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Some Applications of the Bochner-Martinelli integral, A. M. Kytmanov.
— A course of lectures held at Seoul National University, Seoul, 1999.

This course of lectures devoted entirely to the Bochner-Martinelli inte-
gral representation for holomorphic functions in several complex variables
and its applications to the -Neumann problem, holomorphic extension of
functions, removable singularities of CR functions and others.
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Introduction

The Bochner-Martinelli integral representation for holomorphic func-
tions of several complex variables appeared in the works of Martinelli
(1938) and Bochner (1943). It was the first essentially multidimensional
representation in which the integration takes place over the whole bound-
ary of the domain. This integral representation has a universal kernel (not
depending on the form of the domain), like the Cauchy kernel in C!. How-
ever, in C™ when n > 1, the Bochner-Martinelli kernel is harmonic, but
not holomorphic. For a long time, this circumstance prevented the wide
application of the Bochner-Martinelli integral in multidimensional complex
analysis.

Interest in the Bochner-Martinelli representation grew in the 1970’s in
connection with the increased attention to integral methods in multidi-
mensional complex analysis. Moreover, it turned out that the very general
Cauchy-Fantappié representation found by Leray is easily obtained from
the Bochner-Martinelli representation (Khenkin). Koppelman’s represen-
tation for exterior differential forms, which has the Bochner-Martinelli rep-
resentation as a special case, appeared at the same time.

The Cauchy-Fantappie and Koppelman representations found signifi-
cant applications in multidimensional complex analysis: constructing good
integral representations for holomorphic functions, an explicit solution of
the O-equation and estimates of this solution, uniform approximation of
holomorphic functions on compact sets, etc.

At the beginning of the 1970’s, it was shown that, notwithstanding
the non-holomorphicity of the kernel, the Bochner-Martinelli representa-
tion holds only for holomorphic functions. In 1975, Harvey and Lawson
obtained a result for odd-dimensional manifolds on spanning by complex
chaines; the Bochner-Martinelli formula lies at its foundations. In the
1980’s and 1990’s, the Bochner-Martinelli formula was successfully ex-
ploited in the theory of function of several complex variables: in mul-
tidimensional residues, in complex (algebraic) geometry, in questions of
boundary regularity of holomorphic mappings, in finding analogues of Car-
leman’s formula, etc.

In sum, one may say that the Bochner-Martinelli formula gives the con-
nection between complex and harmonic analysis in C*. This becomes es-
pecially apparent in the solution of the 9-Neumann problem: any function
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that is orthogonal to the holomorphic functions is the O-normal derivative
of a harmonic function.

The material presented in this course of lectures was given at the Seoul
National University in 1999. I thank Global Analysis Research Center of
Seoul National University, and especially Professor Sang-Moon Kim and
Professor Chong-Kyu Han for opportunity to do that.
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1. Green’s Formula in Complex Form

We consider n-dimensional complex space C™ with variables z = (23,
.,2,). If z and w are points in C*, then we write (z,w) = zjw; +
coo 4 zowy,, and |2| = +/(z,Z), where Z = (Z1,...,Z,). The topol-
ogy in C™ is given by the metric (z,w) — |z —w|. If z € C", then
Rez = (Rez,...,Rez,) € R", where we write Rez; = z;, and Imz =
(Imz,...,Imz,) with Imz; = y;; that is, z; = z; +wy; for j=1,... ,n.
Thus C* ~ R?", The orientation of C" is determined by the coordinate
order (21,...,%n,Y1,--- ,Yn). Accordingly, the volume form dv is given
by dv = dzi A -~ Adzy, Adys A -+ ANdy, = dz Ady = (i/2)"dz Ndz =
(—i/2)"dz N dz.

As usual, a function f on an open set U C C" belongs to the space
CHU) if f is k times continuously differentiable in U. (Here 0 < k <
o0, and C°(U) = C(U)). If M is a closed set in C", then f belongs to
C*(M) when f extends to some neighborhood U of M as a function of
class C¥(U). We will also consider the space C"(U) (or C"(M)) when r >0
is not necessarily an integer. A function f belongs to C"(U) if it lies in the
class CI'I(U) (where [r] is the integral part of r), and all its derivatives of
order [r] satisfy a Holder condition on U with exponent 7 — [r].

The space O(U) consists of those functions f that are holomorphic on
the open set U; when M is a closed set, O(M) consists of those functions f
that are holomorphic in some neighborhood of M (a different neighborhood
for each function). A function f belongs to A(U) if f is holomorphic in U
and continuous on the closure U (that is, f € O(U) N C(0)).

A domain D in C" has boundary of class C* (we write D € C*) if
D = {z: p(z) < 0}, where p is a real-valued function of class C* on some
neighborhood of the closure of D, and the differential dp # 0 on 0D. If
k = 1, then we say that D is a domain with smooth boundary. We will
call the function p a defining function for the domain D. The orientation
of the boundary 0D is induced by the orientation of D.

By a domain with piecewise-smooth boundary 0D we will understand a
smooth polyhedron, that is, a domain of the form D = {z : p;(2) <0,j =
1,...,m}, where the real-valued functions p; are class C ! in some neigh-
borhood of the closure D, and for every set of distinct indices ji, ... , js We
have dp;, A -+~ Adpj, # 0 on the set {z : p;,(2) = -~ = p;.(2) = 0}. It is
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well known that Stokes’s formula holds for such domains D and surfaces
oD.
We denote the ball of radius € > 0 with center at the point z € C* by
B(z,¢), and we denote its boundary by S(z, ¢) (that is, S(z,¢) = 0B(z,¢)).
Consider the exterior differential form U((, 2) of type (n,n — 1) given
by

(¢ = G S i

where d([k] = dCi A -+ A dCe_ 1 A dCey1 A ---/\dC_n When n = 1, the
form U((, z) reduces to the Cauchy kernel % C—_—_—d( The form U((, 2)
clearly has coefficients that are harmonic in C" \ {z}, and it is closed with
respect to ¢ (that is, d.U(¢, z) = 0). |

Let g(¢, z) be the fundamental solution to the Laplace equation:

— 2
__(n2 23 . 1271‘_2 for n>1,
g(¢,2) = 1( Tt ¢ — 2]
——ln|C—z|2 for n=1.

Then

n

U(¢2) = (1) ackdc[wc

— (10 A S T A )

where the operator 9 = f: (d¢x) <£> We will write the Laplace opera-
k=1 k

tor A in the following form:
a3 e S (4 2
< 0G0C 44 \0xf  Oyi)

o 1(8 .o I
If (x = xx + tyi, thena—ck—-z-(%— a—MC),and-aE;——ack.
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When f € C}(U), we define the differential form u; via

n ., B 6 _

=31 ek p g,
= Ok

THEOREM 1.1 (Green’s formula in complex form). Let D be a boun-

ded domain in C™ with piecewise-smooth boundary, and let f € C2(D).
Then

FOUC,2) — / 9(C, 2 (C)
oD D

3

f(z), i zeD,

0, if z¢D. (1-1)

+/DQ(C,Z)Af(C)d§/\dC= {

(The integral in (1.1) converges absolutely.)
PROOF. Since
de(f(QU(C, 2) — 9(C, s (€)) + (¢, 2)Af dC A d¢ = 0, (1.2)

Stokes’s formula implies that (1.1) holds for z ¢ D.
If z € D, then for sufficiently small positive £, we obtain from (1.2) and

Stokes’s formula that

[ Houe) - /

oD

9(¢, 2 (O) + / 9(C, 2)AF(Q)dE A d¢

D\B(z:e)

:/ f(()U((,z)—/ 9(¢, 2)ps (€)-
S(z,e)

S(z,e)
When n > 1,

[ om0 < i

<A [ < e
(27T)n€2n_2 /S(z,e) | fl

that is, -
lim 9(¢, 2)us (¢) = 0.

e—0t S(z,€)

(The argument for n = 1 is analogous.) However,

: _ (n—1)! n Il g
J 10U = g [ HOY ) G il e

27i)ne?n
k=1
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_ (n=1)! NN
 (2miyne?n /B(z,e) [nf ©) +; o, (o Zk)} d¢ A dg.

Since
1 of _
lim —— }: —z) ) dCadc =0,
S0t g2 B(ze) £ (3Ck(Ck Zk)> ¢ e
we have
. n! _
tim [ SOUE) = Jim /B S

n!

— Jim = | Q=2

s—»0+ Tngln JB

(by the mean-value theorem). O

2. Corollaries of Green’s Formula

COROLLARY 2.1 (Bochner [12]). Let D be a bounded domain with
piecewise-smooth boundary, and let [ be a harmonic function in D of class

CY(D). Then
B B _ ) [, if z€D,
RGO e {O’ AR 5V

COROLLARY 2.2 (Koppelman [30]). Let D be a bounded domain with
piecewise-smooth boundary, and let f be a function in C1(D). Then

(Z)7 2f < E D;
[ 1) - [ o auics) - {07 ASPECE
where .
I=> dg‘k—a_—,
— O
and integral in (2.2) converges absolutely.

Formula (2.2) is the Bochner-Martinelli formula for smooth functions.
PROOF. Supposing at first that f € C?(D), we transform the integral

af dg
/af QAU 2) /D,Hackackd“dc [ acanuy
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:/Ddc(g,uf)—/DgAde_/\dC=/6Dguf—/DgAfd§/\dC

(here we have applied Stokes’s formula, since all the integrals converges
absolutely). Then for z € D, formula (1.1) implies that

/ BIOAUCG D)= | FOUK ) - f(2).
D oD

Now if f € C'(D), we obtain (2.2) by approximating f (in the metric of
CY(D)) by functions of class C2(D). O

COROLLARY 2.3 (Bochner [12], Martinelli [58)). If D is a bounded

.
’

domain in C" with piecewise-smooth boundary, and f is a holomorphic

function in D of class C(D). Then

f(z), if zeD,

0, if z¢D. 23

FHOU(C, 2) ={
aD

Formula (2.3) was obtained by Martinelli, and then by Bochner inde-
pendently and by different methods. It is the first integral representation
for holomorphic functions in C™ in which the integration is carried out over
the whole boundary of the domain. This formula is by now classical and
has found a place in many textbooks on multidimensional complex analysis
(see, for example, (68, 79]).

Formula (2.3) reduces to Cauchy’s formula when n = 1, but in contrast
to Cauchy’s formula, the kernel in (2.3) is not holomorphic (in z and ()
when n > 1. By splitting the kernel U((, z) into real and imaginary parts,
it is easy to show that [, f(Q)U((, z) is the sum of a double-layer poten-
tial and a tangential derivative of a single-layer potential; consequently, the
Bochner-Martinelli integral inherits some of the properties of the Cauchy
integral and some of the properties of the double-layer potential. It differs
from the Cauchy integral in not being a holomorphic function, and it dif-
fers from the double-layer potential in having somewhat worse boundary
behavior. At the same time, it establishes a connection between harmonic
and holomorphic functions in C* when n > 1.

Formula (2.2) implies the jump theorem for the Bochner-Martinelli in-
tegral.
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Let D be a bounded domain with piecewise-smooth boundary, and let
f be a function in C*(D). Denote

Mf(z) = - fQU,2), z¢0dD.

We shall write M* f(2) for z € D and M~ f(z) for z ¢ D.
Function M f(z) is harmonic function for z ¢ 0D and M f(z) — 0 as

|z| — o0.

COROLLARY 2.4. Under these conditions function M™* f has a contin-
uwous extension on D, function M~ f has a continuous extension on C*\ D,
and

Mt f(z) — M~ f(2) = f(z), z€dD. (2.4)

Formula (2.4) is a simplest jump formula for the Bochner-Martinelli
integral. There are exist many jump theorems for different classes of func-
tions: for Holder functions [50], for continuous functions [16, 21], for in-
tegrable functions [34, 35], for distributions [13], for hyperfunctions [45]
(see also [36, Chapter 1]).

Later on we shall need formula (2.3) for the Hardy spaces H?(D), so
we now recall some definitions (see, for example, [25, 74]). Let D be a
bounded domain, and suppose that 0D is a connected Lyapunov surface,
that is, 0D € C'*®, a > 0. It is known that in such domains, the Green
function (for the Laplace equation) G((, z) has a good boundary behavior:
for fixed z € D, the function G(¢,2) € C**(D).

We say that a holomorphic function f belongs to HP(D) (where p > 0)
if
sup [ 176 —ev(Q)Pdo < o0

e>0

(here do is the surface area element on 0D and v({) is the outer unit
normal vector to the surface dD). A holomorphic function f belongs to
H>(D) if supp | f(2)] < 0.

The class HP(D) may also be defined in the following way. Let D =
{z : p(z) < 0} for defining function p, and let D. = {z : p(z) < —¢} for
e > 0. A holomorphic function f € HP(D) if

sup/aD | f(Q)Pdo. < 0.

e>0
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As is shown in [74], this definition does not depend on the choice of the
smooth defining function p.

COROLLARY 2.5. Ifp > 1 then for function f € HP(D) formula (2.3)
holds.

PROOF. If p > 1 and f € HP(D), then f has normal boundary values
almost everywhere on 0D (see [25, 74]) that form a function of class
LP(0D) (we denote these boundary values again by f). Moreover, the
function f can be reconstructed in D from its boundary values by Poisson’s
formula

fz) = aDJ‘(C)P(C,»Z)dU

(where P((,z) is the Poisson kernel for D). Since the Green function
G(¢,2) = g(¢, 2) + h((, 2), where for fixed z € D the function h((,z) is
harmonic in D of class C***(D), we have

P(G, 2)do = U(¢, Dlon + 3 (-1 o-dl[K] A dllap.
k=1 Gk

Since the differential form

10k
;( D e Akl ndg

is closed, we have

1 O
[, 1O Gl Ak

oh
d R dClk) A dC | =
/1 <§;( 1) <)
Consequently, formula (2.3) holds for f € HP(D). O

We remark that it is possible to derive from the Bochner-Martinelli
formula (2.3) the Cauchy-Fantappié formula that was obtained by Leray
48, 49).

Let D be a bounded domain with piecewise-smooth boundary, and
suppose that for a point z € D there is defined on 9D a continuously
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differentiable vector-valued function n(¢) = (m(¢), ... ,n.(¢)) such that
S (G- 2m(Q) =1, ¢eaD.
k=1

THEOREM 2.1 (Leray). FEvery function f € A(D) satisfies the equa-
tion _

27rz

where W'(n) = > o (=1)*"1n dnlk].

Proor. Khenkin’s proof is as follows. Consider in the space C?* of
variables (7,¢{) = (m1,... , 7, (1, ... , () the analytic hypersurface M, =
{(n,¢) = >-%_1(Ck — z&)ne = 1}, on which the form w'(n) A d( is closed.
The two cycles

Ly ={(n¢):¢€dDm=(G-z)C~2"j=1,...,n}

(2) = L=V / FOS M AdC, zeD, (2.5)

and
Lo ={(n.¢): C€dD,n; =n(¢),s=1,... ,n}
in M, are homotopic in M,. The homotopy being given by the formula

= ’%_ lé + (1 =n;(¢), 0<t< L

That is, they are homologous cycles. Consequently,
N Qu'(mAdC= [ f(Ow'(n)AdC
1 )

when f is a holomorphic function. But

w/(Cl zlz’.“,Cn Z?;): (2””) (Ca )
(i ¢ — 2| (n—1)!
Hence (2.5) follows. O

The Cauchy-Fantappie representation hasturned out to be very useful,
and it has many applications in multidimensional complex analysis.

Khenkin and Leiterer [26, Chapter 4] extended formula (2.3) to do-
mains D in Stein manifolds.

Analogues of the Bochner-Martinelli formula have also been considered
in quaternionic analysis [78] and in Clifford analysis [72].
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3. The Hodge Operator

Subsequently we shall need some properties of the Hodge operator.
We first consider the space R™ with the usual Euclidean metric. Let [ =
(41, ... ,4p) be an increasing multi-index, dz; = dz; A- - -Adz;,, and dz[I] =
dzj A---Adxj,_,, where ji < -+ < jmp, and jr, #i fork=1,... ,m—p,
l=1,...,p. The symbol ¢(I) is defined by

dzy Adzll] = o(I) dz.

The Hodge star operator * acts on the form dz; in the following way:
*dz; = o(I) dz[I]. We extend it to an arbitrary form ¢ = 3"} ¢rdz; by
linearity (the prime on the summation sign indicates that the sum is taken
over increasing multi-indices I):

wo = pro(I)dall].
I

We now give the main properties of the Hodge operator.

(1) dey A xdxyp = dx = dxy A -+ - Ndz,,.

(2) **xdxy = (—1)™PtPdz,.

We obtain from (1) and (2) that if ¢ and 9 are two p-forms, then

O A ¥ = Z/go]dazl A *Z,d—ud:cj = (Z,gon;]> dz.
I J I

Consequently, a scalar product (i, %) may be defined for p-forms ¢ and
with coefficients of class £? in a domain D C R™ by

(w,w)szW\*lb-
Then

(0.0) = ol = | 3 lorfda

This scalar product is called the Hodge product.

Now consider C* ~ R** with coordinates z = (21,...,2,) and z; =
z; +1y; for j = 1,... ,n. We have defined the volume form dv in C" as
(see Sec. 1)

dv=dz Ndy = (i/2)"dz A dz.
If I = (i1,...,%) and J = (j1,... ,J,) are increasing multi-indices, and
we write the (p, ¢)-form dz; A dZ; in terms of the forms dz; and dy, apply
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the Hodge operator, and then express dz; and dy in terms of dz; and dZz,
we obtain the following equality:

(3) *(dz; A dz;) = 2°T ™ (=1)"i"o(1)o(J) dz[J] A d2[I] (a detailed
calculation may be found in [80, Chapter V, Lemma 1.2]).

The Hodge operator extends to (p, ¢)-forms

/
o=> sz Adzy
1J

by linearity. Thus, *¢ is a form of type (n — ¢,n — p). Properties (1) and
(2) carry over to the following:

(4) dzr A dzy A x(dzr A dZy) = 2PHd;

(5) * * (dzy Adzy) = (=1)P*edz; N dZ.

EXAMPLE 3.1. Let F be a smooth function, then

*BF = % < a—Zk'de>

_21 nznz 1)lc lazk ]/\dZ_Ql n n( 1)n,uF-

So what pp = i"2" "1 (x0F).

(n—1)!,
EXAMPLE 3.2. U((,2) = pp (x0g((, 2)).

By using the Hodge operator, it is easy to find the operators formally
dual to d, 9, and 0. For example, we find d". If pisa (p,q—1)-form and
¥ is a (p, q)-form, ¢ and ¥ have smooth coefficients of class £*(D), and 1

has compact support in D, then (9, v) = (¢, '), and

(590,11’)—1/]3590/\*15:/6190/\% /dw\*d + (= )“’*"/W\d*zﬁ

o [ ondeie - [onGT

S0 0 = — % Ox.

In just the same way, we see that 0" = — % 0%. The operator 3" carries
forms of type (p,q) into forms of type (p, g — 1). By definition, 8" =0 for
forms of type (p,0).
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We consider the operator O = 0*0+00*, which is known as the complez
Laplacian. If ¢ is a function, then

Dp=00= —*Zg;‘idzk-—*GZZI it (1) lg:dz[k]/\dz

"L 0% "L %
1— —
=— g E dzNdzZ = — E = —2A
*2 0Zr0zy, 2N dz 2 o 0Zr0z ’
that is, O = —2A for functions, and this identity continues to hold for

forms (see, for example, [20, p. 106]). Thus, in C*, harmonic forms in the
sense of O are forms with harmonic coefficients. It is also easy to show

that O = 00* + 0*0.

4. The 6-Neumann Problem for Functions

Suppose n > 1, and D = {z : p(z) < 0} is a bounded domain in C"
with boundary of class C!, where p is defining function. If F' € C!(D), then °
denote

Op 1

- Oz |0p|

0, F is 0-normal derivative of function F'.
If we write the form

where py =

dp
|0

(_Where O, F is a tangential part of the form OF), then A = 0,F, that is
0, F is the coefficient of the normal part of the form OF.
If we denote the outer unit normal to 8D at z by v(z), and s(z) = iv(z),

then ‘
BF = <?E+ in)

OF = OF + A=

ov 0s

On the other hand from Example 3.1 and from equalities

dC[k] A dClop = 271" (=1)*"1py. do, "
d¢[k] A dClap = 27 Yim(—1)" 1 pg do, (4.1)
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we have
B_nF do = *5F|3D = 21_lnin(—1)n,uplap.

If we consider function

—2)! 1
o) =2y = - L

then formula (2.1) can be written by the following way.

COROLLARY 4.1. Let D be a bounded domain with piecewise-smooth
boundary, and let I be a harmonic function in D of class C'(D). Then

B (6 D y F(z2), if zeD,
[ roua - [ 5628 {0, A

We consider the following problem (E-Neumanri_ problem for functions):
for given function ¢ on 9D, find a function F on D such that
0.F = on 0D,
OF =0 in D.

(4.2)

(4.3)

This problem is an exact analogue of the usual Neumann problem for
harmonic functions.

Just as for the usual Neumann problem, the problem (4.3) is not always
solvable. There is a necessary orthogonality condition. Indeed, if F is a
harmonic function of class C!(D), then *0F is a d-closed form in D, since

0=0F =0 0F = — 9(+x0F),

that is, 8(*5_17) = 0. Hence, if ¢ = 0,F on 0D, and f is a holomorphic
function on D, then

| efae= [ jear) = [ or<ar)= [ jocar =o

Thus, a necessary condition for solvability of (4.3) is the orthogonality
condition

/ ofdo=0 forall feO(D). (4.4)
JD

Compare problem (4.3) with the 9-Neumann problem for forms (see
[18]): given a form 9 of type (p,¢q) in D, find a form F for which OF = ¢
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in D, and the normal parts of the forms F and 8 F are zero on 8D. If F
and v are functions, then we need to find a function F' such that

{mF:o on 8D, w5

OF =4y in D.

If we do not pay attention to the smoothness of the functions, then (4.3)
and (4.5) are equivalent. Indeed, one solution of the second equation in
(4.5) is the volume potential Fy;. Subtracting it from the solution of (4.5),
we obtain O(F—Fy) = 0, and 8,(F—F,) = ¢ on 0D, that is we have (4.3).
Conversely, given (4.3), we take the single-layer potential F(f for ¢ and
extend F into D as a smooth function to obtain that 5,1(]7~F(;r +F;)=0
on 0D, and O(F — FJ + F) = 4, that is, we have (4.5).

Problem (4.3) is more natural for studying the boundary properties of
holomorphic functions.

The 0-Neumann problem for forms arose in the works of Spencer and
then was studied by many authors. An especially large role was played by
Kohn.

The following problem is a generalization of (4.3) to differential forms.
Suppose ¢ is a form of type (p,q + 1) given on 0D, where 0 < ¢ < n —1
and 0 < p < n. We wish to find a form « of type (p, q) in D such that

9 0a =0 in D. (4.6)

{(ga)n = ¥y, on JD,
Here ¢, is a normal part of .

When p = ¢ = 0, we obtain (4.3), since if a is a function, then Oa =
9 da, and (da), = D,00p/|p).

We first find a necessary condition for solvability of (4.6). We consider
the form *¢, which has type (n — g —1,n — p), and we integrate it against
a form 3, where 3 is a form of type (p, q) with smooth in D coefficients
such that 06 =0 in D:

/ (x) A = (*5@)/\52/8(*502/\3):0
Jap Jop Jp
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in view of (4.6) and the fact that 93 = 0. Thus, we find that a necessary
condition for solvability of (4.6) is that

| toyni=o (4.7)
oD

for all forms 8 of type (p,q) with 8 = 0 on D and coefficients of class
C=(D).

5. The Homogeneous 0-Neumann Problem

We first consider the homogeneous 0-Neumann problem

0,F=0 on 0D

’ 5.1

{DF =0 in D. (5.1)

It is clear that holomorphic functions F' satisfy (5.1). We will show that

the converse is also true. First we reformulate the problem. Recall MF' is
the Bochner-Martinelli integral (see Sec. 1)

MF(z) = /w FOU(C,2), =¢aD.

THEOREM 5.1 (Aronov [8], Kytmanov [33]). Let I' be a harmonic fu-
nction in D. The following conditions are equivalent:

1. 0,F =0 on 0D;

2 MYF=F inD;

3. M—F=0inC"\D.

PROOF. We consider only the case that F' € C'(D). Conditions 2 and 3
are equivalent by the jump theorem for the Bochner-Martinelli integral (see
Corollary 2.4) and by the uniqueness theorem for harmonic functions.

If 9,,F = 0 on 0D then formula (4.2) gives that M*F = F in D.

If MYF = F in D, then M~ F = 0 outside D. Thus we obtain from
(4.2) that

/ Mda(() =0 forall z¢0D.

op |¢ — z[*2

Applying the theorem of Keldysh-Lavrent'ev (see, for example, [47,

p. 418]) on the density of fractions of the form in the space

C(dD), we obtain that 9,F =0 on 8D. O

=P
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THEOREM 5.2 (Folland, Kohn [18]; Aronov, Kytmanov [9]). Let F' be
a harmonic function in D of class C*(D). The following conditions are
equivalent:

1. 0,F =0 on 0D;

2. M*F=F inD;

8 M~F=0inC"\D;

4. F is holomorphic in D.

Proor. It is sufficient to prove that condition 1 implies condition 4.
Since the form *0F is 0-closed, then

02/ _F_(*gF):/E?—F—/\*EF

oD D

_ gl / BF2dz A dz = 2 f BF|2dv.
D D

F
Henceg—_~=0ianorallk=1,... ,n,so F e O(D). O
2k
The conditions 2, 3, 4 are equivalent without requirement that F' is
harmonic in D.

Let n > 1.

THEOREM 5.3 (Kytmanov [31]). If M*f is holomorphic in D, f €
CY(0D), and OD € C! is connected, then the boundary value of M™ f coin-
cides with f.

It is clear that Theorem 5.3 is not true when n = 1. Also, it is not true
if 9D is not connected: it suffices to set f = 1 on one connected component
of 0D and f = 0 on the remaining components.

Theorem 5.2 is proven for continuous functions F' by Kytmanov and
Aizenberg [37], for integrable functions F' by Romanov [65], for distribu-
tions by Kytmanov [36, Chapter 4], for hyperfunctions by Kytmanov and
Yakimenko [45] (see also [36, Chapter 4]).

Consider homogeneous 9-Neumann problem for differential forms.

Let 0D € C'. We wish to find a form v of type (p,q) in D such that

{(5’)’% =0 on 0D,

AN 5.
00y=0 in D. (52)

Evidently, if 7 is O-closed then v satisfies condition (5.2).
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THEOREM 5.4 (Kytmanov [36]). If the form y has coefficients of class
C%(D) and satisfies condition (5.2) then Oy =0 in D.

PROOF. We may assume that v is a form of type (0,q). Then from
(5.2) 9(*0y) = 0 in D, and the tangential part of the form *0v is zero on
0D. (Hodge operator takes the normal part of v into the tangential part

of v, and conversely). B
If v = 3 75(¢)d(s, then the restriction of the form (x9v) A 3,d¢; = 0
on 0D. Therefore

0= ;, /{)D(*g’)’) NAyydCy = ZJ:I/D d((+07) A 7dCy)
1)q+12,/ (*5'7) NOyy ANd(y

iy [ ; > Sl Ao N3 S G A

J k¢J
— ( 1)q+l2q+l—nin %

XZ/ > oK ) dC[Km/\dC/\ZaC dCe A d¢y
J P K mgk k¢J k
0
( 1) (g+1)( n+l)2q+1 n;n / K m) ( ) dc/\dq
Z D KUm= IJuk I ac"‘ O
oy |
— (g+1)(n+1)og+1—n_n
(—1) 2 ZZ/DKum 1 )(%n d(/\d(

= (_1)(f1+1)(n+1)2(1+1—nz~n./ |57|2dC /\dCT’
D
that is, Dy = 0 (here d(y A d(x A dC[K,m] = o (K, m)d(). O

6. Solvability of the J-Neumann Problem

We now turn to solvability of the 9-Neumann problem (4.3). Let D be
a bounded domain in C* with D € C*. We consider the Sobolev space
Ws = Ws(D), where s is a natural number. This space consists of the
- functions f € £?(D) such that all derivatives 9%f through order s lie in
L*(D). The topology in Ws is usual. We will need the space W5+*(9D)
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for 0 < A < 1. It consists of the functions f € W5(0D) for which the

integral
10°f(2) — 0 f({)I?
dvedv,
/8D /30 s |( — z[2nF2A=1 ‘

converges.

Properties of these spaces may be found, for example, in the survey
[17]. We will need the following properties.

1. When s > 1, the restriction of a function f € W5(D) to 9D lies in
the space f € WQS—I/ ?(8D), and the restriction operator is continuous.

2. If we denote the subspace of harmonic functions in W5 (D) by G5 =
G5(D), then the restriction operator from Gj to Wi 2(8D) is a linear
topological isomorphism. Then W5 = G5 & N, where N consists of the
functions in W; that are equal to zero on 0D.

THEOREM 6.1 (Kytmanov [33, 36]). Suppose D is a strongly pseudo-
conver domain. If the function ¢ € G5(D), where s > 2, satisfies condi-
tion (4.4), then there exists a harmonic function F € Wi~ '(D) (that is
F e G57Y(D)) such that 0,F = ¢ on 8D, and F may be chosen so that
it also satisfies (4.4). The function F defined in this way s unique; we
denote it by Np; and the Neumann operator N is bounded.

For proof we use the solvability -problem in D and d-Neumann prob-
lem for form [18, 28], the solvability of J,-problem [11].

The analogous theorem is true for the problem (4.6).

Let s > 1. If F € W;(D) then the Bochner-Martinelli integral M F' €
G5(D). Consider formula (4.2). The first integral in that formula is M F
and the second integral we denote TO,F. Then for F € G5 and z € D we
have

k-1
F=MF+T8,F = M*F+MT3,F+T0,F = ...= M*F+) M'T0,F.
=0

So that, if 0,F = ¢ then we have

k—1
F=M'F+> MTep. (6.1)
=0
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THEOREM 6.2 (Romanov [65]). For the space Wj (D) we have
lim M* = Py, klim TF = Py

k—o0

in the strong operator topology of W3 (D), where P4 is a projection from
WX(D) onto AX(D) = Wi(D)NO(D), and Py is a projection from Wy (D)
onto N3 (D).

In the paper [33], Theorem 6.2 was stated for the space W5 (D) for
s > 1. Professor Straube gave an example showing that Theorem 6.2
cannot be true for all domains D and all spaces W5 (D) (see [36, p. 172]).

EXAMPLE 6.1. Suppose limy_,.o M* = P, in the strong operator topol-
ogy of W3i(D) for all s > 1. Then P4 : W5 — A3. Consequently, Py is
a projection operator from Wj onto Aj for all s. This implies that the
space C®(D)N O(D) is dense in A} (since C*°(D) is dense in W, and this
property is preserved under application of the operator P4). But such a
density does not hold for every domain D according to an example in [10].

PROBLEM 6.1. For which domains D Theorem 6.2 is true for all spaces
W;(D)?

As long as it has a positive answer in the ball in C" (see Sec. 7).
So (6.1) and Theorem 6.2 imply

COROLLARY 6.1. Let D be a strongly pseudoconvexr domain. Sup-
pose (4.4) holds for a function ¢ € G3(D). A solution to the 0-Neumann
problem is given by the series

F=> MT, (6.2)
1=0
which converges to F in the metric of Ga(D).

COROLLARY 6.2. If D is an arbitrary domain (with boundary of class
C®). Suppose the series (6.2) converges in Gy(D) for a function ¢ €
G2(D), then it determines a solution F' of the 0-Neumann problem (4.3).

7. The Bochner-Martinelli Integral in the Ball

Let B = B(0,1) be the unit ball in C* with center at the origin, and
let S = S(0,1) be its boundary. We consider in this section the scalar
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product (f,g) of two functions f and g in £2(S) is given by the integral

(f,9)=Js fgdo.

We will identify the space £2(S) with the space of harmonic exten-
sions of such functions from S into B, that is, with the space of harmonic
functions f in B for which

sup /|f(rz)|2d0(z) < 00.

0g<r<1

Recall that the Poisson kernel P((, z) for the ball B has the form
(n—1)! 1—|z?

P((,2) = . T zeB, (€8
LEMMA 7.1. The restriction of the kernel U((, z) to S equals
1- <<a Z)
P P((,z)do, z€B, (€S
PrOOF. It is not difficult to show (using (4 1)) that
— 1)

2mm IC le

Let P (z) be a harmonic polynomial, homogeneous of degree k in z
and degree s in Z of the form

Pos@)= D D aaps"?’
o=k [18=s

where a = (ay,...,an), 8 = (B1,...,0,) multi-indices, z* = 2" --- 2"
and z? are monomials, and ||a|| = a1+ -+ + an.

We denote the set of the homogeneous harmonic polynomials Fj s by
Pr,. It is known (see, for example, [67, Chapter 12]) that

- é Prs. (7.1)

k,s=1
We are interesting in the operator giving the Bochner-Martinelli inte-
gral M f for f € L2(9).
LEMMA 7.2. If Py s € Prs, then
n+k—1

MP,, =
k n+k+s—1 k
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PRroor. It is not difficult to check that the harmonic extension of the
polynomial (;Fy s from S to B is given by formula
1—-|¢]*  OPs -
i € B.
n+ k +s—1 8C] C

f(Q) =P+

By Lemma 7.1,

. 1-— <<72>
MPk,s—/SPk,S(C)—f:WP(C:Z)dU

Pks 1—|z|* 0Pk,
Z |z|2 (ij'“’s L

s n+k—1
n+k+s—1pk’s(z) T n4k+s—1
THEOREM 7.1 (Romanov [64]). When n > 1, the operator M is a
bounded self-adjoint operator L*(S) — L2(S) with |M|| = 1. Every ra-
tional number in the interval (0, 1] is an eigenvalue of M of infinite multi-
plicity. The spectrum of M coincides with the interval [0, 1].

= Pk,s(z) —_ Pk,s(z). |

PrOOF. The proof follows from Lemma 7.2. O

For n =1 M f is the Cauchy integral and it has only two eigenvalues:
0 and 1. Thus, the operator M is essentially different when n = 1 and
n > 1.

THEOREM 7.2 (Romanov [64]). Suppose n > 1, and let P4 be the op-
erator of projection from L%(S) onto the subspace of holomorphic functions
in L2(S). Then M* — P4 as k — oo in the strong operator topology of
L2(S).

Theorems 7.1 and 7.2 also true for the space W;(S) for any s since the
decomposition (7.1) is valid for this space.

PROBLEM 7.1. Prove Theorem 7.2 for the space LP(S) for 1 < p < co.

It is known that for this case if f € £P(S) then M f € LP(S) (see [70]).
But ||M]|z» — 0o as p— oo or p— 1.

In the ball it is possible to give the integral representation for solution
of 9-Neumann problem.
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‘THEOREM 7.3 (Kytmanov [33]). Suppose n > 1 and » € W;(S) sat-
isfies (4.4). Then Nyp € W5(S), and

(No)(z) = / W(OK(C,2)do() =€ B,

(n—l)![l . 1 1 1
2" |n—1 (=27 n—-1 (1-(( )

n—1-(+1){0
1 G+ D)IC — 226D — (C, 2))r=-1

2 N
n ]+1 1“<C7z>)n 1_<Ca >

Jj=

n—

8. Generalizations of the 0-Neumann Problem

As before, suppose D is a bounded domain in C"* with smooth boundary
0D, and D = {z: p(z) < 0} with defining function p.
Consider the following elliptic equation (f € C*(D)):

o~ 9 of \ _
L= 3 5 (s ) =o .1)
Jk=1
where the matrix A = |la;x(2)||7;~, is Hermitian and positive definite on

D, and a;; €CY(D), j,k=1,...n

THEOREM 8.1 (Kytmangv [36]). If the following boundary condition
holds for a function f € CQ(D)'

Za]k 8 p] )=0 on 9D,

and if f satisfies (8. 1} i D, then f is holomorphic in D.

This theorem generalizes items 1 and 4 of Theorem 5.2.
ProoF. Consider the differential form

ws :Zaﬂcgi( 1)'7 ldz[ ]/\dz
3k
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The restriction of w; to dD equals zero by the hypothesis of the theorem.
By Stokes’s formula '

= anwf=/L)fdwf+/l)df/\wf

RNy LI
_'/Df' 57]( ()aZk>dz/\d —i—/Za]k )51 2

]kl

of of _
/Zaﬂk 8ZJ(9dez/\d

since the hermitian matrix A is positive definite, it follows from this that

: 0
in D, and hence a—g— =0,5=1,...,n, thatis, f € O(D). O
]
We remark that the vector field
. _ 0
w = Z U/j7k,0j'52—k
ik
does not lie in the complex tangent space TS(0D), since
w(p) =Y a;kp;peldpl ™ >0 on 0D.
ik
PROBLEM 8.1. Prove Theorem 8.1 for another classes of functions f
(continuous, integrable, etc.).

Consider the next problem:

PROBLEM 8.2. Fora function @ given on 0D find a function F' on 0D
such that

n oF
> aj,k(z)——a_ pi(z) =¢ on 0D,
2k
L(F)=0 in D.
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This problem is generalization of the d-Neumann problem (4.3) for
functions and Theorem 8.1 gives the solution of homogeneous Problem 8.2.

A necessary condition for solvability of Problem 8.2 is that ¢ be or-
thogonal to the holomorphic functions. Indeed, if f € O(D), then

/3D90f_d0=/a fzagk z)a_ pi(z)do

k=1

Z a;k(2)(=1)71 —87de[ JINdz

7,k=1

—C/ fB( aak( )(—=1)" 1————dz[]/\dz) C'/ fLFdz Adz = 0.
7,k=1
Apparently this condition is also sufficient (for strongly pseudoconvex
domains).

PROBLEM 8.3. Give an integral representation for solution of Prob-
lem 8.2 in the ball.

Consider the following problem. Suppose given a vector field w =

w(z) = Z wi(2 )88 wy, € C(OD), such that

Op
w@:;w@%¢0mlw, (8.3)
that is, for every point z € 0D the vector w does not lie in the complex
tangent space TS(0D).
PROBLEM 8.4. Suppose f € C1(D) and f is harmonic in D. If

| w(f)=Zwkg—i=0 on 9D, (8.4)
k=1 .

will f be holomorphic in D?

In contrast to the tangential Cauchy-Riemann conditions, here we re-
quire the vanishing of the action of a nontangential vector field @ on f.
Problem 8.4 is an analogue of the oblique derivative problem for real-valued
harmonic functions.
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If (8.3) does not hold, then it is easy to give an example where (8.4)
holds for a function f that is not holomorphic in D. It is enough to consider
the ball B(0,1) in C? and the function f = z;, with w = 3/0z;. Therefore
inequality (8.3) is violated on the circle {z € C?: |z| = 1, 2o = 0}.

0 _
fw=> p‘kg——, then Problem 8.4 becomes the homogeneous 0-Neu-
k=1 %k
mann problem (5.1).

We give a number of equivalent formulations of Problem 8.4. We de-

compose the field w into a normal and a tangential component:

w(z) =a(2) ) pk% +b(2).
k=1

By hypothesis, @ # 0 on dD. The vector field b(z) € T<(9D). As generators
of the space T¢(0D, we may take the vectors
o _, 9
Pm 0z Pr 0%
By decomposing b(z) in terms of these vectors, it is easy to obtain from (8.4)
the equality

k#m, km=1,...,n.

5= Y et [l 2]

oz, oz,
where oy ,(z) are certain continuous functions on dD. Multiplying both
sides of this equality by do and applying equality (4.1), we obtain

prlop = | arm(2) df Adzlk,m] A dzlap. (8.5)

k>m

PrROBLEM 8.5. If f € CY(D) is harmonic in D, and ax, € C(OD) for
k,m=1,... ,n does (8.5) imply that f is holomorphic in D?

When n = 2, then (8.5) can be rewritten in the form
,Uf|6D = a(z) df A dZ]aD‘ (86)

THEOREM 8.2 (Kytmanov, Yakiminko [46]). Suppose D C C? is sim-
ply connected domain, harmonic function f € CY(D) satisfies condi-
tion (8.6), and Rea # kIma on 0D for some real constant k, then f
18 holomorphic in D.
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For n > 2 Problem 8.5 have been solved only for the ball and for
holomorphic functions ak ,(z) (see [36, Chapter 5)).
Suppose given a function ¢ on 9D.

PROBLEM 8.6. Find a harmonic function F' in D such that w(F) = ¢
on 0D.

This problem is analogous to the oblique derivative problem for real-
valued harmonic functions. What is required is to determine necessary
conditions for solvability of Problem 8.6 and to construct a solution of this
problem given by an integral representation, for example, in the ball.

9. Functions Representable by the Integral Formulas

Suppose n > 1. We rewrite (8.5) in integral form by multiplying (8.5)

by the fundamental solution g((, z) of Laplace’s equation and integrating
over 0D. We obtain

/8Dg(C’Z)'uf(<) = /6D Q(C,Z) Zak,m(C)df/\dC_[k,m] ANdC, z¢0D.

k>m

Using Green’s formula (2.1) and Stokes’s formula, we get

6= 1 [U(C,zwZd<gak,m>Ad<’[k,de< zeD. (91)

k>m

PROBLEM 9.1. If f € C(D) and harmonic in D, and ay,,, € C*(0D),
does (9.1) imply the holomorphicity of f in D?

When ag., = 0, we obtain the problem about functions representable
by the Bochner-Martinelli integral. If f € A(D), then (9.1) is an integral
representation of f, since the component d(gax, ) AdC[k, m]Ad( is a O-exact
form.

More general there is a problem on functions representable by the
Cauchy-Fantappi¢ formula (2.5). Consider for a domain D continuously
differentiable (in ¢) vector function n = n((,z) = (n1,... ,7), ¢ € 0D,
z € D, such that

Xn:nk(C,z)(ck—zk)zl for ¢(€dD, z€D.

k=1
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Then '(n) A d¢ is the Cauchy-Fantappie kernel. Concerning for-
mula (2.5), we can pose a problem analogous to the problem for the
Bochner-Martinelli integral: namely, if (2.5) holds for f € C(D), will f
be holomorphic in D?

If the functions 7, depend holomorphically on z (for example, in the
case of the Khenkin-Ramirez kernel, or convex domains), then the answer
is obvious. If the 7 are arbitrary, then it is easy to give an example where
the answer to this question is negative. Let P((, z) be the Poisson kernel
for unit ball (see Sec. 7). As Dautov showed (see Sec. 10), the kernel
P((, z) is a Cauchy-Fantappié kernel for n = 2. But (2.5) holds with the
kernel P((, z) for all harmonic functions. Therefore our questions must be
formulated as follows.

PROBLEM 9.2. For which Cauchy-Fantappie kernels w'(n) Ad( does the
equality (2.5) for a function f € C(D) imply that f € A(D)?

One class of Cauchy-Fantappie kernels can be specified in the following
way. The kernel w’(n) A d¢ has the form

W () AdC =" 6k(C, 2) k] A dC.
k=1

THEOREM 9.1 (Kytmanov [36]). Let

(6 7) = ()OS =y
Ck
for ( € D and z € D, { # z, where h and 0h((,2)/0( are integrable
functions on D, and hy € C(D), hy > 0 in D. If (2.5) holds for a function
f €CY(D), then f is holomorphic in D.

The second class of the Cauchy-Fantappie kernels defines by the vector
function 7 such that

'Ok(Caz) — ]Ck _; ZkIQQk_Q(Ek - Zk),
Z:l |<m - zfﬁ’2am

where o, € N, k =1,... ,n. The kernel w'(n) A d( has the following form

. _ (n—1)! - aj—
Ua(C, 2) = w'(n) A dC = (2m)" JI:IlajKj—ZjIQ ?x
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x Zn:(—nk—l . & — % =dC[k] A dC.
k=1 Ot <Z |Cm — zmIQ“’”)
1

m=

For oy = --- = a, = 1, we have that U,((,z) = U((, ) the Bochner-
Martinelli kernel. For oy # 1 this kernel is the 0-closed differential form
with real-analytic (not harmonic) coefficients.

THEOREM 9.2 (Kytmanov, Myslivets [39, 41]). If for the function
f € CMOD) (X > 0) the Cauchy-Fantappié integral

F(z) = - fQUa(C, 2)

gwes a continuous extension F' of f into D, then the function F' is holo-
morphic in D.

For proof of this theorem we need the jump theorem and maxi-
mum modulus theorem for the Cauchy-Fantappie integral F', the Cauchy-
Fantappie formula for smooth functions and so on.

10. The General Form of Integral Representations of
Holomorphic Functions

The 0-Neumann problem is closely related to that of describing the
general form of integral representations. By an integral representation of
holomorphic functions we means a formula of the type

fz) = F(Qu(C), (10.1)
Jop
valid for all z € D and all f € O(D). Here D is a bounded domain
with smooth boundary, and p.(¢) is a differential form of type 2n — 1
with continuous on 0D coefficients for any fixed z € D. A form pu,(()
satisfying (10.1) will be called a reproducing kernel.

Any reproducing kernel can be obtained from a fixed one (for example,
from the Bochner-Martinelli kernel) by the addition of forms orthogonal
to holomorphic functions (of type (4.4)), and conversely, every form which
is orthogonal to holomorphic functions can be obtained as the difference
between a fixed reproducing kernel and another suitable one.
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Observe that, if a reproducing kernel is multiplied by a function ¢,(¢),
(e D, ze D, satisfying

0(¢) € A(D), ¢,(2)=1, ze€D, (10.2)

then we again get a reproducing kernel. Indeed, suppose u,({) satis-
fies (10.1). Then

/ TQe O = [l = 1)

It must be noted that the class of kernels of the form ¢.({)w'(n) A d¢
is invariant under biholomorphic mappings ([3]), though it is not known
whether a similar assertion holds with regard to the Cauchy-Fantappie
kernel w'(n) A dC.

For n = 1, the Cauchy-Fantappi¢ kernel goes over into the Cauchy
integral formula

ey L f(€) d¢
f(z) = 2mi Jop C—2 z€D.

THEOREM 10.1 (Aizenberg [3]). Let D be a bounded domain in C!
with smooth boundary, and u.(¢) a continuous reproducing kernel. Then

a(0) = 1. :(C) d¢

2rt (—2z
for some . (C) satisfying (10.2).
PROOF. Since d( is non-degenerate on D and continuous, we have
ILl'Z(C) = Qz(() dc,
where g, € C(9D) for fixed z € D.

Consider the function

h-(¢) = g-(¢) —

1
2mi(¢ — z)
For every f € O(D), we have

/f dCO

It is well-known that h, can be extended to D, to each fixed z € D, as
a function in A(D). Set

p=(C) = 1+ 2mi(¢ — 2)h.(¢). O
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THEOREM 10.2 (Dautov [4, 15]). Let D be a bounded domain in C?
with boundary of class C*. Suppose u.(¢) is a reproducing kernel with
coefficients of class C*°. In order that each reproducing kernel u,(¢) be a
Cauchy-Fantappié kernel, it is necessary and sufficient that D be a domain
of holomorphy.

For n > 2, no such description of reproducing kernels has been obtained.
It is known (Dautov [4, §13]) that in strongly pseudoconvex domains D
any reproducing kernel is the linear combination of the Cauchy-Fantappie
kernels.

PROBLEM 10.1. Prove (or disprove) the sufficiency or necessity in
Theorem 10.2 when n > 2.

Theorem 6.1 shows that in strongly pseudoconvex domains D, every
reproducing kernel u,(¢) has the form

p=(C) = U(C, 2) + #0h.(Q),

where k() is a harmonic function in D of class C>=(D).

11. The Functions Representable by Logarithmic Residue
Formula

Consider one more class of reproducing kernels, so called logarithmic
differentials. Let ¥ (¢) = (¥1(¢),...,¥.(¢)) be a holomorphic mapping
such that 1, are entire functions in C*, j =1,... ,n. Suppose ¥({) =0 if
and only if ( = 0. We denote the multiplicity of zero at ( = 0 by u.

If we denote U(w) = U(w,0) then

0c -2 = BB S ap= B B nac )

In this formula the point z is fixed. The kernel U((¢ — 2)) is O-closed
differential form of the type (n,n — 1) with real-analytic coefficients and
with the point singularity ( = z. '

If D is a bounded domain with smooth boundary and function f €

A(D), then
- / FOUWEC — =), zeD. (11.1)
oD
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Formula (11.1) is the partial case of the logarithmic residue formula
proved by Yuzhakov [81] and Roos [66] (see also [7]).
So, lU (1 (¢ — 2)) is a reproducing kernel.

If zZ)](C) ¢ then 1U( Y(C—2)) = Uu((, 2), where U,(C, 2) was defined
in Sec. 9 and /,4 = Q1 Q.

THEOREM 11.1 (Kytmanov, Myslivets [40]). If D is connected and
for f € CY(D) formula (11.1) holds then f 1is holomorphic in D.

Scheme of the proof. First of all we have to proof the analogue of the
Bochner-Martinelli formula for smooth functions (see (2.2)):
If a function f € C'(D) then

- (3 — ) = pf(2), zeD,
aDﬂQUWK ))'AdﬂOAUWK ) {Q 2 ¢ D,

the second integral converges absolutely for z € D.
As a corollary we get a jump theorem for the integral

Lf(z)= [ fQU@(C—2), z¢dD.
oD

Namely, the integral Lf has the continuous extension on 9D from the
inside D and from the outside D, and

Lt(2) — L™ (2) = uf(2), ze€dD.
The second step is the following:

P _
B‘Z:JjU('lﬁ(C —2)) = 9cU;(¢, 2),

moreover, U;((, z) is a (n,n — 2)-differential form with real-analytic coefhi-
cients and with the point singularity C = z. From here we get

gl = [ 1O =3 5 [ S0B(¢.2

for some (n, n — 2)-differential forms U}, Wlth real-analytic coefficients and
with the point singularity ¢ = z.
If we denote

63'3(2) = oD f(C)ECU]s(C’ Z), < §é aD,



FUNCTIONS WITH THE PROPERTY 31

then from conditions of theorem and from jump formula we have that
differential form

Bi =3 (1) Bra(2)dzls] A dz

is d-closed outside D. .
We solve the equation 8; = da; outside D and prove then this equality
is true into D. From here we get then Lf is holomorphic in D. O

PROBLEM 11.1. Prove Theorem 11.1 for continuous functions f (and
for other classes of functions).

12. Functions with the Property of One-dimensional
Holomorphic Continuation along Complex Lines

Consider complex lines [, of the form
lz,b—_— {C : <k =z +the,k=1,... ,n,t€ (C}.

The point z € C™ and the point b € CP*™' (b is defined to within of
multiplication on a complex number A # 0).

We write the Bochner-Martinelli kernel U((, z) in variables t and b. We
have |¢ — z|> = |t|?|b|*>. Then

dC=dC A Nd, = (bydt + tdby) A -+ A (bpdt + tdby,)
=171y (=1 bydt A dblj],

since db =dby A--- ANdb, =0 in cpr,
In exactly the same way

S (=1)5 (G — 2)dC[K] —t"lz 17=15,db[j]

k=1

From here we have

LEMMA 12.1. The Bochner-Martinelli kernel in variables t and b has
the form

U(¢,2) = 5 AAG)
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where
oy < (8 DI S0 1Bl A S (1) b
- (@m)n |b]"

Let D be a bounded domain in C* with smooth boundary. Give the
following definition (Stout [75]). The function f € C(0D) has a property
of one-dimensional holomorphic _continuation along complex lines if for
any complex lines [, (meeting D) there exists a function F,, with the
following properties:

a) F,p € C(DNiy);

b) F,, = f on the set 9D N, y;

c) F. 4 is holomorphic in interior (with respect to topology of l.») points
of the set DN 1,.

THEOREM 12.1 (Stout [75]). If 0D € C* and a function f € C(0D)
has a property of one-dimensional holomorphic continuation along all com-
plex lines then f has a holomorphic extension into D as a function of
several complex variables.

Proor. Consider the integral

M#@zéﬂmwwmz¢ﬁ

The Fubini theorem, Lemma 12.1 and the conditions of the theorem imply

_ dt
M= oo 0T =0
cpn-! aDNL,
Applying Theorem 5.2 for continuous functions (see [36, Theorem 15.4))
we have that M f gives holomorphic extension of f into D. O

For the ball Theorem 12.1 was proved in [1, 61].

PROBLEM 12.1 (Stout). Which families L of the complex lines are suf-
ficient for holomorphic extension?

A family £ is sufficient for holomorphic extension if any function f €
C(0D) with a property of one-dimensional holomorphic continuation along
complex lines I, ;, € £ has a holomorphic extension into D.

Consider the following family.

Let V be an open set in C"*. We denote

Ly = {lz,b : lz,b nv 76 @}.
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If 0D is connected and VN D = & then Ly is sufficient family since in
this case M~ f = 0in V then M~ f = 0 outside D (by uniqueness theorem
for harmonic functions).

THEOREM 12.2 (Agranovskil, Semenov [2]). Let 0D be connected and

an open set V C D. Then Ly is sufficient family for a holomorphic exten-
s10M.

Proor. Consider the integral

[ @-msuea= [ o[ sow-o sev

Then this integral vanishes into D. Apply to this integral the Laplace
operator:

A arouea=a(a [ rovea).
aD oD

From here .

oM+ f

0Zx ,

Then M™f is a holomorphic function in D. Applying Theorem 5.3 for

continuous functions (see [36, Corollary 15.6]) we have that M* f gives
holomorphic continuation of f into D. O

The proof of this theorem shows that holomorphic extension of f into D

is possible under more weak limitations on f, so-called Morera conditions.

THEOREM 12.3 (Globevnik and Stout [19]). Let n > 1, and let D be
a bounded domain in C™ with connected, smooth (of class C*) boundary. If
a function f € C(OD) and for almost all z € C*, for almost all b € CcP!

/ F(Q)dt =0,
oD, ,

then the function f has a holomorphic continuation into D.

0= zeD.

- PROOF is the same as for Theorem 12.2.
Some modification of this proof shows that it is true the next assertion.

THEOREM 12.4 (Kytmanov, Myslivets [38, 41]). Under conditions of
Theorem 12.8 for a fized nonnegative integer k the integral

/ F(Q)tkdt =0
aDN,
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for all l,,, then the function f has a holomorphic continuation into D.

Theorems 12.3 and 12.4 are true for the family Ly for any open set V.
Consider two holomorphic mappings ® = (p1,...,p,) and ¥ =

(¥1,... ,1,) consisting on entire functions in C"*, and such that ®(z) = 0,
Y(z) =0if and only if 2 =0, (¥ 0 ®)(2) = (&}*,... , 28~) for some p; € N,
j=1,...,n.

Let

map={C: ¢ =2+ @;(bit™,... bat™),5=1,... ,n,t €C}

be a complex curve. The points z € C*, b € CP*! and k; € N such that
kipr =+ = knpn.

THEOREM 12.5 (Myslivets (1999)). If 0D € C? and connected and a
function f € C(0D) has a property of one-dimensional holomorphic contin-
uation along all complex curves m,; then f holomorphically extends into

D.

PROOF uses the theorem of type Theorem 11.1 and the representation
of a kernel U((¢ — z)) in variables ¢ and b of the next form

UG~ ) = § AA)

where () is a (n — 1,n — 1)-differential form independent of ¢.

PROBLEM 12.2. Which families of complex curves m,y are sufficient
for a holomorphic continuation?

13. Holomorphic Extension from a Part of the Boundary

In the next two sections, we assume that the dimension n > 1. We will
be interested in two questions:

PrOBLEM 13.1. If T’ is the boundary of a bounded domain D, and
f is a CR-function on I' \ K, where K is a compact subset of I, what

condition must be imposed on K so that f extends into D as a holomorphic
function F'?

PROBLEM 13.2. Under what conditions on K and [ does the extension
F have ”good” boundary behavior near K? In other words, when does F
determine on I' a CR-function f? This function also will serve as an

extension of f from T\ K to T
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Recall a function f € C(T) is CR-function if w(f) = 0 for any vector
field w € T*(I'). A function f € C(T') (or f € £ (")) is CR-function if

/F F(0)p(C) =

for any (n, n—2)-differential forms ¢ with C* coefficients and with compact
support.

Well-known Hartogs-Bochner theorem says that any C' R-function given
on connected smooth boundary 0D of a bounded domain D holomorphi-
cally extends into D. G.Lupacciolu considered Problem 13.1 for continuous
C R-functions given on the part of a boundary.

Let D be a bounded domain in C™ such that D has a schlicht envelope
of holomorphy. For any compact set K C D we set

f(ﬁ:{zep [h(2)] < max |h], he@(D)}

We assume that the hypersurface I' = 9D \ K is a smooth (class C!),
connected manifold in C* \ K.

Suppose K = K p; for example, K could be a polynomially convex, or

K = Kq, where Kq is the envelope of K with respect to O(Q2), with  an
open set containing D.

THEOREM 13.1 (Lupacciolu [51]). If K = K5, T = 8D\ K, and f is
a continuous CR-function on ', then there exists a holomorphic function
F in D\ K continuous up to I' and such that boundary values of F on I’
cowncides with f.

ProoF. First of all we discuss some preliminaries. Let V' be an open
neighborhood of K in C”, and let # be a function of class C* in C" that
is equal to 1 on K|, satisfies 0 < f < 1 off K, and has compact support in
V. For each positive €, we write D. = DN {z: 3(z) <1—¢}, and I, =
0DN{z : B(z) < 1—e}. By Sard’s theorem, the set I'. is a smooth manifold
with smooth boundary I, for almost all positive . Now D\ K = U.s0D:,
and '=0D \ K = Usol.

If f is a continuous CR-function on I' then the approximation
Baouendi-Treves theorem shows that for almost all positive

foo= [ fp (13.1)

e are
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for any (n,n — 2)-differential form ¢ with smooth coefficients and with
compact support in C* \ K.

Subsequently we will assume that the sequence €, — 0 is decreasing as
s — oo and is chosen so that OT;, is a smooth manifold, and (13.1) holds
for ... We write D., = Dy and I'., =T,

Suppose G is an open nelghborhood of D, and h € O(G) (we may
assume that G is a domain of holomorphy). For each positive €, we consider
the set

a.(h) = {z €G:h(z)] > _m_%|h|} .
D\

€

Then G.(h) C G\ (D \ D.), and for every z € G.(h) the level set
L.(h) ={¢ € G: h(¢) = h(2)} C G:(h).

We write

G(h) ={z€ G : |h(z)| > mj?xlh\}.
Since K = (.o D \ De, we have G(h) = ., G<(h). Since K = }?ﬁ, we
have
D\Kc |J U &

GDD heO(G)

By Hefer’s theorem, for each h € O(G) there are holomorphic functions
h1(¢, 2),... ,ha(¢,2) on G x G such that

= (G, 2)(ak = G). (13.2)

We can explicitly compute a solution of the d-problem 9®4(¢) = U((, z)
on the set G\ L,(h). Let

VM= 2) [y G- zj -

N Z . |2" _STEH g, ]]} A dC.

j=k+1
(The forms Ux((, z) were first considered by Martinelli [59] in the proof of
the Hartogs extension theorem.)
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LEMMA 13.1. Set

%0 = =g > ul€, )G = 2UklC ).

Then @4 (C) is defined in G\ L.(h), and 3,3, (¢) = U((, z).

PROOF. It easy to check that 9.Uy(¢,2) = U((,z) outside L.(G).
Therefore

(0 = s >, (G, )

1 g
= m ;hk(C,Z)(Ck z)U((,2) = U(C, 2)
by (13.2). O
Now suppose that G and G’ are open sets in C® with nontrivial inter-
section, h € O(G), and &' € O(G'). We consider the Hefer decomposi-
tion (13.2) for A and A’ and a point z € G N G".
If n > 3, we consider the forms Uy, ;(¢, z) given for 1 <k <j < n by

(€)= U3 S8 ()" G =)
Urilt.2) = (2ma)™ (Ck — 21) (¢ — 25) [Z |¢ — 2|24 dc[m, k. J]

m=1

+ Z_: ('_1)m_1(§m - Zm)dé‘[k’m’j]

+ Xn: (”1)m(5m_2m)dg‘[k,j,m]} AdC.

[
For k > j, we set Uy ; = —U,x. We further denote
B (hhls = hihy) (Ce — 26) (G — 27) U (¢, 2)
0= 2 TG RO RE)

LEMMA 13.2. The following equalities hold on the set (G \ L,(h)) N
(G'\ Lo()):

Pu(¢) = 2w (¢) = Dxnw(C), if n >3, (13.3)
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() = (hahy — hoh')dG A dG
Q) = () = Grph© ) (KO - K@)
LEMMA 13.3. On the set G\ L,(h), we have

if n=2. (13.4)

8@;, BUk
=1,... = 3,
8Zk 3zk HC\IJ k=1, ,n, for n>=3
and 0%, U
h 27k - -
FERRr k=1,2, for n=2,
where

Suppose now G D D, h € (’)(G), and G(h) = U, Gs(h), where
Gs(h) = {z € G : |h(z)| > max |h|}.
D\D.

Consider the function

= [ rouea - [ s (13.5)

The idea of the proof is to show that F} is holomorphic in G4(h) \ T
and independent of s and h, while outside D it equals zero, and so (13.5)
gives a holomorphic extension of f into D \ K (by the jump theorem of
the Bochner-Martinelli integral).

The function (13.5) is defined for z ¢ I and z € G,(h), since IT'; C
D\ D;.

We first show that it does not depend on s. Indeed, if ' > s, then the
function F}' also is defined in G4(h) \ T, so

ﬁ@—ﬁ@=£wf©WMO

— | fQ2(Q)+ [ FHOBr(C)-

ar,, ar,
Since |h(z)| > |h({)] if z € G, (h), and ¢ € T'y \I‘ (because I'y \ 'y C
D \ D,), the form ®; has no singularities on I'y \ T, and 0®;, = U((, ) by
Lemma 13.1. The coefficients of ®;, are class C*, and we can extend them
outside I'y \ T; as functions of class C* with compact support, so (13.1)
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is applicable. Consequently, F'(z) = F§(z). From now on we shall omit
the symbol s on the function F.

LEMMA 13.4. If F satisfies the hypotheses of Theorem 13.1, then for
z € G5(h) we have

F(z) = Fp(z), ze€ D\K.

PROOF. The Bochner-Martinelli formula can be applied to the function
F'in the domain D;. The boundary D, = T', U K, where K, = DN {z:

1 — B(z) = €,}, and we may assume that K is also a smooth manifold.
For z € G5(h) N D, we then have

F(z)=/8D< UG, 2) = /foUc, /F

But |h(z)| > |h(¢)| for ¢ € K, C D\ Dy, so U(C,2) = 8%4(¢), and by

Stokes’s formula

/ FOU(C,2) = / FO®QO =~ [ 1080, o

Lemma 13.4 shows why we have to choose the function F} in the
form (13.5).

LEMMA 13.5. The function Fy(z) is holomorphic in G(h)\ T.

ProoOF. If z € G4(h) \ T, then by Lemma 13.3 and by (13.1) we have
o [ [ o
0Zk N T, 0z 0z

N Uy = . _ 0U; / U,
“/rs Oz, /anf(azk EN/) /f&(azk) rsfaik'

U
But since the form Q— has no singularities on I'; (if z ¢ I'), we obtain

sz
that %—; =0for k=1,...,n by again applying (13.1). O
k

LEMMA 13.6. If W' € O(G"), where G' D D, then Fj, = Fj for z €
G.(W)NGs(R)\T.

PROOF. The case n > 3 is proved using (13.3) and (13.1).
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If n = 2, then using (13.4) we obtain
N F(Q)(hahf — hah)d¢
A0 - P = o | BRI mO Sy 19
Since z € GL(K) N Gs(h) \ T, we have |h(¢)| < |h(2)| and |A'(¢)] < |W/(2)]
for ¢ € dI's, so

L JF(R(Q)
(R(¢) — h(2)) (K (¢) — K (2)) kE;O )1+k (W (2))+3’

and this series converges absolutely and uniformly on OI';. Substituting it
into (13.6) and integrating term by term, we find

Fh(z) - Fh'(Z) - (2,“_2-)2 k%;() (h(z))”k(h'(z))lﬂ /BI‘S f,Uk,g,

where

pr = (hahy — hahy) (R(O)* (R (€)Y dC.
The form py ; is O-closed on Ty, so by (13.1),

frs= [ SOy =0.
ol J s

Thus, the integral (13.5) defines a function F' that is holomorphic in
D\ K and holomorphic outside D. Let W be a neighborhood of 0D\ K =T

contained in

U U &w

GDD heO(G)
such that W\ T = W, UW_, where W, C D, while W_ ¢ C*\ D and
W, , W_ are connected sets. We will show that F' = 0in W_.

Consider a neighborhood G D D and h € O(G), and suppose z € G is

a point such that |h(z)| > maxz |h|. Such a point exists since D C G and
|h| does not attain a maximum inside G. This point z ¢ D. Let

Gr(k) = {z: [h(2)] > max|hl}.
Then
a=ﬁf«wma—éwﬂ0%@»

But @, does not have singularities on I'; because L.(h) does not intersect
0D, while 09, = U((,2). By (13.1), F(2) =
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Since F' =0 in G1(h) C G(h), while G1(h) N W_ # & (so G, will abut
0D\ K) and W_ is a connected set, ' =0in W_. O

Theorem 13.1 generalizes results from [76].

As can be seen from the proof of this theorem, we do not need to require
connectedness of I', but only, for example, the following: the compact set
K C D, and K is convex with respect to the class O(G), where G is
a domain of holomorphy containing D, while the complement C™ \ D is
connected. Then every CR-function f € C(I') extends holomorphically
into D \ K. Indeed, in this case F' will be holomorphic in G \ D, and
consequently will extend holomorphically into D by Hartogs’s theorem.

For domains in C?, the O(D)-convexity of K is also a necessary condi-
tion for the existence of a holomorphic extension.

THEOREM 13.2 (Stout [77]). Suppose D is a bounded strongly pseudo-
convez domain in C* with 0D € C%. If K is a compact subset of D, then
every CR-function in 0D \ K extends holomorphically into D if and only

if K = K.

After Theorem 13.1 it was appeared a lot of results in this direction.
Lupacciolu [52]-[55] considered different classes of compact sets: mero-
morphically convex sets, p-meromorphically convex sets; Kytmanov [34]
considered the case of integrable C' R-functions; other classes compact sets
and CR-functions were considered by Lupacciolu and Stout [56]. The
surveys of different results can be found in [77, 14].

Theorem 13.1 was considered on generic manifolds in [42, 43].

Consider a local version of Theorem 13.1. Let Q) be a domain of holo-
morphy in C*. Let K C Q) be a compact set, and suppose the hypersurface
I' is a smooth, oriented, relatively closed manifold in Q\ K. We will assume
that T ={z € Q\ K : p(z) =0}, p € C}(Q\ K) and real-valued, dp # 0
on I Then Q\ (TUK) =QtUQ™, where Q" = {z € Q\ K : p(2) > 0}
and 0~ ={z€Q\ K:p(z) <0}.

We are interested in the question:

PROBLEM 13.3. Whether every CR-function f onT can be represented

as the difference of boundary values of functions h* that are holomorphic
in QF.

If n = 2, then even in the simplest situations the answer is negative.
Consider the following example.
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EXAMPLE 13.1. Suppose Q is the unit bidisk, that is @ = {z € C? :
|z1] <1, 22| < 1}, let K = {(0,0)}, and let T = {z € Q\ K : |21] = |2o|}.
Then I' is a smooth hypersurface in 2\ K. Theset Q\ (TUK) = QU
where Ot = {z € Q: |21] < 22|}, and Q™ = {2 € Q : |21| > |20|}. We take
the function 1/(z122) as the CR-function f on I". If f = h* —h™ on T,
where h¥ € O(Q%), then

/lzﬂ:G—E h+dzl N dZQ = O,

|z2|=a

since for fixed z; the function A* is holomorphic in the disk {|z1]| < |22}
For precisely the same reason,

/|21|=a+s h_dzl N dZQ = O,

|z2|=a

and then

/I21I=a fdzy A dzg

|22 |=a

must be zero; but it equals (277)2.

This example shows that in C?, we cannot remove even a point from
Q' N

THEOREM 13.3 (Kytmanov [35]). Let Q be a domain of holomorphy

in C", where n > 3. Consider a compact set K = Ko C Q and a smooth,
oriented, relatively closed hypersurface T' in Q\ K. If f is a CR-function
on I', then f can be represented on I" as the difference of boundary values
of functions h* € O(QF).

14. Removable Singularities of C' R-functions

THEOREM 14.1 (Kytmanov [34]). Under the hypotheses of Theo-
rem 13.1, if the CR-function f € L®(I'), then its holomorphic extension
F also is bounded, and

[fllce = sup | F.
D\K

In particular, if D € C! and K C 0D, then F € H*(D) and, therefore,
its boundary values gives a C R-extension of f on the whole boundary 6D.
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PROOF. Suppose F'(2°) = 1 for some point 2° € D\ K, yet || f||ze < 1.
Since the f* are also C'R-functions, and their holomorphic extensions given
by the functions F*, we have by (13.5) that

1=F*z°%) = A U, 2) - . F*()@(Q).
The integrals on the right-hand side tends to zero as k € oo since f¥(¢) — 0
as k — oo, and we can apply the Lebesgue dominated convergence theorem.
O

COROLLARY 14.1 (Analogue of Riemann’s theorem). Suppose D is a
holomorphically convex compact set, 0D € C1, and O(D) is dense in the
class of functions A(D). Ifh € A(D), f is a CR-function on 9D\ K, where
K ={2€ 0D : h(z) =0}, and f € L>(OD), then f is a CR-function on
oD.

Since o(K) = 0, we may assume here that f is defined on whole bound-
ary 0D.

PROOF. Let S = {2z € D : h(z) = 0}. Since O(D) is dense in A(D),
we have f?ﬁ = I/(\'A(D), SO f?ﬁ = 5. In view of Theorem 14.1, the function
[ extends into D\ S as a holomorphic function F' that is bounded in D\ S.
By Riemann’s theorem, F' extends holomorphically into D. Consequently,
f is a CR-function on 4D. O

If, in the situation of Corollaryl4.1, the CR-function f € £1(0D \ K),
then it might not be a C'R-function on 0D.

EXAMPLE 14.1. Suppose [ = 1/z;, D = B(0,1),and K = {z € §(0,1) :
z1 = 0}. Then f is a C'R-function on S(0,1) \ K, and we can show that
fe LS, 1)) Indeed,

/ ————da < C’/ ——d$1 A dyl/ do’
5(0,1) |21 |z1|<1} |21 {lz2[*++|2zn|?=1~|21]2}

< / (1 — 1) I 24y A dyy
(=11} |Z1| |

1
= C127T/ (1 -7 92r < .
0

But f is not a C'R-function on S(0, 1), for otherwise it would be extend by
the Hartogs-Bochner theorem to B(0,1) as a function F' € H(D), and by
the uniqueness theorem would be coincide with 1/z; in B(0,1).
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However, if we replace the zero set K in Corollary 14.1 by a peak set,
then the corollary remains true for functions of class £!(9D).

THEOREM 14.2 (Kytmanov [32]). Let D be a bounded domamn in C"
such that 0D is a Lyapunov surface. Suppose that K C 0D is a peak set
for the class of holomorphic functions in D of class C*(D), a > 0 (that s,
K ={z€ 0D : ¢¥(z) = 1}, where ¢ is a holomorphic function in D of class
C*(D), and || <1 on D\ K). If f € L}(OD), and f is a CR-function
on 0D\ K, then f is a CR-function on 0D.

The generalizations of this theorem are given in [44, 60].
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