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2 Notes on Boundary Values ...

Introduction

These lecture notes are an extended version of the material presented by the
third author in four lectures given in the fall of 1998 during his short visit to
Seul National University.

There exists a vast literature concerning ultradistribution spaces (see [52] [3],
[75], [48]-[50], [51] and references therein), but there is no monograph concern-
ing both the general theory and applications within ultradistribution spaces.
Important results in the frame of ultradistribution spaces which will not be
included in these notes were obained by D. Kim, S. Y. Chung and their col-
laborators ([27]-[30], [47]), Matsuzawa. ([58]-(60]), Vogt, Meise, Taylor, Petzsche
and their collaborators ([61], [62], [63], [64]), the Italian school with Rodino,
Gramchev ([73], [39]) and many others. A list of papers with results on vari-
ous problems within ultradistribution spaces is given in the references which is,
however, far from being complete.

These notes are concerned with the analysis of boundary values of holomor-
phic functions having appropriate growth estimates and with the Cauchy and
Poisson integrals in the weighted ultradistribution spaces D'(x, L*).

- The problems of characterizing holomorphic functions whose boundary val-
ues are elements of the spaces of distributions, ultradistributions, infra-hyper-
functions and, vice versa, of finding boundary value representations of elements
of the quoted spaces of generalized functions by holomorphic functions have a
long history; for references see e.g. [55], [80], [73], [83], [80], [2], [82], [19] and
references therein.

Carmichael and his co-workers ([8]-[19], [20]) have studied the Cauchy and
Poisson kernels in appropriate tube domains. By considering the Cauchy and
Poisson integrals of distributions in appropriate subspaces of the Schwartz space
D', they obtained characterizations of these subspaces by the a priori estimates
of the corresponding analytic or harmonic functions in tube domains.

The complete boundary value characterizations, for the spaces D’ ((Mp), ),
D'({My}),Q) of ultradistributions and the spaces &' (M), Q), E'({My},Q) of
infra-hyperfunctions, related to a non-quasianalytic and quasianalytic sequence
(Mp), respectively, are given in [75], 48], [64], [74].

The spaces D'((Mp), L°) and D'(({Mp,}), L*) for s > 1 related to a non-
quasianalytic sequence (M,) are studied in papers by Carmichael and Pilipovié.
In these notes, we investigate classes of analytic functions having boundary
values in these spaces. For the analysis of Hardy type spaces of holomorphic
functions, with bounds given by appropriate associated functions corresponding
to the sequences (M,), we apply the Cauchy and Poisson integrals as well as
the Fourier transforms. The geometry of tube domains also is considered in the
notes.

A complete boundary value characterization for the spaces D’ (%, L%), on R™
with s € (1,00), is given by means of almost analytic extensions, while in cases
s = oo and s = 1 only partial results are obtained.

The paper is organized as follows.

In Chapter 1 we define some notions connected with cones in R™ as well
as the Cauchy and Poisson kernels corresponding to tube domains. We present
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there results which will be used later in proving boundary value representations.

Chapter 2 contains the definitions and main properties of the spaces of
ultradifferentiable test functions of Beurling and Roumieu type as well as of
the corresponding spaces of ultradistributions. We are mainly interested in the
spaces D(*, L*) and S* and their strong duals. After presenting basic properties
of the sequences (M,) and ultradifferential operators generating the respective
ultradistribution spaces, we prove structural theorems for these spaces. We also
give the definitions of the Fourier and Laplace transforms.

Chapter 3 is devoted to characterizations of bounded sets in the spaces
D’ (%, LP) of LP ultradistributions and §* of tempered ultradistributions.

In Chapter 4, the Cauchy and Poisson kernels are studied as elements of
ultradifferentiable spaces D(*, L") (in Section 4.1) and then the Cauchy and
Poisson integrals are treated as elements of ultradistribution spaces D’ (%, L*)
(in Sections 4.2 and 4.3). For s > 2 the use of Cauchy integrals gives a complete
boundary value characterization of elements in D’(*, L*); notice that the Poisson
integral of an element of the space D’'(*, L*), s > 1, converges to this element
in the corresponding general ultradistribution space..

In Chapter 5, we deal with the boundary values of analytic functions in
appropriate tube domains. Section 5.1 concerns the Fourier transform and
suitable generalizations of Hardy spaces within ultradistribution classes for r €
(1,2]. In Section 5.2, we show that elements of such spaces have boundary values
in D’ ((M,), L'), while appropriate L* bounds for s > 2 lead to boundary values
in D'((M,), L") for r € (1,2]. The extension of the results of Section 5.2 to the
case r > 2 is given in Section 5.3 for appropriate cones. By means of almost
analytic extensions and Stokes’ theorem, we give in Section 5.4 the complete
boundary value characterization for the spaces D' ((Mp), L*) and D'({ My}, L?)
with s > 1. The results given in Section 5.4 for ultradistributions on the real
line, are true also in the multidimensional case. In Section 5.5, the cases s = 0o
and s = 1 are considered. Due to the method of Komatsu (see [48]) appropriate
L and L! estimates are obtained for the corresponding boundary values in
the respective ultradistribution spaces. -



Chapter 1

Cones in R" and kernels

1.1 Notation

We present the n-dimensional notation which will be used throughout. _

For the origin in R™, the n-dimensional Euclidean space, we use the stan-
aard symbol 0 and it follows easily from the context if 0 denotes the number
or the vector. Thus 0 = (0,...,0) € R™. The operations on vectors in R" (in
particular, in N™ and N{) and inequalities between themn are meant coordi-
natewise which, in particular, simplifies summation symbols involving indices
a=(ay,...,an) and B8 = (B1,...,5,) in Ng:

o Qn
TSIy
2 ag = e aBy,....0n
0<f<a Bi=1  B.=1
Let o = (a1, o9,...,a,) be an n-tuple of arbitrary reals {in particular,

arbitrary integers). If ¢ = (t1,t2,...,t,) € R", we define t* = th .t in
particular, t* = t*1*-+an for ¢ € R, whenever the symbols % make sense. -
The symbol 2% for z € C™ is defined analogously. For o, € N with a < 8
we define & = a3 + ...+ an, al = ajlag! ... a,! and

()= () ()

Given two vectors ¢t = (t1,t2,...,tn) and y = (y1,92,...,¥n) in R™ we use
the symbol (t,y) for their scalar product, i.e.,

(t,y) =ty + toya + . . + tuln.

The scalar product (t,z) for t € C" (in particular, for t € R") is defined
similarly.

Let a denote an n-tuple of nonnegative integers, i.e. o = (o1, 09, ) €
NG. The symbol D* = D¢ with t = (t3,t2,...,t,) € R™ denotes the differential
operator given by

1 0

Df = DP'D§* ... Dy with Dj=—g—= for j=1,.n (L1)
J
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On the other hand, the symbol %} with t € R™ denotes the partial differential
operator defined analogously as in (1.1), but with the constant 1 instead of
—(2mi)~1. We also write ¢(®)(t) instead of a‘;fét) for functions ¢ on R™. A
similar convention is applied to the symbols DZ, a_z‘a‘ and gp(a)(7) for z € C»
and functions ¢ on C".
For z € C™, we denote

2] = (|1 + ... + |2l )2,

the Euclidean norm of z in C™.
It will be convenient to apply constantly the following notation x“, with
a=(ai,...,an) € N, for the function given by

Qo

X*(x)=z* =27 ... 2", x=(x1,...,.n) €R"

Moreover, we put :
(x)(@) == (z) = (1+ |22

We shall also apply the followmg ‘notation for exponents with two variables
z, g C™

E.(¢) = exp(27i(z,()), 2z, (€C™ (z€C", tcR").
We also denote
ey(t) = exp(—27r(y,t>}, (TS Rn, t e Rn,
l.e. we have »
By =e, for yeR"

In particular, e, (t) = exp(—2myt) for y,t € R.
The Fourier transform of an L!-function ¢, denoted by Flp| or by ¢, is
defined by

Flelia) = pla) = [ et ar = [ o(08)d

R" R™

and the inverse Fourier transform of an L!-function ¢, denoted by F~![¢] or
by ¢ is defined by

Fplle) = ola) = [ o0 d= [ o(0B-a(p)at.

R” R”

We assume familiarity on the part of the reader with the Fourier transform on
L™, 1 <r <2, the corresponding inverse Fourier transform, and the associated
Plancherel theory for the Fourier transform.

The symbol supp g will mean the support of a given function or ultradistri-
bution g.
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1.2 Cones in R"

We introduce the definitions and notation associated with cones in R™ and
tubes in C™ (cf. [83], [84]).

A set C C R™ is a cone (with the vertex at zero) if y € C implies \y € C
for all positive reals A. The intersection of the cone C' with the unit sphere
{y € R™: |y| =1} is called the projection of C and is denoted by pr(C). If
Ci and C; are cones such that pr(C;) C pr(Cy), the cone C; will be called a
compact subcone of C; and we will write then C; CC C,. An open convex
cone C such that C' does not contain any entire straight line will be called a
regular cone. The set

C*={teR": (t,y)>0forallyeC}

is the dual cone of the cone C'. A cone is called self dual if C* = C. For any
cone C, the dual cone C* is closed and convex. We have C* = C" = (O(C))*
and C** = O(C), where O(C') denotes the convex hull of C.

The function '

~uc(t)= sup (—(t,u))
yepr(C)
is said to be the indicatrix of the cone C.
We have C* = {t € R": wuc(t) < 0}. Moreover, uc(t) < uo(c)(t) for ali
t € R™ and uc(t) = up(cy(t) for t € C*.
Given a cone C, put C, = R™\ C”. The number

pc-= SUp Uo(C) (t)/ uc(t)
teC. '

characterizes the convexity of C'. Notice that a cone C' is convex if and only if
pc = 1. Further, if a cone is open and consists of a finite number of components,
then po < +o0.

We give some examples of cones and their dual cones. If C' = (0, 00), then
C* = [0,00), uc(t) = —t and pc = 1. The case C == {(—o0,0) is analogous. If
C = R", then C* = {0}, uc(t) = |t| and pc = 1. Let u = (uy,...,u,) be any
of the 2" n-tuples whose entries are 0 or 1. Then

Cn={yeR" (-1)%y; >0, j=1,...,n}

is a self dual cone in R™ and we call it a n-rant.
Each of the 2" n-rants C, in R™ is an example of a regular cone. The
forward and backward light cones, defined by

I ={yeR™ y1>@5+...+y5)"?}

and
I ={yeR™ y < —@Wi+...+12)"%},

respectively, are important self dual cones in mathematical physics.
For an arbitrary cone C in R™ the set

TC':R"+iC:{z:a:+iy: zeR" yeC}
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will be called a tube in C™. The set {z =z +iy: = € R*, y =0} is called the
distinguished boundary of the tube T¢, while the boundary of the cone C'
will be referred to as the topological boundary of T¢.

We now present two important lemmas concerning cones and dual cones
which will be of particular use in the construction and analysis of the Cauchy
and Poisson kernel functions below. The lemmas are proved in [83], Section 25;
we give here a separate proof of the second lemma.

Lemma 1.2.1 Let C be an open connected cone in R™. The closure 5(_0—) of
O(C') contains an entire straight line if and only if the dual cone C* lies in
some {(n — 1)-dimensional plane.

Lemma 1.2.2 Let C be an open (not nesessarily connected) cone in R™. For
every y € O(C) there exists a positive § (depending on y) such that

) >dllltl,  tec (1.2)

Further, if C" is an arbitrary compact subcone of O(C'), then there exists a § > 0
(depending only on C' and not ony € C') such that (1.2) holds for all y € C"
and all t € C*.

Proof. Since uc(t) = up(e)(t) for t € C*, we have (y, %) > Dfor ally € O(C)
and all t € C*. For an arbitrary y € O(C'), we have
g = y/lyl € pr(0(C)) ¢ O(C),

since O(C) is a cone. Moreover, O(C') is open, because C' is open. Thus there
exists a J = dy > 0 such that

B(§,20) = {y": | — 3| <26} CO(C).
Hence
7~ (t/1t]) 6 € B(§,26) C O(C)

and thus
(G — (t/]t]) 6,t) > 0,

for every t € C*, but this implies (1.2). Now, let C’ be an arbitrary compact
subcone of O(C). Let d be the distance d from pr(C’) to the complement of
O(C) in R™, ie.

d=inf{ly1 — vl v1 € pr(C"), 12 ¢ O(C)}.

Obviously, d is positive and depends only on C” and not on y € C’. Define now
d = d/2. The preceding considerations show that (1.2) holds for all y € C” and
t € C*. The proof is complete. O

For C being an open connected cone in R™, we denote the distance from
y € C to the topological boundary vC' of C by

d(y) = inf{ly — y1]: y1 € vC}.
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It has been shown in [84], p. 159 that

d(y) = ty), yeC. (1.3)

inf
tepr(C*)
Let C” be an arbitrary compact subcone of C'. it follows from Lemma. 1.2.2
and (1.3) that there exists a § = §(C") > 0, depending only on ¢ and not on
y € C', such that

0<dlyl<dly)<ll, yel ccc (1.4)

Let C' be an open connected cone in R, We make the following convention
concerning the notation y — 0, y € C, which normally means that Y varies
arbitrarily within C' while y — 0. But frequently the above symbol will mean
that  -— 0,y € C" for every compact subcone C’ of C'. We shall distinguish
between these two convergences only when necessary; in most relevant situations
the analysis clearly shows which of the interpretations of the symbol y — 0,y €
C, is used in a given case.

Let V be an ultradistribution (distribution, generalized function) and let f
be a function of variable 2 = x 44y € T for a given cone C. By f(z +1iy) — V
in the weak topology of the ultradistribution space as y — 0,y € C, we mean
the convergence: S »

(f(z+iy),o(2)) = (V)
as y — 0,y € C, for each fixed element ¢ in the corresponding test function
space. By f(x +4y) — V in the strong topology of the ultradistribution space
as y - 0,v € C, we mean

{(f(z+iy), o(z)) = (V,p)

as y — 0, y € ¢/, where the convergence is uniform for an arbitrary bounded
set in the corresponding test function space. Then V is called the weak or
strong, respectively, ultradistributional boundary value of f and is defined on
the distinguished boundary of the tube T

1.3 Cauchy and Poisson kernels

Let C be a regular cone in R™, that is C' is an open convex cone such that C
does not contain any entire straight line. The Cauchy »kernel K(z—t), z €
T¢ =R" +iC, t € R", corresponding to the tube T, is defined by

K(z—1t)= /exp(2ﬂ'z‘<z —tu))du, 2€TC teR™ (1.5)
c* '

In case C' = Cy, is any of the 2™ n-rants in R", the Cauchy kernel K (z—1t) =
Kn(z —t) takes the classical form

)" A -1 : :
z—t) = R R" +iC,, teR",
K(z—1t) R ‘:l(t] zj)™, z€ iCn, te

J
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since C* = Cp, in this case.
The Poisson kernel corresponding to the tube T¢ is the function

L K(z—t)K(z - t)

In case C = Cj, is any of the n-rants, the Poisson kernel Q(z;1) = Qn(z;t)
reduces to the classical form

()" 1 Yj
Q(z;t) = =,
w0 = U=y

z=x+iyeT teR"™ (1.6)

z=x+iyeR"+iC,, t€R".

If the cone C' above had been assumed to be open and connected but not
necessarily convex, we would have defined the kernels K(z — t) and Q(z;1)
for z € T°) and would obtain all the properties concerning the kernels for
2 € T9), Thus we have assumed that C is convex without loss of generality.
From Lemma 1.2.1, the dual cone C* will lie in an (n — 1)-dimensional plane
if C contains an entire straight line, i.e. in this case the Lebesgue measure
of C* would be zero, so the Cauchy kernel K(z — t) would be zero and the
Poisson kermnel Q(z; t) would be undefined. To avoid this situation we must
have guaranteed that C' does not contain any entire straight line. Therefore we
consider regular cones unless explicitely stated otherwise.

We conclude this section with several technical lemmas which will be used .
in our analysis conoeming'the Cauchy and Poisson kernels.

Lemma 1.3.1 Let C be an open connected cone in R™,

1. Fix arbztmmly 2 € T = R™ + iC and denote by Ic» the (’ham(,temstzc»
function of C*. Then E.Ic~ € LP for all p, 1 < p < oo.

II. Assume that g is a continuous function on R™ with support in C* such
that, for arbitrary m > 0 and compact subcone C' of C,

lo(t)] < M(C",m) exp(2n((w, t) +olw])), t &R (1.7)

whenever ¢ > 0 and w € C'\ (C' N B(0,m))), where B(0,m) is the closure
of the ball with the center at O and the radius m and M(C',m) is a constant.
Then, for an arbitrary y in C, y # 0, we have eyg € LP, whenever 1 < p < oo.

Proof. To prove part I fix zin T¢ and let y = Im z. Applying Lemma 1.2.2,
we find a § = 0, > 0 such that

|E:(8)c= (t) = ey ()= (t) < espy ([t e (8) <1 (1.8)

for all z = z+ 4y € TC and all t € R™, since Ic=(t) = 0 for t € C*. Part |
of the lemma for p = oo follows from (1.8). For 1 < p < oo, we use (1.8) and
integration by parts n — 1 times (or the gamma function after the change of
variable for v = 2mdp|y|r)) to get

/ B0~ (O dt < / oy (12 dt

R™

0, / ey (r) dr = (n — 1)! 2 (2moply]) ™, (1.9)
0
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where (0, is the surface area of the unit sphere in R™ The estimate in (1.9)
proves part I of the lemma for 1 < p < co.

To prove part II fix a point y in C. Since C is open, there exists a compact
subcone C’ of C' and an m > 0 such that y € C'\ (C" N B(0,m)). Since
y & B(0,m)), we have |y| > m. Choose w = \y, where X is an arbitrary
number such that m/|y| < A < 1. Since ¢ is a cone, y € C’" and A|y| > m,
we have w = Ay € C"\ (C" N B(0,m)), i.e. the estimate given by (1.7) is true
for w just chosen. Since C" cC C, it follows from Lemma 1.2.2 that there is a
0 = 4(C") > 0, not depending on y € C’, such that (1.2) holds for all t € C*.
Hence, denoting A(c, A, y) = M(C’,m)exp(2moA|y|), we have

Iey(t)g(t)l_ < A(U’ /‘\3 y)e(l—k)y(t) < A(U9 ’\a y)e(l—.\)ély|(|tl)
for t € C*. Integrating by parts (or using the gamma, function) yields

/IEiy(t)g(t)lpdt = /ﬁp(l—k)tslyl(ltl)dt
. Rn : '

Cx

(o¢]

= 0nlAlo 0 ) [ 17 ey g ()
0 .

= (n = D! Q( Ao\ y)PP(2mp(1 = Nly]) ™ < oo,
since supp g C C*. This completes the proof of part I and the lemma. O

Lemma 1.3.2 Let C be a regular cone. The Cauchy kernel K(z — t) is an -
analytic functzon of variable z € T for each fized t € R™.

Proof. Let Ic- denote the characterlstn, function of C*. By the proof of
Lemma 1.3.1, Ic« E,_; € L* for fixed z € T and t € R™. Let K be an arbitrary
compact subset of T and let z € K C T, z # 0. There exists a compact -
subcone C’ of C' such that y = Im z € C’ and y is in a positive distance (say k)

from 0. By Lemma. 1.2.2, there is a § = §(C") > 0, depending only on C”, such
that

[T+ (u) Ez—t(u)| = Ic (uw) exp(—v27r(y; u)) < Ic, (u)exp(—2mdklul)  (1.10)

for ¢ € R" and u € C*. The right hand side of (1.10) is an L!-function of
variable u € R™ for arbitrary z € K and ¢ € R™, by the proof of Lemma 1.3.1,
and the function Ic«(u)E,—+(u) is analytic in z € TC for each fixed t € R"
and u € R™. To conclude the assertion it remains to use a well known theorem
concerning integrals involving a parameter (see e.g. [6], pp. 295-296). O

Lemma 1.8.3 Let C be a regular cone and fit w = u+iv € TC. The function

K(z4+w)= /Ez+w(u) du, z€TC,

is analytic in z € T and
|K(z+w)] <M, <o, z€TC,

where M, is a constant which depends only on v = Imw.
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Proof. The proof that K(z + w) is analytic in z € T is the same as in the
proof of Lemma 1.3.2. We have (y,u) > 0 for y € C' and v € C*. By Lemma
1.2.2, there is a § = &, > 0 such that (v,u) > d|v||u| for v € C and u € C*.
The assertion now follows by a similar analysis as in (1.9). O

Lemma 1.3.4 Let h € LP, 1 <p <2 and let g(u) = F~1h;u| in the sense of
the space LP. Assume that gE, € L' for z € T¢ and supp g C C*. We have

/g(u)E (u)du = /h VK(z —t)dt, z€TC. (1.11)
[oud : .

Proof. Let z € T¢. Let 1 < p < 2and I/p+ 1/g = 1. As a result of
the remarks below, K(z —t) as a function of t € R™ belongs to L? for every

z € TC. Therefore the integral on the right hand side of (1.11) is well defined.
First consider p == 1. By Lemma 1.3.3 and Fubini’s theorem, we have

/h(th—tdt /h(tdt/Ezt u) du

/ E. (u) du / () B (t) dt — / o) Eu () du,

( *
which proves (1. H) for p=1. In case 1 < p < 2, the function g is the limit in
the Li-form of the sequence of functions
o) = / hOE_u(t)dt, k=1,2,... .
lti<k '
Using Fubini’s theorem, we have now

/ g(u)E,(u) du = llm /gk (u)E.(u) du

C*
:klim (t)dt/ —t(u) du= /h K(z—t)dt
i<k o
for z € T¢, which proves (1.11) incase 1 <p<2 0O

The Poisson kernel defined in (1.6) has been known for some time to be an
approximate identity. We state this in the following iemma (see [78], p. 105):

Lemma 1.3.5 Let C be a regular cone, let z € T and t € R™. The Poisson
kernel Q(z;t) has the following properties:
(%) Q(z;t) >0, 2eT¢ teR™
(77) [ Qzt)dt =1, zeTY,
Rn
(i44) lim [ Qzt)dt=0, §>0

2—t0,2€TC [t—to|>6"
uniformly for all top € R™.

We shall prove later that the Cauchy and Poisson kernel are in certain
ultradifferentiable function spaces.



Chapter 2

Ultradifferenti_able functions
and ultradistributions

2.1 Sequences (M,)

We define subspaces of some of the Schwartz test spaces through the use of
sequences of positive real numbers which satisfy certain conditions. The corre-
sponding dual spaces then contain the generalized functions of Schwartz.

By (Mp) = (M,)pen, we will denote a sequence of positive numbers which
satisfies some of the following conditions:

(M.2) there are positive constants 4 and /7 such that

M, /AHP mln 1\4 A/Ip —g» p € Ny;

(M.3) there is a constant A > 0 such that

Z Mq—l/Mq < ApMP/Mp+17 pE N.

q=p+1

Sometimes (M.2) and (M. 3) ill be replaced by the following weaker con-
ditions:

(M.2)"  there are constants A and H such that

My < AHP M, p € Ny;

(M3Y S, My_1/M, < oo .

Sequences (M)) satisfying some or all of these properties are the basis for
the ultradistributions to be studied here. The paper of Komatsu [48] serves as
a basic reference for these sequences. If s > 1, the Gevrey sequences (M) given

13
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by M, = (p')*, M, = pP* and M, = I'(1 + ps), where I denotes the gamma
function, are basic examples of sequences satisfying some of the above stated
conditions.

We will prove some properties of sequences (M,). It will be convenient to
consider together with a given sequence (Mp) also its multi-dimensional variant
M., with multi-indices o = (a1, ..., an) € Nj defined by

A n
M, = Ma1+,,,an, a=(ag,...,an) € Ny

Lemma 2.1.1 Let (M,) be an arbitrary sequence of positive numbers.
(i) If the sequence (Mp) satisfies (M.1), then

MM, < MoMypyq,  p.q € No. 2.1)
(i3) If the sequence (M,) satisfies condition (M.2), then

Mp+q

(A e e g P No, ¢ €N, (2.2)

M, >
where the positive constants A and H are from (M.2), and
M, < BE“My, My, ... M, (2.3)
for every a = (ay....,an) € N§, where B and E are positive constants.

Proof. Applying (M.1) repeatedly, we get

My _Myr _Mys . _ Mo
Mp1 = My = Mpy =777 My

~

Using this and similar arguments, we have

M, My, Mpi: Mpiq-1

Mp+q MP+1 MP+2 Mp+q
MyMy Moy Mo
My My " M, N M,

from which (2.1) follows. Inequalities (2.2) and (2.3) follow by direct repeating
applications of (4.2). O

Let (Mp) and (Np) be sequences of positive numbers which (always) satisfy
(M.1). Following Komatsu [48], Definition 3.1, p. 52, we write

M, C N, (2.4)
if there exist constants L > 0 and B > 0, independent of p, such that
M, < BIPN,, p € No. (2.5)
Following [48], Definition 3.9, p. 53, we write
M, < N, (2.6)



R. D. Carmichael, A. Kaminiski, S. Pilipovié 15

if for any L > 0 there is a constant B > 0, independent of p, such that (2.5)
holds. ‘

Komatsu has proved in [48], p. 74, that p! < M), for every sequence (M)
satisfying (M.1) and (M.3)". This and Stirling’s formula imply p? < M,, (with
the convention 0° = 1 and the assumption My = 1), as noticed by Pilipovi¢ in
[66], p. 209. Moreover, I'(s + p) < Mp, s > 0, by Lemma 4.1 in [48], p. 56,
and an analysis made in [48], p. 74. We summarize these facts in the following
lemma.

Lemma 2.1.2 Let the sequence (Mp) satisfy conditions (M.1) and (M.3)'. We
have pt < My, p? < M, and T'(s + p) < M, for s > 0.

For a sequence (M,) the associated functions M and M* of Komatsu, are
defined by

“M(p) = sup log(pPMo/M,), 0< p < oo, (2.7)
peNp
and
M*(p) = sup log(p?p!Mo/M,), 0< p < oo. (2.8)
© p€eNp

Some properties of the associated function M are collected in the following
lemma.

Lemma 2.1.3 If the sequence (Mp) satisfies (M.1), then
M(p+ o) < M(2p) + M(2a), p>0, a>0, (2.9)
If the sequence (Mp) satisfies (M.1) and (M.2), then
2M(p) < M(Hp) +log(AMy), p >0, (2.10)

where A and H are the constants in (M.2); if L > 1, then there is a constant
K > 0 such that

M(Lp) < (3/2)LM(p) + K, p>0; (2.11)

if L > 1, then there is a constant B > 0 and a constant Er > 0 depending on
L such that

LM(p) < M(B*'p)+ E, p>0. (2.12)

Proof. Petzsche obtained (2.9) in [64], p. 142 (Lemma 1.10), under the
assumption that (Mp) satisfies (M.1). Inequality (2.10) are shown by Komatsu
in [48], p. 51 (Proposition 3.6) and by Petzsche in [64], p. 138 (Lemma 1.4),
under conditions (A.1) and (M.2) on the sequence (M)) and inequalities (2.11)
and (2.12) are proved in [64], Lemma 1.7, p. 140. O
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2.2 Ultradifferential operators

We denote by R the family of all sequences (rp) of positive numbers which

increase to infinity. This set is partially ordered and directed by the relation

(rp) = (sp), which means that there exists po such that r, < s, for every p > po.
Let z € R™ and 8 € Nj. We define then :

<@ >P= T+l
j=1

An operator of the form P(D) = ZaeNg aa D%, an € C, is an ultradif- .
ferential operator of class (M) (resp. of class {M,}) if there are constants
A >0, h> 0 (resp. for every h > 0 there is an A > 0) such that

lao| < ARY /My, o € Nj.

Special classes of entire functions will be needed. We recall some facts from
[48], [51].
Let r > 0 and my, = M,/M,_; for p € N. Put

PQ)=(1+G+.. .+ H< %ﬁ) (2.13)

7=1

for ¢ = (C1,...,Cn) € C™. If conditions (M.1), (M.2) and (M.3) hold, then
P.(D) is an ultradifferentiable operator of class (Mp); it maps D((Mp), R™) (cf. -
the next paragraph) into itself and

F(P(D)g)(&) = P(£)P(&), &€R" (2.14)
for ¢ € D((Mp, R™). Put, for a given (r;),

_ 2 Qnoo +C2 n
Pey(O)=0+G+...+ () H( —), CeC™ (215)

m

j=1 51

where n’ is an integer greater than n/2.
If conditions (M.1), (M.2) and (M.3) are satisfied, the function P ) is of
ass {M,}. For elements of D({M,},R™) and the ultradifferential operator
P(, )(D) equation (2.14) holds, as well.
For a given sequence (M) and (rp) € R we con51der the corresponding
sequence (N,), defined by

P
Np=M,[[rs peN. -

=1

If the associated function corresponding to the sequence (Mp), given by (2.7),
is denoted by M, then the associated function corresponding to the sequence
(Np) defined above is denoted by NV, i.e. given by the formula

N(p) = sup{log(p"Mo/Np): p € No}, p>0.
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If an element of R is denoted by (7,), the corresponding associated function
is denoted by N. Tt follows from the definition that for every (rp,) € R and
constants C' > 0 and ¢ > 0 there are (7,) € R, and po > 0 such that

N(ep) < N(p), p> po. (2.16)
Assume the conditions (M.1), (M.2) and (M.3) are satisfied. From [48],

Proposition 4.5 and p. 91, it follows that there exist constants D > 0 and ¢ > 0
such that

Dexp(-N(ele) < 11/ Pp(@)] < exp(-N(9). €eR  (217)

Using the Cauchy formula

/P (©)1dGs .. d
(]‘/})(Tp)(5 27Tl)n /F1 /n Cl 51 k1+l (Cn _En)kn_H,

for k € N§ and £ € R", where I'; = {(;: | — &| = d} with d > 0 for
J=1,...,n, we see that there exists a C' > 0 such that

|°(1/ Piry) ()] < Cld™* exp(-~N(€)/C), € € R™ (2.18)
The two-dimensional -version of Lemma 3.4 from [51] will be needed.

Lemma 2.2.1 Let a,q >0, p,q € Np.
(¢)  There are h > 0 and C > 0 such that

sup{hmq : pg€eNg}<C (2.19)
if and only if
a
sup{ﬁ"—s,q—: P, € Np} < 0 (2.20)
q

for arbitrary sequences (rj), (sj) in R, where
P q
= Hrj, Sq = H S5, p,q € N. (2.21)
i=1 j=1

(it) There are sequences (r;),(s;) € R and a constant C' > 0 sucﬁ that
sup{RpSqapq: p,q € N} <C,
with R, and S, given by (2.21), if and only if
sup{W**a,,: p,q € No} < o0

for every h > 0.
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Proof. One has only to prove the if parts.

(1) Assume that (2.20) holds for arbitrary (r;),(s;) € R, but (2.19) does
not hold for every A > 0 and C > 0. Let (hx) be a sequence which strictly
increases to co. There exists a sequence (pg, gx) in N3 such that

Pes1+ Ger1 > e+, P Wa, >k keN.

The following cases may appear:

(a) there is a py € No such that (po,gm) is a subsequence of (pk,gx) and
(gm) is strictly increasing;

(b) symmetric case to previous one;

(c) there is a subsequence (pm, gm) of the sequence (p, gx) such that both
(pm) and (gm) are strictly increasing sequences. '

Let us prove that case (c) leads to the contradiction. The reasoning in the
other two cases is similar. Define

Tj:hl for 1 <3< py, Sj:hl for 1SJS(I1,

r; = (hBmh P )/ (Pm=pPm=1) for pn_3 < j < pm

and
§j = (hgr’znhv_nq—wiﬂl)l/(qm_qm»l) for gm-1<J < @m,

where m = 2,3,.... The constructed sequences (r;) and (s;) do not satisfy
(2.20), which contradicts the assumption. :

(i7) For a given h > 1 put
Ch = sup{h**9a,4: p,q € No}; Ch = sup{h*b: k € Ny},

where
by = sup{apq: p+q==Fk, pq€ No}, k € Ny,
and let
Hy, = sup{h*C;/': h>1}
for k € No. Clearly Cp < Ch. Fix p,q € Np and set k = p+¢. For every h > 1,
we have

h* h
Hpiqapg < SuP{‘é‘}:anq} < a: <1

and so

sup{Hpt+4apq: P,q € No} < 1.
The sequence (h;), where hj = H;/H;_; for j € N, is increasing and, moreover,
H;/h? — oo as j — oo for every h > 0.

Since
P q p+q

117 [T hiaws < I1 Riapa:
j=1 j=1

e
by taking r; = h; and s; = h; we obtain

RyS,ap,4 <00

and this implies the assertion. O
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2.3 Functions and ultradistributions of Beurling and
Roumieu type

In this section we define and obtain properties of the ultradifferentiable func-
tions and ultradistributions that are considered here of type L.

Let (Mp), p € No, be a sequence of positive numbers. We define D((My), Q)
(respectively, D({M,},(2)), where Q is an open set in R to be the set of all
complex valued infinitely differentiable functions ¢(t) with compact support in
{2 such that there exists an N > 0 for which

sup | Dip(t)] < Nh*M,, o€ Np (2.22)
teRn

for all h > 0 (respectively, for some h > 0). Here the positive constants N and
h depend only on ¢: they do not depend on «. The topologies of D((M,), )
and D({M,}, Q) are given in Komatsu [48], p. 44, which is a good source of
information concerning these spaces. Let D(h, K) denote the space of smooth
functions supported by a compact set K for which (2.22) holds and D((M,), K)
and D({M,}, K) denote subspaces of D((M,), ) and D({M,}, Q) consisting of
elements supported by K, respectively. Recall that

DMR(Q) = D((M,),2) = ind limc cqproj limy,_oD(h, K)
= ind limkccaD((M,), K);

D} (Q) = D({M,}, Q) = ind limgc caproj limy,_oD(h, K)
= ind limgccoD({Mp}, K).

Notation Dﬁ{M”) = D((M,), K) and D&MP} = D({M,},K) is also used.

The strong duals of the above spaces, denoted by 7’ (M”)(Q) =D'((M,),Q)
and D’ {MP}(Q) = D'({M,}, Q) are called the spaces of Beurling and Roumieu
ultradistributions, respectively.

The spaces of test functions and ultradistributions which correspond to the
spaces Dys and D' of L. Schwartz ([77], pp. 199-205) will be basic for our
work. The space D((Mp), L®) (respectively, D({M,},L*)), 1 < s < oo, is
defined to be the set of all complex valued infinitely differentiable functions ®
such that there is a constant N > 0 for which

|[D%|ps < Nh*M,, o€ N (2.23)
for all h > 0 (respectively, for some h > 0). We have
D((My), L*) C D({M,},L*), 1<s< 0.

Further,
D((Mp),R™) C D((Mp), L*), 1< s< o0,

and
D({M,},R™) CD({M,},L?), 1<s<co.
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A natural topology is defined on D((M,),L*), 1 <'s < oo, as follows.

First put

D%||1s
lells,n = sup ﬂha—ﬂl}—, h >0, (2.24)

and
D((Mp),h, L*) = {p € C*: |[p||lsp <00}, h>0. (2.25)

Now, since D(My, h1, L*) C D(Mp, ha, L*) whenever 0 < hy < hg, we may equip
the set D((Mp), L*) with the projective limit topology by putting

D((M,), L*) = proj limy_oD((My), b, L*). (2.26)

A net (py) of elements of D((M,),L*) converges to ¢ € D((Mp), L*) as
) — 0o in this topology (we write then @) — ¢ in D((Mp), L*) as A — o), if

Jim Do~ )l =0, e NG .1
and, in addition, there is a constant N > 0, independent of A and c, such that
ID*(ox — @)|lLs < Nh*My, o € Ny, (2.28)

for all h > 0. :
In D({M,},L*), 1 < s < oo, we define the inductive limit topology in the
following way:

DUM,}, L*) = ind limp—oD((Mp), h, L*), (2.29)

where the spaces D(M,, h, L*) are defined in (2.25) with the topolgy defined
by the family of norms given in (2.24). In this topology a net () of elements
of D({M,}, L*) converges to ¢ € D({Mp},L*) as A — oo (and we write then
©x — o in D({M,}, L) as A — oo, if (2.27) holds and, in addition, there are
constants N > 0 and h > 0, independent of A and «, such that (2.28) holds.

The spaces D((M,), L*) defined above and the spaces D(LI‘ZP )(R"), defined by
Pilipovié in [65], §3, coincide for 1 < s < oo it is easy to verify that the norms
in (2.24) are equivalent to the norms 7, x(¢) in the sense of [65], §3. Various
important properties of the spaces D((Mp), L°) are proved in [65], §3; among
them the fact that D((M,), R™) is dense in D((M,), L*), whenever 1 < s < oo.

Throughout we assume that the sequence (M,) will satisfy at least con-
ditions (M.1) and (M.3) so that D((Mp), L*) and D({Mp}, L*) contain suffi-
ciently many functions (see Komatsu [48], p. 26).

We denote by D'((Mp), L*) and D'({M,}, L*) the spaces of continuous linear
forms on D((M,), L*) and D({M,}, L*), respectively. Following several authors,
we call D'((M,), L*) (resp. D'({Mp}, L°) the space of ultradistributions of
class (M,) or of Beurling type (resp. of class {M,}) or of Roumieu type).
Following Komatsu ([48], pp. 47 and 61), we use the notation D(x, L*) and
D'(x, L*), where * is the common notation for the symbols (M) and {M,}.

An additional function space is B (x,R™), corresponding to the Schwartz

space B. The space B (x, R") is defined to be the completion of in D(x, L>).

We now present characterization results for D’(*, L*). We prove the result
for D'({M,}, L*) here. The proof for D'((Mp), L*) is similar and can be found
in Pilipovi¢ [65] (Theorem 5).
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Theorem 2.3.1 Let 1 < s < 0o. Let {ga}o<a<co be a sequence of functions in
L, 1/r+1/s =1, such that for all k >0

lgallr = O(k"MQ) as a — 0. (2.30)
Then
V=Y D% (2.31)
0<La<co

is an element of D'({Mp}, L*). Conversely, if V € D'({M,}, L*), then V has
the form (2.81) where {ga}o<a<oo i a sequence of functions in L satisfying
(2.30) for all k > 0.

Proof. Let ¢ € D({M,}, L*) and let V be given by (2.31) with {g,} satis-
fying (2.30). From the definition of D({Mp}, L*) there exist constants N > 0
and H > 0 such that

> 1 [a®Detd < 3 lsalelDmles
0<a<o Bn 0<a<oo

< Y NH*Mulgallr.  (2.32)

0<a<oo

By (2.30), there exist P > 0 and P’ > 0 such that
lgallr < P/(k*Ma), o> P,
for all k£ > 0. Choosing k = 2H we have
3 NH*Mulgallr- < NP S (1/2) < oo, (2.33)
P'<aco P'<aco
which proves that the series on the right of (2.32) converges. Hence the series

> (= / 9a(t)D%p(t) dt

0La<oco REn

converges absolutely and (V, ¢) is a well defined complex number. Let (¢;) be
a sequence in D({Mp}, L*) such that ¢; — 0 in D({M,}, L*) as j — co. We
have

Vil < D lgalle ID%050lL-. (2.34)

0<a<o

From the convergence in D({M,}, L") it follows that there exist N > 0 and
H > 0, which are independent of « and j, such that

| D*¢llzs < NH*M,, o€ Ng.

This together with (2.33) and (2.30) shows that the series on the right of (2.34)
converges uniformly in j. This in turn yields |[(V, ;)| — 0 as j — oo, since
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@; — 0in D({Mp}, L?) as j — oo, i.e. V is continuous on D({M,}, L*). The
linearity of V on D({M,}, L*) is obvious. consequently, V'€ D'({M,}, L*).

We now prove the converse. In Roumieu ([75], p. 43) we put F = L° and
consider the space E(L*,{M,}) of Roumieu ([75], p. 43). Set

S({Mp}, L*) = {{(-1)*D*p}aeng : ¢ € D{Mp}, L)},
where 1 < s < co. From the defining properties of D({M,}, L*) we conclude
({M,}, L°) C E(L°,{Mp}), 1<s<o0,

and the topology of the subspace ®({Mp}, L*) is induced by the topology
of E(L*,{M,}). Let V e D'({Mp},L*). We define now an element V1 €
'({Mp}, L*), corresponding to V, by

(Vi A{(-1)"D%}aeng) = (Vi) » € D({ My}, L?). (2.35)

By the Hahn - Banach theorem there is an element Vo € E'(L*, {M,}) such
that V4 = Vo on ®({M,}, L*). Thus, by the characterization of E'(L*,{Mp})
given in Roumieu ([75], Proposition 3, p. 45), we can find a sequence {ga }aeNz
such that g, € L™ with 1/r +1/s = 1 for & € Nj and (2.30) holds for all £ > 0

such that :
(1, {(—l)aDa‘P}aeN{)‘) = Z (gas (=1)*D%p) (2.36)

0<a<oo

for ¢ € D({M,}, L*). Notice that (2.35) and (2.36) yield (2.31). The proof is
thus complete. O :

As previously noted, a similar characterization result is true for D' ((My), L*)
and we now present it. The proof is similar to that of Theorem 2.3.1 and can
be found in Pilipovi¢ [65] (Theorem 5).

Theorem 2.3.2 Let 1 < s < 0o. Let {ga}aeNy be a sequence of functions in
L™ with 1/r + 1/s = 1 such that, for some k > 0,

1
loaller = O () asa— oo (2:37)
Then
V=Y D% (238
0<a<oo

is an element of D'((Mp), L*). Conversely, if V € D'((Mp), L*), then V' has the
form (2.88), where {ga}aeny is a sequence of functions in LT satisfying (2.37)
for some k > 0.

Condition (2.37) on the sequence {g«} is equivalent to

sup(k*MalgallLr) < o0 (2.39)

for some k > 0. The derivatives in (2.31) and (2.38) are to be taken in the
usual ultradistribution sense.
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Notice that D'((My,), L*) and D'({M,}, L*) are not distribution spaces in
the sense of Schwartz but are ultradistribution spaces in the sense of Komatsu
and Roumieu. These spaces are generalizations of the Schwartz spaces D'fs.
Theorems 2.3.1 and 2.3.2 show, why elements of D’ rs are finite sums of dis-
tributional derivatives of L™-functions, while the ultradistributions in D' (%, L®)
are infinite sums of ultradistribution derivatives of L”-functions which satisfy
(2.30) or (2.37).

2.4 Fourier transform on D(x, L*) and D' (x, L*)

We now consider the Fourier transform acting on D(*, L*) and study the result-
ing spaces. Using this analysis we are able to define an inverse Fourier transform
on the dual spaces of these Fourier transform spaces which will map the dual
spaces to D'(x, L*). We use these results in some of our ultradistributional
boundary value analysis presented later.

Consider the spaces D(*, L"), 1 < r < 2, where * is either (Mp) or {M,}.
Put

FD(x, L") ={: ¥v=¢, ¢e D(x, L")}, 1<r<2.
We have
FD(x, L") C L*, 1/r+1/s=1,

and the Fourier transform is a one to one mapping of D(%, L") onto FD(x,L").
To determine a topology on FD(*,L") let ¢ € D(*,L") and recall from the
Fourier transform theory that

FID%| = x"p € L*

with 1/7 +1/s = 1 for any n-typle « of nonnegative integers.
For an arbitrary ¢ € D((M,), L") (respectively, ¢ € D({M,},L")) and
¥ =@ € FD((M,), L"), (respectively, ¢ = ¢ € D({M,}, L")))), we have

x| s [ F[Dp]|lLs D¢l Lr
A il <
sl;p oM. sgp ho M, < sgp A < oo (2.40)

for all (resp. for some) h > 0, in view of the Parseval inequality and (2.14).
On the space 7D((M,), L") (resp. on the space (FD({M,}, L"))) define the
family {7}r~0 of norms as follows:

Th(1)) = sup —*”ZQEZ\}/[”LS (2.41)

for 1 € FD((Mp), L") (resp. for (€ FD({M,},L")). We endow the space
FD((Mp), L") (vesp. the space (FD({M,},L"))) with the projective (resp.
inductive) limit topology with respect to this family of norms.

A net of elements 9 in FD((M,), L") (resp., FD({M,}, L")) converges to
zero as A — oo in this topology in FD((M,), L") (resp. in FD({M,}, L")) if

lim []x*4[zs =0
A—o0
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for all n-tuples o of nonnegative integers and for every h > 0 there is a constant
N > 0 which is independent of o and A (resp. there are constants N > 0 and
h > 0 which are independent of a and A) such that

up Ll

<
o heM, <N

for all h > 0 (resp. for the given h > 0).
Using this meaning of convergence, we have the following lemma.

Lemma 2.4.1 The Fourier transform is an isomorphism from D(x, L") onto
FD(x, L") for 1 <r < 2.

Proof. We have previously noted that the Fourier transform is a one to one
mapping of D(x, L") onto FD(,L"), 1 < r < 2. Now let (px) be a net in
D(x, L") which converges to zero in D(x, L") as A — co. Since

FID%| = (x)"¢ € L?,

with 1/r +1/s = 1, for every ¢ € D(x,L”) and o € No we conclude from
the Parseval inequality, (2.40), and the definition of convergence in D(x, L"),
given in Section 2.3, that 1) = @ converges to zero in FD(x, L") as A — oo.
Consequently, the Fourier transform is a continuous mapping from D(*, L") to
FD(x,L"). The proof is complete. O

Let F'D(x, L") for 1 < r < 2 denote the space of all continuous linear
forms on FD(x, L"). We now define the inverse Fourier transform on the space
F'D(x, L") in case 1 <r < 2. For V € F'D(x, L"), we define the inverse Fourier
transform v = F~![V] by the Parseval formula

v, 0) = (V,¥), @weD(xL), v=¢eFD(x L), (2.42)

where () = 9(—z) for z € R”. For V € F'D(x, L"), we have v = F~![V] €
D'(%,L"), i.e. v is a continuous linear form on D(x,L"). Linearity is obvious
and continuity of v on D(x, L") follows, because the convergence of a net (pa)
to zero in D(x, L") implies the convergence of the net (1) to zero in FD(x, L"),
according to inequality (2.40). In this way, we have proved the following asser-
tion:

Lemma 2.4.2 The inverse Fourier transform defined on F'D(x, L) by formula
(2.42) maps F'D(x, L") to D'(, L") for 1 <1 < 2.

We shall use the construction (2.42) in boundary value results subsequently.

2.5 Ultradifferentiable functions of ultrapolynomial
growth

We assume that (M.1) and (M.3) hold. The spaces of Gelfand-Shilov type s
whose elements are ultradifferential functions of ultrapolynomial growth are the
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test spaces for spaces of tempered ultradistributions. These spaces are studied
in [40], [68], [53], [27], [28], and many other papers. Here we follow the preprint
[45]. Let m > 0 and r € [1,00) be given.

Let SMPm SﬁMP)’m(R") and SP™ — S&M”)’m(R") be the spaces of
smooth functions ¢ on R™ such that

1/r
ma+h
Omr(p) = Z /n | Mo, <z >P (p(a)(w) I dx]

1/r
ma-l—ﬁ " T
= > (IIM i, <x > ol )Ilr) } < o0,

and
met+B

Omoo(9) = sup | <z > ol ||,

o,8eNy Mo Mp

equipped with the topologies induced by the norms o » and s, o0, respectively.

The space SﬁM”)’m is a Banach space and especially, S(M” s is a Hilbert
space where the scalar product is deﬁned by

- ¥ [ G @ oo

[ ﬂENOR

for @, € S{MPI™,

Let SMp) = S(Mp)(R™) and SIMp} = S{Mp}(R") be the projective (as
m — o) and the inductive (as m — 0) limits of the spaces SéM”)’m, respectively.

The dual spaces of S(M7) and S{Mp} are denoted by S'Me) and 8'{M”},
respectively. These are the spaces of tempered ultradistributions of Beurling
and Roumieu type, respectively.

The structure of the test spaces is described in the following two theorems.
A simple consequence will be, if (M.2)" is fullfiled, that S(#)) and S{Mr} are
the projective (as m — co) and the inductive (as m — 0) limits not only of the

spaces of the spaces SéM” )™ but also of the spaces ST(M”)’m respectively, where
r € [1,00].

In the theorem below and further on we shall use the convention, analogous
to that applied already in (2.21), which will simplify the notation of products
of subsequent elements of sequences belonging to the family R described in
section . Namely for a given sequence (rp) € R and o = (a1, ..., an) € Ny we

define - .
Ry = H Tjs Ry = H Tj
j=1 j=1

in case a # 0, where @ = aq + ... + an, and, additionally, By = 1. Analogous
products of subsequent elements of sequences (s;), (a;), (b;) etc. in R will be
denoted by Sy, Aq, Ba etc., respectively, for a given , € N.
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Theorem 2.5.1 Let (M,) satisfy (M.1) and (M.3)'. Then
My} _ C 1 (Mp)
SHHEY = proj lim) (o )erS(r 3 sy

where S((T )"zs N is the space of functions ¢ € C*° such that

(1+|x>)P20%¢| L2

Yrs) (o) (0) = supf! MR M55 o5 € Ng} <o

Proof. From Lemma 2.2.1 it follows that ¢ € C*°(R") belongs to SiMy} if
and only if y(,.) (s,) () < oo for every (r;), (s;) € R.

Every norm 7. (s,), where (r;),(s;) € R, is continuous on the space
S}(IM”), h > 0, and so on the space S{Mr},

Since S{M»} is reflexive, every continuous seminorm p is bounded by the
seminorm p?, where B is a bounded set in &’ {MP}, defined by

pB(go):sup{l < f,e>|: fe€B}

We have
P () <sup >+ X Vo2 DR 1.
B ypeNt

By Lemma 2.2.1, it follows that there exist (r;) and (s;) from R such that for
some C > 0 we have

PP(0) < C(ry) (1) (0)-
The proof is completed. O

Let (a,), (by) € R and let S(Mf )(bp) o be the space of smooth functions ¢ on
R™ such that
10059 loo

= AT e
Bap,bp,00(P) i Mo Ao M5B, ,

equipped with the topology induced by the norm p(q,),(b,),00

Theorem 2.5.2 The following families of norms in the space S(( ;’)(bp)’ are
equivalent:

1. The families {om,00,m > 0} (respectively, {©(a,),(b,).005 (ap); (bp) € R})
and {sm,co,m > 0} (respectively, {S(a,),(b,)001 (ap)s (bp) € R}) of norms, where

. (@)
Sm,oo(so) SN BT oo,
| _ X% oo
(respectivey S(“P)“’P”""((’O)_afalé%g AaMaBﬁMﬁ)‘

are equivalent.
2. If condition (M.2) is satisfied, then the following families of norms
{Omr: m >0}, r € [1,00], {Smr;m > 0}, 7 € [1,00], and {sm; m > 0} (
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respectively, {@(ap),(bp),r: (aP)’(bP) € R}) {S(Up):(bp)’r’ (ap)’(bp) € R}' re
[1,00|, and {A @), p)r (@p), (b)) € RY,r € [1,00]) are mutually equivalent,

where
smp(p) = Z

a,feNg T

mets o
7 DO,

mY
smp) = sup = @ explM(m - )],
aGNg o

8p(@)
(respectively, e,y 0,10 (0) = > 1097l

s AaMoBM;
”X'BSO(Q)HT
S (@)= Y Al
P P a.ﬁENg AwMaBOOMﬁ
1

Aap)(o,).r(#) = sup 6 exp [N,y (1 D).

aeNg Aona

Proof. For the sake of simplicity we will prove the assertions in the case

n = 1. Parts of respective assertions given in parentheses can be proved in a
similar way.

1. Obviously, sm,co(¢) < 0m c0() for every smooth function ¢ and m > 0.
Condition (M.3) implies that, for every L > 0,

Kl
%—4&——»Oask~—>oo (2.43)
k

(see [48], (4.6)). Since
(z)? < 2°/% max (l,la:[ﬁ>, z €R, BNy,

for every m > 0 there exists a C' > 0 such that, for every smooth function ¢
and «, 3 € Ny, we have

moths m
B, (a) <

+8
3 (a) g, ()
W, 2” max (Hso floos X7 “00)

m* 2m)*+p
< mas — @, ( Bple))
< max (CMO, 19" lloo Mo x|
(Zm)o‘"'ﬁ 3
SO sup ————Ix"¢%[loc = Csm.00(0).
sip B = o)

IN

Therefore, for every m > 0 there exists a C' > 0 such that Om,o0(9) < Csm.oo(ip)
for every smooth function .
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2. For a given function 1 denote by [|¥]|}, [¥[l and [[4||: its Lt-norms on
the sets [—1,1], R\ [~1,1] and R, respectively.
Let a, 3,7 € Ng and t € [1,00). For a given smooth function ¢ denote

aa,5(¢) = X" | bos(@) = 0@ ; cas(@) = P oo

AL 5(0) = IPe@ i Bhs(@) = I Chgle) = Ix°¢lle

Moreover, denote by I, ; the L-norm of the function 7(z) = ™7 on R\ [-1,1]
and R.
Due to (M.2)', for every m > 0 there exists a constant D > 0 such that

a+,@
@) € Y P (@00 + B ()
a,f€Ng
a+ﬁH7ﬁ
< Z Caﬁ(‘P)"”D Z Ca 8t ()
oo MaMo =L
< Dsm(14H7),00(P) (2.44)

for every smooth function ¢.
Clearly,

|80 )(z)| < BCa,p,1(¢) + Cat1,81()

for @, 3 € No and « € R. Hence, by condition (M.2), for every m > 0 there
exists a D > 0 such that

Hm®
Smeo(®) < D sup (2 Capi(p) + Hm* 2 Coy1,51(9))
,8€No MaHM

< Dsom(14+m),1(9) (2.45)

for every smooth function ¢.

Let now t € (1,00), ¢ =t/(t —1) and v = [1/¢] + 1. The Hélder inequality,
(2.43) and (M.2)" imply that for every m >0 there exists D > 0 such that, for
every smooth function ¢,

moth
i) = 3 g (Aaoale) + Busa(9)

o:+,3

< Z MM, ———— [DAa0,t(®) + Ba,gt4t(9) 4]
«,B€Ng

<D 3> W(Ilw(“’l|u+llx"”so(")llu)
a,fe€Ng

me . N metB A o
<D (Z M”‘P( N + WHXMVSO( )||L*-)
o ¥

a€Ng o a,B€Ng
< Csmrum),t(#)- (2.46)
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The equivalence of the families {sm,, m > 0} and {8mp, m > 0} for
7,p € [1,00] follows from (2.44), (2.45) and (2.46). The proof of the equivalence
of {Omp,m >0} and {0, ,,m > 0}, where r, p € [1, 00|, is analogous.

Condition (M.2)" implies that for every ¢ € S(M») and every m > 0 there
exists D > 0 such that for every o, 5 € Ny and |z| > k > 1, we have

mo+8
B (@) <
A@Mﬁuw (@) <D
2 ma(mH)ﬁ+l
k MaM,@+1

ma(mH>ﬂ—|—l
B+1

|27 ()]

o C
< |71 ()] < T

Therefore, for every m > 0 and ¢ € S(M»), (m*+8 /(Mo Mp)) |2P0(*)(z)| con-
verges to zero as |z| tends to infinity, uniformly in «, 3 € Ngy. From the defini-
tion of the space S it follows that {(m*+8/ (M, Mp)) |27 (2)|} 03, m > 0,
converges to zero uniformly in z € R as (a+ ) tends to infinity. Hence, for a
given element ¢ of SMp) and every m > 0 there are ag, 8y € Np and z9 € R
such that

meth meo+ho
Bl — Bo (x0)
sup X"p = 2 a7 Lo P Zo
3N, MaM,B ” HOC MﬂOMao | 0 ( )I

u [ me @@ oo = | mt s
= || sup | sup X" co = || SUp | sup X"t oo
BENp La€Np Monﬂ a€Ny | BeENg MaMﬁ

meth me
_ B, () — o)
= su su %) = su oY exp|M(m| - o0).
wE po [” ﬁe po MaMﬁ ,X HIOCJ ac po(Ma ” [ ( I |)”l )

The proof is completed. O

Remark Tt is easy to verify that the proofs of the theorems of this section
hold in the n-dimensional case. In Particular, if (M.2) holds, they can be
presented in the same way.

. M
Corollary 2.5.1 SMr} = proj hm(a,,),(bp)en € S((ap;)(bp),oo’
Theorem 2.5.3 1. The spaces SM») and SM»} gre (FS) and (LS)- spaces

respectively.
2. If (M.2) is fulfilled then

Df—S§" —& S <8
EM s ST D S S

Proof. Again, we give the proof for the case n = 1.

Recall that a locally convex topological vector space is an (FS)-space (resp.
an (LS)-space) if it is a projective limit (resp. an inductive limit) of a countable,
compact specter of spaces. If the mentioned specter is also nuclear, the space
is called an (FN)-space (resp. an (LN)-space); for more detailes see [36].
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1. In order to prove the first part of the assertion it is enough to show that
the inclusion mapping

R S(M”)’ﬁl — S(M”)’m, m < m,

is compact. Since S(M" )™ and S(M” )™ re Banach spaces, it safices to prove
that the unit ball B of the space S( P s relatively compact set in S(MP)’m
Using the analogous idea as in the proof of Theorem 1 in [36] (p. 29, Satz 1)
one can prove the next assertion.

A set B is relatively compact in S( Mp)m if and only if

(1) the set Bf = {(z Yol e B} is a relatively compact subset of L* for
each o, 3 € No and

2
(i7) the series (z)Pp ¥ (z)| dx converges uniformly for ¢ €

B.

Let us prove that B fulfills (i) by checking whether the set Bj, a8 € No,
fulfills the assumptions of Kolmogoroff’s theorem ([36]). It is obv1ous that for
each a, 8 € Np the set By = {(z Y8p(®) | » € B} is bounded in the space L2

Applying the Cauchy—Schwarz inequality and the Fubini-Tonelli theorem we
see that, for arbitrary ¢ € B and o, € No,

[ i+ 1P e @) de

aﬁENoR }M Mﬁ

2
((z + th)Po @ (z + th)){ dt) dzx

&lg_‘

2
[(z + th)P o) (z + th)]l dt) dx

IA
&‘ QL

o\_ O\H

<[ (/I
[
< 28R / ( ! (2 + 0) o+ )| ) e

0

+2h2j( | ((z + th)? (““)(erth))’ )dt
0

/
i [[ieee)] o) + / [@7eie)| ae)
R

MMﬁ Moy Mg
2 :
a+ﬂ+ “+ﬁ+1>

< 2n2(6%2
Hence, the integral

/ (@ + hYPo®@ (z + h) — (2)°0\*)(z)|* dx

converges to zero as h — 0 uniformly for ¢ € B.
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For each- o € B and k > 0

® [ lare@ra s [ 1@ < el
R\[—k,k] R\[—k,k] '
Therefore
o _o M, M,
()P o) ()|? dz < (k)2 ~a+ﬁﬁ+ﬁl, p€B
R\{—k:k]

According to the theorem of Kolmogoroff, it follows that the set Bg, a,B €
Ny, is relatively compact in L2.

Let us prove that B fulfills condition (iz). For each € > 0 there exists u € Ny
such that m® < em® for all & > u. Hence, for each ¢ € B

Z‘/\M 'G(C'):c)l dr <

a>u
peNg R

<€22/'M ﬁ(“)a:)| dr < €2

a>p
5€N0

Thus we have completed the proof of assertion 1.

2. Since the proofs of the second assertion in the cases (M,) and {M,} are
analogous, we will prove the assertion only in the first case. Let ¢ € DMp) and
suppy C [—k,k], k£ > 1. Condition (M.3)" implies that for each m > 0 there
exists C' > 0 such that

mk)Pm
(a) . ( k) (a) (a)
su cp o = SuUp ——t—— o < C su — ||

It follows that the inclusion mapping i : DM») — S(Ms) ig continuous.
The sequence p;(z) = p(x/j)p(z), 7 € N, where p is a function defined
by (1.2) converges to ¢ in the space S(M=), since for fixed ¢ € SM») and

+8
m > 0, m i |2°0®)(z)| converges uniformly in o, 8 € Ny as |z| tends to
B

infinity. Tt follows that D(™*) is dense in SM»), O

2.6 Tempered ultradistributions

A non-trivial example, in case n = 1, of an element of the space S™* is

<p>=/fsod:v, p €S,
R

where f is a locally integrable function of the ultrapolynomial growth of the
class *, 1.e.

|f(z)] < P(z), z€R.
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where P is an ultrapolynomial of the class *. Note that if (1.2)" is fulfilled
the function f is of the ultrapolynomial growth of the class (M,) (respectively,
{M,}) if and only if for some m > 0 and some C' > 0 (respectively, for every
m > 0 there exists C' > 0) such that

|f(z)] < Cexp M(m|z]), z € R.
| Let us now give the structure theorems for the space S'*.

Theorem 2.6.1 Let (M.2)" hold, r € (1,00|, and f € (M) (resp., f €
DM} Then
1. fe M) (resp. f € SIMp}) if and only if f is of the form

F= > ((@°Fup)®, (2.47)

a:,BENO

in the sense of convergence in S (My) (resp. S {M”}), where (Fo3)a,8eNy 5 @
sequence of elements of L™ such that for some (resp. each) m > 0 we have

1/1‘
Z / |ma+5 )< (2.48)
yﬁe OR
in case v € (1,00), and
M. Mg
F < 00, 2.49
:( 7 ,ﬁ(:r)l) %0 (249)

in case r = oo.

2. Let (M.2) and (M.3) be fulfilled. f € S if and only if f is of the form
f=P(D)F, (2.50)

where P is an ultradifferentiable operator of the class * and F is a continuous
function of R of the ultrapolynomial growth of the class *.

Note that the weak and the strong sequential convergence are equivalent in
S,

Proof. 1. In case (M,)), the proof of assertion 1 is quite analogous to the
proof given in [68]. '

In case {M,}), it follows easily that (2.47) determines an element of S’ (M}
To prove the converse we will use the dual Mittag-Leffler lemma ([48], Lemma
1.4) similarly as in the proof of [48], Proposition 8.6.

M, 3

Let X, = Sé D™ et ¥y = {(¢a8)aene; (@ap)llym < oo}, where

g=r/(r—1), and let

O{

I(omallr = 0 T sl

The space Y;, is a reflexive Banach space. According to Alaoglu’s theorem, a
bounded set in Y;, is weakly compact in Y;,. Therefore the inclusion mapping
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i1 Yo — Yo, m' > m is weakly compact. We will identify X,, with a closed
subspace of Y7, in which X, is mapped by

Xm — Yma <x>ﬂDa P ((l‘)ﬂw(a))a)ﬁ'

Clearly (Xrm) and (Y;,) are injective sequences of Banach spaces and if m’ > m,
then X» NY,, = X,,. Tt follows that the quotient space Z,, = m/ Xm (with
the quotient topology) is also an injective weakly compact sequence of Banach
spaces.

It follows from the dual Mittag-Leffler lemma that

S(=1)2D% ()

0 « (limind,;,—0X,,)’ (lim indp—0 Y5 )’

is topologically exact (see [48]). The above fact together with the identities:
lim proj,,, 0 X;, = (limind,n—0 X, )’

and
(lim proj,,_o¥,,) = (limind,,—o¥;, )’

imply that the space limind,—0X,, has the same strong dual as the closed
subspace lim ind,;,—0X,, of limind,,_oY;,. Since Y, is the Banach space of all
F = (F,3), Fop€ L, with

MM ™ 1/r
——F(:c)) <oo, re€(l,o00),
(an@GNoRj:* me+B o ( )
fllyg, =
i sup (M—Q%IF (x)l) < o0 T =00
BN, ma+ﬂ a,B 9 .
zER

The assertion is proved. O

In [45] we characterize spaces S* by using Hermite expansions. The following
theorem is based on this expansion.

Theorem 2.6.2 If condition (M.2) is fulfilled, then SM») | S/ {Mp} e (FN)-
spaces and SIMr} | S'Mp) e (LN)-spaces, respectively.

2.7 Laplace transform

Suppose that conditions (M.1), (M.2) and (M.3) are fulfilled.

We will give the definition of the Laplace transform in case n = 1. Forn > 1
the definitions can be extended easily.

Denote by 8"} (R) the subspace of 8" consisting of elements supported by
[0,00). Let g € 8. For fixed y > 0, we define g exp(—y -) as an element of &’
by

(gexp(=y-), @) = (g, cexp(—y-)p), ¢ € S*(R),
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where o is an element of £*(R) such that, for some € > 0, o(z) = 1 if z €
- (—€&,00) and o(z) = 0 if z € (—00, —2¢). It is easy to see that the definition
does not depend on the choice of o.

An example of such a function is ¢ = f * w, where w € D*, Jw=1and
supp w C [—€/2,€/2] (for the existence of such a function see [48], Theorem
4.2) and f is a function such that f(z) = 1 for z > —3¢/2 and f(z) = 0 for
z < —3¢/2. Clearly, the function ¢ so defined belongs to £*.

As in the case of S/, (see e.g. [84]), we define now the Laplace transform of
g € 8" by

(L9)(¢) = Flgexp(~y))(z), (=z+iye€Cy.
Clearly, if y > 0 is fixed, Lg is an element of ™.

Let
G(C) = (9:7737(]3(1(')), (=xz+wye C—!—’

where 7 is as chosen above. The function G is holomorphic on C and its
definition does not depend on 7.



Chapter 3

Boundedness

3.1 Boundedness in D'(x, L*)

Denote by Cp the space of continuous functions f on R™ vanishing at oo, i.e.
such that lim|g|,c f(z) = 0, equipped with the norm || - ||z. Its dual space,
the space of measures, is denoted by M! (as in [42] ) and we denote the dual
norm in M! by || - || s1. Note that under conditions (M.1) and (M.3)" D(x, R™)
is dense in Cp.

Theorem 3.1.1 Let (M) satisfy (M.1) and (M.3)'. Then
() A set B C D'((Mp), LY), t € (1,00], is bounded if and only if every
f € B can be represented in the form

f=3 D%  fu€l!, a€Nm
and, moreover, there exist d > 0 and C > 0, independent of f € B, such that
oo
D d* M|l fallLe < C; (3.1)

a=0

(i3) A set B C D'((M,), L') is bounded if and only if the representation of f
in (i) holds with fo, € M! and the condition in (i) holds with the norm || fa|lra;
(23) An element f of D'({Mp}, R™) belongs to D’({MP} LY) fort € [1,00]
if and only if f is of the form
> D°fa,

0<a<oo

where fo € Lt if t € (1,00] and fo € M if t = 1 for a € N}, moreover, for
every d > 0, we have

z d*Ma||fallzt < oo in case t€ (1,00];

0<a<oco

Z d* M| fallpp <00 in case t=1.

0<a<oo

35



36 Notes on Boundary Values ...

Proof. Clearly, the conditions given in (2) - (¢i1) are sufficient. We will prove
that they are necessary.

(¢) Notice that D((Mp), L*) with s =t/(t — 1) € [1, 00) is barrelled , the set
B is equicontinuous in D'((M,), L*) and, for some d > 0 and C' > 0,

[(fso)l <CllellLsa,  fE€B, ¢ D(Mp), L)

Hence, by the Hahn-Banach theorem, elements of B can be extended to consti-

tute an equicontinuous set B; on ’D}Jﬁ/{‘;). Let Y, 4 be the space of all sequences
(¢a) in L* such that

Ieadlzra = sup 122l o e gy < oo

equipped with this norm. Again by the Hahn-Banach theorem, elements of B;
can be extended to constitute an equicontinuous set By on Y 4. An equicontin-
uous set on Y; 4 consists of all sequences (f) from L' for which (3.1) holds and
this implies assertion (¢).

(#5) Let Xoon be the space of all smooth functions ¢ such that ¢(®) € Co
llollLoe,n < oo for every a € N, equipped with the norm || - || n. We have

B((M,), R™) = proj }ll'mé Xoo

which implies that B((M,), R") is barrelled. Thus, using the same reasoning
as in (), the proof of (i7) follows.

(133) Let Y, with s € [1,00] and h > 0 be the space of all sequences
(o) = (Pa)aeng in L?, for s € [1,00), and in Co, for s = oo, such that

IISOQHL : a € N} < o,

1(pa)llLs p = sup{53

equipped with the so defined norm.

For a given h > 0, let X5 = D((Mp), h, L*), for s € [1,00), and X0 p
be as in the proof of (i7). We identify X, with the corresponding subspace
of Yy p, for s € [1,00] and h > 0 via the mapping ¢ — (©(*). Notice that
B({Mp}, R") = ind limp—00 Xs,n. According to this identification, we have

D({M,}, L’) C Y, =ind hlim Ys h, s €1,00),

and o
B({M,},R") C Yo = ind hlim Yoo -

Since the inclusion mappings are continuous, every continuous.linear functional
on D({M,}, L*) or on B({M,},R") is continuous on this space, equipped with
the induced topology from indlimp_,e Ysp for s € [1,00]. Thus the Hahn-
Banach theorem implies the assertion (4it), because

(ind hlirn Ys.n) = proj hlim Yon, s €[1,00]

in the set theoretical sense. O
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Remark.  With the notation as in (i) for s € (1,00), the sequence
(Ys,n)henn is weakly compact. This implies that (Xsn)henn and (Zs p)nenn,
where Z;n = Y1/ X, are weakly compact, as well. Thus the dual Mittag -
Leffler lemma (see 48], Lemma 1.4) implies that the sequence

O« proj lim X «— proj lim ¥,
is exact, where (in the topological sense)

proj h]im X=X, = (ind hlim Xsn)
and

proj hlim Y, =Y/ = (ind h]im Yin).
This implies that D({M,}, L*) and X,, equipped with the induced topology
from Y, have the same strong duals (see [48], Lemma 1.4, (ii)). We do not
know whether the space X, with the induced topology is quasi-barrelled and,

consequently, we do not have a characterization of bounded sets in D’ ({M,}, LY)
for t € (1,00).

Denote by D({M,}, (r5), L*), with (r,) € R and s € [1,00], the space of all
smooth functions ¢ such that

0*¢llLs

PllLe () =sup{——7=a——: a €N} < oo,
” ”L (rp) {Ma(szl T’j) 0}

equipped with the norm so defined, and let

ﬁ({jwp}’ Ls) = proj (TE)IQ,R D({MP}’ (TP)? L?).

For the completion of D({M,}, R™) in the space D({M,}, L>) we use the sym-
bol B({M,},R™). The corresponding dual spaces are denoted by D'({M,}, L)
for ¢ = s/(s — 1) € (1,00] and by D'({M,}, L"), respectively.

Theorem 3.1.2 Let (M,,) satisfy (M.1) and (M.3)'. Then

(1) D{Mp}, L*) = D({M,}, L*) for s € [1,00) in the set theoretical sense;
the same is true for B({M,}, R™) and é({Mp},R")L'

(#7) the inclusion mappings i : D({M,}, L*) — D({M,}, L*) for s € [1,00)
and i : B({M,},R™) — é({Mp},R") are continuous.

Proof.  Note that [;’({Mp},R") = projlimg,)er Xoo,(r,), Where Xoo,(rp)
is the space of all smooth functions ¢ such that ¢(® € ¢y for a € NG and
lollzes (r,) < o0, equipped with this norm.

The proof of (i) follows from Lemma 3.4 in [48] and (i7) follows from the
inequality

lellLe ) < Copynllllion,  » € DEM,}, b, L*),

where (1) € R, h > 0 and C(rp),n > 0is a suitable constant.
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From here to the end of this section we shall assume that conditions (M.1),
(M.2) and (M.3) are satisfied.

The following assertion of Komatsu will be used. Note that the first part of
this assertion is also proved in [32].

Lemma 3.1.1 (see [49]) Let K be a compact neighbourhood of zero, r > 0 and
(rp) € R. Then
(i) There is an u € D((Mp),7/2, K) and ¢ € D((M,), K) such that

P(Dyu=35+1, | (3.2)

where P, is of the form (2.13).
(i5) There are u € C* and v € D({Mp}, K) such that

Piy(D)u =65+, suppuC K (3.3)
and -

where P,y is of the form (2.15).

Theorem 3.1.3 Let A C D'(x,R"™). Then
(i) A is a bounded subset of D'((Mp), L*) for t € [1,00] if and only if there
are ant > 0 and bounded sets A; and A in Lt such that every f € A is of the

form
f=P.(D)F1+ F3, e A, F;e Ay

(i3) A is an equicontinuos subset of D'({Mp}, L) for t € [1,00] if and only
if there are an (rp) € R and bounded sets A1 and Az in L! such that every
f € A is of the form

f= P(TP)(D)F1 + F3, FLe A, F € A (3.5)

Proof. Notice that we do not know whether the basic space is quasi-barrelled
and therefore we assume in (44) that A is equicontinuous. We shall prove only
assertion (i), because it is more complicated. Since F,) maps continuously
the spaces D({Mp}, L*), s € [1,00) and B({M,},R™) into themselves, (3.5)
implies that A is bounded in D'({M,}, LY).

We shall now prove the converse for t = s/(s — 1) with s > 1. Fort =1 (i.e.
s = 00) the proof is similar. Let Q be a bounded open set in R™ containing
zero, K = Q and ¢ € D({M,}, K).

First we show that, for every f € A, the functional T defined by T(¢) = fxyp
is a continuous linear functional on the space D({M,}, R™) endowed with the
topology of L*. Since A is equicontinuous, there are a constant C > 0 (which
does not depend on f € A) and an (r,) € R such that

| <fxpb>]=|<fox¥>[<COlg*DllLs ()
< Cllel erpll¥llze < Cillbles (3.6)
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for every ¥ € D({M,}, R™), where ¢(—zx) = ¢(x).
Since D({M,}, R™) is dense in L*, it follows that {f xp: f € A} is a set
of (continuous) functions bounded in L*. Moreover, (3.6) implies that

sup{||f *¢lle: f € A} < Cllelk irp)-

Consequently, if B is a bounded set of D({M,}, K) then

sup{||f *¢|lLe: f€A p€B,}<co.

Next, we show that there is (another) (r,) € R such that {f*60: f € A} is
bounded set in L* for every 6 € D({M,},7,,Q). Let B; be the unit ball in L*
and B be a bounded subset of D({M,}, K). Then

|<fx9.p> =< fro > < IFelellies = If * ol < D < oo

forall f € A, v € BiND({Mp},R™) and ¢ € B, where D does not depend on
¢ and f. This implies that the set

{f*¥: feA, Y € BiND({M,},R™)}

is bounded in D'({M,}, K). Since D({M,}, K) is barrelled, this family is equi-
continuous in D'({Mp}, K). This implies that there exists a neighbourhood
Vir,)(€) of zero in D({M,}, K) of the form:

Vi"?)(e) = {0 € D({MP}? K) HOIIK,(TP) < €}a >0,
with € > 0, such that 6 € V,)(¢) implies that |
| <f*p0>|=|<fx0,9>|<1,

for f € A and ¥ € By N D({M,},R™). The same is true for the closure of
Vir,)(€) in D({Mp}, (rp), K).
Let now 0(t) = kw(kt) for t € R and k € N, where w € D({M,},R"),

0<w<1and
/w(t)dt:l,
R

and let 0x(x) = 0k(z1) - ... - Ok(xn) for € R™ and k € N.

One can easily prove that, for every u € D({M,},p, Q), the sequence (u*6%)
of elements of D({Mp}, K) converges to  in the norm ||- k). For an arbitrary
6 € D({Mp}(rp, ), there is an N > 0 such that 10/Nlk,r,) < € and there
exists a sequence in V{,,)(¢) which converges to §/N in the norm || - || K,(rp)-
This implies that, for every 6 € D({Mp,}, 75, 2), there is a constant C > 0 such
that

|<fx,0>|=|<fx0,>|<C,

for f € A and ¥ € BN D({M,},R"). Consequently,

| <f*6,%>| < Cl[Yls
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for f € A and ¥ € D({M,},R™). This proves that {f*0: f € A} is a bounded
set in L for every 8 € D({Mp},7p, Q).
Lemma. 2.6.1 implies that there are u € D({Mp},7p, Q) and ¢ € D({M,}, )
such that
f=Peyluxf)—v=f

for every f € A. Since {ux* f: f € A} and {¢* f: f € A} are bounded sets
in L, the proof is completed. O

Let 7 > 0 (resp. (rp) € R) be given. There is a 7 > 0 (resp. (7,) € R) such
that the function Py (resp. P,.,)¢) is continuous for ¢ € D((M,)7/2, K) (resp.
¢ € D({M,},(7p), K)). This and the preceding theorem imply the following
corollary.

Corollary 3.1.1 An ultradistribution f € D'(x,R™) is an element of the space
D' ((Mp), LY) (resp. D'({Mp}, L)) fort € [1,00] if and only if for every compact
set K there is an v > 0 (resp. (rp) € R) such that f * p € Lt for every

¢ € D((Mp)r/2,K) (resp. ¢ € D({ My}, (rp), K))-

3.2 Boundedness in $™*

The following structural theorem is true for tempered ultradistributions.

Theorem 3.2.1 Let (M,) satisfy conditions (M.1) and (M.3). Then a set
B c §'(Mp) (resp. B C S{Me} s bounded if and only if every f € B can be
represented in the form

f= 3 DN(+2l*)fap),

o,fENG

where fop € L? for o, € N§ are functions with the following property: for
some d > 0 (resp. for every d > 0) there exists a D > 0, independent of f € B,
such that

Y M, Mﬂllfa/sllm <D.
o,BENT

Proof. 'We shall prove the assertion only in the more difficult case * =
{M,).

Note that the space S{MP} is barrelled and thus B is an equlcontlnuous
subset of S

Let Wy, h > 0 be the space of all sequences (cpa 58) = (Pa,8)a,penz in L?
such that

lpaslle> .
[(Pap)llz2n = Sup{m- a,8 € Ng} <oo,

equipped with the above defined norm. We identify S,EM” ) with the corre-
sponding subspace of Wy. Since the inductive sequences Wy, h € N and
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S,(lM” ) h € N are weakly compact and compact, respectively, it follows from

Lemma 1.4, (44) in (48], that the sequence

0 « proj lim (S,EM”))’ « proj lim W},
h-—oc0 h—oo

is exact, where
proj lim (S,(IM”))’ = gt} (ind Jim S,(EM’”))’

and )
proj hlim Wy =W’ = (ind hlim W)

Since the space S™™r} is Montel, by Lemma 1.4, (v) in ([48], it is a closed
subspace of W and, by the Hahn-Banach theorem, the equicontinuous set B C
S ™Mr} can be extended to the equicontinuous set B in W’. Thus B consists
of all sequences (fu,5) = ( fa,8)a,penn € L? from L? such that for every d € N
there is a constant C' > 0, the same for all the elements of B, such that

Y AP MaMg) fagllLe < C.
o,BeNg

The mapping
S (DD [

BN

maps W onto S'tM#} and

B ( ) (F1)*D*(1+x|)")B,

o, BENE
which implies the assertion. O

Theorem 3.2.2 Assume that satisfies conditions (M.1), (M.2) and (M.3). Let
B C D'((Mp),R") (resp. B C D'({M,},R™)). Then B is a bounded subset of
S" M) (resp. B is a bounded subset of §"{Mp} ) if and only if every f € B is of
the form

f=P(D)F, Fe€B, (3.7)

where P is an operator of class (M,) (résp. of class {M,}) and By is the set
of all continuous functions on R™ such that for some k > 0 and some C' > 0
(resp. for every k > 0 there is a C > 0) the estimate

|F(z)] < Cexp(M(k|zl])), z € R™ (3.8)
holds for all F' € By.

Proof. We shall prove again the case * = {M,}, since the idea of the proof
is similar in both cases and this case is more complicated.

Clearly, (3.8) implies that the set of all elements f of the form given by (3.7)
is a bounded set in S'{M¢},
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Let B be a bounded set in S'{Me}. For the Fourier transform f of the
ultradistribution f € B there are (r;),(s;) € R and a constant A > 0 (which
do not depend on f € B) such that

| < fro>| < Avepp(®) €St (3.9)

To simplify the notation, for given sequences (r;),(s;) € R and a given o =
(a1y...,0n) € NG, denote

Ra = ﬁrj, Sa - fISj, S& = IaITj/Q,
7=1 7=1 7=1

where @ = a1 + ...+ a. For some D > 0 and ¢ > 0, we have

2\ar/2 )
sup A" Dexp(N(clzl)), =e€R" (3.10)
€N MaRa

Let (7,) and po correspond to (r;), ¢ and C in (2.16), where C is given by (2.18)
and ¢ by (3.10). If ¢ € DM} it follows from (2.16) - (2.18) that

L+ X122 Y ockes (9)8°*p0*(1/ Pz,))ll2

Virs)i(s5) (@) Pip)) < SUP '
e P07 apeNg Mo RoMs_Sp_ MySk
< sup || sup AHPPIT 0 Z (ﬂ> sup |6%(1/ Py)) 07 ]
- ! /
k,}fz};g aeNy  MaRo 05hes k) o<k<p MkSkMk—ﬁSk_ﬁ L2
kld=* B !aﬂ_k‘Pl
<D sup sup - N(elI=N()/Co-8 ( ) s
k,aega‘oskgﬁMksin Oéﬁ k Mg_kSZ,_k"L
k<p <k<
- B8 aﬂ_k(p 2
“echd  0skso Bk p—k

for a certain constant C7 > 0. Thus, (3.9) implies that

[(f/ Py 00l = 1y 0/ Pl < Callellzz o, /2)

for a suitable constant C; > 0, all f € B and all ¢ € D({M,}, L?). This implies
that the set {f/P,): f € B} is equicontinuous in D'({M,}, L?). Hence, by
Theorem 3.1.3, every f for f € B is of the form

f&)= P(fp)(E){P(fp)(D)Fl(ﬁ) + F3(6), FieB), FeB,,

where B; and B, are bounded subsets of L2, Using the inverse Fourier trans-
form, we obtain

fz) = P(}'p)(D)[}D(ﬁP)(x)Fl(x) +Fy(z)], Fi€Bi, F:€By
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where By and B are bounded subsets of L2. Put

Flz) = /0 o /0 TP (OF (8) + Fa(t)] dta .. db,

where = (z1,...,2,) € R® and t = (t1,...,t,) € R®, with F} € By and
F, € By and an

P(D)= P(T—”)(D) 0x1...0z,
From (2.14) it follows that

IP(@) < Coxpli(l)a + afyr [ 020

< Gi(IlFllze + | Pallz2)(1 + [a]?)" expN ()

dt

for z € R™. Since for every k > 0 there is a pi > 0 such that
N(z) < M(kla]),

whenever |z| > pj (see [48]), (3.8) follows and the theorem is proved. O
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Chapter 4

Cauchy and Poisson integrals

4.1 Cauchy and Poisson kernels as ultradifferenti-
able functions

The first authors who have studied the representations of the Schwartz distri-
butions D' as boundary values of analytic functions were Tillmann [80] and
Luszczki and Zielezny [57). In [57], the one-dimensional case of functions ana-
lytic in half planes was studied. In [80], the n-dimensional case was analyzed
for functions analytic in the 2" tubes of the form R™ + 1Cy with n-rants C, in
R™ defined as follows:

Cn={y=(W1,v2,-..,Un) € R™: ujy; >0(i=1,...,n) for ue®O,)}
where
O ={u=(u,uz,...,un) € R™: uy;=+1 (G=1,...,n)}.

The values of 7 considered in these papers were 1 < r < co and fundamental to
the analysis was the property that the Cauchy kernel function corresponding
to half planes or tubes R™ + iC, is an element of Drs, 1 < s < 0o. In 8],
Carmichael noticed that the Cauchy kernel for tubes R™ + iCy, is an element of
B NDpe, too.

In this section we will prove that the general Cauchy kernel defined in Sec-
tion 1.3 corresponding to a regular cone C is an element of D(*,L%), 1 < s < o0,
where * is both (M) and {M,}, and hence is in Dr., 1 < s < oo. Additionally,
we will prove that the Poisson kernel corresponding to the tube R™ + C,, is in
D(*,L*), 1 <5 < 0o, and hence is in D, 1 < 5 < 0.

In later sections we will use the Cauchy and Poisson kernels to construct
the Cauchy and Poisson integrals of ultradistributions in the corresponding
spaces D'(x, L°) and we will prove some results about these integrals. We
will conclude that an analysis similar to that of Tillmann and of Luszczki and
Zielezny can be obtained in the more general tube setting of R™ + ¢C for all
values of r (1 < r < oo) for which their results were obtained in the special
cases of R™ +4C, and half planes, respectively.

Let C be a regular cone in R™ We shall consider now the Cauchy and
Poisson kernels, coresponding to R” + iC, defined in Section 1.3.

45
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Theorem 4.1.1 Let the sequence (M) of positive numbers satisfy conditions
(M.1) and (M.3). We have K(z —-) € D(x,L*),1 <s < o0, for z € TC, where
the symbol * means either (Mp) or {Mp}.

Proof of Theorem 4.1.1 for dimension n = 1. First let C be the cone
C = (0,00) in R!. We have C* = [0,00) and K(z —t) = 1/2mi(t — ) as usual
for z = z + iy € R! +i(0,00) and t € R'. Let a be a nonnegative integer. We
have

flj—l%—tl = (—1)01[{(“)(3 —-t)= (271'2')_1(—1)“‘&!(,5 _ z)-—a—l.

For 1 < s < o0, we have
HK(a)(z - ~)HL3 = ( /oo ot /2mi(t — 2t s dt)l/s
—QoQ

< (al/2ﬂy“)(/_o;((t — )2+ 7)) dt) < K(s,z,y)(/y®), (4.1)

where K(s,z,y) is a constant depending on s,z, and y (we recall that y >0
here). Let h > 0 be arbitrary and apply definition (2.6). Since (M) satisfies
(M.1) and (M.3)’, we have »

al < M.,

by Lemma 2.1.2; thus for L = hy there is a constant B > 0 which is independent
of a such that
a! < B(hy)*Ma, a € Np. (4.2)

Using (4.2) in (4.1) we obtain
“K(“)(z . -)HLS < BK(s,z,y)h*Ma, o€ No, (4.3)
for all h > 0 which proves that K(z — ) € D((Mp),L°),1 < s < oo, for

z € R +4(0,00).
For s = o0, and z € R + i(O,oo), we have

d*K(z —t) 2 —(at1)/2 o __ O
dt> | - 2 —o) YY) = oyt

Let again h > 0 be arbitrary. Using (4.2) where L = hy in (2.5), we have

M—d%_—t)—i < (B/2my)h®M,, € Ny,

for all h > 0 which proves that K(z — ) € D((Mp), L*) and, combining our
results, we have K(z —-) € D((M,), [*),1 < s < oo, for z € R! +iC with
C = (0,00 C R.

If C = (—00,0) C R! then C* = (—00,0]; and K(z —-) € D((M,), L*),1 <
s < 0o, as a function of t € R! for z = z + iy € R! + i(—00,0) is proved like
that for C' = (0,00) with |y| in place of y in the proof. Since D((M,), L*) C
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D({M,}, L*) we thus have K(z — -) € D({M,}, L*) also for both cases C' =
(0,00) and C = (—o0, 0). This completes the proof of Theorem 4.1.1 for dimen-
sionn=1 0

Let = (pa, 2, ..., in) such that p; = +1,5 = 1,...,n. Recall the 2"n—
rants Cy, defined above. Each C, is a regular cone in R™ and Cr = C’ The
Cauchy kernel corresponding to the tube TC» = R™ + iC), takes the form

K(z—t):(Zwi)“"H?’l—@;)-, z=z+iyeT%, teR"  (4.4)
j=1 AN |

where

N 1, Y; > 0,
sgn (y]) = { -1, y; < 0,
for j=1,...,n. Thus for the tubes R"+iC, in C", it is clear from the form of
K(z—t) that a proof like that in the one dimensional case will yield the desired
result of Theorem 4.1.1. This case for the tubes R™ + iC), also follows as a
special case of the general proof of Theorem 4.1.1 for d1mens1on n > 2 given
below.
Before giving the proof of Theorem 4.1.1 for dimension n > 2 we first adopt
some notation and prove a needed lemma.
Let a > 0 be arbitrary but fixed. Let C be a regular cone in R™ and C* be
its dual cone. Let z € R™ and t € R™ be arbitrary but fixed. Put

={neC: |l <a}; (4.5)
Foni=(C: Gt ime OOl —a0<u<1) @D

The dlfferentla,l form properties used in the following lemma can be found
in [1] and [35]. This lemma will be used in the proof of Theorem 4.1.1 for
dimension n > 2 given below; in particular it will be used to obtain equation
(4.15) below.

Lemma 4.1.1 For every a € N%, we have

. . -
Jm [, CBedQde =0

for z=xz+iy € T® andt € R™.

Proof. The form dn = dmdny .. .dny is an n-form and the set {n: || = a}
has dimension less than n for any a > 0. Thus

dmdnz ...dn, = 0,
whenever |n| = a. Since dudu = du A du = 0, we obtain

d¢ = dGdGs ... Gy = iay (z; — t;)d;,

=1
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where
dj = dm cee d’f]j_l dudnj.H e dnn-

Letting E(C*,a) = {n € C*: |n| = a}, we thus have

I, = C*E.—+(¢)d¢
/

1
— i / /(n+zau(x—t)) 0+ dau(z — 1)) (@ — t, d)

E(C*,a) O
1
=ia / /(n + jau(z — t))* g y(n, u)(z — t, d), (4.8)
E(C*,a) 0
where
(z—t,d)= Z(a:] tj)d;
and

@, 4 1(n,u) = exp2mi(< &+ 1y — t,n > +aui <z +iy —t,x —t>)].

From the last term in (4.8), we have I, = 0 for x =t and every a > 0. Thus
the remainder of the proof proceeds under the assumption that = # t. For an
arbitrary a > 0, it follows from (4.8) that

ErN | / H(ImHaulwa—tyl))

E(C* a) o J=l1
- exp|—2(au|T — t|2+ <y,n>)| Z |z — tj]d;. (4.9)
Jj=1 ‘

Now y € C is fixed; by Lemma 1.2.2. there exists a § = d, > 0 depending on y
such that
<y,n>2 dlylln|,n € C*. (4.10)

Using (4.10) and the estimate

n

[1Unsl + aulz; — 5D < (In] + aule — t)*
=1

we have

1
L] <a / / (7] + aule — t)* exp(—2raule — ¢)
E(C*,a) JO

-exp(=2molylln) > lx; — tld;
7=1
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1
= aexp(—2mdaly|) /(a + aulz — t])* exp(—2maulz — t|?) du
0

n
‘lej—tjl / Ldm .. .dnj- dnjt1 ... dn,
J=1

E(C*,a)
< 15 (@) exp(~2mdalyl) (3 fo 5]
J=1
1
: /(1 +ulz — t|)* exp(—2mau|z — t|%) du (4.11)
0

where S(a) = (27/2a™~1/T(n/2)) is the surface area of the sphere of radius
a>0in R™ For z # t in (4.11) we notice that

(Itulz—¢)* <14z -t)*,0<u<1.
Using this fact and then integrating, for = # t we continue (4.11) as

o] < a®*S(a) exp(—2mdaly)(1 + |z — t|)*
(1 - exp(=2malz — t1*))2male — )7 |z; — ¢ (4.12)
' Jj=1

For = # t, the right side of (4.12) approaches 0 as a — +oco. Combining this
fact with the previously noted fact that I, = 0 for any a > 0 if z = t, the proof
of Lemma 4.1.1 is completed. O

Proof of Theorem 4.1.1 for dimension n > 2.
Let o be any n-tuple of nonnegative integers. For fixed t € R™ and z —
z + iy € T, the function

CYexp(2mi < z —t,( >)

is an entire analytic function of ¢ in C". Thus by the discussion made in [83]
(Section IV.22.6, p. 198), the form

C*exp(2mi < z —t,¢ >)dC1dCs . .. dCn
is a closed differential form; that is
d(¢¥ exp(2mi < z —t,¢ >)d1dCs . .. dCn = 0

and
/ C*exp(2mi < z — 1, >)d¢1dCs ... d¢, = 0 (4.13)
.

a,z,t

for each a > 0,7 € R™, and t € R™ where

;,w,t = Cz U Cz,z,t U J;,m,t (414)
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with Cj ., denoting Cg; ;, as defined in (4.6), suitably oriented. Now recall
the definition of the Cauchy kernel function in (1.5), the sets defined in (4.5) -
(4.7), and Lemma 4.1.1. Using these we let a — +o0 in (4.13) and obtain

D"K(z—-t):/ n*exp(2mi < z —t,n >)dn |
C’*

- / (n+ilnl(z — )
5

x,t

-exp (2mi(x — t + ay)(n + in|(z — 1))) dC, - (4.15)
where
r ={C: C=n+ilnlz —t),neC} (4.16)

Between dn = dn; ...dn,) in the first integral and d¢ = d¢y...d¢,) in the
second integral in (4.15), we have the following relationship:

NNl U] oln
d¢; = dn; + i(z; t])(a—mdm +...+ -g-n—ndnn)
=dn; +i(z; — tj)(%ldm +...+ In;"ldnn). (4.17)

Using the differential properties
dnjdne = dnj Adn = —dni A dn; = —dnedn;, 3 # k,
and
dnjdn; = dn; Adn; =0

(see e.g. [1] or [35]), we obtain, exactly as in [42] (p. 359, the last line), the
relation

¢ = (1 n ifijlin—?ﬂz)dn (4.18)

from (4.17). Thus from (4.15) and (4.18) we get
DG —1) = [ (r+inlte - 0)°
‘ <x-—t,
-exp (2mi(z — t + i) + ilnl(z — 1)) (1+ A R

= )dn (4.19)

Now

n

-+ e = 0)°1 = Loy + ey — )"

1

<l + e ) (4.20)

and
1L+ ilz—t,n)/Inll < 1+II(@—t,n)l/Inl < 1+|a —tllnl/Inl = 1+ ]|z —¢|. (4.21)

Using (4.10), (4.20) and (4.21) in (4.19), we have

DK (2 — )] < (1 + |z — t])>*] /C ol exp(~2alal @1yl + |z — ) d. (422
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Letting pr(C*) denote the projection of C*, which is the intersection of C* with
the unit sphere in R™, we change variables in the integral in (4.22) by letting
¥ € pr(C*) and 0 < r < co and obtain

IDFK(z = )] < (1+ |z —¢])**!

/ exp(=2mr(8ly]) + |z — t|2))r**t" "V dr dyp
pr(C*) 0
< S(CH(A + |z —t])~H

exp(—2mr (8ly]) + |z — t|*))r*t " dr (4.23)

o — 3!

where S(C*) is the surface area of pr(C*). It follows (see [23], p.93, (4.6) or
[24] p. 60, (3.5)) that

o 1, a=0,
i‘zllglr exp(—7r7‘(5|y|+|a:—-t[2))] < { (= (0ly + |z — t|2)/5z)_°’, a#0, (4.24)

where & = a; + ...+ an). Using (4.24) and integrating by parts we continue
(4.23) as

|IDFK(z = t)] < S(C*)T(n)(1 + |z — t])*H (m) "~
(©Olyl + |z — ) a" (4.25)

with the convention that 0° = 1. Thus for 1 < s < co we have

o s S(C’*) (M)Y* —sazsa
/R"lDtK(z—t)l dts( )

(1 + |z —¢])s+D)
/Rn (8ly] + |z — t]2)s(etn) dt. (4.26)

Here z + iy € T is arbitrary but fixed, § = 0y > 0 is fixed, and n > 2. Using
(4.26), straightforward estimating shows

/ IDEK (2 — )] dt < (S(CT)D(n)/a")*n="e 5%
Rn

(4.27)

N(s,6,y,n %)S"‘ + N'(s,n), if dly| >1,
N (s,d, y,n)((SI D if dly| < 1.

Here N(s,0,y,n), N'(s,n), and N”(s,d,y,n) are positive constants which
depend on the parameters listed. Using (4.27) and further estimates we have

I1DF K (z = )llLs < (S(C*)L(n)/n")m~*a"

{ M(s,8,y,m)(sfp)™,  if oyl <2,

M'(s,0,y,n), if oly| > 2. (4.28)
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for 1 < s < oo. Since the sequence (M,) satisfies (M.1) and (M.3)" we have
a® < My, by Lemma 2.1.2.

Let h > 0 be arbitrary. For the fixed y = Im 2z € C and § = 6, > 0 put
L = (hmé|y|/2) if 8ly| < 2 or L = hr if &|y| > 2. From (2.5) and (4.28) there is
a constant B > 0 which is independent of « such that

ID*K(z — Yz < (S(CHT(n)/7™)R(s,8,y,n)Bh* My (4.29)

for all h > 0, where R(s,d,y,n) is a constant depending on the stated parame-
ters. Now (4.29) proves that K(z — ) € D((M,),L*), 1 < s < oo, for z € T¢
and n > 2.

For the case s = oo and n > 2 we return to (4.25) where z = z + iy € T¢
and 0 = 0, > 0 are fixed. We have

(1 + I:L. _ tl)a—l-] 2a+1 ot )
< ; —_— .
G e < e e 7 (4:50)

for all t € R™ and for fixed y € C and 6 =, > 0. Let h > 0 be arbitrary and
put L = (hmd|y|)/2 if 8ly| < 1 or L = hw/2 if 8|y| > 1. From (4.25), (4.30) and
the fact that a® < M, here, we obtain

IDZK (2 — )| < (S(C*)T(n)/7") max{2/(6|y])", 2} BA Ma (4.31)

where the constant B > 0 is independent of «, which proves that K(z —-) €
D((Mp), L) as a function of t € R™ for z € T and n > 2.

Thus we have K(z — ) € D((Mp), L*) € D({Mp},L*), 1 < s < o0, as a
function of t € R™ for z € TC and n > 2. The proof is complete. O

We recall that K(z — -) cannot be in D(x, L!) or Dy since K(z — -) is not
in L! as a function of t € R™ for z € T¢. Theorem 4.1.1 additionally proves
that K(z — ) € Dps, 1 < s < oo as a function of t € R™ for z € T since
D(x,L*) C Drs, 1 < s < o0.

For a regular cone C' we now consider the Poisson kernel Q(z;t), z € T¢ =
R™ +iC, t € R", defined in equation (1.6.

Theorem 4.1.2 Let the sequence of positive real numbers (Mp), p=0,1,2,...,
satisfy (M.1) and (M.3)'. We have Q(z;t) € D(x,L°), 1 < s < 00, as a
function of t € R™ for z € TC where * is either (M,) or {Mp}.

Proof. From (1.5) and Lemma 1.2.1 we just note that K(2¢y) > 0, y € C,
in (1.6) and Lemma 1.3.5 holds since C' is a regular cone by assumption. Now
let s =1. Let z = x + 4y € T be arbitrary but fixed, and let a be any n-tuple
of nonnegative integers. By the generalized Leibniz rule

DQ(z;t) ————D'BK —t)DYK(z — 1), (4.32)

ﬁ+7—a
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and Q(z;t) is infinitely differentiable as a function of ¢ € R™. Using (4.32) and
Holder’s inequality we have

[1pzaciar
Rn

1 ol 3 —
= K (2iy) ﬁJ;_ By /IDt K(z —t)D}K(z —t)| dt
—a 7T

1 al "
= K(2z’y)ﬁz B ID/K (z = 21D R = llp= (4.33)

for any n-tuple a of nonnegative integers. By the proof of Theorem 4.1.1,
K(z~-)€D(x,L*), 1 < s < o0, as a function of t € R™ for z € TC. Tet h > 0
be arbitrary. Thus by Theorem 4.1.1 there exist constants N and N’ which are

both independent of h and « such that

+y=a

IDYK (2~ )|e < NW®Mp, 6 € NT, (4.34)
and
ID}K(z = l|p2 < NB'M,, v € N7 . (4.35)

Combining (4.33), (4.34) and (4.35) and using (2.1), we have

1 a!
TQ(z; < — — NN'pP+Y
/ |DFQ(z;t)] dt < K Qi) Z_ G VNI MM,
R™ BHy=a "
NN'M, al
< —_ ¥ )
= K(2m) ( ﬂﬂzza ﬁ!’y!)h M (4.36)

(4.36) holds for such a, @ € N7 . Thus v
Q(zt) € D(M,), L') € D({My}, LY).

Now let 1 < s < oo, and let h > 0 be arbitrary. Let o be any n-tuple
of nonnegative integers. By Theorem 4.1.1 (see (4.29) and (4.31)) there exist
constants N and N’ which are independent of h and of a € NG, such that

|D{K(z —t)] < NWM,, v€Ng, (4.37)
and
IDYK (2 = )llzs < N'h’ Mg, € NE, (4.38)

where 3+v = a. Using (4.32), (4.37), (4.38), and (2.1), we proceed as in (4.36)
to obtain

a0 . _ 1 B, TR
7R < gy 3 DK (e~ DRG l

1 al
< %3 N MIDPK (2 — ||
< R , 2 gV MIDEK (=)l

1 o
¥ 'hP
< Xew) ﬂg;a G (VMo )(N'RE M)

NN'My al
< - —— |h* M, 4.39
— K(2iy) (ﬂga ,B!fy!) , , (4.39)
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(4.39) holds for each o, « € N§ . Thus Q(z;¢) € D((M,), L*) € D({ My}, L?)
for 1 < s < oco. The proof is complete. O

For the n-rant C,, defined in the introduction to this section, the Cauchy
kernel takes the form

for z =z + iy € T and t € R™ where

‘ 1, y; >0,
sgn (y]) - { —1, y; < 0.

for j=1,...,n. According to (4.4), the Poisson kernel takes the form

QGeit) = () [ [ )

o (b =)+

for z = x + iy € T and t € R™, where sgn (y;) is as above. These forms
of K(z —t) and Q(z;t) are special cases to which Theorem 4.1.1 and 4.1.2,
respectively, are applicable.

4.2 Cauchy integral of ultradistributions

Let C be a regular cone in R™, and let the sequence of positive real numbers
(M,) satisfy (M.1) and (M.3)". Let U € D'(x,L%), 1 < s < 00, where we recall
that * means either (M,) or {M,}. Because of Theorem 4.1.1 we can form

C(U;2)= (U, K(z—t), z€ T, (4.40)

which is the Cauchy integral of U. In this section we show that this Cauchy
integral is an analytic function in T, has both pointwise and norm growth
properties, and has boundary value properties.

Theorem 4.2.1 Let C be a regular cone in R™ and let the sequence (M), p=
0,1,2,..., satisfy (M.1) and (M.3)'. Let U € D'(x,L°), 1 < s < 0. The
Cauchy integral C(U; z) is analytic in TC.

Proof. We first give the proof for D'((Mp), L*). From Theorem 2.3.2 we
have : : \

U= Y (-1 / gu() DK (2 — t)dt, z€TC, (4.41)

0<a<0 Rn

where the ga(t) € L™, 1/r+1/s = 1, such that (2.37) holds for some k > 0. Let
Q be a compact subset of TC. From the proof of Theorem 4.1.1 (recall (4.3)
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and (4.29)) there is a constant B(s,@,n) depending on s, the compact set Q,
and the dimension n such that

IDEK (2 = )llze < B(s, Q,n)h* M, (4.42)

for all h > 0, where z € Q C T and a € N% . For each g,(t) in (4.41) we see
from (4.42) and Holder’s inequality that

/Iga(t)D?K(z — )| dt < |lgaller I DFK(z = )||Le
R~

< B(S, Q’ n)haMa”ga“LT (443)

for all h > 0, where z € Q C T°. Recall that (2.37) is equivalent to (2.39)
on the functions go(t) in (4.41). Using (4.43) and (2.39) and choosing the h in
(4.43) to be k/2 for the k in (2.39) we have the existence of a constant D > 0
such that

[ 18a0DE K (- ) dt < B(s, @ m)D(1/2)°
R’n
which we use to obtain

Z / |94(t)DF K (z — t)| dt < B(s,Q,n)D Z (1/2)* < co.  (4.44)

0§a<ooR.,, 0<La<oo

The bound on the right of (4.44) is independent of z € Q C T°. The resulting
uniform and absolute convergence of the series in (4.41) for z € Q, where Q is
any compact subset of TC, proves that C(U; z) is analytic in T€.

Using Theorem 2.3.1, the proof that C(U;z) is analytic in T for U €
D'({Mp},L?), 1 < s < oo, can similarly be proved. This completes the proof
of Theorem 4.2.1. O

We obtain a pointwise growth estimate for the Cauchy integral after proving
a needed lemma.

Lemma 4.2.1 Let C be a regular cone in R™. For any n-tuple o of nonnegative
integers,
hyo € L7 (4.45)

forallr, 1<7r <00 andforyeC, where
hya(t) = t*Ic-(t)e™ 2@ ¢ e R,
and Ic+ is the characteristic function of the dual cone C* of C.

Proof. Let y € C. By Lemma 1.2.2 there is a § = d, > 0 such that (1.2)
holds for t € C*. Let o be an arbitrary n-tuple of nonnegative integres. For
7 = 0o we apply (1.2) and obtain

|tOt]C* (t)e—Zﬂ'(y;t)' < sup Itae—er(y,t)| < sup ltlae—27r6|y||t|
tec* tec*

< sup  pul™ exp(—27dlyl|pu|) = sup p*e2orly] (4.46)
p>0 p>0
u€pr(C*) '
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for all t € R™ and for y € C. From the above calculations we conclude that

1, a=0,

p20

. (4.47)

271'5|y|) , a7 0.

From (4.46) and (4.47) we conclude (4.45) for r = co, where y € C.
Now, let 1 <7 < co. From (1.2) and a calculation as in (1.9) we have

/ [t (£)e, (|7 dt < / Lo (8)[tersyy (18] dt
R” R”

<Qn / w " e g (W) dw = QaT(ra+n)(2mrdly|) 7" (4.48)
0

for y € C, where €, is the surface area of the unit sphere in R™ and the change
of variable for u = 2mréw|y| was used to obtain the gamma function I Now
(4.48) proves (4.45) for 1 <r <oo. O

Theorem 4.2.2 Let the cone C and the sequence (M) satisfy the hypotheses
of Theorem 4.2.1. If U € D'((Mp), L*), 2 < s < oo, for each compact subcone
C' cC C there are constants A = A(n,C",s) >0 and T = T(C") > 0 such that

IC(U; 2)| < Aly| ™" exp(M*(T/Iy))), z==+iy € R +iC", (4.49)

where n is the dimension, 1/r + 1/s = 1, and M* is the function defined in
(2.8). If U € D'({M,},L?), 2 < s < oo, for each compact subcone C' CC C
and arbitrary constant T > 0, which is independent of C' CC C, there is a
constant A = A(n,C",s) > 0 such that (4.49) holds.

Proof. Let U € D'((Mp), L*), 2 < s < oo, and C' be an arbitrary compact
subcone of C. From (4.41) we have

lc; )< Y IDFK(z = lesllgaller, 2 €TC, (4.50)

0<a<x

where the go € L", 1/r +1/s = 1, such that (2.37) holds for some k > 0. For
2<s<oowehavel <r <2, 1/r+1/s=1. For these s and subsequent r
we note Lemma 4.2.1 and can write

DeK(z —t) = F o= (nne®™ = 1], 2€TC, teR", (4.51)

where the inverse Fourier transform can be interpreted in both the L' and L"
sense. By the Plancherel theory of Fourier analysis and the analysis of (4.46),
(4.47), and (4.48), we see for z = z+iy € R" +iC’, C' CC C, from (4.51) that

: 1/r
15K = ae < ([ Infe2mom an)
C*
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1/ i -1 r
< () ’"(/wm"”" exp(~27r5rw]y|)dw)
0

7 1/r
< (Qn)l/r(Sup(wme—w&rwlyl))l/r(/un—le—vr61u|y| dw)
0

w>0
= (a1 (drly]) " sup(ue™ o0
w>0
(Qn(n = )YV (mdry|)="/7, a=0,
< o (4.52)
[9) — 1 \H/r Y e n
(@l =V (marlyl) ()", e N
Using (4.52) in (4.50) we have
a

O <A C ool 30 () ol (@59

0<a<oo
forz=z+iyeT =R" +¢C’, where
A(n,C",s) = (Qn(n — ONY™ (mwor)=/r
with 1/7+1/s =1, 2<s < oo. Using (2.39), the fact that
a® <e%l, a=1,2,3,..., (4.54)

from the proof of Stirling’s formula, and our convention that a® = 1 if o — 0,
and putting T' = T(C") = (2e/kn§) for the k in (2.39), we continue (4.53) as
~ 1\«
. < 1 —-n/r It
C(U;2)] < BAm, ¢ 9™ Y~ (5)°(

0<La<oo

T\e o
m) i (459

for some B > 0. Recalling the definition of the associated function M *(p) in
(2.8), we have for each a = 1,2,3,... that

() 7% = () 52)
- Mlaexp(log ((l—;’)“a'%)) < —A/ll—oexp(M*'(T/lyD). (4.56)

The constant T = T'(C") = (2¢/kn6) depends on C' CC C because § depends
on C’ but not on y € C’. Using (4.56) in (4.55) and putting

A=A(n,C',5) = (B/Mo)A(n,C",5) > (1/2)

0<a<oo

the desired estimate (4.49) follows in case U € D'((M,), L*), 2 < s < co.

For U € D'({M,}, L*), 2 < s < 00, we use Theorem 2.3.1 and the analysis
of (4.50) and (4.52) to obtain the conclusion (4.49) for this case similarly as
we did for the case U € D'((M,), L*) above. For the case of D'({M,}, L*) the
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constant T > 0 in (4.49) is arbitrary and independent of C" CC C' because of
its dependence on arbitrary k& > 0 is (2.30) of Theorem 2.3.1 which does not
depend on C' cC C. The proof of Theorem 4.2.2 is completed. O

We now obtain a norm growth estimate for the Cauchy integral of ultradis-
tributions.

Theorem 4.2.3 Let the cone C' and the sequence (My) satisfy the hypotheses
of Theorem 4.2.1.

IfU € D'((Mp), L*), 2 < s < oo, then for each compact subcone c'cccC
there exists a constant T = T(C") > 0 depending on C" such that, in case s =2,

1/s
e = ([ 1e@ia+ i)™ < K@) oo (@/l) - (@57
Rn

fory e C' CC C and, in case 2 < s < 00,

O 2)lLe < K(U,Cs,m,m) |yl exp(M*(T/|y]) (4.58)
fory € C' cC C with 1/r +1/s = 1, where K(U) in ( 4.57 ), i.e. in case
s = 2, is a constant depending on U, and K(U,C",s,r, n) in ( 4.58 ), i.e. in
case 2 < s < 0o, is a constant depending on U,C’,s,7 and n.

IfU € D'({M,}, L*), 2 < s < o0, then for each compact subcone Cc'cccC
and an arbitrary constant T > 0, which may or may not depend on C'ccC,

there is a constant K(U) if s = 2 or a constant K(U,C',s,m,n) if2 < s < o0
such that ( 4.57 ) and ( 4.58 ) hold, respectively.

Proof. For U € D'((M,),L*), 2 < s < oo, we use Theorem 2.3.2 and
Fubini’s theorem to obtain

C(U;2) = Y (Digalt). K(z 1))

0<a<oo

= 3 (-1){galt), DFK(z— 1))
0<a<oo

= Z IC* (fr])naeQﬂ"i(Z:n)f—l[ga(t);n] d’l’] (4‘59)
0<a<ocogn

where each go(t) € L", 1/7+1/s =1, and Ic-(n) is the characteristic function
of C*. Since each go(t) € L™, 1 <7 <2, foreach s, 2 <s < oo, 1/r+1/s=1,
then F~1[ga(t);n] € L*, 2 < s < oo. If s = 2 there 7 = 2, and by Lemma 4.2.1
each of the integrands in the last term in (4.59) is in L' N L. In the case s = 2,
we use Parseval’s equality to get ‘

||/Ic*(n)n“eQ”i(z’")f"l[ga(t)i nldn| L2
Rn

= | Fln*Ic-(n)e > UM F ga(t): m);alllz2
= |In*Ic-(n)e @M F1ga(t): nlllz2

< ((sup e (e[ / |7 gate)n] ). @60
neR” Rn
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Now let s > 2 and note that by Holder’s inequality

/ ‘IC*(n)n"e‘2"<y”’>f‘l[ga(t);n][ dn
R’n
—1 . r\s/7 r/s ar T
< ([ 0F " ga®: nll")y/" dn) W)™ Io-€lpravnr,  (461)
Rn

where both terms on the right of (4.61) are finite, since F~1[g,(t);n] € L*
and because of Lemma 4.2.1. Thus, by (4.61) and Lemma. 4.2.1, each of the
integrands in the last term in (3.9) is in L'NL" for the case s > 2, 1/r+1/s = 1.
By the Parseval inequality and (4.61), we have, in the case s > 2,

| / Ic-(nn*e*™ =M F o (t): nldn||Ls
Rn

= [|Fn*Ic-(n)e @M Fgo(t)in]: |||
< |In*Ie-(n)e™ ™ F= 2 go (8); m)| L

< (/(lf—llga(t): n”,,)s/rdn)l/s

Rn

(s—r)/sr
( / L= (n)n™e2m(y, m)|ms/ (=) dn) :

(4.62)

Recalling Lemma 1.2.2, given a compact subcone C’ CC C there is a § =
6(C") > 0 such that (1.2) holds for all y € C’ and all t € C*, using (1.2) and
the estimates (4.46) and (4.47) we have

sup |n*Jcx(n)e~ @)
neR”

< sup (|n|* exp(—2mdly||n|) < o (4.63)

neC* (m)a, [0 75 0,

fory € ¢' cc C and § = 6(C") > 0.
For the case s = 2 we use (4.59), (4.60), (4.63), and the Parseval equality
to obtain for y € C’ C C that

ez < Y | / Lom (m)ne?em F=1g. (1);

0<a<oo R»

< 3 (sup "+ Lo (r)e>r / 7t n]IZdn)

0<a<oo n€R:

< 3 (gapp) loales (4.64)

0<a<co

where the convention a® = 1 iff a = 0 is used. For s > 2 and C' C C let
us write § = 0(C”") > 0in (1.2) as § = & + d2, where & = 61(C’) > 0 and
0o = 52(0') > 0.
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Now using (4.59), ( 4.62 ), Parseval’s inequality, (1.2) with § = d; + J2, and
(4.63), we have for y € C" C C

ICU; 2)lls < > ”/Ic*(’?)ﬂaem(z’n)f_l[g“;n}dn“m

0<a<oo R~
< > MF gas mlllzs e (Mne ™ roge-r)

0<a<o

< 2 loaller  sup [fo-(nyn™ exp(~2méilyllnd)])
n

0<a<o0 :
(s=r)/rs
([ expl-2malulinirs/ (s~ ) dn)

C*

< Qn(/w""l exp(—2mda|ylwrs/(s — 1)) dw)
0

> Moaller (g577)

(s—71)/rs

0<a<o
= Qn((n - 1)!(271’5glyl7".5/(s — 7'))"")(3'7‘)/73
« a
Y Mgaller (5= (4.65)
0<a<oo <27r51|y[)

(where Q, is the surface area of the unit sphere in R™ as in (4.48)).
For the fixed £ > 0 in the converse part of Theorem 2.3.2 we know that
(2.39) holds; that is
sup(k® Mallgallz-) < oo (4.66)

where 2 < s < o0, 1/r+1/s =1, here.
For the case s = 2 and this fixed k > 0 we return to (4.64) to obtain

o a \ "1
IC(U; 2)|| 2 Ssgp(k ‘Mal|galL2) Z (W) i (4.67)

0<a<oo

Recall ( 4.54 ) and our convention that a® = 1 if a = 0; using this in (4.67)
and putting T = e/knd we have from (4.67)

IC(U; 2)ll2 < sup(k*Mallgallz2)

R ON

< sup(k* Malgallz2)( Y (3)°) () exp(d*(T/lu) (4.68)

0<a<oo 2
for y € C' C C where we have used the calculation from (4.56). This proves (
4.57 ), i.e. the assertion in case U € D/((Mp), L*), where

K(©) = () supb Malgallin) (3 (3)°):

0<a<oo
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For s > 2 we return to (4.65) and proceed using (4.66) and ( 4.54 ) to obtain
(4.58 ) for the case U € D'((M,), L*), 2 < s < oo, similarly as we did for the
case U € D'((Mp), L?), where

K(U,C' s,mn) = Qu((n—1)N2mars/(s — )™ (1/Mp)
swp(k Malgaller (30 (3)°)

0<a<oo

and T = e/kmdy.

Under the assumption U € D'({M,}, L*) with 2 < s < oo, the assersions
in (4.57 ) - ( 4.58 ) are obtained due to the characterization given in Theorem
2.3.1 and an analysis similar to that in case U € 7’ ((Mp), L?), given previously
in this proof. For U € D'({M,},L*), T > 01in ( 4.57 ) - ( 4.58 ) is an arbitrary
constant, because it depends on an arbitrary k > 0 in (2.30), and T may or may
not depend on C’ depending on the choice of an arbitrary £ > 0. A complete
proof of inequalities ( 4.57 ) - (4.58 ) for U € D'({M,},L*), 2 < s < oo, is
given in [25]. The proof of Theorem 4.2.3 is complete. O

We desire to extend the growth results of Theorem 4.2.2 and 4.2.3 to the
case 1 < s < 2. The proofs of Theorem 4.2.2 and 4.2.3 given above depend
considerably on properties of the Fourier transform for elements in L 2<
s < oo, properties which are not available in general for the cases 1 < s < 2.
A detailed analysis of integrals, as in the proof of Theorem 4.1.1, yields these
growth results for 1 < s < 2. We consider this in future research.

Throughout the remainder of this section the sequence (M,) will satisfy
(M.1), (M.2) and (M.3)".

We now proceed to investigate the boundary value properties of the analytic
function C(U; 2), z € TC, for U € D’ (%, L*). We first define a convolution which
corresponds to that given in the definition in [48], p. 71. Let U € D’'(%, L*) and
@ € D(x,L*), 1 < s <oo: the convolution of U with @ is given by

(Ux)(z) = (Us,p(z —t)), z€R" (4.69)

Lemma 4.2.2 Let U € D'(x,L*) and ¢ € D(x,L*), 1 < s < oco. Then
(U * ¢)(z) € D(x, L*>).

Proof. LetU € D'((Mp), L*) and ¢ € D((M5), L*). By (4.69 ) and Theorem

2.3.2, we have

o= 3 (07 [ auDiolo - t)at (4.70)

0Sa<°0 R"

Let 8 be an arbitrary n-tuple of nonnegative integers. The Bth derivative of the
sum on the right of (4.70) can be taken under the summation and the integral
sign. Hence U xp € C*°(R™). With the aid of the chain rule and the definition
of D((Mp), L*) we find a constant N > 0 such that

D2V =@l =] 3 (1) [ aa(ODEDEw—t)at

0SQ’<°0 Rn
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:I > (> / ga(t)D"*ﬁw(w—t)dt‘S > lgaller 1D ellLe

0<a<co Rn 0<a<oe
<N Y P Maiglgaller (4.71)
0<a<oo

for every h > 0. Due to condition (M.2), there exist positive constants A and
H such that
Mayp < AHY P M, Mg = AH*Y° Mo Mg

Taking this into account in (4.71), we obtain

IDS(U *p)@)| < AN D WP H M Mo Mgllgallz-

0<a<co
and, consequently,
|DE(U * p)(2)| o
WY * PN ) |
NGEPM, <4 O;mum Mallgallzr, (472)

where h > 0 and j > 0 are arbitrary and A and H are positive constants. note
that we have renamed h to be j on the right side of (4.72). Recalling that
the go satisfy (2.37) or (2.39) for some k > 0, we can appropriately choose
the arbitrary 7 > 0 on the right of (4.72) to show, as in the proof of Theorem
4.2.1, that the series on the right side of (4.72) converges. Since h > 0 on the
left of (4.72) is arbitrary, (4.72) proves the desired growth for (U * ¢) to be in
D((M,), L™). The proof is therefore complete for the (M,) case.

The proof for the {M,} case is obtained by a similar analy51s with the use
of (14.69 ) and Theorem 2.3.1. O

The following two results lead us directly to the calculation of the boundary-
value of the Cauchy integral C(U;z), z € TC. .

Theorem 4.2.4 Let C be a regular cone in R™ and let U € D'(x,L°) with
1 <s<oo. Let p € D(x,L"). For a fizedy =Im z € C we have

(C(U;z +y), p(@)) = (U, (K(z + iy — t), o(2)))- (4.73)

Proof By Theorem 4.1.1 we have K(z—-) € D(*,L°) forall s, 1 <s < o0,
as a function of t € R™ for z € T¢. Put
K,(z) = K(z+iy) = /exp(‘Zm'(a; +iy,m) dn, yeC.
C ‘

The proof of Theorem 4.1.1 can be adapted to show that K, € D(*, L*) for all
s, 1< s<oo,asa function of z € R™ for y € C. By Lemma 4.2.2,

(U % Ky)(@) = (U, K(c — t +iv)) = C(U; 2) € D(, L)
forye Cand 1 <s <oo: thus

(CU: 2),¢(2)) = (U, K(z - 1), o))
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is well defined for ¢ € D(*,L') with y € C. Using the representation of
U € D’'(x,L°®) given in either Theorem 2.3.1 or Theorem 2.3.2 and Fubini’s
theorem we have

(C(U;2),p(x)) = (U, K(2 — 1)), p(z))
=Y (e / / 0a(O)DYK (2 — ) dtep(z) do

0<a<oo R® R»

=2 (*1)“/ga(t)/D?K(z—t)go(z)dx dt
<< Rn R

= 3 (-1)galt), DK (= ~ 1), 0(a))

= (U, (K(z — t),0(2)))
for y =Im z € C, and the proof is complete. O

We now show that the term (K (z+ iy —t), p(x)), t € R™, converges in the
topology of D(*, L*), 2 < s < oo, to a certain limit function as y — 0, y € C.
The choice of the space to which ¢ belongs depends on whether  is (M)) or
{M,}. For D((Mp), L*) we have the following result.

Theorem 4.2.5 Let C' be a regular cone and let Ic«(n) be the characteristic
function of the dual cone C* of C'. Let ¢ € D((Mp),R™). We have

i (K(z +iy = 1), ¢(z)) = F~[Ie- ()@ n): 4] §4-74)

in D((Mp), L°), 2 < s < 0.

Proof. Recall the definition of convergence in D((M,), L*) from Section 2.3.
For ¢ € D((M,),R™), @(n) is an element of the Schwartz space S and hence
(Ic«(m)@(n)) € L™ for all r, 1 < 7 < oo. Thus F[Ic«(n)@d(n);t] can be
interpreted as both the L! and L" inverse Fourier transform, 1 < r < 2. For
any n-tuple a of nonnegative integers we have

DEF e (m@(n): t]=F Ie-(nn*@(n): ). (4.75)

For all o, (Ic=(m)n*@(n)) € L™ for all r, 1 <1 < oo, since @(n) € S. The
Parseval theory for the Fourier transform now yields that the left side of (4.75)
is an element of L*, 1/r+1/s=1, 1 <r <2, for all s and all . That the
left side of (4.75) satisfies the required boundedness condition for elements in
D((Mp), L*) for each a will follow from techniques that we present later in this
proof. The preceding points yield that the right side of ( 4.74 ) is an element
of D((Mp), L*), 2 < s < oo. Similarly, details in the remaining analysis in this
proof will imply that for each y € C,

(K(x+1iy —t),¢(x)) € D((Mp), L*), 2 < s < 00,

as a function of t € R™.
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We now prove the desired convergence in L® in order to obtain ( 4.74 ). Let
z =z + iy € TC. By a change of order of integration

(K +iy = 0p(@) = [ [ et tnang(z)da
R C*

= / Ic*(n)e‘z”i(t’">e"2"<y’"> / go(:v)e?’ri(‘”’") dz dn
R»

R”
N / T+ (n)@(n)e 2@ me2mitm gy, (4.76)
R”

For any n-tuple a of nonnegative integers we have

ID§ (K (2 — 1), () = DY F " [Le=(m@(m): tllLs
= |7 o= (mn*@(m) (e — 1) ||s. (4.77)

Since (y,n) > 0 for y € C and n € C*, we have
o= (mn*@n)(e”>"@™ — 1) <27°@)l, veC.  (478)
Since 3(n) € SM»), we conclude from the above inequality that
e (m)n*@(n)(exp(=2m(y,m)) — 1)) € L”

forall r, 1 S r <oo. Thusif 1 <r <2 and 1/r +1/s = 1, we have, by the
Parseval inequality,

7= o= (mn“@(n) (e~ 2™ — 1); ]|l Ls
< Me-mn“@(n) (e~ @™ — 1)||r. (4.79)

By (4.78) and the Lebesgue dominated convergence theorem, we have

lim [ Ve @m(eom — 1 dn =0 (4.80)
y—0,yeC
Rn

for 1 < r < 2. Combining (4.77), (4.79), and (4.80) we have

lim [ DY(K(z + iy = t),(z)) = DYF " Ic-m)@(n): tllee =0  (4.81)
y—0,y€C

for all n-tuples a of nonnegative integers and for 2 < s < oo as desired.
To complete the proof it remains to show that there is a constant N > 0,
which is independent of a and y € C, such that for all h > 0

ID§ (K (@ + 1y — 1), (2)) = Dy F~ Lo« m)@(m);tllle < Nh*Ma  (4.82)
for each a. As in (4.77), (4.78) and (4.79) we have for y € C that

DKz = ), p(@) e = I1F 7 (Lo () Bm)e™ > ] s
< e+ (mm*@m)e”* @l < In*@(m)ler (4.83)
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for1 <r <2and1/r+1/s = 1. Recall the definition of D((Mp), R™) in Section
2.3 and let ¢ € D((M,), R™). Put
Tdn, R = ( / 1dt)r.

n
R 5=1 supp ¢

Using Fourier transform properties, we have the existence of a constant B > 0
from (2.22) such that

/ I B)I" dn = / [ (1+ iﬂ?“)@(n) /(1+ in?") "dn
= [ S or)coroei) /(4 o)

< g (13 031t

< [|((+ S o) 07)oto| )

< R( [(D%el0)) + D3 Do) + .. + (D Dp(1)) )’

< RR/(BK*May + BEC ™™ My yon + . ..+ BE*F20 Myi0n)
< RR'(Bn) (k" Mu + k* " My o) (4.84)

for all k > 0. Using property (M.2) of the sequence (M), p=0,1,2,..., we
have constants A > 0 and H > 0 such that :

Ma+2n < AHQ+2"MQM271-
Putting H' = max{1, H} we continue (4.84) as
[ B dn < RR(Boy (k M, + Ak=2m =430, b
R~

< RR'(Bn)" ((kH")* M + A(KH')*™ (kH')* Mo May)"
< RR(Bn)"(1+ (A(kH')*™ Ma,))" (kH')* M.)". (4.85)

Thus, by (4.83) and (4.85), we have
IDF(K (2 = t), (@)l < (RR')"Bn(1 + A(kH)*"Man)h* M, (4.86)

for all h = (kH') > 0 (recall that k > 0 is arbitrary and that H’ > 0 is fixed).
By the same analysis as in (4.86), we get

IDFF I (m)@m): tllle = IF Lo~ (m)n*@(m): )]s
<@l < (RR)'"Bn(1 + A(kH')*"Man)h* My (4.87)
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for all h > 0. Combining (4.86) and (4.87) and using the Minkowski inequality,
we have (4.82) for each o, where N can be chosen to be

N = (RR)Y"Bn(1 + A(kH')*" Man)

and k > 0 can be chosen arbitrarily. The proof of Theorem 4.2.5 is complete.
O

Let us now consider the space Seo({Np}, {Mp}) C S™) of Roumieu [75]
p. 70, where the sequences (M,) and (N,) satisfy conditions (M.1), (M.2)
and (M.3). Under these conditions, the sequences (M) and (V) satisfy
the conditions of Gel’fand and Shilov in [37], (9), p. 245; thus the space

Soc({Np}, {Mp}) = S](VA:”) has the Fourier transform property

(Np)y _ (Np) (Mp)
.F(S(M’;)) = S(M’;) c S§\Wr (4.88)

in the notation of Gel'fand and Shilov (see [37], (11), p. 254). Because of
the Fourier transform theory for the spaces Soo({Np}, {Mp}), We may take
¢ € Soo({Np}, {M,}) in the below result, corresponding to Theorem 4.2.5.

Theorem 4.2.8 Let C be a regular cone and let Ic~(n) be the characteris-
tic function of the dual cone C* of C. Let ¢ € So({Np},{Mp}) (or ¢ €
D({M,}, R™)), where both sequences (My) and (Np) satisfy conditions (M.1),
(M.2) and (M.3). We have

lm (K(e iy - 1).0(@) = Flle-am): 1 (189)

y—0,y€
in D({M,},L*), 2 <s <oo.

Proof. The proof Theorem 4.2.6 is very similar to that of Theorem 4.2.5.
The difference is in the technique to estimate the term on the right side of (4.83)
when we take ¢ € Seo({Np},{Mp}). We have

/ n"@(m)|" dn = / In*@(n)|” dn + / In*+2%(n)["n™>" dn,
R Ini<1 ni>1

where 2 is the n-tuple (2,2,...,2). Now the boundedness condition for conver-
gence in D({M,}, L*) with 2 < s < oo follows by using (4.88) and the defining
growth of Seo({Np}, {Mp}). Of course, (4.89) in Theorem 4.2.6 also holds for
¢ € D({M,},R™), by a similar reasoning as in the proof of Theorem 4.2.5. O

Now let ¢ € D(x,R™). Since D(x,R") C D(x,L'), we have (4.73) for
UeD(xL°% 1<s<ooand ¢ € D(x,R"). This fact combined with Theorem
4.2.4, Theorem 4.2.5 and the continuity of U prove the following result:

Corollary 4.2.1 Let C be a regular cone in R™. Let U € D’(#, L*), 2<s<
0o. Let p € D(x,R™). We have

lim (C(U;z +1y), o(x)) = (U, F ' [Io+(n)@(n); 1)) (4.90)

y—0,yeC
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Using Theorems 4.2.1, 4.2.2 and Corollary 4.2.1, we obtain an analytic de-
composition theorem for elements in D'(x, L), 2 < s < oo.

Theorem 4.2.7 Let m be a positive integer and let Cj, j=1,...,m, be regular
cones such that '

R*\> C; and CiNCi=0 for jk=1,....,m; j#k, (4.91)
j=1

are sets of the Lebesgue measure zero. Let U € D'(x,L*%), 2 < s < oo, and
@ € D(%,R™). Then there exist functions f; which are analytic in R*+iCj, j =
1,...,m, such that

m

(U,p) = ; ,m  (fi( + i), (). (4.92)

If U € D'((Mp), st), then for each j = 1,...,m and for each compact
subcone C; C C; there are constants A; = A;(n, C},s) > 0 and T; = T;(C%) > 0
such that

| fi(z + )| < Ajlyl ™" exp(M*(T5/y])),s z=x+iy € R"+4C}, (4.93)

where n is the dimension, 1/r + 1/s = 1 and M* is the function defined in
(2.8).

If U € D'({Mp},L*), then for each j = 1,...,m. each compact subcone
C; C C; and arbitrary constant T; > 0, which is independent of C; C Cj, there
is a constant A; = Aj(n,C},s) > 0 such that ( 4.93 ) holds.

Proof. For each j =1,...,m put

filz +iy) = (Ut,/exp(Zm'(z —t,n))dn, z=z+iy€R"+iCj.
C*
By Theorems 4.2.1 and 4.2.2 each f;(z) is holomorphic in R*+4C} and satisfies

the relevant version of ( 4.93 ) for * being (M) or {M,}. To prove (4.92) first
note that

lim (fj(z+iy),(x)) = (U,F "e:(m@(n): 1), j=1,...,m, (4.94)
y—0,y€C; J

by Theorem 4.2.5. Since ¢ € D(x, R*) C SM?) then § € SIM»)| and we know

that F~1@(n): t] = ¢(t). We now use the linearity of U, the assumptions

(4.91) on the dual cones C%, j=1,...,m, and (4.94) to obtain

>, lim i@+ i) e(@) = 3 _(U.F e mem): o)

= (U, F ' e; (mam);t]) = (U, F[@m)it]) = (U, ).

J=1
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The proof is complete. O

The 2™ n-rants in R™ are an example of a finite number of regular cones for
which (4.91) holds. Let u = (u1,p2,. .., in) be any of the 2™ n-tuples whose
components are 0 or 1. C, = {y € R™ : (—1)#iy; >0, j = 1,...,n} is n-rant
in R™ and is a regular cone with the property that Cj, = C). Thus Theorem
4.2.9 holds, in particular, for m = 2™ with each C; being an n-rant C, in R™.

Of course we can also state a L° norm growth estimate on each f;(z), z €
R™ + iC;, C’; ccj, 7=1,...,m because of Theorem 4.2.3.

We desire to obtain Theorem 4.2.5, 4.2.6, 4.2.7, and Corollary 4.2.1 for
1 < s <2 as well. We consider this in future research.

4.3 Poisson integral of ultradistributions

As in Section 4.2 we let C be a regular cone in R™ and let the sequence of
positive real numbers (M), p = 0,1,2,..., satisfy the cinditions (M.1) and
(M.3).

Let U € D'(%,L°), 1 < s < oo (where * represents either (M,) or {M,}).
Because of Theorem 4.1.2 we can form

P(U;z) = (U, Q(z;t)), z€ T, (4.95)

where Q(z;t), z € TC, t € R™, is the Poisson kernel coressponding to the tube
TC¢. P(U;z) defined in (4.95) is the Poisson integral of the ultradistribution U
with respect to the tube T. In contrast to the Cauchy integral, the Poisson
integral P(U; z) is not a holomorphic function of z € T in general. If the cone
C is a half line (0,00) or (00,0) in R!, P(U;z) is a harmonic function, if C is
a n-rant C, in R™, P(U; z) is an n-harmonic function.

Throughout the remainder of this section the sequence (M) satisfies the
cinditions (M.1), (M.2), and (M.3)'.

We will prove that the Poisson integral P(U;z) defined in (4.95) obtains v
as its boundary value as y — 0, y € C, for an arbitrary regular cone C; thus the
Poisson integral P(U; z) has boundary values in arbitrary with Poisson integrals
pf LP functions in tubes. To obtain the desired boundary value result we need
two preliminary theorems.

Theorem 4.3.1 Let C be a regular cone in R™. LetU € D'(*,L°), 1 < s < o0.
Let ¢ € D(*, L'). We have

(P(U;z +iy), p(x)) = (U, (Q(z + iy; t), p(x)), y € C. (4.96)
Proof.
Ky(0) = K(o + i) = [ exp(zri(e +in)) dr, v eC.
e ‘
as in the proof of Theorem 4.2.4; and put

_ K(z+w)K(z +1y)
Ule) = K (2iy)

, teR" yeC. (4.97)



R. D. Carmichael, A. Kaminski, S. Pilipovié 69

As in Lemma 1.3.5 we have Qy(r) > 0, z € R®, y € C, and Q(zy) >0, z =
z+iy € TC, t € R, Further, we have

/Qy(w)dx: 1, yeC,
Rn

and if 6 > 0,

y—0,yeC
|z|>8

lim / Qy(z)dz = 0.

The proof of Theorem 4.1.2 can be adapted to show that Qy(x) € D(*,L%), 1 <
s < 00, as a function of z € R™ for y € C. By Lemma 4.2.4

(U*Qy)(z) = (Us, Qy(z — 1)) = (U, Q(z + iy;t)) = P(U;x + )

is an element of D(x, L*); hence (P(U;x + iy), o(x)) is a well defined function
of y € C for ¢ € D(*,L'). The proof of (4.96) is now completed by using the
representation of U € D'(x, L*) gives in Theorem 2.3.1 and 2.3.2 and Fubini’s
theorem as in the proof of Lemma 4.2.2. O

Theorem 4.3.2 Let C be a regular cone in R™ and ¢ € D(x,L*), 1 <5 < 0.
We have

i (@@ + ;) o(@) = o) (4.98)

in D(x, L*).

Proof. We first consider the case that  is (M,). Let ¢ € D((M,), L*). Dif-
ferentiation under the integral sign shows that (Q(z+iy; t), ¢(z)) is an infinitely
differentiable function of t € R™ for y € C. Boundedness techniques which will
be used later in this proof show that any derivative of (Q(z + iy;t), p(z)) is
an element of L° as a function of t € R™ for each y € C and satisfies the
defining growth (2.23) of elements in D((M,), L*) (see (4.102) below); thus
(Q(z + iy; ), (x)) € D((Mp), L*) for each y € C. For any n-tuple « of non-
negative integers, we make a change of variable and obtain

IDg / Qe +iy: t)p(z)dz — Dy

J
~ |D# / o(z +)Qy(z) dx — DEo(t)] 1
Rn
oy / (e + )Qy(z) dz — (t)]1e, (4.99)
J

where 9(t) = Dgp(t) and Qu(z) is given in (4.97). Using the approximate
identity properties of the Poisson kernel as given in the proof of Theorem 4.3.1,
the proof of [19], Lemma 7, p. 213, shows that the right side of (4.99) approaches
zeroasy — 0, y € C. Thus

yim_DEQz +iy;1), p(2)) = Die(t) (4.100)
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in L* for any n-tuple a of nonnegative integers.

To complete the proof of the result for * being (Mp), the boundedness
condition (2.28) for convergence in D((Mp), L*) remain to be shown. Proceeding
as in (4.99) we use a change of variable and the chain rule to obtain

|Ds / Qla +iy: t)p(x) dallr

Rn
oy / Df(a + 1)Qy(x) delz: = | / DEo(u)Q(u + iy: £) dufl 4.101)
R" ; R~

By Jensen’s inequality [34], 2.4.19, p. 91, Fubini’s theorem and the approximate
identity properties of the Poisson kernel stated in the proof of Theorem 4.3.1
we have

/ll/Dﬁcp(u)Q(u—l—z'y;t)dusdtS//|D2‘<p(u){sQ(u+iy;t)dudt

R™ R™ R R™

- / Dol / Qut i) dt du= [ DEo(w)]du. (4.102)
R R~ R»

Combining (4.101), (4.102), and the fact that ¢ € D((Mp), L*) we have the
existence of a constant N > 0 from (2.23) such that

| / QO + iy; () ez < | D2p(w)llLs < Nh“M, (4.103)
R» o

for all h > 0. By (4.103) and the Minkowski inequality we have

D / Qo+ i )p(c) de — Digllre < 2Nh M, (4.104)
Rn

for all h > 0 and all y € C. Now we combine formulae (4.100) and (4.104),
which hold for all o, to prove (4.98) in D((Mp), L) for 1 <'s < oo.
The proof of (4.98) for D({M,}, L*) is similar. The proof is completed. O

We can now obtain the desired boundary value property of the Poisson
integral P(U;z).

Theorem 4.3.3 Let C be a regular cone in R™. Let U € D'(x,L°), 1 < s < oo,
and let ¢ € D(x,R™). We have

i APUsz +iy), p(2)) = (U, ). (4.105)

Proof. First recall that D(x, R™) C D(x, L*) for all s, 1< s < oo. Formula
(4.105) now follows by combining Theorems 4.3.1, 4.3.2 and the continuity of
U. O
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It is interesting to note that the boundary value of the Cauchy integral
C(U; z) as obtained in equation (4.90) of Theorem 4.2.8 depends on the cone
C, whereas the boundary value of the Poisson integral P(U;z) in (4.105) is
always U independently of the cone C.

Let us note that for x being { M}, Theorem 4.3.3 can be slightly generalized
by taking ¢ € Seo({Np}, {Mp}) = S((I‘A/Z))’ the space of Roumieu [75], p. 70 and
Gel’fand and Shilov [37], p. 245, as was done in Theorem 4.2.7. Of course
both sequences (M) and (V) are taken to satisfy the conditions (M.1), (M.2)
and (M.3). We write Seo({Mp}, {INp}) here, instead of Soo({N,}, {M,}) as in
Theorem 4.2.7, because the Fourier transform is not introduced in the proof
here; recall (4.88).
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Chapter 5

Boundary values of analytic
functions

Analytic functions in tubes which satisfy certain growth conditions involving the
(M) sequences are shown in this chapter to obtain ultradistribution boundary
values. As a basis for the boundary value results we define and study gener-
alizations of the Hardy spaces H™ corresponding to tubes in C". For analytic
functions considered in the chapter, representations are obtained in terms of -
the Fourier-Laplace and Cauchy integrals.

5.1 Generalizations of H” functions in tubes

Let B be a proper open subset of R®. The set of analytic functions f in
TB = R™ + iB of variavble z = = + iy (r € R™,y € B), which satisfy the
estimate

IfC+w)ller <M,  yeB,

where the constant M is independent of y € B, is called the Hardy space
H™(TB), r > 0. Stein and Weiss in [78] have obtained representation and
boundary value results for the Hardy spaces (see (78] for additional references
concerning H" functions). Generalizations of the spaces H™(T'B) have been con-
sidered and analyzed by several authors including Vladimirov [85], Carmichael
and Hayashi [20], and Carmichael [9] - [18].

Asin (78], let B denote a proper open subset of R™, the base of the tube T5.
Let d(y) denote the distance from y € B to the complement of B in R™. The
space ST (T®), where 0 < r < co and A > 0, is the set of all analytic functions
f (of variable z = z + iy) in T? = R™ + B, which satisfy the inequality

IFC+ )l < M1+ (d(y)™™)? exp(2rAlyl), v € B,

for some constants m > 0, ¢ > 0 and M > 0 which can depend on f, r,
and A but not on y € B. If B = C, i.e. B is a cone, d(y) is interpreted to
be the distance from y € C to the boundary of C. The spaces S7(TB) were
defined and studied by Carmichael in [9] - [17]. For various values of r and
various bases B of the tube T2, Carmichael has obtained Cauchy, Poisson, and

73
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Fourier-Laplace integral representations of the S7 (TB ) functions and boundary
value results. The H" functions, the functions of Vladimirov [85], and the
functions of Carmichael and Hayashi [20] are all special cases of the S} (T B)
functions.

As an example let us consider the cone (0, 00) in R! and the corresponding
tube T©) which is the upper half plane in C1. The function g defined by

is an element of the space S%(T(%>)), but is not in the Hardy space H?(T(©:)),

In this section we wish to consider other generalizations of H"-functions,
generalizations associated with sequences (Mp). They are introduced by the
norm growth ( 4.57 ) - ( 4.58 ) obtained on the Cauchy integral of ultradistri-
butions in D'(*, L®).

The results of this section will be useful in obtaining the ultradistributional
boundary value results in the next section.

Again let B be a proper open subset of R™ and let d(y) denote the distance
from y € B to the complement of B in R™. Now let f satisfy the inequality

I£C+ i)l < KU+ @) ™) exp(M*(T/Wl)), v B, (5.1)

where K > 0, T > 0, m > 0, and ¢ > 0 are all independent of y € B and
M* is the associated function of the sequence (M) defined in (2.8). The space
of analytic functions in T2 which satisfy (5.1) will be denoted by H{ Mp)(T B).

The spaces HT,, (TB) for 0 < r < oo are a generalization of the Hardy spaces.
(Mp) / .
If B = C, where ¢ is an open connected cone in R, we get from the formula

diy)= inf (), yeC,
(v) LN v Y

given in [84], p. 159] the estimate d(y) < |y|, y € C. From this inequality for
B = C we see that the term (1 + (d(y))™™)? in (5.1) is a generalizing factor
of the growth in which the standard term |y| is replaced by d(y). Further, the
right hand side of (5.1) allows for divergence to oo as y approaches any point
on the boundary of C' and not only as y approaches just 0 as would be in the
standard case (i.e. if |y| were in place of d(y) in (5.1)).

In this section we shall obtain necessary and sufficient conditions that ele-
ments of H(TMP (TB) spaces, where B is a proper open connected subset of R™,
are representag)le by Fourier-Laplace integrals for certain values of r. We also
obtain a Cauchy integral representation. As indicated previously, these results
will lead us to boundary value and related results in the following section.

Througout this section we assume that the sequence (M) satisfies condi-
tions (M.1) and (M.3)'.

We begin with proving some lemmas.

Lemma 5.1.1 Let B be a proper open connected subset of R™. Suppose that
1< s < oo and g is a measurable function on R™ which satisfies the estimate

le2@g)lLs < K(1+ (d(y)™™) exp(M*(T/y])), veB,  (52)
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where K >0, T >0, m > 0, and g > 0 are independent of y € B. The Sfunction
F given by
F(z) = / ()N i, 2 e TE, (5.3)
Rn
is analytic in the tube TB.
Proof. The proof is an extension of that in [[20], Theorem 2.1]. Let yo € B
be arbitrary. Choose an open neighbourhood N(yo) of yo such that N(yo) C B.
There exists a § > 0 such that {y; |y —yo| = 6} C N(y0). Decompose R" into a
finite union of nonoverlapping cones Cy,Cy, ..., C, each having vertex at the
origin, such that (u,v) > (2!/2/2)|uljv|, whenever u and v are two points in a
certain Cj for j =1,...,k.

For each j = 1,..., k choose a fixed y; such that yo—y; € C; and |y—yo| = 0.
Then, taking € = 21/2775() > 0, we have

-27rs( — Yo, t) > elt]| = 2773(21/2/2)[1;0 - Y5l (5.4)

whenever 1 <s <ocoandte€Cj(j=1,...,k). Foreach j =1,...,k, (5.4) and
(5.2) yield

/ l9(D]° exp(~2s{yo, 1)) explelt]) dt

Cj
< [ lo(®F exp(-2ms(us, ) e
4 A
< K°(1+ (d(y;)™™)* exp(sM™(T/|y;]), (5.5)
since y; € {y : [y — yo| = 0} C N(p) C B for j = 1,...,k. Now, (5.5) yields
/ 9(0)1° expl(~2mstun, 1) explel) dt
k

Z (d(y3))™™)* exp(sM™ (T/|y;1))- (5.6)

For s =1, (5.6) and the fact that ([t|/2) < ¢lt|, t € R, yield
/ 19(0) exp(—2(yn, 6) exp(eltl/2) d

k
Z yi))™")" exp(M*(T/|y;1))- (5.7)

For 1 < s < oo, by Holder’s inequality, the identity

exp(elt|/2s) = exp(elt|/s) exp(—et|/2s)
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and by (5.6), we get

/ l9(8)] exp(=2 (yo, £)) exp(elt]/2s) di
Rn

/

< 4( / Ig(t)lsem(—Zws(yO’t))exp(g'“)dt)l/

k 1/s
< AR (3 + (@)™ el (/i) T 68)

i=1

where 1/s+1/r =1 and

A= (/exp(—srit[/Zs) dt)]/r

Rn

If |y — wo| < e/dms, y =Imzand 1 < s < oo, then

}g(t)BQ’"'(Z’t> = |g(t)| exp(—2m(y — yo,t)) exp(—27 (yo, t))

l9(t)| exp(27|y — wol|t]) exp(—27 (Yo, t))
|l9(t)| exp(elt]/2s) exp(—27 (yo, t)) (5.9)

for all t € R™. Estimates (5.7) and (5.8) now show that the right side of
(5.9) is an L!-function, independent of y such that |y — yo| < €/47s, whenever
1 < s < 0o. Since yo € B is arbitrary, we conclude from (5.9) that F(z) defined
by (5.3) is an analytic function of z € TB. Estimate (5.9) also proves that
exp(—2m(y,t))g(t) € L, y € B, whenever 1 < s < co. The proof is complete.
[m]

ININA

In the following lemma, supp(g) denotes the support of g.

Lemma 5.1.2 Let C be an open connected cone in R™. Let 1 <s < oco. Let
g(t) be a measurable function on R™ such that (5.2) holds fory € C. We have
supp g C C* almost everywhere.

Proof. Assume that g(t) # 0 on a set of positive measure in R™ \ C* =
{t: (y,t) <0 forsomey € C}: then there is a point to € R™\ C* such
that g(t) # 0 on a set of positive measure in the neighbourhoods N(to: 1) =
{t : |t — to| < n} for arbitrary n > 0. Since to € R™\ C* there is a point
yo € pr(C) C C such that (to,yo) < 0, where pr(C) denotes the projection of
C which is {y € C : |y| = 1}. Using the continuity of (¢,30) as a function ¢,
there is a fixed o > 0 and a fixed neighbourhood N(to;7’) such that

(t,yo) < —o <0 forallt € N(to: 7).
Choose i above to be 7/. For any A > 0 we thus have

—(Ayo,t) = —Myo,t) > Ao >0, te€ N(to: '), A>0. (5.10)
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Since yo € pr(C) C C and C is a cone then Ay € C, A > 0. Using (5.10) and
(5.2) with y = Ayo we have, for all A > 0,

2rmAa / lo(t)]*dt < / l9(t)|* exp(—2rm(Ayo, t)) dt
N(toim') Nto ')

< [ la(®)I® exp(—2ms(Ayo, t)) dt
/

< K*(1+ (d(Ayo))™™)* exp(sM*(T/|\yol))

= K*(1+A7™(d(y0))"™)* exp(s M*(T'/ X)), (5.11)
since d(Ayo) = Ad(yo) and yo € pr(C) imply |yo| = 1. The integral on the left
of (5.11) is finite. We let A — oo in (5.11); thus for the fixed T > 0, which is

independent of y € C, we can consider A > 2T. For the sequence (M,) which
defines M* we have

(T/A)PP (Mo/Mp) < (1/2)Ppi(Mo/M,), A > 2,
forp=20,1,2,...: and
M*(T/)\) < M*(1/2) < o0, A>T, (5.12)
from the definition of M* and the fact that (p!Mo/M,) — 0 as p — oo (see |48,
p. 74), since (M,) satisfies (M.1) and (M.3). By (5.11) and (5.12),
[ lg(0l° i < K11+ (o)) 5 exp(sM*(1/2)
N(to: ')
and thus
¥ (1 + (Ad(yo))~™]"% / lg(t)|° dt < K*exp(sM*(1/2)) (5.13)
N(to )

for A > 2T. Since all in (5.13) are independent of A, we let A — oo. We conclude
that g must be zero almost everywhere in N(to: 7’), since exp(2rsio) — oo
for 0 > 0 and [1+ (Ad(yo))™™]%* — 1 as A — oo.

But this contradicts the fact that g(t) # 0 on a set of positive measure in
N(to: 7). Thus g must be zero almost everywhere in R"™\ C* and supp g C C*
almost everywhere, since the dual cone C* of C is a closed set in R™. The proof
is complete. O

The next two lemmas concern the spaces H(T Mp)(TB), 0 < r < oo, defined
in the paragraph containing (5.1).
In the following lemma B® denotes the complement of B in R™, and

d(B, B ) =inf{lys —y2|: 1 €B, 12 ¢ B}

is the distance from B’ C B to B°.
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Lemma 5.1.3 Let B denote on open connected subset of R™ which does not
contain 0. Let 0 <1 < oo and f(z) € H(TMP)(TB). Let B’ be a subset of B which

satisfies d(B', B¢) > 26 > 0 for some § > 0. There is a constant K' depending
on the § > 0, on the dimension n, and on f(z), but not on z+x+1y € T8,
such that

|f(x + iy)| < K exp(M*(T/(jy| —9)), =+iyeT?. (5.14)
Proof. Let zo = o + @yo be a arbitrary point in TE . Put
Rs={2€C": |z— 2| <d8)and N(yo: 8) ={y€R": |y—yo| <6}
Then Rs C R™ + iN(yo;0) C TB and
(f |flz + iy)|" d= dy)l/r < ( / / |f(z + y)|" dx dy)]/r
Ry N(w 5) R»

< K<N( ] [ () ™) eleM @) (.19

by using (5.1). Now
exp(rM*(T/|y])) < exp(rM*(T/(lyol = ))). v € N(yo; ). (5.16)

Recall that inf{|y1 — ye} : 11 € B, w2 € B} > 26 > 0. Hence y € N(yo: 9)
implies d(y) > 0. Thus

(14 (dy)™™)* <A +8")% y e N(yo: 9)- (5.17)

Combining (5.15), (5.16), and (5.17) we get

([ 16+ irdsdy) < KNG+ 8™ expOr T/l -5) - (19
Rs

where N = (measure(N(yo: 6))"/" is a number that is actually independent of
any given 1o € B’ because N has the same value for each yo € B’: hence N
- depends only on & and the dimension n and not on yo € B
Since f(z) is analytic in TP then |f(2)|", 0 < r < oo, is a subharmonic
function of the 2n variables T1,...,Zn,Y1,-.1Yny 2 =T+ 1Y € TEB [78], p. 79.
Thus (78], Chapter 2, Section 4] yields

F(20)]" < (Qond®™)? / \f(z + iy)|" de dy (5.19)
. Rs

where g, is the volume of the unit sphere in R?". The desired estimate (5.14)
now follows by combining (5.18) and (5.19) and observing that zo = o +iyo €
T8 was arbitrary. O
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Lemma 5.1.4 Let B denote an open connected subset of R™ which does not
contain 0. Let 1 <r < 2. Let f(z) € H(TMP)(TB). For ally and y' in B we have

2 W, (1) = 2 W'D, (1) (5.20)
for almost every t € R™, where

hy(t) = Ff(z + iy);t], v € B,
is the L*, 1/r 4+ 1/s = 1, inverse Fourier transform of f(z + i), y € B.

The proof of Lemma. 5.1.4 follows from the growth (5.14) by analysis similar
to that in [78], pp. 99-101, with Lemma 5.1.3 taking the place of [78], Lemma
2.12, p. 99, in the proof of Lemma 5.1.4. Further, in the proof of Lemma. 5.1.4
the Parseval equlity in the case r = 2 as in [78], top of p. 101. We thus leave
the details of the proof of Lemma. 5.1.4 to the interested reader.

We can now give Four 1er-Laplace and, in certain instances, Cauchy lntegral
representations of the H, (M )( B) functions for certain values of 7.

Theorem 5.1.1 Let B denote an open connected subset of R™ which does not
contain 0 € R". Let f(z) € Hy, )(TB) 1 <7 < 2. There exists a measurable
function g(t), t € R™, such that (5.2) holds fory € B, 1/r + 1/s = 1, where
K>0,T>0, m>0 andq > 0 are independent of y € B; and

f(z) = ‘/g(t)eQ’”'(Z’t> dt, zeT". (5.21)
R”
Proof. Put
g(t) — €2ﬂ(y:t>hya Y c B, ‘ (5’22)

where hy(t) = F~![f(z+1dy);t], y € B, is the L*, 1/r+1/s = 1, inverse Fourier
transform of f(z+1iy), y € B; by the Plancherel-Fourier transform theory hy(t)
is an element of L® since by (5.1) f(z + iy) € L as a function of z € R™ for
y € B. By Lemma 5.1.4 g(t) is independent of y € B. From (5.22) we have

e~ W g(t) = F~Y f(z + iy);t], y € B. (5.23)

Since f(z+iy) € L, 1 <r < 2, as a function of z € R™ for y € B as previously
noted, then
(6"2”(9’t>g(t)) €L’ 1/r+1/s=1,y€B,

by the Plancherel-Fourier transform theory, and
e g|lLe < [1f(z + iw)llr < K1+ (d(y))™™)2 exp(M*(T/y])),

y € B, by the Parseval inequality and (5.1); thus the growth is obtained. From
(5.23), by the Plancherel-Fourier transform theory, we also have

fl@+iy) = Fle™> (1)), z=x+1y e TP, (5.24)
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with the Fourier transform Fle~?"®®g(t)|(z) being in L™. But by (5.2) and
Lemma, 5.1.1 the integral on the right side of (5.21), which is the L! transform
of (e=2"®tg(t)), y € B, is a holomorphic function of z € TE. (Recall from the
proof of Lemma. 5.1.1 that

(e"2"Wwhyg(t)) € L', y € B,

since (5.2) is satisfied here.) From the Plancherel-Fourier transform theory we
know that the L' and L", 1 < r < 2, Fourier transforms of the same function
are equal when both of these transforms exists; hence the desired equality (5.21)
follows from (5.24). The proof is complete. O

Corollary 5.1.1 Let C be an open connected cone in R™ and assume that f €

Hipgy (TC) with 1 < 7 < 2. There exists a measurable function g(t), t € R",
such that (5.2) holds for y € C, supp g € C* almost everywhere, and (5.21)
holds for z € TC.

Proof. The proof is obtained by combining Theorem 5.1.1 and Lemma 5.1.2.
Here 1/r 4+ 1/s = 1, 1 <r < 2, for the value of s in (5.2) and the constants
K,T,m, and q are as in (5.2) . O )

In Theorem 5.1.1 and Corollary 5.1.1 we do not know that g(t) € L°. How-
~ever, if g(t) is an element of L* and if it is the inverse Fourier transform of some
function G(t) € L", 1 < r < 2, we can obtain an additional representation of
f(2) in Corollary 5.1.1 in terms of the Cauchy integral as noted in the following
result. .

Corollary 5.1.2 Let C be a regula,r cone in R™. Let f(z) € (M, )(I’C), 1<

r < 2. Let the function g(t) of Corollary 5.1.1 be the inverse Fourier transform
of a function G(t) € L', 1 <1 < 2. We have g(t) € L*, 1/r +1/s = 1,
sipp(g) € C* almost everywhere, (5.21) holds for z € TC, and

fz) = / GO)K(z—t)di, ze€TC. (5.25)

Proof. By assumption the obtained functiom g(t) of Corollary 5.1.1 satisfies
g(u) = F7YG(t);ul, uweR", for G(t) € LT,

1 <r <2, here. By the Plancherel theory we then have that g(u) € L®, 1/r +
1/s = 1. Note that the Cauchy integral in (5.25) is well defined here because of
the properties of K(z —t) as given in Theorem 4.1.1. Now using the definition
of the Cauchy kernel K(z —t), t € R®, z € T, Fubini’s theorem, and the
representation (5.21), which holds here, we obtain '

/C’ K(z—t)dt = 11m / G(t)/exp(Qm(z—t u)) dudt
|t|<k C
= klim exp(2mi(z,u)) / G(y) exp(—2mi(t, u)) dt du

o ltI<k

= /g(u) exp(2mi(z,u)) du = f(2) (5.26)

c*
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for z € T, and the Cauchy integral representation (5.25) is obtained. O
As a dual theorem to Theorem 5.1.1 we have the following result.

Theorem 5.1.2 Let B be a proper open connected subset of R® Letl<r<2.
Let g(t) be a measurable function on R™ which satisfies

le™* @)l < K(1+ (d(y)™™)? exp(M*(T/ly])), v € B, (5.27)
where K >0, T >0, m >0, and g > 0 are independent of y € B. Then
flz) = / g(t)e?™ =t gt 2 e TB, (5.28)
Rr
is analytic in TB and satisfies
17 +a)llee < K(1+ (d(y))™™)? exp(M*(T/ly])), y € B: (5.29)
that is f(z) € Hpy (TP), 1/r+1/s=1, 1 <r<2.

Proof. By the proof of Lemma 5.1.1, f(z) is analytic in T8 and
(72" whg(t)) e L', y € B.

By (5.27), (e™2"Wtg(t)) € L, 1 < r < 2, as a function of ¢ € R™ for y € B.
Thus the right side of (5.28) can be viewed as both the L! and the L Fourier
transform of (e=2"%!g(t)), y € B, and by the Parseval inequality

1@+ iy)llee = |Fle™>™g(8): alflzs < [le™2@ 0]\, (5.30)

fory € B and 1/r +1/s = 1. The estimate in (5.29) now follows from (5.30)
and (5.27). |

In case B is an open connected subset of R™ which does not contain 0 € R
and r = 2, Theorem 5.1.2 is a converse result to Theorem 5.1.1.

5.2 Boundary values in D’((M,), L*) for analytic func-
tions in tubes ' :

In this section we will consider analytic function of the type H(T MP)(TC) defined
in Section 5.1 and obtain boundary values of the functions in D’ ((Mp), L#).
Before doing this e will state precisely conditions that we need on the sequence
(M), p=0,1,2,..., is order to obtain the boundary value results, and we need
to define new associated functions corresponding to there sequences. We then
will prove a number of lammas which form a basis our boundary value results.
If the sequence (M,), satisfies condition (M.1) of Section 2.1 we have
M, < Mpy1

=2 p=1,2,3,.... 5.31
M, S, P (5.31)
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Put ([48], (3.10), p. 50)

My
m, = , p=1,2,3,.... 5.32
P ju'p__1 D ( )
(5.3) implies that the sequence m, is nondecreasing if (Mp), p € Ng, satisfies
(M.1).
Put m
my="2, p=123,., (5.33)

and we will assume in several results in this section that the sequence {m;} is
nondecreasing as, for example, Petzsche [63], p. 394, has done for his analysis.
An example of a sequence (M,), for which the sequence mj is nondecreasing is
M, = (p!)*, pe Ng, s > 1. If the sequence m;, is nondecreasing, we imme-
diately obtain that the sequence m, defined in (5.32) is a structly increasing
sequence; this follows directly from the definition (5.33).

Put (48], p. 50)
m()\) = (the number of m, < A), (5.34)

and note that m(A) is finite for all A > 0 if mp — 00 as p — oo. For (Mp), p =
0,1,2,3,..., satisfying (M.1), m,, is nondecreasing, hence

m(\) = sup{p:mp < A} (5.35)
P
and m()) is a nondecreasing function of A. Now put
My
Mp:ﬁ, p=1,2,3,..., (5.36)
and note from (5.33) that
My (5.37)
m, = 5 . (SN
rT My,

* is nondecreasing if and only if the sequence

Lemma 5.2.1 The sequence my,

M;; satisfies (M.1).
Proof. Let m be nondecreasing. From (5.37) we have .

My M

P : |
> , p=1,2,3,....
Mp(p+1) = Mp-1(p)

Hence
(p+1)!(p-1)

p! P!

MP—IMP+1 2 (Mp)2

and

M,_1 Mpn Mp\2
P > (=P
p-D(p+1)! ~ ( q! )
From the definition (5.36) we thus have obtained

MMy, > (Mp)?, p=1,23,...,
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which is (M.1) of Section 2.1.
For the converse, let us assume that M; satisfies (M.1). For p=1,2,3,...,
we have from (5.36) that

(MP)2 < M- Mpi1
() ~ (p- D' (p+1)

and

| |
(M) < Myos M1 sy 2y = My My (p+ 1).

This implies
M, < Mpi1
Mp-1(p) = Mp(p+1)

or, from (5.32) and (5.33),
My, < Myyy. p=123,....
Thus m;, is nondecreasing, and the proof is complete. O
We define :
m*(A) = (the number of m;, < \); (5.38)

if m;, is nondecreasing we have

m*(\) = sup{p : m;, < A}. (5.39)
P

Recall the associated functions M(p) and M*(p) defined in (2.7) and (2.8),
respectively. If the sequence (M), p=0,1,2,3,..., satisfies (M.1) we have

p
Mi(p) = / m/AdA,  0<p< oo (5.40)
0

from [48], (3.11), p. 50. Similarly, since M satisfies (M.1) when m} nonde-
creasing by Lemma 5.2.1, we have

p
M*(p) = / m* W)\, 0< p< oo, (5.41)
0

if my is nondecreasing, In (5.40) and (5.41), m(A) and m*(\) are defined in
(5.34) and (5.38), respectively.

Using the above information on sequences (M), we now prove four needed
lemmas.

Lemma 5.2.2 Let the sequence (M,) satisfy (M.1) and let m3, be nondecreas-
ing. We have
m*(t/2m(t)) < m(t), t=m. (5.42)
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Proof. Recall that m()\) and m*(\) are given by (5.35) and (5.39), respec-
tively, under the assumptions here. Let t > m; = M;/My be arbitrary but
fixed trought this proof; and denote py = m(t) for this fixed t. We have

Mpq <t Mpy+1 >,

and
Migg41/B0 > t/mit). (5.43)
For t > m; and po = m(t) we have pyp > 1 and 2py > po + 1; hence

2(mpo11/(po + 1)) = ((po + 1)/Po) (mao+1/(po + 1))
= (Mpo+1/p0) > t/m(t),

which implies
Mpot1 = Mpo/(Po + 1) > t/2m(t)

and
m*(t/2m(t)) = sgp{p sy, < (8/2m(t)} < po+ 1.

Inequality (5.42) follows immediately from this inequality for t > m; and pg =
m(t). O

Recall that my, is strictly increasing if m;", is nondecreasing. In fact we can
say more. Recalling the definition (5.33) of my, we have for each p=1,2,3,...
that my, ; > my, implies mpy1/mp > (p+1)/p for mg, nondecreasing. Thus for
each p=2,3,4,...

My _ Mp Mpy mame p pol o2
mi  Mp-1Mp—2 mgmi  p—1p—2"""1
Thus, if mj, is nondecreasing we have m, > pmi, p = 2,3,4,..., which yields
mp — 00 as p — 0. Using these facts we prove the following.

Lemma 5.2.3 Let the sequence (M), p=0,1,2,3,..., satisfy (M.1) and let
my, be nondecreasing. For anyt > m; we have

@>-”-”2§5ﬁ-mlsA<t. (5.44)

Proof. Since mj, is nondecreasing, from (5.33) we have

(p+1)/mp1 < p/mp, p=1,2,... . (5.45)

Let t > m; be arbitrary but fixed. There is a p > 1 such that mp, <t < mpyq,
and therefore m(t) = p. We first assume m, < t < mp4; and A satisfies
mp < A <t in which case m()\) = p, and

m(A)
A

_m(t) _ m(t)

>3

>

-3
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This is the desired result for the case that m, < A <t < myy; for the value of
p such that m, <t <myp41.

The remaining cases are covered by considering \ satisfying m; < \ < mp
for the p for which m;, <t < mpy1. In this case my < A < myyq for some
k=1,...,p—1. Using the fact that k > (k+1)/2, k = 1,2,..., using (5.45)
respectively, and using the present facts that m; < X < m,, for the p such that
mp <t < mpy1 we have

m) _ ko ktl kt2 o (5.47)
A Met1  2MEgt1  2megge T 2m,
and 1)
m{ p_p
UL .
t  t-m, (5.48)

Combining (5.47) and (5.48) we have

mQ) _ _p__ m(t)
X T m, = 2t

(5.49)

for the satisfying m1 < A < my, for the p for which m, <t < mp;1. Combining
the conclusions (5.46) and (5.49) we have obtained (5.44). O

From Lemma 5.2.1, my, is nondecreasing if and only if M3 satisfies (M.1).
Thus in Lemmas 5.2.2 and 5.2.3 the hypothesis that m,, be nondecreasing can
be replaced by the assumption that M satisfies (M.1). This the case also in
the statements of Lemmas 5.2.4 and 5.2.5.

Lemma 5.2.4 Let the sequence (M,), satisfy (M.1) and let my, be nondecreas-
ing. For s =2(my + 1) we have

M) > Ts(i) t>mg+1. (5.50)

Proof. Since m(t) = 0 for 0 < t < my, from (5.40) we have

M(t) = / m)/AA, > my. (5.51)

my

From (5.51) and the result (5.44) of Lemma 5.2.3 we have

M() > m(t)(t — mq)/2t = # - ngi)ml, t>m.
For t > my + 1 we thus have ‘
M(t) > mz(t) - 2(::](? l)ml = @(1 —my/(my +1)) = m(t)/2(m1 + 1)

which is (5.50) for s = 2(m; +1). O
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Lemma 5.2.5 Let the sequence (M), satisfy (M.1) and let my, be nondecreas-
ing. For s =2(my + 1) we have

ot
M (_—23M(t)) <M+ A, t>m+1. (5.52)

for some constant A.
Proof. From (5.50) of Lemma 5.2.4 we have
(sM(t)) > m(t), t > m; +1,
where s = 2(mj + 1). Thus for t > m; + 1,
1/(sM(t)) < 1/m(t) and t/2sM(t) < t/2m(t).

By the fact that m*()\) is a nondecreasing function of A and (5.42) of Lemma
5.2.2 we have

(t/ZSM(t)) <m*(t/2m(t)) < m(t), t =>mi+1. (5.53)
Recalling (5.39) we have m*(A\) = 0, 0 < AMmjy: hence from (5.41)

M (¢) = / mN)/AA 2 m 1. (5.54)

mi

By a straightforward chain rule calculation and using (5.51) we have

AM*(zm) ™ () 1y, 1 m()
d2t T 2?21\%(27 (E)(m(t)_(m(t))Q)

for t > mj + 1. Using (5.55), (5.53) and (5.40) we have for t > m; + 1 that

(5.55)

t

" t " my +1 _ dM*(zsA?()\))
M (23M(t)) -M <23M(m1 + 1)) - / d\ dx

F (i) m(\
- 23? (512)(1\4;) - (M((A)))z)d’\

iyl M)
1 A F mO)
i m
— m* — < _
/ N (23M()\))d/\_ / P
m1+l mi1+1

/ mA) g - / m}\)\)d/\ M(t) — M(mq +1). (5.56)
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Now (5.52) follows from (5.56) with

g my+1 _
A=M (23M(m1 n 1)) M(ma +1)

and the proof is finished. O

We now proceed to prove several other lemmas which are needed to prove
our boundaru value results. The proof of the following lemma is similar to that
of [66], Lamma 10.

Lemma 5.2.6 Let the sequence (Mp), satisfy (M.1) and (M.2) and let m, be
nondecreasing. - Let C' be an open connected cone in R™. Letv > 0 and k > 0
be constants. There exist positive constants K and u such that

/ exp(~v{y, t) — M*(k/|y])) dy > K exp(—M(ult])), ¢ € C*\C*, (5.57)
C

where 0C™* is the boundary of the dual cone C* of C.

Proof. Let s = 2(mj + 1). Let t € R™ be arbitrary but fixed such that
t € C*\ 0C* and |t| > m1 + 1. For such ¢ put

A1) = {veR™: ful € [ar(t]), bu(1D)],
where
a(0) = a,1(0) = 2skM(8)/6;  b(6) = b, x(0) = (2skM(0) +1)/6  (5.58)

for 8 > 0, and
Ci(t) = A1(t)n C.

For y € C1(t) and |t| > m1 + 1, we use the fact that M*(p) in (5.41) is nonde-
creasing and Lemma 5.2.5 to obtain

MK/ ly]) < M*(1tl/2sM(H]))
and

exp(=M"(k/|yl)) = exp(—M*(|t]/2sM(]¢])))

>
> exp(—M([t]) — 4) (5.59)

where the constant A from (5.52) depends on the sequence (M),) through the
functions M(-) and M*(-). For y € C1(t) we have

exp(—v|yl[t]) = exp(—2skvM(|t]) — v). (5.60)
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Recall that (y,t) > 0, y € C, t € C*. Combining (5.59) and (5.60) we have
for t € C*\ 8C* and |t| > m; + 1 that

I(t) = /C exp(—vy, ) — M*(k/|y]) dy
> / exp(—vlyllt] - M*(k/|y])) dy
Ci(t)
> exp(~2skuM()  v) exp(M(|t]) — 4) /C L

— exp(— (v + A)) exp(~(1 + 2skv) M(Jt])) / dy.  (5.61)

Ci(t)

Let pr(C) denote the projection C' which is the intersection of C' with the
unit sphere in R™. We have

o
/Cl(t)ld - /pr(C') /(Itl) e
= (D) ([, 1) 160)" - (el

> S (r(C)), (5.62)

where S{pr(C)) is the surface area of pr(C). Recall from (5.40) that M(p) is
an increasing function of p. For t € C*\ 8C* and |t| > mq + 1 we can choose a
constant (@ > 0 independent of ¢ such that

[t 2 Qexp(—M(jt]), t € CT\OC", [t > my+ 1,

which we use in (5.62) to obtain
/ Ldy > On=1S(pr(C)) exp(=M(|t])), ¢ € C*\8C*, |t] > ma + L. (5.63)
Ci(t)

(Equivalently, we have
exp(M([t])) = |t Mo/Mn

directly from the definition of the function M(-), which can be used in (5.62)
to obtain (5.63) as well with @ = Mo/M,). Combining (5.61) and (5.63) we
have for t € C*\ 9C* and |t| > m; + 1 that

I(t) = Qu~1S(pr(C)) exp(—(v + A)) exp(—(2 + 2skv) M([t]))
= Bexp(—(2+ 2skv)M(|t])) (5.64)

where the constant
= (Qn7'S(pr(C)) exp(—(v + A))

depends on v,my,n, and the cone C' but not on ¢.
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Now let t € C* \ C* such that |t| < m; + 1. Put
Ca(t) = A2(t) N C,
where
A2(t) ={y € R": [y € [az(t), ba(2)]}
with
az(t) = al(ltl +my + 1); bz(t) = b](ltl +mi+1)

according to the previous notation adopted in (5.58). Proceeding similarly as in
obtaining (5.59), (5.60) and (5.62) we now obtain for y € Cy(t) and [t] <mi+1
that

exp(—=M"*(k/ly|)) > exp ( - .M*(Zsj\ljl(ljl Tlmt '1F 1)))

" 2my + 2 )
> exp( -M (Wﬁ)), (565)
exp(—v|yllt]) > exp(—v(2skM(2m; + 2) + 1)); (5.66)
/C o 1 Z 7S (O m +2), (5.67)

where again S(pr(C)) is the surface area of pr(C'). Combining (5.65), (5.66)
and (5.67) we obtain for t € C*\ 8C* and |t| < my + 1 that

10)= [ exo(-vly,6) ~ M (k/lal) dy

' : S(pr(C))
> [ Pl = 3y dy > SN

. 2mq + 2
where the constant R depends on 7, the sequence (M), p = 0,1,2,3,...,
trough the functions M(:), and M*(:), and the cone C as well as the given
constants v > 0 and k£ > 0 but not on t.
Now (5.64) holds for t € C* \ OC* such that [t| > m; + 1 and (5.68) holds
for t € C*\ 0C* such that |¢| < m; + 1. Combining (5.64) and (5.68) we obtain
a constant K such that

I(t) > Kiexp(—(2+ 2skv)M([t])), t € C*\ oC*. (5.69)

The sequence (M), p = 0,1,2,3,..., is assumed to satisfy (M.1) and (M.2)
here. Thus (2.12) holds for L = (2 + 2skv) > 1 there. Hence the existence
of constants K > 0 and u > 0 such that (5.57) holds follows from (5.69) and
(2.12). The constants are independent of t € C* \ 0C* but are dependent upon
the dimension n, k, v, the sequence (M), p=0,1,2,3,..., trough the functions
M(-) and M*(-), and the cone C. The proof is complete. O

The sequence (Mp) = (p!)°, p € No, s > 1 is an example of a sequence
which satisfies the hypothesis of the previous lemma.
We use Lemma, 5.2.6 to prove the next lemma.
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Lemma 5.2.7 Let the sequence (Mp), satisfy (M.1) and (M.2) and let m;, be
nondecresing . Let C, be a regular cone in R™. Let 1 < s < oo. Let g(t) be a
measurable function on R™ with supp(g) € C* almost everywhere such that

/R (=270 g(1)|* dt < Rexp(M* (kly])), v € C, (5.70)

for some conatants R > 0 and k > 0. Then there exists a constant d > 0 such
that
llg(t) exp(—M(dlt]))llLs < oo. (5.71)

Proof. From (5.70) and the fact that supp g C C* almost everywhere we
have

/ lg(#)Fe™ @ dtexp(—M*(k/ly])) < R, y€C. (5.72)
Cbk

Let £ € pr(C*)\ OC* be fixed with C* denoting the boundary of C*. Multi-
plying (5.72) by exp(—2ms(y,€)), y € C, and integrating over C we get

[ ([ store 0 ae) exo( -/l — 2nst 2 o
c \Je+ '
< R/ exp(—2ms(y, €)) dy. (5.73)
c .
Recalling the proof of Lemma 5.2.6, the integral on the right of (5.73) is finite for

z € pr(C*)\ 8C*. By Fubini’s theorem we interchange the order of integration
on the left of (5.73) and obtain

/ o0 /'exp(—zm<y,t.»+e-f>>exp<-—M*<k/|y!>>dydt<oo. (5.74)
c c v

Using the fact 1 < s < oo, Lemma 5.2.6 and (5.74) we now have the existence
of positive constants K ans m such that ‘

K / 1(8)|* exp(—sM(mlt +2])) dt
.
<K /C lo(0)1 exp(~ Mt +21)) ds (5.75)
-x [ e 90O Ml 2
S/ !g(t)ls/ exp(—2ms(y,t + &) — M*(k/|y])) dy dt < oo(5.76)
C\oC* c

which proves that the integer on the left of (5.76) is finite; in applying Lemma
5.2.6 in (5.76) we have use the fact that since C' is regular here (and hence
convex) then t € C*\ 8C* and & € pr(C*)\ C* imply that (¢ +%) € C*\ 0C*.
Since £ € pr(C*)\ 8C* we have |t + | < |t| + ] = 1 + |t|. Using this, the fact
that M(p) is a nondecreasing function of p > 0 [11, p. 65|, and the property
(2.9) we have

M(mt + ) < M(|t| + m) < M(2m]t]) + M(2m). (5.77)
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Using (5.77) in (5.76) we thus obtain that
Ke—sM(Qm)/ |g(t)‘s€~SM(2m|t|) dt < 0o
C*

since exp(sM(2m)) is finite; this proves (5.71) with d = 2m. O

Lemma 5.2.7 is used to prove the next lemma which, in turn, will be used
later in this section to obtain the ultradistribution boundary value results.

Lemma 5.2.8 Let the sequence (Mp), satisfy (M.1) and (M.2) and be such
that my, is nondecreasing. Let C be a regular cone in R™. Let 1 < s < 0o. Let
g(t) be a measurable functionon R™ with supp C C* almost everywhere such
that

le™"® V|| s < K exp(M*(k/ly])), v €C, (5.78)

for some constants K > 0 and k > 0. Then there is a constant b > 0 such that
llg(t) exp(—=M (bJt])llLs < oco. (5.79)
Proof. From (5.78) we have

/R e 2r @D g(1)]° dt < K* exp(sM*(k/|y])), y € C. (5.80)

Under the assumptions (M.1) and (M.2) on' the sequence (M,), it follows that
M,/p! satisfies (M.2); and M,/p satisfies (M.1) by Lemma 5.2.1. Note that

M (p) = sup log(pPp! Mo /M,) = sup log(p? Mo /p")); (5.81)

thus applying prof of [64], Lemma 1.7 (b), pp. 140-141, corresponding to the
sequence M,/p!, which satisfies (M.1) and (M.2), (see also the proof of [48],
Proposition 3.6, p. 51), we have the existence of a positive real number B and
a constant (s > 0 depending on s such that

sM*(k/ly]) < M*(B*k/ly]) + Qs 1< s < o0, (5.82)
(Recall (2.12) for M(p).) Using (5.82) in (5.80) we have

/R 2" 0g(t) < K exp(Qs) exp(M* (B K7y]), yeC.  (5.89)

The conclusion (5.79) now follows from (5.83) and the assumptions on g(t) and
on (Mp) by applying Lemma 5.2.7. The proof is complete. O

Recall the spaces FD(x, L") of Section 2.4.

Lemma 5.2.9 Let the sequence (M,), satisfy (M.1) and (M.2). Let ¢ €
D((M,), L*). Then
sup |@(z) exp(M(hlz))] < oo (5.84)

for every h > 0.
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Proof. ¢ € D((M,), L}) implies § € FD((Mp,, L'); hence for every k > 0,
every n-tuple a of nonnegative integers, and all z € R™ we have

—-""“}caﬁz N w (5.85)

where N is a positive constant which is independent of k, a, and x € R™. Using
(2.3) in (5.85) we get

o] (s3] an Qn
L WEB ™ My (1K) ] My

ol < |
(MO)nB o lwoq o lwan ‘W(m)l = N

for positive constants B and E, and by the definition of M(p) in (2.7) we have

B )"B ——— exp(M(|z1|/kE) + ...+ M(|z.|/kE))|p(z)] < N, z€R™ (5.86)

Now |z| < n(|z1]| + ... + |za|), and

< M((lzal/kE) + ... + (|zal/KE))
< M(n|z1|/kE) + ...+ M(n|z,|/kE)
< 3n/2)(M(|21|/kE) + ...+ M(|z.|/kE)) + K (5.87)

M(|z|/knE)

with the last inequality being obtained from (2.11) where K > 0 is a constant.
From (5.87) we have

(2/3n)M(|z|/knE) < M(|z1|/kE) + ...+ M(|lzn|/kE) + K1, = € R", (5.88)

where K > 0 is a constant. Using (5.88) in (5.86) we have

(Ml) exp(—~Ki) exp((2/3n) M (|z| /knE))|§()] < N, = €R™,
and hence
(Mo)"B exp(—K l)fe‘g’n(exP((z/ 3n)M(|z|/knE))|@(z)| < N, (5.89)

for all k > 0. For arbitrary h > 0 and a positive integer ¢ chosen such that
(2/3n)29 > 1, choose k such that

1

— q I
— = H'h, (5.90)

where H is the constant from condition (M.2). Using (2.10) repeatedly we have
the existence of a constant G such that

M(Hh|z|) = M(H(H? h|z|)) > 2M (H h|z]) —

< 22M(H9%h|z|) - 2G — G
< 2M(hjz]) — (1 +2+...+2771)G. (5.91)
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From the choice of ¢, (5.90) and (5.91), we have

exp((2/3n) M (|z|/knE)) = exp((2/3n) M (Hh|x|))
> exp((2/3n)27 M (hlz])) exp(—(2/3n)(1 + 2 + ... + 2971)G)
> exp(—(2/3n)(1+ 2+ ... 4+ 291G exp(M (h|z|)) (5.92)

for all h > 0. (5.89) and (5.92) now combine to prove (5.84). The proof is
complete. O

The proof of the following result is obtained as a corollary to the proof of
Lemma 5.7.9 and is omitted; the details of the proof of the following corollary
are essentially those of the proof of Lemma 5.7.9.

Corollary 5.2.1 If ¢y, is a net of elements in D((Mp), L') which converges to
zero in D((Mp), L') as A — oo, where the sequence (M), satisfies (M.1) and
(M.2), then

th sup | exp(M(h|z]))@x(z)] = 0
—00 eR

for all h > 0.

The following result will be used in the boundary value analysis.

Lemma 5.2.10 Let the sequence"(Mp), satisfy (M.1) and (M.2). Lety €
FD((Mp), L"), 1 <1 <2. Then foranyk>0

[[4(t) exp(M (klt]))
L/r 4+ 1/s = 1, where M is the associated function in (2.7).

Ls < o, (5.93)

Proof. The proof is obtained by the calculation in [66], p. 205. For k > 0
and t € R™ we have

(Vo) exp(MkIE) < sup EWPULE b1t _ ()

PENp (Mp) T a

where a is in n-tuple of nonnegative integers. Thus for v € FD((M,), L"), 1
r <2,and 1/r+1/s =1, we have

(Mo) ™ [vo(t) exp(M ([t]))]| -

<[ (sup EELE i), <3 E e

For ¢ € FD((M,), L") we have from (2.40)

o Il
o ha M,

for all h > 0; putting h = (2kn®)~1, we have from (5.94)
(Mo) ™" [l4(t) exp(M (k[t]))] s

<5 i (ot (s B8y 7 (1

< 00
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which proves (5.93) as desired. O

The following result is proved using the details of the proof of Lemma 5.2.10
just as the proof of Corollary 5.2.1 followed from the details of the proof of
Lemma 5.2.9.

Corollary 5.2.2 If 9, is a net of elements in FD((Mp),L"), 1 < r <2,
which converges to zero in FD((M,), L") as A — oo, where the sequence (Mp)
satisfies (M.1) and (M.2), then

i, (162 (0) exp(M (KD - = 0.
1/+1/s=1, for allk > 0.

Using the lemmas and corollaries proved to this point in this section, we
can now obtain boundary value results. In our proofs we also use properties
obtained in Section 5.1.

Thus, throughout the remainder of this section we will assume that the
sequence (M,), p=0,1,2,3,..., satisfies conditions (M.1), (M.2), and (M.3)’
of Section 2.1 and is such that mj is nondecreasing, where my, is defined in
(5.33).

Let C be a regular cone in R*.. W consider functions f(z) which are analytic
in T¢ = R™+ iC and which satisfy

If(z +iy)lle- < Kexp(M*(T/[y]), v €C, (5.95)

where K > 0 and T > 0 are constants which are independent of y € C and
M* is the associated function of the sequence (Mp), defined in (2.8). Thus the
norm growth (5.95) which we are considering in this section is that in (5.1) with
m = 0 or ¢ = 0 there, and the functions f(z) are certain elements in H(’Mp)(TC)
as defined in Section 5.1.

We first prove that elements in H(’ Mp)(TC), 1 < r < 2, which satisfy (5.95)

obtain ultradistribution boundary values in D'((M,), L').

Theorem 5.2.1 Let f(z) be analytic in T and satisfy (5.95) with 1 <r < 2.
There exists an element U € D'((M,), L') such that

lirr(1] flz+iw)=U (5.96)
y-—)

in D'((Mp), L1).

Proof. Let ¢ € D((M,),L'). From Section 2.3 we see that D((M,), L") C
D((Mp), L*), 1 <5 < o0,

By (5.95), we have f(-+14y) € L", 1 <r < 2fory € C. Thus (f(- +1y), )
is well defined for y € C. By Corollary 5.1.1 (see the proof of Theorem 5.1.1)
and the assumption in (5.95), there exists a measurable function g on R™ with
supp g C C* such that

leygllzs < K exp(M*(T/ly]), v €C, (5.97)
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and
f(z+iy) = Fleyg)(z), z=z+iyeTC, (5.98)

where e, (t) = exp(—27(y,t)) for y,t € R™. The above Fourier transform is
meant both in the sense of L' and L" (see (5.24)). By (5.98) and the Parseval
equality we have

(- +y),0) = (Fley, 9], 0) = (ey9, 99) (5.99)

for ¢ € D((M,), L) and y € C.

We now want to show that g € L!. To do so note first that for given
constants k1 > 1 and k3 > 1 there exist, due to (2.11) and (2.12), constants
K3 >0, K2 >0 and K3 > 0 such that

exp|M (ka|t]) + M(k2[t])] < Kyexp[(3/2)(k1 + k2)M([¢])]
< Kjexp[M(K3lt])]. (5.100)

Denoting e}, (t) = exp|—M(k;|t|)] for j = 1,2 and e3,(t) = exp|M(Kst])),
we conclude from (5.100) and the Holder inequality, that

/mmﬂmﬁsm/hmwmwmm@m@wm
R™ R"

< Kollens@lli=llgemedlin: < leds@lleelgenrlieelledsller. (5.101)
Clearly, eﬁ,[ € L for 1 < r <'2. Moreover, since k; > 1 was taken arbitrary .
in (5.101), we may choose k1 to be equal to b in (5.79). Hence ||gel;||lzs < oo
and the right side of (5.101) is finite, by Lemma 5.29 (inequality (5.97) and
the proofs of Lemmas 5.2.8, 5.2.7, 5.2.6. Consequently, g% € L', by virtue of
(5.101).
Since (y,t) > 0, y € C, t € C*, and supp g € C* almost everywhere we
have

le=2@Pg(t)3(8)| < |g(t)@(t)]

for almost all t € R™; and from the preceding paragraph (g(¢t)(t)) € L. Thus
by the Lebesgue dominated convergence theorem

lim [ e W0 g(0)5(E) dt = / o(t)3(t) dt (5.102)

y—0 n n
yeC R

We now define U by

(Up) = (g(t), 0(t), » € D((M,), L'). (5.103)

If ¢y is a net in D((M,), L') which converges to zero in D((M,), L) as A — oo
then analysis as in (5.11) and the Corollary 5.2.1 prove that

Jim (Uga) = Jim {g(t), oa(6) = O
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Hence U is continuous on D((M,), L') and the linearity of U is obvious. Thus
U € D'((M,), L'). Returning now to (5.99) and using (5.102) and the definition
(5.103) we obtain for ¢ € D((M,), L') that

lim(f(@ + i), ) = Lim(e™ 4 g(2) (1)

yec yeC

= (9(t),¢(t)) = (U,¥) (5.104)
which proves (5.96), and the proof is complete. O

The following result is a dual theorem to Theorem 5.2.1, and boundary value
results are obtained in D'((M,), L"), 1 <1 < 2.

Recall the spaces FD((M,), L") and F'D((Mp), L") which were defined in
Section 2.4.

Theorem 5.2.2 Let 1 <r < 2. Let g(t) be a measurable function on R™ such
that o
le=*"“gllr < K exp(M*(T/lyl)), v € C, (5.105)

where K > 0 and T > 0 are constants which are independent of y € C. Then
f(z) = / gty dt, 2 e TC, (5.106)
Rn

s analytic in Tc, satisfies (5.95) with L replaced by L*, 1/r +1/s =1, and
there is an element U € D'((Mp), L") such that

im f(z +y) = U (5.107)
y— .

yec
in D'(M,), L").

Proof. By the proof of Theorem 5.1.2, f(z) is analytic in T and satisfies
(5.95) with L™ replaced by L*, 1/r + 1/s = 1; and by the proof of Lemma
5.1.1, the Fourier transform Fle=2"®tg(t)|(z) on the right of (5.106) can be
interpreted in both the L' and L" sense.

Further, supp(g) € C* almost everywhere by Lemma 5.1.2. Now let p €
D((M,),L7), 1 < 7 < 2. Let %(t) = Flp(t)|(z) and (t) = (—t); hence
Y € FD((M,), L"). By the proof of Lemma 5.2.10 we have that

[(t) exp(M (hft])) ]| > < oo, (5.108)

1/r+1/s =1, for any h > 0. From Holder’s inequality, (5.108) and the proof
of Lemma. 5.2.8 we have the existence of a constant b > 0 such that

QLI
< llg(t) exp(— Ml e [0 expM GBIl < o0 (5.109)

and by this inequality and Corollary 5.2.2 we have that g € F'D((M,), L"), 1 <
r<2.
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Now define U = F~1[g] by (2.42). Since g € F'D((M,), L"), 1 <r <2, we
have U € D'((M,), L") by Lemma 2.4.2. Thus if ¢ € D((M,), L") we have from
(5.106) and the drfinition of U that

(Fl@+iy) — U,p) = (g(t)(e=2@% — 1) (1)), (5.110)

Since supp(g) € C* almost everywhere then

l9(t)(e™2" ) — 1)()] < 2lg()d(t)]

for almost all t € R”; and from (5.109), (g(t)¥(t)) € L'. By the Lebesgue
dominated convergence theorem

lim / g(t)(e™ 2@ —1)h(t) dt = 0. (5.111)

y—0
yec

Now (5.107) is obtained by combining (5.110) and (5.111). The proof is com-
plete. O

Corollary 5.2.3 Let f(z) be analytic in TC and satz’éfy (5.95) with r = 2.
There is an element U € D'((M,), L?) such that

lim f(e+iy)=U (5.112) -
in D'((Mp), L?) and
f(z)=(U,K(z—~1t)), zeTC. . (5.113)

Proof. From Theorem 5.1.1 and is proof, Corollary 5.1.1, and (5.95) we have
the existence of a measurable function g(t) with supp g C C* almost everywhere
such that (5.105) holds with r = 2, and f(z) has the representation (5.21) (i.e.
(5.106)).

The existence of U € D'((M,), L?) for which (5.112) holds follows from
Theorem 5.2.2. The Cauchy kernel K(z —t), z € TC, t € R", defined in (1.5)
satisfies K(z—) € D((Mp), L?) as a function of t € R™ for z € T by Theorem
4.1.1. Thus (U, K(z —t)), z € T, is well defined.

Recall from the proof of Theorem 5.2.2 that U = F ~!g] here is as defined
in (2.42). Thus from the representation (5.21) (i.e. (5.106)) where supp g C C*
almost everywhere, the fact that

K(z—t) = / exp(2mi(z —t,m)) dn = F e« (n)e*™ =1 ], z e TC, (5.114)

where Ic(n) is the characteristic function of C*, and (2.42) we have

f(z) = (g(t), >N g) = (g(t), e (t)eil=)
= (U K(z 1)) (5.115)

for z € T and (5.113) is obtained. The proof is complete. O
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If Cy is any regular cone such that C*NCY is a set of Lebesgue measure zero
for the cone C of Corollary 5.2.3, then the calculation in (5.115) shows that

(U,K(z—1t))=0, =z eT,

in Corollary 5.2.3 where U is the boundary value of f(z) in (5.112) and K(z—t)
is the Cauchy kernel in (5.114).

The following is a companion theorem to the boundary value results pre-
sented previously in this Section. The proof techniques for the following result
are the same as those for these previous results; hence the proof is omitted.

Theorem 5.2.3 Let f(z) be analytic in T and be the Fourier transform of a
function in L™, 1 <1 <2, fory=1Im(z) € C. Let there exist constants K>0
and T > 0 which are independent of y € C such that

|FF(z + iy); tlllor < K exp(M*(T/y]), v €C.
There is an element U € D'((Mp), L") such that

lim f(z+y) = U
i

yec
in D'((M,), 7).

Boundary value results for D'({(M,)}, L") similar to those contained in this
section need to be proved; we leave this for future investigations. We also desire
in the future to extend the boundary value results of this section to analytic
functions in tubes T for which (5.95) holds for 1 <r < occ.

5,3 Case 2 <1 <%

We will extend results of Section 5.1 and 5.2, where possible, for values of r in
(5.1) for which 2 < 7 < co. The results of this section will concern tubes T¢
defined by special types of cones C' which we now define.

Let u = (u1,ug,...,u,) be any of the 2" n-tuples whose components are 0
or 1. We have previously defined the n-rant

C’u_—.{yERn: (—1)ujyj >0, 5= 1,...,n}

in R™. The n-rant C, are open convex cones with the property that Cy; = C..
We will call Cp the first n-rant.

Now let C be the interior of the convex hull of n linearly independent rays
meeting at 0 € R™ [78], p. 118. Select vectors a1,az,...,an in the direction of
these rays; then C can be written as

C={yeR": y=ya1+y202+...+Ynan, 11 >0, y2 > 0...y, > 0}

C is an open convex cone in R™ There is a nonsingular linear transform L
mapping the standard basis vectors e, 7 = 1,...,n (i.e. the basis vectors of
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R™ with 1 in the j-th component and 0 in the other n — 1 components) one-one
and onto the aj, 7 = 1,...,n. L is then a one-one mapping from Cy onto C'
and the boundary of Cp is mapped to the boundary of C.

Further any cone contained in Cp is mapped a one-one and onto fashion to
a cone contained in C' with boundary being mapped to boundary.

We extend L to C™ by putting

L(u+ iv) = L(u) + iL(v), u+iv € C™:

then L maps the tube R™+iCj one-one and onto the tube R™+iC. If f(z+iy)
is holomorphic in the tube T¢ = R™ + iC then the function g(u + i) =
f(L(u)+iL(v)) is holomorphic in the tube T [78], p. 118, with the same being
true of corresponding open convex cones which are proper subset of Cy and C
and which are mapped to one another by L and L™!: that is holomorphicity
in there tubes is preserved under the transform L.

Similar statements to the above can be made for L1, the inverse of L, since
L is consingular.

We call a cone C' as described in the first sentence of this paragraph a n-rant
cone because of its identification with Cy by the linear transform L and L~!.

We note that Rudin has used the analytic invariance of tubes under non-
singular linear transforms to prove edge of the wedge theorems in |76].

C is a polygonal cone [78], p. 118 if it is the interior of the convex hull of
a finite number of rays meeting the origin 0 € R™ among which there are n
(at least n) that are linearly independent. Thus a polygonal cone C' is a finite

union of n-rant cones Cj, j =1,...,m [78], p. 118.
Recall that any n-rant cone is an open convex as is any polygonal cone. Thus
the n-rant cones Cj, j = 1,...,m, whose union is C' possess a very important

intersection property which we describe now. No boundary point of any of the
- Cj, j=1,...,m, is an element of that C';. Thus if y € C such that y is on the
boundary of some C; then y must be in one or more of the other C;. Because of
this property (i.e. because of the convexity of the polygonal cone C) the n-rant
cones Cj, j = 1,...,m, whose union is the polygonal cone C' must overlap as
they cover C in the following sense:

given C there is another one of the Cj, j =1 # 1, (call it C3) such that
CinCy # 0:

given C1 U C; there is another one of the Cj,j # 1, j # 2(call it C3) such
that at least one of C7; N C3 and Cy N C3 is not empty;

given Cy U Cy U C3 there is another one of the Cj,5 # 1,7 # 2,7 # 3, (call
it Cy4) such that at least one of C1 N Cy, C2NCy and C3 N Cy is not empty;

m—1
given |J Cj, the remaining quadrant cone Cy, intersects at least one of the
=1
Cj,j=1,....m—1
These intersection properties of the n-rant cones whose union is a given
polygonal cone will be important in our proof of a result below we collectively
refer to the above described intersections of the n-rant cones Cj,j =1,...,m,
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whose union is a given polygonal cone C' as the intersection property of the
n-rant cones.

Let us also note that the intersection of two open convex cones is an open
convex cone; thus each of the nonempty intersections in the intersection prop-
erty of the n-rant cones above is itself an open convex cone which is contained
in n-rant cone.

The notion of polygonal cone of Stein and Weiss is closely associated with
the notion of a cone containing an admissible set of vectors in the sense of
Vladimirov [86], p. 930. A cone with an admissible set of vectors can be a
polygonal cone.

A regular cone is an open convex cone C in R™ such that C' does not contain
any entire straight line. Any regular cone C' is property contained in an open
convex cone I' C R™ such that C c T'U {0}. _

The proof of [78], Theorem 5.5, p. 118, shows that there are a finite number
of polygonal cones Aj, j = 1,...,k, and the polygonal cone A which is the

k
convex hull of |J A; such that

j=1
.k k

cclJAjcAcT andTc|JA;U{0} cAU{0} cTU{0}.
j=1 j=1

Recalling the preceding paragraph each polygonal cone A and Aj, j=1,...,k,
k

is the union of a finite number of n-rant cones; we then have from C C |J A; C
~
. j
A that C C |J Cj, m > k, where the Cj,j = 1,...,m, are n-rant cones.
=1
m
If CNC; = B for any j = 1,...,m, we delete this from the |J C; and obtain
Jj=1

Cc U Cjr<m, where CNCj#0,5=1,...,r. (We can obtain C C |J C;
equally well from the inclusion C' C A since A is a polygonal cone.) We can

.
now write C' = (J (C'NCj). Now each CNCy, j=1,...,7, is a n-rant cone

=1
or is contained in a n-rant cone, namely Cj. Since C' and the Cj,5 =1,...,r,
are open convex cones in R™ then the CNCj,j7 = 1,...,r, are open convex

T .
cones. Thus the set equality C' = |J (CNC}) and the same argument as in the
~

intersection property for the polygonal cone case in the preceding paragraph
™
yield that the (C'NCj), j = 1,...,r, such that C = |J (C N Cj) satisfy the
j=1
intersection property descibed in the preceding paragraph. It is precisely this
T
representation C' = |J (C'NCY) of a regular cone C' in terms of the open convex
=1
cones (C'NCj), j=1,...,r, which satisfy the stand intersection property and
each which in a n-rant cone or is contained in a m-rant cone that we need in
one of the results below.
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Using analysis similar to that in [15] we obtain Fourier-Laplace intehral
representation of analytic functions in tubes TC which satisfy (5.1) for 2 < r <

oo for C' being a n-rant, a n-rant cone, and a polygonal cone. We begin with
the following result.

Theorem 5.3.1 Let C be an open convex which contained in or is any of the 2™
n-rants Cn, in R™. Let f(2) be analytic in T and satisfy (5.1) for 2 <r < co.
There exists a measurable function g(t), t € R®, with supp(g) € C* almost
everywhere such that

le=>7@0g]| > < M(1+ (d(y))™™)  exp(M * T/Jy])), v € C, (5.116)

for constants M > 0. T > 0, m > 0, and q > 0 which are independent of
yeC, and
f(2) = X(2) / gD g 5 e TC. (5.117)
R~
where X (z) s a polynomial in z € TC.

Proof. For C being contained in or being the n-rant Cy, put

n

X(2) = [[Q = i(-1)"12"+2, 2=z +iy e TC. (5.118)
=1
We have "
[1/X(z +ay)| < [J(1 + 2272, 2 eTC. (5.119)
=1
Put
F(z) = f(2)/X(2), zeTC, (5.120)

which is analytic in 7¢. We have
/ |F(z + iy)|? dz = / If(z+iy)/X (z + iy)|* dx
R» R~

< f (@ + )Pl pesell 1/ X (x + WPl
= (/ If(l' + w)l’" dil')Q/T(/ |1/X(:L~ 4 Z‘y)|2”"/(7"'2) dx)(r—Q)/T
Rn

2
< (K + (d)) ) exp(v*(1/ly))

.(/ﬁ(l+IL'?)—27‘/(7’—2)—M'/(7-_2) dl’)(T—2)/T

Rrn J=1
< M1+ (d(y))™™) exp(M*(T/|y])))?, (5.121)
where .
M = K(/ ﬁ(l +x§)—2r,/(r—2)~nr/(r—2) d‘,l;)(r_g)/%‘ (5.122)

Rn Jj=1



102 Notes on Boundary Values ...

Thus from (5.121) and the fact that F(2) is analytic in TC we can apply Corol-
lary 5.1.1 to obtain a function g(t), t € R™, with supp g C C* almost every-
where such that

e g0 < M(1 + (d@) ) exp(MT/W)), veC (5129
which is (5.116) and

Fuy:/gUk%Wﬁm,zeTq (5.124)
Rn

(5.117) is now obtained from (5.120) and (5.124) with X(z) being given in
(5.118). The proof is complete. O

We ask if the representation (5.117) can be rewritten in the form f(z) =
(V,exp(2mi(z,1))), 2z € TC, for some ultradistribution V? If so, g(t) will have
to possess sufficient properties to allow for (V, exp(2i(z,t))) to be well defined.

If m = 0or g=0in (5.1) the Fourier-Laplace integral in (5.117) obtains an
ultradistributional boundary value as y = Im z — 0, y € C, by Theorem 5.2.2
since g(t) satisfies (5.123) with m = 0 or ¢ = 0. Can this fact be used along
with (5.117) to prove that f(z) also obtains an ultradistributional boundary
value?

Recall the concept of n-rant cone given above. We extend Theorem 5.3.1 to
the case that C' is in or is a n-rant cone.

Theorem 5.3.2 Let C be an open convex cone that is contained in or is a
n-rant cone in R™. Let f be an analytic function in T C and satisfy (5.1) for
2 < r < 0o. There exists a measurable function g on R™ and a nonsingular
linear transform L such that supp g € (L7(C))*,

[e=27 LT @ g ) < Mk + (AL ()™ exp(M*(R/IL (w))))  (5.125)

for y € C, with constants M > 0,R > 0,k > 0,m >0, and ¢ > 0 which are
independent of y € C, and

f(z) = X(L™Y(z) +iL7'(v)) / g(£)e2mLT @HLT W) gy (5.126)
R’n

~ for x + iy € R™ +iC, where X 1is a polynomial of variable u + w = L (z) +
il (y).

Proof. Let T' denote the n-rant cone that C' is contained in or is. There
exists a nonsingular linear transform L (with domain and range being R™) which
maps the first n-rant Co onto T in a one to one manner such that the boundary
of Cp is mapped to the boundary of I'. Further, if C' is properly contained in
I then L™'(C) is an open convex cone which is contained in Cp and L maps
L~1(C) one to one and onto C' with the boundary of L~Y(C) being mapped to
the boundary of C. (L=}(C) = Cp if C =T). For u+iv € R* +4L~'(C) put

Glu+ i) = F(L(w) +iL(v)) = f(z + ), (5.127)
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where u 4 iv € R® +iL™}(C) and z + iy € R™ +4C. The function G(u + iv) is
analytic in R™ +¢L~1(C). We have using (5.1) that

16 )y du= et / o i) ds
A

1 o ) T
= Ty K@+ @ALD)™) exp(M*(T/IL@)D)) (5.128)

for y = L(v) € C. Recalling that the boundary of L=!(C) is mapped to the
boundary of C' by L we have for v € L=!(C) that

d = 1 !

(L) = inf 1)~
= ] - ! = 1 o

= et L@~ L0 = inf, L =)l (5.129)

where OC' denotes the boundary of C'. Corresponding to the nonsingular linear
transform L there exist constant a > 0 and b > 0 (see [16], p. 93) such that

ajw| < |L(w)| < bjw|, weR", (5.130)
with a and b being independent of w € R™. Using (5.130) in (5.129) we have
d(L(v)) = inf |L(v—2')|

' €8L-1(C)
> i —V| =ad eL” 5.131
> n v =adh), ve Lo (513)

Using (5.131) and (5.130) in (5.128) we obtain

NT ; ad(v))™™)? ex * alv|))”
/Rn |G(u+ w)|" du < {det(L)|(K(l+( d(v))™™)? exp(M*(T/alv|)))
1 mq m\q *
= ey (K/a™ (@™ + (d(0)) ™) exp(M*(T/alv]))) (5.132)

for v € L7Y(C) since M* is an increasing function. From (5.132) and the
analyticity of G(u+iv) in R"+3iL~!(C) we have by Theorem 5.3.1 the existence
of a measurable function g(t), ¢t € R", with supp(g9) € (L~}(C))* almost
everywhere such that

™27 0g] 2 < M(k -+ (d(v))"™)? exp(M*(B/P]), v € L7HC),  (5.133)

for some M >0, k>0, m >0, and R > 0; and

Glu+ ) = X(u+ i) / )e2mitivt) gy 4w € R™ +iL71(C), (5.134)

where X (u + iv) is a polynomial. Thus from (5.127) and (5.134) we have

f(z+1dy) = X(L7 (z) +iL7(y)) / 2 LT @HLTIWL) gt g 4 gy € TC,
Rn
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which is (5.126) and (5.133) is (5.125). The proof is complete. O

If m=0or g=0in (5.1), can we obtain an ultradistributional boundary
value for f(z) in Theorem 5.3.2 using (5.127)? We could if we know an ul-
tradistributional boundary value existed in Theorem 5.3.1 for m =0or g =0
there.

Now recall the concept of a polygonal cone given above and the fact of the
intersection property for the n-rant cones Cj, j = 1,...,m, whose union is the
polygonal cone. Let us extend Theorem 5.3.1 and 5.3.2 to the case that C can
be a polygonal cone.

m
For C being a polygonal cone, C = |J C; where the C; are n-rant cones
j=1
which have the intersection noted above. Let f(z) be analytic in T¢ and satisfy
(5.1) for 2 < 7 < 00. Now y € C implies y € C; for some j = 1,...,m; and note
that the distance from y to the boundary of C;. Thus f(z) is analytic in R*+iC}
and satisfies (5.1) for y € C; for each j = 1,...,m. Thus by Theorem 5.3.2
for each n-rant cone C; there is a nonsingular linear transform L; mapping Cp
one to one and onto C; and a function g;(t) with supp(g;) € (L]."I(C’j))* =C3
almost everywhere and a polynomial X; such that

le~ 2 @ g
< M(k+ (d(L; ) ™) exp(M*(R/ILT'(w)])  (5.135)

for y € C; and

fla+iy) = X5(L7 (@) + L7 (v)) / gi(t)e2m T @HLT WD g (5.136)
R”

z + iy € R" +1iCj.
In this way, we have proved the following result:

Theorem 5.3.3 Let C be a polygonal cone in R™. Let f(z) be analytic in TC

and satisfy (5.1) for 2 < r < co. There exist n-rant cones Cj, j = 1,...,m;

nonsingular linear transforms L; mapping Co one to one and onto Cj; func-

tions g; having supp(g;) € Co almost everywhere and satisfying (5.135); and
m

polynomials X; such that (5.136) holds where C = |J Cj.
=1

A similar result to Theorem 5.3.3 can be proved for C being a regular cone.
Can an ultradistributional boundary value be obtained for f(z) in Theorem
5.3.3 and for the corresponding result for €' being a regular cone?

5.4 Boundary values via almost analytic extensions

In this section we give another approach which is based on the almost analytic
extensions. This concept gives for R™ the most general results although cases
p = oo, p = 1 are still open. Here, we will consider the case when the space
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dimension is n = 1; case n > 1 is considered in [22]. We refer to papers [21],
[22], [66] - [68] and [72].

We continue to assume conditions (M.1), (M.2), (M.3) and that my,
nondecreasing sequence.

Using the same method as in [66], 2.2. Proposmon and the Minkovski
inequality one can prove the following lemma:

Lemma 5.4.1 Let r > 1 and h > 0 be given. There is H > Osuch that for
every (¢ € D((Mp), h, L") there are (p € CY(C) and C > 0 such that oR=¢p

and

Slelp{eM*("H/'y”II (- +i)llers IoP( + @)l 5= 0,1} < Cllgllr .
Yy

(Ify =0, then Zp(z) =0).

We remark that in Lemma 5.4.1, we add the estimate for ¢’ (-4 4y) in order
to have a symmetric assertion to the assertion of Lemma 5.4.4 below.
For the main assertions we need the following three lemmas.

Lemma 5.4.2 Let F be a holomorphic function on C\R. such that, in (My)
case, there are k > 0 and C' > 0, resp. in {Mp} case, for every k > 0 there is
C > 0, such that

IF(+ iy)lls < CeM Dy 220,

Then, for every compact set K C R there are p > 0 and B > 0, resp. for every
p > 0 there is B > 0, such that

sup{|F(z +iy)|} < BeM @/ 20,
zeK

Proof. We shall prove the assertion only for (Mp)—case since the proof for
{M,}—case is similar.

Let o € D((M,),R), suppa C [—a,a] and a = 1 in a neighbourhood of K.
For x € K and y # 0 we have

T

Fle +iy) = a(z)F(z + iy) = / (a(t)F(t +iy)) dt.

—00

Let Ky ={z: |z—t—iy| = LZ—I}, z € K and s =7/(r — 1). By using Cauchy’s
formula and Hélders inequality we have (with suitable Constants)

P+l <[ o) / o T gl
“ F(z) dz

et wer ([ [ D gop
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vty ([ [ e e
< Cyf( -“ |/27’ F(t+ iy + J—Z—'ei‘P)dSO's dt)]/s

d |s dt)]/s]

|/2” F(t+ iy + J—-e"")
Iyl e

< Co( ([) 1dgo)“/"/0 |F(t+iy+|—ZT|ei‘Plsdgodt)l/s

1, [, (2 (2 F(t iy + i) ,
([ [T aor | PO+ 5 0y eyt

e

a 2w )
363[(/ / |F(t+ iy + I—Z—le’*")ISdgodt)l/s

(/_a/% (t+ iy + = ‘yl ) |*dip dt)'/?)

i
27 )
<aut s o[ e i Benan

k 1 k

— ) <Cs(1+ =) exp(M* (7
7 Bangy) = U ) M T

@exp(M*Mk/m)) < Coexp(M* (5k/1y])).

~ The lemma is proved. O

< Ca{1+ ) exp(M( )

<GCs(1+

By using Sobolev’s lemma one can easily prove the following one.

Lemma 5.4.3 Letr > 1 and ¢ € D((Mp), L"), resp. ¢ € D({Mp},L"). Then
for every compact set K C R and every h > 0, resp. for some h > 0O there are
C >0 and k > 0, such that

(P) < C

sup o)z ollkLr-

xeK{(MP)I (@)} < Cliell
p€No

Lemma 5.4.4 Let Yo = {z; |Imz| < &0}, do > 0, oW (- +dy) € L7, withr > 1

for j=0,1 and |y| < o, and suppose that p € C'(s). Assume that for every

h > 0, resp. some h > 0,

Dn= sup {II——<p( + iyl B W+ dy)|lz, 5= 0,1} < oo

0<Jy|<do
, (5.137)
Then, ¢ = Yyr is in D((Mp), L"), resp. D({ My}, L"), and for every h > 0,
resp. for some h > 0, there is C > 0 such that

lpllLrn < CDh.
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Proof. We denote I'y 5+ = {C: { =t+1d,]t| < a}, ¥a = {¢;[Im¢] <6, |Re| <
a} y Yo, = {C,C = ta + 1, |t| < 5}’ 52 = {CvC = t:l:25, l € R}v
¥ = {¢;|Im(| < §}. This notation will be used later, as well. ,

Let z € R, p € N. By Cauchy’s formula, for sufficiently large a, we have

(g — P () d¢ e(¢) d¢
P (z) = 27rj(/ (C x )P+l /M+ (¢ —x)pHl

p(Q)d¢ () d¢ Zp(Q)d¢ ndl
f L. v, )

+ ((—z)pH! ( -zt (€ —a)pt!

Since
ot in)l =1 [ e+ in)a <ol o([” I e+l an'
(5.137) implies that for every p € N,
/ -—M —-> Oasa—0.
y

wt ((— )Pt

This implies

@) - P
o\P(z) = 5

( _p(6)dg _/ s (¢ dg
Tsy

R N

9 A F .
scp(Q)d¢ A d 1
+/¢ aC(C — )Pt )= 271'1'(11 ~ a4 1).

Let us estimate I, I5 and I3.

- - t—I—ar i6)|dt .,
|1]" < p! (/ Z6|p+l), )y <

® Jo(t+x —3d)|"dt, [ dt
< pI” 'r/s<

Ap!l” [ |t +x —id)|" dt /s,
< - @
ST e Vheeds (/ 1+ t2 8/2)

By Holder’s inequality and Fubini’s theorem we have

< o(t +z — )|
/_ B de < = 3 /oolt~2512/co T e

< Apl” dt /°° lo(t -+ —3d)|" dz < Ampl” 1
T 0 )it 6%

52 S 357 g2 Dk

Thus, by using p! < M, we obtain for suitable A >0,

* T 1/r it p' It -
(/_OO |11] dCE)/ SADhW < ADpLh™PM,,.
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The same inequality holds for ||Ig|| L-. Let us estimate ||/3]|L-. We have
Fe(Qdgnd|
/] e

B /°° /5 | (€ + i) In|V/sdnde .,
N 5 Y316 + i — alPH=@/) € + in — x|/

/ / | geo(& +im)|" dn dé / / __Inldndg .,
5 [nl7/s|€ + i — x| PH1-@/)r s|E+im— 1'2

// |z (& + i)l dn dg // _lnldndg_ ;.
=4 5 I TPIE + in — | PHI=Co)r 5 &+ in—af?

We will use the fact that

Inldnds % [ dé/n B
/ e [ amrr =2
This implies ,
00 5=(€) _
p!!'/_w|//1b(—<%WdCAd§|’da:)l/’

| 90 €3 + in)|”
1/s | (¢ 1/r
< (2md) /*pl / (/ /5 [n|r/s|€ + in — | (P+1=2/9)r d€ dn) dz)

| Zp(&+ i)l ded .
T 1/5 6( Ul z T
~mf (f / a‘xnr/s o))

i§‘| m — a:l(P-H —2/s)r—2 15 +in—

< (oma [ Iacso(£+w+m)lrdw) didn .
p o |77|(p+1 1/s=2/r)r §2+n

Ur déd
l/s | |771 T \1/r
< (271'5 b Dh / /oo in'PcM*(h/(nD) éz n 77 )

/ /5 |z +in)l dndE

|€ + ip — z|pH!

)
< Dp(2m6) kM, ( / / 'é’;"fi” VT < ADpSh=P M,

Minkowski’s inequality implies that for every h > O,resp. some h > 0, there is
a constant C' > 0 such that

le®||Lr < CDRh™PM,, p€ No.
This implies the assertion. O

Let s € [1,00]. Denote ‘by H((Mp), L*), resp. H({Mp}, L*), the space of
functions f holomorphic in %y \ R, where

Yo = {x +iy;x € R|y| < do}, do = do(f),
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which satisfy the following estimate: For some k > 0 and some C > 0, resp. for
every k > 0 there exists C' > 0, such that

1FC+iy)llze < CeM *D, Jyl < 5, y #£ 0.

The common notation for both spaces is H(x, L®).
We denote by H(L*, R) the space of functions f holomorphic in correspond-
ing 1o and satisfying

IF(+i)llLe < Cy, |yl < do.

Let f be a holomorphic function in 9o \ R (o = {z|(ITz) < &}, do = d0(f)).
If for every ¢ € D(*, L") there exists the limit

(T5.0) = lim [ pl@)(fa+ic) ~ @ — ic)
then we call T'f the boundary value of f in D'(x, L").

Theorem 5.4.1 Letr > 1 and let f € Hj.. Then for every p € D'(x,L").
0
)= [ 1ege@ands— [ j@pdst [ fpteas
¥ 0z |y ;-

where ¢ is defined in Lemma 5.4.1. Moreover,Tf belongs to T’ (%, L7).

Proof. Let
Yo+ = {2z;Imz € (0,0), |Rez| < a},

Ya- = {z;Imz € (=4,0), |Rez| <a}, § € (0,0),

and let € < (do — 0)/2. Lemmas 5.4.2 and 5.4.3 enable us to apply Stokes’
theorem which implies

J[ terivroge@asnd= [ st i o
Yo+ 2 O+

Since y + ¢ € (g,e 4 6) C (0, do) for y € (0, §), we obtain
IFC+ iy +€))llpe < CeM*/2),
This fact and [81], p.125, Lemma, imply f(z + i(y +¢)) — 0 as |z] — oo,

uniformly for y € (0,d). Thus, by Lemma 5.4.3 and by letting a — oo we
obtain

/ /¢+ flotily + 5))%w(2)d2 A dz

N /_Z Mz +ie)p(z) dn — /_ Z f(@ +i(e +8))p(x + i6) dz. (5.138)
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Similarly,
. 0 _
// flz+i(y — 6))5—<p(z)dz A dz
Yo 0z :
/ (@ —i(e + ) f(z — i6) dz - / f(z — ie)p(z) dz. (5.139)
We have (with suitable C' > 0)

|/ 11}+fx+z(y—l—s))aa o(2)dz A dz|

—21/ dy/ flatily+e)) s <p(ﬂv+zy)d:c)l
<2 / dy / 1F(@ + iy + )] da)/( / (2ol +a)l dz)'

é
<c / M6/ () =M (k/3) gy < oo
0

The same holds for the integral over 1_. Since the integrands in (5.138) and
(5.139) pointwise converge to the corresponding integrable functions, as ¢ — 0,
we obtain

Th) = / /¢ fe)gmple)dz n dz— [ Sl ds

which proves the first part of the assertion.

By using Holder’s inequality, the estimate for f and Lemma 5.4.1 we obtain
that for some h > 0 and some C > 0, resp. for every h > 0 there is C' > 0, such
that

KTf, @) < Cllplln,Lr

which completes the proof. O

For the proof of the next theorem we need the following estimate: There is
B > 0 such that for every y > 0 and every g € L* (s > 1)

° [ g(t)dt ., \1/s
/ | / Pe— _(x)_ 7 dz)"/* < Blglls. (5.140)
o' S

This estimate is obtained by combining Theorem 1.4, Lemma 1.5 (Ch. IV),
Theorem 3.10 and 3.7 (Ch. II) in [81].

Theorem 5.4.2 Let r > 1 and s = v/(r — 1). The mapping T : H(x,L°) —
D' (x, L*) is surjective. Its kernel is Hrs.

Proof. We shall prove the assertion only for (M,)—case because the {M,}-
case can be proved simillarly.

Let f € D'((Mp), L*) be of the form
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f= Z( 1)pr , fp € L* such that Z p”fp”Ls < 00.

One can easﬂy prove that the function ¢ — Tz teR, z=x+iy,z € R,y #£0,
belongs to D((M,), L™). We shall prove that

zg(2) = —(f(?), %—_xl—_i;),w €ER,y#0,

belongs to H((M,), L*). By Minkowski’s inequality and (5.140) we have

1¢£(2), ﬁ——j e < ”Z o t) )p+1 7=l

<o) 773 IILs + Z I fp(t =l
(t- ) )

<B||fo|1Ls+Z 2o [ I'fp O gy

- Since
dt 1 du 1
s/t _ s/T__ A
o = gy =
(r= s/(s — 1)), and for p > 1,

| (D) dt oo [ MBOF 1k,
R |t — 232Vt — 212417 = e o= T2 Jg [t — 21427

we obtain

K@),

s/T f t S
>”L’ < Bllfollzs + A Z < Jy |p—1+s/2 / / It I__lel)-ll-s/2 dt) dz)"/

- ! dx
< Blfalle + 43— P ; /e
_B“fOHL +A e Iylp_1+s/2(/l;{!fp(t)| (/R it——x—iy|1.+3/2)d)

o
S/T S p!
< Bl follzs + 4% Z lylp—l+s/2+l/2||fP”L3
p=0

= pl
<4y T;’anpnm,
p=0

where Ay = B + As/7+1/s |y|(1=9)/2 This implies that for y # 0

1(f(t ) >||Ls < AISUD{M an [p}z ”fp”Ls < AleM*(k/]yD
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and that g € H((M,), L®). We shall show that f = Tg. Let ¢ € D((M,), L")
and ¢ be its almost analytic extension. For z € C. put

)
ac(€) .
cpl(z):é% ,/,BCC—Z d¢ A d¢,
R (9] S (9]
wa(2) = 2mi Jp_ (-2 ;% wale) = 2mi /FH ¢ _de-

We have p(z) = p1(z) + cpg(:r) + ¢3(x), £ € R. By the same arguments as in
Lemma 5.4.4 it follows that z — @a(z), z — ¢3(z), = € R arein D((M,), L").
Thus z — ¢1(z), z € R, is in D((M,), L"). We have

273 -z

/c &) - f()/gxdc

1 1 .0
:—.</¢ ) gl O+ [ (5@ el i

27

2
(f.0) = o ((f(fv),/¢aé<p(o d¢ A dC)+

——)#(C)dC)

[ v 2

/ g(o P(Q)dcnd~ [ o(QplC)dc + / 9(O)p(C) dC = (Tg, ).

- Cs+

The 1nterchange of f and integrals given above is allowed because one can
prove that it is allowed if [, and ffai are replaced by [, and Jo0>0,

and because 5 © 5 ©
ac¥ F ac¥ _
[ A i [ £

209 ¢ () )
/5iC /1“5iC— d¢ a— oo, in D((Mp),L").

By similar arguments as in the proof of Theorem 3.3. in [63] one can prove that
Ker T = H(L*,R), i.e. the assertion of Theorem 5.4.1 is proved. O

5.5 Cases s=o00 and s=1

The method used in previous section could not be applied for s = co and s = 1
because the function

1
Rt~ —— z+iyeC, y#0,
t—x—1y

is not in L. Note that this function belongs to B((M,), R) but we did not
succeed to prove that for an f € D'(x,L™®) or f € D'(x,L') there exists the
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corresponding F'(z) in H(x, L) or H(x, L') which converes to f in D’(x, L*) or
D'(*, L'). We shall prove the converse assertion i.e. that elements in H(*, L*®)
and H(*, L') determine elements in D’(x, L) and D'(x, L) as boundary values
but assuming the stronger condition (5.140) instead of (5.139). This condition
enables us to follow the method of Komatsu [48], proof of Theorem 11.5. The
following lemma from [48] is needed.

Lemma 5.5.1 Let (Ny) satisfies (M.1), (M.2), (M.3)" n, = N,/N,_1, and let

P = 1+ [0 + nip), cec,

Glz) = 51%. /0 TPl dc, zec.

Then G(z) is a holomorphic function which can be continued analytically to
the Riemann domain {z; —m < argz < 27} on which we have P(D)G(z) =
—(2miz)~1. G(z) is bounded on the domain {z; —F < argz < 3}, Purther-
more, set for y > 0

9(y) = G4 (—y) — G_(~1y),

where G is the branch of G on {z; —m < argz < 0} and G_ is that on
{z; m < argz < 2m}. Then for some A >0

lo(w)l < Ayge™ =)y > 0.

Theorem 5.5.1 Assume that conditions (M.1), (M.2), (M.3) are satisfied and
the sequence (my) is nondecreasing. Let F' € H(x, L) (resp. F € H(x,L')).
Then

F(-+1iy) — F(- +i0) € D'(x,L®) as y — 0T,

(resp. F(-+1dy) — F(-+1i0) € D'(*,L') as y— 0%)

in the sense of convergence in D'(x, L), (resp.D'(x, L1)).

Proof. We shall prove the theorem only for the {(M,)}-case which is
more complicated. We shall use the construction from [48], Theorem 5.4.3
(see also [67]). Our aim is to prove that for every ¢ € D({M,}, L), (resp.
p € B({M,},R)) the set

{F(+iy),p): 0<y <do}

is bounded and, moreover, (F(- + iy), ) converges as y — 0 for every ¢ €
D({M,},R). Since D({M,},R) is dense in D({M,}), L'), resp. B({M,},R),
this will imply the assertion in Theorem 5.5.1.

Assume first that F' € H({Mp}, L) and that ¢ € D({M,}, L') such that
for ho > 0, |||l L1 py < 0.

Let Iy = (k — 2,k +2), k € Z, (the set of all integers) and %, k € Z, be
a partition of unity in D({M,},R) such that for some R > 0, which does not
depend on k,

supp ¥k C Iy, ||kllLiny < R, k€ Z.
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We have

/_o:o F(z + iy)p(z) dz = Z/ F(z + iy)p(x)be(x) dz, 0<y < do.

keZ
We shall construct an ultradifferential operator of class {Mp} of the form

P(D) = (1+ D)? H(l + —) (5.141)
p=1
such that the equations

P(D)Hy(z + y) = F(z +iy), k € Z,

have the solutions H(z + éy) which are holomorphic in
Oy={z+wy, c €l 0<y< %9}

and bounded in some neighbourhood of I, k € Z.
As in [48], pp.98-99, one can show that there is a sequence (n,) such that
the operator (5.141) is of class {Mp}, Mp < Np, and

w(1
F(+ iy)|lze < Ce™ &), Jy| < bo.

Note that conditions (M.1), (M.2), (M.3)" imply that if P(D) of the form
(5.141) then it is of the class {M,} and, for this, condition that mj is nonde-
creasing could not be replaced by (M.1).

Fix k and denote by 20 the point k + id (% < § < do). Let

Hi(2) :/G(z —w)F(w)dw, z=z+iy, €, 0<y< %2,
where G(z) is the Green kernel of P(D) given in Lemma 5.5.1 and 'k is a simple
closed curve laying in {z + iy; = € Ik,y € (0,0)} starting at z) and encircling
counterclockwise a slit connectlng z,c and z. We deform the path T’ k to the
union of segments joining z,c and z,c =zx+ z , a segment joining 21 and z,
a segment joining z and zk and a segment Jomlng zi and Q. This is possible
because G(z) is bounded for 5 < argz < 3%, By the same arguments as in
[48] we have P(D)Hk(z) F(z), z €I, and thus, we obtain

| / Flo+ w)p(e)da] <3 / |F(z + i) (@) (a)| de

keZ

<Y [ 1] 0 Fe) deP(DNn@)ple)lde, 0<y < )

keZ

Denote the part of ~; from z}. to z and z to z} by I'} and the rest by I'}, k € Z.
We have

/ ( / Gz — w)F(w) dw)P(D)(p(z)n(@))] da <

I, 1}

sup{] [ Gz - w)F(w)dol} / \P(D)(p(a)u(a)| de. (5.142)

€l Fk
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Denote by Ay the first and by By the second factor on the right side of (5.142).
Since P(D) = ., D%, is of class {M,}, from (5.141) with 2r < h2, and from
Mo_;M; < My, j < o, j,a € Ng, we have

YE<YY aaZ () [ e @

keZ k€Z a=0
[0
CZ T Z ( ,)||¢|1L1,h0|1wkuw,ho

ol o
Y T
< CRllellin ) s <0
a=0\'0

For Aj we have
(]

Ar = sup{| 9(t)F(z + sy + it) dt|}
z€ly 0

o-y
SA\/?jsup/ eV @EDN D gt < oo,
z€l, JO

This implies that Y, .7 AcBk < co. Consider the path T9. We have

| /G F(w) dw)P(D)(p(z)pa(a))) do <
Iy

sup{| | G(z —w)F( )dwl}/I |P(D)(¢(@)¥r(z))| dz = DyB.

T€l} Fk

Since for z € Iy, w € Fg, G(z — w) is uniformly bounded by a constant which
does not depend on k, we obtain ), 5 Dy By < co. This implies

|/F z + ty)p(x) dz| <Z Dy + Ag) By < 0.
keZ

The proof that there is F(z + i0) € D'({M,}, R) such that for every ¢ €

D({M,}, R) _
(F(z +iy), ) = (F(z +140),9), y— 0,

is given in [48] and [63]. Thus, we conclude that
F(z +1y) — F(x+10) € D{M,p}, L), y— 0,

which finishes the proof in case F' € H({M,}, L*).

The proof of Theorem 5.5.1 for F' € H({M,}, L') is analogous to the pre-
vious case. The partition of unity v, and the constructed sequence Hi(z),
z € I, leads us to the proof that for every ¢ € D({M,}, L)

PG+ i), 0<y < 2}
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is bounded. So we have to prove that for any ¢ € D({Mp}.R), (F(z + iy), )
converges as y — 0%, '

Let I be a bounded open interval and Iy = {z + iy;z € I,y € (0, 5—2‘1)} As
in the first part of of the proof we construct P(D) of the form (5.141) and of
{M,}-class and Hi such that P(D)Hi(z + iy) = F(z + iy),z + iy € II;. We
put

Hi(z+iy) = /F Gz~ w)Pw)do + /F Gz w)F(w)ds,

where I' = ' UI? is a path constructed in the same way as I';, with I instead of
I and 2° = z° + 3§ (z° is the midle point of I) instead of z. By using Hélder’s
inequality we obtain that H(- + iy) € L!(I) for every 0 < y < dp/2, and that

lH(: + iyl < C,0 <y < do/2.
This implies that Hy(z + iy) — Hy(z +i0) € L}, y — 0%, and thus, H;(z +
ty) — Hi(x +140) in D'({M,},R).
This means that

(F(z +1y),p) = (F(z +i0),¢), y—0,

for every ¢ € D({Mp}, R) and the proof is completed. O
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