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Preface. Given an overdetermined PDE system we are con-
cerned , first of all, with the local existence of solutions with-
out any side conditions. This is the solovability question. Asa
necessary condition for the existence of solutions all the com-
patibility conditions must be fulfilled. The purpose of these
lectures is to present a theory together with an algorithm
of finding all the compatibility conditions and constructing
an equivalent involutive system in order to obtain the gen-
eral solutions for the overdetermined PDE systems of generic
type (Definition 4.1). We make use of various generalized ver-
sions of the Frobenius theorem on the involutivity. The sim-
plest versions of the generalized Frobenius theorem seem to
be known to R. Bryant [Bry], S. Wang [Wang], and perhaps to
other experts in the area of exterior differential systems. The
generalized Frobenius theorems presented in §6 are obtained
by the author independently and seem to comprise most of
those known previously.

This is the note of some ten lectures that the author gave at
Seoul National University in the fall, 2007. He wants to thank
the audience for their interest and patience. The author also
expresses deep gratitude to Chung-Ki Cho, Jae-Nyun Yoo,
Sungyeon Kim, Jongwon Oh and Jaesung Cho, who shared
their ideas in many valuable discussions, and to Masatake
Kuranishi who taught me the essential ideas of prolongation,
and to Robert Bryant who kindly showed the coordinate free
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computation §12. The author thank also Robert Foote, Gerd
Schmalz and Dmitri Zaitsev for their interest and collabora-
tion. Finally, the author thanks Daniel M. Burns who intro-
duced the equivalence problem, prolongation and the com-
plete system to the author. Around 1980 he observed and
suggested to the author that the complete system is of cen-
tral importance in understanding overdetermined systems, in
particular, proving the rigidity and the regularity of mappings
that are defined by overdetermined PDE systems.

The author wishes this little monograph to be useful as a
field manual in exploiting the wide open unexplored world of
overdetermined systems.

Chong-Kyu Han

November, 2007
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§1. PDE systems and EDS.

Any partial differential equation (PDE) or system of PDE’s
can be expressed as an exterior differential system (EDS) in a
jet space. An EDS is a system of equations on a manifold M
defined by equating to zero a number of exterior differential
forms 0 = (8%,62,---). When all the forms are 1-forms, it is
called a Pfaffian system. An integral manifold of an EDS 6 is
a submanifold i : N — M such that i*6 = 0. Given a PDE
system, we shall discuss in this section how to set it up as an
EDS, in particular, as a Pfaffian system with independence
condition. Let u = (u!,...,ud) be a system of functions of
p independent variables z = (z!,... ,zP). Let X C R? and

U C RY be open. We define the m-th jet space by
J™(X,U) = {(z,u™),z € X,u e U},

where u(™) denotes all the partial derivatives of u of order
up to m. For a smooth function u = f(z) the p-dimensional

submanifold of J™(X,U)
z — (:z:,f(m)), xeX

is called the m-th jet graph of f(z) and denoted by (5™ f)(z).
For a finite sequence J = {ji,72,...} of integers {1,... D},

let
o 0

- — - JU
8m]1 aa;J2

ujg = (
Since

p
du = E ujdz?,
i=1

the m-th jet graph is an integral manifold of the the following
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EDS in J™(X,U): For each a=1,... ,q

0% = du® — Y ufda’
i=1
P
07 == duj — ugdz”
(1.1) k=1

p
05 =Y upda®, |J|=m~1,

where |J| is the length of the sequence J. (1,1) is called
the contact system of J™(X,U). Then j™ f(z) is an integral
manifold of (1.1), on which

(1.2) det Ao AdzP #0

(1.2) is called an independence condition. As examples, let us
consider the cases of first order and the second order PDE’s:

1.1 First order PDE for one unknown function in two
independent variables.

Consider a PDE for unknown function u(z,y)
(1.3) A(z,y,u, g, Uy) =0

with 22 # 0. Let Sa be the submanifold of J'(X,U) =

{(z, y,u ux,uy)} R5 defined by (1.3). The contact form of
JYX,U) is

(1.4) 0 := du — uzdzr — uydy.
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(J1(X,U),0) is indeed a ”contact manifold” in the sense that
(d6)* A0 = —2dz A dy A du A dug A duy, # 0.

Then the Pfaffian system

(1.5) (Sa,0),

defines a distribution D of 3-dimensional planes consisting of
tangent vectors to Sa that are annihilated by 6. Then for a
C*function u = f(z,y) the following are equivalent:

a) u = f(z,y) is a solution of (1.3).

b) The first jet graph (j!f)(z,y) is contained in Sa.

c) The first jet graph (5! f)(z,y) is an integral manifold of the
EDS in J!(X,U) given by a 0-form (1,3) and a 1-form (1.4)
with the independence condition

(1.6) dx A dy # 0.

d) The first jet graph (5! f)(z,y) is an integral manifold of the
Pfaffian system (1.5) with the independence condition (1.6).

Our approach is based on d): the observation that a solu-
tion of (1.3) corresponds in a one-to-one manner to an integral
manifold of (1.5) satisfying (1.6).

1.2. Cauchy problems for the first order PDE’s
Consider the following Cauchy problem:

Az, y,u, ug,uy) =0

(17) u(z,0) = é(z), a<z<b,
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where we assume % # 0. From the Cauchy data it fol-
lows that u,(z,0) = ¢'(z). Substituting this in (1.7) we have
A(z,0,¢(x), ¢ (x),uy) = 0. This determines a curve

v(z) = (2,0, (z), ¢ (z), uy(x))
such that v*0 = 0. A solution is a mapping
I':(a,b) x (—€,€) = Sa

such that I'"6 = 0 and I'(z,0) = v(x).

1.3. Boundary value problems for the first order PDE’s

Let D be a domain in R2. Consider the following boundary
value problem: Find u € C*°(D) satisfying

Az, y,u, Uz, uy) =0 in D

(18) u(z,y) = ¢¥(z,y), for (z,y) € bD

The boundary data cannot be given arbitrarily. There can
be local or global constraints on the boundary data, which
are the compatibility conditions to the differential equations
in the interior. In order to see the local conditions, sup-
pose that bD is locally given by curve z(t),y(t). Let ¢(t) :=
Y (z(t),y(t)). Then the values of u; and u, at the boundary
points satisfy

A(w(t)a y(t)7 d)(y)v Ug, uy) = 0

W = (8) + gy (1) = ()

1.4 Problem. Find the global conditions that the boundary
data must satisfy.
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1.5 Second order PDE for u(z,y).

Given a PDE of second order
(1-9) A($>y7u7 umyuyauxwyuwyauyy) =0
We assume a%?; # 0. On the second jet space

J2(X, U) = {(xa Yy Uy Ugy Uy, Ug gy Ugy, uyy)} = R8
we consider the contact system 6 = (6°,01,62), where

6° := du — uydz — Uy dy
(1.10) 6! = du, — ugpdr — Ugydy

62 = duy — UzydT — Uy, dy

Let Sao C J?(X, U) be the submanifold defined by (1.9). Then
(1.10) defines a distribution D of 4-dimensional tangent planes
of the 7-dimensional manifold Sa. Then for the same reason as
in the cases of the first order, we see that solutions of (1.9) are
in one-to-one correspondence to the integral manifolds of the
Pfaffian system (Sa, ) given by (1.10) with the independence
condition (1.6).

§2. Prolongation of Pfaffian systems.

In this section, we briefly review basic notions of the pro-
longation and the involutivity. We refer the readers to [BCGGG],
[GJ] and [Kura]. Let M be a smooth (C*°) manifold of di-
mension n and let 6%, ... 65, w!,--. WP, s+ p < n, be a
set of linearly independent smooth 1-forms on M . We are
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concerned with the problem of finding a smooth submanifold
N C M of dimension p which satisfies

(2.1)

0%y =0, a=1,---,s (Pfaffian system)

Q|y #0, where Q= w!'A...AwP (independence condition).

Such a submanifold N is called an integral manifold of di-
mension p satisfying the independence condition, or simply
a ’solution’ of (2.1). To find a solution of (2.1) we con-
sider subbundles I C J C T*M. Here I = (f',---,0°) and
J = (8%, ,60° w', -+ ,wP), where (---) denotes the linear
span of what are inside. Let D be the (n — s)-dimensional
plane field annihilated by gt ... 9% Fork=1,---,p, an in-
tegral manifold of (2.1) of dimension k is a submanifold of
M of dimension k whose tangent spaces belong to D. An in-
tegral manifold N of dimension p such that Q|y # 0 is a
solution of (2.1). If Nis an integral manifold of (2.1) then
9|y = 0, and therefore, d§%|n = 0, for eacha =1,---,s.
A k-dimensional integral element is a k-dimensional subspace
(z, E) of T, M, for some z € M, on which * = 0 and df* =0,
foralla = 1,---,s. By V(I,J) we denote the set of all p-
dimensional integral elements (z, E) satisfying Q|g # 0. Basic
idea of the theory is that we can find a solution by construct-
ing k-dimensional integral manifold N* with N*~! as initial
data, inductively for k = 1,---,p, so that we have a nested
sequence of integral manifolds

NOc Nl c..-C NP

Let
{£}=E°CcE'Cc---CE’=E

be the corresponding flag of integral elements. The notion of
involutivity is the existence of such a flag for each element of
V(I,J) so that the Cauchy problem is well-posed in each step
and the solutions to the (k+1)%t Cauchy problem remain solu-
tions to the family of k** Cauchy problem with data smoothly
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changing in (k+1)%* direction . If the system is analytic (C*)
one can construct such a nested sequence of integral manifolds
by using the Cauchy-Kowalewski theorem. This is the idea
of the Cartan-Kahler theorem which asserts that an involu-
tive analytic Pfaflian system has analytic solutions. If (I, J)
1s not involutive we construct an involutive system which is
equivalent to the original system by repeating the process of
the following two steps:

Step 1. Reduce (2.1) to a submanifold M’ C M so that
V'(I,J) = M’ is surjective:

Let M; be the image of V(I,J) — M. If M = M, then we do
nothing. If M; # M then we note that any integral manifold
of (I,J) must lie in M;, and so we set

Vill,J)=A{(z,E)e V(I,J): EC T, M}
Now consider the projection
V1 (I, J) — M1

with image Ms. If My = M; we stop; otherwise we continue
as before. Eventually we arrive either at the empty set, in
which case (I, J) has no integral manifolds, or else at M’ with
V'(I,J) — M’ being surjective and with all (z, F) € V'(I, J)
satisfying £ C T, M'.

Step 2. Assuming V(I,J) — M 1is surjective we do prolon-
gation.

To recall the definitions, let G, (M) be the Grassmann bun-
dle of p-planes in TM. Let w!,--- , 7" be a set of 1-forms so
that

ol ... @5 Wt WP ol gt
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form a basis of T*M. Let (z,E) € V(I,J). Since Q|g # 0,
on a neighborhood of (z, E) € G,(M) we have §% = mSw?,

P
m¢ = £5wP, (summation convention for p =1,---,p) and Q #
0. Thus {m$,£5} are local fibre coordinates in Gp(M). The

canonical system on G,(M) is the set of the tautological 1-
forms

(2.2) 0% —mjw”, a=1,---,s
' T — WP, e=1,--- 1,
where the summation convention is used for p = 1,--- p.

The first prolongation (I(V), J(M) is the restriction to M) :=
V(I,J) C Gp(M) of the canonical system. Since m§ = 0 on
V(I,J) the problem of finding a solution of (2.1) is equiv-
alent to finding a submanifold N 1) M® of dimension p
satisfying

0a|N(1) = 0, (7'("E —_ Z;w”)|N(1) = O

(23) Q) #0.

Integral manifolds of (I,J) and those of (I(V), J(1)) are in a
one-to-one correspondence. The k-th prolongation (1), J(*))
on M®) = V(1*-1 jk=1)) is defined inductively to be the
first prolongation of (I*=1 J*=1)) on M&=1)_ We have a
version of the Cartan-Kuranishi theorem [Kura] :

Theorem 2.1. Let (I%), J*)) k=1,2,---, be the sequence
of prolongations of (1.1). Suppose that , for each k, M&) g
a smooth submanifold of G’p(M(k“l)) and that the projection
M) — ME=1) 45 g surjective submersion. Then there is kg
such that prolongations (1), J(F)) are involutive for k > kq.
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¢3 Pfaffian systems of Frobenius type.

Let A = @7_y A/ (M) be the exterior algebra of differential
forms of M. A subalgebra Z C A is called an algebraic ideal if
IAA C I. Consider the algebraic ideals Z and J generated by
{6,---,0°} and {0, ,60°,w',--- ,wP}, respectively. (2.1)
is quasi-linear if dZ C J, namely,

s p
do® =" ¢5 N07+ ) up AP,

for some 1-forms ¢3, vy, for each o = 1,---,s. Existence of
solutions has been studied mainly for the quasi-linear systems.
(2.1) is said to be of Frobenius type if s + p = n, that is,
if {6',---,60° w!,--- wP} is a coframe of M. It is easy to
see that Frobenius types are quasi-linear. In this section we
focus our interest to the systems of Frobenius type. In this
case no further equations are obtained by prolongation and
the existence of general integral manifolds is determined only
by Step 1 of §2. The notion of involutivity is very subtle as
we see in [BCGGG]. However, for V (I, J) of Frobenius type
the following are equivalent (see [GJ] Chapter 3):

i) V(I,J) — M is surjective.
i) (I, J) is integrable in the sense of the Frobenius theorem.
iii) (I, J) is invoultive.

It is easy to prove the following

Lemma 3.1. Let M be a smooth manifold of dimension n.
Let 0 := (6,---,6°) be a set of independent I1-forms on M
and D :=< 0 >1 be the (n — s)-dimensional plane field anni-
hilated by 6. Suppose that N is a submanifold of M of dimen-
sion n — r, for some r < s, defined by Ty = --- =T, =0,
where T; are smooth real-valued functions of M such that
dTy A --- ANdT, # 0 . Then the following are equivalent :
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(i) D is tangent to N.
(1) dT; = 0, mod 6, on N, for each j =1,...,7

In (ii) mod 6 means that modulo the algebraic ideal Z. Thus
(1) is equivalent to saying that for each j = 1,--- ,r we have
dT; N L A ... AB° = 0, on N. Our basic observation is the
following algorithm for Step 1: For eacha=1,---,s, set

do* =T i‘}wi/\wj . mod #, (summation convention fori,j =1,---,D)

where T} are skew symmetric in (ij). Let 71 be the set of
functions {T7}}. If 71 are identically zero then V(I,J) — M
is surjective, which is the Frobenius integrability condition for
6, and by Frobenius theorem we have (n—p)-parameter family
of integral manifolds. Otherwise, let M; be the common zero
set of 77 and set

deJ‘- = Tf;,kwk, mod 6.
Let 75 be the set of functions T . If T are identically zero on
M, then Vi(I,J) — M is surjective, and by Frobenius the-
orem there exist (dimM; — p)-parameter family of solutions.
If T are not identically zero, let Mo be the submanifold of
M, defined by 72 = 0 and continue as before. Eventually
we arrive either at an empty set, in which case there is no
integral manifolds, or at an integrable Pfaffian system on a
submanifold M’ C M, in which case there exist (dimM’ — p)-
parameter family of integral manifolds.

§4. Overdetermined PDE systems of generic type.
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Let u = (u!,---,u?) be a system of real-valued functions
of independent variables z = (z!,---,2P). Consider a system

of partial differential equations of order m
(4.1) Ax(z,ul™) =0, A=1,---

where u(™) denotes all the partial derivatives of u of order up
to m. We assume that (4.1) is over-determined, that is, £ > g.

As we differentialte (4.1) p times we have partial deriva-
tives of u up to order m + p. Since

number of equations 14
, > —, as U — o9,
number of partial derivatives q

generically it is possible to solve for all the partial deriva-
tives of u of a sufficiently high order, say k, as functions of
derivatives of lower order, by the implicit function theorem,
namely,

(4.2) ug = HE (z, u*~b),

for all multi-index K with |K| =k, and foralla=1,---,q.
(4.2) is called a complete system of order k and we say (4.1)
admits prolongation to a complete system of order k.

4.1 Definition (overdetermined PDE system of generic
type). System (4.1) with £ > q (overdetermined) is said to
be generic type if it admits prolongation to a complete system

(4.2) of finite order k.

(4.2) can be regarded as a Pfaffian system of Frobenius
type on a manifold M: Let M be the submanifold of the
J(k=1) (X, U) defined by (4.1) and its derivatives. Then the set
of solutions of (4.1) is in natural one-to-one correspondence
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with the set of integral manifolds of the Pfaffian system of
Frobenius type (M, #), where the Pfaffian system @ consists
of the contact forms (1.1) with |J| <k —2 and

p
43) 05 :=du§— Y Hf(z,u*V)de?, |J|=k-1.
j=1

K. Yamaguchi and T. Yatsui studied in [YY1] and [YY2]
the equivalence problem by point transformations and formu-
lated the geometry of J (k=1) with the distribution of p planes
D given by (4.2). Solving (4.1) is finding an integral manifold
of D on the submanifold M that is defined by (4.1) and its
prolongation. We do this by Step 1 as in §2. For examples,
we consider a PDE systems of first order for one unknown
function u(z,y)

(4.4 { uy = Az, y,u)

Uy = B(z,y,u).

This is a complete system of first order. In this case M is the
whole 0-th order jet space R® = {(z,y,u)} we consider the
Pfaffian system

(4.5) 6 := du — Adz — Bdy =0
with the independence condition

(4.6) dzx ANdy # 0.

Then df = Tdx Ady, mod 6, where
(4.7) T=A,+ A.,B— B, — B,A.

If T = 0 on R3, then for any initial condition w(zo,Yo) = Uo
there exists a unique solution satisfying the initial condition
and thus there exists a 1-parameter family of solutions.
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Example 4.2.

(4.8) { ug = a(@,y) + u

Uy = b(z,y).

By (4.7) T = ay+b—b,. If the functions a and b satisfy a, +
b— b, = 0, then there exists 1-parameter family of solutions.
If T does not vanish identically then 7' = 0 gives a relation
between z and y, which violates the condition dz A dy # 0,
hence no function u(x,y) can be a solution of (4.8).

Example 4.3.

(4.9) { ug = a(z,y) + u?

uy = b(z,y), b#0.

In this case § = du— (a+u?)dz—bdy and T = a, +2ub—bs.
T cannot be identically zero for all (z,y,u). Thus T' = 0 gives

1

Thus, if there is a solution then (4.10) is the solution and

(4.10) is indeed a solution if it satisfies (4.9), namely,

{ {%(—ay +bz)le =a+ {‘zl_b(—ay +bs)}
{g5(=ay +ba)}y =b.

However, we derive (4.11) as follows: dT" modulo 6 on the
submanifold {T' = 0} is

(4.11)

by | -
{a‘wy + _b—(_ay + bﬂ?) - wa+2b[a + (___—

b
+{ayy + —g/‘(—ay +bg) — oy + 20°}dy.
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By setting the coefficient of dz and the coefficient of dy to be
zero, we obtain (4.11).

Now we consider systems of second order

(4.12) { s + 1y = b(2,y)

Uyy = (T, Y, U, Ug, Uy ).

Differentiate the first equation of (4.12) with respect to = and
y, respectively, and solving for all the second order derivatives
of u , we obtain

Upy = by — by +a
(4.13) Ugy = by — a

Uyy = a.

Thus (4.12) admits prolongation to a complete system of sec-
ond order. Let J'(R%,RY) = {(z,y,u,p,q)} = R® be the
space of the first jets, where the first jet-graph of a function
u(z,y) is given by p = u, and ¢ = u,. Let M be a real
submanifold of dimension 4 defined by the first equation of
(4.12), that is, p + ¢ = b(z,y). We consider 1-forms

6° = du — pdz — (b — p)dy
6! = dp — (by — by + a)dz — (by — a)dy
62 = dq — (b, — a)dr — ady.

Observe that on M we have 2 = —8' and that {6°,6'} defines
a 2-dimensional plane field D on M, whose integral manifolds
are the first jet graph of solutions. To check the Frobenius
integrability conditions we see that on M

{ d9® =0, mod {6°6%}
do! = Tdx ANdy, mod {6°6'},
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where
(4.14) T = —byy +ay + ayb+ az + apb, + agb,.

It T = 0 holds identically on M, then there exists 2-parameter
family of solutions. Otherwise, we restrict {69,601} to the
submanifold M; of M given by T = 0.

Example 4.4 (Linear Case).

{ Uz + uy = b(z,y)
Uyy = a(Z,Y) + c1u + couy + c3uy,.

Then
T(b(2), a(l), Ci,Co, C3) = —byy + oy + Qy + Clb + C2b;v + C3by,

which depends only on (z,y). If the functions «, b and the
constants ci, cg, cg satisfy T' = 0 then there are 2-parameter
family of solutions. If T is not identically zero, T' = 0 gives a
relation between x and y, which violates dzAdy # 0, therefore,
no function u(z,y) can be a solution.

Example 4.5 (Nonlinear case).

{ Uz +uy =b(z), (b #0)

Uyy = oz, y) + ul.

In this example we assume b depends only on z, for sim-
plicity. Then on M := {p + ¢ = b(z)} we have independent
1-forms

{ 0° = du — pdx — (b — p)dy
0' =dp — (V' + o + p?)dz + (o + p?)dy.
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Then on M
do' = Tdz Ady, mod {6° 6%}

where T' = oy + 0 +2pb’. Hence T' = 0 implies p = —%,—(ozx +
ay), which defines a 3-dimensional submanifold M; of M. If
dT = 0,mod{6°, 61} on M; then there is a 1-parameter family
of solutions. In fact, if u(z,y) is a solution, so is u + constant.
On M1

dT = (o + 0ty )edz + (g + oy )ydy + 2b'dp + 2pb da,

substituting p = —O‘ZT"Z,‘"}L and dp = (' +a+p?)dz+ (a+p?)dy
and setting each of the coefficients to dz and to dy to be zero
we obtain

(4.15)
{ (g + ay)e + 2(6)2 + 200 + L22deu)l b (0, 1 0,) =0

2
(g + ay)y + 2V a + (—a“i;bgﬁ— =0.

If the functions o and b satisfy (4.15) there is a 1-parameter
family of solutions. Otherwise, no solutions exist.

Now we discuss the regularity and finiteness of solutions of
overdetermined PDE systems of generic type.

Let M be the submanifold of J*~1) (X, U) defined by (4.1)
and its derivatives. Then the set of solutions of (4.1) is in nat-
ural one-to-one correspondence with the set of integral man-
ifolds of the Pfaffian system of Frobenius type (M, 6), where
the Pfaffian system 6 consists of the contact form (1.1) with
|J] < k—2and (4.3).

Then by the fundamental theorem of ODE we have

4.6 Theorem. Suppose that (4.1) is generic type that admits
complete prolognation (4.2) of order k. Suppose further that
(4.1) is C( C¥, respectively) in its arguments. If f is a
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solution of (4.1) of class C*, then f is C*® (C*, respectively).
A solution is uniquely determined by its (k —1)-jet at a point.

Regularity of mappings of various geometric structures,
various local rigidity phenomena can be proved by using The-
orem 10.2. Some of the results along these lines are found in

[CH1],[CH2],[H1],[H2] [H4] and [HY].
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§5. Frobenius Theorem.

We recall the Frobenius theorem on the integrability of
vector fields (cf. [War] Chapter 1). Let M™ be a smooth
manifold of dimension m. Let X1,...,X, be smooth vector
fields that are linearly independent at every point. Let D be
the distribution of p-dimensional tangent planes spanned by
X1,...,Xp. A submanifold N is called an integral manifold
of D if at every point of N, each X; , j=1,...,p, is tangent
to N . The distribution D is said to be integrable if

(5.1) [X:, X;)(x) €D, VzeM

The Frobenius theorem states

5.1. Theorem. Suppose that D is a smooth distribution
spanned by a set of smooth vector fields X1,...,Xp that satis-
fies the integrability condition (5.1). Then at any point € M
there exists a unique smooth integral manifold NP through x.

Given a smooth distribution D of p-dimensional tangent
planes let

(5.2) 9= (0",...,0°), s+p=m

be a system of linearly independent 1-forms that defines D,
that is, for (z,V) a tangent vector , V. € D if and only if
6%(V) = 0, for each a = 1,...,s. Typically, 6 is found by
taking smooth vector fields Y7, ... Yy, p+ s = m, so that

(5.3) X1, Xp Yy, Vs

span the whole tangent space at every point of M and then
taking the dual 1-forms

(5.4) wh o WP, 080
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Let Z be the algebraic ideal of the exterior algebra  :=
@B, O, where QF is the set of smooth k-forms and Q° :=
C>° (M) is the ring of smooth functions on M. Each Q* is a
module over C*°(M). Z is the set of all elements of  of the
form Y0 _, 0°A¢*, ¢ € Q. The ideal T is said to be closed
if

(5.5) dI CT

5.2. Exercise.

Let X1,..., X, be smooth vector fields that are linearly in-
dependent at every point of M™ and let D be the distribution
spanned by those vector fields. Let 8%,...,0% s+ p = m, be
smooth 1-forms that defines D. Then the following are equiv-
alent:

a) D is integrable in the sense (5.1).
b) T is closed.
c) Foreach a =1,...,s,

(5.6) d#* =0, mod (8',...,6%).

Hint: Use the identity: For any 1-form 6

(5.7) df(X;, X;) = Xi0(X;) — X;0(X;) — 0([ X, X))

Then we may state the Frobenius theorem as follows:

5.3. Theorem. Let M be a smooth manifold of dimension
m and let @ = (01,... ,0°) be a system of smooth 1-forms that
are linearly independent at every point of M. If 6 satisfies the
integrability condition (5.6) then for any point x € M there
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exists a unique integral manifold N of dimension p :=m — s
through x. Therefore, M 1is foliated by s-parameter family of
integral manifolds.

Now given a point of M we are interested in the existence of
a single integral manifold at the point rather than s-parameter

family of integral manifolds. We set for each o =1,... s
p
(5.8) d0* = ) Tow' Aw!, mod 6,
1,j=1

where 7% = —T;3. The set of functions T' = (1}}) is called
the torsion of the Pfafian system 6. T is the obstruction to
the existence of integral manifolds: The Frobenius theorem is
that if T vanishes identically then M is foliated by integral
submanifolds. If a submanifold 7 : NP M™ is an integral
manifold of (5.2) then i*§ = 0, which implies :*df = 0, and
therefore, if N? is an integral manifold of (5.2) then 7' = 0
on N. Thus N is contained in the variety T' = 0. This
fact seems to have been well observed by experts (cf. [Bry],
[Wang]). Independently from the predated observations we
obtained several generalizations of Theorem 5.3, which are
based on the the following

5.4. Theorem. Let M™ be a smooth manifold and let 0 :=
(01,---,0%) be a system of smooth 1-forms that are linearly
independent at every point of M. Let n be an integer such
that 2 < n < p := m — s. Suppose that i : N* — M™ s a
submanifold of dimension n, defined by pt = --- = p™™ " =

0, where p? are smooth real-valued functions of M such that
dp' A---ANdp™~™ #£0 . Then the following are equivalent:

(1) i*0* =0, a=1,---,s.

(i)Yo =1,---,5,0%=0, mod (p*,---,p™ ", dp",--- ,dp™ ™).
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Lemma 5.5. Let (t,z), wheret = (t1,-+ ,tq),z = (21, ,Zn)
be the standard coordinates of R4t™. Suppose that f is a C®
function defined on a neighborhood of the origin such that
f(0,z) = 0. Then f(t,z) = z;'i=1 t;g’ (t,x), for some C™®
functions gl,--- | g% defined on a smaller neighborhood of the
oTigin.

Proof of Lemma 5.5.

)

1
ft,z) = /0 29(27 f(rt,5)dr

1 d
:/ thfj(Tt,CE)dT, where f; = 9f
0 ot;
7=0

d 1

Let ¢/ (t,z) = fol fi(Tt,z)dr, for each j = 1,--- ,d. Then it is
standard to show that ¢ are C'°.

Proof of Theorem 5.4:
i) = i1): Choose independent 1-forms w!,... ,w™ so that
dpl,...,dp™ " Wt W

span T* M. Then




OVERDETERMINED PDE SYSTEMS 25

Since *0* = 0 and i*(dp’) = 0, pulling back (5.9) by i we

have
n

0=> b3(i*w’).
j=1

Therefore, for each a, j, we have b7 = 0 on N, which implies
by Lemma 5.5

(5.10) b = ) hSup",
k=1

for some smooth function h%,. Substituting (5.10) for b$ in
(5.9) we have

m-—-n n m-—-n
(5.11) 6% = > afdp’ +) Y phGw’
Jj=1 j=1 k=1

i1) = i) : Suppose that
m-—n . m—n ]
(5.12) 0% =" plus+ Y hgdp

for some 1-forms %% and smooth functions h$. Apply any
tangent vector (z,V) € TN to (5.12). Since ¢/ (z) = 0 and
dp? (V) = 0, we have §%(V) = 0, which implies that i*0% =
0. O
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§6 Generalization of the Frobenius theorem.

Let M™ and 6§ = (6%,...,6°) be the same as in the Frobe-
nius theorem (Theorem 5.3), and let w!,... ,wP, p+ s = m,
be a complementary set of 1-forms as in (5.4). There are two
directions in generalizing the Frobenius theorem: One is re-
ducing the Pfaffian system 6 = 0 to a submanifold M’ C M™
of dimension m’, p < m’ < m — 1. Reducing Pfaffian system
to a lower dimensional manifold is important in its own right
regardless of the existence of integral manifolds. The other
is the existence of integral manifolds of lower dimensions and
foliation by lower dimensional integral manifolds: We want
to find conditions on T} that imply there exists an integral
manifold of dimension less than p.

6.1 Reduction of § = 0 to a submanifold.

We want to find real valued functions pq,... , pg such that

i) dpr A+ ANdpg # 0
ii) dp; =0, mod (p1,...,pa,0%,...,0%),for j=1,...,d.

Then the problem is reduced to M’ := {z € M : pj(z) =
0,7 =1,...,d}. Let m" = m — d be the dimension of M’.
Let ¢ : M’ — M be the inclusion map. Then ii) implies
that the rank of i*6 is constantly s’ = s — d. If the torsions
vanish on M’, then by the Frobenius theorem there exists a
s’-parameter family of integral manifolds of dimension

m —s =(m-d) —(s—d)=m-s=p.

6.2 Example. Reduction to a submanifold, to a sys-
tem without solutions.
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In R* = {(z,y,2,w)} consider the following two indepen-
dent 1-forms

0 = (0',6%), where o' = dz + zdy, 6 = dw + wdz.

Let p(z,y,z,w) = w and let M’ = {w = 0}. Since dp =
dw # 0 and dp = dw =0, mod (w, dw, 6*,6?), the Pfaffian
system @ = 0 reduces to M'.

But there is no integral manifolds in i : M’ — R* for the
following reason: i*6> =0, i*0' = dz + xdy and

d(i*0') = i*(df') = de ANdy #0 mod (i*9).

6.3 Example. Reduction to a submanifold, to an in-
volutive system.

In R* = {(z,y, z,w)} given 1-forms
9 = (,6%), where 0! = dz + 2dy, 6° = dw+w(l+y)dz.

As in Example 6.2 we can easily check that the Pfaffian system
(R%;6',6%)0 reduces the submanifold M " = {w = 0}. In the
submanifold i : M’ < R* we have i*6%> =0, i*0' = dz + zdy
and
i*(do) = dz N dy
= —zdyANdy mod¥6
= 0.

Hence, the reduced system (M’ f') is involutive so that there
exists a 1-parameter family of integral manifolds of dimension
9. Similarly, M” = {z = 0} gives another reduction. Then
for the inclusion map 7 : M" — R*, we have

d(i*6?) = i* (d§?) = wdy A dz # 0.

Therefore, torsion is w. In fact, the plane w = 0,z = 0 is the
only integral manifold that is contained in M".
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6.4 Example. Reduction to a pair of submanifolds, to
a pair of involutive systems.

In R* = {(z,y,2,w)} we consider 1-forms § = (61,6%),
where

o' = dz + wf(z,y)dw, 6°=dw+ zg(z,y)dz.

As in Example 6.2 we can easily check that the Pfaffian system
(R4;61,62) reduces to the submanifold M’ = {w = 0}. In
the submanifold i : M’ — R?* we have i*0' = dz , i*6* =
zg(z,y)dz, so that the original system reduces to (M',6%).
Since d(i*6') = 0, the reduced system is involutive. Similarly,
M" = {z = 0} gives another reduction. Then for the inclusion
map i : M" < R*, we have i*6' = wf(z,y)dw, i*0? = dw, so
that the original system reduces to (M",62). Since d(i*6?) =
0, the reduced system (M",6?%) is involutive.

Next we discuss the cases where there exists exactly one
integral manifold of dimension p. These cases may be re-
garded as reduction of the Pfaffian system to p-dimensional
submanifold. For possible applications we discuss the cases
with degenerate torsions:

On R?® = {(z,y, 2)} consider a 1-form
(6.1) 0 =dz+ f(z,y,2)dy,

where f(z,v, z) is a smooth (C*°) real valued function defined
on an open neighborhood of the origin. We are concerned
with the existence of integral manifolds of (6.1). Suppose
that M is an integral manifold of (6.1). Since 8]y = 0 we
have (df)|p = 0. Now

df = (fydz + fydy + f.dz) Ndy
= fydx A dy, mod 6.
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The obstruction to the existence of integral manifolds is the
torsion

T = f,.

If T is identically zero then by the Frobenius theorem there
exists a l-parameter family of integral manifolds.

In order construct examples with singular torsion sets we
set

(6.2) T = fo = 2(z — g(z,9)) = 2° — zg(z,y).
I want z = 0 is the only integral manifold, so that we require

{f(w,y,0)=0

f:c =2? - zg(:c,y)-

Second condition implies that

f(mayaz) = 22.’13‘ - ZG(.’I?,y),

where G, = g. Now any pair (G, g) with G, = g yields the
torsion (6.2).

6.5 Example. Degenerate torsion with an isolated in-
tegral manifold. G(z,yz) = 2?, g(z,y) =2z : Let

0 = dz+(22x—222)dy. Then df = (2*—2zz)dxAdy, mod 6.
Therefore, T = z(z — 2z). The zero set of T is two planes
intersecting along y-azis, among which the plane z = 0 1s an
integral manifold.

6.6 Example. Degenerate torsion with an isolated in-
tegral manifold. Let f, = z(z2—z?—y?), so that f(z,y,2) =
23x — 223 /3 — zy®x. Then the zero set of the torsion is given
by 2(22 — 22 — y?) = 0. This variety is the union of the plane
2z = 0 and the cone z2 — 22 —y? = 0. z = 0 is an integral
manifold.
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Now we study by using Theorem 5.4, the existence of in-
tegral manifold ¢ : N® «— M™, 2 < n < p, of the Pfaffian
system

(6.3) =0, a=1,...,s, s+p=m

Suppose that N is an integral manifold of (6.3). Then
1*0% = 0 implies that d(i*6%) = i*(d#*) = 0. Let w',... ,wP
be the complementary set of 1-forms. We set as usual

P
(6.4) do® = Z Tf;wi/\wj, mod 6, a=1,---s,
i,j=1
where T} = —T;%. Consider (§) := p(p—1)/2 linearly indepen-
dent differential 2-forms w® A w? arranged in lexico-graphical
order. Let

(6.5) T = (13)

be the matrix of size s x ( ) We shall call 7 torsion of the
Pfaffian system (6.3).

Proposition 6.7. Let M be a smooth manifold of dimen-
sion m and let 61,--- 0%, wl, ... WP be a system of smooth
1-forms as in (6.3)-(6.4). Suppose that N is an integral man-
ifold of (6.3) of dimension n (2 < n < p). Then there exists
(’2’) X (72‘) matriz valued smooth function A of rank (g) defined
on N such that

(6.6) TA=0.

In particular, if NP is an integral manifold of mazimal di-
mension then T =0 on NP.

Proof. After re-ordering if necessary, we may assume that
wl Ao AWy # 0. Set

(67) /\’N—'Za’ INa —n-"]-))p
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Then the restriction to N of (6.4) reads

(6.8)

0= E THw' A w!,  where

i<j
1,j=1,---,n
p p

a _ o a Kb a A a AU AU

h=Ta+ Y Thaf— Y Taad+ ), TRlala) —ajaf)
pu=n-+1 A=n+1 A< p

A,u=n+1,---,p

a=1,---,s. Since w' Aw’, i < j, are independent on N (6.8)
implies

(6.9)
P P
TS+ Y. Thaf— 30 Thal+ D Tiu(ala)—ajal) =0,
N=”+1 A=n+1 N p:i\pilill .
for each @ = 1,---,s and each pair (ij) with ¢ < j, ¢,j =
1,--+,n. In matrices we write (6.9) as
(6.10) TA=0,

where A is a matrix of size (g) X (72‘) given as follows: for a

pair [ = (ij) withi < j,4,5=1,---,n, I-th column of A is

(0... 1... a;,l'... _az?‘... a’i\a.l;._a?a‘:b...)t
4 0 4 0
(i)™ (@)t (A" (Ap)th

for n < A < p. Observe that the first (g) rows or A is the
identity matrix, therefore A is of maximal rank. In particular,
if n = p then A is the identity matrix of size (’2’) , therefore, T is
identically zero on an integral manifold of maximal dimension
p. U

Observe that (6.10) is a system of (3) independent linear
equations on the (g) columns of 7. Hence we have
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Theorem 6.8. If N is an integral manifold of (6.3) of di-
mension n, (2 < n < p), then the number of linearly indepen-

dent columns of T is at most (12’) - (72’)

Definition 6.9. Given a set of smooth functions T%, a =
1,---,k on M a smooth function p is said to be a common
factor of T®’s if T® = p¢®, for some smooth function ¢
for each o = 1,--- k. A set of smooth real-valued functions
P1, 5 pd, (d < m), is said to be non-degenerate if dpy A--- A

dpgq # 0.

Theorem 6.10. Let 8!, --- 6%, wl,--- ,wP be 1-forms of M™,
s+p=m, as in (6.3)-(6.4). Letn, 2 <n < p, be an in-
teger. Then there exists an integral manifold N of (6.3) of
dimension n if and only if there exists a non-degenerate set of
functions p = (p1, -+ , Pm—n) having the following properties:
on the common zero set of p the first (’;) columns Ty, -+ - ’T(’;)

belong to the linear span of Th,\ = (g) +1,--- ,(’2’), on N,
where Ty 1s the A-th column of T, and

(6.11) 6 =0, mod (p,dp).

Corollary 6.11. Under the same hypotheses as in Theorem
6.10 suppose that s > (’2’) — (72‘) + 1. Then there exists an
integral manifold of (6.3) of dimension n if and only if there
exists a non-degenerate set of common factors p1,--+ ,Pm—n
of determinants of square submatrices of T of size (5) — (g) +1

that satisfies (6.11).

Corollary 6.12. Under the same hypotheses as in Theorem
6.10, if s = 1, then there exists an integral manifold of di-
mension n if and only if there exists a non-degenerate set of
smooth functions p = (p1,**+ , Pm—n) such that

(6.12) T;; =0, mod (p,dp,Thy : either X >n or u > n)
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that satisfies (6.11).

Proposition 6.13. Suppose that a submanifold N™ C M™
given as the common zero set of smooth real valued functions
P1y--+ s Pm—n 18 an integral manifold of (6.8) of dimension
n < p. Then N is contained in a (unique) integral manifold
N of mazimal dimension p if and only if there exist smooth
functions T, -+ , Ts with the following properties:

i)dry Ao Nd1s #0, mod (71, ,Ts)

i) pj =0, mod (11, - ,7s), foreach j=1,--- ,m—n

iii) 04 =0, mod (11, ,Ts,dT1,- -+ ,dTs).

P1," " 5 Pm—n and 71, -+ ,Ts in the above propositions can
be obtained from the factorization of the coefficients of df°:
Let 75 be the LHS of (6.9) for each a = 1,...,s, 4,j =
l,...,n,and let TJ3, o =1,... ;,sand ,j =1,... ,pbe asin
(6.4). Then p1, ..., pm—n nondegenerate are common factors
of 75 and 71, ... , 75 are nondegenerate common factors of T7j.

Remark. If each 1-form of (6.8)-(6.4) is real-analytic (C¥),
then Tz‘]! are (C¥) and therefore, factorizable into a product

of finitely many complex valued functions f with df (P) # 0.
The factorization is unique modulo unit.

Now we are concerned with the problem of deciding whether
M is foliated by integral manifolds of dimension n < p. In the
case s = 1, i.e., the Pfaffian system (6.3) consists of a single

1-form 6, is the classical Pfaff problem (see [BCGGG Chapter
I1). Let 6 be a smooth 1-form on a smooth manifold M™. The
rank r is defined by the conditions

OA(dO) £0, OA(dO) =0.
There is a second integer t defined by
(df)* # 0, (d@)‘tJrl =0.
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Elementary arguments show that there are two cases:

(@)t =r;
(i)t =r+ 1.

The first is the case 8 A (d6)” # 0 and (df)"*! = 0 and the
second is the case (df)™t! # 0 and 6 A (df)"*! = 0. We have

6.14 Theorem. Let 0 be a 1-form. In a neighborhood sup-
pose r and t are constant. Then 6 has the normal form

9=y0dy1+"-+y2rdy2r+l, ’lf’f’—l—th

6.13
( ) 9:dy1+y2dy3+._.y27‘dy21’+17 Zf’r:‘t

In these expressions, the y’s are independent functions and
are therefore parts of a local coordinate system.

Proof: See [BCGGG] page 40 .

6.15 Corollary. Let 8 be a smooth 1-form of rank r on M™,
9% +1 < m. Then M is foliated by integral manifolds of
dimension m—(r+1). Integral manifolds are given by yax—1 =
const, k=1,...,r+1. In particular, if 6 is of rank 0, which
is the case of the Frobenius integrability, then M is foliated
by integral manifolds of dimension m — 1.

6.16 Problem. Let M and 0 be the same as in Theorem
6.1/. How many different foliations do there exist for the
Pfaffian system (M, 8)?

6.17 Problem. Generalize Corollary 6.15 and Problem 6.16
to the system 6 = (91,...,0%), s > 1.
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§7. Complex submanifolds in real hypersurfaces.

We present in this section an application of the generaliza-
tion of the Frobenius theorem that we discussed in §6. This
section is part of [HT]. We shall discuss the existence of com-
plex submanifolds in terms of derivatives of the Levi-form.

Let M be a smooth (C*) real hypersurface in Cnt+l) with
coordinates (z,w), where z = (21, ,2n), defined on a neigh-
borhood U of our reference point P. Let M be defined by
r(z,z,w,w) = 0, where r is a C® real-valued function de-
fined on U such that dr # 0 on M. We assume 7y # 0.
In this section we discuss conditions for M to admit complex
submanifolds through P. We first present a necessary and suf-
ficient condition for a complex hypersurface to exist through
P and then extend our arguments to the cases of complex
submanifolds of higher codimensions.

Let

(7.1) 0 = +/—10r.

Since dr = Or + Or = 0 on M we have = —/—10r =
/—10r = 0, therefore, 0 is a real 1-form on M. Then

H(M) :={veT(M):8(v) =0}

is the bundle of maximal complex subspaces of T (M). A real
submanifold N C M of dimension 2n is a complex submani-
fold if and only if N is an integral manifold of H (M). In order
to find conditions on r for an integral manifold to exist we use
a generalization of the Frobenius theorem to non-involutive
cases with degenerate torsions. We adopt the definitions and
notations from [BCGGG] and [GJ]. Generalized Frobenius
theorem with non-degenerate torsions has been studied in [H].
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Then our problem is finding an integral manifold of dimension
2n of the exterior differential system

(7.2) (r, 0).
If N is an integral manifold of (7.2) then r|y = 0 and 0|y =

0, therefore, dr|y = 0 and df|y = 0. Since § = 8, mod (dr),
and

1 n
——0 =) ridz; + rydw
Ve

we have
. |
dw = —— erdzj, mod (dr, )
(7.3) ""i“
dio = -~ > “rjdz;, mod (dr,0).
Since
L

df = 90
V-1 '
= Y {rjdz; Adzi + rigdd A dz; + r,3dZ A dw + Typdo A dw}
1,j=1
by substituting (7.3) for dw and for dw we have

1 n
(7.4) ——df = ) Tj3dz Adz, mod (dr,6)
V-1 i,j=1
where
= T = T;
(75) ,Ivz"]‘ = 7",,:3 - Tiwé — T'w;:':‘z; + 'l"ww'é;:;.

(T;7) is a hermitian matrix, which is coefficients of the Levi
form of M. If M is Levi flat, that is, if

T;; =0, mod (r), Vi,j=1,---,n

then by the Frobenius theorem M is foliated by complex hy-
persurfaces. The functions T;;, mod (r), are the obstruction
to the existence of integral manifolds, which is generally called

torsion for the exterior differential system (7.2).
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Definition 7.1. A real valued function p defined on U s a
factor of the Levi-form (Tj;) if Ti5 = 0, mod (r, p), for each
i ]

Our main observation is that if a complex hypersurface
exits it is given as the zero set of a factor p of the Levi-
form. A necessary and sufficient condition for the existence
of a complex hypersurface is that f(v) = 0 for all vectors
v € T,C"+! with r(z) = p(z) =0, dr(v) = 0 and dp(v) =0,
which is a condition on the derivatives of r up to third order.
We have

Theorem 7.2. Let M be a real hypersurface in C**1, n > 1,
given as a zero set of a smooth real-valued function r with
ro # 0 defined on a small neighborhood U C C™t! of a
point P € M. Let 0 and Tj; be the same as defined by (7.1)
and (7.4). Then there exists a complex hypersuface N in M
through P if and only if there is a factor p of the Levi-form
such that

) p(P) =0, (dr Adp)(P)#0

i) 0=0, mod (r,p,dr, dp).

Proof. First we recall a well known fact: Let (t,x), where
t = (t1, * ,tq), ¢ = (T1, - ,Tm), be the standard coordi-
nates of Rét™. Suppose that f is a C* function defined on
a neighborhood of the origin such that f(0,z) = 0. Then

d
f(ta SC) = thgj (ta iE)
j=1

for some C® functions g*,--- , g% defined on a smaller neigh-
borhood of the origin.

Now suppose that N is a complex hypersurface through P.
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Then
L
V-1

n

= Y (Tyjln)dz; A dz.

i,j=1

0= ——db|y

Since dZ; A dz; are independent on N, we have Tiﬂ N =0,
for each 7,7 = 1,--- ,n. Now choose any smooth real-valued
function p on U such that N is the common zero set of r
and p and such that dp Adr # 0 on N. We take a local
coordinate system (7, p,z1,- - ,Z2pn) of Cnt!. Then T; =0,
mod (r, p). Now 73) follows from observing that the following
are equivalent:

a) T,N = Hy(M), Yz € N.

b) For z € N and for v € T, N implies (v) = 0.

¢) For v € T,(C"*?) with r(z) = p(z) = 0,dr(v) = 0,
dp(v) = 0 we have 0(v) = 0.

d) 6 =0, mod (r, p,dr,dp).

Conversely, suppose that p is a factor of the Levi-form with
‘the properties i) and ii). Let N be the common zero set of
r and p. Then the property i) implies that N, near P, is a
smooth (2n)-dimensional submanifold of M containing P and
i) implies that any tangent vector to N belongs to H (M),
hence, N is a complex hypersurface. [

Example 7.3. Quadric real hypersurfaces in C2: Let Q be
the zero set of

r=w-+w+azz + AW + Mwz + bww,

where a,b € R, and A € C are constants.
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We shall show that if Q contains a complex hypersurface
through the origin then @ is Levi flat. We have

0 = vV—1{(az 4+ \®)dz + (1 + Az + bw)dw},

and 1
———df =00
J—1 "
=Tdz ANdz, mod (6,dr),
where
T — g az + A\w 5 azZ + A\w b iz +Aw  aZ+ AW

1+ Az +bw 1+?\‘z‘+bu‘)+ 1+ z4+bwl+AZ+bo

Let 7 be T multiplied by the common denominator:

T = a+ (ab— A\)w + (ab — AN + (=Aa + ba®)zz
+ (=A% + bha)zw + (=A% + ba)zw + (ab? — AND)ww.

Therefore, in order for the origin to be a zero of T the coeffi-
cient a must be zero and in that case @ contains the complex
line w = 0. We have
r=w—+ 0+ Az + AwZ + bwd
and
T = —M\(w + @) — AN Zw — A2z — ANbww.
Observe that
T =M\ =0, mod (r),

therefore @ is Levi flat.
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Example 7.4. Cubic real hypersurfaces in C* = {(z,w)}:
Let z =z + iy and w = u + iv. Consider the zero set M of

r = 2u(l + 2y) + 8vz?

=(w+w)(1+z;’2)+w—,w(z+z)2.

]

We shall show that M is not Levi flat and a complex line
w = 0 is contained in M. We have dr = 16zvdzr + 4udy +
2(1 + 2y)du + 8z%dv and

0 = i0r
= [w+ @+ 2(w — @)(z + 2)|dz + [i + 2 — 2+ (2 + 2)*]dw,

therefore,
dw = _w—ll—w—l—2(_w —w)(z:—i—z)dz’ mod 6
i+z—zZ+ (z+2)2
dw = v —I—.w —: 2(w — w)(z_+ ?) dz, mod 0.
—i+z—z+ (z+2)?
Then
df = i00r

= [2(w — w)dz + (1 — 2(2 + 2))dw] A dz + [-1 + 2(z + Z)]dZ A dw
substituting the above for dw and dw
=Tdz N dz,

where

w+w— 2(w —w)(z + 2)
—i+z—z+ (2+2)?
wAHw+ 2w —w)(z + 2)
—(-1+2
(=142(z+2)) i+z—z2+(2+2)2
2u — 4vi - 2x 2u + 4vi - 2z
—(-1+4 .
g aa? t4) i T a

T =2(w—-w)—(1-2(z+2))

= 4iv — (1—4z)
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To see that M is not Levi flat consider a curve o(z) = (z,0, —42°,z),
which lies on M and passes through the origin. Observe that
T(o(x)), after multiplying by the product of the denomina-

tors, is a polynomial in z of degree 6 without constant term,
therefore, does not vanish identically. We also have

dT = Gi(z, y,u,v)dz + ((2,y, u,v)dy + adu + (41 + ()dv,

where (;(z,y,0,0) = 0, for j = 1,2 and ((0) = 0. The
submanifold r = T = 0 is the complex line w = 0, along
which we have

dT = adu + (4i + {)dv
dr = 2(1 + 2y)du + 8z*dv

and

6

(i+z—2+(2+2)%)dw
= (i + 2iy + 42%)(du + idv).

Thus we have

=0, mod (r,T,dr,dTl).

Now we discuss the cases of complex submanifolds of higher
codimensions. Suppose that N 2k is a complex submanifold of
complex dimension k,1 < k < n, through P. Then the Levi-
form restricted to N is zero, that is,

do(L, L) := /=1 ) Tjaia; =0,
i,j=1

for any complex vector L = (a1, ,@n,b) € C"*1, which is
tangent to N. Therefore, at P the null space of the Levi form
is of complex dimension > k, which implies that

(7.6) rank [T;;] <n —k.
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Let 74, -+ ,Tm be the determinant of the square submatrices
of [T;;] of size n — k + 1. Then each 7; is a polynomial in T;;
of degree n — k + 1. Then (7.6) is equivalent to

(7.7) 7w = 0.

Thus a complex submanifold N is contained in the common
zero set of 7j,7 = 1,--- ,m. If N is defined as a common zero
set of real-valued functions r, p1,- -+, pq With dr Adpg A--- A
dpg # 0, where d = 2n + 1 — 2k, then each 7; must be zero on

the common zero set of 7, p1, -+ - , pg- This implies 7; = 0, mod
(r,p1,--+,pa). For each p,,v =1,---,d let 6V = +/—19py,
then the common zero set of r, p1, -+, pq is a complex mani-

fold if and only if 8, = 0, mod (r, p1,- - , pa,dr,dp1,- -+ ,dpa).
Thus we have the following

Theorem 7.5. Let M be a real hypersurface in C"t1 n > 1,
given as a zero set of a smooth real-valued function r with
dr # 0 defined on a small neighborhood U C C"*! of a point
P € M. Let 0 and Tj; be the same as defined by (7.1) and
(7.4). Then there exists a complex submanifold N of complex
dimension k through P if and only if there is a smooth real-
valued functions p1,--+ , pd, where d = 2n+1—2k, defined on
U such that

i) For eachv =1,---,d, p,(P) =0, and dr Adp1 A\ --- A
dpa(P) # 0

i) EachTj,j =1,--- ,m, of (2.7) is zero modulo (ryp1,°* , Pd)-

i41) For eachv, 0¥ =0, mod (r,p1, - ,pd,dr,dp1,--- ,dpq).

Example 7.6. Complez curve through the origin in M 5 C
C3 = {(21,22,w)} : Let

r=w++azz + Mz1)?Z2 + Aza(71)?,

where a is a nonzero real constant and X s a nonzero complex
constant.
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In this example we have

a 2)\z
T::[Tﬁ]:[ 237 01]

so that det T = —4X)z1Z; = 0 implies that z; = 0. Thus we
take p;1 = Sw, po = RNz1, and p3 = Fz;. Let N be the set of
common zeros of (r,p,,v = 1,2,3), which is a complex line
(0,¢,0). Then modulo (r, p1, p2, p3) we have

dr = dw + dw, 0 =+/—1ldw

dp1 = K/l——_—l(d'w —dw), 6'=Zdw
dp2 = %—(dzl + dzl), 92 e @dzl
dps = 2\/1_—1(6121 — d?l), 63 = %(dzl)

We see that § = 0, and 0¥ = 0 for v = 1,2,3, modulo
(r, p1, p2, p3, dr, dp1, dp2, dps3).

8. Integrable submanifolds in almost complex mani-
folds.

In this section we discuss the existence of integrable sub-
manifolds in almost complex manifolds [HL]. This is another
application of the generalized Frobenius theorem that we dis-
cussed in §6.

Let (M?™, J) be a smooth almost complex manifold. For
a real tangent vector X € TM let X' = 1/2(X — /-1JX)
and X" = 1/2(X + v/—=1JX). The complex vectors X’ and
X" which we shall call (1,0) part of X and (0, 1) part of X,
respectively, are eigenvectors of J associated with the eigen-
values 44, and —i, respectively. Then we have X = X' + X"
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and the decomposition of the complexified tangent bundle:
TcM=T'M+T"M,

where T"M and T" M are the set of all (1, 0) vectors and (0, 1)
vectors, respectively. Then we see that 7'M = T"M. On a
neighborhood of the reference point P € M let Lq,..., Ly,
and Ly,---,L,, be smooth sections of T/M and T"M, re-
spectively, that are linearly independent at every point. Let
6, ...,0™, 01, ... 0™ be the dual 1-forms. For a smooth
function p we define p = Y| (L;jp)69 and Op = Y., (L;p)67.
Then we see that dp = 9p + Op. Now we consider a sub-
manifold N2" defined as the common zero set of real-valued

functions p1,... , p2q on a neighborhood of P € M such that
(8.1) dp1 A\ -+~ Ndp2q(P) # 0,
where d = m — n.

Definition 8.1. The rank (0p1,--- ,0p24) at P is the mazi-
mal number k with

apal/\"'Aapak(P)#O'

Proposition 8.2. Suppose that p1,--- , pag be real valued func-
tions on a neighborhood of P of (M?™,J), d < m, with
dp1 VANRIERIVAN dpgd(P) 75 0. Then

d < rank (0p1, - ,0p24) < 2d .

Proof.
(8.2) ) )
dpi A+ Ndpag = (0p1 + Op1) A -+ A (Op2q + Opaq)

= (Op1 A -+ A Opaq) + mixed terms + (Opy A -+ A Opag) ,

where mixed term means those terms that contain both 0p,’s
and Opy’s. If rank (Opy,- -+ ,0p24) < d — 1 then each term in
the last line of (1.2) contains either 0p,’s more than d times or
0ps’s more than d times. Hence, each term of the last line of
(8.2) is zero at P, which contradicts to dpi A+ - -Adpaq(P) # 0.
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Definition 8.3. A submanifold N is said to be J-invariant
if for all X € TN we have JX € TN.

Proposition 8.4. Let N?® be a submanifold of (M?™,J)
passing through P € M given as a common zero set of real val-
ued functions p1,--- , p2q that satisfy (8.1). Let T'N = {X —
V—1JX : X € TN,JX € TN} and T"N = {X +/-1JX :
X € TN,JX € TN}. Then the following are equivalent:

i) N is J-invariant.

i) For each x € N, T,N and T,/ N are of complez dimen-
S10M M.

i) rank (0p1,- - ,0p24)(z) = d, Yz € N.

Proof.
i)= ii): Suppose that N is J-invariant. Then it is easy to
see that there exist linearly independent real vector fields
X1,JX1,--+, Xn,JX, tangent to N. Thus 2n complex vec-
tors X}, := 1/2(Xp—v/—1JX}), and X}/ := 1/2(Xp+v—-1JXy),

k=1,---,n, are linearly independent, which implies ii).

ii) = iii): Suppose that for each z € N, T, N is of complex
dimension n. Since

T'N = {LeT'M:0pa(L) =0, a=1,--,2d}
2d
= ﬂ (Ker dp, N T' M)

a=1

2d ‘
= (ﬂ (Ker Bpa)) NT'M,

a=1

has fibre of complex dimension n at each point x € N, we
have that (9p1,--- ,p24) has rank m —n = d at .

iii) = i): Since T.M is of complex dimension m = n + d,
the intersection of the null spaces of dp, : ToM — C , a =
1,---,2d, is of complex dimension m —d = n, and therefore,
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contains linearly independent vectors X/,--- , X’. Then for
eacha =1,---,2d and each k = 1,--- ,n we have

0 = 9t (X}) = dpa(X)
(8.3) = dpa(1/2(Xx — V—-1JXy))
= 1/2(dpa(Xk) — V—1dpa (J X})) .
By (8.3) we have dp,(Xy) = 0 and dp,(JX;) = 0. This
implies that {Xz,JX; : k = 1,--- n} are tangent to N.
Since {X;,k = 1,---,n} are independent the set of vec-

tors {X1,J X1, -+, Xn,JX,} is a basis for T, N which is J-
invariant . Therefore, N is J-invariant. [

Now let 8 = (6*,...,6™) and § = (81, ... ,0™) be defined
on a neighborhood U of P € M. Let Q° be the ring of smooth
complex-valued functions defined on U. For each pair of inte-
gers (p,q) where p,q = 1,... ,m, let Q¢ be the module over
Q0 generated by differential (p + q)-forms of type

21 A AP AGHLA L. A GHa

Then for each integer k = 1,...,2m the module of smooth
k-forms on U has decomposition

We consider the exterior algebra
Q*zﬂoeéﬂl@---éBsz )

Definition 8.5. For any elements w and ¢5, (A= 1,...) of
Q* we write

w=0, mod(py,A=1,...),
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if w belongs to the algebraic ideal generated by ¢ ’s. By mod 6,
we shall mean mod (61,... ,6™).

We refer to [BCGGG] and [GJ] for basics on exterior dif-
ferential systems. Now we set

(8.4) do* =Y T)0% A6”, mod 9,
w<v
where A\, u,v = 1,... ,m. The system of complex-valued func-

tions T:‘U shall be called the torsion of the almost complex
structure J. If the torsion is identically zero then J is said
to be integrable. The Newlander-Nirenberg theorem states
that if J is integrable then there exist smooth complex-valued

functions z1, ..., 2y, such that each @ is spanned by usually
(1,0)-forms dz1, ... ,dzm,, which implies that (M, J) is a com-
plex manifold with coordinates z1,... ,2,. In the case that

the torsion is not identically zero we shall show that various
rank conditions imply the existence of integrable submani-
folds. To show the ideas we shall discuss the simplest case of
m =3 and n = 2 first. (8.4) with m = 3 is

dot = TL0" N 6% + T},0" A O3 + T,02 A 63, mod §
(8.5) dB* =TLO' ANO* + TE0 N0 +TE0% A6, mod
do® = T30 N 6% + T30 A 03 + T3,62 A 6%, mod 6.

We shall call the 3 X 3 matrix of T;‘V’s the torsion matrix.
Let N be a smooth submanifold of real dimension 4 passing
through a point P € (M®,J). Assume that N is J-invariant
and that (N, J) is integrable. Let Z; and Z, be independent
smooth sections of T'N. We apply (Z1,Z3) to (8.5). By
assumption that (N, J) is integrable, the bracket [Z, Z5] is a
section of 7N and therefore, the left side of (8.5) is zero and
we have

0 T, Tis Tys
(8.6) 0| =|T | a+ | T | B+ | T55 | 7,

0 e T T3,
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where a = 0' A 02(Z1,25), f = 61 A 03(Z1,25) and v =
0> A 63(Z1,Z5). (8.6) implies that the three columns of the
torsion matrix is linearly dependent at every point of N. Thus
on N the determinant of the torsion matrix is zero. Let

T112 Tf?) T%?)
TP, Ti T

Definition 8.6. Let ¢ be a smooth real-valued function on a
neighborhood of P € M. A real-valued smooth function t is
called a non-degenerate factor of ¢ if dt # 0 and ¢ = t¢' for
some smooth function ¢’.

We assume that s and ¢ in (8.7) satisfy the non-degeneracy
condition

(8.8) ds Adt #0.

Otherwise, we use a non-degenerate factor s of the real part
and a non-degenerate factor ¢ of the imaginary part of (8.7)
that satisfy (8.8).

Theorem 8.7. Let (M®,J) be a smooth almost complez man-
ifold. Let 0 = (0',6%,6%) and 6 = (8*,62,6%) be independent
sections of (T"M)* and (T M)*, respectively, on a neighbor-
hood of a point P € M. Suppose that s + /—1t is the de-
terminant of the torsion matriz (8.7) that satisfy the non-
degeneracy condition (8.8). Let N be the common zero set of
s and t. Then N s a complez submanifold if and only if

(8.9) 0s N0t =0, mod (s,t).

Proof. Suppose that N is a complex submanifold. Then N
is J-invariant . Therefore, by Proposition 8.4

rank (0s,0t)(z) =1, Vz € N,
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so that (8.9) holds.

Conversely, if (8.9) holds, then by Proposition 8.4 N is
J-invariant. Then for the almost complex manifold (N,J)
the torsion is zero. Therefore, by the Newlander-Nirenberg
theorem (NN, J) is a complex manifold. [

As for the general dimensions, suppose that a submanifold
N of real dimension 2n is J-invariant and that (N, J) is in-
tegrable. Let Zy,---,Z, be independent smooth sections of
T'N. For each pair (ij) of 4,5 = 1,---,n with ¢ < j, apply
(Zi, Z;) to (8.4). By assumption that (N, J) is integrable the
bracket [Z;, Z;] is a section of T'N, therefore, the left side of
(8.4) becomes zero. Thus we have

0
(8.10) | =TA,
0
where
Th T - Thoim
(8.11) T = ; : . :
3 T75 - Typam
and
(8.12) )
01/\92(21,22) 01/\02(Z1,Z3) 01/\0(Zn_1,Zn
0L A 6%(Z1,Z5) 0L A3 (Z1,Z5) - 01N (Zn-1,Zn
A= , : i .

gm-LAQg™(Z —1,Z5) O™ 0™(Z0, Zs) oo 6PN (Zaon,

For any positive integer k let (g) = %k(k:—l). Then T A, where
T is the torsion matrix of size m X (’;‘) and A is a matrix of size

("2”‘) X (’2‘) whose entries are smooth complex-valued functions
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that depend on N and choice of (Z1,---,Z,). We observe
that A is of maximal rank (g), in fact, by a complex linear
change of frame Z1, -+ , Z, the first (}) rows of A(P) can be
made the identity matrix and the other rows all to be zeros.
Therefore, (8.10) gives (%) independent linear equations on
m columns of 7, so that the number of linearly independent

columns in 7 is less than or equal to (g’) — (g), which is

equivalent to that all the square matrix of 7 of size (Tg) —_ ('2’) +
1 is of determinant zero. Thus for the general dimensions we

have

Theorem 8.8. Let (M?>™,J), m > 2, be a smooth almost
complex manifold. Let @ = (8,---,0™) and 6 = (01,--- ,6™)
be independent sections of T'M and T" M, respectively. Let
T be the associated torsion matriz (8.11). Let n be an integer
with 2 < n < m — 1. Let 11,--- ,7p be the determinant of
all the square matrices of size (’;) — (g) + 1. Let N?™ be a
submanifold of M defined as common zero set of real-valued
functions p1,- -+ , p2q, d = m—n, that satisfy dpy A---Ndpag #

0. Then N is a complex submanifold if and only if

(8.13) 7 =0, mod (p1, -, p2d)
and
(8.14) rank (0p1,- -+ ,0p24)(z) =d, Vz € N.

Proof. Following the same argument as in the proof of The-
orem 8.7, we see that (8.14) implies that N is J-invariant and
that (8.13) implies that on N the torsion vanishes, so that
the conclusion follows from the Newlander-Nirenberg theo-
rem. [J

As in Theorem 8.7 pq,--- , p2g may be chosen from the real
part and imaginary part of 71, --- , 7 or their non-degenerate
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factors. The condition (8.14) or (8.9) in the case m = 3
is a system of second order PDE’s on the almost complex
structure tensor J. To see this, consider an almost complex
manifold (M6, J) that is a small perturbation of the standard
complex structure Jg; of C3 by setting

Il

3
(8.15) 6% = dza + Y _AB(z,2)dzs, a=1,2,3
p=1

where AZ(0) = 0. Then the entries of the torsion matrix are
rational functions in A8 and their derivatives. Since (8.9)
involves the derivatives of the elements of the torsion matrix,
the condition (8.9) is a system of second order PDE’s on ABs,
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§9 Equivalence problem of G-structures.

We shall discuss in this section some historical background,
or the author’s motivation, of studying the complete prolon-
gation

Let M be a C'™° manifold of dimension n and G be a linear
subgroup of GL(n;R). A G-structure on M is reduction of
coframe bundle of M to a subbundle with the structure group
G. For instance, a Riemannian structure on M is a SO(n)-
structure and the subbundle in this case is the orthonormal
coframe bundle of M.

Now let M and M be manifolds of dimension n with G-
structure. The equivalence problem is deciding whether there
exists a structure preserving mapping f : M — M. Locally,
this is a question of existence of solutions for an overdeter-
mined system of first order partial differential equations in
cases where G is a sufficiently small group.

E.Cartan’s method to this problem is as follows: We fix
coframes § = (6',---,0™)" of M and 8 = (6, --- ,67)t of M
adapted to the G-structure, where 6 and @ are defined over an
open set U of M and an open set U of M , respectively. Then
the question is whether there exists a mapping f : M — M
that satisfies

(9.1) £70* = ag 6%,

where a := [ag ()], xn is a G-valued function of M. In terms
of local coordinates, (9.1) is a system of first order partial
differential equations for f = (f!,---, f") and system of al-
gebraic equations for ag(z). Thus we consider the product
U x G and the tautological 1-form @, which is a vector valued
1-form defined by © = gf on U x G, namely

(92) @(a:,g) = gb;, Yz € U, Vg € G,
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where 6, is a column vector (6L, - ,07)". G actson U x G
on the left by the action defined by

h(z,g) = (z,hg), Yz € U, Vg,h € G.

Proposition 9.1. A diffeomorphism f : U — U satisfies
(~91) if and only if there exists a diffeomorphism F : U x G —
U x G satisfying

) F*O =6

i1) the following diagram commutes:

UxG —2—5 TxG

v L 0
iii) F(z,gh) = gF(z,h), for eachxz € U, andg,h € G.
Proof. Suppose that f satisfies 0 = gof, where go is a G-
valued function on M. Define F : UxG — UXG by F(z,g) =
(f(z), 995 ' (z)). Then F satisfies ii) and iii). Moreover,

F*6 = F*(§0) = (990" 1) f*0 = (990~ ")g0b = g8 = O.

Conversely, suppose that F' : U x G — U x G satisfies
i) - iii). Define f: U — U and go : U — G by F(z,e) =
(f(a:),go(az)_l), where e is the identity of G. Then F(z,g) =
gF(z,e) = (f(z),995 "), and i) implies that
g0 = F*(30) = (990~ ") f*0
therefore, f*0 = gof. O
Now apply d to (9.2). We get

dO = dg A 6 + gdb;
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substituting # = g~ '@, we obtain
(9.3) dO =dgg~! A O + ¢db.

Now let d* :}Z?,kzlbj-kﬁj NGF, (b = —b};). We want to
find 1-forms w;'-, t,7 =1,---,n, such that

(9.4) do' = —wi NG

and
[wi(z)] € G, for each z € U,

where G is the Lie algebra of G. This Lie algebra valued 1-
form w = [w!] is called a torsion-free connection (see [Chern).

If G is too big, such [w!] is not unique. If G is too small
such [w;] does not exist. For example, if G = O(n,R), then
there exists a unique torsion free connection [w;] We assume
the unique existence of torsion free connection w for the G-
structure.

Substitute df = —w A 6 and § = g~1O in (9.3), to get

dO =dgg ' NO —gwAg 'O = (dgg~ " - gwg~ ) A O.
Let
(9.5) Q=—(dgg™" — gwg™1),
then 2 is a G-valued 1-form on U x G and we have

(9.6) do=-QAN6.

Now it is easy to show
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PROPOSITION 9.2. Let © and i, 4,j = 1,--- ,n, be

the 1-forms defined by (9.2) and (9.5) on U x G. Then 0",
spans the cotangent space at each point of UXG. Furthermore
if O, Q’ are the corresponding 1-forms on U x G and

F:UxG—-UxG
is the mapping as in Proposition 1.1, then

(9.7) F*Qf = Q.

The set {O7, Q;} is called a complete set of invariants for
the equivalence problem. {2 is called a torsion-free connection
form on U x G. Note that w is a 1-form on the base manifold
U and that the restriction of €2 on each fibre is the Maurer-
Cartan form of G. |

Now let G be a Lie-subgroup of GL(n;R). Suppose that a
manifold E of dimension n has a G-structure and 7: Y — E
is the associated principal bundle. The equivalence problem
is finding canonically a system of differential 1-forms

(9.8) wh, - ,wh, where N =n+dimG,

so that a mapping f : £ — E preserves the G-structure if
and only if there exists a mapping F;Y — Y, which is a lift
of f,that is, # o F' = f o, and such that

(9.9) F*ot =w', i=1,---N,

where E is a manifold of dimension n with a G-structure and
% :Y — E is the associated principal bundle and &' are the
corresponding 1-forms on Y. (9.8) is called a complete system
of invariants of the G-structure and (9.9) is a complete system
of order 1 for F. It turns out that (9.9) is equivalent to a
complete system of order 2 for f . In the following we present
a direct construction of a complete system for Riemannian
isometries.
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Example 9.3. Let (M, g) and (M, §) be smooth Riemannian

manifolds with Riemannian metric g and g, respectively. A

C! map u: M — M is an isometry if

(9.10) u g =g.
(

In term of local coordinates (9.10) can be written as
),

(9.11) uf‘uf Gap(u) = gij(z), (summation convention),

for each 7,7 = 1,... ,n. By applying 0k to (9.11) we have

o ~ [e% 8.6& 8g'l, ]
(912) (ufio +ufrf)as () + ufnf 5 P (W = 574 (),

foreachi,j,k = 1,... ,n. We may assume that u(0) = 0, g;;(0) =
0ij> Gap(0) = dap, and uf(0) = 65. Then at the reference point
0 (9.12) is

(9.13) g + uly = —Gijk(0) + gij, 0)-

By permuting the indices {i, 7, k} in (2.12) we get
(9.14) uhs + ufi = =i, (0) + g, (0)
and

(9.15) Ufj + U;'cj = —Gki, (0) + gri,; (0).

Then (9.13) + (9.15) — (9.14) yields
2uly = —3ij k(0)+G;k,i(0)—Gri 5 (0)+9ij,k (0)—3gik,i (0)+9ki ; (0)-

Therefore, on a neighborhood of (0,u(0),u;(0)) in the space
of first jets of u we have

(9.16) ué-k = ;k(m,u(l)),

which is a complete system of order 2.
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§10. Infinitesimal automorphisms and mappings of
G-structures.

Let U C R™ be an open set. By a frame over U we shall
mean a set of C*°1-forms e = (ey, ... ,e,) which are linearly
independent at every point of U. In this section we work
with vector fields rather than 1-forms. We adopt definitions
and notations of [Kob] and use the summation convention.
Arguments in this section , especially Lemma 10.3, can be
better presented in higher order jet or infinite jet, however,
we present as it is in [H2]. Let Let G be a Lie subgroup of
GL(n,R) and F(U) be the frame bundle. A G structure is a
subbundle P of F(U) with the structure group G. Let P be
a G-structure on U C R®. A C* map f: U — U is called a
G-mapping if for any frame e belonging to P f.e is a frame
belonging to P. If we fix frames e and é belonging to P and
P, respectively, this condition can be written as

(10.1) frej = @5é;,

where [a}] is a G-valued function on U. (10.1) is a dual ex-
pression of (9.1). A vector field X = u’e; is called an infin-
itesimal automorphism of the G-structure P if its local flow

map exp(tX) is a 1-parameter group of G-self mappings. Set
LXej = a§- €;,

where L is the Lie derivative. Then X is an infinitesimal G-
automorphism if and only if the n x n matrix valued function
[a}] is G-valued, where G is the Lie algebra of G (cf. [Kob]).
Let

[ei, ej] = bi«cjek

Then
Lxe; = [u ei, €]

(et + b e
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so we have
P ki
a; = —eju’ + u by;.

Since G is a linear subspace of gl(n;R), it is defined by linear
equations, namely,

gz{y;:Ean :c{/\ygzO, A=a,...,N},

where N is the codimension of G in gl(n;R) and ¢ are con-
stants. Thus we get

c\ (—ejul —I—ukb};j) =0, A=1,...,N.

To express the above in terms of local coordinates, let X =
¢'(0/0x;) and let (0/0x;) = bie;, then u' = 3¢/ and the
above equation becomes

(10.2)  cly[—e;(BLEF) +b5by;€1 =0, A=1,...,N.

(10.2) is a system of linear PDE of first order for £ = (¢,... , &™)
with C*coefficients. We have

10.1 Theorem. Let G be a Lie subgroup of GL(n;R). Sup-
pose that U and U are open neighborhoods of the origin of R™
with G-sturctures P and P, respectively. Let f : U — U be a
G-mapping of class C* for some sufficiently large k. Suppose
that the equation (10.2) for the infinitesimal automorphisms
of P admits prolongation to a complete system of order m
and that P has the same property. Then f satisfies a com-
plete system of order m 4+ 1.

10.2 Definitiop (G-structure of Frobenius type). A G-
structure P on a C® manifold M is of Frobenius type of order
m if the equation (10.2) for the infinitesimal automorphisms
of P admits prolongation to a complete system of order m.
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Now let P be a G-structure of Frobenius type of order m on
an open set U C R”. For all a with |a| = m, and for all
i=1,...,n,let

(103) ot = Hi(2,0% - 6] < m)

be prolongation of (10.2) to a complete system. Note that
each H! is linear in °¢. We introduce new variables

ps = (Df, .- ,pf) for 876 = (8°¢",...,07¢€™).
For each positive integer k, the kth order jet space is
JF=U x R®) = {(,&,p)},

where p = (pg : |8] < k) and (k) is the number of the variables
(¢,p). In J* consider the submanifold AF which is defined by
(10.2) and all the equations obtained by differentiating (10.2)
in all possible ways up to order k — 1. Let X = £'(9/0x;)
be a C* vector field. Then the k-th jet graph of X is the
submanifold of J*

i%(z) = (z,€(x),0%¢(x) - |B] < k)
and kth order contact system 1s
OF = {w e T*(J*): (j%)*w =0, Vvector fields X on U}.
Then QF is spanned by
Wk :=deF — pz-dxj and
wp :=dpjy — P(g, 512",

where (3, 7) denotes the multi-index (81,...,0; +1,... , Bn)
if 8= (61,---,0n). We have
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10.3 Lemma. Let P be a G-structure on U and let J*, N\F
and QF be as above. Then the following are equivalent:

(i) P is of Frobenius type of order m;

(11) the (m—1)th contact system Q™! defines an n-dimensional
distribution D on A™ ! such that dz' A---Adzx™ # 0 on each
integral element of D.

Proof of Lemma 10.3. (i) = (4¢): Let (10.3) be prolongation
of (10.2) to a complete system. (10.3) is equivalent to the
total differential equation

d(8°¢') = Hip ;(2,07¢ : |y < m—1)dz’, VB with |8 =
for alli = 1,... ,n. This implies that on A™~!
Qp = dpy — Hg jy(z, &, py)dz’ =0,

for all 8 with || =m — 1, and for alli =1,... ,n. Let D be
the distribution Am 1 given by Q(m- 1) = 0 Then on each
integral element of D we have

d¢' = pidz’,
deiB = p’('ﬁ,j)dxj, V@ with 8] < m — 1,
dpy = H{g jy(z,&,p)dz’, Vf with [3] =m — 1,
dz* A - Adz™ #£ 0.
Therefore, D is an n-dimensional distribution.
(¢6) = (i): Let D be the distribution as in (ii). Let

#', ..., ¢ be differential 1-form on A™~! which generate the
differential ideal associated with D, where

v = (dimension of A™™ 1) —n.

Set . . . .
¢ =dlde+bdE+ddp, j=1,...,v,
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where a7, b and ¢’ are row vectors and dz, d€ and dp are col-
umn vectors so that a’dzr = a{da:l +---+al dz™, and so forth.
Since each integral element of D is n-dimensional subspace of
T(A™=1) on which dz! A --- Adz™ # 0, we can solve ¢/ =0,
j=1,...,v, for d€ and dp we get

det = hj-da:j
dpg = hfﬁ’j)d:cj, VB with |B| <m —-1,Vi=1,...,n,

where h are C®functions on A™~!. This implies that if £ =
(€L,... €M) satisfies (10.2) then

| d(O°E") = hig 5y (2,07¢ : [y] <m —1)da? =0,

for all 8 with |3] < m — 1. In particular, if |3| = m — 1, the
above equation is equivalent to

8([3’7)5’ = h’@,j)(w,apyﬁ : h" <m— ]-)a Iﬁl =m—1,

which is a complete system of order m. U

Proof of Theorem 10.1. Let (10.3) be the complete system
for the infinitesimal automorphism of P and let 2* be the
kth contact system on A*¥ C J* for each £k = 1,...,m —
1. For each multi-index 3 with || = m — 1 and each 1 =
1,...,n, let Q,’B = dpr - H(iﬂ,j)da:j, where H are the same
as in the complete system (10.3). Let D be the distribution
as in Lemma 10.3. We will put tilde on the corresponding
notions on U : J™~ ! := U x R(™1 = (%,£,p), and so forth.
A C™*! diffeomorphism f : U — U naturally defines a C*
diffeomorphism F* : J* — jf foreach k =1,... ,m—1 as
follows: Let F*(x,&,p) = (Z,&,p). Then

(10.4) (z,¢,p) = f'(2)
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Bf’

(10.5) £(z,&,p) = &

1=1,...,n

and define p(z, &, p) by chain rule, namely

o'
p;(z,6,p) = 55
_ 9 oot
~ Ozk 0%

(10.6)

substitute (10.5) for £¢ and p)‘ for 2 T the right hand side of
(10.6) becomes

[ \Of +§)\ o2ft '\ Oz*
- “3 Oztoz> | 0T
-1
each %% a‘” is an entry of [ 833]] . , therefore a C'"*°function
7J: Pt ’n
of g’;jj, i,j=1,...,n,so
9%ft Ozt

A
=¢ ozr oz 0TI +a)\pu,

where af are C*functions in (07f : |y| < 1). Now let 3 =

(B, .. ,ﬁn) be a multi-index and (j1,...,J|g) denotes the

sequence 1,...,1,2,...,2,n,...,n). Then by induction on
(AN 2

_—

Bitimes PBatimes Bstimes
|3| we obtain

py(z,€,p)

(10.7) =¢ A R L <

Oz Ozt - - - 9z Bl T 979181

+aj\py, <8,

+ ag, )

where a are C*°functions in (07 f : |y| < |8|). Then we claim
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(1) Fm=1(A™=1) = A™~1 and

(2) F»~1(D) = D.

Proof of the claim

(1) A C! vector field X = ¢(0/0z") is an infinitesimal
automorphism of P if and only if f,X is an infinitesimal au-
tomorphism of P. This implies that F L(Al) = Al. Then it
is clear that FF(AF)=AFfork=2,... ,m—1. )

(2) For each k = 1,... ,m — 1, we have (F¥)*(QF) = QF
which is immediate from the definition of the contact system.
In particular (F™~1)*(Q2™~1) = Q™~1. Thus we have

v e D<= veT(A™ ) and v annihilates Q™!

= F,v e T(A™ ') and F,v annihilates Q™!
— F™" 1y eD.

D ~

Now we compute F™* }'3, 18| =
(10.8) B S 3 ‘

(F™ 1) Q = (F™1)*(dp' — H{g ;(%, &, p)dF’)
substitute (10.4)-(10.7) for 7,&, and p,respectively,
amfz 83})‘1 833 m—1 A
= — .. . d
[3xA8mA1 . fzAmo1 9F QFim-1 o8 } ¢
+a}\dp), |yl <m-1
€>\ 8m+1fi 6:13)‘1 o (9:1:)‘_1
Oz 0zxH1 - - - Qxrm-10zk 9z OFIm—1
where a are C®functions of (07f : |y| < m — 1) and b are

C°functions of (z,&,p,07f : |v| < m).
By the proof of Lemma 10.3, D on A™1 is given by

Q=0 |
Oy =0,¥i=1,...,n,V8 with |8 =m — L.

+ b%,k} dxk
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Recall that Q™! is the contact system and Q’ﬁ are 1-forms de-
fined by the complete system. Since F™~1(D) = D, (Fm_l)*flg

is a linear comblnatlon of {w? ,w’ Qi =1,...,n,]y <
—1,|6] = m — 1} where w are contact forms. So we set
(10 9)

(Fm—1)* Qﬁ:cﬁ)‘w -l—c"yw’\—l—cﬂ)\ﬂ(;
= cp A (dE* — ppdz®) + CﬁA(dpy'_ZR7$)dx )4‘CgA(dP5 H{s ydz"®),

where c are C! functions on A™ 1, |y| < m—2 and |§| = m—1.
By equating the components of d¢ and dp in (10.8) and
(10.9) we obtain ¢’s as C*functions in (z,&,p, 87 f : |y| < m)
for (z,€&,p) € A™~1. Substitute this in (10.9) and equate the
components of dz* in (10.8) and (10.9) to obtain

am+1fi 333/\1 8.’E)‘_1

A Y
(10.10) ¢ 0xA 0z - .- rrm-10xk 9Fir  PFim-1
= C* function in (z,&,p, 07 f : |y| < m),

where (z,£,p) € A™71. Since (10.2) is a system of linear
partial differential equations of first order obtained from the
structure equations of the Lie algebra G, we see that dz! A

o ANdz™ NdEY A - AdE™ £ 0 on A C J! and therefore on
A™=1 ¢ J™=1. Thus there exits a C*function p(z, &) such
that (z,&,p(z,€)) € A™~1 V(z,€). Foreach j = 1,... ,n, the
restriction of (10.10) to the submanifold {(z, ¢, p(z,§)) : € =
(0, ,0, 1 0....,0)}is

jth
‘am+1fi 8:6’\1 393)‘_1
(10.11) 0TI Oz - - - Oxrm—-19zFk it Hpim-1
= C'* function of (2,07 f : |y| < m).
Here 4,7,71,...,Jm-1 and k are arbitrary. Since the matrix

(ami>
0z’ ij=1,...,n
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is nonsingular and each dz'/9%’ is a C*function in (9f),
from (10.11) we have

8m+1 fz
0xi Oz 1 - - - QxrAm-10xk

O

= C* function in (2,07 f : |y| < m).

Now we will show that every G-structure of finite order is of
Frobenius type. We recall the definitions first. Let G be a Lie
subgroup of GL(n,R) and G be the associated Lie algebra.
The kth prolongation G(®) of G is the space of symmetric
multi-linear mappings

t:R" X --- x R” - R"

(k+1)times

such that, for each fixed vy,...,vr € R", the linear transfor-
mation

v e R"” — t(v,v1,...,vr) € R” belongs to G.

G is said to be of finite order k if G*) = 0 and G*-—1 # 0.
Riemannian structures and conformal structures (when di-
mension > 3) are of finite order 1 and 2, respectively (cf.

[Kob],[Stern]).

10.4 Theorem. Let P be a G-structure on U C R™. If G is
of finite order m — 1 (m > 1), then P is of Frobenius type of
order m.

Proof. Since G is a linear subspace of gl (n,R), it is defined
by G = {(y;) € gl(n7R) : ZZj:l chy; =0,A=1,... 7N})
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where the cg y are constants and NV is the codimension of G in
gl(n,R). Therefore, as a linear space, G(™~1) is isomorphic
to the subspace of

m+1 ; .
R™ " = (v}, ;.), eachije{l,..., n}

which is defined by the following system of linear equations:

n
J1,4 _ —
E cizYi, g, =0, A=1,... N
1,j=1 |

and the symmetry conditions on the subscripts

(10.12) .

7 1
Yjiiajm — Yjaji-jm

...................

=0

7 7
Yjidm—iim ~ Yj1-fmim—1

Since the only solution of (10.12) is y = 0, there exists n™*!
independent equations in (10.12). Let

(10.13) g'(y) =0,...,g"  (y) =0.

Now we fix a frame (ej,...,e,) belonging to P. Let X =
So_ z'e; be an infinitesimal automorphism of P. Define 3
by [ej, X] = Y i &lei. Then the matrix [€;] belong to G.
For any sequence (j2,...,jk), each j € {1....,n}, we denote
by £&,...;, the derivative (ej, - - ej,)(€2). Then in the Jacobi
identity

lex, [ej, X]] — [ej, [ex, X]] = [[ex, €;], X]

substitute Y7, £le; and Y- | Eie; for [ej, X] and [ey, X], re-
spectively, we obtain &}, — & = (€*,€,)), where (,) denotes a
linear combination of the variables inside with C'*°coefficients.
By induction on the number of the subscripts we see that a
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transposition for any two subscripts in 5; gk makes a differ-
ence by a linear combination of {¢} : |J| < k,A =1,... ,n},
where J = (j1j2---) is a seqence of subscripts and |J| is the
size of J. Moreover, since G is a linear space, for each fixed
j2 -+ jk, the matrix of the derivatives

i
[ jljz...jk]i,jlzl,m,n belongs to G.

Now at each point © € M, consider

n

Z Cz;\ ;ljZ"'jm 20, )\—_— 1, ,N
i,jl:l
and the symmetries in the subscripts
(10.14) ; p 5i -0
jijz-dm ~ Sj2iicim + jije —

.........................

J

jl"'jm—ljm jl"'jmjm—l

=0,

m—ljm

where each § is a linear combination with C*coeflicients of

(10.15) {€:|J|<m—-1,t=1,... ,n}
Let
(10.16) g (z,6) =0,...,¢"" (z,6) =0

be the equations corresponding to (10.13). Since the last
n™+1 columns of the Jacobian matrix (9g(z, §)/0€) is equal to
(8g/dy), which is nonsingular, we can solve(10.16) to obtain

} ..j, as alinear combination of (10.15) with C'*°coefficients,
for each i, j1,... , jm- This completes the proof.



68 CHONG-KYU HAN

§11. Multi-contact structures given by two vector
fields.

This section is an application of Theorem 4.6. Finite di-
mensionality (or rigidity) of the solution space of (4.1) can be
shown by constructing a complete prolongation. We present
the finiteness of infinitesimal automorphisms of multi-contact
structures given by two vector fields in R3, which is part of

[HOS].

Let M be a smooth (C*°) manifold. A multi-contact struc-
ture on M is a set of C° subbundles Hy,... ,Hy, (k > 2),
of the tangent bundle TM that satisfies the following non-
degeneracy conditions:

HYD =H=H,® - - @ Hy and H) = [H(a U, H]+HG-D,
J=2,3,---, are subbundles of T M. Moreover,

(11.1) HWN) =TM, for some positive integer N.

A local diffeomorphism f of M is called a generalized contact
map if f preserves the multi-contact structure, that is,

(11.2) f.(H;, P) C (Hi, f(P)), Vi=1,...,k, VPe M.

A smooth vector field V is an infinitesimal automorphism of
the multi-contact structure iff its flow maps exptV, —e < t <
€, are generalized contact maps of this structure. The set of
infinitesimal automorphisms is closed under the bracket, thus
forms a Lie algebra. A. Koranyi raised the question whether
the local group of generalized contact maps is finite dimen-
sional, or equivalently, whether the Lie algebra, of infinitesimal
automorphisms is finite dimensional. We have

Theorem 11.1. Let X and Y be C> wector fields on R3
such that X,Y,[X,Y] span the whole tangent bundle of R3.
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Then the set of infinitesimal automorphisms of the multi-
contact structure given by X andY is finite dimensional, with
dimension at most 8.

Proof. Let Z = [X,Y] and set
(11.3) V=rX+sY +pZ.

Then V is an infinitesimal automorphism of the multi-contact
structure given by X and Y if and only if

(11.4) [V, X] =X, [V\Y]=uY,
for some functions A and p. We set
(115) [Z,X] = ay X+ Y+ Z, [Z,Y] = axX+bY +c2Z.

We shall work in C® category, that is, all the coefficients
a;,b; and ¢;, i = 1,2, are assumed to be C*°. By substi-
tuting (11.3) in (11.4) and substituting (11.5) for [Z, X] and
for [Z,Y], respectively, and then equating the corresponding
components, we have the following system of linear partial
differential equations of first order:

—Xr+ap=X (11.6a)

_Xs+bip=0 (116b)

(11.6) —Xp—s+cip=0 (11.6¢)
~Yr+ap=0 (11.6d)

—Ys+byp=p (11.6e)
—Yp+r+ecp=0. (11.6f)

(11.6) is a system of six equations for five unknowns r, s, p, A, 14 :.
However, if we know p we determine s,r, A, and p by (11.6c¢),
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(11.6f), (11.6a), and (11.6e), respectively. We shall express
each of the third order partial derivatives of p as a linear com-
bination with C® coefficients of partial derivatives of lower
order of p. This is a complete system of order 3 for p and the
conjecture follows from Theorem 11.1.

Now we construct a complete system of order 3 for p: By
(11.6¢) s = —Xp + c1p and by (11.6f) r = Yp — cop. Substi-
tuting these in (11.6b) and (11.6d), respectively, we have

X%p—c;Xp+ (—Xe+b1)p=0

(11.7) )
Y2p—coYp+ (—Ye2 —az)p=0.

Rewrite (11.7) as

X2%p € < Xp,p >
Y?p € <Yp,p >,

where < > denotes the set of linear combinations of the vari-
ables inside with O™ coefficients. The coefficients are poly-
nomials in a;, b;,¢;, 4= 1,2, and their derivatives in X and
Y. For algebraic calculation of linear differential operators
that are applied to p we write the above as

(11.8) X2 e<X,1>
and
(11.9) Y2 e<Y,1>.

Applying X repeatedly to (11.8) and applying Y repeatedly
to (11.9), we obtain by induction on n

(11.10) X" e<X,1>, forn=23,--,
and

(11.11) Y" e<Y, 1>, forn=23,---.
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All the third order linear operators composed of X and Y
only are straight-forward from (11.8)-(11.9): We have

(11.12) YX?2 e<YX,V,X,1>
and
(11.13) XY? e < XYV, X,1>.

If we switch the order of X and Y in a third order operator in
(11.12) - (11.13) then the differenceisin < ZY, Z X, Y YX, X% Z,Y,X,1>
Analogously to the CR geometry, we obtain Z = [X, Y] direc-
tional derivatives by commuting X and Y, e.g., to get Z" we
start with Y?X™ and by commuting them we change it into
XY™, where Z" and other terms are obtained in the pro-
cess of commutation. To do this we introduce the following
notations: For each pair of non-negative integers m,n with
n > m let 'y, ,, denote the set of all linear combinations of
(ZtYiXk . t<m, t+j+k < n} with coefficients that
are polynomials in a;, b;,¢; (i = 1,2) and their derivatives
in X and Y of any order. Let T, = U> _o T'nm-

m=0

To obtain ZX? we apply Y to (11.10) withn =3
YX3 e Y<X,1>C<YX,) Y, X,1>.
On the other hand
YX% = (YX)XX = (XY-[XY)XX = (XY-Z)XX = XYXX-ZXX.

The second last term reduces to order 2 as follows: By making
repeated use of (11.12)-(11.13)

X(YXX) € X<YX,Y,X,1>C<XYX XV, XX,Y, X,1>
C <YXX.ZY,ZX,YY,YX,XX,ZY,X,1> C T2y

Thus we have

(11.14) ZX?% € Taa.
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Similarly, by applying X to (11.11) with n =3 we have
(11.15) ZY? € Tay.

To obtain ZY X we apply Y2 to (11.8): we have
(11.16) ZYX € Ty,

and by applying Y2 to (11.10) with n = 3 we have
(11.17) Z?X € T,

To obtain Z%Y we apply X2 to (11.11) with n = 3: We have
(11.18) | Z*Y € T,

Finally, apply Y3 to (11.10) with n = 3, to obtain
(2.17) 73 € T.

(11.10) - (11.19) is a polongation of (11.7) to a complete sys-
tem of order 3. A solution is determined by the second jet of
" p at a point, which is given by ten numbers that satisfy two
equations of (11.7). Therefore, the solution space is at most
eight dimensional. [J '

§12 Infinitesimal isometry of (M?, g).

This section is due to R. Bryant. He kindly showed this
coordinate-free calculation when the author visited him to
MSRI, Berkeley, in January 2002.
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Let (M, g) be a smooth Riemannian manifold of dimension
n. A smooth vector field £ on M is an infinitesimal isometry
(or a Killing field) if and only if  satisfies

where L is the Lie derivative. In terms of local coordinates
z = (z1,---,2™) (12.1) becomes

(12.2) &' grj + f;‘gx\i —&giin=0, 4,j=1,---,n,

where g;; = ¢(0;,0;) and £ = 6*5% (summation convention
for \=1,--- ,n). Since (12.2) is symmetric in (¢, j) the num-
ber of equations in (12.2) is ﬂ%i'l—) whereas the number of
unknowns is n so that (12.2) is overdetermined if n > 2. In
this section we shall present a coordinate-free computation of
prolongation of (12.1) with n = 2 to a complete system of
order 2 and discuss the existence of solutions. Let {e1,ea}
be an orthonormal frame over a 2-dimensional Riemannian
manifold M and let w!, w? be the dual coframe. Then

g:wlow1+wzow2,

where ¢ o := %(q& ®n+1n® ¢) is the symmetric product of
1-forms. Recall also that there exist a uniquely determined 1-
form w} (Levi-Civita connection) and a function K (Gaussian
curvature) satisfying

193 dwlz—w%/\w2
(12:3) dw? = w%/\w1

and

(12.4) dwl = Kw Aw?.
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Furthermore, Lie derivatives of w?, i = 1,2 with respect to a
vector field &€ = £le; + £2ey are

Lew' = d(€awt) + €odw?

(12.5)
= d¢' — wy()w? + 2wy by (12.3)
and similarly

Lew® = d(€1w?) + € adw?

129 = d&” + wy (§w' — Elwy.

By (12.5) and (12.6), we have
1
SLeg = (Lew') 0w + (Lgw?) 0w
= (d&' + Ewy) ow' + (d€” — €'wy) 0w’

On the other hand, the covariant derivative of ¢ is a (1,1)
tensor field given by

V¢ = V(Eler + E2e)
= (dé' + Ew3) D e1 + (d€? — £'wy) B en.

By setting

d¢! + wy = Elw' + G0,

(12.7)
dg? - glw} = gw' + o

and substituting in the above we have

1

SLeg = Elw 0w + (8 + o’ 0w + B B,
By (12.1), £ is an infinitesimal isometry if and only if

(12.8) G=¢=0 &+ =0.
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Substituting (12.8) in (12.7) we see that a vector field { =
tle; + E2ey is an infinitesimal isometry if and only if

dg! = —€%w} + 6o,

(12.9)
dg* = €l +

which is a coordinate-free version of (12.2) with n = 2 ex-
pressed as an exterior differential system. Prolongation of
(12.9) to a complete system is differentiating (12.9) and ex-
pressing (d¢!,d¢?,d¢€]) in terms of (€1,£2,¢3) + We apply d
to (12.9) and substitute (12.9), (12.3) and (12.4) for d¢t, dw'
and dw}, respectively, to obtain

(dé} — K&2wh) Aw? =0,
(deh + Ke'w?) Aw! = 0.

Hence we have
(12. 10) del = K(20! — 'w?).

The system (12.9) and (12.10) is a prolongation of (12.1) to
a complete system.

Now consider the Euclidean space R3 of variables (¢!, €2, .
Then the submanifold of the first jet space of { defined by
(12.8) may be identified with & := M X R3.

On M x R3 consider the Pfaffian system 6 = (6*,6?,6°) given
by

o' = de* + Ewj — W,
(12.11) 0% = d¢? — elwi + ot
093 = deb — K%' + KE'w?,

We check the Frobenius integrability conditions for (12.11):
By (12.3) and (12.4) we have

d6,d6? = 0 mod 0
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and
do® = (K16 + K26%)w! Aw® mod 6

where K; = dK (e;), i = 1,2 so that dK = Kjw' + Kow?.
Thus (12.11) is integrable if and only if T := K1&' + K)€?
is identically zero on M x R3, which is equivalent to K; =
Ky = 0i.e. K is constant. In this case, there exist 3 parame-
ter family of solutions by the Frobenius theorem. Otherwise,
assuming dT" # 0 on T = 0, we consider a submanifold S’ of
dimension 4 defined by T' = 0.

Differentiating dK = K w! + Ksw?, we see by (12.3) that

0=d’K
(12.12) o o
= (dK; + Kows)w" + (dK2 — Kiw;)w”.
Thus we put
(12.13) dK, = —ng% + Kllwl -+ K12w2,
(12.14) dK9 = Klw% + K21w1 + K22w2.

By substituting (12.13), (12.14) in (12.12) we have K12 =
Ko
On &', we have by (12.11), (12.13) and (12.14)
dT = £1dK, + K1de' + €2dK, 4+ KodE?
= (K11€" + K126? — Kptd)w! + (K128 + K226% + K1£)w? mod 6.

We set

T = K116 + K126% — Ko&5,

(12.15)
Ty = K126 + K928% + K1 £3.

If 71,7, = 0 on S’, i*6%,i*63,9*6% have rank 2. Then &' is
foliated by two dimensional integral manifolds and therefore
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there are 2 parameter family of solutions. But this implies
that K1 = K9 = 0 which is impossible. Let

K, K 0
A=| K1 K2 —-K;
Ky Ko K

If det A =0, A has rank 2 and " = {T =Ty = Tp = 0}
is a 3-dimensional submanifold of S. If we have d11,dT; =
Omod 6, 62,603 on S”, the Frobenius theorem imply that S” is
foliated by two dimensional integral manifolds and therefore

there exists 1 parameter family of solutions. To calculate
dTy,dT, we differentiate (12.13). Then we have

(12.16)
0=d*K;
= (K11 + 2K10ws + Ko Kw?)w! + (dK 12 + Kaowy — K1iwy)w®.
Thus we put
(12.17) dK11 = —2K19ws + Kiniw! + K11202,

(1218) dKqi9 = (K11 — Kzg)w% + K121w1 + Klzzwz.

By substituting (12.17), (12.18) in (12.16) we have Ki12 =
Ki21 — K2K.

Differentiating (12.14), we have

(12.19)

0=d’K,

= (K12 + Koow} — Kp1w})w! + (dKa22 — 2K1owy + K1Kw')w?.
By substituting (12.17), (12.18) in (12.19) we have
(dKg2 — 2K 19wl + K1 Kw' — Ki2awh)w® = 0.
Thus we put |
(12.20)  dKgy = 2K19w} + (K122 — K1K)w' + Kogow®.
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On §”, we have by (12.11), (12.17), (12.18) and (12.20)

dTh = (K111€" + (K121 — K2 K)&% — 2K1563)w?
+ (K1216" + K122 + (K11 — K22)€3)w? mod 6

and

dTZE (K121£1 + K122€2 + (KH — K22)£%)w1
+ (K122 — K1 K)E' + K2906? 4 2K15€)w?® mod 6.

We summarize the discussions of this section in the following

12.1 Theorem. Let M be a Riemannian manifold of dimen-
sion 2. Let

( K, K5 0 \
K11 K12 —K>
K — Ko Koo K,
K111 K21 — KoK 2Ky
K121 K29 Ki1 — Ko
\K122 - K1 K Koo 2K )

(i) If K has rank 0, there exist 8 parameter family of infini-
tesimal 1sometries,

(11) If K has rank 2 and (K1, K3) # 0, there exist 1 parameter
family of infinitesimal isometries,

(i1i) If K has rank 3, there exists only trivial infinitesimal
1sometry.

REFERENCES

[BCGGG] R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and
P. Griffiths, Ezterior differential systems, Springer-Verlag,
New York, 1986.

[Bry] R. Bryant, Ezterior differential system, lectures moted by
Sungho Wang, Duke Univ.
[BS] D. Burns and S. Shnider, Real hypersurfaces in complex

manifolds, Proc. Symp. Pure Math. 30 (1976), 141-167.



[Burns]
[Car]

[CDKR]
[CH1]
[CH2]

[Chern]

[CjsH]

[CM]
[Foote]

[FHO]
(Ga]
[GJ]
[H1]

[H2]

[H3]

OVERDETERMINED PDE SYSTEMS 79

D. Burns, CR Geometry, U. of Michigan Lecturenote (1980).
E. Cartan, Les systeémes différentiels extérieurs et leurs ap-
plications géométriques, Hermann, 1971 Photocopy, Paris,
1945.

M. Cowling, F. De Mari, A. Koranyi and H. M. Reimann,
Contact and conformal maps on Iwasawa N groups, Rend
Mat. Acc. Lincei s9 v13 (2002), 219-232.

C. K. Cho and C. K. Han, Compatibility equations for iso-
metric embeddings of Riemannian manifolds, Rocky Mt. J.
Math. 23 (1993), 1231-1252.

C. K. Cho and C. K. Han, Finiteness of infinitesimal defor-
mations of isometric embeddings and conformal embeddings,
Rocky Mt. J. Math. 33 (2005), to appear.

S. S. Chern, Geometry of G-structures, Bull. Amer.Math.Soc.
72 (1966), 167-219.

J. S. Cho and C. K. Han, Complete prolongation and the
Frobenius integrability for overdetermined systems of partial
differential equations, J. Korean Math. Soc. 38 (2001), to
appear.

S. S. Chern and J. K. Moser, Real hypersurfaces in complez
manifolds, Acta Math. 133 (1974), 219-271.

R. Foote, Differential geometry of real Monge-Ampére foli-
ations, Math.Z. 194 (1987), 331-350.

R. Foote, C. K. Han and Jongwon Oh, Proper Infinitesimal
isometries along curves and generalized Jacobi equations,
preprint.

R. B. Gardner, The method of equivalence and its applica-
tions, Amer. Math. Soc. CBMS Series 58, Providence, RI,
1989.

P. Griffiths and G. Jensen, Differential systems and isomet-
ric embeddings, Ann. of Math. Studies, No. 114, Princeton
U. Press, Princeton, NJ, 1987.

C. K. Han, Analyticity of CR equivalence between real hy-
persurfaces in C" with degenerate Leuvi form, Invent. Math.
73 (1983), 51-69.

, Regularity of mappings of G-structures of Frobenius
type, Proc. Amer. Math. Soc. 105 (1989), 127-137.

, A method of prolongation of tangential Cauchy-
Riemann equations, Adv. Stud. Pure Math., 25 (1997), 158-
166.




80

[H4]

[H5]

[H7]
[HL]

[HOS]

[HT]

[HY]

[Kam]

[Kob)]

[Kura]
[Lee]

[NN]

[NW]

[Stern]

[T]

CHONG-KYU HAN

, Complete differential system for the mappings of
CR manifolds of nondegenerate Levi forms, Math. Ann. 309
(1997), 229-238.

, Solvability of overdetermined pde systems that ad-
mit a complete prolongation and some local problems in CR
geometry, J. Korean Math. Soc. 40 (2003), 695-708.

, Pfaffian systems of Frobenius type and solvability of
generic overdetermined PDE systems, Proc. Conf. 2006 IMA
Workshop on Symmetry and Overdetermined PDE systems
(2007), to appear.

, Reduction to submanifolds of Pfaffian systems of
Frobenius type, preprint.

C. K. Han and K. H. Lee, Integrable submanifolds in almost
complex submanifolds, ,, preprint.

C. K. Han, Jongwon Oh and G. Schmalz, Symmetry algebra
for integral curves of 2n vector fields on (2n + 1)-manifold,
Math. Ann. (2008), to appear.

C. K. Han and G. Tomassini, Complex submanifolds in real
hypersurfaces, preprint.

C. K. Han and Jae-Nyun Yoo, A method of prolongation of
tangential Cauchy-Riemann equations, Advanced Studies in
Pure Math. 25 (1997), 158-166.

N. Kamran, Selected Topics in the geometric study of differ-
ential equations, Amer. Math. Soc. CBMS Series 96, Provi-
dence, RI, 2002.

S. Kobayashi, Tranformation groups in differential geome-
try, Chapter 1, Springer-Verlag, Providence, Berlin and New
York, 1972.

M. Kuranishi, On E. Cartan’s prolongation theorem of exte-
rior differential systems, Amer. J. Math. 79 (1957), 1-47.
K. H. Lee, Automorphism groups of almost complex mani-
folds, Ph.D. Dissertation Postech (2005).

A. Newlander and L. Nirenberg, Complezx analytic coordi-
nates in almost complex manifolds, Ann. of Math. 65 (1957),
391-404.

A. Nijenhuis and W. B. Woolf, Some integration problems
in almost-complex and complez manifolds, Ann. of Math.
77 (1963), 424-489.

S. Sternberg, Lectures on differential geometry, Chapter 7,
Prentice-Hall, Englewood Cloffs, N.J.,, 1964.

J. M. Trépreau, Sur le prolongement holomophe des fonc-
tions CR definis sur une hypersurface reelle de classe C?




OVERDETERMINED PDE SYSTEMS 81

dans C™, Invent. Math., 83 (1986), 583-592.

[YY1] K. Yamaguchi and T. Yatsui, Geometry of higher order dif-
ferential equations of finite type associated with symmetric
spaces, Adv. Stud. Pure Math., 37 (2002), 397-458.

, Parabolic geometries associated with differential equa-
tions of finite type (preprint).

[Wang] S. Wang, Exterior differential system, 2005 lectures at Seoul
Nat. Univ. based on R. Bryant’s lectures at Duke Univ..

[YY2]






SN

18.

19.
20.
21.
22.
23.
24.

25
26
27

Lecture Note Series

. M.-H. Kim (ed.), Topics in algebra. algebraic geometry and number theory, 1992
. J. Tomiyama, The interplay between topological dynamics and theory of C*-algebras,

1992 . 2nd Printing, 1994

. S. K. Kim, S. G. Lee and D. P. Chi (ed.), Proceedings of the Ist GARC Symposium

on pure and applied mathematics, Part I, 1993

H. Kim, C. Kang and C. S. Bae (ed.), Proceedings of the Ist GARC Symposium on
pure and applied mathematics, Part II, 1993 -

T. P. Branson, The functional determinant, 1993

S. 8.-T. Yau, Complex hyperface singularites with application in complex geometry,
algebraic geometry and Lie algebra, 1993

P. Li, Lecture notes on geometric analysis, 1993

S.-H. Kye, Notes on operator algebras, 1993

K. Shiohama, An introduction to the geometry of Alexandrov spaces, 1993

J. M. Kim (ed.), Topics in algebra, algebraic geometry and number theory II, 1993

. O. K. Yoon and H.-J. Kim, Introduction to differentiable manifolds, 1993

. P. J. McKenna, Topological methods for asymmetric boundary value problems, 1993
. P. B. Gilkey, Applications of spectral geometry to geometry and topology, 1993

. K.-T. Kim, Geometry of bounded domains and the scaling techniques in several

complex variables, 1993

. L. Volevich, The Cauchy problem for convolution equations, 1994
. L. Elden and H. S. Park, Numerical linear algebra algorithms on vector and parallel

computers, 1993

. H. J. Choe, Degenerate elliptic and parabolic equations and variational inequalities,

1993

. S. K. Kim and H. J. Choe (ed.), Proceedings of the second GARC Symposium on

pure and applied mathematics, Part I, The first Korea-Japan conference of partial
differential equations, 1993

J. S. Bae and S. G. Lee (ed.), Proceedings of the second GARC Symposium on pure
and applied mathematics, Part II, 1993

D. P. Chi, H. Kim and C.-H. Kang (ed.), Proceedings of the second GARC
Symposium on pure and applied mathematics, Part III, 1993

H.-J. Kim (ed.), Proceedings of GARC Workshop on geometry and topology ~ 93,
1993

S. Wassermann, Exact C*-algebras and related topics, 1994

S.-H. Kye, Notes on abstract harmonic analysis, 1994

K. T. Hahn, Bloch-Besov spaces and the boundary behavior of their functions, 1994
H. C. Myung, Non-unital composition algebras, 1994

P. B. Dubovskii, Mathematical theory of coagulation, 1994

J. C. Migliore, An introduction to deficiency modules and Liaison theory for sub-
schemes of projective space, 1994

I. V. Dolgachev, Introduction to geometric invariant theory, 1994

D. McCullough, 3-Manifolds and their mappings, 1995

S. Matsumoto, Codimension one Anosov flows, 1995



28.
29.
30.
31.
32.
33.

34.
35.
36.

37.
38.

39.

40.

4]1.

42.

43.
44.

45.
46.

47,
48.
49.

50.
51.
52.
53.

J. Jaworowski, W. A. Kirk and S. Park, Antipodal points and fixed points, 1995
J. Oprea, Gottlieb groups, group actions, fixed points and rational homotopy, 1995
A. Vesnin, On volumes of some hyperbolic 3-manifolds, 1996

D. H. Lee, Complex Lie groups and observability, 1996

X. Xu, On vertex operator algebras, 1996

M. H. Kwack, Families of normal maps in several variables and classical theorems
in complex analysis, 1996

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, 1996
Y. W. Lee, Introduction to knot theory, 1996

H. Kitahara, Some topics on Carnot-Caratheodory metrics, 1996 : 2nd Prmtmg
(revised), 1998

D. Auckly, Homotopy K3 surfaces and gluing results in seiberg-witten theory, 1996
D. H. Chae (ed.), Proceedings of Miniconference of Partial Differential Equations
and Applications, 1997

H. J. Choe and H. O. Bae (ed.), Proceedings of Korea-Japan Partial Differential
Equations Conference, 1997

P. B. Gilkey, J. V. Leahy and J. G. Park, Spinors, spectral geometry, and
Riemannian submersions, 1998

D.-P. Chi and G. J. Yun, Gromov-Hausdorff topology and its applications to
Riemannian manifolds, 1998

D. H. Chae and S.-K. Kim (ed.), Proceedings of international workshop on mathe-
matical and physical aspects of nonlinear field theories, 1998

H. Kosaki, Type III Factors and Index Theory, 1998

A. V. Kim and V. G. Pimenov, Numerical methods for delay differential equations -
Application of i~smooth calculus-, 1999

J. M. Landsberg, Algebraic Geometry and projective differential geometry, 1999

S. Y. Choi, H. Kim and H. K. Lee(ed.), The Proceedings of the Conference on
Geometric Structures on Manifolds, 1999

M. W. Wong, Localization Operators, 1999

A. M. Kytmanov, Some Applications of the Bochner-Martinelli Integral, 1999
R.D.Carmichael, A. Kaminski and S. Pilipovié¢, Notes on Boundary Values in
Ultradistribution Spaces, 1999

S. Hutt, Introduction to the Classification of Manifolds, 2000

Francesco Nicolo, Lecture notes on the global stability of the Minkowski space, 2000
Masahiko Taniguchi, Covering structure of holomorphic functions, 2004

Chong-Kyu Han, Overdetermined PDE Systems of Generic Type, 2007




