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PREFACE

This is the lecture notes of my serious lectures that I gave in the 1°t Global Analysis Re-
search Center Symposium on Pure and Applied Mathematics at Seoul National University,
Korea.

It represents some part of the materials in the theory of singularities which are inter-
esting to me. I would like to thank organizers for their kind invitation as well as their
hospitality while I was in Seoul. I would also like to thank Dr. Chi-Wah Leung for typing
the first draft and Professor Changho Keem for finishing the final version of these notes.
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§0 Introduction

Theory of singularities are becoming ever more the vital subject matter of several main streams of
mathematics such as Algebraic geometry, Complex geometry, Differential topology, Lie algebras, etc. In fact,
one can view that theory of singularities include complex projective geometry as particular case. In these
lectures, we shall only consider isolated hypersurface singularities. We shall discuss some of its connection
with other fields.

Let f(20,21, ", 2x) be a non-constant holomorphic function in n + 1 variables. Let

V = {(s0, 21,1 2) € O™ ¢ S0, 2) = 0}

Such a set is called a complex hypersurface.

We want to study the topology and complex structure of V in a neighborhood of some point p € V.. As
an example, if p is a regular point of V' (that is, if some partial derivative 5f- does not vanish at p) then V'
is a complex manifold of complex dimension n near p.

By way of contrast, consider the singular point p of V' (that is 1f (p) =0V 0<j<n) Itisthe
topology and complex structure in a neighborhood of this point that we are going to study. Throughout our
lectures, we shall assume that p is an isolated singularity.

Example: V ={(z,)€C?:22-3y*=0}. y  2*-y°=0

regular

oint
«— P gt K

singular point /‘ z vV

Let §27t! be a sphere of radius € around p, and consider the intersection

K =V n§t!

If € is sufficiently small, then K is a compact oriented differentiable manifold of real dimension 2n—1 and
the diffeomorphism type of K does not depend on the choice of e. This basic construction, which associates
to every isolated singularity of a complex hypersurface the diffeomorphism type of a certain differentiable
manifold, establishes a very interesting connection between complex analysis and differential topology. This
construction goes back at least to Brauner (1928) and Zariski (1932).

In 1966 Brieskorn discoverd that the manifold K arising from a singularity (V, p) may be an exotic sphere.
Moreover it was found that this may happen even for very simple varieties V'

{(20, 21, 22,23, 24) € C: 25 +23+22 + 22 + 22 =0}

for which K is an exotic 7-sphere. More precisely it is the standard generator of the group of the 28 exotic
7-spheres.

In 1968, Milnor proved that the manifold K = V' NS?"*! is (n —2)-connected. He introduced a fibration
which is useful in describing the topology of such manifold K.

This manifold K, being a boundary of complex variety, has some spema.l properties.



§1 Application in Complex Geometry

In Complex Geometry, one of the natural and fundamental questions is the classical complex Plateau
problem. Specifically the problem asks which odd-dimensional, real compact connected manifolds in CN
are boundaries of complex submanifolds in CV. Let X be a real 2n — 1 dimensionl compact connected
submanifold ¢ CV

Federer (1965): X = 8V, V complex submanifold in CV.
= V is a unique minimal submanifold having boundary X.

As for the existence problem, naturally we do not expect solution for arbitrary submanifold X.
For dimp X = 1, there is a Necessary condition for X to be satisfied:

(1.1) / w =0 V holomorphic 1 — form w
X

This can be seen as follows. Suppose X = 8V. Then by Stoke’s theorem [y w = [, w = [, dw = [, 0w =0
because d = 8 + 3 and dw is a (2,0)-form.

There is a corresponding question in uniform algebra: Find complex structure in the maximal ideal
space of the subalgebra P(X) of algebra of continuous function C(X) generated by polynomials. i.e. Find
the complex structure in X — X where X is the polynomial hull of X.

Wermer (1958): Affirmative answer when X is a simple closed analytic Jordan curve.

Bishop — Stolzenberg (1966): Affirmative answer when X is a continuous differentiable simple closed curve.

Alexander (1971): Affirmative answer when X is a rectifiable simple closed curve.

For dimX = 2n —1,n > 1 Necessary conditions for X to be a boundary of a complex submanifold V in CV
are as follows:

1) X is orientable, with orientation being induced from V.
2) Vpe€ X dimc(Tp(X) N JT,(X)) = n — 1, where J is the complex structure of CV.

Note that Hj, = T,(X) N JT,(X) is invariant under J. So H is a complex vector space.
2) is true because T,(X) N JT,(X) is the orthogonal complement in T,(V) of the complex line spanned
by the normal vector to the boundary V at p. We can also see 2) by direct computation

dimg (T(X) N JTp(X)) = dimpTp(X) + dimp JTp(X) — dimpTp(V) =2n— 1+ 20— 1 — 2n = 2(n — 1)

Definition : Let X be a compact, orientable real manifold of dim 2n-1. A CR-structure on X is an (n-1)-
dimensional subbundle S of CTX (= TX ®g C) such that

(1) SnS={0}

(2) If L, L' are local sections of S, then so is [L, L'].
Such a manifold X is called CR-manifold.

Equivalently, (X, H, J) is a CR-manifold if H is a subbundle of TX with dimg H = 2(n-1),J: H— H,
and J? = —Identity. If X and Y are in H, then so is [JX,Y] + [X,JY] and J{[JX,Y] + [X,JY]} =
[JX,JY] - [X,Y].

Let us show that the two definitions of a CR-structure are equivalent. Given S we choose some basis
{L1,"++,Lp-1} and note that SN S = {0} implies that {ReL,,---,ImL,_,} is linearly independent. Set
H equal to the linear space over R of this set and define J by J(ReLy) = ImLy. J (ImLy) = —ReLy. H
clearly does not depend on the choice of basis. The map J extends to a complex linear map of C ® H to
itself with .S as its —i eigenspace and S as its +4 eigenspace. So J also is independent of the choice of basis.
The integrability condition for J follows from that for S.

Conversely, given H and J, extend J to a complex linear map of C ® H to itself and let S be the —i
eigenspace. Clearly SN S = {0}. And now the integrability condition for J implies the one for V.

In summary, the condition

LesS

is equivalent to ]
L=X+1JX for some X € H



Remark: If X = 8V, V complex submanifold, then S = ([], ; CTV)NCTX defines a CR-structure on X,
where [[, ; CTV denotes the (0,1)-vector on V.

Definition: Let X be a CR-manifold of dimendion 2n-1.
Let Ly, Lo, -+, Ln—1 be a local basis for S over U C X.
Ly,Ls,--+,Ln_1 be alocal basis for § over U C X.
Choose N purely imaginary (i.e. N = —=N)s.t. Li,-++,La—1,L1,--+,La—1, N span CTX. Then the

matrix (c;;) defined by
(L, Lj) =Y afLi + YL + cisN
is Hermitian; it is called the Levi form.
Remark: The Levi form is non-invariant; however its essential features are invariant.

Proposition : The number of nonzero eigenvalues and the absolute value of the signature (ci;) at each
point are independent of the choice of Ly,--+,Ln-1,N.

Definition: A CR-manifold X is strongly pseudoconvex if the Levi form is definite.

Rossi (1964): Let X be a strongly pseudoconvex CR-manifold of dim 2n-1,n > 3. Then X is a boundary of
a uniquely determined, bounded complex analytic variety V in CN - X. Furthermore, there exists boundary
regularity i.e.X UV is a regular C* submanifold with boundary near X.

In 1975 Harvey-Lawson developed an extremely important theory on boundaries of complex analytic
varieties. In particular they have proved the following significant theorem. )
Harvey — Lawson (1975):  Let X be a CR-manifold of dimg =2n — 1,7 > 2 in C¥. (no further assump-
tion!) Then X is a boundary (as a current) of a uniquely determined, bounded complex analytic variety V'
inCN - X.

If dimr X = 1 and X satisfies (1), then X is a boundary of a uniquely determined, bounded complex
analytic curve V in CV — X.

Let us denote [V] = 2n dimensional current in C¥ by integration over manifold points of V' (with the
canonical orientation) of C* 2n- forms with compact support in CY. Then d[V] = [X] means the following

d[V](a) = [V](de) = [X](a), for any C*° (2n-1)-form o with compact support.

With different technique, we have proved the following.

Theorem 1: Let X be a connected CR-manifold of dim 2n-1, n > 2 in CV. Suppose the Levi form of
X is not identically zero at every point of X. Then 3! bounded complex analytic subvariety V of dim n in
CVN — X such that the boundary of V is X in the sense of point set topology. Moreover, outside a set of
(2n-1)-measure zero in X, V has boundary regularity.

So far the original complex Plateau problem remained unsolved. The strongly pseudoconvexity only
guarantees that V has boundary regularity near X. However V may have interior singularity.
Xo
X

Xi

Xy bounds a complex sub-
variety with singularity

X; bounds a complex
submanifold.

A\ vi=Gectfa =1

Y

Vo ={z € C™: f(z) =0}



Observe that in the above picture, X, is diffeomorphic to X;. The natural question is whether X is
CR isomorphic to X;. For this purpose, we need to introduce CR-invariants. In (1965) Kohn-Rossi defined
their cohomology on CR-manifolds. It can be defined in the following manner.

Let M be a relatively compact open domain in complex mamifold M’ of dimension n and X = oM.
Let r be a C™ real valued function defined in a neighborhood of X such that dr #0andr<0in M, r >0
outside M U X.

AP = sheaf of germs of C*°(p,q) forms on M ; :

CPe = {¢p € AP9: ¢ = Or Ay + 8 for some 1) € AP9-1 and § € AP } which is a subsheaf of A?¢

B%? := AP9/CP4 Jocally free sheaf supported on X.

Since (¢ A Or +18) = (8y — 6) A dr +180,8 : CP94 — Cpratl,
0 — Crt  — APe 1'3’;;'1 — 0
[
0 — Cpatl __, Apetl __, ]"3&@4-1 — 0

Let BR? = space of sections of BR?.
Then Kohn-Rossi complex is: 0 — Bg;o
and Kohn-Rossi cohomology

i Bg(’l —51) —_ B’;(’"'_l — 0
, . {¢€B§(’q:55¢=0}
H%%(X) T EbBQq_l

As a consequence of Kohn’s solution to 8-Neumann problem in 1964, Kohn-Rossi proved the following

Theorem (Kohn — Rossi 1965):

For strongly pseudoconvex CR-manifold X, H2%(X) is finite dimensional for 1 < g < n — 2.

Suppose X is a strongly pseudoconvex CR-manifold C C¥. Then X is a boundary of a complex analytic
subvariety V' with isolated singularities i, -, Zpm,.

Kohn — Rossi Conjecture (1965): In general, either there is no Kohn-Rossi cohomology of the boundary X
of V in degree (p,q),q # 0,n — 1, or it must result from the interior singularities of V.

Our following theorem answers the conjecture affirmatively.

Theorem 2: Let X be a strongly pseudoconvex CR-manifold of dimension 2n — 1,n > 3 which is a
boundary of a Stein analytic space V with isolated singularities 1, - -, 2,,. Then

m
HRL(X) =2 @PHI(V,Q)) 1<g<n-2.

i=1

Suppose 1, - -,z are hypersurface singularities. Then
0 p+g<n-—2 1<g<n-2
dimHRG =< S0, dim A(V,2;) p+g=n—-1,n 1<g<n-2
0 p+qag2>2n+1 1<¢g<n-2

This is the first explicit computation of Kohn-Rossi’s cohomology. Here we denote
A(V,z;) := moduli algebra of V at z;
Let ; = dimA(V, z;).7; is called the number of local moduli of V at T;
Suppose V = {z € C"*! : f(2) = 0}. Then

A(V,0) := C{zo,-n,z,,}/(f,%,...,%)



Example: Xo = {28 + 2" + -+ 2 =0} N {Jaf? + -+ |zaf? = 1} € O
Xoo o Xp= {22+ 20+ + 28 =t} n {Jf2 + + |zal? = 1} C C™H!
Xy is diffeomorphic to X,

4 0 p+qgln—-2 1<g<n-2
Hpp(Xo)=q (@ -1)---(@n—1) p+g=n—-1n 1<g<n-2

0 p+qg2>2n+1 1<¢g<n-2
HRL(X1)=0

Xo 2 X; as CR-manifold.

As a corollary of the previous theorem, we have proved

Theorem 3 (Solution to complex Plateau Problems) : Let X be a strongly pseudoconvex CR-manifold

of real codimension 3 in C"*! n > 3. Then X is a boundary of the complex submanifold V c C™*! — X if
and only if Kohn-Rossi’s cohomology groups HR%(X) are zerofor 1 < ¢<n-—2.

The above Theorem 2 actually says that compact CR-manifolds of real codimension three in C™*! are
quite distinquished.

Definition: Let X be a compact (2n-1)-dimensional strongly pseudoconvex CR-manifold in C"*!,n > 2.
By a theorem of Harvey and Lawson, X is the boundary of a complex variety V in the C* sense. V is
smooth except at finitely many isolated singular points {z1,---,zx}. Let 7; be the number of local moduli
of V at z;. We define 7(X) tobe ry + 72 + -+ + 7%.

Theorem 4: Let X be a compact connected (2n-1)-dimensional strongly pseudoconvex CR-manifold in
Cntl n > 2, Then 7(X) defined above is a CR-invariant in the sense that if X’ C C*t! is another (2n-1)-
dimensional CR-manifold which is CR-diffeomorphic to X, then 7(X) = 7(X'). Moreover, X is a boundary
of the complex submanifold V C C™*! — X if and only if 7(X) = 0. In fact for n > 3,7(X) = dim HR%(X)
forp+g=n—-1,nand1<qg<n-—-2.

Open Problem :  Given an intrinsic interpretation to 7(M) for n = 2.

Definition :  Let X be a CR-submanifold in C¥. Set H, = T, X N JT. X for z € X, where J denotes the
complex structure of C¥. A smooth S'-action on X is said to be holomorphic if it preserves the family of
subspaces H, C TX and commutes with J. It is said to be transversal if, in addition, the vector field which
generates the action, is transversal to H, for all z € X.

We have the following solution to equivariant Complex Plateau Problem.

Theorem 5 : (Lawson-Yau) Let X C C™*! be a CR-manifold of dimension 2n — 1 > 1. Suppose that X
admits a transversal holomorphic S-action. Then after a biholomorphic change of coordinates in C™+!, X
is contained in an affine algebraic hypersurface Y C C™*!. The hypersurface Y has at most one singular
point. It also has a C*-action and the embedding X C Y is S'-equivariant.

In Theorem 2, we have actually established a natural vector space isomorphism from HRH(X) to
o, A(V,z;) for p+g=n—1and 1 < g < n—2. Since each A(V,z;) has a natural Artinian algebra
structure, we can use this isomorphism to put algebra structure on H2:%(X). Then an algebraic condition
can be given as follows, which is powerful enough to determine when two CR-submanifolds in C**! of
dimension 2n-1 are diffeomorphic to each other.

Theorem 6 : (Lawson-Yau) Let X,X’ C C"*! be strongly pseudoconvex CR-manifolds of dimension
2n-1 with transversal S! actions. Suppose that there exists an algebra isomorphism

Hy(X) & HE(X')

for some (p, q) with p+¢=n—1,1 < g < n—2. Then there exists a diffeomorphism f : C*t! — C"+! with
f(X)=X'

The proof of this theorem depends on Theorem 5 and a theorem of Mather and Yau which will be
discussed below in §2.



Let X be a compact CR manifold of real dimension 2n-1. One of the fundamental questions in the
theory of CR geometry is to decide when X is CR embeddable in CV, and what is the minimal embedding
dimension. These problems have attracted many distinguished mathematicians. In 1974, Boutet de Monvel
(and Kohn 1985) proved that if X is a compact C* strongly pseudoconvex CR manifold of dimension 2n-1
and n > 3, then X is CR-embeddable in CN. In a series of deep papers published in 1982, Kuranishi
developed the theory of harmonic integrals on strongly pseudoconvex CR structures over small balls along
the line developed by D.C. Spencer, C.B. Morrey, J.J. Kohn and L. Nirenberg. As a significant application
of his deep theory, he proved that for strongly pseudoconvex CR manifold of real dimension 2n-1, there
exists local CR embedding in C™ as long as n > 5. Later Akahori proved that for n = 4, Kuranishi local
embedding theorem is still true. On the other hand L. Nirenberg gave an example of a strongly pseudoconvex
CR structure which cannot be induced by such an embedding.

Recently, Kohn has studied CR manifolds which are boundaries of bounded pseudoconvex domains in
n-dimensional complex manifolds. He used the following notation: the restriction of & will be denoted by 8.
He proved that the range of 9, in L, is closed. For a compact strongly pseudoconvex manifold, the closed
range property on functions implies that the manifold is embeddable in C¥. H. Grauert has constructed
compact 3-dimensional, strongly pseudoconvex CR manifolds which are not embeddable. Such examples
were also studied by H. Rossi and by D. Burns.

In the rest of this section, we shall assume that the compact CR manifold X of real dimension 2n-1 is
already embeddable in C¥. This hypothesis is automatically satisfied when n > 3. The natural important
question is to find the minimal embedding dimension. As a Corollary of Theorem 2, we can see that for
n > 3, certain (2n-1)-dimensional CR manifolds which are embedded in C™*!, cannot be embedded in C
and there are obstructions for embedding (2n-1)-dimensional CR-manifolds in C™+! as well.

Example: X = {25° + 20" +--- + 22» = 0} N{|21|> + - -+ + |2a|? = 1} C C™*L is a (2n-1)-dimensional CR
manifold which is not CR-embeddable in C™.

Theorem 7: Let X be a compact connected real (2n-1)-dimensional strongly pseudoconvex CR-manifold
with n > 3. Then X is not CR-embeddable in C™*! if one of the following does not hold.
(1) HRL(X)=0 forp+q15,n— 2,1<g<n-2
(2) dim HR}(X)=dim HyZ (X) forp+gq=n—lorn,1<q<n-—2
andp'+¢ =n—-lorn,l1<¢<n-2
(8) HRH(X)=0 forp+q>n+1,1<qg<n-—-2

Now let X be a compact connected strongly pseudoconvex 3-dimensional CR manifold which is embedded
in CV. By a theorem of Harvey and Lawson, X is the boundary of a complex variety V in the C* sense. V
is smooth except at finitely many isolated points {z;,---,zx}. Let 7 : M — V be a resolution of singularities
of V. Denote A = UX_, 4;, where 4; = 7~ 1(z;). By successive blowing up at points, we may assume that A
has normal crossings, i.e. irreducible components of A; are nonsingular, they intersect transversely and no
three meet at a point. By a theorem of Grauert and Mumford, one can define a divisor K supported in A
with coefficients in rational numbers such that

Al K =-Al Al +2g] -2
where A is an irreducible component of A; and g} is the genus of A7. Then we have the following Theorem.

Theorem 8 (Luk-Yau) Let X be a compact connected 3-dimensional strongly pseudoconvex CR manifold
embeddable in complex Euclidean space. Denote M, 4, K as above. Then
(1) pg=dim H(M,0),x = x,(A) + K - K and w = dim H'(M, Q') + K - K depend only on X itself,
where O is the structure sheaf, Q! is the sheaf of germs of holomorphic 1-forms on M and x,(A) is the
topological Euler characteristic of A.
(2) X is not CR-embeddable in C3 if either
(a) x=xr(A)+ K - K is not integral, or
(b) w=dim H(M,0')+ K - K is not integral, or
(¢) 10 pg +w =10 dim HY(M,0) +dim H'(M,Q))+ K -K <0



Actually part (1) of Theorem 8 follows immediately from the following diagram :

point modification of M = M — M = point modification of M'
resolution of V = M Ai.f = resolution of V'
normalization of V. = V N 1;’ = normalization of V'
X=0V c Qgcmwhg% 2 V' =X'

(where @ : V — V" is biholomorphic map and ¢ : X — X’ is CR-isomorphism.)
and the fact that x,(A) increases by one after one blow up, and K - K decreases by one after one blow up,
while p, remains the same after one blow up.

We next consider a compact connected 3-dimensional CR manifold X which admits a transversal holo-
morphic action of S! and which is embeddable in CV. Then by a Theorem of Lawson-Yau (Theorem 6),
X is the boundary of a complex variety V (with at most one isolated singularity) in the C* sense. The
following Theorem 9 is deeper than the part(2)(c) of Theorem 8.

Theorem 9 : Let X be a compact connected 3-dimensional CR-manifold which admits a transversal
holomorphic S!-action and which is embeddable in C¥. Denote M, A and K as before. Then X is not
CR-embeddable in C3 if

6py+x<0

Before we can prove Theorem 9, we need to recall the Durfee conjecture. Let f : (C3,0) — (C,0) be the
germ of complex analytic function with an isolated critical point at the origin. For e > 0 suitable small and §
yet smaller, the space V' = f~1(6) N B, (where B = {(z,v,2) : |22 +|y|2 +|z|? < €?}) is a real oriented four
manifold with boundary whose diffeomorphic type depends only on f. V' has the homotopy type of a wedge
of two-spheres; the number p of two-spheres is precisely dimC{z,y, z}/(fz, fy, f2). Let 7w : (M, A) — (V,0)
be a resolution of V = {(z,y, 2) : f(z,y,2) = 0} with exceptional set A =7~1(0). Let

py = dim HY(M,0)

X (A) = topological Euler characteristic of A

K? = self intersection number of the canonical divisor on M
Recall that Laufer’s formula says that 1+ u = x,(A) + K% + 12p,. However the formula does not provide a
direct comparison between p and p,, which are two important numerical measures of the complexity of the
singularity. In 1978, Durfee has made the following spectacular conjecture.

Durfee Conjecture :  6p, < p with equality only when p =0

Let f : (C™*1,0) — (C,0) be a holomorphic function with an isolated critical point at 0. f can be
developed in a convergent Taylor series 3", a, z* where z* = 2)° - - z)». Recall that the Newton boundary
T'(f) is the union of the compact faces of 'y (f) where I',.(f) is the convex hull of the union of the subsets
{\ + (R*)"*+1} for A such that a, # 0. T'_(f), the Newton polyhedron of f, is the cone over I'(f) with
vertex 0. For any closed face A of I'(f), we associate the polynomial fa(z) = }_,ca @,2>. We say that f is
non-degenerate if fo has no critical point in (C*)"*! for any A € T'(f).

The geometric genus of the isolated hypersurface singularity (V,0) defined by f(zo,---,2n) = 0 is
pg = dim H™"1(M, O) where M is a resolution of the singularity (V,0).

Theorem (Hodge n = 2, Bernstein, Khovanski, Kouchnirenko n > 2, unpublished but announced by Arnold
(1975), Merle-Teissier published 1980)



Let (V,0) be an isolated hypersurface singularity defined by a nondegenerate holomorphic function
f: (C™*1,0) — (C,0). Then the geometric genus pg = #{p € Z}' NT_(f) : p is positive i.e. p =
(p01 t ’pn)’pi >0 V’t}

A polynomial f(z, 21, -, zn) is weighted homogeneous of type (wo,w1,+*,wn), where (wo, w1, -+, wn)
are fixed rational numbers, if it can be expressed as a linear combination of monomials 202yt + - - zin for which
RN R e
wo Wn
Theorem (Milnor-Orlik)

Let f(zo0,21, ", 2,) be a weighted homogeneous polynomial of type (wo, w1, - -, ws) with isolated sin-
gularity at origin. Then p = (wo — 1)(wy — 1)+ -+ (w, — 1) where p is the Milnor number of f.

The general problem of counting the number of positive integral points satisfying

T Yy oz
(1.2) . + 5 + - <1
where a, b, ¢ are positive numbers, has been a challenging problem for many years. The difficulty lies from
the facts that a,b, c are not necessarily integers or even rational numbers and it is very hard to estimate the
number of positive integral points satisfying £ + 4 4+ 2 = 1. The corresponding problem with (1.2) being a
strict inequality has been discussed by Lehmer, Lochs and Ehrhart. There are extensive references in Reviews
in Number Theory 1940-1972, Vol.4. However, we know of no definite results. Perhaps the most beautiful
formula is due to Mordell who actually gave an exact formula for the number of positive integral solutions
of (1.2) when a,b, c are relatively positive integers. Recently by using the technique of toridal embedding,
James Pommersheim was able to give an exact formula for the number of positive integral solutions of (1.2)
when a, b, ¢ are arbitrary positive integers. However this formula is not useful as far as the Durfee conjecture
is concerned. :

Theorem 10 (Xu-Yau) Let a > b > ¢ > 2 be real numbers. Let P be the number of positive integral
solutions of (1.2) i.e. p=#{(z,y,2) € 23 : £+ ¥ + 2 < 1}. Then

6P<(a—1)(b-1)c—1)—c+1
and the equality is attained if and only if a = b = ¢ = integer.
The following theorem solves the Durfee conjecture affirmatively.

Theorem 11 (Xu-Yau) Let (V,0) be a two dimensional isolated singularity defined by a weighted
homogeneous polynomial f(zg,21,22) = 0. Let p be the Milnor #,py be the geometric genus and v be
the multiplicity of the singularity. Then

p—v+126p,

with equality if and only if (V,0) is defined by homogeneous polynomial.

In view of the Theorem of Hodge, Bernstein-Khovanski-Kouchnirenko, Merle-Teissier and the Theorem
of Milnor-Orlik, one may think that Theorem 11 is a direct consequence of Theorem 10. Actually this is
not quite so because as we shall see later §3 v = min {m € Z : m > min {wg, w;,ws}} where wo, w; and w,
are weights of zg,2; and 29 respectively. The problem here is that min{wg, w1, w} may not be an integer.
So we have to improve the inequality of Theorem 10 slightly in a special case. The following observation is
a consequence of results in §3. Suppose wy > w; > wy and w, is not an integer. Let wo = [wq] + B with
0 < B < 1. Then 8 is either %ﬁ or %12 The sharper inequality that we needed is the following

Theorem 11’ (Xu-Yau) Leta > b > c > 2 be real numbers. Consider

LY 2
a b ¢

Let P be the number of positive integral solutions of the above inequality i.e. P = #{(z,v,2) € 2% :
§+ 4+ 2 < 1}. Suppose c is not an integer and ¢ = [c] + B where 3 is either £ or £&. Then

6P<(a—1)b—1)(c—1)—c+p



Now we are ready to prove Theorem 11.
Let wp, w; and w; be the weights of 29, 2; and z; respectively so that f (20, 21, 22) is a weighted homoge-
neous polynomial. By a theorem of Saito, we may assume without loss of generality that wo > wy > ws > 2.

Since py = #{(z,y,2) € 2,3 : =t + 2 <1} and p = (wo — 1)(w1 — 1)(wz — 1), therefore theorem 10
implies

(13) 69 < —wn+1

with the equality if and only if wo = w; = ws = integer. Recall that v = inf {n € Z, : n > inf (wy, w1, we)}
= [wa] + 1. If ws is an integer, then ¥ = wy and Theorem 11 follows directly from (1.3). If ws is not an
integer, then necessarily we = [we] + 8 with 0 < 8 < 1, and 8 is either 22 or 2.

In view of Theorem 11’, we have

6py < (wo — 1)(w1 — 1)(wz — 1) — w2 + 8
== [wy]
=p—-v+1

So we have proved 6p, < p—v+1 and the equality holds only if (V,0) is defined by homogeneous polynomial.
It remains to prove that if (V,0) is defined by homogeneous polynomial of degree v, then p—v+1 = 6p,.
One checks easily that p = (v —1)3 and p, = %V(V —1)(v —2). So the desired equality follows immediately.

Let us now give a proof of Theorem 9. For this purpose, it is sufficient to prove that if X is embeddable
in C3, then 6p, + x > 0. By Theorem 5, if X is embeddable in C3, then X is the boundary of a subvariety
V C C3. The hypersurface V has at most one singular point. In fact it is a quasi-homogeneous isolated
hypersurface singularity. In view of Theorem 11 p > 6p, and Laufer’s formula 1 + p = 12p, + X, we have
6pg + x > 1 as desired.

Given a function f with an isolated singularity at origin. It is an important question to know whether f
is a weighted homogeneous polynomial or homogeneous polynomial after a biholomorphic change of variables.
The former question was answered by Saito in 1973. However the latter question remains open ever since.
In case f is a holomorphic function of three variables, the problem is solved by the following theorem

Theorem 12 (Xu-Yau) Let (V,0) be a two-dimensional isolated hypersurface singularity defined by
f(z,y,2) = 0. Let u be the Milnor number, p, be the geometric genus, v be the multiplicity of the singularity
and 7 = dimension of the semiuniversal deformation space of coordinates (V,0)=dim C{z, y, 2}/(f, fe, Sys f2)-

Then after a biholomorphic change of coordinate f is a homogeneous polynomial if and only if p—v+1 = 6p,
and p = 7.



§2. Equivalence of Singularities: Holomorphic case

Let On41 denote the ring of germs at the origin of holomorphic functions f : (C**!,0) — C. O, has
a unique maximal ideal m,; consisting of the germs of holomorphic functions which vanish at the origin.
Let Gr41 be the set of germs at the origin of biholomorphism ¢ : (C"t1,0) — (C*t!,0). G,41 can be made
into a group by using composition of map germs for the group operation.

Definition Two germs of holomorphic functions f, g : (C**!,0) — (C,0) are called right equivalent if there
exists a ¢ € G,4+1 such that f = g o ¢. We use the notation f 2 g to denote right equivalence

The group R = Gn41 acts on mn4; by composition on the right. The right equivalence classes are the
orbits of this group. The orbit of f € mn4; is denoted by

R(f) = {9 € Mt1: 9 % £}

Definition Two germs of holomorphic functions f, g : (C"*1,0) — (C,0) are called right-left equivalence if

there exists ¢ € G411 and 9 € G; such that f = o go¢. The notation f BL g is used to indicate right-left
equivalence.

Right-left equivalenceAalso arises from a group action. The group RL = G; X Gn41 acts on m,41 by
composing on the left with the G; component and on the right with the component from G, ;. These orbits
are denoted by

RL(f) = {g € Mny1:9 % f}.

Definition  Suppose f,g : (C"*1,0) — (C,0) are holomorphic map germs. f and g are called contact
equivalent if and only if there exists a germ of a biholomorphism H : (C™*2,0) — (C™*2,0) such that

(a) H(C™! x {0},0) = (C™*! x {0},0)

(b) H(graph f) = graph g

The notation f ~ g is used to indicate contact equivalence.
Definition The contact group K consists of those germs of biholomorphisms H : C**2 — C"*2 for which
there exists a holomorphism h : (C"t1,0) — (C"*1,0) such that the following diagram commutes.

(Cn+l’0) AN (Cn+2’0) LN (C”+1,0)

| b

(C™,0 — (C™2,00 = (C**,0)

where ¢(20,- -+, 2,) = (20, -+, #n,0) and m(20, - -, 2n,w) = (20, -, 2n). The group operation is composition.

This condition can be stated alternately. It says that H(zp,+--,2n41) can be written in the form
(h(z0," -+, 2n), k(20" -, Zn+1)) Where h : (C™*1,0) — (C™*1,0) is the germ of a biholomorphism and k :
(C™*2,0) — (C,0) is the germ of a holomorphic map with the property that k(zg,- - -, 2n,0) = 0.

We can now give the action of the group K on mp41. If H € K and f € mpy;, then g = Hf is defined
by the equation g = ko (id, f) o h~1. It is easy to check that elements of @, are contact equivalent if and
only if they lie in the same K-orbit.

The K-orbits are denoted by

K(f)={g€mnt1:9~ f}
Contact equivalence is important because it turns out to be very geometric in view of the following proposition
Proposition 2.1: Let (V,0) and (W, 0) be germs of hypersurfaces in C**! defined by f, g € mn41 respec-

tively. Then f and g are in the same K-orbit if and only if the germs (V,0) and (W, 0) are biholomorphically
equivalent.
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Proof : First suppose f and g are in the same K-orbit. Let H be an element of K such that H(graphf)=
graphg. Then the following set germ equalities hold

h~Y(W) = h~! (s 'graphg) = «~(H 'graphg) = ¢! (graphf) =V

This follows that h provides a biholomorphic equivalence between (V,0) and (W,0).

Now suppose that (V,0) and (W,0) are biholomorphically equivalent. Let h : (C**1,0) — (C"*1,0)
be a germ of a biholomorphic mapping such that h(V) = W. Then there is a unit v € On41 for which
f =u(goh). Define H : (C**2,0) — (C™*2,0) by H(z,w) = (h(2),u™'(2)w) where z € C"*! and w € C.
Then H € K and H(z, f(2)) = (h(2),u"1(2)f(2)) = (h(2),g o h(2)) for z = (20, -, 2a). So H(graphf)=
graphg.

Q.E.D.

For any f € mny1 we define the Jacobian ideal A(f) C Ony1 to be the ideal generated by the partial
derivatives of f. The C-algebra O,.1/A(f) will be called the Milnor algebra associated to f. When f =0
defines an isolated singularity at the origin, then the dimension of Ony1/A(f), considered as a C-vector
space, is the topological invariant p, the Milnor number of the singularity.

Definition Two holomorphic germs f,g : (C™*1,0) — (C,0) are Q-equivalent if there is a C-algebra
isomorphism of Milnor algebras Oy,+1/A(f) = Ont1/A(g). We also introduce the notation

Q(f) = {9 € Mnt1: Ong1/A(f) = Onta1/A(9)}

The C-algebra Ony1/(f, A(f)) is called the moduli algebra. This name is a natural choice because,
considered as a C-vector space, it is the base space for the semi-universal deformation of the singularity
defined by f =0

Deﬁx;ition Two holomorphic germs f,g : (C**,0) — (C,0) are A — equivalent if there is a C-algebra
isomorphism of moduli algebras On41/(f, A(f)) ~ Ont1/(g,A(g)). We will use the following notation for
the A-equivalence classes

A(f) = {9 € Mny1 : Ony1 /(f, A(F) = Ons1/(9, Al9)}

Definition ~Two holomorphic germs f,g : (C**1,0) — (C,0) are B-equivalent if there is a C-algebra
isomorphism Opy1/(f, Mn+1A(f)) 2 Ont1/(g, Mas1A(g)). The B-equivalent classes are denoted by

B(f) = {9 € Mn41 : Ong1/(f, Mn41A(f)) = Ony1/(9, mnt1A(9))}

Proposition 2.2 : The diagram shown below gives some of the relationships between the different equiv-
alence classes
R(f) € RL(f) € K(f) S Af)
ni all
o(f) B(f)

Proof : The inclusion R(f) C RL(f) C K(f) because there are corresponding embeddings of the groups
which respect the group actions. The embedding R — RL is given by g — (id,g), while RL — K is
defined by (v, h) — H, where Hf = (id,vo f)oh

Q.E.D.

To establish that RL(f) C Q(f), we will use the following lemma.

Lemma: Suppose f: (C**1,0) — (C,0) is a germ of a holomorphic function and v = (¥, ¢) is an element
of RL. Let ¢* : Opp1 — Onyy be the pullback map given by f — f o ¢. Then ¢*A(f) = A(vf)

11



Suppose that g € RL(f). Then there exists v € RL,y = (v, ¢) for which g = vf. Now ¢ induces an
isomorphism ¢* : Ony; — Opyy. According to the above Lemma, ¢*A(f) = A(g). This means that ¢*
induces an isomorphism of the quotient rings, s0 g € Q(f). This proves the inclusion RL(f) C o(f).

The inclusions K(f) C A(f) and K(f) C B(f ) follow from the next lemma in a similar manner.

Lemma Suppose f,g: (C™*1,0) — (C,0) are germs of holomorphic functions which are contact equivalent,
- that is, g = u(f o ¢) for some u a unit and ¢ a biholomorphic change of coordinates. Then the following
equations hold.

(a) ¢*(£,A(f) = (9, A(9))
(b)  ¢*(fs mnr1A(f)) = (9, mnt14(g))

For any f,g € Ony1, we say that f and g have the same k-jets at the origin if their derivatives at the
origin agree up to order < k. The k-jet f(*) is the equivalence class of all g € @,,; which have the same
k-jets as f.

Definition Let f € 0,41 and let G be a group which acts on Ony41. f is k — determined relative to G if
for any g € On41 such that g = f(*¥), the G-orbit of f containing g. We say that f is finitely determined
relative to G if f is k-determined for some positive integer k.

The following theorem shows that the notion of finite determinancy can be expressed in both algebraic
and geometric terms. We will use the notation f~'m; to represent the module consisting of all elements of
the form 3772, a;f* where 350, a;t' is a convergent power series vanishing at zero.

Theorem (Mather) Let (V,0) be the germ of a hypersurface in C™*! defined by f = 0. The following
conditions are equivalent.

a) V'\ {0} is nonsingular.

b) Oni1/(f,A(f)) is a finite dimensional C-vector space.

¢) Ony1/(f,mnt1A(f)) is a finite dimensional C-vector space.

d) Ont1/f 'my + mur1A(f) is a finite dimensional C-vector space.

e) Ony1/A(f) is a finite dimensional C-vector space.

f)  Ont1/mny1A(f) is a finite dimensional C-vector space.

g) [ is finitely determined relative to K.

h) f is finitely determined relative to RL.

i) f is finitely determined relative to R.

The hypothesis that f is finitely determined simplifies the diagram in Proposition 2.2 showing the
relationship between the different types of germ equivalence. The notions of KX—, A—, and B—equivalence
turn out to be exactly the same. This is the content of the following theorem of Mather and Yau.

Theorem 2.3 (Mather-Yau) Suppose f,g : (C**1,0) — (C,0) are holomorphic function with isolated
critical points at the origin. The following statements are equivalent.

a) f,g are K—equivalent.

b) f,g are A—equivalent.

c) f,g are B—equivalent.

Let J* be the set of k-jets at the origin of elements of Opny1. J* has a natural complex analytic structure
obtained by using the Taylor series coefficients as coordinates. For each of the groups R,RL, and K, let
R¥,RL*, and KF denote the respective sets of k-jets at the origin. They are complex Lie groups which act
on J*.

For f € Onyy we use the notations R*(f), RC¥(f), and K*(f) to stand for the orbits of F*) with
respect to R*, RL*, and K*.

Theorem Let f : (C**1,0) — C be the germ of a holomorphic function with an isolated singularity at
the origin. Then R*(f), RL*(f), and K*(f) are complex analytic manifolds. The following C-vector space
isomorphisms exist between their tangent spaces at f(¥) and subspaces of J*.

a) T(R*(f)) = map1 A(f)J*

b) Ty (RLE(F)) = (f'my + may1 A(f))I*

) Tr(K*(f)) & (f,mns1A(f))I*

12



We want to look at the jet version of Q-equivalence as well. Let Q%(f) = {g®|On11/A(f) + mk, | =

Ont1/A(9) + miyi}, a¥(f) = {g™|A(g) C A(f) + mk,,}, and A*(f) = (a*(f) + mny1A(f))J*. The
following result, due to Shoshitaishvili, gives the structure of the Q*-equivalence classes.

Theorem (Shoshitaishvili) Let f : (C**!,0) — (C,0) be the germ of a holomorphic function with an
isolated singularity at the origin. Then Q*(f) is a complex analytic manifold and its tangent space at f(¥)
is isomorphic to the vector space A*(f).

R-orbit equivalence

We now investigate the conditions when the R-orbit of a holomorphic function with an isolated critical
point at the origin is the same as the RL—,K—, and Q—orbits. It turns out that these orbits coincide
precisely when the function is analytically equivalent to a weighted homogeneous polynomial.

The following lemma will be very useful for the results to come. We want to emphasize that this lemma
is very general and does not require that the singularity be isolated. A similar result proved by Shoshitaishvili
is somewhat stronger, but is restricted to the case of an isolated singularity. Our lemma is powerful enough
for our applications. Moreover the proof is extremely elementary

Lemma 2.4 (Benson-Yau) Suppose f,g € On41, f is weighted homogeneous, and A(f) = A(g). Then
9 € mnt1A(9).

Proof. Suppose that f is weighted homogeneous of degree d with weights ag,---,a,. By definition
F(t%0zg, -« 1% 2,) = t3f (29, -+, 2,) for all t. It is easy to check that 53;% either vanishes or is weighted

homogeneous of degree d — a;. And, since A(f) = A(g) there exist elements a;;, B;; € Opn41 for which

d N
_i=za,.,.a_j

8zi =0 '

39 _<~, Of

5s = 2%,
We are going to use these facts in the computation below

d a1, O a
d_tg(taozﬂ" . ,ta"z'n,) = Zaita' lzi‘a_i'(taozo, CR ,t "Zn)

=0

=) @izt By (t%0 2, - -, £ 2n) 5 (8020, -+, 8% 20)
¥

=0 j=0
n n
—a;tai— é)
=YY a1 (100, o Zn)ngf(zo, “ttyZn)
i=0 j=0 4
= 33 St s, s )| ey 20)
k=0 Li=0 j=0 k

Then integrate back to find that
1
9(z0, 1 2) = ig(t“zo,---,t""zn)dt
o dt

= 7]
= bk(zof"?zn)%(zﬂv'"1zn)
k=0 k

where

n n 1
bk(z()a cy2p) = Z Zaiziajk(zo, LN Zn) / tt—a5+u‘—1ﬂij(ta°Zo, RN Zn)dt € Mpt1
i=0 j=0 0

This proves that g € m,41A(g9). Q.E.D.
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We can now begin examining the conditions for when the R-orbits coincide with other orbits. The first
result is originally due to Shoshitaishvili. The proof given here is easier than the original proof.

Theorem (Shoshitaishvili) Suppose f : (C™t1,0) — (C,0) is a holomorphic function with an isolated
critical point at the origin. The following statements are equivalent.

a) Q(f) =R(f)

b) Mus1A(f) = a(f) + Mmap1 A(f)

) a(f) C mn1A()

d) f is right equivalent to a weighted homogeneous polynomial.

n:

large k. This means that Q*(f) is precisely Q(f)J*. It follows that Q*(f) = R*(f) for all k large enough.
Therefore their tangent spaces must coincide. So we see that (a(f) + Mny1A(f))T* = mp 1 A(F)J* for all
large k. This means that a(f) + mp11A(f) = May1A(F).

The implication b) = c) is obvious. As for ¢) = d),f € a(f) implies f € mn4 1 A(f). By Saito’s
theorem(cf.[Sal]), f is right equivalent to a weighted homogeneous polynomial.

The final implication, d) = a), takes more proof. Assume that f is right equivalent to a weighted
homogeneous polynomial f’ and g € Q(f). Then we only need to show that g € R(f).

Since R(f) = R(f'), we can assume without loss of generality that f is a weighted homogeneous
polynomial. The following lemma allows us to also assume that A(f) = A(g).

Proof.  We start by showing that a) = b). Because f defines an isolated singularity, m¥_, | C A(f) for all

Lemma (Mather-Yau) Suppose f, g : (C"*1,0) — (C,0) are holomorphic functions with isolated critical
points at the origin and O,41/A(f) > Opy1/A(g). Then there exists a g’ € R(g) such that A(f) = A(g").

Proof.  Suppose ¢ : Ont1/A(f) = Ony1/A(g) is a C-algebra isomorphism. We are going to construct a
local system 29, - -, zp of holomorphic coordinates on C™*!, centered at the origin. Let k£ = dim c(A(f) N

Mpt1+m2,;)/m2 . Choose elements zo, - -, zx_; € A(f) Nmy4q which are linearly independent modulo
m2,,. Then pick n — k more functions z,---, z, € Mn41 to form a basis modulo m2, ;. By the inverse
function theorem, zy,--, 2, form a holomorphic local system of coordinates. We can now define a lifting

® : Ong1 — Onyy of ¢ by specifying its image on each of the coordinate functions. For each i — k,---,n pick
Wi = ¢(2;) € Ony so that its projection in On+1/A(g) is ¢(Z;). Since ¢ is an isomorphism of the quotient

rings, the wy, - - -, w, must be linearly independent modulo m,'ﬁ_,_l. Then choose wy, - - -, wx—1 € A(g)NMpyy
so that the wy,- - -, w, complete a basis modulo m2,,. By its construction this map makes the diagram
Ont1 2, Oy

Ont1/A(f) 5 Oni1/A(g)

commute. Further, the w; form a local system of coordinates so that ¢ must be biholomorphic at the origin.
According to the lemma right after Proposition 2.2, A(f) = ¢*A(g) = A(go ¢). Let ¢ =go¢ € R(g) and
the proof of our lemma is complete.

Q.E.D.

We will assume from now on that

(2.1) A(f) = A(g)

where f is a weighted homogeneous polynomial defining an isolated critical point at the origin. It follows
from Lemma 2.4 that

(2.2) g € Mmny1A(g)
(2.3) [ € mp1A(f)

We will also assume that f # g, because otherwise there is nothing more to prove.
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Let L be the complex line in On1 joining f to g. Every element of L is of the form h = (1 — w)f + wg
for some w € C. Because of (2.1) ma41A(R) € Mar1A(f). Let Lo be the set of h € L for which

(2.4) Mnt18(h) = Mpp1A(f)
Lemma L is a connected complex manifold.

Proof. Since f defines an isolated critical point at the origin, there exists an integer k such that mk,, C
Mn4+1A(f). For any such k

(2.5) Mns1 A(R)TE = Map1 A(F)T*

holds if and only if (2.4) holds.

The C-vector space my41A(h)J* is generated by the elements v;(h) = (z”g—z’:)(k),i = (p,q), where p
runs through the non-negative multi-indices with degree between 1 and k and ¢ = 0,1,---,k. Let d be the
dimension of the C-vector space m,+1A(f)J*. By choosing a basis of this space, we may represent each
v;(h) as a row vector of length d.

Together the v;(h) form a matrix with d columns. Because v;(h) = (1 —w)v;(f)+wwv;(g), each coeflicient
of the matrix is a linear function of w. Equation (2.5) will hold if and only if at least one of the d x d minors
has a nonzero determinant. Since it holds for w = 0, at least one of the minors must have a determinant
which does not vanish identically. Therefore it is a polynomial in w of degree < d. Hence there are at most
d values at which (2.5) fails to hold.

Therefore we have shown that Lo is equal to L with at most a finite number of points deleted. Since L
is a complex, this implies that Lo must be connected.

Q.E.D.

Since f has an isolated point at the origin, f is finitely determined with respect to'R. Therefore it is
enough to show that g(*) € R*(f) for every positive integer k. We are going to show LoJ* C R*(f) by using
the following result proved by Mather. This lemma will be used repeatedly, so for convenience, we will give
the proof here.

Lemma (Mather) Leta:G xU — U be a C* action of a Lie group on a C*°-manifold U, and let V
be a connected C*°-submanifold of U. Then necessary and sufficient conditions for V to be contained in a
single orbit of a are that

a) T,(Gv) DT, V,ifveV

b) dimT,(Gw) is independent of the choice of v € V

Proof. Necessity is trivial. Now we prove sufficiency. For each v € U, let a, : G — U be the mapping
defined by g — a(g,v). Then T,(Gv) = y«(T:4G). Provide T;4G with a Hilbert norm and for each v € V,
let L, be the orthogonal complement of ker a,, in T;4G. Define L = Uvev('” x L,) CV x T;4G. Condition
b) implies that L is a subvector bundle over V of V x T;aG. Let Lo = U, ¢y (e5s (T,V) N Ly). Condition
a) shows that Ly is a subvector bundle of L and the mapping |J,cy @us : Lo — TV is an isomorphism of
C>-vector bundles. Let 3 : TV — Lg be the inverse of this mapping and let 7 : V' x T;4G — T;4G denote
the projection map. Then 7o 8: TV — T;3G is a C*®°-mapping, and a,.(w o B(n)) = 7 for any n € T,,V.

To prove that V is contained in a single orbit of a, it is enough to show that any two points v,v; of V'
are contained in the same orbit. Since V is connected, there is a smooth curve « : [0,1] — V joining v; to
v2. We only need to show that for any ¢ € [0, 1], there is an € > 0 such that if £p — € < t < to + ¢, then 7(2)
is contained in the same orbit as y(to).

Let v'(t) € Ty(;)V denote the derivative of y(t) with respect to t, and define X(t) = 7 o B(7'(t)) €
T:aG. X(t) is a C* function of ¢ and

(2.6) oy )+ (X (8) ='(t)

(From the existence theory for ordinary differential equations, it follows that there exists a curve ¢ — p(t)
in G defined for t; — € < t < ¢y + € for a suitable € > 0 such that u(t) = I and

dp(t =
@7) O _ (e
where X, is the unique right invariant vector field on G which extends X (t).

15



We now show that u(t)~1y(t) = y(to) for to — e < t < to + €. This will imply that (t) is in the same
orbit as y(to) for all ¢ within this range and finish the proof of the lemma. The derivative with respect to ¢
is '

;id;u(t)“v(t) = di~fitt)_—17(t) + u(t)-ld_:’ig_tl

Zof ap®) . dy(t)
— 1 _ 1
= ) (2w 1t0) + 21
By (2.7) and the fact that X, is right invariant, the quantity inside the brackets becomes —X (¢)y(t) + /().
According to (2.6), this is zero. Since u(to) = I, this shows that p(t)"1y(t) = v(to) for to —e < t < g +e.
This completes the proof of the lemma.

Q.E.D.

We will now apply this lemma. Take the action of o to be the action of G = R* on U = J*. We
can deduce from the lemma before Mather’s lemma that V = LoJ* is a connected submanifold of U = J*.
Recall, Th(R*h) = mnt1A(R)J*, for any b € Opnyy. If A € LyJ*, then (2.4) holds, and we obtain

(28) Tw(R*R) = mup 1 A(S) J*

which verifies condition b) of Mather’s lemma. The tangent space Tj(LoJ*) is the one dimensional complex
subspace of J* spanned by g — f. By (2.2) and (2.3), g — f € mnp1A(f)J*. Hence Tw(LoJ*) C Tw(R*h),
which shows that condition a) holds as well.
Therefore we may apply Mather’s lemma to conclude that LyJ* is contained in a single orbit of the
action of R* of J*. This proves our result.
Q.E.D.
The proofs of the following two theorems are quite easy.

Theorem 2.5 Let f: (C™*!,0) — (C,0) be a holomorphic function with an isolated critical point at the
origin. Then the following statements are equivalent

a) R(f) =K(f)

b) mni1A(f) = (f, mat1A(f))

c) f is right equivalent to a weighted homogeneous polynomial.

Theorem 2.6  Let f:(Let f : (C™*',0) — (C,0) be a holomorphic function with an isolated point at the
origin. Then the following statements are equivalent

a) R(f)=RL(f)

b) May1A(f) = f7Imy + mna A(S)

c¢) f is right equivalent to a weighted homogeneous polynomial.
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RL—orbit equivalence

we now investigate the conditions when the R.L-orbit of a holomorphic function with an isolated point
at the origin is the same as the X— and Q—orbits.

Theorem 2.7  Suppose f : (C**!,0) — (C,0) is a holomorphic function with an isolated critical point
at the origin. Then the following statements are equivalent.

a) RL(f) =K(f)

b)  fimi +mat1A(F) = (f, mar1A(f))

C) mn+1(f) c mn+1A(f)

Proof. a)=b) is proved by using the computation of the tangent spaces. Since RL(f) = K(f), RL*(f) =
KE(f) for all k. We can equate their tangent spaces, getting (f~1m1 + Mny1A(F))J* = (f, mnp1 A(F)) T
for all k. But th f~'m; + M1 A(S) = (f, M1 A(S)).

Assume that b) holds. Then z;f € f~'m; + m.1A(f), so there exists a convergent power series
a(t) = 3.2, ait',a; € C such that z;f = Y0, aif* + 30y bia%e where b; € mp4; for 0 <4 < n. There are
two cases to consider, depending on whether or not a; is nonzero. If a; # 0, then u = a3 — z; + Y oo, a; fi~1
is a unit element in On4y and f = v (-1 big;e) € Mpy1A(f). In particular mp41(f) C mar1A(S)
when a; # 0.

On the other hand, if a, = 0, then we have z;f = (122, aif*™1)f + ¥.7_, b 3L. Since f has a critical
point at the origin, f € m2,,. Therefore mu41(f) € m2,;(f) + Mns1A(f). Using Nakayama’s Lemma, it
follows that mp41(f) € mnt1A(f). Therefore we have proved in either case that b)=c).

Finally, to prove c)=-a), it is sufficient to prove that X(f) C RL(f). Suppose g € K(f). Then there
exists 4 € Onq1,u(0) # 0, such that g = u(f o h) where h : (C"*1,0) — (C™*1,0) is a germ at the
origin of a biholomorphic mapping. Now f’ = u(0)~}(f o h) is holomorphic function with the property that
K(f) = K(f') and RL(f) = RL(f'). Thus by replacing f by f', we may assume without loss of generality
that g = uf where u(0) = 1.

It is clear that

(2.9) (f,mnt1A(f)) = (9, Mnr14(9))
We will also assume that f # g, because otherwise there is nothing more to prove.

Let L be the complex line in O,4; joining f to g. Since every h € L can be written in the form
h = (1-w)f + wg for some w € C, we have (h,mp+1A(h)) C (f,Mar1A(f)). Let Ly be the set of b € L
for which the two ideals are equal. Using an argument similar to the lemma before Mather’s lemma, we find
that Lo is a connected manifold.

The hypothesis that f : (C™*!,0) — (C,0) has an isolated critical at the origin implies that f is finitely
determined with respect to RL. Hence it is enough to prove that g(*) € RL*(f) for every positive integer
k. In what follows let k be a fixed positive integer.

We want to apply Mather’s lemma. In this case G = RL*,U = J*, and V = L;. We have to check that
conditions a) and b) of the lemma, are applicable.

Suppose h € L. Then h = (1 —w)f +wg = (1 —w+wu)f for some w € C. Since u(0) = 1,1 — w + wu
is a unit in Op4. The following lemma can be applied to h.

Lemma 2.8  Suppose f,h: (C"*1,0) — (C,0) are holomorphic functions with isolated critical points at
the origin and h = uf where u € Opny; is a unit. If mpy1(f) C Mpp1 A(F), then muya(h) € muy 1 A(h).
Proof.  Using the hypothesis that mn41(f) € mar1A(f), it is easy to see that
(2.10) Mnt1A(h) C mat1A(f)
Our first step is to show that these ideals are actually equal. We can do this by proving that
dimc0n+1/mn+1A(f) = dimc(’),,+1/mn+1A(h).
The exact sequence
0 = A(f)/mni1A(f) = Ong1/Mns1A(f) = Onsr /A(f) = 0
shows that
dim00n+1/$n+1A(f ) = dimcOn41/A(f) + dimcA(f) /mn1A(f)
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We are going to show that the right hand side of this equation depends only on the analytic type of
the singularity, and not on the defining equation f = 0. The first term on the right hand side is the Milnor
number, which is a topological invariant of the singularity. We will now prove that the second term is equal
ton +1. .

Consider the map ¢ : C™*1 — A(f)/mn41A(f) defined by (ag, a1, +,an) — Yig aia%e + M1 A(f)-
This map is obviously surjective. Suppose that ¢ is not injective, then there exists a nonzero vector
(ao,a1,"--,an) in C™*! such that 37 ai% € Mmn41A(f). Without loss of generality, we shall assume
ag # 0. Then there exist bg, - -, by € Mpt1 such that Y1 a,-a%% = Z?:o bjg'ze. Rearranging terms we find
that 0%% = (a0 —bo) ™' Tj_i(~a; + bj)ng;. This means that A(f) is generated by less than n + 1 elements,
so the critical point of f at the origin cannot be isolated. We have shown that ¢ is an isomorphism, and
duncA(f)/m,.+1A(f) =n+1.

This proves that dimcOp41/mn41A(f) depends only on the singularity and not on f. Since f = 0 and
h = 0 define the same singularity, dingOn41/Mn+1A(f) = dimcOn41/Mmni1A(h). Combined with (2.10),
‘we see that mp41A(R) = Mpp1 A(f).

Since Mn41(f) € Mny1A(f) and h = uf, we have mp41(h) C mny1A(h). This completes the proof of
the lemma. .

We can now use Lemma 2.8 and (2.9) to show

f7ima + M1 A(f) = (f, ma1A(S))
= (h, mn+1A(h))

= h_1m1 + m,,+1A(h)
In particular we can see that
(2.11) (f~'my + M1 A))T* = (B my + mag1 A(R))T*

for any h € Ly. Combining this with the computation of the tangent space, Th(RLER) = (F~'my +
Mny1A(f))J* for any h € Lo. This shows that condition b) holds.

The tangebt space of Ly at any h is the one dimensional complex subspace of J k spanned by (g — f)¥).
According to (2.11), (g— f)*) € (f'mq +mn1+1A(f))J*, proving that Th(Lo) C Th(RL*R). Thus condition
a) holds as well.

We can now apply Mather’s lemma. We deduce that Lo is contained in a single orbit of the action of
RL* on J*, and so in particular (¥ € RL*(f).

Q.E.D.

In [Sal] Saito proved for any f with an isolated critical point at the origin, f € mni1 A(f) if and only
if uf € map1A(S) if and only if up to a biholomorphic change of coordinates f is a weighted homogeneous
polynomial. Any f satisfying f € mn+1A(f) is called a quasi-homogeneous function. We have shown
that the following conditions are equivalent: f is quasi-homogeneous, R(f) = RL(f), R(f) = K(f), and
R(f) = Q(f)- Theorem 2.7 suggests the following definition

Definition  Suppose f : (C™*1,0) — (C,0) is a function with an isolated critical point at the origin. f is
said to be an almost quasi-homogeneous function if mn41(f) C mn+1A(f).

The previous theorem leads us to expect that the singularities defined by almost quasi-honogeneous
functions may form a distinguished class of singularities which have some special properties.

We can also give a criterion for when the RL and Q orbits coincide. This result is originally due to
Shoshitaishvili. One can also use the mehtod developed by Mather-Yau to prove the following theorem.

Theorem (Shoshitaishvili) Suppose f : (C™**,0) — (C,0) is a holomorphic function with an isolated
critical point at the origin. Then the following statements are equivalent.

a) RL(f) = Q(f)

b) fimy +mat1A(f) = a(f) + map1 A(f)
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We shall give an example of a function which is almost quasi-homogeneous, but not quasi-homogeneous
and also an example of a function which is not almost quasi-homogeneous.

Example 1 Let f(z,y) = 2° + y® + 23y®. Then
a) f is not quasi-homogeneous.
b) f is almost quasi-homogeneous.
Q) (fymns1A(f)) = F7imy + a1 A(f) = a(f) + mns1A(f)

In particular, we have
R(f) S RL(f) = K(f)
I
(f)

The relations in the diagram follow from Theorems 2.6, 2.7, and Theorem of Shoshitaishvili.
Example 2 Let f(z,y) = (y +z*)(s* + z°). Then f is not almost quasi-homogeneous. In particular
R(f) < RL(f) ¢ K(f)

The above relation follows from Theorems 2.6, 2.7.

Relation between Q and K equivalence

There are still two more natural questions. The first is whether K(f) C Q(f), that is, whether the
Milnor algebra isomorphism type is an invariant of the corresponding singularity. The second is whether
Q(f) C K(f), that is, whether the analytic type of an isolated singularity is determined by the Milnor
albegras which are associated to it. The following proposition gives an answer to the first question.

Proposition 2.9 Suppose f : (C™*1,0) — (C,0) is a holomorphic function with an isolated critical point
at the origin with K(f) C Q(f). Then f € A(f) + mn1A2(f), where A2(f) is the ideal in On4) generated
by all second partial derivatives of f.

Proof. Using the computation of the tangent spaces to the manifolds K(f) and Q(f),K(f) € Q(f) implies
that (f,mns1A(F))J* C (a(f) + Mnp1A(f))J* for all k. Since both ideals contain some power of the
maximal ideal m,41, we have

(212) (fymar1A(f)) € a(f) + M1 A(F)

Then (14 20)f € a(f) + Mn+1A(f) and there exist g € a(f) and ; € Mmnqy such that
N
(I+2)f=g+ ijg;‘f-
- 2]
7=0
Differentiating with respect to zo,

fraramdl =00 3000 s O
=0

— =L —_
Ozg Oz = 079 0z; 2007

By definition of a(f), gfg € A(f). Therfore, f € A(f) + M1 A2(f).
Q.E.D.
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The following remark, due to Mather, shows that it is not true in general that X(f) C O(f).
Remark.  There exists a polynomial f(z,y) such that f ¢ A(f) + A%(f). In particular K(f) € Q(F).
Example 3 Let f(z,y) = z'® + 2'%y® + 2998 + 280 + 23313 4 y17. Then the following relationships hold
R(f) ¢ RL(f) G K(f)

N

Q(f)
with Q(f) € K(f) and K(f) € Q(f).
Proof.  The polynomial f was the lowest degree example that we could find such that f & A(f) + A%(f).
Our selection procedure guarantees that K(f) € Q(f), and it follows that RL(f)CK(f) as well. f is not
quasi-homogeneous because f ¢ A(f) + A2(f). This means that R( f)g’RC( . *

We used computer programs to check the remaining inclusions. It was found that a(f) € (f,mA(f)).
This shows that 'RCgQ(f) and Q(f) € K(f).

The computations in this example are complex. The Milnor number of the singularity is 209, and the
smallest power of the maximal ideal contained within A(f) is m3°. a(f)+mA(f) modulo m®' has dimension
317, while (f,mA(f)) modulo m3! has dimension 329. All of the generators we found for a(f) which were
not contained in (f,mA(f)) were extremely complicated. Some of their coefficients were rational numbers
with over 30 digits in both the numerator and denominator.

Q.E.D.

We now turn to the second question and give a general method for constructing functions F for which
Q(F) € K(F).

Theorem 2.10  Suppose F(z1,---,Zn, 1, - y¥n) = f(x1, -, 2n) + f(y1,--+,Yn) where n > 1 and
f(#1,--+,2,) is a function with an isolated critical point at the origin which is not quasi-homogeneous.
Then Q(F) € K(F).
Proof.  Suppose Q(F) C K(F). Then using the computation of the tangent spaces to the manifolds Q(F)
and K(F), Q(F) C K(F) implies that (a(F) + me,A(F))J* C (F,manA(F))J* for all k. Since both ideals
‘ contain some power of the maximal ideal ms,, we have

(2.13) a(F) + manA(F) C (F,manA(F))

In the following, let z stand for z1,- -, z, and y for y1, - -, yn. According to the defintion of a(F), f(z) €
a(F). Using (2.13), f(z) € (F,mz,A(F)), so there exist b(z,y),c;(x,y),d;(z,y) € C{z,y} with ¢;(0,0) =
d;(0,0) = 0 such that

Z 8 — 7]
(219 1@) = e 9)(F() + 1) + Y- i) 5 - () + 3 i) 2L w)
j=1 J j=1 J
Now b(z,y) must be a unit in C{z,y}. Otherwise we can rearrange the terms in (2.14) and set y = 0
to find that

(2.15) (1- bz, 0)f() = Y502, 0) 2L (a)
=1 J

Here we have used the fact that f(y) has a singularity at the origin. This equation implies that f(z) €
Mn41A(f). Since f = 0 defines an isolated singularity, Saito’s theorem implies that f is quasi-homogeneous.
This is a contradiction to our hypothesis, so it must be true that b(z,y) is a unit.

Next rearrange the terms in (2Next rearrange the terms in (2.14) and set z = 0. We get

(216) ~b0,9)1(w) = 3" ds(0,9) 2 )
= Yj

where we have again used the fact that f(z) has a singularity at the origin. Since b(0,y) is a unit in C{y}, it
follows that f(y) € mn+1A(f). As before, this contradicts our hypothesis that f is not quasi-homogeneous.
Therefore we conclude that Q(F) € K(F).

Q.E.D.
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Corollary 2.11 Suppose F(xy, -+, Zn, Y1, ,¥n) = f(T1, "+, %n) + f(y1, -+ ,Yn) where n > 1 and
f(z1,++,zy,) is'a function with an isolated critical point at the origin which is not quasi-homogeneous.
Then there exists a G € C{z,y} such that A(G) = A(F) but G € K(F).

Proof.  According to Theorem 2.10, there exists H € C{z,y} such that Ony1/A(H) = Ony1/A(F) but
H ¢ K(F). Using Lemma due to Mather-Yau, we can find G € R(H) such that A(F) = A(G). Since H is
not in R(F), it follows that G is not in K(F').

These arguments can be modified to work in C* category as well. The following remark summerizes
this extension to the C™ case.

Remark. Suppose F(21, -+, Zn, Y1, **»¥n) = f(Z1, -, Ta) + f(¥1,-*,Yn) where n > 1 and f(z1," -+, Zn)
is a function with an isolted critical point at the origin which is not quasi-homogeneous. Then there exists
G(x1, T, Y1, ", Un) € C{Z1, ", Zn, Y1, "+, Yn} such that A(F) = A(G) and the zero set V(F) defined
by F = 0 is not C>-diffeomorphic equivalent to the zero set V(G) defined by G = 0 although the two sets
are homeomorphic.

When F has real coefficients this is also a consequence of Ephraim’s Theorem and Corollary 2.11 .

Corollary 2.12 For any n > 1, there exists a one parameter family of non-quasi-homogeneous isolated
singularities in which the Milnor algebras corresponding to each singularity are the same, but in which the
diffeomorphism types are different.

Example 4 Let F(z,y,z,w) = z° + 3% + 2% + w® + 23y® + 23w, Then the following relationships hold
R(F) ¢ RL(F) G K(F)
AN
Q(F)

and Q(F) € K(F).

Proof. Observe that F(z,y, z,w) = f(z,y)+ f(z, w) where f(z,y) = z°+y°+2%y®. We have already shown
in Example 1 that f(z,y) is not quasi-homogeneous function. By Theorem 2.10, we have Q(F) € K(F).

We now claim that F is also not almost quasi-homogeneous, that is, Mmp41(F) € mpp1A(F). We
are going to show that zF ¢ m,41A(F). Assume the opposite is true. Then there exist power series
a(z, v, z,w), b(z,y, z,w), c(z,y, z,w) and d(z,y, z,w) in mn4; such that

oF oF oF OF
(217) zF = a((b‘, Y Z,W)‘é; + b($7 Y, 2, w)—éﬁlj + C(it, Y, z’w)—é,_z— + d(it, Y, sz)a_u_]

Comparing the coefficients of z2°, zwS, z23w? on both sides, we get the following equations respectively.

5c1010 =1
5doio1 =1
3ci010 + 3do101 = 1.

It turns out that these linear equations form an inconsistent system. This means that £F € mn1A(F) and
so F is not almost quasi-homogeneous. It follows from Theorem 2.6 and 2.7 that R(F)CRL(F)CK(F).
It is also clear that RL(F)CQ(F), because otherwi Q(F) = RL(F)CK(F) which contfadicts tHe fact that
Q(F) € K(F) ? ?

Q.E.D.
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We will give one more example which we have computed.

Example 5 Let f(z,y) = (y + z*)(y® + 2°). Then the following relationships hold

R(f) ¢ RES) ¢ K
An
Q(F)

and Q(f) = K(f).

Proof.  This example was discussed before, but we did not consider the inclusions involving Q(f).

We have used computer program to check these inclusions and have found that a(f) € f~tmi +mA(f).
One generator of a(f) that is not contained in f~'m; + mA(f) is 2%y® + 289 + 21y + $ 25 + 352, On
the other hand the programs showed that a(f) + mA(f) = (f, mA(f)).

Despite the simple form of the polynomial f, the computing problem was still fairly complex. The
Milnor number of this singularity is 23, but the smallest power of the maximal ideal contained in A(f) is
m!®. The dimension of the C-vector space a(f) modulo m!7 is 113 and the dimension of f~1m; + mA(f)
modulo m!7 is 129. :

Q.E.D.
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§3 Equivalence of Singularities : topological case

No matter whether you are a topologist, algebraist or geometer, one of the fundamental goals is to find
a necessary and sufficient condition for two given objects to be isomorphic in the given category. In the
theory of isolated hypersurface singularities, the two fundamental problems are as follows: Let (V,0) and
(W, 0) be two isolated hypersurface singularities in C**1.

Problem 1. Give a simple algebraic criterion for (C"*1,V,0) to be homeomorphic to (Ccn+t W, 0).
Problem 2. Give a simple algebraic criterion for (C"t1,V,0) to be biholomorphic to (C"*!, W, 0).

One supposes that the first problem would be easier than the second one, but it turned out to be
contrary. In 1982, Mather and the author solved the second problem completely. We showed that two
isolated hypersurface singularities in C"*! are biholomorphically equivalent iff their corresponding moduli
algebra (a finite dimensional commutative local C-algebra) are isomorphic . On the other hand, the progress
on the first problem was not as fast as one wants although many well known mathematicians including
Milnor and Zariski worked on it. Actually even the Zariski multiplicity problem whether multiplicity of
isolated hypersurface singularity is an invariant of topological type, was solved completely only for n = 1
case. Recently there are some progress in this problem for n = 2 case.

Topological Types of Isolated Hypersurface Singularities

Definition Let (V3,0) and (V2,0) be two isolated hypersurface singularities in C"tl. We say that (V;,0)
and (V&,0) have the same topological type if (C"*!,V;,0) is homeomorphic to (C"*+1,V3,0).

Even for n = 1, it took more than forty years for people to completely understand the topological type
of plane curve singularities. Let f be the defining function of the plane curve singularity (V,0). Then f is
reduced, i.e. in its decomposition in irreducible analytic functions in C{X,Y}, it is square free. Suppose
now that f is irreducible in C{X,Y}, i.e. the analytic local ring O = C{X,Y}/(f) is an integral domain.
Then we have

Theorem 3.1 (Puiseux) The normalization O of O is a regular local ring and O is a finite O-module.

Let z and y be the images of X and Y in O. The maximal ideal (z,y) = M of O generates a principal
ideal MO, because O = C{t}. Suppose that MO = z0O, i.e. by defintion z is a transversal parameter.
Then we may choose the uniformizing parameter ¢ of O so that

z=t"
3.1) ,

y= EuZm a,t
We call (3.1) a Puiseux expansion of f at 0.

Puiseux expansion of f can also be rewritten in the form
y=) aez® e £0,6€Q K21
f is regular in case all k are integers. In this case no Puiseux pairs are defined
k1 = smallest noninteger &
Ky = %1; (n1>my) (ny,m)=1.
The number pair (m1,n;) is the 1°* Puiseux pair of f

k2 = smallest exponent after k; which is not of the form mi(q > my)
1

Ko = g.c.d.(nz,mz) = 1, mg > 1

mm
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(If necessary we must multiple the fraction for x2 on top and bottom by a divisor of m;). The number ngy
and mg are uniquely determined and the pair (mg,ny) is the second Puiseux pair of f.

In general, if the Puiseux pairs (mi,n1),---,(m;,n;) are already defined, let ;11 be the smallest
exponent for which the proceding exponents are all expressible in the form

k=— 3
ml .. m]
while K;4, itself is not. Then let
Mj+1 ;
Kjp1 = ————  with g.c.d.
i+ my .- mj+1 9

Then (mj41,m;41) is the next Puiseux pair. Eventually this process terminates i.e. there is a g such that
my - --mg Hence we obtain in this way a finite sequence (my,n1),- - -, (mg,ny)

Definition  The pairs (m1,n1),---,(mg,ny) defined in this way are called the Puiseux pairs of f and
K1, ,Kq the Puiseux e

Since the exponents «; are monotonically incresaing and greater than 1, the Puiseux pairs satisfy the
following conditions:
m; <ny
nj_im; <n; for j>2 }(*)
gcd.(njm;)=1 for j=1,---,g

Conversely any given sequence of pairs of natural numbers (my,n1),- -+, (mg,ny), which satisfies the
conditions (*) is the sequence of Puiseux pairs of a certain Puiseux expansion, say the “standard expansion”

y(a:):zﬁlf +x3¥"7+'~+a:"9
=z + 2" + ... + 1",

In 1929, K. Brauner proved the following theorem

Theorem 3.2 Let f(X,Y) be analytically irreducible at 0 and f(0) = 0. Let n be its multiplicity at 0
and Kq,---,Ky be the Puiseux exponents of f at 0. Then the plane curve singularity defined by f has the
same topological type as the curve singularity defined by

z=1t"
Y=t toe
In 1932, W. Burau and O. Zariski proved that the converse of the above Theorem is also true.

Theorem 3.3 Let f(X,Y) be analytically irreducible at 0 and f(0) = 0. Then the Puiseux exponents of
f at 0 are invariants of topological type of (V,0) where V = {f(X,Y) = 0}.

Finally, M. Lejeune and O. Zariski proved the following theorem.
Theorem 3.4 Let f(X,Y) be reduced at 0 and f(0) = 0. Then the topology type of the plane curve

singularity defined by f is determined by the topology type of every irreducible component of f at 0 and all
the pairs of intersection multiplicity of these components.

These together with the theorem of J. Reeve, which asserts that the intersection multiplicity of two
plane curves is the same as the linking number of the corresponding knots, give a complete understanding
of the topological type of plane curve singularities.
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In 1968, Milnor made fundamental contribution in understanding the topology of isolated complex
hypersurface singularities. Let us recall his beautiful theory briefly as below.

Theorem 3.5 Let V be a complex algebraic subvariety in C"*! and S(V) be the singular set of V. Let
f : V — C be an algebraic function on V. Then the restriction of f to V — S(V) has only a finite number
of critical values.

Corollary 8.6 Let f:C"! — C be a polynomial function. Then there exist i, - - -, ¢, € C such that for
allt € C — {t1,---,t,} the hypersurface defined by f = ¢ is nonsingular.

Corollary 3.7 Let V be complex algebraic subvariety of C*t!. Let zy be either a simple point of V or
an isolated point of the singular set S(V'). Then every sufficient samll sphere S, centered at z intersects V
transversely in a smooth manifold.

Let B, (resp. B?) denote the closed (resp. open) ball consisting of all z with |Jz — xo]| < e(resp. < ).
Again let zg be either a simple point or an isolated singular point of V.

Proposition 3.8 For all sufficiently small strictly positive real numbers €3, €2, (S, , Se, V) is diffeomorphic
to (Se,, Se, N V) as pair. Moreover, (B,, B, N V) is homeomorphic to (Be,,C(K,,)) as pair, where K., =
Se, NV and C(K,,) is the real cone over K., which is the union of all line segments joining points k € K,
to the base point zg.

We are now ready to state the Milnor’s fibration theorem.

Theorem 3.9 Let f: (C"t1,0) — (C,0) be a complex polynomial. Let V be the hypersurface defined
by f = 0. Then there exists ¢ > 0 such that for all ¢ with 0 < € < €, the differentiable mapping
e : Se—V NS, — S! defined by ¢.(z) = f(2)/|f(2)| for all z € S, — V, is a locally trivial differentible
fibration.

Milnor gave another presentation of this fibration.

Theorem 3.10 For ¢ > 0 sufficiently small and € 3> n > 0, the mapping ¥, : B® N f~1(8D,) — 8D,
induced by f, where B is the interior of B, and 8D, = {z € C : |z| = 5}, is a smooth fibration isomorphic
to ¢, in Theorem 3.9 by an isomorphism which preserves the arguments.

Corollary 3.11 Let g > 0 as in Theorem 3.9. Fix € with 0 < € < €p. Then the Milnor Fiber Fp = ¢ (e*)
is parallelizable and has the homotopy type of an n-dimensional finite CW-complex.

Milnor also proved the following.
Theorem 3.12 The topological space K. = S, NV is n — 2 connected.

Given any locally trivial fibration ¢ : E — S over the circle, the natural action of a generator of
m1(S') on the homology of the fiber is described by automorphism h, : H,Fy — H,F,. Here h denotes
the characteristic homeomorphism oh denotes the characteristic homeomorphism of the fibre Fy = ¢~1(1).
It is obtained, using the covering homotopy theorem, by choosing a continuous one-parameter family of
homeomorphisms. h, : Fy — F; for 0 < t < 2m, where hg is the identity and h = hg, is the required
characteristic homeomorphism. # induces on the homology group of Fy the isomorphisms which is by
definition the local monodromy of V at 0.

By a theorem of Milnor and a theorem of Palamodov we have the following theorem .

Theorem 3.13 If 0 is an isolated critical point of f, for ¢ > 0 small enough, the fibers of ¢, have the
homotopy type of a bouquet of u spheres of dimension n with

. d 0
p,:dlmcC{zo,...,zn}/(a_i;,...’a_zf.).
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Remark. A bouquet of spheres is the topological space union of spheres having a single point in common.
The p above is called Milnor number.

Invariant of the Topological Types

We shall give necessary conditions for two isolated hypersurface singularities which have the same
topological type. Let us first recall the important notion of Whitehead product in algebraic topology.
Consider a given space X and a given basic point zo in X. Let m > 1 and n > 1 be given integers. For any
two given elements a € 7, (X, o), 8 € mn(X, zo), the Whitehead product of a and 3 is an element [a, 8] of
Tm+n—1(X, Zo), which is defined as follows.

Let us choose representative maps f : (I™,8I™) — (X, o), 9 : (I",8I") — (X, o) for a, B respectively.
Since I™+™ = I™ x I", we have 0I™+" = (I™ x I™) U (8I™ x I™). Here I™ is the n-cube. Hence we define
amap h: 8I™+" — X by taking for each point (s,t) in JI™*+"

f(s) ifteoIl
h(s,t) =
g(t) if seaI™

Since the point 7o = (0,---,0) of 8I™*" is in 8I™ x OI", we have h(ro) = z¢. Since JI™*" is

homeomorphic to S™*"~1, h represents an element y of Tp4n—1(X,2o). It can be shown that v depends

only on the elements a and 3. So we may define [o, 5] = 7. We shall list some properties of Whitehead
products:

[W1] If o € m1(X,z0) and B € m (X, z¢), then [a, f] is the commutator aBa~1871 of m (X, o).

[W2] If o € mm(X,xo) and B € mi(X, o) with m > 1, then [a, 8] is the element Sa — a of Tm (X, o)
where 8 : (X, 20) = mm (X, o) is a group automorphism.

[W3] If m > 1, then the assignment a — [a, 3] for a given 8 € m,(X,zo) defines a homomorphism

By : Wm(X,iBo) 4 7rm+n-—1(X7$0)-

[W4] I m+n > 2, then, for every a € m, (X, zo) and 8 € ma(X, 7o) we have [, a] = (—1)™"[a, ]

[W5] Ifo:I— X is a path joining 2o to z1, then, for every a € mm(X,21) and 8 € mn(X, 1), We
have omyn-1a, B] = [om(@), o (B)].

[W6] If ¢ : (X,z0) — (Y,y0) is a map, then, for every @ € (X, 20) and B € 7,(X,xo), we have
é:[a, B] = [« (@), 6+(B)].

[W7] For any a € mm(X,z0), B € (X, To), 7 € mq(X,x0), the following Jacobi identity holds:

(=1™le, 8,7 + (-=1)"™[[8,"e] + (=1)*"[[7, 0], 8] = 0

Milnor’s theory indeed allows us to understand the topological types of isolated hypersurface singularities a
lot better than before. In fact the following important theorem was first proved by Lé Dung Trang, although
the proof given here is slightly different from his.

Theorem 3.14 Suppose that the two isolated hypersurface singularities (V,0) and (V,0) have the same
topological types. Then they have the same Milnor number p and their local monodromy are conjugated to
each other.

Proof By Proposition 3.8, there exists ¢g > 0 with the following properties: If ¢y > € > 0, then B.—V N B,
is homotopy equivalent to S —V NS, and B, -V n B, is homotopy equivalent to Se — V' N S.. Moreover for
any €p > €1 > €2 > 0,5, — S, NV and S, — S, NV are diffeomorphic to S, — S, NV and S, — S, NV
respectively. We shall also assume that g is so chosen such that Theorem 3.9 is applicable for both (V,0)
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and (V,0). Since (V,0) and (V,0) have the same topological type, there exist neighborhoods U, U of 0 and
homeomorphism 9 : U — U such that 9(UNV) = U NV and 9(0) = 0. We shall assume that B,, C U N U.

Let €g > €4 > 0. Since v is continuous, there is €9 > €3 > 0 such that ¥(B,,) C Be,. ¥(B,;) is an open
neighborhood of 0. So we can find €y > €2 > 0 such that B., C ¥(B,,). Since 9 is a homeomorphism, we
can find €p > €; > 0 such that ¥(B.) C Be, C ¥(Be,). Let « be a point in B, — V and y = ¢(z) € B, — V.
We have

7f:(¢(3e1) vy) - 7ri(B€2 - f/v y) - 7"1'(1/)(-363) - V, y) - 7!',;(.3“ -V, y)

I l-

7i(Be, — V, ) = 7i(Bey — V, ).
Since (B¢, — V,x) = mi(Be, — V,x) and 7(Be, — V,y) — mi(Be, — V,y) are isomorphisms, we see easily
that m;(Be, — V,z) — mi(Be, — V,¥) is an isomorphism for all i.
Since Se, — Se, NV — S is a locally trivial fibration with fiber Fy, we have the following exact sequence

Tnt1(SY) = Ta(Fo) = Ta(Sey =S, NV) — (S —
d 7"1(F9) - Wl(sel_sqnv) i Wl(sl) - 0

It follows that m,(Se, — Se, N V) = m,(Fp) and m1(Se, — Se; NV) = my(S*). Since B, — B, NV is
homotopy equivalent to S, —Se, NV, Tn(Be; — Be; NV) = 1 (Se, —Se,NV) = wn(Fp) and 71 (Be, =B, NV) &
7(Se; — Se, NV) = 11(S'). By Hurewicz theorem m,(Fp) is naturally isomorphic to H,(Fp) because Fp is
(n — 1)-connected. Therefore by [W3] the generator h, of m1(S!) acts on H,(Fy) as homomorphism. Since
Whitehead product is functorial by [W6], we have the following commutative diagram

Ho(Fo) 25 Ho(Fo)

|

Ho(Fp) 25 Ho(Fp).

However by [W2], h. is precisely the monodromy automorphism minus the identity map on H,(Fp). The
theorem follows immediately.

Q.E.D.
Remark The fact that Milnor number is an invariant of topological type was first observed by Teissier.

Definition Let (V,0) € (C™*1,0) be an isolated hypersurface singularities .. .T.h.e. .g.e.n.er.a.t.o.r.
.pi.1.(.8:1).. indu.ces. .the .mo.n.odromy. automorphismh*: H*(Fp,C)— H"(Fp,C).
Then the characteristic polynomial Ay (2) of the singularity (V,0) is det(zI — h*).

Corollary 3.15 Let (V,0) C (C™*1,0) be an isolated hypersurface singularities. Then the characteristic
polynomial Ay (z) is an invariant of topological type of (V,0).

Definition Let (V,0) be an isolated singularity in (C™*1,0). Denote K. = V N S.. By proposition 3.8, K
is independent of € as a differentiable manifold. We shall denote it by Ky from now on. Ky is called the
link of the singularity (V,0).

Theorem 3.16 Let (V,0) and (V,0) be two isolated hypersurface singularities. If (V,0) and (V,0) have
the same topological type, then ;(Kv) = m;(Ky ) for all 4.

Proof. Since (V,0) and (V 0) have the same topological type, there exist neighborhoods U, U of 0 and
homeomorphism ¢ : U — U such that y(UNV)=0NV and ¢(0) = 0. Let ¢, > 0 be sufficiently small so
that B,, C U N and Proposition 3.8 and Theorem 3.9 are applicable for both (V,0) and (V,0).

Let €g > €4 > 0 be given. Since 9 is continuous, there is €g > €3 > 0 such that 9¥(Be,) C Be,. ¥(B;) is
an open neighborhood of 0. We can find €y > €3 > 0 such that B, C ¢(B,,;). Since ¢ is a homeomorphism,
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we can find €9 > €; > 0 such that ¢(B,) C B, C 9%(B.,). Let z be a point in B, NV — {0} and y = ()
in (B, NV — {0}). We have the following commutative diagram

m(H(B)NV —{0},9) — m(By NV = {0},y) - m($(Be) NV = {0},9) = mi(Bey NV — {0},9)

o o

7i(Be, NV — {0}, 7) = 7i(Bey NV — {0}, 2).

Since mi(Be, NV — {0},2) — m(Be, NV — {0},2) and m;(B,, N V — {0},9) = mi(Be, NV — {0},y) are
isomorphisms, we see easily that =;(B., NV — {0},z) — m(B,, N V — {0}, ) is an isomorphism. Observe
that B., NV — {0} and B, N V — {0} are homotopy equivalent to Ky and K 7 respectively. Thus we have
shown m;(Ky) is isomorphic to m;(Ky,) for all 4.

Q.E.D.
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Classification of Topological Types for Surface Singularities

As we saw before, the topological types of plane curve singularities were completely understood by the
end of sixties. However, after almost twenty years, there was no progress in understanding the topological
types of surface singularities. In fact, there was not even a conjecture what the result should be. Recently,
by working on Zariski multiplicity problem, we come up with the following conjecture.

Conjecture. Let (V,0) be an isolated hypersurface singularity in (C3,0). Then the topological type of
(V,0) determines and is determined by the characteristic polynomial Ay (z) of (V,0) and the fundamental
group m1(K) of the link of (V,0).

Remark We know that the topological type of (V,0) determines Ay (z) and 71 (K) by Theorem 3.13 and
Theorem 3.15.

Recall that a hypersurface singularity (V,0) = {(zo, o zn) ¢ f(20,+++,20) = 0} C C™*! is quasi-
homogeneous if f is in the Jacobian ideal of f,ie. f € (b‘L I 53!—) Recently Xu and the author proved
that the above conjecture is true for quasi-homogeneous surface smgu'iantles Namely we proved the following
theorem.

Theorem 3.17 Let (V,0) and (W,0) be two isolated quasi-homogeneous surface singularities in C3. Then
(C3,V,0) is homeomorphic to (C3, W,0) if and only if m (Ky) = m(Kw) and Ay (2) = Aw(z2).

In fact Xu and the author have also proved the following theorem which is of independent interest.

Theorem 3.18 Let (V,0) and (W,0) be two isolated quasi-homogeneous surface singularities having the
same topological type. Then (V,0) is connected to (W,0) by a family of constant topological type. In fact
(V,0) is connected to one of the following seven class by a family of constant topological type:

class I V(I) = {z° + 2;* + 252 = 0}

class IT V(II)={z° + +izlz‘12 =0} a;1>1

classIII  V(III) = {z"" 2P'ze+ 25221 =0} a1 >1,a2>1

cass IV V(IV) = {25° + 2027 + 2123* = 0}

class V V(V) = {23°21 + 21 22 + zoz‘z‘ 0}

class VI V(VI) = {z5° + z027" + 2023 + zl zz"’ =0} where (ap — 1)(a1b2 + a2b1) = apa1a2

class VII  V(VII) = {z°2z1 + 2027 + 2025 + 2128 = 0} where (ap — 1)(a1be + azby) = az(aoas — 1)

Definition A polynomial h(zo, -, 2,) is weighied homogeneous of type (wo, - - -, wn), where (wo, - - -, wn)
are fixed positive rational numbers, if it can be expressed as a linear combination of monomials 2’2" - - - Zin
for which ig/wo + - - + in/ws = 1. (wo, w1, -, wn) is called the weights of polynomials k. Let w; = u; Jvi
be the reduced fraction of w; i.e. u; and v; are integers with (u;,v;) = 1.

By the theorem of Saito, we may assume from now on that w; > 2 for¢ = 0, - - -, n. Saito also proved that
quasi-homogeneous function with isolated singularity at 0 can be put into weighted homogeneous polynomial
by a biholomorphic change of coordinates. The following proposition which is a consequence of Milnor and
Orlik is due to Yoshinaga.

Proposition 3.19 Let f(xo,---,Z,) (respectively g(a:o, <, Tn)) be a weighted homogeneous polynomial
with weights (32,---, 32) (respectively (up/vp, - < ul /vl)) where % is the reduced fraction of w; (respec-
tively w;). Assume that f (respectively g) has an isolated smgulanty at origin. Then A(z) = Ay(z) if and
only if the following two conditions are satisfied:

(1) {2,1.&0,"','&"} ={27“{)7""u;}
(2) Forany u € {2,u0, *,un} [l,,—(1—3)= Hu;=u(l - %f) where the product over an empty
set is assumed to be one.
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Definition Suppose given a real manifold B of dimension m, and a family {(M;,N;) : t € B,N; is a
closed submanifold of compact differentiable manifold M;}. We say that (M;, N;) depends C™ on t and
that {(M;,N;) : t € B} is a C* family of compact manifolds with submanifolds if there is a C°® manifold
M, closed submanifold N and a C*™ map w from M onto B such that @ = w/N is also a C* map from N
onto B satisfying the following condition

(i) Mi=w () D N =w1(t)

(i) The rank of the Jacobian of w (respectively @) is equal to m at every point of M (respectively N)

Theorem 3.20 ((M,N),(w,),B) be a C* family of compact manifolds with submanifolds, with B
connected. Then (M;, Ny) = (w™'(t),w 1(t)) is diffeomorphic to (My,, Ny,) = (w1(to),@ (o)) for any
te B.

The proof of Theorem 3.17 and Theorem 3.18 made use of the fundamental results of Neumann and
Orlik-Wagreich, the proposition 3.19, Theorem 3.20 and the deep theory below due to Varchenko.

Let N C R, be the set of all nonnegative integers and of all nonnegative real numbers. Let f =
Y axz*,ar € C,k € N™*! | be an element in C{zo,--,Z,} and supp f be the set {k € N**1 : a; # 0}.
We denote by T'+(f), the convex hull of the set Uyecmupps(k + RE™), in R}+!. The polyhedron T'y(f)
which is the union of all compact facets of T'y(f) will be called Newton’s diagram of the power series f.
The polynomial EkeI‘( f arz* will be called the main part of the power series f. Let v be a closed facet of
I'(f). Let us denote the polynomial > ke axz* by f,. The main part of the power series f will be called

nondegenerate if for any closed facet v € I'(f) the polynomials (zo g—fg), e (zn%ﬁ';) have no common zero
in {(zo,-,2n) € C"*! 1 zg -+ -z, # 0}.
We shall define the notion of characteristic polynomial Ar(z) associated with the Newton’s diagram

T(f). Let
n+1

Ar(z) = [ II A‘(z)"”"*’*‘] (z - D™
=1

where A! is a polynomial defined as below. Al is defined by the (I —1) dimensional facets of the intersections

of I'(f) with all possible I-dimensional coordinate planes.

Let L be l-dimensional affine subspace of R"*! such that LNZ"! is I-dimensional lattice. By definition
let the I-dimensional volume of the cube (spanned by any basis of L N Z™*!) be equal to one.

Now we shall define A'. Let I C {0,1,---,n} and |I| = | where |I| is the number of the elements of
I. Let us consider the pair L;, Ly NT(f), where L; = {k € R™*! : k; =0 Vi ¢ I}. Let I'y(I),---,Tjn(I)
be all (I — 1)-dimensional facets of Ly NT'(f) and Ly,---, Lj(1) be the (I — 1)-dimensional affine subspaces,
containing them respectively.

Let 3 e a{ ki = m;(I) be the equation of L; in L; where af ,mj(I) € N and the greatest common
divisor of the numbers af:,i € I, is equal to one. The numbers af,mj(I ) are defined by these conditions
uniquely. The numbers m;(I) will take part in the definition of Al. Another definition of m;(I) is the
following. Consider the quotient of the lattice Z"*!' NL; by the subgroup generated by vectors of Z"*' NL;.
This is a cyclic group of order m;(I). Let V(I';(I)) be the (I — 1)-dimensional volume of T';(I) in L;. Let

i)
Al(z) = H H(zmz'(l) — )=V,
],lI':l Jj=1

It was observed by Varchenko that m;(I)(! — 1)!V(T;(I)) is equal to ! multiplied by the I-dimensional
volume of the cone over I';(I) with vertex at origin. According to this remark degA' contains the following
geometric meaning. Let I'_(f) be the cone over I'(f) with vertex at the origin. Then degA' is the sum
of I-dimensional volumes of the intersections of I'_(f) with all possible I-dimensional coordinate planes,
multiplied by I!. The following theorem due to Varchenko is of fundamental importance.

Theorem 3.21 Let f belong to the square of the maximal ideal of C{:z:o,:cl, -++,Z,} and let the main
part of the power series f be nondegenerate. Then the characteristic polynomial of the monodromy of f at
the origin is equal to the characteristic polynomial of the Newton diagram of f.
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In fact in our original proof of Theorem 3.17 and Theorem 3.18, we did not make use of Proposition
3.19, we only need Theorem 3.21.

Let f(z0,---,%s) be a weighted homogeneous function with weights (wo,---,ws). Then there exist
non-zero integers qo, - - -, ¢n and a positive integer d so that

f(t%zg,- -+, 1™ 2,) = tdf(zo, ety 2Zn)-

In fact let {wo, - -, w,) denote the smallest positive integers d such that there exists, for each 4, an integer
g;, so that g;w; = d. These are the ¢; and d above.

Definition A function f is semi-quasihomogeneous if f = fo+ f', where fo is quasi-homogeneous of degree
d and has an isolated singularity at 0 and all the monomials of f' are of degree greater than d.

Arnold gave normal forms for semi-quasi-homogeneous function in the following manner.

Theorem 3.22 A semi-quasi-homogeneous function f with weighted homogeneous part fo is biholomor-
phically equivalent to the normal form fo + cie1 + - - - + cre, where the ¢; are numbers and the e; are basis

monomials of the Milnor algebra
0fo dfo
ot/ (Ge 52)

of the function fy of degree greater than d=degree of f.

Lé-Ramanujan(cf. [Lé-Ra]) remarked that, the singulariti 0 have the same topological type. Conse-
quently we have the following theorem.

Theorem 3.23 Theorem 3.17 and Theorem 3.18 are true for semi-quasi-homogeneous singularities.

Zariski Multiplicity Problem

In his retiring presidential address to the American Mathematical Society in 1971, Zariski asked whether
(V,0) and (W,0) have the same multiplicity if they have the same topological type. He expected that
topologists would be able to answer his question in relatively short order. However the question appears
much harder than what Zariski thought. Even special cases of Zariski’s problem have proved to be extremely
difficult. Only recently Greuel and O’shea proved independently that topological type constant family of
isolated quasi-homogeneous singularities are equi-multiple. For quasi-homogeneous surface singularities,
Laufer explained the constant multiplicity for topological type constant family of singularities from a different
viewpoint. However, it was not known that whether two quasi-homogeneous singularities having the same
topological type can be put into a topological type constant family. Xu and the author proved Theorem 3.17.
Thus Zariski problem is solved affirmatively in this case. Actually we solved the problem directly without
using the result of Greuel and O’shea.

In fact, in view of Theorem 3.23 above, we deduce the following theorem.

Theorem 3.24 Let (V,0) and (W,0) be two isolated semi-quasi-homogeneous singularities in c3 i
(C8,V,0) is homeomorphic to (C3, W,0) as germs, then V and W have the same multiplicity at the origin.

In fact the proof of Theorem 3.24 goes as follows. By the remark of Lé-Ramanujan, we may assume
that (V,0) and (W,0) are isolated weighted homogeneous singularities.

Lemma 3.25 Let f(2,21,22) be a weighted homogeneous polynomial with weights (wo, w1, w2). Suppose
that f has an isolated singularity at origin. Denote the multiplicity of f(zo, 21, 22) at the origin by my. Then
my > min{we, w1, ws}.

Proof. By definition of the multiplicity, there is a monomial z5°2;" 252 in f such that my = ap + a1 + a2.
Since f is weighted homogeneous with weights (wo, w1, w2), we have 22 + 21 + 22 = 1. It follows easily that
my > min{wo, w1, w2}.

Q.E.D.
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Proposition 3.26 Suppose that f is one of the seven classes. Let m = min{n € Z|n > min{wg, wy,w2}}.
Then the multiplicity my of f is m.

Proof. Easy exercise.

Corollary 3.27 Let f(20,21,22) be a weighted homogeneous polynomial with weights (wo, w1, ws). Sup-
pose f has an isolated singularity at origin. Then the multiplicity m 7 of f at origin equals to m = min{n €
Z|n > min{wo, w;,w2}}. Hence the multiplicity of f is an invariant of topological type.

Proof. By a result due to Orlik-Wagreich-Arnold, f = g + h where g is one of the seven classes having
the same weights (wp,w;,w2) and g and h have no monomial in common. It is clear that my > my. By
Proposition 3.26 we have m, < min{n € Z|n > min{wp, w;,w;}}. Hence we have ms < min{n € Zjn >
min{wo, w1, wz}}. Conversely by Lemma 3.25, we see that m; > min{wy, w;, ws}. Thus my > min{n €
Z|n > min{wo, w1, wa}}.

Q.E.D.

Let (V,0) be a dimension two isolated hypersurface singularity. Lé and Teissier observed that A’Campo’s
work can often be used to give positive results towards Zariski’s question. Let C(V,0) be the reduced
tangent cone. Let PC(V,0) denote the hypersurface in CP? over which C(V,0) is a cone. Then, the
work of A’Campo’s shows'that the multiplicity of (V,0) is determined by the topological type of (V,0)
in case the topological Euler number x(PC(V,0)) is non-zero. The same arguments also show that, for
isolated hypersurface two-dimensional singularities, the embedded topology and the multiplicity determine
x(PC(V,0)). However, so far, by using A’Campo’s result, one can only prove that a surface in C3 having
at 0 a singularity of multiplicity 2 cannot have the same topological type at 0 as another surface singularity
of multiplicity different from 2.

For plane curve singularities, the Zariski question was known to be true. The reason that the Zariski
question could be answered was that the topological types of plane curve singularities were well understood.
If (my,m1),: -+, (mg,n,) are the Puiseux pairs for plane irreducible curve singularity, then one knows that
71 - - - Ny is the multiplicity of the singularity.

Definition Let (V,0) be a normal two dimensional singularity. Let 7 : (M, A) — (V,0) be a resolution
with exceptional set A. The geometric genus of a normal two dimensional singularity (V,0) is the integer

pe(V,0) = dimcR!7, (Om)o-
The arithmetic genus of a normal two dimensional singularity (V,0) is the integer

Pa(V,0) = sugpa(D),

where D is a positive cycle and p, (D) is the virtual genus of D on M.
In [Yal0] we first observed the following theorem.

Theorem 3.28 Let (V,0) be an isolated hypersurface two dimensional singularities. Then p,(V,0) and
Pa(V,0) are invariants of topological type of (V,0).

As a result of the above observation, we have proved the following special case of Zariski’s multiplicity
conjecture.

Theorem 3.29 Let (V,0) and (W,0) be two isolated two-dimensional hypersurface singularities in C3

having the same topological type. If p(V,0) < 2, then v(V,0) = v(W,0) where v(V,0) and v(W,0) are the
multiplicities of (V,0) and (W, 0) respectively.
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§4 Lie algebras arising from isolated hypersurface singularities
and its application to algebraic geometry

The original motivation of this section goes back to the following theorem

Theorem (Mather-Yau) Suppose (V,0) and (W,0) are germs of hypersurface singularities in C**1, and
V — {0} is nonsingular. Then the following conditions are equivalent.
(i) (V,0) is biholomorphically equivalent to (W, 0)
(i) A(V) is isomorphic to A(W) as C-algebra. Here A(V) and A(W) denote the moduli algebras of
(V,0) and (W, 0) respectively.

The natural question to ask here is the following

Recognition problem: When is a commutative local Artinian algebra a moduli algebra of an isolated
hypersurface singularity.

Consider L(V'), the algebra of derivations of A(V). Since A(V) is finite dimensional as C-vector space
and L(V) is contained in the endomorphism algebra of A(V); consequently L(V) is a finite dimensional Lie
algebra (with Lie bracket: [Dy, D;] = D1 Dy — D2D;). Thus we have the following natural mapping.

{isolated hypersurface singularities} — {finite dimensional Lie algebra}
(v,0) — L(V)
By Levi theorem, any finite dimensional Lie algebra is equal to a semi-direct product of a solvable Lie algebra
and a semi-simple Lie algebra.
In 1970, Brieskorn established a connection between a very special kind of surface singularities i.e. 2

dimensional rational double points and simple Lie algebras. Unfortunately his approach is extremely difficult,
if not impossible at all, to be generalized to arbitrary singularity.

Our approach is very different from his. In fact we have
Theorem 4.1 If (V,0) is a hypersurface isolated singularity, then L(V) is a solvable Lie algebra.

Thus the theory of isolated singularities and the theory of finite dimensional solvable Lie algebras are
linked together in the first time. The above theorem also gives a necessary condition for the recognition
problem.

V= {(Z(),Z],"',Zn) € Cn+1 : f(zo’zlr""yzn) =0}
O’n+1 = C{z01 Tty z’n}
m = (20, Tty zn)0n+l

_ (2.9 ot
A(f)"' (5;;1 6_21’“ 1azn)0n+l'

Lemma 4.2 Let D = Y1 a‘-(zo,zl,-w,zn)-i% be an element in L(V') where a;(zg,--*,2n) € Ony1,
0 < i < n. Then a; € m. In particular L(V') acts on A(V') and preserves m-adic filtration, i.e.

L(V)(m¥) C m*.

Proof. Since V' has only isolated singularity at 0, there exists an integer r such that
(N +a(f)2m™
Let k be the smallest integer k such that z§ € (f) + A(f)
D € L(V) = D leaves the ideal (f) + A(f) invariant
= kao(2) - 25" = D(z5) € () + A(f)
= ao(0,---,0) =0 (since k is the smallest integer such that 2* € (f) + A(f)).
Q.E.D.
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Recall that a simple Lie algebra A; = sl(2,C) is the complex Lie algebra with basis

O

and relations [7, X} ] = 2X,,[r,X_] = -2X_,[X;, X_] = 1.

To prove the theorem, it suffices to prove that L(V) does not contain sl(2, C) as Lie-subalgebra. For this
purpose we have to understand all possible sl(2, C) actions on C[[z1, - - -, 2]] as derivations which preserves
m-adic filtration.

Theorem 4.3 Let L = sl(2,C) act on C[[zy,---,z,]] via derivations preserving the m-adic filtration

ie., L(m*) C m* where m is the maximal ideal in C[[z1,---,z,]]. Then there exists a coordinate change
Y1, **,Yn With respect to which sl(2, C) is spanned by
= 7]
T = Z 0,1]—
Pl
~. 7]
X+ = Z azj )
7=1 J
= 9
X_= Z a3,~————
j=1 ay]

where a;; is a linear function in ¥y, --,y, variables for all 1 <i < 3 and 1 < j < n. Here {1,X4,X_}is a
standard basis for sl(2,C) i.e., [r, X4] = 2X4,[r,X_] = -2X_ and [X4,X_]=T.

Theorem 4.4 Let sl(2,C) act on the formal power series ring C[[z1,- -, ]| preserving the m-adic filtra-
tion where m is the maximal ideal in C[[zy,---,z,]]. Then there exists a coordinate system

T1,%2,° 3 Tly» Tly+1, L1342y ° sTlylas "y Tly4lgd-Fle141y° " s TlyHlg 441,

such that
T=Dri+--+Dyj+---+ Dy,

Xy =Dx,n+-+Dx,j+ - +Dx,,
X_ =DX—,1+.‘.+DX‘-)-7‘+.“+DX—]T

where 7 < s and

0 7]
Dy j= (i = Doty pettyoy b1 e+ (i = )Tt 4ty 2
Oy 4ol g 41 Oty 4ot lj_y 42
0
+ (=l = 1)) 214t EES o
1o

i

a
+(-(; -3 T P .
(= DT+ +1; 13z11+...+z,»-1

9 9
Dx, ;= (; — Dz 4.y, 4o ti(l—d)x L
+17 J 1+ -+l 5 lyeetli_1+i

T 0T ety a 42 I Om et i
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1oty i
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Proof. According to Theorem 4.3 we can choose a coordinate system {y1,- -, yn} such that the coefficient
of 8/8y;,1 < i < n, of every element in sl(2,C) are linear functions in y;,- - -, ¥y, variables. In view of the
proof of complete classification of representations of sl(2,C), by further change of coordinate we obtain a
coordinate system {z1,Z2,--,Z,} such that sl(2,C) takes the form as stated in the theorem.

Q.E.D.

Theorem 4.5 (Yau-Yu) Let si(2,C) act on the formal power series ring C[[z1,--,Zxs]] preserving the
m-adic filtration where m is the maximal ideal in C[[z1,---,z,]]. Let I(f) be the complex vector space
spanned by 7%—, a%%’ ceey 3—‘1%. Then there is a complete classification of I(f) as an si(2, C)-submodule.

Corollary 4.6 (Sampson-Yau-Yu) In case si(2,C) acts on m/m? irreducibly, then I(f) is a sl(2,C)
module if and only if f is an invariant polynomial and I(f) = (n) where (n) is an irreducible module of
dimension n.

Corollary 4.7 (Yau-Yu, Kempf) I(f) is a sl(2, C) submodule if and only if I(f) = I(g) for some si(2,C)
invariant polynomial g.

Example: n=25

. — — — ]
Case I: T—zlaih—zz'% X+—$1'a—z-; X_—m'zmr

1 0 0 010 000
r=]0 -1 0 Xy=|00 0 X_.=|100
0 0 0 000 000

I(f) is a sl(2, C) submodule if and only if f is a polynomial in 3,24 and z5 variables.

Case II: 'r=2z132—1—-2m33%1 X+ =2w15%+2x25% X_ =m23—21- +m3£—2-

2 0 0 O 0200 0 00O

00 0 O 00 20 10 00
T= .X+= X_=

00 -2 0 0 0 00O 0100

00 0 O 0000 00 00O

I(f) is a sl(2, C) submodule of and only if one of the following occurs

(a) (1) fisa sl(2,C) invariant polynomial and I(f) = (3) & (1) & (1).
(2) f=g(z1,22,T3, T4, T5) + 121 (T4 + 725)* + c2x2(x4 + 175)* + c323(T4 +775)F
where g(z1, 2,3, T4, T5) = dy (23 — 22123) (T4 +775)* " + doz5 (74 +775)* + d3(z4 +725)FH!
is a sl(2, C) invariant polynomial with d; # 0 and dz # 0
1) =< 22, 28, 22, 28, 20 5= (3)® (1) & (1).
(3) f = g(z1,22,23,24,5) + 121 (1274 + T5)* + coT2(rz4 + 25)F + c323(rT4 + 25)*
where g(z1, T2, T3, T4, Ts) = d1 (23 — 22123)(rza + 75)* ! + doz4(rT4 + 5)* + d3(rz4 + 75)*H!
is a sl(2, C) invariant polynomial, with d; # 0 and dz # 0.
I(f)=<g&, 28,2, 2 >=3)a(1) ()
(b) fis a sl(2,C) invariant polynomial in z1,z2,z3 and z, variables and I(f) = (3) & (1).
(c) fisa sl(2,C) invariant polynomial in z1,z2 and z3 variables and I(f) = (3).
(d) fis a sl(2,C) invariant polynomial in z4 and z5 variables and I(f) = (1) ® (1).

(e) f = (c1T4 + caws)*t! either ¢; # 0 or ¢ #0. I(f) = (1).
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Case III: T=$1£;—$2§z—2 +13%—$4£: X+=$13%2 +$373-Z; X—=$2% +$43%3
1 0 0 0 0 01000 00000
0 -1 0 0 0 00000 10000
r=]0 0 1 0 o|X,={00010fX_=|000 00
0 0 0 -1 0 00000 00100
0 0 0 0 0 00000 0000 O

I(f) is a sl(2, C) submodule if and only if one of the following occurs.

(a) fisa sl(2,C) invariant polynomial in z;, zs,z3,z4 and 25 variables and IN=2)a©2) e ().
(b) fis a sl(2,C) invariant polynomial in %1, %o, 73 and 74 variables and I (NH=2)o ().
(c) f=czk*! where cis a nonzero constant and I (H=Q).

. — — a 2 a
Case IV: T—3:E1~a—2—; +z23%2—z35-‘2—3——3z4§% X+—3Z'1a—z;+4$23—m -0-3:1:33—2;4

X_ = :':2% +x35—2—2 +z4%.

300 0 0 03000 00000
01 0 0 0 00400 10000
r=]00 -1 0 0 X,=|000 30 X,=[0100 0
00 0 -3 0 00000 00100
00 0 0 0 00000 0000 O

I(f) is a sl(2, C) submodule if and only if one of the following occurs.

(a) fisa sl(2,C) invariant polynomial in z, s, z3,z4 and z5 variables and I H=@@ea ).
(b) fis a sl(2,C) invariant polynomial in z;,z2,z3 and z4 variables and I (f)=(@4).
(c) f=czk*" where c is a nonzero constant and I(f) = (1).

. —_ <] — -] -]
Case V: 1'—-21121&?—2138—23- +$4a;:4'—$5'52—5 X+—2xlm+2$23% +.’L‘4E

X-=$2-2—+$3l+1‘5 2
dx1 322 Bzq

20 0 0 O 02000 00000
00 0 0 O 00200 10000
T=100 -2 0 0 Xy=]00000 X_=]0100 0
00 0 1 0 00001 0 00O0O
00 0 0 -1 000OTO 00010

I(f) is a si(2, C) submodule if and only if one of the following occurs.
(@) (1) fisa sl(2,C) invariant polynomial in z;,zs, 3,4 and z5 variables and IH=@)&(2).
(2) - f = g(z1,22,23,24,75) + 123 + 27575 + 32422 + 423
where g(z1, %2, T3, 24, T5) = 22122 — 2722475 + 7322 is a 8l(2, C) invariant polynomial and

I(f)=< 22,28, 28, 20 2 5= (3)9(2).
(b) fis a si(2, C) invariant polynomial in z;,z; and z3 variables, and I (f)=(3).
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. = 9 2 2 _ o = i 2 2 2

Case VI: T =41 30 + 222 s 214 e; 4xs Bos Xy =4z, 35; + () 3e; T 6x3 3 4z, Bor
S i 0 i
X_=x Do + T35, + T4 B3 + Ts5 Dza

4 00 0 O 04000 000O0O
020 0 O 006 00 10000
T=]0 0 0 0 O Xy=]0 00 6 0 X-=101000
000 -2 0 0 0 O0O0 4 00100
000 O 4 00 0O0O 00010

I(f) is a sl(2, C) submodule if and only if f is a sl(2, C) invariant polynomial in z1,z2,23,%4 and =5
and I(f) = (5).

The proof of Theorem 4.1 follows from the following observation. Once we fix a sl(2,C) action, the
singular sets of varieties defined by sl(2,C) invariant polynomials of degree > 3 have to contain a one
dimensional set which depends only on the si(2, C) action.

Definition Let (X;,0) and (X2,0) be two isolated hypersurface singularities in (C™,0). We say that
(X1,0) and (X3,0) have the same analytic type (respectively topological type) if there exists a germ of
biholomorphism (resp. homeomorphism) from (C*, X;,0) to (C*, X2,0).

The following question was pointed out to me by Lé Diing Tréng.

Question. Let f(21,+,2,) = 0and h(w1,- -, wm) = 0 be the defining equations for isolated hypersurface
singularities (X,0) C (C",0) and (X»,0) € (C™,0). Does the topological type of the hypersurface Xs4n
defined by f(z1,--+,2s) + h(wi, -, wn) = 0 (addition of Thom-Sebastiani) in (C**™,0) depend only on
the topological type of (Xy,0) and (X4,0)?

In his 1977 paper, Teissier introduced the concept for two isolated hypersurface singularities being
(c)-cosécantes. He showed that the (c)-cosécantes class of the hypersurface defined by f(z1,---,2a) +
h(w;, -+, wm) = O depends only on the (c)-cosécantes class of (X,0) and (X4,0). He remarked that
the analytic type of the hypersurface Xy defined by f(z1, -, 2n) + h(w1, -, wm) = 0 depends not only
on the analytic types of (Xy,0) and of (X4,0), but also in general on the choice of the equation for f and
h. However the following theorem says that in case h is quasi-homogeneous, then the analytic type of Xs4n
indeed depends only on the analytic types of (Xy,0) and of (X4,0). In fact, a “subtraction” theorem holds!

Theorem 4.8 Let f(z1,---,2) and g(21,- -, 2,) be holomorphic functions with isolated singularity at
origin in C*, and h(w, - - -, ws,) be a quasi-homogeneous holomorphic function with an isolated singularity
at origin. Then (X, 0) is biholomorphically equivalent to (X,,0) if and only if (Xs.x,0) is biholomorphically
equivalent to (Xg4s,0).

As a typical application of the above theorem, we have the following examples.

Example 1. Let Mg, be the moduli space of nonsingular hypersurfaces of degree d in P™. Then there is
a canonical injection from the moduli space Mg of nonsingular curves of degree d in P? into Mg,. In
particular, M, 2, which is a Zariski dense open subset of the moduli space M3 of complete curves of genus
3 is mapped injectively into My , for n > 3.

Example 2. Let Vi = {(20,21,22,"**,2n) € C™' : 2§ + t2222 + 2} + g(z2, -+, 2n) = 0 where t> # 4 and
g(22,++,2n) is a quasi-homogeneous holomorphic function with isolated singular point at (22,---,2,) =
(0,---,0)}. Then the complete continuous invariant of this one parameter family is given by c(t) = (2 +
12)%/(t* — 4)? i.e. V;, is not biholomorphically equivalent to V;, if and only if ¢(t;1) # c(tz2).

Example 3. Let Vi = {(20,21,22, "",2n) € C"*! : 28 + 23 + 23 + t202122 + g(23,--,2,) = O where
t3 + 27 # 0 and g(z3,---,2s) are quasi-homogeneous holomorphic functions with isolated singular points

at (23,24, -+, 2n) = (0,0,---,0)}. Then the complete invariant of this one parameter family is given by
c(t) = [t(t® — 216) /(3 + 27)]3.
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Example 4. Let V; = {(20, 21,22, *,2n) € C"1 : 28+ 23 + 12821 + g(22,- -+, 2n) = 0 where 4¢3 +27 # 0 and
g(22,- -+, 2n) is a quasi-homogeneous holomorphic function with isolated points at (zg,--,2,) = (0,---,0)}.
Then the complete invariant of this one parameter family is given by c(t) = 2.

Theorem 4.8 is a consequence of Theorem of Mather-Yau and the cancellation theorem for Artinian
algebra -

Given a family of complex projective hypersurfaces in CP™, the Torelli problem studied by P.Griffiths
and his school asks whether the period map is injective on that family, i.e., whether the family of complex
hypersurfaces can be distinguished by means of their Hodge structures. A complex projective hypersurface
in CP™ can be viewed as a complex hypersurface with isolated singularity in C™*!. Let V = {z € C**! :
f(2) = 0} be a complex hypersurface with isolated singularity at the origin. The moduli algebra of (V,0)
is A(V) := C{20,21,"- > za}/ (f: azo Ly, %). It is a finite dimensional commutative local algebra. Mather
and Yau proved that the complex structures of (V,0) determines and is determined by its moduli algebra.
Subsequently we introduced the Lie algebra L(V') to (V,0), which is the Lie algebra of derivations of A(V).
We proved that L(V) is solvable. The natural question arises: whether the family of isolated complex
hypersurface singularities can be distinguished by means of their Lie algebras. The family of hypersurface
singularities here is not arbitrary. First of all, as in projective case, we are really studying the complex
structures of an isolated hypersurface singularity. In view of the theorem of Lé and Ramanujan, we require
that the Milnor number 4 is constant along this family. Recall that the dimension of the moduli algebra
(denoted by 7) is a complex analytic invariant. So it suffices to consider only a (u,7)-constant family of
isolated complex hypersurface singularities.

,7)Constant deformation for hypersurface singularities with C*-action
(1) yp g

Let (V,0) C (C™,0) be an isolated hypersurface singularity with the local defining equation f(z1, -, Zn)
=0. Then the semi-universal deformation of (V,0) is given by

(V’o) — (C’nka’O) (xh"')mn’tl)"',tk)

J | l

(5,00 = (C*,0) (t1,+ -+ tk)

Here V = {(z1, -, ZTn,t1, ", tk) = f(z) + Ele tigi(z) = 0}, where gi(z),---,gr(z) are monomials in
%3, +, T, which represent a linear basis of the complex vector space A(V) = C[z1, - - -, Zx] / (f, a%%, e, 0%%).
We are particularly interested in the case when f is weighted-homogeneous, i.e. when there exist positive
integers g1, -+, ¢ and d such that for any t € C* = C — {0}

F9 2y, 122y, tg,) = t4f (21, -, Tn). ' (4.1)

In the sequel, we shall always assume that f is weighted homogeneous.
Let us give the variable z; the weight g;. Then each monomial z7'z3? - - - 2%~ which appears in f has
total weight d = a1q1 + a@2ge + - - + Qngn.

Theorem 4.9 (Seeley-Yau) Let f be a weighted homogeneous polynomial with isolated singularity at
the origin as above. Then '

{(ml"" v Ty b1,y tm) L f(Z) Ft101(2) + - F tmgm(T) = 0}7

where g1, -, gm are monomials in a basis for the moduli algebra
_ of of
A(V)—C[zli' 'azn]/(f"é_av )'a';f:))

is a (p,T)-constant deformation of V = {z : f(z) = 0} if and only if weight (g;) = weight (f) for all
1<i<m.
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1t is well known that the (u, 7)-constant strata Sg = {t € C* : (u(V;), 7(V2)) = (1, 7)} forms a subvariety
in the parameter space of the semi-universal deformation of (V,0). In case (V,0) has a C*-action, we shall
show that (Sg,0) is isomorphic to (C™,0), where m is the dimension of A, (elements in the moduli algebra
A(V) of weight d).

Theorem 4.10 (Seeley-Yau) Let f be a weighted homogeneous polynomial with isolated singularity
at the origin as in (4.1). Let g1,---,gm be elements in a monomial basis of the moduli algebra A(V) =
C[zl,m,xn]/(f,%,---,%) such that weight (g;) = weight (f) for all 1 < ¢ < m. Then the (u,7)-
constant strata Sk is C™ and the equitopological deformation (W,0) — (Sg,0) of (V,0) is given by

W,0) — (V,0) = (C"x Ck,0)

| | |

(SE,O) — (S’O) = (Ck’o)

where W = {(z1,"**, Zn, t1,* *, tm) : F(2)+1101(2) + - - +tmgm(z) = 0}, (Pra = projection onto the second
factor) and (Sg,0) = (C™,0).

Construction of a family of solvable Lie algebras over the (u,7)-constant strata Sg

Let (V,0) be a hypersurface singularity defined by a weighted homogeneous polynomial f(z1,:*,Zxn)-
We have shown that (Sg,0) = (C™,0) and the equitopological deformation is given by

{($1,"‘,$n,t1,"’,tm) : f(z)'l'tlgl(w) + +tmgm(m) = 0} - C"xC™

1?7‘2

SE = cm

where g; are those monomials in a monomial basis of C{z1,"+",%n} /(f, 3‘%, RN Z%e) such that wt(g;) =
wt(f). Now we shall construct a family of solvable Lie algebras over Sg. Recall that we have associated
to an isolated singularity (V,0) a finite dimensional Lie algebra L(V), which is defined to be the algebra
of derivations of the moduli algebra A(V). L(V) is solvable. We shall define a Lie subalgebra L(V) of
L(V). This Lie subalgebra L(V') admits a natural deformation over the parameter space SEg. Recall that by

Theorem 4.10, Sg is isomorphic to C™ with coordinates t1,- - ,tm.
Definition. A derivation Dy € L(V) is liftable to Sg if there exist differential operators Dy, such that

D=Do+ Y t"Dr+  t"Dry+--

Im|=1 Ir2|=2

leaves the ideal (f:n + 1912, +--0 + tmgmznfa:z + 11912, T + tmGmasy ’fzn +tigig, + -+ tmgmzn)
in C{z1,-**,%n,t1, -, tm} invariant. (By differential operator, we mean operator of the form d; (:1:)52—1 +

-+ + dn(z) 3% with d;(z) a linear combination of monomial basis elements of the moduli algebra A(V).)

Here we use the standard notation for multi-indices. For example if @ = (4, -,an), then |o| =
ap + -+ a, and

t*Dqy =t11-"tn"( 1(12)5;:: ++dﬁ($)—a-x-—n)

Definition The Liftable Lie algebra L(V) is defined to be the set of those Do € L(V') such that Dy is
liftable to Sg.
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Clealy L(V) is a Lie subalgebra of L(V) and has a natural deformation over the parameter space Sg.
Restricting ourselves to the three variable case with m = 1 (i.e. to 1-parameter family of deformations), Do
is liftable to Sg if there exists aj, mco such that (4.2) are satisfied and there exist D, al,bi,ci such that
(4.3) are satisfied and there exist Dy, a}, b}, c; such that (4.4) are satisfied etc.

Do(fz) = a3 fz + ad fy + a3 f.
Do(fy) = by fo + b3 fy + b3 - (4.2)
Do(fy) = cifo + 3 fy + B3F-
Di(fz) — (aifs + a}fy + a}f.) = —Dog: + (adgs + adgy + adg.)
Di(fy) — (B} fo + B, + B3 f2) = —Dogy + (bbgs + big, + big:) (43)
Di(fz) = (cifz + €1 fy + G f2) = —Dog: + (cbgs + ckgy + c3g:)
Da(fz) — (a3 fo + a3 fy + a3f.) = —D1g: + (alge + algy + alg.)
Da(fy) — (b3 fz + B3 fy + b3 f.) = —Digy + (blgo + bgy + big.) (4.4)
Da(f:) = (c3fo + &3 fy + 3 f2) = =Dig. + (clge + gy + cig:)

Example Let V = {(z,y,2) : f(z,y,2) = 2® + 3 + 2% = 0}. Then the moduli algebra is given by the
vector space spanned by 1,z,y, z,zy,yz, 2z and Tyz.

The weight of g(z,y, z) = zyz is three, which is exactly the weight of f. In view of Theorem 4.10, the
equitopological deformation of V is given by

={(z,y,2): P +y* + 22 +tayz =0} 2 +27#0.
It is easy to see that the Lie algebra L(V;) associated to V =V} is given by

L(Vp) = z—‘?—- 2-zf-avaza:za o axawzaxzaxza
0)= 6zayay)az7yaw7wayyay’yavyaaavya»yayyaz

We claim that :1:— is not liftable. To see this, we observe that
7]
:::5;(f,g)=2f,+0fy+0fz = ay =2,a3 =0,a3 =0
Suppose that there exist a},a?,a} and
D =(mz+a +az)i+(ﬂa:+ﬂ +[3z)i+( T+ vy + z)—?—
1= 2Y 345, 1 2y + P3 dy N Y2Y T 73 92
such that (4.3) is satisfied. Then

aif:: + a?fy + a:;fz = D1 fs + Dog, — (atljgz + aggy + aggz)
= 60,122 + 6agzy + 60322 — 2y2.

Because of the appearance of —2yz on the right hand side, there is no choice of al,a?,a},01,02 and a3
which makes above equations true.

On the other hand, we claim that Dy = a: ~+ Y5 6y + 2z 31 is liftable. In fact, Dy itself preserves the ideal
generated by 3z2 + tyz, 3y? + tzz, and 322 + tzy We can see that

L(Vy) = 8+ o azazzaza o za xaa:zazzaxza
0) = ya )3/67 a7yayvya’ya,a’ya’ya»yaz
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Indeed, the equitopological deformation {V;} gives the following deformation of L(V).
I~/(V)—<ac—a—+ —a—+z2 z —?——Ezzi zxi——icc 9 x ot z—(?-— z—a———ﬁz 2
Y7\ oz yay 595z " 6 Oy’ oz 6 Yoz yay 6°5zY dy 6 Yoz
zi—fzaz—a— z:::—a——E 22- z z—‘?- z zix zi
Y% " & Oy’ 0z Gyaz’yaz’yayyaz’

This deformation is actually a trivial family (as a family of Lie algebras).

Torelli type problems

We have constructed a family of Lie algebras L(V;) over Sg. It is natural to study the following Torelli
type problem: If L(V;,) ~ L(V4,) as Lie algebras, t1,t; in Sg, is V;, biholomorphically equivalent to V;,. In
what follows, we shall study this problem for simple elliptic singularities E; and Es.

Let E; be a simple elliptic singularity defined by {(z,y,2) € C: z* + y* + 22 = 0}. It is clear from
Theorem 4.10 that the (u, 7)-constant family is given by

Ve={(@,2): f(z,9,2) =a* +y* +t2”y* +22 =0} t2#4 (4.5)
Hence Sg = C — {+2}.

Theorem 4.11 (Seeley-Yau) A Torelli type theorem holds for simple elliptic singularities E;. e,
L(Vi,) = L(V;,) as Lie algebras for t; # t2 in Sg if and only if V;, is biholomorphically equivalent to V3,

Let Eg be a simple elliptic singularity defined by {(z,y,2) € C? : 28 + y® + 2% = 0}. It is clear from
Theorem 4.10 that the (u, ) constant family is given by

Vi = {(z,9,2) € C*: fi(z,9,2) = 2° + y* + 2% + tz*y = 0}
with 413 + 27 # 0. Hence Sg = C — {t € C: 4t + 27 = 0}.

Theorem 4.12 (Seeley-Yau) A Torelli type theorem holds for simple elliptic singularities Eg. i.e.,
L(V;,) = L(V;,) as Lie algebra for ¢; # t2 in Sg if and only if V4, is biholomorphically equivalent to Vis-

Proof. By the theorem of Mather-Yau there is a one to one correspondence between the complex structure
of the singularity V; and its moduli algebra

At = C{w’yv Z}/(%,—aa—{;-, %)

=< 1,z,2%,y,2% ay, 2%, 2%y, 23y, 2%y >

with multiplication rules

t
2——__ 4
y'=-32

2t
5_ _%t 3
z 37

Ay is a graded algebra with degz = 1 and degy = 2. Observe that A; = C{z,y}/I; where I; = (%‘%» %%) =
(3z® + 2tz%y, 3y? + tz*). Any element D € Derc(A:) can be written as

7]
D =(ap + a1z + asz? + a}y + a3m3 + a},xy + a4zt + a}lxzy + a},z‘:’y + a};x"‘y)%
7]
+ (Bo + b1z + boz® + bly + bsz® + bizy + baz® + byz’y + byzy + béa:“y)a—y.
The subscripts refer to degrees of monomials, with a},b} the coefficients of a monomial containing y.
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deg0
degl
deg2
deg3
degd

deg5

A basis for L, is, for ¢ # 0, the following:

e —1;2_'.'.2 i
°= Yoz y@y
7] 8 7] 7]
_ .2 - 2,3 _ 4z,
e =1z _6:c+2xy8y’ e 2tyaz+(2fx 15.1:y)ay
8 8 ]
= (22 — 952 — 943 2,4
ez = (2t°z" — 9z y)—--5 , es =9z —az+4ta: 3y’

e} o
=zt = = 2 — = 3y—
€ =T az$ er 1:3/32, €8 xyay
7]
€9 =T yaa:’ €10 $1/9

4
€11 =T Y.
Yoz

1]
es = —3xy—a—]—; + 2zt

9y

Fort = 0,{eo} is replaced by {z.2,yZ }. The Lie algebra L, defined in the previous sectioThe Lie algebra L,
8z’ 9 dy

defined in the previous section is spanned by < eg,e;,---,e1; >. The nilradical N; of L, is of dimension 11, -
spanned by < e3,---,e1; >. We shall show that the mapping {V;} — {L.} gives a one-to-one correspondence
between the complex structures of V; and the isomorphism classes of the solvable Lie algebras L;. Again,
we will do this by studying the nilradical N;.

[e1, e2] = Jes le2, €3] = —4t3eq + 18ter
le1, e5] = — 43 eq le2, e4] = —8t%eq + 54ter + (135 + 28t%)eg
le1,eq] = 9eg — H4E160 65 [eg, e5] = —8teq + 457 + 4t%es
ler,es] = —3er — %es le2, e6] = 8teg + (15 + 4t%)eso
135 + 4¢3 8t2
[e1,e6] = —%teg — 2e10 le2,e7] = ———g—e — e
[e1,e7) = 2e9 - 4—;2-610 [e2, e8] = —2teq
[61’68] = 3e10 [62,69] = —15e11
[elyeé] =3ey;- [62,610] = —2tey;
[63, 94] = (24t3 + 162)610 [64,65] = (8t3 + 54)39 [65’66] — —9611
[63, 65] = (4t3 + 27)89 [64,66] = —6te1; [65, 67] - —2t2611
, 27 + 8t3
les,er] = _“33 ey les,e7] = — 3 €11 [es, es] = 3e1n

Other brackets [e;, e;],4 < j are zero. There are some invariant subspaces which show explicitly the structure
of N;. Let

: = center(N;) =< e11 >
Z%: = {z € N, : Image(ad;) C Z} =< eg,e10,€11 >
Z3:={z€N,: Image(ad,) C Z%} =< eq, €7, €8, €9, €10, €11 >

Z* . = {z € N, : Image(ad,) C Z%} =< e3, e4, €5, €6, €1, €5, €9, €10, €11 >

7% . = {z € N; : Image(ad,) C Z*} = N,

N = [N,N] =< e3,es, €7, €3, €9, €10, €11 >
212
N® = [N,NO)] = <67 - ?66,38,99y510,€11>

N® = [N,N®)| =< eg,e10,€11 >
N@& = v, N(3)] =<e; >.
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The quotient space Z2/Z = N3 /N is two dimensional, spanned by the images of ey and ejo. There
are four invariant lines in this space (i.e. each is preserved under all automprphism of N). Their ordered cross-
ratio is a complex number which is also invariant under all automorphisms, and will therefore distinguish
N; from N, unless N; = N,. Let

I =2%23n NV /Z% = Ce3 C 2*/2°

P, = ker(ad;,) = Ces ® Cég C 2%/2%  where ad), : Z22/2* - Z

P; = Image(ady,) = Ceg @ C(9e; — 2t%eg) C Z3/Z%>  where ady, : Z°/Z* — Z3/Z*
ly=P,NP;=Ces C 23/2*

Is={T € 2%/2* : ad),(T) C lu} = Ce&; C Z°/Z*  where ady, : 2°/2* — Z3/2*

ls = [ls,Is] = Cewo € 22%/2

Iy = ker(ady,) = C(es + %67 + §28—41;§
Is={Z € Z*/Z% : ady,(T) C lo} = C(des — 3eq + btes)  where ady, : 2*/2° — 23/ 2°
lo = [lh,ls] = C(tes — 3e10) € 2%/2Z

lio = ker(ad;,) = C(3e; + e2) C Z2°/2*  where ady, : 2°/2* — Z

1 = [lio, la) = C(=2teg + e10) C Z%/Z

lig = [l1,l10] = C(2t3eg — e + (483 + 27)es) C 23/2°

lis = [lio, li2) = Clteg + (23 + 9)eso) C Z2%/Z.

Cs) CZ%/2®  wheready, : Z23/2* — Z%/Z

It is clear that any Lie algebra isomorphism from N; to N, induces an isomorphism from Z?/Z; to Z2/Z,
which sends the ordered set {lg(t), l9(t), l11(¢), l13(t)} to the ordered set {ls(s),lo(s), }11(5), l13(s)}. The cross
ratios of these two ordered sets are 2(2t> +12) and 2(2s% +12). Consequently N; = N, implies that $ =18,
Conversely if 53 = t3, then s = pt for some p with p®> =1 and V; is biholomorphically equivalent to V,. The
biholomorphism is given by fi(z, py, z) = fs(z,y, 2). In particular N, is isomorphic to N as a Lie algebra if
33 = 3. Thus ¢3 can be considered as the modulus of the analytic type of the Eg singularities.

Q.E.D.

Again this agrees with the work of Saito[Sa2]. He found that j(t) = E}f—:;,—, which is a one-to-one
function of our modulus #3.

Remark. A complete basis for N; of Eg can be obtained (for 3 # 0, —2') by defining two more lines l4,
and l;5 below, and choosing representative vectors for I, l10, 11, s, lia, la, I, l12, 16,19, l15. These vectors will
be unique, up to scalar multiples, modulo higher centers Z*.

Ly ={T € 2Z*/Z%: ad}y(F) C 2}

6 6 3
= C((%— + 3613 + 81)63 - 1—6t—-t10—-8£—e4 — (244 + 162t)e5)

9
C 24/Z°  wheready, : Z*/Z° — Z%/Z°
ll5 = Ceu =2Z.

Two sets of Lie algebra generators are easily seen to be {e1, ez, e4, €5} and {e1, 3e1 +e2, 4e3—3es+6tes, (%t6+
3613 + 81)es — (1816 + 12t3)e* — (24t* + 162t)es}. The second set represents {I5, l1o, ls, l14}.

Notice that L, is a graded Lie algebra. In fact each e; is of pure degree acting on A;. For example
e = z“y% raises degree by 5=5degz+degy—degz.
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deg0 €o

degl é1 . L] l5 (] l]o
€2

deg2 €3 ° ll [ la L] 114
€4
€5

deg3 es P P
er ' 1y ol ol
€g

deg4 €9 olg oly ol oli3
€10

degd en olis

A o represents a complex line and a segment —— represents a complex plane. Notice that, for instance, Z2

is the span of the degree 4 and degree 5 derivations, although the degree 4 subspace is not invariant under
all automorphisms of NV;.
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