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1 Surgery Theory

1.1 Introduction

We begin with two fundamental questions:

e Existence: Given a topological space X can we find a closed manifold M and
a homotopy equivalence f: M — X?

e Uniqueness: Given a homotopy equivalence f : M — N of closed manifolds,
can we find a homotopy f ~ g : M — N such that g is a diffeomorphism?

The motivation for answering these questions comes from the following program:

e We are given a manifold problem, eg. construct a manifold admitting a
certain group action.

e We ‘solve’ the problem in the homotopy category using the techniques of
algebraic topology to obtain a topological space (homotopy type).

e We try to ‘improve’ our topological space to a manifold.

e We count the number of distinct ways if doing this.

Basic necessary homotopy conditions for a space X to be homotopy equivalent
to a closed manifold are: ‘

1. The space X must be of the homotopy type of a finite CW-complex. Of-
ten it is possible to construct a CW-complex with the required properties,
but with cells in infinitely many dimensions. The problem of finding a ho-
motopy equivalent finite CW-complex was solved by Wall using algebraic
K-theory [34].

2. The space X must have the homological properties of a manifold. I par-
ticular, it must satisfy Poincaré duality between its cohomology and ho-
mology.

3. The Poincaré space X must have a ‘normal bundle’, which is compatible
with the Poincaré duality structure (cf. Wu’s formula relating Steenrod
squares in a manifold to characteristic classes of the normal bundle [29]).

Basic necessary conditions for a homotopy equivalence to be homotopic to a
diffeomorphism:

1. A diffeomorphism is a simple homotopy equivalence: roughly speaking the
homotopy equivalence does not twist the cells around too much.



2. A homotopy is a map on a cylinder. A weaker version is to ask for a map
on a homotopy cylinder, ie. an h-cobordism. Surgery theory constructs
h-cobordisms. : :

3. The h-cobordism should be trivial, ie. a cylinder. This is the h-cobordism
theorem, and uses algebraic K-theory.

1.2 Poincaré Duality

Let M be a closed, orientable n-dimensional manifold (topological, PL or smooth).

An orientation/funadamental class for M is a choice of generator [M] € H,(M;Z) =
Z.

Proposition 1.1 The fundamental class determines a Poincaré duality isomor-
phism between cohomology and homology

[M]N: H™*(M) — H. (M)

There are many proofs. For example:

o Simplicial: Choose a triangulation {c} for the manifold and take the dual
cell decomposition {o’}. Then we have face relations

01 < 09 <= 04 < 0f.

So that there is an isomorphism of chain complexes {o}* — {c’}. See

[26].

e Geometric: Choose a Morse function and, using the flow lines, consider the
induced cellular decomposition. Poincaré duality is obtained by reversing
the direction of the flow. See [16].

e Sheaf Theoretic: Let Cps be the canonical Godement resolution on M
and Dy its Verdier dual. Then since M is locally Euclidean there is de-
fined a quasi-isomorphism of sheaves Cps — X" D)ps. The assembly/global
sections of this quasi-isomorphism determine the usual Poincaré duality
isomorphism. See [9]

e Homotopy: The Poincaré isomorphism may also be realised on the level
of spectra, ie. spaces which are stabilised with respect to suspension.
Embed the manifold M™ in the sphere S™**  k large, and take a tubular
neighbourhood M C (U, 8U). Then the composition

SMHE L U/oU 25 U/OU AU,
where the first map is ‘collapse’, induces the slant product

D(U/8U) — TFHU, = S+



This map is a stable homotopy equivalence and is equivalent to the Poincaré
duality isomorphism on noting the Atiyah-Thom equivalence

D(U/0U) = D(Tvar) = SFH M,
See [23]
In all cases there is a passage from local to global:
locally Euclidean = local PD == global PD.

Corollary 1.2 Any CW-comlez homotopy equivalent to a manifold satisfies
Poincaé duality.

The full statement of Poincaré duality must take into account non-orientability
and the role of the fundamental group. Since this is often a source of confusion,
a proper definition is in order. (This account is from Ranicki [23].)

Let X be a finite CW-complex and X the universal cover with group of
covering transformations 7 = 71 (X). Then 7 acts on the left on X and hence
detemines an action of the group ring Z[n] on H,(X)

Zir) x Ho(X) — H.(X) (g,z) - g.z.

Thus the homology groups H,(X) are left Z[r]-modules. Similarly for the co-
homology groups H*(X)

Z[n] x H*(X') —_ H*(X') (g,z) — (g‘l)*m.
In the case X is a manifold:

Goal: Construct an isomorphism of Z[n]-modules
[(XIN: H*(X) - H.(X)

However, suppose 7 is infinite, so that X is a non-compact (infinite) CW-
complex. Then:

e The groups H.(X) are built from finite linear combinations of cells.

e The groups H"*(X) are built from arbitrary homomorphisms ¢ : C(X) —
Z. In particular, they may have infinite support.

Thus we cannot hope to construct an isomorphism from cohomology to homol-
ogy. There are at least two solutions:

e Use the compactly supported cohomology groups ngt(X' ). This is ap-
propriate for a sheaf theoretic approach, but is not directly amenable to
algebra.



e Use the Z[r]-dual of C (X’ ) instead of the Z-dual. The homology groups
will be finitely generated as Z[r]-modules. Unfortunately, they will be-
come right Z[r]-modules.

We get round this problem using an involution:
Definition 1.3 An involution on a ring R is o function
A—Aa—a

satisfying B B B
atb=a+bh (ab)=0d-a, 1=1

for all a,b € R.
Example 1.4 Let Z[w] be the group ring of the group 7 with elements
Ygerngg

where ng € Z and {g € m|ny # 0} is finite.
An orientation character on a group 7 is a group homomorphism

w:im— Ly = {%1}.
The w-twisted involution on the group ring Z[n] is given by
Zlr] = Z[r] a = Egenngg = a = Seenngw(g)g™".

The special case w = 1 is the oriented involution on Z[r},

Definition 1.5 Let R be a ring with involution. The dual of a left R-module
M is defined io be the left R-module

M* = Homg(M, R)
with R acting by
RxM* = M (a,f)— (z— f(z)-a).
Similarly we may define the dual of an R-module map f”M — N by
fNT S MY g (@ g(£(2):
Similarly for the dual of a chain complex of R-modules.

Definition 1.6 An oriented cover (X ,m,w) of a CW-complezx X is a regular
covering of X with group of covering translations m, together with an orientation
character w: m — Zs. :



Example 1.7 Let M be a closed manifold, 7 = (M) and universal cover M.
Then there is defined a map
Wh T T — ZQ

depending on whether parallel transport along a loop preserves or swaps the
local orientation. Thus there is defined an oriented cover (M, m,wpy).

Let X be a space with orientation cover (X, ,w):
o Homology groups X are H,(C(X)).

e The (7, w)-cohomology Z[r]-modules of X are defined to be the homology
groups of the dual complex C(X)*, where Z|r] has the w-twisted involu-
tion. '

Example 1.8 For a finite group =, the (7, +1)-cohomology modules may be
identified with the usual cohomology groups via the map

Homgzs)(C(X), Zlr)) — Homz(C(X),Z) f s (0 f(o)1),
where f(o); is the coefficient of 1 in f(o) € Z[n].
Similarly, for infinite , there is induced an isomorphism
H{, ) (X) = HE (X).

Example 1.9 Let X = RP? be the projective plane, and for € = +1 define the
oriented cover _
(X, m,w) = (5% Zy,€)
Let
A= Z|Zs) = Z[T)/(T? - 1)

with the w-twisted involution T' = €T'. Then the cellular A-module chain com-
plex of §? is

C(S?):... 50442 4

and the dual A-module chain complex is

b

ol D = R A

so that H (O \(8%) = Z¢ 1s the Z{Zy]-module defined by Z with the generator
TeZy actmg by e.

Consider a CW complex with oriented cover (X, 7,w). Then by acyclic models
[29] there is a m-equivariant diagonal chain approximation

A:C(X) = C(X)®zC(X)

Apply the functor Z*¥ ®z(x) — to obtain a Z-module map

A=18A:Z° @ C(X) = C(X;2%) - I g (C(X) ®2 C(X))
= C(X)' ®gm C(X))



where C(X)? denotes the right Z[r]-module cellular chain complex with action
C(X)t x Z[x] -+ C(X)! (x,a) — az.

Combining this with the slant map, for each class x € H,,(X;Z“) we obtain a
Zlr]-module cap product map

xN-—: H(’;,,w)(f() — Hy_m(X).
From now on we shall simply write Hf, (X X) = H"(X).

Finally we have

Definition 1.10 An m-dimensional Poincaré complez X is a finite CW com-
plez with an orientation character w(X) : m(X) = Zy and a fundamental
homology class [X] € Hp,(X;29X)). such that the cap products

[X]N = : H*(X) -+ Hp o(X)
are isomorphisms, where X is the universal cover of X.

Example 1.11 An m-dimensional manifold M , with orientation cover (M , (M), war)
given as above, is a Poincaré complex.

Example 1.12 (Browder) Every finite H-space is a Poincaré complex.

Example 1.13 (Bieri) Every 2-dimensional Poincaré complex is a surface.

1.3 Normal Data for Manifolds

Recall that isomorphism classes of k-plane bundles f over a space X are classified
by homotopy classes of maps

X — BO(k) = G(R™)

for some classifying space BO(k).
Whitney sum with trivial bundles determines maps

-+ — BO(k) - BO(k+1) — ---
and taking the direct limit we obtain the classifying space BO for stable vector

bundles. See [20] or [15] for example.

Example 1.14 A k-plane bundle { S! — BO(k) over S! is classified by an
element ¢ € O(k) such that

E(§) =R* x I/{(z,0) = (§(=), D}
We say & is orientable iff £ € SO(k) C O(k).



Definition 1.15 Given a k-plane bundle £ : X — BO(k) over a connected
space, we define the orientation character

wi1(§) € HY(X'Z3) = Hom(m (X), Zs)
to be the group homomorphism
w=wi(§) : m(X) > Zy = {£1}

taking value w(g) = +1 (resp. —1) on a loop g.: 8" -3 X such that g*¢ is
orientable (resp. non-orientable). We say £ is orientable if w=+1.

Definition 1.16 The Thom space of a k-plane bundle
£€:X = BO(K)

is the pointed space '
T(§) = D(£)/5(¢)

where, having chosen a metric on E(€), we take D(¢&) to be the unit disk bundle,
and S(£) to be the unit sphere bundle.

The Thom space has the structure of a CW-complex with one 0-cell at the base
point, and one (n + k)-cell for each n-cell of X. It should be regarded as a
twisted suspension of X. Stabilisation of the bundle corresponds o suspension
of the Thom space.

Theecrem 1.17 An oriented k-plane bundle £ admits a Thom class Ue € H*(T¢)
nducing isomorphisms

UeN : Ho(T€) — H,_1(X)

and _
UeU: H*(X) — H*T*(T¢).

A similar twisted version holds for a non-orientable bundle. See [29] for a proof.

Let M™ be an oriented manifold and
e: M™ s Rk

an embedding. Then by the tubular neighbourhood theorem, the embedding e
extends to an embedding
E(v,) — R"**

where E(v;) is the total space of a k-plane bundle vy, — BO(k) over M. Then
TM @B Ve = e*Tgnir = M x RF

so that vy is a stable inverse to the tangent bundle ™ -
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The stable class of vy

vm:M— BO= lillcrn BO(k)
is thus well-defined. |
Notice that we get more than just a stable bundle. There is a colle;pse map
Stk = R /oo — Twp = U/0U,
defining a stable homotopy class
am € g (Tvam)

called the normal invariant of M. If h: w¥ (M) — H,(M) is the Hurewitz map
then
h(ax) NU,,, = [M] € Hy,(M;Z).

Thus ay is a stable version of [M]. In fact, the stable cap product
| ayn: DTy — SFHM,
is a stable version of the Poincaré duality isomorphism
M HY(M) — Ha_u(M).

Notice also that we may recover M up to cobordism from its normal invariant by
transversality. Simply make aps : S"** — T transverse to the zero-section
M C Tvy.

1.4 Normal Data for Poincaré Spaces

We want to recover as much as the normal data of a manifold in the weaker
situation of a Poincaré complex. Since a Poincaré complex is essentially a ho-
motopy object, we can only hope to recover the manifold normal data up to
- homotopy. The following theorem is due to Spivak [31]:

Theorem 1.18 Let X be an n-dimensional Poincaré complex. Then there is
a spherical fibration over X, written {x, with fibre a homotopy (k — 1)-sphere,
and a ‘homotopy’ normal invariant ax : Sntk 5 Téx such that

h(ax) NUg, = [X] € Hn(X).
Such data is essentially unique up to homotopy.

In the case of a manifold M, the manifold could be recovered up to cobordism
from the normal invariant a s : S"t* — Ty, by an application of transversality.
However, in the case of the Thom space of a spherical fibration we do not appear
to have a transversality result. (Actually, such a result does exist but it is rather
involved. See [8] for example.)
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The theorem is proved as in the manifold case, by embedding X in R™**. How-
ever, we do not have a tubular neighbourhood theorem for Poincaré complexes
so we cannot conclude that a regular neighbourhood admits a bundle structure.
Instead, a spectral sequence argument involving the Poincaré duality. isomor-
phism must be used to identify the homotopy fibre as a (k — 1)-sphere. The
spherical fibration {x (stabilized) is called the Spivak normal fibration.

There is an interesting intermediate version where X is assumed to satisfy a
local form of Poincaré duality, ie. it has the local homology of Euclidean space.
In this case, it can be shown that the projection p : U — X may be chosen
so that the fibres have the Cech cohomology of a (k — 1)-sphere, but in general
the projection will not be locally trivial (cf. manifold approximate fibrations:
non-trivial germs!).

Just as normal bundles are classified by homotopy classes of maps into BO(k),
so there is a spherical fibration classification theorem due to Stasheff:

Theorem 1.19 Fibre homotopy classes of (k — 1)-spherical fibrations over a
finite CW-complez are in one-to-one correspondence with the homotopy classes
of maps X — BG(k) to the classifying space of the monoid G(k) of homotopy
equivalences S*—1 — §k-1, '

In particular, the Spivak normal fibration of a Poincaré complex X may be
regarded as a homotopy class of maps £x : X — BG(k). Similarly, there is
a stable version {x : X -+ BG obtained by taking Whitney sums with trivial
fibrations. .

Because the homotopy normal invariant ax is a stable homotopy version of the
fundamental class, the composition

SMTR X Tey B Tex A X,
determines a stable homotopy equivalence
DT¢x — TFHix,

as in the case of a manifold. Thus the Thom space T€x is the S-dual of X,
This map is a stable homotopy version of the Poincaré duality isomorphism for
X.

It is easily shown (from the definition of a classifying space of a monoid) that
the homotopy groups

7T1(BG) o lilgnw”k_g(sk“l) = 7'('?_1

where 7 ; is the (i — 1)-stable stem, ie. the stable homotopy of a sphere.

Every orthogonal map R* — R* determines a homotopy equivalence S¥~1 —
S*=1 by restriction. Thus there are defined forgetful maps of classifying spaces

Jy : BO(k) - BG(k) and J:BO — BG.

12



Define the space G/O to fit into the fibration

G/O — BO 25 BG.

Lemma 1.20 Homtopy classes of maps X — G/O are in one-to-one corre-
spondence with equivalence classes of pairs

(stable VB n over X, a fibre homotopy Jn =~ ).

A stable spherical fibration £ : X — BG admits a bundle reduction iff the map
& lifts up to homotopy to a map & : X — BO.
The collection of different reductions are classified by maps X — G/O.

Example 1.21 (Madsen-Milgram) We have
73(BG(3)) = m4(S?) = Zs
. Choose w = 1 € m3(BG(3)) and consider the spherical fibration
5% 5 S(w) = S

Since §2 and S° are both Poincaré complexes, by a spectral sequence argument
S(w) is a 5-dimensional Poincaré complex. Let

9(w):S* = 52
be the adjoint of w. Then it can be shown that S(w) has the cell structure
S(w) = (53 N 32) Ules, 2] 4-0(w) D?

where [13,12] : §* — 5%V §2 is the Whitehead product on ¢; : §; < §% v §2,
j = 3,2. Recall that the standard product S® x S? can be written

5% x 82 = (S3V S%) U}y D°
and that the suspension
$(S% x §%) = 54 v S v S°
since ¥[t3, t2] is null homotopic. It follows that
T(w) = S® Usg() D°.
Furthermore, the Spivak normal fibration of S(w) is classified by
VS(w) : S(w) = 5% =% BG(k)

so that '
T(vsy) = (S* Uso(—w) D3+k) v g2k g5k,

Here Y0(—w) € m42(S*) = Zy is non-zero.
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In fact, T'(vs(wy) is not of the homotopy type of the Thom space of a vector
bundle. This is proved as follows: ‘

Consider the Steenrod square operations Sgq* applied to the space

S(w) = (8°V 8%) Uiy v 40(0) D
This space has cells €°, €2, %, ¢®. The possibilities for non-trivial Steenrod
squares are:

* S¢*: €3 +» €5 - but Steenrod squares commute with suspensions and e®
is attatched to €? by a Whitehead product which suspends to zero. Hence
S¢2=0

® S¢® : € 5 €® — here €® is attatched to e? via & Whitehead product, so
this makes no contributicn, but it is also attatched via 0(w) which may
pick up a Steenrod square. However, the Adem relation S¢3 = Sq2 - Sq'
implies that Sq¢® is zero here, since there is no 3-cell attatched to e2.

Thus on S(w) the total Steenrod square Sq = 1. However, the Steenrod relation
- 5¢%-8¢* +8¢° - Sqt =0
determines a secondary operation ® on S(w) which does detect O(w).

Since Sg = 1 on S(w), it follows from a theorem of Wu that the total Stiefel-
Whitney class of the Spivak normal fibration of S(w)is 1. In particular wy (Vs(w)) =
0. Thus if Vs(w) admits a bundle reduction &, then £ may be clasified by a map

€ : S(w) — BSpin(k)
by definition of BSpin. Thus there is an induced map- of Thom spaces
T(f) - T(’Yf?Spin)

where 'ygspm is the universal bundle over BSpin(k). Now & is non zero on
T(&) but it can be shown to be zero on T(fygspm). Hence, by naturality of
secondary operations, we have a contradiction, and the Spival normal fibration
Vs(w) cannot admit a bundle reduction.

We conclude that the Poincaré complex S(w) is not of the homotopy type
of a manifold.

1.5 Normal Invariants

Suppose that X is an m-dimensional Poincaré complex with Spivak normal
fibration £ : X — BG(k), k large, and homotopy normal invariant o x : Sk
T¢. Our goal is to manufacture a homotopy equivalence

fiM™ o X

14



for some closed manifold M. As a humble beginning, let us try to construct
a map (not necessarily a homotopy equivalence) which preserves fundamental
classes, ie. induces an isomorphism

o Hu(M) = Ho(X).

Think of this as the first step to building a homotopy equivalence. The key tool
for manufacturing manifolds is of course transversality. We would like to apply
transversality to the homotopy normal invariant ax : Stk 5 Téx, but of
course £x is only a fibration, so this does not work. We need to assume the ex-
istence of bundle data, (which is certainly necessary for a homotopy equivalence
to exist).

Definition 1.22 A normal invariant (n, p) on an m-dimensional Poincaré com-
plex X consists of a vector bundle n : X — BO(k), k large, together with a map
p: 8™k s Ty such that

h(p) NU, = [X] € Hp(X).

Two normal invariants (n-l,pl) and (nz,pg) are said to be equivalent if there
exists a bundle isomorphism 11 22 ng taking p1 to pa. We write T(X) for the
set of equivalence classes of normal invariants of X. Of course, T(X) may be
empty. ’

Note that by the homotopy uniqueness of the Spivak normal fibraticn, the bun-
dle 7 has the fibre homotopy type of the Spivake normal fibration.

Apply transversality to the map p : S™tk s T to obtain a degree 1 map (ie.
preserves fundamental classes)

fiM” =X

Notice that transversality also gives us a bundle map b : v — 1 over f. The
pair

(f,0) : (M,var) — (X, €)

is called a normal map. See [3] for details.
More accurately, transversality gives us a bordism class of normal maps

Definition 1.23 Two normal maps
(fi,01) : M1 = X, (f2,b2) : Mz = X
are said to be normally bordant if there exists:
1. a cobordism (W; My, Ma),
2 a map F : W — X extending fi and fa,

3. a bundle map B : vy — & extending by and by.

15



We write N(X) for the set of equivalence classes of normal maps. Again N(X)
may be empty. '

Proposition 1.24 Let X be an m-dimensional Poincaré complex admitting a
normal invariant. Then the following are in one-to-one correspondence:

1. equivalence classes of normal invariants,
2. normal bordism classes of normal maps, for varying reductions of £x,

3. homotopy classes of maps X — G/O.

Boardman and Vogt [2] have shown that the space G/O admits a delooping
B(G/O0) so that there is a fibration sequence

G/O = BO - BG — B(G/O).

In particular, a Poincaré complex X with Spivak normal fibration & : X -»
BG(k) admits a normal invariant iff the map

[X,BG] — {X,B(G/0)]
takes £ to zero. In particular, the element in [X, B(G/O)] is an obstruction to
the existence of a manifold structure on X.

Clearly then G/O plays a critical role in surgery theory, along with its topo-
logical version G/TOP and G/PL for topological and PL manifolds respectively.
They are the surgery classifying spaces. The study of their homotopy type is
equivalent to a linearization of the classification problem. We give a brief review
of their homotopy properties. Further details can be found in [15]

o The study of G/O as the fibre of the J homomorpism was properly initi-
ated by Adams, and later completely solved by Sullivan. After p-adically
completing, there is for each prime p a homotopy equivalence

G/O[p] = BSOIp] x Cok(J[p))

where Cok(J[p]) is the mapping cone on the p-adic J-inap. The first factor
is well understood, but the second factor involves the homotopy groups of
spheres, and so is currently intractable.

e The map G/PL — G/TOP is an isomorphism on all homotopy groups,
except dimension 4, where both groups are Z but the map is multiplication
by 2, ie. the fibre is K(Z2,3). It follows there is an obstruction (the
Kirby-Siebenmann invariant) in H*(M;Z,) to triangulating a topological
manifold M™, n > 5.

e Before the 1970s there were no techniques for extending the classical
surgery theory on smooth and PL manifolds to topological manifolds.
This was due mainly to a lack of understanding about homeomorphisms on

16



Euclidean space. Following Kirby’s ‘torus trick’, which reduced the prob-
lem to classifying fake PL-tori, Kirby and Siebenmann developed surgery
techniques in the topological category in the early 70s [14]. It follows

" immediately from the surgery exact sequence and the high dimensional
Poincaré conjecture that

mi(G/TOP) = 0,Z5,0,Z for i =1,2,3,0 mod 4 respectively.
This may be expressed topologically as a homotopy equivalence
Q*G/TOP =7 x G/TOP

Notice the extra Z appearing. This turns out to count the number of local
types for exotic homology manifolds.

1.6 Surgery on Manifolds

In the classification of manifolds we wish to address two questions:
e When is a space homotopy equivalent to a manifold?

o When is a homotopy equivalence of manifolds homotopic to a diffecmor-
phism? " '

In the previous sections we have studied the homotopy properties of man-
ifolds, and arrived at the idea of a normal map as a first step in the process.
The construction of normal maps was closely related to the homotopy theory of
the associated surgery classifying spaces.

We now assume we are given a normal map and move on to the problem
of determining whether its normal bordism class contains a homotopy equiv-
alence. The key tool for constructing cobordisms and bordisms in a managed
way is surgery theory [35]. Surgery theory produces normal bordisms, and, in
particular, can be used to reduce the connectivity of a given normal map within
a normal bordism class. We shall see that

Lemma 1.25 For 2n+1 < m, every normal map (f,b) : M™ — X™ is normal
bordant to an n-connected normal map (f',b’) : M’ — X.

Thus f is ‘almost’ a homotopy equivalence, except for possible nen-zero homo-
topy groups in the middle dimensions 7,41 (f). There are obstructions to killing
these homotopy groups which lie in the L-groups of Z[r;(X)]. Their triviality is
sufficient to be able to do surgery to a homotopy equivalence. We leave surgery
on maps till later, and begin with surgery on manifolds. Further details can be
found in [35] [3].

Consider the space D™*! = D"*! x D™~ with boundary

(D™ x D) = (8™ X D™ ™) Ugnygm-n-1 (D™ x ST,

17



In other words the manifolds
S"x D™™™ and D"t x gm-n-l
share the same boundary S™ x $™"=1 and are cobordant via D™+

Let M be an m-dimensional manifold. A framed n-embedding in M consists
of the following datas:

e An n-embedding e : S™ — M™. -

o A framing of the normal bundle v, of €, ie. an extension of e to an
embedding
e: 8" x D™ s (™,

We say e is the core of &. Of course, it is a non-trivial condition to require
that v, is framed. In addition, it is important to remember that there may be
many distinct framings. Thus the input data for a surgery consists of both the
embedding e and the particular choice of framing e. (We shall see that different
framings have different effects on the surgery.)

Definition 1.26 Let (e, &) be a frained n-embedding. The effect of n-surgery
on € is the m-dimensional manifold

M == closure(M — &(S™ x D™™™)) Ugn g gm-n-1 D™ x gm—n=1
The trace of the surgery is the cobordism (W; M; M') defined by
WL = M ox IUSnxDvn—nX{l} D™+l x pmn,

To construct the effect of surgery M’ from M we first cut out the interior of
8™ x D™~™ from M and then sew back in D"+1 x gm—n—1 along the boundary
S™ x §™~"=1 Hence the terminology ‘surgery’. .

Notice that the trace of the surgery is simply obtained by adding a handle
D™l x D™ t6 M x I via the attatching map é. Thus it is a particularly
simple cobordism: an elementary cobordism.

There is a kind of symmetry in the surgery operation. If M’ is the effect of an
n-surgery € : S™ x D™~" — M on M, then there is an obvious dual embedding
€ : D™ x §m=n=1 _y M’ such that M is the effect of the (m--n—1)-surgery &*
on M’, with the same trace bat turned upside-down. A symmetric description
of W looks something like this:

(M X I) Ugnxpm-n D™ Upnisgmon (M’ x I).
Remark Let (W; M, M’) be an arbitrary cobordism, and
(f; {0 {1}) : (W5 M, M") — (I;{0},{1})
a Morse function on W [16]. Let M; = f~1(¢) and W, = F71([0,¢]). Then for

t a regular value, (Wy; M, M;) is a cobordism. Further, at a critical value ¢ of
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f, Weys is obtained from W;_s by adding a handle. Thus every cobordism is
built from a sequence of elementary cobordisms or surgeries.

Here are some simple examples:
Example 1.27 Consider thé standard framed embedding above
e: S”" x D™ ¢ 8" x D™y DM v gl = (DM x D) = ST
The effect of surgery on this embedding is the m-dimensional manifold
Pl x gmenly Dl gmenl = gl i gmenl
Example 1.28 Considel.r the standard embedding
S0 x p! - §?

and modify it by the twist

w:D' > DYt —:t,
to give the twisted embedding

o 8% x D' 80 x Dt 5 5t

Notice this has the same core as e, but the framing is non-standard. The result
of surgery on e, is the same as e, namely S°, 1 but the trace of the surgery
(W; S, S1) is a non-orientable cobordism. In partlcular it is not a cylinder. In
fact, it is a punctured Moebius band.

Example 1.29 The connected sﬁm of two manifclds M;§Mz is obtained the
disjoint union M; LI M, by surgery on the embedding

S0 x D™ = D™ LI D™ — M LI Ms.

Since our ultimate goal is to use surgery to construct homotopy equivalences,
several questions need to be answered:

e What is the homotopy theoretic effect of a surgery?
e When is surgery possible and what are the possible obstructions?

e Surgery constructs cobordant manifolds. How can we use this to construct
homotopy equivalences or even diffeomorphisms?

19



1.7 The Homotopy Effect of Surgery
The operation of surgery on a framed n-embedding
e:S"x D" s M™

can be thought of homotopically as a pair of operations. First we attatch an
(7 + 1)-cell to M via the core e : S — M forming the cofibration sequence

S5 M — Mue™,

Notice that this kills the homotopy class e € m,(M) - this is the main point
of the surgery operation: to modify the homotopy type. The resulting space
M U e™*! has the homotopy type of the trace of the surgery

W™ = M X I Ugnx pm-ny g1y D" x D™ 2 M Uy et

(just collapse the D™ ™ coordinate to 0.) To recover the homotopy type of
the effect of the surgery (and restore Poincaré duality) we must remove a dual
(m —n — 1)-cell, ie. form the cofibration sequence

S M s Muertt L gmen-1,

Thus homotopically, surgery consists of adding a cell and removing a dual cell.
In particular, homotopically

W2 MUy et 22 M Up- ™ ™.

Remark Since we have a purely homotopy theoretic description of surgery on a
manifold, we have a recipe for doing surgery on Poincaré complexes: add a cell
and remove its Poincaré.dual. Everything works fine except for removing the
dual cell: we can construct a map f : X Ue™*! -+ 8™ "1 but then we need to
build a space X', the effect of Poincaré surgery, removing the (m — n — 1)-cell,
ie. construct a cofibration

X' = X uentt J gmen-1

In other words, we must extend the map f to the left as a cofibration. In
the manifold case this is possible because of the strong local topology. For a
general Poincaré complex we must proceed by other means. In general there are
higher Massey product obstructions to removing cells [10]. But for the case of
a Poincaré complex, these turn out to be zero, and Poincaré surgery is possible
8]. :

Let 7,(X) denote the nth-homotopy group of a space X. The fundamental
group action
T1(X) X T (X) = 7 (X)
is obtained by changing the reference path, making 7,(X) into a Z[m (X)]-
module.



e For z € m1(X) let (z) C m1(X) denote the normal subgroup generated by
z.

e For z € m,(X) let (z) C mn(X) denote the Z|m;(X)]-submodule generated
by x.

Given a map f : S® — X representing z € m,(X), the homoto:py groups of
the mapping cone '
Y = X upe™t!
are given by
— j 71.i(X')? i<,
m(Y) = | m(X)/(z), i=nm

Recall, the trace W™*! of an n-surgery on a framed n-embedding & : S™ x
D™ ™ — M with core e has homotopy type

WMU, e 2 M Uy e™ ™,

In calculating the effect of surgery on homotopy groups we may distinguish
several cases: ‘ :

i. Case 2n + 2 < m: in this case n + 1 < m — n so that
T (M)/< x> = 7o (W) = w0, (M').
and z is killed in m,(M").
2. Case 2n + 1 = m: in this case n -+ 1 =m — n so that
Tn(M)/< x> =7n(W) = mo(M') /< 2™ >.
so that m, is neither increased nor dec.;reased by an n-surgery.

3. Case 2 = m: in this case m,_; may change. For example, if M’ is the
result of a trivial n surgery on M2" then

M = Mﬁ(S”“ x Sn--l)

so that
7I'n.-1(M,) = Tl'n_l(M) P Z.

Thus, in the context of a normal map f : M — X, we may hope to construct
a homotopy equivalence by successively killing the homotopy classes in the kernel

of
f* : 71','(1\/_,) — ﬂi(X)

by surgeries. We shall see that indeed this is possible up to the middle dimension,
at which point some non trivial obstructions are encountered.

In the meantime, here are some examples of the effects of surgery.
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Example 1.30 Let 0 ¢ 7n (M) be the zero map 0 : S™ — * C M™. Then 0
may be killed by a surgery on the embedding

S*x D™ C 8" x D™y D™ x g™l = pm - ppn
The effect of the surgery is the connected sum
Ml — Mﬁ(S"‘H x Sm--n-l’)l

Example 1.31 For m > 2, consider the stable normal bundle map vgpm — BO
where _

The homotopy class 1 € 71 (RP™) is represented by the standard embedding
e:S' = RP! c RP™.

But the normal bundle v, : S — BO(m — 1) has non-zero first Stiefel-Whitney
class
wi(ve) =1 € HY(SY;Zy).

Hence 1 € m1(RP™) cannot be killed by a surgery.

It is important to realise that the effect of surgery is determined not just
be the core of the surgery, which certainly affects the resulting homotopy type,
but also by the embedding itself & : $* x D™—" — M. In particular, given an
embedding e : S — M™ with trivial normal bundle v, : S* — BO(m -- n),
the number of extensions to a map € : S™ x D™™™ s M is in one-to-one
correspondence with maps w : S — O(m — n). Simply let w act on a fixed
embedding in the obvious way. Isotopic embeddings correspond to homotopic
maps. :

Example 1.32 Begin with the standard embedding
e: 8" x D" - §" x DNy prtl i gmen—l S™.

We know that the effect of surgery on e is the product spacé §ntl x gm—n-1
Now pick any element

w € m(O(m — n)) = 7,41(BO(m — n)).

We can think of w in two ways. Firstly, w € m,(O(m — n)) determines a twist
on the embedding e:

€w 1 "X D™ 5 ST DTMTMUDM Y x §7T = S (2,y) — (3, w(z) (y)).
In particular, the result of surgery on e, may be written

S'n. x Dm—'n. Uw Dn+1 x Sm—n—l.
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Secondly, w € Tp41(BO(m —n)) determines a disk bundle
(D™, 8™ 1) = (E(w), S(w)) = gl

The link between the two is the ‘clasping function’ description of bundles over
spheres. It is easily seen that '

S(w) = 8™ x D™ U, DL x g™

The trace W™+ of the surgery is the manifold E(w)\D™*!. Clearly the result
of surgery S(w) depends on the embedding e, and, in particular, the choice of
framing of e.

Example 1.33 Let wy € m(BO(2)) classify the trivial bundle over S' and
w; € m1(BO(2)) the non-orientable bundle. Then

S(wo) =8'x 8, and S(w) = K? the Klein bottle.
Example 1.34 We have 73(SO(4)) = m4(BSO(4)) is generated by maps
w:8 3(5(4) = S% x RP3.
There is defined an isomorphism
Z& L — w3(SO(4))
‘tbafking the pair (h,j) € Z & Z to the map w(h, j) : §* — SO(4) given by
w(h,j): 8% = SO(4) z — {y — zhyz},
where the latter products ére quaternionic multiplication. For k odd, write
wi = w((1+k)/2, (1 —k)/2) € m4(BSO(4))

and let S(wi) be the space as defined above. Then each S(wk) is a smooth
7-dimensional closed manifold homeomorphic to S7. But for k? # 1(mod 7),
S(wy) is not diffeomorphic to S7. These are the original Milnor exotic spheres.

1.8 Surgery on Normal Maps

Having described surgery on manifolds, we now extend the technique to surgery
on normal maps (f,b) : (M,va) — (X,n), the goal being to construct a normal
bordism to a homotopy equivalence.

Let M be an m-dimensional manifold and f : M — X a map. An n-
embedding ¢ in f consists of the following data:

e An n-embedding e : S™ = M.

e An extension d : D*1 — X of f - e, ie. a null homotopy f - e~ *.
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A framed n-embedding ® in f consists of the following data:
o A framed n-embedding € : S™ x D™™" — M.
e An extension d : D™t! x D™ " 5 X of f - &.

Definition 1.35 Let ® be a framed n-embedding in the map f : M™ — X.
The effect of n-surgery on ® is the effect of n-surgery on &

M’ = c(M\&(S™ x D™™)) i D1 x gm—n-1
together with the extension of f to the trace cobordism
(g £, f1) : (W M, M") — X x (1,{0},{1})
given by
=(fxDUud:W=(MxI)U: D" x D™ ™ 5 X x I.

- Again, not every n-embedding ¢ : S® - M™ extends to a framed n-
embedding 2 : S — M™. The normal bundle v, : S™ -3 BO(m-n) determines
the fraining obstruction o

Ve € Tp(BO(M — n))

such that v, = 0 if and only if e extends to a framed embedding &.
Suppose that ¢ = (e, d) is an n-embedding in f : M — X. Then

Ve =0 € m,(BO(m — n)) <=> ¢ extends to a framed n-embedding ®.

Again we may calculate the effect on homotopy groups of an n-surgery ® on j:

mi(9) = { Zigl)(f)/w) s il
Similarly, if ¢' € Tm_n(f") is the dual (m — n — 1)-embedding in ' : M’ — X
then , o
w0 ={ 7wy i) mn
Thus for 2n +2 <m
mi(f) =mi9) = { :n(i)(f./ 6) HIr

The element x € m,41(f) represented by ¢ is therefore killed by the n-surgery.

The next step is to incorporate the normal data. Let (f,b) : M™ — X be a
normal map. Let z € m,41(f) be a homotopy element which we wish to kill by
normal surgery. We must construct the following data:

e An n-embedding ¢ in f consisting of an embedding e : S — M and an
extension d : D™ — X of f - e, representing the class z € m,11(f).
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e A framed n-embedding @ in f, extending ¢, consisting of a framing € :
S™ x D™ — M of e together with an extension d : D"*! x D™ ™ — X
of f-&.

e A commutative diagram ( of normal bundles over ®.

We call such a collection (®,3) a framed n-embedding in the normal map
(f,b). As before, we may define an n-surgery on (f,b) using (®, 3). The result
is the same as an n-surgery on ®, but now everything is covered by compatible
normal maps. ‘

What are the obstructions to killing a class ¢ € m,+1(f) by a normal n-
surgery? Clearly, we must represent z by a framed n-embedding (®, 3) in (f,b).
We have:

p=(e,d)» ®=(e,d) <= v.e=08¢€m(BO(m—n)).
This is the obstruction to framing the normal bundle v..
®=(g,d)— (¢,8) <+ uv(®)=0E¢€ m41(BO).
The class vp(®) : S = O measures the difference
(framing € @ €™ of Ve B €®) — (frc:uning ofe®e® fromd: f-ex )
And finally | | |
b=(e,d) > (B,8) +=> 1(#)=08 may1(BO, BO(m —n))

given by )
vp(P) = (ve, stable framing of € from d : f - e = *.)

Thus we can in principal determine when an element z € m,41(f) can be
killed by an n-surgery on (f,b).

1.9 Constructing Homotopy Equivalences

We now apply the surgery techniques above to the construction of homotopy
equivalences from normal maps, modulo the surgery obstructions to be defined.
We shall largely supress the normal data since, although it plays a crucial role,
a full account is rather involved. Instead we focus on the main ideas.

Let X be an n-dimensional Poincaré complex with (7, p) a normal invariant
and (f,b) : M™ — X a normal map. Since f is a degree one map (ie. it
preserves fundamental classes) it follows easily from Poincaré duality that the
induced map on homology

fu: Ho(M) = H,(X)



is always a split epimorphism. So we define the kernel Z[r]-modules
K. (f) = Ker(f.) = Hepa(f).
These kernel groups also satisfy a form of Poincaré duality
L MIn KT 2 K(f).

In addition, f is a homotopy equivalence, if and only if it induces an isomorphism
on w1 and K;(f) == 0 for all i > 0. It follows from Poincaré duality and the
universal coefficient theorem for cohomology, that f is a homotopy equivalence
if and only if f induces an isomerphism on 7; and K;(f) =0, 2i < n.

Let us assume, by induction, that
Ki(f) =min(f) =0, j<i

and we are in the Hurewitz dimension i, so that z € K;{f) = m;. 1(f) is repre-
sented by a map ¢ : S* — M together with a given null-homotopy f - ¢ =~ *.
Then clearly : :

o'vy = 8" f*(n)

is a trivial bundle. Since the tangent bundle of a sphere is stably trivial, we
conclude that for i < [n/2], ¢ may be chosen to be an embedding (Whitney)
with trivial normal bundle (stable range).

The normal map may therefore be modified as follows:

e Do surgery on M via the framed embedding ¢ to obtain a trace cobordism
(W;M,M").

e Extend the map f: M — X to a map
F:(W;M,M") = (X x I; X x {0},{1}),
using the null-homotopy f - ¢ ~ .
e Extend the normal map b: vy — 5 to a normal map
B:ivw o nx .
Thus we have a normal cobordism
(F\B): (W;M,M') - (X x I; X x {0},{1})
restricting to a new normal map
(Fo)y: M - X

such that z is killed iﬁ K;(f').

Iterating gives
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Proposition 1.36 A normal map (f,b) : M™ —» X is normally bordant to an
[n/2]-connected normal map.

As in the case of manifold surgery, when we do surgery on a class = € K;(f),
this class is killed. But a new dual class is introduced in dimension (n—i--1). So
long as i < [n/2], the new class is in dimension > [n/2] so we are ok. However,
we encounter problems in the middle dimension.

Example 1.37 Suppose m = 2k and we do surgery on a trivial $¥~1 x DF+1,
Then the result of surgery is the connected sum M 5% x S*, so that

Ki(f)=Ki(f)®ZOL

1.10 Probléms in the Middle Dimensions

Suppose M is an m-dimensional manifold with m = 2k. Let f:M— X bea
normal map, which we may assume is k-connected. It is no longer the case that
every class in Kx{(f) = mg+1(f) can be represented by an embedded sphere with
irivial normal bundle, so we cannot autcmatically do surgery to xill Kx(f). By
the Poincaré duality property of the kernels, K x(f) is the only non zero kernel
group, and so by a chain complex argument (together with possible stabilization
by trivial surgeries) we may assume Kx(f) is a free Z[r]-module. '
Then Poincaré duality gives a pairing

XKk (f) x Kp(f) = Zr].

This pairing will play a crucial role in the surgery obstructions. It may be
described geomtrically as follows. Recall the following thecrem of Haefliger [7]

Theorem 1.38 Regular homotopy classes of' immersions ¢ : S* — M?* are in
one-to-one correspondence, via the tangent map, with stable homotopy classes
of stable bundle monomorphisms Tgx — ¢* T

It follows that each element of K (f) can be represented by an immersion
together with a reference path to a fixed point po € M. T he immersions may
be chosen with trivial normal bundle, and this uniquely determines the regular
homotopy class. ;

Thus let S; and S be two such immersed k-spheres meeting transversely at
a finite set of points P. Using the reference paths, each intersection point p € p
determines a fundamental group element g, and an orientation €, = +1. We
may therefore define the above intersection form by the formula

(81, S2) = Spepgp € Zln).

Similarly we may count self-intersection points of an immersed sphere S1 inter-
secting transversally with itself. This is not quite well defined, since there is
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no natural order for the local intersections. However, if the order is exchanged
then €,9, becomes (—1)*¢,g,. Thus self-intersection defines a map

p: Ki(f) = Ziml/{r — (=1)*r}.

The triple (Ki(f), A, p) defines a Z[r]-valued quadratic form on the free
Z[r]-module Ki(f). It satisfies the properties [35]

- 1. Ais a bilinear map

A o R
T O
= = X =

IS

for k > 3, z € Ki(f) is represented by an embedding with trivial normal
bundle if and only if p(z) =0

=2

How does this relate to a normal map (f,b) : M — X? Suppose K,(f)
contains a hyperbolic plane, ie. a Z|r]-submodule

H =Z[r] & Z|r]

with generators {x,y} such that pu(z) = u(y) = 0 and A(z,y) = 1. Then we
may represent x and y geometrically as a pair of embedded k-spheres which
intersect transversely at a point. A neighbourhood of this pair looks like a
handle S* x S¥ — D¢ with boundary $?*~* in M. In particular, surgery on one
of them replaces the interior of the neighbourhood with a disk D?* and so kills
both z and y. '

Definition 1.39 The even dimensional surgery obstruction group Lok (Z[n]) is
the group of stable isomorphism classes of (—1)*-quadratic forms (L, \, i) on
free Z[r]-modules L, modulo hyperbolic forms.

The case m = 2k + 1 is rather more delicate, and will be not be dealt with
here. The reader is referred to [23]. For now we simply state that the central
result of surgery ' ‘

Theorem 1.40 (Wall) Let (f,b) : M™ — X be a normal map, with m > 5.
Then there is defined a surgery obstruction.o(f,b) € L,(Z[r]) such that (f,b)
is normally bordant to a homotopy equivalence if and only if o(f,b) =0

By definition, the L-groups are 4-periodic. In general the groups Ly, ([n]) are
difficult to calculate.

Example 1.41 Here are some L-groups.



Let R be the ring R with identity involution. Then

Z if k is even

La®)={§ itk is odd.

In fact, for k even, an element of Lok (R) is simply a symmetric form on a finite
dimensional vector space over R. The isomorphism Lok (R) & Z is the signature.

For the ring Z, we have +1 = --1 so from the definition Lg(Zs) = La(Z,). Clas-
sically, any quadratic form (L, \, u) over Zo admits a symlectic basis {z1, ..., Zam)
for L such that Y |
o 1 ifli—jl=m
Mai,z) = { 0 otherwise
Then the Arf invariant defines an isomorphism [3]
L2k(Z2) - ZZ (L? A7 /l') = C(L’ A,,U«)

where
oL, 1) = BTl + .
We bave

. Z if kis even
\ = o
Lop(Z) = A{ Zo if k is odd.

where the first isomorphism is signature/8 and the second is the Arf invariant.

There is a neat description of the L-groups as algebraic cobordism classes
of chain complexes of Z[r]-modules with a (quadratic) Poincaré duality seli-
isomorphism [24]. These should be thought of as the chain homotopy version
of quadratic forms. With this description, functors from manifolds and normal
maps to surgery obstructions become extremely natural, and the surgery exact
sequence takes on a particularly pleasant form.

In addition, this general categorical viewpoint allows us to consider cobor-
dism classes of more general Poincaré objects. For example, Poincaré sheaves. It
turns out that these cobordism groups recover the normal invariant set N(M),
and allow a local analysis of surgery obstructions [9]. This is important for
spaces with bad local topology such as exotic homology manifolds or stratified
spaces. The surgery obstruction becomes an assembly map.

1.11 Manifold Structure Set

We have considered the obstructions to improving a Poincaré complex to a
manifold. Let us now consider the problem of counting the number of distinct
manifolds within a given homotopy type. Essentially, we have proved

Theorem 1.42 Let M be a closed n-dimensional manifold. Then there is an
ezact sequence of pointed sets .

S(M) = N(M) 5 L(Z[x)).

where S(M) is the structure set of M, and 6 is the surgery obstruction map.
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Recall N(M) = [M,G/0] = T(M).

The structure set S(M) is the central object of interest, and essentially counts
the number of manifolds homotopy equivalent to M. Elements of S (M) consist
of homotopy equivalences f : N — M modulo the following relation. Two
elements (N, f), N'. f') are equivalent if there exist an h-cobordism (W;N,N’")
and an extension

(F; f.f'): (W;N,N') > X,

Recall 2 cobordism (W; N, N') is an h-cobordism if the inclusions
N W<+ N
are homotopy equiValeﬁées.

Remark In general, an h-cobordism is not a cylinder (which would give the
homotopy relation). There is a torsion obstruction in algebraic K-theory. It
is important - to allow the more general h-cobordism because we have only con-
structed homotopy equivalences rather than simple homotopy equivalences. For
simply connected spaces h-cobordisms are cylinders. More Jater.

Example 1.43 Consider the special case $™, m > 1. Then the smooth struc-
ture set S(S™) is a group. In fact, there is a one-to-one correspondence
S(M) = @™ (f: ™ = §™) s [£7,

where ©™ is the group diffeomorphism ciasses of m-dimensional homotopy
spheres. Addition is by connected sum. For example, @7 = Zg [13].

Example 1.44 There is also a topological version of the structure set consisting
of topological manifolds. In this case G/O must be replaced by G/TOP, but
otherwise the sequence has a similar form. In the special case S™ . m > 5 we
have STOP(S'") =1 by the high dimensional Poincaré conjecture .

Example 1.45 Every surface admits a unique smooth structure, and every
homotopy equivalence of surfaces is homotopic to a diffeomorphism. Hence the
structure set is trivial.

The surgery exact sequence actually extends to the left to give an exact sequence
c = [MXTO(MXI);G/O, /] % Loy (Z[r]) = S(M) — [M;G/O] — L, (Zx]).
Let us describe the maps:

An element 2 € S(M) represented by a homotopy equivalence f: N> M
determines a fibre homotopy equivalence v, ~ (f~Y)*vn and hence an element
int € [M;G/O] such that vp + ¢ = (f~1)*vy. )
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An element ¢ € [M;G/O)] classifies a bundle reduction 7 of the Spivak normal
fibration Jva : M — BG(k). Apply transversality to

S8R 5 T
to obtain a normal map (f, b) : N = M so that
8(t) = o(£,b) € Ln(Z[n]).

The group Ln11(Zlx]) acts on S(M) as follows. By the Wall Realization The-
orem [35] each element o € Ln41(Z[r]) may be realized as a rel 9 surgery
obstruction

o =0(g,¢)

where (g, ¢) is a normal bordism
(g,¢) s (W:No, 1) = M x (I; {0}.{1}) \

between homotopy equivalences fo : Ng —» M and f 1Ny > M. “The action is
then ‘ ‘ '

L1 (Zlx]) x S(M) = S(M); (a,(No, f1)) = (N1, f1).
Two elements (Ny, fo), (N1, f1) € S(M) have the same image in M G/O) if
and only if there exists x € Lp41(Z[r]) such that :

(N1, f1) = (No, fo) € S(M).

1.12 Simply Connected Spaces

Let M be a manifold of dimension n = 4k. Then the cup-product determines a
symmetric bilinear form

A H¥*(M;Q) x H*(M;Q) ; (z,y) = (z Uy, [M])

which by Poincaré duality is non-singular. Thus we may define the signature of
M
o(M) = signature(H**(M;Q), A).

This is a homotopy invariant and so may also be defined for 4k-dimensional
Poincaré complexes.

In particular, suppose X is a n = 4k-dimensional Poincaré complex, (p,n)
a normal invariant determining a normal map (f,b) : M — X for some M.
Suppose in addition X is simply connected so that

L4k(Z[7r]) = L4k(Z> =7

where the latter identification is signature/8. Then we may write the surgery
obstruction as

o(f,b) = (o(M) —o(X))/8 € Lax(Z) = Z.
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For a general 4k-dimensional manifold M we also have the Hirzebruch sig-
nature theorem [11]. Let 7 denote the tangent bundle of M and p,(M) =
Pu(Tar) € H** (M) the total Pontryagin class of M. Thus

P«(M) = Zizopi(M)

where . :
pi(M) € H¥(M). fori>0.

The L-genus of M is the rational cohomology class
L(M)'c H*(M;7)

with components Lqx(M) € H*(M;Q) given by certain rational polynomials
in the Pontryagin classes p;(M). For example

Ly = %ph ./:'2 = 415(7P2 - (p1)?).

The L-genus is determined by and determines the rational Pontryagin classes.
It arises naturally from the consideration of mulsiplicative rational invariants
on cobordism rings. It is a local invariant of M. For example, it contains the
signatures of submanifolds N** < M with trivial normal bundle.

In general, the rational Pontryagin classes are not homotopy invariants, be-
ing constructed from the characteristic classes of a bundle. (Although they ARE
topological invariants!). However, we can ask if certain linear combinations are
homotopy invariants.

Theorem 1.46 (Hirzebruch .Szgnature Theorem) Let M be a closed mamfold
of dimension n = 4k. Then

o(M) = (L(M),[M]) € Z.

So that (L(M), [M]) is in fact a homotopy invariant. It turns out that for sim-
ply connected manifolds, this is essentially the only homotopy invariant linear
combination of the rational Pontryagin classes. (For non-simply connected man-
ifolds, the higher signatures £, are appropriate, and then homotopy invariance
is equivalent to the Novikov conjecture.)

What about Poincaré complexes? Pontryagin classes are not defined for
spherical fibrations since rationally H*(BSG;Q) =0, * > 0.

Let X be a 4k-dimensional simply connected Poincaré complex with n a
bundle reduction of the Spivak normal fibration £x. As usual this defines a
normal map

(f,b): M > X

for some manifold M. Then (f,b) is normal bordant to a homotopy equivalence
f': M" — if and only if 6(M) = o(X) or equivalenty

o(X) = (L(-n), [X]o) € Lar(Z) = Z

32



Hence, X' is homotopy equivalent to a manifold, if and only if the Spivak nor-
mal fibration of X admits a bundle reduction compatible with the Hirzebruch
signature formula. We can regard the map 6 in the surgery exact sequence

S(X) = [X,G/0] 5 Ly (Z)

as measuring the deviation of the normal invariant from the Hirzebruch formula.
Further details on the Hirzebruch signature theorem and its generalization, the
Novikov conjecture, can be found in [6].

1.13 Some Applications

We shall allow topological manifolds in this section, in order to avoid the groups
m+«(G/0O). Thus we shall consider the topological surgery exact sequence

oo STOP (A1) 5 (M, G/TOP) - La(Zix])

of an n-dimensional, closed topological manifold.

In addition, if we work with simply connected manifolds, then every h-
cobordism is a cylinder. In this case we may write sTOP (M) as the set of equiv-
alence classes of homotopy equivalences f : N — M with (N, f1) ~~ (Mo, f2) iff
there exists a homeomorphism ¢ : Ny — Ny such that f; ~ fa - .

Fake Projective Spaces

We follow [35]. Suppose we are given a free action of S* on S§2"~!. Let
M?"~2 be the quotient manifold. Then there is a principal S* bundle

$1 5§21 5 M.

This is classified by a map f : M —» B(S') = CP>. By dimension we may
assume f : M — CP"'. Let f : §2»~1 — §2n~1 be the covering map with
fibre 1: ST — S (since it is a pullback).
Now ~ _
Hon_1(f) = mon-1(f) = mon - 1(f) = Hon-1(f),

and there is an exact sequence
0= Hapn_1(CP"™ ') = Hop_1(f) = Hzn-2(M) = Hap_»(CP™ 1) = Hopo(f) =0

Hence Ha,—1( f ) =0 and f is a degree one map, ie. a homotopy equivalence.
It follows from the homotopy properties of fibrations that f: M — CP" lis a
homotopy equivalence aswell.

Conversely a homotopy equivalence f : M — CP"~! determines a principal

S! bundle via the map
M — CP"! — CP™,

with total space $2"71,
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Lemma 1.47 There is a one-to-one correspondence between S(CP™~ 1Y and free
actions of S' on §?71.

To calculate S(CP™!) we first calculate the set [CP"~,G/TOP]. The
cofibration ‘

CP*~' — CP* — 5%
determines an exact sequence
12x(G/TOP) L5 [CP*, G/TOP] - [CP*1,G/TOP] - mo_1(G/TOP) = 0.

By naturality of the surgery obstruction, the composition

726(6/TOP) L3 [CP*, G/ TOP "% Low(z)

is just the surgery obstrucmon map 0(92’“) fitting into the topological surgery
exact sequence :

: . 2k
= S(5%%) = o (G, TOP) %) Lop(Z) -5 ...

But by the hlgher dimensional Pomcare comecturv S \SZk ) = 0, so that 9(52%)
is an isomorphism.

We conclude that (CP*) splits Lox(Z) = 704 (G/TOP) N [CP*, G/TOP].
In other words we have a split short exact sequence

0 — Ly (Z) - [CP*.G/TOP] — [CP*~1,G/TOP] — 0.
Thus we may inductively construct a one-to-one correspondence
[CP" !, G/Top] — Tp21 Lok (Z).

The map can be described geometrically as follows. An element in g € [CP**, G/Top]
determines a normal map

(f,b) : M - CP™!
. For each CP* ¢ CP"~!, make f transverse to CP* to obtain a normal map
(fr,bx) : N** — CP*

with surgery obstruction o(fx,bx) € Lax(Z). Then the above one-to-one corre-
spondence takes
g ZZ:%U(fkvbk)

Thus we have calculated the normal invariants of CP*~1. Return now to the
surgery exact sequence

0= Lon_1(Z) = S(CP™ 1) — [CP"},G/TOP} % Lyn_o(Z).
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According to our:description above, the map 8 is the projection
Tro1Law(Z) = Lon-2(2).

In conclusion
S(CP™Y) 2 522 Law(Z).

" Remark Let f : M — CP?~! be a homotopy equivalence. We now have a
simple way to determine if f is homotopic to a homeomorphism. Simply check
the surgery obstructions o(fx, bx) for each normal map (fx,bx) : My — CPF C
CP"—1. If they are all zero, then f is homtopic tc a homeomorphism! Thus:

homeomorphisms are detected by ‘local’ homotopy equivalences!
This is a special case of Sullivan’s characteristic variety theorem [32].
Exotic Spheres

Milnor’s construction in 1956 of exctic 7-spheres was one of the fitst steps
in the development of surgery theory Il7] Milnor showed that the smooth
structure set S(S7) is non-trivial.

Theorem 1.48 There ezists a 7-dimensional manifold 7 which is homeomor-
phic but not diffeomeorphic to- the standard smooth S”. :

Recall the isomorphism
Z.& L — m3(SO(4)) = ngy(BSO(4)),
taking a pair (h, j) € Z ® Z to the 4-plane bundle w = w(h, j) over §* with
xX@)=h+j, pilw)=2(h-j)c B\ =2

Let

(D*,8%) = (B(w), S{w)) — S*
be the (D*, §3)-bundle over 54 associated to w. Then by the Gysin sequence or
the Serre spectral sequence

7 ifi=0,7
ar oy ) coker(h+j:Z—Z) ifi=3
0 otherwise

Since S(w) is simply connected, choosing h + j = 1 we obtain a 7-dimensional
homotopy sphere S(w) which is the bondary of an 8-dimensional manifold man-
ifold E(w). In addition, if k € Z is odd, set

h=1+k)/2, and j=(1-k)/2.
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Thus for wy, = w(h, j) we have

X(we) =1, pi(we) = 2k.

Write
(W, k) = (E(wk), S(wk))-

Now, by the homology of I, there exists a Morse function f : £; — R with
only two critical points: a minimum and a maximum. The Morse low therefore
determines a diffeomorphism X —p{pt.}. It follows that T, is homeomorphic to
S7. (The smocth structure may not extend to a neighbourhood of the puncture
point.) ' ’ Lo

Consider the tangent bundle of W, classified by

TW, = Tgs Swy : Wi ~ RS BSO(S),

so that : .
p(Wi) = 2k € HY(W}) = Z.

Supbose now that there exists a diffeombrphism
| fiTe—= 87
and use f to build the smooth 8-dimensional manifovld
M =W, Uy D8

Then H*(M) = H*(Twy) = Hy(S*) = Z generated by the Thom class U,, €
HY(Tws). But :
(Us U Uy, [M]} = xX(Uui) =1 € Z,

so that the symmetric form
(HA(M),2) = (Z,1)
has signature o(M) = 1. But, by the Hirzebruch signature theorem
1=0{M)=(Ly(M),[M]) € Z
where Lo(M) = (Tp2(M) — p1(M)?)/45 ¢ H3(M) = Z. We conclude that
L
45

or k? = 1, (mod 7). Thus for k% # 1 (mod 7), £7 is a topological 7-sphere, with
a non-standard smooth structure.

(7p2(M) — 4k%) =1
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1.14 From Homotopy Equivalences to Diffeomorphisms.

Let N, M be n-dimensional manifolds. Suppose f : N —» M is a homotopy
equivalence. We seek methods to determine when f is homotopic to a dif-
feomorphism. A full acount of the obstructions encountered involves simple
homotopy, which we will deal with later. For now we will content ourselves with
an h-cobordism (W; N, N’) together with an extension of f to W

L F i (W;N,N') = M x (I;{0},{1})

such that f': N’ — M is a diffecomorphism. (There is then a single K-theoretic
obstruction to a homotopy.)
By definition of the structure set S(M), the above data exists if and only if

(h] = [1m] € S(M),

where 157 : M — M is the identity diffeomorphism.

Firstly, let us consider bundle data. If f is a diffeomorphism then, of course,
the normal bundles vp; and (f~!)*vy are isomorpbic. If f is merely a homotopy
equivalence, then we only have a fibre homotopy equivalence betwe=n the cor-
responding spherical fibrations, or equivalently a fibre homotopy trivialisation

t(f): J(vm — (f)*vn) >~ % M — BG.
Equivalently, there is defined a fibre homotopy equivalence of spherical fibrations
Ca: Jun = Juy

over the homotopy equivalence f. By the uniqueness of the Spivak normal
fibration : , _ '
T(a)s(pN) = prr € Ty (TV0)-

Both #(f) and a are uniquely determined determined by the homotopy equiva-
lence f and gives rise to a unique element, also written: ¢(f),

t(f): M - G/O
with image in BO given by the stable difference
vpm — (F7Y)*vn : M - BO.
This determines the map
t: S(M) — [M,G/O]; f = t(f),

in the surgery exact sequence.

Suppose now the classifying map t(g) : M — G/O is null homotopic, ie.
t(f) = 0 € [M,G/O}. This can be interpreted in the following way. There
exists an isomorphism of normal bundles over f '

C.VUN — Vpn
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such that Je~a: Juy — Jvyy, and so in addition

T(c)+(pn) = om € T i (Tng).

In other words, the homotopy equivalence f takes the normal invariant ( (v, pN)
to the normal mvariant (vpr, par). But there is one-to-one correspondence be-
tween normal invariants 7 (M) and bordism classes of normal maps N M). It
follows that

(fa C) = (11W7 IVM) € lv(M)

In summary:

Proposition 1.49 A homotopy equivalence f : N™ —» M™ determines a clas-
sifying map t(f) € [M,G/O]. The class t(f) = 0 if and only if there is an
extension of f to a normal bordism

((F5 £, 1), (Bse, 1uy)) : (WL N, M) — M x (I; {0}, {1}).

So, modulo the above obstuction, we haves sncceeded in constructing a normal
bordism from the homotopy equivalence to a diffeomorphism. The next step is
to try to do surgery rel 9 on the normal map (F.B) : (W;N, M) — M x T
construct a rel 0 homotopy equivalence

H:(W';N,M)— M x (I;{0},{1}).

Notice that (W'; N, M) is an h-cobordism and we are just a K-theory cbstruction
from a diffeomorphism g : N — M.

There is a relative version of surgery, where we do surgery away irom the
boundary, on the interior of the manifold. Thus the homotopy type of the
manifold is modified but the boundary stays unchanged. As in the case of
closed manifold, we have

Theorem 1.50 Let (M,0M) be an m-dimensional manifold, m > 6, with
boundary OM . Let ‘
(f,0) : (M,0M) — (X, 9X)

be a normal map, which is a homotopy equivalence on the boundary. Then there
is defined a rel & surgery obstruction

o(£,b) € L (Zlmy (X))

such that o(f,b) = 0 if and only if (f,b) is normal bordant, rel 8, to a homotopy
equivalence.

Refering back to the normal map (F, B) above, there is defined a surgery
obstruction
O(F, B) € Lm+1(Z[T(1 (M)])

such that o(F., B) is zero, if and only if we can replace (W;N, M) with an
h-cobordism (W'; N, M), ie. the sequence

Lns1(ZIm(M)]) —» S(M) — [M,G/O]
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is exact.
Summarising, we have a two stage process for determining if a homotopy
equivalence f : N — M is h-cobordant to a diffeomorphism

e Are the bundles vy, vy compatible with £, ie. is t(f) = 0 € [M,G/O]?

o If so, can we do el 9 surgery on the resulting normal bordism (F, B) :
(W;N,M) — M x (I;{0},{1}) to obtain an h-cobordism (W'; N, M)

The final step is to know when an h-cobordism is trivial.

1.15 The 7 — ™ Theorem

Suppose we have a normal map of pairs (f,b) : (M,N) — (X Y). Then we
can ask whether we can do surgery on (f,b) to replace it with a homotopy
equivalence of pairs. There are two po.>51ble interpretations for what ‘surgery’
should mean here:

o We assume that on the boundary fj : N — Y is already a homotopy
equivalence. In which case we need only do surgery on the interior of
M away from the boundary N. The setup is close to surgery on closed
manifolds, except that we carry a boundary around with us, but it is
unchanged by the operation. It turns out that there is a rel 0 surgery
obstruction '

, o(f,b) € Ln(Z[m(X)])
such that o(f,b) = 0 if and only if we may surgery rel & \,,b) to a
homotopy equwalence of pairs.-

o Alternatively we make no assumption about f| N - Y, and we try to do
surgery on both M and N simultaneously to get a homotopy equivalence
of pairs.

The latter is more complicated and involves embedding disks (D™, S™™ 1) C

(M, N) and defining a surgery operation on such framed embeddings. In addi-
tion, the surgery obstructions take values in a relative L-group

O'(f, b) € Ln(ﬂ'l (X)"ﬂ'l (Y))

which is complicated to define {35].

Nevertheless, the notation at least suggests that if m1(Y) 2 m1(X) then the
relative L-group should be zero and so we should be able to do surgeries on
(f,b) to get a homotopy equivalence of pairs. This is the content of Wall’s m — 7
theorem [35].

Theorem 1.51 (Wall) Let (X,Y) be a Poincaré pair of dimension m > 6.
Suppose the inclusion Y C X gives an isomorphism of fundamental groups
m(Y) 2 m1(X). Then given any normal map of pairs

(f.b): (M,N) = (X,Y)

we can. perform surgery to make (f,b) a homotopy equivalence of pairs.

39



For an m-dimensional manifold pair (M, N) with N = OM, we perform
surgery as follows. Consider an n-embedding

e: (D", 8" 1) - (M, N)

with framing . o
&: (D" x DM ST x D™ — (M, N).

Then the result of surgery on the framed n-embedding é is the mamfoid with
boundary (M’, N') given by

(l(M\&(D™ x D™=™)) cl(N\é(S"“ x D’"‘")) U (D" x §m-1y).

In particular, M’ is the result of surgery on & restricted to S*! x D™ ™.

We will sketch a proof of the @ — 7 theorem in the even dimensional case
m =2k, k :

Asin the case of surgery on closed manlfolds we may 2ssime we have already
dore surgery so that

e The map f: M — X is k-connected, and the map f: N — Y is (k —1)-
connected. : c

& Since k£ > 3, the fundamental groups are isomorphic:
m=m(M)=m(N)=m(X)=m(Y).
e K (f) is the only non-trivial kernel. It is a finitely generated, free Z[x]-
module with basis {e;}

Again, since the fundamental groups are isomorphic, the Hurewicz imap deter-
mines isomorphisms ;

Ter1(f) 2 o1 (F) & Her () = Ki(f).
Each element e; € K (f) is therefore represented by a map
gi : (D*, 8%y - (M, N)

together with a pairwise null homotopy of f-g; in (X,Y). Since 2k = m we
have

e The maps {e;} may be chosen to be mutually transverse immersions.
e The normal bundles of fhese immersions are framed.
So we have framed immersions
Gi : (D* x D¥ 81 x D*) — (M, N).

We now show that these immersions are in fact regularly homotopic to disjoint
embeddings. The result will then follow by doing surgery on each g; to kill the
generator e; € K(f).
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It is sufficient to prove that the core embeddings
gi : (DF,8F°1) » (M, N)

are regular homotopic to disjoint embeddings. We employ the Whitney trick.
Since the {g;} are mutually transverse, they intersect in a finite collection of
points P in the interior of M. Suppose the disks Df, D% have an intersection
point p € D¥ N D% C int(M). Choose arcs ay, ag in DY, D, respectively, from
p to N. Since (M) = m(N) we can find a regular 2-simplex D? in M with
sides a3, a3, and @ C N. As in the proof of the Whitney trick, slide the disk
D¥ across D? to remove the intersection point p.
Now do surgery on the disjoint embeddings to kill Ki(f).

1.16 Application: Browder’s Embedding Theorem

We have shown how surgery theory can be used to determine when a Peincaré
space is homotopy equivalent to a manifold. Here we use surgery theory to detect
when a ‘Poincaré embedding’ is homotopy equivalent to a manifoid embedding.
This extends the surgery classification of manifolds to submanrifolds.

To some extent, this material is more of historical interest than practical
use. It was once hoped that one could analyse Poincaré embeddings using the
methods of homotopy theory. Then this could be used to study submanifolds.
It turns out that the homotopy theory of Poincaré embeddings is extremely
complicated. There are cohomological obstructions of all orders to the existence
of Poincaré embeddings. In fact, it is a difficuit problem in unstable homotopy
theory. Although the existence of Poincaré embeddings follows from previous
results concerning surgery on Poincaré spaces (eg. Hausmann and Vogel), they
either employ manifold techniques (and therefore undermine the original reason
for study) or are sufficiently abstruse to defy practical application. Nevertheless,
the Browder embedding theorem which follows was one of the first applications
of surgery, and nicely illustrates its use.

We arrived at the definition of a Poincaré space by extracting all of the
homotopy properties of manifolds, such as Poincaré duality and normal data.
The same principle is used in defining a Poincaré embedding. There are several
possible definitions. We follow Levitt, as described in Wall [35].

Definition 1.52 Let M™, V™%9 be Poincaré spaces. An embedding of M in
V' consists of the following data:

o A (q — 1)-spherical fibration £ over M with projection p: E — M.
e A Poinaré pair (C,E).

o A homotopy equivalence h : C U M(p) —» V, where M(p) is the mappmg
cylinder of p and CNM(p) = E. /
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Write i : M — V for the restriction of h to M. Of course, 7 is in general not
an embedding.

It follows from the uniqueness of the Spivak normal fibration that there is a
stable equivalence of spherical fibrations

Juy =" Jvy G €.
If £ admits a bundle reduction 7 then we may form the bundle
| vy @ 1.
We say that 7 is compatible if there is a bundle isomorphism
vy =1vy ©1.

It is easily seen that every smoothly embedded submanifold N C M deter-
mines a Poincaré embedding. We take ¢ == Jv where v is the normal bundle of
N in M. Browder’s embedding theorem states that for codimension > 3, the
converse is also true:

Theorem 1.53 Let V™t M™ bpe closed manifolds withm +q > 5 and ¢ > 3.
Let (§,(C,E),h) be a Poincaré embedding of M in V. Suppose & admits a
compatible bundle reduction . Then there is an embedding j : M — V inducing
the given Poincaré embedding up to homotopy.

Proof Identify £ with 7 and consider the map

ALV - CUM(p).

Making h~! transverse to M C M(p) we obtain a map f : M’ — M covered
by a bundle map ¢ : & — &, where £ is the normal bundle of the embedding
i’ : M" — V. Since 7 is compatible, we have

b=C@1:VM/=§/€Bi/*VV-—){@i*uvZVM,

so that f is covered by a normal map b : vy — v It follows that (f,b) is
trivial in N(M), ie. is normal bordant to the identity map 15 : M — M

(F5 fy1a) s (L M/, M) — M.

Let A be the total space of the bundle F*¢ with zero section L. Then the
restriction of A to M’ is a tubular neighbourhood E(¢’) of M’ in V. Form the
manifold W by gluing V x I to A via E(¢'):

W= (V X I) Ug(e) A.
Write A’ = ANV x {1}. We build a normal map of quadruples

(W3 Vx{0}UM (p), V x {1}~ A'US(F*€), E) = ((CUM (p))Up-2 (V xI), VUM (p), C, E)
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The map is a homotopy equivalence on V' x {0}UM (p). In addition, since g > 3,
71(C) = 71(V) so that, by the m — 7 theorem, we may surger the normal map
to a homotopy equivalence of quadruples. Then the resulting cobordism W’
is homotopy equivalent to V x I, and so is an h-cobordism. Assuming the K-
theory obstructions are zero (which we can achieve by requiring A to be a simple
homotopy equivalence), we obtain a cylinder and hence the required manifold
embedding.

2 Algebraic K-Theory and Manifolds

Algebraic K-theory arises naturally in many areas of mathematics from the
geometry of varieties to number theory. We shall study its applications to
the classification of manifolds. These include Wall’s finiteness obstruction, the
Siebenmann End Theorem and the s-cobordism theorem. The first two are
concerned with finiteness. Wall’s finiteness obstruction detects whether a given
space is homotopy equivalent to a finite CW-complex, while the Siebenmann
End Theorem detects when an open manifold admits a boundary. In the former,
the input is a finitely dominated space, ie. a homotopy direct summand of a
finite CW-complex. In the latter, an open manifold with tame end. The s-
cobordism theorem detects when a cobordism. with the homotopy type of 2
cylinder is in fact diffeomorphic to a cylinder. The applications of these results,
and algebraic K-theory itself, are pervasive in the study of manifolds.

More recent work on stratified manifolds (cf. Weinberger [37]), extending
the classical manifold theory, depends essentially on developing local versions
of algebraic K-theory via sheaf theoretic constructions. Again, the classification
of stratified manifolds depends essentially on algebraic K-theory. Furthermore,
there are intaresting differences between the properties of PL (or smooth) strat-
ified manifolds and weaker topological versions, due to the existence or not of
regular neighbourhoods. A regular neighbourhood acts as a kind of barrier to K-
theory, limiting its influence to within each stratum. In the topological setting,
where regular neighbourhoods may not exist, K-theory can leak to neighbouring
strata, leading to more subtle behaviour.

We begin with an introduction to projective modules and the definition of
the K-groups. The reader is referred to Rosenberg [25], Silvester [28] and Milnor
[19] for further details.

2.1 Projective Modules

Let R be a ring with unit 1 € R. Typical examples for us will be Z, Q, group
rings Z[n] of fundamental groups 7, and matrix rings.

Let M be a left R-module. (In these notes we shall simply say R-module
to denote a left R-module.) Thus M is an abelian group with operation + and
there is a left action '

Rx M — M; (r,m) — rm,
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such that for all r,s € R, m,ne M
L. r(m+n)=rm+rn,
2. (r+s)ym=rm+sm,
3. (rs)m = r(sm),
4. Im=m..

A map of R-modules f : M -+ N is a homomorphism if for all + € R,
m,n & M

L. f(m+n) = f(m) + f(n),
2. f(rm) =rf(m}.

Definition 2.1 The R-module M is finitely generated if there exists a finite
collection {my,...,mg} € M such that every m € M can be written m = Lr,m;
for some r; € R.

Example 2.2

1. If R is a field, then a finitely generated R-module is a finite dimensionai
vector space over R. '

2. Let X be a CW-complex, m = 71(X) the fundamental group of X and
X the universal cover of X. Then the céllular chain complex C/(X) is a
chain complex of Z[r]-modules. If X is a finite CW-complex the C(X) is
finitely generated as a Z[r]-module.

3. Let E — X be a vector bundle. Then the space of continuous sectioné
I'(E) is a C(X)-bundle, where C(X) is the ring of continuous functions
on X {not the cellular chain complex).

Definition 2.3 An R-module M is said to be free if there is a collection {mg}
of elements of M such that each element m € M has a unique ezpression as a
finite sum

m= Xrome, %o € R.

The collection {mq} is called a basis for M.

Clearly, M is free if and only if M = &, R4, where R, is an isomorphic copy
of R.

Warning Cardinality of basis is not necessarily an invariant of M. We say
M satisfies the Invariant Basis Property (IBP) if n # m = R™ 2% R™. For
example, any commutative ring or group ring satisfies the IBP. But, in general,
for a field F', the endomorphism ring Endp(F ) does not satisfy the IBP.
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Example 2.4

1. Every finite n-dimensional vector space V admits a basis {v1,...tn}.

2. The complex C(X) is a chain complex of free Zm-modules. If X is a finite
CW-complex, each C(X)x has a finite basis, obtained by chocsing a lift
é; C X of each k-cell e; C X. '

[

For a vector bundle E — X and space of functions C(X), the set of
continuous sections I'(E) is a free C(X)-module < E is a trivial vector
bundle.

Lemma 2.5 Lei F be a free R-module, f : M — N an epimorphism and
g: F — N a homomorphism. There ezists a homomorphism h : F-—» M such
that f -h=g. :

Proof For each basis element o of ' choose h(2,) = m,., where f(mq) =
a(zq), using the fact that f is onto. Since F is free, we may define a hememor-
phism

h:F > M:x==%Tr,To > LraMa, Ta€ R.

Then h is well defined, but not necessarily unique. In fact, any two such maps
hi, hy differ by a map into ker(f).

This lifting property is abstracted in the following definition.
Definition 2.6 An R-module P is said to be arojective if for any epimorphism
f M — N and morphism g : P — N there ezists a morphism h : P — M such
that f-h =g.

Clearly, every free module is projective, but the converse is not true.
Lemma 2.7 The following are equivalent for an R-module P

1. P 1is projective.

2. Every epimorphism f : M — P splits, ie. there is a morphism g: P — M
such that f-g=1p.

3. There exists an R-module Q such that P & Q is free.
Proof
1 = 2 Immediate.

2 => 3 Let {zq} be a generating set for P and F a free R-module with basis {ya?}
(same cardinality). Then there is an epimorphism

7 F = P;Yrqya = Lrata, Ta € R.
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Let Q == ker() with inclusion j : Q — F. By (2) m splits via a morphism
1: P — F. Define a morphism

w:P®Q— F‘; (z,y) = i(z) + j(y).
Then w is easily seen to be an isomorphism.

3 =1 Consider the natural splitting
PHPeglPp

Let f : M — N be an epimorphism and g: P — N. To show that P is
projective we must construct a morphism b : P — M such that f-h=g.
Instead, consider the map

PR3 PAN.

Since P@Q is free, there exists a lift R’ of g-ary across f, so that f-h' = g-m;.
Setting h = h’ - iy gives the required morphism.

Remark 1M is finitely generated and projective Hf there exists a Q) such that
FPeQx=R"

2.2 The Grothendieck group Ky(R)

Let R be a ring and let Proj R denote the set of isomorphism classes of finitely
generated projective R-modules. (Since finitely generated, projective R-modules
are direct summands of R, Proj R is a set.) Then we have the direct sum map

' Proj R x Proj R — Proj R; (M, N) > M & f,

so that Proj R is an abelian semigroup (& is associative and commutative) with
identity the zero R-module.
In general Proj R is not a group, and neither does it satisfy the cancellation

property.

Lemma 2.8 Let S be an abelian semigroup. Then there exists an abelian group
G and a semigroup map ¢ : S — G such that for any abelian group H and
semigroup map x : S — H there ezists a unigue homomorphism of groups
0:G — H such that 6 - ¢ = .

In other words, if F : abelian groups = abelian semigroups is the forgetful
functor then

Homab_ (S,FH) = Homab_grp(G, H),

semigrp*

so that the functor S = G is a left adjoint to the forgetful functor F. It is easily
seen that any such G and ¢ are unique up to isomorphism.
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The proof of the lemma follows.

Proof We give two alternative constructions of G. Firstly, let F be the free
abelian group on elements of S. For s € S write (s) for the corresponding
generator of F. Let R be the subgroup of F generated by the expressions

(1) + (s2) — (81 + 82)

so that the first two operands are in F’ and the last in S. Let G be the abelian
group G = F/R and ¢ the map

$:5—G;sw(s)+ReF/R

taking s € S to the coset (s) + R € F/R. Then

6(s1+52) = (51 + s2)+R = ({s1)+(s2))+ R = ((s1)+R)+({52)+R) = 9(s1)+¢(s2)-

Write [s] = (s) + R € F/R. By collecting terms we see that every element of G
can be written in the form [s;] — [s2] for some 51,82 € S. ‘

For a semigroup map x : S — H into an abelian greup H, define a group
homemorphism 8 : G — H such that 6 - ¢ = x, by

0:G— H; [s1] - [s2] = x(s1) = x(52)-

In the second approach we define G to be the set of equivalence pairs (z,y)
of elements z,y € S, subject to the relation (z,y) ~ (u, v) iff there exists t € S
with ’ '

é
| . cHvt=uty+t.
If |, y] denotes the equivalence class of (z,y) then define |
(e 0] + ') = o+ 2y +y/)
Then G is a group:
e + is abelian and associative
e for any 2,y € S, [z,2] = [y,y] in G. Thi_s is the zero element in G. .
o -pryl=[vx]

ﬂDeﬁne
$:8 =Gz [+,

so that [z, y] = ¢(z) — ¢(y) and the image of ¢ generates G.
Exercise Verify that these two constructions give the universal group as re-

quired and find a natural isomorphism between them. In either case, we call
the resulting group G the Grothendieck group of S.
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Definition 2.9 For a ring R define the abelian group Ko(R) to be the Grothendieck
group of the abelian semz’group Proj R.

Thus, according to the ﬁrst construction, every element of Ko(R) can be
written as a difference [P] — [Q] where P and Q are finitely generated projective
R-modules. (Exercise: Show that every element can in fact be written as a
difference [P] — [R"].)

Example 2.10 Let F be a field so that a finitely generated projective F-module
is simply a finite dimensional vector space over F. Define

d: Ko(F) > Z; [P]-[Q] — dim P — dim Q.
Then d is Well-deﬁhed since aimension is additive:
dim (P ¢ Q) = dim P + dim Q.

Define ' '
oo Z—)Ko( ); n= [F7]
where for n < 0 we write {F™] = —[F~™"]. Then

1. d-n(n) =d([{]) =n

2. - d([P] - [Q]) = n(dim P — dim Q) = [Fdim P-dim ]
But assuming dim P > dim Q we have

50 that ” . .
[pdimP-dme) _ (p) _ q)

Hence we have
Lemma 2.11 For a field F, dimension defines an isomorphism
d: Ko(F)— Z.

More generally, the dimension of a finitely generated projective R-module
should take values in Ko(R).

It is important to restrict ourselves to finitely generated projective R-modules.
Suppose in the construction of Ko(R) we allow countably generated projective
R-modules. For such a module P, the countable sum

PoPOPSG---
is also countably generated, projective. Thus
Pp(PeP®--)2PoPopPa---

so that
[Pl=P®P&--|-[PeP®--]=0

Hence the associated Grothendieck group would be trivial since every element
is a difference of terms [P].
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. Exercise 2.12. R-modules P, Q) are said to be stably 1somorphlc if for some

integer n we have

Show that if P and Q are ﬁmtely generated, proje(tlve then
[P] = [Q] € Ko(R) ¢ P and Q are stably isororphic. -

Show that finitely generated, projective Z-modules are stably isomorphic if and
only if they are isomorphic. (Use the structure theorem for finitely generated
abelian groups.) Conclude that

Ko(Z)>1Z

by rank.

2.3 K, from Idempotents

Projective modules may also be described in terms of idempotent matrices and
this gives a useful alternative description of Ko(R). '

Suppose P is a finitely generated, projective module, and P @ Q = R".
Consider the projection map :

p:R* & P R

Then clearly p? = p. Since R™ has a canonical basis. we may represent the map
p by an n x n matrix also written p. (The matrix g acts on the right of R"™ since
R™ is a left R-module.) Thus p is an idempotent. matrix, p? = p. We see then
that each finitely generated, projective R-module P gives rise to an idempotent
matrix p. Of course, there are many different splittings P & ) = R", so that p
is not uniquely defined.

On the other hand, if p is an idempotent n x n matrix then Rp (the image of
p in R") is a finitely generated, projective R-module. In fact, it is easily shown
that

Rp® R(1 —p) &= R™.

However, different idempotent matrices can give rise to isomorphic projective
modules. The exact relationship is given by the following lemma.

Lemma 2.13 Let p and q be idempotent matrices of size n-x n and m x m
respectively. Then p and q determine isomorphic projective modules if and only
if there ezist conjugate N x N matrices

p 0 ‘ 0
(OON—n> and(o ON m.).

Proof Set N = m+mn. First we show p and ¢ determine isomorphic modules.
Clearly
: M, ~ ‘DN p O
R'p=R ( 0 0, )
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SO We Iay assume n = m, and p, ¢ are conjugate, ie. upu~! = g for some
u € GL(n, R). But then

Rq = Rupu™! = Rpu~' = Rp.
Next, suppose o : R"p — R™gq is an isomorphism. Define maps a and b by

a:R* % RS R™p— R™

and .
b:R™ % R™q % R"p < R™.
Then
ab=p, ba=q, a=pa=aq, b=qb=Dhp.
Thus )
[ 1-p a ‘) {10 )
k b L J - ( 0 1 y
so that \ .
1 - P a \ - T
( b .l _ q '/ (=l JL(J\I il)
Furthermore

(5 ) (5 )

We shall use the following notation

¢ M(n,R) = n x n matrices over R

’ : \
M(n,R) =< M(n+1,R); aw» ( 8 8

e GL(n,R) = invertible n x n matrices over R
a 0
oGL(n,R)L%GL(n+1,R);aF—>(O 1).

* M(R)=U,M(n,R), GL(R) =, GL(n,R)
o Idem(R) = idempotents in M(R)

¢ Idem(R)gr(r) = orbit set under conjugation action of GL(R)

50



The operation -

Idem(R) x Idem(R) — Idem(R): (p, q) ~> ( p 2 )

passes to the orbit set Idem(R)gr(g). Then Idem(R)gr) is an abelian serni-
group. We have shown

Theorem 2.14 The map
Proj R — ldem(R)¢r(r); P+ [pl,
1s an isomorphism of abelian seriigroups.

Hence Ko (R) is the Grothendieck group of Idemy(R) ¢ (z). Using this description
we may obtain ‘Morita equivalence’ for Ky.

Theorem 2.15 There:is a natural isomorphism
Ko(R) = Ko(Ma(R)).

Proof .
Idem(M,(R)) = Idem(R), GL(M,(R)) = GL(R).

2.4 Change of Rings

Let f : R — S be a unital homorsorphism of rings. Given 2 (left) R-module M,
we may define a (left) S-module S ®; M where R acts on the right of S via f,
ie.

Sx R—S;(s,r)=sf(r).

Note that S ®s R = S. Also, if P is a finitely generated, projective R-module
then P & Q = R™ for some @, so that

(S®fP)€B(S®fQ)”=‘S®f(p@Q)g S&; R = 8",

In other words, S®; P is a finitely generated, projective S-module. Thus there
is defined a homomorphism

Ko(f) : Ko(R) — Ko(S); [P] = [S®f P,
and K, becomes a covariant functor from rings to abelian groups.
Example 2.16

1. For R a ring, let R[z] be the ring of polynomials in the indeterminate .
Then f : R — Rlz]; r = r and g : R[z] = R; p— p(0) satisfy g- f = 1g.
Hence

Ko(R[z]) = Ko(R) @ kerKo(g).



2. For R aring, 7 a multiplicative group, we write R[n] for the group ring of
finite formal sums ¥;7;g;, where r; € R, g; € 7. Then f: R — R[n]; r—
r-1and g: R[r] = R; Xr;g; — Zr; satisfy g- f = 1z. Hence

Ko(R[]) = Ko(R) & kerKo(g)-

3. For a ring R with unit 1,let ¢ : Z = R; 1~ 1. Thus there is defined a
map
te = Ko(t) : Z = Ko(Z) — Ko(R).

Definition 2.17 Thg re_zduced Ky-group of'the ring R is defined by
Ko(R) = Ko(R)/1.(Z).
Example 2.18
1. For F a field, Ko(F) = 0.
2. Ko(Z) = 0.

In the case f: R — S is surjective there is an alternative description of the
map fy : Ko(R) — Ky(S). Let J <R be the kernel of f, so that J is a two-sided
ideal of R.

Suppose P is a finitely generated, projective R-module. Then

JP = {_E‘T‘i.’l)i |ri€ J,x; € P}
is a submodule of P. Thus the quotient P/JP is an R-module. Define
S x P/PJ — P/PJ; (s,[z]) -+ [rz]

where f(r) = s. This is easily seen to be well-defined and makes P/PJ into
an S-module, which we write P. Since the map is bilinear over R, there is an
induced map

S®;P—P;s®@p—7p, f(r)=s.

This map is an isomorphism with inverse p —» 1 ® p.
For rings S, T the cartesian product R = S x T is the ring obtained from
componentwise addition and multiplication.

Exercise 2.19 Show that

(Hint: In general, there is no splitting map i : S — S x T. However, show that
such a splitting map does exist on the level of Kj.)

The group of units R* of a ring R is given by

R* ={r e R|rs=sr =1, for some s € R}.

52



Proposition 2.20 (Nakayama’s Lemma) Let R be a ring and J < R a two-
sided ideal such that 1+ J C R*. If M is a non-trivial, finitely generated
R-module, then JM # M. :

Proof Letz,...,z, be asetof generators of M with &, € Rz1+---+Rxyp—1.
If JM = M then z, € JM so that

Tn = J1241 + -+ JuZn

and so ,
(1 —Jn)xn (S R.’El 4. er:n_l.

Butl—-j,eRsox, € Rey+-- -+ Ra:}t_.l, a contradiction.

Corollary 2.21 With J as above, if N is a submodule of M with N+.JM = M,
then N = M.

Proof If N+ JM = M then J(M/N)= M/N and so M/N = 0.

Theorem 2.22 Let f : R —'§ be a surjective ring homomorpkism with 1 +
kerf ¢ R*. Then f.: Ko(R) — Ko{S) is injective.

Proof Let J = kerf. Suppose P, Q are finitely generated, projective R-
uodules such that P = P/JP and Q =: Q/JQ are isomorphic as S-modules. Let
6 : P — Q be such an isomorphism. Then 6 is also an R-module isomorphism.
Since P is projective, there exists a map 8 : P — Q over the 1somorphism 6.
We show that #’ is also an isomorphisin. We have ‘

Q = 0'P + ker(ng) = 6'P + JQ,

where 7o : Q — @ is the natural map. Hence, by the corollary to Nakayama’s
lemma, Q = ¢’ P, and @’ is onto.
Since Q is projective, there exists a splitting map ¢ : @ — P such that
¢’ -i=1p. Hence
P =~ iQ @ kerd'.

But kerf’ C ker(mg - 8') = ker( - 7p) = ker(wp) = JP. Hence again, by the
corollary to Nakayama’s lemma, P = iQ and so kerf’ = 0.
We have shiown that ' : P — @ is an isomorphism. Suppose then [P]-[Q] &
kerf. so that [P] — [Q] =0 € K¢(S), ie. P, @ are stably isomorphic over S
PesSm>Qaes

for some m,n € Z. Then

PoRm=Qa R
From the previous argument P & R™ 2 Q & R™ and [P] = [Q] € Ko(R). Thus
f« 1 Ko(R) — Ko(S) is injective, as required.



Definition 2.23 A ring R is said to be local if the non-units of R form a two-
sided ideal of R, ie. R — R* < R. ~

In fact, it is sufficient for R — R* to be an additive group.
Example 2.24 |
1. Z/p™, for p prime
2. k{[z]], the ring of formal power series over a field k
3. Zp) = {¢1b%# 0,p fb}, the ring Z localised at the prime p
For a local ring R, set J = R -- R*, the ideal of non-units.
Lemma 2.25 The ideal J is the unique mozimal ideal in R and 1+ J C RX.

Proof  Clearly J is maximal. For if J C I C R ihen there exists z € f such
that z ¢ J. Thus z is a unit, and hence I == R. Also J is unique, for if 7 is
maximal and there exists z € I\J, then [ = R so that we moay assume [ . J
and hence I = J. Lastly, if | + = ¢ R*forz < Jj,then 1+z ¢ Jandsole J,
a contradiction. '

Lemma 2.26 If R is local then Ko(R) = Z generated by [R].

Proof Since J is maximal, R/Jisa skew field so Ky(R/J)=7Z. But 14+ J C
R* so the natural map Ko(R) — Ko(R/J) is injective. This map takes |R! to
[R/J] # 0. Hence Ko(R) = Z.

Exercise 2.27 Show that Kq(Z/m) 2 Z", where n is the number of distinct
primes dividing m.

For a local ring R, we may regard the isomorphism Ky(R) 2 Z as a rank
function on finitely generated, projective R-modules. In particular, it shows
that finitely generated, projective R-modules are stably free, ie. P @ R™ = RN
for some n, N € Z. Iu this case, we say rank P = N — n.

The following stronger result is true.

Theorem 2.28 Let R be a local ring. Then finitely generated, projective R-
modules are free.

Proof Let R be a local ring with J = R — R*, the unique maximal ideal.
Suppose P is a finitely generated, projective R-module with P BQ=R" Set
R =R/J, a skew field, and P = P/JP,Q=Q/JQ so that P& Q =~ R".
Since R is a field, we may choose a basis Z1, . .., &, of R" such that T1y..., Tk
is a basis for P and Tky1,...,Zp s a basis for Q. Choose elements T1,...,Tk
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in P and zx41,...,Z, in Q lifting the Z;. We claim that z1,..., T is a basis
for R™, from which the result will follow.

Suppose then z; = (@i,...,ain) € R". We must show that the matrix
A = (ai;) has a two-sided inverse. Since Z1, ..., Zn is a basis for Rr, A = (ai;)
has an inverse B so that BA = I, ie. BA = I modJ. Consider the (1,1)
entry in BA. It is congruent to 1 mod J and hence is invertible. Thus by
elementary row operations we may introduce zeros below this entry. Similarly
for the (2,2) entry. Continuing in this way, there is an invertible matrix C such
that CBA is diagonal with entries congruent to 1 mod J, and hence is invertible.
In particular, A admits a left inverse. Similarly, A admits a right inverse, and
these two inverses are necessarily equal.

We conclude from the theorem that for local rings R, there is a rank function
rank :'Proj R — Z; P + rank P,

where rank R* = n. -

How can one construct a rank function in more general circumstances? Sup-
pose R is a ring and we are given a ring homomorphism f : R — S, where Sis
a ring such that Ko(S) = Z generated by [S], eg. a local ring.

Consider the composition

Z5R>S8
inducing - o
Ko(Z) 2 7.5 Ko(R) I Ko(S) 2 Z.
Then f, - t« = 1z. Thus V
Ko(R) = imaget, @ kerf,,

or equivalently }
Ko(R) 2 Z & Ko(R).

We may think of f. : Ko(R) — Z as defining a rank functicn (the rank at f) of
finitely generated, projective R-modules. Of course, this function depends on
the choice of f and S. Similarly, the splitting of Ko(R) is not canonical.

" Example 2.29 Let P<R be a prime ideal, so that R/P is an integral domain.
If F is the field of fractions of R/P then we have a natural map w : R — F and
we obtain w, : Ko(R) — Ko(F) & Z. For M a finitely generated, projective
R-module, define

rank p(M) = w,([M]) = dim (F ®,, M).
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2.5 Topological K-theory

All topological spaces are assumed to be Hausdorff and compact, unless other-
wise specified.

For a topological space X let C(X) denote the ring of continuous functions
from X into either R or C, with pointwise addition and multiplication.

Recall a (locally trivial) n-dimensional vector bundle (over R or C) consists
of a map p: F — X with structure

1. For all z € X, p~!(z) is an n-dimensional vector space.

2. There are structure maps
+:ExXp, E5E, x:RxE-E
restricting on each fibre to the given vector space structure.

3. For each z € X there is an open neighbourhood U > z and a fibrewise
linear isomorphism p~}(U) — U x R™ over U.

All the standard vector space cperations can be performed fibrewise and
extended to vector bundles. :

Let Vect(X) be the set of ismmorphism classes of finite dimensional vector
bundles on X. Then Vect(X) is a commutative ring with addition Whitney sum

Vect(X) x Vect(X) — Vect(X); (Ey, Ez) — E; & Es.

If p: E — X is a vector bundle, we write I'(E) for the set of continuous sections
of B : .
I'NE)y={s: X > FE|p-s=1x}.

Then I'(E) is a C(X)-module in the obvious way. The following theorem is due
to Swan [33].
Theorem 2.30 The functor I' induces a map
I': Vect{( X) — ProjC(X).
The map is an isomorphism of semigroups.

Proof Let p: E —» X be a vector bundle. First we must show that I'(E) is
finitely generated and projective over C(X). Choose a finite open cover {U;}
of X such that E\y, 2 U; x R*. The canonical sections of U; x R™ determine
sections {e},...,e%} of Ejy,. Let {)\;} be a partition of unity subordinate to
{U:}.

Suppose v € ['(E). Then v; := vy, = Tjakel, for some o} €R. So

V= 21’)\1"0«" = Ez)\,(E]a;e;) = Eijaé(Aie;).

Thus {);e%} generates I'(E) as a C(X)-module, ie. I'(E) is finitely generated.



To show that I'(E) is projective, choose generators si, ..., s, of I'(E). This
determines an epimorphic bundle map

¢: X xRF o E; (z;01,...,0%) — Duisi(x).
Then we have a short ekact sequence _
0= E 5 X xR E 0.

Choose the standard metric for X x R* and any metric for E (using partitions
of unity). Let ¢* be the adjoint of ¢ so that

lpv,w) = {v,¢"w) forallve X X Rk,w e E.
Then ¢* is injective and ¢* : E — Elso
E®E*~ X xR*
and _ o o v
[(E)®T(EY) = I(X x R*) = C(X)k.
Suppose now P is a finitely generated, projective R-module and
PpQC(X)"=T{X xR").
Consider then -
E = {(z,v) € X x R¥ v = f(z) for some f € P}.

Lei p: E — X be the projection onto X. Then E clearly satisfies the first twc
vector bundle properties. It remains to show E is locally trivial.

Let z € X and choose €,...,e" € P such that {e!(z),...,e"(z)} is a basis
for E, = p~!(z). Since linear independence is an open condition, there exists an
open neighbourhood U of z such that {e'(y),...,e"(y)} is linearly independent
for all y € U. Similarly, for f!,..., f* " € Q over some open subset V of z.
Thus el,...,e", f1,..., f* " are linearly independent over U N V. Dimension
counting (in P @ @) we conclude that they form a basis over U N V. Thus
el,...,e" trivialise E over UNV.

For a compacf, Hausdorff space X we write K°(X) for the Grothendieck
group of Vect(X). Then we have :

Corollary 2.31 There is a natural isomorphism
K°(X) = Ko(C(X)).

The abelian group K°(X) is the natural target for additive invariants of
vector bundles over X.

Theorem 2.32 Let f,g: Y — X with f ~ g (homotopic) and Y paracompact.
Then for all vector bundles E on X, we have f*E = g*E.
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Corollary 2.33 If X > Y are homotopy equivalent then Vect(X = Vect(Y)-
If X is contractible, paracompact then every vector bundle on X is trivial.

We conclude from the homotopy theorem that K? is a contravariant functor
from (paracompact) spaces and homotopy classes of maps to abelian groups.
Assume X is connected. ‘ o

Example 2.34 The point map X -+ * induces a homomorphism
K°(x) 27 - K°(X). '

If Xis péinted, then the inclusion * — X determines a homomorphism
K°(X) = K%x) > Z.

Thus for a connected space, Z is canonically a direct summand in K 9(X) and
we write _
K'X)=2Z o K'(X).

Write Vect,(X) for the set of isomorphism classes of n-dimersional vector
bundles on X. Then if L € Vect;(X) denotes the 1-dimensional trivial line
bundle over X we have stabilisation maps

BL

- Vectn_1(X) B Vect (X) 2 Vect, 11(X) = -+

The maps B
Vectn(X) = K(X); E— [E] —n

are compatible with stablisation, so that there is defined a mzip
lim Vect,, (X) - K°(X).

Theorem 2.35 The map
lim Vect,(X) + K°(X).

is a 1-1 correspondence.

Proof Every element K°(X) can be written as a difference [E™] — [F™].
Choose ET*, F{™ such that o

E"®E"=n+m>F"aF
Then
[E"] = [F"] = [E"] = [E" & BY"] - [F"] + [F" & F{"] = [E" & F"] — [n+ m]:

Hence the map is onto. A similar argument shows that it is into.

Corollary 2.36 L
[X,BGL(R)] = K°(X).

 For example, if X = S”, then by Bott periodicity, the reduced groups
K°(S™) are 8- periodic in n.
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2.6 Wall’s Finiteness Obstruction

We say a topological space is homotopically finite if it is homotopy equivalent
to a finite CW-complex. o

Example 2.37 A compact smocth manifold is homotopically finite. To see
this, choose a Morse function and consider the associated finite CW-decomposition.

A compact topological manifold is also homotcpically finite, but this is much
harder to prove. '

Definition 2.38 A space X is homotopy dominated by a space Y if there are
mapsd: Y — X and u : X —= Y such that d-u ~ lx The domination is
pointed if d - u =~ 1x is pointed.

A space X is said to be finitely dominated if there is a finite CW-complez
which dominates X . :

Clearly a homotopically finite space is finitely dominated, but in general the
converse is not true. We shall prove [34]: .

Theorem 2.39 (Wall) Let X be a finitely dominated space. Then there is un
obstruction ;

o(X) € Ko(Z[m1(X)))
such that X is homotopically finite if and only if o(X} = 0.

Roughly speaking, a homotopically finite space corresponds to a free, ti-
nitely generated module, while a finitely dominated space, which is a homotopy
split summand of a finite space, corresponds to a finitely generated, projective
module.

Lemma 2.40 Every compact topological manifold is finitely dominated.

Proof Let M" be a compact topological manifold. Cover M by open balls
B;,i =1,...,s and for each i let ¢; : M — S™ be a map that sends B;
homeomorphically onte S™ —north pole, and M — B; onto the north pole. Then

[1¢:: Mo [[sm = RO,

We conclude that M embeds in Euclidean space. Suppose then M™ C RE.
We construct a retraction from a neighbourhood U of M onto M. Assume by
induction we have a neighbourhood U; of M and a retraction

r (U -M)O UM - M,

where (U; — M )(l) is an l-skeleton of U; — M which gets finer and finer as we
apporach M. Let {A;} be the (I+ 1)-simplices of U; — M, so that the diameters
of r/(8A;) get smaller and smaller as 7 tends to infinity. Since M is locally
Euclidean, 74, extends to a map 741 @ Ay — M for ¢ large. Choose U1
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small enough so that ;41 is defined on U,(_f_"l'l) This completes the induction
step.

Now suppose 7 : U — M is such a retraction, and take any finite polyhedron
KwithMcKcU. Clearly, = 1k is a domination of M with right inverse
u=1:M<—=K. .

Theorem 2.41 (Mather) If X is dominated by an n-dimensional complez,
then X is homotopy equivalert to an (n -+ 1)-dimensional complez.

We first quote without proof

Lemma 2.42 Foramap f: X =Y, let M(f) - Y Uy (X x I) be the mapping
cylinder of f. Then

1. If f1,f2 : X = Y are homotopic, then M(f1) and M(f;) are homotopy
equivalent rel X UY.

2 Iff: XY andg:Y — Z then
Mg f) = M(f) Uy M(g).
‘We now prove Mather’s theorem:

Proof Letd: K — X be a domination of X with right inverse u : X — K.
Suppose K is n-dimensional. Since d - u ~ 1x we have

XxRY =12 M(1x) = u,?;_ool\/!('u)uKJVI(,) 2R M(d)Ux M (u) =2 USS_ o M (u-d).

But M(u-d) is (n-+ 1)-dimensional. Hence result.

Consider the above construction, but on the torus X x S! instead of X x R.
By the same kind of argument we can show that X x S? is homotopy equivalent
to the mapping torus of u-d: K —» K. We have

Lemma 2.43 If X is finitely dominated, then X x S* is homotopy finite.

We now introduce the main construction [34] for building homotopy finite
spaces out of finitely dominated spaces (modulo an obstruction) . The method
of attack is to try to increase the connectivity of the domination map d: K -+ X
by adding cells to K to kill the homotopy groups of d until we get a homotopy
equivalence. Notice that since K and X are finite dimensional (but X may
have infinitely many cells in each dimension) this process (if possible) will take
a finite number of steps.

We begin by modifying the fundamental groups. Consider the maps

d*:ﬂ'l(K)—)Tfl(X), u*:ﬂ'l(X)—)ﬂ'](K),
such that d, - u. = 1. Note that 7;(K) is finitely generated, since K is finite.
Also d, is onto. To make d, an isomorphism we add 2-cells to K to kill the
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kernel of d.. We must add only a finite number of 2-cells. Recall that the effect
on 7r1(K ) of adding a 2-cell via an attaching map g € 7r1(K ) is to kill the normal
subgroup generated by g.

Lemma 2.44 kerd, is normally generated in 7%1(K ) by finitely many elements.

Proof Let {g;} be a ﬁmte generating set for w1 (K). (For example, chocse
tne 1-cells.) Set o = u, - dy : mi(K) -+ m(K), and

P = {gia(g;")} C ker(d.).
noting that
du{gia(g7 ) = du(gi)dua(g; ) = du(gi)d (97 = 1
Consider the lgngth 2 word-g;g;. Then
ai950((g:95) 1) = gigiela; Nelgr ") = {gilgselg; Ny Yaiales) € N(P)

where N(P) C kerd, is the normal closure of P.
Hence, by induction on word length

ga(g™hy € N(P), forallge G.
But if g € kerd, then a(g7!) = u.d.(g7?1) == u.{1) = 1. Hence
g=ga(g™h), for all g € kerd,

and so kerd, C N(P).
We conclude that kerd, = N(P) and kerd, is finitely normally generated.

Proposition 2.45 Ifd : K -~ X is a finite domination of CW-complezes, we
can attach finitely many 2-cells to K te form a complez K and extend d to a
map d: K — X such that d : 71 (K) = m(X).

Proof Choose ﬁnitely many attaching maps a; : S! — K so that {[a]}
normally generates kerd,. Set

d:K=KuUu,e® - X.

Then d, is onto, since d, is onto. Claim d, is into. Suppose then [w] & kerd,.
Then by the cellular approximation theorem, we may assume w maps into the
1-skeleton of K. This means that w lifts up to hemotopy tc a map [w'] € kerd,.
Hence [w'] € N({;}). But

e(g7 ig) = ju(g™ Niul)in(gi) = 7.(g7 1i(9) = 1,

since j, kills a;. (Here j is the natural map j : K — K.)
Hence j.([w']) = 0, ie. [w] =
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By the previous lemma we may assume d : K — X induces an isomorphism
on fundamental groups. We want to continue adding cells to K to make d more
and more highly connected. The first step is to show finite generation of the
higher homotopy groups.

Assume X is a CW-complex with fundamental group 7 = 71 (X). Write
Zw for the group ring. Let X be the universal cover of X so that passing to
homology H;(X) is a Zr-module. If X is a finite complex then H;(X) is-a
finitely generated Zm-module. -

Note that m;(X) is also a Zz-module - we don’t have to worry about base-
points since X is simply connected. ' :

Let d : K — X be a finite domination inducing an isomorphism on funda-
mental groups 7. Write K and X for the universal covers, and d : K — X for
any lift of d. We may choose a lift @ : X — K. such that d -4 ~ 1. '

Consider then the homology exact sequence of d

o Hy(K) S Hy(X) — Hy(X,K) — 0.

But d. is onto, since it has a right inverse. Hence Ho(X ,K) =0, and there are
short exact sequences

0> Hep: (X, K) = Hyg(K) > Hi(X) -0
for k > 2.

Theorem 2.46 Letd: K — X be a finite domination between CW-complezes.
Suppose
m(d) =0, 0<k<n-1, n>2

Then we. can attach finitely many n-cells to K to form K and extend d to a map

d: K - X so that

m(d) =0, 0<Ek<n.

Proof We must show that m,(d) is finitely generated as a Zm-module. The
result will then follow as above by adding finitely many n-cells to K.
By the relative Hurewicz theorem

Tn(d) = ma(d) = H, (X, K).

Thus we must show H,(X,K) is ﬁnitely generated as a Zw-module, where

0 Ho(X,K) = Hy 1(K) %S H,_y(X) -0
is split by u,. v :

In general, if C' is a chain complex of free, finitely generated R-modules, it
does not follow that the homology groups H;(C) are finitely generated. However:
Lemma 2.47 If C is a chain complez of free, finitely generated R-modules and
Hi(C) =0, i <n, then H,(C) is finitely generated.
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Proof Since H,(C) is a quotient of the kernel of 8, : Cp, —» Cp— it is
sufficient to show that ker(8,) is finitely generated. Clearly ker(do) is free and
finitely generated. By N

0— ker(al) = C1 — ker(ao) - Ho(C) =0

we see that ker(8;) is a split summand of Cy so that it is finitely generated,
projective. The result then follows by induction.

Note that we could equally have shown that ker(d,) is stably free.

We must show H,(X, K) = H,(C) for some chain complex C satisfying the
conditions of the above lemma. Let & = @ - d: K - K, and set C to be the
cellular chain complex of the mapping cone of & Thus C is free and finitely
generated in each dimension. By assumption

Hi(C)=10, i<n--1

and ' L B
s Hp 21 (K) S Hy 21(K) - Hea(C) = 0.

1n particular, C satisfies the conditions of the above lemma, so that H,_1(C)
is finitely generated. We must show H, (X, K) = H, i (C).
By the above, H,_1(C) = coker{@,). But &- & =~ & so that

0 — ker(&,) =+ Hp—:(C) — im(é.) =0
splits via &.. Thus
coker(d ) = ker(a.) = ker(d,) = Hn(X, K),
and we are done.

We have shown that any finite domination of X by an n-dimensional complex
may be improved to a finite domination d : K — X where

1. dmK =n,
2. d,: m(K) — m;(X) is an isomorphism, i < n.

Note also that since dim K = n, we have H;(K) = Hy(X) =0, i > n.

We wish to add (n + 1)-cells to K to kill the kernel of d. : 7n(K) — mn(X),
but without introducing new non-trivial homology in Hpn41. This is certainly
possible if ker(m,(K) — 7, (X)) is free and finitely generated. In fact, we only
require ker(d,) to be stably free, since we can always replace K by KV V;S™.

Lemma 2.48 ker(d.) is finitely génemted, projective as a Zm-module.
Proof As above, ker(d,) & Hpy1(X,K), and H;(X,K) =0,i <n+1. By

Mather’s theorem, X is homotopy equivalent to an (n+1)-dimensional complex,
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so that ker(d,) is the (n+1)st-homology of an (n-+1)-dimensional complex with
trivial homology, i < n + 1.

Suppose then C'is an (n + 1)-dimensional chain complex of free Zr-modules
(not necessarily finitely generated) and H;(C) = 0, i < n + 1. Then as above
we can show H,1(C) is projective. Since Cp.p = 0, H,1(C) = ker(Opy :
Cni1 = Cy). Clearly ker(8p) = Cj is free By

0 — ker(8;) —» C; — ker(@i_l) — H,_1(C) =0,

t < n+1, we see that ker(9n41) is projective. As before, it is also finitely
generated.

We wanted to show that ker(d,) is stably free, but we have only been able
to show that it is finitely generated, projective.

Recall that Ko(Zﬂ') is isomorphic to the set of equivalence classes of finitely
generated, projective Zm-modules, where P ~ @ if and only if there exist finitely
generated, free Fy, F5 such that

in other words, P ~ @ if and only if they are stably isomorphic.

1t follows that the finitely generated, projective Zn-module ker(d, ) = H, 10 id, )
determines an element in Ko(Z). It can be shown that this class is independent
of the particular way in which the cells were added to K in the above process.

Definition 2.49 Let X be a finitely dommated space. The Wall finiteness ob-
struction

o(X) € Ko(Zm1 (X)) )
ts defined to be the class 0(X) = [Hn11(d,)], where d : K — X is any finite
domination such that dimK =n and m;(d) =0, i < n.

We have shown

Theorem 2.50 (Wall) If X is a finitely dominated space, the element o(X) €
K()(Zﬂ'l( )) vanishes if and only if X has the homotopy type of a finite complex.

Corollary 2.51 Every simply connected, finitely dominated space is homotopy
equivalent to a finite complex.

Corollary 2.52 Every simply connected topological manifold is homotopy equiv-
alent to a finite complex.

Following the construction carefully, we see that if X is finitely dominated
by an n-dimensional complex, then X is homotopy equivalent to an (n+1)-
dimensional finite complex. In fact, this can be improved to an n-dimensional
finite complex.

64



2.7 Application to Embedding Theory

Let X and M be compact manifolds without boundary, and suppose X CMasa
closed subset. We are interested in constructing ‘nice’ manifold neighbourhoods
for X in M. The strongest situation is :

Example 2.53 (Tubular Nighbourhood Theorem) Let X be smoothly em-
bedded in M. Then there exists a smooth vector bundle E over X diffeomorphic
to a neighbourhood of X in M.

© Choose a metric on E and let D be the associated disk bundle, with boundary
9D. Let N be the manifold M —intD with boundary 0D, so that M = NUsp D.
Let N° = N — 0N so that N° is an open manifold. Using a collar of N in N
we see that N° is homotopy equivalent to N. In particular, even though N° is
an open manifold, it is homotopy ﬁn‘ite.v )

Using the tubular neighbourhood, there is also defined a homeomorphism
M — X = N°. (Isotope M — X away from X, along the fibres of tke cubular
neighbourhood, into N°.) Thus, for a smooth embedding, the open manifold
M — X is homotopy finite.

For general, non-smooth embeddings we do not have such an analysis of
M - X. In fact, the structure of M — X can be very wild. In the topological
setting, even locally flat submanifolds do not in general admit topological bun-
dle neighbourhoods [27]. Instead, we _mus'f be satisfied with something rather
weaker.

Definition 2.54 Let X, M be compact, topologu’az manifolds with empty bound-
ary. Suppose X C M as a closed subset. A mapping cylinder neighbour-
hood (MCN) of X in M consists of a closed marifold V together with a map
p: V — X such that the mapping cylinder of p, M(p), is homeomorphic to a
neighbourhood of X in M.

Clearly, the mapping cylinder M(p) is then a topolegical manifold with
boundary V. This definition does not address how nice the map p is, or more
precisely, whether it has some kind of bundle structure. However, the existence
of a mapping cylinder neighbourhood provides much of the functionality of a
tubular neighbourhood. (In practice, p is almost never a topological bundle
map, but instead can often be shown to be a manifold approzimate fibration, a
kind of local homotopy bundle. This is the case, for example, when X is tame
in M, modulo K-theory obstructions citeweinberger.)

Example 2.55 A tubular neighbourhood of a smooth embedding is a mapping
cylinder neighbourhood.

It is non-trivial to prove

Theorem 2.56 Suppose for all x € X there exists arbitrarily small neighbour-
hoods V' 3 x in M such that the local fundamental groups m1(V — X) =0, ie.
X is 1-LC. Then X admits a mapping cylinder neighbourhood.



The existence of the MCN follows from Quinn’s Tame End Theorem (22] for
non-trivial local 7y, where a K-theoretic obstruction to an MCN is given. For
trivial local my, as above, the K-groups are all trivial, and hence so is the ob-
struction. The proof of Quinn’s theorem procedes by a careful accounting of the
Wall finiteness obstruction of (M —X)NV for arbitrarily small neighbourhoods
Vin M of points z € X. These local obstructions are patched together to form
an element in the homology of X with coefficents in K-theory. This element is
then the sole obstruction to an MCN. ‘

The proof of Quinn’s theorem is beyond the scope of these notes. However,
we will consider a (much cruder) global K-theoretic obstruction to a mapping
cylinder neighbourhood, which is similar in Aavour to Quinn’s obstruction.

Example 2.57 Consider the Fox-Artir: wild arc J;. This is a wildly embedded
interval in R3. Choose a second smoothly embedded interval I» so that the union
I, Ul is an embedded circle. Choose points z1 and z3 on I; and I, tespectively.
Let v1 and gammas be small loops with centers z1 and 2 perpendicular to I;
and I respectively. Extend.vy; and v, so as to be based loops.

These loops cannot be homotopic in R3 - §1. Forif H: 8! x [ —» R? — §!
is such a homotopy then since S x I is compact there exists an € > 0 such that
forallte I, z e S?
d(H(z,t), X} > ¢,

ie. throughout the homotopy S! 1s always more than e away from X. Let B be
a ball of radius € around b. Then H must avoid B. Clearly this is impossible.
Suppose, however, X admits a mapping cylinder neighbourhood. Thus there
is a closed manifold of X in R® homeomorphic to the mapping cylinder on some
map p: V — X, where V' is a manifold. Let I be the portion of X between T
and z3 containing b.Let N be the mapping cylinder of p; : P~(I) — I. Then

ON =D} u,, Z U, D?
where Dy and D, are 2-disks and N 22 ], ie: NV is contractible. Hence

- ; Z i=2
. ~ F ~ pr3-—i—1 —
H(oN) = Ha (¥, 08) 2= -y = { 212
Thus IN is a 2-dimensional homology sphere, ie. a topological 2-sphere. Hence
Z is a cylinder and v; ~ 7, a contradiction.

We conclude that X does not admit a mapping cylinder neighbourhood in
R3.

Lemma 2.58 If X C M admits a MCN then M - X is homotopy finite.
Proof The proof is similar to the tubular neighbourhood case. Let N ¢ M
be the mapping cylinder neighbourhood. The mapping cylinder structure in

the neighbourhood of X in M allows us to pull back the open manifold M — X
into the closed manifold with boundary cl(M — N), so that they are homotopy
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equivalent. The latter is a compact, topoiogical manifold, and hence is-homotopy
finite.

Homotopy finiteness of M — X is therefore an obstruction to the existence
of a mapping cylinder neighbourhood.

We now define the property of tameness for X C M. Tameness should be
thought of as a kind finite domination. It basically ensures that M — X can be
pulled away from X in a way that is controlled over X. This is a weaker notion
than the existence of a MCN, but it turns out the two properties differ only be
K-theory!

Definition 2.59 Let X C M be an embedding, and r : N — X a retraction
from a closed neighbourhood. of X in M. We say X 1is tame in M if for every
neighbourhood U of X in M and every ¢ > 0 there exists a neighbourhood V' of
X in M and a homotopy H : (M — X) x I — i — X such that

1. h=1on(M-X)x{0fu(M-U)xI
2 h((u—X)xI)CU—X
9 MM~-X)x{l})c M-V
4. the tracks of v - H have diameter < ¢
We have thé follow'ing heirarchy of embeddings
.smooth embeddings ¢ MCN ernbeddings C tame embeddings
Lemma 2.60 Suppose X C M is tame. Then M — X is finitely dominated.

Proof We may choose V above so that M - V is a compact manifold with
boundary, ie. has finite homotopy type. Then

M-XBM-VoM-X~ly_x,
so that M — X is finitely dominated by M — V.

We conclude that for a tamely embedded X C M, there is defined a finiteness
obstruction

» o(M — X) € Ko(Zm)
where © = m; (M — X).

Corollary 2.61 If X admits an MCN then o(M — X) = 0.

Of course, the obstruction o(M — X) = 0 is only part of the story, and on
its own is not a sufficient obstruction to an MCN.

Let us consider the special case of embeddings S* C §”. Then 7 = m(S" -
$1) is a finitely presented, perfect group, Hy(m) = Hz(m) = 0. We have (Ferry
and Pederson):
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Theorem 2.62 For each n > 7, and each finitely presented perfect group ™
with Hy(m) = Hy(n) = 0, and each o € Ko(Zr), there is a tame embedding
S C 8™ such that

m(S* -8 =m, o(S"-85") =o.

Thus all the finiteness obstructions are realised by tame embeddings. In
the case of an embedded S!, the homology groups with coeficients in K-theory
mentioned above take on a parflcularly simple form

f{o(sl’ Rx (Zﬂ‘)) = f{o(Zﬂ') ©® K_ (Zﬂ')

The obstruction to a mapping cylinder neighbourhood for an emnbedding S* C
5™ therefore has two components. The first, in Ko(Zn) is the finiteness ob-
struction o(S™ — S') discussed above, which obstiucts the existence of a finite
complex homotopy equivalent to S™ — S'. Even if this obstruction is zero, we
only have an abstract finite complex K 2 S™ — §1, but no way of relating this
to X itself to build a MCN. It is necessary therefore to consider X as a space
over X or, more precisely, as a space with centrol over X. This gives rise to the
noticn of a controlled finiteness obstruction, and in particular, to our second
compenent in the negative K-group K _1(Z~)

3 Ki(R), Whitehead torsion and applications

3.1 The Group Ki(R)

Let R be a ring with unit. Recall the infinite general linear group GL(R) is the
union of the sequence

GL(1,R)CGL(2,RjC---Cc GL(n,R) C

with inclusions

GL(n,R) = GL(n+1,R); A — ( ‘g (1) )

The elementary r X n matrix e;;(a), a € R, i # j, is given by

1

[y
s]

eij(a) =
1
with a in the ith row and jth column. We write E(n, R) for the subgroup of
GL(n, R) generated by all n x n elementary matrices. Then
E(1,R)C E(2,R)C---C E(n,R) C

with union E(R), the group of elementary matrices. Note that multiplication
on the left (right) by an element of E(R) corresponds to an elementary row
(column) operation. We have [36]:
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Lemma 3.1 (Whitehead) The subgroup E(R) C GL(R) is the commutator
subgroup of GL(R). Thus the quotient GL(R)/E(R) is abelian.

Proof The identity
eij(@)ein(Ve(a) Ten(l)™ = ewla), i#£7#k#1,

shows that each elementary matrix is a commutator.
For matrices 4, B € GL(n, R), the identities

1.
CABAT'BT 0\ _ (A 0 \(B 0 ) (BA)"Y 0
( 0 1 )70 A—l)(o B ) 0 BA)
2.

A 0 N (1 AN i 0N/ 1 -—1)( 10
(0 A‘l)'_(ﬂl‘ [ 1) 001 Jli-4 1

1 A \ n S 2n
< 0 1 ) = [T IT esld)

i==1 j=n+1

show that each commutator is a product of elementary matrices.

Definition 3.2 For a ring R with unit, define K1(R) to be the abelian group
GL(R)/E(R) = GL(R) 4p-

Then X; is a functor from rings to abelian groups. The group structure on
K;(R) is induced from matrix multiplication in GL(R), ie.

[A] - [B] = [AB] € K1(R).

However, it is cominon to think of K((R) as an additive group. In fact, suppose
A, B € GL(R). Then we write

A 0

A@B’:( ) B )€ CUR)

Using the identity

A0\ _(AB 0N ( B 0

o 8/)"Lo 1) o B
| (B 0 \

and the fact that( B )€ E(R). we see

[A® B]=[AB®1] = [AB] € K,(R).
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Hence the group structure is also induced by the block sum . L
Let R* be the group of units in R so that R* = GL(1,R). Then there is
induced a map
t: R* — K1(R).

Furthermore, if R is commutative then
det: GL(n, R) — R*
determines a homomorphism
det : K1(R) — R*
which is split by .

Definition 3.3 For a commutative ring R, we write SK1(R) for the kernel of
det: K1(R) — R*.

Cleaﬁy theu :
Ki(R) = SK\{R) & R*.
3.2 Fields and Local Rings
Lemma 3.4 For q field ¥
- det: Ky (FY — F*
i an isotmnorphism, ie. SK;(F) = 0.

Proof let A be an n x n invertible matrix over F. Since F' is a field, a
standard row reduction argument ailows us to replace A by a diagonal matrix
(a,1....,1) so that detA = a. Thus [A] = [a] € K (F).

There are two essential steps in proving the above lemma

1. Use the existence of the determinant function to construct a splitting
'R* =GL(1,R) — GL(R) ¢ R*
and hence a splitting

X X
Rab - Ki(R) -~ R,
2. By row operations, show that any element of K;(R) can be represented
by a diagonal matrix (a,1,...,1). '

In general, there is no determinant function for non-commutative rings, so that
(1) may fail. In addition, (2) can fail when a column of an invertible matrix
contains no unit, so that we cannot do row reduction. _ ‘ '

In the case of local rings these problems can be avoided. Recall a ring is
local if the set of non-units forms an ideal.
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Lemma 3.5 Let R be a local ring (not necessarily commutative). Then the
inclusion

* = GL(1,R) — GL(R)
induces an onto map ' - '

Proof Let A € GL(R). If the first column of A contains a unit, then we can
proceed as in the previous proof. This is the case: since R is local the non-units
form a proper ideal. But if the first column of A consists only of non-units, since
A is invertible, some linear combination of them is 1. This is a contradiction.

We now show that local rings (not necessarily commutative) admit a Jdeter-
minant function.

Theorem 3.6 Let R be a local ring. Then there exists a unique ‘determinant’
mep
_ det: GL(R) > R},

satisfying the followmg tﬁree pmpe'rfzes
o) det(EA) = det(A) for A € GL(R), E € E(R)
b) det(I) =1
¢) det(diag(l,---,a,--; 1)A) = adet(A).
In addition, the determinant map satisfies
d) det(AB) = dei( A)det(B)
e} det(A) = —det(A’) where A’ is obiained from A by swapping rows
f) det(AT) = det(A)

We begin by proving the uniqueness of the determinant function, and then
proceed to inductively construct it.

Suppose then we have a map det satisfying the properties a), b), c). Since
R is local, any matrix A in GL(R) can be row reduced to a diagonal matrix
D = diag(a,1,---,1). Hence

det(A) % det(D) < adet(I) £ &,

and det is uniquely determined. :

We now construct det, : GL(n, R) — R}, by induction on n. First define
det, : GL(1,R) — RX to be the abelianization map. Then det; satisfies the
properties a),b),c). '

Next, suppose by induction we have defined maps dety : GL(k, R) — R,
k < n, satisfying a),b),c), together with the compatibility relation

detk.H(A (&) Il) == detk(A), Ae GL(k,R). kk+1l<n.
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We then define det, as follows. Let A € GL(n, R) with rows A;,..., A,. Let
B € GL(n, R) be a left inverse, BA = I. Let by,...,b, be the entries in the
first row of B. Then ' -

b1A1+"'+b'n.An=(1’0""'0)'

Set 4; = (a;;B;) with B; € R™™! so that ¥b;B; = 0. Since R is local, at least
one b; is a unit, say b; € R. Thus

b7 01By + - + b7y Bi_y + By + -+ + b7 b, By, = 0.

ie. B; is a linear combination of By,...,B;,..., B,. Hence we may row reduce

A to the matrix _
ax B

ai_1; Byl
b0
aiy11 By

ann By
Define

detn(A) = (—1)%; 'detn_s | B
By
Continuing in this way, det is well defined.

Example 3.7 We give an example of a commutative ring with SK;(R) # 0.
Let R be the ring
R =Rz, y]/(xz +1° - 1).

Then R is the ring of polynomial functions on
S' = {(z,y) € R?|z® +¢* = 1} C R2.

In fact, any polynomial f(x,y) € R[z,y] determines a function f : R? -+ R, and

two such functions agree on S! iff they differ by a multiple of 2 + 32 =1.
An element of SL(n, R) is thus a matrix of polynomial functions on St, or

equivalently, a map S' — SL(n,R). Taking homotopy classes, we have a map

SL(n, R) — m1(SL(n,R)).

This map is easily seen to be trivial on elementary matrices. Consider the
inclusion

in : SO(n) = SL(n,R).
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The Gram-Schmidt process determines a retraction-

1 : SL(n/R) — SO(n),

and so we have a map

d o N o I Z, n=2
SL(n,R) — m(50(n)) = \ Z/2, n>3
There is then a commutative diagram
SL(2,R) < SL(3,R) ¢ --- C SLn,R) C
1 1 {
Z — Zj2 = .. o= 7/2 =

so that in the limit we obtain a map SL(R) — Z /2 and hence a map SK(R) —
Z/2. '
To show SKi(R) # 0, consider the element

Y\ o
( —y 2 / tf)L(Q,R)

This determines a 1nap

(1 . . by T Y
s = SLe.R); @) (5 ),
ot equivalently ‘ |
S 5 80(2); € s ( cosd  sind )

—sinf cosf

which is a generator for m1(SO(2)) = Z. It follows that the ciass

(5 1)) esea

is non-zero.

3.3 Whitehead Groups

Let X be a finite CW-complex with fundamental group . Write C'(X) for the
cellular chain complex of X so that C(X), is the free abelian group with one
generator for each cell of X and the boundary map 9; : C(X); = C(X),_; is
induced by incidence numbers. Clearly then, C'(X) is a finite chain complex of
free, finitely generated Z-modules with a preferred basis, namely, the cells of X.

Now let X be the universal cover of X. Then X has the structure of a
CW-complex and the group 7 acts cellularly on X, so that C(X) is a finite
chain complex of free, finitely generated Zn-modules. However, there is now no
preferred choice of basis for C(X), since we must make a choice of lift for each
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cell. To obtain a Zn-basis for C(X), for each cell of X , pick' a covering cell in
X. Of course, this choice is not unique - different choices differ by an element
in 7. - '

For topological applications, this non-uniqueness motivates the following
definition " '

Definition 3.8 Let 7 be a (multip[icative) group with integral group ring Zm.
The Whitehead group of m is given by

Wi(m) = K1(Zm)/{*glg € 7},
ie. the quotient of K1(Zr) by the units +g.

Thus, Wh(r) is the obstruction group to row reducing invertible matrices
over Zm to elements +g,.g € . : ‘

The main application to topology is Whitehead torsion, hence the name.
The calculation of the Whitehead group is usually rather complicated. See [21]
for a comprehensive account. See [18] for an excellent introduction.

Let C be a chain complex over Zz. Recall a chain contraction s : Co —
C's41 is a map such that 9s -+ s9 = 1. A chain complex which admits a chain
contraction is said to be contractible.

Example 3.9 If X is a contractible CW-complex, then, by the cellular approx-
imation theorem, C(X) admits a chain contraction.

Recall a chain complex C is said to be acyclic if H, (C)=0.

Lemma 3.10 Let C be a chain complex of finutely generated, projective Zm-
modules. Then C' is acyclic iff C is contractible. ’

Example 3.i1 Let ¢ : F; — F, be an isonlorphisn) of finitely generated, free
Zm-modules. Then the chain complex C' given by

0-F 3R -0

is acyclic with chain contraction ¢~1. If F, F, have preferred basis then o is
represented by a matrix A. Thus formally we obtain an element

7(A) € Wh(r).

More generally, let C be a finite chain complex of finitely generated, free
Zm-modules, with preferred bases. Suppose C is acyclic and let s : C,, — Ciyy
be a chain contraction. Consider

0 +s: eaevenci — ®odd(/"i1
then

(0+5)(0+s)=0>+50+0s+ s> =1+ s
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But 1 + s2 has the form

1 0 O
s2 1 0
1

(==}
. ®
[M]

where the (z,7)th entry maps C; — C;. Hence 1 + s2 is a chain isomorphism,
as are (8+s)2 and 0 + s.
Now let i : @evenCi = @oddc be any 1son10rphlsrn mapping bases to bases
and define
7(C)=7(i- (B + 8)) € Wh(n)

where 7(i - (8 + s)) is the image in Wh() of the matrix tepresenting i - (0 + s).
Since i sends bases to bases, any. other i/ determines a permutation matrix
i-i’ € E(Zr) so that T(C) is independent of the choice of i.

Notice also that 1+s? is a product of elementary matrices, so that 7(1+s2) =
0 and o
T((0+$) -z“) = __,.—(,1 {0+ s)) € Whix).

Finally, we must show the definition of 7(C? is independent of thz choice of
chain contraction s. That is, for some other chain contraction §

—7(i-(0+3s)) +7(i- (8+3))—~T((8+s)z . 8+s)\—r((6+s)(8+s))—-

Lemma 3.12 Given chain contractions s, 5, there exist maps {Fx : Cr —
) b
Ceya} such :‘hat OF — FQ = s —§, ie. s, 5 are chain homotopic contractions.

Proof Define {Fy} inductively, starting with F_; = 0 : C_y =0 - Ch.
Assume Fi_1 is defined with the declred property, then

0= 0(Fy-10+s--38)=0Fk—10 + 05 - 05 = {(Fr—20+5—35)0+0s 0s.
Thus, setting Fy = s(Fx—10 + s — 5) we have
OF),—Fy_10 = 0s(Fr-10+s—3)—F_10 = (1—380)(Fg-10+5—8)—F-10 = s—5.
Hence result.
It follows that

(0+5)(@+35)=(0+0F —Fo+35)(0+5) = 9F 930 + 05 + OF5 — FO5 + §°
— 1+ OF0+ (0F5 — F95 + 5°).

But 1 4+ OF8 has inverse 1 — OF so that
(84 5)(0 + 3)(1 — OFD) = 1 + terms of degree 2.

Hence (8 + s)(0 + 5)(1 — OF9) has a matrix blocked like 1 + s2. It suffices to
show that 7(1 4+ 0F0) = 0.
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Lemma 3.13 The following relations hold

1. 0s9=s
2. 8030 = sO
3. 0s0s = Os

-

(0s)(s0) = (50)(0s) =0
ie. 0s and s are complementary projections.

Consider then the matrix

58 0s
(89 36)

then A = A~!. Thus

,7.(1_}_65,6) _ T(-/(..‘sa as)(‘l-!-aF(? ?\(ég :); ))

We conclude that 7(C') € Wh(r) is well-defined.

Example 3.14 Suppose (X,Y) is a finite CW-pair, with the inclusion map
Y < X a homotopy equivalence. Then C(X,Y) is an acyclic finite chain
complex of free Zm (Y )-modules. Define the Whitehead torsion of the pair
(X.Y) by -

7(X,Y) =7(C(X,Y)) € Wh(Zm;(Y)).

Note that C(X,Y) as a preferred basis only up to the action of 71 (Y'), but this
is sufficient to give a well-defined class in Wh(Zm, (Y)).

We now introduce the subject of simple homotopy, which is a refined version
of homotopy, taking into account the way the homotopy equivalence ‘twists’ the
cells. The definitive account may be found in [5].

Definition 3.15 Let (X,Y) be a finite CW-pair. We say X is an elementary
ezpansion of Y if X =Y Uy B™, where B™ is a standard n-disk, F < 9B™ is a
standard( - 1) disk, andf F - YD satisfies f(OF) € Y2, We write

Y 7‘X orX\,Y

If
e € € e
Y=Yo/ "1 /Y2 /- /Y,
we write Y 2 X, If

e e e e
X=X N Xn1 N Xna -\ Xg=Y
we write X /Y.
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Definition 3.16 Two spaces, X and Y, are said to be simple homotopy equiv-
alent if there is a chain

Y=Y /"Y1 \Ye /Yo " Yn=X
Such a chain is called a formal deformation fromY to X and we write ¥ ~ X.

Note that every Y ~ X can be rewritten Y 7~ Z ™ X.
How does an elementary expansion affect the torsion of a CW—pa1r7 Let
(X, Y) be a finite CW-pair with i : ¥ < X a homotopy equivalence. Let

X /‘ X' so that (X’,Y) is again a finite CW-pair, with ¢’ : ¥ < X’ a homotopy
equivalence. We wish to compare 7(X,Y) and 7(X’,Y). Since X " X ’ we have

X' =Xuet tuer

where €™} = 9B" — F and e" = B". Choose orientations of [e"~1] and [e"] in
C(X',Y) so that ’ _
o e =[e" M+

force C(X,Y)p—1. T bus the chain complex C(X',Y) looks like

9 ¢
. : 0 .
o C(X,Y 1 2 C(X,Y),Be"] ( > ) CX,Y)n1®[e" Y] = C(X,Y )2 —
We can then extend a chain contraction s of C X,Y) to a chain contraction s’

of C(X',Y) simply by setting s'([e”]) = 0 and s’( e"*1]) = [e"] - s(c). Then for
n even, we have

T+ 5 DevenC(X',Y)i = BoaaC(X',Y);

has matrix or block form

( 58‘3 I > : (TBevevn‘C(X, Y),&le"] — BoadC (X, Y)j ® [en—ll.
We have proved
Lemma 3.17 If X ~ X' rel Y, then 7(X,Y) = 7(X",Y).

Thus elementary expansions preserve torsion. We shall in fact show

Theorem 3.18 Let (X,Y) be a finite CW-pair with Y — X a homotopy equiv-
alence. Then
7(X,)Y)=0 < X~Y relY.

First we show

Lemma 3.19 (Cell Trading Lemma) Let (X,Y) be a ﬁm’te CW-pair with
(X, Y)=0,0<k <n. Then X ~ X' rel Y, with dim(X' —Y)zn+1.

77



Proof = Assume by induction X =Y U{e?}U---. Let ¢ : (B™, S o (X,Y)
be a characteristic map for e}, ie. ¢ maps oB" homeomorphlcaily onte the
interior of e}. Since m,(X,Y) =0 there is a relative homotopy

®:(B",S"HY x I (X,Y)

with @5 = ¢ and &(B™ x 1) C Y. Consider ® as a map from B"+! = 9B"*2 to
X and form
X' =X Ug B2,

Let C = 9B™*? — intB™! so that C is an (n + 1)-disk. By ‘pulling over the
top’, C' collapses into Y and we have an elementary collapse F: CUY — Y.
Consider the topological pushout defining the space X

CuY < X' - X'/(CuY)
L ! I
Y o X =  X)y

0 that the righthand vertical map is a homeomorphism. We see that X has
one less n-cell than X but one more (n + 2)- cel] (re1 Y). We claim that X -~ X
rel Y. '

Consider the homotopy pushout X'U(CUY)x TURY of the above diagram,
together with the natural homotopy equivalence

U(Cuy) ><]UpY—>X
The homotopy pushout admits 3 collapses:

1. Extend the collapse of C into Y linearly along I to collapse C x I into
Y x I, and at the same time collapsing C C X’ intc Y in the process.

2. Collapse the cylinder Y x I along I into X'.
3. Collapse the whole of the mapping cylinder on F into X'.

Thus we have .
X' U(CUY)xTUpY 5 X rel Y,

and , s
X' U(CUY)xTURY \\ X'\ X,
where the latter collapses B"*2. We conclude that X ~» X rel Y.
We can now use the cell trading lemma to prove the main theorem. Sﬁppose
(X,Y) is a finite CW-pair with ¥ < X a homotopy equivalence. -Assume
7(X,Y) = 0. We must show X ~» Y rel Y. Since mx(X,Y) = 0 for all k, we

can trade cells between, any dimensions k, k + 2. This means that X ~» X' rel
Y for some X' =Y U{el} U {e}‘“}. Then the chain complex C(X',Y) is

0= CX, X)np1 2 C(X,¥)n =0
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for some isomorphism 8. Let us distinguish two cases: '

Case 1: Suppose with respect to the preferred bases {e'}, {e;‘“} that 0 = 1.
Recall the construction of 8 geometrically. Let ¢; : S™ — Y U {e}'} be the
attaching map for ;. Then

dle; ™!} = Tiaylef]

where «;; is the degree of the map
n 94 ny /Y n T{ gn
S* 3AYu{elt = VS = S

Since & = 1 we see that a;; = &;; (Kronecker delta). In particular, we may
arrange for each ¢; to take the upper open hemisphere of 5™ homeomorphically
onto e}, and the lower closed hemisphere into Y. Hence €] Ug; e?“ is an
(n + 1)-ball, which collapses into Y. This holds for all j, so that X ~ Y rel Y.
Case 2: In general, since 7(X,Y) = 0, the matrix of 0 with respect to the bases
{[eF]}, {le"*1]} is stably a product of elementary matrices and diagonal matri-
ces with elements 7 group elements on the diagonal. Each of these algebraic

properties of 9 has a geometric counterpart:

1. Stabilization of the matrix O corresponds geometrically to adding trivial
pairs of cells ™, e"*! with incidence number 1

. Multiplication by an elementary matrix, say e;x(a), corresponds to pulling
the attaching map of e}’“ over e ™! (which is equivalent to replacing ¢;

with @; + a¢y, where udy is trivialized by eptt)

ND

- 3. Multiplication by a diagonal matrix with entries g corresponds to choos-
ing different lifts for 7! in (X,Y) :

]
2

We conclude that by a sequence of geometric moves, we may ensure 0 = 1
and so reduce to case 1. This concludes the proof of the main theorem.

One consequence of the above theorem is a geometric description of the
Whitehead group. Suppose A is a space with 7 = m;(A). We consider the col-
lection of pairs (X, A) with X a finite CW-complex rel A. Define an equivalence
relation (X, A) ~ (X', A) iff X ~ X’ rel A, and set Wh(A) to be the set of
equivalence classes. Then 7 : Wh(A) — Wh(x) is a 1-1 correspondence. This
kind of geometric approach to Whitehead torsion is useful in that it allows the
concept to be extended to different circumstances. For exampie, we can talk
about equivariant torsion, topological torsion or controlled torsion, simply by
specifying additional geometric conditions on the construction of Wh(A).

Definition 3.20 Let f : X — Y be a homotopy equivalence of finite CW-
complezes. The torsion 7(f) of f is defined to by

7(f) = T(M(f), X) € Wh(m(Y)),

where M(f) is the mapping cylinder of f. In the case 7(f) = 0 we say f is a
simple homotopy equivalence.
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Here are some properties of torsion. All maps are homotopy equivalences of
finite CW-complexes.

L If fo~ f, : X =Y are homotopic, then 7(f) = 7(f1).
2Iff: X >Yandg:Y — Z then

(g9 f) = 7(9) + gu7(f).

o

7(f % 9) = T(HX(Y) + T(@)x(X).

4. If f+ X =Y is in addition a homeomorphism, then 7(f) = 0, ie. torsion
is & homeomorphism invariant.

Each of these properties is formal, except the last, which was an outstanding
problem for some time, before it was finally shown by Chapman [4]. (Of course,
if f is a cellular homeomorphism then the result is obvious. But this is not the
case in general. An application of the cellular approximation theorem will result
in a map which is in general not a homeomorphism.)

As you may expect, there are connections between finiteness obstructions
and torsion. Suppose d : K -+ X is a finite domination with right ivverse
u: X — K, sothat d v~ 1x. Write T(u - d) for the mapping torus of
u-d: K— K v

T(u-d) = K x I/{(2.0) ~ (u(d(2)),1)}.

Then T'(u - d) is homotopy finite, since K is, and, as in the proof of Mather’s
theorem T'(u - d) is homotopy equivalent to X x S!. Hence X x S! is homotopy
finite. Consider the composition :

¢:T(u-d) = X x S 51 X x S = T(u-d),
where —1: S — S? is reflection about the origin. This determines an element
7(¢) € Wh(n x Z),

noting that m1(X x §') =7 x Z.

Using the properties of 7 listed above, it is straightforward to show that if
X is homotopy finite then 7(¢) = 0.

So we see that a finite domination determines two invariants

o(X) € Ko(Zr), 7(¢) € Wh(r x Z).
They are related by the Bass-Heller-Swan formula [1]

Wh(r x Z) & Wh(r) x Ko(Zr) x Nils
which identifies o(X) and Tt¢).
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3.4 Lens Spaces and Wh(Z/m)

Lens spaces are 3-dimensional manifolds with cyclic fundamental group. They
provided the first examples of non-diffeomorphic, homotopy equivalent mani-
folds. This application was one of the original motivations for the development
of Whitehead torsion and the calculation of Wh(Z/m). See {18].

Given an invertible 2 x 2 matrix over Z,

M= ( . 3 > :
-use complex multiplication in St = {z € C||z] < 1} to define a diffeomorphism
far S x ST 5 8 x 81 (x,y) = (290, 2y
inducing |
(Far)e = M2 Hi(S'%SY) = Z&Z — Hy(S'xS") == Z6Z; (w,y) + (az-+dy, co-+dy).
The identification Space'> ’ :
| L:=8" % D? Uy 5 x D*

is obtained by gluing together two copies of the solid torus § 1 % D? along their
boundary S! x S! using the diffeomorphism fa,.

Definition 3.21 Let m,n > 0 be coprime int_egers. The lers space L(m,n) is
the closed, oriented 3-dimensional manifold defined by

L(m,n) = S* x DUy S* x D?

where M = ( lq) ZL ) for any p,q € Z such that np — mq = 1.

Lemma 3.22 The oriented. diffeomorphism class of L(m,n) depends only on
the class of M under the relation

1 0 1 0°
M ~ ANB, A_-<a 1)’3"‘(1) 1),

In particular, there is an orientation pfeserving diffeomorphism
L(m,n) — L(m,am +n).
Also, L(—m,n) is L(m,n) with the‘opposit'e ‘orientation.
Example 3.23
1. L(0,1) = §? x §*
2. L(1,n) =53
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3. L(2,1) = SO(3) = RP?
Proposition 3.24 For m > 2 ‘ ‘
L) = $°/(2/m)
the quotient of the free Z/rﬁ-action on the 3-,sphefg

§% = {(z1.22) [ |1 + |22 = 1}
given by .
1:8% = 8% (21, 25) (21w, zow™)
with w = e*™/™ and Z/m = (t| t").
In particular, ﬂl(L(m, n)) = Z/m, generated by the canonical class ¢ <

m1(L(m,n)). » S
It can be shown that L(m, n) admits a CW-strmeture with one cell in each

e ~——

dimension < 3. Let L(m, n) be the universal cover of L{m,n) so that the cejlular

chain complex C (L’(m, r)) is a bounded chain complex of free, finitely generated
Z{Z/m]-modules:

= Z[2/m] S 2z m) B 2z m) - t - 152(2/m),
where each map is multiplication; and ¥ is the norm element

E=1+t+---+t™ ! € Z[Z/m).

L m———

'To obtain torsion invariants we work over the rationals. Thus consider C(L(m, n); Q)

= Qlz/m] "5 Qz/m) 3 Qlz/m] 'S Qz/m).

Let ¢ : Q[Z/m] —» Q; Ta;g; — Ta;, be the augmentation map with kernel
N <Q[Z/m]. Then as rings (or Q-algebras)

QZ/m] = N & (%)
where (X) = QX. Note that N and () are mutually annihilating. It follows
that C'(L(m,n); Q) also splits as a direct sum of

t"—1

N'S'NOS NS N
and o - o
(Z)=(2) = (D) > (D).

So the first chain complex is a finite chain complex of finitely generated, free
N-modules with trivial homology. (It also has a preferred basis under the pro-
jection.) Hence it has torsion

7 € K1(N)/{£g}.
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Since N is a semisimple algebra it is isomorphic to a product of fields so that
K,(N) = B*.
In fact, we can calculate 7 by hand. Define a chain contraction s of
N3 'SP N, 3 NS N
such that
O+s= ( tgl t"O—l ) : Ny @ N3 = No & Na.

In other words,
r=(@t-1)({"-1)e N*.

Note that a different choice of lift (and orientation) for the cells to L(m,n) will
change 7 by an element +¢” so 7 is well-defined in N> /{+g}.

To distinguish lens spaces by torsion we must understand the relations he-
tween elements of the form (# — 1). Firstly,

(" —1) = —"(t" = 1)

30 that
t"—1=1t""-1, mod £g.

We quote

Lemma 3.25 (Franz Independence Lemma) The units

m

t" —1, 1§n<5-, (m,n) =1,

in N * do not satisfy any multiplicative relations.
Regarding conditions for L(m,n) and L(m,n’) to be diffeomorphic:
1. L(m,n) = —L(m,—n) so assume 1 <n < %, (m,n) = 1.

2. L(m,n) together with a choice of lift of cells to the universal cover, deter-
mines an element 7 = (" —1)(t—1) € N*. A new choice of lift determines
a new element 7 = +t"(t" — 1)(t - 1) € N*.

3. (" —1)(t—-1) =@t —1)(t—1),1<nn <%, (mn)=(mn)=1if
and only if n = n'.

We have then

Theorem 3.26 (Classification) Two lens spaces are diffeomorphic if and only
if they have the same torsion in N* /{£g}.

The following theorem is also true, but more difficult to prove. See [5] [12].
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Theorem 3.27 Let L(m,n), L(m,n’) be lens spaces. Then the following are
equivalent:

1. There is a homotopy equivalence f : L(1n,n) -» L(m,n’).
2. There exist units u € Z|Z/m]*, r € (Z/m)* such that

w(t™T =) = 1) = (" = 1)t - 1) € Q[Z/m].

3. n=+n'r?, (mod m) for some r € (Z/m)*.
In addition
7(f) = r(L(m,n))r(L(m,n")) ™" € im(Wh{Z/m) <> N> [{%g}).

Corollary 3.28 Lens spaces are diffeomorphic if and only if they are simple
homatopy equivalent.

Example 3.29 Conside? the lens spaces L(5,1), L(5,2). Then
1:=:4£2r% (mod 5)
has no solution. Hence L(5,1) and L(5.2) are not homotopy equivalent.

Example 3,30 The lens spaces L(7, 1) and L(7,2) are homotopy ceurvalent
since 1 =222 (mod 7). But

(LT, 1)) = (t - 1)2, 7(I(7,2)) = (2 - 1)(t — 1)

so they are not diffeomorphic.

3.5 The h-cobordism theorem

Recall a cobordism (W; M, M’) is called an h-cobordism if the inclusion maps
M — W and M’ — W are homotopy equivalences. In other words, W is a
hometopy cylinder.

The following is due to Smale.

Theorem 3.31 (h-Cobordism) Let (W; M, M) be an h-cobordism with dimW >
6. Suppose M is simply-connected. Then W is diffeomorphic to M x [0,1].

Note that for simpiy-connected W M M’, we have that' (W M, M’) is an
h-cobordism if and only if H,(W, M) =

Example 3.32 Suppose W is a compact manifold with boundary. Suppose in
addition

1. W and OW are simply connected.
2. dim W =n > 6.

84



3. H(W)=0.

Then W is diffeomorphic to a standard n-disk. In fact, if we pick a point z € W
in the interior of W and take a small ball B.around z, then the complement
V =W — intB is an h-cobordism. Everything is simply connected so that V is
a cylinder on 0B. Hence W = B U 9B x [ is a standard disk.

Example 3.33 (Poincaré Conjecture, n > 6) Let M™ be a manifold of the
homotopy type of an m-sphere, n > 6. Then the High Dimensional Poincaré
Conjecture states that M is homeomorphic to an n-sphere.

To see this, let B be a standard disk in M and set V = M — intB. Then
a simple argument shows H, (V) =0, so that V is diffeomorphic to a standard
n-disk. Thus M 1s obtained by gluing to standard n-disks together along their
boundary by some diffecomorphism g : S*~! — S™~!. Now, topologically iso-
toping one of the disks to a point we obtain §* = D™ U *. (The isotopy is not
smooth at the final stage.) Hence M is homeomorphic to a standard n-sphere.

In this section we outline the proot of the h-cobcrdism theorem. The key in-
put is a calculus of handles, which allows us to translate homology or homotopy
data about a cobordism into topological data. The methods are very similar
to the techniques used to show a homotopv equivalence with trivial torsion is
simple.

We already know that every cobordlsm is obtained by a sequence of surgeries,
and that the trace of a surgery adds a handle te the original manifcld. "Thus
every cobordism (and hence every manifold) can be decomposed into a collection
of handles. Let us recall first sornie notation concerning handies.

Let W be a manifold of dimension n. Let H = DP x D% p-+q =mn, be an
n-disk such that W N H = §P~! x D? C OW. Then we say H is a handle of
index p on W. There are various subsets of H of note:

1. DP x 0 is the core of H and 0 x DY the cocore.

2. SP~1 x 0 is the attaching sphere (a-sphere) and 0 x S77! the belt sphere
(b-sphere).

3. SP~! x DY is the a-tube and DP x S9~! the b-tube.

We can think of H as being attached to OW via an attachmg embedding
f SP~1l x DI — OW, so that adding a handle to W via f determines a
new manifold W Uy H. It is easily shown that isotopic embeddings determine
diffeomorphic manifolds.

Suppose now we added two handles to W

WUH®DUH®,

That is to say, we first add an r-handle H() to W and then an s-handle H (s)
to W U H("). Suppose that s < r. The handle H(®) is attatched to W U H ()
via its a-tube S5~1 x D™ or equivalently, via a thickened a-sphere S*~!. The
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cocore of H(") is 0 x D"~ Thus, S*=1 and D"~" intersect in general position
inanm=(s—1)+(n—r)—n=s—r — 1 dimensional manifold. But s <7 so
that m < —1. Thus we may assume that the a-tube of H() misses the cocore
of H"). In particular, we may slide the handle H(®) off of H(").

We have then

Lemma 3.34 (Reordering) Let W U H; UHyUH3U---. Then we may assume
indexH; < indezH,, 1, ie. each handle is attached to handles of lower dimension.

The next step is to consider relations between handles of consecutive di-
* mensions, say W U H(" y H(r+1), Putting everything into general position, we
see that the attaching map of H("+1) intersects the b-sphere (boundary of the
cocore) of H") transversly in a finite number of algebraic points {:ta:,-},"vvith
sign of z; depending on whether orientation is preserved (+) at z; or not (—).

Definition 3.35 The incidence number (H+D H(MY of handles is the alge-
braic sum ¥ & ;.

The incidence number e(E (1), H(™)Y s closely related to the boundary
relations in the cellular chain compiex C' of W U H™ U HC+D . We know
that H'"' contributes an r-cell e", and hence a generator {¢"] € C,. Similarly
H 1) contributes a generator [¢7+1] € Cr41. By definition of the cellular chain
complex, the boundary may d: C..; — C, satisfies

dle™Y] = (e, &[] + - -
where the incidence number e(e"*!, e") is given by the degree of the composition
ST Wue - S".

The first map is the attaching map for e”*! and the second map collapses W to a
point. But degree can be measured gecmetrically by making the map transverse
to a point (eg. the cone point of ") and algebraically counting the number of
points in the inverse image. These points are in fact the {z;} above. A
We see then that the geometric and chain theoretic incidence numbers are
equal
e(HTTY HMY = ¢(em+1 ).

This observation is critical. It allows one to trade homological information with
geometric information. In practise, one must have a method for converting
algebraic methods to geometric methods. This is where the calculus of handle
moves enters. The reordering lemma, is one such move. We require three more:
cancellation, creation and addition. . '

Two handles H(™) and H"*Y) are said to be complementary if their a-sphere
and b-sphere (respectively) meet transversely in a single point.

Lemma 3.36 (Cancellation) Consider WUH®UHTY with HT) gnd Hr+1)
complementary. Then there is a diffeomorphism W UH®™ UH) 5 W which
is the identity outside of a neighbourhood of H™ u H(+1)
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In fact, if W has simply connected boundary, n—r 2> 4,7 2 2and n > 6 (to
use the Whitney trick), the conclusion of the lemma holds true only assuming
e(H+D, H) = £1.

The lemma is proved by showing that such a pair of handles are in a standard
form so that H (") u Hr+Y) is diffeomorphic to an n-disk attached by an (n—1)-
face.

Conversely, we work the argument backwards. Start with W and attach
an n-disk B™ to 8W via an (n — 1)-face B"~!. Clearly this does not change
the diffeomorphism type of W. But we can chcose te regard B™ as a pair of
complementary handles H (M Uy H*Y, In other words,

Lemma 3.37 (Creation) Complementary handies may be freely introduced into
W without changing the diffeomorphism type.

Finally we consider the addition move. Consider W U Hl(T), r >
L

attaching map fi : S™™* — M’. (Here (W; M, M’) is a cobordism.
7,..1(M") denote the homotopy class of f.

Now consider another r-handle Hg‘) attached to W but disjoiut frem H,
0 th(at we have W U H. fr) U .H§r>. Write fy: 87! — M’ fo: the attaching map
of H{. o '

2, with
st (] €

€

Lemma 3.38 (Addition) Let M’ be simply connected andn —-7v 22, r > 2.
Then f» may be isotoped to a map fs such that [f3] = [f2] & [f1] in mp (M)
and imf3 Nimf; = 0.

The proof is straightforward. Imagine the two spheres S1 == /1(S™1) and
Sy = f2(S™"') embedded disjointly in M’. Take hold of a point of S5 and,
keeping everything except a neighbourhood of this point in S, fixed, pull the
point and the neighbourhood to S; and then over the top of the handle H@.
(Imagine a snail H{" slowly smothering a pebble =),

Armed with these handle moves we can now sketch a proof of the h-cobordism
theorem. Suppose then (W;M, M’) is an h-cobordism with m (M) = 0. We
may assume that W has a handle decomposition

W=MxIUHUHU---UH.U(M x1I)

where, by the reordering lemma, the handles are attached in order of increasing
index. Let us write W() for M x I union all the handles of index < r.

We proceed by induction, successively eliminating handles of each index by
various moves, while maintaining the diffeomorphism type. Once all the handles
have been eliminated we will have a cylinder.

We begin with the 0-handles in W. By construction W is the disjoint
union of M x I with a finite number of n-balls. Since M C W is a homotopy
equivalence, each 0-handle must be connected by a 1-handle to either another
0-handle or to M x I. Thus for each 0-handle there is a complementary 1-handle.
By the cancellation lemma, the 0-handles can be eliminated.
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Now consider the 1-handles. Let H()) be a 1-handle and « an arc in the
b-tube parallel to the core. By general position, we may assume « misses any
2-handles so that it lies in the boundary of W(2). Since we have an h-cobordism,
m(W®, M) =0 so that there is a 2-disk in W@ with boundary o U 3, where
(3 lies in M. Now thicken D? to an n-ball B”. By the Creation lemina we may
regard B™ as a pair of complementary handles H® U H®) so that H® has
a-sphere D2. By construction the pair (H®, H1)} is complementary so by the
Cancellation lemma they may he eliminated, leaving only the 3-handle.

Now suppose by induction that W has a handlebody decomposition with no
handles of index < 5. Suppose 2 < s < n — 4 (so that we can use the addition
lemma). Let H (s) be an s-handle to be eliminated. Let Hi(sH) be the collection
of (s +1)-handles, and consider the incidence numbers ¢; = e(Hi(sH), H®)). By
repeated application of addition lemma, we can modify the ¢; by moving the
(s + 1)-handles so that €; = +1 and¢; =, i >'1. Thus H® and Hf”l) are
complementary handles, so that H(*) can be eliminated. , v

Let us summarise our situation. We have an li-cobordism (W; M, M), and
by a sequence of handle moves we have eliminated all s-handles for 2 < s < n—4.
Also, we may. assume there are no 7 or (n — 1)-handles, by regarding them as
dual 0 and 1-handles and applying the above argument. Similarly for the (rn-- 2)-
handles. Thus we are only potentially left with some (n — 3)-handles. However,
since W' is an h-cobordism, there cannot in fact be any (n—3)-handles, otherwise
H,,_3(W, M) would be non-zero. So we have eliminated all the handles, and W
is a cylinder, ie. W is diffeomorphic to M x I.

What happens in the non simply connected case? As usual we have to either
work in the universal cover or add reference paths to our handles. In any case,
the there is a handle calculus as before consisting of reordering, cancellation,
creation and addition moves. The proof procedes in a different manner however,
Recall in the simply connected case we eliminated the 1-handles by replacing
them with 3-handles. Similarly we may replace s-handles by (s + 2)-handles. In
particular, suppose there are no handles of index < s. Let H(®) be an r-handle.
Let Hi(s“) be the collection of (s + 1)-handles and

€; = G(Hi(s-l-l), Hs).

Since Hy(W, M) = 0 there must exist integers n; such that Yn;e; = 1. Add
a complementary pair (H(+2), H(s+1) and apply the addition lemma moving
HE+D over the HE™ to arrange that e(H(+1), H®) = ¥n;e; = 1. We cancel
H*1D and H* leaving the (s + 2)-handle H(*+2),

Together with some low dimensional arguments, we can ensure that W has
handles only in consecutive dimensions (n — 3), (n — 2). Let A be the matrix
over Zm of incidence numbers. Then since H,(W, M) = 0, A is a nonsingular
matrix. Define the torsion of (W; M, M’) to be

T(W,M) = 7(A) € Wh(n).

By construction of the Whitehead group the element 7(W, M) is zero if and
only if A can be reduced to the identity matrix by the moves
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1. Replace Aby A1
' 2. Add a multiple of one row to another
3. Reorder the rows or columns
4. multiply a row by an element of 7 or —1
But each of these algebraic moveé can be realised by handle moves
1. introduce ‘a complementary pair of handles |
apply the addition lémma A

reindex the handles

change the reference path or orientation of a handle

‘We conclude that if 7(W, M) =0 vwe'may cancel the (n— 2} and (n - 2)-handles
t0 obtain a cylinder. Thus we have the s-cobordism theorem of Barden-Mazur-
Stallings:

Theorem 3.39 (’s-cobordv’sm)

Let (W™, M, M), n>6, be an h-"obordzsm Then W 15 dijfecmor-
phic to M x I if and only if

(W, M) =0 & Wh(m(M)).

Actually. it can be shown that there is a 1-1 correspendernce
7 : {h-cobordisms on M} <> Wh(my(M)).

Thus, h-cobordisms on M are classified by the Whitehead group of =, (M).

3.6 Siebenmann’s End Theorem

We counclude with an application of both the Wall finiteness obstruction in
Ko{Zr) and Whitehead torsion in Wh(mr). Siebenmann’s end theorem [30] is
concerned with the problem of putting a bcundary on a non-compact manifold.
At first sight this appears to be of little concern to compact manifolds. However
this is not the case. There are numerous circumstances where the topology of
compact manifolds is closely related to the properties of non-compact manifolds.
The most obvious is in embedding theory, when the existence of a nice neigh-
bourhood of an embedded manifold depends intimately on the topology of the
open complement. But the influence is much deeper and extends to splitting
problems, existence of bundle structures, topological surgery and more.

Let M™ be an open manifold. We shall assume M has empty boundary,
although this is not at all necessary. Since we are not concerned with smooth
structure here we will work - with topological manifolds, but the methods are the
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same in either category (including PL). We wish to enquire as to whether M
admits a boundary. By this we mean that there exists a manifold with boundary
(M’,0M’) together with a homeomorphism M = M’ — 9M’.

Clearly the existence of a boundary has something to do with the properties
of M ‘at infinity’, or in other words, away from compact subsets. Any property
which has ‘support’ in a compact subset of M will ultimately be of no interest
in deciding the existence of a boundary. Only those properties that persist at
infinity are relevant. This is formalised algebraically in the concept of a pro-
group. A pro-group (Gj, h;) is a sequence of groups and homomorphisms

GG g
For example, we can think of our open manifold M as being decomposed into a
collection of cocompact (compact complement) subsets {C;} such that N;C; = 0.
A choice of proper ray p : [0,00) -+ N allows us to construct a (preliminary
version) fundamental pro-group ’

71(Co) = m(C1) ¢ my(C) = -

We can in a sense pass to infinity immediately by taking the inverse limit.
But this is too dramatic, since cur geometric constructions will not take place
‘at infinity’ (which doesn’t exist yet!), but in each successive C;. Another way
of focusing our attention at infinity, but which is more relevant to us, is to use
pro-equivalence. We say two pro-groups (G, h;) and (G, h}) are pro-equivalent
if there is a commuting diagram

G;, - G, e G, -

N < N e N

Vel . . A !
Gjl « sz = Gja o

We say that (Gj, h;) is pro-stable if it is pro-equivalent to a constant pro-group
(G,1). Notice that pro-equivalent pro-groups have isomorphic inverse limits.
The converse is not necessarily true.

An important class of pro-groups are those satisfying the Mittag-Leffler con-
dition. We say (G, h;) is Mittag-LefHler is it is equivalent to a pro-group (G%, hf)
where each h] is an epimorphism.

A clean neighbourhood of infinity in M is a codimension 0 closed submanifold
V C M such that M — intV is compact. A system of clean neighbourhoods of
infinity consists of a collection of neighbourhoods of infinity {V;} such that
Vi C Vioy and N;V; = (. We say M is connected at infinity if there exists a
system {V;} of clean neighbourhoods of infinity such that the pro-set

7T()(V1) — 7T0(Vz) — .-

Is pro-equivalent to the trivial pro-set (x, *). ,

Suppose M is connected at infinity. Let { Vi} be a system of neighbourhoods
of infinity and p : [0,00) — M be a proper ray. The m;-system of M at infinity
with respect to the ray p is the pro-equivalence class of the pro-group

7T1(V1) < 77'1(‘/2) — 7T1(V3) = e
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where we take a base point b; in V; on the ray p, and the homomorphisms
are obtained by using the arc from b; to b;—1. Note that the pro-equivalence
class is independent of the choice of basepoints so constructed. In fact, the pro-
equivalence class only depends on the proper homotopy class of the ray, and
not even on the system of neighbourhoods of infinity. However, there may be
different proper homotopy classes of ray, even if M is connected at infinity.

Lemma 3.40 If the fundamental grovp system of M at infinity, with respect to
a ray p, is stable then any two rays p, p' are proper homotopic.

Definition 3.41 A manifold M is said to be tame at infinity if each clean
negihbourhood of infinity is finitely dominated.

We may now state Siebenmann’s theorem

Theorem 3.42 Let M™, n > 6, be a connected at infinity open wnanifold. Then
M admits a boundary if and only if

ks

. the my-system of M is stable
2. M is tame at infinity
2. An invariant o(e) € f(q(me) 15 Z€To.

Here m1(¢) 1s defined to be the inverse limut g {m1(Vi)} where {V;} is a sustem
of clean neighbourhoods of infinity in M.

The proof is fairly involved, and we shall only indicate the highlights. "The
basic ideas are as follows

1. We may easily construct a sequence of clean neighbourhoods of infinity
{vi}.

2. Suppose the inclusions 8V; — V; are homotopy equivalences. Then C; =
V, — intV;41 is an h-cobordism, for each i. By an Eilenberg swindle we
may push the torsion 7; of each C; to infinity. Hence M is homemorphic
to OV; x [0, 00) and admits a boundary.

3. Tt remains to show that we may choose the inclusions 0V; -+ Vi to be
homotopy equivalences. The trick is to exchange handles between V; and
Viy1 to increase the connectivity of 8V, — V;. Everything is ok except in
a critical dimension where a certain projective module needs to be free -
hence the finiteness obstruction.

Assume then we are given M™, n > 6, a manifold which is connected at
infinity, tame at infinity and such that the m1-system of M at infinity is stable.
Thus, we may assume there is a system of clean neighbourhoods of infinity,
together with a commutative diagram

w1 (V1) — 7r1(V2) — m1(V3) —

N Ve N Ve N
G — G — G-
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for some group G. Since V; is finitely dominated and the composition G —
m(Vi) — G is the identity, we may conclude that the kernel of my(V;) —
m1(Vi—1) is normally generated by finitely many elements. Consider then a
loop in V; which bounds a 2-disk in V;_;. First make the disk transverse to
Vi, so that it intersects in a finite number of circles in the interior of the disk.
Starting with the innermost circles and working out, each such circle bounds a
small 2- disk. If this small disk iies in V;_.; — V; then add a regular to the disk.
If instead the small disk lies in V; excise out a regular neighbourhood of the disk
from V;. Continue in this way until the original 2-disk is disjoint from dV;. Let
Vi be the result of this exercise, for each 3. Then 7 (V/) = G for all i.

A similar argument allows us to arrange that 71 (0V)) = (V). We have
shown

Lemma 3.43 With M as above, we may assume that there is a sysiem of clean
neighbourhoods of inﬁnity {Vi} such that

(3V) = m(V;) o m(e), for alli
for some group m(e).

So much for the fundamental group. How can we arrange for C; = V; -
intV;y1 to be an h-cobordism? Clearly, it is necessary and sufficient for the
homology groups of the universal cover Hk(V,,aV) k > 0, to be zero. Sup-
pose an element [a] in Hy(V;, 8V;) may be represented by an embedded k-disk
(D, 8%=1) c (V,8) (with a reference path to the base point). Then we excise
this disk, by removing the interior of a regular neighbourhood, to cbtain a new
manifold (V/, 8V) fitting into the long exact sequence

0 — Hyy1(Vi, Vi) = Hipa (V7,0V/) — Zﬂ'(e) — Hy(V;,0V;) = Hy(V!,8V/) = 0.

The effect of excising this (D*, S*~%) is therefore to kill [a] in H}(V;,8V;) and
to potentially introduce new classes in dimension k + 1. o

So we could procede by induction and successively kill H, &(Vi, V;). There
is one problem however: once we reach the middle dimension we have trouble
embedding the disks D¥ using standard embedding methods. However, it turns
out that the embedded disks are already there, inside the handle decomposition.

Proposition 3.44 Let M be as above. There exists an arbitrarily small clean
neighbourhood of infinity V such that m1(0V) = 711(V) 2 m1(€) and Hy(V,0V) =
0,1<n-3.

Proof Let us assume that we have already constructed a clean neighbourhood
of infinity V such that H; (V V) =0,i <k, k <n—3. We can show, in the
usual way, that H k+l(V BV) is finitely generated as a Zm(e)-module. So a set
of generators of Hk+1(V aV) has support in a compact subset of V. Choose
then a new clean neighbourhood of infinity V'’ such that H;(V,0V) =0, < k
and

Hk+1(C, 6V) ad Hk+1(V, BV)
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is onto. Here C' = V — intV’ is a compact subset (containing the support of
Hy41(V,8V)). Since the map is onto, we conclude that all the handles of index
k+1 in V may be assumed to be in C. Also a straightforward argument shows

Hi(C,0V) =0, i<k-1,

so that C contains handles of index k and k + 1. Reorder these handles that
they are attached in order of increasing 1ndex and let U be the new boundary
-after ading all the k-handles.

Consider now an element [a] € Hy11(C,dV) written [a] = Sn;g;[e;] where
the e; are (k 4 1)-handles with a reference path. Introduce a cancelling pair of
handles Hy, H; of index (k + 1) and (k + 2) and use the addition lemma on H;
pushing over the g;e; so that H, represents the class ja]. Since a is a cycle in
H, k+1(C’ dV) we may assume that the cell H; is attatched to V. (This requires
the Whitney trick to move the attachmg map, hence the dimension restrictions
in the proposition.) Finally then , we have a (k +1)- handle H; attached to 8V
and representing the class [o] € HkH(C &V). Excising such handles allows us
to kill Hy1(C, V).

So we have constructed a system ¢ of clean neighbouroods of mﬁmtv { V;} such
that :

1. m(0V;) & "rl(V) = 71, (€) with inclusi_on maps inducing isomozrphisms.

2. Hy(V;,0Vi) =0, i<n=3. .
Regarding n and (n—1)- handles as dual 0 and 1-handles we can apply the above
techniques to kill H,(V;,0V;) and H,.- 1(V;,8V;). Thus we are only left with
H,_5(V;,0V;). The situation is similar {o the argument in the construction of
the Wall finiteness obstruction. Indeed, in that case, as in this, we needed the
homology group to be (stably) free. Again, using the same kind of argument,
H,_ 2(V,,8V) need not be free, but it is at least a projective Zm(e)-module.
We obtain an element :

oe) = U(Hn_g(f/},‘aff,) € Ko(Zmy(e)).

If this element is zero, after adding suitably many cancelling pairs, we may
assume H,_ 2(V1, 8V) is free, in which case we can excise (n — 2)-handles from
V; to kill H,,_ 2(V 8V) but leave H,_ 1(Vz,8V) unchanged.
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