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Preface

This collection of survey articles are from two conferences and three series of lectures
given in the second half of 1997: the Workshop on Gauge Theory (July 28 — August 2), the
Conference on Geometric Structures on Manifolds (September 29 — October 2) and the
series of lectures given by Professors Boris Apanasov, Steven Kerckhoff, and Sadayoshi
Kojima. The concentration on this topic during the second half of 1997 exposed the
graduate students and the researchers in Korea to many aspects of manifold topology
from geometric perspectives. '

Several aspects of the current state of the manifold topology theory were presented
and discussed. The first is the gauge theory on 3- and 4-manifolds involving Casson and
Seiberg-Witten invariants. The second is that of singular hyperbolic 3-manifolds which
recently advanced by efforts of Hodgson, Kerckhoff, and Kojima who all gave presentations
here. The third is that of affine and projective structures on manifolds. Barbot and Choi
in particular gave presentations of the classification of radiant affine 3-manifolds and the
resolution of the Carriére conjecture. A significant tie between affine differential geometry
and the representations of the fundamental groups of surfaces was presented by Labourie.
The fourth was exposed by Apanasov, Kamishima, and Inkang Kim who made progress
in rigidity questions of discrete groups. There are other significant developments exposed
during this period but we end with the above inadequate mention.

The Workshop on Gauge theory was supported by the Research Institute of Mathe-
matics (RIM, SNU) and the conference and the series of talks were supported by the
Global Analysis Research Center (GARC, SNU) funded by the Korea Science and En-
gineering Foundation. We are very thankful of the generous financial support and the
encouragement and guidance of Professor Sang-Moon Kim, the director of GARC and
Professor Sung-Ki Kim, the director of RIM. We also thank many graduate students in
our department for their help in setting up and running the workshops smoothly.

Suhyoung Choi, Hyuk Kim, and Hyunkoo Lee

September 1999
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COMPLEX HYPERBOLIC MANIFOLDS: RIGIDITY VERSUS
FLEXIBILITY AND INSTABILITY OF DEFORMATIONS

Boris ApaNasovt

ABSTRACT. The paper studies deformations of Jnoncompact complex hyperbolic mani-
folds (with locally Bergman metric), varieties of discrete representations of their funda-
mental groups into PU(n, 1) and the problem of (quasiconformal) stability of deformations
of such groups and manifolds in the sense of L. Bers and D. Sullivan.

1. INTRODUCTION

This paper presents a recent progress in the theory of deformations of noncompact
complex hyperbolic manifolds M (of infinite volume, with variable sectional curvature)
and spherical Cauchy-Riemannian manifolds at their infinity M, varieties of discrete
faithful representations of the fundamental groups m M into PU (n,1), and the prob-
lem of (quasiconformal) stability of deformations of such groups and manifolds whose
geometry makes them surprisingly different from those in the real hyperbolic geometry
with constant negative sectional curvature. )

Geometry of the complex hyperbolic space HE is the geometry of the unit ball B
in C* with the Kahler structure given by the Bergman metric whose automorphisms
are biholomorphic automorphisms of the ball, i.e., elements of PU(n,1). We notice
that complex hyperbolic manifolds (modeled on HZ) with non-elementary fundamental
groups are complex hyperbolic in the sense of S. Kobayashi [Kob]; we refer the reader
to [AX1, CG, G4] for general information on such manifolds, in particular for several
equivalent descriptions of the basic class of geometrically finite complex hyperbolic
manifolds and for a discussion on surprising differences between such manifolds and
real hyperbolic manifolds with constant negative sectional curvature. Here we study
deformations of complex hyperbolic manifolds and their fundamental groups by using
the spherical Cauchy-Riemannian geometry at infinity. This CR-geometry is modeled on
the one point compactification of the (nilpotent) Heisenberg group #H,, which appears as
the sphere at infinity of the complex hyperbolic space HE. Since any complex hyperbolic
manifold can be represented as the quotient M = HZ /G by a discrete torsion free
isometry action of the fundamental group of M, m,(M) = G C PU (n,1), its boundary
at infinity 0o, M is naturally identified as the quotient Q(G)/G of the discontinuity set of
G at infinity. Here the discontinuity set Q(G) is the maximal subset of OHR where G acts

1991 Mathematics Subject Classification. 57, 55, 53, 51, 32, 22, 20.

Key words and phrases. Negative curvature, complex hyperbolic geometry, Cauchy-Riemannian
manifolds, discrete subgroups of PU(n, 1), disk and circle bundles over surfaces, equivariant homeomor-
phisms, geometric isomorphisms, quasiconformal maps, deformations of geometric structures, stability,
Teichmiiller spaces.
tSupported in part by the NSF; research at the University of Tokyo was supported in part by JSPS.
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2 BORIS APANASOV

discretely; its complement A(G) = OHE \Q(G) is the limit set of G, A(G) = G(z) N OHE
for any z € HE.

One can reduce the study of deformations of complex hyperbolic manifold M, or
equivalently the Teichmiiller space 7 (M) of isotopy classes of complex hyperbolic struc-
tures on M, to studying the variety 7(G) of conjugacy classes of discrete faithful rep-
resentations p : G — PU(n, 1) (involving the space D(M) of the developing maps, see
[G2, FG]). Here T(G) = Ro(G)/PU(n,1), and the variety Ro(G) C Hom(G, PU(n,1))
consists of discrete faithful representations p of the group G' whose co-volume Vol(HZ /G)
may be infinite.

Due to the Mostow rigidity theorem [Mol], hyperbohc structures of finite volume
and (real) dimension at least three are uniquely. determined by their topology, and one
has no continuous deformations of them. Despite that, real hyperbolic manifolds NV can
be deformed as conformal manifolds, or equivalently as higher-dimensional hyperbolic
manifolds M = N x (0, 1) of infinite volume. First such deformations were given by the
author [A2] and, after Thurston’s “Mickey Mouse” example [T], they were called bend-
ings of N along its totally geodesic hypersurfaces, see also [A1l, A3-A5, JM, Ko]. Fur-
thermore such a flexibility of the real hyperbolic geometry is emphasized by the fact that
all those deformations can be induced by continuous families of G-equivariant quasicon-
formal self-homeomorphisms f; : H — HZ of the closure of the real hyperbolic space
HgZ. In particular, these G-equivariant quasiconformal homeomorphisms deform contin-
uously the limit set A(G) C OHg (of a “Fuchsian group” G C IsomHg ™' C Isom HR)
from a round sphere BIHE"I = S"~2 C §"°! = OHR into nondifferentiably embed-
ded (nonrectifiable) topological (n — 2)-spheres in H which are the limit sets A(G;)
of “quasi-Fuchsian groups” G; = f;Gf; ! C IsomHg, and obviously the restrictions
ftlae) : A(G) = A(G:) are quasisymmetric maps.

Such a geometric realization of isomorphisms of discrete groups became the start
point in our study of deformations of discrete groups of isometries of negatively curved
spaces X, see [AT]:

Problem. Given an isomorphism ¢ : G — H of geometrically finite discrete groups
G, H C Isom X, find subsets Xg, Xz C X invariant for the action of groups G and H,
respectively, and an equivariant homeomorphism:

ftp : Xg = Xu ‘P(g)of'p:ftpog forallge G,

which induces the isomorphism ¢. Determine metric properties of f,, in particular
whether it is either quasisymmetric or quasiconformal with respect to the given negatively
curved metric d in X (or the induced sub-Riemannian Carnot-Carathéodory structure
at infinity 0X ).

If the groups G, H C IsomX are neither lattices nor trivial and have parabolic
elements, the only known geometric realization of their isomorphisms in dimension
dim X > 3 is due to P. Tukia’s [Tu] isomorphism theorem for real hyperbolic spaces
X = Hg. However, the Tukia’s construction (based on geometry of convex hulls of the
limit sets A(G) and A(H)) cannot be used in the case of variable negative curvature
due to lack of control over convex hulls (where the convex hull of three points may
be 4-dimensional), especially nearby parabolic fixed points. However, as a first step in
solving the above geometrization Problem, we have the following isomorphism theorem
[A8, A10] in the complex hyperbolic space:
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Theorem 3.2. Let ¢ : G — H be a type preserving isomorphism of two non-elementa-
ry geometrically finite discrete subgroups G,H C IsomHZ. Then there exists a unique
equivariant homeomorphism f, : A(G) — A(H) of their limit sets that induces the
isomorphism ¢.

However, in contrast to the real hyperbolic case where such geometric realizations of
type preserving isomorphisms of geometrically finite groups are always quasisymmetric
maps [Tu], it is doubtful that the (unique) equivariant homeomorphism f, : A(G) =
A(H) constructed in Theorem 3.2 is always CR-quasisymmetric (with respect to the CR-
structure on the Heisenberg group M, = OHZ\{co}). Namely, a possible obstruction
to quasisymmetricity directly appear from the following corollary of our construction in
Section 4: )

Corollary 4.2. Let M = HZ/G be a complex hyperbolic surface with the holonomy
group G C PU(1,1) C PU(2,1) that represents the total space of a non-trivial disk
bundle over a Riemann surface of genus p > 0 with at least four punctures (hyperbolic
2-orbifold with at least four punctures ). Then the Teichmiiller space T (M) contains a
smooth simple curve o : [0,7/2) — T (M) with the following properties:

(1) the curve a passes through the surface M = «(0);

(2) each complez hyperbolic surface My = a(t) = HZ /Gy, t € [0,7/2), with the
holonomy group Gy C PU(2,1) is homeomorphic to the surface M;

(3) for any parameter t, 0 < t < w/2, the complexr hyperbolic surface M is not
quasiconformally equivalent to the surface M.

Besides the claims in this Corollary, it follows also from the construction of the
above complex hyperbolic surfaces M and M, that their boundaries, the spherical CR-
manifolds N = M = Q(G)/G and N; = 0M; = Q(G:)/G; have similar properties.
Namely these 3-dimensional CR-manifolds {N;}, 0 < ¢t < m/2, represent points of a
smooth simple curve aq : [0,7/2) < T(N) in the Teichmiiller space 7(N) of the
manifold N = Ny = M, are mutually homeomorphic total spaces of non-trivial circle
bundles over a Riemann surface of genus p > 0 with at least four punctures, however
none of {N;} with ¢ > 0 is quasiconformally equivalent to N = Ny. We note that, for
the simplest case of manifolds with cyclic fundamental groups, a similar (though based
on different ideas) effect of homeomorphic but not quasiconformally equivalent spherical
CR-manifolds has been also recently presented by R. Miner [Mi.

It is quite natural that the result in Corollary 4.2 is related to the classical problem
of quasiconformal stability of deformations from the theory of Kleinian groups, in par-
ticular to well known results by L. Bers [Bel, Be2] and D. Sullivan [Sul]. Following to
L. Bers [Be2], a finitely generated Kleinian group G C PSL(2,C) is said to be quasicon-
formally stable if every homomorphism x : G — PSL(2,C) preserving the square traces
of parabolic and elliptic elements (hence type-preserving) and sufficiently close to the
identity is induced by an equivarint quasiconformal mapping w : C — C, x(g) = wgw™!
for all g € G. Due to Bers’s criterion (involving the quadratic differentials for G, see
[Bel]), it follows that Fuchsian groups, Schottky groups, groups of Schottky type and
ceratin non-degenerate B-groups are all quasiconformally stable [Be2]. Changing the
condition on homomorphisms x in terms of the trace of elements g € G to the condition
that x preserves the type of elements of a discrete groups G, one has a natural gener-
alization of quasiconformal stability for discrete groups G C PU(n,1). In that sense,
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B. Aebisher and R. Miner [AM] recently proved that (classical) Schottky subgroups
G C PU(n, 1) are quasiconformally stable. Nevertheless, as our construction in Section
4 shows, Fuchsian groups G C PU(2,1) are quasiconformally unstable:

Theorem 4.1. There are co-finite Fuchsian groups G C PU(1,1) C PU(2,1) with
signatures (g,7;my, ..., m,), where genus g > 0 and there are at least four cusps (with
branching orders m; = 0o), such that:

(1) the Teichmiiller space T(G) of such a group G contains a smooth simple curve
a, a : [0,7/2) < T(G), that passes through the Fuchsian group G = «(0),
and whose points a(t) = Gy C PU(2,1), 0 < t < /2, are all non-trivial quasi-
Fuchsian groups;

(2) each isomorphism x : G = Gy, 0 < t < 7/2, is induced by a G-equivariant

homeomorphism f; : Hg — H2 of the closure HZ = HZ U OHZ of the complez
hyperbolic space;

(3) for any parameter t, 0 < t < m/2, the action of the quasi-Fuchsian group Gy is
not quasiconformally conjugate to the action of the Fuchsian group G = a(0)
(in both CR-structure at infinity OHZ = Hy U {oo} and the complex hyperbolic

space HZ ).

However it is still an open question whether the actions of the constructed quasi-
Fuchsian groups G and Gy on their limit sets A(G:) and A(Gy) could be “quasiconfor-
mally” conjugate, in other words, whether the canonical G-equivariant homeomorphism
fxe + MG) = A(G) of the limit sets (constructed in Theorem 3.2) that induces the
isomorphism ¢ : G — Gy, 0 < t < w/2, is in fact quasisymmetric.

In Sections 4 and 5, we address the basic problem of existence of non-trivial deforma-
tions of “non-real” hyperbolic manifolds (in particular, complex hyperbolic ones) and
their (discrete) holonomy groups which, in contrast to the described flexibility in the
real hyperbolic case, seem much more rigid. Indeed, due to Pansu [P], quasiconformal
maps in the sphere at infinity of quaternionic/octonionic hyperbolic spaces induced by
hyperbolic quasi-isometries are necessarily automorphisms, and thus there cannot be
interesting quasiconformal deformations of corresponding structures (even any topolog-
ical conjugation of two different (free) Schottky groups in those spaces cannot be qua-
siconformal, cf. [AM]). Secondly, due to Corlette’s rigidity theorem [C3], such closed
manifolds of (quaternionic or octonionic) dimension at least two and corresponding uni-
form lattices are even super-rigid - analogously to Margulis super-rigidity in higher rank
[M, A13]. The last fact and our joint work with Inkang Kim [AK] imply impossibility
of quasi-Fuchsian deformations of quaternionic/octonionic manifolds of infinite volume
homotopy equivalent to their closed analytic submanifolds, for quaternionic manifolds
of dimension at least three, see also [Ka]. Furthermore, complex hyperbolic manifolds
share the above rigidity of quaternionic/octonionic hyperbolic manifolds. Namely, due
to the Goldman’s local rigidity theorem in dimension n = 2 [G1], every nearby dis-
crete representation p : G — PU(2,1) of a cocompact lattice G C PU(1,1) stabilizes a
complex geodesic in the complex hyperbolic space H2 (which is also true for small defor-
mations of cocompact lattices G C PU(n — 1,1) in higher dimensions n > 3 [GM]), and
thus the limit set A(pG) C OHE is always a round sphere S2"~3. In higher dimensions
n 2 3, this local rigidity of complex hyperbolic n-manifolds M homotopy equivalent
to their closed complex totally geodesic hypersurfaces is even global (at least in the
connected component of representation variety [C1, BCG, Y1]).
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Our goal here is to show that, in contrast to rigidity of complex hyperbolic n-
manifolds M from the above class, the Stein spaces from the following two classes
of complex hyperbolic surfaces M are not rigid (it seems to us that the property of
a complex hyperbolic manifold to be a Stein space is crucial for its flexibility). Such
a flexibility has two independent aspects related to both conditions in the Goldman’s
local rigidity theorem, firstly, the existence of a complex analytic subspace homotopy
equivalent to the manifold M and, secondly, compactness of that subspace.

Namely, as it follows from the above Theorem 4.1 and Corollary 4.2, the first class of
non-rigid complex hyperbolic manifolds consists of complex Stein surfaces M homotopy
equivalent to their non-compact complex analytic subspaces (Riemann surfaces of genus
p > 0 with finite hyperbolic area, with at least four punctures).

The second class of non-rigid manifolds consists of Stein spaces represented by com-
plex hyperbolic manifolds M homotopy equivalent to their closed totally real geodesic
submanifolds. Namely, in complex dimension two, we provide a canonical construction
of continuous non-trivial quasi-Fuchsian deformations of complex surfaces fibered over
closed Riemannian surfaces of genus g > 1 depending on 3(g —1) continuous parameters
(in addition to “Fuchsian” deformations, where in particular, the Teichmuller space of
the base surface has dimension 6(g — 1)). This is the first such non-trivial deformations
of fibrations with compact base (for non-compact base, see a different Goldman-Parker’
deformation [GP] of ideal triangle groups G C PO(2,1)). The obtained flexibility of
such holomorphic fibrations and the number of its parameters (at least 9(g — 1)) pro-
vide the first advance toward a conjecture on dimension 16(g — 1) of the Teichmuller
space of such complex surfaces. It is related to A. Weil’s theorem [W] (see also [G3,
p-43]), that the variety of conjugacy classes of all (not necessarily discrete) representa-
tions G — PU(2,1) near the embedding G C PO(2,1) is a real-analytic manifold of
dimension 16(g — 1). We remark that discreteness of representations of G & m M is
an essential condition for deformation of a complex manifold M which does not follow
from the mentioned Weil’s result.

Our construction here is inspired by the well know bending deformations of real
hyperbolic (conformal) manifolds along totally geodesic hypersurfaces. In the case of
complex hyperbolic (and Cauchy-Riemannian) structures, it works however in a different
way than that in the real hyperbolic case. Namely our complex bending deformations
involve simultaneous bending of the base of the fibration of the complex surface M as
well as bendings of each of its totally geodesic fibers (see Remark 5.4). Such bending
deformations of complex surfaces are associated to their real simple closed geodesics (of
real codimension 3), but have nothing common with cone deformations of real hyperbolic
3-manifolds along closed geodesics (see [A4, A5]).

Furthermore, there are well known complications (cf. [KR3, P, Cap)) in constructing
equivariant quasiconformal homeomorphisms in the complex hyperbolic space and in
Cauchy-Riemannian geometry, which are due to necessary conditions for such maps to
preserve the Kahler and contact structures (correspondingly in the complex hyperbolic
space and at its infinity, the one-point compactification of the Heisenberg groupH,,).
Despite that, as it follows from our construction, the complex bending deformations
are induced by equivariant homeomorphisms which are in addition quasiconformal with
respect to the corresponding metrics. One of our main results in this direction may be
formulated as follows.
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Theorem 5.1. Let G C PO(2,1) C PU(2,1) be a given non-elementary discrete group.
Then, for any simple closed geodesic o in the Riemann 2-surface S = HE/G and a
sufficiently small mo > 0, there is a holomorphic family of G-equivariant quasiconformal
homeomorphisms F, : HX — HZ, —no < n < o, which defines a bending (quasi-
Fuchsian) deformation By : (—no, M0) = Ro(G) of the group G along the geodesic c,
Ba(n) = Fy.

We notice that such complex bending deformations depend on many independent
parameters, as it is shown by application of our construction and Elie Cartan [Car]
angular invariant in Cauchy-Riemannian geometry:

Corollary 5.2. Let S, = H /G be a closed totally real geodesic surface of genus p > 1
in a given complex hyperbolic surface M = HZ/G, G C PO(2,1) C PU(2,1). Then
there is a real analytic embedding woB : B3~3 — T (M) of a real (3p — 3)-ball into the
Teichmiller space of M, defined by bending deformations along disjoint closed geodesics
in M and by the projection ® : D(M) — T(M) = D(M)/PU(2,1) in the development
space D(M).

The above embedding and the fact that the Teichmuller space of the base surface
Sp (totally geodesically) embedded in the complex surface M is a complex manifold of
dimension 3(g —1) show that we have in fact a real analytic embedding B%~° — T (M)
of a real 9(p — 1)-ball into the Teichmiiller space of the complex hyperbolic surface M.

In our subsequent work, we apply the constructed bending deformations to answer
a well known question about cusp groups on the boundary of the Teichmiiller space of
T (M) of a Stein complex surface M fibering over a compact Riemann surface of genus
p>1:

Theorem 5.6. Let G C PO(2,1) C PU(2,1) be a uniform lattice isomorphic to the
fundamental group of a closed surface Sp of genus p > 2. Then, for any simple closed
geodesic a C Sp = HE/G, there is a continuous deformation p; = f; induced by G-
equivariant quasiconformal homeomorphisms f; : H& — HZ whose limit representation
Poo CoTTEsponds to a boundary cusp point of the Teichmiiller space T(G), that is the
boundary group peo(G) has an accidental parabolic element poo(ga) where go € G rep-
resents the geodesic o C Sp.

We note that, due to our construction of such continuous quasiconformal deforma-
tions, they are independent if the corresponding geodesics a; C S, are disjoint. It
implies the existence of a boundary group in 87 (G) with “maximal” number of non-
conjugate accidental parabolic subgroups:

Corollary 5.7. Let G C PO(2,1) C PU(2,1) be a uniform lattice isomorphic to the
fundamental group of a closed surface S, of genus p > 2. Then there is a continuous
deformation R : R332 — T(G) whose boundary group G, = R(00)(G) has 3p — 3
non-conjugate accidental parabolic subgroups.

Acknowledgements. The paper was finished during the author’s visit of the Seoul Na-
tional University in November 1997. Some parts of the paper were written during the
author’s stay at the Federal Universidade de Minas Gerais at Belo Horizonte/Brazil,
the Mathematical Sciences Research Institite at Berkeley/CA, and the University of
Tokyo. The author thanks them for the hospitality and gratefully acknowledges partial
support by the National Science Foundation and the Japan Society for the Promotion



DEFORMATIONS OF COMPLEX HYPERBOLIC MANIFOLDS 7

of Science. The author would like to thank Bill Goldman, Mario Carneiro and Nikolay
Gusevskii for many useful conversations.

2. COMPLEX HYPERBOLIC GEOMETRY AND GEOMETRICAL FINITENESS

Here we recall some known facts (see, for example, [AX1, GP1, G4, KR1]) concerning
the Kahler geometry of the complex hyperbolic space Hg, its link with the nilpotent
geometry of the Heisenberg group #, induced on each horosphere in HE, and the
Cauchy-Riemannian geometry (and contact structure) in the (2n — 1)-sphere at infinity
OHg which can be identified with the one-point compactification H,, = H, U {oo} of
the Heisenberg group. .

One can realize the complex hyperbolic space,

HE = {[z] € CP" : z2€ C™!, (2,2) < 0},

as the set of negative lines in the Hermitian vector space C*!, with Hermitian structure
given by the indefinite (n, 1)-form (z,w) = 2:W1++ - - + 2, Wy, — 2n4-1Wny1. Its boundary
OHZ = {[z] € CP™! : (2,2) = 0} consists of all null lines in CP" and is homeomorphic
to the (2n — 1)-sphere S2n~1.

There are two common models of complex hyperbolic space HZ as domains in C*,
the unit ball B and the Siegel domain &,,. They arise from two affine patches in the
projective space CP" related to HZ and its boundary. Namely, embedding C* onto the
affine patch of CP™! defined by zn+1 # 0 (in homogeneous coordinates) as A : C* —
CP",z + [(2,1)], we may identify the unit ball Bg(0,1) C C* with HE = A(BZ). Here
the metric in C* is defined by the standard Hermitian form ((, )), and the induced
metric on BZ is the Bergman metric (with constant holomorphic curvature -1) whose
sectional curvature is between -1 and -1/4.

The full group Isom H of isometries of (the ball model of) Hg is generated by the
group of holomorphic automorphisms of the ball B (=the projective unitary group
PU(n,1) defined by the group U(n, 1) of unitary automorphisms of C™! that preserve
HZ), together with the antiholomorphic automorphism of HZ defined by the C-antilinear
unitary automorphism of C™! given by the complex conjugation z — 2. The group
PU(n,1) can be embedded in a linear group due to A. Borel [Bor] (cf. [AX1, L.2.1]),
hence any finitely generated group G C PU(n,1) is residually finite and has a finite
index torsion free subgroup. Elements g € PU(n,1) are of the following three types. If
g fixes a point in HE, it is called elliptic. If g has exactly one fixed point in the closure
TIT-IE— "=’ _g, and it lies in OHE, g is called parabolic. If g has exactly two fixed points, and
they lie in OHE, g is called lozodromic. These three types exhaust all the possibilities.

The second model of H, as the Siegel domain, arises from the affine patch compli-
mentary to a projective hyperplane H, which is tangent to OHg at a point co € JHZ.
For example, taking that point co as (0’,—1,1) with 0’ € C*~! and H,, = {[z] € CP" :
Zn + zn41 = 0}, one has the map S : C* — CP"\ Hy, such that

, 2 21
(j )r——) 3 —2n| where 2= : eCt.
" % + zn Zn—1

In the obtained affine coordinates, the complex hyperbolic space is identified with

the Siegel domain

Gn=ST'HR)={2€C" : 2, +Z. > ((, 7))},
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where the Hermitian form is (S(z),S(w)) = ((z',w’')) — 2, — W,. The automorphism
group of this affine model of HE is the group of affine transformations of C* preserving
Gn. Its stabilizer of the point oo is H, % U(n — 1) - exp(t) where H,, is its unipotent
radical, the Heisenberg group that consists of all Heisenberg translations

T + ) > (046w (600 + F(UED )

where w’,£ € C*~! and v € R.
In particular, H, acts simply transitively on 85, \{co} and on each horosphere H,
(in the complex hyperbolic space) centered at co, which in fact has the form:

H; = {(z,7zn) €6t 2 +2Zn — <<Z’,ZI>) =t}, t>0.

On the base of that, one obtains the upper half space model for the complex hyperbolic
space HE by identifying C*~! x R x [0, 00) and HZ\{co} as

3
(€, v,u) — [%(1—(<€,€>>—u+iv)} € 06,\{co},
31+ ((€,6) +u—iv)

where (§,v,u) € C*~! xRx[0, 00) are the horospherical coordinates of the corresponding
point in HZ\{co} (with respect to the point co € OHE, see [GP1]).

We notice that, under this identification, the geodesics running to oo are the vertical
lines c¢,,(t) = (€, v,€*) passing through points (£,v) € C*~! x R. Also we see that,
via the geodesic perspective from co, the “boundary plane” Hy = C*~! x R x {0} =
OHZ \{oo} and various horospheres correspond as H; — H, with & v,t) = (& v,u).
Each of them can be identified with the Heisenberg group H,, = C*~1 x R. It is a 2-step
nilpotent group with center {0} x R C C*~! x R, with the isometric action on itself and
on HZ by left translations:

T(f;'o,'vo) : (&1 ‘U,’LL) — (&0 + g yUo +v+ 211’11((&),5)) 7u) )

and the inverse of (£,v) is (§,v)™! = (=€, —v). The unitary group U(n — 1) acts on H,,
and HE by rotations: A(§,v,u) = (A¢,v,u) for A € U(n —1). The semidirect product
H(n) = Hn x U(n — 1) is naturally embedded in U(n,1) as follows:

A 0 0
A— [0 1 0| €eUn,1) for AecU(n-1),
0 01

In:l g &
(& v)— ( =€ 1=5(EP —w) =3I - ) ) €U(n,1)
& SEP-dv) 14+ 3()¢)? —v)
where (£,v) € #, = C"! x R and & is the conjugate transpose of &.
The action of #(n) on HZ\{oo} also preserves the Cygan metric p, there, which plays
the same role as the Euclidean metric does on the upper half-space model of the real
hyperbolic space H" = Hg and is induced by the following norm:

(€ v, w)lle = [IEIP +u—iv[*?,  (§0,u) eC™ P xRx[0,00).  (2.1)
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The relevant geometry on each horosphere H, cH, H, 2 H, =C1 xR, is
the spherical C' R-geometry induced by the complex hyperbolic structure. The geodesic
perspective from co defines CR-maps between horospheres, which extend to CR-maps
between the one-point compactifications H, U co &~ S2"=1. In the limit, the induced
metrics on horospheres fail to converge but the CR-structure remains fixed. In this
way, the complex hyperbolic geometry induces CR-geometry on the sphere at infinity
OHZ ~ S~ naturally identified with the one-point compactification of the Heisenberg
group H,. v

Our main assumption on a complex hyperbolic n-manifold M is the geometrical
finiteness of its fundamental group (M)=GC Isom HZ, which in particular implies
that the discrete group G is finitely presented [AX1].

Here a subgroup G C Isom HZ is called discrete if it is a discrete subset of Isom HE.
The limit set A(G) C OHE of a discrete group G is the set of accumulation points of
(any) orbit G(y), y € Hg. The complement of A(G) in OHE: is called the discontinuity
set (G). A discrete group G is called elementary if its limit set A(G) consists of at
most two points. An infinite discrete group G is called parabolic if it has exactly one
fixed point fix(G); then A(G) = fix(G), and G consists of either parabolic or elliptic
elements. As it was observed by many authors, parabolicity in the variable curvature
case is not as easy a condition to deal with as it is in the constant curvature space. Even
the notion of a parabolic cusp point become somewhat complicated. Namely, following
to [Bow], a parabolic fixed point p of a discrete group G C IsomHg is called a cusp
point if the quotient (A(G) \ {p})/G) of the limit set of G by the action of the parabolic
stabilizer G, = {g € G : g(p) = p} is compact. However our approach [AX1-AX3]
makes this notion and geometrical finiteness in pinched negative curvature itself much
more transparent. ‘

Geometrical finiteness has been essentially used for real hyperbolic manifolds, where
geometric analysis and ideas of Thurston provided powerful tools for understanding
of their structure. Due to the absence of totally geodesic hypersurfaces in a space of
variable negative curvature and recent results [AX1, GP1] on Dirichlet polyhedra for
simplest parabolic groups in Hg, we cannot use the original definition of geometrical
finiteness which came from an assumption that the corresponding real hyperbolic man-
ifold M = H" /G may be decomposed into a cell by cutting along a finite number of its
totally geodesic hypersurfaces, that is the group G should possess a finite-sided funda-
mental polyhedron, see [Ah]. However, we can use many other (equivalent) definitions
of geometrical finitiness.

The first one, GF1 (originally due to A. Beardon and B. Maskit [BM]) defines geo-
metrically finite discrete groups G C IsomHZ (and their complex hyperbolic orbifolds
M = Hg/G) as those whose limit set A(G) entirely consists of parabolic cusps and
conical limit points. Here a limit point 2 € A(G) is called a conical limit point of G
if, for some (and hence every) geodesic ray £ C HZ ending at z, there is a compact set
K C HE such that g(¢) N K # 0 for infinitely many elements g € G. The last condition
is equivalent to the following [BM, AX3]:

For every geodesic ray £ C Hg ending at 2 and for every § > 0, there is a point z € HE
and a sequence of distinct elements g; € G such that the orbit {9i(z)} approximates z
inside the d-neighborhood Nj(¢) of the ray £.

Our study of geometrical finiteness in variable curvature [AX1-AX3] is based on
analysis of geometry and topology of thin (parabolic) ends of corresponding manifolds
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and parabolic cusps of discrete isometry groups G C PU(n,1). Namely, suppose a point
p € OHE is fixed by some parabolic element of a given discrete group G C Isom Hg, and
G, is the stabilizer of p in G. Conjugating G by an element h, € PU(n,1), hp(p) = oo,
we may assume that the stabilizer Gp, is a subgroup Go, C H(n) = Hp x U(n — 1).
In particular, if p is the origin 0 € H,, the transformation hg can be taken as the
Heisenberg inversion Z in the hyperchain 8]H%‘1. It preserves the unit Heisenberg
sphere S;(0,1) = {(£,v) € Han : ||(€,v)|lc = 1} and acts in H,, as follows:

£ —v )
617 —iv " v% + [¢]*

For any other point p, we may take h, as the Heisenberg inversion Z, which preserves
the unit Heisenberg sphere S;(p,1) = {(&,v) : pc(p, (£,v)) = 1} centered at p. The
inversion 7, is the conjugate of Z by the Heisenberg translation Tp; it maps p to co.

After such a conjugation, we can regard the parabolic stabilizer G, as a discrete
isometry group acting in the (nilpotent) Heisenberg group #,,. This action is completely
described by our following result [AX1-AX3]:

where (£,v) € H, = C*"! xR. (2.1)

7t6,0) = (

Theorem 2.1. Let N be a connected, simply connected nilpotent Lie group, C be a
compact group of automorphisms of N, and T' C N x C be a discrete subgroup. Then

“ there ezist a connected Lie subgroup Nt of N and a finite index subgroup T'* of T with
the following properties:

(1) There ezists b € N such that bT'b~! preserves Np;
(2) Np/bLb7Y is compact;
(3) BI*b~! acts on Nt by left translations and-the action of bI*b~ on Nt is free.

Due to this Theorem, there is a connected Lie subgroup Heo € H,, preserved by Goo
(up to changing the origin). So we can make the following definition.

Definition 2.2. A set Up, C Hz\{p} is called a standard cusp neighborhood of radius
r > 0 at a parabolic fixed point p € OHE of a discrete group G C PU(n, 1) if, for the
Heisenberg inversion Z, € PU(n, 1) with respect to the unit sphere S;(p, 1), Z,(p) = oo,
the following conditions hold:

(D) Upr =L, ' ({z € HE UHp : pe(z, Hoo) > 1/7}) ;5

(2) Up,r is precisely invariant with respect to G, C G, that is:

Y(Up,r) =Up, for ye G, and gUp,)NUpr=0 for g€ G\Gp.

Now, due to [AX1], we can give a geometric definition of a cusp point. Namely, a
parabolic fixed point p € OHE of a discrete group G C IsomHZ is a cusp point if and
only if it has a standard cusp neighborhood U, , C HE\{p}.

This fact and [Bow] allow us to give another equivalent definitions of geometrical
finiteness which is originally due to A. Marden [Ma]. In particular it follows that a
discrete subgroup G in PU(n, 1) is geometrically finite (GF2) if and only if its quotient
space

M(G) = [H UQ(G))/G (2.2)
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has finitely many ends, and each of them is a cusp end, that is an end whose neighbor-
hoods can be taken (for an appropriate r > 0) in the form:

Upir/Gp % (Spr/Gp) % (0,1], (2.3)

where
Sp,r = aHUp,r = I;l ({SL‘ € Hg UHn . pc(xa HOO) = 1/7'}) .

Now we see that a geometrically finite manifold can be decomposed into a compact
submanifold and finitely many cusp submanifolds of the form (2.3). Clearly, each of
such cusp ends is homotopy equivalent to a Helsenberg (2n — 1)-manifold which can be
described as follows [AX1]:

Theorem 2.3. Let T' C H, x U(n — 1) be a torsion-free discrete group acting on
the Heisenberg group H, = C*~! x R with non-compact quotient. Then the quotient
Hn/T has zero Euler characteristic and is a vector bundle over a compact manifold.
Furthermore, this compact manifold is finitely covered by a nil-manifold which is either
a torus or the total space of a circle bundle over a torus.

Now it follows that each cusp end is homotopy equivalent to a compact k-manifold,
k < 2n — 1, finitely covered by a nil-manifold which is either a (flat) torus or the total
space of a circle bundle over a torus. It implies that the fundamental groups of cusp
ends are finitely presented, and we get the following finiteness [AX1):

Corollary 2.4. Geometrically finite groups G C IsomHg are finitely presented.

Another application of our geometric approach shows that cusp ends of a geometri-
cally finite complex hyperbolic orbifolds M have, up to a finite covering of M, a very
simple structure [AX1]:

Theorem 2.5. Let G C IsomHg be a geometrically finite discrete group. Then G has
a subgroup Gg of finite index such that every parabolic subgroup of Gg is isomorphic to a
discrete subgroup of the Heisenberg group H, = C*~! x R. In particular, each parabolic
subgroup of G is free Abelian or 2-step nilpotent.

In terms of finite coverings, this result has the following sense:

Corollary 2.6. For a given geometrically finite orbifold M(G) = ]HIE\A(G) /G, there is
its finite covering M such that neighborhoods of each (cusp) end of M are homeomorphic
to the product of infinite interval [0,00), a closed k-dimensional ball B* and a closed
(2n — k — 1)-dimensional manifold which is either the (flat) torus T?"~%=1 or the total
space of a (non-trivial) circle bundle over the torus T?"—%=2,

Finally we formulate two additional definitions of geometrical finiteness which are
originally due to W. Thurston [T]):
(GF3): The thick part of the minimal convex retract (=convex core) C(G) of HZ /G
is compact.
(GF4): For some ¢ > 0, the uniform e-neighborhood of the convex core C(G) C HZ/G
has finite volume, and there is a bound on the orders of finite subgroups of G.

Due to Bowditch [Bow], the four definitions GF1, GF2, GF3 and GF4 of geo-
metrical finiteness for a discrete group G C IsomHE are all equivalent, see also [AX1,
AX3].
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Now we would like to define the above terms of “convex core” and “thick part” of a
complex hyperbolic orbifold M. Namely, the convex core C (G) of a complex hyperbolic
orbifold M = Hg /G can be obtained as the G-quotient of the complex hyperbolic convex
hull C(A(G)) of the limit set A(G). Here the convex hull C(A(G)) C Hg is the minimal
convex subset in H¢ whose closure in H contains the limit set A(G). Clearly, it is G-
invariant, and its quotient C(G) = C(A(G))/G is the minimal convex retract of HZ/G;
we call it the convex core of M = HZ/G.

Now let € be any positive number less than the Margulis constant in dimension n,
€(n). Then for a given discrete group G C Isom HE and its orbifold M = HZ /G, the
e-thin part thin (M) is defined as:

thine(M) = {z € Hg : Ge(z) = (9 € G : d(z,9(z)) < €) is infinite}/G . (2.4)

The e-thick part thick.(M) of an orbifold M is defined as the closure of the complement
to the e-thin part thin (M) C M.

As a consequence of the Margulis Lemma [M, BGS], there is the following description
[BGS, Bow] of the thin part of a negatively curved orbifold which we formulate for
complex hyperbolic geometry:

Theorem 2.7. Let G C IsomHZ be a discrete group and ¢, 0 < € < e(n), be cho-
sen. Then the e-thin part thing(M) of M = HZ/G is a disjoint union of its connected
components, and each such component has the form T.(T')/T' where T is a mazimal in-
finite elementary subgroup of G. Here, for each such elementary subgroup I' C G, the
connected component (Margulis region)

Te={z€Hg : Te(z) = (g €T : d(z,7(z)) <€) is infinite} (2.5)
1s precisely invariant for T in G:
ITe) =T, g(T)NTe=0 forany ge G\T. (2.6)

We note that in the real hyperbolic case of dimension 2 and 3, a Margulis region T in
(2.5) with parabolic stabilizer I' C @ can be taken as a horoball neighborhood centered
at the parabolic fixed point p, I'(p) = p. It is not true in general because of Apanasov’s
construction [A3] in real hyperbolic spaces of dimension at least 4. As we discussed it
in [AX1], this construction works in complex hyperbolic spaces H, n > 2, as well.

However, applying the structural Theorem 2.1 to actions of parabolic groups nearby
their fixed points, we obtain a description of parabolic Margulis regions for any discrete
groups G C IsomHZ (even in more general situation of pinched Hadamard manifolds,
see [AX3, Lemma 5.2]). Namely, let I' C G be such a discrete parabolic subgroup.
Without loss of generality, we may assume that its fixed point p € OHE is oo in the
Siegel domain, or equivalently, in the upper half-space model of H. Then, on each
horosphere H; C HZ centered at p = oo, the parabolic group I' acts as a discrete
subgroup of H, x U(n — 1). Hence, applying Theorem 2.1, we have a I'-invariant
connected subspace Hr C OHE\{p} where I acts co-compactly, and on which a finite
index subgroup I'* C T acts freely by left translations. We define the subspace 0 C Hg
to be spanned by Hr and all geodesics (2,p) C HE that connect z € Hr to the parabolic
fixed point p. Let 7& be the “half-plane” in 1 of a height ¢ > 0, that is the part of m
whose last horosperical coordinate is at least ¢£. Then, due to [AX3, Lemma 5.2], we
have:
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Lemma 2.8. Let G C IsomHZ be a discrete group and p a parabolic fired point of G.
Let T, be a Margulis region for p as given in (2.5) and let Tt be the half-plane defined
as above. Then for any 8, 0 < & < €/2, there exists a large enough number t > 0 such
that the Margulis region T, contains the §-neighborhood Ns(1L) of the half-plane k.

This fact, Theorem 2.7 and GF3-characterization of geometrical finiteness (compact-
ness of the e-thick part of the convex core C(G) with sufficiently small € > 0) imply the
following (equivalent) description of geometrically finite complex hyperbolic orbifolds
M = Hg¢/G. Namely it follows that the action of a geometrically finite discrete group
G C Isom Hg on the convex hull C(A(G)) has a G-invariant family of precisely invari-
ant disjoint horoballs centered at parabolic fixed points (their sufficiently small sizes are
determined by Lemma 2.8). In other words, we have:

Corollary 2.9. A discrete group G C Isom HE is geometrically finite if and only if
there is a G-invariant family of disjoint open horoballs B; C HE centered at parabolic
fized points p; € OHE of the group G such that the orbifold

Co(G) = (C(A(G)\ U; B;) /G (2.7)
1s compact (and homotopy equivalent to M = HE/G).

3. GEOMETRIC ISOMORPHISMS

Here we would like to discuss the well known problem of geometric realizations of
isomorphisms of discrete groups. Adapting its formulation in 81 for discrete groups
G,H C PU(n,1), we have:

Problem 3.1. Given a type preserving isomorphism ¢ : G = H of discrete groups
G,H C PU(n,1), find subsets Xg, Xy C W invariant for the action of groups G and
H, respectively, and an equivariant homeomorphism fo : Xa = Xg which induces the
isomorphism . Determine metric properties of fo, in particular, whether it is either
quasisymmetric or quasiconformal with respect to either the Bergman metric in HE or
the induced Cauchy-Riemannian structure at infinity OHE .

Such type problems were studied by several authors. In the case of lattices G and H in
rank 1 symmetric spaces X, G. Mostow [Mol] proved in his celebrated rigidity theorem
that such isomorphisms ¢ : G — H can be extended to inner isomorphisms of X,
provided that there is no analytic homomorphism of X onto PSL(2,R). For that proof,
it was essential to prove that ¢ can be induced by a quasiconformal homeomorphism
of the sphere at infinity 6X which is the one point compactification of a (nilpotent)
Carnot group N (for quasiconformal mappings in Heisenberg and Carnot groups, see
[KR1, KR2, P)).

If geometrically finite groups G, H C PU(n,1) have parabolic elements and are nei-
ther lattices nor trivial, the only known geometric realization of their isomorphisms in
dimension dim X > 3 is due to P. Tukia’s [Tu] isomorphism theorem for real hyperbolic
spaces X = Hg. However, that Tukia’s construction (based on geometry of convex
hulls of the limit sets A(G) and A(H)) cannot be used in the case of variable negative
curvature due to lack of control over convex hulls (where the convex hull of three points
may be 4-dimensional), especially nearby parabolic fixed points. Another (dynamical)
approach due to C. Yue [Y2, Cor. B] (and the Anosov-Smale stability theorem for
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hyperbolic flows) can be used only for convex cocompact groups G and H [Y3]. As
a first step in solving the above geometrization Problem 3.1, we have the following
isomorphism theorem [A9, A11] in the complex hyperbolic space:

Theorem 3.2. Let ¢ : G — H be a type preserving isomorphism of two non-elementa-
ry geometrically finite groups G, H C IsomHZ. Then there exists a unique equivariant
homeomorphism fs : A(G) — A(H) of their limit sets that induces the isomorphism
@. Moreover, if A(G) = OHE, the homesmorphism fy is the restriction of a hyperbolic
isometry h € Isom HE.

Proof. For completeness, we prove this fact (following to [A9, A11]). We consider the
Cayley graph K (G, o) of a group G with a given finite set o of generators. This is a
1-complex whose vertices are elements of G, and such that two vertices a,b € G are
joined by an edge if and only if a = bg*? for some generator g € 0. Let | | be the word
norm on the graph K (G, o), that is the norm |g| equals the minimal length of words in
the alphabet o representing a given element g € G. Choosing a function p such that
p(r) = 1/r? for r > 0 and p(0) = 1, one can define the length of an edge [a,b] C K(G, o)
as dp(a,b) = min{p(|al), p(|b])}. Considering paths of minimal length in the sense of
the function dy(a, b), one can extend it to a metric on the Cayley graph K (G, o). So
taking the Cauchy completion K (G, o) of that metric space, we have the definition of
the group completion G as the compact metric space K (G, 0)\K (G, o), see [F1). Up to
a Lipschitz equivalence, this definition does not depend on o. It is also clear that, for
a cyclic group Z, its completion Z consists of two points. Nevertheless, for a nilpotent
group G with one end, its completion G is a one-point set [F1].

Now we can define a proper equivariant embedding F : K(G, o) < HZ of the Cayley
graph of a given geometrically finite group G C PU(n,1). To do that we may assume
that the stabilizer of a base point, say 0 € Bg = Hg, is trivial. Then we set F(g) = g(0)
for any vertex g € K(G,0), and F maps any edge [a,b] C K(G,0) to the geodesic
segment [a(0),5(0)] C HZ joining the points a(0) and 5(0).

Proposition 3.3. For a geometrically finite discrete group G C IsomHg, there are
constants K, K' > 0 such that the following bounds hold for all elements g € G with
lg| > K':

In(2lg| - K)? - In K < d(0,(0)) < Kg. (3.4)

The proof of this claim is based on a comparison of the Bergman metric d(x, ) and the
path metric do(x, *) on the following subset Hy C Hg. As in $2, let C(A(G)) C HR be the
convex hull of the limit set A(G) C OHE of the group G. Since G is geometrically finite,
the complement in M(G) to neighbourhoods of (finitely many) cusp ends is compact,
and its retract can be taken as the compact suborbifold Co(G) in the convex core C(G),
see (2.7) and Corollary 2.9. Its universal cover Hy C C(A(G)) is the complement in
the convex hull C(A(G)) to a G-invariant family of disjoint open horoballs B; C Hp
centered at parabolic fixed points p; € OHE of the group G, and each of which is precisely
invariant with respect to its (parabolic) stabilizer G; C G.

Now, having a co-compact action of the group G on the domain Hy C HE whose
boundary includes some horospheres, we can reduce our comparison of distance func-
tions d = d(z,2’) and dy = do(z,z’) to their comparison on a horosphere. So we
can take points z = (0,0,u) and z’ = (£,v,u) on a “horizontal” horosphere H, =
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C* ! x R x {u} C HZ. Then the distances d and dj are as follows [Pr2]:

cosh?$ = L (IE1* + 4ule? + 4w + %), d2 = I¢l® + o (3.5)
2 4u? 0Ty T g '

This comparison and the basic fact due to Cannon [Can] that, for a co-compact
action of a group G in a metric space X, its Cayley graph can be quasi-isometrically
embedded into X, finish our proof of (3.4), compare [A7].

Now we apply Proposition 3.3 to define a G-equivariant extension of the map F from
the Cayley graph K (G, o) to the group completion G. Since the group completion of
any parabolic subgroup G, C G is either a point or a two-point set (depending on
whether G, is a finite extension of cyclic or a nilpotent group with one end), we get

Theorem 3.4. For a geometrically finite discrete group G C IsomHg, there is a contin-
uous G-equivariant map ®g : G — A(G). Moreover, the map ®¢ is bijective everywhere
but the set of parabolic fized points p € A(G) whose stabilizers G, C G have rank one.
On this set, the map ®g is two-to-one.

Now we can finish our proof of Theorem 3.2 by looking at the following diagram of
maps: -

AG) 2T 2 T 21, zm),

where the homeomorphism ¢ is induced by the isomorphism ¢, and the continuous
maps ®¢ and @y are defined by Theorem 3.4. Namely, one can define a map fy =
P Haéal. Here the map <I>(_;1 is the right inverse to ®¢, which exists due to Theorem 3.4.
Furthermore, the map <I>C';1 is bijective everywhere but the set of parabolic fixed points
p € A(G) whose stabilizers G, C G have rank one, where the map &' is 2-to-1. Hence
the composition map f4 is bijective and G-equivariant. Its uniqueness follows from its
continuity and the fact that the image of the attractive fixed point of a loxodromic
element g € G must be the attractive fixed point of the loxodromic element ¢(g) € H
(such loxodromic fixed points are dense in the limit set, see [A1]).

The last claim of the Theorem 3.2 directly follows from the Mostow rigidity theorem
[Mol] because a geometrically finite group G C IsomHg with A(G) = OH is co-finite:
Vol (HE /G) < oo.

O

Remark 3.5. Our proof of Theorem 3.2 can be easily extended to the general situa-
tion of type preserving isomorphisms of geometrically finite discrete groups in pinched
Hadamard manifolds due to recent results in [AX3]. Namely, it is possible to construct
equivariant homeomorphisms fs : A(G) — A(H) conjugating the actions (on the limit
sets) of isomorphic geometrically finite groups G, H C Isom X in a (symmetric) space
X with pinched negative curvature K, —b? < K < —a? < 0. Actually, bounds similar
to (3.4) in Prop. 3.3 (crucial for our argument) can be obtained from a result due to
Heintze and Im Hof [HI, Th.4.6] which compares the geometry of horospheres H, C X
with that in the spaces of constant curvature —a? and —b?, respectively. It gives, that
for all z,y € H, and their distances d = d(z,y) and d, = d,(z,y) in the space X and
in the horosphere H,, respectively, one has that

2
Zsinh(a -d/2) <d, < —sinh(b-d/2).
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Upon existence of such a (canonical) homeomorphisms f, that induces a given type-
preserving isomorphisms ¢ of discrete subgroups of Isom HE, the geometric realization
Problem 3.1 can be reduced to the questions whether fo is quasisymmetric with re-
spect to the Carnot-Carathéodory (or Cygan) metric, and whether there exists its G-
equivariant extension to a bigger set (in particular to the sphere at infinity X or even
to the whole space HZ, cf. [KR2]) inducing the isomorphism ¢. For convex cocom-
pact groups obtained by nearby representations, this may be seen as a generalization
of D.Sullivan stability theorem [Su2], see also [A7]. We shall discuss that question in
the next Section. Also we note that, besides the metrical (quasisymmetric) part of the
geometrization Problem 3.1, there are some topological obstructions for extensions of
equivariant homeomorphisms f,,, f, : A(G) — A(H). It follows from the next example.

Example 3.6. Let G C PU(1,1) C PU(2,1) and H C PO(2,1) C PU(2,1) be two
geometrically finite (lozodromic) groups isomorphic to the fundamental group m(Sy) of
a compact oriented surface Sy of genus g > 1. Then the equivariant homeomorphism
Jo 1 AM(G) = A(H) cannot be homeomorphically extended to the whole sphere OHZ =~
S3.

Proof. The obstruction in this example is topological and is due to the fact that the
quotient manifolds M; = HZ/G and M, = HZ/H are not homeomorphic. Namely,
these complex surfaces are disk bundles over the Riemann surface Sy and have different
Toledo invariants: 7(HZ/G) = 29 — 2 and 7(H2 /H) = 0, see [To).

O

The complex structures of the complex surfaces M; and M, are quite different, too.
The first manifold M; has a natural embedding of the Riemann surface Sy as a closed
analytic totally geodesic submanifold, and hence M; cannot be a Stein manifold. The
second manifold My, a disk bundle over the Riemann surface Sy has a totally geodesic
real section and is a Stein manifold due to a result by Burns-Shnider [BS].

Moreover due to Goldman [G1], since the surface S, C M; is a closed analytic sub-
manifold, the manifold M; is locally rigid in the sense that every nearby representation
G — PU(2,1) stabilizes a complex geodesic in HZ and is conjugate to a representation
G — PU(1,1) C PU(2,1). In other words, there are no non-trivial “quasi-Fuchsian”
deformations of the group G and the complex surface M;. On the other hand, as we
show in Section 5 (cf. Theorem 5.1), the second manifold M, has plentiful enough
Teichmiiller space of different “quasi-Fuchsian” complex hyperbolic structures.

4. DEFORMATIONS OF HOLOMORPHIC BUNDLES: FLEXIBILITY VERSUS RIGIDITY

Due to the natural inclusion PO(n,1) C PU(n,1), any real hyperbolic n-manifold
Mr = Hg/G can be (totally geodesically) embedded into a complex hyperbolic n-
manifold Mc = Hg /G which is the total space of n-disk bundle over Mpg. Similarly,
due to the inclusion PU(n —1,1) C PU(n,1), any discrete torsion free group G C
PU(n —1,1) defines a holomorphic 2-disk bundle (with the total space HZ /G) over its
totally geodesic complex analytic submanifolds ]HI(E"1 /G. In particular, one can consider
both types of disk bundles over a Riemann surface S. Then a flexibility of such bundles
becomes evident starting with hyperbolic structures on a Riemann surface S of genus
g > 1, which form the Teichmiiller space 7, a complex analytic (39 — 3)-manifold.
And though, due to the Mostow rigidity theorem [Mo1], hyperbolic structures of finite
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volume and (real) dimension at least three are uniquely determined by their topology,
so one has no continuous deformations of them, we still have some flexibility.

Firstly, real hyperbolic 3-manifolds have plentiful enough infinitesimal deformations
and, according to Thurston’s hyperbolic Dehn surgery theorem [T], noncompact hy-
perbolic 3-manifolds of finite volume can be approximated by compact hyperbolic 3-
manifolds. Secondly, despite their hyperbolic rigidity, real hyperbolic manifolds M can
be deformed as conformal manifolds, or equivalently as higher-dimensional hyperbolic
manifolds M x (0,1) of infinite volume. First such quasi-Fuchsian deformations were
given by the author [A2] and, after Thurston’s “Mickey Mouse” example [T], they were
called bendings of M along its totally geodesic hypersurfaces, see also [Al, A2, A4-
A6, JM, Ko, Sul]: Furthermore, all these deformations are quasiconformally equivalent
showing a rich supply of quasiconformal G-equivariant homeomorphisms in the real hy-
perbolic space Hy . In particular, the limit set A(G) C OHE™" deforms continuously from
a round sphere 9Hg = $™~' C S™ = Hy*! into nondifferentiably embedded topological
(n — 1)-spheres quasiconformally equivalent to S™~1.

Contrasting to the above flexibility, “non-real” hyperbolic manifolds (locally symmet-
ric spaces of rank one) seem much more rigid. In particular, due to P. Pansu [P], qua-
siconformal maps in the sphere at infinity of quaternionic/octonionic hyperbolic spaces
that are induced by hyperbolic quasi-isometries are necessarily CR-automorphisms,

-and thus there cannot be interesting quasiconformal deformations of corresponding
structures. Secondly, due to Corlette’s rigidity theorem [C3], such closed manifolds
of (quaternionic or octonionic) dimension at least two and corresponding uniform lat-
tices are even super-rigid —~ analogously to Margulis super-rigidity in higher rank M,
Al3]. The last fact and our joint work with Inkang Kim [AK] imply impossibility
of quasi-Fuchsian deformations of quaternionic/octonionic manifolds of infinite volume
homotopy equivalent to their closed analytic submanifolds, for quaternionic manifolds
of dimension at least three see also [Ka]. Furthermore, complex hyperbolic manifolds
share the above rigidity of quaternionic/octonionic hyperbolic manifolds. Namely, due
to the Goldman’s local rigidity theorem in dimension n = 2 [G1] and its extension for
n > 3 [GM], every nearby discrete representation p : G — PU(n, 1) of a cocompact
lattice G C PU(n — 1,1) stabilizes a complex totally geodesic subspace HE™* in H.
Thus the limit set A(pG) C OHE is always a round sphere S2"~3. Moreover, in higher
dimensions n > 3, this local rigidity of complex hyperbolic n-manifolds M homotopy
equivalent to their closed complex totally geodesic hypersurfaces is even global (at least
in the connected component of representation variety [C1, BCG, Y1]). These facts may
be viewed as some arguments in favor of general rigidity and stability of deformations
of complex hyperbolic structures.

To the contrary, our goal here and in the next section is to show that the opposite
situation nevertheless holds: there are non-rigid complex hyperbolic manifolds which
are disk bundles over their totally geodesic (both complex and real) submanifolds, and
deformations of such manifolds may be quasiconformally unstable. The complex hy-
perbolic manifolds that are so flexible appear to be Stein spaces, so we expect that
all Stein (complex hyperbolic) manifolds with “big” ends at infinity may have such
nontrivial deformations.

The flexibility of complex hyperbolic 2-manifolds we deal with in this Section (and
their property to be Stein spaces) is related to noncompactness of the (finite area)
fibration base of these holomorphic disk bundles. In addition to constructing (quasi-
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Fuchsian) deformations of such bundles, we shall also show that they are quasiconfor-
mally unstable. Here we use the notion of quasiconformal stability that has its roots
in the classical problem of quasiconformal stability of deformations from the theory of
Kleinian groups, in particular in well known stability theorems by L. Bers [B1, B2] and
D. Sullivan [Sul]. Let us recall that definition by following to L. Bers [B2]. Namely, a
homomorphism x : G — PSL(2,C) of a finitely generated group G C PSL(2,C) will
be called allowable if it preserves the square traces of parabolic and elliptic elements
(hence Y is type-preserving). A finitely generated Kleinian group G C PSL(2, C) is said
to be quasiconformally stable if every allowable homomorphism x : G — PSL(2,C)
sufficiently close to the identity is induced by an equivarint quasiconformal mapping
w : C — C, that is x(g) = wgw™! for all g € G. It is clear that degenerate Kleinian
groups are quasiconformally unstable. However, due to a Bers’s [B1] criterion (which in-
volves quadratic differentials for the group G), it follows that Fuchsian groups, Schottky
groups, groups of Schottky type and certain non-degenerate B-groups are all quasicon-
formally stable [B2].

We obtain a natural generalization of quasiconformal stability for discrete groups
G C IsomHZ by changing the condition on homomorphisms x in terms of the trace
of elements g € G to the condition that such a homomorphism x : G — IsomHg
preserves the type of elements of a given discrete group G. In that sense, B. Aebisher
and R. Miner [AM] recently proved that (classical) Schottky groups G C PU(n,1) are
quasiconformally stable. Here a finitely generated discrete group G = (g1,...,9x) C
PU(n,1) is called a classical Schottky group of rank k in the complex hyperbolic space
H. if the sides of its Dirichlet polyhedron D, (G) C HE,

D,(G) = {z € B¢ : d(z,y) < d(2,9(y)) for any g € G\{id}}, (41)
centered at some point y € Hg are disjoint and non-asymptotic.
Nevertheless, as we shall show below, Fuchsian groups G C PU(2,1) are quasicon-
formally unstable:

Theorem 4.1. There are co-finite Fuchsian groups G ¢ PU(1,1) C PU(2,1) with
signatures (g,T;my, ..., m,), where genus g > 0 and there are at least four cusps (with
branching orders m; = c0), such that:

(1) the Teichmiiller space T(G) contains a smooth simple curve & : [0,7/2) < T (g)
which passes through the Fuchsian group G = a(0) and whose points a(t) = Gt C
PU(2,1), 0 < t < m/2, are all non-trivial quasi-Fuchsian groups;

(2) each isomorphism x : G — Gg, 0 < t < m/2, is induced by a G-equivariant
homeomorphism f; : HZ — HZ of the closure H2 = H2 U OHZ of the complez
hyperbolic space;

(3) for any parametert, 0 < t < m/2, the action of the quasi-Fuchsian group G is
not quasiconformally conjugate to the action of the Fuchsian group G = «(0)
(in both CR-structure at infinity HZ = Ho U {oo} and the complez hyperbolic

space HZ ).

Before we go on with the (constructive) proof of this Theorem, we note that though
the constructed unstable Fuchsian groups G C PU(1,1) C PU(2,1) of finite co-volume
may have finite order elements, their finite index torsion free subgroups (and Riemann-
Hurvitz formula for genus of a branching covering, see [KAG, (41)]) immediate imply
the following:
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Corollary 4.2. Let M = H%/G be a complex hyperbolic surface with the holonomy
group G C PU(1,1) C PU(2,1) that represents the total space of a non-trivial disk
bundle over a Riemann surface of genus p > 0 with at least four punctures (hyperbolic
2-orbifold with at least four punctures). Then the Teichmiiller space T(M) contains a
smooth simple curve o : [0,7/2) — T (M) with the following properties:

(1) the curve o passes through the surface M = a(0);

(2) each complex hyperbolic surface My = a(t) = H2 /Gy, t € [0,7/2), with the
holonomy group Gy C PU(2,1) is homeomorphic to the surface M ;

(3) for any parameter t, 0 < t < m/2, the complex hyperbolic surface M; is not
quasiconformally equivalent to the surface M. ‘

Besides the claims in this Corollary, it follows also from the construction of the
above complex hyperbolic surfaces M and M; that their boundaries, the spherical CR-
manifolds N = M = Q(G)/G and N; = OM; = Q(G;)/G; have similar properties:

Corollary 4.3. Let N = No = OM be the 3-dimensional spherical CR-manifold with
Fuchsian holonomy group G C PU(1,1) C PU(2,1) that is the boundary at infinity of
the complex hyperbolic surface M from Corollary 4.2 (and which is the total space of
a non-trivial circle bundle over a Riemann surface with at least four punctures). Then
the Teichmiller space T(N) of the CR-manifold N contains a smooth simple curve
an : [0,7/2) = T(N) with the following properties:

(1) the curve an passes through the CR-manifold N = an(0);

(2) each CR-manifold Ny = an(t) = HZ /G:}, t € [0,7/2), with the holonomy group
G C PU(2,1) is the total space of a non-trivial circle bundle over the Riemann
surface with at least four punctures and is homeomorphic to the manifold N;

(3) for any parameter t, 0 < t < 7/2, the CR-manifold N; is not quasiconformally
equivalent to the manifold N.

Remarks 4.4.

(1) As a corollary of Theorem 4.1 and an Yue’s [Y2] result on Hausdorff dimension,
we have that there are deformations of a co-finite Fuchsian group G C PU(1,1)
into quasi-Fuchsian groups G, = foGf;! C PU(2,1) with Hausdorff dimension
of the limit set A(G,) strictly bigger than one, see also [C2]. Moreover, the
deformed groups G are Zariski dense in PU(2,1).

(2) We note that, for the simplest case of manifolds with cyclic fundamental groups,
a similar to Corollary 4.3 (though based on different ideas) effect of homeomor-
phic but not quasiconformally equivalent spherical CR-manifolds N and N’ has
been also recently observed by R. Miner [Mi]. In fact, among his Cauchy-
Riemannian 3-manifolds (homeomorphic to R? x S!), there are exactly two
quasiconformal equivalence classes whose representatives have the cyclic holo-
nomy groups generated correspondingly by a vertical Heisenberg translation by
(0,1) € C x R and a horizontal translation by (1,0) € C x R.

(3) The existence of non-trivial quasi-Fuchsian representations of Fuchsian groups
with signatures (g,7;my,...,m,) in the above Theorem 4.1 has its origin in an
example (for genus g = 0 and 7 = 4 singular points with all four branching
indices m; = oo) constructed by M. Carneiro and N. Gusevskii, see [Gu], who
deal with a group G C IsomH} generated by four involutions and acting in the



20 BORIS APANASOV

invariant complex geodesic in HZ as the group generated by reflections in sides
of an ideal 4-gon.

(4) Despite the impossibility of quasiconformal conjugation of the constructed ac-
tions of quasi-Fuchsian groups G; and G = Gy in the sphere at infinity OHZ, it
is still an open question whether the actions of these groups on their limit sets
A(G:) and A(G) could be “quasiconformally” conjugate, in other words, whether
the canonical G-equivariant homeomorphism Fxer
fxe + A(G) = A(Gy) of the limit sets (constructed in Theorem 3.1) that in-
duces the isomorphism x; : G — G, 0 < t < m/2, is in fact quasisymmetric.

Proof of Theorem 4.1. Here we present a construction of the deformation (for full details,
see [A12, A14]). We shall start with the lattice G C PU(1,1) in the claim as a subgroup
of index 2 in a discrete group I' C IsomH} generated by reflections in sides of a finite
area hyperbolic polygon F C H: C H2.

Namely, let I' C IsomHE, T = Ty x I'y, be a co-finite (free) lattice which is the
free product of a dihedral parabolic subgroup I'; and another subgroup I'; which has
at least one parabolic subgroup and whose quotient [HE\A(I'2)]/T'2 has one boundary
component. at infinity, see Fig. 1. Since the subgroup I'; has at least one parabolic
subgroup, it can also be decomposed as the free product of its subgroups, I'y = I's * '
In the simplest case, each of these subgroups I's and I'y may have order two.

@*

FiIGURe 1. T'=T *T'5.

Here, for each reflection ¢ C IsomHE in a geodesic £ = (a,b) C HE, we have a
uniquely defined (up to unitary rotation around the complex geodesic Hf C Hg) action
of g in the whole space Hg as the anti-holomorphic involution whose fixed set is a real
hyperbolic n-subspace in Hg intersecting the complex geodesic H: along the geodesic
¢ = (a,b). In particular, assuming that Ht = {0} x RxR; C C*~! x Rx Ry = HE and
that the geodesic £ ends at ideal points a = (0,1),b = (0,—1) € H, = C*! x R, we
have that the reflection g in £ acts in Hg as the following anti-holomorphic involution
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(we call it a real involution):

il(gavvu) = ( AE ? - ) ) (4'2)

HEN2 +u 07 llel2 +u+iv|” " |)1E]2 +u+ i)

where A € U(n — 1) and (§,v,u) € C*~! x R x [0,00); compare with the Heisenberg
inversion Z in (2.1). The action of the real involution ¢, € IsomH at infinity OHE =
C* 1 x R x {0} U {oo} preserves the unit Heisenberg sphere S.(0,1) = {(¢,v) € H,, :
[|(§,v)||c = 1}, swaps the origin (0,0) € H, and oo, and pointwise fixes an R-sphere
(of dimension (n — 1)) that lies in the Heisenberg sphere S.(0, 1) and passes through its
polia = (0,1),b=(0,-1) € H, = C*~! x R. In'particular, for n = 2 and A¢ = —¢, the
pointwise fixed R-circle has the following equation in cylindrical coordinates (cf. [G4]):

{(re®,v) EH=C xR : r? +iv = -2 | (4.3)

and its vertical projection to the horizontal plane C x {0} C H is the lemniscate of
Bernoulli:

{€=z+1y: (w2+y2)2+m2——y2=0}.

Now we may assume that our group I' C Isom]HIé is generated by real involutions
whose restrictions to ]HI% are reflections in sides of the fundamental polygon F, and its
limit set is the (vertical) chain {0} x R U {oo} C OHZ. Furthermore, assuming that
the (parabolic) fixed point of the dihedral subgroup I'y C T' is co and deforming the
action of I" in HE (in Teichmiiller space 7 (")), we may take a fundamental polyhedron
D C HZ of the group T as the polyhedron bounded: by bisectors ; whose poli lie in the
one point compactification of the vertical line {0} x R C H and whose boundaries S;
at infinity are as follows. Two of them (corresponding to the generators of I';) are the
extended horizontal planes in #,

Sl=CX{So}U{OO},52=CX{—30}U{OO}CCXRU{OO}. (44)

The spheres at infinity of all other bisectors are Heisenberg spheres S;, ¢ > 3, that lie
between the planes (4.4) and whose centers lie in the vertical line. Furthermore, we may
assume that two such spheres, S; and Sy, are unit Heisenberg spheres tangent to the
spheres S; and Sy, correspondingly at the points p; = (0, s9) and ps = (0, —so). Also,
due to our condition on one more parabolic subgroup (in I';), we have that there is a
pair of spheres, S; and S;11, j > 3, tangent to each other at some point p3 = (0, s1).

We have a choice of R-circles m; C S; that are fixed by the corresponding real
involutions ~; € Isom]HI% that generate the group I We note that those involutions
7; are lifts of reflections in sides of the polygon F' in the complex geodesic ]HI}C C IHL%
So those lifts should be compatible in the sense that the union of closures of real arcs
m; N D in their pointwise fixed R-circles m; is a closed loop « on the boundary of the
3-dimensional polyhedron P = D N §H2.

As such R-circles m; C S;, ¢ = 1, 2, we take two real (extended) lines that are parallel
to each other and pass the corresponding poli p; = (0,+sp) in S;. In the adjacent
spheres S;, j = 3,4, we take R-circles m; as those unique circles that are tangent at
the points (0, £sp) to to corresponding R-circles m; and ms. Continuing this process in
the spheres S; adjacent to S3 and Sy, we take those R-circles m; C S that intersect the
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corresponding R-circles m; C S;, ¢ = 3,4. Continuing this process, we will reach next
tangent points, etc. Finally, at a tangent point (0, s1), our R-circles m; and m; + 1 will
meet at some angle 6; ;1. Then our group T,

L = (1,792,735 > V&) = {71) * {72) * 3 % ['q, (4.5)

is generated by the real involutions ; pointwise fixing the corresponding R-circles m;;,
and acts in the invariant complex geodesic H: C HZ as the group generated by reflec-
tions in sides of hyperbolic k-gon Py of finite area. ‘

Obviously, we have that the subgroup G C T' of index two with the fundamental
polyhedron D U v,(D) is a subgroup of PU(1,1) C PU(2,1). Topologically, the quo-
tient H2 /G is a 2-disk bundle over 2-dimensional sphere with at least four punctures;
geometrically, the base of this bundle is its totally geodesic complex analytic orbifold
of finite hyperbolic volume (due to Riemann-Hurvitz formula for genus of a branching
covering over 2-sphere, see [KAG, (41)], it is covered by a Riemann surface of a genus
p > 0 with at least four punctures).

Also we note that tangent points of bisectors bounding the fundamental polyhedron
D C HZ, in particular the points po = oo and p; = (0, +s9) € H, i = 1,2, are parabolic
fixed points of I'. Moreover, due to tangency of the corresponding R-circles in the
definition of T, all elements g € Gp, in the stabilizer subgroups Gp, C G C PU(2,1)
of those last three points are (conjugated to) pure vertical translations, that is (after
conjugation) they act in HZ as Heisenberg translations (§,v,u) = (§,v + v, u), 1 =
0,1,2.

Deformation of groups I' and G C T.

To deform the groups ' and G C T', we define a family of discrete faithfull represen-
tations py : ' — IsomHZ, 0 < t < 7/2, with the images p(t) = I'* where p(0) =T° =T

Namely, all these representations p; coincide (up to conjugations by unitary rotations
A in (4.2)) on the subgroup I'; C I and only differ on the dihedral subgroup I'; C T' in
the following way:

T = (V16,7260 V3,8 - - Vyt) = (Y1,8) * (v2,6) * T3 * ATy ATY, (4.6)

where A; € U(1) acts in H2 by unitary rotation about the complex geodesic Hg C HZ,
and the generators +; ; are anti-holomorphic (real) involutions with pointwise fixed R-
circles m; s C BIHI%. In particular, 71+ and <2 generate the new dihedral subgroup
Ty ; = pi(T1) of the group I'" C IsomHZ.

As before, we define the real involutions +;; by determining their fixed R-circles
m; s C 8]?]1‘,23. Namely, for each ¢, 0 < t < m/2, let py; be a point on the R-circle m3
that is seen from the center of the sphere S; at the angle ¢, and let p2; be the point
on the Heisenberg sphere Sy that is symmetric to the point py¢, p2¢ = —p1,s- Then let
my+ be the R-circle in the sphere Sy that contains the point pa, and A; € U(1) be the
unitary rotation of Sy that maps mg to mas. We note that A; # id if ¢ # 0, and its
rotation angle monotonically increases from 0 to /2 as ¢ tends from 0 to w/2. Now we
keep all generators in the subgroup I's and conjugate generators of the group I's by As.
The remaining R-circles my ¢, m2, C OHZ are given as the (Euclidean) lines in C x R
tangent to the corresponding R-circles ms; = m3 and my; = At(my) at the points py ;s
and p2 ¢, respectively.
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In other words, we replace the bisectors ¥; and ¥ by bisectors £f and X% whose
boundaries at infinity are the (extended) parallel planes S? and S% tangent to the spheres
S3 and S4 at the points p; ; and pa ¢, respectively. Then the previously defined R-circles
m1,+ and my, are the intersection lines of the planes St and 5% with the contact planes
at these tangent points p; ; and ps ¢, correspondingly. Clearly, these lines are not parallel
if t # 0, and the angle between them (at infinity) monotonically increases from 0 to 7 /2
as t tends from 0 to 7/2. It is also worth to mention that, for ¢ # 0, the finite poli of
the spheres St and S} lie somewhere in the R-circles my ¢ and my; and differ from the
tangent points p; ¢ and ps ¢, respectively.

We note that as in the group I', all tangent points of blsectors ¢ and E‘ (and in
particular, the points p¥, p} and co) are parabolic fixed points of the deformed group I't.
Moreover, though parabolic elements fixing the points p{ and p} are still conjugate to
vertical Heisenberg translations, the index two subgroup of projective unitary transfor-
mations in the stabilizer of co in I'! is generated by screw vertical translation if ¢ # 0.
The rotation angle of that screw translation monotonically increases from 0 to = as ¢
tends from 0 to /2.

The above property of tangent points implies that the polyhedron D* C HZ bounded
by bisectors & is a fundamental polyhedron of the discrete group I'*, and its intersection
with the sphere at infinity, the polyhedron P* = Dt N 0HZ bounded by the spheres S?,
is a fundamental polyhedron for the I'*-action at infinity.

As another implication of properties of parabolic subgroups in I' and I'*, we obtain
non-triviality of our deformation given by the family of (faithful discrete) representations
pt € Hom(T', Isom]Hl% psI = I'*. Namely, for any two different parameters ¢ and t/, the
groups 't and T'*' cannot be conjugated in Isom]HI% because the corresponding parabolic
transformations in their stabilizers of oo,

pe(7) €T, and pp(y) €TE,, (4.7)

have rotational parts (unitary rotations) with different angles. We note that one
may also derive this fact by using the Cartan angular invariant for triples of points
((0, —s0), (0,51), (0, 50)) and (p2,(0,s1),p1,t). This Cartan invariant (see the next
Section) is different from +m/2 for any t # 0, which also shows that the groups I'*
are non-trivial quasi-Fuchsian groups (with the limit topological circles A(I'*) different
from “round” circles in HZ). Nevertheless, these quasi-Fuchsian groups I'* are not
quasiconformal conjugates of the Fuchsian group I':

Lemma 4.5. For any parameter t, 0 < t < w/2, the quasi-Fuchsian representation p;
cannot be conjugate to the (Fuchsian) inclusion po : I' C PU(2,1) by any quasiconfor-
mal homeomorphism in neither H2 nor the Heisenberg group H.

We can prove this fact by using the above observation that the (type preserving)
isomorphism p; : T' — I'* strictly increases the angles of rotational parts of parabolic
elements in (4.7), see [A12, Al4].

We shall finish the proof of Theorem 4.1 by showing that our deformaton is never-
theless topological, that is it could be induced by a continuous family of equivariant
homeomorphisms:

Proposition 4.6. For any two parameterst andt', 0 <t < t',7/2, the faithful discrete
(quasi-Fuchsian) representations p, : T — Tt and py : T — T¥ are conjugate by an
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equivariant homeomorphism (that continuously depends on parameters t and t'),
feo : HZ — HZ. (4.8)

Proof. 1t is enough to construct such an equivariant homeomorphism f; = fo; in (4.8)
that conjugates the groups I' and I'* for any ¢ € [0,7/2) and continuously depends
on t. To do that, we need to define such an equivariant homeomorphism f; on the
closure D C HZ of the fundamental polyhedron D C HZ of the group I', whose image
f:(D) = Dt is the closure of the fundamental polyhedron of the deformed group I'.
Having such a map of closed polyhedra, we can immediately extend it equivariantly to
the whole discontinuity domain, that is to a I'-equivariant homeomorphism

fo: HRuUuQT) — HZ uQ(rY), (4.9)

whose extension by continuity to the limit set is the unique I'-equivariant homeomor-
phism of the limit sets, A(T') — A(T'%), induced by the type preserving isomorphism of
the groups I' and I'?, see Theorem 3.2.

Now we start a construction of our I'-equivariant homeomorphism f; : D — Dt
on the closure of the fundamental polyhedron D, where it maps k-sides of D to the
corresponding k-sides of D*, 0 < k < 3, in particular tangent points p; to tangent
points p; ¢, and the R-circles m; to the corresponding R-circles m; ;.

First, we define our homeomorphism f; in the 3-polyhedron P C # C OHZ at infinity.
Fixing an orientation on the R-circles m; and m;; (preserved by their identifications),
we consider corresponding (positive) semispheres 'S'j C S; and S’; C S;- bounded by
those R-circles. Since, up to PU(2,1), each such semisphere may be considered as a
halfplane in an extended 2-plane, we define homeomorphisms fi| 5; a8 restrictions of

either Euclidean isometries in R® = C x R that map S'j - S’; or conjugations of such

isometries by elements of PU(2,1). On the complements Sj\S'j, we define f; so that
they are compatible with the generators of the group I':

Felspns, (@) =500 fils; o vi(2), for z € S;\S;. (4.10)

It defines our I'-equivariant homeomorphism f; on the boundary P of the fundamental
polyhedron P C ‘H, P = 8., D, which is not simply-connected. However, spliting P into
a cell along an embedded topological 2-disk ¢ C P, 00 = «, where a closed curve
o C OP is the union of arcs of our R-circles m;, we can extend our I'-equivariant
homeomorphism to the whole polyhedron P, fi|p : P — Pt

In addition to 3-polyhedra P and P?, the boundaries of the fundamental 4-dimensional
polyhedra D and D* each have 2k more sides. Those sides lie on bisectors ¥; and E;
and are pairwise identified by the generators v; and v;+, respectively. Each of those
bisectors is split into two halves, E;' and X, or E;’+ and ZJ;-’_, along the corresponding
totally real geodesic 2-plane spanned by the corresponding R-circle, either m; or mj ¢,
and those halves are pairwise identified by our generators.

Since we have already defined our homeomorphism f; on the boundary of each bi-
sector X;, we can extend it to the whole bisector by using natural foliations of ¥; and
E; by disjoint real geodesics with ends z, v;{z) and fi(z), v;,¢f¢(z), respectively.
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Now, having our [-equivariant homeomorphism f; defined on the topological bound-
ary 3-sphere 0D, we can extend this homeomorphism to a homeomorphism of the closed
4-balls, D — DE, that conjugates the dynamics of the groups I' and I'* on the closures
of our fundamental polyhedra. Clearly, all the steps in our construction of those home-
omorphisms continuously depend on ¢. Hence, the equivariant extension (4.9) of that
map to the whole 4-space completes the proof of our Proposition as well as of the whole
Theorem 4.1.

O

We can use our construction of deformations in the above proof to give a lower bound
for the number of independent parameters of nontrivial quasi-Fuchsian deformations in
the variety of of representations Hom(G, PU(2,1))/PU(2,1) of a co-finite lattice G C
PU(1,1) (in addition to the dimension of the Teichmiiller space of the real hyperbolic
2-orbifold S = HE /G of finite volume). Here G C PU(1,1) is index two subgroup in
a lattice I'IsomHZ, and our lower bound is based on the number of conjugacy classes
of maximal parabolic subgroups in G. Namely, taking disjoint hyperbolic geodesics in
the G-invariant complex geodesic whose ends are at parabolic vertices of a fundamental
hyperbolic polygon F' C Hg, we may extend them to disjoint bisectors in HZ whose
boundary spinal spheres at infinity are mutually tangent at those parabolic vertices.
Moving those adjacent spinal spheres along their real meridians (in the same way as as
we did it above) allows us to obtain the following estimate.

Corollary 4.7. Let I'IsomH% be a co-finite lattice generated by reflections in sides of
an ideal hyperbolic polygon in Hi = HE C ch2, G C PU(1,1) its indez two subgroup,
and N be the number of parabolic cusps in S = HL/G. Then nontrivial quasi-Fuchsian
deformations in the representation variety Hom(G, PU(2,1))/PU(2,1) have at least
[(N — 1)/3] independent parameters where [a] is the integer part of a number a.

5. BENDING DEFORMATIONS OF COMPLEX HYPERBOLIC STRUCTURES

Here we present another class of non-rigid complex hyperbolic manifolds fibering over
a Riemann surface. In fact we point out that the non-compactness condition for the
base of fibration in non-rigidity results in §4 is not essential, either. Namely, complex
hyperbolic Stein manifolds M homotopy equivalent to their closed totally real geodesic
surfaces are not rigid, too. To prove that, we shall present a canonical construction
of continuous non-trivial quasi-Fuchsian deformations of complex surfaces fibered over
closed Riemannian surfaces of genus ¢ > 1. Such deformations depend on 3(g — 1)
real-analytic parameters (in addition to “Fuchsian” deformations, where in particular,
the Teichmuller space of the base surface has dimension 6(g — 1)). This provides the
first such non-trivial deformations of fibrations with compact base (for non-compact
base, see a different Goldman-Parker’ deformation [GP2] of ideal triangle groups G C
PO(2,1)). The obtained flexibility of such holomorphic fibrations and the number of its
parameters provide a partial confirmation of a conjecture on dimension 16(g — 1) of the
Teichmuller space of such complex surfaces. It is related to A.Weil’s theorem [W] (see
also [G3, p.43]), that the variety of conjugacy classes of all (not necessarily discrete)
representations G — PU(2,1) near the embedding G C PO(2,1) is a real-analytic
manifold of dimension 16(g — 1). We remark that discreteness of representations of
G = w1 M is an essential condition for deformation of a complex manifold M which does
not follow from the mentioned Weil’s result.
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Our construction is inspired by the approach the author used for bending deforma-
tions of real hyperbolic (conformal) manifolds along totally geodesic hypersurfaces ([A2,
A4)). In the case of complex hyperbolic (and Cauchy-Riemannian) structures, the con-
structed “bendings” work however in a different way than in the real hyperbolic case.
Namely our complex bending deformations involve simultaneous bending of the base of
the fibration of the complex surface M as well as bendings of each of its totally geodesic
fibers (see Remark 5.9). Such bending deformations of complex surfaces are associated
to their real simple closed geodesics (of real codimension 3), but have nothing com-
mon with the so called cone deformations of real hyperbolic 3-manifolds along closed
geodesics, see [A6, A9].

Furthermore, despite well known complications in constructing equivariant homeo-
morphisms in the complex hyperbolic space and in Cauchy-Riemannian geometry (which
should preserve Kahler and contact structures in Hg and at its infinity H.,, respectively),
the constructed complex bending deformations are induced by equivariant homeomor-
phisms of H_e_ Moreover, in contrast to the situation with deformations in §4, those
equivariant homeomorphisms are in addition quasiconformal:

Theorem 5.1. Let G C PO(2,1) C PU(2,1) be a given non-elementary discrete group.
Then, for any simple closed geodesic o in the Riemann 2-surface S = HZ/G and a
sufficiently small no > 0, there is a holomorphic family of G-equivariant quasiconformal
homeomorphisms Fy, : H2 — HZ, —mo < 1 < no, which defines the bending (quasi-
Fuchsian) deformation By : (—no, M0) = Ro(G) of the group G along the geodesic ¢,
with By (n) = F, .

We notice that deformations of a complex hyperbolic manifold M may depend on
many parameters described by the Teichmiiller space 7 (M) of isotopy classes of com-
plex hyperbolic structures on M. One can reduce the study of this space T(M)
to studying the variety 7(G) of conjugacy classes of discrete faithful representations
p : G = PU(n,1) (involving the space D(M) of the developing maps, see [G2,
FG]). Here 7(G) = Ro(G)/PU(n,1), and the variety Ro(G) C Hom(G, PU(n,1))
consists of discrete faithful representations p of the group G with infinite co-volume,
Vol(HZ /G) = oo. In particular, our complex bending deformations depend on many in-
dependent parameters as it can be shown by applying our construction and Elie Cartan
[Car] angular invariant in Cauchy-Riemannian geometry:

Corollary 5.2. Let S, = H2 /G be a closed totally real geodesic surface of genus p > 1
in a given complex hyperbolic surface M = HZ/G, G C PO(2,1) C PU(2, 1). Then
there is a real-analytic embedding moB : B33 — T(M) of a real (3p—3)-ball into the
Teichmiiller space of M, defined by bending deformations along disjoint closed geodesics
in M and by the projection m : D(M) — T(M) = D(M)/PU(2,1) in the development
space D(M).

Bending Construction (Proof of Theorem 5.1). Now we start with a totally real
geodesic surface S = H2 /G in the complex surface M = HZ /G, where G C PO(2,1) C
PU(2,1) is a given discrete group, and fix a simple closed geodesic a on S. We may
assume that the loop « is covered by a geodesic A C HZ C HZ whose ends at infinity
are oo and the origin of the Heisenberg group H = C x R, H = OHZ. Furthermore,
using quasiconformal deformations of the Riemann surface S (in the Teichmiiller space
T (S), that is, by deforming the inclusion G C PO(2,1) in PO(2,1) by bendings along
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the loop a, see Corollary 3.3 in [A10]), we can assume that the hyperbolic length of o
is sufficiently small and the radius of its tubular neighborhood is big enough:

Lemma 5.3. Let g, be a hyperbolic element of a non-elementary discrete group G C
PO(2,1) C PU(2,1) with translation length £ along its azis A C H. Then any tubular
neighborhood Us(A) of the azis A of radius § > 0 is precisely invariant with respect to
its stabilizer Go C G if sinh(£/4) - sinh(6/2) < 1/2. Furthermore, for sufficiently small
£, £ < 46, the Dirichlet polyhedron D,(G) C HZ of the group G centered at a point
z € A has two sides a and o intersecting the azis A and such that go(a) = a'.

Then the group G and its subgroups Gy, G1, Gz in the free amalgamated (or HNN-
extension) decomposition of G have Dirichlet polyhedra D,(G;) < HZ,
i = 0,1,2, centered at a point z € A = (0,00), whose intersections with the hyper-
bolic 2-plane HZ have the shapes indicated in Figures 2-5.

FIGURE 2. G1 CG=G1%*g,G2 FIGURE 3. G C G =Gy *g, G2

AL

FIGURE 4. G1 C G =Gixg, FIGURE 5. G = Gi*¢,

In particular we have that, except of two bisectors & and &' that are equivalent
under the hyperbolic translation g, (that generates the stabilizer Go C G of the axis
A), all other bisectors bounding such a Dirichlet polyhedron lie in sufficiently small
“cone neighborhoods” Cy and C_ of the arcs (infinite rays) Ry and R_ of the real
circle Rx {0} CCxR="4H.

Actually, we may assume that the Heisenberg spheres at infinity of the bisectors
S and & have radii 1 and ro > 1, correspondingly. Then, for a sufficiently small ¢,
0 < € << 79 — 1, the cone neighborhoods C4,C_ C HZ\{oco} = C x R x [0,400)
are correspondingly the cones of the e-neighborhoods of the points (1,0,0), (—1,0,0) €
C x R x [0, +00) with respect to the Cygan metric p. in HZ\{co}, see (2.1).

Clearly, we may consider the length £ of the geodesic a so small that closures of all
equidistant halfspaces in HZ\{co} bounded by those bisectors (and whose interiors are
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disjoint from the Dirichlet polyhedron D,(G)) do not intersect the co-vertical bisector
whose infinity is 1R x R € C x R. It follows from the fact [G4, Thm VII.4.0.3] that
equidistant half-spaces &; and &, in HZ are disjoint if and only if the half-planes
&1 NHZ and G, NHE are disjoint, see Figures 2-5.

Now we are ready to define a quasiconformal bending deformation of the group
G along the geodesic A, which defines a bending deformation of the complex surface
M =H2 /G along the given closed geodesic a C S C M.

We specify numbers 7 and ¢ such that 0 < ( < 7/2, 0 < n < 7 — 2¢ and the
intersection Cy N (C x {0}) is contained in the angle {z €.C : |argz| < ¢}. Then we
define a bending homeomorphism ¢ = ¢, ¢ : C — C which bends the real axis R ¢ C
at the origin by the angle 7, see Fig. 6:

z if |argz| > 7 —¢

z - exp(in) if |argz| < ¢
z-exp(in(l — (argz — ¢)/(mr — 2())) if (<argz<m—(
z-exp(in(l + (argz +¢)/(m = 2¢))) if (—7w<argz < —(.

Pnc(2) = (5.1)

FIGURE 6

For negative , 2 — 7 < 1 < 0, we set ¢, ¢(2) = ¢ c(Z). Clearly, ¢, ¢ is qua-
siconformal with respect to the Cygan norm (2.1) and is an isometry in the (-cone
neighborhood of the real axis R because its linear distortion is given by

1 if |argz| > 7 — ¢

1 if |argz| < ¢
(m=20)/(r—2¢C—1n) if(<argz<m—¢(
(m=2C+n)/(r-2¢) if{-—m<argz<—C.

Foliating the punctured Heisenberg group H\{0} by Heisenberg spheres S(0,7) of
radii 7 > 0, we can extend the bending homeomorphism ¢, ¢ to an elementary bending
homeomorphism ¢ = ¢, ¢ : H — H, p(0) = 0, p(c0) = oo, of the whole sphere S% = H
at infinity.

Namely, for the “dihedral angles” W, W_ C H with the common vertical axis {0} xR
and which are foliated by arcs of real circles connecting points (0,v) and (0, —v) on the
vertical axis and intersecting the the (-cone neighborhoods of infinite rays R, ,R_ C C,
correspondingly, the restrictions ¢|w_ and ¢|w, of the bending homeomorphism ¢ =

K(¢n¢,2) = (5.2)
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¢n,¢ are correspondingly the identity and the unitary rotation U, € PU(2,1) by angle
7 about the vertical axis {0} x R C H, see also [A10, (4.4)]. Then it follows from (5.2)
that ¢, ¢ is a Go-equivariant quasiconformal homeomorphism in #.

We can naturally extend the foliation of the punctured Heisenberg group #\{0} by
Heisenberg spheres S(0,7) to a foliation of the hyperbolic space HZ by bisectors &,
having those S(0,r) as the spheres at infinity. It is well known (see [Mo2]) that each
bisector &, contains a geodesic 7, which connects points (0, —r2) and (0,72) of the
Heisenberg group # at infinity, and furthermore &, fibers over v, by complex geodesics
Y whose circles at infinity are complex circles foliating the sphere S(0, ).

Using those foliations of the hyperbolic space H2 and bisectors &,, we extend the
elementary bending homeomorphism ¢, ¢ : H — # at infinity to an elementary bending
homeomorphism &, ¢ : ]HI?C — ]Hl% Namely, the map &, . preserves each of bisectors
&, each complex geodesic fiber Y in such bisectors, and fixes the intersection points y
of those complex geodesic fibers and the complex geodesic connecting the origin and co
of the Heisenberg group # at infinity. We complete our extension b, ¢ by defining its
restriction to a given (invariant) complex geodesic fiber Y with the fixed point y € Y.
This map is obtained by radiating the circle homeomorphism ¢, ¢|sy to the whole
(Poincaré) hyperbolic 2-plane Y along geodesic rays [y,o0) C Y, so that it preserves
circles in Y centered at y and bends (at y, by the angle ) the geodesic in ¥ connecting
the central points of the corresponding arcs of the complex circle 8Y, see Fig.6.

Due to the construction, the elementary bending (quasiconformal) homeomorphism
&,,¢ commutes with elements of the cyclic loxodromic group Go C G. Another most
important property of the homeomorphism &, ¢ is the following.

Let D,(G) be the Dirichlet fundamental polyhedron of the group G centered at a
given point z on the axis A of the cyclic loxodromic group Gy C G, and G+ C HZ be a
“half-space” disjoint from D,(G) and bounded by a bisector & C HZ which is different
from bisectors G, > 0, and contains a side s of the polyhedron D,(G). Then there is
an open neighborhood U(G+) C TB—T%— such that the restriction of the elementary bending
homeomorphism &, ¢ to it either is the identity or coincides with the unitary rotation
U, C PU(2,1) by the angle n about the “vertical” complex geodesic (containing the
vertical axis {0} x R C H at infinity).

The above properties of quasiconformal homeomorphism ¢ = b, ¢ show that the
image Dy, = &, ¢(D.(G)) is a polyhedron in HZ bounded by bisectors. Furthermore,
there is a natural identification of its sides induced by @, .. Namely, the pairs of sides
preserved by @ are identified by the original generators of the group G; C G. For other
sides s, of Dy, which are images of corresponding sides s C D,(G) under the unitary
rotation Uy, we define side pairings by using the group G decomposition (see Fig. 2-5).

Actually, if G = G *g, G2, we change the original side pairings g € G of D,(G)-
sides to the hyperbolic isometries U,gU," 1 € PU(2,1). In the case of HNN-extension,
G = Gi*g, = (G1, g2), we change the original side pairing g» € G of D,(G)-sides to
the hyperbolic isometry Uy, g2 € PU(2,1). In other words, we define deformed groups
Gy C PU(2,1) correspondingly as

G"? = Gl *QGo UnGzU,;-l or G,, = (Gl,U,,gz) = Gl *Gy - (53)

This shows that the family of representations G — G, C PU(2,1) does not depend on
angles ¢ and holomorphically depends on the angle parameter 7. Let us also observe
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that, for small enough angles 7, the behavior of neighboring polyhedra g'(Dy), ¢’ € G,
is the same as of those g(D,(G)), g € G, around the Dirichlet fundamental polyhedron
D,(G). This is because the new polyhedron D, C HZ has isometrically the same
(tesselations of) neighborhoods of its side-intersections as D,(G) had. This implies
that the polyhedra g'(D,), ¢’ € Gy, form a tesselation of H2 (with non-overlapping
interiors). Hence the deformed group G, C PU(2,1) is a discrete group, and D, is its
fundamental polyhedron bounded by bisectors.

Using G-compatibility of the restriction of the elementary bending homeomorphism
& = &, ¢ to the closure D,(G) C HZ, we equivariantly extend it from the polyhedron
D,(G) to the whole space H2 UQ(G) accordingly to the G-action. In fact, in terms of the
natural isomorphism x : G — G, which is identical on the subgroup G; C G, we can
write the obtained G-equivariant homeomorphism F = F,, : HZ\A(G) — HZ\A(G,)
in the following form:

Fy(z) = &,(z) for z e D,(G),
Fyog(z) =gnoFy(z) for zeH\AG), g€G, gn=x(9) €Gy-

Due to quasiconformality of &,, the extended G-equivariant homeomorphism F;, is
quasiconformal. Furthermore, its extension by continuity to the limit (real) circle A(G)
coincides with the canonical equivariant homeomorphism f, : A(G) = A(G,) given
by the isomorphism Theorem 3.2. Hence we have a G-equivariant quasiconformal self-
homeomorphism of the whole space HZ, which we denote as before by Fy,.

The family of G-equivariant quasiconformal homeomorphisms F;, induces represen-
tations Fy : G — Gy = FG2Fy 1 n € (—no, o). In other words, we have a curve
B : (=10, m0) = Ro(G) in the variety Ro(G) of faithful discrete representations of
G into PU(2,1), which covers a nontrivial curve in the Teichmiiller space 7(G) rep-
resented by conjugacy classes [B(n)] = [F;]. We call the constructed deformation B
the bending deformation of a given lattice G C PO(2,1) C PU(2,1) along a bending
geodesic A C HZ with loxodromic stabilizer Go C G. In terms of manifolds, B is the
bending deformation of a given complex surface M = H2 /G homotopy equivalent to its
totally real geodesic surface S; C M, along a given simple geodesic c.

O

Remark 5.4. It follows from the above construction of the bending homeomorphism
F, ¢, that the deformed complex hyperbolic surface M, = HZ /G, fibers over the pleated
hyperbolic surface S, = F,(HZ)/Gy (with the closed geodesic o as the singular locus).
The fibers of this fibration are “singular real planes” obtained from totally real geodesic
2-planes by bending them by angle 7 along complete real geodesics. These (singular)
real geodesics are the intersections of the complex geodesic connecting the axis A of the
cyclic group Gp C G and the totally real geodesic planes that represent fibers of the
original fibration in M = HZ /G.

Proof of Corollary 5.2. Since, due to (5.3), bendings along disjoint closed geodesics
are independent, we need to show that our bending deformation is not trivial, and
(B(n)] # [B(n')] for any n # 7.

The non-triviality of our deformation follows directly from (5.3), compare [A9].
Namely, the restrictions pp|g, of bending representations to a non-elementary sub-
group G1 C G (in general, to a “real” subgroup G, C G corresponding to a totally
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real geodesic piece in the homotopy equivalent surface S = M) are identical. So if the
deformation B were trivial then it would be conjugation of the group G by projective
transformations that commute with the non-trivial real subgroup G, C G and pointwise
fix the totally real geodesic plane HZ. This contradicts to the fact that the limit set of
any deformed group Gy, n # 0, does not belong to the real circle containing the limit
Cantor set A(G,).

The injectivity of the map B can be obtained by using Elie Cartan [Car] angular
invariant A(z), —7/2 < A(z) < /2, for a triple z = (z°, z!, %) of points in OHZ. It is
known (see [G4]) that, for two triples  and y, A(z) = A(y) if and only if there exists
g € PU(2,1) such that y = g(z); furthermore, such a g is unique provided that A(z) is
neither zero nor +7/2. Here A(z) = 0 if and only if 2% 2! and z? lie on an R-circle,
and A(z) = £7/2 if and only if 2°, 2! and z2 lie on a chain (C-circle).

Namely, let go € G\G; be a generator of the group G in (4.5) whose fixed point
z? € A(G) lies in Ry x {0} C H, and z2 € A(Gy) the corresponding fixed point of the
element x,(g2) € Gy under the free-product isomorphism x, : G — G5. Due to our
construction, one can see that the orbit 7(:1:,27), v € Gy, under the loxodromic (dilation)
subgroup Gy C G N G, approximates the origin along a ray (0,00) which has a non-
zero angle 7 with the ray R_ x {0} C H. The latter ray also contains an orbit v(z?),
v € Gy, of a limit point ! of G; which approximates the origin from the other side.
Taking triples z = (*,0,z%) and z,, = (¢, 0,22) of points which lie correspondingly in
the limit sets A(G) and A(G,), we have that A(z) = 0 and A(z,) # 0, /2. Due to
Theorem 3.2, both limit sets are topological circles which however cannot be equivalent
under a hyperbolic isometry because of different Cartan invariants (and hence, again,
our deformation is not trivial). ‘

Similarly, for two different values 1 and %', we have triples z, and z, with different
(non-trivial) Cartan angular invariants A(z,) # A(zy). Hence A(Gy) and A(G,) are
not PU(2,1)-equivalent.

O

One can apply the above proof to a general situation of bending deformations of
a complex hyperbolic surface M = HZ /G whose holonomy group G C PU(2,1) has
a non-elementary subgroup G, preserving a totally real geodesic plane H:. In other
words, such a complex surfaces M has an embedded totally real geodesic surface with
geodesic boundary. So we immediately have:

Corollary 5.5. Let M = ]HL%/G be a complex hyperbolic surface with embedded totally
real geodesic surface S, C M with geodesic boundary, and B : (—n,n) — D(M) be
the bending deformation of M along a simple closed geodesic o C S,. Then the map
noB : (-n,n) = T(M)=D(M)/PU(2,1) is a smooth embedding provided that the
limit set A(G) of the holonomy group G does not belong to the G-orbit of the real circle
Sk and the chain SE, where the latter is the infinity of the complez geodesic containing
a lift & C HZ of the closed geodesic o, and the former one contains the limit set of the
holonomy group G, C G of the geodesic surface S.

d

As an application of the constructed bending deformations, we can answer a well
known question about cusp groups on the boundary of the Teichmiiller space 7 (M)
of a Stein complex hyperbolic surface M fibering over a compact Riemann surface of
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genus p > 1. It is a direct corollary of the following our result which will be published
elsewhere:

Theorem 5.6. Let G C PO(2,1) C PU(2,1) be a uniform lattice isomorphic to the
fundamental group of a closed surface S, of genus p > 2. Then, for any simple closed
geodesic a C S, = HE/G, there is a continuous deformation p, = fi induced by G-
equivariant quasiconformal homeomorphisms f; : ]HI% — IHI?C whose limit representation
Poo coTTESpOnds to a boundary cusp point of the Teichmiiller space T(G), that is the
boundary group ps(G) has an accidental parabolic element poo(gs) where go € G Tep-
resents the geodesic oo C Sp.

We note that such continuous quasiconformal deformations corresponding to simple
closed geodesics a, &' C S, are independent if the geodesics @ and o are disjoint. It
implies the existence of a boundary group in 07 (G) with “maximal” number of non-
conjugate accidental parabolic subgroups:

Corollary 5.7. Let G C PO(2,1) C PU(2,1) be a uniform lattice isomorphic to the
fundamental group of a closed surface S, of genus p > 2. Then there is a continuous
deformation R : R~ — T(G) whose boundary group G = R(c0)(G) has (3p — 3)
non-conjugate accidental parabolic subgroups.
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RADIANT AFFINE 3-MANIFOLDS

THIERRY BARBOT

The aim of these notes is to give a very concise version of [2] and [3]. The (sketchy)
proofs, if not omitted, are oversimplified; in case-by-case arguments we will only consider
the simplest situations.

We are interested in radiant affine closed 3-manifolds, i.e. closed 3-manifolds locally
modelled on the linear space R3, and with coordinate change maps represented by linear
transformations. The terminology ‘radiant’ comes from the existence of a special flow,
the so-called radiant affine flow. In each affine chart of the radiant affine manifold, the
flow is locally the homothetic flow, i.e.:

(t,u) = e'u

The radiant flow is well-defined since the flow above is preserved by the action of the
linear group GL(3, R). We denote it by ®*. Observe that it is naturally transversely real
projective. Our work can be viewed in the spirit of [15]: we are studying a very special
class of transversely projective flows (note that many transversely projective flows are
not radiant flows of affine structures, for example, the geodesic flows of negatively curved
surfaces).

The classification of affine structures is very easy in dimension one and is completely
known in dimension two thanks to the work of J.P. Benzécri and T. Nagano, K. Yagi (see
[4], [16]; see also [1]). It remains essentially open in dimension greater than three. In
dimension three, some results are known in some particular cases. For example:

- the complete case ([12]) (it includes the Lorentzian case ([6])),

- it is known that circle bundles over hyperbolic surfaces do not admit unimodular affine
structures ([8]), and that for every affine structure on such a manifold, the monodromies
of the fibers are homotheties (Fried, [11]).

Here, we are only interested in the radiant affine case. The only known closed radiant
affine 3-manifolds are those obtained by ‘suspending automorphisms of real projective
orbifolds’ (we give a precise definition of this construction in the next section). Benzécri’s
ezamples are the affine suspensions of the identity map of a projective surface. Y. Carriere
arose the following question ([7]): are the affine suspensions the only examples of closed
radiant affine 3-manifolds? S. Choi is announcing a positive answer to this question, using
the results discussed here ([10]).

According to Fried’s theorem quoted above, a corollary of our study is:

Theorem Let M be a Seifert bundle over a hyperbolic surface (i.e. with negative Euler
characteristic). Assume that M is equipped with an affine structure (not necesseraly radi-
ant) for which the monodromy of the fibers is not trivial. Then, M is affinely isomorphic
to a Benzécri’s example.

(This corollary was the main motivation of our work).

Let us present the results discussed in this text: an affinely tangent surface (abbrevia-
tion a.t.s) is a closed embedded flat surface in the radiant affine manifold tangent to the
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radiant flow. Such a surface is a finite union of tori or Klein bottles since it is tangent to
a nonsingular vector field.
Theorem A  Assume that the radiant flow of a radiant affine closed 3-manifold M
admits a periodic orbit 6. Then, one of the following (non-ezclusive) situations occurs:

- M is affinely isomorphic to a affine suspension, or

- 0 is of saddle type, i.e. admits stable and unstable manifolds, or

- 0 is contained in a affinely tangent surface which is a union of periodic orbits of the
radiant flow.

The following theorem elucidates the third case of theorem A:
Theorem B If a radiant affine closed 3-manifold admits an affinely tangent surface,
then it is an affine suspension.

As a nearly immediate corollary of Theorem B, we obtain that every radiant affine closed
3-manifold with virtually solvable monodromy group is an affine suspension. Indeed, in
this case, we have two subcases:

1. Either a finite index subgroup of the holonomy group is conjugated in the set of

matrices of the form:
a b c

0 rcosf rsind
0 —rsin@ rcosf

In this case, the 1-dimensional foliation dy = dz = 0 is preserved by the holonomy
group. Therefore, it defines on M a 1-dimensional foliation with a transverse holo-
morphic structure. The proof then follows from the classification of transversally
holomorphic flows ([13, 5]).

2. or, up to a finite covering, and after conjugacy, we can assume that the holonomy
group preserves the plane P = {z = 0}. If P does not meet the image of the
developing map, then % induces on the affine manifold a closed nonsingular one
form transverse to the radiant flow. We then obtain by Tischler’s argument that the
radiant flow admits a section, which is enough for the conclusion (see Section 1). On
the other hand, if P meets the image of the developing map, then any connected
componerit of its preimage by the developing map projects in the closed manifold
over an affinely tangent surface. We conclude then by Theorem B.

The following theorem is exactly the result needed for proving the theorem about Seifert
manifolds announced above:
Theorem C If M is a Seifert bundle over a hyperbolic orbifold equipped with a radiant
affine structure, then it is isomorphic to a Benzécri’s ezample.

1. SUSPENSIONS OF REAL PROJECTIVE STRUCTURES

Let ¥ be a closed surface equipped with a real projective structure (the construction
can be generalized to the case of orbifolds). Let f; : U; = V; C 52 be a family of projective
charts covering £. When U; meets U;, we have an element g;; of P*GL(3, R) such that
on U; NUj;:

fi=gijof;
Here PT*GL(3, R) is the quotient of GL(3, R) by the homotheties with a positive factor,
with its natural action on the sphere S? of linear half lines. Let’s choose representatives g;;
of the ;; in GL(3, R). We impose the condition gi;g;xgki = 1d if U; NU; N Uy is not empty.
Such a choice is always possible: take for example the unique representative of g;; with
determinant +1. The set of the possible choices is parametrized by H'(Z, R). For every
i, let W; be the open cone in R® with vertex at 0, union of the half lines belonging to V.
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Let us denote by W the quotient of the disjoint union of the W; by the relation identifying
each element z; of W; with the element g;;(z;) of W; (when g;;(z;) belongs effectively to
W, of course). This quotient is a noncompact radiant affine manifold, equipped with a
complete radiant flow &t. The quotient of W by the relation ‘being on the same orbit of
&% is homeomorphic to X. The quotient map is a fibration. Let £, be any section of this
fibration. W is diffeomorphic to ¥ x R. q

Let ¢ be a projective transformation of ¥. It lifts! to an affine diffeomorphism ¢ of W
well-defined up to composition by ®¢. If T'is big enough, BT 3(,) is a section of &t disjoint
from Xo. Therefore, @Tgb acts freely and properly discontinuously on W. The quotient of
this action is a closed radiant affine manifold homeomorphic to the topological suspension
X, of p: & = . We call it affine suspension of ¢. Observe that the suspension is not
uniquely defined: we made some choices. These choices are parametrized by an open
subset of H'(Z,, R). These parameters are the morphisms H;(X,, R) — R represented
by det o p, where p is the morphism of monodromy (see below) and det the determinant
map.

When ¢ is the identity map, we call the radiant affine manifolds obtained as above
Benzécri’s ezamples. It follows from Choi’s classification of real projective structures
on closed surfaces (cf. [9]) that if the Euler characteristic of ¥ is negative, then the
automorphism group of the projective surface is finite. Therefore, all the affine suspensions
obtained from ¥ are finitely covered by Benzécri’s examples. Actually, it is easy to see
that more precisely, they are Benzécri’s examples over projective orbifolds.

By construction, the radiant affine flow of an affine suspension admits a closed cross-
section homeomorphic to X. Note that this section, equipped with the projective structure
induced by the transverse projective structure of the radiant flow is isomorphic to the
initial projective surface X. It is quite obvious that the converse is true:

Proposition 1.1. A radiant affine closed manifold is an affine suspension if and only if
its radiant flow admits a closed cross-section. 1

Therefore, the set of affine suspensions is closed under finite coverings. We will use very
often this observation: in the problems we will have to consider, we can always restrict
the study to any more suitable finite covering.

Proposition 1.2. A radiant affine closed manifold is a Benzécri’s ezample if and only
if all the orbits of its radiant flow are periodic.

Proof This is a consequence of Epstein’s theorem about foliations with all leaves closed
(see [2]). (]

2. NOTATIONS AND PRELIMINARY REMARKS

Let M be a radiant affine closed 3-manifold. Let p : M — M be a universal covering
of M. Let T be the group of automorphisms of this covering: it is isomorphic to the
fundamental group. Let D : M — R® be the developing map, and p : I' = GL(3, R) be
the monodromy morphism. They satisfy the relation:

Vyel Doy=p(y)oD

1 Actually, such a lifting does not always exist for any choice of W, but for many of W above the
given ¥, we can perform such liftings. The condition is: let 5 : m1 (W) — GL(3, R) be the monodromy
morphism of W. Observe that m1(W) is isomorphic to m1(X). Let ¢. be the automorphism of m(X)
induced by . Then, o lifts if and only if det o 5 is constant on the orbits of (.. For example, the choice
of the g;;’s of determinant +1 works. We don’t want to go into further details.
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Taking a double covering if necessary, we assume that all the elements of the monodromy
group p(T") have positive determinant.

A screen of D is an open connected subset of M on which D is injective. More generally,
we extend this notion to any local homeomorphism f : X — Y between manifolds. The
following lemmas are easily checked:

Lemma (inserted screens) Let U and V be two screens of a local homeomorphism
f: X =Y. Assume that UNV is not empty, and that f(U) is contained in f(V). Then
U is contained in V. 1

Lemma (closing the screen) Let U be a screen of a local homeomorphism f : X —
Y. Assume that the boundary of f(U) in Y is a finite union of points or of smooth
hypersurfaces disconnecting Y. Then, the restriction of f to the closure of U in X is
wmnjective. [ |

Lemma (filling the disk) Let D be a closed embedded disc in X of the same dimension
nas X (n>2). Assume that the image of D by f is the boundary of a closed embedded
disc D' in'Y, and that for all elements x of D near 8D, the image f(z) belongs to D'.
Then, the restriction of f to D is a homeomorphism between D and D'

Let ®* the lifting of the radiant flow to M. Let Q be the quotient of M by the relation
identifying the points of M belonging to the same orbit of ®*. We denote the projection
map by 7 : M — Q. An affine Hopf manifold is a finite quotient of the quotient of
R3\ {0} by a linear contraction. An equivalent definition is that an affine Hopf manifold
is a affine suspension of some automorphism of a real projective elliptic orbifold.

Proposition 2.1. Q equipped with the quotient topology is homeomorphic to the plane
R? or to the sphere S®. The map = is a (locally) trivial fibration. If Q is homeomorphic
to the sphere, then M is an affine Hopf manifold. 1

The action of T' on M induces another action on the quotient @ such that 7 is equi-
variant. ) has a natural real projective structure preserved by this action. The de-
veloping map D : Q — S? of this structure is just the induced map by D. We will
denote by D the composition of D with the projection map S?2 — RP? too. The
‘monodromy’ p : I' = P*GL(3,R) is the morphism induced by p. Since we assume
that the determinants of the p(y) are positive, we can consider p as a map from I to
P*GL*(3,R) ~ SL(3,R).

There is a natural correspondence between the dynamics of &t on M and the dynamics
of I" on Q. For example, an orbit of ®* corresponds to an orbit of I" on Q. An orbit of &
is periodic if and only if the corresponding I'-orbit is closed and discrete, or equivalently
if and only if some (and therefore all) element of the corresponding I'-orbit is fixed by a
non-trivial element. Moreover, since periodic orbits of 3t are homeomorphic to the circle,
the stabilizer of a point in @ is either cyclic, or trivial.

Consider an affinely tangent surface ¥ in M. Let 3 be some connected component of
the lifting of & in M. Let 71 (X) be the subgroup of T consisting of the elements globally
preserving X (the terminology is quite ambiguous, since 7;(X) depends on the choice of
the lifting). The group m;(X) is conjugate in I" to the image of the fundamental group of
% by the morphism induced by the inclusion of ¥ in M. Let ¢ be the projection of £ in
@ by m. Clearly, D(c) is contained in a ‘projective line of S’ (i.e., a great circle). We
call ¢ a transverse shadow of . We will see later that, if M is not an affine suspension,
then the restriction of D to c is injective, and that c is a line (i.e. ¥ is incompressible)
(Lemmas 3.1, 3.3). '



RADIANT AFFINE 3-MANIFOLDS 41

We denote by A the subgroup of the diagonal matrices in GL(3,R), and A* the sub-
group of diagonal matrices with positive coefficients. We will use the same notation for
the subgroups of diagonal matrices in SL(3, R). Observe that A* is a maximal connected
abelian subgroup of SL(3, R). An abusive simplification we will use in the proofs is the
following: when we will deal with a maximal connected abelian subgroup of S L(3,R), we
will only consider the case where this subgroup is A*.

3. CLOSED FLAT SUBMANIFOLDS PRESERVED BY THE RADIANT FLOW

In this section, we give partial proofs of Theorems A and B. We begin with Theorem
A: assume that ®* admits a periodic orbit . Let # be a lifting of 6: it is an element of
@ preserved by an element +, of I'. We can assume the only elements of I' preserving
are the powers of 9. There is an element z of 6 and a real T such that z is a fixed point
of 7%®T. The image of the fixed points of 7,37 by p form a closed subset of M that we
denote by F(v,T).

Observe that if (o) is the identity, then M has to be a Benzécri’s example. Indeed, in
this case, the set of fixed points of 7 is a closed open subset of @, thus is all of Q. Then,
all the orbits of ® are periodic. We conclude by ‘Epstein’s theorem’.

Consider now the case where D(6) belongs to a line [ of fixed points of p(70). Let [y be
the set of points of M whose image by D belongs to Iy, and which are fixed by 7. It is a
closed codimension one subset of Q. Let Ly = 7~ 1(l). Its projection by p is an immersed
surface ¥ of M. For every element « of I', we have three possibilities:

- vly is disjoint from [y, or .

- ’)/lo = lo, or -

- 7lo intersects transversely /y at some point 6. _

Let’s prove that the third case is impossible. Assume it occurs. Let § = p(f). Let D be
a local cross section to ®* through 6. Let f be the first return map along &' on D. Then,
it is locally conjugate to the action of p(vp)*! near D(). On the other hand, it has two
lines of fixed points: one corresponding to Ly near 67, and the other to L, near 6. This
is a contradiction.

Since the third case is impossible, we obtain that p(Lo) is an injectively immersed
surface in M. It is a closed subset of F(yo,T): therefore, p(Lo) is embedded. We have
proven that p(Lo) is an affinely tangent surface containing 6 and union of periodic orbits.
This proves Theorem A in this case.

There remains the case where 6 is an isolated periodic orbit of ®t. A rigorous way to
go on with the proof is to consider all the possible conjugacy classes of () in SL(3, R),
showing that the only possibility, if M is not a suspension, is that (o) is hyperbolic (i.e.
all its eigenvalues are real and pairwise different in absolute value) and 6 is of saddle type
(i.e. D() is the proper direction of p(7o) associated to the intermediate eigenvalue).

We will just prove here that D(f) is not a repulsive (or attractive) fixed point of p(vp).

Suppose not. Consider the domain of repulsion U of 7, in Q. It is easily seen that U
is a screen of D, and that D(U) is an open hemisphere. Thus, W = p(r~1(U)) is the
domain of attraction of 6 in M (we assume here that T is negative). It is homeomorphic
to the open solid torus. Therefore, for all elements  of I', yU intersects U if and only
if v is a power of 7y, in which case we have YU = U. Consider an element z of 8W: let
Z be a preimage of z by p. Let V be a convex screen in @ containing 7(%). There is a
sequence z, of elements of U and a sequence 7, of elements of I" such that +,z, converges
towards 7(Z). Since V' is a convex screen, and since the v, U are open hemispheres pairwise
disjoint or equal, we obtain that 7(Z) itself belongs to some +,U. This proves that 8W
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is the projection by p of 7~1(8U). It follows that OW is an embedded surface. Since it
is an a.t.s (affinely tangent surface), it is a finite union of ton Moreover, each element
v of (W) C T (see notations) preserves dU. Therefore, 42 preserves U. Thus, 72 is
a power of 4. It follows that m (0U) is cyclic up to a finite index. Thus, OU is a single
compressible torus. The transverse trace of this torus must be a circle contained in oU.
By the ‘filling the disc lemma ’, we obtain that the closure of U in @ is a closed embedded
disc on which D is injective. Let V be a screen of D containing the closure of U. The
union of the 7y, iterates of V is a ~o-invariant screen Vi,. The image D(V4) is the sphere
minus a point § (the opposite of 'D(é)). By the ‘closing the screen lemma’, we see that
either Q is homeomorphic to the sphere, or V,, is closed in @, i.e. is exactly Q. In the
former case, M is a Hopf manifold. In the latter case, the image of the developing map
iis S2\ {#}. Then, 7 is p(T')-invariant. This implies that 6 is fixed by every element of I
Thus, I'is a cychc group. This is impossible since M is an irreducible closed 3-manifold.
We have concluded our partial proof of Theorem A.

Let us now consider the proof of Theorem B. It means that we have to prove that if M
admits an a.t.s, then it is an affine suspension. Let ¥ be such an a.t.s. Let £ be a lifting
of ¥ in M, i.e. a connected component of p~!(Z). Remember that T is a torus or a Klein
bottle.

Lemnia 3.1. If T is compressible, then M is an affine suspension.

Proof If T is compressible, its transverse shadow is a circle. Since @ is simply connected,
this shadow is the boundary of some disc D. Let . be any element of (%) preserving
3, and therefore D. According to the ‘filling the disc lemma’, D is a screen of D. On the
other hand, p(y) surely has a fixed point in the closure of the hemisphere D(D) which is
not of saddle type. Thus, v admits a fixed point in the closure of D which is not of saddle
type. Thanks to Theorem A, we see that, if M is not an affine suspension, then all the
boundary of D in Q is fixed by <, and that  has no fixed point in the interior of D. Up
to conjugacy in SL(3, R), p(y) is:

100
011
001

In other words, there are two points z; and z2 in dD, which are respectively the a-limit
point and w-limit point of every element of D under the action of . Let F be the singular
foliation of Q induced by the foliation of S? whose leaves are the great circles containing
D(z;) and D(z;). Note that all the leaves of F contained in D are y-invariant. Let Q
be the union of the regular leaves of F which are y-invariant and contain z; and z, in
their closure. It is a screen D, containing D, which is y-invariant and saturated by F.

If Q is all of Q, then the z; are ['-invariant, Wthh implies that M is a Hopf manifold.

Therefore, we can assume that 9§ is not empty. We obtain then that 02 contains two
different leaves f; and f, of F, with closures containing respectively z, and o, and such
that D(f1) and D(fz) are contained in the same half line [. Moreover, the extremities of
! are D(z;) and D(z»), and no point of I is fixed by p(v). But the leaves fi and f, are
fy-mvarlant This implies that D(f;) = | = D(f2), which is a contradiction to the ‘closing
the screen’ lemma. 1

According to the previous lemma, there is a subgroup H of m;(¥) C I of index at most
two isomorphic to Z @ Z. The following lemma establishes a converse of this fact:
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Lemma 3.2. Let ¢’ be a closed line in Q preserved by a subgroup H' of T isomorphic to
Z® Z. Then, ¢ is the transverse shadow of an a.t.s in M.

Proof By ‘line’, we mean that D(c') is contained in a great circle of S2. Since 71(c) is
homeomorphic to R&® R, and since H' acts freely and properly discontinuously on M, the
quotient of 77}(¢’) by H' is a torus. Thus, p(7~!(c’)) is an immersed torus in M. The
arguments used in the proof of Theorem A imply that this torus has no self-intersection,
i.e., is an embedded torus.: indeed, such a self-intersection would be a periodic orbit of
®*. According to Theorem A, this periodic orbit is of saddle type (or the torus is a union
of periodic orbits, but we gave previously an argument excluding this case). Let zo be
an element of ¢’ corresponding to a lifting of this periodic orbit: it is a saddle-type fixed
point of some hyperbolic element -y of I'. Moreover, ¢ is tangent to the (un)stable line
of o through zo. Since v, has no attractive or repulsive fixed point in @, ¢’ is contained
in this (un)stable line. Therefore, this (un)stable line is preserved by H'. It follows that
H' =~ Z & Z fix zo. Contradiction. 1

Lemma 3.3. The restriction of D to c is injective.
Proof We refer to [2]. 1

A corollary of the previous lemma is that the restriction of D to % is injective. Hence,
p(H) acts freely and properly discontinuously on the cone D(X), and the restriction of
p to H is injective. Moreover, thanks to Theorem A, we can assume that the projection
A = p(H) C SL(3, R) is isomorphic to Z @ Z (if not, M is a Benzécri’s example). Let G
be the neutral component of the Zariski closure of A. Exchanging A with a finite index
subgroup of itself if necessary, we can assume that A is contained in G. Observe that p(H)
preserves a plane in R® (the plane containing D(X)) and a line included in this plane (the
line containing one of the boundary components of D()). Thus, G is isomorphic to
R @ R. It is a maximal connected abelian subgroup of SL(3, R), and A is a cocompact
lattice of G.

For the sake of simplicity, we assume here that G is (conjugate to) the diagonal group
At. All the other cases can be treated in a more or less similar way. We won't discuss
them here.

The action of G on the sphere S? is generated by a Lie homomorphism from the Lie
algebra G of G to the Lie algebra of vector fields on the sphere. Pulling back by D, we
obtain a Lie algebra V of vector fields on @, each of them H-invariant. Each element of
V generates a local flow on @, but, since @ is not complete, there is no a prior: reason
for these local flows to be complete. The following proposition shows that it is actually
true:

Proposition 3.4. The algebra V generates an action of G on Q). Moreover, the action
of H on Q through covering automorphisms coincide with its action through p: H — G.

Before proving this proposition, we explain briefly how it is used to prove Theorem B.
The action of G on @ cannot have fixed points (indeed, a fixed point of G on @ would
correspond to an orbit of & with fundamental group containing Z @ Z!) Therefore, the
image of the developing map D is a union of orbits of dimension 1 and 2. Its boundary is
a union of G-fixed points and of one-dimensional G-orbits. Since this boundary is p(I')-
invariant, it follows, taking a finite index subgroup if necessary, that every G-fixed point
is fixed by p(I'). In other words, p(') is contained (up to a finite index) in A*. The
monodromy group p([') commutes with the action of the diagonal matrices of GL(3, R).
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We obtain then by pull-back an affine action of R® on M. This action is not locally free
in general (if it is, then M is homogeneous. The conclusion of Theorem B is then easy).
There are many ways to conclude from this point. For example: this action has no orbit
of dimension zero or one. The two-dimensional orbits of this action are tori. Moreover,
the fundamental groups of these tori admit the common factor H: they are thus isotopic
one another. The complement of these tori is a union of open orbits diffeomorphic to
]0,1[xT?. These open orbits correspond to the G-invariant triangles in S? admitting as
vertices fixed points of G. Therefore, M is a torus bundle over the circle. It is easy to
identify the affine nature of the homogeneous components ]0, 1[xT2. Since M is obtained
by gluing these components along the tori, we recover the affine nature of M itself. It
follows that T is an affine suspension.

Proof of 3.4 We will define the domain of definition of G on @, and then prove that
this domain is all of Q. For every nontrivial element g of G, let g* be the one parameter
subgroup of G such that g' = g. We say that g is defined on a point z of Q if the curve
t — g!D(z) for t between 0 and 1 can be lifted as a curve ¢, starting at = such that
¢s = g°z for every time s for which ¢g° belongs to H. We denote then the extremity at
time 1 of this lifted curve by g x . Let U’ be the set of points where all the elements of
G are defined. The operation * defines an action of G on U’. Finally, let &/ be the set of
points z of U’ where the two actions of H coincide, i.e. such that hz = h * z for every
element h of H. Observe that the transverse shadow c is contained in Y. Note also that
U is H-invariant.

Let g% and g5 be two one-parameter subgroups of G generating G and such that g} and
g3 both belong to A. By an abuse of notation, we denote by g} and g} the elements of
H which are mapped by p to g} and gi. Let U; be the set of the elements of Q where
gt g3 are defined for every (t,s) € [0,1] x [0,1]. Since every element g of G is of the form
p(h)gtgs (t,s) €[0,1] x [0,1], h € H, and since G is abelian, we see that I and U, are
equal (actually, it is not so obvious, but there is no difficulty in proving this claim. The
proof we have in mind uses the topological properties of the plane Q).

Here we give some immediate properties of U:

- U contains the transverse shadow c,

- D(U) does not contain any fixed point of G (indeed, such a fixed point would induce
a fixed point of H in Q),

- D(U) is a union of G-orbits,

- every one-dimensional orbit of G in @ is the transverse shadow of some a.t.s (this
follows from lemma 3.2),

- the open orbits of G in @ are screens of D,

- U is open (this follows from U = U).

In order to prove the proposition, we have to prove that I is the whole Q). By connect-
edness of @, it is enough to show that I is closed.

Let = be an element in the closure of /: we want to show that it belongs to U. Note
that g(z) is defined for every sufficiently small elements g of G. Therefore, D(z) is not a
fixed point of G. If D(x) belongs to an open orbit of G, we get easily from the inserted
screen lemma that = belongs to U, and we are done in this case. There remains the
case where D(z) belongs to some one-dimensional orbit [ of G. Let ¢ be the connected
component of D~(I) containing z. Let U’ C U be an open G-orbit whose boundary meet
c'. It is a screen of D which is H-invariant. It follows from the ‘closing the screen’ lemma
that the restriction of D to the union of the H-iterates of ¢ is injective. A corollary is
that if H preserves c’, then ¢’ is contained in . In other words, we can assume that D(c')
is strictly contained in [.
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* Assume first that no element of H fixes z: in this case, D(z) is a non-trivial accumu-
lation point of its A-orbit. It follows that there are two elements h; and hy in H such
that:

- hy(z) and hs(z) belong both to ¢,

- hi and hy have no non-trivial common power in H, i.e. p(h;) and p(hy) generate a
cocompact lattice of G.

By the first property, we obtain that ¢’ is preserved by the group generated by h; and
ha. Since this group is a lattice of G (by the second property), this implies D(c') = . As
observed before, it follows that z belongs to U. -

Now, we have to deal with the case where some element A of H fixes z. The elements
of ¢’ near z are of the form gz, where ¢ is an element of G defined at z. Since g and
p(h) commute, this implies that ¢’ is a line of fixed points of h. According to Theorem
A, ¢ is the transverse shadow of some a.t.s &' in M, ie. ¢ = 7(Z) with p(¥’) = ¥".
Let H' = m;(2'), where H' is chosen so that &' and ¢’ are H'-invariant. Let A’ = p(H")
and let G’ be the neutral component of the Zariski closure of A’ (we will assume that
A’ is contained in G'). Let U’ be the set of the elements of Q where the action of G’ is
defined: it is the anolog of & with respect to G. The curve ¢’ is contained in ', and it is
a one-dimensional orbit of G’. (Note that there is no reason for G’ and G being the same
subgroup. If it is the case, G' = G is defined at z, and thus, = belongs to U as desired.)

We introduce another simplification: we assume that G' is conjugate in SL(3,R) to
G = A*. Then, there are two different open orbits of G’ in U’ both containing ¢ in
their boundary. One of them, that we call U”, meets the open G-orbit U’ C Y. Then,
¢ is a boundary component of U’. Since D(c') is strictly contained in I, there is a one-
dimensional orbit & of G’ in S? meeting D(U’) and contained in the boundary of D(U").
By the inserted screen lemma, we see that OU"” meets U'. Let ¢ be a connected component
of U' N OU". We have D(c") C &". Applying once more the preceding arguments, we see
that ¢” is a transverse shadow of some a.t.s. But, since it meets U’, there is a sequence
hn of elements of H such that the h,c” has an accumulation point on ¢. Moreover, this
accumulation is not trivial, i.e. no h,¢” is equal to ¢. This is impossible, since ¢ and ¢
are transverse shadows of embedded surfaces!

This contradiction completes the proof of Proposition 3.4, and thus, of Theorem B.

4. AFFINE SEIFERT MANIFOLDS

In this section, we discuss the (quite intricate) proof of Theorem C. Here, M is a closed
Seifert manifold of dimension 3 over a hyperbolic orbifold, equipped with a radiant affine
structure. We want to prove that M is a Benzécri’s example. Up to a finite covering, M is
a circle bundle over a hyperbolic surface £. We denote by H the center of the fundamental
group I': it is cyclic. The quotient of I' by H is isomorphic to the fundamental group T’
of £. If M is a bundle over the circle, then it is diffeomorphic to & x S1. Therefore, if &
admits a cross section, this cross-section is a real projective surface with negative Euler
characteristic. As we observed when we defined affine suspensions, this implies that M
is a Benzécri’s example. Therefore, we will have proven Theorem C as soon as we have
established that M is an affine suspension.

4.1. Preliminary observations. The following proposition is a corollary of a theorem
of D. Fried ([11]), but its proof is quite easy in our case:
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Proposition 4.1. For every element h of H, the monodromy p(H) is a homothety(possibly
trivial).

Proof Let h be a generator of H. Its monodromy p(h) commutes with every element of
p(T). Assume that p(h) has three different eigenvalues (two of them possibly complex):
then the sum of the proper spaces associated to two of them is p(I')-invariant. As observed
in the introduction, this implies that M is an affine suspension, and therefore a Benzécri’s
example. The result is true in this case.

Assume now that p(h) has exactly two different eigenvalues. One of them is double:
the characteristic subspace associated to it is a hyperplane. This plane is p(I')-invariant,
and we conclude in this case as above.

There remains the case where p(h) has one and only one eigenvalue. Assume that it
is not a homothety, but that it admits two independent eigenvectors. Then, the plane
generated by these eigenvectors is p(I')-invariant: we are done.

Thus, to prove the proposition, we just have to prove that p(h) is not conjugate to:

a 10

0 al

0 0a
where a is a real number. But in this case the centralizator of p(h), which must contain
p(T), is solvable. We conclude in this case too, by exhibiting an invariant plane. 1

Therefore, H is contained in the kernel N of p : I' — SL(3,R). In other words, it
induces a map p from T to SL(3, R). We assume from now that M is not a suspension.
Our aim is to obtain a contradiction.

Lemma 4.2. N is equal to H, i.e. the map p: T — SL(3, R) is injective.

Proof For every element n of N, the set of fixed points of n is closed and open. If not
empty, it must be the whole of Q. In other words, the orbits of ®! are all periodic. This
implies that M is a Benzécri’s example, but we have excluded it by hypothesis. Thus,
the action of N on Q is free. It is easy to prove, thanks to the inserted screen lemma,
that the action is properly discontinuous. The quotient of @ by this action is a surface
S. Since N has a non-trivial center (it contains H), this surface is either an annulus, or
a torus. The latter case is impossible, since D induces a local homeomorphism from S to
S2. The former case implies that N = H, since H is not strictly contained in any cyclic
subgroup of I'. 1

Denote by A the annulus which is the quotient of Q by the action of H. We have a
projective map D from A to S2. The group I acts projectively on A, the projective mon-
odromy being 5. We can assume, up to finite coverings, that T preserves the orientation,
and preserves each end of A. We give a name for the ends of A: one is called North, the
other South. Call a line any embedding I of the real line in A such that D(l) is contained
in a great circle of S2. Call it vertical if it does not disconnect the annulus. A vertical
line joins the two ends of the annulus, and one of its ends is called North, and the other
South according to an obvious convention. Another obvious convention is the following:
two disjoint vertical lines /; and l; cut the annulus into two domains homeomorphic to
the disc: one is called to the east of l; with respect to Iy and the other to the west of I
with respect to ly. There is no confusion for anybody with a basic knowledge of geography.

Proposition 4.3. No line in R? passing through the origin is globally preserved by a finite
index subgroup of p(T').
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Proof Up to finite coverings, and up to conjugacy, we are led to study the case where p(I")
preserves the line {x = y = 0}. Let F; be the (singular) foliation of R® whose leaves are
the planes containing {z = y = 0}. It is p(I')-invariant. Therefore, it induces a foliation
F on M. The first observation is that F is not singular. The proof goes as follows: it
is easy to see that regular leaves are planes, annuli, Mobius bands, tori or Klein bottles.
They have at most two ends. By Theorem B, we can assume that the two latter cases do
not occur. We now apply the following theorem of G. Duminy ([14]): for any codimension
one foliation of class C? of a closed manifold admitting an ezceptional minimal set, there
is a leaf of the minimal set admitting an infinite number of ends. In our case, since the
leaves of Fy have at most two ends, there is no minimal exceptional set. Since Fy has no
compact leaf, we obtain that every regular leaf is dense in M. But such a leaf, having
at most two ends, cannot pass twice near a singular leaf! This contradiction proves the
claim.

Since we are on a circle bundle, and since F has no compact leaves by Theorem B,
we obtain from a theorem of Thurston that F is a suspension foliation (see [17]). Let
F = D*(F,) be the lifting of F to M, and L the leaf space of F. It is homeomorphic to
the real line since F is a suspension. Let S be the quotient of £ by H: it is homeomorphic
to the circle. D induces a submersion of S into the leaf space of Fy restricted to R*\ {z =
y = 0}, which is the double covering of the projective line. This submersion is thus a
finite covering. Since [I',T] is not solvable, we can exhibit an element v of T, fixing a
point in S, and such that p(7) is (up to conjugacy) of the form:

A 0 O
0 Ao
0 0 1

Note that the eigenvector (0,0, 1) is not in the image of the developing map. Therefore,
according to Theorem A, <y has no fixed point in Q. On the other hand, since S — RP!
is a finite covering, every connected component of D~!({z = 0}) or of D™'({y = 0})
is globally preserved by 7. We deduce that all the fixed points of p(7) in S? belong to
the boundary of the image of D. Consider two successive fixed points of v on L£: they
correspond to leaves Fy and F5 of F. Up to conjugacy, and choosing F} adequately, we can
assume that D(F}) is {y = 0,z > 0,z > 0}. Then, D(F}) is either {z =0,y > 0,z > 0}
or {z =0,y > 0,z < 0}. In the first case, we can find a curve 7 connecting F; and F3
such that D(7) is contained in some plane {z = 2zo}. But, this property would imply that
every iterate "7 intersects 7. This is impossible since y acts properly discontinuously on
M. Hence, D(F) = {z = 0,y > 0,z < 0}. It follows that the image of domain between
F, and F, is mapped by D over {z > 0,y > 0}. Indeed, the unique connected open
p(7y)-invariant subset of {z > 0,y > 0} is { > 0,y > 0} itself. Applying this argument
inductively to the y-fixed leaves following F5, we obtain that the image of the developing
map is the whole S? minus some half-lines connecting (0,0, +1) to other fixed points of
p(7y). It follows that some finite index subgroup of p(I') preserves the planes {z = 0} and
{y = 0}. Thus, M admits some a.t.s: this contradicts Theorem B. A more detailed proof
is given in [3]. ]

A corollary of Proposition 4.3 and of Theorem B is the following:

Proposition 4.4. Let z1, T2, x3 be three different points in the projective plane. Let [y,
lo, I3 be the three projective lines containing xo and x3, 1 and 3, T, and T, respectively.
Then, there is an element v of ' such that no z; is mapped by p(7y) into some l;. - 1
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We make the following assumption, which will greatly simplify the future arguments:

Assumption 1: If vy is an element of I’ such that p(vy) is a regular hyperbolic matriz
(i.e. with three real eigenvalues of different absolute values), and if v is an element of T
that does not commute with vy, then no fized point of p(7y) in S? is mapped by p(v) into
one of the three great circles globally preserved by p(7o).

The proposition above suggest that this assumption is not too much abusive.

Proposition 4.5. Every eigenvalue of any element of the monodromy group is real.

Proof Let v be an element of I'. We have to show that the eigenvalues of p(v) are all
real. Assume not. Then, up to conjugacy, p(7) is a rotation, or a matrix of the form:

Acosf —Asinf O
Asind  Acosf O
0 0 n

We consider here only the easiest case: the case where p(y) is a rotation. Then,
it preserves the conformal structure of the sphere: there is a conformal structure on
A preserved by . The sphere 52 can be identified with the complex projective plane
C = C U {co}, where p(7) acts by z > €.

It follows from Theorem B that -y has no periodic orbit on A. Hence, A is homeomorphic
to the annulus {a <| u |< b} in the complex plane (b can be infinite), and « is conjugate
by this homeomorphism to u + rei®u, where « has irrational quotient with «. If 7 is
not 1, the quotient of A by v is a torus. The pullback of the foliation Argz = Cte on
S? ~ C by D induces a foliation on this torus. By Poincaré-Hopf, this foliation has no
singularity, which means that 0 and oo are not in the image of the developing map. Hence,
the map associating to u € A the norm in C U {oo} of D(u) induces a submersion of the
torus into R. This contradiction shows that 7 = 1. Then, all the orbits of v on A are
non-discrete: it follows in this case too that 0 and co are not in the image of D. Being
p(7)-invariant, and since the rotation number of p(v) is irrational (since p is injective),
the image of D is an annulus bounded by the intersection of S? with two planes {z = 2o}
and {z = 21}. According to Proposition 4.3, we have —1 < 23 < z; < 1. Since p(I") has no
invariant plane, zy and z; are not null. Up to finite index, p(I') preserves some quadratic
Lorentzian forms Q; = 7% + y? — 2% and Q2 = 72 + y? — €2? (they are the forms Q;
such that {Q; =0} N 5?2 = {z = z;} N S5?). Therefore, M is a Lorentzian affine manifold.
According to a theorem of Y. Carriére ([6]), it must be complete. This is a contradiction
since radiant affine manifolds are not complete (0 is not in the developing image)! ]

Corollary 4.6. 5(I') is a discrete subgroup of SL(3, R).

Proof Let G be the neutral component of the closure of 5(I') in SL(3,R). Since p is
injective on T, (') is a surface group: it has no non-trivial solvable normal subgroup.
Therefore, if G is not trivial, it is not solvable. Its Levi decomposition has a non-trivial
semisimple part S. Consider a Cartan decomposition of this semisimple part. According
to the proposition above, the eigenvalues of every element of the compact part K of this
decomposition are real. It follows that K is trivial, thus S is trivial too. This contradiction
shows that G is trivial, i.e. p(T) is discrete. (]

4.2. Hyperbolic monodromy elements. The goal of this section is to prove the fol-
lowing: ‘

Proposition 4.7. No element of p(T') is positive hyperbolic, i.e. has three distinct real
positive eigenvalues.
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Let us see how to conclude the proof of Theorem C using this proposition. This propo-
sition, with Proposition 4.5, implies the following: for every element v of I', 5(7)? has a
double eigenvalue. This property is expressible by a polynomial equation. In particular,
the Zariski closure G of p(I") satisfies the same property. Let Gy be the neutral compo-
nent of G: every element of Gy has only real eigenvalues. The arguments of the proof of
Corollary 4.6 lead to a contradiction.

We are now concerned with the proof of Proposition 4.7. Let’s assume to the contrary
that there is an element o of T such that, in a good coordinate system, p(,) is:

a 00
0 b 0
0 0 ¢

with 0 < @ < b < c. The action of () on the projective plane has three fixed points:
a repulsive point z; = [1;0;0], a saddle point z, = [0;1;0], and a contracting point
z3 = [0;0;1]. There are three invariant projective lines: the unstable line {z = 0}, the
stable line {z = 0}, and the principal line {y = 0}. Let ¥, be the (singular) foliation of
RP? whose leaves are the orbits of the action of the following one-parameter group:

at 0 0
0 8 0
0 0 ¢

Every leaf is p(7o)-invariant. Let ¥ be the pullback of ¥4 on A by the developing map:
it is a 7p-invariant foliation. )

An invariant affine line is an invariant projective line minus a fixed point. An invariant
half line is an invariant projective line minus the two fixed points contained in it. A (7,-)
invariant line in A is a curve in A with image by D contained in an invariant affine line
of p(7o) that is globally preserved by 7,. Observe that according to Theorem A, no ~o-
invariant line contains a preimage of z; or of z;. An invariant line is of principal, stable
or unstable type, according to the type of the p(v,)-invariant line containing its image by
D.

The proof of Proposition 4.7 is based on a combinatorial study of the yy-invariant lines.
The first step is:

Proposition 4.8. There is an integer k such that there is a y&-invariant line in Q.

Sketch of proof: The basic idea is the following: prove that if every 7% has no
invariant line, then there is a subannulus A’ C A which is 7p-invariant, on which v, acts
freely and properly discontinuously. Then, the quotient of A’ by the action of v, would
be a projective torus with cyclic monodromy generated by a hyperbolic element. From
the classification of projective tori (e.g. [1]) we see that such a torus must admit a closed
projective line, i.e. that 7, must admit an invariant line in A’. This is a contradiction.

]

Replace 7 by v&: we know that there are yo-invariant lines. As usual, we make a very
abusive assumption:

Assumption 2: We assume that vy has no fized point in A.

We collect here some easy facts about «g-invariant lines:

- a 7Yo-invariant line is a closed embedding of the real line in A (a point in the closure
would be a fixed point of 7y),

- the restriction of D to a yp-invariant line is injective, and the image is a p(7yo)-invariant
half line,
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- the intersection of a 7p-invariant line [ with some iterate ! consists of at most one
point, except if v commutes with 7o (this follows from the preceding property, and from
Assumption 1 made after Proposition 4.4),

- for any yo-invariant line [, and for any element y of I' that does not commute with
v0, vl meets at most one yp-invariant line of a given type.

In order to better understand the relative positions of yp-invariant lines, we introduce
the notion of generalized triangle: It is a screen of D in A with the following properties:

- its boundary contain two different vyp-invariant lines,

- it is a union of 7yp-invariant leaves of the foliation ¥, and

- its image is contained in a 7-invariant triangle (i.e. a connected component of the
projective plane minus the p(y,)-invariant lines),

An edge is a 7p-invariant line contained in the boundary of the generalized triangle.
A generalized ~o-triangle is convez if its image by D is an entire p(70)-triangle. It is
easily verified that a generalized triangle is convex as soon as it admits an edge which is
a principal vp-invariant line.

A basic fact is the following:

Proposition 4.9. There is a sequence Ty, T, ..., T, = Ty of successive generalized tri-
angles such that:

- they are pairwise disjoint,

- for every indez i, T; and T;_; have a common edge d; (and only one).

Proof See [3]. . ]

The union of the T} with the common edges d; is an open subset 2 of A, homeomorphic
to the annulus, such that the inclusion  C A is a homotopy equivalence. In particular,
every vertical line intersect 2. Moreover, the edges d; are all vertical lines. The d; are the
unique -yo-invariant lines intersecting Q2. Observe also that every connected component of
the preimage of a p(7yo)-invariant line meeting 2 has to be one of the edges d;.

For any given generalized triangle T, its edges d;—; and d; project by D onto half
invariant lines issuing from one fixed point z;. By the closing the screen lemma, we see
that there is an end of T in A such that every curve 7 in T converging to this end projects
by D onto a curve which converges to z;. This particular end of T; is called the angle of
T;. It is said to be of type z;. This angle is said to be North or South, depending on to
which end of A the curve 7 above is converging.

Lemma 4.10. For every edge d;, and for any element v in T’ not commuting with o, vd;
meet some edge d;.

Proof Suppose not. The vertical line vd; must intersect €2, and therefore, one of the
triangles T; (if not, we have yd; = d; for some j. Then, 5(y) and p(yyy™') have two
common fixed points in RP2. So, they generate a solvable subgroup of 5(I'). Since this
last group is a surface group, this is possible if and only if y commutes with o, but this
is excluded by hypothesis). Assume that the angle of T; is at the South, of type zx. If
vd; does not intersect the edges of T}, then its Southern end must accumulate on the
Southern angle of Tj. It follows that the fixed point 7 is an extremity of D(vyd;). But
this extremity is on the other hand the image by p(7) of an extremity of D(d;), which is
a fixed point z, of D(7). In other words, 4(y) maps a fixed point of 5(yo) on another (or
the same!) fixed point. This contradicts Assumption 1. ]
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The generalized triangles T; have very special intersections with their iterates yTj.
Lemma 4.11. There is at least one edge d; of each type.

Proof Assume that no edge d; is of principal type (or stable type, or unstable type...).
Then, all the d; are of stable and unstable type. It follows that the angles of the T; are all
on the same end of A, say, at the South. Let 7 be any vertical line. Then, the Southern
extremity of 15(7') is the fixed point z5. Moreover, for every element 7y of I', the Southern
extremity of D(y7) is also z5. Therefore, (I fixes 3. This contradicts Proposition 4.3.

Lemma 4.12. Let dy, do, and d3 be three successive edges. Assume that d; is of principal
type. Then, ds is not of principal type.

Proof Assume that d; and dj are both of principal type. Inverting -y, if necessary, we can
assume that d is of stable type. Since d; and d, are principal, all the triangles Tp, T1, T
and T3 are convex. Let U be the union of these triangles and of the three edges d;, d; and
ds. It is a screen of D, whose image is a p(7)-invariant hemisphere minus the closure of a
stable half line. According to Lemma 4.10, there is an element v of I" and an edge d; such
that yd; meets dy transversely. The intersection of yd; with U is closed. Its projection is
contained in the intersection of D(U) and a great circle cutting D(dy) transversely. This
intersection is an affine line I. Since U N «d; is closed in U, D(U N vd;) must be the
whole affine line {. But this is impossible: since ﬁ(fydj) is a half-line, it cannot contain a
complete affine line! ' 1

Lemma 4.13. Let d; be an edge of principal type. Then, d;,3 is also of principal type.

Proof There is no loss of generality in assuming that ¢ = 1, and that d; is of stable type.
Then, according to the preceding lemma, d; is of unstable type. If Lemma 4.13 is false,
d4 has to be of stable type. Note that Ty and T are convex. Let B be the union of Tp, of
T, and of d;: it is a screen, and B = ﬁ(B) is a half-plane bounded by stable and unstable
affine lines. We can assume that the angle of T} is at the North. Then, the angles of T5
and T3 are both at the South. Let v be an element of I" and let d; be an edge such that
d’' = ~d; intersects ds (cf. Lemma 4.10). Assume that d’ intersects da too. Then, it enters
B. Since d' N B is closed, its projection by D, which enters in B on the stable side, must
leave B on the unstable side. In other words, the closure of D(d') intersects the unstable
line twice: once at D(d' Nds), and also when leaving B. This is impossible, because D(d")
is a affine half-line: its closure cannot intersect a great circle twice. Therefore, d’' does not
intersect dy. Consider now two cases, according to the type of ds (observe that ds cannot
be of the same type as dy):

- if ds is of principal type: then, the situation is symmetric with respect to d3. The
argument above shows that d’' does not intersect ds. Therefore, d’ is contained in the
domain between dy and dy containing d3. But T3 and T3 both have angle at the South,
and d' is a vertical line: it follows that the Southern end of d' is at the angle of T, or T3,
i.e. the Southern extremity of D(d') is z,. Contradiction.

- if d5 is of unstable type: since d' intersects the unstable edge d3, it cannot intersect
ds. But Ty, T3 and Ty have all angles at the South. A version of the argument in the
previous case leads to a contradiction. 1
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Lemma 4.14. The type of the edge d; only depends on the rest modulo 3 of i.

Proof According to the previous lemmas, we just have to show that if d, is of principal
type, then d; and d3 have different types. We prove this by contradiction. Assume that
dy and d3 have the same type, say stable type. Assume that 77 and 75 have angles at
the South (there is no loss of generality). Let U3 be the domain in A bounded by d,
and d3 containing dp. Let Uy (respectively U, 2, Us3) be the domain between dy and d;
(respectively d; and dy, dy and d3) at the East of dy (respectively dy, dy). Let d. = ~vd; be
some edge intersecting dp. Since the Southern angle of d} cannot be the Southern angle of
T, or Ty, it must intersect d; or d3. Note that it cannot intersect both, and therefore the
Northern part of dj is contained in U; 3. By symmetry, we can assume that dj intersects
d3. Thus, the Northern part of d; is contained in Uy 5. In what follows, we assume that
each T}, is at the East at d; with respect to d;41.

Let k£ be the smallest integer such that d}_, = yd;_x does not intersect da. Since d;
intersects at most three d;, k is less than three. The edge d;_,, intersects d. Since it
cannot intersect either d;, and since its Southern end is not the Southern angle of T3, it
intersects d3. Replacing d; by d;,,_;, we can thus assume that d;_; does not intersect ds.

Let T}, = 7Ti_1, and Uj_,; be the domain between d;_; and d;. Observe that the
Southern part of dy is contained in U;_, ;. It follows that the angle of T}, is not at the
South, but at the North. Since this angle is not the Northern end of dy, it follows that
the Northern part of d;_, is contained in U;,. Thus, d;_, intersects d;. The triangle
T!_, intersects two different -y,-invariant lines of stable type (d; and d3). Hence, T}, is
not convex. According to the previous lemmas, it follows that d;_, and d},; are both of
principal type.

Assumption 1 implies that D(d!_,) has no extremity on the unstable 5(7,)-invariant
line. So, its Northern part must intersect this unstable line. As a corollary, we see that
d;_, does not intersect yo-edges of unstable type. Therefore, d;_; does not intersect d.
The Southern part of d;_, is contained in Up;. The angle of T}_, is at the South (since the
angle of T}_, is at the North, and since d}_,, d;_; and d; are of different types). It follows
that the Southern part of d_, is contained in Uy ;. Moreover, T;_, is convex (since d;_,
is principal): d;_, cannot intersect dy, since we have seen before that d}_, intersects the
preimage of the unstable p(vo)-invariant line. The North of d;_, cannot be the Northern
angle of Tp. The unique possibility is that d]_, intersects d;. As above, we get that the
unstable j5(vo)-invariant line, which still intersects D(d}) and D(d;_,), intersects D(d]_,).
It follows that d;_; does not meet U;,. Thus, the angle of T} ; is at the South. The
Southern part of d;_; is at the South of Uy ;. d;_5 does not intersect d;, and its Northern
end is not the angle of T;. Thus, d;_, intersect do. But T} 5 is convex since d}_, is
principal. This is impossible since its two edges intersect different connected components
of the preimage of the unstable leaf: d;_, intersects do, and D(d}_,) intersects the unstable

boundary of D(T}). This contradiction completes the proof of the lemma. 1

Thanks to the preceding lemma, we have a precise notion of the picture of the sequence
Ty,...,T,. In particular, it follows that the convex triangle containing the image D(T;)
depends only on the rest of ¢ modulo 3. If we fix the index ¢ such that dy is principal and
dy of stable type, then the generalized triangle T; is convex unless the 7 is 1 modulo 3.
Replacing each T34 by some T3, C T3i41, we can assume that that the restriction of
D to Q is a finite covering over the real projective plane minus a compact convex subset
C(7)- The fixed points of 5(v,) belong to the boundary of C(7p). Moreover, all the
iterates p(v)(zx) belong to the C(v). Indeed, if not, Q would contain a preimage z’ by
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D of some j(y)(zx). Let I be the connected component through z' of some p(yyy™!)-
invariant line. Its intersection with Q is connected. It follows that I’ is vertical. Thus, I’
intersects 42, and thus meets the closure of some yy,y~!-invariant generalized triangle.
Therefore, I’ is 779y~ invariant, and z' is a fixed point of y9,y~!. This contradicts
Assumption 2.

Consider the intersection C of all the 5(7)C(7,). It is a p(T')-invariant convex subset,
containing all the 5(vy)(zx). It follows that its interior is not empty.

We have exhibited a convex open set that is p(I')-invariant: the interior Int(C) of C.
Since p(I") is discrete, preserves the Hilbert metric of Int(C), and has no elliptic element
(because of Proposition 4.5), its action over Int(C) is free and properly discontinuous.
The quotient of this action is a surface with fundamental group the surface group [)(f‘).
Hence it is compact. But the compact projective quotients of convex domains of RP?
are well-known. In particular, no hyperbolic element can have all its fixed points in the
closure of the convex domain. We get a contradiction since by construction p(7) has all
its fixed points in C.

This final contradiction gives the proof of Theorem C.
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REAL PROJECTIVE STRUCTURES AND RADIANT AFFINE
STRUCTURES ON MANIFOLDS.

SUHYOUNG CHOI

ABSTRACT. In this note, we briefly survey recent results on real projective and radiant
affine structures on manifolds.

1. INTRODUCTION

Given a space X with an action of a Lie group G, the invariant properties of X under
the action is said to be the (X, G)-geometry according to Felix Klein’s Erlangen program.
We require X to be a homogenous manifold and the local action of an element g of G
to determine the global action of g on X. We wish to put geometric structures modelled
on (X, G)-geometry to a manifold M. An obvious way to do this to identify open sets of
M to open sets in X by charts and require the transition functions to lie in G, i.e., we
create an (X, G)-atlas for M. A maximal (X, G)-atlas is said to be an (X, G)-structure on
M. Simplest examples are euclidean, hyperbolic, and spherical structures on manifolds.
A euclidean structure is a geometric structure modelled on the euclidean space and the
isometry group acting on it; a hyperbolic structure is one modelled on the hyperbolic
space and the group of isometries on the hyperbolic space. A spherical structure is one
modelled on the sphere S™ with the group O(n + 1) of isometries of the sphere. (When
M has nonempty boundary we allow the charts to map to a half open sets in X.)

An important subclass is composed of homogeneous Riemannian structures, i.e., (X, G)-
geometric structures where X has a Riemannian metric and G acts transitively on X as
an isometry group of X. The above euclidean, hyperbolic, and spherical structures are
examples, as well as (X, G) where X is a symmetric space and G the group of isometries
generated by reflections. Homogeneous Riemannian (X, G)-structures on a manifold can
be defined by requiring that each point has an open neighborhood isometric to an open
subset of X. '

We concentrate on affine and real projective structures which are not homogeneous
Riemannian structures. Real projective geometry is defined by the pair

(RP",PGL(n+1,R)),

where RP™ is the usual projective space of rays in R"*! and PGL(n+1, R) the projective
general linear group acting on RP™ in the obvious manner. An affine geometry is given
by the pair (R", Aff(R")) where R" is the usual affine space of dimension n and Aff(R")
the group of affine transformations of R", i.e., transformations of form z — Az +b where
A is a nonsingular linear map and b a vector. A real projective structure on a manifold is
simply a geometric structure modelled on real projective geometry and an affine structure
is one modelled on affine geometry.

1991 Mathematics Subject Classification. Primary 57M50; Secondary 53A20, 53C15.
Key words and phrases. geometric structures, real projective manifold, real projective structure,
convexity.
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A manifold with an affine structure is said to be an affine manifold; one with a real
projective structure a real projective manifold. Affine manifolds are manifolds with torsion
free flat affine connections in differentio-geometric sense. Also, real projective manifolds
can be described as manifolds with torsion free projectively flat affine connections. Given
an affine or real projective structure on a manifold, we have a well-defined notion of
geodesics given by the connection. It is easy to see that an are on the manifold is geodesic
if and only if the composition with charts are geodesics in the affine space or the real
projective space respectively.

It turns out to be central in this field to understand the notions of developing maps
and holonomy for a given (X, G)-structure on a manifold M. An (X,G)-structure on
M determines charts for an open cover O of M, which induces charts for an open cover
O' of M. For two overlapping open sets of O', the charts differ by a post-composition
with an element of G. So by starting from one open set in O’, we may patch the charts
by post-composing with elements of G. By continuing this process over more and more
open sets in O, we can consistently define an immersion from M to X. This is called a
developing map. Note that by an initial choice of the chart, the developing map is defined
uniquely up to post-composition with an element of G.

Given a deck transformation 9, devod is another developing map. Hence it follows that
there exists an element h(9) € G such that h(9) odev =devod. Here h: m (M) — G is
a homomorphism where 7y (M) is considered the group of deck transformations. It follows
that given another pair (dev’, #’) of M, we have dev' = godev and h/(-) = gh(-)g™! for
an element ¢ in G.

Let M and N be (X, G)-manifolds. Amap f : M — N is said to be an (X, G)-map if for
each point p of M, there exists a neighborhood U with a chart ¢ and a neighborhood V of
f(p) with chart 9 so that f(U) C V and 9o fo¢™! is a restriction of an element of G. We
say two (X, G)-structures are (X, G)-equivalent if there exists an (X, G)-diffeomorphism,
i.e., a diffeomorphism which is an (X, G)-map.

A simplest example of a real projective structure on a surface can be obtained as
follows. Let RP? be the real projective plane where we denote by [v] the point on RP?
corresponding to the vector v € R3. Let 9 be an element of PGL(3,R) acting on RP?
which is represented by a diagonal matrix with positive diagonal elements Aj, Ay, A3 in the
strictly decreasing order. Then points [e;], [e2], and [e3] are fixed points. There are four
U-invariant triangles with vertices [e;], [e2], and [e3]. Choose one of them, and denote it
by A. Then A°/ < ¥ > has an obvious real projective structure as 9 is real projective.
Let us denote by /;; the open line segment connecting [e;] and [e;] in this triangle. Then
we easily see that A° Ul Uly3/ < 9 > is a compact annulus with a projective structure.
A°U i3 Ulys/ < 9 > is another such annulus. These two are called elementary annuli.
However A°U l15 U lp; is not a Hausdorff space. Such annuli and ones equivalent to them
are called elementary annuli.

The hyperbolic space H™ is often identified with a positive part of hyperboloid given
by 22 — 22 —--- — z2 = 1 in the flat Lorentz space with the induced metric from the
Lorentz metric. The group PSO(1,n) acts on the positive part as an isometry group.
The projection map from R™*! — {O} to RP™ maps the positive part to an open ball
B in RP". The group PSO(1,n) identifies with its natural copy in PGL(n + 1,R) and
acts on B. The pair (B,PSO(1,n)) is a model of hyperbolic geometry. As B is a subset
of RP" and PSO(1,n) a subgroup of PGL(n + 1,R), it follows that an atlas of charts
to B with transition functions in PSO(1,n) is an atlas of charts to RP™ with transition
functions projective. Hence, a hyperbolic structure naturally induces a unique canonical
real projective structure. We call such a structure projectively equivalent to one of these
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a hyperbolic real projective structure. Conversely, we may require that the real projective
structure to have a developing map a diffeomorphism onto B or any ball of form g(B) for
g € PGL(n + 1,R) and the structure ought to be hyperbolic.

The most easy examples of affine structures are from euclidean structures. This follows
since euclidean transformations or motions are affine transformations. Hence, it is easy
to see that tori admit affine structures. R™ paired with the group of similarities of R™
determines a similarity geometry. As the group of similarities is a subgroup of the affine
group, it follows that any similarity structure uniquely determine an affine structure.
The most famous examples are Hopf manifolds: Remove the origin from R" and let
be the similarity map z +— 2z. Then R™ — {O}/ < ¥ > is homeomorphic to S*~! x
S'. A complete affine manifold is an affine manifold such that its developing map is
a homeomorphism to R™. It is the same as requiring that the manifold is equivalent
to quotient manifolds of the affine space by a properly discontinuous and free action of
a group of affine transformations. Euclidean structures always induce complete affine
structures, but the converse is not true [14].

Manifolds with affine structures have canonical real projective structures. The comple-
ment of a codimension-one subspace of RP" has a natural identification to an affine space
and is called an affine patch (see [5]) in such a way that an arc is an affine geodesic if
and only if it is a projective geodesic. The identification is unique up to post-composition
with an affine transformation R® —+ R" and is such that the group of projective trans-
formations acting on the affine patch are precisely the group of affine transformation of
R™. Hence, by considering R" as an affine patch, we see that an affine structure induces
a canonical real projective structure. A real projective structure equivalent to such is said
to be an affine real-projective structure. Conversely, if a real projective manifold has a
developing map into an affine patch and the associated holonomy are affine with respect
to the affine patch, then its real projective structure is an affine one.

2. PREVIOUS RESULTS

In this section, we will go over some old results. Benzécri showed that affine sur-
faces must have Euler characteristic zero. (Later this was generalized to the famous
Milnor-Benzécri inequality.) Kostant-Sullivan [16] showed that the complete compact
affine manifolds have Euler characteristic equal to zero.

Nagano-Yagi [18] classified all affine structures on tori. Goldman generalized this and
classified all real projective structures on annuli and tori. In particular, he showed that
a real projective annulus with geodesic boundary or a real projective torus has a number
of disjoint simple closed geodesics, the closures of the components of complement of
which are elementary annuli if a linear map in GL(3, R) corresponding to the holonomy
of a generator is diagonalizable with distinct positive diagonal entries. That is, such
real projective surfaces decompose into elementary annuli along simple closed geodesics.
Recently, Benoist [4] showed that closed nilmanifolds with real projective structure admit
such a similar type of decompositions generalizing the above results with clean ingenious
proofs.

A manifold with a real projective structure is said to be convez if the developing map
is a diffeomorphism onto an affinely convex domain in an affine patch in RP™. There
is a well-known construction of grafting defined by Goldman and Thurston. Let ¥ be
a convex orientable closed real projective surface. Take a collection of disjoint simple
closed geodesics «; no two of which are homotopic. (Any closed curve in £ has a closed
geodesic homotopic to it. See Choi [10].) We take the closure of the components of
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the complement of these geodesics. Then they form disjoint real projective surfaces i,
J = 1,...,m, with totally geodesic boundary. We denote by a;fh for i = 1,...,n the
corresponding boundary components corresponding to ;. By choosing base points for
each L, we choose a development pair (dev;, h;) for each ;. Suppose that o lies in &,
and o; liein ;. A projective automorphism of S? is positive hyperbolic if it is represented
by a matrix with mutually distinct positive eigenvalues. We see that h;(c;") and hi(o;)
have conjugate matrices and are positive hyperbolic as simple closed geodesics in closed
surfaces are positive hyperbolic (see Goldman [15]).

Given a projective transformation ¥ with a diagonal matrix with positive strictly de-
creasing diagonal entries, we can form an annulus with totally geodesic boundary (see
Sullivan-Thurston [20]). Loosely speaking, their construction asks you to choose a path
in RP? — {[e1], [e2], [e3]} starting and ending in one of the open line segments connecting
[ei]s satisfying certain rules, and gives you an annulus A with geodesic boundary. The
holonomy of a generator of the fundamental group has a conjugate matrix to that of 9.
We may assume that the boundary components of A are principal geodesics (see below)
since our chosen arc can start and end on arbitrary line segments.

Let c be a two-sided closed geodesic in a real projective surface & with negative Euler
characteristic so that the deck transformation ¥ corresponding to ¢ has positive hyperbolic
holonomy. As h(c) has a matrix conjugate to a diagonal matrix with positive diagonal
entries in strictly decreasing order, h(c) has three fixed points s, m, and w associated
with the diagonal elements respectively. We see easily that s is an attracting fixed point,
and w is a repelling one.

Let ¢ be a lift of ¢ so that a deck transformation' corresponding to c acts on it. We
say that c is principal if dev o ¢ connects the fixed point s and w. This is equivalent to
saying that devo¢ is an imbedding to a line segment contained in a convex h(¥9)-invariant
neighborhood. Thus, one can always find a convex annulus in a thickened © containing ¢
as a neighborhood.

Lemma 2.1 (Goldman). Let ¥; and I, be two real projective surfaces with geodesic
boundary. Let ay and oy be distinct principal geodesic boundary components of £ and
Ly respectively. Suppose that the holonomy of ay are conjugate to that of . Then there
ezists a real projective surface ¥ with a simple closed geodesic o so that the closures of
the components of ¥ — « are equivalent to £, and T,. Furthermore, we may assume that
21 = 22.

Proof. This is in Goldman [15]. The idea is to thicken ¥; and 5 and find convex annuli
neighborhoods A; and A, of @; and «; respectively. Then we can find smaller annuli in
A, and A, respectively which are equivalent since the holonomies of the core curves are
. conjugate. By identifying these annuli and throwing away suitable irrelevant subsets, we
obtain a surface X. a

For each i, we have an annulus .4; with principal boundary components with holonomy
of the core curve conjugate to that of (ef). By Lemma 2.1 it follows that we may obtain
a real projective surface X' with a collection of disjoint closed geodesics the closure of
whose complements are equivalent to £;, j = 1,...,m, and A;, i = 1,...,n. The real
projective annulus obtained in this manner is said to be constructed by grafting A; along
;.

Since A; are not convex for any choice of 4; by Sullivan-Thurston construction, we see
easily that the grafted real projective surfaces are never convex. Goldman [15] constructed
examples of real projective surfaces whose developing map is onto RP2.
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We can also do a similar construction called a grafting construction for a one-sided
simple closed geodesic in a nonorientable closed convex surface by first cutting along the
curve and making a boundary component and attaching a Mébius band with the principal
boundary component to the surface. This construction is also called grafting.

Conversely, Thurston and Goldman asked around 1979 whether all real projective struc-
tures on closed surfaces with negative Euler characteristic are obtained in such a manner.
The answer is yes. We say that a real projective surface & decomposes into real pro jective
surfaces ¥y,..., %, along a collection of disjoint simple closed geodesics if they are the
closures of components of the complement of the union of the geodesics.

Theorem 2.1. Let ¥ be a closed real projective surface with negative Euler characteristic.
Then there ezists a canonical collection of disjoint simple closed geodesics o, ..., 0, SO
that & decomposes into mazimal convez real projective surfaces with principal boundary
and mazimal annuli and mazimal Mébius bands.

Proof. 1t follows from Theorem 2 in [9]. O

A mazimal annulus in ¥ is a compact annulus with geodesic boundary which is not con-
tained properly in any other such annulus or compact Mébius band with totally geodesic
boundary. A mazimal Mébius band is defined similarly. A mazimal principal boundary
convez real projective surfacein ¥ is a convex real projective subsurface in & with principal
boundary components which is not contained properly in any other such subsurface.

The above results show that if ¥ is an orientable closed surface, then ¥ can be obtained
from a convex real projective surface by grafting: We may remove all maximal annuli from
% and obtain convex real projective surfaces with principal geodesic boundary. Then we
glue these together in an obvious manner to obtain a closed real projective surface X'.
Now it is easy to see that ¥ can be obtained from X' by grafting the removed annuli.
Furthermore X' is convex by Theorem 3.7 of Goldman [15] since we glued convex real
projective surfaces along principal geodesic boundary components.

A similar consideration easily shows that all real projective structures on a closed sur-
face of negative Euler characteristic are obtained by grafting from convex real projective
structures.

Using this and the result of Goldman [15], Choi and Goldman showed that the de-
formation space of real projective structures on a closed surfaces is a countable disjoint
union of cells. (see [13] for further details).

Similar results hold for real projective structures on nonorientable closed surfaces of
negative Euler characteristic (see [9]) and compact surfaces with boundary.

3. KUIPER COMPLETION AND CONVEX SUBSETS

It turns out that to study real projective structures or affine structures it is useful
to complete the universal cover or holonomy cover as Kuiper [17] did in his study of
conformally flat manifolds.

A holonomy cover is a cover of M corresponding to the kernel of a holonomy homo-
morphism h : m (M) — G. It is obviously unique up to covering space isomorphisms. A
developing map obviously descends into an immersion M, — X, which we still call a de-
veloping map. Let dev : M; — X be a developing map. Then any other developing map
differs from it by a post-composition with an element of G. Thus, it follows that given
any deck transformation ¥, we have an element h/(¥) of G such that h'(9)odev = devod.
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Moreover, the map I' — G from the group of deck transformations of M}, is a homomor-
phism 7y (M) /7 (M) — G which is induced from h : 7, (M) — G. Moreover if (dev”, h")
is another such pair, then dev” = godev and h"(-) = gh'(-)g™! for an element g of G.

Let X have a metric which is not necessarily invariant under the action of G but one
where the group action is quasi-isometric. Given a developing map dev : M — X, we
induce the metric of X on M. Now the deck transformation will not be isometries in
general. We complete the metric in the Cauchy sense. This gives us a complete metric
space M which is called Kuiper completion. The set of ideal points My, is defined as
M — M. As dev is distance nonincreasing, dev extends to a distance nonincreasing map
on M whlch we still call a developing map and denote by the same notation dev. As
deck transformatlons are quasi-isometries, they also extend to self-diffeomorphisms of M,
which we call deck transformations also. But now, they may have fixed points. For any
deck transformation 9 : M — M, we have h(d) o dev = dev o 9.

The same discussion holds for M}, as well. Thus, we obtain a Kuiper completion Mj,
the set of ideal points M,, and dev : M;, — X the extension of dev : M, — X, and deck
transformations M, — M.

Going back to real projective and affine structures, we will now set up some conventions:
Often, we will want to lift our map dev to the double cover S® over RP". As M is
simply connected this is always possible. Since S™ is a double cover, S™ has an induced
real projective structure. We may consider S™ as a space of rays from the origin in
R"*!. GL(n+1,R) acts on the rays, and hence on S” as real projective automorphisms.
The group of real projective automorphisms of S” is easily seen to equal to the group
SL.(n + 1,R) of linear maps with determinant 1.

We see easily that M admits an (S", SLy(n+1, R))-structure. Since dev : M — S” can
be considered a developing map for this structure, we have a holonomy homomorphism
h: (M) — SL(n + 1, R) satisfying h(9) o dev = dev o 9 for each deck transformation
9. From now on, we will assume that we alway lift to S™ as here.

The sphere S™ has the standard Riemannian metric p as the standard sphere in R™t1.
A real projective automorphism act as a quasi-isometry here. We define the Kuiper
completion M using this metric. Also, the holonomy cover M}, and its Kuiper completion
Mj, are defined using the metric.

We regard affine manifolds as real projective manifolds with the unique compatible real
projective structure. Hence, we define Kuiper completions in this manner.

- We want to define convexity for real projective manifolds. A convezr segment in S” is
a segment which does not contain an antipodal points in the interior, i.e., its u-length
is < m. A subset of S™ is called convez if any two points can be connected by a convex
segment. A zero-dimensional great sphere S° is the pair of antipodal points, which is not
convex. A great sphere S* for i = 1,...,n is a convex subset of S” under this definition.

An i-hemisphere is the closure of a component of S removed with a great (i — 1)-sphere
in S*. An i-bihedron is the closure of a component of S¢ removed with two distinct great
(¢ — 1)-spheres. They are convex.

Given a convex subset, we can define its dimension as the least dimension of a great
sphere S' containing it. Obviously, the closure of a convex subset is closed and the
dimension does not change. A simply convez subset is a convex subset whose closure is a
compact convex subset of an open hemisphere.

We can classify closed i-dimensional convex subsets as follows: S¢; an i-dimensional
hemisphere; a proper convex subset of an i-hemisphere which is not s1mply convex; and
simply convex sets.
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A subset of a Kuiper completion K of M or M, is called a convez segment if dev
restricted to it is an embedding onto a convex segment in S™.

A subset of K is called conver if any two points can be conneced by a convex segment.
We can also classify compact convex subsets of K as dev restricted to them are imbeddings
onto their images. A tame subset is a convex subset of a compact convex subset of K or
a convex subset of M, or M}. dev restricted to a tame set is always an imbedding.

Theorem 3.1. The following are equivalent:

(a) M is convez.

(b) M, is converz.

(c) dev|M is an imbedding onto a conver subset of S™.
(d) M is projectively equivalent to a conver domain in S™.

Remark 8.1. We say that M is convez if M is convex. Notice that for closed manifolds
this definition agrees with the definition given in Section 2 unless M is equivalent to S™
as we can easily see from (c) and (d) of above and the fact that an open convex subset
of S™ is either a subset of an open hemisphere which is an affine space, or S™. (This fact
follows from the classification of closed convex subsets of S™.) From now on, we will use
this more general second definition only.

4. REAL PROJECTIVE n-MANIFOLDS

Now we wish to generalize the above results [12], [11], [9] to general dimensions. A real
projective manifold M is i-convez for 1 < i < n — 1 if given an affine (2 + 1)-simplex T
with a side F, every nondegenerate real projective map f : T — F° — M extends to one
from T'. Note that 1-convexity is equivalent to convexity (see Theorem A.2 of [8]).

Lemma 4.1. The followings are equivalent:
(a) M is (n — 1)-conver.
(b) Given an n-simplex T embedded in My, with faces Fy, ..., Fo1, fTNFU---UF,,
15 in My, then T is a subset of M.
(c) Given an n-simplez T embedded in M with faces Fy, ..., Fop, f TNEU---UF,
15 in My, then T is a subset of My,

A real projective manifold has conver boundary if each point has a neighborhood with
a chart to RP"™ whose image is a convex set in an affine patch. It has concave boundary
if each point has a neighborhood with a chart to RP™ whose image is a simply convex
open ball removed with a convex open set meeting the ball.

An n-crescent R is a tame n-ball in M (resp. M}) so that its images under the de-
veloping map is an n-hemisphere or n-bihedron such that an (n — 1)-hemisphere in the
manifold-boundary lies in the ideal set but the boundary itself is not in the ideal set
entirely. If R is a bihedron, then the interior of its side in the ideal set is denoted by
ap and the other side itself by vg. If R is an n-hemisphere, then the union of all open
(n — 1)-hemisphere in R N M (resp. 6RN M) is denoted by ag. vg equals the
compact convex (n — 1)-ball which is the complement of ay in 6R.

Theorem 4.1 (Main([8]). Let M be a compact real projective n-manifold with convez
boundary. If M is not (n — 1)-conver, then M and M}, include n-crescents respectively.

From now on, we will discuss only about My, but readers can easily figure out that
most of what follows hold for M as well. The reason that crescents are useful is that the
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union of certain collections are equivariant and is topologically nice and hence covers a
submanifold in M.

The essential properties of crescents come from how they meet. If R, and R, are
hemispheric n-crescent, and their interiors meet, then R; = R,. If Ry and R, are bihedral
n-crescents and their interiors meet, then R; and R, meet transversally or R; = R,. The
definition of transversal intersection is quite long (see [8]). However, we characterise it by
the following: "

(a) The interiors of R; and R, meet. ]

(b) dev|R;, U R, is a diffeomorphism onto dev(R;) U dev(R,) which is a subset of an
n-hemisphere H.

(c) dev(ag,) and dev(ag,) are subsets of 6H.

(d) dev(vg,) and dev(R,) meet transversally at an (n — 1)-hemisphere.

The set vg, N R; is an (n — 1)-bihedron and R; N R; is the closure of a component of
R; —vp, fori,j =1,2.

We will now assume that all crescents in Mj are bihedral. If some crescents are hemi-
spheric, the discussion becomes simpler (see [8] for details). We say that two n-crescents
R and S are equivalent if there exists a chain of n-crescents Ry, R1, ..., R,, such that
Ry=Rand R, = S and RY N RZ,; # 0.

We define for a given n-crescent R in My,

AR =US MRBR)= U (S—vs), 0A(R) = U es. 1)
S~R S~R ‘ S~R

First, A(R) is a closed set. bdA(R) N M, is a properly imbedded submanifold. A (R)
is an n-manifold with boundary 6oA(R). dev|A(R) maps into an n-hemisphere H where
dev(60A(R)) C 6H, and dev(A(R) — 8uA(R)) C H°. Given a deck transformation 9,
we have A(9(R)) = 9(A(R)), Ai(J(R)) = ¥(A1(R)), and S A(I(R)) = 9(60A(R)). We
also have that given two n-crescents if A(R) N A;(S) N M, is not empty, then R ~ S and
A(R) = A(S). Hence, by this property we get an equivariance property; that is, if A(R)
and 9(A(R)) meet in interior in My, then A(R) = 9(A(R)).

Sometimes A(R) and A(S) may not meet in the interior. Then we have A(R)NA(S)NM,
is a subset of bdA(R) NbdA(S) N M, and furthermore a totally geodesic submanifold in
M. The union of all such submanifolds is called the pre-two-faced submanifold. We can
show that they cover a compact closed (n — 1)-submanifold in M° under the covering
map M, — M. This submanifold is called a two-faced submanifold arising from bihedral
crescents. One notes that they are canonical as the pre-two-faced submanifolds are and so
are all of the sets of form A(R) for some n-crescents R. (We define two-faced submanifolds
arising from hemispheric n-crescents in a similar manner.)

Suppose that there are no two-faced submanifolds. Then given R and S, we have either
A(R) and A(S) are disjoint or they coincide. As we can show that the union of all the
sets of form A(R) N M, is a properly imbedded submanifold of codimension zero in M},
and as the union must be acted upon by the deck transformation group, it follows that
the union covers a compact submanifold, which is a concave affine manifold.

A concave affine manifold of type II is a real projective manifold N such that the

Kuiper completion Nj, of its holonomy cover N}, is a subset of A(R) for some n-crescent
R.

Remark 4.1. Here, we required that there are no hemispheric n-crescent in N,. For a
benefit of the readers, a concave affine manifold of type I is a real projective manifold N
such that N, is a subset of a hemispheric n-crescent. :
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An affine patch R™ in RP™ correspond to an open hemisphere H in S™ under the
covering map S™ — RP". The group of affine transformations of R corresponds to the
projective automorphisms preserving H. Since H has an affine structure, H is also called
an affine patch.

By above properties, we see easily that a concave affine manifold of type II is affine
as the holonomy must preserve the interior of the hemisphere, which is really an affine
patch. _

Let A be a properly imbedded (n—1)-manifold in M°, which is not necessarily connected
or totally geodesic. The so-called splitting S of M along A is obtained by completing
M — N by adding boundary which consists of either the union of two disjoint copies of
components of A or a double cover of components of A (see (8] for more details).

A manifold N decomposes into manifolds Ny, No, ... if there exists a properly imbedded
(n — 1)-submanifold T so that N; are components of the manifold obtained from splitting
M along &; Ny, N, ... are said to be the resulting manifolds of the decomposition.

Corollary 4.1. Suppose that M is compact but not (n — 1)-conver. Then

1. after splitting M along the two-faced (n — 1)-manifold A, arising from hemispheric
n-crescents, the resulting manifold M® decomposes properly into concave affine man-
ifolds of type I and real projective n-manifolds with totally geodesic boundary which
does not include any concave affine manifolds of type I

2. We let N be the disjoint union of the resulting manifolds of the above decomposition
other than concave affine ones. After cutting N along the two-faced (n —1)-manifold
A, arising from bihedral n-crescents, the resulting manifold N* decomposes into maz-
imal concave affine manifolds of type II and real projective n-manifolds with convez
boundary which is (n —1)-convez and includes no concave affine manifold of type II.

Furthermore, A, and Ay are canonically defined and the decompositions are also canonical
in the following sense: If M*® equals N U K for K the union of concave affine manifolds
of type I in M® and N the closure of the complement of K includes no concave affine
manifolds of type I, then the above decomposition agrees with the decomposition into com-
ponents of submanifolds in (1). If N® equals SUT for T the union of mazimal concave
affine manifold of type II in N* and S the closure of the complement of T' that is (n — 1)-
convez and includes no concave affine manifold of type II, then the decomposition agree
with the decomposition into components of submanifolds in (2).

If A, =0, then we define M* = M and if A, = 0, then we define N* = N.

We note that M, M5, N, N° have totally geodesic or empty boundary. The final
decomposed pieces of N*® are not so in general. Concave affine manifolds of type II have
in general boundary concave seen from its inside and the (n — 1)-convex real projective
manifolds have convex boundary seen from inside.

5. RADIANT AFFINE 3-MANIFOLDS

We will apply the result of the previous section to study radiant affine 3-manifolds seen
as real projective manifolds.

A radiant affine manifold is an affine manifold such that its holonomy group, i.e.,
h(m (M)), fixes a point in the affine space. We may regard this point as the origin (0]
always by changing the coordinates or developing maps by an affine map. Now, hA(m (M))

form a group of linear transformations. Let v be the vector field given by Ezia%. Then

v is invariant under the linear group action, and the lift v' of v on M by a developing
map dev is deck-transformation invariant. Hence, v’ descends to a nowhere zero vector
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field on M. We call this vector field the radiant vector field. It is obvious that the radiant
vector field is canonically defined on a radiant affine manifold. The vector field generates
the radiant flow.

We recall the Benzécri construction of radiant affine (n + 1)-manifolds from real pro-
jective n-manifolds. We now define affine suspensions over real projective surfaces and
orbifolds (see Carriere [6] and Barbot [1] [2]). A real projective orbifold is simply an
orbifold with geometric structure modelled on (RP™, PGL(n + 1,R)). (For definition of
geometric structures on orbifolds, see Ratcliff [19].)

Let ¥ be a compact real projective n-manifold. Choosing an arbitrary Euclidean metric
in R**!, we define an immersion dev’ : &, x R — R™"! by simply mapping (z,t) to
e'u(z) where u(x) is the unit vector at the origin in the direction of dev(z) in R™*1,
Recalling that there is a natural quotient map GL(n + 1,R) — Aut(S™), we choose
any lift A’ : m(X)/m1(2r) — GL(n + 1,R) of A, and deﬁne a corresponding action of
m(2)/m(Ex) on Ty x R by 0(z, 1) = (9(c), ¢ + log ||'(8) (u(z))|]).

Letting £, X R have the affine structure induced from the immersion dev’, we see that
71 (X)/m1(Xn) defines a properly discontinuous and free affine action of £ x R preserving
each fiber homeomorphic to R, and the quotient space is homeomorphic to £ x R, i.e.,
a trivial R-fiber bundle over ¥. We identify the quotient space with ¥ x R, and choose
any section s : ¥ — £ x R so that s(X) becomes a compact imbedded surface.

Let ¢ be any orientation-preserving projective automorphism of £. Then ¢ lifts to a
projective automorphism ¢, of £j. Since ¢, is a projective automorphism, there exists
an element p in Aut(S") satisfying dev o ¢, = podev. We may choose any element p’ of
GL(n +1,R) which induces p, and p’ defines an affine automorphism p” of &5 x R given
by

p'(z,t) = (¢n(2),t + log|lo' (u(2))Il)-
We now require the lift A’ to satisfy

o K(B) o f = (g7 090 dn)

for ¥ in the deck transformation group m;(M)/m(My). This is equivalent to requiring
that det oh’ be invariant under the action of ¢, on m;(X)/7,(X4) as the above equation is
already true for Aut(S"). It is easy to see that there are many lifts A’ satisfying this condi-
tion as we can consider this question on the abelianization H;(X;R), the homomorphism
induced by det oh, and the associated action of ¢.

Since given a deck transformation 9 of £, x R, ¢ = ¢ 00 ¢y, satisfies p" 09 = pop”,
it follows that p” induces an affine automorphism a, of & x R.

As we let eI denote the dilatation; that is, it multiplies each vector in R**! by a factor
e’, it induces an affine automorphism D, on ¥, x R also called a dilatation given by
D,(z,t) = (z,t+r). Since D, commutes with any deck transformation of ¥, x R, it
follows that D, defines an affine fiber-preserving automorphism D, of £, x R.

Any other choice p} in GL(n+1,R) of o/ equals e’lop’ for some r, and given the affine
automorphism a, of ¥ x R corresponding to p}, we see that a,, equals D! oy for some r.
Hence by choosing r sufficiently large > 1, and positive, we can make a, ( (X)) and s(X)
disjoint and a, (s(X)) to lie in the radially outer-component of £ x R — s(Z). Since ay,
is a ﬁber-preservmg diffeomorphism, a,; (s()) is another cross section. We let N denote
the compact (n+1)-manifold in ¥ x R, bounded by s(¥) and ay (s(X)), and identify s(Z)
and a, (s(X)) by a,;, to obtain a compact radiant affine (n + 1)-manifold homeomorphic
to the mapping torus & x4 S', i.e., & x I/ ~ where ~ is defined by (z,0) ~ (¢(z),1). We
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call the resulting affine (n + 1)-manifold the affine suspension over T using the projective
automorphism ¢.

If we let ¢ be the identity automorphism of X, then the affine suspension is a so-called
Benzécri suspension. But even when p is of finite order, we will also call it Benzécr:
suspension over the projective orbifold £/ < ¢ >.

Affine suspensions over a real projective surfaces of negative Euler characterists are
Benzécri suspensions due to the following theorem. '

Theorem 5.1 ([8]). Let p : ¥ — X be a projective automorphism of a real projective
surface ¥ of negative Euler characteristic. Then p is of finite order.

Theorem 5.2 ([8]). A compact radiant affine 3-manifold M with totally geodesic or
empty boundary admits a total cross section L to the radiant flow if and only if it is
affinely diffeomorphic to an affine suspension over a compact real projective surface X'
with totally geodesic or empty boundary. Moreover, in the above case, ¥ with the in-
duced real projective structure from the affine space by the radiant flow is real projectively
diffeomorphic to X'.

Fried produced an example of a radiant affine 6-manifold which is not a suspension.
Carritre [6] conjectured that radiant affine 3-manifolds must be affine suspensions.

Let M be a radiant affine 3-manifold. Regarding it as a real projective manifold, we
apply the results of the previous section to M, and we obtain a sharper result.

Theorem 5.3. Let M be a compact radiant affine 3-manifold with empty or totally geo-
desic boundary. Then M decomposes into 2-convez radiant affine 3-manifolds and radiant
concave affine 3-manifolds along closed totally geodesic tori or Klein bottles tangent to the
radiant vector field.

To get the totally geodesic submanifolds, we note that obviously two-faced submanifolds
are totally geodesic. Also, the boundary of concave affine manifolds of type I are also
totally geodesic as the boundary of a hemisphere is totally geodesic. The boundary of
concave affine manifolds of type II are not totally geodesic in general. However, it is clear
that they are also invariant under the radial flow in the radiant affine manifold. Then
using the radial invariance, we can prove the total geodesity of the boundary.

We can show [7, Section 9] that a radiant concave affine 3-manifold with empty or
totally geodesic boundary is an affine suspensions of the real projective sphere, the real
projective plane, a hemisphere, or a 7-annulus (or 7-Mdbius band) of type II (see [11] for
definition).

We will obtain even sharper theorem by looking at the resulting 2-convex radiant affine
3-manifolds; the manifold also decomposes into nice pieces. The main idea is to use radial
invariance and repeat the same arguments as in [8] to obtain crescent-cones instead of
3-crescents.

Let M be a compact radiant affine 3-manifold with totally geodesic or empty boundary.
We consider M as a real projective manifold. Let M}, be the holonomy cover of M and
M, the Kuiper completion with a developing map dev : M; — S™ and the associated
holonomy homomorphism h : m(M)/m (M) — Aut(S%®). Then dev maps into the
hemisphere in S3, which is the closure of an affine patch. The boundary is a great 2-
sphere, called the sphere at infinity.

We assume that M)}, does not include any 3-crescents as M is assumed to have undergone
the above decomposition process (Theorem 5.3).

A trihedron is a 3-ball in Mj which maps to a 3-dimensional polyhedron which is the
closure of a component of the complement of three great 2-spheres in general position.
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It has three sides. A crescent-cone is a trihedron in M), with two sides in Mp o and its
intersection with M}, is invariant under the radial flow.

We show that if M is a non-convex but 2-convex, then M, includes a crescent-cone.
We sketch the argument without much regard to the rigor. First, we obtain a triangle
detacting the nonconvexity of M. Then by radial extension, we obtain a radiant tetrahe-
dron F in M. F has four faces I, F,, F3, and Fy where Fy maps to the sphere at infinity
under dev. One of Fy, F;, or F;3 meets the ideal set in its interior as the triangle detacts
the nonconvexity. We assume that F3 does and the interior of Fy and F, are disjoint
from the ideal set. The ideal points of F3 form radial segments. There are more than two
components in F3 N M;,. We choose two segments in F; and F, respectively and divide
F; U F; into two parts, the upper one and the lower one. We choose a sequence of points
in F3 N M), converging to an ideal point equidistant from the upper and lower parts in
the metric induced from an arbitrary Riemannian one on M (i.e., not the one used for
Kuiper completion). Using deck transformations, we pull back these points to a compact
neighborhood of a fundamental domain.

The major step is to show that the sequence of the images of F; U F; converges an ideal
set, i.e., that the sequences of images of F} U F; leave every compact subset of M}, or go
infinitely far away. This is proved by contradiction: If the images stay bounded, then we
can show by tabulating how the sequence of the images of the segments behaves that the
holonomy of the deck transformation used to pull-back blows up in certain way so that
we obtain 3-crescents by blowing up certain domains near F. However, we removed all
3-crescents in the beginning to obtain M.

Once we know that the sequence of the images of F} U F; leave every compact set, then
the sequence of the images of F is shown to converge to a radiant compact 3-ball in Mj,
which is shown to be a radiant tetrahedron or a crescent-cone. The former case is ruled
out with a help of 3-manifold topology.

The crescent-cones will play the same role as n-crescents to give us equivariant objects
which cover compact submanifolds of codimension zero with totally geodesic boundary,
which are called concave-cone affine manifolds. We can classify concave-cone affine man-
ifolds to be affine suspensions over affine tori, affine Klein bottles, affine annuli with
geodesic boundary or affine Mobius bands with geodesic boundary.

Theorem 5.4 ([7]). Let M be a compact radiant affine 3-manifold with empty or totally
geodesic boundary. Then M decomposes along the union of finitely many disjoint totally
geodesic tori or Klein bottles, tangent to the radial flow, into

1. convez radiant affine 3-manifolds,

2. affine suspensions of real projective spheres, real projective planes, real projective
hemispheres, or m-annuli (or Mébius bands) of type C; or affine tori, affine Klein
bottles, or affine annuli ( or Mébius bands) with geodesic boundary.

Theorem 5.5 (Barbot [1] [3]). Suppose that M is a closed radiant affine 3-manifold. If
M has a totally geodesic torus or Klein bottle tangent to the radiant flow, then M is an
affine suspension.

Theorem 5.6 (Barbot-Choi [7]). Suppose that M is a compact radiant affine 3-manifold
with nonempty totally-geodesic boundary. Assume that each boundary component is convex
or has a cover affinely isomorphic to R? — {O}. Then M is an affine suspension.

Using above two theorems, it is easy to see that if M admits a decomposition, then
M is an affine suspension. If M admits no decomposition, and M is convex, then again
Barbot showed that M is an affine suspension. Hence, we showed that A is always an
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affine suspension over a surface. If the Euler characteristic of the surface is negative, then
M is a Benzécri suspension.

We now have a topological characterization of radiant affine 3-manifolds. If M is an
affine suspension over a surface ¥ of negative Euler characteristic, then since the projective
monodromy must be of finite order, we see easily that M is a Seifert space with the base
orbifold £/ < ¢t > where t is a finite order automorphism of £. Here the Euler number of
the Seifert bundles is zero. If M is an affine suspension over a tori, or Klein bottle, then
M has a structure of a bundle over a circle with fiber homeomorphic to a tori or Klein
bottle. ’
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GROUP PRESENTATIONS AND 3-MANIFOLDS

SANG-JEUNG Ha AND ANN-CHI Kim

~ §0. Introduction and Preliminaries

Fact 1. For n > 4, every finitely presented group
G =< T1,%2,...Tm;T1,T2,... ,Tq >

is isomorphic to the fundamental group of a closed orientable n-manifold.

Question 1. What about n = 37 That is, given a finitely presented group G, is G the
fundamental group of a closed orientable 3-manifold ? Moreover, to what extent does
the fundamental group characterize the manifold ?

Fact 2. Every closed orientable 3-dimensional manifold has a spine that is a 2-
dimensional cell complex with just one 3-cell. Such a cell complex determines a group
presentation in a natural way, i.e. the 1-cells corresponding to the generators and 2-cells
relators.

Theorem (Stallings 1962). For every finitely presented group G, no algorithm ezists
to answer the question: Is G the fundamental group of a closed orientable 3-dimensional
manifold ?

In order to study 3-dimensional manifolds with some particular groups as its funda-
mental groups we like to have examples.

§1. Cyclically presented groups and 3-manifolds
Examples. Minkus Manifolds M, (k,h),(k=2g+1,h=1)

71 (Myn(k,1)) =< z1,%2,...Tn; R;,§ =1,2,3,...n >,
where R; = {72}, 2425 ... Tj129 = 1, indices mod n}, cyclically presented groups.

Theorem 1. The My(k, 1) is the n-sheeted cyclic branched covering over the torus knot
or link of type (k,2). ‘

Theorem 2. The manifold M, (k,1)/r is homeomorphic to the 3-sphere S3.

69
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FIGURE 1. Minkus Complex My (k,1)

Definition. Let F,, be the free group on n generators o, £1,Z2,. .- ,Tn—1 and b denote
the automorphism of Fy, such that 6(x;) = Tiy1, indices mod n. For any reduced word
w € F, we shall define G,(w) = F,,/R, where R is the normal closure in Fy, of the set
{w,8(w),0%(w), ... ,0" " (w)}. Then a group G is said to have a cyclic presentation if
G is isomorphic to G, (w) for some n and w.

For example, if we take w = :z:o:clmgl, then the groups G, (w) are, so called, Fibonacci
groups

—1 o s
F(2,m) = (20, %1, -+, Tm—1: TiTit1T;39 = 1, indices mod m).

Note that F(2,m) are the link between certain objects in 3-dimensional topology,
in 3-dimensional hyperbolic geometry, in the theory of discontinuous transformation
groups in rank one Lie groups, and in knot theory.

By combining the Minkus Manifold Construction Methods and Fibonacci Groups
Presentations, we may consider a combinatorial polyhedron, that is, the generalized
icosahedron:
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20-~7 2n-5 2n-J
X

2n-3 x2n-).

FIGURE 2. The combinatorial polyhedron

Helling-Kim-Mennicke. In fact form = 2n, there is a closed orientable 3-dimensional
manifold M, such that
(1) The fundamental group w1(My) is isomorphic to F(2,2n).
(2) The manifold M, is hyperbolic for n > 4. That is to say, F(2,2n) acts as a
discrete group of isometries on hyperbolic 3-space H3, with quotient space Mp,.
(3) The group F(2,2n), as a subgroup of SL(2,C) is arithmetic for values n = 4,
5, 6,8, 12 or oo.

Hilden-Lozano-Montesinos; Howie. For n > 4, F(2,2n) corresponds to a spine of
the n-fold cyclic covering of the 3-sphere branched over the figure-8-knot. (See: Topology
’90, Walter de Gruyter)
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Mednykh-Vesnin.

(1) For any n > 2, the volumes of the compact hyperbolic Fibonacci manifolds M,
are equal to the volumes of non-compact manifolds S*\Th,,.

(2) For anyn > 2 the Fibonacci manifolds My, are two-fold coverings of S3 branched
over the Turk’s headlink Th,,.

(See: Siberian Math. J. vol.36, no.2(1995); vol.37, no.3(1996))

Maclachlan. It is impossible to realize a 3-dimensional manifold whose fundamental
groups are isomorphic to F(2,2n + 1). ( See London Math. Soc. Lecture Notes Series
n0.204) ’

( For more informations, see: B. Apanasov’s Book, Conformal Geometry of Discrete
Groups and Manifolds, Chapter III, §11 - Fibonacci Manifolds, to appear, de Gruyter.)

On the other hands, if we take w = .’1201'21:1_1 = 1 (from the Fibonacci word w =
Tox1z5 '), then we have, so called, the Sieradski groups S(n), which is the fundamental
groups of the Sieradski Manifolds.

FIGURE 3. The Sieradski complex
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Sieradski. The squashable complex C, constructed above yields a closed orientable 3-
manifold M. Furthermore, M, admits a spine K, modelled on the cyclic presentation

S(n) =< 21,%2, ... ,Tn; TiTiga = Tit1, tndices mod n > .

Cavicchioli-Hagenbarth-Kim; Howie. The manifold M, is homeomorphic to the
n-fold cyclic covering of the 3-sphere branched over the trefoil knot K (3,2), i.e., M, is
the Brieskorn manifold M(2,3,n) in the sense of Milnor.

Question 2. What cyclically presented groups correspond to the spine of closed ori-
entable 3-manifolds ? '

Question 3. Dunwoody (1994) describes an algorithm to enumerate the all spines with
a cyclic symmetry, and proposes an open question: what class of knots / links arise from
the 3-manifolds ? (see: Proc. Groups-Korea’94, Walter de Gruyter,1995))

§2. A construction of 3-manifolds based on the Fibonacci Manifolds

(1) On the cyclic coverings of the knot 5, (By Michele Mulazzani)

The manifold M,(n > 1) is defined by pairwise identification of the 2-faces of a
polyhedron P,, which is homeomorphic to a 3-ball, whose boundary complex provides
a tessellation of the 2-sphere as depicted in Figure 4. The tessellation consists of 4n
quadrilaterals, 8n edges and 4n + 2 vertices. The n quadrilaterals around the north
pole N are labelled by Q1,Q52,-..,Q». The n quadrilaterals around the south pole S
- which is the point at infinity in Figure 4 - are labelled by R;, Rs,...,R,, and the
other quadrilaterals are labelled by @}, R}, @5, R5,...,Q%, R.,, as indicated in Figure
4. To obtain M,, we glue Q; with Q; (resp. R; with R},) for eachi=1,2,...,n,by an
orientation reversing identification which matches N with A; (resp. S with B;).

FIGURE 4
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Via this gluing we get, for each i = 1,2,... ,n, the following identifications on the
edges: NC; = AiCi—l = Ai_1Bi_2 (Whlch we shall call .’L‘i), SAH_l = BiAi+2 =]
B;_1D; = Ci;1D;41 (which we shall call y;), and C1Dy & CyD3 = ---Cr Dy (which
we shall call z). As a consequence the vertices match as follows: N = A; = D; and
S=B;=(C; foreachi=1,2,...,n. Observe that, here and in the following, subscripts
are considered mod n. Thus, we obtain a 3-dimensional cellular complex K, having one
3-cell, 2n quadrilaterals, 2n + 1 edges and two vertices. Since its Euler characteristic is
x(Kn) =2-(2n+1)+2n—1=0, the space M, = |Ky,| is a genuine closed, connected,
orientable 3-manifold according to the Seifert-Threlfall criterion (see [ST], p. 216).

s

FIGURE 5

Let 6,, be the clockwise rotation of 2w /n radiants around the polar axis of the 3-ball
P,. It is easy to see that all the above defined identifications are invariant with respect
to this rotation; therefore 6,, induces an orientation preserving homeomorphism g, on
M,,. The set Fiz(g,) consists of the points of the polar diameter NS and the points of
the edges z. Let G, be the group of homeomorphisms of M,, generated by g,. Of course,
Gy, has order n and Fix(g,) for each k = 1,2,...,n — 1. The quotient space M, /Gy, is
homeomorphic to M7 and the canonical quotient map

Dn Mn / Gn —_ M1
is an n-fold branched cyclic covering, whose branching set is the 1-subcomplex of M;

composed of NS and z (see Figure 5, where the branching set is shown by a thick line
and each of the boundary quadrilateral Q,Q’, R, R’ is subdivided into four triangles).
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Figures 5-10 depict, in detail, the identifications performed on the 2-sphere of Figure
5 to obtain M, showing the development of the branching set. More precisely, we have
successively performed the identifications between the following regions: ¢; and g4 with
q; and ¢y (Fig. 7 — Fig. 8), g2 and g3 with ¢5 and ¢ (Fig. 6 — Fig. 7), r; and
ry (Fig. 7 — Fig. 8), r2 and 7} (Fig. 8 — Fig. 9). Notice that the complex is a
three-ball at each of these stages. As a final step we identify r3 and r4 with 7§ and 7}
obtaining a three-sphere, where the branching set is a knot embedded as in Figure 10.

s

FIGURE 6

Hence, M; is homeomorphic to a 3-sphere and the branching set is the two-bridge
knot (7, 3), according to Schubert’s notation (see [BZ], p.181), which is the knot 53 of
the Alexander, Briggs, Reidemeister table ([BZ], p.312).

So we have proved the following:

Theorem 3. The manifold M, is the n-fold cyclic covering of S3, branched over the
two-bridge knot b(7,3).

As already known, the 2-fold branched coverings of the two-bridge knot or link b(p, q)
is the lens space L(p,q) (see [Sc]). Therefore, we immediately have:

Corollary 4. The manifold M, is the lens space L(7,3).
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FIGURE 7

FIGURE 8
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b(7,3)

FIGURE 10
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Remark. From a result of [Mu], each M,, turns out to be an element of a certain class
of manifolds S(b,1,t,c), depending on four integer parameters, introduced in [LM]. In
particular, M,, is homeomorphic to the Lins-Mandel space S(n,7,3,n~1) = S(n,7,4,1).
Question 4. (Open Problem) Consider a combinatorial polyhedron consisting of n
pentagons in the northern and southern hemisphere, and of 2n pentagons in the equator
band. Then how regularly can this combinatorial polyhedron be embedded in hyperbolic
3-space in order to obtain a tessellation of hyperbolic 3-space ¢ What is the group of
isometries of such tessellation ¢ (see: Fig. 11)

N
/
7/
———ry
S
FIGURE 11

§3. A generalized Dodecahedron spaces

Consider a tessellation of the 2-sphere consisting of two m-gons and 2m pentagons
satisfying certain properties shown in the following figure.

Under the the identifications R and S, all vertices become equivalent. We shall
consider the oriented edges

wj = (45, 4j41),  uj = (Bj-1,Cj).
Then R and S imply the following identifications of edges:

(4;, Bj) = wj—k
(Cj, Bj) = wj
(Gj-1,Gj) = w;
(Cj,Gj) = wj+k
Ug = U] = Up = ...Upm_1 = U,Say.

Hence we obtain the Euler characteristic:

=1lal=m+1,a?=m+1,a°=1.
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MGn.n)

FIGURE 12

Properties P;. All edges except B;C;(1 < j < m) have the same length, say z, and
the edges B;C; have the same length, say y.

P,. In the pentagon A;B;C;B;_1A;j_1, the length of the segments A;B;_1, Aj_1B;
and A;_,Cj are all same, denoted by z. Also A;C; and B;B;_, have the same length,
say w.

Ps. Denote the dihedral angle of the edge AB by ZAB. Then

(1) 4BjCj=2n/m (1<j<m).
)

éAjAj.H = lAj+1Aj+2 =...=LAnA;
= ZGjGj.H = ZG]'+1G_.,'+2 == ZGmGl = €.

(3) the dihedral angle at edges not in (i) and (ii) are all the same, denoted by .
(4) 2e+3p=2m.

Helling-Kim-Mennicke (1) For any m > 3 there are ¢(m) hyperbolic manifolds
M (m, k), where k runs through the relatively prime integers mod m.

(2) For a fixed m > 3 and (m,k) = 1, two manifolds M(m, k) and M(m,k’) are
homeomorphic if

k= k' mod m or kk' =2 £+1 mod m.

For example, if m = 5, then we have k =1,2,3,4. The k =2 and k =4 are the first
and the second manifolds in the paper of Best (1971), and k = 3 was studied by Seifert
and Weber (1939). Note J. Rubinstein’s unpublished paper, Hyperbolic manifolds from
a regular polyhedron. He suggested that there are eight such manifolds arising from the
dodecahedron with dihedral angle 27/5.
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The first homology groups:

Zmje X Zmj2 X Z12m; m =0 mod 6

Zmj2 X Zmj2 X Zam, m = £2mod6

Hy(M(m,k),Z) = Zm/3 X Zm X Z3m, m =3 mod 6
Zm X Zomy X Ly, (M, 6) = 1.

Derevnine (1994). If two manifolds M (m, k) and M(m, k') are homeomorphic, then
k =k mod m or kk' = £1 mod m.

Note that for (m,k) = 1 the manifolds M (h,k) are cyclic branched coverings of
3-sphere over the Whitehead link W.

Thus the fundamental group m;(S3\W) is obtained by the Wirtinger’s group presen-
tation process. Then we have

(1) sisasytsyt =1 (2) sassltszlss =1

(3) s3s3's7isa =1 (4) sas185 s7t =1

(5) sss3 s sz = 1.
Eliminating s3, s3, s5, we get
3 “1.-1_ —1_-1 -1 ~1 1.1
T1(S°\W) = (s1, 54|57 "S7 "S487 83 S154S1- S45157 $15487] S35 s1=1).

Some Combinatorial Group Theory attached to the Whitehead Link can be discussed.
But we omit it here.

§4. More generalized Dodecahedron and Open Problems

From §3 we shall consider the case of (m, k) = d(d # 1) i.e., m and k are not relatively
prime. Then the infinite family of 3-manifolds has a number of interesting problems,
including some open problems: For example, if m = 4 and k = 2, then the manifold
M4,2) is the 2-fold covering of 3-sphere branched over the link 83.

However, the the manifolds M (m, k) has not yet completed. We now shall describe
some open problems and conjectures as follows:

Conjecture 1. The polyhedron Py, k) can be realizable as the polyhedron in H 3 for
almost all m and k.

Conjecture 2. (On the branched coverings) Any manifold M(m, iy is m-fold covering
over the orbifold W(m,m/d)),d = (m, k), d is the number of vertices.

Conjecture 3. (The geometric structures) The manifold My, yy is d-fold covering over
the orbifold M(m/4,m/a)(d), where (d) is the circle from top to bottom of M(m/4.m/a)
labelled by “d.”
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The geometrical structures of the manifolds M, (m.,k) 18 the same as ones of the orbifolds
W (m, m/d). The orbifold W (m,n) belongs to the following geometries:

W(2,2) spherical

W(2,3) spherical

W(2,4) nil

W(2,n),n>2 H>xR
W(m,n), m > 2,n > 2, hyperbolic.

Problem 1. ( The volumes for M, x) ) Compute the hyperbolic volumes.

Problem 2. ( Arithmeticy ) According to Hilden-Lazona-Montesinos(1995), the orb-
ifold W(m,n) is arithmetic for m = 3,4,5,6,12 or co. The manifold Mk 1s arith-
metic if and only if the orbifold W (m,m/d) is arithmetic. Find all arithmetic orbifolds
W(m,n) form >n > 2.

[BZ]
[CHK]

(D]

[Du]
[FGG]

[Fo]
(Fu]
[HKM]

[HLM]

(Mu]
[Ne]

(R]
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CHERN-SIMONS GAUGE THEORY ON 3-MANIFOLDS
CHRISTOPHER M. HERALD

ABSTRACT. Invariants of 3-dimensional manifolds derived from gauge theory will be
discussed, including the Casson invariant and Floer homology. These lectures outline
the results of research by the author ([27]-[29]) and joint research by Hans Boden and
the author ([5]), as well as many others.

A good deal of gauge theory on 3-dimensional manifolds is motivated by an analogy
with finite dimensional Morse theory. In the first lecture, we recall the derivation of the
Euler characteristic and homology from Morse theory and then describe in general terms
the analogous constructions in gauge theory. In the second lecture the definitions of the
Casson invariant and Floer homology are outlined. Some approaches toward calculation
of these invariants are explained in the third. The fourth lecture outlines the adaptation
of the gauge theory constructions to 3-dimensional manifolds with boundary. Several
gauge theoretic knot invariants are discussed. The final lecture discusses recent work by
Hans Boden and the author which defines an SU(3) Casson invariant. An equivariant
generalization of the Morse theoretic definition of the Euler characteristic is described
and provides an analogy for the SU(3) invariant. Included also in this lecture are a few

comments on the difficulties in generalizing Floer homology to larger structure groups
than SU(2).

1. TOPOLOGICAL INVARIANTS FROM A MORSE FUNCTION

To set the stage for the definitions of the gauge theoretic 3-manifold invariants that
follow, we will briefly recall a means of constructing the Euler characteristic and the ho-
mology groups of a smooth manifold from critical point set and gradient flow information
for a Morse function. The emphasis will be not on the fact that the objects so constructed
agree with other definitions of Euler characteristic and homology, but rather an indepen-
dent proof (using only Morse theory) that the objects are independent of the choice of
Morse function. The reason for this peculiar emphasis is that, in the gauge theory picture,
there are no classical invariants with which to compare the gauge theory invariants.

1.1. Morse theory and the Euler characteristic. Let M be a smooth, closed, com-
pact manifold. Choose a smooth function f : M — R with the property that Hessian
Hess f, : T,M ® T,M — R is a nondegenerate (symmetric bilinear) pairing at each critical
point p. This condition insures that the set of critical points is isolated. Such a function
is called a Morse function on M.

The critical points of a Morse function may be classified by their Morse index as follows.
Let u(p) denote the number of negative eigenvalues of Hess f,, counted with multiplicities.
See Figure 1.

The Poincaré-Hopf theorem relates the Euler characteristic of M to the signed count
of critical points:

Theorem 1.1. The Euler characteristic of M equals 3 c., ;(—1)*?).

Supported by a Faculty Research Support Grant from Swarthmore College.
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FIGURE 1. The Morse index of local maximum, saddle points, and local
minimum critical points of a Morse function on a surface.

One can prove that the sum is independent of f as follows. Suppose that f, f; are
Morse functions. They can be connected by a path of functions f;,¢ € [0,1]. One can
show that for a generic choice of path between them, although it will not be the case that
all intermediate functions are Morse functions, the parameterized critical set

W = {(p,t) € M x [0,1]|p € Crit f,}

will be a 1-dimensional manifold, a cobordism between Crit fo x {0} and Crit f; x {1}.
Thus it only remains to check that one can define an orientation on the 1-manifold such
that the boundary orientation at (p,1), p € Crit f; coincides with the sign (—1)#® and
the boundary orientation at (p,0), p € Crit fo coincides with the sign —(—1)#®,

Figure 2 illustrates a path of functions on the 2-sphere, interpreted as height functions.
Sketched below the functions is the parameterized critical set.

© OIS

fo f1/4 f1/2 f3/4 fi

o — -t
g
= !

0 s 12 34 1

FIGURE 2. A 1l-parameter family of height functions on the 2-sphere and,
below it, the parameterized critical set for the family.

1.2. Morse theory and homology. By incorporating gradient flow information in ad-
dition to the critical points, one obtains a refinement of the above invariant, namely the
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homology of M. We begin by choosing a metric g on M, which allows us to obtain from f
a gradient vector field Vf on M. A gradient flow is defined to be a parameterized curve
¢ : (—00,00) — M satisfying the equation

aa(t

2 = V(1)
for all ¢. This equation is symmetric under ‘time translation’ ¢(t) — ¢(t+T'), which gives
an action of R on the space of gradient flows. For any two critical points p,p’ € Crit f,
we set

N(p,#') = {6 gradient flow| lim ¢(1) = p', lim_4(t) = p}/R

Theorem 1.2. For a Morse function f and a generic metric, the spaces N(p,p') are
smooth manifolds with dimension given by

dim N (p,p') = u(p) — u(p') - 1.
Furthermore, once certain orientation data are fized for each critical point p, the spaces
N (p,p') are canonically oriented.

Define a chain complex by letting C(M, f) be the free Z module generated by Crit f,
with grading given by u. Define an operator 9 : C;(M) — C;_1(M) by

dp= >, #N@p)y.
u(p')=p(p)-1
That this operator satisfies @ 0 & = 0 follows from a compactness result about the 1-
dimensional gradient flow spaces N (p, '), u(p') = u(p) — 2.

Theorem 1.3. If u(p') = pu(p) — 2, then N(p,p') is compact except for ends which may

be identified with
U  N@.g) xR xN(g,p).

g€E€Crit f

u(g)=p(p)-1
These identifications are orientation preserving.

A careful analysis of orientations shows that the p’ coefficient of 89p is the number
of ‘broken trajectory’ ends of the one-dimensional flow space from p to p', counted with
boundary orientation, and hence is zero. The noncompactness is illustrated in Figure 3.

Theorem 1.4. The homology of the complez defined above is H,(M).

The proof that the homology is independent of the choice of f and g runs roughly as
follows. Choose a path of functions f; and metrics g;, t € R connecting two choices, i.e.,
with (ft, g:) = (fo,90) for t < 0 and (ft, g:) = (f1,91) for t > 1. Consider the space of
time-dependent flows, satisfying

%0 — v f(4(2)).

Solutions to the time-dependent equation are no longer translation invariant. We now
define a homomorphism F, : C.(M, fo) — C.«(M, f1) by counting 0-dimensional compo-
nents of the space of time-dependent flows connecting p € Crit fy to p’ € Crit f; where
the critical points are of the same index. One can show by a compactness argument for
1-dimensional components of the space of time-dependent flows that 8o F, — F, 09 =0,
and this homomorphism of complexes is shown to be an isomorphism on homology.

Remark 1.5. It is possible to obtain from f a cell decomposition for M whose cells
correspond to the critical points, but we will not pursue this here. See [6], for ezample,
for more details.
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plp) =k P
2
plg) =k-1 wg)=k-1
q -\ // g
:
u(r)y=~k-2

FiGURE 3. The component of the 1l-dimensional gradient flow space
N(p,p') on the front of the 2-sphere may be compactified by including
broken trajectories through ¢ and ¢'.

1.3. Overview of Morse theory in 3-dimensional gauge theory. Finally, we sketch
how this approach to defining invariants is related to gauge theory on a 3-manifold. Let
X be a closed 3-manifold with the same homology as S3. A will denote the space of
SU(2) connections on X, and G the gauge group. Let B = A/G be the quotient. We look
for a function f : B — R sharing enough properties with a Morse function that we can
mimic the same constructions. The basic problem is that B is infinite dimensional and
contains singularities. Despite this difficulty, we shall obtain invariants of X, known as
the Casson invariant and Floer homology, which are analogous to the Euler characteristic
and Morse homology. These will be the subjects of the next lecture. In the third lecture,
we shall discuss further properties of these invariants, and the methods developed so far
for calculating them.

The fourth lecture will be concerned with 3-manifolds with boundary. In this case, there
is a much more tenuous analogy with Morse theory and an intriguing new symplectic
ingredient thrusts itself into the theory. We will discuss gauge theoretic invariants of
knots, outlining work by the author and subsequent work by several others.

The fifth lecture will discuss the recent generalization of the Casson invariant to SU(3)
structure group, joint work by the H. Boden and the author. In the SU(3) situation, the
singularities of B are not so easily avoided as in the SU(2) case, and must be taken into
account in the formula for the Casson invariant.

2. THE CASSON INVARIANT AND FLOER HOMOLOGY

In this lecture we give a more detailed account of SU(2) gauge theory and discuss
the work of Taubes [49] and Floer [20]. These are the gauge theory analogues of the
construction of the Euler characteristic and homology from a Morse function.

2.1. Connections, Holonomy, and Gauge Transformations. To begin with, let X
be a smooth, compact 3-dimensional manifold, and consider an SU(2) bundle P over X.
For cohomological reasons, P is necessarily trivial, and it will simplify our presentation
somewhat if we fix a trivialization P = X x SU(2). The space of connections on P is
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denoted by A; using the fixed trivialization, A is identified with Q!(X;su(2)) = Q% ®
su(2), the set of 1-forms on X with values in su(2).

A connection A € A gives a means of lifting any curve v : [0,1] = X to a horizontal
or covariantly constant curve ¥ : [0,1] — P, with the lift uniquely determined by the lift
4(0) of 4(0). Two different horizontal lifts differ by the action of an SU(2) element. If
7(0) = (1), then the SU(2) element which takes 7(0) to ¥(1) is called the holonomy of
A around +, denoted by hol,(A). Holonomy gives a map from based loops into SU(2).

The group of automorphisms G = Map(X, SU(2)) acts on A by gA = g~ 'dg + g1 Ag.
This group is called the gauge group, and its elements are called gauge transformations.
Denote the quotient .A/G by B.

2.2. Reducible connections. The action of the gauge group is not free. The stabilizer
of a connection is isomorphic to the stabilizer of its holonomy group in SU(2). There
are three isomorphism types. If Stab A = {+1d} = Z(SU(2)), we call the connection A
irreducible. If Stab A = U(1), A is said to be abelian, and if Stab A = SU(2), A is central.
Abelian and central connections are called reducible. Let § denote the trivial connection
coming from the fixed trivialization P. The trivial connection is central, of course.

We denote the space of irreducible connections by A*. Then G/{%1d} acts freely on
A*. Define B* = A*/G and B" = B — B*. If A and G are completed with appropriate
Sobolev norms, then the quotient space B* becomes a smooth Banach manifold. At the
reducible orbits B has singularities due to the group action.

2.3. Curvature and flat connections. To each connection A is associated a curvature
2-form Fy € Q2(X;su(2)), given by Fy = dA+ AA A. A connection A is called flat if
F(A) = 0. We denote the set of orbits of flat connections by M = F~1(0)/G, M* =
MnNB* and M"=MNB".

Flatness is equivalent to the condition that the holonomy map from based loops in X
to SU(2) descends to a map on 7;.X. One obtains a well-known identification

M = Hom(m X, SU(2))/conjugation,

which associates to the orbit of a flat connection the conjugation orbit of its holonomy
representation. The object on the right is sometimes called the SU(2) character variety.

To identify the flat moduli space in specific examples, the character variety interpre-
tation is easier often to work with. It is also useful to note that SU(2) can be identified

with the group of unit quaternions. Explicit calculations can be found, for example, in
(34], [35], [9], and [31].

2.4. The deformation complex. Fixing a Riemannian metric on X and adopting the
standard inner product {a, 8) = — Tr(a3) on su(2) provides an L? metric on Q?(X; su(2)).
If we fix in addition an orientation on X, we obtain the Hodge star operator

* 1 QP(X;su(2)) — B37P(X; su(2)),

which expresses Poincaré duality on the level of forms. The relationship between the
metric and the star operator is

—/ Tr(a A xb) = (a, b).
X

A connection A on P gives an associated operator d4 on su(2) valued forms,
da: QP (X;su(2)) = QPT(X; su(2)),
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given by dan = dn + [A A7), where [- A -] denotes a combination of the wedge product on
forms and the Lie bracket on su(2). If A is a flat connection, then

QO(X; su(2) 4 Q1(X;su(2) 4 Q3(X;su(2)) 4 Q3(X; su(2))

defines an elliptic complex. Its cohomology, denoted by H(X; su(2)), is the cohomology
of X with coefficients in the twisted flat bundle ad4P. H}(X; su(2)) is naturally identified
with the Lie algebra of the stabilizer of A.

The Kuranishi model provides a local, finite dimensional model for the flat moduli
space near [A] as the zero set of a map @ : H;(X;su(2)) = H3(X;su(2)), modulo the
stabilizer of A. Notice that Poincaré duality implies that H}(X; su(2)) & H3(X; su(2)).
In particular, if H}(X; su(2)) = 0 for each flat connection A, then the flat moduli space
is a smooth 0-dimensional manifold. See [27], for example, for details.

2.5. The Chern-Simons functional. To do anything Morse theoretical, we need a
function on the space of connections. The primary function we will consider is the Chern-
Simons functional, defined by

CS(A)=-871r—2/X’IY(A/\dA+§A/\A/\A).

This function arises naturally in the study of connections on 4-manifolds as follows.
Chern-Weyl theory implies that for a connection A on a principal SU(2) bundle Q over
a closed 4-manifold M, the integral

1
gr;fMTf(FA ANFQ)

equals c2(Q)[M]. If M is a 4-manifold with OM = X, and the connection A restricts to
A on X, then

CS(4) = 8—71r,‘—,/M'I‘r(FA A Fp) modulo Z.

The most important properties of the Chern-Simons functional for us are

(i) the L? gradient of CS is V CS = — 15 x Fy4, and

(ii) CS(gA) = degg + CS(A).
The first property means that the set of critical points of CS is the set of flat connections.
Since the orbit of a flat connection under the identity component of the gauge group is
infinite dimensional, CS is certainly not a Morse function on A. To take care of this,
consider the induced function on B. By (ii), CS : B — R/Z is well-defined. This is the
function to which we apply the ideas of Morse theory discussed in the first lecture.

As an aside, the set of values of the Chern-Simons functional on the flat connections
on a 3-manifold is an intriguing invariant. Methods for computing the Chern-Simons
invariants in many cases were developed by P. Kirk and E. Klassen [32] and D. Auckly
[2]. In all known cases, the values of Chern-Simons is a rational number. Whether this
holds in general is a very interesting question.

The next issue we face is making sense of the index of a critical point. The space B* is
infinite dimensional, and the spectrum of the Hessian of CS is unbounded in both direc-
tions, so we cannot simply count the number of negative eigenvalues. We can, however,
compare the Hessians at two critical orbits by seeing how many eigenvalues change sign
along a path connecting them. This gives a relative index. The problem is then how to
pick an overall normalization. »

The natural starting point with which to compare all other critical points is the trivial
connection, which unfortunately is a singular point in B. Because of this, it is useful to
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replace the hessian operator Hess CS : TBB* — TB* by a self-adjoint Fredholm operator on
(0+1)-forms which gives the same relative index between irreducible critical connections
but which also makes sense at the reducibles. We summarize the ideas below; for details,
see [49].

For each connection A, define an operator K4 : Q% (X; su(2)) — Q% (X; su(2)) by

Ku(o,7) = (d47,d a0 + *d 7). -

Here d’ denotes the L? adjoint of d4. When A is flat, the operator is simply the defor-
mation complex folded up using adjoints. K defines a family of essentially self-adjoint
Fredholm operators, parameterized by A € A, on the L? completion of the space of
(0 + 1)-forms. This means that the spectrum of K4 near zero looks like that of a finite
dimensional self-adjoint operator.

If K;, 0 <t < 1,is a path of self-adjoint Fredholm operators, then the spectral flow
SF(Ko, K1) counts how many eigenvalues (with multiplicities) cross zero from negative to
positive minus the number that cross positive to negative. We need, however, a convention
for how to count zero eigenvalues at the ends of the path. Choose a § > 0 smaller than
the magnitude of every nonzero eigenvalue at either end, and count intersections (with
signs and multiplicities) of the graphs of the eigenvalues with the line from (0,—6) to
(1,6). See Figure 4.

FIGURE 4. The spectral flow convention is to calculate intersections with
the line connecting (0, —¢) with (1, 6).

The spectral flow along a path is a homotopy invariant of the path. The way it varies
when one endpoint is changed by a gauge transformation is SF(6, g4) —SF(0, A) = 8deg g.
For the purposes of defining an Euler characteristic, we only need the parity to be inde-
pendent of the gauge representative, so this is sufficient. We define a Zg grading on the
set of flat orbits by

p([A]) = SF(Ko, K4) (mod 8).

2.6. Perturbations. Finally we come to the issue of perturbations. We first describe
the class of admissible perturbation functions following [49], [20]. Roughly speaking, one
takes a sum of invariant functions (for example, any function composed with the trace
Tr : SU(2) — R) of the holonomy around a finite collection of closed loops in X. For
analytical reasons, it is better to average these by integrating over the normal disk of a
tubular neighborhood of each loop.

To begin with, we fix a collection of embeddings ; : S* x D* — X. (It is necessary
for this collection to be sufficiently large. See [27], [5] for details.) Then fix a radially
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symmetric bump function n on the disk, and select functions fi, ..., fa. Define a function
h: A—Rby

p) = [ fi(Ixuol, @, ) nle)s

A function of this form is called an admissible function. It is gauge invariant since a gauge
tranformation changes holonomy by a conjugation. Once a sufficiently large collection
of solid tori is fixed, the space F of admissible functions may then be identified with
C3(R,R)*™, and we give it this topology.

Now fix an admissible perturbation function h. A connection A is called perturbed flat
if it satisfies the equation

#Fy — 4m?Vh(A) = 0,

in other words A is a critical point of CS +h. The perturbed flat moduli space is the set
of gauge orbits of perturbed flat connections

My, = {A| * F4 — 4n*Vh(A) = 0}/G.
The deformation complex for M, and the cohomology groups thereof, denoted by
H3 ,(X; su(2)), are defined just as before but with d4 — 47 Hess h(A) in place of d4 for

the middle operator. We can similarly extend our earlier definition of K4 to a family of
self-adjoint operators parameterized by A x F by

Kan(o,7) = (d4y7, d4o + *danT)
where *d4, = *da — 4n% Hess h(A). Define a Zg grading on M, by
u([A]) = SF(Ks, Kan)-

2.7. Casson’s invariant from gauge theory. We are now in a position to give Taubes’
gauge theoretic definition of the Casson invariant.

Theorem 2.1. ([49])) Let X be an oriented integral homology sphere. For any h € F,
M, is compact. There is a neighborhood U of 0 € F and a Baire subset U' C U such
that, for h € U', M}, is a compact 0-dimensional manifold. The quantity

Z (_1)u([A])

(Alemy

is independent of the perturbation h € U' and the metric on X, and equals —2 times the
Casson invariant A(X).

Comments. Compactness is proven by standard gauge theoretic techniques, using the
Uhlenbeck compactness theorem. Note, however, that compactness of the unperturbed
flat moduli space is easier. The space of representations of a finitely presented group into
a compact Lie group is compact. Thus Hom(m X, SU(2))/conjugation is compact.

The restriction that H(X;Z) = 0 precludes the existence of nontrivial reducible per-
turbed flat connections for small perturbations. This allows one to show that for a generic
path h(t),t € [0,1] near h = 0, the irreducible parameterized moduli space

wW* = U M;;(t) X {t}
t€(0,1]
gives a compact cobordism between Mj, and Mj ). This allows one to conclude, after
considering orientations, that the number of signed points in M} is independent of h.

If the assumption that H;(X;Z) = 0 is relaxed, so that there exist flat abelian con-
nections, W* is no longer compact. Noncompact ends limit to the points of the abelian
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portion W of the parameterized moduli space, as illustrated in Figure 5. We will discuss
this phenomenon in greater detail in the final lecture.

; L
Ml

FIGURE 5. The irreducible stratum may have noncompact ends limiting to
points in the abelian stratum.

2.8. Floer homology. Following Floer [20], we now use the critical orbits of CS as
generators of a chain complex and define a boundary operator by counting gradient flows
between critical orbits in B* with sign.

We begin by discussing the relationship between gradient flows in B* and anti-self-
dual connections on X x R. For any oriented, 4-dimensional Riemannian manifold M, a
connection A on a bundle over M is called anti-self-dual (ASD) if it satisfies the equation

ASD connections are also called instantons.
Given a path of connections A;,¢ € R, the corresponding 4-manifold connection on

X x R with no dt component is anti-self-dual with respect to the product metric if and
only if A; solves the gradient flow equation

%At = *FA‘ = '—47T2V CS(At)

Conversely, any anti-self-dual connection on X x R which limits to flat connections as
t — +oo can be gauge transformed into this form, by a gauge transformation which is
unique up to gauge transformations constant in ¢.

For [A_],[A4] € M*, define

N(A-][A4]) =
{A € A(X xR)| A'is ASD, lim [Al] = [4:]}/G(X x K)

and
N([A-][A+]) = N([A-] [A+])/R,
where R acts by translation 7 : A(z,t) — A(z,t + 7). (We are suppressing necessary

technical details, such as weighted Sobolev norms. Also, if necessary, the ASD equation
is perturbed to be the gradient flow equation for the perturbed Chern-Simons function.)
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Proposition 2.2. For generic perturbations, N ([A_],[A]) is a (possibly empty) union
of smooth, canonically oriented manifolds, each of which has dimension equal to u([A4]) —
p([A=]) (mod 8). In each of the possible dimensions, there are finitely many components.
When the dimension is less than 8, the components are compact.

(As in the finite dimensional case, the orientations depend on a choice of orientation
data at each critical point, this time in the form of a fixed 4-manifold M with M = X
and, for each [A] € M*(X), an orientation of the determinant line bundle arising from
the deformation complex for instantons on M asymptotic to [A].)

When #([A4]) = u([A-]) =1 (mod 8), let n([A],[A_]) denote the number of points in
N([A_],[A4]), counted with orientation.

Now we can define the Floer homology (instanton homology) of X. Let FC,(X) denote
the Zg graded Z-module generated by the points of M}, h € U’. Then define 8 :
FCy(X) — FC,_1(X) by the following formula. If 4([A]) = p (mod 8), then

o[A] = > n([A], [A)[A] € FCp1(X).

w([A')=p—~1 (mod 8)

Theorem 2.3. ([20]) (FC.(X),0) defines a complez (that is, 300 = 0) and its Zg graded
homology group FH,(X) is an invariant of the oriented homology sphere X.

The proof that 008 = 0, as in finite dimensions, is based on the following compactness
result about the space of gradient trajectories between critical orbits of index difference
two.

Proposition 2.4. Suppose that u([A"]) — p([A]) = 2 (mod 8). Then N([A],[A"]) is
compact ezcept for ends diffeomorphic to N([A],[A"]) x [0,00) x N([A"],[A"]) for orbits
[A"] of indez p([A4]) + 1.

The proof that FH,(X) is independent of the perturbation of the Chern-Simons func-
tion and independent of the metric on X involves counting time-dependent gradient flows
for a 1-parameter family of perturbations and showing that the homomorphism of com-
plexes thus obtained induces an isomorphism on Floer homology.

Note that the Euler characteristic of the Floer homology of X is, by Theorem 2.1, minus
2 times the Casson invariant. (See [33] for a clarification of the sign.)

Floer homology is related to Donaldson invariants of 4-manifolds in the following way.
There are relative Donaldson invariants for manifolds M with M = X which take values
in FH,(X). If M = M; U M, with 8M; = X and OM, = —X, as indicated in Figure 6,
then the Donaldson invariants of M can be obtained from the relative invariants of the
pieces by a pairing FH,(X) x FH,(-X) — Z.

M
X3

FIGURE 6. A 4-manifold decomposed into two pieces along a 3-dimensional submanifold.



CHERN-SIMONS GAUGE THEORY ON 3-MANIFOLDS 93

3. CASSON INVARIANT AND FLOER HOMOLOGY-PROPERTIES AND CALCULATION

In this section we discuss further properties of the Casson invariant and Floer homology,
and the tools available for computation of these invariants. Throughout the section, X is
an oriented homology 3-sphere.

3.1. Casson’s definition of A(X). Casson’s definition of the invariant A(X) (see [1))
involved topology rather than gauge theory. We sketch the topological definition in this
subsection. .

Choose a Heegard decomposition for X, i.e., a decomposition X = X; Uy X, where X;
are solid handle bodies with 0X; = £, 0X; = —X. Let g be the genus of the surface T.
The Seifert Van Kampen theorem allows the computation of 7 (X) from the identification
maps by the following diagram.

T (Xl)
m(X) m(Z)

7T1(X2)

For M = X, X,, X5, %, let R(M) = Hom(m; (M), SU(2)). Applying the functor
Hom(-, SU(2)) to the previous diagram reverses all the arrows.

R(X1)
Va N
R(X) / R(%)

R(X2)
Dividing by the conjugation action of SU(2) gives an “intersection picture” for M(X).

M(X1)
a pV
M(X) / M(Z) , M(X) = M(X1) xpm(z) M(Xz2)

M(Xs)

M(X;) is a manifold of dimension 3¢g — 3 with singularities from the reducible orbits.
M(Z) is a (6g — 6)-dimensional manifold with singularities, and with a symplectic struc-
ture (first studied by Goldman [26]). M(X) may be thought of as the set of intersections
of the two maps r; : M(X;) = M(Z).

The irreducible strata of M(X;) and M(X) can be canonically oriented. Fortunately,
M(X;) and M(X3) do not intersect along the singular strata except at the trivial orbit,
and the remaining intersections form a compact set. Thus one can choose a perturbation
of the maps r;, compactly supported on M*(X), so that the intersections are transverse
and thereby obtain a well-defined oriented intersection number.

3.2. The Atiyah-Floer Conjecture. Floer also defined a homology theory in the sym-
plectic category. One considers two Lagrangian submanifolds L, L'™ of a symplectic
manifold M?". The intersections of L and L’ form the generators of the Floer complex,
and the boundary operator counts pseudoholomorphic curves with boundary in L U L'
“connecting” intersection points. See Figure 7.
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L

FIGURE 7. A pseudoholomorphic disk bounded by the Lagrangian subman-
ifolds L; and Ls.

In the intersection description of A(X) used by Casson, the maps r; : M(X;) = M(X)
are Lagrangian submanifolds with respect to the symplectic structure on M(X) (at least
on the nonsingular part). This naturally raises the following question:

Conjecture 3.1 (Atiyah-Floer). Symplectic Floer homology can be adapted to handle
the singularities in the various moduli spaces from a Heegard decomposition. Then sym-
plectic Floer homology will equal instanton Floer homology in this case.

This conjecture was recently proven by Lee and Li ([36] and [37]).

3.3. Properties of A\(X). The Casson invariant satisfies the following properties.
(i) MX)=0if m(X)=0.
(i) A(—=X) = =A(X).
(ilf) MX1#X2) = MX1) + A(X2).
(iv) A(Kn) = MX) + nA%(1).
where K, is X surgery on the knot K C X and Ak(t) is the Alexander polynomial of K.

A consequence of (i) and (iv) is that any knot in S* with A% (1) # 0 has Property P.
A knot has Property P if every nontrivial surgery on it yields a manifold with nontrivial
fundamental group. Surgery on a knot with Property P cannot yield a counterexample
to the Poincaré conjecture.

Another consequence of (iv) is that A(X) is calculable from a surgery diagram for X.
This raises a question about Floer homology: is there also a surgery formula describing the
how F H, changes during surgery, a formula which will make Floer homology computable?
The following subsection describes a partial answer to this question.

3.4. The exact triangle for F'H,. Recall that the boundary operator in Floer homology
is defined by counting instantons on X x R which connect flat orbits. Floer observed that
one could make a similar count for any 4-manifold M with O0M = X U —X'. One thereby
obtains a homomorphism from FH,(X) to FH.(X').

By a clever application of these ideas to certain 4-dimensional cobordisms that arise in
3-manifold surgery, Floer showed that there is an instanton homology group FH, (X, K)
of a knot K in X such that there is an exact triangle (see [8])

FH,(X,K)

‘ 4 N
FH,(X,) — FH,(Xnt1)
where X, (K) is the 3-manifold obtained by i-surgery on K.
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Unfortunately, what is (so far) missing from Floer theory is an identification of F H,(X, K)
with something easily computable. Clearly the Euler characteristic of FH,(X, K) is
2A%(1), but there has so far not been much progress in understanding the groups them-
selves. Saveliev has, however, used the exact triangle to do some computations ([48] and

7).

3.5. Calculations of Floer homology. The first calculations of Floer homology were
by Fintushel and Stern for Seifert fibered homology spheres [19]. They were able to
compute not only the flat connections on these 3-manifolds, but also the Zg gradings of
those flat connections. Using this information they showed that the chain complex has
generators only in every other dimension. Therefore the boundary operators must be
trivial.

Since then, the technology for computing spectral flow (and hence gradings) has im-
proved considerably. There is a general splitting theorem that allows one to calculate
SF([A], [A"]) roughly whenever

(i) X is a union of X; and X, along their boundary X.

(ii) [A]x,] and [A4|x,] can be connected by a path in M(X;) for i =1,2.

(iii) the restriction maps r; : M(X;) = M(X) are understood.
Then the spectral flow is a sum of a relative term from each X; and a Maslov index
computed from the maps r; (see [51], [43], [11], [33]). This has led to more examples
where the index of all flat orbits have the same parity and so the boundary operator is
necessarily trivial.

The first cases shown to have nontrivial boundary operators were calculated indepen-
dently by Li [39] and Fukaya [23]. They derived a general spectral sequence which com-
putes FH,(X#X') in terms of instanton data (both instantons connecting irreducible
orbits and instantons connecting irreducible orbits to the trivial orbit) on X and X'.
With the exception of a few cases, the necessary instanton data remains to be calculated.

There are also known cases where, for small perturbations there are generators in the
complex in both even and odd dimensions, and by judiciously choosing perturbations, one
can cancel pairs of flat orbits. One such example is +1 surgery on the granny knot (the
composite of two right trefoils) (see Figure 8). Unfortunately, no such examples are known
where sufficiently many flat orbits can be cancelled to determine the Floer homology.

3)

FIGURE 8. The granny knot.

4. GAUGE THEORY ON KNOT COMPLEMENTS

In this lecture we discuss flat moduli spaces of 3-manifolds with torus boundary. Like
a Heegard decomposition, a decomposition of a closed 3-manifold X = X; Ur: X, along
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a torus gives a description of M(X) in terms of M(X;) and M(X,) and the restriction
maps r; : M(X;) = M(T?).

M(Xy)
/ N\
M(X) M(Z) , M(X) = M(X1) Xpr2y M(X2)
N / ‘
M(Xy)

We begin with the problem of generalizing the Morse theory description of the flat
moduli to the case 0X = T?. A treatment of the general case X # () is given in [27],
and we refer the reader there for details. With the generic structure of the moduli space
(when 8X = T?) established, we discuss some results about flat moduli spaces of knot
complements.

4.1. The flat moduli space of T?. We begin with a simple calculation to identify
M(T?). Let u be a meridian for the knot K, i.e., a curve in X which generates Hi(X)
and bounds a normal disk of K in Y. Also, choose a longitude A, parallel copy of the
knot which is null homologous in the complement of K. The homotopy classes of 1 and
A generate 71(T2) = Z @ Z. Any representation p : mT? — SU(2) is conjugate to one
taking the pair (A, 1) to a pair of diagonal SU(2) matrices

(17 &) )

By conjugating to interchange eigenvalues, if necessary, 6 may be taken to be in [0, 7].
Thus M(T?) may be identified with the rectangle [0, 7] x [0, 2] with the edge identifica-
tions illustrated in Figure 9. Topologically, this is S2, but it is more natural to consider
it a “pillowcase” with singular points at the four corners (central orbits) .

27

T == == = ===

L_-.—.—.—.—-—.\

0 L
0 T

FIGURE 9. Constructing the pillowcase from a fundamental domain [0, 7] x [0, 27].

4.2. Chern-Simons theory when 8X = T2. There are two main difficulties in pushing
the Morse theory analogy through when 80X # 0.

(i) CS(A) is not gauge invariant, even modulo the integers.
(ii) Flat connections are not the critical points of CS.
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The proofs in the closed case involve integration by parts, and a boundary term prevents
those arguments from working here.

A construction of Ramadas, Singer and Weitsman [46] solves both problems. The
function €27 C5(4) is interpreted as a section of a certain circle bundle over B(X), a bundle
carrying a natural connection, and the critical points of this section with respect to that
connection are the flat connections. .

The construction of a bundle over B(X) of which e?*“5(4) induces a section is simple.
We simply divide A(X) x U(1) by the G(X) action given by

g(A, exp(i¢)) = (94, exp(i¢) exp (127 (CS(gA) — CS(A)))) .

Observe that the twisting factor exp (i27(CS(gA) — CS(A))) only depends on the restric-
tions of A and g to 0X. (This follows from the fact that CS : A — R/Z is well-defined
on closed 3-manifolds.) Thus the bundle over B(X) so constructed is the pull-back of a
bundle, which we denote by L, over B(8X).

™L) — L
\ A2
B(X) — B(9X)

In [46], a connection w on L is constructed with the property that its curvature 2-form,
when restricted to M(0X) C B(0X), is the symplectic structure on M(0X). As in
the nondegenerate case on a 3-manifold, Ty M(0X) = H}(6X;su(2)). The symplectic
structure is given by the cup product pairing on cohomology:

2cf) = [ Tranp).

The connection w gives a way to differentiate the section €2™C5(4) of the bundle r*£
over B(X). A critical point, i.e., a point where this derivative is zero, is an orbit of
flat connections. This immediately implies that the lift of r : M(X) — M(dX) given
by €?7C5(4) is horizontal. This fact gives as a corollary an integrality condition on the
immersion r : M(X) — M(8X). We state the result below for the case 8X = T2

Corollary 4.1. ([27]) Suppose X =T? and v :S* — M(X) is a loop. Then the signed
symplectic area bounded by the loop r oy : S* — M(T?) is zero modulo the area of the
pillowcase.

Proof. The proof consists of applying Stokes theorem to the form dw = 2. The holonomy
of w around 7 o v must be a multiple of 27, since it has a closed horizontal lift, which
means, by Stokes’ theorem, that 7 o v bounds symplectic area 27n for some n € Z. The
symplectic area of the pillowcase is —27. O

The corollary puts constraints on what the image of r : M(X) — M(T?) can look like,
as illustrated in Figure 10.

In addition, there is another constraint on the image of a smooth 1-dimensional compo-
nent of M(X) in M(T?), coming from the splitting formula for spectral flow ([11], [12],
[43]), which roughly says that

#{horizontal tangencies} + 2#{corners enclosed} =0 (mod 8).

The first term is a count of places where the tangent direction is parallel to the p(\) =
constant direction, with signs indicated in Figure 11. The second term is also a signed
count. Figure 12 shows some images allowed and forbidden by this second constraint.
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FIGURE 10. The images of closed components in M(X) must satisfy the
integrality condition of Corollary 4.1.
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FIGURE 11. In the Maslov index term of the splitting formula horizontal
tangencies are counted with sign.
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FIGURE 12. The images of closed components in M(X) must also satisfy
a Maslov index condition.

4.3. Structure of the moduli space. The following theorem is a special case of The-
orem 15 of [27], which covers arbitrary genus boundary.

Theorem 4.2. If 8X = T?, then for generic perturbations h, the perturbed flat moduli
space consists of
(i) finitely many central orbits,
(i) a smooth 1-dimensional manifold of abelian orbits with one noncompact end limiting
to each central orbit, and
(iii) @ smooth 1-dimensional manifold of irreducible orbits with finitely many ends, each
limiting to a different perturbed flat abelian orbit.
The restriction map r : My(X) — M(T?) is an immersion taking the 1-dimensional
strata of M(X) into the smooth part of M(T?).

We shall call the (perturbed) flat moduli space nondegenerate if conditions (i), (ii), and
(iii) of Theorem 4.2 hold, and call it degenerate otherwise. We will denote the reducible
part of the moduli space by Mj. The special points of M7 which are in the closure of
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r are called bifurcation points. Note that if H,(X) = H,(S"), then before perturbation
there are two central flat orbits and a smooth 1-dimensional arc of abelian flat orbits
connecting them.

Two examples of flat moduli spaces of knot complements and their images on the
pillowcase are depicted in Figure 13.

M*(X) M*(X)
GuEE———
MT(X) MT(X)

FIGURE 13. The flat moduli spaces of two knot complements and their
images in the pillowcase.

4.4. Structure near a bifurcation point. A reducible SU(2) connection on the com-
plement of a knot in a homology 3-sphere reduces to a U(1) connection on a trivial C
bundle and hence can be gauge transformed so that the connection 1-form takes values in
the 1-dimensional sub Lie algebra of diagonal su(2) elements (which we henceforth identify
with u(1)). The orthogonal complement of u(1) in su(2) is isomorphic to C, with U(1),
the maximal torus of SU(2) acting on the C with weight 2. The deformation complex
and the operator K 4 respect a splitting of su(2)-valued into u(1) and C components.

Proposition 4.3. If h is generic and [A] € M}, is a bifurcation point, then
(i) Hyp(X5u(1)) = TTagMy = R and H 4(X;u(1)) = 0.
(i) Hj A(X;C) == H%,(X;C) =C. '

The Kuranishi map gives a model for the moduli space near A, namely ®(0)/ Stab A,
for a map
@ : Hjy,(X;u(l) @ C) = Hi u(X;u(1) @ O).
See Figure 14. Under the assumptions of Proposition 4.3, ® has the form ®(t,z) = Ltz
up to change of coordinates.
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FIGURE 14. A local model for the flat moduli space near a bifurcation point.

The bifurcation points in M} are characterized by the property that the cohomology
H} ,(X;C) = ker K$ ) jumps from 0 to C at these points. One can show that K§,
is a Hermitian Fredholm operator, and at these points a real eigenvalue (of complex
multiplicity one) crosses zero. :

4.5. The Alexander matrix and equivariant signature. In this subsection we recall
the definition of the Tristam-Levine equivariant knot signature, the Alexander matrix, and
the Alexander polynomial. In the next subsection we will describe some results relating
these invariants to the flat moduli space.

Let Y be a homology 3-sphere, K be a knot in Y, and X be the complement of an
open tubular neighborhood of K in Y. Let F be a Selfert surface for K, and choose an
orientation of the normal bundle of F in Y. If {z;} denotes a basis for H; (F Z), then let

z} denote the push-off of z; in the positive normal direction. We then define the linking
matrlx V by Vi; = link(z;, 7} 1).

The symmetrized Alexander matrix of K C Y is A(t) = 3V —t=3VT. The Alexander
polynomial Ak (t) equals the determinant of A(t). Define another matrix B(t) by

B(t)=(1- 8tV + (1 -tV = (177 — t3) A(2).

Clearly the complex values z # =1 for which B(z) is singular are exactly the roots of the
Alexander polynomial.

For unit complex numbers z, B(z) is a Hermitian matrix. The equivariant knot signa-
ture is SignB(z), the number of positive eigenvalues minus the number of negative.

Let A;,t € [0,27] be a path of flat reducible connections with

it 0
hol,(4,) = [ et ] :

Then one can identify the spectral flow of K 4, with that of the curve of finite dimensional
Hermitian matrices B(e%*). In [33], Kirk, Klassen and Ruberman use this fact to compute
spectral flow in several interesting cases. In [28] and [29], this fact is used to derive further
relationships between the flat moduli space and more classical knot invariants, which we
discuss below.

4.6. A fixed trace Casson-type invariant of knots. The first result involves counting
the (perturbed) orbits which have meridinal holonomy of fixed trace. For a € [0, 7], set

S, = {[A] € M(T?)| Tr(hol,(A)) = 2cosa}.
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One could count the fixed-trace flat orbits on X by counting intersections of r(M,(X))
with S,. To count points with orientations, however, one must consider double cover
M, (X), which has a canonical orientation, intersecting with a lift S, of S,. The double

covers have a restriction map to the torus, the double branched cover of M(T?). See
Figure 15.

FIGURE 15. The double cover of the pillowcase, branched at the corners,
is a torus. Here, the two copies of M(X) can be canonically oriented.

Theorem 4.4 ([28]). Suppose M(X) is nondegenerate.

(i) Then F(M*(X)) - Sy = —4A(Y).
(i) For any 0 < a < m with Ak (e"®) #0,

FM (X)) - So = —4A(Y) — —;—SignBK(em).

If M(X) is degenerate, then these properties hold for generic small perturbations.

The first theorem of this type appeared in an interesting paper by Lin [41], which used
topological methods. It covered the case @ = % and ¥ = S3. Austin has informed me
that he has independently found a proof of the theorem (again a topological version) in
the case Y = S2 for arbitrary a.

Another approach by Cappell, Lee, and Miller [13] using branched covers has led to a
similar result for e*® a root of unity.

One natural question is whether there is a fixed-trace Floer homology of a knot, the
Euler characteristic of which is the signed number of fixed-trace flat connections. Various
people have worked or are currently working (independently) on versions of such a homol-
ogy theory, including Austin, Collin, Fukaya, Gerard, Li and Salamon. Salamon described
an outline of a very general framework for symplectic Floer homology for any 3-manifold
with boundary [47]. Austin and Li have independently taken symplectic approaches to
(fixed-trace) Floer homology of knots [40].

On the gauge theoretic side, Collin is currently attacking the problem differently by
considering orbifold connections on a branched cover, and has partially constructed a
theory for € a root of unity [15]. Gerard has independently succeded in finding an
analogue of the Chern-Simons function on a suitable space of fixed trace connections
(with no root of unity restriction), but has yet to sort out the gradient flows.
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4.7. Unperturbed moduli spaces. While all the results so far have concerned per-
turbed flat moduli spaces for generic perturbations, one might well ask what can be said
about the character variety (the unperturbed flat moduli space) from Chern-Simons gauge
theory. Frohman and Klassen showed, by topological means, that if e%° is a simple root
of the Alexander polynomial of a knot in S®, then the abelian representation p, taking
1 to the diagonal matrix with entries e, e™* can be deformed to a family of irreducible
representations [22]. A ‘

This result was generalized as follows, by considering perturbed flat moduli spaces and
letting h limit back to zero. )

Theorem 4.5. ([29]) If K is a knot in a homology sphere, then for any root of unity e**
with Ag(e%®) = 0 for which the right and left hand limits limg_,o+ Sign Bk (e*#) do not
agree, there is a continuous family of irreducible SU(2) limiting to p,.

Note that if €% is an odd multiplicity root of Ag(z) then the hypothesis of the the-
orem applies. This theorem implies the existence of irreducible representations for some
homology 3-spheres with trivial Casson’s invariant (see [29]).

5. COPING WITH REDUCIBLE ORBITS IN THE MODULI SPACE

In this lecture, we discuss the difficulties encountered when one attempts to generalize
the Casson invariant and Floer homology to situations when there are reducible flat
connections to contend with.

The problem with generalizing the Casson invariant to either 3-manifolds other than
homology 3-spheres or structure group SU(n), n > 2, is that the irreducible portion of
the parameterized moduli space is not compact, and hence the cobordism argument fails
to show that the count of irreducible perturbed flat orbits is independent of perturbation.
Noncompact ends limit to reducible flat orbits, i.e., singularities in the quotient space B.

To illustrate this problem, consider the critical set of an invariant function on S?,
represented in Figure 16 as a height function, invariant under equatorial rotations. (Fixed
points correspond to reducible orbits.) Clearly the number of free critical orbits counted
with sign is not independent of the function. Thus an invariant cannot be constructed by
simply counting critical points of a Morse function on S?/S5*\ {singularities}.

—

fo fi

FIGURE 16. Two functions on the 2-sphere which are invariant under equa-
torial rotations.
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After mentioning related work by several others, we will generalize our discussion in
Lecture 1 of the Euler characteristic from Morse theory to an equivariant setting. We
discuss the correction term needed to change the count of free critical orbits into an
invariant independent of the function. We then discuss an application of these ideas to
gauge theory. Specifically, we will describe joint work with Hans Boden defining an SU(3)
Casson invariant. We will end with some comments about generalizing Floer homology
to situations when there are reducible flat orbits.

5.1. Other work on generalizations. Various approaches to generalizing the Casson
invariant to situations where there are reducible flat orbits have been explored.

(i) In [7], Boyer and Nicas consider only compact components of the irreducible flat
moduli space. This allows them to define an invariant without a correction term.
Unfortunately, they had difficulty establishing connect sum and surgery formulae for
their invariant.

(ii) In [50], Walker adopted Casson’s intersection picture for the character variety of
a 3-manifold. By a delicate analysis of the intersections at the singularities, he
generalized the Casson invariant to rational homology spheres by adding a correction
term from the reducible stratum. He furthermore recovered all the nice properties
of A(X).

(iii) In a research announcement [10], Cappell, Lee and Miller proposed a generalization
to SU(n),n > 2 using symplectic methods.

5.2. Equivariant Morse theory in finite dimensions. The flat moduli space of SU(3)
connections on a homology sphere contains singular points, the orbits of reducible (non-
abelian) connections. Only one singular stratum which enters into the analysis, consisting
of orbits with circle stabilizer. To illustrate the difficulties and the form of the correction
term needed to define a Casson invariant, we consider a finite dimensional version first.
Let M be a compact manifold with a semifree S! action (each orbit is either a free circle
orbit or a point). The fixed point set is a submanifold L C M, with normal bundle N(L).
N(L) has the structure of a complex vector bundle. If f : M — R is smooth, invariant
and generic within the invariant functions, then Crit(f) consists of isolated points of L
and isolated S! orbits. In the tangent directions normal to a critical orbit, Hess f is
nondegenerate. Hess f|y(z) is Hermitian, but we consider it as a real operator (so its
eigenvalues have even multiplicity).
For critical fixed points p and critical free orbits ¢, we define the following gradings:
(i) u(c) = dim{negative eigenspace of Hess f(z),z € c}
(ii) A(p) = dim{negative eigenspace of Hess f|.(p)}
(iii) v(p) = dim{negative eigenspace of Hess f(p)|n(z)}
We make the following definition:

stl (M) = Z(—l)“(") — Z(_l)f\(p) (_”gﬂ)

p

Remark. Note that the first term counts critical points in the smooth part of M/S*. The
second term is a correction term.

Theorem 5.1. Xj;gl(M) is independent of f.

Properties of X" (M)
(i) For a free action, X' (M) = X(M/S?).
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(ii) If the S* action is trivial, then XS" (M) = 0.
(iii) AS'(M) is the relative Euler class of the pair (M/S?, L/S").
The first property is clear. For the second, note that in this case v(p) = 0 for all critical
points. To see why the third is true, choose a generic function with the property that

T&x fle) < a:eCIEiltl(I)l‘)\Lf(x)'

The correction term vanishes for this function, and the formula simply counts (with sign)
the cells required to build up the relative manifold (M/S?, L/S?) from (L/S*,L/S").

5.3. Sketch of proof of Thm. 5.1. Let fo, fi be generic invariant functions. Connect
fo to f1 by a generic path f; of invariant functions. The parameterized critical set is
W= | Critf, x {t} ¢ M x[0,1].
te[0,1]

Wr = Wn(Lx[0,1]) is acompact 1-manifold with boundary. W* = Wn((M \ L) x [0,1])
is a 2-manifold with free U(1) action. Thus W*/U(1) is a 1-manifold. W*/U(1) is not
typically compact, however. Its closure in M/U(1) includes a finite number of bifurcation
points in the interior W”. The structure of W/U(1) near a bifurcation point, and the
preimage in W, are illustrated in Figure 17. The bifurcation points are exactly the points
of W™ at which v(p) changes, and at a bifurcation point v(p) always changes by +2.

W*
wr | W /U(1)

w*/U(1)

FIGURE 17. A local model for the singularities in the parameterized critical
set of a generic 1-parameter family of S'-invariant functions.

We can obtain canonical orientations on the W*/S* and W™ as follows. Define a family
of linear operators parameterized by M x [0,1] as follows.

J:u(l) x TM xT[0,1] = u(l) x TM
by the formula
J(z,t)(ui, 0, 7) =
(7,4 exp(si)misﬂ) , Ut exp(si)z'szo + Hess f(z)7 — 72V fi(z)) .
The relevance of the operator J to our parameterized moduli space is this. If (z,t) € W,

then ker J(z,t) contains the tangent space to W/S*. Consider the cases:
If (z,t) € WT, then

ker J(z,t) = u(1) ® Ty W™ (©C at bifurcations)

and
coker J(z,t) = u(1) (@C at bifurcations).
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If (z,t) € W*, then ker J(z,t) = Tz, W*/S* and coker J(z,t) = 0.
There is a canonical orientation on the virtual index bundle Ind J, and from it we obtain
canonical orientations on the W*/S* and W". These have the following properties:
(i) for any regular point p of projection proj: W™ — [0,1],
O, = (—l)A(c)proj*(’)[o'l].
(ii) for any regular point [C] of projection proj: W*/S* — [0, 1],
Ope) = (—=1)Mproj*Op ).
(iii) the boundary orientation at a bifurcation point d(W*/S") is 1(v(b;) —v(b_)), where
b; and b_ are points of W” as shown in Figure 18.

w* w*
- —n ¢
b W by by W' b

FIGURE 18. The relationship between b_, b,, and the orientation on W7
near a bifurcation point in W/S!.

Note that since f, and f; are generic, 0 and 1 are régular values of proj : W*/St — [0, 1].

By (ii), the difference
Z (—1)Hw) — Z (—1)@)
pC C!‘it(f1 ) pC Cl'it(fo)
equals the number of boundary points of W*/S! in the ends of M x [0, 1], counted with
the boundary orientation.
By (i) and (iii), the difference in the correction terms calculates minus the number of
endpoints of W*/S1 which are bifurcation points, also with boundary orientation. Now

the theorem follows from the fact that the total number of boundary points of W*/S1,
counted with boundary orientation, is zero.

5.4. Reducible SU(3) connections. As in Taubes’ description of the Casson invariant,
we replace Morse index by spectral flow of the operator K4 (on su(3) valued forms, of
course). As in our finite dimensional model, we must split this into the component tangent
to the reducible stratum and the component normal to the reducible stratum.

On a homology sphere, the only nontrivial reducible flat SU(3) connections (or per-
turbed flat connections for small perturbations) have stabilizer isomorphic to U(1). Any
reducible connection with U(1) stabilizer can be assumed, after gauge transformation, to
take values in s(u(2) x u(1)). Then the stabilizer of A consists of gauge transformations
consisting of constant diagonal matrices with entries €%, e, e=2. The decomposition of
T4 A = QY(X; su(3)) into tangent vectors tangent to and normal to the reducible connec-
tions is obtained by decomposing su(3) as su(3) = s(u(2) x u(1)) ® C.

The first summand consists of matrices of the form

ila+r) b+ic 0
—b+ic i(-a+71) 0
0 0 —2ir
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where a, b, ¢, and r are real. The second summand consists of matrices of the form

0 0 21
0 0 29
-z1 -z 0

The operator K4 (when A is an S(U(2) x U(1)) connection) respects the corresponding
splitting of °+1(X;su(3)), and thus it makes sense to refer to the C* spectral flow of
K 4 along a path of connections. This quantity replaces the quantity v(p) in the finite
dimensional model.

5.5. The SU(3) Casson invariant formula. Let X be a Z-homology 3-sphere. Choose
a generic perturbation function h : Agy(sy — R, and consider the perturbed flat moduli
space My, = Mj UM U[6)].

Choose representatives B for each orbit in M}, and for each such B, choose a nearby
flat connection B. Then set

Asu@) (X, h) =

> (—1)5”"#‘)—% > (—1)Fe@xan®®) (SF@(0,b)+4CS(B)+2).
[Alem;, [Blems,

Theorem 5.2. ([5]) Asu(s)(X, k) is independent of h and of the choices of representatives
b e [b]. .

Notation and comments:

(i) The Chern-Simons term is necessary because the C? spectral flow in the correction
term depends on the representative B for [B].
(ii) If Asp(s)(X) # 0, then m X admits irreducible representations to either SU(2) or
SU(3).
(iii) Our correction term

1 ~
_é(_l)ng(u(Z)xu(l))(oyB) (SF@ ©.B) —4 CS(B))

generalizes Walker’s. Le., his can be written as a difference of spectral flow and
Chern-Simons terms.

(iv) Adding in the constant part of the correction term only adds a multiple of Casson’s
SU(2) invariant. It makes our invariant satisfy Asy(s)(—X) = Asv)(X)-

(v) The conjectured rationality of the SU(2) Chern-Simons functional on flat connections
would imply that Agys) is rational.

There are many interesting questions raised by Theorem 5.2. The most intriguing is what
sort of surgery relations (if any) does this new invariant satisfy. A related question is this:
is Asy(s) a finite type invariant [44, 25]? By [42], the Casson-Walker invariant equals 6
times A;, the first Ohtsuki invariant [45], so one is especially interested in any relationship
between Agy(s) and g, the second Ohtsuki invariant. Positive results would be interesting
for two reasons: (i) they would render Asy(s) computable by algebraic means, and (i1) they
would clarify what geometric information the finite type invariants carry. There are still,
of course, the problems of defining the generalized Casson SU(n) invariants for n > 3
and of extending Asy(s) to rational homology 3-spheres. Both of these involve multiple
reducible strata.



CHERN-SIMONS GAUGE THEORY ON 3-MANIFOLDS 107

5.6. Generalizing Floer homology. There has been some progress in generalizing Floer
homology to situations where there are nontrivial reducible flat connections. Lee and Li
showed in [38] that one can define Floer homology for a rational homology sphere for each
“chamber” in the space of perturbations. One crosses a “chamber wall” each time one
the parameterized moduli space of a path of perturbations has a bifurcation point. They
are not able, unfortunately, to describe how the Floer homology changes as they cross a
chamber wall. . A

In a different direction, Austin and Braam considered the space of connections modulo
based gauge transformations (gauge transformations which are the identity at one fixed
basepoint). There is an SO(3) action on the quotient space, and they study the infinite
dimensional analogue of equivariant cohomology using the Chern-Simons function as a
Bott-Morse function. They arrive at an equivariant Floer cohomology for rational homol-
ogy spheres [4], one which has proved useful in computing Donaldson invariants. Again
their perturbations must be carefully chosen to stay within a particular chamber.

It would be desirable to have a more general theory which allowed one to understand
how the Floer homology (equivariant or not) changes as one crosses a chamber wall. Such
an understanding would allow one, for an infinite family of rational homology spheres, to
perturb away flat connections (like cancelling critical points of a Morse function in finite
dimensions) until the equivariant Floer cohomology is clear from the chain complex. In
other words, one could determine exactly the (nontrivial) boundary operator in these cases
[30]. For a more general perturbation, the structure of noncompact ends of the instanton
moduli space connecting flat connections of index difference two (the key to showing
8% = 0), is more complicated, and the boundary operator will be more complicated. This
is a subject of ongoing research by the author.
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GEOMETRIC SUPERRIGIDITY OF SPHERICAL
PSEUDO-QUATERNIONIC MANIFOLDS

YOSHINOBU KAMISHIMA

INTRODUCTION

We study a geometric structure on (4n + 3)-dimensional smooth manifolds. A spher-
ical pseudo-quaternionic structure is a geometric structure on a (4n + 3)-manifold lo-
cally modelled on the sphere S*"** with coordinate changes lying in the Lorentz group
PSp(n + 1,1). Here PSp(n + 1,1) is isomorphic to the isometry group Iso(Hg*') of
the quaternionic hyperbolic space Hi™' where F stands for the noncommutative field
of quaternions. The space H{;“ has the projective compactification whose boundary is
the sphere S***3 on which PSp(n + 1,1) acts as projective transformations. The pair
(PSp(n +1,1), 54*3) is said to be spherical pseudo-quaternionic geometry (cf. [20], [5]).
A (4n + 3)-manifold locally modelled on this geometry is said to be a spherical pseudo-
quaternionic manifold.

In this paper we shall classify compact spherical pseudo-quaternionic manifolds with
amenable holonomy groups, and show a geometric rigidity of compact spherical pseudo-
quaternionic manifolds with quaternionic hyperbolic fundamental groups. Given a pseudo-
quaternionic structure on M, we have a holonomy representation

p:m(M)—=PSp(n+1,1).

As a spherical pseudo-quaternionic structure, the sphere with one point removed, S4**3 —
{0}, is identified with the Heisenberg nilpotent Lie group M. Here M lies in the
central extension 1—-R*—+M — F*—1 for which F* is the n-dimensional quaternionic
vector space (cf. §1). Let Sim(M) be the subgroup of PSp(n + 1,1) whose elements
leave M invariant (equivalently, each element stabilizes the point at infinity oo ). The
automorphism group Sim (M) is isomorphic to the semidirect product M x (Sp(n)-Sp(1) x
R*). Recall that an amenable closed subgroup of PSp(n+1, 1) is conjugate to a subgroup
of either Sim(M) or a maximal compact subgroup Sp(n + 1) - Sp(1). We obtain the
following classification concerning amenable groups (e.g., virtually solvable groups).
Theorem A. Let M be a compact spherical pseudo-quaternionic (4n + 3)-manifold.
If the holonomy group is amenable, then M is the spherical space form S*"*3/F, an
infraHopf manifold S* x S**2/F or an infranilmanifold M/T.

A typical example of spherical pseudo-quaternioinic manifolds is a compact locally ho-
mogeneous space M. That is, the group Autpg(M) of spherical pseudo-quaternionic

1991 Mathematics Subject Classification. Primary 57525, 51M10; Secondary 53C25.
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transformations of the universal covering space M acts transitively on M. More specif-
ically, let §4"+3 — §4m-1 he the sphere complement where S*™~! is the boundary of
the quaternionic hyperbolic space HI*. Then the subgroup Sp(m,1) - Sp(n — m + 1) of
PSp(n + 1,1) acts transitively on S5*"** — §4m~1 with stabilizer isomorphic to the com-
pact subgroup. We have the compact locally homogeneous spherical pseudo-quaternionic
manifold

Sp(m) X ASp(l) X Sp(n - m)\Sp(m, ]_) . Sp(n —m+ 1)/7[. — S4n+3 _ S4m_1/ﬂ',

where 1 £ m < n and the fundamental group is isomorphic to a discrete uniform subgroup
of PSp(m, 1). (Compare §1.) Applying the Corlette’s superrigidity [10] to the case of the
isometry group PSp(n,1) (n 2 2), we obtain the following geometric rigidity concerning
quaternionic hyperbolic groups.

Theorem B. Let M be a compact spherical pseudo-quaternionic (4n + 3)-manifold
whose fundamental group m (M) is isomorphic to a discrete uniform subgroup of PSp(m, 1)
for some m where 2 £ m < n. Then M is pseudo-quaternionically isomorphic to the

locally homogeneous space
Sp(m) x ASp(1) x Sp(n — m)\Sp(m,1) - Sp(n —m +1)/T

where m =2,--- ,n.

Our method to prove the above theorems is to study a Carnot-Carathéodory structure on
spherical pseudo-quaternionic manifolds. A quaternionic Carnot-Carathéodory structure
on a (4n + 3)-manifold M consists of a nondegenerate codimension 3 subbundle B of the
tangent bundle TM endowed with a family of local complex structures {I, J, K’} forming
a quaternionic structure on B. By the definition, B satisfies Hérmander’s condition so
that the pair (M, B) will be a Carnot-Carathéodory manifold (cf. [33], [35]). The triad
(M,B,{I,J,K}) is said to be a quaternionic Carnot-Carathéodory manifold. (Compare
§2.) Corresponding to the fundamental fact in spherical Cauchy-Riemann geometry (5],
we shall exhibit the following quaternionic structure on the standard sphere S*"*3 in §2.

Proposition C.  If Autqcc(S*+?) is the group of all quaternionic Carnot-Carathéodory
transformations of S***3 for the structure (Null 0,{I,J, K}), then

Athcc(S4n+3) = PSp(n +1, 1).

That is, the spherical pseudo-quaternionic geometry (PSp(n+1,1), S**3) coincides with
the geometry obtained from the quaternionic Carnot-Carathéodory structure.

By this proposition, a spherical pseudo-quaternionic (4n + 3)-manifold M will be
a quaternionic Carnot-Carathéodory manifold. For example, the quaternionic Carnot-
Carathéodory structure (B, {I, J, K'}) restricted to the domain $*"+* — 54~1 is mapped
isometrically onto the quaternionic hyperbolic geometry (PSp(n, 1), H§) at each point of
S4nt+3 _ g4n-1 and has the automorphism group Autqcc(S***2 — S4"=1) = Sp(n, 1)-Sp(1).
Also there is an induced quaternionic Carnot-Carathéodory structure (B, {I,J, K}) on
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M for which we see that the Carnot-Carathéodory metric on B plays the same role as
the euclidean metric on F*. (See §3.) The detail of this paper will appear in [22].

1. SPHERICAL PSEUDO-QUATERNIONIC GEOMETRY
Let F*+2 denote the quaternionic vector space, equipped with the Hermitian form
B(z,w) = —lei + Zows + < ZpaoWnga
Consider the following subspaces in F*** — {0}:
VT = {7 € 2| B(z,2) =0}, V™8 = {z e F"*?| B(z,2) < 0}.

Let P : F*t2 — {0}—FP"*! be the canonical projection onto the quaternionic projective
space. By definition [7], the quaternionic hyperbolic space HZ+! is defined to be P(V"*8),
Let GL(n + 2,F) be the group of all invertible (n +2) X (n + 2)-matrices with quaternion
entries. The group Sp(n + 1,1) is the subgroup of GL(n + 2,F) whose elements preserve
the form B. The action of Sp(n+1,1) on V***8 induces an action on Hg™*. The kernel of
this action is the center Z/2 = {£1} and the quaternionic hyperbolic group PSp(n+1,1)
is defined to be the quotient of Sp(n + 1,1) by the center. It is known that Ht is a
complete simply connected Riemannian manifold of —1 < sectional curvature < —%, and
with the group of isometries PSp(n +1,1) (cf. [26]).

The projective compactification of HZ ! is obtained by taking the closure Hy* of Hz*
in FP™!. Then it follows that 2! = HZ*' U P(V{"*"). The boundary P(V;"*")
of H*! is the standard sphere of dimension 4n + 3. Put P(V#"*7) = §4+3. Then
the hyperbolic action of PSp(n + 1,1) on HZ*™! extends to a smooth action on S*+3
acting as projective transformations because the compactification Hpt! US43 sits inside
FP™!. The action of PSp(n + 1,1) is transitive on S***> whose stabilizer at infinity co
is isomorphic to Sim(M). (Compare 1.2.) We then call the pair (PSp(n + 1,1), 5**3)
spherical pseudo-quaternionic geometry. Notice that the same construction for the real
(resp. complex) hyperbolic space is referred to conformally flat geometry (PO(n,1),5™),
(resp. spherical CR-geometry (PU(n +1,1),5%**)) (cf. [12], [5]). Let M be a smooth
manifold of dimension 4n+ 3. Suppose that {U,, ¢a}aca is a maximal collection of charts
of M satisfying that

M= A Us, o : Us—=0a(Us) (C S*"+3) is 2 homeomorphism, and if U, N Up # 0,
[e3
then the coordinate change gas = ¢ © #5" extends to an element of PSp(n + 1, 1).

Such a collection of charts is said to give a uniformization on M. An equivalence class
of uniformizations (by refinement) is called a spherical pseudo-quaternionic structure on
M. A manifold equipped with this structure is said to be a spherical pseudo-quaternionic
manifold M. Denote by Autpq(M) the group of spherical pseudo-quaternionic trans-
formations of M. Using a uniformization on M (cf. [29]), there is a developing pair:
(p,dev) : (Autpq(M ), M)—(PSp(n + 1, 1), S**3) where M is the universal covering
space of M and m (M) C Autpg(M).
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Let P : (Sp(n+1,1), VA"t U V") — (PSp(n+1, 1), HE ! US*+3) be the equivariant
projection. If {oo} is the point at infinity of S*"*3, then the stabilizer PSp(n + 1,1)
is a noncompact maximal amenable Lie subgroup of PSp(n + 1,1). Let {e1, - ,ena}
be the standard basis of F"*? with respect to the Hermitian form B, i.e., B(ej,e;) =
~1, Blei,e;) = 055 (1,5 = 2,---n+2), Bler,e;) =0 (j = 2,---n+ 2). Since V;"* is
a cone, we can assume that the inverse image P~!(co) consists of a quaternionic line
passing through the vector f; = (e; + €n42)/V2 (that is, P(f1) = o0). If H is a subgroup
of Sp(n + 1,1) which leaves f; invariant, then PH is isomorphic to PSp(n +1,1)s. Put
fate = (e1 — eny2)/V2. Now each element g of H has the following form with respect to
the basis {fi,€2, -+, €n+1, fur2}:

AT oz

g=|0 B y

0 0 u
where A, 4 € F*, B is an (n,n)-matrix, z is an n-th line vector, and y is an n-th column
vector. As B(gz, gw) = B(z, w) for arbitrary z,w € F"*2, we have the following relations

(cE. [7]).
(%) Au=1, z=MNyB, zZu+pz=[y|>, B € Sp(n).

Let M be the subgroup consisting of the following fnatrices;

1z 2
01 y
0 01
2
satisfying that Re z = l—yél—, z = *j. Note that this follows from (). Putting
N
z="—+1ia+j0+ kv,

there is a one-to-one correspondence between the product R® x F* and M:

1t 2 ria+ B+ ky
(e B,7),y)=| 0 1 y
00 1

Then the one-to-one correspondence gives a group law on the product R® x F*. As a
consequence, M is the product R® x F* with group law:

(a,y)-(b,z)=(a+b+Im<y,z>,y+z).

Here < > is the Hermitian inner product and Im < > is the imaginary part. M is
nilpotent because [M, M] = R® which is the center consisting of the form ((c, 3,7),0). M
is called the Heisenberg nilpotent Lie group. (Compare [12].) Moreover H is isomorphic to
the semidirect product M x (Sp(n) xF*). We define the subgroup Sim(AM) of PSp(n+1, 1)
to be PH = PSp(n + 1,1)s. Then Sim(M) is isomorphic to the semidirect product
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M % (Sp(n) - Sp(1) x R*). The action of Sp(n) - Sp(1) x Rt on M is given as follows: if
(A-g,t) € Sp(n) - Sp(1) x R* and (a,y) € M, then

(A-g,t)o(a,y) = (t* - gag™, t- Ayg™").

Choosing zo = [0,---,0,1] = P(fat2) € 5*"*3 — {c0}, M acts simply transitively on
St — {00} by p(g) = gzo for g € M. S*+3 — {00} is identified with M as a spherical
pseudo-quaternionic structure. The pair (Sim(M), M) is called quaternionic Heisenberg
geometry. '

Choosing a torsionfree discrete cocompact subgroup I' from M x (Sp(n)-Sp(1)), we have
a principal fibration of an infranilmanifold as a compact spherical pseudo-quaternionic
manifold;
(z) T*M/T—F /T

where T* is the 3-torus and F*/I" (' € E(n) = F* x (Sp(n) - Sp(1)) is the quaternionic
euclidean flat orbifold.

Let M — {0}(= §*"*3 — {0,00}) & R x S*"*2, Then it follows that (cf. [20])

Autpg(R* x §4"*%) = (0(1,1)° x Z/2) x (O(3) x Sp(n) - Sp(1)).

Choosing a torsion free discrete cocompact subgroup A of Sp(n) - Sp(1) x R* we obtain
an infraHopf manifold '
(’LZ) Rt x S4n+2/A ~ Sl X S4n+2/G,
where G is a finite subgroup of Autpq(S* x 54"+2) = (S x Z/2) x (O(3) x Sp(n) - Sp(1)).

In particular, the Hopf manifold S* x S%+2 is a spherical pseudo-quaternionic manifold.
Since there is an orientation reversing involution 7 in

Auth(S4"+3 - {0, OO}) = Auth(R+ X S4n+2),

we can perform an operation of the connected sum which is closed under the spherical
pseudo-quaternionic structures. Similarly to the conformal, C' R-cases (cf. [29]), we obtain
that

Proposition 1.1. Let My, M, be spherical pseudo-quaternionic manifolds. Then the

connected sum My# M, supports a spherical pseudo-quaternionic structure.

Let VA+? = {z € F**! — {0}| B(z,2) = —1} be another quadric in F*+!. In the
quaternion case, the group GL(n+1,F) is acting on F**! from the left and F* = GL(1,F)
acting as the scalar multiplications from the right. We have the following equivariant
Hopf bundle over the quaternionic projective space FP".

(R* -F*,F*)=(GL(n + 1,F) - F*,F*** — {0})=(PGL(n + 1, F), FP").

It is known that V**® is a simply connected geodesically complete semi-Riemannian
manifold of type (3,4n) with constant curvature —1 (cf. [30]), and by the definition, the
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image P(V*73) = H is a quaternionic hyperbolic space of dimension 4n. We give exam-
ples of compact spherical pseudo-quaternionic manifolds which are locally homogeneous
spaces. Let $4"+3 — §4m~1 be the sphere complement (1 £ m < n), which is isomorphic
to the quotient space P(V4M+3 x §4(n=m)+3) by chasing the equivariant principal bundle:

(Z/2,5p(1))
!
(G, V_‘-lrln+3 % S4(n—m)+3)

1P h

(PG, P(VAm+3 x gin-m)+3)) = G4nd3 _ gim=1 C Fpntl,
where
G = Sp(m,1) x Sp(n —m + 1) £, Sp(m,1) - Sp(n — m + 1).

If Autpg (53 — §%m=1) is the subgroup of PSp(n + 1,1) preserving S*"~*, then it is
isomorphic to PG = Sp(m, 1) - Sp(n — m +1). Let

ASp(1) ={<3 1,(,3 ) , (3 In_: )}/{:!:1} C Sp(m,1)-Sp(n —m +1).

Then Sp(m) x ASp(1) x Sp(n — m)\Sp(m, 1) - Sp(n — m + 1) = §***3 — §*™~1, which is
a Riemannian homogeneous space because the stabilizer Sp(m) x ASp(1) x Sp(n —m) is
compact. Choosing a torsionfree discrete uniform subgroup 7 C Sp(m, 1) -Sp(n—m+ 1),
we obtain a compact locally homogeneous spherical pseudo-quaternionic manifold Gant3
S4m=1/7 As 7 is mapped isomorphically onto a torsionfree discrete uniform subgroup
T c PSp(m, 1), there is a fiber bundle over the quaternionic hyperbolic manifold Hz /T

(i34) Sin—m+3_,y gints _ gamt fr—sHy' /T

In particular when m = n, $4+3 — §4n=1 = P(V41+3 x §3) = V41*+3. There is a principal

bundle over the compact quaternionic hyperbolic manifold: Sp(1)—V*3*3 /7 —Hg /T.

1.2. Proper action of subgroups of PSp(n + 1,1). For our later use, we prove the
existence of proper actions of connected Lie groups on the sphere complement which is
not homogeneous. Let (Sim(M), M) be the Heisenberg geometry for which Sim(M) =
M x (Sp(n) - Sp(1) x R*). There is the equivariant principal bundle:

R®—(Sim(M), M) - (Sim(F"),F*).

The subgroup Sp(n) - Sp(1) acts on F* by A-g(z) = A-z-g~'. Given an R-vector
subspace V of F”, denote by Sp(V') the subgroup of Sp(n)-Sp(1) leaving V invariant. Put
G = v}V % (Sp(V) x R*)). Then G is a closed subgroup of Sim(M) which preserves
the subspace v~}(V) = R® x V. Note that N’ = v~}(V) is also a nilpotent subgroup of



GEOMETRIC SUPERRIGIDITY OF SPHERICAL PSEUDO-QUATERNIONIC MANIFOLDS 117

M. Suppose that dim V = k. As G stabilizes the point at infinity {co}, G preserves the
(k + 3)-sphere S¥+3 = (R® x V) U {co}. Moreover, G leaves invariant

M-RxV=MU{0} =R x VU{co} = 4"+ — §k+3,

Let X be the universal covering space of S4+3 — Sk+3,

Lemma 1.2. Suppose that V # .
(1) G acts properly on S+3 — Gk+3,
(2) There is a G-invariant complete Riemannian metric on S*"+3 — Sk+3,
(3) Given a discontinuous subgroup I' of G, let (f‘, X) be any lift of the action
(T, S4n+3 — S¥+3) 19 X. Then no such group T' acts properly discontinuously with
compact quotient X/T.

Proof. (1) Let K be a compact subset of S*"*3 — S¥*3_ We prove that the subset of G,
(c(K) ={g € G| gKkNK # 0}, is compact. There is an equivariant fibration:

R —(G, §4+3 — S*+3) 2 (V x (Sp(V) x RT), $** — S¥),

where S¥ = VU{oco}. Put G =V x (Sp(V) x R*). Let Conf(S*") = PO(4n+1,1) be the
group of conformal transformations of $*. If Conf(S5*", S*) is the subgroup of Conf(S**)
preserving S¥, then we have

(Conf(S*", 5¥), §% — S¥) = (PO(k +1,1) x O(dn — k), HE! x S4»=*-1)

where the product PO(k + 1,1) x O(4n — k) acts as isometries. (Compare [19].) Since G
is a closed similarity subgroup of PO(k+1,1) x O(4n — k), G acts properly on S*» — S¥.
Let {g;} be a sequence in {c(K). Given a sequence {z;} € K with limz; = x, suppose
that lim g;z; = y for some y € K. Since limv(g;)v(z;) = v(y), there is an element h € G
such that limv(g;) = h. As R®*—G - G is a principal fibration with contractible fiber,
we choose a section s : G—G. In particular, lims(v(g;)) = s(h). Let s(h) = ¢’ so that
lim s(v(g;))z; = g'z. Since there is a sequence {t;} € R? for which t; - s(v(g:)) = gi, we
have lim¢; - s(v(g:))z; = y. As R3 acts properly, there is an element ¢+ € R® such that
limt; = t. Hence limg; = lim¢; - s(v(g:)) =t - ¢'.

(2) There exists a G-invariant Riemannian metric g on $***% — §¥*3 by (1). (Compare
[28].) We prove that g is complete. Let d be the distance function on S**3 — §¥+3 and
{n}nen a Cauchy sequence in S***+3 — S¥+3. Take a simply connected closed subgroup
v YV x RY) = (R® x V) x R* acting freely on S4*3 — S¥+3_ Moreover, the solvable
subgroup V x Rt (C Sim(V)°) acts simply transitively on HE'', the above fibration
induces the following fibration:

(]R3 X V) x Rt _)S4n+3 _ Sk+3 L) S4n—k—1.
Then the sequence {u(z,)} has an accumulation point z € S*~*=1. Choose z € S**3 —

SF+3 such that p(2) = 2. Let K be a compact neighborhood of Z in S*n+3 — Gk+3,
There is a number £ > 0 such that the e-ball B.(Z) centered at Z is contained in K. As
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lim u(z,) = 2 € p(K), there exists a sufficiently large L such that p(z,) € u(Bg(2)) for
n 2 L. Choose {z,} € Be (%) with p(Zn) = p(z,) for n 2 L. Then there is a sequence
{sn} € (R® x V) x R* such that z, = s, 2, for n = L. As {z,} is Cauchy, there
exists an M > L such that d(zm,z,) < g for m,n 2 M. In particular, d(zp,z,) =

d(sar - 2y 80 2n) < % As d(z,,2) < g forn 2 M,

d(s;tsar%,2) = d(sy - 2,802)
S d(sm-Z,sm - Zm) + d(spr - Zar,y SnZn) + d(SpZn, SnZ)

= d(f, PZM) + d(:EM,:L‘n) + d(in, 2) <e.

Therefore s;sp-z € K for n 2 M. By properness of (R® x V) x R, we have lim s, s =
s' or lims, = sys'™'. As {%,} € K and K is compact, there is a point w € K with
lim Z, = w up to a subsequence. Then,

limz, = lims, - %, = sy " - w.
Hence S47+3 — S%+3 is complete.
(3) If k # 4n — 2, then X = S**3 — Sk+3. The action (T, X) coincides with the
action (T, S*+3 — S%+3). Since G acts properly on S — S¥ = HEF x §4—*-1 and
transitively on HE™, the quotient S** — S*/G is compact Hausdorff. Noting the fibration
that G/T—X/T—X/G = §*" — S%/@G, if X/T is compact, then ' is a discrete uniform
subgroup of G. On the other hand, G has the exact sequence

1-R® x V=G -5 Sp(V) x R*

in which ' = R* x V C M is a maximal normal nilpotent Lie subgroup of G. If
A =TNN, then A is a discrete uniform subgroup of . (See [38].) Thus 7(I') is discrete
and cocompact in Sp(V) x R*. Since R acts as contraction or expansion on N' C M
(acts by different scale factors as in (1.1)), so does 7(I') on A. Hence A cannot be discrete
in AV, being a contradiction.

Suppose that k = 4n—2. Then V =F"~! xR? C F". So, the group Sp(V) is isomorphic
to Sp(n — 1) - SO(2) where SO(2) is a circle of Sp(1). Then the equivariant fibration of
(1) induces the following:

R*—(G, X) = (V = (Sp(n — 1) x R x R"),Hi*! x R),
where Z—R—SO(2) is a covering group. As again the quotient space
X/G =H"t x R/V x (Sp(n — 1) x R x RY) = §% — §4-2/G

is compact Hausdorff. If X/ [ is compact, then the fibration implies that I is a discrete
uniform subgroup of G. Since G has the group extension 1—R3 x V—G — Sp(n —1) x
R x R*—1 in which A = R® x V is a maximal normal nilpotent Lie subgroup of G. Thus
the intersection N N T is a discrete uniform subgroup of A”. The same argument yields a
contradiction. Therefore there is no discrete cocompact subgroup I' of G. a
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It is easy to see that the closed connected abelian subgroups of M are only R® = (R3,0),
R* = (0,R*) or R® x R* up to conjugacy. The subgroup of Sim(M) leaving invariant R"
is isomorphic to the subgroup Sim(R*)? = R™ x (SO(n) x R*). When we take V as the
abelian group R*, G = R® x Sim(R")° which leaves invariant R® x R" and also S™+3.

Corollary 1.3. The group G acts properly on M—R3xR* = §4+3_5n+3 " In particular,
Sim(R™) acts properly on it.

Recall that a proper totally geodesic subspace in Hp™ is isometric to H? (K = R, C
or F, 1 < m £ n), or Hgt', HE™, or a 3-dimensional (hyperbolic) subspace H (I) (which
is orthogonal to Hy in H}). (Compare [7].) In order to construct a non-homogeneous but
compact example, we need the following.

Proposition 1.4. (1) The subgroup of PSp(n + 1,1) preserving Hg*' in HR ™ is iso-
morphic to PO(n + 1,1) x SO(3), which also preserves S™ in S4"+3,
(2) PO(n+1,1) acts properly on S*+3 — Sn,

(8) There is a complete Riemannian metric on S*+3 — S™ invariant under
PO(n +1,1) x SO(3).

(1) follows from the result of [7]; the subgroup of Sp(n + 1,1) which preserves Hp**
is isomorphic to O(n + 1,1) - Sp(1). As before if Conf(S*"+3 S") is the subgroup of
Conf(S*"*3) preserving S™ = 0Hg™, then

(Conf(S%m+3, 5m), §4+3 — §") = (PO(n + 1,1) x O(3n + 3), H*' x 5%*+2) (cf. [19]).

We have an isometric action of PO(n +1,1) on S*"*3 — S". However it is noted that the
above action of (2) on $"*3 — S is different from this isometric action.

Proof. (2) Since R"U{oo} = S™ C MU{oc} = §*"*3 note that S4"+3 — 5" = M —R".
Moreover PO(n + 1,1) = O(n + 1) - Sim(R*). It suffices to check that Sim(R") acts
properly on M — R*. Let K be a compact set of M — R" and (simmn)(K) = {g €
Sim(R*) | gK N K # 0}. Let {g;} be a sequence in (simwn)(K). Given a sequence
{p;} € K with limp; = p, suppose that limg;p; = ¢ for some ¢ € K. There is the
fibration: R®*—+M — R® x R* -5 F* — R™ as above.

Case I. Suppose that an infinite number of points {p;} satisfy that v(p;) € R*. Then we
have v(p) € R*. Recall that an element g of Sim(R") has the form:

g=(0,z) - (B,1).

(7)o

For
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a t?a t?a+Im < z,tBz >
g =(0,z) - = :
z tBz T +tBz
Q. (63 .
Zi ) z

In our case, z;, 2z € R*. Note that a # 0 = (0,0,0) because p € K. In particular we have
that lima; ! = @~!. In the sequence

g (o7 _ t?ai +1Im < z;,t:B;z; > g = Ot,/ ’
Z; T; + t;B;z; z

since Im < z;, t; B;z; >= 0, this reduces to

I t?a,-
9ipi = T; + t;B;z; ’

It follows that limt?a; = o/. Then t? = t? - || - |oj'|—>|c/| - |@}|. Thus we assume
that lim¢; =t < 0o. As limz; + ¢;B;z; = 2/, lim2z; = z and B; € SO(n), we obtain that
limz; = z for some z € R* (up to a subsequence). Assume lim B; = B € SO(n). Then it
follows that

we have

Let

limg; = lim (0, z;) - (B;, ;) = (0,z) - (B,t) € Sim(R").

This proves Case L.

Case II. Suppose that an infinite number of points {p;} satisfy that v(p;) € F* — R® but
v(p) € R*. For the point p;, put z; = y; + Im(2;) where y; = Re(z). As v(p;) = 2
converges to v(p) = z, it follows that limy; = z and limIm(z;) = 0. Put

v Bi [ a—Im<y;,z >
Pr=\ () |~ Im(z) '

As Im < y;, 2z >=< y;,Im(z;) > —0, limp;' = (e, 0). Since a # 0, we may assume that
B; # 0 for infinitely many i. We have lim|3;|~! = |a|™%. Let Ly, = (0,y;)- (I, 1) € Sim(R*)
be the translation. Then limL,, = (0,2) - (I,1) = L, € Sim(R"). Consider, the sequence
{gio Ly} € Sim(R"). Then,

o; —Im <y, 2 >+ <y, Im(z) > o;
. L ; ‘, = N : i ’ = . = . _) .
gio Ly (pi) = g ( s + T (z) A giPi—q

On the other hand, g; o Ly, = (0,%;) - (Bi,t:) o (0,%:) = (0,2; + t;B;y;) - (Bi,t;). Put
gi © Lyi = (0, ’w,') . (Bi,ti). Then

t2. i+<wi,tiB,-Im z;) >
gioLyxp/):( b = )

w; + tiBiIm(zi)
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It follows that
lim Re(w; + t;B;Im(z;)) = Re(2'), i.e., w;—Re(2").
Similarly, Im(w; + t;B;Im(2;)) = t; B;Im(z;)—Im(z'). Therefore,
lim < w;, t;B;Im(2;) >=< Re(z'),Im(2") > .

Since lim(#2 - Bi+ < w;, t;B;Im(z;) >) = o,

=216 67 S (j&/| + | <Re(2),Im(z) > |) - o] + 1.
Thus, {¢;} is bounded. Let lim¢; =t (up to a subsequence). As

gio Ly, = (0,w;) - (Bi, t:)—(0,Re(2)) - (B, 1),

and L,,—L,,

limg; =limg; o Ly, o L' = (0,Re(z")) - (B,t) o L;* € Sim(R™").

So {g;} converges.
Case II1. Suppose that an infinite number of points {p;} satisfy that v(p;) € F* —R™ and
v(p) € F* — R". Then Im(z) = Im(v(p)) # 0. Recall

t?ai +Im < z;,t:;B;z; >
9ibi = ( z; + tiBiz{ ) )
If 2; + t;B;z; € R*, then v(p;) = z; € R*. In our case g;p; € M —R3 xR*.

If limg;p; = ¢ € M — R3 x R, then all points {p;,p,9ipi,q} € M - R x R* =
G4nt3 _ gn+3 By Corollary 4, Sim(R") acts properly on M — R3 x R*. It follows that
lim g; = g € Sim(R").

We show that ¢ does not lie in R® x R*. Suppose that ¢ € R x R*. Then 2’ € R" or
Im(2") =0. Asg€ K C M—R", & # 0. Since g;p;—>q, note that t?a;+Im < z;,t;B;z; >
—so and z; + t;B;z;—2'. It follows that Im(z; + t;B;2;) = t;B;Im(2;)—Im(2’) = 0.
Then, lim |¢;B;Im(z;)| = lim¢;|Im(z;)| = 0. On the other hand, v(p;) = zi—v(p) = 2,
so limIm(z;) = Im(z) # 0 by our case. Thus lim|Im(z;)|™! = [Im(2)|™*. Therefore,
lim¢; = lim#;|Im(2;)] - Im(2;)| ™! = 0 - |Im(z)|~* = 0. Moreover,

i

|z:| |z; + t;Biz; — t; Bz

|.Ti + tiBiZil + tilzil

A A

|2 4+0-]z| + 1= || + 1.
So {z;} is bounded, let limz; = 2. Then
t?ai +Im < z;,t:;B;z; >= tfai+ < Zj, t,-BiIm(zi) >-—0-a+<z,0>=0.

This contradicts that t2c; + Im < z;,¢;B;z; > — ¢/ # 0 as above.

(3) There exist a PO(n + 1,1) x SO(3)-invariant Riemannian metric g on S***3 — §*
by (2) and a principal fibration R? x Rt —$4+3 — §n £y G4nt3 _ Gn/Rn 5« R, Since
Sint3 _ Sn ~ HEF! x S topologically and R* x R* C Sim(R*) is a transitive subgroup
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of HE*!, S4n+3 — Sn/R* x R* is compact (which is homeomorphic to S3*2). Then as in

the argument of (2) of Lemma 1.2, we can prove that g is complete. a
The argument of Proposition 1.4 can be applied to the complex case, which yields the

following.

Corollary 1.5. (1) The subgroup of PSp(n+1,1) preserving HE! in HE* is isomorphic

to
P(U(n+1,1)- SY{£1,+5}) ~ U(n+1,1) x {£1},

which preserves also S?"t! in S4n+3,

(2) Put H = P(U(n+1,1) - SY{£1,435}). Then H acts properly on S*+3 — §2n+l,
Moreover, S4t3 — S+ gdmits a H-invariant complete Riemannian metric.

(3) There is a compact spherical pseudo-quaternionic manifold S*"*3 — S™/T" for which
S4nt3 _ §n s not homogeneous but T is a discrete uniform subgroup of
PO(n + 1,1). Similarly for a discrete uniform subgroup of U(n + 1,1), the quo-
tient space S4"3 — ST is a compact locally non-homogeneous spherical pseudo-

quaternionic manifold.

2. QUATERNIONIC CARNOT-CARATHEODORY STRUCTURE

2.1. Sasakian 3-structure on $**3. Recall the construction of Sasakian 3-structure
on S*+3. (Compare [41].) Denote by < , > the Hermitian inner product over F**!,
which is invariant under the standard quaternionic structure {I,J, K}. Let <, >, be
the inner product on T,F"*! obtained from the parallel translation of the inner product
<, >o=<, > at the origin of F**!. Letting g,(X,Y) = Re < X,Y >, for X, Y €
T,F"*1, g is the standard euclidean metric on F**! which is invariant under {I, J, K}.
Let S***3 be the unit sphere in F**1. The restriction of g to S*+® gives the spherical
Riemannian metric on S***3. There exists a normal vector field N on S*+3 such that
TS4n+3 @ N = T]Fn+1 IS4n+3' Put

& =IN, &=JN, &=KN.

Then the subspace generated by {;}i=123 with N forms the tangent plane TF* in TF**'.
Since g(&1, N) = Re < IN, N >= 0, similarly for J, K, the subspace {{;}i=1,2;3 belongs to
TS%+3, The full set (S*"*3, g, {&1, &2, &}, {1, J, K'}) is said to be the canonical Sasakian 3-
structure on S***3. Tt is easy to check that the isometry group Iso(S5*"+3, ¢)° is isomorphic
to Sp(n + 1) - Sp(1).

Identify Im F = Ri+Rj +Rk with the Lie algebra sp(1) of Sp(1). Put w;(X) = g(&, X).
Then w; is a (real valued) 1-form on S$*"+3. Define an sp(1)-valued 1-form w on S**3 to
be

Ww(X) = w (X)i 4+ we(X)F + ws(X)k.
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A direct calculation shows that for X,Y € TS4+3
(%) dw(X,Y) =g(X,IY)i+ g(X,JY)j + 9(X, KY)k.

If R, : S¥+355%+3 is the right translation defined by R,(z) = z - a~! for a € Sp(1),
then w satisfies that Riw =a- 0 -a (cf. [42]). Thus w turns out to be a connection form
of the Hopf bundle: )

Sp(1)—S***3 2 FP".
Put
B={XeTS"3|w(X)=0fori=1, 2, 3}.

Since g|B x B is invariant under {I, J, K}, B is a 4n-dimensional invariant subbundle of
TS*+3 such that

B®{&,6,&) =TS
By (), we have [B, B] = {£,&2,&3} so that B is a Carnot-Carathéodory structure on
S4nt3 (cf. [33]).

Lemma 2.1.  [l](nondegenerate): Let dw A dw = dw®. The form w satisfies that

n times

rmm— e
WAwAwAdWEA - Adw? # 0 at every point of S4"3.

[2](integrable): There ezist quaternion-valued one-forms w® (a = 1,...,n) on S*+3
such that

dw = —-;-654;(0& Aw?  (mod w).

Proof. [1] If w = wi% + wyj + w3k, then the three-form w A w A w and the four-form
dw A dw are real valued;

(1) W = —6wy A wo A ws, dwz = —(dwl A dw; + dwy A dwy + dws A dw;;)

Choose an orthonormal vector field X, (¢ =1,...,n) from B with respect to g so that
{Xo, I Xo,JXa, KXs}a=1,. n forms a basis of B. Then the nonzero terms are

dwi(Xo,IXa) = dwi(JXa, KXa) = dwp(Xa, JXa) = dwa(K Xa, 1Xa)
= dwg(Xa,KXa) = dw3(JXa,KXa) = -1,
and 50 dw?(Xa, [ X, JXo, KXa) = —%. Then a calculation shows that

(2p)! - 2%
(4p)!

1 .
and w; A wy A ws(&,&2,&3) = 5 It is easy to see that w® A dw? is a positive constant.

dw? (X1, IX1, JX1, KX1;. .. 3 Xny IXn, T X0, KX,,) =
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[2] Choose a coframe 6* with 8*(X;) = 0§ (o, 6=1,... ,n). Put

gotn — —6°o I, 9a+2n = —0%o J, 6a+3n =_—0%0 K,
and define a quaternion-valued one-form w, to be w® = §% 4 o744 got2nj 4 go+dng As
B®{£,£,6,N} = BOTF! = TF*!|S%+3 we have that <, > |B=Tw*®w®. If we
note g(X,Y) = Re < X,Y >, then each dw(X,Y) = g(X,IY), dw(X,Y) = ¢g(X,JY)
or dws(X,Y) = g(X, KY) represents the imaginary part of Yw*@w*(X,Y) for X,Y € B

respectively. A calculation shows that

dw, = - Z(ga A §otn — gatn A 0a+3n)

(2) dwy, = — Z(ga A G2 _ gatdn o 9&+n)
a

dws = — Z(ea A §ot3n _ gotn A 9a+2n)‘
a

On the other hand,

1 5 1 -
—05 B _ - — +n __ po+2n +3n\ ¢
25agw°‘/\w =3 Ea w¥ Aw® = Ea (Cal st ' GxTm A 0T M)

+ Z(oa A §oF2n _ gotdn p 0a+n)j + Z(aa A §at3n _ gatn A 0a+2n)k.

1
Therefore, we obtain that dw = —3 apw® AwP (mod w). O

2.2. Definition of quaternionic Carnot-Carathéodory structure. From the view-
point of (2.1), we introduce the notion of quaternionic Carnot-Carathéodory structure.
Let M be a smooth (4n + 3)-manifold. Suppose that 8 = (61,627, 03k) is an sp(1)-
valued 1-form on M**3. Here sp(1) is Im F = Ri + Rj + Rk as before. Put ¥ =
—(d912 +doy? + d932) so that ¥ is a 4-form. Suppose that

[i] 61 A0 A 03 AT™ £ 0 at every point of M. In particular,
Null 6= {X € TM | (X) = 0}

is a 4n-dimensional subbundle of T'M.
[ii] Put Null 6 = B. Each fiber B, (z € M) has the structure of an n-dimensional
quaternion vector space. Moreover,
[iii ] B admits an integrable GL(n, F)-structure.
More precisely, we shall explain these [i], [ii], [iii]. In view of Lemma 2.1, the condition [i]
is equivalent to

(1) df =c-6%Ag,56° mod 0,0

The matrix g, is Hermitian, i.e., go5 = gsa = 9ga, and ¢ = £1. The nondegeneracy of the
structure requires that g,z is invertible. As a consequence, B = Null 6 is a codimension
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3 subbundle of TM. The condition [ii] implies the existence of almost complex structures
{Is, Jz, K} on each fiber B, (z € M). Moreover, from the condition [iii] there exist
globally defined complex structures {I, J, K} on B. Let B®F = T + T%! be the
splitting for I. That is, T*® = {X | IX = Xi} and T*° = T%!. Similarly, let B F =
T 4+ T'%! be the splitting for J. Put T%! = T N\ T'"*°. Then,

TH = {X | IX = Xi, JX = Xj, KX = Xk}.

There are coframe fields 6% (a =1,---,n) dual to T%1. The condition [iii] requires that

(2) do® = 0P Aws® — - 6% AP mod 6.

Note 2.2. (1) Notice that the condition [iii] for the case of S*™*3 does not violate the
quaternionic (Kahler) structure on the quaternionic projective space FP". Because the
complez structures {I,J, K} are not compatible with the action of Sp(1), the projection
7 in the Hopf bundle Sp(1)—S5**+3 s FP™ does not induce (almost) complez structure
globally on FP™.

(2) There exist vector fields &1, &2,& on M such that 6(&;) = %,0(&) = 7,0(&) = k. Then,
B & {&1,6,6} =TM as above. ’

To this end, we formulate the following definitions.

Definition 2.3. (1) The pair (8,{I,J, K}) endowed with the conditions [1], [é], [iii] is
called a quaternionic Carnot-Carathéodory Hermitian structure on M.
(2) The pair (B,{I,J,K}) endowed with the conditions [i], [i1], [ii1] is called a quater-
nionic Carnot-Carathéodory structure on M.
Two quaternionic Carnot-Carathéodory Hermitian structures (0, {I, J, K}), (8',{I', J',K"})
represent the same quaternionic Carnot-Carathéodory structure on M if and only if I =
I'''J=J, K=K, ¢ =u-afa™! for some positive function u and some function

a € Sp(1).

A manifold equipped with this structure is called a quaternionic Carnot-Carathéodory
Hermitian manifold (resp. quaternionic Carnot-Carathéodory manifold).

Definition 2.4. A diffeomorphism f : M—M is called a quaternionic Carnot-Carathéodory
transformation if f, preserves B, i.e.,

(i) F*0 = u - aba for some positive function u and a function a lying in Sp(1), (ii) If
a — A under the map Sp(1)— Aut(F) = SO(3), i.e.,

(aga™!,ajat aka™t) = (3, 4, k) A,
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then f satisfies that

fo(&1,62,&) = u? - (61,&2,&) - A(p) (mod B),

at each point p € M. In addition,

(iii) Ifu = 1 and some a € Sp(1) so that f*0 = a-0-3, then f is said to be a quaternionic
Carnot-Carathéodory Hermitian transformation.. Denote Autqec' (M, (6,{I,J,K})) the
group of all quaternionic Carnot-Carathéodory Hermitian transformations of M onto
itself. Similarly, Autqec(M, (B,{I,J,K})) is the group of all quaternionic Carnot-

Carathéodory transformations of M onto itself.

By the definition, we have the quaternionic Carnot-Carathéodory Hermitian structure
(6,{I, J, K}) and the quaternionic Carnot-Carathéodory structure (Null 6,{I, J, K 3
on the sphere S***3. Let (PSp(n + 1,1),5%*3%) be the spherical pseudo-quaternionic

geometry. We prove Proposition C of the introduction.

Proposition 2.5. Let (Null 6, {I, J, K}) be the canonical quaternionic Carnot-Carathéo-
dory structure on S4"+3. Then its geometry coincides with the spherical pseudo-quaternionic

geometry on S4"+3;
(Autqec (843, (Null 6,{1,7,K})), 5*%) = (PSp(n +1,1), 5*+?).
First we need the following lemma.

Lemma 2.6. (i) PSp(n+1,1) C Autqec(S*™+3).

(i) For an arbitrary a € F*, there ezists an element g € Sp(1) x R C PSp(n +1,1)e

such that g*w = X - w - x for some function x : S35 —F* with x(co0) = a™t.

Proof. (i) Let f € PSp(n+1,1) be an element. If £ : Vyi"*"— V" is a lift of f to
Sp(n + 1,1), then f is represented by a matrix A € Sp(n +1,1);

21 21

Zn+2 Zn+42

For brevity, write the form 6 as follows:

0=2"((21,- »Zn42) - Lot : )21

dzn+2
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Here
-1 0 0
0 +1 0
Lins . :
0 0 +1
Then
d21
0 = fED(E- - Zae) AT hing1- A : )Fr (2.
dzn+2
If x¥' : Vi™"F is a smooth map defined by x'(z) = z - f"zl'l for z = (21,... , Znt2),
then by the definition
le
0 = (fzrt 2)E (B Zaee) Tipa : ) (e et
dzny2

— >—</ . é . XI'
On the other hand, for ¢ € F*,

X(z-1) = a(z-1) -7 (fz-1) = (a1 - t) - 21 (f(2) - )™
= (a-t) t7a(f(2) " =2z (Fal) ™ =X(2).
Thus, x' factors through a map x : S**+3—F such that xom = x'. As for =7 o f and
7*6 = 6, we obtain that
ffu=x-w-x
By the definition, f € Autqcc(S*"13).
(ii) Choose g € PSp(n + 1,1) such that A =a, pu=b, B=1, z =y = z = 0 from
(1.1), then g has the form with respect to the basis {ey, ..., en42}:

2 (a+b)z1 + (@ — b)zp42/2
22
§= =
Zn+1 Zn+1
Znt2 (a —b)z1 + (@ + b)zp42/2

On the other hand, ¢g*w = ¥ - w - x from (i) where x(7(2)) = x'(z) = z1 z1(g)™?

2z1((a@ + b)z1 + (@ — b)zps2)™t. As x(00) = X' (f1) = (\/_ 0,. ,75), we have
x(00) = a1, O
Proof of Proposition 2.5. Put H = Autqcc(S*"*%). Without loss of generality, H

is assumed to be connected. We examine the structure of the Lie group H. Let f be a
diffeomorphism in H. By the definition f*w = A -w - A where X : $4+3_F*. First if the
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map Sp(1)— Aut(F) = SO(3) sends A/[A| to 4, then f.(&1,62,6) = [AP(&1,&2,&) - A
(mod B). (See Definition 2.4.) Let Hy, be the stabilizer of H at {co}, which contains
PSp(n+1,1)e. Consider the tangential representation at {oo}, 7 : Heo— Aut(T (o0} S***3).

Given h € Hy with A*w = fi - w - u, suppose that p(oo) = 1. Then h,(¢;,&,&) =
(&1,&2,&3) (mod By) at the point {oo}. Recall the real valued four-form Q = dw A dw.
Since h*dw = fi-dw-p (mod w), we have h*Q = |u|*Q (mod w). Put A, = h,|Bs. Since h,
maps B onto itself, A, € Aut(By) = GL(4n, R). In particular, A" Qe = Qo on Be. Using
the consisting relation (2) for Q, the above formula implies that A, € Sp(n)-Sp(1). Thus,
with respect to the basis w* (o = 1,...,n), there exist (U$) € Sp(n) and b € Sp(1) such

that h""w® = U%-w"-b. Since dw = —% apw® AwP (mod w), we have that h™*dw = b-dw-b
(mod w), which implies b = u(oo) = 1. Hence,

w-(27)

with respect to the basis {&1,&2,&3} and that of By. Here V is a (3,4n)-matrix and
U = (UY). If we denote by M(3,4n) the vector space consisting of (3,4n)-matrices, then
7(h) € M(3,4n) »x Sp(n).

Now suppose that f € Hy and f*w = A -w - A. Put A(oo) = a € F*. From Lemma
2.6, choose g € Sp(1) x R* such that g*w = ¥ “w - x with x(c0) = a~!. Consider
the element f o g € Hy. Since (fog)'w = x-g*A-w- x - g*A (mod w), we have that
X+ §*A\(00) = x(00) - A(g(00)) = 1. Then by the above argument and 7(g) € Sp(1) x R*,
we conclude that

7(Hw) C M(3,4n) x (Sp(n) - Sp(1) x R*).

In particular, Sp(n) - Sp(1) is a maximal compact subgroup of 7(H,). If we note that
T maps compact groups of H,, monomorphically into its image, the maximal compact
subgroup of Hy, is Sp(n) - Sp(1) as well as PSp(n + 1,1) .

Let K be a maximal compact subgroup of H. Since Sp(n + 1) - Sp(1) is the maximal
compact subgroup of PSp(n + 1,1), we have that

Sp(n) - Sp(1) € Sp(n+1)-Sp(1) C K.

As PSp(n+1,1) acts transitively on the simply connected space S*"*3, we have H/H, =

. §4n+3_ In particular, H, is connected. By the structure theorem of connected Lie groups,
the coset space H/K (resp. Huo/Sp(n) - Sp(1)) is diffeomorphic to the euclidean space
R™ (resp. RY) for some m (resp. £). If we note that Sp(n) - Sp(1) = H,, N K, then there
is the fibration:

K/Sp(n) - Sp(1)—H/H,,—R™ /Rt

Hence K/Sp(n) - Sp(1) = S*"*3 and m = £. We obtain that K = Sp(n + 1) - Sp(1).
Let R-S be the decomposition of H where R is the radical, and S is a semisimple Lie
group. If 7 : H—5 is the canonical projection onto the semisimple Lie group S without
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center, then 7 maps PSp(n + 1, 1) isomorphically onto the simple Lie subgroup
7(PSp(n +1,1)) of S. Since 7(K) is a maximal compact subgroup of 5 and

K C PSp(n+1,1), we have 7(PSp(n +1,1)) = S. Therefore H is the semidirect product
R x PSp(n+1,1).

On the other hand, m(H) is a connected subgroup of 7(PSp(n + 1,1)) containing
7(PSp(n + 1,1)s). The classification theorem 4.4.1 of Chen-Greenberg implies that
m(He) = 7(PSp(n + 1,1)s). Putting R' = R N Hy, similarly we have that H, =
R’ % PSp(n+1,1)c. Then '

§*"*3 = H/Hy = R/R' x PSp(n+1,1)/PSp(n +1,1) = R/R' x S***3.

Therefore R = R'. In particular, it follows that R = R. As H = R x PSp(n+1,1) acts
effectively and transitively on S*"+3, this implies that R = {1}. Hence H = PSp(n+1,1).
This completes the proof. O

Corollary 2.7. The canonical quaternionic Carnot-Carathéodory Hermitian structure

coincides with the canonical Sasakian 3-structure on S4n+3,
(Aut(IQCC(S4n+37 (0: {I’ J, K}))a S4n+3) = (Sp(n + 1) - Sp(1)7 S4n+3)‘

Proof. Thereisa I =I;, J = I, K = I3-invariant. Riemannian metric on S***3 defined
by

9(X,Y) = zszei(x) 6:(Y) + ) doi(X, LY).

Since each element of Autgoc(S*™+3, (8, {1, J, K'})) preserves g, Autgoo(S*"3, (6, {1, J, K}))
is a compact group. O

Using the G-structure theory, we have

Corollary 2.8. If a quaternionic Carnot-Carathéodory Hermitian (4n + 3)-manifold M
is compact, then the group Autqec' (M, (8,{I,J,K})) is a Lie group whose dimension is
less than or equal to 2n% +5n+6 (= dim Sp(1)-Sp(n) +dim M). If M is compact, then
Autqect (M, (6, {I,J,K})) is compact.

Proposition 2.9. A spherical pseudo-quaternionic (4n + 3)-manifold M admits a qua-

ternionic Carnot-Carathéodory structure.

Proof. Let B be the canonical quaternionic Carnot-Carathéodory structure on S*+3
where B = Null w. Given a maximal collection of charts {U,, @ }aca of M (cf. §1), for
each chart ¢ : U,—S*"3, we put

B, = ¢:4B1 Wa = d’;w

on U,. (Note that B, = Null w,.) If U, NUs # 0, then g,5 0 ¢, = ¢ for an element
gep € PSp(n +1,1). Since g;3B = B by Proposition 2.5, B, = ¢;B = ¢3,B = Bg on
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U, N Us. The union {B,}aca gives rise to a codimension 3 subbundle B" on M. As
B'|U, = B, is locally equivalent to B (that is, each w, satisfies [1], [2] of Lemma 2.1), B'
is a quaternionic Carnot-Carathéodory structure on M. O

Remark 2.10. (1) On $***+3, we have obtained a globally defined sp(1)-valued one-form
w defining B and three independent vector fields {&;,&,,&3} (equivalently, there exists
the quaternionic structure of complex structures ‘{I ,J, K} on B). In general, a spherical
pseudo-quaternionic manifold M admits a family of sp(1)-valued one-forms w, and three
independent vector fields {£8,£5, €5} locally defined on each U, (equivalently, a quater-
nionic structure {In, Jo, Ko} on each B,). If Uy NUp # 0, then gas 0 ¢o = ¢p With gos €
Autqoc(S4"?), and 50 (gag)« (€1, &2, €3) = u?(€1, &2, &3) - A for some A : U N Up—SO(3).
As (o)« (7,65, €8) = (61,62, &3), we have

&.6.8) =u (€, 6,65) - A7
on U, NUps. So the union E = {£§,£5, €5 }aen defines an SO(3) x R*-bundle over M.

A vector field £ is said to be a quaternionic Carnot-Carathéodory vector field if £ gen-
erates a local one-parameter group {@:}y<c of quaternionic Carnot-Carathéodory trans-
formations of M. That is, for each ¢, ¢; is a quaternionic Carnot-Carathéodory transfor-
mation on a neighborhood.

Proposition 2.11 (cf. [21]). Let (Ba, Ua; {Ias Ja) Ka})aca be a quaternionic Carnot-Cara-
théodory structure on a spherical pseudo-quaternionic manifold M***3, where UB, = B’
defines a Carnot-Carathéodory structure on M. If § is a nonzero quaterm'on;: Carnot-
Carathéodory vector field, then the set {x € M | & € B;} is a codimension 3 regular
submanifold of M.

Proof. Put N = {z € M | { € B.}. Each sp(1)-valued 1-form w, on U, can be
described as

W = (Wa)1? + (Wa)2d + (wa)sk
such that ¢*w; = (wa): (i = 1,2,3). Define a smooth map f, : Us—R® to be

fa(p) = (Wa)p(&) = ((wal)p(fp)a (wa2)p(§p)a (wa3)p(&p))-

As B, = B'|U, = Null w,, NNU, = £71(0). It is sufficient to show that Rank (dfa), = 3
for all p € N NU,. For this, let tc : AY(M)—A*"!(M) be the interior product for each
integer £ (cf. [26] for example). Then we have that t;wa(p) = (wa)p(§p) = fa(p). Since
Lewy = tg - dwa + d - Lgwa, it follows that dfy = Lewa — tedw : TU,—TR®. Let {t¢}51<e
be a local one-parameter group generated by &. By Definition 10, (t¢).(Bs) = Ba for
sufficiently small ¢. If Y, € (Ba)p, then

(@a)p(¥p) = (Wa)wu(e) (1)« (Y5))
t

(L§)pwa(yp) = 1% =0,
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which implies that (dfa),(v) = —(t¢ - dwa)p(v) = —2dwe (€, v) for v € (Ba)p-
Put
v =L, vy =-Jo, v3=-Ko.

Then vy, v, v3 belong to (B,), such that
dwa({:”l) = (17 07 0), dwa(éa’”?) = (0’ 1,0)’ dwa(£7U3) = (0$Oa 1)

For this, as ¢4,0l, = Io¢,, by the definition, dwa{€, v1) = dgiw(€,v1) = dw(Pasé, —IPasl).
On the other hand, from the property () of (2.1) and that g|B’ x B’ is invariant under
I’ J7 K’

dw(ﬁba*fa “I¢a*£) = 9(¢a*€a ¢a*€)i + g(¢a*§a Kd’am&)j + g(¢a*f> _J¢a‘§)k
= g(¢’a*§, ¢a*f)i~

Normalizing if necessary, we obtain that dwe(&,v1) = (1,0,0). Similarly for v, vs.
Therefore f;1(0) is a codimension 3 regular submanifold of U,. If Uy N Up # 0, then
Jap = ¢p 0 ¢5" satisfies that GopW = AwA for some function A : U, N Us—F* by Lemma
2.1. Then,

fo(0) = (wp)p(&) = GaA(®) - fa(P) - B2A(D)-
So f71(0) = f5'(0) on UsNUp. Since N' = agANﬁ Us = A f21(0), NV is a codimension
3 regular submanifold of M. ' m)

3. AMENABLE HOLONOMY AND CLASSIFICATION

3.1. Quaternionic Carnot-Carathéodory structure on Heisenberg manifolds.
Let (Sim(M), M) be the Heisenberg geometry. We study the quaternionic Carnot-
Carathéodory structure (B, {I,J, K}) on M induced from Proposition 2.11. This struc-
ture is obtained from that of S4**3 restricted to S*"*® — {co}. As before, there is the
equivariant principal bundle:

R®—(Sim(M), M) = (Sim(F"),F").

Lemma 3.1. (1) The fiber R® is transverse to B.
(2) The center R® is compatible with {I,J,K}. i.e., t,ol =1Iot, for allt € R3, and
similarly for J, K.

Proof. (1) Let £ be a nontrivial vector field induced by a one-parameter subgroup of
R3. So £ is a quaternionic Carnot-Carathéodory vector field. Suppose that &, € B, for
some point p € M. Since R3 is the center of M, g.&, = &g for all g € M. In particular
we have &, # 0 for all z € M. As B is invariant under the action of M, the subspace
{z € M | & € B} coincides with the whole space M. This contradicts Proposition 2.11.
Thus R® is transversal to B at each point of M.

(2) Recall that

M = 57+ _ Lo} = {[z,y,1]} C FP*"*! (cf. (1.1)).
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Let U = {[z,5,4] |# # 0} be an open subset in FP"*!. Each ¢t € R® satisfies that
tlz,y, p] = [z+tu,y, u). If o : M C U—F*! is a parametrization defined by ¢([z, v, p]) =

(zu™',yp~?t), then the action of R® on M is equivalent to the usual translations of R on
R3 x * C [+1:

ot (w,1)=(w+t,3).

Chasing the commutative diagram;

T,U SELEN T,U SN TyU

g - -
; 1
TPt = Ftl Ly T P+l = ol Lot Ty TP+ = B4,

we obtain that (¢ -t-¢™!), = id and hence t, o I = I ot, for all t € R?, similarly for
J, K. O

Corollary 3.2. Let (B,{I,J, K}) be the induced quaternionic Carnot-Carathéodory struc-
ture on M. Then v induces the standard quaternionic structure {lo, Jo, Ko} on F"i.e.,
v,ol = Iyouv,, etc. In particular, v, maps (B,{I,J, K}) isomorphically onto the tangent
bundle (TF", {Iy, Jo, Ko}) at each point of M. ‘

We recall the properties of dilations on Heisenberg manifolds. Choose a left invariant
metric g on M with the group of isometries E(M) = M x Sp(n) - Sp(1). If we note that
v is a homomorphism of M onto F*, then g induces the standard euclidean metric go
on F*. Corollary 3.2 implies that v, : (B, g, {I,J, K})—=(TF", go, {lo, Jo, Ko}) is a local
isometry at each point of M. As gq is invariant under {Iy, Jo, Ko}, g|B X B is invariant
under {I,J,K}. Let A : Sim(M)—R* be the scale factor homomorphism as well as
Ao : Sim(F*) = F™ x (Sp(n)-Sp(1) x RT)—R*. Since g satisfies that (go)np(heX, hiY) =
Ao(R)? - (90)p(X,Y) for each h € Sim(F"), we have for each o € Sim(M), and X,Y € B,

(*) ' gaz(a*Xy a*Y) = /\(01)2 . gI(X, Y)

Therefore (Sim(M), g|B x B, M) plays the same role as the euclidean similarity geometry.
The similar property holds for (Sim(M), g|TR® x TR®). In fact, if h = ((a, 8,7),2) - (4 -
g,t) € Sim(M), then for w = (w,0) € R* and z € M,

h(w-z) =t*- gwg™" - hx.

Since R? is the normal subgroup of Sim(M), each element of Sim(AM) leaves the subbundle
TR? invariant. Moreover, if {&;,&, &} are the vector fields which generate R3, then
ho((&)z) = t2(Adgé)ne = MR)*(Adg€)ns. As Ad acts as isometries with respect to g, we
have that for X,Y € TRE,

(%) ghe(ha X, BY) = MR)* - g-(X, V).
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Denote by F the frame bundle on M generated by {£;, &, &3} Since F+ = B with respect
to g and B is invariant under Sim(M), there is a Sim(M)-invariant direct decomposition:
TM = F @ B, or equivalently g = g|F X F & g|B x B.

3.2. Classification of compact manifolds with amenable holonomy. Recall that
a representation p : 7— PSp(n + 1,1) is said to be amenable if the closure of the image
p(m) in PSp(n+1,1) lies in a maximal amenable Lie subgroup of PSp(n + 1, 1). The rest
of this section is spent for the proof of Theorem B of Introduction.

Given a spherical pseudo-quaternionic structure on a compact smooth connected

(4n + 3)-manifold M, there exists a developing pair
(p,dev) : (m, M)—(PSp(n + 1,1), §4"+3).

A maximal amenable subgroup of PSp(n +1,1) is conjugate to Sp(n) - Sp(1) or Sim(M).
If the holonomy group p(r) is amenable, then we can assume that p(r) lies in Sp(n)-Sp(1)
or Sim(M). In the former case, choose a spherical metric on S*"*+3 such that Sp(n)-Sp(1)
is a subgroup of isometries. The pullback by the developing map gives a w-invariant
Riemannian metric on M. This metric induces a Riemannian metric on M. As M
is compact by our hypothesis, M is complete. Therefore dev is a local isometry of a
complete Riemannian manifold M into S***3. Hence dev is a covering map (cf. [6]).
Thus dev is homeomorphic so that M = S*+3/F where F' = p(m) C Sp(n) - Sp(1) is a
finite subgroup acting freely on S*"*3. In the latter case, p(r) lies in Sim(M). There is
no Riemannian metric invariant under Sim(M).

First we study the complete similarity manifolds. Given a Heisenberg similarity mani-
fold N, there exists a developing pair

(p,dev) : (my(N), N)—(Sim(M), M).

In general, NV is said to be geodesically complete if the developing map is a homeomorphism
of N onto M. Let V be a left invariant affine connection on M induced by g. Since V
is invariant under the automorphism group of M, each element of Sim(M) preserves V.
The pullback Riemannian metric ¢’ = dev*g defines a 7;(NN)-invariant affine connection
V' on N. Thus V' induces an affine connection on N.

In other words, geodesically completeness on N is equivalent to that the ezponential
map is defined on the entire tangent space T,N for some point z € N (cf. [6]). This does
not depend on the choice of a point in N because geodesically completeness on N is the
same as metric completeness by g'. (See [47].) However, note that the Riemannian metric
¢’ does not necessarily induce a Riemannian metric on N.

Put I' = p(«). Assume that [ is infinite and amenable in Sim(M). Put M’ = M —
dev™'(c0). Then the developing pair reduces to the following:

(p,dev) : (m, M")—(Sim(M), M).

Recall from Corollary 3.2 that M supports the Carnot-Carathéodory structure B and the
frame bundle F. As dev is an immersion, we have the pullback metric ¢’ = dev*g, the
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induced subbundles B’ = dev*B and F' = dev*F on M’ respectively. There exists a ball
D, (z) about zero of radius r in T,M' with respect to ¢’ such that the exponential map
exp, : D,(z)—M' is defined. Obviously there is the commutative diagram: (dev(z) = p)

T, M < T,M
U
D, (z) e

Fxpz

M M.
If M’ is (geodesically) complete, the local isometry dev is a homeomorphism of M’ onto
M. The holonomy group I will be discrete in Sim(M). If dev™"(co) # @, then it is easy to
see that dev : M —S%"*3 is homeomorphic. Since I' is infinite by our hypothesis, we have
that M = M’. Recall that Rt C Sim(M) acts on M as expansion or contraction. If I is
discrete in Sim(M), then I is either conjugate to a subgroup of M xSp(n)-Sp(1) = E(M)
or Sp(n) - Sp(1) x R*. As the latter group fixes the origin of M, I' C E(M) in our case.
Hence M is isomorphic to an infranilmanifold M/T".

Next we examine the incomplete similarity manifolds. Suppose that M’ is incomplete.
Define '

R(z) = sup{r | exp, : D,(z)—M’ is defined}.

Then R(z) < oo for all points z of M’ by the above remark. Put r = R(z). With
respect to the pull-back affine connection V', there exists a vector v € 8D, (z) such that
v(t) = exp,tv is an incomplete geodesic, i.e., y(t) is defined on 0 £ ¢t < 1 but not
¢t = 1. Recall that M = M /7 decomposes into the union of the orbit space M'/n and
dev™(co) /7.

Lemma 3.3. Let P : M—M be the covering map. Then the geodesic image
{P(v(t) }ogt<1 has an accumulation point inside M'/x.

Proof. Since M is compact, the geodesic image

{P(1(t)}ogec1 € M'[7

has an accumulation point y in M. Since dev™'(co)/7 consists of finite points, we may
consider the case that dev™!(co)/ consists of a single point. Suppose that dev™(co)/m =
{y} in M. Choose an evenly covered neighborhood U of y. When U is a lift of U to M,
by the definition, o- U N U # 0 for some « € 7 if and only if o = 1. We can assume that
dev : U— dev(U) is homeomorphic. If §j € U is a point with P(§) = y, then dev(§) = {oo}
as above.

As y is an accumulation point of the geodesic image {P(y(t))}o<i<1, there exists a
sequence 0 < t; <ty < --- <&, <--- < 1such that y(t,) € o - U f(;r elements a,, € 7.
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On the other hand, as M is complete, there exists a limit point li_)m dev(y(t,)) € M.
Since dev(y(t,)) € p(cm) dev(U) and each p(a,) stabilizes the point {co}, we have that

Jim dev(y(tn)) = 7 plam)dev(D) = {oo},

it is a contradiction. Hence the accumulation point y of the geodesic image
{POY(®) Jogeen lies in BT . | o

We then apply the same argument of Fried [11], also Miner [32] to the quaternionic
case. By Lemma 3.3, the geodesic image in M’/ has an accumulation point z inside
M’ /7, and it passes by z infinitely many times and arbitrarily close. By the argument of
[11],[32], this recurrent property gives a family of elements {v;;} of 71 (M, 2) such that Yij
(j >> i) maps 7(t;) very close to y(t;) (0 < t; <t; < 1). Moreover

Lemma 3.4 ([11], Lemma 3.2 [32]). Denote by 0 = (0,0) the origin of M. Suppose that
exp, o dev,(v) = 0 € M (dev(z) = p). For sufficiently large i, j, the holonomy image
p(vij) can be chosen to be a Heisenberg similarity transformation centered arbitrarily close

to 0 with arbitrarily small rotation matriz.

Then, exp, can be defined on the half space H, = {X € T,M' | g.(v,X) < 7%}
containing D,(z). (See the figures of [11], [32].) To see this, note that exp, dev.(D,(z))
is a maximal metric ball about p of radius r whose boundary contains 0. Let X € Hj.
By Lemma 3.3, there exists an element p(7;;) € I' such that for sufficiently large i < j,
p(7i5) © exp, dev,(X) € exp,dev.(D,(z)), and v;;z € exp,(Dy(z)). Using dev™! locally,
we have that exp,, ;((7i;)+X) € expy(Dr(x)). Define

exp, X = 7i;7" 0 expy, (1) X).

Since dev(7i; ™! 0exp,, 5 (7i)«X) = exp, dev.(X), which is well defined. As a consequence,
for each y € M’, there exists a unique vector V =V, € 0D, (y) for which exp,V is not
defined.

For each = € M', we have the half space H, = {X € T.M' | g,(V, X) < r?} on which
exp, is defined. Here V =V, is a unique vector lying on the boundary 0D, (z) such that
exp,V is undefined, where 7 = R(z) = ||V|| = /|[V/|* + ||V?|]*. Unfortunately, the half
spaces H, are not necessarily translated onto each other by the elements of =.

Let 8H, = {X € T,M' | g,(V,X) = r*} denote the boundary of H,. The following
lemma is obtained from the idea of Fried [11] (also Miner [32]) which has been already
used to show the existence of half space H, on which exp, is defined.

Lemma 3.5 (Compare Lemma 1 [11], Proposition 2.6 {32]). Let 0 be the origin of M

and suppose exp, o dev,(v) = 0 as above. Then

0€ N exp,odev,(0H,), dev(y)=gq.
yeM’
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Proof. Suppose not. Then the origin 0 is not contained in exp, o dev,(0H,) for some
y € M'. By Lemma 3.3, there is an element v € 7 whose holonomy p(7) carries the half
space exp, o dev,(H,) arbitrarily close to 0 in M. For the vector V =V, € 0Dg,(y),
7.V is a unique vector of dDpg(yy)(vy) such that exp.,v.V is undefined. So the geodesic
€XP py)q(t-deva(1.V)) (0 = ¢ < 1) lies in the half space exp,(,),0dev. Hyy, and it meets the
boundary exp,,(dev.(0H,,)) perpendicularly at the point exp, (), (dev.(.V)). Denote
by <, (V;Y) the angle between V and Y at y and let D\ (y) = {Y € Drgy(y) | <y
(V,Y) < €} be the cone at y of the axis V' with angle ¢ > 0. As the geodesic exp,,), (-
dev.(7.V)) is arbitrarily close to 0, we choose a small € such that

exp, © devi (D5, (¥)) C XP iy © devi(Hay).
By the commutativity,
dev oexpy(Djz(y) (y)) C dev o exp,, (Hyy),

which implies that exp, (D;z(y) (v)) is properly embedded in the convex domain exp.,, (H-y ).
Then the closed metric cone exp, (D, (y)) sits inside exp., (H,y) and hence is compact.
This contradicts that exp,V is undefined. O

Put J = QM' exp,odev,(0H,). By the construction of J, the developing image dev(M")
is obviousl; outside J. Note that S***3 = M U {co}, and J C exp, o dev,(dH,). It is
easy to see that

Corollary 3.6. (1) dev(M') C M —J.
(2) If J be the closure of J in S*+3, then either J = J or J = J U {oc}.

Lemma 3.7. If J = J U {00}, then dev'(c0) = 0. As a consequence, the developing
map reduces to the following: dev : M—sM — J.

Proof. If z € dev™}(co), then there is a neighborhood U of z in M with U — {z} C M’
such that dev(U — {z}) = dev(U) — {oo}. As {0} € J — J, (dev(U) — {o0}) NJ # 0,
but dev(U) — {oo0} C dev(M'), which is impossible by Corollary 3.6. In particular,
M=M. O
As above, the unique vector V € 8D, (z) has the property that exp,(¢- V) is defined for
0 =t < 1, but not ¢ = 1. In this case, the image exp,(dev, V) (dev(z) = p) is said to be
an invisible point. In general if exp, (t- X) is defined for ¢ = 1, then exp,(dev, X) is called
a visible point because exp,(dev, X) = dev oexp,(X), otherwise the point exp,(dev, X) is
invisible. Especially every point in the half space exp,(dev. H,) is visible for each y € M,
while invisible points lie only on the boundary exp, o dev.(0H,). (Compare [11], [32].)

Lemma 3.8. J is invariant under I'. In particular, J is a T-invariant closed subset in

S4n+3 contained in a submanifold of dimension at most 4n + 2.
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Proof. Let m € J. There exists a vector X € dH, such that m = exp,(dev,(X)) for
eachy € M’ (dev(y) = q). If we note that each boundary exp,odev,(0H,) contains 0 from
Lemma 3.5, then exp,(dev. X) is an invisible point; otherwise exp,(dev.(V')) would be
an visible point. Since each v € 7 maps the unique vector V' € 8Dpg)(y) onto the unique
vector 7.V € ODp(yy) (1Y), the geodesic exp,,),(t - dev.(v.V)) determines the boundary
C = exp,(y), © dev.(0H,,). Suppose that p(y)m = exp,,(dev.(7.X)) does not lie on
C. Then the geodesic a(t) = exp,,),(t - dev.(1X)) intersects C at some s < 1. Put
n = a(s) = exPp (), ©dev.(s-7.X), which lies on C. On the other hand, since s- X € H,,
exp, (s - X) is defined. Put z = yoexp,(s-X) € M'. Then

dev(z) = dev o exp,, (s - %X) = €xp,(y), © dev.(s - 1.X) = n.

We have the maximal disc exp,, dev, Dpg,)(2) centered at n, which intersects the bound-
ary C with the middle of the disc. Let exp, o dev.(H,) be the half space containing
exp,, dev, Dp(;)(2). Since exp, o dev,(0H,) contains 0 and the point

w= expp(v)q(dgv('y*V)) eC,

we conclude that w sits inside exp, o dev.(H,). This contradicts that w is an invisible
point. Therefore, the point p(y)m € exp,(,), © dev,(0H,,) at each y € M'. Hence, J is
invariant under I a
Concerning the structure of the boundary exp, o dev,(0H,), we have the following.

Lemma 3.9. Let V = VI @ V® be the decomposition for the unique vector V. =V, €
ODgy) (y)-
(1) If V¥ # 0, then exp, o dev.(0H,) = R? x U where U = F* or U is an affine half
space of F*. .
(2) If VI =0, then exp,odev,(0H,) = R® x U where U is a (4n — 1)-dimensional affine
subspace of F™.

Proof. Recall that
OH, ={X e T,M' | ¢,(V,X) =g ,(V/,X") +¢,(V®,X") =r} for X =X @ X" e T,M".

(1) Suppose that V/ # 0. Let dev(y) = g. The projection T,R*—<T,M —5 T,y
induces the map v, : dev,(0H,)—v,odev,(0H,). Put vy = v,(dev.(X)) = v.(dev,(X?))
and sy = 12 — g’y(Vb,Xb). Then the inverse image at vy is a two dimensional affine
subspace of T,R3:

v Hux) = {dev (Y7 + X?) | o', (V/, Y1) = sx}.

Since it is a half space as before, v, ~(vx) is perpendicular to dev,(V/) and so the fibers
v."Y(vx) are parallel to each other. Let T,M = F,® B, be the decomposition for ¢ € M.



138 YOSHINOBU KAMISHIMA

Then we note that F; is the ideal of the nilpotent Lie algebra ToM generated by the center
R®. If L, is the left translation of M, then there is the commutative diagram:

TeM —225 T,M

lexp lequ

M 2 oM
Let Ty € Fo, Sy € By. Since R? is the center, [Tp,So] = 0 and so the product formula
(cf. [16]) becomes exp(tTy) - exp(tSo) = exp(t(To + So) + o(t?)) for small ¢t > 0. As
exp(tTp) € R3, we have

exp(Tp) - exp(So) = exp(To + So)-
Choose Ty, Sp such that dL,(Tp) = dev.(Y7), dLy(So) = dev,(X?). By the commutativity,
exp,(dev, (Y7 + X°)) = expTy - exp,(dev. (xX").

Let v : exp,odev, (0H,) —exp,, ov«odev,(8H,) be the projection. Put zx = exp,)(vx)-
Then the inverse image at zx,

v l(zx) = equ(v*“l(vx))
= {exp Tp- equ(dev*(Xb)) | g'y(Vf,Yf) = sx, Tp = dLg-1 o dev.(Y7)}.

By the above remark, these inverse images v~!(zx) are parallel two dimensional affine
subspaces in R®. Hence the subset {exp Ty | To = dLg-1 o dev.(Y/), ¢/, (V/,Y7) = sx}
is a two dimensional vector subgroup R? of R3. Let

W' = {dev,(Y?) € dev,(8H,) | g,(dev.(V?®),dev.(Y?)) = r2 — g,(dev.(V1),dev.(Y7)) £ 1}

be the subspace of T,M. As v, is a local isometry of (By, g;) onto (Tyg)F™, (90)u(g))s
v, maps W' isometrically onto

v,(W') = {v, odev.(Y?) € v, o dev.(0H,) | (90) (g (W © dev,(V?), v, o dev,(Y?)) < r?}.

In particular the submanifold (exp,(W’),g) is isometric to the affine subspace
(exp, (g © u(W'),g0) of F*. Put U = exp,(y o v«(W'). Then U is either F* or an
affine half space according to whether V® = 0 or V® # 0. Since (exp,(W'),g) is a
flat submanifold of M, we have that exp,(W') = (o,U) for some o € R®. If we
note that exp, o dev,(9H,) = R? - exp,(W') which contains 0, then a € R? and hence
exp, o dev,(0H,) = R? x U.

For (2), as VI =0, g (dev.(V?),dev.(Y?)) = (o), (v+ 0 deva(V?), v, o dev, (Y?)) = r2.
Then U = exp, () o vu(W') = voexp,odev.(0H,) is a (4n—1)-dimensional affine subspace
of F*. It is easy to see that exp, o dev,(8H,) is a principal R3-bundle over U. Hence,
exp, o dev,(0H,) = R® x U. O

By the definition, J = N exp,odev,(9H,). Thus J is an affine subspace of (M, V), i.e.,
yeM'
J = R¥ x W where RF is a vector space of R® and W is an affine subspace of R*™* = ™.

In particular we have the following.
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Corollary 3.10. (i) If J = J, then J is a single point 0 in M.
(i) If J = JU{co}, then J is an £ (2 1)-dimensional sphere S*.

Proof of Theorem A.
(I) J=J. By Corollary 3.10, J = 0, which implies that the holonomy group I' C
Sp(n) - Sp(1) x R¥.
(D)1 dev Y(co) = 0. Then M = M’ and dev : M—M — {0} R* x $4+2 by Corollary
3.6. As M is compact, dev : M—R* x S***2is homeomorphic so that M is finitely
covered by a Hopf manifold S* x S4n+2.
(I)z dev!(co) # 0. Then the developing map satisfies that dev : M—S*"+3 — {0}.
Replace $4t3 — {0} for the role of M = S*+3 — {co}. Put M' = S+ — {0}. As
a consequence, we show this case does not occur. In fact, if M is complete, then dev :
M—sM'’ is homeomorphic. Then T acts freely on M’, while " has a fixed point {oo}
inside M'. So M is incomplete. The same argument as above shows that there is a
T-invariant affine subspace J’ which is outside the developing image dev(M). If & dev(M)
is the boundary of the developing image in $*"+3 then ddev(M) is a I-invariant closed
subset containing at least two points. Recall the limit set L(T') of I in S***3, which is
defined to be the boundary of the closure of the orbit I'-w for a point w € Hg*'. (Compare
[7].) By minimality, L(T') C ddev(M). Thus we obtain that dev : M—S*+3 — L(T"). As
' C Sp(n) - Sp(1) x R* in our case, L(T') = {0, o0} and so the developing image dev ()
misses the point {oo}. This contradicts the hypothesis (I).
(I) J=JU{oo}. By Lemma 3.7 and Corollary 3.10 (ii), dev : M—M — J where J
is an £ (2 1)-dimensional affine flat subspace of M. We define a I-invariant Riemannian
metric on M —J. Let Z be a vector field which assigns to each p € M —J the vector Z(p)
from p to J, which is perpendicular to J with respect to the left invariant metric g on M.
Such a vector Z(p) is uniquely determined because J is an affine flat subspace (M, V),
Z(p) is the shortest vector which meets J. Moreover, since J is invariant under I, the
vector field Z is I-invariant. Let X = X/ & X® (resp. Y =Y/ @ Y?) be a decomposition
for vectors X,Y € Tg(M — JM). We define a Riemannian metric:

b b

FLP(X,Y) _ gz(i(fiyf) . 9z(X aYI? .
1ZI@)II* +1122@)II* - 1127+ 128 W)l
By the dilation property (*), (%), h is a Riemannian metric on M — J which is invariant
under T'. The pullback by dev defines a 7-invariant Riemannian metric dev” h on M such
that dev : M—sM — J is a local isometry. Then M becomes a compact Riemannian
manifold induced by dev* h. As a consequence M is complete so that dev : M—M-—Jis
a covering map. Since J is an ¢-dimensional affine flat subspace of M with 1 £ £ < 4n+2,
there are the following cases: (i) if dim J < 47, then dev : M—3 M — J is homeomorphic.
(ii) if dim J = 4n +1, then dev : M—M — J is a covering map. (iii) if dim J = 4n +2,
then dev is a homeomorphism of M onto a connected component of M — J.

For the cases (i), (iii), I is discrete in Sim(M), so either L(I") = {oo} or L(I') = {0, co}.
Since 8 dev(M) contains more than one point, we have that L(I') C ddev(M). Thus
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dev : M—S$*+3 — L(I') is homeomorphic for which
S48 _ [(T) = M or ™3 — L(T') = M — {0} respectively.

Hence dev(M) N J — {0} # 0. This contradicts Lemma 3.7 under the hypothesis (II).
For the case (ii), note that J = R¥ x R*"+1=F guch that J = S**! and 1 < k < 3.
(ii); Suppose that k = 3, i.e., J = R* xR**~2. Then v~ }(R**~2) = J from (1.2). Moreover,
M—J =54+ _ J = Gint3 _ gintl o Bin+2 » Sl where B4+ is a (4n + 2)-dimensional
ball. Let X be the universal covering space of M — J. The developing map dev lifts
to a homeomorphism dev : M—X which maps 7 onto a subgroup I acting properly
discontinuously and freely on X. In particular, M ~ X /f‘ is compact. However if we
note that the action (T', X) is a lift of the action (T, S4*+3 — §47+1) then X/I" cannot be
compact by (3) of Lemma 1.2. ’
(ii)2 Suppose that J =R? x R*™"~! or J =R! x F*. Consider the case J = R? x R*"~1.
Recall that an element g of Sim(M) has the form: (o, z) - (A - g,t). For

( s ) e M,
z
the action of g satisfies that

g\ _ a+t2g-B-g'+Im<z,tAz-g71 >
N2~ z+tAz- g7t '

The subspace R**~! contains at least one quaternionic subspace F!. AsI leaves J invariant
for which 8 € R? and z € R*~! can be chosen arbitrarily, it follows that z = 0. Thus T’
lies in the subgroup (R?,0) x Sp(n) - SO(2) x R*. (Note that this group does not preserve
R? x R*, although T acts invariantly on R® = (R%,0) as similarity transformations.)

Let v = (,0) - (A - g,t) be an element of (R?,0) x Sp(n) - SO(2) x R*. Then, for
(B,z) e M =R3 x R*"

BY_(a+t?qg-B-9g7\ _ [ a+t* Bf
N )™ t-Az-g! N t- Byx
_ « tz'Bl 0 ﬂ
-(5)- (07 ea)(2)

Here, a matrix B; € SO(2) is the conjugate of g and a matrix B, € SO(4n) is A - g.

Let f: M = R3 xR —R® x R*" be the diffeomorphism defined by f(e, z) = (c, z|z|)
where | - | is the euclidean norm. Then it is easy to check that

B\, _ (¢ B 0 B a
o (h=(5 " am ) (2)+(5)

There is a homomorphism 7 : T—(R?,0) x (SO(2) x SO(4n)) x R* C Sim(R*"*3) such
that f oy = 7(y) o f. We have an equivariant diffeomorphism:
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(T, M) L5 (7(D), R#+3).

The pair (7 o p, f o dev) : (m, M)—(Sim(R**+3), R*"*+3) give a similarity structure on
M in which f o dev misses f(J). The result of Fried says that the developing map
fodev : M—R**3 of a compact incomplete similarity manifold M misses exactly one
point {0} (up to conjugacy). Hence f(J) = {0}, which is impossible by dim J = 4n + 1.
The same argument can be applied to the case that J = R! x F*. As a consequence, (I1)
does not occur. This completes the proof of Theorem A. a

4. DEVELOPING MAPS ON THE BOUNDARIES AND CORRECTION

The result of this section will be used for the proof of Theorem A which is proved

in the next section. However we treat in a more general manner for our purpose not
only in quaternionic case. Recall that a geometric structure on a smooth n-manifold is a
maximal collection of charts modeled on a simply connected n-dimensional homogeneous
space X of a Lie group G whose coordinate changes are restrictions of transformations
from G. We call such a structure a (G, X)-structure and a manifold with this structure
is called a (G, X)-manifold. In the paper [13], we have used the following lemma to show
the uniqueness of developing maps in compact conformally flat manifolds.
Lemma Let A be a I'-invariant closed subset in X. Suppose that in the complement
of A in X there exists a component U which admits a '-invariant complete Riemannian
metric. Then the developing map dev : V. — U on each component V of dev™'(U) is a
covering map.

However we recognized that the statement of the above lemma is not valid in some
geometric structure, which is shown by the example by Kapovich (Compare [9]). Choi
and Lee [9] have shown that the lemma is true for any geometric structure under some
additional condition on X. On the other hand, we have noticed that our results in [13] can
be proved more directly without use of the above lemma. So the purpose of this section
is to show that the geometric uniqueness of developing maps is true not only in compact
conformally flat manifolds, but also in compact spherical CR manifolds and spherical
pseudo-quaternionic manifolds. That is, our previous results of [13] will be generalized
into the geometry on the boundary of rank one symmetric spaces of noncompact type.

Let K stand for the field of real numbers R, the field of complex numbers C or the field
of quaternions F. Denote |K| = 1,2, or 4 respectively. Let K**2 denote the vector space,
equipped with the Hermitian pairing over K ; B(z,w) = —Zjw; + Zows + -+ - + Zpi0Wnyo-
Define the (n + 2)|K|-dimensional cone V_ to be the subspace {z € K"*?| Re(z) >
0, B(z,2z) < 0}. If P: K**2 — {0}—KP™*! is the canonical projection onto the K-
projective space, then the image P(V_) is defined to be the K-hyperbolic space H'!
of dimension (n + 1)|K| (cf. [7]). Let O(n + 1,1;K) be the subgroup of GL(n + 2,K)
whose elements preserve the Hermitian form B. Since O(n + 1,1;K) leaves V_ invariant,
it induces an action on H*! whose kernel is the center Z(n + 1,1;K). It is isomorphic
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to {1} if K = R or F, or the circle S* if K = C. Denote by PO(n + 1,1;K) the
quotient group O(n+1,1;K)/Z(n +1,1;K). We usually write PO(n+1,1),PU(n+1,1)
or PSp(n + 1,1), which is known as the full group of isometries of the complete simply
connected K-hyperbolic space ]I-]I]'[‘(+1 respectively.

The projective compactification of H:*! is obtained by taking the closure Hg' inside
KP"*!. If we put an (n + 2)|K| — 1 dimensional subspace Vs = {z € K"*?| B(z, 2) = 0},
then H*! = HE+! U P(Vp) so that the boundary OHg'' = P(V) is the standard sphere
of dimension n, 2n + 1, 4n + 3 according to K =R,C, or F. Put OHEt! = S(r+DIKI-1,
Then the group of isometries PO(n + 1,1; K) extends to a transitive action of projective
transformations of S®*+VIXI-1 Thus we obtain the geometry (PO(n+1,1; K), SC+DIKI=1),
In each case we call (PO(n + 1,1),S") conformally flat geometry, (PU(n + 1,1), 5***1)
spherical CR geometry, and (PSp(n+1, 1), $*"*3) spherical pseudo-quaternionic geometry.

If Hg™ (1 £ m < n—1) is the totally geodesic subspace of HE*!, then the geometric
subsphere S(M+DIKI-L of SMHUIKI-L js defined to be SHE''. Put Y = Sr+biKI=1 —
Sm+DIKI-1 314 denote by Aut(Y) the subgroup of PO(n+1, 1; K) whose elements preserve
Sm+DIKI-1 Then Aut(Y) is isomorphic to the subgroup P(O(m +1, 1;K) x O(n —m; K))
(cf. [7], [20], [22]). Moreover Y is a Riemannian homogeneous space

P(O(m +1,1;K) x O(n — m; K))/P(O(m + LK) x O(1;K) x O(n — m — 1;K)).

Then the homogeneous Riemannian metric h on Y induces an equivariant Riemannian
submersion:

Se=mIKI-1_y (Aut(Y), Y, k) = (PO(m + 1, 1;K), HE*", ho).

Here hg is the hyperbolic metric on Hg ™. (See [24], [20].)

There is the (equivariant) projection onto the closed ball: O(n—m; K)—S®+DIXI-1 N
D7+, As the fixed point set Fix (O(n — m; K), S™+VIKI=1) = SImFDIKI=L we note that
P|Y = v, i.e., v extends to a map identically on the ideal boundary A(SrHIIKI-1
SmADIKI-1y = GEm+DIKI-1 = G+,

Recall that if a smooth connected manifold M admits a (PO(n + 1, 1; K), S+DIKI=1)
structure, then there exists a developing pair (¢,dev), where dev : M — SrH+DIKI-L g
a structure-preserving immersion and ¢ : m; (M) — PO(n + 1,1;K) is a homomorphism
whose image ¢(m,(M)) is called the holonomy group for M. We prove the following.

Proposition 4.1.  Let M be a compact (PO(n + 1, 1; K), Se+OIKI-YY _manifold in di-
mension (n+1)|K| — 1. Suppose that ¢(m (M)) leaves a geometric subsphere S(mTIIKI=L
(0 £m < n—1). Then the restriction of the developing map

dev : M — dev—l(S(m+1)[K|—1)__)5(n+1)|K| _ S(m+1)|K|—1

18 @ covering map.
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Proof. Put m = m (M) and I' = ¢(7). Since the holonomy group I leaves invariant a
geometric subsphere S™*IKI-1 consider the composite of the restriction of the develop-
ing map dev and a Riemannian submersion h:

(0, B — dev=1(S+VIKI-1) ) (Aue(y) Y, h) -5 (PO(m + 1, 1; K), HIHL, h).

Let dev* h be the induced Riemannian metric on M — dev™}(S(m+DIKI=1)  which is in-
variant under 7. We prove that dev*h on M — dev™}(S(m+DIKI=1) is complete. Let
{z;} be a Cauchy sequence in M — dev™!(S(™+DIKI-1) with respect to dev*h. As-
sume that dev™}(S(m+DIKI=1) £ . Let p* (resp. p) be the distance function on M —
dev™!(S(m+DIKI-1) (resp. Y), and pg be the (hyperbolic) distance function on Hz ™. As
dev™!(S(m+DIKI-1) is invariant under m, M decomposes into the union

(M — dey}(Sm+VIKI-1y) /7

and dev™}(SHDIKI-1) /7 where dev™! (S™+DIKI=1) /7 consists of a finite number of com-
pact submanifolds. If P : M—M is a covering map, then the sequence {P(z;)} has an
accumulation point y (after passing to a subsequence). Choose § € dev™!(S(m+DIKI-1)
with P(§) = y. There exists a neighborhood W of § in M such that the closure W is
compact. Moreover, P : W—sP(W) and dev : W—dev(W) are diffeomorphic. As
y € P(W), there exist elements {v;} € m such that {v; - z;} € W for ¢ 2 L where
L is a sufficiently large number. We have lim~; - z; = §. Since {z;} is Cauchy in
(M — dev™1(Sm+DIKI-1) p*) associated with each integer n, there exists an integer A(n)

1
satisfying that if ¢, j 2 A(n), p*(zi, 2;) < . Let B1(zx(n)) be the ball of radius -~ centered

at Ty in M — dev™(S(*+DIKI-1) In particular,
{Zi} € B: (.’L‘,\(n)) for 4 z )\(n)

As \(n) increases as n does, we can assume that A(n) 2 n for n 2 N where N is a
sufficiently large number with N > L. Note that {yan) - Ta(n)} € W for n 2 N as above.
Then we show that there is an integer m such that B 1 (Ya(m) - Ta(m)) € W. Suppose not.
Put &'W = W N (M — dev™}(S(m+DIKI-1)),
Then for each n 2 N, there is a point z)¢,) of B 1 (Ya(m) - Tagny) lying on O'W. Thus we
1

have that p* ('y,\(n) -xx(n),z,\(n)) § ;

In general, for every z € W C dev™}(Sm*+IKI=1) " the metrics satisfy

po(v © dev(Yam) - Tam)), v © dev(2)) £ p(dev(yam) * Tawm)), dev(2)) = p*(Vam) - Tam), 2)-
By the above,

1

(%) po(v 0 dev(am) - Zag)), ¥ © dev(zamy)) < e

As lim~; - z; = ¢, and v extends to a map identically on the boundary

v odev(Ya) - Tam))— o dev(§) € V(S(m+1)IK1—1) = Gim+DIK|-1 _ BH&‘“.
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On the other hand, W is a compact neighborhood of § in M and dev |W is diffeomorphic.
In particular, v o dev(§) € SM*VIKI-1 _ 5dev(W). Since {zxm)} € O'W, {z:(n)} has
an accumulation point z in 0W. Passing to a subsequence if necessary, it follows that
dev(zxm))—dev(z) € ddev(W). Therefore, as vodev(M —dev™! (St+DIKI=1))  H+!,
we obtain either vodev(z) € HZ™ or vodev(z) € ddev(W)NSmIIKI-1 i e podev(z) #

v o dev(§). Moreover, when v o dev(z) € Hg'', as v o dev(j) lies on the boundary
SemeDIKI L,

lim po(v o dev(mam) - Zam)), ¥ © dev(2xm))) = oo,

which is impossible by ().
If v odev(z) € ddev(W) N SM+VIKI=1 then both v odev(z) and v o dev(§) are lying on
the boundary but v o dev(§) # v o dev(z) as above. This implies again

lim po(v 0 dev(vam) - Zam)), ¥ © dev(zam)) = oo,

which is impossible. Hence this contradiction yields that B 1 (Ya(m) - Tagm)) C W for some
m. Since {Z;}i>xm) € B 1 (a(m)), the isometry Yam) (wi’Zh respect to p*) shows that
{1aem)* Ti}izagm) € BL(Yagm) - Tagm))- As W is compact, there is a point w € W such that
1]_1{2’ Ya(m) - Ti = w. Therefore 113{.10 T; = 'y;(in) - w for which deV('y;(tn) Sw) = 111)123 dev(z;).
Since the sequence of images {dev(z;)} is also Cauchy in Y, {dev(z;)} has a limit point in
Y, which therefore implies that dev(fy/\"(;l) -w) € Y. Thus dev(fy;(in) - w) is not contained
in S(mHDIKI-1 4 ¢ '7;(171) cw € M — dev™}(Sm+DIKI-1) " This shows that the Cauchy
sequence {z;} converges in M — dev™'(S(™tDIKI-1) 5o that M — dev™!(S(+DIKI-1) jg
complete. As a consequence, the local isometry dev : M — dev™}(Sm+DIKI=1) Y is a
covering map. O

Remark 4.2. For the induced Riemannian metric from an arbitrary geometric struc-
ture, the above proof does not work with respect to the argument of minimal geodesic;
the covering map P : M—M induces a local isometry of (M — dev™!(Sm+DIKI=1) p*)
onto (M — dev™}(Sm+DIKI=1y /. 5%). Given a Cauchy sequence {y;} lying in P(W),
choose a lift of sequence {g;} from W. Since P : W—P(W) is diffeomorphic, P :
W — dev™ ! (SUHDIKI-1y s P(W) — dev™}(SM+DIKI=Y) /7 is an isometry, however, note
that given two points y;, y; in P(W), the minimal geodesic between y; and y; does not
necessarily lie in P(W) — dev™ ! (S(HIIKI=Y) /. So the equality p*(vi,y;) = p* (i, Tj)
does not hold in general, which implies that the lift {§;} is not necessarily Cauchy. We
did not check this point for an arbitrary geometric structure, which is the mistake of the
argument of the proof in Lemma B of [13] (also Lemma 4 of [14]). Thanks to the ezample

by Kapovich, we verify this phenomenon.
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5. GEOMETRIC RIGIDITY ON SPHERICAL PSEUDO-QUATERNIONIC MANIFOLDS

Margulis has shown that: Let G be a connected semisimple Lie group with trivial center
and has no compact factor. Given an irreducible lattice T' of G and a homomorphism
p : T—G" where G' is a semisimple Lie group with trivial center and without compact
factor, p extends to a homomorphism from G to G' provided that the real rank of G is at
least two and p(I") is Zariski dense in G'. Note that a connected semisimple Lie group
with trivial center supports a real algebraic structure. (Compare [48].) This sort of result
is called Margulis’ superrigidity and the question is left to the rank one semisimple Lie
groups, namely the real (resp. complex, quaternionic, Cayley) hyperbolic groups. It is
known that the Margulis’ superrigidity is false for the real hyperbolic case, for instance,
because of the existence of bending (= a nontrivial deformation of Fuchsian groups in
higher dimensions). Kevin Corlette has proved the Margulis’ superrigidity affirmatively
for the isometry group PSp(n, 1); Let T be a lattice in PSp(n,1) and G any semisimple Lie
group with trivial center and without compact factor. If p : T—G is a homomorphism
with Zariski dense image andn 2 2, then p extendsto a homomorphism ¢ : PSp(n 1)—G.

Using this fact, we prove Theorem B in Introduction.

Proof of Theorem B.

Given a compact spherical pseudo-quaternionic (4n + 3)-manifold M, there exists a
developing pair (p,dev) : (m (M), M)—(PSp(n + 1,1), S4+3). Put = = m (M), p(r) =
. Thus we have the holonomy representation p : 7—I' C PSp(n + 1,1).

By the hypothesis, 7 is isomorphic to a discrete uniform subgroup of PSp(m,1) for
some 2 £ m < n. We may assume that @ C PSp(m, 1). If T is virtually amenable, then
Classification Theorem A shows that 7 is virtually nilpotent. This case does not occur
by the hypothesis.

Let A(T") be the Zariski closure (real algebraic closure) of T" in PSp(n + 1,1). Then
by Theorem 4.4.2 of [7] shows that either A(I") = PSp(n + 1,1) or A(T') leaves a proper
totally geodesic subspace in IHIF’l invariant.

Step 1. Suppose that A(I') = PSp(n+1,1), that is, I' is Zariski dense in PSp(n+1,1).
The superrigidity by Corlette implies that p extends to a continuous homomorphism
¢ : PSp(m,1)— PSp(n + 1,1). Since ¢ is analytic (cf. [16]), the image p(PSp(m,1))
is a connected Lie subgroup of PSp(n +1,1). As I' C ¢(PSp(m, 1)) does not leave any
proper totally geodesic subspace in Hi! invariant, ¢(PSp(m, 1)) = PSp(n +1,1) and so
m =n+ 1. Since m £ n by our hypothesis, this is impossible.

Step 2. Suppose that A(T") leaves a proper totally geodesic subspace in H*! invariant.
A proper totally geodesic subspace in Hi:t! is isometric to HE (K =R, CorF, 1 < k < n),
HE*™*, HE', or a 3-dimensional R-subspace H!'(I). (Compare [7].) Note that H!(I) is
orthogonal to H} in Hi and so isometric to H. If A(T) leaves invariant a proper subspace
Hi (K =R,C,F,

k < n), then A(T) leaves also HE invariant. Thus A(T') preserves S*~1 = OHE. The
subgroup of PSp(n + 1, 1) preserving S*~! is isomorphic to Sp(k,1) - Sp(n — k +1). In
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particular, A(T') C Sp(k,1) - Sp(n — k + 1) for k £ n. Recall that there is a I-invariant
homogeneous Riemannian metric on $4+3 — $4-1 from (1.2).

If A(T) leaves invariant Hi*' (K = R,C), then A(T) preserves S" = OHR*" (resp.
S+l — HHE*!). By Proposition 1.4, Corollary 1.5, A(I') € PO(n + 1,1) x SO(3) or
A(T) C P(U(n+1,1)-S1{#1, +5}) respectively. Moreover $4+3—5" (resp. §*"+3-52"1)
admits a [-invariant complete Riemannian metric. '

If A(T) preserves H!(I), then it leaves 2lso H} invariant. As H!(I) is isometric to H,
the subgroup of PSp(n + 1,1) preserving H' (I) is isomorphic to PSL(2, C) x Sp(n) where
PSL(2,C) = Iso(H3). Thus A(T") C PSL(2,C) x Sp(n) which leaves invariant S° = OHj.

Let 7 : Sp(k,1) - Sp(n — k + 1)—> PSp(k,1) be the canonical projection; similarly
for 7 : PSL(2,C) x Sp(n)— PSL(2,C), 7 : PO(n + 1,1) x SO(3)—PO(n + 1,1) or
7: P(U(n+1,1) - S*{£1,+5})—PU(n + 1,1) respectively. Suppose that H is one of
PSp(k, 1), PSL(2,C), PO(n + 1,1), or PU(n +1,1).

Since 7 is a proper map and A(T) (with finitely many components) leaves the proper
totally geodesic subspace invariant, Theorem 4.4.1 of [7] implies that 7(A([)) = H. In
particular, 7(T) is Zariski dense in H. We obtain a homomorphism 70 p : 7—H with
Zariski dense image 7(['). As H is a noncompact simple Lie group and without center,
applying the Corlette’s superrigidity, 7 o p extends to a continuous homomorphism ¥ :
PSp(m,1)—H. Asin (i), we obtain that ¥(PSp(m,1)) = H. Moreover PSp(m, 1) has no
normal subgroup, so ¥ : PSp(m,1)—H is an isomorphism. Therefore 2 < m =k < n.
As a consequence, ' is a discrete uniform subgroup of Sp(m,1) - Sp(n — m +1). In
particular we have A(T") = L(Sp(m, 1) - Sp(n — m+1)) = S*™~1. Consider the developing
map

dev : M — dev™}(§4m~1)—gints _ gim-1

for which the homogeneous Riemannian metric b on $**3 — §4m=1 (cf. 1.2) induces a
Riemannian submersion:

54("“’")"'3—)(Sp(m, 1)-Sp(n —m +1), Gin+s _ g4m=1 p) 2 (PSp(m, 1), Hy, iL)

Here h is the hyperbolic metric on HF. Let dev*h be the induced Riemannian metric
on M — dev™'(S*™1) such that dev* h is invariant under 7. We prove that dev*h on
M — dev™(5*™1) is complete. Recall that v maps the boundary S*m~1 = 9(5***3 —
$4m=1Y identically onto S*"~! = GHy' under the quotient map: Sp(n — m)—S5*+ =
D™,

Then by Proposition 4.1, the developing map dev : M —dev™}(S4m~1)—Gin+3 — g4m=1
is a covering map. Since S*"*3 — $*™=1 is simply connected,

_oa
dev : M — dev(§*™1)— 5t — gim-1

is a diffeomorphism. In particular, dev : M—>sdev(M) is a diffeomorphism. As T is
discrete and acts properly discontinuously on dev(M), dev(M) c §*+3 — L(T). As above
L(T) = §%m1, 50 dev : M—S5*+3 — g4m=1 is diffeomorphic. Thus M is isomorphic to
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Sint+3 _ §4m=1/T* which is the locally homogeneous space
Sp(m) x ASp(1) x Sp(n — m)\Sp(m,1) x Sp(n —m +1)/T

where 2 £ m £ n. This completes the proof of Theorem B. d
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CONFIGURATION SPACES OF POINTS ON THE CIRCLE AND
HYPERBOLIC DEHN FILLINGS

SADAYOSHI KOJIMA, HARUKO NISHI, AND YASUSHI YAMASHITA

1. CONFIGURATION SPACE

Let X(n) be a space of configurations of n distinct points in the real projective line
RP! up to projective automorphisms. X (n) can be expressed by the point set,

X(n) = (RP')" — D)/ PGL(2,R),
where D is the big diagonal set,
D= {(alv' o ,Oln) € (RP)n l Q; = q;j for some 1 ?éj}a

and PGL(2,R) acts on (RP')" diagonally. We assume that the number of points is at
least five.

There are two obvious observations. X (n) is not connected since we are not allowed
to have collisions of points. Reading off markings of points in the configurations in cyclic
order, each component is labeled by a circular permutation of n letters up to reflection.
In particular, the number of connected components is (n—1)!/2. Also a configuration can
be normalized by sending three consecutive points to {0, 1,00} so that the other points
lie in the open unit interval (0, 1). Thus each component of X (n) is identified with the set
of ordered n — 3 points in (0,1), and in particular, is homeomorphic to a cell of dimension
n—3.

Hence X (n) is topologically not quite interesting in fact. However it contains much
more rich structures, see for instance [3, 13, 14, 15]. The present article is to briefly
describe more geometric aspect of the configuration space X (n) recently developed by the
authors, where the details will appear in [7, 12].

2. HYPERBOLIZATION AND GLUING

Consider Euclidean n-gons with vertices marked by integers from 1 to n, where the
marking may not be cyclically monotone. Let X, . be the set of all marked equiangular
n-gons up to mark preserving, possibly orientation reversing, congruence, and X, a further
quotient of X, . by similarities.

For any @ € (RP!)" — D, we assign the unit disc in C with n points specified on the
boundary. By the Schwarz-Christoffel mapping or its complex conjugate, we can map «
to an equiangular n-gon up to mark preserving similarity. This induces a map from X (n)
to X, since a projective transformation on the unit disc does not change the image of the
map. It is also injective because if two configurations o and 3 map to the same element of
Xne by fo and fg, then fgo fo ! is a mark preserving projective automorphism of the unit
disk. By the Carathéodory theorem, this map is surjective. Therefore there is a canonical
homeomorphism between X (n) and X,.
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Each connected component of X (n) consists of the configurations with a fixed circular
permutation of markings up to reflection. For the simplicity for the moment, we shall
focus on the component U of X, . which is labeled by 12---n. Let U, C X, be the set
of its mark preserving similarity classes. Note that U, corresponds to the component of
X (n) labeled by 12 - - n also. We identity U, with the set U; which, by definition, consists
of the set of equiangular polygons having area = 1.

Each element of U can be described by a vector of side lengths (z1, T2, - . . , Tn) Where z;
is the length of the edge between the vertices marked by j and j+1. Since they represent
an equiangular n-gon, they satisfy: ’

T+ Toln + -+ TP =0
where (, = exp(27i/n). Set

En = {(IhmZ)--- yTn) | T4 Tl + -+ T =0},

Ef =& n [ {z; >0}
j=1
Note that U can be identified with £;.

For each element P of £, we denote by Area(P) the area of P. It is a quite surprising
observation by Thurston implicitly in [11] and explicitly in [4, 8] that the “Area” is a
quadratic form of signature (1,n — 3) on &,. Now &, together with Area becomes a
Minkowski space. Let P, be a connected component of Area™ (1) containing polygons
with positive side lengths. Then P, is the hyperbolic space and U, is canonically identified
with .

Area '(1)NEF = Pan [{z:i > 0}
=1
The region is bounded by P,N{z; =0} fori =1,2,--- ,n. Since {z; = 0} represents a hy-
perplane containing the origin in &,, the intersection with P, is the hyperbolic hyperplane.
Then the closure of Area™(1) N&; is an (n — 3)-dimensional hyperbolic polyhedron. We
denote it by A, and the face corresponding to {z; = 0} N A, by F;. Then a computation
in [7] shows

Lemma 1. The faces of A, intersect as follows.
1) i-jl>2=FLF,
(2) If n=5 or 6, then F;N Fj1 =0,
(3) Ifn2>1,
1

2 cos &’

n

cos(wn) =
where wy, is the dihedral angle between F; and Fjy,.

w, is monotone increasing with respect to n, and approaches 7/3 when n — co. wg =0
and wg = m/4. These are the only cases when w, is a rational multiple of .

The hyperbolization of U; assigns not only a projective class of a configuration to each
point in the interior of A, but a degenerate configuration to each point on the boundary.
Gluing (n—1)!/2 copies of A, together along the faces which represent the same degenerate
configurations and we obtain X,. X, ~ X(n) now lives in X, as an open dense subset.

The point lying on a face of codimension one in A, corresponds to a configuration
with a collision of two points. The number of polyhedra which share such a face is two
according to how nondegenerate configurations approach to the degenerate one. Hence
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the gluing does not yield any singularity along such a face. This proves that the gluing
gives a hyperbolic cone-manifold by the definition of cone-manifolds.

The point lying on a face of codimension two in A,, corresponds to a configuration with
either a pair of collisions of two points or a collision of three point. In the first case,
the number of polyhedra which share such a face is four according to how nondegenerate
configurations approach to the degenerate one. On the other hand, the dihedral angle of
two faces which share a codimension two face is 7/2 by Lemma 1 (1). Hence again the
gluing does not yield singularity along such a face.

When n = 5, the above two observations show that X5 is nonsingular. Actually, it is a
hyperbolic surface which consists of 12 hyperbolic right angle pentagons. Since each vertex
belongs to four pentagons, the number of faces, edges, vertices are 12,30, 15 respectively
and Euler characteristic is —3. Hence it is a nonorientable surface homeomorphic to a
connected sum of five copies of RP2.

When n = 6, X; consists of 60 hyperbolic hexahedra. In this case, we are not allowed
to have a collision of three successive points and the gluing does not yield any singularity
along face of codimension at most two. Consider a point on the face of codimension three.
Since n — 3 = 3, such a face is a vertex and corresponds to a triple of collisions of two
points. The number of hexahedra in X which share such a vertex is eight. On the other
hand, a neighborhood of the vertex of Ag is isometric to a neighborhood of the vertex of
the first orthant in the Poincaré model of the hyperbolic space. Hence again the gluing
does not yield singularity. Moreover, since a horospherical cut of an ideal vertex in Ag
is always square, the gluing yields complete ends. Therefore Xj is a complete hyperbolic
3-manifold.

We can derive a few more informations about geometry of Xs. Since Ag is scissors
congruent to a quarter of the regular ideal octahedron, whose volume is 3.66386 - - -, the
volume of X is 54.957 - - -. X admits a natural action of the symmetry group of degree
6 by permuting markings of points. It turns out to be a full isometry group since the
quotient is congruent to the smallest nonorientable orbifold with {4, 4,2}-cusp in [1]. We
will see in the next section that Xg has 10 cusps.

When n > 7, we must consider a neighborhood of a degenerate configuration with
a collision of three successive points on a face of codimension two in X,. There are
6 polyhedra which share the degenerate configuration according to the permutations of
three markings involved in the collision. By Lemma 1, the dihedral angle of each piece is
less than 27 /6, and the singularity appears. Hence we have

Theorem 2. X, is a hyperbolic cone-manifold.

o When n =5 or 6, it is nonsingular.
o When n > 7, the singular set is nonempty.

Remark 3. Every configuration appeared in X,, has at least three marked points which
are disjointly placed on the circle. Normalize neighbor configurations of any particular
degenerate one by sending such marked points to {0, 1, co} by a projective automorphism,
and we can parameterize its neighborhood in X, by the position of other marked n — 3
points. This shows that X, is topologically a manifold.

3. WEIGHTS

The coflﬁguration space X (n) was identified with the space of marked equiangular n-
gons up to similarity X,. The identification was given by the Schwarz-Christoffel mapping
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with constant external angles 27 /n. If we replace a constant 27/n by other nonconstant
external angles, the images of the Schwarz-Christoffel mapping change and one can expect
that the hyperbolic structure of the configuration space will be changed also.

Let ©, be the set of n-tuples of real numbers 6 = (6, ... ,0,) satisfying the relations

29]‘=27T and 0<9i+0j<7r (Z,]E{l,,n})
J=1

The second condition is to ensure that a collision of any two consecutive points forms a
nonempty top dimensional face.

Fix 0 = (6y,...,0,) in ©,. Choose o = (au,...,a,) € (RP')" — D, and assign to
o the unit disc in C with n points specified on the boundary. Then we map it by the
Schwarz-Christoffel formula to an n-gon P whose vertices are the images of the specified
points and the external angle of the image of the jth point ¢; is 6;. P is defined up to
mark preserving similarity. Let X, be the space of mark preserving similarity classes
of Euclidean n-gons with external angles {6;,---,60,} compatible with markings. Then
again, there is a canonical homeomorphism between X (n) and X 4.

The hyperbolization for each component of X,y can be worked out in a completely
same manner as before. Although the components of X, ¢ are no longer congruent each
other, the gluing rule still makes sense, and we obtain a hyperbolic cone-manifold Xno
as well by identifying the boundary of X, . Xn¢ contains X, ~ X (n) as an open dense
subset. X, is a deformation of X, in some sense. However the deformation theory which
fits our setting has been developed only when n = 5,6. We will see only these cases more
precisely.

4. To TEICHMULLER SPACE WHEN n =15

up to refection and U, ¢ a component of X5 ¢ which consists of all pentagons whose marking
correspond to p. The external angle of the vertex marked by i is 8; by definition. Then the
hyperbolization gives a hyperbolic pentagon A, whose interior bijectively corresponds
to U, . The boundary of A,y can be interpreted as the set of appropriately degenerate
configurations.

For each 6 € O, the appropriate extension of Lemma 1 (1) shows that A, is a right
angle pentagon, and 7(_5; is a hyperbolic surface with the same topology as X5 ~ #5RP2.
The surface is nonorientable and does not support any complex structure at all. However
an analogue of the Teichmiiller theory can be established. In fact, if we choose a maximal
family of mutually disjoint nonparallel simple closed curves, then the set of hyperbolic
structures is parameterized by their lengths and twisting amount for 2-sided ones. Hence
the Teichmiiller space T (#°RP?) is homeomorphic to R?. We thus obtained a map

35 : 05 — T(#RP?)

by assigning to 6 a marked isometry class of X .

We may label an edge of A, 4 by a circular permutations of 3 markings and a group of 2
markings, such as i1i2i3(i4is), involved in the collision up to reflection. Then three edges
with common collision pair, such as 111223(44i5), %2%1%3(t4ls), t2%3%1(i475), define a simple
closed geodesic on X54. The length of such a curve gives a Teichmiiller invariant.
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Define a function N(3i2i3;60) by
N (i1iq13;0)
__sin#;, sinb;, sin 0;; — sin(6;, +06;, +6,) (sin 6y, sin f;, + sin G, sin 6;, + sin 0y, sin by, )
sin(@,-l + 0,‘2) sin(0,-2 + 9,'3) sin(0,-3 + 0,'1) ’

A technical computation worked out in 7] shows that the length of a simple closed curve
formed by collisions of the vertices i4 and 75, which we denote by L(i4i5; 6), satisfies

COSh(L(i4i5; 0)) = N(i1i2i3; 0)

This formula was used to show that ®; is a local embedding at 6y = (27/5,... ,27/5).

In [12], we choose different Teichmiiller invariants to analyze the global property of
®;. There are ten simple closed geodesics on X5 represented by a pair of markings
as above. They are uniquely placed on X_S,B since the geodesic representative of simple
closed curves within their homotopy class is unique. Hence a geometric cell decomposition
by such curves, which consists of 12 right angle pentagons, is uniquely determined by
the hyperbolic structure. In particular, the shapes of such pentagons are Teichmiiller
invariants.

To see the inverse of ®5, we take the shapes of two pentagons with only a common
vertex. Remember that the set of marked right angle pentagons is naturally parameterized
by a 2-dimensional cell, see [8]. Hence if we ignore the gluing consistency, two pentagons
have a four dimensional freedom to change their shapes. In [12], we show by a similar
method as in [8] that there is no obstruction from the gluing consistency in fact, and all
possible combination of shapes of such a pair is realized by a unique # € ©5. We thus
obtain the right inverse of ®; and now establish

Theorem 4. &5 is an embedding.

5. To DEHN FILLING SPACE WHEN n = 6

We continue to use the notations ©g, p = (i192%3t4ist6), Upe, Npe and Pg, etc. Then
denote simply by (i;i;41) the face of A which corresponds to the collisions of the points
marked by i; and i;41. When 6 = (27/6,---,27/6), Ap g, has three ideal vertices. The
four faces containing an ideal vertex have labels of type (ikik+1), (fk+1tk+2), (Sk+3%k+4),
(ik44ik4s) for some k € {0,...,5}. We denote this vertex by (ixirs1%k+2)(tk+3tk+aik+s)-

If 6;, + 0, +0;,, <m, then three vertices 4, ix+1, tk42 Of the hexagon can collide,
and (ixix+1) and (ix41%k+2) intersects in Pe. If 0, + 05, , +0;, 5 <, then (tk+3%k+4) and
(ir+4ik+s) intersects (see figure 1). Let us use the notation (i14243)isis%6 and 111213 (24%5%6)
to indicate such edges.

By Lemma 1 (1), each dihedral angle around the old edges is /2, so that they fit
together without yielding any singularity after gluing. But the hyperbolic structure at
the new edges will be singular in Xgg. A cross section perpendicular to the new edge
will be a cone, obtained by taking a 2-dimensional hyperbolic sector of some angle and
identifving the two bounding rays emanating from the center. Such a singular structure
appears in the hyperbolic Dehn filling theory in [10].

Let £ be the union of singular loci (or ideal vertices). Xsg — £ is homeomorphic to
Xs and Xgg is its Dehn filled resultant. Xgg — £ carries a nonsingular but incomplete
hyperbolic metric. The holonomy representation of Xgg — L lifts to ps : IT = m (Xs) —
SL(2, C). The algebro geometric quotient of all SL(2, C)-representations of II is called a
character variety and denoted by X (II). Assigning the trace of py to each 6, we obtain
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(34)
04 + 05 +66/<£ (23) (45)
(56){(12)
: (23)[ (45)
56
(23) (61) PO 12)

01‘ +0,+60;<m (23)
(45)

FIGURE 1. Cusp of Xg.

the map
Pg : B — X(?Tl(H))

To find Dehn filling invariants, let us very briefly review foundations of the hyperbolic
Dehn filling theory based on Thurston [10], Neumann-Zagier [9], Culler-Shalen [5] and
Hodgson-Kerckhoff [6]. Let N be an orientable complete hyperbolic 3-cone-manifold of
finite volume with singularity £ and p : m (N — £) — SL(2, C) a lift of the holonomy
representation of N — L. If my,...,m, are meridional curves for £, then the map f :
X(IT) — C* defined by

£60 = (), > x(ma))

is a local diffeomorphism at x, where x, is the trace of p. In particular, the traces of
meridional elements are Dehn filling invariants. ‘

The ideal vertices of A, g,’s lie in the same component of cusps in Xj iff the labels are
identical as a partition of six numbers . Hence the number of cusps is equal to the number
of partitions of {1,2,---,6} into a pair of three numbers, = (g) /2 = 10. We may use the
notation (71%913)(%4%5%) to indicate a component of cusps also.

To define appropriate meridional elements, assume for the moment that #; +42 +13 < 7.
Then the cusp labeled by (414243)(i4isis) becomes a singular locus in Xg4 labeled by
(212%3)7415t6, and there is a natural meridional element winding once around the singular
locus. We denote it by m;,;,i,. Note that m;,;,i, is 2 meridional element if 7, +4 +i3 < 7
but no longer meridional if 4; + i + 43 > . Actually pg(m;,s,:,) is a rotation, a parabolic
translation or a hyperbolic translation according to whether §;, + 6;, + 6;, is less than,
equal to or greater than w. Then a computation worked out in [7] shows the identity,

Xpo (milizis) = 2N(i1i2i3; 0)
This formula was used to show that ®s is a local embedding at 6, = (27/6, ... ,27/6).

In [12], we choose different Dehn filling invariants to analyze the global property of
®g. There are 15 geodesic surfaces in Xg4 represented by a pair of markings as in the
case when n = 5. They are uniquely placed on X_s,g since the geodesic representative
of a surface within their proper homotopy class is unique if any. Hence a geometric cell
decomposition by such surfaces, which consists of 60 hexahedra, is uniquely determined.

To see the inverse of ®s, we take the shapes of two hexahedra with only a common
edge. Recall that the set of a hexahedra arisen in this context is naturally parameterized
by a 3-dimensional cell, see [2]. Hence if we ignore other gluing consistencies than having
only a common edge, they has a five dimensional freedom to change their shapes. In [12],
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we show by a similar method as in [2] that there is no obstruction from gluing consistency
in fact, and all possible combination of shapes of such a pair can be realized by a unique
6 € ©g. We thus obtain a right inverse of s and now establish

Theorem 5. ®¢ is an embedding.
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TOPOLOGICAL ASPECTS OF KLEINIAN GROUPS

KEN’ICHI OHSHIKA

- This note is based on a series of talks by the author given at Seoul University in
September 1997. The aim of the note is to expose recent progress in Kleinian group
theory using topological techniques.

Kleinian groups are discrete subgroups of the Lie group PSL,C. Since the group
PSL,C is the group of isometries of the hyperbolic space H?, if G is a torsion-free
Kleinian group, the quotient H3/G becomes a complete hyperbolic 3-manifold. (This is
because a torsion-free Kleinian group acts on H? without fixed points.) The study of
Kleinian groups is closely related to that of hyperbolic 3-manifolds in this way. On the
other hand, PSL,C is also the group of conformal automorphisms of the Riemann sphere
S2. (The Riemann sphere can be regarded as the sphere at infinity of H3. We denote the
sphere by S% when we regard it as the sphere at infinity.) From this point of view, the
Kleinian group theory is related to the complex analysis of one-variable, and to the theory
of Teichmiiller spaces. What makes studying Kleinian groups interesting mathematically
is this Janus-like nature. In this note, Kleinian group we deal with are assumed to be
torsion free and finitely generated.

1. HYPERBOLIC 3-MANIFOLDS OF INFINITE VOLUME

The well-known rigidity theorem by Mostow asserts that two homotopically equivalent
hyperbolic 3-manifolds of finite volume are in fact isometric.

Theorem 1.1 (Mostow). Let My, M be hyperbolic 3-manifolds of finite volume. Let f :
M, — M, be a homotopy equivalence. Then f can be homotoped to an isometry.

The non-trivial elements of PSL,C are classified into three families. The first is that

of loxodromic elements which are conjugate to matrices of the form where

A0

0 /\—1 ’
|A| > 1. As a translation acting on H3, a loxodromic element leaves a geodesic invariant
and rotates H® around the invariant geodesic while translating it. The second family is

that of parabolic elements which are conjugate to a matrix [é i . This means that a

parabolic element fixes a unique point in the Riemann sphere S2,, which is regarded as
the points at infinity of H3, and that if we set the upper half-space model so that the
fixed point corresponds to oo, the element acts on the upper half-space as a Euclidean
translation. The third family is that of elliptic elements which are conjugate to matrices
of the form [‘6} g], where |w| = 1. An elliptic element fixes a point in H3. Therefore
torsion-free Kleinian groups contain no elliptic elements. For a Kleinian group G, the
parabolic elements fixing a point = form an abelian group which is isomorphic to either
an infinite cyclic group or Z x Z. We can choose a horoball B touching S2 at the point
z so that B is translated to a horoball disjoint from B by elements of G other than the
parabolic elements fixing z. For such a horoball B, its quotient by the abelian group

formed by the parabolic elements stabilizing it, is contained in H3/G, and called a cusp.
159
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A hyperbolic 3-manifolds of finite volume may have cusps corresponding to parabolic
subgroups isomorphic to Z x Z, but not those isomorphic to Z.

Mostow’s rigidity theorem says in particular that a Kleinian group with finite-volume
quotient cannot be deformed. In contrast to this, Kleinian groups with infinite-volume
quotient have non-trivial deformations as depicted below.

Example 1.2. Consider a Fuchsian group G C PSL;R corresponding to the fundamen-
tal group of a closed surface S of genus g greater than 1. The space of faithful discrete
representations of m;(S) to PSL,R modulo conjugacy is exactly the Teichmiiller space
of S, which is known to be homeomorphic to the Euclidean space of dimension 6g — 6.
This means that the deformation space of G as a Kleinian group contains an at least
(6g — 6)-dimensional Euclidean space inside. For such a group G, the quotient H*/G is
homeomorphic to S x R and contains a totally geodesic surface homeomorphic to S at
its centre. This hyperbolic manifold has evidently infinite volume.

Example 1.3. A homeomorphism w from S? to itself is said to be quasi-conformal when
w has an L?-distributional derivative, and ||wz/w.|l < 1. By the Ahlfors-Bers theory,
for any Fuchsian group G, there is 12¢g — 12-dimensional space @ of quasi-conformal
homeomorphisms such that for w € @, the group wGw™! is a Kleinian group, and that
wGw™! is conjugate to w'Gw'™! only when w = «'. Such a group wGw™ is said to
be a quasi-Fuchsian group. Also for a quasi-Fuchsian group I' (isomorphic to m;(S),)
the quotient H3/I" is homeomorphic to S x R. More generally, when a Kleinian group
is obtained from another Kleinian group G by conjugating it using a quasi-conformal
homeomorphism, it is called a quasi-conformal deformation of G.

Example 1.4. Take mutually disjoint 2g circles C4, ..., Cy,C, ..., C; bounding disjoint
discs on the complex plane C. Let ¢; : CU {oo} = C U {oo} be a conformal map which
takes the disc bounded by C; to the complimentary disc of one bounded by C;. Then the
group generated by @1, ..., ¢, is a discrete free group, which is called a Schottky group
of rank g. For a Schottky group of rank g, the quotient manifold H3/G is homeomorphic
to the interior of a handle body of genus g.

2. FUNDAMENTAL CONJECTURES IN THE KLEINIAN GROUP THEORY

In this section, we shall state four unsolved conjectures on Kleinian groups, which would
be fundamental for a further development in the Kleinian group theory. The first one is
called Ahlfors’ conjecture. Before stating it, let us define the limit set of a Kleinian group.

Definition 2.1. Let G be a (torsion-free) Kleinian group. The closure of the set {z €
S?|3g € G such that gz = z} is called the limit set of G and denoted by Ac.

Conjecture 1 (Ahlfors [1]). Let G be a finitely generated Kleinian group. Then its limit
set either has measure 0 or is the entire sphere.

This conjecture looks more related to complex analysis than geometry. We shall see
later, however, that Ahlfors’ conjecture is closely related to the following Marden’s con-
jecture, which has a rather topological appearance.

Conjecture 2 (Marden [7]). For any finitely generated Kleinian group G, the quotient
manifold H?/G is homeomorphic to the interior of a compact 3-manifold. (We say that
H?/G is topologically tame then.)

The remaining two conjectures can be stated only using terms which cannot defined
succinctly. Here we defer the definitions and state the conjectures without defining the
terms.
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Conjecture 3 (Ending lamination conjecture [20]). Kleinian groups are classified com-
pletely by the topological types of the quotient manifolds and the end invariants.

Conjecture 4 (Bers-Thurston [20]). Every Kleinian group is an algebraic limit of geo-
metrically finite Kleinian groups.

3. GEOMETRICALLY FINITE AND INFINITE GROUPS

In this section, we shall define a category of Kleinian groups relatively well-understood,
which are called geometrically finite groups. After that, we shall see examples of geomet-
rically infinite groups.

Definition 3.1. A Kleinian group G is said to be geometrically finite if the quotient
manifold H®/G has a convex submanifold Cg which is a deformation retract of H®/G and
has finite volume. The submanifold which is minimal among such convex submanifolds is
called the convex core of H3/G.

Fuchsian groups, quasi-Fuchsian groups, and Schottky groups which appeared in §2 are
all geometrically finite. For a Fuchsian group G, the convex core of H?/G is degenerated
into a two-dimensional submanifold, a totally geodesic surface. For geometrically finite

groups, Ahlfors’ conjecture is known to be true. This was proved by Ahlfors himself in
1966 ([2]). Marden’s conjecture is also known to be true for geometrically finite groups.
As a matter of fact, Marden’s conjecture was motivated by his own result that it is true
for geometrically finite groups ([7]). To understand intuitively that Marden’s conjecture
is true for geometrically finite groups, the best way is to consider the nearest point map.
Let G be a geometrically finite Kleinian group, and suppose for simplicity that G has no
parabolic elements. Then the convex core Cg is a compact submanifold in H3/G. (Except
for the case of Fuchsian groups, the convex core is a 3-manifold.) For z € H3/G we define
r(z) to be the nearest point of Cg from z. It is easy to see that r is a continuous map
and gives a parametrization of (H3/G) \ C; as 8C; x R.

On the other hand, there are plenty of examples of geometrically infinite groups. In
fact, for any geometrically finite Kleinian group with non-trivial quasi-conformal defor-
mation space, we can construct a geometrically infinite group as an algebraic limit of
quasi-conformal deformations. Let us see the simplest example. Let G be a Fuchsian
group corresponding to a closed surface S of genus g > 2. The space QF(S) of quasi-
Fuchsian groups obtained by deforming G is homeomorphic to the (12g — 12)-dimensional
Euclidean space. Actually, it can be parametrized by the product of two Teichmiiller
space T(S) x T(S). This correspondence can be interpreted as follows. Since the limit
set of I' € QF(S) is a Jordan curve in S?, its complement, which is called the domain
of discontinuity of I" and denoted by Qr, is the union of two topological open discs. Its
quotient Qr /T is a Riemann surface homeomorphic to the disjoint union of two copies of
S which are identified by an orientation-reversing homeomorphisms. In this way, I' de-
termines a pair of two marked conformal structures on S, hence a point in 7(S) x 7(S).
This is exactly the correspondence from QF(S) to T(S) x T(S). Now take a sequence
{pi = (my,n;)} C T(S) x T(S), such that m; is constant and {n;} does not accumu-
late inside 7(S). Let I'; be a quasi-Fuchsian group in QF(S) corresponding to p;. Bers
proved in [3] that such a sequence of quasi-Fuchsian group I'; converges to a Kleinian
group I, algebraically. Moreover if Iy, has no parabolic elements, which is generically
true, then the group ', must be geometrically infinite. Such a group is called totally
degenerate b-group without accidental parabolics. Recall that Bers-Thurston conjecture
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asserts that all Kleinian groups would be obtained by a similar fashion, taking a limit of
quasi-conformal deformations of geometrically finite groups.

4. BONAHON’S THEOREM ON FREELY INDECOMPOSABLE KLEINIAN GROUPS

Peter Scott proved that any 3-manifold M with finitely generated fundamental group
contains a compact 3-submanifold such that the inclusion from the submanifold to M
induces the isomorphism between the fundamental groups. (See [15].) Such a submanifold
is called a core of M. McCullough, Miller and Swarup proved that if M has two cores,
there must be a homeomorphism between them’ inducing the identity on m(M). (See
[8].) It is known that proving that H?/G is topologically tame is equivalent to proving
that H3/G is homeomorphic to the interior of its core. Bonahon proved in [4] that both
Ahlfors’ and Marden’s conjectures are true for a class of Kleinian groups which are called
freely indecomposable.

Definition 4.1. A Kleinian group G is said to be freely indecomposable when for any free
product decomposition G = A x B, there exists a parabolic element of G whose conjugacy
class does not contain an element of either factor. In the case when G has no parabolic
elements, this means that G cannot be decomposed into a non-trivial free product.

Bonahon proved the following.

Theorem 4.2 (Bonahon [4]). If a Kleinian group G is freely indecomposable, then H3/G
is topologically tame. Moreover, the limit set Ag of G either has measure 0 or is the entire
sphere.

What Bonahon really proved is that in this case H3/G is geometrically tame in the
sense of Thurston, which implies the both results above. In the rest of this section, we
shall review Bonahon’s argument. To review his argument will also illuminate what kind
of difficulty we face in the general case. We assume that Kleinian groups have no parabolic
elements to make the argument simpler. The condition that G is freely indecomposable
is equivalent to one that a core of H3/G has incompressible boundary. We generalize the
notion of geometric finiteness to one for ends of hyperbolic 3-manifolds.

Definition 4.3. Anend e of a hyperbolic 3-manifold M is said to be geometrically finite
if e has a neighbourhood which intersects no closed geodesics. Otherwise the end is said
to be geometrically infinite.

We can easily see that G is geometrically finite if and only if all ends of H3/G are
geometrically finite. Let e be a geometrically infinite end of H3/G. The first step of

Bonahon’s argument is to prove that there exists a sequence of closed geodesics {7}
which tends to the end e, i.e., such that for any neighbourhood U of e there exists ig
with the property that if i > iy then ; C U. The assumption that e is geometrically
infinite assures that for any neighbourhood of e, there exists a closed geodesic intersecting
it. Taking a sequence of neighbourhoods U; forming a base of neighbourhood system of
e, we get a sequence of closed geodesics §; such that J; intersects U;. From this one can
construct a piece-wise geodesic closed curve 7, contained in U; consisting of four geodesic
arcs. Either by homotoping +; to a closed geodesic, or by taking an axis of Margulis tube
intersecting a homotopy between <; and a closed geodesic, we get a sequence of closed
geodesic as we wanted.

Take a core C of H3/G. There is a unique boundary component S of C that faces
e. Any closed curve contained in the component of the complement containing e can be
homotoped to one on S. Let 7; be a closed curve on .S homotopic to ; in H3/G. Since S
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is incompressible a homotopy can be chosen to be disjoint from the interior of C. (This
is one of the points where the assumption of free indecomposability is crucial.) Fix a
hyperbolic metric on S and for a closed curve v on S, denote by lengthg(7y) the length of
the closed geodesic homotopic to . The second step of Bonahon’s argument is to prove
that

i(’Yi) 71) .

Tengths (777 —0asi— oo. (1)
This is proved by considering the ratio of the area of a piece-wise totally geodesic homotopy
and the intersection number with the homotopy and the closed geodesic. The fact 1 can
be regarded as meaning that a weighted simple closed curve +;/lengthg(7;) approaches
to an object without self-intersection. Bonahon considered the space of geodesic currents
on S to make the intuitive assertion above have a mathematical meaning. We shall not
go into defining this space precisely here. The space of geodesic currents is the space
of transverse measures for geodesic flows on the unit tangent bundle of S. A measured
lamination, which is defined by Thurston to construct a compactification of a Teichmiiller
space with completing the set of weighted simple closed curves, can be characterized as a
geodesic current with null self-intersection. Thus in the space of geodesic currents, we see
that ;/lengthg(7;) converges to a measured lamination A. As can be seen in Thurston’s
construction, the space of measured laminations is a completion of the set of weighted
simple closed curves. Therefore for the measured lamination ), there exist weighted
simple closed curves w;c; converging to A. Let o be the closed geodesic homotopic to
o; in H*/G. The third step is to prove that the sequence of closed geodesics {aZ} also
tends to the end e. This is the most subtle and complicated part of Bonahon’s argument.
As it will necessitate many preliminaries to explain this part of the argument, we skip
it entirely. Having proved this, one can use Thurston’s technique of pleated surfaces to
complete the proof. Refer to [16] for details.

Definition 4.4. Let S be a hyperbolic surface, and N a hyperbolic 3-manifold. A con-
tinuous map f : S — N is called a pleated surface when

1. the arc length function induced from N coincides with that of the hyperbolic metric
on S, and

2. there exists a closed set v consisting of mutually disjoint simple geodesics, such that
the restriction of f to v and each component of S \ v is totally geodesic.

The v as above is called a geodesic lamination realized by f.

For each closed geodesic o] in the sequence we have above, we can construct easily a
pleated surface f; : S — H3/G homotopic to the inclusion of S, which takes a simple closed
curve homotopic to a; to of. There is a uniform bound for the diameters of homotopic
pleated surfaces outside the Margulis tubes. Hence the sequence of pleated surfaces
fi also tends to the end e. Since S was assumed to be incompressible, by Freedman-
Scott-Hass theory, an embedded surface S; homotopic to S exists in an arbitrarily small
neighbourhood of f;(S). Thus we have a sequence of embedded surfaces S; homotopic
to S going out to e. The incompressibility of S makes it possible to choose a homotopy
between S; and S;;; contained in the submanifold cobounded by them. This implies that
e has a neighbourhood homeomorphic to S x R. As this is the case for every geometrically
infinite end, H?/G is topologically tame. Also it can be seen that Ahlfors’ conjecture is
true for such a G roughly by the argument as follows. If Ahlfors’ conjecture failed to
hold, then there would be a non-trivial harmonic function on H3/G defined by the visual
measure of the limit set. Consider its value in the convex core. By the maximal principle,
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its maximum value cannot be attained in the interior of the convex core. On the other
hand, the value at the boundary is at most 27, which cannot be maximal. Thus the
gradient flow of the harmonic function must go out to a geometrically infinite end. One
can show by a fairly simple argument that the existence of a sequence of pleated surfaces
makes this impossible.

5. ENDING LAMINATIONS AND MINSKY’S THEOREMS

In this section, we shall define ending laminations and end invariants so that the ending
lamination conjecture stated before will make sense, and describe a partial solution to the
conjecture by Minsky and its generalization by the present author. Recall that in the
last section, it was proved that for any geometrically infinite end e of H3/G, where G
is a freely indecomposable Kleinian group, there exists a sequence of closed geodesics o
which are homotopic to simple closed curves ; on the component S of a core C facing e.
Evidently there is an ambiguity for the choice of such a sequence of simple closed curves.
The argument used to prove that the intersection number of 7v;/lengthg(~y;) goes to 0,
however, implies that the support of the limit measured lamination of o;/lengthg(es) is
independent of the choice of such a sequence. It is possible that by changing a sequence
we would get a different transverse measure with the same support. The support of
a measured lamination is a geodesic lamination. The support of the limit measured
lamination as above is called the ending lamination of e.

Definition 5.1. Let G be a freely indecomposable Kleinian group without parabolic
elements. Let ey, ..., en be the ends of H3/G. (If we allow G to have parabolic elements,
we need to consider the ends of non-cuspidal part of H®/G instead of H3/G itself.) We
define the invariant of e; to be the ending lamination of e; if e; is geometrically infinite.
When e; is geometrically finite, we define its invariant to be the point of Teichmiiller space
determined by the conformal structure at infinity corresponding to e;. The end invariant
of H3/G is defined to be the n-tuple whose i-th coordinate is the invariant of e;.

This definition can be generalized to the case when G may be freely decomposable
provided that H?/G is topologically tame as follows. First consider a geometrically finite
end e of H3/G. The end corresponds to a component X of the quotient of the domain of
discontinuity. The point which is different from freely indecomposable case is that Y is
compressible in the Kleinian manifold (H3 U Qs)/G. This causes ambiguity in determin-
ing the marking of ¥. Thus we cannot determine a point in the Teichmiiller space of the
boundary component of a core facing e, but one in its quotient space, T (S)/ Diff’(S, C),
where Diff’(S,C) denotes the groups of isotopy classes of auto-diffeomorphisms of S
extending to those of C acting on 71(C) by inner-automorphisms. Next consider a ge-
ometrically infinite end e, which is assumed to have a neighbourhood homeomorphic to
S x R for the boundary component S of C facing e. We can define an ending lamination
similarly to the case when G is freely indecomposable by virtue of Canary’s theorem be-
low. The only point that we have to change is that we have to assume that the simple
closed curves o; converge in the Masur domain. Here Masur domain is defined to be the
set of measured laminations which have non-zero intersection numbers with all measured
laminations that are limits of weighted compression discs.

Theorem 5.2 (Canary [6]). Let H}/G be a topologically tame hyperbolic 3-manifold. Then
for each geometrically infinite end e of H®/G, we can construct a sequence of pleated sur-
faces tending to e similarly to the case of freely indecomposable groups, and we can choose
a sequence of simple closed curves {o;} as above whose projective classes converge inside
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the projectivized Masur domain. Moreover for such a group G, the limit set Ag either is
the entire sphere or has measure 0.

Minsky gave a partial solution to the ending lamination conjecture as below.

Theorem 5.3 (Minsky [9]). Suppose that G and T' are freely indecomposable Kleinian
groups such that H3 /G is homeomorphic to H3/T". Suppose moreover that there is a lower
bound € > 0 for the injectivity radii at all points of H*/G and H3/T. In this situation,
if the end invariants of H*/G and H3/T' coincide by the correspondence induced by a
homeomorphism h : H*/G — H3/T', then h is homotopic to an isometry. In particular,
G and T are conformally conjugate.

In other words, the ending lamination conjecture is true for freely indecomposable
Kleinian groups such that the quotient manifolds have injectivity radii bounded away from
0. The author generalized Minsky’s theorem above to topologically tame groups which
are possibly freely decomposable, with the same assumption on the injectivity radii. See
[13]. It seems quite difficult to remove the assumption on the injectivity radii in general.
Yet, Minsky also proved that for Kleinian groups isomorphic to a once-punctured torus
group, the ending lamination conjecture is true without assumption on the injectivity
radii.

6. DEDUCING THE BERS-THURSTON CONJECTURE FROM THE ENDING LAMINATION
CONJECTURE

In this section, we shall briefly see that the ending lamination conjecture implies the
Bers-Thurston conjecture in the case of freely indecomposable Kleinian groups without
parabolic elements. Suppose that we are given a freely indecomposable Kleinian group
I without parabolic elements. By Bonahon’s theorem, we know that H3/T is topolog-
ically tame, i.e., homeomorphic to the interior of a compact 3-manifold K. Thurston’s
uniformization theorem implies that there is a geometrically finite Kleinian group G with-
out parabolic elements such that H?/G is homeomorphic to IntK. (See [17] and [20].)
It is known by Ahlfors-Bers theory that the quasi-conformal deformation space of G is
parametrized by the Teichmiiller space 7 (Q¢/G), which corresponds exactly to the end
invariants in the case of geometrically finite groups. We can take a sequence of quasi-
conformal deformations G; of G so that the end invariants e(G;) of H3/G; converge to
that of H®/T'. It means that if a coordinate of ¢(G;) converges inside the Teichmiiller
space as ¢ — oo, then the corresponding coordinate of e(T") is the limit point in the
Teichmiiller space, and that if a coordinate diverges in the Teichmiiller space, then the
support of its limit in the Thurston compactification, which is a projective lamination,
is the corresponding coordinate of e(T"). Then by the author’s theorem on realization of
ending laminations ([11]), we can see that {G;} converges to a Kleinian group with the
same end invariant as I'. If the ending lamination conjecture is true, this implies that T’
is the limit of {G;}, which means in particular that I is a limit of geometrically finite
groups. Thus the Bers-Thurston conjecture would also be solved.

7. CONCLUSION

As was shown in the last section, for freely indecomposable Kleinian groups, the most
important remaining problem is the ending lamination conjecture. By solving it, the
picture in this case is nearly complete. In contrast, it remains a far way to go to fully un-
derstand freely decomposable Kleinian groups. The first obstacle is Marden’s conjecture.
The author has been trying to tackle solving the conjecture using topological method,
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which is still in process. He hopes that he can complete the work in the near future. Also
in the general case, it is not so simple as in the case of freely indecomposable groups to
deduce the Bers-Thurston conjecture from the ending lamination conjecture. One of the
reasons why is that the studies on convergence/divergence of sequences of freely decom-
posable groups are not well developed. Except for groups with simple algebraic structures,
as in [5], [14] and [12], the asymptotic behaviour of quasi-conformal deformations of freely
decomposable geometrically finite groups are not well understood.
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NON-ZERO DEGREE MAPS BETWEEN 3-MANIFOLDS

TERUHIKO SOMA

Introduction

This note is a survey for some results on non-zero degree maps between closed 3-
manifolds obtained by the author [14], [15], and based on his lectures in the GARC
Conference on Geometric Structures on Manifolds at Seoul National University, 1997.
Our subject is closely connected with the following problem by Y. Rong; Problem 3.100
in [9]:

Let M be a closed, connected, orientable 3-manifold.

(A) Are there only finitely many irreducible 3-manifolds N with a degree-one map M —
N?

(B) Does there exist an integer n(M) depending only on M such that if
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is a sequence of degree-one maps with n > n(M) and each M; (1 = 1,...,n) is
irreducible, then the sequence must contain a homotopy equivalence?

For two closed, connected, orientable manifolds M, N of the same dimension n, we
say that N is dominated (resp. d-dominated) by M if there exists a continuous map
f: M — N with deg(f) # 0 (resp. | deg(f)| = d). First, we discuss the case where the
dominated manifold N is hyperbolic. By an argument invoking the Gromov invariant, it is
shown that the volume of N is bounded by a constant depending only on M (see Thurston
[16, Chapter 6]). According to H.C. Wang [19], there are only finitely many hyperbolic
n-manifolds with bounded volume if n > 3. This shows that the number of mutually non-
homeomorphic, hyperbolic n-manifolds dominated by a fixed M is finite if n # 3. In the
case of n = 3, a similar argument does not work. In fact, by Thurston’s Hyperbolic Dehn
Surgery Theorem [16], one can have infinitely many hyperbolic 3-manifolds with bounded
volume. However, even in this case, it can be proved that the number of hyperbolic 3-
manifolds dominated by any closed, orientable 3-manifold is finite (see Theorem 2.1 in
§2). The proof is based on the argument in Thurston [18], where a certain 3-manifold
M’ is hyperbolized with ideal 3-simplices by using a faithful, discrete representation p :
m(M') — Isom*(H?®). We “hyperbolize” our M similarly by using a non-zero degree
map f : M — N. Arguments in Boileau-Wang [1, §3] show that this theorem does not
hold when M is non-orientable. In [12, Corollary 4.1], Rong proved that, if the M is
Seifert-fibered of infinite 71, then M 1-dominates only finitely many Seifert fibered spaces
of infinite ;.

Next, we consider the case where dominated 3-manifolds are Haken. Any Haken man-
ifold N is decomposed into hyperbolic pieces and Seifert pieces by a certain union of
incompressible tori in N. We denote by #(N) the disjoint union of hyperbolic pieces in
the decomposition. A compact, connected 3-manifold H is said to be dominated by M as
a hyperbolic piece if there exists a Haken manifold N dominated by M and such that H

167
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is homeomorphic to a component of #(N). Theorem 3.1 in §3 shows that, for any closed,
connected, orientable 3-manifold M, there are only finitely many 3-manifolds dominated
by M as hyperbolic pieces. By invoking this theorem, one can prove that there exists
an integer n;(M) depending only on M such that, for any family of Haken manifolds
N; (i=1,...,n) with n > n;(M) and dominated by M, at least two of the hyperbolic
unions H(NNV;) have the same topological type (see Corollary 3.3). This corollary is crucial
in the proof of Theorem 3.4 in §3 which gives a complete answer to Problem 3.100 (B) in
[9] “up to the Geometrization Conjecture” by Thurston [17].

§1. Preliminaries

We refer to Hempel [5] and Jaco [6] for fundamental definitions and notation on 3-
manifold topology, and to Thurston [16] for those on hyperbolic geometry. ‘Throughout
this note, let us assume that all 3-manifolds are oriented.

A non-degenerate, oriented 3-simplex A in the hyperbolic 3-space H3 is positive if the
orientation is compatible with that of H®, and otherwise negative. If A is an ideal 3-
simplex in H? all whose vertices are contained in the sphere S% at infinity, then A admits
an isometric Z, x Z,-action generated by elliptic elements. Let {v1, v2, vs, vs} be the set of
vertices of the A, e;; the edge of A connecting v; with v, and D; the face of A opposite to
v;. We suppose that the vertices are numbered so that the triad (vy — vy, v2 — V4, v3 —v4) of
vectors forms the frame compatible with the orientation of A. We direct each e;; from v;
to v; temporarily. For any even permutation (4, 5, k,1) of (1,2, 3,4), there exists a unique
element v € Isom™ (H?) taking Dy onto D; and fixing v;, v;. Then, the edge invariant z(e;;)
is the complex number whose modulus is the translation distance of y with respect to the
direction of e;;, and whose argument is the angle of rotation of 7. Clearly, the invariant
is independent of the direction of the edge, that is, z(e;;) = z(ej;). By the Zy X Zo-
symmetry of A, mutually opposite edges of A have the same edge invariant. Moreover,
z(ea3) = z(eq1) = (z—1)/z and 2z(e13) = z(e2q) = 1/(1 — 2) if 2z = 2z(e12) = z(ea4) (see [16,
Chapter 4] for details). Even in the case of A degenerated, the edge invariant is defined
similarly. Then, for any edge e of the A, the invariant z(e) takes the value in R — {0, 1}.

Here, we will present two kinds of §-inner-outer decompositions for any non-degenerate,
ideal 3-simplices A in H?® and any small 6 > 0. It is an important fact that the diameter
of each component of the d-inner part of A is bounded by a constant independent of A.

Let D be an ideal, straight 2-simplex in H? such that all vertices of D are in the circle
S, at infinity. If § > 0 is sufficiently small, then the closure T in D of the complement
D — N3(0D, D) is a triangle, where N;(0D, D) is the d-neighborhood of 8D in D. The
convex hull Dins) in D spanned by the three vertices of T is called the é-inner part of D.
Note that Dipns) is a triangle with geodesic edges and containing T. The closure Doys(s)
of the complement D — Diyn(s) is called the d-outer part.

Let A be a non-degenerate, ideal 3-simplex in H? such that all vertices vy, vs, vs, v4 Of
Aisin S2, and D; (i = 1,2,3,4) the face of A opposite to v;. The edge of A connecting
v; with v; is denoted by e;; = ej;. Take 6 > 0 so that each D;nn) is a triangle. For
each v;, let wy (k # 1) be the vertex of Dy inn(s) adjacent to v;, and let T; = Tj(d) be the
totally geodesic triangle in A spanned by w;’s with k € {1,2,3,4} — {i}. Note that all T;
(i = 1,2,3,4) are isometric to each other. Let u;; be the foot of the perpendicular from
Wik tO €ij in Dk. The convex hull Aij = Aji of Wik, Wil, Wik, Wity Uikj, Uilj, Ujkiy Ujli in Ais
called a 6-arm of A for {k,1} = {1,2,3,4} — {7, 5} (see Fig. 1).

For any 4,5 € {1,2,3,4} with 1 # j, let J;; (resp. Ji;) be the convex hull in A spanned
by v; and wi’s for k € {1,2,3,4} — {i} (resp. by v; and wsk, ui;'s for k € {1,2,3,4} —
{i,5}). We call the union J; = Uj_, J; is a é-joint of A and each J; is a §-subjoint of J;
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FIGURE 1

(see Fig. 2). The union Agye) = (Uicicj<adij) U (Ui-, Ji) is called the é-outer part of
A, and the closure Ajyp(s) of the complement A — Aout(s) is the d-inner part. Note that
diam(T;(0)) is bounded by a constant independent of §. However, diam(7;(6)) diverges to
the infinity if z(e) — 1 in C for some edge e of A. This is inconvenient for us to analyze
a geometric limit of the J-inner parts of ideal 3-simplices. If z(e;;) = z(ex) is sufficiently
close to 1 for some {i,j, k,1} = {1, 2, 3,4}, then

(1.1) diStA(uijk,’U,jik) = distA(uiﬂ, Ujil) = distA(ukli,u,k,-) = diStA(uk[j, ulk,-) <.
We say that A is d-stretched if it satisfies (1.1), and otherwise A is §-normal.

FIGURE 2

Here, we will consider the case where A is é-stretched, and define another d-inner-outer
decomposition for A. If necessary renumbering the vertices of the A, it may be assumed
that distA(u123,u213) = distA(u124,u214) = diStA(U341,U431) = diStA(U342,U432) <9 (see
Fig. 3). The é-arms A}, and A}, here are equal to A;» and Asy respectively. The 6-
arm A{ is the convex hull of w3, w4, w34, Wa3, U134, U143, Usar, and ugg. We set Jj, =
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le, Jél = J21, Jé4 = J34, and ']4;3 = .]43. The convex hull of U1, W13, W14, U134, and U143 is
denoted by Ji,. The convex hulls Ji44, J3,5, J1;, are defined similarly. Then, the unions
J} = Jio U Jise, Iy = Jig U Jgaq, J§ = J34 U J4yo, and Jg = J43 U Jyy, are called é-joints of
A. The union

Aousy = (Ui Af) U Ay U A3, U (UjeJ5)
is called the é-outer part of A, and the closure Ajnq(sy of the complement A — Agyy(sy is
the d-inner part in the §-stretched case.

FIGURE 3

A 6-microchips C is a compact Riemannian 3-manifold isometric to a convex polyhedron
in H® of diameter < 105. For a set C = {C); A\ € A} of d-microchips, dC is the set
{8Cx; A € A} with the total area Area(8C) = T 5cp Area(0C,). When the rule of the
intersection Cy N C,, of any two elements Cy,C, € C is determined, the union UyeaCh
with the arcwise metric induced from those of Cy’s is denoted by LIC.

Now, we define a é-microchip decomposition for Aoy (s) in the case where A is §-normal.
Let {P,;n € Z} be the set of totally geodesic planes in H3 perpendicular to e;; with
distys (P, Poy1) = 26 for any n € Z. These planes decompose the §-arm A;; into 6-
microchips (see Fig. 4). Similarly, J;;’s are decomposed into d-microchips. For example,
20-equidistant, totally geodesic planes in H® perpendicular to a longest ray connecting a
vertex of T} with v; separate Jj; into d-microchips. The union Ca of all these microchips
defines a d-microchip decomposition for Agu(s), that is, UCA = Agut(s)-

Wis Ap Wi
W4 R N T LN LY X W \ N\ \‘ W24
\ v T T v
A \“I v “I ‘j ‘j \\‘ \l \I A . o
Vv, O— L4 L g & v3

a 6 G G G G G G G G

FIGURE 4

We note that there may exist C; € Cp in A;; and Cy € Ca in J; such that intCiNintCy # 0.
However, it does not cause any problem in our argument. Also in the §-stretched case, a
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d-microchip decomposition Cp for Aou(sy is defined similarly.

Lemma 1.1. In either case, there exists a constant K > 1 independent of § and A
such that, if C' € Cp is contained in a §-arm A (resp. a 6-subjoint J), then Area(dC) <
KArea(0C N OA) (resp. Area(9C) < KArea(C N dJ)). O

The proof is elementary, so it will be left to the reader (cf. the proof of [13, Lemma 2]).
Since lims_,o Area(0A) = 0 and lims_,o Area(dJ) = 0 for any §-arms A and é-subjoints J,
Lemma 1.1 implies the following. ‘

Corollary 1.2. Suppose that any € > 0 and any non-degenerate, ideal 3-simplex A in H3
are given. Then, there exists & > 0 such that, for any 0 < § < &, there is a §-microchip
decomposition Ca for Agui(s) (0 Aout(sy) with the total area Area(0Cp) < €.

Let A4, ..., A, be non-degenerate, oriented, ideal 3-simplices in H? such that all vertices
of A; are contained in S2,. Remove all edges from A; and denote the resulting simplex
by A7. We suppose that each face Df; of A7 has the orientation induced from that of
A?, that is, the combination of a positive frame of Df; and a normal vector on Dj; to
A7 directing outward defines the orientation compatible with that of A¢. Identifying
faces of A$’s suitably by orientation-reversing isometries, one can construct a connected
3-manifold G°. The fundamental group 7;(G°) of G° is a free group. Since the attaching
maps are orientation-reversing, G° has a unique orientation compatible with that of each
A3. The boundary 0G° is the disjoint union of all faces not identified with any other
faces. We say that G° is an ideal simplicial complez obtained from A3, ..., A2.

Let p : G° — G° be the universal covering, and let d : G° —» H3 be a developing
map defined in a usual manner. The developing map is illustrated in Fig. 5 schematically.
The d introduces a holonomy p : m;(G°) — Isom™* (H?) with p(y) od = d o 7, for all
v € m1(G®), where 7, is the covering transformation on G° associated to v. The complex
G° can be extended to the union G = A;U- - -UA,, as a metric space if p() is either trivial
or elliptic for v € 71(G°) corresponding to the meridians of any edges in the 1-skeleton of
G. We say that the G is the complete ideal simplicial complez (obtained by completing G°)
if G is complete as a metric space. For any small § > 0, the union Ginn(s) = Uj=1Aijinn(s) is
called the é-inner part of G°, where each A;jnn(s) denotes the -inner part of A; in either
the 6-normal or é-stretched case. The closure Gg,(5) in G° of the complement G° — Ginn(s)
is the d-outer part of G°.

§2. Non-zero degree maps to hyperbolic 3-manifolds
In this section, we will sketch the proof of the following finiteness theorem referred in
Introduction, which gives a partial answer to Problem 3.100 (A) in [9].

Theorem 2.1 ([14]). For any closed, connected, orientable 3-manifold M, the number of
mutually non-homeomorphic, orientable, hyperbolic 3-manifolds dominated by M is finite.

We say that a contractible 1-complex I is a star of degree n if I' consists of n edges
which have a common vertex. The following lemma is used in the proof of Theorem 2.1.

Lemma 2.2. Let W be a compact 3-manifold, T =Ty U---UT, a disjoint union of tori,
and I a star of degree n such that I'NT; is a single end point of T for each i € {1,... ,n}.
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FIGURE 5. The shaded triangles represent negative 3-simplices

Suppose that ¢ : OW — T is a continuous map such that, for each T;, the degree d; of
©lo~(T;) : ¢~ (T;) — T; is non-zero. Then, there is at most one way to extend T to
a disjoint union ¥ = V; U --- UV, of solid tori with 0V; = T; such that ¢ extends to a
continuous map ® : W — VUT.

Proof. Suppose that there exists a continuous map ® : W — V UT extending o.
Consider a meridian disk D; for V; with dD; N T = 0. If necessary after modifying ¢ by
a proper homotopy, we may assume that ® is transverse to D; U ---U D,. Then, each
F; = &~1(D;) is a compact, orientable surface in W with 0F; C OW. Orient F; so that
©.([0F])) = di[0D;] in Hy(T; Z). Consider another continuous map & : W — V' UT
extending @, where V = V/U---UV] is a disjoint union of solid tori with 0V; = T;. Since
®'(F;) is contained in V' UT, ¢,([0F;]) = d;[0D;] = 0 in H,(V'UT;Z). Since d; # 0 and
since the homomorphism H;(V}; Z) — H;(V'UT'; Z) induced from the inclusion is injec-
tive, [0D;] = 0 in H1(V;;Z). Hence, 8D; bounds a meridian disk in V;. This completes
the proof. O

For any topological space X, let (C.(X),0.) be the singular chain complex with real
coefficient. An element c of the k-chain group Ci(X) is a finite linear combination ¢ =
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Y_ie; ri0; with continuous maps (singular k-simplices) o; : A¥ — X and r; € R, where
A* is a regular k-simplex of edge length 1 in the Euclidean k-space. Gromov’s norm ||c||
of ¢ is defined by ||c|| = 3%, |r;|. Moreover, for any a € Hi(X;R), we set

llal| = inf{]lc]l; c € Zk(X) with [c] = a},

where Z(X) is the k-cycle group of X. When N is a closed, oriented n-manifold, the
norm ||[N]|| of the fundamental class [N] € H,(N;R) is called the Gromov invariant of
N and denoted simply by ||N||.

The following proposition is immediate from the definition.

Proposition 2.3. (i) Let f : X — X' be a continuous map between topo]og1ca1 spaces.
Then, the inequality ||fy(a)|| < ||e|| holds for any o € Hi(X;R).

(11) For a continuous map f : N — N’ between closed, connected, orientable n-
manifolds, we have | deg(f)| ||N'|| < ||N]|.

Sketch of Proof of Theorem 2.1. The proof is done by reduction to absurdity. So,
we may assume that there exists a closed, connected 3-manifold M dominating closed,
connected, hyperbolic 3-manifolds NV, (n € N) which are not homeomorphic to each other.
Let f, : M — N, be a non-zero degree map. According to Thurston [16, Chapter 6],
Vol(NV,) is equal to ||Ny||vs, where v; is the volume of a regular, ideal simplex in H%. By
Proposition 2.3, for any n € N,

_ || ”V3 <
VOI(NH) ||N ”V3 = Id (f )l “MHVB

Thus, the volumes Vol(XV,) are bounded. By J¢rgensen’s Theorem [16, Chapter 6], if
necessary taking a subsequence of {N,} instead, we may assume that there exists a
complete, connected, hyperbolic 3-manifold N with Vol(N) < oo such that each N,
is obtained by hyperbolic Dehn surgery on N. In particular, we have sequences {e,},
{Kn} with &, \y 0, K,, N\, 1 so that there exist K,-quasi-isometric diffeomorphisms
9n * Nnthick(en) — Nithick(en)- R R

Fix a (topologically) simplicial decomposition D on M, and let A;,...,A,, be the 3-
simplices in D. By modifying M and f,, we will first construct ideal simplicial complexes
G, and continuous maps f,, : G, — N, which are locally isometric on each simplex. In
fact, the complex Gy, is the union of ideal straight 3-simplices A; ., obtained by straight-
ening singular 3-simplices fn]Z&,- : A; — N, for any A;. Note that the diameter of each
component of G, jnn(s) is bounded, and each ideal 3-simplex in G, is parametrized by a
complex number z;,. In fact, for the edge e;, of A;, corresponding to a fixed edge e; of
A;, we set Zin = z(e; ) as in §1. Since C=cCcu {oo} is compact, if necessary passing to
a subsequence, we may assume that, for all< € {1,... ,m}, {2 ,}52, converges to a point
z € C. Let Hyp, ..., H,, be the components of G, inne). These Hy,'s are renumbered
so that, if necessary passing to a subsequence, the following (2.1) and (2.2) hold.

(2.1): There exists an € > 0 such that f; (Ha,n) N Ny thinee) = 0 for all sufficiently large
ne€Nandae {1,...,u}.

(2.2): There exists a sequence {e,} with £, N\, 0 such that f,(Hgn) N Ny thin(e,) # 0
for all sufficiently large n € Nand g € {p+1,...,v

From now on, we set Z, = Uy_1Hon, Zn = Uj_, 1 Hapn and O = Gpous)- Since
the diameters of Z,’s are bounded, the sequence {Z,} converges geometrically to the J-
inner part 7 of a certain simplicial complex. In particular, there exist L,-quasi-isometries
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hn : T — T, with L, \, 1. Note that the images g, © f; o hn(Z) are contained in the
compact set Nth,ck(e) By Ascoli-Arzeld’s Theorem, we may assume that the sequence
{gno flohy : T — Nini()} converges uniformly to a continuous map 7T —
Niniexe) C N. Let H, be the component of Z which is the geometric limit of the sequence
{Hgy}. Since Ky, L, \, 1 and since f;, is a locally isometric immersion in each ideal 3-
simplex of Gp, for each simplex A;jnn) in Z, f’ |Aijinn(s) is @ locally isometric immersion.
This implies that a holonomy p, : m(H,) — Isom*(H3) for @ € {1,...,u} is the
composition py o (f'|Ha). of a holonomy py : m1(N) — Isom™ (H?) of N and the induced
homomorphism (f'|Hg)s : m1(H,) — m1(IN). Note that the sequence {pan © (ha|Ha)+}
converges algebraically to p,, where po, is a holonomy of Hy 5.

The Z, is the “essential” d-inner part of Gp inn(s)- We note that Z,,, Oy, Z, have pairwise
disjoint interiors and Z, N Z, = @, and that the topological type of (Gn;Zn, On, 2y) is
independent of n € N. By Corollary 1.2, the §-outer part O, of Gy, is controlled in the
following sense:

(2.3): lims_o sup,{Vol(O,)} =0, and
(2.4): There exists a §-microchip decomposition C, on O, with

lim sup{Area(dC,)} = 0.

Again by passing to a subsequence if necessary, one can modify Z, G,, n, b, I, O

by surgery along BI(,,) = 00, — 8Z, in order to construct new manifolds Z, G maps
fn: Gn — N, hn : T — Z,; and a decomposition Zn, O, Z, (= Z,) on G, which
satisfy the same properties as (2.1)—(2.4) and moreover

(2.5): ps(m1(X)) is a non-trivial parabolic group for each component ¥ of 8T, where
ps : m(X) — Isom™ (H3) is the restriction of the holonomy of 7.

Here, let us first fix a constant Ag > 0 so that fn([,n) N Ny thin(ro) = 0, where L is some
part added to O,, under our modification. By using the parabolicity (2.5), one can next
choose ¢ > 0 so that ﬂ(ain) C intNp hin(ro) for all n € N.

We ﬁnally retake £ > 0 with € < g so that fn(In) NN, thick(€) = 0 for all n € N. By
using (11) fn can be modified again so that the resulting map ¥ : G —> N, satisfies
that ¥,|0Z, is a non-zero degree map onto N, thin(e) and ¥n(Z, U 2,) is contained in the
union of Ny thin(e) and a star 'y in Ny ihick(e). We note that the property (2 4) is crucial
in our argument. In fact, without the (2.4), one would only show that (T, U 2,) would
lie in the union of Ny thin(e) and a 2- complex in Nn sthick(e), and hence one can not invoke
Lemma 2.2. Since the sequence {g, o foohy T — Nth,ck(e)} converges unlformly to a
map f: I — Ninick(e), one can assume that g, o 0 Pn |8I G 0P 0 hnIIGI Then, by
Lemma, 2.2, g;,l 0 gn : Ny thick(e) — Nt thick(e) Would be extended to a homeomorphism
N, — N,, a contradiction. This completes our reduction to absurdity and hence the
proof of Theorem 2.1. O

§3. Non-zero degree maps to Haken manifolds

A compact, connected, irreducible 3-manifold is called Haken if the manifold contains
an incompressible surface. According to Thurston’s Uniformization Theorem [17] and the
Torus Decomposition Theorem (Jaco-Shalen (7], Johannson (8]), for any closed, Haken
manifold N, there exists a union 7 of mutually disjoint, incompressible tori (possibly
empty) such that each component P of N — intA/(7) has either an interior hyperbolic
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structure of finite volume or a Seifert fibered structure, where N'(7) is a regular neigh-
borhood of 7 in N. In the former case, P is called a hyperbolic piece, and in the latter,
a Seifert piece. The the union H(N) of hyperbolic pieces is determined uniquely up to
ambient isotopy on N. As was defined in Introduction, a compact, connected 3-manifold
H is said to be dominated by a closed, connected 3-manifold M as a hyperbolic piece if H
is homeomorphic to a component of the hyperbolic piece union H(N) of a Haken manifold
N dominated by M. A '
The following theorem is the hyperbolic piece version of Theorem 2.1.

Theorem 3.1 ([15]). Suppose that M is any closed, connected, orientable 3-manifold.
Then, there are only finitely many, mutually non-homeomorphic 3-manifolds dominated
by M as hyperbolic pieces.

A complete, simplicial complex G is said to simplicially dominate a hyperbolic 3-
manifold W of finite volume if there exists a proper, non-zero degree map ¢ : G — W
such that, for each 3-simplex A; in G, a lift of the restriction ¢|A; : A; — W to the
universal covering is a smooth (but not necessarily isometric) embedding onto a non-
degenerate, straight 3-simplex in H® all vertices of which are contained in SZ.

For the proof of Theorem 3.1, we need the following lemma.

Lemma 3.2 ([15]). Any closed, connected, irreducible 3-manifold M admits a finite set
G = {G1,...,Gyr} of complete, simplicial complexes such that, for any 3-manifold H
dominated by M as a hyperbolic piece, a hyperbolic 3-manifold W homeomorphic to
intH is simplicially dominated by at least one G; of G.

Sketch of Proof. Fix a simplicial decomposition Djs on M, and let DES,) be the set of
3-simplices in Djs. Take a non-zero degree map f : M — N to a Haken manifold N
such that %(NN) has a component homeomorphic to H. By [5, Lemma 6.5], for the union
T of tori determining a torus decomposition on N, we may assume that each component
of F = f~Y(T) is an incompressible surface in M. We deform F by an ambient isotopy on
M in the same manner as in [5, Lemmas 13.2, 3.14]. Let L be the components of f~1(H)
such that the degree of f|L : L — H is non-zero. The set of components A N L for
all A e Dg\‘? defines a polyhedral decomposition £, on L. Consider a certain subdivision
Dy, of &1, which gives a simplicial decomposition on L, where any vertex in Dg)) — 5}(40) is
contained in the interior of some V € 523), and this correspondence Dg’) - ££O) — 89)
is bijective. Here, note that we cannot estimate the number of 3-simplices in D;. To
avoid the difficulty, straighten these simplices by using the map f|L and the hyperbolic
structures on W. Then, the number of 3-simplices in D, which are non-degenerate after
straightening is not greater than 4# (D). We note that the number 4#(DY) depends
only on Dy, but is independent of the dominating map f. Let G = {Gy,...,G,} be a
maximal set of complete, simplicial complexes consisting of at most 4#(’D$)) 3-simplices
and such that any two elements of G have distinct combinatorial types. Then, W is sim-
plicially dominated by at least one G; of G. O

Proof of Theorem 3.1. We may assume that M is irreducible, and hence one can apply
Lemma 3.2. Let G = {G1,...,Gnr} be a set of complete, simplicial complexes given in
Lemma 1. This means that, for any compact 3-manifold H dominated by M as a hyper-
bolic piece, a hyperbolic 3-manifold W homeomorphic to intH is simplicially dominated
by some G; € G. On the other hand, the argument quite similar to that in Theorem 2.1
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implies that, for each G;, the number m; of hyperbolic 3-manifolds W admitting simpli-
cially dominating maps ¢ : G; — W is finite. In fact, the induced hyperbolic structure
on each ideal 3-simplex Ay of G; via @ is parametrized by a complex number zw(ep) as
in §1, where ez is a fixed edge of Ag. Then, the proof of Theorem 2.1 works also in the
present case without any essential changes. This implies that the number of 3-manifolds
dominated by M as hyperbolic pieces is at most my + - - - +m,. This completes the proof.
O

Corollary 3.3 ([15]). Let M be any closed, connected, orientable 3-manifold. Then,
there exists an integer n;(M) depending only on M such that, for any family of Haken
manifolds N; (i = 1,...,n) with n > ny(M) and dominated by M, at least two of the
hyperbolic unions H(N;) have the same topological type.

Proof. Let f : M — N be a non-zero degree map from a closed, connected, 3-
manifold M to a closed, Haken manifold N. Let #(N) = H; U ---U Hy, be the union
of hyperbolic pieces in a torus decomposition on N. According to [16, Chapter 6], there
exists a constant vy > 0 such that the volume of any hyperbolic 3-manifold is not less
than vo. By Gromov’s cutting-off theorem [2, §4.2], we have

|| M]|
[[Hil| + -+ |[Hnll <IN < m < ||M]].

Since ||H;|| = Vol(W;)v3! > vovs ', we have m < ||M||vg'vs, where W; is a hyperbolic
3-manifold homeomorphic to intH;. This fact together with Theorem 3.1 completes the
proof. O

A closed, irreducible 3-manifold M is said to be geometric if M is either hyperbolic
or Seifert-fibered or Haken. The corollary above together with some results in Rong
[10], [11], Hayat-Legrand, Wang and Zieschang (3], [4] and Soma [14] implies Theorem
2 below concerning a sequence of degree-one maps between geometric 3-manifolds. This
gives a complete answer to Problem 3.100 (B) in [9] if the Geometrization Conjecture by
Thurston [17] holds. In fact, Rong considered the case where geometric 3-manifolds M; in
the theorem were irreducible. On the other hand, Thurston conjectured that any closed,
irreducible 3-manifold is geometric.

Theorem 3.4 ([15]). For any closed, orientable 3-manifold M, there exists an integer
ny(M) depending only on M and satisfying the following (*).
(*) Consider any sequence

VEELNG VLN VAR RO LS VA

such that deg(f;) =1 fori =0,1,... ,n— 1 and M; is geometric for j = 1,... ,n. If the
length n of the sequence is not less than ny(M), then at least one of f;’s is a homotopy
equivalence. O
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KAHLER SURFACES OF POSITIVE SCALAR CURVATURE
MYONG-HEE SUNG

ABSTRACT. We construct Kahler meétrics of positive scalar curvature on almost all
blown-up ruled surfaces of arbitrary genus. The metrics have an explicit form on ruled
surfaces blown up at most twice successively from a minimal model. Our surfaces are
generic in the sense that they make up a dense set in the deformations of a given ruled
surface.

1. INTRODUCTION

Here we consider the existence of Kahler metrics with positive scalar curvature on a
compact complex surface of Kéhler type. By the surface classification theory, we are
left with rational surfaces and ruled surfaces for candidates. As a matter of fact, even
if we loosen the condition by merely requiring the existence of Riemannian metrics with
positive scalar curvature, the same is true by recent works of LeBrun [16](for minimal
surfaces) and Friedman-Morgan [1] using Seiberg-Witten theory. Note that this metric
doesn’t have to be parallel or hermitian with respect to the complex structure as a Kéhler
metric is.

On the other hand, Hitchin [5] constructed Kahler metrics of positive scalar curvature
on rational surfaces obtained by blowing up a minimal model at finitely many distinct
points. These rational surfaces are generic in the sense of deformation of the complex
structure. In this paper, we will extend Hitchin’s work to ruled surfaces and prove

Theorem 1. There exist Kihler metrics of positive scalar curvature on almost all rational
or ruled surfaces.

More precisely, we construct such metrics on the ruled surfaces obtained by blowing
up distinct points on a minimal model. We see that a generic ruled surface falls into this
_ category by using deformation theory. This means that as a smooth manifold any blown-
up ruled surface admits such a metric. In fact, the construction of metrics goes through
for ruled surfaces which can be obtained by blowing up at most twice successively from a
minimal model with arbitrarily many distinct blown-up points. This is a weak version of
the following which was conjectured in [16] based on overwhelming evidence [3, 20, 23, 1,
16, 5, 24].

Conjecture 1. Let X be a compact complex surface of Kihler type. Then the following
are equivalent:
(a) X admits a Riemannian metric of positive scalar curvature;

1991 Mathematics Subject Classification. 32L05,32G05, 32C10, 32C17, 53C20, 53C21, 53C55, 53B35.
Key words and phrases. Kahler metrics, positive scalar curvature, ruled surfaces, deformation of com-
plex structures.
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(b) X admits a Kihler metric of positive scalar curvature;
(c) X is either rational or ruled.

The missing implication is in (c) = (b) about the other blown-up ruled surfaces. A
previous result in this direction is Theorem B in [6] which states that if a ruled surface
is blown up sufficiently many times Hyperbolic Ansatz leads us to the existence of such a
metric.

The rest of the paper is structured as follows:

In Section 2 we set up our curvature convention which will be used later. In Section 3
we introduce Hitchin’s construction of metrics on a space blown up at a point. Then in
Section 4, the metrics are constructed on ruled surfaces with distinct blow-ups and we
consider genericity of those. In Section 5 it is shown that there exist Kahler metrics of
positive scalar curvature on a ruled surface which was successively blown up twice from
a minimal model.

This work is from the author’s thesis in Stony Brook and she would like to thank her
advisor Claude LeBrun for his guidance.

2. NOTATIONS AND CURVATURE CONVENTIONS

Let’s assume {2®} is in use for local coordinates around a point p. When w is a Kahler
metric, we can write

W=1Y g, de"‘/\dz".
gP* is defined to be the inverse of 9of" gaﬂgﬂ”’ 42.. The curvature tensor R of g is
Raﬂ'ﬁ = g a’y an'rﬂ o anaﬁ
and in particular, Ry5,5 = —0. 05905 When all the first derivatives of the metric vanish.

The Ricci curvature is defined by ric,z = q° "R.sap; the scalar curvature is defined by

s= gﬂ"rzcaﬁ. It is useful to know the efficient way to compute the scalar curvature when
you don’t need the full curvature tensor.

s = —93“605;3 logdet g , or
= A
sdvol, = —wAi00log (w " w)

where dvol, is the volume form of g and 7 is the coordinate volume form. The holomorphic
sectional curvature and the Ricci curvature at p in the direction of 2* are also defined:

K(p)(z) = aﬁyg(p)zazﬁzvzs/r;
ric(p)(z) TiCqp (p)zazﬂ / r?

where 72 = g,5(p)2°2°.

3. METRICS ON A BLOWN-UP SPACE

Here we introduce the metrics Hitchin used on the blown-up space to have the scalar
curvature positive [5]. These metrics are also the ones Kodaira used for his famous
Embedding Theorem. For the reader’s convenience we summarize Hitchin’s setup using
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our conventions wherein the scalar curvature of the space blown up at a point will be
computed in terms of the various curvatures of the original space.

Let X & X be the blow-up of X at a point p. Also, let ¢ : X — [0, 1] be a smooth
cut-off function such that ¢ =1 on U” and ¢ = 0 outside U’ wherep e U" cU' c U C X
and U has local geodesic coordinates {z*} around p. Then, if w is the given Kéhler metric
on X, consider the following metric on X:

o= Bw+ 108 [(,B*go) log Hz||2] . (1)

If t (> 0) is sufficiently small, @ is a Kéhler metric on X.

We'd like to show that if w has positive scalar curvature s, then & also has positive
scalar curvature § for small ¢ under some extra conditions on the curvatures of w. If we
can show that > X > 0 on 8~!(U") \ E for some A and small ¢, then 5§ > 0 on §~1(U")

by continuity and we are done. Using the isomorphism 8-1(U")\ E ’é U"\ {p}, we need
to prove that §> A > 0 on U" \ {p} with all computations thought of as being done on
the deleted neighborhood of p on X.

On U"\ {p} with geodesic coordinates {z*}, we can write & as

-t s 7P
gaﬁ—gaﬁ+r_2 a 2

where we can expand the metric g on X as a Taylor series about p relative to the geodesic
coordinates:

Yop = ap — Raﬁ'y5(0)?726 +oeee 2)

Then (gaﬂ— ap)/T? =: Cap is bounded on U”. If we introduce the matrix P := 2°2° /72,
then P is the projection onto the vector z* and in particular, P> = P and trace P = 1.
Using matrix notation, we rewrite the metric g as:

24+t tP tr!PC  r*C
g= 1- 1+ ——+——).
I T2 ( r2+t)< +r2+t+r2+t 3)
Now we will compute § = —55“6055 logdetg. If n is the complex dimension of the

space, we have

0n0plogdet § = (n—l)( 711

zo2P Oap + zo2P
r24+t)2 72 r4

— 8a0p ( G717 (tR,5,5(0)2°272"2° + r4ric7g(0)z”’2")>
+0(r%) 4)
where f € O(r™) means |f| < Ar™ as r — 0 where A is independent of t. We also have
1 r? tP r8C triPC tr'CP  t*r?PCP
g = (r2+t+r2+t> - ((r2+t)2 TEre et (r2+t)2)
+ O(rY). (5)
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Also, notice that ‘we can safely replace Cop in 5 by Bag = —Ry5,5(0)272 /72 . If we
multiply 5 and 4 and take the trace according to 3, then

S=s+ O(’l‘z)
for n = 2 where s; is a linear combination of various curvatures of g at p.

Lemma 2.
T 0—2%—%—%? [r4(r2 +t)s(0) + 2tr2 ((n +2)r? + 4t) r1¢(0)(2)

+ t (—4nr4 — (2n+3)r’t+ tz) K(O)(z)] .

Proof. Curvature expressions in 5 contribute one term a; to s; and the two curvature
terms in 4 contribute ay and as:
a = nT—__l_ trace (1‘63 +tr*PB +tr'BP + tzrzPBP) (
(r2+1)?
r2P 1 P
(r2 +t)? 2 ﬁ)
n—1

= (CETE (tr“ric(O) (z) — tr2(2r* + 1) K (0)( z)) .

" = 72605 4 t2*2P 65 tu
e ) ) A VeI ()

where u = R,;,5(0)2°27 277% = r*K(0)(2). After some computation we get

4tr? tK(0)(z)

1
24t

Now,

= o 2(9n2 ond _ pr24 o 42
as = & +t)2mc(0)(z) + CFNE ( nre(2r’ +1t) — 2r* —4r*t 4t ) .
Next, »
72808 tzozP =
% = <r2 +t  r(r2+ t)) Ba05(fv)
tr2ric(0)(2) 5 r*5(0)
1) ((n +1)r* + 4t) + R

where v = r*ric,5(0)272° = r®ric(0)(z). Finally,
s1=a;+az+a3

= (7”2—_1’_})—3 [r4(r2 +)s(0) + 2tr? ((n +2)r? + 4t) r1c(0)(2)
+ t(~dnrt — @20+ 3)r% +17) K(0)(2)]

as stated.
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Corollary 3. If X is a complex surface, then
1

T e

[7‘43(0) + 8trric(0)(z) + t(—8r% + t) K (0) (z)] .

Now that we have § = s; + O(r?) for surfaces if s3 > A; > 0 for some )\, there is
a & which is independent of ¢t such that r2 < § 1mp11es 5> A > 0 for some A. Taking
U" = {z € Ulr* < 6} in the construction of §, we have § > X > 0 on U" \ {p}, which is
exactly what we aimed for in the beginning. So-we need to show s; > A; > 0 to prove
that § > 0 on the entire X. We will use this method to obtain the main results in the
following.

4. CURVATURE OF RULED SURFACES AND GENERICITY

If X is a ruled surface obtained from a minimal model X = P(V) % C where V is
a rank 2 vector bundle on the Riemann surface C by blowing up finitely many distinct
points, then we will consider the metric & constructed in Section 3 with a cut-off function
centered around each blown-up point. Here, we use Yau’s metric for the minimal surface.
In [24], Yau constructed Kéhler metrics with positive scalar curvature on any (minimal)
ruled manifold as follows: The metric is written as

w = m*we + €109 log(v , v)

where wc is a Kéhler metric on C and (-, -) is a hermitian metric on V'\ {0}. When € (> 0)
is small, w is Kdhler with positive scalar curvature.

Since the construction of g is local we might as well consider X blown up at one point,
p. Then with the same notation as before,

@ =f'w+1tidd [(,B*(p) logrz] .

We are going to make w more specific by requiring the following:

Choose we such that regardless of the genus of C' the metric around p locally looks like
the standard Fubini-Study metric on CP!. We can achieve this for example by deforming
the uniform metric on C' conformally around p until it is the Fubini-Study metric on a
neighborhood U of p. We also take a local trivialization of V' on a neighborhood of 7(p)
and let (,) be the standard inner product on the fiber. If we call the local inhomogeneous
coordinates for C' and the fiber z! and 2%, respectively, then by making U smaller if
necessary, we can express this metric as

w =400 [log(l + 12" %) + elog(1 + |z2|2)]

on U. Notice that this is just the product metric on CP! x CP! with the fiber-shrinking
parameter €. We can use this simple local expression for w in the computation of §
from the last section if the support of the cut-off function is chosen to lie in U. ‘So
our computatlonal problem is reduced to Hitchin’s and we have positivity of the scalar
curvature of @ .

Theorem 4. There exist Kihler metrics of positive scalar curvature on a ruled surface
which is obtained from a minimal model by blowing up at distinct points.
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Now we study how the blow-up structure of a ruled surface behaves under small defor-
mations of the complex structure. For a rational surface, Hitchin [5] explicitly constructed
a semi-universal family from that of a minimal model of the given surface. We extend his
result [5, Proposition 6.1] to ruled surfaces.

Proposition 5. Let X be a ruled surface. Then there exists a semi-universal (relative
to local deformations) family Z — B for X such that there is an open dense set U C B
so that the fibers over U are ruled surfaces obtained by blowing up distinct points on a
minimal model.

The proof is identical to Hitchin’s except the following additions: by the celebrated
works of Kodaira-Spencer [11, 12] and Kuranishi [13, 14], for every compact complex
manifold X there exists a semi-universal (relative to local deformations) family of defor-
mations of X.! We apply this to our situation and take W to be a trivial deformation
for the rigid minimal models CP? and CP! x CP?, and a semi-universal family for other
minimal ruled surfaces. If X is obtained by blowing up k times from a minimal model,
take Z = V¥(W) in Hitchin’s notation and B = V*~1(W). Since the ruled structure is
preserved under small deformations, fibers of Z — B are all ruled surfaces.

So roughly speaking, the constructed semi-universal family for X is just the semi-
universal family for the minimal model of X plus the deformations given by the config-
uration of blow-ups. We conclude that a generic ruled surface admits Kahler metrics of
positive scalar curvature.

5. MORE RULED SURFACES: SUdCESSIVE BLOW-UPS

An essentially-twice-successively-blown-up ruled surface happens when the fiber point
on an exceptional curve is chosen to be the center of the second blow-up. Otherwise,
we can always blow down in a different way to consider the given surface as obtained by
blowing up distinct points. We extend our previous construction over to an essentially-
twice-successively-blown-up ruled surface.

We start with X from the previous section and take local coordinates w! = 2'/22,w? =
22 around the fiber point on the exceptional curve. Then we blow up X at 0 and consider
the metric

@ +1i00(plogr?)
on the blown-up space as constructed in Section 3 . So X is equipped with the metric
expressed as

o = i00 [log(l + |21%) + elog(1 + |2%[%) + tlog(|2*|* + e|z2|2)]
= 00 [log(1 + [w'w?[?) + log(1 + [w?[*) + tlog(jw'|* + o]

on B~HU").
From the last paragraph of Section 3, all we need to show is s; > A; > 0 for some
constant \;. Let’s compute the full curvature of & at the point that is blown up (w! =

1When H?(X,©) # 0 where © is the sheaf of holomorphic vector fields on X, the parameter space
could have a singularity at the point that corresponds to X.
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w? = 0) to see the various curvatures that appear in s;. First we compute the components
of the metric & =i ¥ g,5 dw® A dw?:

o [w?? + te
M Tt PR T WP+ o
wlw? '
g1z = m‘im = go1,
o w2 . ¢
N R O L e e D
We have
Rini(0) = —3@1911(0) =2t/
Rl?li(o) = “31(?2.911(0) =0,
Rliﬂ(o) = —31?291*2(0) =0,
Ri1(0) = —0101925(0) = —1,
Ri395 (0) = "31?2922(0) =0,
Ry305 (0) = "3232922(0) = 2¢,

and the rest of the components can be obtained by symmetry of the tensor and the metric.
Now we compute the various curvatures:

K (w)(0)

2t
(Sl - afu'u?P + 2efu?t)
t
where 7% = E|wl|2 + e|w?|? =: zz + ey,

ric;i(0) = g™ Rini(0) + g22Ro51(0) = 2/ — 1/e = 1/e,
rici3(0) = gf2Rzi1i(0)=0_> v
ricy3(0) = g™ Ryi03(0) + 9% Rogon(0) = —e/t + 2,

ric(w)(0) = (%|w1|2 + (2 _ %) lw2|2) /7,
5(0) = 2/e

Finally from Corollary 3,
o = {2r4/e +8F (1|w1|2 +@2- e/t)]w2|2>
(r2 +1)2 €

¢ 2t
+ F(—8r2 +1) (?leﬁ — 4w'w?? + 2eﬁw2|4)} .
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We consider the positivity of the following:
r(r? +1)%(s1 — A1)
2

£ t ~ 1
= 1 {2-2-(2/6 = M)t = S+ M)t + 5 (2 - A)E }

+

2my {t(2/€ = M)r* +2(8 + 4t/e — Mt)r’T — (2 + Mt)?}
) 2
by {8(2/6 gt = 2 ) /e Al)%“’}

=: Ex?+2Fzy+ Gy’

We will show E,G > 0 and F? — EG < 0 for suitable values of t/e. First, we make the
first coefficients positive by making A\; < 2/e. E has the discriminant which is negative if
A< %3/:%} where we need to impose the condition ¢t/e > 4. So E > 0. G is also positive
since its discriminant is negative if \; is small enough in terms of € and ¢. F has the
discriminant which is positive if \; is small in terms of € and ¢. Without loss of generality
we assume F' < 0. We will use this inequality in the following computation. We compute

F? — EG directly:
F? — EG = 2(t/e + 3)E [8(2/€ — \)r® + (2(15t/e + 16) — 15¢\1) *F
— 2(4 + 3t\)r ] + B (4(1 — t/e) + 2t(t/e + 3)M)
< 28 [(t/e+ 3)(—96 — 3dt/e + tA)r + 2(t/e + 3)(4 + th)r*E
+(2(1 = t/e) +t(t/e +3)A1) P

This is again a quadratic expression in 72 and ¢ with negative first coefficient for small
A1. Also for A; small enough in terms of ¢ and ¢, the discriminant 2tA; (17¢2/€? + 104t /e +
155) — 4(17t?/€* + 27t/e — 60) is negative under our condition t/e > 4 that was imposed
to ensure the positivity of E and G. Therefore, F2 — EG < 0 for sufficiently large t/e and
sufficiently small ); . Thus, s; > A; > 0 and we have the following results.

Proposition 6. There erists Kdhler metrics of positive scalar curvature on a ruled sur-
face that is essentially-successively-blown-up twice from a minimal surface.

Removing the technical terms, we have

Theorem 7. There exists Kahler metrics of positive scalar curvature on a ruled surface
that is blown up twice from a minimal surface.

REFERENCES

[1] R. Friedman and J. Morgan, Algebraic Surfaces and Seiberg-Witten Invariants, Duke electronic’
preprint alg-geom/9502026, 1995.

[2] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience 1978.

[3] M. Gromov and H.B. Lawson, Spin and scalar curvature in the presence of the fundamental group,
Ann. of Math. 111 (1980), 209-230.

[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag 1977.

[5] N. Hitchin, On the curvature of rational surfaces, Proceedings of Symposia in Pure Mathematics 27
(1975), 65-80.



KAHLER SURFACES OF POSITIVE SCALAR CURVATURE 187

[6] J. Kim, C. LeBrun, and M. Pontecorvo, Scalar-flat Kahler surfaces of all genera, J. reine angew.
Math. 486 (1997), 69-95.
[7] J. Kim and M. Pontecorvo, A new method of constructing scalar-flat Kihler surfaces, Journal of
Differential Geometry 41(2) (1995), 449-477.
(8] K. Kodaira, On Kahler varicties of restricted type (an intrinsic characterization of algebraic vari-
eties), Annals of Math. 2(60) (1954), 28-48.
[9] K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963),
79-94.
[10] K. Kodaira and J. Morrow, Complex Manifolds, Holt, Rinehart and Winston 1971.
[11] K. Kodaira and D.C. Spencer, On deformations of complex analytic structures: I, II, Ann. of Math.
67 (1958), 328-466.
[12] K. Kodaira and D.C. Spencer, On deformations of complez analytic structures: III, Ann. of Math.
71 (1960), 43-76. v
[13] M. Kuranishi, On the locally complete families of complex structures, Ann. of Math. (2) 75 (1962),
536-577.
[14] M. Kuranishi, New proof for the ezistence of locally complete families of complez structures, Pro-
ceedings of Conference in Complex Analysis, Minneapolis, Springer-Verlag 1965, pp.142-154.
[15] C. LeBrun, Scalar-flat Kdhler metrics on blown-up ruled surfaces, J. reine angew. Math. 420 (1991),
161-177.
[16] C. LeBrun, On the scalar curvature of complex surfaces, Geometric and Functional Analysis 5(3),
(1995), 619-628.
[17] C. LeBrun and S. Simanca, On Kéhler surfaces of constant positive scalar curvature, Journal of
Geometric Analysis 5(1) (1995), 115-127.
(18] C. LeBrun and S. R. Simanca, Eztremal Kéhler metrics and complez deformation theory, Geometric
and Functional Analysis 4(3) (1994), 298-336.
[19] C.LeBrun and M. Singer, Egzistence and deformation theory for scalar-flat Kéhler metrics on compact
complex surfaces, Invent. Math. 112 (1993), 273-313.
[20] R. Schoen and S.T. Yau, The structure of manifolds of positive scalar curvature, Manu. Math. 28
(1979), 159-183.
[21] T. Suwa, Stratification of local moduli spaces of Hirzebruch manifolds, Proc. Conf. Houston, TX 59,
Rice University Series 1973, pp. 129-146.
[22] C.H. Taubes, The Seiberg- Witten invariants and symplectic forms, Mathematical Research Letters
1(6) (1994), 809-822.
[23] E. Witten, Monopoles and four-manifolds, Mathematical Research Letters 1(6) (1994), 769-796.
[24] S.T. Yau, On the curvature of compact Hermitian manifolds, Invent. Math. 25 (1974), 213-239.

INSTITUTE FOR PHYSICAL SCIENCE AND TECHNOLOGY, UNIVERSITY OF MARYLAND, COLLEGE
PARK, MD, USA

E-mail address: myonghee@ipst.umd.edu






43.
4.
45.
46.

Lecture Notes Series

M.-H. Kim (ed.), Topics in algebra, algebraic geometry and number theory, 1992

J. Tomiyama, The interplay between topological dynamics and theory of C*-algebras, 1992 ; 2nd Printing, 1994

S. K. Kim, S. G. Lee and D. P. Chi (ed.), Proceedings of the Ist GARC Symposium on pure and applied mathematics, Part I,
1993

1. Kim, C. Kang and C. S. Bae (ed.), Proccedings of the Ist GARC Symposium on pure and applied mathematics, Part II, 1993
T. P. Branson, The functional determinant, 1993

S. S.-T. Yau, Complex hyperface singularites with application in complex geometry, algebraic geometry and Lie algebra, 1993
P. Li, Lecture notes on geometric analysis, 1993

S.-11. Kye, Notes on operator algebras, 1993 .

K. Shiohama, An introduction to the geometry of Alexandrov spaces, 1993

J. M. Kim (ed.), Topics in algebra, algebraic geometry and number theory II, 1993

. 0. K. Yoon and IL-]. Kim, Introduction to differentiable manifolds, 1993

. P. J. McKenna, Topological methods for asymmetric boundary value problems, 1993

. P. B. Gilkey, Applications of spectral geometry to geometry and topology, 1993

. K.-T. Kim, Geometry of bounded domains and the scaling techniques in several complex variables, 1993

. L. Volevich, The Cauchy problem for convolution equations, 1994

. L. Elden and 1. S. Park, Numerical lincar algebra algorithms on vector and parallel computers, 1993

. IL. J. Choe, Degenerate elliptic and parabolic equations and variational incqualities, 1993

. S. K. Kim and II. J. Choe (ed.), Proceedings of the sccond GARC Symposium on pure and applicd mathematics, Part 1, The

first Korea-Japan conference of partial differential equations, 1993

J. S. Bae and S. G. Lee (ed.), Proceedings of the second GARC Symposium on pure and applicd mathematics, Part II, 1993
D. P. Chi, . Kim and C.-I1. Kang (ed.), Proceedings of the second GARC Symposium on pure and applied mathematics, Part
1, 1993

. 11.-]J. Kim (ed.), Proceedings of GARC Workshop on geometry and topology ' 93, 1993

. S. Wassermann, Exact C*-algebras and related topics, 1994

. S.-11. Kye, Notes on abstract harmonic analysis, 1994

. K. T. Hahn, Bloch-Besov spaces and the boundary behavior of their functions, 1994

. 11, C. Myung, Non-unital composition algebras, 1994

. P. B. Dubovskii, Mathematical theory of coagulation, 1994

. J. C. Migliore, An introduction to deficicncy modules and Liaison theory for subschemes of projective space, 1994

1. V. Dolgachev, Introduction to geometric invariant thcory, 1994

. D. McCullough, 3-Manifolds and their mappings, 1995

S. Matsumoto, Codimension one Anosov flows, 1995

J. Jaworowski, W. A. Kirk and S. Park, Antipodal points and fixed points, 1995

J. Oprea, Gottlicb groups, group actions, fixed points and rational homotopy, 1995

A. Vesnin, On volumes of some hyperbolic 3-manifolds, 1996

D. I Lee, Complex Lie groups and observability, 1996

X. Xu, On vertex operator algebras, 1996

M. II. Kwack, Families of normal maps in several variables and classical theorems in complex analysis, 1996
A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, 1996

Y. W. Lee, Introduction to knot tl'.icory, 1996

1. Kitahara, Some topics on Carnot-Caratheodory metrics, 1996 : 2nd Printing (revised), 1998

. D. Auckly, Homotopy K3 surfaces and gluing results in seciberg-witten theory, 1996
. D. H. Chae (ed.), Proceedings of Miniconference of Partial Differential Equations and Applications, 1997

I1. ). Choe and I1. O. Bae (ed.), Procecdings of Korea-Japan Partial Differential Equations Conference, 1997

. P. B. Gilkey, J. V. Leahy and J. G. Park, Spinors, spectral ry, and Ri ian submersions, 1998
. D.-P. Chi and G. J. Yun, Gromov-Hausdorff topology and its applications to Riemannian manifolds, 1998
. D. I. Chae and S.-K. Kim (ed.), Proceedings of intemational workshop on mathematical and physical aspects of nonlincar field

theories, 1998

1. Kosaki, Type III Factors and Index Theory, 1998

A. V. Kim and V. G. Pimenov, Numerical methods for delay differential cquations - Application of i-smooth calculus-, 1999
J. M. Landsberg, Algebraic Geometry and projective diffcrential geometry, 1999

S. Y. Choi, H. Kim and II. K. Lee(ed.), The Proceedings of the Conference on Geometric Structures on Manifolds, 1999






