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Chapter 1

Preliminaries

"These are extended notes of my lectures given at Seoul National University in
September, 2003. I would like to express hearty thanks to Professor Jong-Kyu
Han and Professor Moonja Jeong (at the university of Suwon) for inviting
me and giving me the chance to make these lecture notes.

In the sequel, we could discuss the case of general Riemann surfaces. But
for the sake of simplicity, we will restrict ourselves to the case of C and its
subdomains D with smooth boundary, which we call non-degenerate planar
domain. We say that a non-degenerate planar domain D is n-ply connected
if the boundary of D in C has just n connected components.

1.1 Quasiconformal maps

Definition We call an orientation-preserving homeomorphism ¢ of a do-
main D onto another D' a quasiconformal map if ¢ is ACL on every rectangle

R={z=z+iy|la<z<bc<y<d}

in D (i.e., ¢(z+iy) is absolutely continuous on [a, b] and on [c, d], respectively,
with respect to x and y for almost every fixed y and x), and there is a constant
k < 1 such that

almost everywhere on D.
Here, we set K = (1+k)/(1 —k) and we also call ¢ a K-gc map. Further,

the infimum of such K is called the mazimal dilatation of ¢, and denoted by
K.
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In general, ¢, is non-vanishing almost everywhere on D, and hence we
can consider the quotient

_ %
/’l’((b) - ¢z7

which is called the complex dilatation of ¢. Note that, if ¢ is K-qc, then the
essential supremum of p(¢) satisfies

[[4(¢)lloo = ess.supp|u(g)] = k < 1,
and the maximal dilatation of ¢ equals (1 +k)/(1 — k).

~ Remark When we can take 0 as k, namely when ¢ is 1-qc, then a classical
lemma of Weyl means that ¢ is actually a conformal map.

Definition Fix a domain D. Then we say that another domain D is
quasiconformally equivalent to D if there is a quasiconformal map ¢ : D — D.

Consider a pair (f), @) of such a domain D and a quasiconformal map
¢ : D — D. We say that such a pair (D1, ¢1) is Teichmiiller equivalent to
another pair (D,, ¢5) if there is a conformal map g : D; — D, such that
¢2 o ¢7! is homotopic to g relative boundary (i.e. by the homotopy

H(z,t): D x [0,1] — D,

such that H(z,t) = g(2) on the boundary of D;, where D; is the closure of
D).

_ We denote by T(D) the set of all Teichmiiller equivalence classes of pairs
(D, ¢) as above, and call it the Teichmiiller space of D.

The Teichmiiller space T'(D) has a natural distance dr: For every two
points [Dj, ¢;] in T(D), we set

dr([D1, ¢1], (D2, ¢2]) = _inf Kdmodf"
¢2067 1:D1 =Dy !

where (Dj, ¢;) moves in the Teichmiiller equivalence class [D;, ¢;] for each
j. Then it is well-known that dr is a distance and complete. We call dr the
Teichmiiller distance. The Teichmiiller space T'(D) is always equipped with
this distance and the topology induced from it.

Example 1 The Teichmiller space T(C) of the complex place consists of
the single point, which means that every quasiconformal map ¢ : C — C is
homotopic to the identity on C.
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Example 2 If D is the unit disc U = {|z| < 1}, then the Teichmiiller space

T(U) is called the universal Teichmiiller space, and especially denoted by
T(1).

Here, we can forget the boundary correspondence and consider the com-
plex structures of D only. Then we have the following deformation spaces.

Definition We say that a pair (D;, #;) as above is conformally equivalent
to another pair (D,, ¢) if there is a conformal map g : D; — D, such that
¢2 0 ¢7* is homotopic to g.

We denote by T#(D) the set of all conformal equivalence classes of pairs
(E, ¢) as above, and call it the reduced Teichmiiller space of D.

The reduced Teichmiiller space T#(D) has a natural distance dr#: For
every two points [D;, ¢;]* in T#(D), we set

dr#([D1, $*, [Da, 4o]%) = inf K, 4,
¢2°¢1 :D1—D>

where (Dj, ¢;) moves in the conformal equivalence class [D;, ¢;]# for each j.
The reduced Teichmiiller space is a quotient space of the Teichmiiller space
and again it is well-known that dr# is a distance and complete. We call dy«
the reduced Teichmiller distance. The reduced Teichmiiller space T#(D) is
always equipped with this distance and the topology induced from it.

Example 3 The reduced Teichmiiller space T#(U) of the unit disc consists
of a single point.

Example 4 Let D be a non-degenerate doubly connected domain. Then the
reduced Teichmiiller space T# (D) is homeomorphic to R.

More precisely, every point can be represented by a pair of a domain
D, = {1 < |z| < r} withr € (1,400) and a suitable quasiconformal map
¢:D — D,.

Example 5 (Cf. [43]) Let D be a non-degenerate triply connected domain.
Then the reduced Teichmiiller space T#(D) is homeomorphic to R3.

Example 6 In general, if D is a Riemann surface of genus g with n smooth
boundary components and if 29 +n > 2, then the reduced Teichmiller space
T#(D) is homeomorphic to R8+3n=6,
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Actually, it is well-known that T#(D) can be identified with the Fricke
space of a Fuchsian model G of D (cf. [27]). Since G is a free group with
29 +n — 1 real Mébius (hyperbolic) transformations as generators, T(D) is
real (6g + 3n — 6)-dimensional if 29 +n > 2.

In particular, if D is a non-degenerate n-ply connected planar domain
with n > 3, then T#(D) is homeomorphic to R3S,

Remark The exceptional cases where 2g + n < 2 are essentially the ones
that D is one of C, C, U, D,, and tori. Also we may consider C* = C — {0}
and U* = U — {0} as exceptional domains.

Here we see in Example 3 that T#(U) is trivial, and similarly we can see

~

that T#(C), T#(C), T#(C*), and T#(U*) are trivial. Also as in Example 4,
we can prove that if D is a torus, then T#(D) is homeomorphic to R2.

Now, we can consider several extra-structures over the complex structure
on D. The holomorphic covering structure is such one, which is the main
- topic of this note.

1.2 Hurwitz spaces

Let D be a domain as above, and f : D — D be a possibly incomplete
and branched holomorphic covering of D by D. We say that a point « in
D is a singular value of the covering projection f if, for every neighborhood
U of o in D, there exists a connected component V of f~YU) such that
f 'V —= U is not a biholomorphic surjection. In other words, a point «
is not a singular value of f if and only if « is evenly covered by f, i.e. we
can find a neighborhood U of a in D such that f maps every connected
component of f~(U) biholomorphically onto U.

We denote by Sy the set of all singular values of f, and call it the singular
value set of f. ,

In the sequel, for the sake of simplicity, we assume that the singular value
set is countable.

Definition Let f; and f, be possibly incomplete and branched holomorphic
covering projections of D by D. We say that f; and f; determine the same
covering structure if there are biholomorphic self-maps g and h of D and D,
respectively, such that

fao=hofiog.
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We denote by C; the covering structure determined by f : D — D.
We call the set of all covering structures determined by g : D — D which
are quasiconformally equivalent to f is the prime Hurwitz space of f, and
denoted by H#(f). Here we say that f : D — D and g : D — D are
quasiconformally equivalent if there are quasiconformal self-maps ¢ and 1 of
D and D, respectively, such that

g=1vofod.

Here, we can define the Hurwitz distance dg+ by
dH#(Cfl’Cf2) = Hq,l’f K(‘b))

where the infimum is taken over all quasiconformal self-maps ¢ or ¢ of D
and D satisfying

fi=vofr08.

Theorem 1.2.1 Let f : D — D be as above. Then dg+ 15 actually a distance
and complete on H#(f).

Proof. Every quasiconformal self-map ¢ of D— S ¢ can be extended uniquely
to a quasiconformal self-map ) of D without changing the maximal dilata-
tion, and hence K4 = K, if they satisfy f; = ¥ o fy 0 ¢. Hence the standard
arguments show the assertions. ]

Example 7 The set A, of all covering structures determined by polynomials
with degree n in general position ( considered as holomorphic self-maps of C,
i.e. the derivatives have mutually different simple critical values in C ) is a
prime Hurwitz space.

Here a critical value of f is the image of a critical point, i.e. a zero of the
derivative, of f.

Example 8 The set L, of all covering structures determined by Laurent
series

Gz ™+ + -+ a, 2" (a—ma, #0)

in general position ( considered as holomorphic self-maps of C* ) is a prime
Hurwitz space.
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Example 9 The set B, of all covering structures determined by rational
functions with simple poles in general position ( considered as holomorphic
self-maps of C ) is a prime Hurwitz space.

Example 10 Set

f(z) = / Z P(t)e?Wdt

with polynomials P(z) and Q(z) of degree p and q, respectively. Assume that
f(z) is in general position, i.e. has (p + q) singular values. If Q is not a
constant, then f is transcendental, and the prime Hurwitz space H#(f) of f
18 called a transcendental prime Hurwitz space.

Prime Hurwitz spaces are conceptually natural, but not so easy to deal
with. Hence we consider some finer equivalence relation as follows.

Definition We say that projections f; and f, as above determine the same
wsomorphism class if there is a biholomorphic self-map ¢ of D such that

fa=fiog.

We call the set of all isomorphism classes of ¢ : D — D which are
quasiconformally equivalent to f the Hurwitz space of f, and denote it by

H(f).

If the group Aut(D) of biholomorphic self-homeomorphisms of D is triv-
ial, then H#(f) = H(f).
If D is essentially one of
C, ¢C, U U, D,

with 7 € (1,4+00), then we consider . only normalized quasiconformal self-

maps, i.e. those which fix {0,1} N f) pointwise. And we can define the
normalized Hurwitz distance dg by

dH(CfI?Cf2) = iI;f K(¢)7

where the infimum is taken over all normalized quasiconformal self-maps
of D and quasiconformal ones ¢ of D satisfying

Ji=vofaoq.
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Theorem 1.2.2 Let f : D — D be as above. Then dy is a distance and
complete on H(f).

Remark The advantage of this definition consists in the fact that the
singular value set is the same for every functions in the same isomorphism
class. -

Historically, the Hurwitz space of a rational function f is defined alge-
braically. Natanzon showed in [39] that such Hurwitz spaces are the same as
Top(f), which is the set of all isomorphism classes of g topologically equivalent
to f, i.e. there are self-homeomorphisms ¢ and 4 of D and D, respectively,
such that g = 1o fog. More generally, Top(f) = H(f) for a Speiser functions
defined in Chapter 3. Also see [51].

Example 11 The Hurwitz space Hy,[n| of genus 0 and degree n with type
[n] is the space of all isomorphism classes of polynomials of degree n in gen-
eral position, and corresponds to A,,.

The Hurwitz space Hon[1"] of genus 0 and degree n with type [1"] =
(1,---,1) is the space of all isomorphism classes of rational functions of
degree n in general position with n simple poles, and corresponds to B,,.

In this note we will discuss about the case of Hp,[1"] more closely in
Chapter 2. Next, a Hurwitz space of a transcendental entire function is
called a transcendental Hurwitz space. The Hurwitz spaces corresponding
to the prime Hurwitz spaces in Example 10 are such examples, and will be
discussed more closely in Chapter 3.

Remark The Hurwitz spaces of a rational function can be compactified
naturally. See [16], [17], and [41]. We will explain in §2 of Chapter 3 an-
other geometric compactification of the transcendental Hurwitz space of finite
type.






Chapter 2

Covering structure of Bell
representations

In this chapter, we consider Bell representations. The definition and the im-
portance of such representations are explained in §1. In §2, we introduce the
natural deformation space of Bell representation, and explain the connection
with the Hurwitz space Hy,[1"]. (These results are obtained in the reseach
with Professor M. Jeong.) Here we need a precise value of so-called Hurwitz
numbers, which is derived in §3. §4 consists of some open problems.

2.1 Backgrounds

Let D be a domain in C. Consider the subspace A%(D) of the Hilbert space
L?*(D) (of all square integrable functions on D with respect to the Lebesque
meaure on C) consisting of all elements in L?(D) holomorphic on D. Then
there is the natural projection

P: L[*(D) — A%(D),

which is called the Bergman projection. The coresponding kernel K (z,w) is
called the Bergman kernel.

Example 12 When D is the unit disc U,

1

K(Z,’LU) = 71'(1——-[’[17—5—2’

13
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Hence the Bergman kernel function K(z,w) associated to a simply connected
domain D can be written by using the Riemann map f,(z) (determined
uniquely by the conditions fo(a) =0 and f.(a) > 0) and its derivative:

K(z,w) = ful)falw)
’ (1 = fa(2) fa(w))?

Now, fix a point a in D, and let f, be the Ahlfors map associated with the
pair (D, a). Among all holomorphic functions h which map D into the unit
disc and satisfy h(a) = 0, the Ahlfors map f, is the unique function which
maximizes h'(a) under the condition A'(a) > 0. Such proper holomorphic
maps can recover the Bergman projections and kernels in general.

Theorem 2.1.1 Let f : Dy — D, be a proper holomorphic map between
planar (proper) domains. Let P; be the Bergman projection for D;. Then

Pi(f'-(¢o f)) = f"- ((P2g) o f)
for all ¢ € L*(Dy).

But the translation formula for the Bergman kernels is not so simple in
general. For instance, it is hard to write down the following formula explicitly.

Proposition 2.1.2 Let f : D; — D, be a proper holomorphic map between
planar (proper) domains. Then the Bergman kernels K;(z,w) associated to
D; transform according to

F'(2)Ka(f(2),w) = Y Ki(z, Fi(w)) F(w)

k=1

for z € Dy and w € Dy —V where the multiplicity of the map f is m and the
functions Fy, with k = 1,--- ,m denote the local inverses to f and V is the
set of critical values.

S. Bell obtained several kinds of simpler representations of Bergman ker-
nel functions.

Theorem 2.1.3 ([6]) For a non-degenarate multiply connected planar do-
main D, we can find two points a,b in D such that

K(z,w) = fo(2) fy(w) R(z,w)

with a rational combination R(z,w) of f, and fy.
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Here we say that a function R(z,w) is a rational combination of f, and
fp if it is a rational function of

fa(z)a fb(z)7 fa(w)’ fb(w)'

Such a representation as above has the following variant.

Theorem 2.1.4 ([10]) For a non-degenarate multiply connected planar do-
main D, we can find two points a and b in D such that

fa(2) Fi(w) NI
K(z,w) = s H;(z)Ki(w
(o) = s (L: () >)

where f, and f, are the Ahlfors functions, H and K are rational functions
of them, and the sum is a finite sum.

Actually, we can use any proper holomorphic maps.

Theorem 2.1.5 ([7]) Let D be a non-degenarate multiply connected planar
domain, and f a proper holomorphic map of D onto the unit disc U. Then
K(z,w) is an algebraic function of

f(2), f(2), f(w), f(w)

Moreover, we have the following

Theorem 2.1.6 ([7]) Let D be a non-degenerate multiply connected planar
domain. The following conditions are equivalent.

(1) The Bergman kernel K(z,w) associated to D is algebraic, i.e. an
algebraic function of z and w.

(2) The Ahlfors map f,(2) is an algebraic function of z.

(8) There is a proper holomorphic mapping f : D — U which is an
algebraic function.

(4) Every proper holomorphic mapping from D onto the unit disc U is an
algebraic function.

Theorem 2.1.7 ([9]) Let D be a non-degenerate multiply connected planar
domain. There are two holomorphic functions Fy and Fy on D such that the
Bergman kernel on D is a rational combination of Fy and Fy if and only if
there is a proper holomorphic map f of D onto U such that f and f' are
algebraically dependent: i.e. there is a polynomial Q such that Q(f, f') = 0.

Then, for every proper holomorphic map f of D to U, f and f' are
algebraically dependent.
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Proposition 2.1.8 ([9]) Let D be a simply connected planar (proper) do-
main. The Bergman kernel on D is a rational combination of a function
of a complex variable if and only if the Riemann map f of D and f' are
algebraically dependent.

Finally, we note the following facts.

Proposition 2.1.9 ([7]) Suppose that K(z,w) is algebraic. Let f be a proper -
holomorphic map to U. Then K(z,w) is an algebraic function of f(z) and

f(w).

Corollary 1 ([7]) Let D; and Dy have algebraic Bergman kernels. Then
every biholomorphic map of Dy onto D, is algebraic.

Now the issue is to find a family of canonical domains which admit a sim-
ple proper holomorphic map to U. Bell propose such a family, and actually,

they are enough.

Theorem 2.1.10 ([28]) Every non-degenerate n-ply connected planar do-
main with n > 1 is mapped biholomorphically onto a domain W, , defined

by
. 1}

a= ((11,02,“' 7a'n——1)a b= (b17b2)"' ;bn—1)~

n—1
zZ+
V4
k=1

ag

Wa,b:{zeC: b

with suitable complex vectors

To prove this theorem, suppose that a non-degenerate n-ply connected
planar domain D is given arbitrarily. Here we may assume that the boundary
of D consists of exactly n smooth simple closed curves {v;}. Fix a point a
in D, and let f, be the Ahlfors function associated to the pair (D,a). Then
fo maps D properly and holomorphically onto the unit disc U. Moreover, f,
can be extended to a continuous map of the closure D of D onto the closed
unit disc so that every component +; is mapped homeomorphically onto the
unit circle.
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Lemma 2.1.11 There is a compact Riemann surface R (without boundary)
of genus 0 and a holomorphic injection + of D into R such that

faol

can be extended to a meromorphic function, say F, on R.

Proof. Since there are only a finite number of zeros of f., there is a positive
constant p such that p < 1 and that

W={p<|¢ <1},

where ( is the complex coordinate on the target plane of the map f,, con-
tains no critical values. Hence every component W; of f; (D) is mapped
biholomorphically onto D by the restriction f,|w;, of fo to W;.

Now we consider the disjoint union R of D and n copies V; (j =1,--- ,n)
of

V= {p <[¢]} U{oo}.

Identify every subdomain W; of D with the subdomain W} of V; correspond-
ing to W by the biholmorphic map corresponding to f,|w;. Then the resulting
set, which we denote by R = R/ f,, has a natural complex structure induced
from those on D and on every Vj}, and hence is a Riemann surface. Here the
natural inclusion map ¢ of D into R is a holomorphic injection, and using
the complex coordinate (; on the copy V; corresponding to ¢ on V, we have

fa o L_l(Cj) = C

on W; by the definition.

Now, since topologically R is obtained from D by attaching a disc along
each boundary curves of D, R is a simply connected compact Riemann surface
without boundary, and hence in particular, is of genus 0. Also we can extend
F = f,0.7! to a meromorphic function on the whole R by setting F((;) = ¢
and F(oo) = oo on the whole V; for every j. [

Next, the following uniformization theorem (which is also called the gener-
alized Riemann mapping theorem) is classical and well-known. As references,
we cite for instance [20] and [27].

Proposition 2.1.12 Ewvery simply connected Riemann surface is mapped bi-
holomorphically onto one of U, C, and C.
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Corollary 2 There is a biholomorphic map h of the above Riemann surface
R onto C, and hence F o h™! is a rational function.

Here, we may assume that
f(o0) =00

by applying to f the pre-composition of a Mo6bius transformation S which
sends oo to a pole of f, i.e. by replacing h to S~! o h, if necessary.

Lemma 2.1.13 Let w be the complex variable of the above rational function
f- Then f has the following partial fraction decomposition:

Ap
’LU—-B/C.

-1
fw)=Cuw+C'+)

k=1
Here Ay, By, C and C' are complex constants, every Ay and C are non-zero,
and {By} are mutually distinct.

Proof. Since f has exactly n simple poles, as is seen from the construction,
and one of them is co by the above assumption, f is of degree exactly n and
has n — 1 finite, mutually distinct, simple poles, say By, -, B,_;. Hence we
can write f(w) as

_ Plw)
7= o)

with polynomials P(w) of degree exactly n and
Q(w) - (w - Bl) v (w - Bn—l)-

Thus it is easily to see that the partial fraction decomposition of f is such
as desired. n

Proof of Theorem 2.1.10 We replace the complex variable w of f to
z=T(w)=Cw+C'

by applying to f the precomposition by the affine transformation T'. Further
set

ap, = CA, by=CB,+C'
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for every k. Then we conclude that

Thus the domain

can be expressed also as

{IFoh™ 0T !(2)] <1} = (T o hou)(D),
which is mapped biholomorphically onto D by the holomorphic injection
(Tohot)™t. u

Theorem 2.1.10 can be considered as a natural generalization of the clas-
sical Riemann mapping theorem for simply connected planar domains.

We call a domain W, as in Theorem 2.1.10 a Bell representationof W.
The function f,}, defined by

n—1

fap(2) =2+

k=1

ay
Z—bk

is a proper holomorphic map from W, onto U which is rational. Hence a
Theorem 2.1.6 implies the following corollary.

Corollary 3 Ewvery non-degenerate n-ply connected planar domain with n >
1 is biholomorphic to a domain with algebraic Bergman kernel.

Actually, it is a very classical fact that, for such a function f = fap
as above, f and f' are algebraically dependent, i.e. there is a polynomial
P(z1, 25) such that

P(f,f')=0.

Hence Theorem 2.1.7 implies the following results, which gives more close
information about the simplicity /complexity of the Bergamn kernel.

Proposition 2.1.14 There are two holomorhic functions Fy and Fy, on W =
Wap, which are algebraic, such that the Bergman kernel on it is a rational
combination of Fy and F. '
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2.2 The coefficeint body

Now we define a deformation space of Bell representations. See [30] for the
details.

Definition The locus B,, in C?*"~2 consists of (a, b) such that the corre-
sponding domain W, is a non-degenerate n-ply connected planar domain.

We call this locus B,, the coefficient body for non-degenerate n-ply con-
nected canonical domains.

It is obvious that B, is contained in the product space
(€)' x Fon1C,
which has the same homotopy type as that of
(SH)" X FynaiC,
where
Forn1C={(z1,-" , 201 €C" 1 | z; #£ 2 if j#Ek}

is the configuration space of n — 1 points in C.
To clarify the structure of the coefficient body, it is more convenient to
consider the following modification.

Definition We set
B; ={(a1,"",an-1,b) | (a1,-+ ,a;_;,b) € B},
and call it the modified coefficient body (of degree n).
Clearly, B’ is contained in
(C)" ' x Fy 1 C.
Also it is invariant under the reflection
Sk:(ar, 0k, ,an_1,b) = (a1, -, —ag, -+, an_1,b)

of C>"~2 for every k. And B, can be identified with the quotient space of
B, by the action of the group G =< Si,---,S,_; > generated by these
reflections. Thus B}, is 2" !-sheeted smooth holomorphic covering of B,
with the covering transformation group G.

In the sequel, we assume that n > 2, since B, and B} are explicitly
known. See Example 12 below.

First, note that By, is circular in the following sense.
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Proposition 2.2.1 For every (a,b) € B and every § € R, e(a,b) € B:.
Another important property is ”star-shapedness” of B;.

Proposition 2.2.2 For every (a,b) € B} and every 0 < r < 1, r(a,b) €
B:.

Also, we can know the homotopy type of B}, and B,,.

Theorem 2.2.3 B} and hence B,, are domains and have the same homotopy
type as that of

(Sl)n—-l X Fo’n__l(c.

Corollary 4 The modified coefficient body B, is a circular domain homeo-
morphic to B,,.

Remark The fundamental group of Fp,_;C is called the pure braid group,
and its structure is well-known. See for instance [12].

Now, Theorem 2.2.3 follows from the following two lemmas.
Lemma 2.2.4 The coefficient body B,, is the set of all (a,b) such that
[ ;,b(z) =0
has 2n — 2 solutions ¢y, -+ , can_g counted with multiplicities such that

Ifa,b(cj)‘ <1

for every j. The set B} is characterized in the same way.
. In particular, B, and B} are open subsets of C*"~2.

Next set

p(b) = min |b; — byl

And for a sufficiently small € > 0 with € < 1/(6n), we set
B, = {(ab) eC™"?|p(b) > 0,[bs| <1/2,
0 < |ak| < ey/p(b),1 <k <n-1}
Note that p(b) < 1.
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Lemma 2.2.5 B}, has the same homotopy type as that of BE.
Proof. First we show that
B; C B,

Suppose that (a,b) € BE. If we set

Cr ={z € C||br — 2| = ep(b)}
then z € Cy implies that |2| < %, and

b — 2| > (1 - )p(b) > p(b)/2
for every j # k, and hence

2
J

|9a6(2)] < IZI+Z
=1

2 ) | (D)
3* o)+ ”pwV2

= 3+(1+(2n—4))e<1.

On the other hand, if we set

= {lbx — 2| = lak|/2}

then |a2|/2 < €2p(b), and z € C}, implies that

PRVCE RIS

a2~

|z — by port z—b
2 e’p(b)
S RSV

= 2—§~(2n—4)62>1.

Thus

{z€C|lgap(2)| =1}
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has a component in
{z € C|lagl/2 < |z — bi| < ep(b)},

and W7, is disjoint from {|z — b| < |af|/2}, for every k, which implies that
W3 is non-degenerate and n-ply connected.

Next for every (ap,bo) = (a10,+ ,an0,bi0," * ,bno) € B, let Lag,be be
the ray

{(rag,rbg) | 0 < 7 < 1}.

Then by Proposition 2.2.2, £,,p, C Bj. Also since p(rbg) = rp(bg), we
conclude that

[rako| = rlako| = €+/p(rhy),

where

¢ = Vrlarol/v/p(bo),

which in turn tends to 0 as r does.
Now, fix an € > 0 with ¢ < 1/(6n). Then, (rag,rby) € B¢ for every
sufficiently small r. Hence we can construct a deformation retraction

re : B, = By,

by mapping the point (ag, bg) to the nearest point in B¢ along lap,bo- This
retraction is clearly the identity on B¢, and we conclude the assertion. [

Example 13
B; ={(a,b) e C*:a#0,|b+2a| < 1,|b— 2a| < 1},

which is biholomorphic to the polydisc deleted the diagonal.
Next, for every point in the set
_Ar
442

corresponds to the same domain for every given r > 2.

402

1— (b+2a)(b — 2a)

{(a,b) €B;:
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Next, we give typical examples of points in B3. Consider the case that
4a? N 4a?
z—b z+b

f(Z) = f4a2,4a2,b,-b(z) =2+
with a,b € C — {0}.
- Theorem 2.2.6 The complez vector (4a?,4a?,b,—b) belongs to Bj if and
only if '
6? + 4a? + 4a(a® + b*)V?| - B2 — 202 + 2a(a® + b*)V22 < ]!

where the same value of (a® + b?)'/2 is taken in each term.

Now, holomorphic functions can be parametrized by the set of critical
values. In fact, such a parametrization can be considered for any functions

in general position, and was used to give local parameters of the classical
Hurwitz spaces.

Definition Let I" be the set of all points (a, b) of B, such that the corre-
sponding rational function f,p has a non-simple critical point or has a pair
of critical points whose images are the same. We call I the collision locus.

Then for every point (a, b) in B, —I', the rational function f,;, has 2n—2
simple critical values. We denote the set of simple critical values of f,p by

Sap = {01, , o2},

where, letting {cj}?’;f be the set of the simple critical points of fap, @; =

fap(c;) for every j. This set can be considered as a point in the unordered
configuration space By 2,—2C of 2n — 2 points on C, i.e. the quotient space
of Fj2n—2C by the symmetric group &g,_o:

BO,Zn«ZC = F0,2n—2(c/62n—2-

Moreover by Lemma 2.2.4, we see that S, is actually a point of the un-
ordered configuration space By g,_oU of 2n — 2 points on the unit disc U.
Thus we can define the projection

g : Bn -TI'— BO,2n_2U
by setting
7T5(a, b) = Sa,b-

We have the following theorem about the projection 7g.
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Theorem 2.2.7 The projection ©g is a
(2n —2)!nn3
-sheeted proper holomorphic covering of By an—2U for every n > 2.

To show this theorem, first recall that, for every_point (a,b) € B, —T, the

critical points ¢y, - -+ , con—2 Of fap are the solutions of the algebraic equation
n—1 n—1 a
k
(z=0)21-Y —=— | =0.
He=or (2 =y

Hence c; moves holomorphically with respect to (a,b). Since so does the
image a; of ¢j for each j =1,---,2n — 2, the map 75 is holomorphic.

Definition The marked Hurwitz space M Hy ,[1"] of genus 0 and degree
n with type [1"] = (1,---,1) and with the ordered poles is the set of all
isomorphism classes of rational functions in general position of degree n such
that poles are simple and ordered.

And we show by the following two lemmas that, for every point S in
By an—2U, 75 (S) consists of (2n — 2)! n®~? points.

Lemma 2.2.8 B, — I" can be identified with the subset M H,U of marked
Hurwitz space M Hy,[1"], consisting of all isomorphism classes of rational
functions whose critical values are in U, by the mapping ¢ which maps (a,b)
to the isomorphism class of fap.

Proof. By Lemma 2.2.4, every f = f,p with (a,b) € B, — I deter-
mines a point in MH,U. Here we always assume that the order of poles
is by, -+, by_1,00.

Next suppose that (a’,b’) is also in B, —I'. If g = fa 3 is in the isomor-
phism class of f, then there is a M6bius transformation A such that

f = g o] A
and since A maps poles of f to those of g keeping the order, A fixes oo and
hence is affine, which we write as A(z) = pz + ¢. Then

al

n—1
DT "p”‘”; A b




26CHAPTER 2. COVERING STRUCTURE OF BELL REPRESENTATIONS

Hence A should be the identity map. This implies that
(av b) = (alabl))

and hence ¢ is injective.

Finally, for every point in M H, U, take a representative (a rational func-
tion) f in the class. Then the poles of f are simple and ordered. By applying
precomposition of a suitable M6bius transformation which sends oo to a pole
if necessary, we may assume that f has the form

f(z)—az+b+z

Z—bk

Again by another precomposition of an affine transformation, we may assume
thata =1,b=0,ie. f = fop withsome (a,b) in B,—T. Thus¢: B,-T" —
MH,U is surjective. u

Now, fix a point S = {a;}} 2n72 in Byan_oU. And fix a set of mutually

disjoint cuts (simple smooth arcs) ¢; from «; to a mutually distinct boundary
point w; of U for every j. Here we assume that wy, - - - , wo,_o are located with

this order (with respect to the counter-clockwise direction) on the boundary
oU of U.

Lemma 2.2.9 The number of points in the preimage 75" (S) of S by s is
always

(2n —2)!n™3,

Proof. For every point (a,b) in 75'(S), fap gives a representative of the
point «((a,b)) in MH,U over S. In other words, fap gives an n-sheeted
branched holomorphic covering of C by C with critical values S and ordered
simple poles by, -+, b,_1, 0.

Recall that f = fa 3 also gives the branched covering of U by W, . This
covering can be reconstructed as follows: Set 2 = U — UZ" 2€ Then the
preimage f~!(Q) consists of n domains Q, the order of Wthh is naturally
defined as follows: Let vy be the component of f- L(0U) surrounding the
k-th pole. Then € is the component whose boundary contains the part of
7Y, which is projected by fap onto the subarc of OU from ws,_» to w; (which
contains no wj).
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Let E’“ be the "slit” on § over ¢; (i.e. the part of the boundary corre-
spondmg to the preimage f~!(¢;) on ) for every k and j. Then each Z’“
is divided by some critical point into two arcs, which can be considered a,s
two sides of the ”slit” E’“ And for every j, there is a pair, say {Q%i), Qi }

such that sides of these ”slits” are glued ”crosswise” along Z’“(’ ) and Zk ),
(Here two sides of every other ”slit” ¢ is glued trivially.) Hence we have
a transposition o; = (k(j) k'(j)) of ordered n sheets at £; when we move
counter-clockwise along U for each j. Since W, has exactly n boundary
components,

O2p—20 -+ 00}

should be the identical permutation. And apply all such gluings as above,
we can reconstruct the branched covering f: W, — U.

Thus for every (a,b) in 75'(S) and with fixed cuts {¢;}, we have an
ordered factorization of the identical permutation into 2n — 2 transpositions.
And since W, , is connected, such transpositions generate the full symmetric
group &,,.

Conversely, for every such an ordered factorization of the identical per-
mutation, we can construct an n-sheeted branched covering of C by itself,
and hence also of U by an n-connected domain W, having the set S as sim-
ple critical values. Then W has n boundary components, and hence by the
argument as in the proof of Theorem 2.1.10, we can find a point (a,b) in
B, — T" such that W, is biholomorphic to W and fap belongs to the iso-
morphism class of the covering projection of the above covering. In other
words, (a,b) € m5'(S). Also it is clear that different such factorizations give
different covering structures, and hence different (a, b) in 75'(S) by Lemma
2.2.8.

On the other hand, it is known, and will be proved in the next section,
that the number of such (transitive minimal) ordered factorizations of the
identical permutation on {1,---,n} into transpositions is

(2n — 2)!n"3,

which shows the assertion. u

Finally, we have

Lemma 2.2.10 g is locally biholomorphic, and evenly covered.
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Proof. Fix a point S in Bya,—sU and a point (a,b) in m5'(S) arbitrarily.
Then it is classically well-known (or can be shown by a standard arguments
in the quasiconformal deformation theory) that we can find a neighborhood
V of S and a holomorphic function ¢ of V into B,, such that

¢(S) = (a’ b)

and for every (a', b’) in ¢(V), fu b gives the same factorization of the identi-
cal permutation as f,p does. Here if V' is sufficiently small, we can consider
the natural bijection between S and the set S' of critical values of fu p for
every (a’,b') € ¢(V). And we take as the "slits” £; for S’ the image of ¢;
by a self-diffeomorphism of U U OU which is the 1dent1ty outside mutua,lly
disjoint simply connected, relatively compact, neighborhoods of each «; in
U and induces the above bijection between S and S'.

Then from the construction, ng o ¢ is the identity. And since the number
of points in the preimage 7r§1(S) is a finite constant by the above lemma, we
conclude that 7g is locally biholomorphic, and also evenly covered. ]

Thus 75 gives an unbranched (2n—2)! n"~3-sheeted, holomorphic covering
of By on—2U by B, —T'. In particular, it is proper, which completes the proof
of Theorem 2.2.7.

Example 14 In the case n = 3, such ordered factorizations are

{(rg),(pa), (pr),(p7)},  (9),(p7),(p7), (PO},

{rg),(pr),(re),(p7)},  {(p9),(pr), (gp),(g7)},

where we can take any bijection of {p,q,r} to {1,2,3}. Hence we have 4!
different ordered (transitive minimal) factorizations of the identical permu-
tations on {1,2,3}.

2.3 Hurwitz numbers

The Hurwitz number HY is the number of branched holomorphic coverings of
C by a closed Rieman surfaces of genus g, in general position, with prescribed
branching represented by a partition o over co. More precesely, HY is the
number of the isomorphism classes of holomorphic maps of a closed Riemann
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surface of genus ¢ to C with the type of the poles given by a and with
r=n+J+2(g — 1) finite specified simple critical values. Here

a=(a1,~- ,CYJ)

is a partition of {1,---,n} with J parts, and this relation is denoted by
a b n. The number J of parts of a is denoted also by £(a).”

Recall the following formula in [19] (also cf. [21]), which gives an impor-
tant representation of the Hurwitz numbers by Hodge integrals.

Theorem 2.3.1

J

HY — 04 / 1—- A\ +---% )\g
@ #Aut a;! My 11— ajwj)

] 1

Here A; and v; are Chow classes of codimension ¢ and 1, respectively,
on the Deligne-Mumford compactification _./\71_;; of the moduli space of type
(9,J) (i.e. of genus g and with J punctures), where 1 < j < J and 0 <
© < g with Ap = 1. More precisely, M, ; has J naural line bundles L,
(the cotangent space to the j-th marked point), and a natural rank g vector
bundle E (the Hodge bundle whose fibers correspond to the abel differentials
on the curve). And

Vi =all), A=c(E),

where ¢; is the i-th Chern class.
In the sequel of this section, we restrict ourselves to the case of genus
g=20.

Definition Let C, be the conjugacy class in the symmetric group &, on
{1,---,n} corresponding the partition a.

Example 15 Transpositions are in Cpin-2], and £([21"7?]) =n — 1.

Definition Fix a permutation 7 € C, arbitrarity, let ¢, be the number
of of minimal, transitive, ordered factorization of 7 into transpositions, i.e.
number of ordered sets of j, transpositions (o1, - ,0;,) such that

1. m=0j,---01,
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2. every o € Cpp1n-2],
3. {ok} generate &,, and
4. jo is minimal subject to (1), (2), and (3).

Now, for 7 € &, let a(n) be the corresponding partition and set

k(m) = (a(r)).

Let 0 = (ab) be a transposition. Then there are two cases for the action of
the product om (from the right).
Join: If a, b are in different cycles of 7, then

k(om) = k(m) — 1.

Cut: If not,

Proposition 2.3.2
jO :n+£(a) _27
which we denote by p(a).

Proof.  Suppose that (01,---,0;) is a transitive ordered factorization of
7 € Cqo (i.e. satisfying (a), (b), and (c)). Let G be the graph on vertices
labelled {1,--- ,n}, and edges labelled {1, -, 5}, in which the edge labelled
k connects the vertices interchanged by oy for every k. (By (c), G is con-
nected.)

Let T be the spanning tree of G, i.e. consisting of those edges e such that
G —ey, is disconnected. And suppose that G—T contains edges corresponding
to a joins and b cuts. Then since T contains n — 1 edges corresponding to
joins,

la)=n—(n—1+a)+b.
Since G has n — 1 + a + b edges,
J=n—-1l+4+a+b=n+lla)—2+2a>n+{(a)-2.

On the other hand, it is easy to see that the equality can occur if a = 0.
|
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Theorem 2.3.3 Let a = [0y -+ ay] Fn. Then

ce=n""3(n+J—-2)! ——L'
j=1 (aJ - 1)'
Corollary 5 (cf. [14])
Clnp =", ) = (2n — 2)In™ 3,

Further, (since the Hurwitz numbers HO are just c, up to suitable multi-
plicative constants) we conclude that

(2n — 2)Inm3

0 __ -3 0 _
Hpy=n"",  Hpm = nl

To prove Theorem 2.3.3, we recall that joins and cuts can be represented
by a differential operator.

Definition Let h(a) be the size of C, and K, be the sum of all elements
of C, in the group algebra C&,,.

Let (p1,---,pj,---) be indeterminates (variables). If o = [ay, -+, ay],
then set

Po = Pay """ Pay-
And for every m € &,,, set
®(7) = Pa(n)-
Then we can extend & linearly to the whole C&,,.
Proposition 2.3.4
(Kpp1n-aym) = Ad(r),

where

A= ! Z (P‘ 138—2 +P'P'(i+J’)L)
2 i,j>1 " Opidp; Opivs)
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Proof. Let o = (a,b) be an arbitrary transposition. If o is join for , let i, j
be the lengths of cycles containing a,b respectively. Then a p;p; in ®(7) is
replaced by a p;,; in ®(on). If o is cut for m, then similarly, a p;;; in ®(r)
is replaced by a p;p; in ®(om).

Counting the number of cases, we have the assertion. ]

Lemma 2.3.5 The generating series

o Z(Z a)ca Q)%

n>1 \akn

satisfies the differential equation

where

~ h(a)cq 2"

F _— ( . uu(a)pa —_—

Z Z ! I
n>1 \akn /.t(Ol) ’ n:

Now, suppose that (o3, - ,0,) is a minimal, transitive, ordered factor-

ization of m, and remove the edge corresponding to o, from the graph G
corresponding to 7. This is equivalent to modify the generating series F' to

oF

B
On the other hand, if o}, is a cut, then (o1, -, 0j,—1) is a minimal transitive
ordered factorization of an element in &,, and a p;1x in ®() is replaced by
a pipy in ®(0j,m). And if 0j, = (a,b) is a join, then let i,k be the length of
cycles containing a, b, respectively. Then (o4, -+ ,0,,_1) represents a pair of
minimal transitive ordered factorizations of elements in &; and in &;. Hence
a pipx, in ®(7) is replaced a p; 4y in ®(oj,m). Hence we conclude that

OF
u = AF.
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On the other hand, by setting u = 1, we have

oF OF OF
AF = — =z— + — — 2F,
Oou i 0z QZI Op;
which implies the assertion. B |

Thus if we show the following lemma, we see that F' F' defined below, for
the constant terms and the coefficient of z ( as the series of z) are the same.

Lemma 2.3.6 The series

J a;j n
o J-3 % z
F“‘Z(Zn H (a‘——l)! h’(a)pa)m
n>1 \atn j=1
satisfies
0 N

Proof. First, let s(z,p;) be the unique solution of

oo jj .
s zexp (Z FW) |

i=1

Then since the coefficeint

which is also the coefficient of 2™ /n? in

oo (2).
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we can show that

Here, since

we have

j=1 j=1
o0 -1 o0 g
§9 1 J
= D e = | D Hpe
Also since
ds i ; Os
Bpi - 2! 0z’
we can show that
82ﬁ' i1

i

Z——— = —35
0z0p; !
- for every ¢ > 1, which implies that

-l O sl it
P 7’ s'I

aﬁ_z'Hs
a4l i 2 P

Jj=1
Thus setting

,L'ijj—-l
Se= 2 G

i,5>1, i+j=0

kk+1 ’Ll jj 1
=T 2 WjiEyy
Ti>1,520,i45=L V7
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we see that
(%L(F)

On the other hand, let w(z) be the unique solution of w = ze®. Then S;
is just the coefficient of 27 of

w w
—_— = — — W
1—w 1—w
Hence we conclude that
v ;-1
Sj - ]—' - J——'—
J: J:

Next let u(z) and v(z) be the unique solutions of u = ze* and v = ye?,
respectively, and set

v x u 1
T(z,y) = - .
(@) 1—v(y~—:c 'U—ul—u)

Then we can see that

0 o — gy
T(z,y) + T(y,z) = Z] 7 y,

and that T; j + T} ; is the coefficient of z'y’ of T'(z,y) + T (y, ), which implies
that

(1 + 7)™

Tij+Tji = ———.
a7t 4, (i + j)!

Thus we have proved the assertion. [
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2.4 Open problems

Problem Determine the Ahlfors locus of B,, which consists of all (a, b) such
that fap gives an Ahlfors map (, or more precisely, € f,;, with a suitable
6 € R is an Ahlfors map).

Problem Fix a point (a,b) in B,,, and let W = W,}, be the corresponding
n-ply conenncted damain. Determine the leaf E(W) of B,, for W, consisting
of all points in B,, which correspond to n-ply connected domains biholomor-
phically equivalent to W.

Problem Determine the collision locus T of B,. (Recall that the collision
locus of B, is empty.)



Chapter 3

Transcendental Hurwitz spaces
of finite type

In this chapter, we consider the Hurwitz spaces of so-called structurally fi-
nite transcendental entire functions, which can be considered as the simplest
transcendental Hurwitz spaces. Structurally finite functions are introduced
in §1 using configuration trees. We explain in §2 the geometric compacifica-
tion of the Hurwitz spaces of finite type, and in §3 the relation between the
covering structures and the dynamical structures of such functions. We give
some open problems in §4.

3.1 Configuration trees

We have assumed that the singular value set is closed and countable. But
this condition is still too weak. Here, we consider subclasses as follows.

Definition The projection f : D — D as before is called a function with
a finite number of singularity clusters if the singular value set Sy of f has
only a finite number of accumulation points in D.

Further, we call a function f with a finite number of singularity clusters
an approzimate Speiser function if the set Sy is bounded in D. The projection
[ is called a Speiser function if f has only a finite number of singular values.

Also, we have various kinds of singlarities. And we can consider the
folloing kind of singularity.

Definition For a function f : D — D with a finite number of singularity

37
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clusters, we say that a point « is virtually evenly covered by f with respect
to a neighborhood U if « is not a critical value of f and if there is a simple
path L from the boundary of U to a such that every connected component
D of f~Y(U — L) is relatively compact and f is a biholomorphic map of D
onto U — L.

We call a point which is not virtually evenly covered by = with respect
to any neighborhood of a a singular value of the covering by f.

By definition, a point which is evenly covered by f is virtually evenly
covered by f. Hence a singular value of the covering by f is a singular value
of f. Also note that we include accumulation points of asymptotic values
(even if they are not asymptotic values) in the set of all singular values of
the covering by f. Here we say that « is an asymptotic value of the projection
[ if there is a path exiting D, i.e., the image of a proper continuous map of
[0, +00) into D, along which f tends to a.

Proposition 3.1.1 Suppose that a singular value « of the covering by f :
D — D is an isolated point in the set of all singular values of f. Then «
s a singular value of f. In particular, if f is a Speiser function, then every
singular value of the covering by f is a singular value of f.

Proof. If o is isolated in the set of all singular values of the covering by f and
not a critical value, then there is a disk U with center « such that U — {a}
contains no singular values. Since « is a singular value of the covering by f,
for any path from the boundary of U to «, there is a relatively non-compact
connected component V of f~}(U — L), since f is always a biholomorphic
map of V onto U — L in this case. Thus « is an asymptotic value, which
implies the assertion. ]

Now we will give several examples. For the sake of simplicity, we consider
the case that D = C only.

Example 16 The entire function

9(z) = %z) = ge“’zill (a + %) e~#/m

is a function with a finite number of singularity clusters, but not an approz-
imate Speiser function.
As another example, we give

g(z) = zsin z.
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Example 17 The entire function

Z—C .
Z) = Sin
9(2) . z

is an approzimate Speiser function, but not a Speiser function.

As another example, we give

sin 2
9(2) = —
Example 18 The entire function
g(z) =sinz
s a Speiser function.
As another example, we give
9(z) = exp z.

39

Next, to describe the covering structure of entire functions, we use the

following kind of configuration graph.

Definition A plain conﬁgumtz’on‘ tree T' is a planar tree with countably
many vertices, one of which is marked as the initial verter vy (and hence

every edge has an orientation towards vr).
The tree T' is colored as follows:

1. There are white vertices and black ones.

2. There are white edges, black ones, and red ones.

3. Every connected component of the set of all white vertices and white
edges can be identified with the tree R with vertices Z, and hence is

called a Z-unit.

4. Every edge not in any Z-unit is colored black or red, according as it

starts from a black vertex or from a white vertex.

The triple (T, (S, 7), st) of a plain configuration tree T', the configuration
data (S,7) = (aq, -+, o), and the data map sy is called a decorated ideal

configuration tree (DICT).
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Here a configuration data (S, ) is the cyclically ordered finite set of the
(singularity) data S = {e; € C}?:l € By(C), which is called the plain data
set. The cyclic order 7 of S is called the marking of S. Any realization of
this marking as a disjoint union of arcs from each point in S to oo is called
a spider at oo for this marking.

Finally, the data map sr(v) is a surjection of the set V4(T') of all non-inital
vertices of the plain configuration tree 7' to S such that sr is a constant on
every Z-unit.

On the set V(T') = W(T)U{vr}, we can consider three integer-valued
functions; the norm Nr, the age Ar, and the height Hr (from vr). See [51],
87.

Example 19 For a Speiser entire function f, let Sy be the singular value set
of f. Also fiz a spider at oo for the marking of Sy, and let D be the simply
connected domain obtained from C by deleting all legs of this spider.

Then every component of f~1(D) is bibohomorphic to D and is called a
plate. we consider each plate as a vertex, and if two plates are connected
(along a slit over a leg of the spider), then the corresponding two vertices are
conencted by an edge.

Here if the slit deleted the singular value is proper in C, then the edge is
to be white, and if not (and hence one end of the slit ends at a critical point),
then the edge is to be black. Also if a vertexr where a white edge ends is to be
white, and the others are black. Take a verter as the intial vertez.

Those edges such that the corresponding slits which determines the same
logarithmic singularity form a Z-unit with connecting white vertices. Here if
a verter should belongs to several, say n, Z-units, then dupulicate the vertex
to n vertices, and connect them by red edges so that the Z-units are dis-
joint. Next if there is a black edge starts from a white vertez, then we add a
reduction pair, which is a pair of a red edge and its ending black vertex.

This graph is actually a tree. We call it o plain configuration tree of f,
and denote it by Ty.

Theorem 3.1.2 Let f be a Speiser entire function. Then the Hurwitz space
H(f) of f coincides with Top(f) and has a finite dimension.

Proof. Consider the data map H(f) — By, (C) which maps an isomorphism
class to the deta set, where n is the number of points in Sy. Then we can
see that this is a local homeomorphism. ]
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©red ﬁ _red

Figure 3.1: A configuration tree of aexp 22 + b

red . Qred

Figure 3.2: Another tree of aexp 22 + b

Now, when we change the initial vertex to another vertex, we delete all
reduction pairs whose red edges have the opposite orientation in the new
tree, and attach a new pair to every white vertex such that a black edge now
starts from it. Here when we delete a reduction pair, we should regard that
every edge having ended at the black vertex in the reduction pair of the old
tree ends now at the white vertex from which the deleted red edge started.

We say that such a new configuration tree is obtained from the old one
by a change of the initial vertez. Further, if a white vertex is the initial one,
then we may attach a reduction pair and regard that the new black vertex is
the initial one. Thus we can always assume that the initial vertez is black.

We say that two configuration trees are equivalent if, after suitable changes
of the initial vertices of both, they are identical including colors.

Example 20 Both of Figures 1 and 2 are configuration trees of the same
entire function aexp 22+b (a # 0). Here the concentric bigger circle indicates

the initial vertex. Figure 2 is a configuration tree equivalent to that in Figure
1.

Definition We say that a configuration tree T' is realizable by an entire
function (with respect to some configuration data) if there is an entire func-
tion f whose tree is equivalent to 7.
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Remark In general, the realizability of a configuration tree depends on
the configuration data. For instance, if the singularity data consists of a
single value, then the tree in Figure 1 is not realizable with respect to this
configuration data.

Definition = We say that a tree T is eventually monotone if there is a
compact subtree E of T such that every connected component of T — E is
either purely white or purely black.

Proposition 3.1.3 Let T be a locally compact and eventually monotone con-
figuration tree realizable by an approxzimate Speiser entire function of order
p. Then the number of non-compact connected components of T — E is not
greater than max{2p, 1} for every compact subset E of T. In particular, the
number of Z-units is not greater than p

Example 21 Another typical example of a configuration tree is a dual of a
colored tree dessin of a Belyi function (cf. [48]). For the case of

f(z) = A/Oz B(t—1)2(t — o) (t — P)dt

satisfying f(1) =1 and f(c) =0, see Figure 3.

Here, a Belyi function is a polynomial with only two critical values 0, 1.
The tree dessin of f is colored so that every point in f~1(0) is represented by
a green (white in Figure 3) vertez and every point in f~1(1) is represented
by a red (black in Figure 8) vertex.

Now, edges in the tree dessin TD of f correspond to black vertices in a
configuration tree Ty of f. A green or red vertex of TD correspond to black
edges with the singularity datum 0 or 1, respectively.

In the converse process, we attach a red vertex to every free end point
of an edge in TD. Also, if several neighboring edges in Ty are attached the
same singularity datum, then the corresponding non-free end points of edges
in TD should reduce to a single vertex in T'D.

Finally, we define important subclasses of Speiser functions.

Definition We say that a Speiser entire finction f is structurally tame if a
plain configuration tree of f associated with some marking has the bounded
age.
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Figure 3.3: A configuration tree and the tree dessin of f(z)

Proposition 3.1.4 Let f, g are structurally tame, then so is fog.
A proof will appear in [55].

Corollary 6 For every structurally tame entire function f, every itertion
f™ is structurally tame.

Further, we can define a smaller subclass, again by using configuration
trees.

Definition If the tree T} of an entire function f consists of p black edges
and q Z-units, then we say that f is structurally finite and of type (p, q).

Recall that almost evenly covered covering structures are just those in-
duced from structurally finite entire functions. We also characterize struc-
tural finiteness as follows.

Definition The core of a configuration tree is the smallest connected closed
subtree containing all black vertices and non-white edges. And we call the
tree virtually compact if the core is compact.

Theorem 3.1.5 (Virtual compactness) The configuration tree of every
structurally finite entire function is virtually compact. Conversely, every
virtually compact configuration tree is realizable (with respect to a suitable
data) by a structurally finite entire function.

Remark A virtually compact tree is locally finite, eventually monotone.
Every structurally finite entire function is structurally tame.

A typical example of an entire function with virtually non-compact but
monotone tree is the sine function.

Now, to consider the deformation space of structurally finite entire func-
tion, we consider the following topology.
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Definition Let f be a non-affine entire function. Then the full deforma-
tion set FD(f) of f is the set of all entire functions g such that there is a
quasiconformal self-map ¢ of C satisfying the qc-L* condition:

Di(g;0) = 1f — g0 ¢l <= sup |f—go ¢I> < 0.

It is clear that, if g € F.D(f), then f € FD(g). And, for every pair of
functions f; and f, in FD(f), we set

d(f1, f2) = inf (log K (¢10¢5") + || fio ¢1 — f2 0 P2|loo) »

where the infimum is taken over all normalized quasiconformal self-maps ¢;
and ¢, of C satisfying the qc-L* conditions D;(f;; ¢;) < oo.

This d is actually a distance, and F'D(f) equipped with this distance is
a complete metric space. We call the distance d defined above the synthetic
Teichmiller distance on FD(f). The space FD(f) equipped with this syn-
thetic Teichmiiller distance is called the full synthetic deformation space of
f and is denoted as F.SD(f).

In the case of stracturally finite functions, we can show the following
theorem.

Theorem 3.1.6 (Inclusion Theorem) For a structurally finite entire func-
tion f, the full deformation set FD(f) contains all structurally finite entire
functions of the same type as that of f.

Definition We define the set SF, ;, where p + ¢ > 1, by setting

SFyq = { /0 (cpt? +- -+ + co)et™ T tatgy b}

with ¢ya, # 0 if ¢ > 0, and we note that SF,o = Poly,,; the set of all
polynomials of degree exactly p + 1.

Such primitive functions have already appeared as typical examples in
various contexts. See for instance, [1], [3], [15], and [42].

Now the topological characterization of structurally finiteness in [51]
shows the following

Corollary 7 Every element of SF, , is structurally finite and of type (p, q).
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Thus, the Inclusion Theorem implies that F'D(f) contains SF, , for every

f € SF,4 In particular, the synthetic Teichmiiller distance is finite on
Sprq x SFp’q'

Actually, we can show the following

Theorem 3.1.7 (Representation Theorem [50]) An entire function is
structurally finite and of type (p,q) if and only if it belongs to SF, .

Corollary 8 Let f be an element of SF,, in general position. Then the
Hurwitz space H(f) is coincident with the sublocus SSF, , consisting of the
isomorphism classes of all functions in SF, , in general position.

Definition For every f € SF,,, we set SD(f) = SF,, and equip it with
the synthetic Teichmiiller topology, which we call the synthetic deformation
space of f.

Proposition 3.1.8 For every P € SF,y = Poly,,,, SD(P) = FSD(P).
On the other hand, we have the following

Example 22 (Melting of C-decorations) The functions
fj(Z) = (1 + 5‘) e’ € SFI,I

converge to g(z) = e* € SFy; with respect to the synthetic Teichmiiller
topology as j tend to +oo.

Indeed, fir an € > 0, and set U = {|w| < €}. Then for every sufficiently
large j, the unique critical value of f; is contained in U, and hence there is
a conformal map ¢; of W = {Rez > loge} into C such that f = fj o ¢; on
W, which we can extend to a quasiconformal self-map qﬁ] of C so that the
mazimal dilatation of ¢; tends to 1. Moreover, we have

Dy (f5;85) < sup (|f] + | f; © ;1) = 2e,
ow

which implies the assertion.
Stmilarly,
2
gi(z) =¥ + ;ez
are structurally infinite, but converge to g(2z) with respect to the synthetic
Teichmiller topology as j tend to +oo.
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Also we can see that for every structurally finite entire function f in SF, 4
with ¢ > 0, F'D(f) is always so large that it contains structurally infinite
entire functions, and in general SD(f) is neither closed nor open in FSD(f).
Hence we need to consider slightly larger complete subspaces. The following
theorem provides such spaces and also shows that SD(f) can be considered
as a stratum of F'SD(f).

Theorem 3.1.9 (Completeness Theorem) Suppose that f belongs to the
set SF, q with g > 0, and let {f;} be a sequence in SD(f) converging to some
g in FSD(f). Then g is structurally finite and of type (p',q) with p' < p.
In particular,
SFepq=Up<pSkyq

with the synthetic Teichmiller topology is a complete metric space, and hence
a completion of SD(f).

Corollary 9 For every ¢ > 0, SF, , equipped with the synthetic Teichmiiller
topology is complete.

Now SF<p, has another natural topology induced from the coefficients
of representatives. For instance, we define the line element ds by

=0 |dcon| |daq|

ds = + da,| + |db|
Zp =0 [le |ag| ZI

at every
z
f(z) = / (cpt? + « - + co)eatTrtartgs 4 p
0

in SF<, . This distance is complete, and we call the induced topology the
coefficient topology on SF<p,. Thus the Completeness Theorem shows the
following

Corollary 10 (Equivalence Theorem) The synthetic Teichmiiller topol-
ogy 1s equivalent to the coefficient topology on SF,, for every p and q.

Finally, we state the following theorem about the size of the Julia set.
Proofs will be given in [52].

Theorem 3.1.10 For every transcendental structurally finite entire function
f, the Hausdorff dimension of its Julia set J(f) is two.
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Remark Compare with a theorem of Stallard ([49] II): For every transcen-
dental entire function such that the set of all singular values is bounded, the
Hausdorff dimension of J(f) is greater than 1.

As for the area of the Julia set, we have the following

Theorem 3.1.11 (Hyperbolic implies area zero) Let f be a (not nec-
essarily transcendental) structurally finite entire function. If f is hyperbolic,
then J(f) has vanishing area.

Remark Devaney-Keen proved in [15] that, if the Schwarzian derivative of
a meromorphic f is polynomial (such an f is structurally finite if f is entire)
and f is hyperbolic, then the Julia set has vanishing area.

3.2 Geometric compactification

We can compactify the transcendental Hurwitz space of finite type as in the
case of algebraic Hurwitz spaces. See [54] for the details.

Definition We say that a DICT (T”, (S’, 7'), s7v) is obtained from a DICT
(T, (S,m),sr) by a fundamental move for the pair (o, axy;) of neighboring
elements in (S, 7) if the following three conditions are satisfied for this k:

i) The marked configuration data (S’,7') of T" is obtained from (S, 7) by
interchanging two elements o4 and o4;. The induced bijection o, of S onto
S’ satisfies that 7' = o o 7, and is called the k-th exchanging map of S.

ii) The tree T" is obtained from T by applying simple moves as follows,
which we call the canonical move of T for the pair (o, a1).

If a vertex v; with sr(v;) = @ is black, let L; = L; be the black _edge
starting from v;. If a vertex v; with sp(v;) = ; is white, then let L; be
the Z-unit containing vj, L} be the red edge starting from ij, and L; be
the white edge, forward with respect to the direction of f/j, and having a
common vertex with L7.

Fix a pair (v, Uk+1) of vertices such that sp(vi) = a4 and sp(vgyy) =
Q+1. Suppose that Lk and Lk+1 are not disjoint or connected by only red
edges. (Otherwise, we do nothing. ) Then after reducing the tree completely
(cf. [51]), we may assume that Lj|JL: and Ly, UL, have a unique
common vertex v. Change the initial vertex to v, reduce the tree completely
if necessary, apply the following move, and then change the initial vertex



48CHAPTER 3. TRANSCENDENTAL HURWITZ SPACES OF FINITE TYPE

again to the original one. Applying these procedure to every pair of vertices
such as above, we have the tree T".

1. If both of Ly and Ly, are black, then apply the inverse simple move
of Ly along Ly.;.

2. If L} exists and L4 is black, then apply the inverse simple move of
L} along Ljy;.

3. If L;,, exists and L; is black, then apply the inverse simple move of
Ly along Ly, in the tree obtained by the inverse simple move of L
along L} ;.

4. If both of L} and L; , exist, then apply the inverse simple move of Lj
along Ly in the tree obtained by the inverse simple move of L} along
LZ_’_I.

iii) Finally, identifying V4 (T") with Vo(T"),
Str = Ok © 8T,

possibly after an allowed change of the cyclic order indices.

Now let (T, (S, ), sr) be a DICT, and fix a data « in S. Let E, be the
union of all black and red edges, starting from vertices v with s7(v) = «,
which we call the colliding-locus of T for a. Then every connected component
E of E,, which is called a colliding component (for «), consists of

1. either a single black edge only ,

2. or a single red edge only,

3. or more than one black edges and no red edges,
4. or a single red edge and at least one black edge,
5. or more than two red edges.

If a colliding component F satisfies the thrid, the forth, or the fifth condi-
tion, then we say that E is of realizable type, of melting type, or of rearranging
type, respectively. In these cases, we can unify T' at F, i.e. all edges con-
tained in E are ended at the same vertex v of T' which is the youngest, i.e.
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the vertex with the minimal age among V4(T)|J E. The unified edges in F
have a linear order induced from the cyclic order of S. We call this order of
edges in E the ribbon structure of T at E.

Definition We say that two DICTs (T3, (S1,m), sty) and (T3, (S, m2), s1,)
are equivalent if, S; = S, and by applying a finite number of suitable funda-
mental moves, reducing trees completely, unifying the trees at every colliding
component, and applying suitable changes of the intial vertices, we have the
same configuration tree (including colors) with the same ribbon structures
and the data maps.

We denote by DICT, 4 the set of equivalence classes of all DICTs of type
(p,q). We equip DZCT, , with the natural topology.

Further, if the data S contains oo, then we say that such a DICT is of
divergent type. We denote by DiICT, , the subset of DICT,, consisting of
equivalence classes of DICTs of divergence type. And set

DeICT pg = DICT pq — DiICT .

We denote by DmZICT,, and DrICT,, the sets of equivalence classes
of all DICT having colliding components of melting type and of rearranging
type, respectively.

Finally we set

DCTyy = DeICT,, — (DmICT,, | JDrICT,,)

and representatives of the elements in DCT,, is simply called a decorated
configuration tree (DCT) of type (p,q).

Definition We say that a DICT 7 = (T, S, st) is realizable by an entire
function f if f is represented by a DICT (1",S', s7v), with 7" completely
reduced and unified at every colliding component, equivalent to 7 under the
following specifications;

1. every black edge and its starting black vertex v of 7" represent a Maskit
surgery attaching a quadratic block, and

2. every red edge and its starting Z-unit LofT represent a Maskit surgery
attaching an exp-block,
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where the corresponding data value sy (v) or s (Vo(T") (L) is the critical
value of the quadratic block or the asymptotic value of the exp-block, respec-
tively. Also Maskit surgeries are to be done inductively with respect to the
age and the marking.

Furthermore, the direction of every Z-unit corresponds to the clockwise
rotation around the associated data value, and the ribbon structure at every

data value corresponds to the counter-clockwise order around the data value.
We call such a DICT (T, S, st) as above a DICT of f.

We say that a configuration data S of type p+ q is simple if S consists of
p + ¢ mutually distinct values. We call a DCT with a simple data a simple
DCT (i.e. a SCT). We denote by

SCTp,q
the set of all equivalence classes of SCTs of type (p, q).

Proposition 3.2.1 A DICT is realizable by an entire function if and only
if it is a DCT. v
Also, we have

S8F,q=8CT,,.

When g = 0, then DICT ,, is enough to compactify SSF,,. Note that
in this case,
'DmICTp,o = @, DTICTP,() = @

and hence
DICT po = DiICT po| JDCT .
Theorem 3.2.2 SSF,, is dense in DICT o, and DICT ,p is compact.

But, when ¢ > 0, DICT,, is not compact.

Definition A dupulicated ideal configuration tree (DulCT) T = (T, (S,II),st)
is an ordered set of DICTSs, which are called components of 7,

{(T_'h (Sja Wj)v sTj)}j:O
with the pairings
{(ex ex) o

of forward and backward white infinite rays, respectively, in a Z-unit of T}
and of Ty, which are called white ends, satisfying that
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1. Tj is of type (pj;,q;) with p; < p and ¢; < g,

2. the initial vertx of T} with j > 1 is the vertex of a reduction pair, which
we call the initial reduction pair of T}, from a vertex not contained in

Uk (ek U ek')?

3. K<p+aq,

Y pi=p > g=q+K,
p ;

5. the indices (k, k') are mutually distinct and k& # k' for every pair (k, k'),

6. for every subset Ey of data values in S = Uj Sj, the cyclic order of
Ey (1) S; induced from the marking of S; are the same for every S,

7. the data value s, on Vp(T}) () ex equals to the value sy on Vo (T ) () ex,
and

8. by connecting Ty — e and Ty — e at the relative boundary points for
every k, and deleting all initial reduction pairs of T; with j > 0, we

have a plain configuration tree T, of type (p, q) (where the initial vertex
is that of Tp).

Example 23 Identify elements s, with sp in S for every pairing indices
(k, k'), and set S, be the resulting set. Let v; be the natural inclusion of S;
into S,. Then we can give the set S, a marking so that the restriction to
tj(S;) is the same as the marking of S; for every j. We denote S, with
this marking by (S, ). Also we can define the data map st, so that sr,
restricted to T; — |, (ex U ew) equals to sg; under the canonical inclusion of
(Sjym;) to (S, ms) induced from ¢;.

We say that the DulICT 7 is obtained from a DICT (T., (S, m), st.) by
applying the duplication of a Z-unit K times.

Here, every pairing (eg,er) of forward and backward white ends deter-
mines a single ideal point in a standard manner, which we call the hyper-
vertex xp corresponding to the pairing.
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Definition We say that two DulCTs
{( ( 'K ]) STI)}] =0’ {(T2 (5]2’ y) ST2)}

with the pairing ,
1
{(ek’el{:’)}llc(zla {(eiaek’) l{:( 1
are equivalent if,
1. Jt=J? and K! = K?,

2. every DICT (T}, (S, 7;), s13) is equivalent to the DICT (7, (S7, 73), s2),
and hence we can assume that they are the same,

3. every pairing (e}, e},) is equivalent to the pairing (e2,e2,) for every k,
ie. Tp =T2 T. =T7, and e} (€2 and e}, (€2 are non-compact.

We denote by
DuICT,,

the set of all equivalence classes of proper DulCTs of type (p, q).
We set o
88Fpq =DuICT, | JDICT,,

Here the topology can be defined naturally so that S/ﬁp,q is a compactifi-
cation of SSF, .

Theorem 3.2.3 The space ‘§S'.\77p,q is compact and SSF, 4 is a dense subset
of it.

3.3 Covering structures VS Dynamical struc-
tures

Back to the covering structure of polynomials, we note the following

Theorem 3.3.1 Suppose that f is a polynomial of degree N > 2 such that
f' is not a Ritt polynomial

(z = d)™P((z - d)f),

where m and ¢ are non-negative integers, P is a polynomial, d € C, and
¢ > 1. If another polynomial g satisfies that go g € Cyof, then g € Dy.
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This theorem follows from a result by Ritt in [46], or directly from the
following simple lemma.

Lemma 3.3.2 (Lenstra-Schneps lemma [48]) Suppose that P*) and Q¥
are polynomials with P o Q = P* o Q* and the degrees of Q and Q* are the
same. Then there exists a similarity A such that Q* = Ao Q.

Remark See [45], where Pilgrim shows that the dynamical structure of an
extra-clean Balyi polynomial P is determined by the covering structure of
PoP.

In general, a covering structure Cy corresponds to a complex two-dimensional
family consisting of dynamical structures. An exception is the case of a non-
linear polynomial f with a single critical point. When f(z) = 2V, then C;
contains all

9(2) =ci(z —d)N + ¢, (1 #0).

And for every such g, Dy = Dp, with a suitable P,(z) = 2" + c¢. Hence C;
corresponds to a complex one-dimensional family of dynamical structures,
i.e.

{Dp. [ceC}.

And we can show a similar theorem as the above theorem also for the case
of structurally finite transcendental entire functions, by using the following
characterization of such functions.

Proposition 3.3.3 (Cf. [51]) An entire function f(z) is structurally finite
if and only if f is a Speiser function and, applying the resolutions of a finite
number of singularities of f~' (with respect to a given spider at o) to the
covering f : C — C, we have the trivial covering of C by a countable number

of C.

Here in general, the resolution of a singularity o of 7= (which is either a
critical point of 7 or a logarithmic singurality of 7~!) for a Speiser covering
m : R — C of C by a, not necessarily connected, Riemann surface R with
respect to a given spider at oo, is the operation defined as follows;

1. cut R along all components of 77!(¢) tending to o, where £ is the leg
of the spider ending at the singular value corresponding to o, and
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2. paste each component of the surface obtained in the first operation
along the newly appearing borders over ¢, if exist, so that 7 : R — C
induces a holomorphic covering 7’ : R' — C of C by the resulting, not
necessarily connected, Riemann surface R'.

Theorem 3.3.4 Suppose that f is a structurally finite transcendental entire
functions such that f' is neither a Ritt function

(z = d)"P((z — d))eQ==")

nor an exponential function

ecz-&—d,

where P and Q) are polynomials, m and ¢ are non-negative integers, d € C,
c € C—{0}, and £ > 1. If another entire function g satisfies that gog € Cyoy,
then g € Dy.

This theorem is a generalization of Theorem 2 in [57] (cf. [58]). The proof
below is different from, and simpler than, that of Theorem 2 in [57]. Also
see [1], [13] and [32].

Example 24 Let f(2) = ae® + ¢ with ab # 0. Then Cjo; contains go g for
every g with the same form as that of f. Recall that every such g € D,
where ex(z) = e’ with a suitable A € C — {0}.

To prove Theorem 3.3.4, first we note the following fact, which is an easy
consequence of Proposition 3.3.3.

Lemma 3.3.5 Such a function g as in Theorem 8.8.4 is structurally finite.

Thus as in the case of polynomials, this theorem follows from the lemma
below.

Lemma 3.3.6 (Transcendental Lenstra-Schneps Lemma) Let f and g
be structurally finite transcendental entire functions. Suppose that other
structurally finite transcendental entire funcitons f* and g* satisfy the equa-
tion fog = f*og*. Then there exists a similarity A such that g = Ao g*
(and hence f = f*o A7),
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Example 25 If one of f, f*, g, and g* is structurally infinite, then the as-
sertion of the above lemma does not necessarily hold. A typical example is a
logarithmic lift:

[ =¢, f)=ze, g@)=z+¢, g()=e.
Another typical example is
flz)=¢€", f(2)=¢€"", g(z)=sinz, g¢"(2)=cosz.

Here g and g* determine the same covering structure, but the assertion of
the lemma does not hold.

On the other hand, we can show the following proposition by the same
argument as in the proof of Lemma 3.3.5.

Proposition 3.3.7 Suppose that f and g are structurally finite, that g* is
transcendental, and that fog = f*og* with another entire function f*. Then
f* 1s structurally finite.

Finally, we note the following corollaries of the transcendental Lenstra-
Schneps Lemma.

Proposition 3.3.8 Let f and g be structurally finite transcendental entire
functions. Suppose that fog=go f. Theng= Ao f and also f =go A™!
with a suitable similarity A.

Moreover suppose that neither f nor g has the form

/ P((t — d))e2 D)y 4 g

P _

with a suitable integer £ > 1, polynomials P and Q, and d € C. Then f = g.
Corollary 11 Let f and g be structurally finite transcendental entire func-

tions. Suppose that fog = go f. Then the Julia sets of f and g coincide
with each other.
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3.4 Open problems
Problem Determine the conditions for a given geometrically tame configu-
ration tree to be realizable by entire functions.

Conjecture Let f be a Speiser entire function. Then the Hausdorff dimen-
sion of the Julia set of f is two.

Problem Determine the conditions for two given Speiser functions to com-
mute.
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