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Preface

This is an expanded version of the lectures given at the Global Analysis
Research Center (GARC) of the Seoul National University in June, 1999,
and at Peking University in July, 1999, at the invitation by Professor Dohan
Kim and Professor Lizhong Peng respectively.

A localization operator Lr on a complex and separable Hilbert space X
is a bounded linear operator on X defined in terms of a square-integrable
representation of a locally compact and Hausdorff group G on X, and a
function F on G. A major result that we prove is that the linear operator
Ly is in the Schatten-von Neumann class S, if the function F' is in LP(G),
1 <p < oco. A formula for the trace of L is given in terms of F' when F is
in L'(G). We then look at localization operators on two specific groups, i.e.,
the Weyl-Heisenberg group and the affine group. In the case of the Weyl-
Heisenberg group, we are led to the class of time-frequency localization
operators studied by Daubechies in the paper [1].

If we let G = R* and X = L*(R"), and the representation of R™ on
L?(R") is taken to be modulation of a function in L*(R"), then, of course,
the representation is no longer irreducible and hence cannot be square-
integrable. The “localization operator” Lp in this setting is called a wavelet
multiplier and is also in the Schatten-von Neumann class S, when F' is in
LP(R"), 1 < p < co. An interesting fact that we show in Chapter 8 is that
the Landau-Pollak-Slepian operator arising in signal analysis is in fact a
wavelet multiplier.

Using the basic theory of the Weyl transform which we recall without
proof from the book [22] by Wong, we give two product formulas for the
wavelet multipliers and a product formula for the Daubechies operators.

The product formulas for wavelet multipliers given in Chapters 9 and 10
are new, while all the other results have recently been published or accepted
for publication.
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1 Square-Integrable Representations

Let G be a locally compact and Hausdorff group on which the left Haar
measure is denoted by y, i.e.,

/G £(gh)du(h) = /G F(h)du(g™h) = /G £ (h)du(h)

for all f in L*(G) and all g in G. Let X be a separable and complex Hilbert
" space of which the dimension is infinite. We denote the inner product and
norm in X by (,) and || || respectively. Let B(X) be the C*-algebra of
all bounded linear operators on X, and let || ||« denote the norm in B(X).
An irreducible and unitary representation 7 : G — B(X) is said to be
square-integrable if there exists a nonzero element ¢ in X such that

| o m(ae)Pauts) < o ()

We call any element ¢ in X for which ||¢|| =1 and (1.1) is valid an admis-
sible wavelet for the square-integrable representation 7 : G — B(X), and
we define the constant ¢, by

/I 0, 7(9))*du(g)- (1.2)

Theorem 1.1 Let ¢ be an admissible wavelet for the square-integrable rep-
resentation w : G — B(X). Then

(2,9) = — /G (2, 7(9)9) (n(9) 0, ¥)du(g) (13)

Cy

forallz and y in X.

Remark 1.2 The formula (1.3) is known as the resolution of the iden-
tity formula. The mapping from X into functions on G given by z —
c}l/ ®(z,7(g)¢), z € X, g € G, is known as the wavelet transform associ-
ated to the admissible wavelet ¢.
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To prove Theorem 1.1, we need a lemma.

Lemma 1.3 The subspace M of X defined by

v ={sex: [ r@eldus) < oo} (1.4
is a closed subspace of X.

Proof of Theorem 1.1: For z € M and h € G, we obtain, by (1.4),

/ (w(h)z, 7(g)0) Pdu(g) = f (@, 7(h~g)0) Pdp(o)

and hence, by (1.4), m(h)z € M for all z in M and h in G. Therefore,
using the fact that ¢ € M, M is a nonzero subspace of X which is invariant
with respect to the square-integrable representation 7 : G — B(X). Thus,
M = X, and hence, by Lemma 1.3, M = X. Now, we define the linear
operator A, : X = L*(G) by

(Ayx)(g9) = (z,7(9)p), z€X, g€G. (1.5)

Then, for z € X, and g, h € G, by (1.5), we have
(Apm(R)z)(g9) = (m(h)z,7(g)%)
“'9)p)

= (z,7(h7 g)p
= (4pz)(h7g),
and so,
Agn(h) = L(h)A,, (L6)
where
(LWf)(9) = f(r'9), g, heG, (1.7)

for all f in L?(G). Let {24} be a sequence of elements in X such that z; —
in X and A,z — fin L?(G) as k — oo. Then there is a subsequence of
{A,zk}, again denoted by {A,zx}, such that

A(pil,'k — f (18)
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a.e. on G as k — oo. Since
(zk,m(9)p) = (z,7(9)p), 9€G,
as k — oo, it follows from (1.5) that
(Apzi)(g) — (ApT)(9), 9€G. (1.9)

Thus, by (1.8) and (1.9), A,z = f. Hence A, : X — L*(G) is a closed linear
operator, and, by the closed graph theorem, 4, : X — L*(G) is a bounded
linear operator. Finally, for all z and y in X, we get, by (1.5)-(1.7),

(ALL()Apz,y) = (L(6)Au2, Agh)ine
- / (4p2) (g™ h) [ Apy) (W) dis()

- /G (4,2) (h) A,y (gh)du(h)

= (Apz, L(g7)ApY) 12(c)
= (Apz, (97 )W) r2(0)
= (n(9)A5A,z,y), 9€G,

where AY is the adjoint of 4,, and hence

ASL(9)A, = m(9)ALA,, g€G. (1.10)
Moreover, by (1.6),

AL L(9)A, = A A,m(g), 9€G. (1.11)

Thus, by (1.10), (1.11) and the fact that 7 : G — B(X) is irreducible, we
conclude that there exists a constant ¢ such that

AzA, =, (1.12)

where I is the identity operator on X. Thus, for all z and y in X, we get,
by (1.12),

c(z,y) = (A54,7,Y)
= (A¢$7A<py)L2(G)

- /G (2, 7(0) )W, 7@ P)du(9)
~ [ @@ vduts) (1.13)
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Thus, by (1.2) and (1.13),
c = clo,p)
= /G (0, (9) ) [Pdu(g)
Co- (1.14)

Hence, by (1.13) and (1.14), the proof is complete provided that we can
prove Lemma 1.3.

Proof of Lemma 1.3: Let us begin with the observation that if we equip
M with the inner product ( , ), and norm || ||, given, respectively, by

(z,9)p = (z,9) + (Apz, Apy) (1.15)
and |
zll2, = (z,2), (1.16)

for all z and y in M, then M is a Hilbert space which we denote by M,, and
A, : M, — L*(G) is a bounded linear operator. Using (1.6), (1.7), (1.15),
(1.16) and the fact that 7 : G — B(X) is a unitary representation, we get

Im(9)zll;, = lim(9)zl® + [ Apm(g)zl®
= [lzl* + | L(g9) Azl
= lzl* + | Apzl* = |lz|l?
for all g in G and z in M,,. Moreover, for all g in G, 7(g) : M, — M, is
onto. Indeed, using the fact that 7 : G — B(X) is a representation and the
invariance of M with respect to 7 : G — B(X), we get
y=m(g)m(g™")y

for all g in G and y in M,,. Thus, 7 : G — M, is a unitary representation of
G on M, and consequently A, is a scalar multiple of an isometry from M,
into X. So, by (1.15) and (1.16), there is a positive constant A such that

[Apzl)* = MzllZ, = Mjz|]® + MAgz|®, =€ M. (1.17)
Hence, by (1.17), A < 1 and

1A z]|* = Ilzl?, =€ M. (1.18)

1-A
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Using (1.18) and the density of M in X, we can extend A, : M — X to a
bounded linear operator from X into X, which we denote by A X = X.
So, if {z1} is a sequence of elements in M such that z; — z in X as k — oo,
then A,z — A,z in L?(G) as k — co. Since A, is a closed linear operator
from X into X with domain M, it follows that z € M. Therefore M is a
closed subspace of X.

Remark 1.4 Theorem 1.1 is a simplified version of Theorem 3.1 in the
paper [8] by Grossmann, Morlet and Paul. By Remark 1.2, the mapping

1/ 2Aq,, where A, is constructed in the proof of Theorem 1. 1 is the wavelet
tra,nsform assoc1ated to the admissible wavelet (.

As an immediate consequence of Theorem 1.1 and Remark 1.4, we give
the following corollary.

Corollary 1.5 The wavelet transform associated to an admissible wavelet
@ given by X 3z ¢, 12 A,z € LH(G) is an isometry of X into L*(G).

We can give some information on the set AW () of admissible wavelets
associated to an irreducible and unitary representation 7 : G — B(X) for
an important class of locally compact and Hausdorff groups G. A locally
compact and Hausdorff group G is said to be unimodular if on G the left
Haar measure p is also the right Haar measure, i.e.,

/G F(gh)du(h) = /G £ (B)du(gh) = /G £ ()dp(h)
/fhgdu(h /f Jpu(hg™) /f Jap(h

for all f in L}(G) and all g in G.

and

Theorem 1.6 Let G be a unimodular group and let m : G — B(X) be an
irreducible and unitary representation of G on X. Then AW(w) = ¢ or
AW (m) ={z € X : ||z|| = 1}.

Proof: Let D be the subspace of X defined by

{xeX /|M |2du()<oo}. (1.19)
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Suppose that D # {0}. Let z € D and h € G. Then, using (1.19) and the
unimodularity of G,

/ (m r(h)2)Pdulg) = / (&, n(h~"gh)z) *du(g)
- / (2, 7(g)z)Pdulg) <

and hence, by (1.19), 7(h)z € D. Therefore D is an invariant subspace of X
with respect to 7 : G — B(X). Thus, D = X. Let A be the linear operator
from X into X with domain D defined by

(Az)(9) = (z,7(g9)z), = €D, g€aq. (1.20)

Then, for z € X, and g, h € G, using (1.20) and the fact that 7 : G — B( X)
is a representation, we get

(Ar(h)z)(g) = (r(h)z,m(g)7(h)z)
(z,7(h™"gh)z)

and so,
An(h) = L(h)R(h)A, (1.21)
where
(L(Mf)(g) = f(r'g), 9, heEG, (1.22)
and
(R(W)f)(g9) = f(gh), g,h€QG, (1.23)

for all f in L2(G). Let {z}} be a sequence of elements in D such that ;, — z
in X and Az — f in L*(G) ad k — oo. Then there is a subsequence of
{Az}, again denoted by { Az}, such that

a.e. on G as k — 0o. Since

(zk, m(g)zi) — (z,7(9)2), 9€G,
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it follows from (1.20) and (1.24) that

(Azg)(9) = (z,7(9)z), 9€G. (1.25)
Thus, by (1.24) and (1.25), (z,7(-)z) € L*(G). Hence

/G (&, 7(9)z) Pdulg) < oo. (1.26)
Therefore, by (1.19) and (1.26),

z€eD. (1.27)

By (1.20), (1.24), (1.25) and (1.27), Az = f. Thus, A is a closed linear
operator from X into L?(G) with domain D. Let D be the Hilbert space in
which the inner product ( , )4 and norm || ||4 are given, respectively, by

(Z’, y)A = ($>y) + (A$7Ay) (128)

and
zll% = (z,2)a (1.29)

for all z and y in D. Then A : D — L?(G) is a bounded linear operator.
Using (1.21)—(1.23), (1.28), (1.29), the fact that 7 : G — B(X) is a unitary
representation and the unimodularity of G,

Ir(g)zlly = ln(g)zl® + [|Am(g)=®
1> + | L(g) R(g~") Az|?
= |l + |Az]® = llzll}
for all g in G and z in D. Moreover, for all g in G, 7(g9) : D — D is

onto. Indeed, using the fact that 7 : G — B(X) is a representation and the
invariance of D with respect to 7 : G — B(X), we get

y=7(g)m(g™ )y

for all g in G and y in D. Thus, 7 : G — D is a unitary representation of G
on D, and consequently A is a scalar multiple of an isometry from D into
X. So, by (1.28) and (1.29), we can find a positive number A such that

| Azl® = M|} = Allz||* + A Az|?, z €D. (1.30)
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Hence, by (1.30), A <1 and

|| A=) =

T /\llxll?, z €D. (1.31)
Using (1.31) and the density of D in X, we can extend A : D — X to a
bounded linear operator from X into X, which we denote by A: X 5 X.
So, if {zx} is a sequence of elements in D such that zx — z in X as k — oo,
then Az, — Az in L*(G) as k — oo. Since A is a closed linear operator
from X into X with domain D. it follows that £ € D. Therefore D is a
closed subspace of X. Thus, using the irreducibility of 7 : G — B(X), we
conclude that D = X and the proof is complete. a

Remark 1.7 We give in Chapter 4 a unimodular group G, and an irre-
ducible and unitary representation 7 : G — B(X) of G on X for which
AW(r) = {z € X : ||z|| = 1}. A different unimodular group G’, and
a new irreducible and unitary representation 7’ : G’ — B(X) for which
AW (m) = ¢ are also given. It is worth emphasizing the fact that Theorem
1.6 is false, in general, for non-unimodular groups, and Chapter 5 is devoted
to a study of a non-unimodular group for which the conclusion of Theorem
1.6 is not true.



2 Localization Operators

In this chapter we address the problem of associating to every function F
in LP(G), 1 < p < 00, a bounded localization operator Lg : X — X. The
problem of associating a bounded localization operator Lr: X - X toa
function F in L}(G) or L®(G) is relatively easy and this is tackled first.

Let F € L}(G) U L*(G). Then, for any z in X, we define Lrz by

1 ,
Lrzy) == [ FO@rpmo)ente)  (21)
v
for all y in X. Then we have the following proposition.

Proposition 2.1 Let F € L}(G). Then Lp : X — X is a bounded linear
operator and

1
ILFllx < C_'“FHLl(G)
"4

Proof: Let z, y € X. Then using (2.1), the Schwarz inequality, lell =1
and the fact that 7(g) : X — X is unitary for all g in G, we have

|(z,m(9)¢)(m(9)e, )| < Izl Iyl (2.2)
Since F € L'(G), it follows from (2.1) and (2.2) that

1
|(Lrz,y)| < —(IF |zl vl
©

and the proof of the proposition is complete. O
We also have the following proposition.

Proposition 2.2 Let F € L®(G). Then Lp : X — X is a bounded linear
operator and

ILFlls < [[Fllze@)-
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Proof: Let z, y € X. Then, using (2.1), the Schwarz inequality and the
assumption that F' € L®(G), we have

[(Lrz,y)|

< ZlFlee { [ lerloe) %m>}{/| )} 3

Now, by (1.3),

=

HW=—/MW Pdu(g) (2.4)
and

Iyl = /l u)%dulg). (2.5)
Hence, by (2.3)-(2.5),

[(Lez, )| < | fllzeo 2]l Iy,

and this completes the proof of the proposition. a

We can now associate a localization operator Lr : X — X to every
function F' in L*(G), 1 < p < oo, and prove thdt Ly : X — X is a bounded
linear operator. The precise result is the following theorem.

Theorem 2.3 Let F € LP(G), 1 < p < co. Then there ezists a unique
bounded linear operator Lrp : X — X such that

ILEll < o? | F oo, (2.6)

and Lpz is given by (2.1) for all z in X and all simple functions F on G
for which

p{g € G: F(g) #0} < oo

To prove Theorem 2.3, we need a recall of the Riesz-Thorin theorem
given in, e.g., Chapter 10 of the book [22] by Wong.

Theorem 2.4 (The Riesz-Thorin Theorem) Let (X, u) be a measure
space and (Y,v) a o-finite measure space. Let T be a linear transformation
with domain D consisting of all u-simple functions f on X such that

p{s € X : f(s) #0} < o0
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and such that the range of T 1is contained in the set of all v-measurable
functions on Y. Suppose that oy, an, By and By are numbers in [0,1] and
there exist positive constants My and My such that

T 1 < M; , eD, j=1,2.
177 5, <Mlfl o FED.
Then, for 0 < 0 <1,
= (1 - 9)0[1 + 90[2

and

B8

(1 - 0)/31 + 0/82>

we have

10,3, < MM Ny S €

X)’

Proof of Theorem 2.3: Since X is a separable and complex Hilbert
space of which the dimension is infinite, it follows that there exists a unitary
operator U : X — L?>(R"). Let F € L'(G). Then, by Proposition 2.1, the
linear operator Ly : L*(R") — L*(R"), defined by

Le =ULpU!, (2.7)
is bounded and

~ 1
Lol < —IIFlie (28)
©

where | |, is the norm in the C*-algebra B(L*(R")) of all bounded linear
operators from L?(R") into L*(R*). If F € L*(G), then, by Proposition
2.2, the linear operator Lr : L}(R") — L%*(R"™), defined by (2.7), is also
bounded and . '

(Lel. < [|Flli(or (29)

Let D be the set of all simple functions F' on G such that

#{g e G: F(g) # 0} <oo.

Let f € L*(R") and T be the linear transformation from D into the set of
all Lebesgue measurable functions on R" defined by :

TF =Lgf, FeD. (2.10)
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Then, by (2.8) and (2.9),
1
ITFllea@e) < —lIF ol /12y
»

and
ITFl2@ny < Fllzo@lIf 1l 2@e)
for all functions F in D. Thus, by Theorem 2.4,

-1
ITF @) < 67 | Flliro) | flliagey,  F €D (2.11)

Therefore, by (2.10) and (2.11),

~ 1
|Lrfll2@n) < co?||Fllee@llfllzwey, F €D - (212)

Since (2.12) is true for arbitrary functions f in L*(R"), it follows that

-~ -1
ILrls < co”||Flleoey, FeD. (2.13)

Let F € I?(G), 1 < p < co. Then there exists a sequence {Fj} of functions
in D such that F, — F in LP(G) as k — oo. By (2.13),

~ ~ 1
|Lr, — Lr;l« < ¢o” || Fi = Fjlloe) = 0

as k, j — oco. Therefore {Lp,} is a Cauchy sequence in B(L*(R")). Using
the completeness of B(L?*(R")), we can find a bounded linear operator Lp:
L*(R") — L*(R") such that Lg, — Lr as k — oo. Since each Ly, satisfies
(2.13), it follows that L also satisfies (2.13). Thus, the linear operator
Lr: X — X, where
Lr=U"'LgU,

is a bounded linear operator satisfying the conclusions of the theorem if
F € IP(G), 1 < p < 0o. To prove uniqueness, let F' € LP(G), 1 < p < o0,
and suppose that Pr : X — X is another bounded linear operator satisfying

the conclusions of the theorem. Let Q : LP(G) — B(X) be the linear
operator defined by

QF = Lp — Pr, F € IP(G).
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Then, by (2.6),

IQF|l. < 2¢,°|IFllLe(e), F € LP(G).

Furthermore, QF is equal to the zero operator on X for all F in D. Thus,
Q : LP(G) — B(X) is a bounded linear operator that is equal to zero on
the dense subspace D of L?(G). Therefore Pr = L for all functions F in
LP(G).

Remark 2.5 The bounded linear operators L : X — X introduced in this
chapter are dubbed localization operators. The impetus for the terminology
stems from the simple observation that if F'(g) =1 for all g in G, then the
resolution of the identity formula, i.e., (1.3), implies that the corresponding
linear operator is simply the identity operator on X. Thus, in general, the
function F is there to localize on G so as to produce a nontrivial bounded
linear operator on X with various applications in mathematical sciences.
The results in this chapter can be found in Sections 2 and 3 of the paper
[10] by He and Wong.



3 The Schatten-von Neumann Property

We prove in this chapter that a localization operator Lr : X — X associated
to a function F in LP(G), 1< p < 00, is in the Schatten-von Neumann class
Spy 1 < p < 0o. We begin with a recall of the definition of the Schatten-von
Neumann class Sp, 1 < p < oo, and some of its basic properties that we
need in this chapter.

Let A be a compact operator from the separable and complex Hilbert
space X into X. If we denote by A* : X — X the adjoint of 4 : X — X,
then the linear operator (A*A)% : X — X is positive and compact. Let
{p:k=1,2,-- -} be an orthonormal basis for X consisting of eigenvectors
of (A"4)? : X — X, and let s¢(4) be the eigenvalue of (A*4)7 : X —» X
corresponding to the eigenvector vy, k = 1,2,---. We say that the compact
operator A : X — X is in the Schatten-von Neumann class S, 1 < p < oo,
if

and we call s;(A), k =1,2,-- -, the singular values of A. Tt can be shown
that 5, 1 < p < oo, is a Banach space in which the norm Il lls, is given by

1

4lls, = {Z Sk(A)p}p , Aes,.
k=1

We let S, be the C*-algebra B (-X) of all bounded linear operators from X
into X.

The following properties of S; and Seo are well-known.

Proposition 3.1 Let A: X — X be a bounded linear operator such that

o

Z‘(A%,wk)l < o0

k=1

14



9. The Schatten-von Neumann Property 15

for all orthonormal bases {¢r : k=1,2,---} for X. Then A: X — X is in
S.

Proposition 3.2 Let A : X — X be a compact operator and let si(A),
k=1,2,---, be its singular values. Then

sup |sk(A4) = [|All.

1<k<oo
Further properties of Sp, 1 < p < oo, can be found in Reed and Simon
[16], Simon [17] and Zhu [24], among others.
The first and foremost result on the Schatten-von Neumann property of
localization operators is given in the following proposition.
Proposition 3.3 Let F € L'(G). Then the localization operator Lp : X —
X isin Sy and A
ILells < —lIFllzio)- (3.1)
®

Proof: Let {¢; : kK = 1,2,---} be any orthonormal basis for X. Then,
using (2.1) and the fact that 7 : G — B(X) is a representation, we get

ool = 3| [ Fl)eero)o)nlae prduls)
k=1 k=11"%
<2 / F(9)]](00 7(9)) Pdula). (3.2)
k=1 C‘P

Hence, using (3.2), Fubini’s theorem, the Parseval identity, ||¢]] = 1 and
the fact that 7(g) : X — X is unitary for all g in G, we get

Z (Lewr, @il < —nFuu @ < . (33)
k=1

Hence, by Proposition 3.1, the localization operator Lp: X — X isin S;.
To prove the estimate (3.1), let F' € L*(G) be a nonnegative function. Then

(LyLp)? = Lp. (3.4)
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Thus, if {¢ : & = 1,2,---} is an orthonormal basis for X consisting of
eigenvectors of (LyLr)% : X — X, we have, by (3.3) and (3.4)

I

WK

ILells, = Y ((LpLr) e, i)

Bl
Il
—

I
NE

(LEe, ¥r)

=i
—

< —lFllze)- (3.5)

Cy

Now, if F' € L'(G) is a real-valued function, then we write F = F, — F_,
where
F(g9) = max(F(g),0)

and
F_(g) = —min(F(g),0)

for all g in G. Then, by (3.5),

ILrlls, = |ILry = Le_lls, < |ILrlls, + | L6 Is,
1
< o (4o + IF-llye))
©
2
< C_”F”Ll(G)- (3.6)
©

Finally, let F' € L'(G) be a complex-valued function. Then we write F' =
F1+1F,, where F| and F; are the real and imaginary parts of F respectively.
Then, by (3.6),

ILrlls = |ILr +iLrlls, < ILalls, + | Lrlls,
2
< P (IRl e + I F2llzv )
©
4
< —||Fl|lye,
Co
and the proof of Proposition 3.3 is complete. a

A consequence of Proposition 3.3 is the following result.
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Proposition 3.4 Let F € LP(G), 1 < p < co. Then the localization oper-
ator Lr : X — X 1s compact.

Proof: We again denote by D the set of all simple functions F' on G such
that

p{g € G: F(g) # 0} < co.

Let {F}} be a sequence of functions in D such that F;, — F in L?(G) as
k — oo. Then, by (2.8),

|L5, = Lrll« < co”||Fk = Fllio) — 0
as k — oo, i.e,, L, = Lp in B(X) as k — oo. Since, by Proposition 3.3,
Lr, : X — X is in S; and hence compact, it follows that Lp : X — X is
compact. O

Remark 3.5 That Proposition 3.4 is false for p = oc can be seen easily by
taking the function F' on G to be such that ‘

Flg)=1, g€G.

For then, by the resolution of the identity formula (1.3), Lr : X — X is
the identity operator on X. In view of the hypothesis that X is infinite
dimensional, Ly : X — X is not compact.

The next task is to prove that a localization operator Lp : X — X,
where F' € [?(G), 1 < p < o0, is in the Schatten-von Neumann class S,
1 < p < 0. To do this, we need the theory of complex interpolation, which
we now recall. We omit the proofs, which can be found in Sections 2.1 and
2.2 of the book [24] by Zhu.

Let By and B; be Banach spaces in which the norms, respectively, are
denoted by || ||s, and || ||B,. We say that By and B; are compatible if there
is a vector space V such that By CV and B; C V. If this is the case, then
the subspaces By N B; and By + By of V' are Banach spaces when equipped
with the norms || ||g,n5, and || ||5,+5, given by

Iollsons, = max o5,
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for all v in By N By, and
”U“Bo+51 = inf{”bOHBo + ”b]-“Bl :v=bo+bi, bo € By, b1 € Bl}

for all v in By + Bi, respectively.

Let By and B; be compatible Banach spaces. A Banach space B is called
an intermediate space between By and B if

BynNB; C BC By + By,

where the inclusions are continuous. An intermediate space B between
B, and B; is said to be an interpolation space between By and B if any
bounded linear operator on By + B; which is bounded from By into By,
k = 0,1, is also bounded from B into B.

Let S = {z € C: 0 < Rez < 1} and let B be any Banach space. A
function f : S — B is said to be analytic on S if for any bounded linear
functional ¥’ on B, the complex-valued function & o f : S — C is analytic
on S.

Let By and B; be compatible Banach spaces. Then we define F(By, B)
to be the set of all bounded and continuous functions f from the closure S
of S into By + B; such that f is analytic on S, and the mappings

y— f(k+1iy), k=01,

are continuous from R into Bg, kK = 0,1. Then it can be shown that
F(By, By) is a Banach space with respect to the norm || || given by

| fll = maxsup | f(k +i)lls,, | € F(Bo, By).
=0,1 yeR

For any number 6 in [0, 1], we let By be the subspace of By+ B, consisting
of all elements b in By + B, such that b = f(6) for some f in F(By, By).
Then we can show that By is a Banach space with respect to the norm || ||z,
given by

bllg, = inf , b€ By,
¥z, = inf 1fll=, b€ B

and By is an interpolation space between By and B;. We denote By by
[BO) Bl]@-

The following two results on interpolation spaces will be useful to us.
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Theorem 3.6 Let By, B, and Bo, By be two pairs of compatible Banach
spaces. Let A be a bounded linear operator from By + B into By + B,
such that A is a bounded linear operator from By into By, with norm < M,
k =0,1. Then, for any number 6 in (0,1), A is a bounded linear operator
from [By, B} into [Bo, By with norm < Mg~ oMm?.

Theorem 3.7 For1 <p < oo,

[L}(G), L=(G)] 5 = I7(G)

b}

and

[Sl, Soo] = Sp7

1
v
where p' is the conjugate indez of p.

Now, we can come to the main result on the Schatten-von Neumann
property of localization operators.

Theorem 3.8 Let F € LP(G), 1 < p < oco. Then the localization operator
Lp: X — X isin S, and

4 \»r
I2ells, < () 1Flror

P

Proof: By Proposition 3.3,
4

ILrlls: < —lIFlle, F € LY(G), (3.7)
¢

and, by Propositions 2.2 and 3.2,
ILrllsw = ILellc < |IFllre(e), F € L7(G). (3.8)

So, by (3.7), (3.8), Theorems 3.6 and 3.7, the proof is complete. a

Remark 3.9 This chapter is an exposition of the results in Sections 4-6 of
the paper [10] by He and Wong.



4 The Trace

In this chapter, we compute the trace of a localization operator Ly : X — X
and estimate the trace of any integral power of Ly : X — X for any function

F in LYG).

The starting point is the following proposition, which supplements
Proposition 3.1.

Proposition 4.1 Let 4 : X — X be a bounded linear operator in S, and
let {ox : k = 1,2,---} be any orthonormal basis for X. Then the series
> rer (Apk, or) is absolutely convergent and the sum is independent of the
choice of the orthonormal basis {¢y : k= 1,2,---}.

A proof of Proposition 4.1 can be found on, say, page 211 of the book
[16] by Reed and Simon.

In view of Proposition 4.1, we can define the trace tr(A) of any linear
operator A : X — X in S; by

o0

tr(A) = (A, o), (4.1)

k=1
where {¢; : £k =1,2,---} is any orthonormal basis for X.

Let F € L*(G). Then the localization operator Lz : X — X is in S,
and we have the following interesting result on its trace.

Theorem 4.2 tr(Lyp) = fG
Proof: Let {¢; : k=1,2,---} be an orthonormal basis for X. Then, using

(2.1), (4.1), Fubini’s theorem, the Parseval identity, ||| = 1 and the fact
that 7(g) : X — X is a unitary operator for all g in G, we get

o0
= > (Lrok, o)
k=1

20
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- Z% | F@ltnrioieauto

= Z‘ on) Zd:u( )

_ g. F(g)llm(g)¢lduo)
v JG

_ i F(g)du(g).
0 JG

d

Since S; is an ideal in the C*-algebra B(X) of all bounded linear oper-
ators from X into X, it follows that, for m = 1,2,---, the linear operator
L% : X — X isin S;. The following theorem gives an estimate for the trace
tr(LE) of LF : X — X in terms of the trace tr(Ljpj) of the localization
operator Lip| : X — X.

Theorem 4.3 Form=1,2,---,
|tr(LE)| < (tr(Lirp))™.

To prove Theorem 4.3, we need the following lemma, which is an imme-
diate consequence of (2.1).

Lemma 4.4 L} = Lg.

Proof of Theorem 4.3: Let {¢;:k =1,2,---} be an orthonormal basis
for X. Then, by (2.1), Proposition 2.1, (4.1), Lemma 4.4, Fubini’s theorem,
the Schwarz inequality, the Parseval identity, ||¢|| = 1 and the fact that
7(g) : X — X is a unitary operator for all g in G, we get

[tr

—~

L)l

(L?(pm (pk)

s s

(Lr@r, L’;‘lwk)

>
Il

1
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s ]. m—1
- 22 /G F(9) (0, 7(9)¢) (n(9), L™ 04)du(g)
= ;% /G F(9) (e, m(9) ) (LE 7 (9) ¢, 0r)du(g)

(M

< f— /G |F(g)] (k;usok,w( ) (;lw-w ka)lz) 1(g)
- i / F@)In(9)¢ll | L2 n(9)¢lldu(g)

< (£f Flolluto)) (42)

Thus, by Theorem 4.2 and (4.2), the proof is complete.

A consequence of Theorem 4.3 is the following result on the norm of the
localization operator Lg : X — X in the Schatten-von Neumann class S,
when F is a nonnegative function in L'(G) and p is a positive integer.

Corollary 4.5 Let F be a nonnegative function in L'(G). Then, for p =
1,2,

ILFlls, < tr(Lr).
Moreover,

ILrlls, = tr(LF).

Proof: Since F is a nonnegative function in L*(G), it follows from (2.1)
that Lr : X — X is a positive operator. Thus, the singular values of
Lr : X — X coincide with the eigenvalues of Lr : X — X. So,

ILFlls, = <Z(L%¢k,¢k)) " ; (4.3)
k=1

where {¢ : K =1,2,---} is an orthonormal basis for X consisting of eigen-
vectors of Lg : X — X. By (4.1), (4.3) and Theorem 4.3,

ILells, = (tr(I2))7 < tr(Lg)
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forp=1,2,---. If p=1, then, by (4.1) and (4.3),

|LFlls, = tr(LF)-

o

Remark 4.6 The results in this chapter are taken from the paper [4] by
Du and Wong



5 The Weyl-Heisenberg Group

We show in this chapter that localization operators on the Weyl-Heisenberg
group are the same as the linear operators studied by Daubechies in the
paper [1] on signal analysis. We begin with a detailed study of the Weyl-
Heisenberg group.

Let R* x R* = {(g,p) : ¢, p € R"} and let Z be the set of all integers.
Let (WH)® = R* x R* x R/27Z. Then we define the binary operation -
on (WH)" by

(g1, 1, 1) - (g2, P2, t2) = (@1 + @2, D1+ D2y 1+ 1ty + 1 - p2) (5.1)

for all points (q1, p1, t1) and (go, ps, t2) in (WH)™, where ¢ - ps is the
Euclidean inner product of ¢; and py in R*; ¢, ¢, and ¢, + to + q1 - po are
cosets in the quotient group R/27Z in which the group law is addition
modulo 27. It is easy to prove the following proposition and we omit the
proof.

Proposition 5.1 With respect to the multiplication - defined by (5.1),
(WH)™ is a non-abelian group in which (0,0,0) is the identity element and
the inverse element of (q, p, t) is (—q, —p, =t + q - p) for all (q, p, t) in
(WH)™.

Remark 5.2 To simplify the notation a little bit, we identify R® x R®
with C*. Thus, (WH)"® = C" x R/2nZ which can also be identified with
C* x [0,27] = R* x R™ x [0, 27].

Proposition 5.3 The Lebesgue measure dgdpdt on R* x R* x [0, 2] is the
left (and right) Haar measure on (W H)™.

Proof: To prove left invariance, let f be an integrable function on (WH)™
It is helpful to think of f as a function on R* x R* x R such that f(g, p, )

24
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is a periodic function with period 27 for fixed but arbitrary q and p in R".
Then, for all (2/,¢) in (WH)", we get

/ F((Z, 1) - (2,t))dzdt
(WH)"

2
= // f(d+q, 0 +p, ¢ +t+q -p)dgdpdt
0 n JRn

2r+t' +q'-p
= / /f(z,s)dzds
t'+¢p JCr
2m
= / /f(z,s)dzds
o Jor

= / f(z,t)dzdt.
(WH)»

The proof for right invariance is similar. a

Remark 5.4 With respect to the multiplication - defined by (5.1), (W H)™
is a locally compact and Hausdorff group in which the left (and right) Haar
measure is the Lebesgue measure on R* x R™ x [0, 27r]. We call (W H)" the

Weyl-Heisenberg group. In light of the existence of a left (and right) Haar
measure on (WH)™, (WH)™ is unimodular.

Let 7 : (WH)™ — B(L*(R")) be the mapping defined by
(n(g,p, )f) (@) = €P*1Pf(z —q), zeR, (5-2)
for all points (g, p,t) in (WH)" and all functions f in L?(R").

Proposition 5.5 7 : (WH)™ — B(L*(R")) is a representation of (W H)"
on L*(R").

Proof: Let (¢q1,p1,t1) and (go,p2,t2) be points in (WH)™. Then, for all
functions f in L?(R"), by (5.2),

(7 (g, P, 1) (7 (g2, P2, t2) f)) ()

ei(Pl'w—ql'P1+t1)(ﬂ-(qz’p% tz)f) (IL’ _ QI)
elPre= Pt gilpr(3=q)—geprtts) £ (1 g, )

ei((p1+p2)-w—(p1+p2)-q1+t1+t2—qz~p2)f(x _ (QI + (]2)) (5‘3)



26 5. The Weyl-Heisenberg Group

and

(m((q1,P1,t1) - (g2, P2, £2)) f) ()
= (m(q + g2, p1 + D2t + 2+ q1 - p2)f)(2)
— ei((p1+p2)-z—lh-;vl—Q2'P1—qz-p2+t1+t'z)f(x — (1 + ¢2)) (5.4)

for all z in R*. Hence, by (5.3) and (5.4),

7(q1, p1s t1) (g, P2, t2) = w((q1, P1, 1) - (G2, P2, t2))

for all points (g1, p1, 1) and (g, p2,t2) in (WH)™. It remains to prove that
m(qp,t)f — fin L*(R") as (q,p,t) — (0,0,0) for all functions f in L*(R™).
But

lm(q,p,t) f — fH2L2(Rn)
= | JeE i@ —g) = @) ds
Rn

= e eiE==17f (g — q) — f(2)} + {17 — 1} f(a)|*dz

< 2 If(z—q)— f(a:)|2da: + 2/ |(ei(""$'q'p+t) - 1) f(:v)l2 dz (5.5)
Rr R™

for all (¢, p, t) in (W H)™ and all functions f in L*(R*). By the L2-continuity
of translations,

[ 1= 0) - f@)Paz — 0 (5.6

as ¢ — 0. For almost all z in R*,
l(ei(p-m—q'pﬂ) — 1) f(cc)|2 —0 (5.7)
as (¢,p,t) = (0,0,0), and
(=17t — 1) f(2)[" < 4lf ()" (5.8)

Hence, by (5.7), (5.8) and the Lebesgue dominated convergence theorem,

‘(ei(pcx—Q'P+t) _ 1) f(g;)‘Q dr — 0 (5'9)
Rr
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as (¢,p,t) = (0,0,0). Hence, by (5.5), (5.6) and (5.9),

Hﬂ-(cbp) t)f - f“L2(Rn) — 0

as (¢,p,t) — (0,0,0), and the proof is complete. O

The following theorem gives us all the information that we want to know
about the representation 7 : (WH)™ — B(L*(R")).

Theorem 5.6 For all functions f and g i L*(R"), we have
/(W ) (f, 7(z, t)g)Pdzdt = 2m)" || 1|2 91172 @), (5.10)

where ( , ) is the inner product in L*(R").

Remark 5.7 The proof of Theorem 5.6 requires some basic knowledge of
Fourier analysis, which we assume. Standard references include the books
by Goldberg [6], Stein and Weiss [21] and Wong [23]. Notwithstanding

these comments, it is essential to make note that the Fourier transform f
of a function f in L'(R") that we adopt is the one given by

f(€) = (2m)~2 / e f(z)dz, € R,

n

Proof of Theorem 5.6: We begin with the case when both f and g are
in the Schwartz space S of functions on R™. If we denote the left hand side
of (5.10) by I(f,g), then

wo = [ [
= 27r/n /n /R" e~ f(z)g(x — q)d

= e [ et | e @ e
= e [ [ 0T G)ds e 6.11)

» 2
f(x)e™@o=artg(g — q)dx| dqdpdt
Rn

2
dqdp

2
dqdp
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where (T-,3) = §(z — @), z, ¢ € R*. So, by (5.11), Plancherel’s theorem
and Fubini’s theorem,

15.0) = Cor [ [ (f@ste - o)dads

= o [ 168 ([ loe-ardp) ds

= (2m) I FlI L2 191122 mn)-

Now, for f, g € L?*(R"), let {fx} and {gr} be sequences in S such that
frx — fin L>(R*) and g; — g in L*(R™) as k — oco. Then, by what we have
just shown,

I(fr, 9) — 2m)" | fll L2 wmy |9l L2 ey (5.12)

as k — oo. Also,
(fo, m(2,t)gk) — (f,m(2,1)9) (5.13)
for all (z,t) in (WH)™ as k — oo. Furthermore, for all k¥ and j,

[(fe, (2, t)gr) — (fi, (2, t)g5)
= [{fr— fism m(z,t)gk) + (f]’ m(2,t) (g% —ga)>|2
< 2(fe — fi, (2 t)ge) P+ 20(F5, (2, ) gk — o)1,

and hence, using (5.10) for functions in S, we get a positive constant C such
that

| et 00) = (fyn(a095) Pz
(WH)"
C (Ife = fillam + 9k = g3l122cam ) — 0

as k, j — oo. So,
(frrm(-5)gk) —> h (5.14)

for some h in L2((W H)™) as k — oo. Therefore there exists a subsequence
of {{fx,7(-,-)9k)}, again denoted by {(fi,7(-,)g)}, such that

(form(-,)gk) —> R (5.15)
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a.e. on (WH)™ as k — oo. Thus, by (5.13)-(5.15),

I(fx> gk) — [(f,m(2,t)g)| dzdt (5.16)
(WH)™

as k — oco. Hence, by (5.12) and (5.16), the proof is complete.

Corollary 5.8 7 : (WH)" — B(L*(R")) is an irreducible and unitary
representation of (WH)™ on L*(R").

Proof: That 7 : (WH)® — B(L*(R")) is a unitary representation of
(W H)"™ on L?(R") is an immediate consequence of (5.2). Let M be a nonzero
and closed subspace of L?(R") which is invariant with respect to the rep-
resentation 7 : (WH)™ — B(L*(R")). Let g be a nonzero function in M.
Then

{n(z,t)g: (z,t) € (WH)"} C M. (5.17)

Let f € L*(R") be such that f is orthogonal to M. Then, by (5.17),
(f,m(2,t)g) =0, (zt) e (WH)" (5.18)
Then, by Theorem 5.6 and (5.18),
I 2@ llgllL2ny = 0

and hence f = 0. So, M is a dense subspace of L*R"). Since M is also
a closed subspace of L(R"), it follows that M = L?*(R") and the proof is
complete. O

Corollary 5.9 7 : (WH)"® — B(L*(R")) is a square-integrable representa-
tion of (WH)™ on L*(R").

Proof: Let ¢ be any nonzero function in L?(R*). Then, by Theorem 5.6,
[ o Ozt = ey el <00 (329)

and this completes the proof. O
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Corollary 5.10 Every function ¢ in L*(R*) with ||¢|| 2®e) = 1 is an ad-
missible wavelet for the representation m : (WH)™ — B(L*(R")) of (WH)™
on L*(R™) and

cp = (2m)" L (5.20)

Corollary 5.10 is an immediate consequence of (5.19).

We can now study localization operators on the Weyl-Heisenberg group
(WH)". To this end, let ¢ be any function in L*(R") such that ||¢||L2@n) =
1, and let F' be any function in L'(R™ x R™) or in L®(R" x R*). Then, by
(5.2) and (5.20), the localization operator Lp : L*(R") — L%(R") is given
by

2T
(Lrf,g) = é i /n /R F(q,p){f,7(q,p, 1)) (m(q,p, 1), g)dqdpdt

()

(2m)™" / ) / F (0, P)(fs Pap) (P> 9)dadp (5.21)

for all functions f and g in L*(R™), where ¢, , is the function on R" given
by

Pop(z) = €7%p(x —q), z€R, (5.22)
for all ¢ and p in R*. The localization operator L : L*(R") — L*(R") is

then exactly the same as the linear operator Dr : L?(R") — L?(R") given
by

(Drf,g) = (2m)™" / ) / ) F(q,p)(f, Pq.0) (g 9)dadp (5.23)

for all functions f and g in L?(R"), where ¢, is the function defined by
(5.22). The linear operator Dp : L*(R*) — L*(R") is the localization op-
erator first studied in the paper [1] by Daubechies in the context of signal
analysis, and hence we call Dr : L?*(R*) — L*(R") the Daubechies oper-
ator associated to the function F. See also Section 2.8 of the book [2] by
Daubechies in this connection. By (5.21), (5.23) and Theorem 3.8, we have
the following result.

Theorem 5.11 Let FF € IP(R* x R*), 1 < p < co. Then there exists a
unique linear operator Dp : L*(R*) — L*(R™) in S, such that

IDElls, < 47 (2m) 7% | Fll oan (5.24)
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and, for all functions f and g in L*(R™), (Drf, g) is given by (5.23) for all
simple functions F on R" x R™ such that the Lebesgue measure of the set

{(g,p) € R* x R* : F(q,p) # 0} s finite.

Proof: We only need to check the inequality (5.24). But, by (5.20), (5.21),
(5.23) and Theorem 3.8,

1 _ntl
|\ Drlls, = l|LFlls, < 47(21)" # ||Flleqwmnm)- (5.25)

But, by a simple computation,

1
||l oqwnymy = (27)% || F'|| Lo e x&r).- (5.26)

Thus, by (5.25) and (5.26), (5.24) follows. O

As a sharp contrast to the Weyl-Heisenberg group (W H)", we end this
chapter by showing that the Heisenberg group H™ introduced in Chapter
8 of the book [21] by Wong is one on which every irreducible and unitary
representation of H™ on L?(R™) is not square-integrable, or equivalently,
the set AW (m) of all admissible wavelets for any irreducible and unitary
representation 7 : H" — B(L*(R")) of H™ on L*(R") is empty.

The Heisenberg group H" is the non-abelian group C* x R in which the
group law - is given by

(z,t) - (w,s) = (z + w,t + s+ 2Imz - )

for all (2,t) and (w, s) in C* x R, where
n
Z-w= Z ZjWy.
J=1

The Heisenberg group H™ is a unimodular group on which the left (and
right) Haar measure is the Lebesgue measure dzdt on C* x R.

According to the Stone-von Neumann theorem, every irreducible and
unitary representation m : H® — B(L?*(R")) of H™ on L*(R") is, up to
unitary equivalence, given by

(7(2,8)f)(z) = eXO¥39P+i0 f (1 +p), z R, (5.27)
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or

| (m(z,t)f)(z) = @ HPP f(z), zeR, (5.28)
for all functions f in L2(R"), where A\ € R, (o, 3) € R* x R* and (z,t) =
(¢,p, ).

Theorem 5.12  Every irreducible and unitary representation of H™ on
L%(R") is not square-integrable.

Proof: Let 7 : H® — B(L?*(R")) be an irreducible and unitary represen-
tation of H™ on L%(R™). Suppose 7w : H" — B(L*(R")) is given by (5.27).
Then, for all ¢ in L*(R"),

[ [ temtegraza = | ( / I(so,w,q,pﬂqudp) .
—o0 JCn J -0 Ccn

where .
Prgp() = eM%p(z +p), zeR.
Thus,
[~ [ et tiaaeat =
unless

<(P, (;0/\,(],?> = 07 q,p€E Rn:
or equivalently,

o0
/ o(x)e”M*G(z +p)dz =0, gq,p€ R (5.29)

-0

But (5.29) is valid if and only if
p(z)p(z+p) =0

for almost all z and p in R*. Thus, ¢(z) = 0 for almost all z in R*, Indeed,

if p(x) # 0 for all z in a set S with positive measure. Then, for all z in
S, @o(xz + p) = 0 for almost all p in R*, and this is a contradiction. Hence
the representation m : H* — B(L*(R")) of H" on L*(R™) is not square-
integrable. If 7 : H™ — B(L?(R")) is given by (5.28), then, for all ¢ in
LX(R™),

/_ZL |<<P,7r(z,t)<p)i2dzdt = /_: /Cn |, @) |Pdzdt = 0o
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unless ¢ = 0. Thus, 7 : H* — B(L?(R")) is not a square-integrable
representation of H" on L*(R"). O

Remark 5.13 This chapter is a detailed, expanded and improved account
of the results in Chapter 15 of the book [22] by Wong. An account of the
Weyl-Heisenberg group can be found on the paper [12] by Heil and Walnut.



6 The Affine Group

We study in this chapter the affine group U, the Hardy space H2(R), and an
irreducible and unitary representation 7 : U — B(H2(R)) of U on H}(R)
for which the set AW (7) of all admissible wavelets for the representation
m: U — B(H2(R)) is a proper subset of the unit sphere with center at the
origin in H2(R).

Let U be the upper half plane given by
U={(bhya):beR, a>0}.
Then we define the binary operation - on U by
(by,ay) - (be, as) = (by + a1bs, a1as) (6.1)
for all points (b1, a1) and (b2, az) in U.

Proposition 6.1 With respect to the multiplication - defined by (6.1), U
is a non-abelian group in which (0, 1) is the identity element and the inverse
element of (b,a) is (=2, for all (b,a) inU.

Proof: Let (b1,a;) and (bs, as) be points in U. Then, by (6.1),

((by, @) - (bo, a2)) - (b3, a3) = (b1 + arbs, aras) - (bs, as)
= (b1 + a1be + aiaqbs, 611(12(13)

and

(br,ar) - ((ba,az) - (b3ya3)) = (b1, a1) - (b + asbs, asas)
= (b1 + a1bs + a1a9bs, arazas3).

Thus, the associative law is valid. For all (b,a) in U, by (6.1),
(bv a) : (07 1) = (b’ a’)

34
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and

(0,1) - (bya) = (b, a).
Thus, (0,1) is the identity element. Finally, let (b,a) € U. Then, by (6.1),
) (-23) =0

a a

(_2)_1_). (b,a) = (0,1).

a a

and

Hence the inverse element of (b,a) is (=2, 1). Therefore U is a group with
respect to the multiplication - defined by (6.1). That the group U is non-
abelian is easy to check and hence omitted. a

Proposition 6.2 The left and right Haar measures on U are given by

dbda
dp = —;
a
and dbd
dv = a
a
respectively.

Proof: To prove left invariance, let f be an integrable function on U with
respect to du. Then, for all (V,a’) in U, we get

/f (b, a))dp = //fb’+ab )dbda. (6.2)

Let 8 =V + a’b and a = d’a. Then, by (6.2),

[ 1) o= f/f(ﬂ, ) Lbda. = [ st0.ayin

To prove right invariance, let f be an integrable function on U with respect
to dv. Then, for all (V',a’) in U, we get

/Uf((b, a)- (V,a))dv = /Ooo /_: flo+ ab’,aa’)db:a. (6.3)
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Let 3 =0b+ ab' and o = aa’. Then, by (6.3),

[ s @i - /0°° /_:f(ﬂ, ) 2da - [ s.0)a

Remark 6.3 With respect to the multiplication - defined by (6.1), U is
a locally compact and Hausdorff group on which the left Haar measure is
different from the right Haar measure. Thus, U is a non-unimodular group,
which we call the affine group.

O

Let H2(R) be the subspace of L?(R) defined by
HL(R) = {f € L*(R) : supp(f) C [0, 00)},

where supp( f ) is the set of every z in R for which there is no neighborhood
of z on which f is equal to zero almost everywhere. Similarly, we define
HZ2(R) to be the subspace of L?(R) by

HZ(R) = {f € L*(R) : supp(f) < (~00,0]}.
We call HZ(R) and H2(R) the Hardy space and the conjugate Hardy space
respectively.

Proposition 6.4 H2(R) and H2(R) are closed subspaces of L%(R).

Proof: That H3(R) is a subspace of L*(R) is obvious. Let {f,}3, be
a sequence in H}(R) such that f, — f in L?*(R) as k — oc. Then, by
Plancherel’s theorem,

fi— f
in L*(R) as k — co. Then there exists a subsequence of { fe}i2,, again
denoted by {f,}%2,, such that

fo— f (6.4)

a.e. on R as k — oo. Using the definition of H2(R) and the definition of
supp(fi), we get fr = 0 a.e. on (=00,0] for £ = 1,2,---. Thus, by (6.4),
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f =0ae. on (—00,0]. Hence f € H2(R). Therefore H3(R) is a closed
subspace of L2(R). The proof that H2(R) is a closed subspace of L*(R) is
similar. a

To be specific, only the Hardy space H2 (R) is considered. The discussion
is equally valid for the conjugate Hardy space H?(R).

Let m : U — B(H3(R)) be the mapping defined by

1 )
(r(b0))(a) = =1 ( . ) . seR, (6.5)

for all points (b, a) in U and all functions f in H3(R).
Proposition 6.5 7 : U — B(H2(R)) is a representation of U on Hj (R).
To prove Propositic;n 6.5, we use the subspace W of Hi(R);d,eﬁned by
| W={feH:R) : f € C(0,00)}.
Lemma 6.6 W is a dense subspace of H(R).

Proof: Let f € H2(R). Then supp(f) C [0,00). Let {©}}%2, be a sequence
of functions in C§°(0, 00) such that

ok = f (6.6)

in L?(R) as k — co. For k = 1,2,---, let f; be the function in L*(R) such
that )

fre = k. (6.7)
Then fr € W, k = 1,2,---, and, by (6.6), (6.7) and Plancherel’s theorem,
fi — f in L*(R) as k — oo. Therefore W is a dense subspace of H2(R).

Proof of Proposition 6.5: Let (b1, a1), and (bs, az) be points in U. Then,
by (6.5), we get, for all functions f in H3(R),

(m (b, a1)m(by, a2) f)(z) = _1"’(7T(bz,a2)f) (m ;1b1>

. ’0,1
1 T — b]_ - albg)
= 6.8
\/a1azf ( a10a2 ( )
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and
(m((b1, a1) - (b2,@2)) f)(z) = (m(b1 + arby, a12) f)(2)

1 I — b1 - a1b2)
= 6.9
\/ala2f ( 1G9 ( )

for all z in R. Hence, by (6.8) and (6.9), 7 : U — B(HZ(R)) is a group
homomorphism. It remains to prove that 7(b,a)f — f in L*(R) as (b,a) —
(0,1) for all functions f in H%(R). But, by Plancherel’s theorem and the

elementary properties of the Fourier transform, we get, for all functions f
in W,

2
dz

el = fliee = [ |=f (22 - @)
-/ " Ve fag) - () e
<2f " [Vae € (flag) - J(6)Pde

[o.]

2 [C|war - njre (©10)
For all € in R, . X
|(Vae™ = 1) f(§)]* — 0 (6.11)

as (b,a) — (0,1) and

|(Vae™ = 1) f(€)1* < 9If()P (6.12)

for all b in R and all a in (0,2). By (6.11), (6.12) and the Lebesgue domi-
nated convergence theorem,

/ " (VA — 1)f()de — 0 (6.13)

-0

as (b,a) — (0,1). For all £ in R,
f/(a€) = f(OP —0 (6.14)

asa — 1, and

|f(ag) — f(&)] < 2suptf( £)Ixr(€) (6.15)
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for all a in (%, 2), where R is a fixed positive number such that

A

f€)=0, &>R,

and xg is the characteristic function on [0, 2R]. Thus, by (6.14), (6.15) and
the Lebesgue dominated convergence theorem,

[ " |Vae % (f(ag) - F(6))Pde — 0 (6.16)

J =0

as (b,a) — (0,1). So, by (6.10), (6.13) and (6.16),
w(bya)f — f (6.17)

in L*(R) as (b,a) — (0,1) for all f in W. Let f € H2(R). Then, by Lemma
6.6, we can find a sequence {fi} of functions in W such that f; — f in
L*(R) as k — oo. Then, for any positive number &, let ky be the positive

integer such that

2e
| fro = fllL2my < 3 (6.18)

So, by (6.17), (6.18) and the obvious fact that 7(b,a) : H3(R) — H2(R) is
a unitary operator for all (b,a) in U, there exists a positive number ¢ such
that

I, a)f = fllezwy < |lw(d, @) (f = fio)ll2w) + [|7(bs @) fio = frollLe)
+ [ fro = fllzemw)
< ¢

whenever (b, a) is within d-distance of (0,1). Thus, 7 (b,a)f — f in L}(R)
for all f in H2(R) as (b,a) — (0,1) and the proof is complete. |

Proposition 6.7 7 : U — B(HZ(R)) is an irreducible and unitary repre-
sentation of U on H2(R).

Proof: That n(b,a) : H}(R) — H2(R) is a unitary operator for all (b, a)
in U is easy to check and has actually been used in the proof of Proposition
6.5. Let M be a nonzero and closed subspace of H2(R) such that M is



40 6. The Affine Group

invariant with respect to m : U — B(H%(R)). Let g be a nonzero function
in M. Then
{n(b,a)g : (ba) e U} C M.

Let f € H2(R) be such that f is orthogonal to M. Then, for all points

(b,a) €U,
[ (22

and hence, by Plancherel’s theorem,
| e feratagyae =o. (6.19)

—0oQ

Thus, by (6.19),

f(&)g(at) = (6.20)
for almost all £ in R. Suppose (f) 0 for all £ in a set S with positive
measure. Then, for all £ in S, by (6.20), we get

9(af) =
for all positive numbers a. Thus, § = 0 and hence g = 0. This is a
contradiction. ]

To get more information on the irreducible and unitary representation
7 : U — B(H2(R)), we need the following subspace A of HZ(R) given by

={f€H3(R)3/0 lf(§)| dé < }

Theorem 6.8 For all f in H3(R) and all g in A,

I et aren 288 o [ aeypae [ 190
,/0 /_w“f’ (b a)g)["— —2/0 1)l df/g e

Proof: Let f € W and g € A. Then, by (6.5), Plancherel’s theorem and
the elementary properties of the Fourier transform, we get

o« [ dbd
[ e
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[ o5 2
[ ][] 2
o / " / ‘: (2m)} / : £ f(€)5(a8)
= [T 7] (100 0]
QW/OO/

™ |7t (03) (9] £2,

dbda

where )
(Dad) (€) = 3(al). E€R (6.22)
Thus, by (6.21), (6.22) and Fubini’s theorem,

[7 [ wsmtanrie = o [ ([Ti7e )'ng) o0
= 97r/ lf 2d§/ g( )

for all f in W and all g in 4. Now, let f € H(R) and g € A. Then, by
Lemma 6.6, there exists a sequence { fx}oe, of functions in W such that

fo =1 (6.24)

in L2(R) as k — oo. For k = 1,2,---, we get, by (6.23), (6.24) and
Plancherel’s theorem,

[7 [ entv.00) = (5,700 75"

o [ e e [T 18O
- 2/0 1Fu(©) = (6 d&/o L4 — 0

(6.23)

as k, j — o0o0. So, {{fr,m(-,-)9)}, is a Cauchy sequence in L*(U,du).
Hence there exists a function h in L?(U, dy) such that

(fom(,-)g) = P (6.25)
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in L?>(U,du) as k — oco. Therefore there exists a subsequence of
{<fk)7r('7 ')g>}zi.17 again denoted by {(fk77r('7 ')g>}loc?—:1) such that

(fo,m(-7)g) = h (6.26)
a.e. on U as k — co. But, by (6.24),
(fr,m(b,a)g) = (f,7(b,a)g) (6.27)

for all (b,a) in U as k — oo. So, by (6.25)—(6.27),

// fer (b, a)g |2dbda //}(f’/rba |2dbd“ (6.28)

as k — oo. But, by (6.23), (6.24) and Plancherel’s theorem,

L[ tent.aap %t — on [T iterae [T ge (5o

Hence, by (6.28) and (6.29), the proof is complete. a

Corollary 6.9 7 : U — B(H2(R)) is a square-integrable representation of
U on H2(R).

Proof: Let ¢ € A. Then, by Theorem 6.8,

A P P 3
/0 [_oo|(so,7r(b,a)ga)| a2 “2/0 2le3] df/O ; d€ < >

(6.30)
and this completes the proof. O

Corollary 6.10 Every function ¢ in A with ||¢|| 2®) = 1 1s an admissible
wavelet for the representation m: U — B(H2(R)) of U on H2(R) and

o [T1RE)F
cq,—27r/0 ¢ ——d¢.

Corollary 6.10 is an immediate consequence of (6.30).
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Remark 6.11 Corollary 6.10 tells us that the set AW (m) of all admissi-
ble wavelets for the representation 7 : U — B(H3(R)) of U of H2(R) is
nonempty. That AW (7) is a proper subset of {f € HZ(R) : || f||2®) = 1}
is illustrated by the following example.

Example 6.12 Let x be the characteristic function on [0,1] and let fy be
the function in L?(R) such that fy = x. Then f, € H2 1(R). Using the same
calculations in the derivation of (6.23), we get

[ s.ar s = [idoras T8 @y

/ |f (¢ d{;‘ / —df = oco. (6.32)
0 3
Thus, by (6.31) and (6.32), the function ¢ on R defined by

© = fo/ll foll 2wy
isin {f € H2(R) : ||f|l.2@) = 1}, but is not in AW ().

Using Theorem 3.8 and Corollary 6.10, the following result on localiza-
tion operators on the affine group is immediate.

Theorem 6.13 Let ¢ € A and F € LP(U,du), 1 < p < oo. Then the
localization operator Ly : HX(R) — H2(R) given by

tetio) =1 [ [ FO.a)s .0 ale 0 g

for all f and g in H2(R), where

. [T ler
c<p.—2/0 ¢ —=dg,

is 1 S, and

4 \r
Izells, < (=) IF oo

©



7 Wavelet Multipliers

Let 0 € L®(R"). Then we define the linear operator T, : L*(R") — L*(R"*)
by
T,u=F'oFu, ueLl*R"),

where F and F! are the Fourier transformation and inverse Fourier trans-
formation respectively. The Fourier transform Fu, sometimes denoted by
4, of a function u in L2(R"), is given by

Fu = lim (xgu)",
R—c0

where x g is the characteristic function of the ball with center at the origin
and radius R,

bera)'(€) = (20" [ e oxp(apu)is, € R,
and the convergence of (ygu)" to Fu is understood to be in L*(R™). It
is a consequence of Plancherel’s theorem that T, : L*(R") — L?*(R*) is a
bounded linear operator.

~ Let ¢ be any function in L*(R™) N L*°(R™) such that ||¢||,2®n) = 1. The
aim of this chapter is to make precise the definition of the linear operator
oT,@ : L>(R*) — L*(R"™), where o is a function in L(R"), 1 < p < oo, and
to prove that the resulting bounded linear operator is in the Schatten-von
Neumann class S,. To this end, we first prove that if o € L*(R"), then
the bounded linear operator T, : L2(R") — L?(R") can be realized as a
wavelet multiplier (to be explained) associated to a unitary representation
7 : R* — B(L*(R")) of the additive group R® on L?*(R™). This connection
explains the impetus for the study of the linear operator ¢T,@ : L*(R*) —
L?(R"™) and also reveals that the techniques developed in Chapters 1-3 can
be exploited.

Let m : R* — B(L?*(R™)) be the unitary representation of the additive
group R™ on L?(R") defined by

(m(§)u)(z) = €¢u(z), =z, ER, (7.1)

44
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for all functions u in L*(R™).

Proposition 7.1 Let ¢ be any function in L*(R") N L°(R™) such that
l¢llL2@ny = 1. Then, for all functions u and v in S,

en)™ [ (a,m(p)r(©)p v)de = (g, ). (7.2
Proof: Using Plancherel’s theorem and the fact that

(&))" =T_¢p, &€RT,

where
(T_ef)(z) = flz - &), zeR,
for any measurable function f on R", we get

(u, (€)) = (@ * P)(€) (7.3)
and

(7(&)p,v) = (0% D)(€) (7.4)
for all £ in R*, where

v(e) = plz), zeR, (7.5)

and
(Fd)©) = | fle=mblmdn, ¢k,

for all functions f in S. Thus, by (7.3)—(7.5), Plancherel’s theorem and the
fact that

(fo)h = @m) 2 (f =), feS, (7.6)

we get

/n<”’ﬂ(€)w><ﬂ(§)w,'u>dg _ /R

and the proof is complete. O



46 7. Wavelet Multipliers

Remark 7.2 Formula (7.2) can be considered as an analogue of the reso-
lution of the identity formula (1.3) for the unitary representation 7 : R* —
B(L*(R")) of R* on L%(R").

Proposition 7.3 Let 0 € L™(R") and let ¢ be any function in L2(R™) N

L>(R™) such that ||| L2@n) = 1. If, for any function u in S, we define P,u
by

(Pou,v) = (2m)" / o(€) (u, 7(€) ) (r(€) 0, v)d (7.7)

n

for all functions v in S, then
(Pru,v) = ((¢T,@)u,v), wu,v€ES.
Proof: By (7.3)—-(7.5), we get

(Pou,v) = (2m)" / o(€) (@ % $)(€) (5 » B) (€)de (7.8)

Rn
for all functions u and v in S. But, by (7.6) and (7.8),

(Pruo) = [ @@ OWI @ wves. (19

Thus, by (7.5), (7.9), Plancherel’s theorem and the definition of T, : L%(R")
— L*(R™), we get

(Pru,v) = (To(Yu), ¥v) = ($T,9)u, v) = ((¢T, @)u, v)

for all functions v and v in S. O

Remark 7.4 By Proposition 7.3, the linear operator ¢7,5 : L?*(R*) —
L*(R") associated to o in L°(R") and ¢ in L*(R") N L*®(R") with the
condition that |||/ 2zny = 1 is a variant of a localization operator studied
in Chapter 2. See in particular formula (2.1) for the analogy. Had the
“admissible wavelet” ¢ in (7.7) been replaced by the function ¢y on R™
given by

wo(z) =1, zeR",

we would have obtained

(Pyu,v) = (Tyu,v), u,v €S,
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i.e., P, would have been a “constant coefficient” pseudo-differential opera-
tor, or a Fourier multiplier studied in, say, the book [23] by Wong. In view of
the fact that the function ¢ in the linear operator ¢T,5 : L*(R*) — L*(R")
plays the role of the admissible wavelet in the linear operator P, : L*(R") —
L2(R™), it is reasonable to call the linear operator ¢T, : L2(R") — L?(R")
a wavelet multiplier.

In order to define the linear operator ¢T,@ : L2(R") — L?(R"), where o
is a function in LP(R"), 1 < p < oo, and ¢ is a function in L2(R") N L (R™)
with ||¢|| &) = 1, we need some preparations.

Proposition 7.5 Let 0 € L'(R") and let ¢ be any function in L*(R™) N
L®(R™) such that ||¢||2msy) = 1. If, for any function u in L*(R™), we define
P,u by (7.7) for all functions v in L*(R™), then P, : L*(R") — L*(R"*) is a
bounded linear operator and

|Psle < (2m) 7" lo |1 ey (7.10)

Proof: By (7.1), (7.7), the Schwarz inequality and the assumption that
”‘P“LZ(R") =1,

Pl < @07 [ ol mellr(Ee vl
< @)oo @eylull L2y 0] 2 ey
for all functions » and v in L2(R"). O
Proposition 7.6 Let 0 € LP(R*), 1 < p < 0o, and let ¢ be any function

in L*(R™) N L>®(R™) such that ||¢||L2mny = 1. Then there exists a unique
bounded linear operator P, : L>(R*) — L?(R"™) such that

Pyl < 2m) 72|72 gl o)
and for all functions u and v in L*(R"), (P,u,v) is given by (7.7) for

all simple functions o on R™ for which the Lebesgue measure of the set

{€ e R* : 5(&) # 0} is finite.
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Proof: Suppose 0 € L*°(R™). Then, by (7.1), (7.3)=(7.5), (7.7), the
Schwarz inequality and the assumption that ||| ,2@n) = 1, we get

[(Pou, v)]

< @rlellimen { [ 16+ 9)(e |"~d§} {[ 1oxire )|2d€} (7.11)

for all functions u and v in L?(R"™). By (7.5), (7.6), (7.11) and Plancherel’s

theorem,
follmn { [ 1uto 2dx} {[ Iv(:v)d)(x)l"’dw}%

< ol II@IImen)IIUI!u ®&)|v]|2n) (7.12)

[(Pou, v)]

(A

A

for all functions u and v in L?(R"). So, by (7.12),
|Pole < Mol e@mllollio@n), o € L2(R?). (7.13)

Thus, by (7.10), (7.13) and the interpolation argument used in the proof of
Theorem 2.3, the proof is complete. O

Remark 7.7 Propositions 7.5 and 7.6 allow us to define the wavelet mul-
tiplier ©T,5 : L*(R*) — L*(R") for any function o in LP(R"), 1 < p < oo,
and any function ¢ in L*(R") N L®(R*) such that ||¢||,2@®r) = 1, as the
bounded linear operator P, : L?(R") — L*(R").

We can now give the Schatten-von Neumann property of the wavelet
multiplier T, : L*(R") — L?(R"), where 0 € L*(R*), 1 <p < 00, and ¢
is a function in L*(R™) N L®(R"™) such that ||¢||;2®n) = 1. We begin with
the case when p = 1.

Proposition 7.8 Let o € L}(R") and let ¢ be any function in L*(R™) N

L®(R") such that ||¢||L2mny = 1. Then the wavelet multiplier Top :
L*(R*) — L*(R*) s in S) and

_ 4
leTolls, < G lollus oo (7.14
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Proof: Let {@; : k =1,2,---} be any orthonormal basis for L*(R*). Then,
by (7.7),

9] o]

SRl = 3 |en™ [ o@n @)@ ot
k=1 k=1
< Y0 [ b@leroare @

So, by (7.1), (7.15), Fubini’s theorem, the Parseval identity and the assump-
tion that ||¢||L2mn) =1,

x
> 1(Poor, i)l < (2m) "ol rqr) < o0
k=1

Hence, by Proposition 3.1, the wavelet multiplier ¢T, : L*(R*) — L*(R")
is in S;. The proof of Proposition 3.3 can then be used to prove (7.14). O

Theorem 7.9 Let 0 € LP(R*), 1 < p < oo, and let ¢ be any function
in L2(R™) N L®(R™) such that ||@||2rny = 1. Then the wavelet multiplier
©T,@ : L*(R*) — L*(R") is in S, and

- 1 % _n
eTolls, < 47110l Foon)(27) % llol]Lo(@n)-

Proof: If p = 1, then Theorem 7.9 follows from Proposition 7.8. If p = oo,
then Theorem 7.9 follows from (7.13). Thus, for 1 < p < oo, Theorem
7.9 follows from Theorems 3.6 and 3.7, and the endpoint cases p = 1 and
p = 00. O

Remark 7.10 The contents of this chapter can be found in Sections 1-4 of
the paper [11] by He and Wong. The results in this chapter in the setting
of a locally compact, Hausdorff and abelian group G instead of R™ can be
found in the Ph.D. dissertation [9] by He.



8 The Landau-Pollak-Slepian Operator

We show in this chapter that the Landau-Pollak-Slepian operator arising in
signal analysis is in fact a wavelet multiplier. We begin with a discussion of
the Landau-Pollak-Slepian operator.

Let {2 and T be positive numbers. Then we define the linear operators
Po: L*(R) = L*(R) and Qr : L*(R) — L*(R) by

ro-(10 855
and
@@ = {5 ST 52)

for all functions f in L?(R).

Proposition 8.1 P, : L*(R) — L*(R) and Qr : LA(R) — L*(R) are self-
adjoint projections.
Proof: By (8.1) and Plancherel’s theorem,

x

(Pof.g) = (Paf)g) = / (Paf) (€)5)de

—o0

/ F(&)3(E)de = / GIYRGLS

/_ FEOPag) ©)de = (F, (Pag)™)

<f7 Qg>7 f)gELZ(R)
Therefore Py : L*(R) — L*(R) is self-adjoint. By (8.2),

Qrf.g) = / (@Qrf)(@)g@)ds = / S @)@)s

" (@) 0@
= <f)QTg> fagELQ(R)‘

50
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Therefore Qr : L*(R) — L*(R) is self-adjoint. By (8.1), the fact that
Pq : L*(R) — L*(R) is self-adjoint and Plancherel’s theorem,

(P3f.9) = (Paf,Pag) = {(Paf)", (Pag)")
/_ (Pof)€) Pag) € de = / RGIGE:

- / " (Paf)N(E)50dE = (Paf)™ 3)

= <P9f>g>: f’ g€ L2(R)

Thus, P3 = Pq and hence Py : L%(R) — L%(R) is a projection. Finally, by
(8.2) and the fact that P : L*(R) — L?(R) is self-adjoint,

I

@f9) = (@)= [ " (@) @) g @

=/f dx—/ (@Qrf) ()g(@)dz
= QTf) >7 f,gELZ(R)

Thus, Q% = Qr and hence Qr : L*(R) — L?(R) is a projection. O

In signal analysis, a signal is a function f in L*(R). Thus, for any
function f in L%(R), the function QrPqf can be considered to be a time
and band-limited signal. Therefore it is of interest to compare the energy
|1QrPaof I!QLz(R) of the time and band-limited signal QrPqf with the energy
[1f1132) of the original signal f. Using the fact that Py : L*(R) — L*(R)
and Qr : L*(R) — L*(R) are self-adjoint and the fact that Qr : L2(R) —
L%*(R) is a projection, we get

QT PafliZ:
U T

feL’(R), f # 0}

_ (QrPof,QrPaf)
= sup :
11172 @)

~ sup { QQTPQf>f>: fEIXR), f£0
11172y

= sup {(PaQrPaf,f): f€L*R), |fllm=1}. (8.3)

feL’(R), f# 0}
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Since PaQrPaq : L*(R) — L%(R) is self-adjoint, it follows from (8.3) that

sup 1QrPafll:m)
1fm

feL’R), f# 0} = |PaQr Pal..

~ The bounded linear operator PoQrPq : L?*(R) — L?(R) that we have
just seen in the context of time and band-limited signals is called the
Landau-Pollak-Slepian operator. See the fundamental papers [13,14] by
Landau and Pollak, [18,19] by Slepian and [20] by Slepian and Pollak for
more detailed information.

That the Landau-Pollak-Slepian operator is in fact a wavelet multiplier
studied in Chapter 7 is the content of the following theorem.

Theorem 8.2 Let ¢ be the function on R defined by

1
RN TR A 0
o) {O,m lz| > Q, (8.4)

and let o be the characteristic function on [=T,T), i.e.,
_J1L lE<T,

Then the Landau-Pollak-Slepian operator PaQrPq : L*(R) — L*(R) is
unitarily equivalent to a scalar multiple of the wavelet multiplier ¢T,p :
L*(R) — L*(R). In fact,

PoQrPq = 20F H¢T,0)F. (8.6)

Proof: By (8.4), ¢ is a function in L?(R) N L>°(R) such that

o0
lolfoe = [ lo@Pds = [ ae=1.
—00

So, by Proposition 7.3,

o0

(¢ Top)u,v) = (2m)"" / o () (w, (€)Y n(E)p,v)de  (8.7)

—00
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for all functions u and v in S. By (7.1) and (8.4),

(u,m(€)p) = /oo e " p(z)u(z)ds

= \/_/ e y(r)dr, ueS. (8.8)
By (8.1),
’ AR — U’(x)7 le < Q)
O ®9)

for all functions u in S, where % is the inverse Fourier transform of u. So,
by (8.8), (8.9) and the Fourier inversion formula,

(u,7(E)p) = / =19 (Poi) (z)di
= \/? avan ) " e (Pya) @) dz
= \/%(Pﬂa)(_g)a f € Rv (810)

for all functions u in S. Hence, by (8.2), (8.5), (8.7), (8.10), Plancherel’s
theorem and the fact that Pq : L*(R) — L%*(R) is self-adjoint,

(WTooun) = (m)g [ o@Pat)(e TR Eae

1 T ‘v°° Yy
= 35/ (Pet)(©)(Pat)E)ae
1 o P

= 55/ (@rPau)(©)(Pan) (@)t
1 1
= ﬁ(QTPQ% Pov) = E(PQQTPQ{% v)
= %(IPQQTPeru7U>v U, v € Sa
and hence (8.6) is proved. m

Remark 8.3 The results in this chapter can be found in Section 5 of the
paper [11] by He and Wong.



9 A Product Formula for Wavelet Multipli-
ers

The wisdom of Chapter 8 is that a wavelet multiplier can be considered as
a filter which time and band-limits a signal. Thus, if we are interested in
finding a filter that has the same effect as two wavelet multipliers arranged
in series, we are actually seeking a formula for the product of two wavelet
multipliers.

We give in this chapter a formula for the product of two wavelet multi-.
pliers ¢T,3 : L*(R*) — L*(R*) and ©T, % : L*(R*) — L*(R*), where o and
7 are functions in L?(R™), and ¢ is a function in L*(R*) NL*®(R™) such that
ll¢llz2@ny = 1. To do this, we need a recall of some basic results without
proofs on the Weyl transform from the book [5] by Folland and the book
[22] by Wong.

Let 0 € L?>(R* x R*). Then the Weyl transform associated to o is the
bounded linear operator W, : L?(R*) — L*(R") given by

et = o) [ [ olaeW(h.0)(e dade

for all functions f and g in L?(R™), where W(f, g) is the Wigner transform
of f and g defined by

e WP f <x+§) g (a:— P—)dp, z, £ € R".

Wi(5,0)(0,8) = (22) ™" [ z
(9.1)

Rn
It can be proved that
W(f,9)(z,&) =V(f9)" (=€), z, (R, (9.2)

where the function V(f, g) on R* x R* is the Fourier-Wigner transform of
f and g defined by

V(f,9)(q,p) = 2m)™™*(p(a,p)f,9), ¢ pER, (9.3)

o4
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and L
(p(q,p)f)(z) = 2P f(z +p), zeR" (9.4)

For all Schwartz functions f and g on R", the functions V(f,g) and
W (f,g) are Schwartz functions on R™ x R™.

For all functions f and g in L2(R"), the functions V(f,g) and W(/, g)
are in L?(R* x R*). Furthermore, we have

W (f, 9)|2@exzey = [1f 2@ 9]l o) (9-5)
for all functions f and g in L*(R"™). That the same identity is true when W
is replaced by V follows from (9.2) and Plancherel’s theorem.

Let h € L2(R* x R*). Then, for all functions f in L*(R"), we define the
function K} f on R* by

(@) = [ e Wiy, =R

Then Kj : L2(R*) — L?(R") is a bounded linear operator and we call it
the Hilbert-Schmidt operator corresponding to the kernel h. The following
result, obtained by Pool in [15], is the main ingredient in the derivation of
the product formula for two wavelet multipliers.

Proposition 9.1 Let h € L*([R* x R*). Then the Hilbert-Schmidt op-
erator corresponding to the kernel h is the same as the Weyl transform
W, : L*(R*) — L*(R*), and

o = (2m)Y2FyTh, (9.6)

where Fo is the Fourier transform on L2(R* x R™) with respect to the second
variable and T is the linear operator on L*(R* x R™) defined by

@Hay) =f(z+Lo-%), zyer, (9.7
for all functions f in L*(R* x R").

We can now give a formula for the product of two wavelet multipliers.
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Theorem 9.2 Let o and T be functions in L*(R"™), and let ¢ be any function
in L*(R*) N L®(R") such that ||¢||2@msy = 1. Then the product of the
wavelet multipliers T,¢ : L*(R") — L*(R™) and ¢T,% : L*(R") — L*(R")
is the same as the linear operator Wy : L*(R") — L%(R"), where W, :
L*(R™) — L%(R™) is the Weyl transform associated to \ and

Mo, 6) = 2m)™ | W(o,7)(Ey - 2)le(y)dy (98)

for all x and & in R™.
The following lemma will be used in the proof of Theorem 9.2.
Lemma 9.3 Let f and g be functions in L*(R*). Then
| W(f,9)(z.6) = W(f,9)(€ ~2), = R
Proof: Let f and g be functions in S. Then, by (9.3) and (9.4),
V(£,9)@p) = @n) e MTF ) (9.9)
for all ¢ and p in R™, where
(Tru)(z) =u(z+p), zeR,

and .
(Mgu)(z) = e%u(z), = €R",

for all measurable functions u on R*. So, by (9.3), (9.4), (9.9) and Planch-
erel’s theorem,

V(£,9)(@.p) = (@)™ (T_,M,[)", )
= (2m) /X2 PT_ M, ], g)

= (27r)""/2/ e%iq'pei”'(“’“q)f(x—q)g(:c)dx

= (2m)? / e?=32 f(5 — g)g(z)dz

= @)™ [ (olp -0 @5z
= V(/,9)(p,—9), ¢, peR" (9.10)
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So, by (9.1) and (9.9),

W(f,g)(z,€ = (2m)™ e~ ==LV (f,5)(q, p)dgdp

n

—

n

= (2m)™" e~ PEY (£, 9)(p, —q)dqdp

—

n n

—E

= @™ | " PEV (£, 9)(p, q)dgdp

= W(f, 9 —x), =z R (9.11)
Thus, by (9.5), (9.10), (9.11), Plancherel’s theorem and a limiting argument,
the proof is complete. O

Proof of Theorem 9.2: We begin with the observation that for all func-
tions f in L'(R*) N L*(R™),

THE) = @0 [ ol fieas

= (2n) ™5 * f)(z), z€R" (9.12)
Now,

(0T 8)(¢T-p) = ¢TowT: o, (9.13)
where

w =% (9.14)

and for all functions f in S, we get, by (9.12) and Fubini’s theorem,
(TowT: f)(z) = 2m) 25 * wT, f)(z)
= (27)7"(G *w(7 * f))(x)

= o0 [ ate -t ([ rlv= 25z
en [ ([ st - wtuyrty =2y 1

/ h(z,2)f(z)dz, ze€R", (9.15)

Il

I
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where
h(z,z) = (2m)™ /n Gz —y)w(y)T(y — 2)dy, =z, z€ R*. (9.16)

By Minkowski’s inequality in integral form, Fubini’s theorem, Plancherel’s
theorem and (9.14),

</n . |h(z, z)|2da:dz)%
= (2m)~" </n /n 2d:vdz)%

e [ ([ ] 1ot = ety dsiz) " ay

1

= e [ el ([ [ 10— vt - ) Paadz) "y
= (271-)_71“90“%2(1}&")”O'“L‘Z(]R")”T”U(Rn)- (9.17)

| e = ety - 2)ay

INA

So, by (9.15)—(9.17) and Proposition 9.1, T,wT, : L*(R") — L%(R") is a
Weyl transform W, : L*(R*) — L?(R"), and by (9.6),

A = (2m)"2F,Th. (9.18)
By (9.7) and (9.16),

(Th)(z,2) = (2%)"“/n&(:c+§—y)w(y)% (y—x+§) dy
en [ o(o-y+3) e (E--v)a

(2m)~" /n F (m —y+ g) w(y)T (x -y — %)dy (9.19)

for all z and z in R*. For almost all z in R*, we get, by (9.14), (9.19),
Fubini’s theorem, the Schwarz inequality and Plancherel’s theorem,

[ RICE et erm

dz
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L[ Joe=v+3) il (s-v-3)]av)
= [l ([ o (c-v+3)|]

< Rnlw(y”(/" 5<$_y+§>’2dz>%</n '

= 2n”(PH%2(Rn)“U“L2(R")”T”Lz(]R")-

IN

¢
—

8

|

Nad

|
NN RS
—

Q.

)
N—

&

Thus, by (9.1), (9.14), (9.19), Fubini’s theorem and Lemma 9.3,

(F2Th)(z, )
= @)™ wy) {(2@-"/2 /R s (x—y+§)%(x-y-§)dz}dy

Rn

= e [ W)W P - v e

= (2n)™" . W(o,7)(&,y — z)w(y)dy, =z, R,

and hence, by (9.13), (9.14) and (9.18), (9.8) follows.



10 Another Product Formula for Wavelet
Multipliers

We give in this chapter another formula for the product of two wavelet
multipliers. In order to do this, we need a recall of a formula, in the paper [7]
by Grossmann, Loupias and Stein, for the product of two Weyl transforms
associated to functions in L?(R® x R"). To this end, we need the notion of
a twisted convolution.

As usual, we identify R* x R® with C* and any point (¢,p) in R* x R?
with the point z = ¢ + ip in C*, and we define the symplectic form [, ] on
C™ by

[2,w] = 2Im(z - w), =z, weC,

where
<z = (21,2«'2, o '7Zn)7

w = (w1>w27”'7wn))

and
n
2w = E zjwj.
i=1

Now, for any fixed real number A, we define the twisted convolution f %, g
of two measurable functions f and g on C* by

(f*x9)(z / f(z —w)g(w)e Newlgy,  z e C, (10.1)

where dw is the Lebesgue measure on C*, provided that the integral exists.
The following theorem can be found in the paper [7] by Grossmann, Loupias
and Stein.

Theorem 10.1 Let o and T be functions in L2(C"). Then the product of
the Weyl transforms W, : L*(R*) — L*(R*) and W, : L*(R*) — L*(R")

60
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is the same as the Weyl transform W, : L*(R") — L?(R"), where w is the
function in L?(C") given by
O = (2m)(6 #1 7).

A proof of Theorem 10.1 can be found in Chapter 9 of the book [22] by
Wong.

Another ingredient in the derivation of another formula for the product
of two wavelet multipliers is given in the following theorem.

Theorem 10.2 Let 0 € L*(R"), and let ¢ be any function in L*(R*) N
L®°(R™) such that ||¢||L2rny = 1. Then the wavelet multiplier oT,@ : L*(R™)
— L*(R*) is the same as the Weyl transform W, : L*(R*) — L?(R"),
where

oz, &) = (2m) "> . W (e, ¢)(z,& —n)o(n)dn, =z, E€R".  (10.2)

Proof: By (9.12), we get, for all functions f in S,

(¢To9)f) (@) = (21)™"p(z)(5 * f)()
= (2n)0(2) | 5(z—y)eu)f(y)dy

Rn
= ™ [ p@sla - 1) Wiy
~ [ hawfe, cek, (103
where
h(e9) = (2m)"Pelz)olz ~y)el), #yeR.  (104)

Now, by (10.4), Fubini’s theorem and Plancherel’s theorem,
/ |h(z,y)|*dzdy
n ]Rn
= em™ [ [ lel@Piote - p)llel)dady

= (2m)™ : lo(y)I? (/R () ?|o(z ~ y)l2dw) dy
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R R O L
= (2m)"l@ll} oo @Il 2@y Il 2 ey < o0 (10.5)

So, by (10.3)-(10.5), ¢T,@ : L*(R*) — L*(R*) is a Hilbert-Schmidt opera-
tor with kernel h, and hence, by Proposition 9.1, is the same as the Weyl
transform W, : L*(R") — L*(R*), where

o,(xz, &) = 2m)Y3(FTh)(z,€), =, &R (10.6)
But, by (9.7) and (10.4),

(Th)(z,y) = h (a:—l—%,x— %)
= (2m)"™%p (:r + g—) (y)@ (x - %) , T,y €R,

and hence by (7.6),
(FoTh)(z,¢)
(
(2

= (2m)™ /n e %Yy (:r + %) a(y)@ (:z: - %) dy
)" (Wi, o)z, ) *0)(&), =z R (10.7)

Hence, by (10.6) and (10.7), the proof is complete. O

We can now give another formula for the product of two wavelet multi-
pliers.

Theorem 10.3 Let o and 7 be functions in L*(R™), and let ¢ be any func-
tion in L*(R™) N L®(R"™) such that ||¢||2@r) = 1. Then the product of the
wavelet multipliers T, : L*(R*) — L*(R") and ¢T;¢ : L*(R*) — L*(R")
is the same as the Weyl transform Wy : L*(R") — L*(R"), and X is the
function in L*(R™ x R™) given by

A= (2m)7"(Gp *1 Ty),

*1
1

where o, and T, are defined by (10.2).

Theorem 10.3 is an immediate consequence of Theorems 10.1 and 10.2.



11 A Product Formula for Daubechies Op-
erators

Let ' € L?(C"). Then the Daubechies operator is the bounded linear
operator Dg : L*(R*) — L*(R™) defined by (5.23) for all functions f and g
in L?(R"). We are interested in obtaining a formula for the product of two
Daubechies operators in this chapter.

The starting point is the following theorem.

Theorem 11.1 Let A be the function on C* defined by
Alz) =n e ¥ 2 e (11.1)

Then, for all functions F in L?(C"), the Daubechies operator D : L*(R™)
— L2(R) is the Weyl transform We.s : L*(R*) — L*(R").

Theorem 11.1 is Theorem 17.1 in the book [22] by Wong.

For any fixed real number ), we define the A-convolution f +* g of two
measurable functions f and g on C* by

(f ** g)( / flz— rEolPgy 2 e, (11.2)
provided that the integral exists. We have the following result.

Theorem 11.2 Let F and G be functions in L*(C"). If there ezists a func-
tion H in L2(C) such that the Daubechies operator Dy : L*(R") — L*(R")
is the same as the product of the Daubechies operators D : L*(R") —
L*(R") and D¢ : L*(R") — L*(R"), then

H=0r)™Fx«qG). (11.3)

63
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Proof: By Theorem 11.1,
Whia = WraaWaeaa. (11.4)
It follows from Theorem 10.1 and (11.4) that for all ¢ in C*,
(H * M) = (2m) ™((F = A)" *1 (G * A)NQ). (11.5)

By (11.1) and an easy computation, we get
2

A(Q) = @m) e, e (11.6)

Thus, by (11.4)—(11.6) and the definition of a twisted convolution given in
(10.1), we get

AQe™ = @n)M{(ER) = (GRHHQ)
= (o) [ F(C - w)e HR Gt e,
cr
= (n) [ FIC-w)Gu)et PPy, (117)
Ccr
So, by (11.7),

~

H(C) = (2m)" / B(C — w)Cw)etIP=lmulloPricult g, ¢ e Cn)
Cr

(11.8)
Now, for all ( and w in C",
€17 =1 = wf* = |w* +14[¢, w]

= [CI° = [¢* + 2Re(C- @) — |w]® = |w]* + 2iTm(C - @)

= 2(¢-@) = 2wl (11.9)
Therefore, by (11.2), (11.8) and (11.9), we get, for all { in C",

H(¢) = (2m)™" / F(¢ - w)G(w)es @M dw,
o

and hence (11.3). O

From the proof of Theorem 11.2, we get the following corollary.
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Corollary 11.3 Let F and G be functions in L*(C*) such that F x2 G €
L?(C"). Then there ezists a function H in L?(C*) such that H = (2r)™"
(F %2 G) and the Daubechies operator Dy : L*(R*) — L*(R™) is the product
of the Daubechies operators Dp : L*(R*) — L*(R") and Dg : L*(R*) —
L2(R™).

Remark 11.4 In general, for functions F' and G in L?(C"), it is not true

that 3 G € L?*(C"). So, the product of two Daubechies operators associ-
ated to functions in L%(C") need not be a Daubechies operator associated
to a function in L?>(C"). This can best be seen from the following example.

Example 11.5 Let W be the subset of R x R defined by
W={(¢,p) eRxR:0<¢q,p<1} (11.10)

We identify points w and ¢ in C with points (¢,p) and (z,£) in R x R
respectively. Let F' € L?(C) be defined by

A

F(q,p)=e5x(p), ¢, peR (11.11)

where x is the characteristic function on [~1,1], and let G € L?(C) be
defined by

A 3lwl? w
Glw)=1d¢€", wewWw, 11.12
) {0’ ew (11.12)

Then, by (11.10)~(11.12),
- / F(¢ - w)Gw)e e gy
w
1 1
= / e~ wlomdly (¢ — p)es@rtPO)erilet—r) dqqp
0

1 1
[ ertemnerinay) ([ e - petrtvap) q1s)
0 0

for all ( in C. But for z > 1 and 0 < £ < 1, we get from (11.13)

1 1
60 = ([ erteetnnnon) ([ etoap)
0 0
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-1 :
_ demw (64(1+2c) 1)_2_(6 :}i(_1>

1+2C ¢
46%3’ +~z§ T 21 £ —tiz
- ) 2 )

and hence F' %2 G ¢ L*(C).

In view of Remark 11.4 and Example 11.5, it is a natural problem to
seek some subspace of L%(C") such that the product of two Daubechies
operators associated to functions in the subspace is indeed a Daubechies
operator associated to a function in L*(C").

For any nonnegative real number ¢, we denote by S, the set of all mea-
surable functions F' on C* such that

IF(Q)| < e FIfQ)l, ¢cec,

for some function f in L2(C*). Tt is clear that S, is a subspace of L*(C")
for all ¢ > 0. It is also clear that if ¢ < d, then §; C S..

We can now give a formula for the product of two Daubechies operators
associated to functions in S,, where ¢ > 5@@

Theorem 11.6 Let F and G be functions in S., where ¢ > 5'5@. Then
the product of the Daubechies operators Dp : L*(R*) — L*(R") and Dg :
L*(R") — L%*(R™) is the same as the Daubechies operator Dy : L*(R") —

L*(R*), where HE () Sid =c—3— >0, and
0<d<e

8c+1

A

H=(2n)™FG).
Proof: Let f and g be functions in L?(C") such that

()] < e P £(Q)] (11.14)

and
1G(Q)] < e~ g(0)] (11.15)



11. A Product Formula for Daubechies Operators 67

for all ¢ in C*. Then, by (11.2), (11.14) and (11.15), we get, for all ¢ in C",

|(F |

Nln—a

< / F(¢ — w)||G(w)| ekl =314 gy

< / e=lC=1| £ — )| e=eWP | g(w)] ed ISP+l ol gy

< e (C")K'z/ 1£(C = w)l|g(w)] 2ReC® e~ el gy (11.16)
But, for any positive number ¢, we have

2cRe((-@) < 2¢|¢- @] < 2¢l(]|w]

= 2Bl

1
< ¢ (5|C|2 + g|w12) (11.17)
for all ¢ and w in C*. So, by (11.16) and (11.17), we have, for all ¢ in C",

(B +F G)(Q)] < elemimealr /@ I£(C - w)llg(w) e @Dy, (11.18)

Since ¢ > L‘fg@, it follows from (11.18) that for any positive number € such
that

1
— <e<l——, (11.19)
20—{-4 4c

there exists a positive constant d. such that

|(F+3 G)(O)] < emIF f £~ w)llglw)| e dw, ceC, (11.20)

where
€. =C— — — CE. (11.21)
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Since, for any ¢ satisfying (11.19), the function |gle~%!* is in L}(C"), it
follows from Young’s inequality that the function h. on C* defined by

he(¢) = / (¢ = w)llg(w)| e *“Fdw, ¢ecC, (11.22)
cr
is in L2(C"). Thus, by (11.20) and (11.22),

(F 2 G)(Q)] < e Fhe(¢), e, (11.23)

for any ¢ satisfying (11.19). Now, by Plancherel’s theorem, let H € L?(C")
be such that R L
H = (2m)™"(F %2 G). (11.24)

Then, by (11.23) and (11.24), H € S,,, and hence, by (11.19) and (11.21),

H € () S; That the Daubechies operator Dy : L?*(R*) — L2*(R")
o<d<c!
is the product of the Daubechies operators Dr : L*(R") — L?(R™) and

D¢ : L>(R*) — L?(R"™) is then a consequence of (11.24) and Corollary 11.3.
O

Remark 11.7 The results in this chapter can be found in the paper [3] by
Du and Wong.
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