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1 Introduction

These lecture notes originate from a series of lectures I gave during my visit at
the Mathematics Department of Seoul National University. I was encouraged
to submit these notes in the present, still rather crude, form for publication in
their lecture notes series. Their content is the exposition of the central part of
a new proof of the global stability of the Minkowski space, an important result
due to D.Christodoulou and S.Klainerman at the end of the eighties, [Ch-KI2].
This new proof which also, someway, extends the previous one, is a joint work
of D.Christodoulou, S.Klainerman and the present author, [Ch-KI-Ni].

Not all the details are given here, but I have tried to extract the general
ideas of the proof from the large amount of the technical work involved. I have
also used extensively, in writing these notes, the review paper by S.Klainerman
and myself, “On local and global aspects of the Cauchy problem in general
relativity”, [KI-Ni].

Finally I would like to express my gratitude to the Global Analysis Research
Center and the Mathematics Department of Seoul National University. In par-
ticular my special thanks to Professor Dongho Chae for his warm hospitality.

2 The general statement of the result

2.1 The Einstein vacuum equations

R, =0
where
or« ore«
_ v B
R = G = G2 T, T2, - TgoT,
and
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are the Christoffel symbols.

2.1.1 The principal part of the Ricci tensor

1
R, = Ego‘ﬁ (6,_;3,,95,, + 3,,6(,9,@“ - 6#6Vgag - 30‘359#,,) + ...
2.1.2 The costraint equations
They follow from the Bianchi identities, G = 0,

ijij —Vitrk =0
CYR — k| + (trk)> =0 (2.1)



2.1.3 The gauge freedom

®: M — M, a diffeomorphism (a change of coordinates).
Any pair {M, g} and {M, ®*g} describes the same spacetime, that is both
guv and (®*g),. are solutions of the Einstein vacuum equations.

2.2 The Cauchy problem for the Einstein vacuum equa-
tions

Definition 2.1 An initial data set is a three-dimensional smooth manifold ¥
with, defined on it, a Riemannian metric g and a covariant symmetric tensor
field k satisfying the costraint equations.

Definition 2.2 To solve the Cauchy problem for the vacuum FEinstein equations
with a given initial data set means to find a four dimensional manifold 2, a
Lorentz metric g solution of the vacuum FEinstein equations and an embedding

itToi(E) =%, CcQ

such that _
i*(90) =9, i"(ko) = k

where Yo, the “initial” hypersurface, is a Cauchy hypersurface, go is the restric-
tion of g on Lo and ko is the second fundamental form (the extrinsic curvature)
of ¥¢ relative to the metric g.

(Q, g) is said a development of the initial data set.

2.2.1 The “hyperbolicity” of the Einstein equations

The Einstein vacuum equations are not hyperbolic in any standard sense due
to their general covariance. In fact under a diffeomorphism their expression as
a system of partial differential equations can change drastically. Nevertheless,
they share with the hyperbolic equations the property that the Cauchy problem
is well posed both for the local existence and for the uniqueness. This can
be traced back to the fact that, using the general covariance, one can choose
a set of coordinates, for instance the harmonic coordinates, [Brl], such that,
with respect to it, the Einstein vacuum equations take the form of a quasilinear
hyperbolic system. The local uniqueness theorem takes the form of a domain
dependance theorem. The uniqueness is then extended to a global ! result from
the Theorem of Choquet-Bruhat and Geroch, [Br-Ge], on the existence of of a
unique maximal (vacuum) Cauchy development.

!Here the term “global” has not the standard meaning of “global in time” used in the
partial differential equations. This last one, in fact, will be true only if the causal geodesics
of the maximal development are complete.



2.3 The results

The first result in solving the vacuum Einstein equations without any specific
symmetry and with asymptotic flat (non compact) initial data was obtained by
Choquet-Bruhat, see [Br1], who solved the local existence problem.

This result proved that, under appropriate regularity conditions and small-
ness conditions for the initial data, this set, {Zo, go,ko}, can be integrated a
finite distance into the future and the resulting solution, its ({2, g) development,
is unique 2.

More and more difficult problems can be faced, depending on how “large”
is the region Q. In particular we consider the two following problems:

2.3.1 The radiation problem

(2, g) is such that 3 a compact set K C Lo such that ¥o/K is diffeomorphic to
the complement of the closed ball By C R? and, Vp € X/ K, there is a complete
null outgoing geodesic passing through p.

2.3.2 The global problem

(Q,g) is timelike and null geodesically complete. The solution to the global
problem was obtained by D.Christodolou and S.Klainerman, see [Ch-K12], under
appropriate smallness conditions on the intial data 3. Although this problem is
more general than the radiation problem nevertheless their rather complicated
proof is not completely suited  to prove the radiation problem.

Recently D.Christodolou, S.Klainerman and F.Nicolo, [Ch-KI-Ni], have ob-
tained a new proof for the radiation problem. Moreover the technique used
there provides also a simpler proof of the global problem, see also [KI-Ni].

This is the result described, in some detail, in these lecture notes. We give
now, for completeness, the exact statement of the Main Theorem, but we warn
the reader that, to understand it precisely, he has to go through the remaining
part of this work where the structure of the proof and all the needed definitions
are given.

Theorem 2.1 Consider an initial data set {2o, g, k} and assume that the quan-
tity

3
2 3 - 12 2 +1 11,12
Rs0 k) = s (@ +101Ri) + [ S+ 1
20 Eo 1=0

2The smallness of initial data means that To is “near” to the flat hypersurface. This
condition can be significantly weakened paying the price of reducing the existence time. The
regularity conditions require the control up to the fourth derivatives for g and the third
derivatives for k. The better regularity results are obtained by A.Fisher, J .E.Marsden, see
[F-Msl1).

3the existence of the singularity theorems imply that this problem can be solved only for
a limited class of initial data.

4Probably with some additional work it can also be derived from this result.




1
+ / > (dg + 1)V B

2o =0

is bounded.

There ezists a sufficient large compact set K' C Eo, with Yo/ K dzﬁeomor-
phic to R®/By, and a unique development (M,g) deﬁned outside the domain of
influence of K with the following properties:

i) M=MtUM™ where M* consists of the part of M which is in the future
of Lo/ K, M~ the one to the past. \

ii) (M™,g) can be foliated by a double null foliation {C(u)} , {C(u)} whose
outgoing leaves C(u) are complete ® for all w < uy. The boundary of K can be
chosen to be the intersection of C(uy) N Xo.

iti) The norms O and R are bounded by a constant ©.

i) The null Riemann components have the following asymptotic behaviour:

supr™/?|al < Co , supruflal < Co
K K
S%pr7/2|ﬂ| <Co, s%przu%@l < Co (2.2)

s%prslm <G, sgpr%ﬂ(p-z, 5)| < Co

with Cy a constant depending on the initial data.
v) (M™,g) satisfies the same properties as (M, g).

vi) If J(Xo,9,k) is sufficiently small we can extend (M, g) to a smooth, com-
plete solution compatible with the global stability of the Minkowsk: space.

3 The global strategy |

To solve the local existence problem Choquet-Bruhat used the gauge freedom of
the General Relativity. This allowed to choose a specific gauge: the harmonic
gauge or “wave gauge”, and trasform the Einstein equations into a “weakly
coupled” system of non linear wave equations.

5By this we mean that the null geodesics generating C(u) can be indefinitely extended
toward the future.

6These norms are defined in the course of the proof. The norm O summarizes the norm
of the null connection which describe the causal properties of the spacetime, the norm R
summarizes the properties of the curvature tensor.



3.1 The wave-like coordinates

An easy algebraic computation shows that:

1 or« ore
Ry, = RL};) + §(gua5? + !Jva'é:;;)

)

where:
1 0? K
(h) — __, 0B Juv 9o
Ry = 29 9gedaP +H“V,(ga6’ OzH ) (3.3)
1 .99 0gys 0gns
— 8 22 A 8599~ A s
Hy = §%go0lslha + 5(5 2T +90alap9™ 97 50 +galhs9%79° 0
I = gm/rzu

The explicit computations to prove 3.3 are in [Fock], see also [F-Msl]. This
expression is relevant for the following reason: if the I'* = 0 are identically zero
then the vacuum Einstein equations have the form

R(h) (g )uu =
and the principal part of this system of equations,
2
Las_O
27 9z*0zP’
operates in the same way on each component g, so that the highest order terms
are completely uncoupled. Such systems are said “weakly coupled” and are a
particular case of the strict hyperbolic systems of Leray. To them we can apply
general known theorems, see [Brl], [F-Msl], to prove the local existence of the
solutions. As I'® does not transform as a vector it is, in fact, possible to find

a specific set of coordinates where this is true 7. These coordinates are called
harmonic or “wave-like” coordinates.

3.2 Local and global solutions for the non linear wave
equations in Minkowski spacetime

Let us consider the nonlinear wave equation in R™":
Ou=F

with: F' = Du - Du 8 and initial conditions: u(0,z) = f(z) , du(0,z) = g(x).
To solve this equation the main ingredient are the energy norms, which are
conserved in the linear case. In the non linear case this is not true, in general,
but, nevertheless, it is possible to control them obtaining energy estimates which
allow to prove the existence of the solutions at least for a finite time.

"More precisely the following result holds: if g is a solution of the reduced Einstein equa-
tions R("(g),» = 0 with initial data {g,k} such that T* = 0 on Xo, then I'* = 0 on the
whole development of the initial data set.

8We consider here a simple non linear term as we just want to describe some techniques
to solve this problem that can be generalized to the Einstein vacuum equations. Du =
(Bou, 011, ...00u).



3.2.1 The local existence.

To prove the local existence one introduces the energy norm:

1

@utui) = (3 [ 1puldz) = 220wt Wi

where |Dul? = |8oul? + |01ul® + ... + |Onul®. It is easy to show that in the
linear case Qo[u)(t) = Qo[u](0). This is not true in the non linear case where
we obtain, for a generic T, the following inequality:

T
sup ||Du(t, )||z2(rr) < [1Dw(0,)||L2(Rn) +2/ ds||F||L2(rm)
te[0,T) 0

Recalling the previous definitions and the explicit expression of F' we have
1F (s, Mlz2any < [[1Du(s, )L ||Dus, )l|L2(rn) (34)

which, plugged in the previous inequality, gives

T
IDu(t, r2(re) < 1Du(0,)ll2(am) +2/0 ds||Du(s, )|l Duls, )l z2(rm)

Applying the Gronwall inequality we obtain

t
Qo(t) < c0Qo(0) exp/0 ||Du(s)||zds

which would allow to control Qo(t) in terms of Qo (0) if we could control, for ap-
propriate t, fot ||[Du(s)||L~ds. In particular, if we control || Du(s)||z in terms
of Qo(s), we can control Qo(t) in terms of Qo(0), for ¢ sufficiently small. Un-
fortunately this is not possible, but we can control the sup norm of a generic
function f in terms of the H*(R") norms, where H® is the Sobolev space and
5> 3

NfllLerry < cllfllars () - (3.5)

Therefore to obtain the energy estimates we are forced to introduce a larger set
of energy norms. We define

Q) =3 [ 3 1Dl

a;la|<i

and as [0 8% = 8> O u = 9 F, proceeding exactly as before, we obtain

t
Qiful(t) < Qulu)(0) + V2 / dsllF (s, )+ ()



To repeat the previous argument we need the analogous of eq.3.4 in the case
of the H*(R"™) Sobolev spaces. This is provided by the following estimate, see
Proposition 3.2 in [KI-Ni] and [Tay],

IS - gllas < c(Ifllzellgllas + llgllzeo |1 1le)

and using again the Gronwall inequality we obtain

Qu(t) < ciQi(0) exp /0 ||Du(s)| = ds (3.6)

For n = 3 which is the case we are interested on, the Sobolev inequality implies,
for i > 2,

|1 Du(t)l|L < CQi(t)

and defining
Q(t) = sup Qa(s)

s€[0,t]

we obtain
Q(T) < cQ(0)expTQ(T)

This inequality implies a bound for Q(T) in the interval [0,7] provided that
T Q(0) is sufficiently small. Therefore we conclude that we control the “energy
norms” Q;(t) in terms of the initial data norms for ¢ € [0,T, for T sufficiently
small, i < s —1,s > 2 + 1 and initial data (f,g) € (H*(R™),H*"'(R™)). In
conclusion the ingredients for a local existence proof ® can be summarized in
the following way:

a) Generalized energy norms for s > 3 + 1.
b) Estimates for the generalized energy norms for T' small.
¢) A fixed point mechanism 0.

3.2.2 The global existence

From the previous considerations we could expect to have a better estimate of
the time T if we could control more carefully the integral fOT || Du(t, )||p-dt.
This would be possible if, as in the linear case, we could take into account the
decay in time of ||Du(t,-)||r~ !. This amounts, basically, to have more refined

9The proof, for the Einstein vacuum equations, of the local existence and uniqueness for
s> % +1, n = 3, has been obtained by T.J.R.Hughes, T.Kato, J.E.Marsden, [Hu-Ka-Ms].
Recently the regularity for the non linear wave equation in R™*! has been improved by
D.Tataru, [Ta], up to s > 3 + %, for n > 3. To have well posedness for lower s we. expect
that the non linear part F has to satisfy the null condition and this fact has to be carefully
exploited.

10The fixed point mechanism is the standard technique to complete the proof once we have
the a priori estimates, see [KI-Ni].

n—1
11Recall that, in the linear case, ||Du(s)||pe = O(s™ 72 ).
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Sobolev estimates which could keep trace of the decay. These “Sobolev-type”
estimates have been obtained by Klainerman, see [K13], [K14], and are based on
the geometric (causal) properties of the Minkowski spacetime. The crucial steps
of his construction are the following ones:

i) Find some generalized energy norms E;[u] such that, instead of the esti-
mate 3.5 we have the estimate, for ¢t > 0, :

1
u(t, S o1 lEs'Ua 3.7
S e T A et 0

ii) Show that, due to the geometric properties of the Minkowski spacetime,
the norms E;[Du] are, in the linear case, conserved in time.

Let us give a detailed description of these norms. The symmetries of the
Minkowski spacetime can be described by its family of Killing and conformal
Killing vector fields:

T, =D,
Qu =2,D, —~2,D,
S = t8; + z'0; (3.8)
0 ; 0
— (42 PAYRER i
Ko=(*+r )Bt + 2tz py

K, =-2z,5+ <z,2>0,

These generalized energy norms differ from the standard Sobolev ones as the
partial derivatives are substituted by the Lie derivatives with respect to the
Killing fields T}, Q,, S 2:

Eo[u](t) = l[u(t, )lL2(re)
Ex[u](t) > Eo[Lx;, Lx.,-Lx,,ul(?) (3.9)
(G<ki Xiy oo X3 }
Using these norms Klainerman proved that, for s > 3, ‘

1
Q+t+]z)* T QA+t —|z])?

|Du(t,z)| < ¢ E,[Du(t) (3.10)
which suggests a better control of fOT [|Du(t,-)||e(r~)dt. To implement this

estimate in the previous result we define Q,[u](t) = E;[Du](t) and repeat, in this
case, the proof of the inequality 3.6. One obtains, see [K13], for an appropriate
so depending on s,

‘ t
Qs(t) < ciQ5(0) exp/0 EX[Du]pe-(t")dt'

12The reason for this choice is is that [[(J,7,] = [[J,Qu] = 0 and [(J,8] = —20,
which imply that, in the linear wave equation these norms are conserved.

11



where

Eru)(t) = > ILx., Lx:, - Lx; u(t,)l|Le=(re)
{5<kiXiy 0 Xi}

iy

and we used Lemma 3, page 330 of [Kl4] and the analogous of Proposition 3.2 of
[KI-Ni], page 83. The previous Sobolev type estimate 3.10 implies that, choosing
s > 7 sufficiently large,

EX[Dulp=(t') < et~ "7 Q4 (t')

and proceeding as before, one obtains the final estimate
-~ ~ T n—1 ~
Q(T) < cQ(0)expc / (1+t)" =z dt| Q(T)
0

where Q(T) = SUP¢e(o, 7] Qs(t). Two remarks are appropriate now:

i) For n = 3 this result is not yet sufficient to obtain the global existence,
nevertheless it gives, as proved by John and Klainerman, see [John-Kl], an
almost global existence. In fact they prove that the solution exist up to a time
T= O(ezpé) where € is an upper bound for the initial data.

ii) As the solution u satisfies 3.7, one could expect that the derivative Du had
a better decay, but this is not true. Nevertheless a more careful investigation,
see [Kl4] and [Ch-KI1], proves that there is not any decay improvement only
along the null ez direction. In fact we have:

1
L+t +|z)T (L + |t — z]]) 2

1
c(1+t+|1‘t)%l'(1+|t__ |m||)%E3[Du](t) (311)

|De, Du(t, )i < ¢

E,[Du(t)

|Dey Dult,.)|pe <

This suggests that, considering only some particular class of functions for the
non linear term F, it would be possible to have a more specific expression in
the integrand of 3.6 in which the term D,.,u does not appear and, therefore, the
decay is sufficient to make the integral finite for any 7'. The appropriate choice
of the non linear terms is called “The null condition”, and has been introduced
separately by Klainerman and Christodoulou, see [K12],[Ch2] 3.

The lesson we learn from the non linear wave equations in Minkowski spacetime
is that, constructing a global solution the following “ingredients” seem to be
crucial:

a) The symmetries of the spacetime.

b) The choice of “appropriate” null directions.

!3For instance choosing F(u,8u) = (8u - du) = ) eq(u)ea(u) — es(u)ea(u), we have the
global existence result.

12



c) The choice of “appropriate” energy type norms.
d) The choice of some appropriate version of the null condition.

As, in the harmonic gauge, the vacuum Einstein equations have the form of a
system of non linear wave equations with the highest order terms uncoupled, it
seems reasonable to expect that the ingredients used to find a global solution
for the non linear wave equations, if adapted appropriately, could be the right
tools to obtain a global solution to the Einstein vacuum equations 14

The strategy is, therefore, to implement the same kind of ideas to look for the
“global” solution of the Einstein vacuum equations. This requires a careful
investigation and is the subject of the following subsection.

3.3 The main ideas
3.3.1 The symmetries of the spacetimé

In the search of the global solution of the nonlinear wave equation we have used
in a crucial way the symmetries of the Minkowski spacetime which allowed to
define some generalized energy norms, conserved in the linear case. In the case
of the Einstein vacuum equations we cannot ask analogous symmetries for the
spacetime as we reduce immediately to the Minkowski or the the Schwarzschild
case. For instance if we require the Einstein vacuum spacetime be spherical
symmetric we obtain from the Birkhoff theorem, see [Haw-El], page 369:

Theorem 3.1 Any solution of the Einstein vacuum equations spherically sim-
metric is equivalent to the Schwarzschild solution.

Nevertheless, as the symmetries play a relevant role, it will be important to
control how large is the loss of symmetry of the spacetime we are trying to
construct or, in other words, how far the spacetime, solution of the Einstein
equations, is from the Minkowski or the Schwarzschild spacetimes.

3.3.2 The “appropriate” null directions

In the previous discussion it turns out important to select the “bad” null direc-
tion eg with respect to which the solution u of the non linear wave equation has
the worst asymptotic behaviour. The null directions are connected to the null
cones structure of the Minkowski spacetime, that is to the causal structure of
the hyperbolic equations. We expect that the causal structure of the spacetime
plays an analogous crucial role in solving the Einstein equations.

Here the first serious difficulty arises. In fact, differently from the non linear
wave equation where the Minkowski spacetime is the “background spacetime”
and therefore the causal structure, the “cones”, is a priori given, solving the
Einstein equations means to build the spacetime. Therefore the cone structure

14The previous discussion, on the other side, suggests also that to prove the global existence
in the harmonic gauge can be difficult or impossible. The difficulty of extending the local
solution to the global one in the harmonic gauge was already known to Choquet-Bruhat, see
[Br3].

13



cannot be given a priori, but it is obtained together with the solution itself.
This implies that we cannot prescribe the “null cones”. We could, nevertheless,
imagine that, provided the initial data are “small” '° the null cones stay near
and asymptotically approach the Minkowski ones.

Unfortunately this is not true for the following reason: as the initial data de-
scribe ¥, the space at t = 0, and as this hypersurface is assumed non flat, it
follows that it has, globally, a certain amount of gravitational energy; moreover
as the three dimensional hypersurface is asymptotically flat, from the infinity
everything appears as if there is, in ¥y, a compact region of appropriate radius,
approximately spherical, which contains most of the space gravitational energy.
This implies, due to the fact that the initial data have to satisfy the costraint
equations, that the radial decay of the metric tensor and of the second funda-

mental form cannot be arbitrarily fast 6. In fact we have the following result
17,

i) Due to the initial costraints we cannot ask for the Riemann metric a better
decay than

9ij (1 + 2Tm> (51‘]' + O(’I'—l)

ki = 00

i) With these asymptotic decays the null cones will diverge logarithmically
from the ones in Minkowski spacetime and, asymptotically, the points on the
outgoing cones satisfy

r=t+2Mlogr+c

where M is the A.D.M. mass.

The conclusion is that the null directions cannot be assigned a priori, but they
have to be built together with the spacetime. This suggests also that a covari-
ant formulation of the Finstein equations, independent from the choice of the
coordinates, is needed.

3.3.3 The covariant formulation of the Einstein vacuum equations
and the energy-type norms

In the non linear wave equations the generalized energy norms are not conserved
due to the presence of the non linear term F', here we expect that the energy-type
norms we are going to define cannot be conserved for two reasons: first because
the Einstein equations are non linear and second for the lack of symmetries
of the spacetime. Anyway, before that, we have to find the energy type norms
which, in the Einstein equations, play the analogous role of the Es[Du)(t) norms
previously introduced, eq. 3.9.

15This means, here, near to the ones which produce the Minkowski spacetime as solution.
16 As this would imply the Minkowski spacetime be the only solution.
17We assume here that ¢ be maximal.

14



These quantities emerge naturally when we look for a covariant formulation of
the Einstein equations. In the covariant approach to the Einstein equations we
do not use the equations for g in their covariant form, a subset of the structure
equations '8, but we use the covariant equations satisfied by the Riemann tensor
which, in an Einstein vacuum spacetime, coincides with its conformal part.
These equations are the second Bianchi identities ' or “Bianchi equations” and
have, in this case, the following form ‘

» Dy, 075]043 =0
where Cyg45 is the conformal 20 part in the Rlemann tensor decomposition,
Rlemann = [Conformal] + [part depending only on Ricci] .

The importance of these equations for this problem is twofold: first once we
have good estimates for the curvature tensor all the quantites which describe
the causal structure of the spacetime, the null Ricci coefficients, or connections,
see [Sp] Vol.II, which will be introduced later on, can be determined. Moreover
the knowledge of the causal structure of the spacetime implies, as we will discuss
in more detail later on, the knowledge of the metric tensor of the spacetime.

The second important aspect follows from the fact that the conformal part
of the curvature tensor, C, is an example of a Weyl tensor field. In fact, given
a Weyl tensor field, one can define the Bel-Robinson tensor, see [Bel], and from
it some integral quantities which are the analogous of the previous generalized
energy noris.

The idea is, therefore, that of workmg at the level of the Riemann tensor
instead that on the level of the metric tensor. This gives the possibility of avoid-
ing to choose a specific coordinate system and therefore to keep the covariance
of the theory.

Moreover these Bel-Robinson energy type norms are conserved in the case
analogous to the linear case for the wave equation. This means to interpret
the “Bianchi equations” as equations, in the Minkowski spacetime, for a genéric
Weyl tensor field which, although satisfying all the simmetry and traceless prop-
erties of the conformal part of the curvature tensor, has nothing to do with it.
In this case it is easy to show that these integral norms are conserved and play
the same role as the norms 3.9, in the linear wave equations.-

Continuing the analogy we can expect to be possible to prove the bound-
edness of these norms in the “non linear” case, that is when the Bel-Robinson
tensor is constructed from the conformal part of the curvature tensor, C. If we
control the Riemann tensor on the other side we can obtain the metric of the

18In which sense a subset of the structure equations can be interpreted as the Einstein
equations will be described in some detail later on. . ‘

19The Bianchi equations are automatically satisfied by the Riemann tensor in any manifold.
The link with the Einstein vacuum equations arises posing the Ricci part of the curvature
tensor equal to zero.

20Conformal means that if instead of the metric g we consider another metric conformal to
the previous one § = Q2g then Calg,\ﬂ; = Cops-

15



spacetime solving the structure equations, which, as we will show, amounts to
solve elliptic equations and ordinary evolution equations.

To describe this approach we have, therefore, to make a thoughtful exami-
nation of the geometric structure of the Einstein spacetime.

3.3.4 Some appropriate version of the null condition

The analogous of null condition should appear at a tensor level, that is invariant
under diffeomorphisms. The identification of the null condition in the Einstein
vacuum equations is not obvious and we will not discuss it here.

3.4 The structure of the proof

As in the case of the non linear wave equatlons the proof can be d1v1ded in two
parts a local one and a global one:

The local part:

We prove that, given appropriately initial condltlons there exists a finite portion
of the spacetime endowed with a well defined geometric and causal structure.
Moreover in this finite portion of the spacetime the energy-type norms built
using the Bel-Robinson tensor are finite.

Therefore, to implement this part we need, first of all, a local existence proof
for the Einstein vacuum equations. This guarantees that at least a development
(in principle not maximal) of the initial data exists, what we have called “a finite
portion of the spacetime”. But this is not all that we need here, in fact, to solve
also the “global” part of the proof, we need to prove that this development has
a very detailed geometric structure and, moreover, that in this region we have
a very precise control of the curvature tensor through a family of energy-type
norms.

The global part:

The proof of the global part is based on a bootstrap mechanism. We consider the
largest possible (development) region of the spacetime such that its geometric
and causal structure is “near” to the Minkowski spacetime, in a sense which
will be defined precisely later on, and that the energy-type norms, which will
be defined precisely later on, are “small”, that is bounded by a small constant
€0.

There are now two possibilities, this region is in fact the whole spacetime and
the affine parameter of all the null geodesics goes up to infinity 2! or the null
geodesics affine parameters vary in a finite interval. In the first case this devel-
opment would be the solution of our problem. In the second case we prove that
this region can be extended. In other words we show that there is a larger region
containing the previous one where the energy-type norms are still bounded by
the constant €y and where the null geodesics affine parameters vary in a larger
interval. This implies that the previous region we have assumed to be the largest

21 As it will be clear in the next discussion, we always mean the outgoing null geodesics and
also the otgoing spacelike geodesics.
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possible is not, in fact, the largest one, a contradiction which is avoided if and
only if the largest region coincides with the whole spacetime, that is if the null
outgoing geodesics are complete.

Remarks:

a) The proof of the local existence is, basically, standard in the sense that
many approaches can be used to prove it, under mild conditions on the initial
data. ’

b) The more significant part of the proof is the one relative to the global part.
To perform it the geometric structure of the finite portion of the spacetime has
to be examined in great detail.

4 The Bianchi equations in a fixed background
spacetime

A basic tool used to solve a non linear problem is finding an appropriate lin-
earization of it. This is true also in this case, therefore we start looking at
a “linearized” version of the Bianchi equations. We recall the basic Riemann
tensor properties:

Rapys = —Rgays = —Ropsy = Rysap
Raﬁ‘yé + Ra766 + Ra&ﬁ'y =0

The Bianchi equations (Second Bianchi identities):
DigRy510p =0
The Riemann tensor decomposition
Riemann = [Conformal] + [part on Ricci]

Conformal 22 curvature tensor C:
1
Capys = Rapys =35 (9arRs + 985 Rary — 98y Ras — 9as Ray)

1
+ 6 (9{179[36 - gaégﬁ‘y)R

C has all the symmetry properties of Riemann:

Capys = =Cgays = —Capsy = Crsap
Capvys + Carsp + Caspy =0

and .
ga’YCaB'yé =0.

22Conformal means that if instead of the metric g we consider another metric conformal to

the previous one § = Q2g then C’gw =C8.s
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The Bianchi equations are non linear as C depends on the metric g through
the covariant derivatives. To “linearize” these equations we introduce the Weyl
field tensor W, which has all the simmetry properties of C, and fix a priori
the metric tensor g. (M, g) is, therefore, the “background spacetime” and the
Bianchi equations become the linear equations for the for the Weyl field W.

4.1 The properties of the background spacetime

Let us assume that the background spacetime be foliated by a smooth double
null integrable S-foliation whose leaves are compact, spacelike, 2-surfaces dif-
feomorphic to S? 23. Double null integrability means that this foliation implies
the existence of two families of null hypersurfaces {C(u)}, {C(u)}, which foliate
the spacetime and, at their turn, are foliated by the 2-surfaces S(u,u) 4.

Using this foliation one can define, at a generic point p € M, an “adapted”
null frame {e4, 3,4}, a € [1,2] by taking an orthonormal frame {e,} , a € (1,2)
on the tangent space of the sphere S(u,u) passing through p. ey, e3 are the vector
fields associated to the directions of the null geodesics relative to C(u), C(u),
respectively, and normalized in such a way that g(es, eq) = —2.

4.2 The Weyl field
W is a Weyl field in the background spacetime (M, g), if
Wapys = =Wpays = ~Wagsy = Wasap
Weagys + Waysg + Wasgy =0
and in addition 9" Wagys = 0.
In particular C is a Weyl field. Let W satisfies the Bianchi equations
Dg[aW'rJ]aB =0
where D, is the connection associated to the metric g. We list in the following
some important properties of the Weyl field, see [Ch-K12].
Property 1: left and right Hodge duals are equivalent

1
* afyé = é‘eaﬂuuwwj ~é

1
Wigys = Wap W§5uwé

W= W* | *(*W) = -W.

Property 2: The following four sets of equations are equivalent
DieWislap =0, D*Wyvap =0
D**W pyap =0, D[U*W'y&]aﬁ =0

23This is trivially true if we choose the Minkowski spacetime as background spacetime.
24These definitions will be discussed at length when we describe the properties of the de-
velopment of the initial data.
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Property 3: If W satisfy the Bianchi equations and X is a Killing (conformal
Killing) vector field then LxW is also a Weyl field, solution of the Bianchi equa-
tions where LxW = LxW — 2tr®)7W, Lx is the ordinary Lie derivative and
Xr=Lx g is the deformation tensor relative to the vector field X. Moreover

Lx*W =* LxW .

Remark: These equations have a strong analogy with the electromagnetié
Maxwell equations. In fact let us define 2°

E = i(T’T)W , H= ’i(T',T)*W.

E and H, tangent to the hyperplaneé % = {p € Mit(p) = t}, determine
completely the Weyl tensor field. The Bianchi equations in this decomposition
are the following “Maxwell-type” equations:

& 10,FE + curlH = p(E, H)
" 19,H — curlE = o(E, H)
divE=kANH

divH = —-kNE

where V is the covariant derivative with respect to ¥, (divE); = V’Ej; and
(curlE);; = €*V; Ey;. Analogous expressions hold for H *°.

4.3 The Bel-Robinson energy-type norms in the background
spacetime

In solving the non linear wave equations the main step is to prove the bounded-
ness of some energy-type norms which in the linear case are conserved, see the
discussion in subsection 3.2.

Here we proceed in the same spirit looking for energy-type norms written
in terms of the Weyl tensor, which are conserved when W is a solution of the
“linearized” Bianchi equations. These norms are constructed from the Bel-
Robinson tensor.

Bel-Robinson tensor of the Weyl field W:
Qaprs = WapaW5's" + Wapya™Wy's -

It shows a strict analogy with the energy momentum tensor of the electromag-
netic field F:

Top = FapFyf +*Fap*Ff

and satisfies the following, see [Ch-K12],

25We assume the background spacetime admits a global time function. In particular later
on we will choose as background spacetime, the Minkowski spacetime.
26The explicit expressions of p(E, H) and o(E, H) are in [Ch-KI12], page 146.
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Proposition 4.1

a) Q is symmetric and traceless relative to all pairs of indices.

b) Q(X1,Xo,Xs3,X4) is positive for any timelike vector fields 7.

¢) If W is a solution of the Bianchi equations then (local conservation)

D*Qapys =0

Definition 4.1 Given a vector field X the deformation tensor of X, X)g =
Lxg, and its traceless part (X )% measure, in a precise sense, how much the dif-
feomorphism generated by X differs from an isometry or a conformal isometry,
respectively.

Proposition 4.2 Let Q(W) be the Bel Robinson tensor of a Weyl field W
and X,Y,Z a triplet of vector fields. We define the covariant vector field P
associated to the triplet:

Po = Quaprs XY 20 | (4.12)
Using all the symmetry properties of Q it follows:
DivP = DivQp;X°Y"2°
* %Qaﬁw‘s ((X)ff Pyrze 4 3% xBZ0 4 <Z>fr“‘5Xﬁy-)

Thus, to any X,Y, Z Killing or conformal Killing vector fields we can associate
a conserved quantity. More precisely:

Proposition 4.3 Let W be a solution of Bianchi equations and X,Y,Z,V1,...Vj
be Killing or conformal Killing vector fields, then
a) DivP =0 where P is defined by 4.12

b) The integral fEt QIWI(X,Y, Z,Ty)du,, is finite and constant for all t pro-
vided that it is finite at t = 0. dp,, is the volume element of the induced metric
g: on Xy, a spacelike hypersurface, and Ty is its future directed unit normal.

¢) The integrals
QILv,Ly, ... Lv, W(X,Y, Z,To)du,,
Xt
are finite and constant for all t provided that they are finite att = 0.
As we have defined, in the background spacetime (M, g), the null hypersurfaces
C(u) and C(u) it is possible to introduce some different energy-type norms,

integrals over these null hypersurfaces instead than over the ¥; spacelike ones,
and prove a proposition analogous to Proposition 4.3

27t is also possible to prove that Q(X1, X2, X3, X4) is non negative for any non spacelike
future directed vector fields X1, X2, X3, X4.
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Proposition 4.4 Let W be a solution of Bianchi equations and X,Y, Z,V1,... V4
be Killing or conformal Killing vector fields, then the integrals

“ QLv, Ly, ... Ly W|(X,Y, Z, e4)
C(u

( )Q[ZVI.&VQ ..LyW|(X,Y, Z,e3) (4.13)
C(u

are bounded uniformily in u,u provided that the corresponding integrals on Xy,

QILv, Ly, ... Ly, W|(X,Y, Z,To)duy, ,
2o

are finite.

Definition 4.2 Let e4, e3 be the null pair of the adapted null frame. Given a
Weyl field W we introduce the following tensor fields operating at each p € S
on the subspace T'S, of the tangent space T Mp:

a(W)(X,Y) = W(X,e1,Y,e0) , SW)(X) = SW(X, eq,5,¢:)

1 1
p(W) = —W(es, e4,€3,€4) , 0(W) = Zp(*W) = Z*W(es,e4,es,e4)

1
r
BOW)(X) = W (X, e5,e5,e1) , a(W)(X,Y) = W(X, e5,Y,e)

where X, Y are arbitrary vectors tangent to S at p.

We call {a(W), a(W), B(W), B(W), p(W), (W)} “the null decomposition
of W relative to ey, e3”. -

We easily check that a(W),a(W) are symmetric traceless tensors, thus they
have two independent components each. Together the total number of indepen-
dent components of (W), a(W), 8(W), (W), p(W), o(W) account for all
the ten degrees of freedom of the Weyl tensor field W.

The null components of W can be expressed in terms of the null decomposition
in the following way, denoting Wyg,s = W (eq, €3, €+, €5) 28,

Wasse = —qp » Wasss = 28,

28Relative to a rescaling of the null pair,
o o =1
€4 — €y = aesq , e3 — e = a” les,

the null components of W change according to

B B =a'B (4.14)
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Waaap = —aap , Waaaz = =20,
Wasba = —pdap + 0€ap
Wasse = =*("W)asse = €8, (4.15)
Waabe = "*(*W)a4bc = '—5bc*ﬂa
0abWasbe = éc y 6abWaabe = —Bc
Wacabbdabeb = —2p , Waaza = —4p
Wapza = 2€qp0
where *a, *a,*8,*f are the duals of a, a, 8, § relative to T'S, 2°.

The Bianchi equations can be expressed in terms of the null components {a, 3, p, 0, 3, a}
of the Weyl tensor, according to the following

Proposition 4.5 Ezpressed relatively to an adapted null frame, the Bianchi
equations take the form

S

- Pua + ;trxa = —W@ﬂ + [4wa 3(xp — o) + (¢ - 4@@)@]
B ED3§+2tn_<g=—dwg_—[2tgﬁ_+(-24+n)-g] ‘
B, =Puf+trxf=-Vp+ [2w£+2z-,3+’770—3(gp—*170)]

A

K

3 1
pa—Dsp+5t7xp——dzvﬁ [ X-a—(CB+2n-8

= Dap+ irep = ivf— | 330~ - 2n‘ﬂ] (4.16)

3 ) 1, " *
03§D30+§t72(_0=—4w*§+ [5){'*_61—(' B—2n- [_3]

3 . 1,, * *, *
04'=‘D40+§trxa=-dw*,8+[§2(_- a—(-B-2n- ﬂ}

Bz =Dsf + trxB = Vp + [2wB + Vo + 2% - B+ 3(np + o))
Ba = Dy + 2trx S = diva — [Zwﬂ —(2¢+ Q)a]

L iy = Y88 + [4wa — 3(Rp + R0) + (¢ + 4n)B6]

a3£12)3a+2

Remarks:
If the background spacetime is the Minkowski one, the terms of the Bianchi
equations in square brackets are absent 3°. They are present in a more general
background spacetime and in the non linear case of the Einstein equations where
W coincides with the Riemann tensor. They are products between the Weyl null
components and the Ricci coefficients.

In particular a(*W) = —*a(W), B(*W) = —*B(W), a(*W) = *a(W), B(*W) =
=*B(W) and p(*W) = a(W), o(*W) = —p(W).

30In the case of the Schwarzschild spacetime the only terms in parenthesis different from
zero are those depending on w,w.
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The important result in the linearized case that, later on, we will extend to
the general non linear one, consists in the asymptotic estimates which parallel
the generalized Klainerman-Sobolev estimates for the linear wave equations.

4.4 The asymptotic estimates of the Weyl tensor field in
the background spacetime

We control the components a(W), a(W), B(W), B(W), p(W),a(W) in terms of
a set of norms of the type

QLviLy, ... Ly, WI(X,Y, Z, e4)
C(u)

al )Q[Zvlzvz .. .ZVkW](X,‘Y, Z, 63)’

where for X,Y,Z we choose, if the background spacetime is the Minkowski
spacetime, Killing or conformal Killing future directed vector fields, therefore
€ {To, Ko}. We choose, in particular,

(X7Y7 Z) = (K07K07T0)
(Xa Y) Z) - (K07K07 KO)

Proposition 4.6 If we assume that the Weyl tensor W satisfy the Bianchi
equations and that the following sums of integral norms are bounded,

Q = LQ(LOW)(KO,K07T0764)+/;'Q(L2OW)(KO’KO’TO764)
b [ QU Ko, Kove) + [ QUL W) (Ko, Ko, Ko
9 = /C QULOW) (Ko, Ko, To, e5) + /C QULEW) (Ko, Ko, To, €3)

4 /C QL1 W) (Ko, Ko, Ko, e3) + /C Q(LoLn, W) (Ko, Ko, Ko, e3) ,

then the various null components of the Weyl tensor satisfy the following in-
equalities

suplr¥al < c(Q+ Q) , sup|rip| < c(Q+ Q)

M M

sup|r*utf) < e(Q+ Q) , sup rutal < ¢(Q + Q) (4.17)
M

sup [riudal < c(Q+ Q) , sup|rPui(p—p)| <c(Q+ Q).
M M
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Remarks:

a) These asymptotic estimates are the equivalent of those in eg, 3.11 and the
integral norms in Q and Q are the equivalent of the norms 3.9.

b) It is clear that applying more and more Lie derivatives on W allows to ob-
tain better regularity properties and therefore asymptotic estimates also for the
derivatives of the null components of the Weyl field.

c) We know, from Proposition 4.4 that in the Minkowsk: spacetime Q and Q are
bounded in terms of the corresponding norms on the initial hypersurface ¥o.

The proof of Proposition 4.6 is based on the following

Proposition 4.7 Let F be a smooth tensor field defined on the background 3!
spacetime (M, g), tangent at each point to the 2-surface S(u,u) passing through
that point. The following estimates hold:

1 1

4 4

s 3D < e ([ eee) e ([ )
u,Y, ULy

Ko

+(/ |F|> + r*|VF|” + r?| Py F|?
C(w)NY (uw)

+r| V2 F|? +r4|y71p4F|2) : ] | (4.18)

and

1 1
4 4
supsum (rr |F)) < [( / r?ritFr*) +( / r%?.trwr*)
- S(u,uy) S(u,u,)

+( / (FP? +r2|YFP + 72 [PaFP?
C(u)NV (u,u)

+r| V2 F)? + r273|WIZ)4F|2) : ] (4.19)

Similar estimates can also be obtained expressing the sup norms in terms of
integrals along the incoming null hypersurfaces C(u). The results are

swnsuHE) < o ([ . r“IFl“)% (/[ " r‘*\rwﬁ)%

+(/C( Ve |F|? +r2|VF)? + r?|Ds F?
+r4| V2 F) + r4|y71p3F|2> ’ ] (4.20)

31Here the fact that we are considering a linearized problem does not matter. These Sobolev
estimates are valid in a generic spacetime sufficiently regular and will be used extensively in
the proof of the main Theorem.
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and
supsquw (rTAIF]) < c[( / w272 PO} + ( / r272 [y F|h) }
S(“Oiﬁ) S(“O,E)
+ ( / \F2 + r2|VF? + 72 |Ds 2
C(w)NV (u,u)
%
+r4|W2F|2+r2T3|Wm3F|2) ] (4.21)

Proof: The proof of the last two propositions is based on the following lemmas.

Lemma 4.1 Let F be a smooth tensorfield defined on the spacetime M, tan-
gent at every point to the sphere S(u,u) containing it. Introduce the following
quantities, where V (u,u) = J~(S(u,u)),

1
) 4
A(F)=  sup (/ | F*
Cu)NV(u,u) \JS(u,u)

1
6
B(F) = ( / r6|F|6) (4.22)
CwNV (u,)
%
BR=| [ (FP2 + r2|YFP + 12D, F?
C(u)NV(u,u)
and
. 1
4
Age (F) = sup (/ r2T3|F|4>
NV (uw) \JS(uw)
1
6
Byo (F) = ( / T4T31F|6) (4.23)
C(u)NV (u,u)

2

E4 (F) = (/ |F|* +r?|VF® + TEIID4F|2) :
C(u)NV(u,u)

then the following inequalities hold

B < c(I)A*PE/3 (4.24)

A < Ag+c(I)B¥AEY4 (4.25)
and

Bi. < cDAYEY? (4.26)

Ade. < Adgeo+c()BIEY* (4.27)
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where

; ;
Ao = (/ T4IFI4) , Adeo = (/ rerIFI4> (4.28)
S(u,u) S(u,uy)

uy = ulx, and c(I) is a constant depending on I = supcy) I(u,u), where I(u,u)
is the isoperimetric constant of S(u,u).

The proof of Proposition 4.7 follows immediately from this lemma combined
with the following form of the standard Sobolev inequalities for the sphere

Lemma 4.2 Let G be a tensor field tangent to the spheres S(u,u), then

1
4

SuPs(u,w) |Gl < er=t (/ IG|* + 7”4|77G|4)
S(u,u)

Indeed, it suffices to apply this lemma to G = rF, or G = T%T_%F and then
take Lemma 4.1 into account. Let us present the main steps in the proof of the
nondegenerate version of Lemma 4.1.

To prove 4.24 we use the following version of the isoperimetric inequality for
the sphere:

Lemma 4.3 Let ® be a scalar on a sphere S(u,u) in R®, denote by ® the
average of ® on S. Then

/S (w)(tb -¥)*< I(u,u)( /S » |y7<1>|>2 (4.29)

Applying the lemma to the spheres S(u,u) C C(u) NV (u,u) with & = |F|* and
using the Holder inequality we derive

/ |F|® < c(r—2 / |F|4) ( / |F|? +r2|y7F|2). (4.30)
S(u,w) 5(u,u) S(u,u)

Multiplying the equation 4.30 by r® and integrating with respect to u we derive
eq. 4.24. To obtain 4.25 we express, with the help of the divergence theorem, the
integral [ S(um) r4|F|* in terms of an integral over the portion of C'(u) NV (u, )

outside the sphere S(u,u). Applying also Cauchy-Schwartz this leads to

}
[oommese( [ ee) ([ )
S(u,u) C(u)NV (u,w) C )NV (u,n)

which proves 4.25.

To prove the degenerate estimates 4.26, 4.27 of the Lemma 4.1 we proceed
precisely in the same way with the quantities Age., Bge. and Ege.. In this case
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the inequality 4.26 follows easily by multiplying 4.30 by 772 and integrating in
u. The corresponding inequality 4.27 follows as in the nondegenerate case, by
applying the divergence theorem to |, S(uw) rir2|F|*.

The proof of Proposition 4.6 is based on Proposition 4.7. We discuss here
the estimate for a(W), the other estimates being obtained in a similar way.

Estimate for a(W): Observing that

Q(W)(es, es,€3,€3) 5 2laf® , Q(W)(es, eq,€4,64) = 2|
Q(W)(es, es3,e3,e4) 4|;3|2 Q(W)(e3, eq, €4, €4) = 4|8
Q(W)(es, €3, e4,e1) = 4(p* + 0?)

we obtain immediately

QW) (Ko, Ko, To, e4)

1
u'lal® + 5(@“ + 2u?u?)|8

1 .
-f-§(u4 + 2y2u2)(;‘)2 +0%) + %uﬂgi?

QW) (Ko, Ko, T e3) = 211-u4|g|2+%_(u4+2g2u2)|ﬂ!2

+;(u + 2u?u?)(p? +02)+ 418)?
QW) (Ko, Ko, Ko, e4) = ~ 6|a|2+gy u2|ﬂ|2+3u w2( +0%) + 2|
QW) (Ko, Ko, Ko,e3) = iuslg|2+ S| + uu2(p +o%)+ u6|/3|2

Posing F = r?a we derive

' 1 1
4 4
sup(rlal) < C[(/ r12|a|4) + (/ r12|1'¥7a|4)
C(u) S(u,uy) S(u,uy)

+(/ ra)? + r4rVal® + ré|Paal® + 7"4|1"2§l720z|2 + r6|rY7D4a|2) }
CwWNV (u,u) v

(M

The various |, C(w) Integrals can be bounded by the Bel-Robinson norms. In fact

1) To control [i,) v (uu) r4|a(W)|? we use the inequalities 32
/ (WP <c [ M{Zoa(W)?
C(u)NV(u,u) C(u)NV (u,u) :

/ AlZoa(W)? < ¢ / rila(ZoW)]?
C(u)NV(u,u) C(u)NV (u,u) .

32The proofs of this inequality and the following ones are in [Ch-K12].
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where |Lo f]? =) im143 |Leof|? and the r.h.s. is controlled by the integral

/ Q(ZOW)(I_{)KaT(he‘l) .
C(u)NV (u,u)
2) To control fC’(u)r‘IV(u " r*rYa(W)|? we use the inequality

M Ya(W)P? < c / | Loa(W))?

/C(u)nV(u,g) C(u)NV (u,u)

and the r.h.s. is controlled by

/ ‘ Q(ZOW)(K1K7TO764) .
C(u)NV(u,u)

3) To control fc( r4|r2Y2a(W)|? we proceed as before obtaining

w)NV (u,u)

/ Ve <c [ HZoa(w)P
C(u)NV(u,u) L JO(WNV (v

and the r.h.s. is.controlled by
~2 _
/ QULW)(K, K, Ty, es) -
CWNV (u,n)

4) To control fo,y v (uw r8|Dya(W)|? we write

Dia(W) = —Psa(W) + Pr,a(W)

We control the term fC( WAV () r8|Dr,a(W)|? with the energy norm

/ Q(‘&TOW)(K1K,R,€4) .
C(u)NV (u,u)

For the term fO(u)nV(u » r8|D3a(W)|? we use the Bianchi equation

1 ~
lD3CM + itrxa = W@ﬁ

reducing to the estimate of ;)\ (4.4 rtla(W)|? and fC(u)ﬂV(u W rtrYB(W)|2.
Proceeding as in 2) we conclude that the second integral is controlled again by

/ Q(EOW)(K7K7T0764) .
Cu)NV (u,u)
Remarks:
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a) We have not used in Q the integral on Q(W)(Ko, Ko, To,To). While this
would have been possible in the Minkowski spacetime, in the general case this
integral is not bounded.

b) The set of integral norms used in the linear case is not sufficient in the general
case. The norms

A A ~2
( Q(L:SﬁToW)(K()aKOaKan‘l) ) /;( )Q(‘CTOW)(K()yKOaKO’eAI)
C(u) u

and the corresponding ones with respect to C(u) with e3 instead of e4 have to
be added.

c) In the Minkowski case p = 0.

d) Controlling the Bel-Robinson integral norms in Q and Q allows to control
the norms of the Weyl null components up to second derivatives. In particular
we can control: Sup norms over M for the zero derivatives null components,
LP(S) norms, p € [2,4], for the first derivatives null components and L?(0),
L?(C) norms for the second derivatives null components. All these norms are

defined with appropriate weights .

5 The causal structure of the spacetime

In the previous section we studied the linearized Bianchi equations for the Weyl
field in a given background spacetime. In particular we have introduced a set of
energy-type norms constructed from the Bel-Robinson tensor and proved that
they are conserved if the background spacetime is the Minkowski spacetime.

In a general spacetime these norms are not conserved, but, nevertheless,
we can hope they are bounded in terms of the initial data if the spacetime
has sufficiently “nice” properties. To make precise the meaning of the word
“nice” we need to describe in a very detailed way the geometric structure of
the spacetime. At the present level “nice” can be interpreted as “near to the
Minkowski spacetime”.

In this section, therefore, we describe the geometric structure of the space-
time. It is important to point out that we are not yet proving its existence, but
we are assuming it given, more precisely we are assuming given a portion of it,
a development of the initial data, in principle not maximal, with some defined
properties. We will denote it K 33.

5.1 The foliation of the spacetime

We assume K endowed with a two dimensional foliation {S(u,u)} with the
following properties:

a) The S(u,u) are closed two dimensional surfaces.

b) The foliation is double null integrable.

c) The foliation is equivariant with respect to N = 20%L , N = 2Q2L where
g(L,L) = —(20%)".

337To prove that this portion exists will be a matter of the local existence result.
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5.1.1 The double null integrability

Definition 5.1 The S-foliation is said to be null-outgoing, respectively null in-
coming, integrable if the distribution formed by the tangent spaces of S together
with the null outgoing direction, respectively null incoming, is integrable. An
S-foliation which is both null outgoing and incoming integrable is called double
null integrable.

If the S-foliation is null-outgoing integrable the distribution made by the linear
span formed by T'S and e4

PEM — A, ={TSDes},
is integrable: at each point p there is a submanifold of K: N, such that
TN, =4, .

The same holds for the null incoming integrable foliation, with the obvious
substitutions: .
PEM—A ={TSSes},

and A instead of M. The null hypersurfaces A" and A can be expressed, locally,
as the level hypersurfaces of two functions u and u.

The covariant vector n defined through n, = 0,u satisfies n(e,) = 0,a € {1,2}
and n(eq) = 0. Therefore (g"“nu)gg—; = (g*#0yu)z2 is a null vector field
proportional to e4 and u satisfies the eikonal equation:

9°P8audau =0 .

Analogously, u satisfies
9°P8,udsu =0

Defining L® = —¢**0,u and L* = —g*#9,u, these vector fields satisfy
D;L=0,D,L=0.

Therefore, L and L are completely specified once the two optical functions u
and u, solutions of the eikonal equation, are given and, at each point, L and L
are proportional to e4 and ez respectively.

5.1.2 The equivariant property

Given a null outgoing integrable S-foliation, a null outgoing vector field N
normal to each S is said to be equivariant relative to it if the leaves of the
foliation are Lie transported by N. Given a null incoming integrable S-foliation, -
a null incoming vector field N normal to each S is said to be equivariant relative
to it if the leaves of the foliation are Lie transported by V.
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Proposition 5.1 Given a double null integral S-foliation the outgoing null vec-
tor field N = 2Q%L and the incoming null vector field N = 2Q?L are equivariant
relative to it. Q is defined by - ‘ : '

20%) 7" = —g(L,L) .

If the S-foliation is double null integral each leave S belongs simultaneously to
a null hypersurface C(u) and to a null hypersurface C(u), therefore:

S(u,u) = C(u) NC(u)
where, locally,

C(u) = {p € Mlu(p) =u}
C(u) = {p € M|u(p) =u}
u(p) and u(p) being solutions of the eikonal equation.

The double null integral S-foliation implies that the spacetime is foliated by the
null hypersurfaces C(u) and C(u), therefore we introduce the following

Definition 5.2 We call the foliaﬁon :of the spacetime (K, g) inade by the null
hypersurfaces C(u) and C(u), a “double null foliation”.

The causal structure of the spacetime is specified giving the double null
foliation, a moving frame adapted to it and the null Ricci coefficients. These
coefficients satisfy the “structure equations” which depend also on the Riemann
tensor. The knowledge the causal structure implies the complete knowledge of
the spacetime and, therefore, also of its metric tensor.

Definition 5.3 The adapted null frame {e4,e3,€4} is

es =2QL, e3 =2QL
{e.} = orthonormal frame of TS

5.1.3 The null Ricci coefficients

The double null foliation and the moving frame associated to it are characterized
by the null Ricci coefficients or connection coeflicients, which define

a) The geometric properties of the submanifolds S(u,u).

b) The way these submanifolds are situated on C(u) and on C(u).

Let us describe all of them

The null second fundamental forms
x(X,Y) = g(Dxes,Y)

__X(Xv Y) = g(DX€3,Y)
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The torsion 1 ‘
((X) = §g(Dx€4,63)

The null second fundamental forms can be expressed in terms of the Lie deriva-
tives of the metric tensor g:

1
2
try, trx measure the change of the area of S: |S| in the direction of e4, and e3
respectively:

SEN)(X,Y) = X(X,¥) , (Lxg)(X,Y) = x(X,Y)

d
E;|Ssls=0 = /Strx

d
@%m=ﬁ%

x and x measure also the change of the length of a curve I' on .S when mapped
by ¢s on the surface S,

dLs _ [ x(V,V)
ds ls=0 “/ V] it
dL, x(V,V)
b= [ v @

where V is the tangent vector to I'(¢).

The remaining null Ricci coefficients
In the adapted null frame, they are

1
o = 59(D84e4vea) =0

1
§a = ig(De?,eB,ea) =0

1

Na = _EQ(Deaeav&i) = (o + YlogQ
1

n,= _§Q(De4eave3) = —( + YlogQ
1 1

2w = —§g(De4eg,e4) = —§D4(logﬂ)

2w = —%Q(Des% es) = —%Ds(log Q)
The knowledge of the null Ricci coefficients specifies the properties of the fo-
liation and, moreover, tells how the adapted null frame changes moving from
point to point. The“Structure equations” they satisfy are of two types:

a) Elliptic equations on the two dimensional surfaces S(u,u).

b) Evolution equation along the null geodesics generating the null cones C(u)
and C(u), which are ordinary differential equations, L(S) valued.
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5.1.4 The structure equations

Let
{e@} = {ea} = {eq), €2), €3), €0}
{9(a)} = {6} = {9(1),9(2),9(3),9(4)}
6% (e(s)) = 05
Define
Deo, €3 = I'Zﬁe.,
R(eqep)ey, = Rfsmﬂeg
and
wi = T507
Qf = %Rgvém N§°

wg and Q3 satisfy the following structure equations
do* = —wi NO”
dwfi = —wg/\w$+ﬂi ,
called the first and the second structure equations respectively.

The explicit expression of the structure equations

1) The Gauss curvature K of S is connected to the spacetime curvature tensor
according to the Gauss equation,

—

1
K= —Ztrxtr>_<+ 5)(-2-— p.

2) The null second fundamental forms x, x satisfy the null Codazzi elliptic
equations,

div
div

o<

FRC = (P ) - B
—X¢

[><>

= %(Wtrx —(try) + 8

3) The torsion ( verifies the “torsion” equation 3,

1
cdrl(+§)2/\X=0.

34Ty derive the Gauss and Codazzi equations we proceed in the following way: Let Y be a
vector field € T'S, VY its covariant derivative in S,

y,Y? =1 04D,Y?
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4) The propagation equations
Pix + trxx — (DalogQ)x = —a
1
Dytry + §(trx)2 — (Dqlog Q)try + |12 =0
Psx +trxx — (D3log)x = —a
1
Dstry + 5("&)2 — (D3 log Q)try + IXI2 =0
5) The equation for
1
3 (D4D3log + D3 Dy log ) + (D3 log Q) (D4 log Q)
+(I¢1? = |V 1og Q) + 2(¢I° = ~p

6) The remaining propagation equations

A~ 1 ~ 1 ~ ~ ~ ~
Dix + §tr)@ + —étrxx + (D4log Q)x + V&(¢ - (¢

+2(®Y1og Q — (YRY)log @ — Viog @&V log Q! = 0

1
Dytrx + §trxtrl + (Dqlog Q)trx + XX + 2div(
—2Alog Q — 2|¢|* + 4¢V1og N — 2|V 1og Q) = 2p

.1 .1 . R ~ ~
Dsx + -étrxx + §trx5 + (D3log )x — YR(¢ — (®C

—2(®Y1og N — (YRY)log N — Viog @RV log = 0

1
Dstry + 5“&”)( + (D3log M)trx + xX — 2div¢

—2Alog Q — 2|¢|* — 4¢V1og N — 2|V 1log Q| = 2p
P3¢+ 2x( -~ D3YVlogt = -
Ps( +2x¢ + DaYVlog = -

Among the complete set of structure equations, we identify those which do not
depend on the null components of the curvature tensor. They are, precisely,

HZ: the projection over T'S. R is obtained computing the r.h.s. of the following equation:

R Y =V, ¥,YP =V, ¥V, Y

It is easy to obtain:

Y,V,Y? = T)ISTED\D.Y?
+ IDOENZ(DAIE)DcY®
+ IDISIY(DAI)DY?
MISL(DATR) = ST (Xbess + X eas)

From it the result follows.
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‘those corresponding to R(eq,e3) = 0. In other words they can be interpreted
as the “Einstein vacuum equations”, expressed relatively to the double null
foliation 5: '

1 ,
Dytry + —2-(trx)2 + 2wtry + X2 =0
Dytry + trxtry — 2wiry = —2K + 2dkv(—C + ViogQ) + 2| = ¢ + ViogQ|?

(D) — 205 = (F8n) + (nBm) — 5 (trxi + trxD)

B40) + (¢x) +trx¢ = (dhvx) — Virx — YDaq + x - Vlog 2log 0
—(D4log )Y log 2

Dstry + %(trx)2 + 2wtrx + IxI>=0
Dstry + trxtrx — 2wtry = —2K + 2div (¢ + Ylogf) + 2|[¢ + ViogQ|?

(Ds5) — 26X = (Vém) + (ndm) — 5(6rxs + trxd)

(PsC) + (Cx) + trx¢ = —(divy) + Very + VDslog Q@ — x - Vlog
+(D3logN) YV log

6 The estimates of the null Ricci coefficients,
given the Riemann tensor

In the previous section we have introduced the null Ricci coefficients whose
knowledge specifies the causal structure of the spacetime. We need, therefore, to
control them, that is to obtain estimates for their appropriate norms. Moreover
these estimates should realize the “nice” properties discussed at the beginning
of the previous section, that is those estimates which should allow to prove that
the Bel-Robinson energy-type norms are bounded. '

Let us observe that, to estimate the null Ricci coefficients; we have to use
the structure equations which depend on the Riemann tensor and; on the other
side, the control of the Riemann tensor is obtained through the control of the
Bel-Robinson energy-type norms. Therefore a consistency of all these estimates
is required and has to be proved.

The strategy we use is the following one: we assume that some appropriate
norms of the Riemann tensor are bounded and examine which are the norms of
the Ricci coefficients we are able to control.

The Riemann norms that we assume to be bounded are the same family of
norms which we were able to control for the Weyl tensor, in the linear case, with

35t0 be considered as a closed set of equations they have to be supplemented with the
equations:

(SRR

) .
§szg=x, Lng=x -
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the ‘Minkowski spacetime as background spacetime. there we used a family of
Bel-Robinson tensor energy-type norms, see Proposition 4.6, which in that case
were proved to be bounded. Therefore the Riemann norms we assume under
control are: - ' :

a) sup norms for the null components which will be bounded by a constant
AV
b) LP(S) norms, p € [2,4] for the first derivatives of the null components,
which will be bounded by a constant A, .

¢) L*(C), L?(C) norms for the second derivatives, which will be bounded by
a constant A,. The weights in r of these norms are those compatible with the
Bel-Robinson integrals. We will give the whole list of these norms in the next
section.

In this section we show how these null Ricci coefficients can be controlled
describing the derivation of some estimates which give a good insight to the
general procedure.

6.1 Some analytic tools for the evolution equations

Lemma 6.1 Let U, V, F, F be k-covariant tensor fields tangential to S satis-
fying

dLa ...a 1) 1
dl—uk + A()Qm)( ar...ar — Lai...ar
d[/a ...a

_—jq-j,——k_ + )\OQt@‘/mmak = _lal...ak

where A\g > 0 and for a generic k-tensor T: Ty, a0 = T(€q,,€a0, > €ar)-
Assume |Qtry — Qtry| < dor=2 with & > 0 sufficiently small. Posing A\; =
2(Xo — 11—)), we have, along C(u) or C(u):

IA

P Ulpswy) < o (1r*1U|p,s<w_m " |r*1Ftp,s<u,u'>dg’)

u

PV s () CO(|7"\1V|p,S(Uo,y)+ / Ir*‘Elp,s(U',u)dU')
Uuo

IN

Lemma 6.2 Consider an arbitrary compact Riemannian manifold (S,7), ver-
ifying kyn, = mingr?K > 0 and ky = maxgr?K < oo, denoting with K the
Gauss curvature of S. If the symmetric, traceless, 2-tensor £ is a solution of

div = f

then there ezists a constant ¢ which depends only on ky, ', kar and p such that,
forall2 <p< oo

[5 (VP +rPlelP) < e /S Tk
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6.2 Some estimates for the non derived null Ricci coeffi-
cients

Estimate for the traceless part of the second fundamental form: x

As eq = 20L and N = Qe4 is null equivariant, on scalars QDy = thi' The

evolution equation
Pix +trxx — (DalogNx = —a

d Xab Xab —
dg( Q)+Qtrx( Q ) = —Qags

Assuniing that |r%(try — try)| is small we can apply Lemma 6.1 and, assuming
also ) near to one, we obtain

can be rewritten as

u
-2 _2 —2
235 s(uy) < c(w’ o) + / Ir? ra|p,s)

u
22 . L. 1)
<e (1 F s u) + 2o [
u T2
Remarks:

1) Here p > 2. In fact we have assumed the sup norm of a be bounded, see
eq. 4.17, therefore all the |r%_%a|p,s norms are bounded.

2) The last integral can be bounded by cA, if we control ff r~%. Ina
generic spacetime r is not a coordinate but a function defined by

drr® = |S(u,u)| -
From it 5 ()
r(u,u
@T(u,u) = —5— fitrx,

therefore if we prove that
P 1
Qtry = -
rxy =0 (r)

we conclude that £ = O(2) and control the integral.

3) The previous estimates for ]r2'% X|p,s(u,u) are written in terms of an
integral over C(u) and its norm on C(u,) %6. Therefore we need a control of
2 .
|77 X|p.s on C(u,), we call it the “last slice”. Denoting Z, a constant which

361n this specific estimate this could be avoided, obtaining an estimate for X in terms of an
integral over C(u) and its norm on £o N C(u), but in other cases this is unavoidable.
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