. '

For any z € M, we take v € & = 7, *(x) C CN*2 — {0}, and we define

.M =T,M, TM =T°M, Ruq:=TRy,

where Ry = U, ;3R - These definitions are independent of choice of v.
A lift e = (€9, €q, €y, en+1) of M into GL(CN*?), where 1 <a<nandn+1< p <N,
is called a first-order adapted lift if it satisfies the conditions:

eo(z) € 73 (x), spanc(eq, ea)() = THOM, span(eo, ea,ent1)(x) = ToOM & Rare (5.31)
where
span(eg, eq, en+1)(x) := {co€o + Caba + CN+1€N+1 | C0,Ca € C, cny1 € R} (5.32)

Here we used (5.29) and the fact that the Reeb vector is real. Locally first-order adapted
lifts always exist.

We have the restriction bundle Y, := GL?(CN*2)|5; over M. The subbundle 7 : F}, —
M of FY, is defined by

Fir = {(eo,ej, e ent1) € Fay | leo] € M, (5.31) are satis fied}.

Local sections of Fi,; are exactly all local first-order adapted lifts of M.
For two first-order adapted lifts s = (e, €;,€,,en+1) and 5 = (€, €, €4, En+1), by (5.31),
we have
gO = g(O)e()a
€ = 9?60 + gfek,
€= gheo + gles + ghes + gi Men,

~ _ 0 N+1
EN+1 = gny1€0 T+ 9]N+1ej + gNf1EN+1;

(5.33)
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Notice that by (5.29), g%ﬁ is some real-valued function, while other are. complex-valued
functions. In other words, s = s -g where

% 9% g Iva
0 gi g,JL g§v+1 (5.34)

g= (gO)gj’guagN-l-l) = 0 0 gu 0
| 0 0 g¥*' gvh

is a smooth map from M into GL?(CN*2). Then the fiber of 7 : F3, M over a point is
isomorphic to the group

9% 9 9 K
_ _ |0 g 9 9%a QA N+2
Gl‘{ “lo o ¢ o | GFCETp

0 0 g gV
where we use the index ranges 1 = o, s nandn+1s< y,v< N.
We pull back the Maurer-Cartan form from GL?(CV*2) to F 1, by a first-order adapted
lift e of M as

0 0 0 0
Wo ws W, WNt
(67 (03 (67 (67
_ | “ Wa W,  WN41
CET W wh wh Wk
B W B,
 N+1 +1 N+l +
Wy wg w)) wN1

Since w = e~ !de, i.e., ew = de. Then we have
deg = eqw + eaw§ + e wh + enprwy T (5.35)
On the other hand, bu considering tangent vectors, we have
deg = eowl) + eqws + enprwh . (5.36)

By (5.35) and (5.36), we conclude w = 0, pu. By the Maurer-Cartan equation dw =
~w w,onegets 0=dwf =-w w§-wi, wd ie,0=-w} w§, mod(wyt'). Then
by Cartan’s lemma,

wh = q4gwy mod(wyt),

for some functions g5 = g3,

The CR second fundam ental form In order to define the CR second fundamental
form [Ty = ITj; = ¢ qwiwy e, mod(wy ™), let us define e, as follows.
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For any first-order adapted lift e = (eg, €a, €., ex41) With To(eg) = @, we have e,  THOM.
Recall TgG(k,V) E  (V/E) where G(k,V) is the Grassmannian of k-planes that pass
through the origin in a vector space V over R or C and £ G(k, V) ([ILO03], p.73). Then
T,M (%) (T,M/2) and hence the vector e, induces e, Ti°M by

"= el (ea mod(eo))7

I

where we denote by (e°,e®, e#, eN*1) the dual basis of (CV*2) . Similarly, we let

e, =€ (e, mod THOM)  NMOM, (5.37)

=p

where N1 is the CR normal bundle of M defined by N}'M = THO(gH N+1) /T1OM.
By direct computation, we obtain a tensor

Iy =11 = ¢t swiwy e, T(M, S*T ey M N;;‘EEO)M) mod(w) ™). (5.38)

The tensor II;; is called the CR second findam ental form of M.

56 Definition D, the CR Second Fundam ental Form

Q-fram es  We consider the real hypersurface @ in CV*2 defined by the homogeneous
equation

2,7 =Y 278+ %(ZNHW _ ZVZNF) = 0, (5.39)
A
where Z = (2°, 24, ZN+t1)t  cN*2. This can be extended to the scalar product

2,2 =% 777+ %(ZN“"Z‘“ - 707 N, (5.40)
A

for any Z = (29,24, zNtW z = (z°, 24, ZN*t")t  cN+2 This product has the prop-
erties: Z,Z is linear in Z and anti-linear in 7 ; Z,Z = Z,Z ; and Q is defined by
7.7 =0.

Let SU(N +1,1) be the group of unimodular linear transformations of CV*2 that leave
the form Z,Z invariant (cf. [CMT74]).

By a Q-frame is meant an element £ = (Ey, Ea, Eny1)  GL(CNT?) satisfying (cf.
[CMT74, (1.10)})

det(E) =1
’ ; 5.41
{ Es Ep =6dap, FEo,Enyi =- Eni1, B0 = -3, (5.41)
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while all other products are zero.

There is exactly one transformation of SU(N + 1,1) which maps a given Q-frame into
another. By fixing one Q-frame as reference, the group SU(N + 1,1) can be identified
with the space of all Q-frames. Then SU(N + 1,1) C GL?(CN+1) is a subgroup with the
composition operation.

We define a bundle map:

T GL(CN+?2) — CpN#!
A = (ag,ay,...,an41) +— mo(ao)

By taking restriction, we have the projection
7 SU(N +1,1) — 0HN™ | (Zo, Za, Zn11) — span(Zy). (5.42)

which is called a Q-frames bundle. We get OHN*! ~ SU(N + 1,1)/P, where P, is the
isotropy subgroup of SU(N + 1,1). SU(N + 1,1) acts on JHN*! effectively.

The Maurer-Cartan Form over SU(N+1,1) Consider E = (Ey, Ea, Eny1) € SU(N +
1,1) as a local lift. Then the Maurer-Cartan form © on SU(N + 1,1) is defined by dE =
(dEy,dE, dExy,) = EO, or © = E-1 - dE, ie.,
6y % Oy
d(Ey Es Eny)=(Eo Ep Eny)| ©F ©5 o8, |, (5.43)

N+1 N+1 N+1
(—)0 9A @N-H

where ©F are 1-forms on SU(N + 1,1). By (5.41) and (5.43), the Maurer-Cartan form (©)
satisfies

0 NTT _ N+l _QNFT o0 _ B0
O +On11 =0, 67 =67, Oy = Oy,

O+ =267, O, = 160, 04+ 67 =0, &y +ef+oyi=o
where 1 < A < N. For example, from (F4, Eg) = 045, by taking differentiation, we obtain
(dE4, Eg) + (Ea,dEg) = 0.

By (5.43), we have

dEy = Eo©) + EgOf + En 100,
dEa = E©% + EgOf + Ex 100,
dEN+1 = EO@(])V+1 + EB@]%+1 + EN+16%1%.
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Then
(Eo®f + EcOf + EnnOL™, Ep) + (Ea, EyOp + EpOp + EnnOp™) =0,
which implies ©F +@_j3‘ = 0. In particular, from (5.44), ©% = —2i0%, . © satisfies

10 = —OAO. (5.45)

Let M — OHN*! be the image of H : M’ — OHY*! where M’ C C"*! is a CR strictly
pseudoconvex smooth hypersurface. Consider the inclusion map M — OHM*! and a lift
e = (€p, €1, .., en+1) = (€0, €q, €y, €ny1) Of M wherel <a<nandn+1<v <N

SU(N +1,1)

e/ K
M — OHN+

We call e a first-order adapted lift if for any x € M,
mo(eo(z)) =, spanc(eq, eq)(x) = TYOM, span(eq, eq,ens1)(x) = T°M & Ryre. (5.46)

Locally first-order adapted lifts always exist. We have the restriction bundle Fy, := SU(N +
1,1)|as over M. The subbundle 7 : 3, — M of F},; is defined by

Fi={(eo,ej e ent1) € Fuy | eo] € M, (5.46) are satis fied}.

Local sections of F}, are exactly all local first-order adapted lifts of M. The fiber of 7 :
F1, — M over a point is isomorphic to the group

9 9% 9 9vn
0 g5 ¢ 98

Glz{gz . 95 Z; g%ﬂ eSU(N+1,1)},
0 0 0 gNii

where we use the index ranges 1 < o, <nandn+1<pu,v<N. A
By the remark below (5.33), gy} is real-valued. By (5.41), we have (go,gn+1) = —3,

it implies g3 - gN 11 = 1. In particular, both gy{{ and g) are real. Since (go,g,) = 0 and

gy # 0, it implies gﬁ’ +1 = 0. Since (ga, gs) = dap, it implies that the matrix (¢?) is unitary.
Since deg(g) = 1, it implies gf - det(g?) - det(g};) - gt =1, e, det(g2) - det(gy) = 1.
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By considering all first-order adapted lifts from M into SU(N + 1,1), as the definition
of 11y in Definition 3, we can defined CR second fundamental form I7y, as in (5.38):

Iy = 11§, = ¢hpwiw] ® e, € T(M,S* T 0 M @ N

7r0(eo 7r0(€0)

M), mod(w) ™), (5.47)

which is a well-defined tensor, and is called the CR second fundamental form of M.
We remark that the notion of 1), in Definition 4 was introduced in a paper by S.H.
Wang [Wa06].

5.7 Geometric Rank And The Second Fundamental
Form

Geometric Rank and 11y,

Lemma 5.7.1 (i) ([JY09], theorem 7.1) Let F € Propy(0H"*!, 0HN*!) with k > 2 and
F(0) = 0. Then there exists a neighborhood of 0 in M := F(OH"*!) and a C*~'-smooth
first-order adapted lift e : U — SU(N +1,1)

e=(ep,ej,ep,ent1) €ESUN+1,1), 1<j<n, n+1<b<N-L (5.48)

(i) ([JY09], Step 3 of the proof of Theorem 1.1) Let F = F** = (f,¢,g), the induced
first-order adapted lift s, and notation be as in Theorem 5.7.1. Then

%9,

oelo= 7=\
J’klo szazklo J

ke{l,2,..n,N+1} (5.49)

where 11y = h;.‘kij’“ ® ey is the CR second fundamental form.

Theorem 5.7.2 [HJ09] Let F € Prop,(0H", 0HN*1). Then its geometric rank ko equals
to

ko= sup |n—dimc{v | Iy pe(v,v) =0}
peOHN+1

where Iy pe) is the CR second fundamental form of the submanifold M at the point F(p).
Here {v | I1x pp)(v,v) = 0} is a vector space over C.
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Corollary 5.7.3 Let F € Prop,(H",H"). Then

ko=0 <= II);=0.

Going back to Theorem 5.2.1. We have a lemma:

Lemma 5.7.4 Let H : M’ — OHN*! be a CR smooth embedding where M’ is a strictly
pseudoconvex smooth real hypersurface in C**1. We denote M = H(M'). Then the following
statements are equivalent:

(i) The CR second fundamental form 11y by Definition A identically vanishes.

(ii) The CR second fundamental form 11y by Definition B identically vanishes.

(iii) The CR second fundamental form 11y by Definition C identically vanishes.

(iv) The CR second fundamental form Iy by Definition D identically vanishes.

Lemma 5.7.5 (cf. [EHZ04], corollary 5.5) Let H : M' — M — HN*! be a smooth CR
embedding of a strictly pseudoconvex smooth real hypersurface M C C"**. Denote by (w,) )
the CR second fundamental form matriz of H relative to an admissible coframe (6,64) on
OHNt adapted to M. If wa“ﬁ = 0 for all o, 3 and p, then M’ is locally CR-equivalent to
8Hn+1'

To prove Theorem 5.2.1, we apply Lemma 5.7.4 and Lemma 5.7.5 and the hypothesis
that the CR second fundamental form identically vanishes to know that M is locally CR
equivalent to OH" !,

Then M is the image of a local smooth CR map F : U C OH"! — M C OHN*! where
U is a open set in OH"*! . By a result of Forstneric[Fo89], the map F must be a rational
map. It suffices to prove that F is equivalent to a linear map. By the fact that F' is linear
if and only if its geometric rank is zero, it is sufficient to prove that the geometric rank of
F is zero: kg = 0. This can be done by applying Theorem 5.7.2.
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