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Preface

This book is an expanded and updated version of the lecture series I gave at
Seoul National University in September 1997. The series was focused on Zak’s
theorem on Severi varieties and my differential-geometric proof of the theorem at
the request of my hosts. A French language version of the introduction served as
the text for my habilitation & diriger des recherches (November 1997).

These notes are written with two different audiences in mind: graduate students
and algebraic geometers not familiar with infinitesimal methods. For the graduate
students, I have included many exercises and open questions to work on. For the
algebraic geometers not familiar with infinitesimal methods, I have attempted to
relate the techniques used here with standard methods in algebraic geometry. The
uneven lengths of the sections reflects more on what references are already available
rather than their importance. For example section 3 is quite short because there
are already the excellent articles of Fulton [Ful] and Fulton and Lazarsfeld [FL].

These notes are in some sense an update to the paper [GH].

I do not discuss hyperdeterminants, geometric invariant theory, variation of
Hodge structure, web geometry, theta divisiors and other related topics, although
I would have liked to. I strongly encourage graduate students to study the con-
nections with some of these other topics.

I would like to thank Jun-Muk Hwang and Seoul National University. I would
also like to thank, V. Goldberg, J.M. Hwang and especially J. Pointkowski for
giving me numerous comments and corrections to a preliminary version of these
notes.



ALGEBRAIC GEOMETRY AND PROJECTIVE DIFFERENTIAL GEOMETRY 3

NOTATIONS
Pk CP*
%4 a complex vector space
PV the associated projective space
X CcPV a projective variety
Xcv the cone over X in V
Xom the smooth points of
Xsing the singular points of X
T.X the holomorphic tangent space to X at z
0k (X) the holomorphic k-forms on X
T.X CPV the embedded tangent projective space to X at z, a P"
T.XCV the cone over the embedded tangent projective
space to X at x a C**!
{e:} the span of the vectors e; over the index range i
F ]F’jﬁE € S’T*XQN, X the k-th fundamental form of X
Sapy cylic summation over the fixed indices a8~y
Ix Cc S°V* the ideal of X
IxaC Say* the component of I'x in degree d

I will use the following conventions for indices

0<B,C<n+a
1<a,8<n
n+l<urv<n+ta

Alternating products of vectors will be denoted with a wedge (A), and symmet-
ric products will not have any symbol (e.g. w o 3 will be denoted w@3). I often
supress reference to X and z, abbreviating the names of bundles, e.g. T should be
read as T, X, N as N X etc... Ifv € T[w]X, then I write v := (v mod w)@uw* €
T} X, where v,w € V and a basis of V' containing w is given and w* denotes the
dual basis vector to w.

If A e Cte*l] its projection to P"** will be denoted [A]. If V is a vector
space and W a subspace, and (e1, ..., e,) a basis of V such that {e;,...,e,} = W,
I write {€p+1,...,en} modW to denote the space V/W. For vector subspaces
W C V, I use the notation W+ C V* for the annihilator of W in V*. T will use
the summation convention throughout (i.e. repeated indices are to be summed
over).

I often denote FF% by IT and FF% by IT1. Fy = Fl'e,, mod T is the differential
invariant called the (k — 2)-nd variation of II1. By a general point x € X 1 mean
a smooth point of X such that all the discrete information in the differential
invariants of X is locally constant. The nongeneral points of X are a codimension
one subset of X.
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§0. INTRODUCTION

Let X™ C CP"** = PV be a variety (V = C™*%*1), In these notes I discuss the
geometry of X as an algebraic variety, the local projective differential geometry of
the smooth points of X, and most importantly, the relations between the two.

In the spirit of F. Klein, let’s consider a property of a variety geometric if it
is invariant under projective transformations (that is, the action of PGL(V') on
PV). For example, two geometric properties of a variety are its dimension (the
dimension of its tangent space at a smooth point) and its degree (the number of
points of intersection with a general linear space of complementary dimension).
The first property is intrinsic, the second extrinsic.

One way to measure the pathology of X is to construct auxilliary varieties from
X, and to calculate the difference between the expected and actual dimensions
of these auxilliary varieties. In these notes we will study such auxilliary varieties
using modern techniques combined with infinitesimal methods developed by E.
Cartan and others.

In what follows I give an example of an auxilliary variety, namely the secant
variety of X and discuss its study. This example is typical and will serve as a
model for the other cases.

0.1 Secant varieties.
Given two points z,y € PV, there exists a unique line ]P’;y containing them.
Given a subvariety X C PV, define the secant variety of X,

0(X) = Uz yexPi,,

the closure of the union of all secant lines to X. There are 2n-dimensions of pairs
of points on X and one parameter of points on each line, so one expects that
dimo(X)=2n+1if2n+1<n+a,or ¢(X) =P""*if 2n+1 > n+a. If not, we
say 0(X) is degenerate and let 0, = 2n +1 —dim o(X) denote the secant defect of
X.

0.1.1 Example. Let V = C*+1@C"! denote the space of (k+1)x (I+1) matrices.
Let X C PV be the projectivization of the rank one matrices. X ~ P* x P!
because every rank one matrix is the product of a column vector with a row
vector. X = Seg(P* x P!) is called the Segre variety. X is the zero locus of the
two by two minors.

The sum of two rank one matrices has rank at most two, so o(Seg(P* x P!)) =
P(rank < 2 matrices).

0.1.1.1 Exercise. dimo(X) = 2(k+1) — 1, so 0(X) is degenerate, with J, = 2.

A general principle is that pathology should be rare if X is smooth and codim X
is relatively small (see §3). A theorem to this effect is the following:

0.1.2 Zak’s theorem on linear normality [Z]. If X™ C P™* is smooth, not
contained in a hyperplane, and a < % + 2, then o(X) = P™t.

The name of this theorem is explained in §3.
In addition, Zak (with Lazarsfeld) classified the varieties X in the borderline
case of a = § + 2 and o(X) degenerate:
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0.1.3 Zak’s theorem on Severi varieties [Z], [LV]. If X" C P** js smooth,
not contained in a hyperplane, a = % + 2 and o(X) # P"**, then X is one of

i. Veronese vy (P?) C P°

ii. Segre Seg(P? x P?) c P®

iii. Pliicker embedded Grassmannian G(C?,C°) c p*
w. Eg/P; C P,

These four varieties are called the Severi varieties after F. Severi who proved
the theorem in the special case n = 2. They are described in §1 along with many
other homogeneous varieties. Homogeneous varieties often provide examples of
extremal pathologies so I discuss them in §2. In [L5] I give new proofs of Zak’s
theorems. The proofs have five steps, which will serve as a model for many of the
questions discussed in these notes.

Step 1: Describe the pathology infinitesimally.

The condition imposed on the differential invariants of X when 8, > 1 was
essentially determined by Terracini in 1913 [T] (although see §9). The condition
0, > 1 is essentially that the quadrics in the projective second fundamental form
satisfy a polynomial (second fundamental forms will be defined shortly). See §9 for
the precise condition. In particular, it is a closed condition. For other questions,
such as in the study of complete intersections, this step can be quite involved, see
§12 and 0.5.

Step 2: Analyze the infinitesimal condition.

Here one determines which systems of quadrics satisfy the Terracini condition.
This type of question can be studied from several perspectives. To reprove Zak’s
theorems, I localize the problem yet again and use differential-geometric methods,
see §10. In our study of dual varieties [IL], Ilic and I used methods from algebraic
geometry at this stage; the study of vector bundles on projective space, see §7.

Step 3: Determine infinitesimal consequences of smoothness.

In this step one assumes X is smooth or nearly so and studies additional con-
ditions placed on the differential invariants of X at a general point z € X. These
are usually open (genericity) conditions. Recovering global information from in-
finitesimal invariants is central to my research. See §4 and §7.

Step 4: Combine steps two and three.

In the case of degenerate secant varieties, one combines the open conditions
implied by smoothness with the restrictions on the systems of quadrics arrived
at in the second step. At this point Zak’s theorem on linear normality follows
immediately. In the Severi variety case, one is restricted to four possible second
fundamental forms.

Step 5: Pass from infinitesimal to local (and hence global) geometry.

The passage from the infinitesimal geometry to the local geometry (and since
one is in the analytic category, the passage is in fact to global geometry) is made
using the Cartan machinery of moving frames and exterior differential systems.
This step can be viewed as the study of the deformation theory, or rigidity, of
systems of quadrics, cubics, etc... Such results are discussed in §13.
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I consider step 3 to be the most important, so let’s begin there:

0.2 A principle relating smoothness and local geometry (the third step).

In projective space, global geometry restricts the local geometry. One can view
these restrictions as consequences of the very defining property of the projective
plane: that parallel lines meet at infinity, or, more generally, in projective space,
linear spaces (in fact arbitrary varieties) of complementary dimension must inter-
sect.

At each point z of a submanifold X C PV, there is a unique embedded tangent
space, that is, a unique linear space that best approximates X at z to first order.
I denote the embedded tangent space by T, X to distinguish it from the intrinsic
holomorphic tangent space, which I denote T, X.

Consider the following two surfaces in affine space A3

(0.2.1) hyperbola cylinder

Both the hyperbola and the cylinder are defined by a quadratic equation, and
both are ruled by lines. Both can be completed to projective varieties by con-
sidering A® C P3. When one completes the hyperbola, one obtains a smooth
quadric surface in P2, In contrast, completing the cylinder, one obtains a singular
quadric (a cone over a plane conic). The cylinder aquires a singularity because as
one travels along one of its rulings, the embedded tangent space T, X is constant.
This forces the rulings to crash into each other at infinity. In contrast, the em-
bedded tangent space of the hyperbola rotates as one travels along a ruling and a
singularity at infinity is thus avoided.

The contrast between these cases leads to the following principle:

0.2.2 Smoothness Principle [L6]. In order for X to be smooth, its embedded
tangent space must “move enough”.

How much the tangent space needs to move will depend on dim X and codim X.
The smoothness principle will be made precise in (3.3.4) below.

In order to make the smoothness principle precise, we need a way to measure
“how much” T, X is moving. We will make such measurements using the projective
second fundamental form.

0.3 The projective differential geometry of X.
Recall that in Euclidean geometry, the basic measure of how a submanifold of
Euclidean space is bending (that is, moving away from its embedded tangent space
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to first order) is the Euclidean second fundamental form. In projective geometry,
there is a projective second fundamental form that can be defined the same way
as its Euclidean analogue:

0.3.1 The Gauss map v and a definition of 1T via 7.
A natural way to keep track of the motion of T, X is to use the Gauss map

(0.3.1.1) v:X — G(n,PV)
z— T, X.

where G(n,PV) is the Grassmanian of P*’s in PV. A P™ in PV is equivalent to
an n + 1 plane passing through the origin in V. I use the notation G(n + 1,V) =
G(n,PV) when I want to emphasize this second description. Let T, X C V denote
the cone over T, X C PV, so we may equivalently write '

v: X ->Gn+1,V)
xHTzX.

To measure how TIXAmovAes to first order, one calculates the derivative of v. I
will use the notation T' = T, X and N(-1) = V/T:

Yoo TeX = T G(n+1,V) =T* ® (V/T) = T* @ N(-1).

0.3.1.2 Remark. The (—1) is explained in (1.2). Briefly, the normal space
N.X = T,PV/T,.X is N,X = V/T®%* and N(—1) = V/T.X. If you are not
familiar with such notations, there is little harm in thinking of both N and N(—1)
as the normal space to X at z. Here and in what follows, I often omit reference
to X and the base point z.

ez i such that the kernel of the endomorphism 4, (v) : T — N(—1) contains
Z C T for all v € T. Thus . factors to a map

(0.3.1.3) N, T — (T/2)*® N(~1) =T*® N.

Furthermore, «, is symmetric, essentially because the Gauss map is already the
derivative of a map and mixed partials commute (see (4.4) for a proof). +. is
called the projective second fundamental form, and denoted

(0.3.1.4) Il =IIx, =+, € S*TX @ N, X.

11 measures how X moves away from its embedded tangent space at each point
to first order. In other words, if one considers X as being mapped into PV, I is
the set of second derivatives of the mapping.

Note that I is an algebraic object, and thus can be used in finite characteristic
etc... as long as the usual precautions are taken.



8 ALGEBRAIC GEOMETRY AND PROJECTIVE DIFFERENTIAL GEOMETRY

0.3.2 A coordinate definition of II.

Let z € X be a smooth point. Choose local coordinates (z',...,z""*) around
z such that z = (0,...,0) and T, X = {3%}, 1 < @, < n and N}X = {dz*},
n+1<p,v<n+a Write X locally as a graph z# = f#(z®). Then, in these
coordinates, the projective second fundamental form of X at z is:

o2 fr o 0

(0.3.2.1) Ixe = 5 5—zlda® o dxﬁczow
0.3.3 Interpretations and measurements.

It is convenient to consider IT as a map I] : N* — S2T* (dual to the standard
Euclidean perspective) and to set |II| = PII(N*). One can think of |II] as a
linear family of quadric hypersurfaces in PT.

PN} X has the geometric interpretation as the space of hyperplanes tangent to
X at z, i.e., the hyperplanes H such that XNH is singular at z. I1 is essentially the
map that (up to scale) sends a hyperplane to the quadratic part of the singularity
of X NH at z.

Step one for the secant variety problem leads to the following condition: if
a < n, then 0, > 1 implies that for all v € T, there exists ¢ € |II| such that
[v] € Gsing. (See §8 for the precise degeneracy condition.) The study of systems of
quadrics satisfying this condition (the second step) is complicated, so I wait until
810 to discuss it.

€ S’T*X®N, X.

Returning to the general study of |II|, a natural question is:

How much of the geometry of X ts determined by |II| at a general point?

To investigate this question, we need to extract geometric information from
|I1|.

In projective geometry, unlike Euclidean geometry, one cannot measure how
fast a submanifold is bending, but only whether or not it is bending.

For example, in projective geometry, one can measure if a line in the embedded
tangent space T osculates to order two, i.e., if X appears to contain the line to
second order. Let Base|/I| C PT denote the variety of directions tangent to the
lines that osculate to order two at x. That is,

Base |[II| =P{v e T | II(v,v) =0}
(0.3.3.1) ={[v] e PT | [v] € qVq € |II]}.
Base |I1]| is called the set of asymptotic directions in differential geometry.

Given [ﬁ] ePN!X,letqy =11 (ﬁ) C PT, X denote the corresponding quadric
hypersurface. qg is the set of tangent directions not moving away from H to second
order.

A stronger condition on a tangent vector v is that the embedded tangent space
does not move to first order in the direction of v. Let singloc |I1| denote the set
of such directions. That is,

singloc |[I|: =P{v € T | II(v,w) = OVw € T}
(0.3.3.2) = {[v] € PT' | [v] € gsingVq € |I1|}.

singloc |I1] is called the indez of relative nullity in differential geometry.
Note that the first equality implies that singloc || is a linear subspace of PT.



ALGEBRAIC GEOMETRY AND PROJECTIVE DIFFERENTIAL GEOMETRY 9

In terms of our invariants of the second fundamental form, directions tangent
to the rulings of the cylinder are in singloc |II]. Directions tangent to the rulings
of the hyperbola are in Base |I1|, but not singloc |11].

The study of projective second fundamental forms leads one back to algebraic
geometry: the geometry of systems of quadrics. Sections §8 and §10 are dedicated
to studying properties of systems of quadrics.

The smoothness principle is illustrated by the following theorem that generalizes
the example of the cylinder above:

0.3.3.3 Theorem, [GH]. Let X™ C P**¢ be g variety. Let x € X be a general
point. If singloc |II|, # ( then X is singular.

A more precise version of this theorem is given in §5.

The following theorem is another illustration of the smoothness principle. It
states that the embedded tangent space must move away from each tangent hy-
perplane in a minimum number of directions:

0.3.3.4 Theorem, (special case of) rank restrictions, [L3]. Let X" c Prte
be a variety. Let b =dim(Xsing). (Set b= —1 if X is smooth.) Let z € X be a
general point.

1. For any quadric g € |II|,,

dim(Singloc q) < 2(a — 1)+ (b + 1).
2. For generic quadrics g € |I1|,,
dim(Singloc q¢) < a—1+ (b+1).

The rank restriction theorem is analogous to formulae in differential geometry
in which global considerations impose pointwise conditions on the curvature.

Varieties with the degeneracies that are discussed in these notes can be viewed
as solutions to systems of partial differential equations. From this perspective, the
rank restriction theorems have the effect of ruling out characteristic (i.e. degener-
ate) initial data to initial value problems.

A long term goal is to prove stronger and higher order versions of the rank
restriction theorem.

Before describing other problems and results, I will briefly motivate the method
of calculation, the moving frame.

0.4 The moving frame.
Let X C PV be a variety and € X a smooth point. Then z € X determines
a flag
tcT.XCV.

One way to study the geometry of X is to examine how this flag varies as we vary
z. For example, the second fundamental form contains the information of how
T moves to first order in relation to the motion of Z. When studying particular
geometric properties, one often refines this flag. For example, in the study of
varieties with degenerate secant varieties, it is convienent to also fix a vector
vE T/:%, to obtain a flag

zc{zvycTcV
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This flag admits further refinements. For example consider I1(v,T) = {I1(v,w) |
w € T} Thus we obtain a refined flag:

zc{zvycT c{l,II(T)}cV.

We can introduce further refinements by considering the subspace {w € T |
II(v,w) = 0}, and so on.

One would like to keep track of the infintesimal motions of all these spaces and
their relations. Fortunately there is a method developed by G. Darboux, E. Cartan
and others, the moving frame, exactly designed for this purpose. It keeps track of
the relations between all the infinitesimal motions, and is designed in such a way
that as further refinements of the flag are made, a minimal amount of additional
work is necessary. From a geometrical perspective, it would be natural to begin on
the manifold of complete flags of V. However a computational advantage is gained
if one works on a slightly larger space, the space of bases, or framings of V, as this
is a Lie group (GL(V) in fact) and on a Lie group, derivatives can be calculated
algebraically. Moving frames for subvarieties of projective space are discussed in
84.

In the remainder of this introduction, I describe additional problems in projec-
tive geometry and results I have obtained using the methods discussed above in
their study. In the chapters I have attempted to give an overview of what is known
in general regarding these questions.

0.5 Complete intersections.

The least pathological algebraic varieties are the smooth hypersurfaces. For
example, the dimension is obvious and the degree is simply the degree of the
single polynomial defining X. (Varieties are reduced and irreducible.)

A class of varieties that share many of the simple properties of hypersurfaces is
the class of complete intersections.

0.5.1 Notation. If X C PV is an algebraic set, we let Ix C S°V* denote its
ideal, the space of all polynomials annhilating X, or equivalently, the space of all
hypersurfaces containing X. We let Ix 4 C S4V* denote the component in degree
d (the space of all hypersurfaces of degree d containing X).

0.5.2 Definition. A variety X™ C P*"** is a complete intersection if the ideal of
X, Ix, can be generated by a elements.

The following example shows how varieties that are not complete intersections
can arise:

0.5.3 Example. In P3 let Q1, Q2 be quadric hypersurfaces. Consider X = Q1N
Q- (the common zero locus of two degree 2 homogeneous polynomials). X is an
algebraic set of dimension one and degree four. If Q1, Q> are reasonably general,
then X is a curve of degree four:
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But consider the following example: let (z!,...,z*) be linear coordinates on C4,
and let

Ql — 1511114 _ x2x3

Q2 — (:1:2)2 _ xlz3

Then X is a curve of degree three plus a line:

(0.5.4)

C = [s%, 5%, st2,t3], [s,t] € PL, 1 = [0,0,u,9], [u,v] € PL.

Varieties are irreducible, thus we need to get rid of one of these components.
We pretend we understand lines, so we eliminate [ by intersecting X with Q3 =
()% — z%z* to be left with the cubic curve. Degree (C) = 3, so C cannot be
the intersection of two hypersurfaces. (If it were, it would have to be in a cubic
hypersurface and a hyperplane, but C is not contained in any linear subspace.)

The difference between the topology of complete intersections and non-complete
intersections has been studied extensively. I have attempted to understand how the
projective differential geometries of the complete intersections and non-complete
intersections differ.

If one compares the two pictures
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(0.5.5)

and tries to understand the difference between them, one might say that the non-
complete intersection “bends less”, or that its tangent space “moves less” than the
complete intersection. (This idea can be made precise if one adds a Kihler metric
and is willing to integrate. Since we will work locally, this is not what we will do.)
This idea is central to what follows, so I record it informally:

0.5.6 Complete intersection principle. If X “bends enough”, then X will be
a complete intersection.

The determination of how much is “enough” will be based on information about
the degrees of hypersurfaces containing X. In our example, the cubic curve “bends
less” than a complete intersection of quadrics would. .

A precise explanation of the phrase “bends enough” is given below. For now,
consider the curve in affine space y = z°.

(0.5.7)

At the origin, the embedded tangent space “moves less” than at other points on
the curve in the sense that the curve osculates to its tangent line to order two at
the origin (versus order one for all other points). (0.5.5) motivates one to study
bending. However, the actual type of bending we will study will concern whether
or not there is osculation to orders higher than expected (in dimensions greater
than one).
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Let’s now discuss what one means by orders of osculation “higher than ex-
pected”. To decide what order of osculation is expected, I determine a prioTs
information about osculating hypersurfaces. The following results are of interest
independently of the study of complete intersections.

If z € X is a smooth point, then there is always an (a — 1)-dimensional space
of hyperplanes (degree one hypersurfaces) tangent (osculating to order one) at z.
The following proposition generalizes the case of hyperplanes:

0.5.8 Proposition [L4,3.16]. Let X™ C P"*¢ be a variety and let z € Xsm. For
all p<d,

of degree d osculating to order p at x
_(n+a+d _[(n+p
= J » )

For k > d, the dimensions of the spaces of osculating hypersurfaces depend on
the geometry of X. One might think that the pattern would continue, so that if @ is
relatively small one would expect that generically no hypersurfaces would osculate
to order d + 1. However, at higher orders, a new phenomena occurs because of
hypersurfaces that are singular at . Independent of X, for d + 1 <k<2d-1,

there are lower bounds on the dimensions of the space of hypersurfaces of degree
d osculating to order k at z. For example:

dim { (not necessarily irreducible) hypersurfaces}

0.5.9 Proposition [L4,3.17]. Let X™ C P"*“ be a variety, and let € X,,,,.

di { (not necessarily irreducible ) hypersurfaces of } (a +d- 1)
im . > -1
degree d osculating to order 2d — 1 at z = d

One possible definition of “bending less” would be that the lower bounds for
these dimensions are attained. (More precisely, one needs to quotient by Ix 4_j0V™*
and to calculate the optimal bound on the quotient.)

Singular osculating hypersurfaces are the key to understanding the projective
geometry of non-complete intersections. To explain why, for notational simplicity,
assume X is the intersection of hypersurfaces of degree d (see §12 for the general
case).

0.5.10 Proposition [L4, 1.1]. Let X C PV be a variety such that Ix = (Ix,q)
(i.e. Ix is generated by Ix,q) and Ix,q—1 = (0). Then the following are equivalent:
1. X is a complete intersection.
2. Every hypersurface of degree d containing X is smooth at all z € X,,,,.
3. Let z € X,,. Every hypersurface of degree d containing X is smooth at .

Thus if X is a complete intersection, any hypersurface singular at any € X,
cannot contain X.

If X is not a hypersurface, there are always singular hypersurfaces in I x. The
proposition says that the singularities occur away from X.
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0.5.11 Exercise. Verify that the proposition is true for the plane quartic, and to
find the quadric singular at a point of the cubic curve.

A precise version of the complete intersection principle (0.5.6) would be that,
e.g., in the case of [L4, 1.1], no hypersurfaces of degree d, singular at a general
point z € X, can osculate to order 2d + 1 at z. If one understands “bending” in
terms of genericity conditions impsoed upon differentials invariants, then “bend-
ing enough” can be understood as the non-vanishing of certain contractions of
differential invariants. For Aexample, in the case d = 2, it is sufficient that the
symmetrization map T*®|II| — S3T* is injective. (See §12.)

Taken together, the smoothness principle and the complete intersection prin-
ciple indicate that perhaps varieties of small codimension must be complete in-
tersections. Hartshorne has conjectured that if @ < % and X is smooth, then X
must be a complete intersection. In fact, the two principles were developed in an
attempt to understand Hartshorne’s conjecture and other work motivated by it
from the perspective of projective differential geometry.

The following result is proved using the rank restriction theorem combined with
a local study explained in §12:

0.5.12 Theorem [L6, 6.28]. Let X™ C P"*** be a variety and let z € X be a
general point. Let b = dim Xsing. (Set b= —1 if X is smooth.) If a < ij;—lﬁ—q
then any quadric osculating to order four at x is smooth at z.

By the discussion above, [L6, 6.28] implies

0.5.13 Corollary [L6, 6.29]. Let X™ C P*** be a variety with Ix generated by
quadrics. Let b= dim X;n,. (Set b= —1 if X is smooth.) If a < f—_(b;—ng, then
X Is a complete intersection.

0.6 Monge equations.

[L6, 6.29] above poses the question: How many derwatives does one need to
take to determine if Ix is generated in degree two? Before addressing the question
of determining if X is contained in quadric hypersurfaces, let’s try an easier one:
How many derivatives does one need to take to determine if X is contained in a
hyperplane H? If X is a hypersurface, then two derivatives at a general point are
enough (if X does not leave its tangent plane to first order at a general point, it
must be equal to its tangent plane). On the other hand if the codimension of X
is not fixed, there is no fixed number of derivatives that would guarantee that X
is contained in a hyperplane. A corollary of the rank restriction theorem implies
that if codim (X) is small, the answer is the same as if X were a hypersurface:

0.6.1 Theorem [L1]. Let X™ C CP™"** be a variety with a < "—_—(QH—IZ +1 (where
b = dim X,iny). Let z € X be a general point. If a hyperplane H osculates to
order two at x, then X C H. :

Thus in the situation of (0.6.1), to determine if X is contained in a hyperplane,
two derivatives are sufficient.

Now consider the simplest case of a quadric hypersurface: Let X C P? be a
curve. How many derivatives does one need to take to determine whether or not
X is a conic?
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To fix a plane conic, one needs five points, or equivalently, one point and four
derivatives. Thus to determine whether or not a given curve is a conic, it is
necessary to take five derivatives (One point and four derivatives determines an
osculating conic C;(X), the fifth derivative determines if X = C,(X)). Plane
conics given as a graph y = f(z) are characterized by the classical Monge equation:
((y")~%)"" = 0. See [L4] for a derivation.

A generalization of the classical Monge equation to determine if an arbitrary
variety is the intersection of quadrics would be impossible, because no fixed number
of derivatives would suffice for all situations. However, if X is smooth and a is
small, one could hope to have a fixed system. For example, if X is a smooth
hypersurface and n > 1, Fubini [Fub] showed there exists a third order system
characterizing quadric hypersurfaces, so the situation here is better than for curves.

It turns out that if X is of small codimension, but not a hypersurface, then
one needs five derivatives. In §12 I derive a fifth order system of pde that I call
the generalized Monge system that characterizes intersections of quadrics when
a<i(n—(b+1)+3).

0.7 Rigidity.

A general question related to step 5, of which (0.6) above is a special case, is
to know how many derivatives one needs to take to recognize a given variety (or
type of variety). In §13 I discuss several recognition questions centered around the
results of [L9].

In [L9], I sharpen the result in step five of my proof of Zak’s theorems on Severi
varieties. I show that if X is a variety and = € X a general point such that ITx ,
is isomorphic to the second fundamental form at a point of a Severi variety other
than ve(P?), then X is the corresponding Severi variety. (The result is false when
n = 2, one must take third derivatives into account as well.) The case n = 4
had been conjectured by Griffiths and Harris in [GH]. I also prove the following
theorems:

0.7.1 Theorem [L9]. Let X"+t™ C PV, n,m > 2, be an open subset of a variety
not contained in a hyperplane with the second fundamental form of the Segre
P™ x P™ at general points. Then N = nm +n+m — 1 and X is an open subset
of the Segre P™ x P™ C prmtntm—1,

Note that the result is false if n =m = 1.

0.7.2 Theorem [L9]. Let X2(m~2) C PN m > 6, be an open subset of a variety
not contained in a hyperplane with the second fundamental form of the Grassma-
nian G(2,m) C p(3)-1 at general points. Then N = () — 1 and X is an open
subset of the Grassmanian.

Note that the result is false if m < 5.

The varieties above are examples of minuscule varieties (see §* for the definition
and a discussion). A class of homogeneous varieties that resemble the minuscule
varieties spaces are the adjoint varieties, the closed G orbit in Pg, where G is a
complex simple Lie group and g its Lie algebra. For example, the variety of rank
one and traceless n X n matrices is an adjoint variety. One might hope that the
adjoint varieties are also determined by their second fundamental forms. This
turns out not to be the case:
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0.7.3 Theorem [LMZ2]. There exist varieties having the same second fundamen-
tal form as the adjoint varieties at general points that are not adjoint varieties.

0.8 Gauss maps.
Consider again the cylinder:

Nl | LA
L
S~ | L

The tangent directions to its rulings are in singloc |[II]. In fact, the embedded
tangent space is not just constant to second order, but is constant all along the
ruling, i.e., the ruling is a fiber of the Gauss map.

Another way to state the result (0.3.3.3) above is that if the Gauss map of X
is degenerate, then X is singular. A proof of this statement and discussion of
varieties with degenerate Gauss mappings is given in §5.

Let Y C PV be a smooth variety and let X = 7(Y") be the union of all embedded
tangent lines to Y, the tangential variety of Y. Then X has a degenerate Gauss
map because its tangent space is constant along the tangent lines of Y.

In [GH], Griffiths and Harris state that all varieties with degenerate Gauss maps
are constructed from cones and (generalized) tangential varieties. They prove this
statement when dim X = 2. However when dim X = 3, there are already counter-
examples to their announcement. See §5 for some such examples.

0.9 Dual varieties.

When X is a hypersurface, v(X) C PV* is the set of hyperplanes tangent to
X. A generalization of the Gauss image of a hypersurface is as follows:

Let X™ C P*"t* = PV. Define the dual variety X* C PV* as the set of
hyperplanes tangent to X:

(0.9.1) X*={H e PV* |3z € X, such that T, X C H}.

One expects X* to be a hypersurface, because there is an (a — 1)-dimensional
space of hyperplanes tangent to each point and n dimensions of points. Let d, =
0.(X)=n+a—1—-dim X* denote the dual defect of X. Zak proved that if X is
smooth and not contained in a hyperplane, then 4, < a —1 (see §7).

One utility of X* is as follows: if X* is nondegenerate, it is a hypersurface
and thus given by one equation. Since X can be recovered from X* (see the
next paragraph), one can reduce the study of the set of zeros of a collection of
polynomials to the study of the set of zeros of a single polynomial. This idea was
first exploited by Cayley, and more recently by Gelfand, Kapranov and Zelevinsky
[GKZ].
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A standard fact is that (X*)* = X, so we may think of X* as a transform
of X. In fact, the dual variety is the generalization to algebraic geometry of the
Legendre transform in classical mechanics. Transforms are useful because they
reorganize data in such a way that properties of an object that one would like
to calculate become easier to calculate using the transform. For example, the
Fourier transform exchanges global and local data. In my work with B. Ilic, [IL],
our perspective was to view X* as a transform of X. We describe ways in which
the global geometry of X is reflected in the local geometry of X*. We prove an
inversion formula that shows that the second fundamental form at a point H € X*
contains information about all the points to which H is tangent.

Using the inversion formula, we show:

O 9.2 Theorem [IL, 5.24]. Let X™ C P"*% be a smooth variety with dual defect
. If H € X},,, then |IIx+ p| is a system of quadrics of projective dimension 6,
and constant rank n — 0,.

Compare this result to an earlier result in [GH] that if X is any variety and
z € X is a general point, then |[I[Ix .| is a system of bounded rank n — 4,.

(0.9.2) led us to examine systems of quadrics of constant rank. We were able
to solve an old question: What is the maximum dimension of a system of quadrics
of constant rank 7 on C™? (The answer when r is odd was known classically to
be one, see §8). We showed:

0.9.3 Theorem [IL, 2.16]. Ifr is even, then
max {dim (A) | A C S*C™ is of constant rank r} =m —r + 1.

[IL, 2.16] and [IL, 3.24] together furnish a new proof of Zak’s theorem that
0 <a-—1.

0.10 Ruled and uniruled varietes.

A variety X C PV is P*-uniruled if through each z € X there exists a P* such
that z € P* C X. X is P*-ruled if it can be described as a fibration over a base
space that parametrizes the k planes, e.g., X is ruled if there is a unique k-plane
through each point. The quadric hypersurface for n > 3 is uniruled but not ruled.

Consider again the hyperbola, a ruled surface.

(0.10.1)
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The tangent directions to the ruling are in Base |II|. Directions in Base |II] of
an arbitrary variety X are not usually tangent to linear spaces contained in X. In
[L7] I determine additional conditions that imply a variety is uniruled by k-planes.
In coordinates, the question is: How many derivatives are needed to determine if
X is uniruled? For example, given a surface in P?, there are always at least two
tangent directions in Base|II| (so in this aspect, the hyperbola is not special at
all). So two derivatives are not enough to see if a surface is ruled. A classical
result (attributed to Blaschke) states that three derivatives are enough. Here is a
generalization of the classical result:

0.10.2 Theorem [L7]. Let X™ C A" or X™ C P™** be an open subset of a
variety of a smooth (respectively analytic) submanifold of an affine or projective
space such that at every point (resp. at a general point) there is a line osculating
to order n + 1. Then X is uniruled by lines.

There exist analytic open subsets of varieties X™ C A" or X™ C P**! having
a line osculating to order n at every point that are not uniruled. Over C, every
hypersurface has this property.

(0.10.2) also sharpens Z. Ran’s dimension+2 secant lemma [R2]. Ran proves
that if a variety has lines osculating to order n + 1 at each point, then the union
of the osculating lines is at most n + 1 dimensional. The above result shows that
the union is in fact n dimensional.

In §11 I present some preliminary results regarding the integer m = m(n, a, k)
such -that any open subset of a variety X" C P™"* having k-planes osculating
to order m at each point must be P*-uniruled by k planes, but that there exist
open subsets of varieties with k planes osculating to order m — 1 that are not
P*-uniruled.

In a similar vein, certain geometric situations when osculation to order two is
sufficient to imply containment of a linear space are presented in §7.
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§1. EXAMPLES OF HOMOGENEOUS VARIETIES AND THEIR USES

A smooth projective variety X C PV is homogeneous if X is the closed orbit
of a complex semi-simple Lie group G acting on PV. Such X can be described
intrinsically as X = G/P where P is the subgroup of G stabilizing a point z € X,
called a parabolic subgroup.

One can reduce to the case of varieties that are orbits of simple groups (those
whose Lie algebras have no nontrivial ideals), as others are just products of such.
There are three simple groups occuring in series, SL(V,), Sp(V,w), O(V,Q),
where respectively Q € A™V*, w € A2V*,Q € S?V* are nondegenerate elements
and the groups are the subgroups of GL(V') preserving the forms (dimV = m).
Actually O(V, Q) is not connected or simply connected, its connected component
of the identity is called SO(V, @), the simply connected double cover of SO(V, Q)
is called Spin(V,Q). For Sp(V,w), the dimension of V must be even to have a
nondegenerate two-form. Since the behaviour of nondegenerate quadratic forms
is quite different in even and odd dimensions (e.g., every rotation in R?"*! has
a fixed axis), O(V, Q) is considered as two different groups corresponding to the
cases where dim V' is even and odd, named B, = SO(2n + 1) and D,, = SO(2n)
in the literature. Similarly SL,+1 = A, and Spe, = C,, in this naming scheme.

In addition to these groups, there are five exceptional groups, which are called
G2, Fy, Es, E7, Eg. In what follows I will describe all but the last two. (Actually G
is quite easy to describe, it is the subgroup of GL(7, C) preserving a nondegenerate
(generic) element of A3C".)

1.0.1 Exercise. Recall that for a Lie group G, the Lie algebra g may be identified
with T,G. If G C GL(m, C) is a matrix Lie group, we may identify g as a subspace
of the space of m x m matrices My, xm. For example, if we take Q = Id, then
O(V,Q) = {A € Mmxm | 'AA = Id} and differentiating we obtain o(V,Q) = {4 €
Mopxm | FA+ A =0}, ie., o(V,Q) ~ A?V. Taking m = 2n and

(0 I,
°=(z ©)
calculate o(V, Q). Find a symplectic form w such that sp(V,w) ~ S?V.

1.1 More on Segre varieties.

Given vector spaces Wh,...,W,, define an embedding X = Seg(PW; x ... x
PW,) C P(W1®...QW;) by [wi]x...X [w,] — [w1®...Qw,]. X is called the Segre
embedding of PW; x ... x PW,. (In the language of [GKZ], these are the “rank
one multidimensional matrices”.)

One can form the product of varieties. Unlike the affine case where the product
of M C A™ and N C A" is naturally M x N C A™*" the product to two
projective varieties naturally occurs as a subvariety of the Segre of their ambient
spaces. If X C PV, Y C PW, Seg(X xY) C P(V®W) is the natural projective
embedding of X x Y.

If W, = W, one can consider instead of arbitrary matrices, symmetric or skew-
symmetric matrices of minimal rank and their generalizations. We do so in the
following two examples.
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1.2 Grassmanians.

Let V be a vector space, choose an identification V =~ C™ so A®V is identi-
fied with the m x m skew symmetric matrices. Let G(2,V) C P(A?V) denote
the projectivization of the rank two matrices (i.e. the matrices of minimal rank,
as the rank of a skew-symmetric matrix is always even). G(2,V) is called the
Grassmanian of two planes in V.

Let e,...,€, be a basis of V, then {e; Ae; | i < j}, is a basis of A*V, and
we may think of e; A e; as the skew symmetric matrix with 1 in the (i, j)-th
slot, —1 in the (4, 7)-th slot and zero elsewhere. Any E € G(2,V) can be written
E = vAw = v'wI(e; Aej), where v = v'e;, w = w’e;. This gives two interpretations
of G(2,V); as the decomposable elements in A?V (i.e. elements of the form v A w,
with v,w € V), and as the set of two planes through the origin in V (FE is the
two-plane spanned by v and w).

Generalizing, let G(k, V) C PA*V denote the set of k-planes through the origin
in V, or equivalently the decomposable k-vectors (those that can be written v! A

.. Av*, with each v/ € V). We may also think of G(k, V) as the space of P*~1’s
in PV. When we use this perspective, we will write G(k,V) = G(k — 1,PV).

The tangent space to any manifold at a point is a vector space, the tangent
space to G(k, V) is a vector space with additional structure, namely TG (k, V) ~
Hom (E,V/E) = E*®(V/E). To see this take a curve E(t) = v1(t) A... Av*(t)
and differentiate at t = 0. The tangent space to any homogeneous space is always
a vector space with additional structure, and this additional structure can be
deduced either intrinsically or extrinsically.

In particular, for the case of G(1,V) = PV, TPV = *®(V/Z). (We use the
notation that for Y C PV, ¥ C V is the corresponding cone.) If X CPV isa
subvariety, the (1ntr1n51c holomorphlc) tangent space to X inherits this additional
structure. Letting T, X denote the embedded tangent projective space and T.X =
TIX ,thenT, X = :r:*®(T1X /). Since we are not using a metric, the normal bundle
is just a quotient bundle, N, X = T,PV/T, X = A*®(V/T,;X ). Traditionally the
line bundle with fiber ¥ at z is denoted Opy (—k) and if E is any vector bundle,
E(k) = EQO(k).

Note that if dim V = m, then G(k,V) = G(m — k,V*) as specifying a k plane
E C V is equivalent to specifying its annihilator E+ C V*. Of particular im-
portance is G(m — 1,V) = PV* the dual projective space, where points of PV*
correspond to hyperplanes in PV.

If G ¢ SL(V) is a group preserving additional structure (e.g. a quadratic form
@ or symplectic form w) one can define the corresponding null Grassmanians, e.g.

(1.2.1)
Go-nu(k, V) :={E€G(k,V)|Qv,w)=0Vv,w € E}

Gonui(k, V) :={E € G(k,V) | w(v,w) =0 Vov,w € E}

The Q-null Grassmanians are naturally embedded in PA*V. In the case dimV =
2m and k = m, Gg—nuu(m, 2m) has two isomorphic components. The components
are called the Spinor varieties S,, and each S,, embeds into a smaller projective
space which I will describe after explaining Clifford algebras. Gu—nwui(k, V) also
lies in a smaller projective space, see (1.7).
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1.3 Veroneses.

Let 5°V denote the symmetric matrices and let vy (PV) C P(S?V) denote the
projectivization of the rank one elements. v, (PV) is the image of PV under the
injective mapping

(1.3.1) vy : PV — PS?V,

[o] = [vou]

The d-th Veronese embedding of PV, vq(PV) C PS4V is defined by va([v]) = [v?] =
[vo...ov]. We have already met v3(P') in (0.5). Given X C PV, we can consider
the Veronese re-embeddings of X, va(X) C P(SV), which will turn out to be
useful in our study of complete intersections.

1.3.2 Exercise. If Z is a hypersurface of degree d, va(Z) = Hz Nva(PV), where
Hz is the hyperplane in P(S?V) associated to the equation of Z (which is an
element of SIV*).

1.4 Division algebras and the spinor variety S;.

There are four division algebras over R: R, C, H, and O (where @ denotes the
octonians, or Cayley numbers). The octonians are similar to the quaternions. If
one thinks of u € H as u = u +u'e; + u?e, +u®e3 where u* € R and the €; satisfy

€2 = —1 and either of the followingequivalent multiplication tables:
(1.4.1)
€2
€ €2 €3
-y .
€
€3

(to be read €1€e2 = €3, positive products if one multiplies with the arrow, and

negative against, e.g. €€, = —e3), then given u € O, write u = wtuler+.. . +u'e;
where 632 = —1 and the ¢, satisfy the following multiplication table:
&3
€, €4
€7
| g5
€ o

Let Ak =R,C,H or O and let A = Ag®gC.
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The first spinor variety that does not coincide with a familiar homogeneous
variety is S}° € P! which may be described as follows: Let C'® = O?®gC have
octonionic coordinates u,v. Ss is defined by the equations v = 0,v7 = 0,uv =0
where the last expression is eight equations.

1.4.2 Exercise. What are the varieties analogous to S5 for the other division
algebras?

Let Aut(A) := {g € GL(A) | (gu)(gv) = g(uwv)Vu,v € A}. Aut(A) C GL(ImA)
is respectively {Id},Zs, Sl,C, G,, providing a second definition of Gs.

1.5 Clifford algebras and spinor varieties.

Let (V,Q) be as above. Given any linear subspace L C V, one can define its
Q-orthogonal complement L*? C V, by L+? = {w € V| Q(v,w) = 0Yv € L}.
If Q| is nondegenerate V = L & L1Q. In this case, for all v € V, we may write
v = vy 4+ vy with v; € L, v, € L*?. We may define the reflection of v in L by

reflp(v) = v1 — va.

Recall that O(V,Q) is the subgroup of GL(V) preserving @, and S o(V,Q) is
the component of O(V, Q) containing the identity.

1.5.1 Theorem, Cartan-Dieudonne (see [Hv]). O(V,Q) is the group gener-
ated by reflections in lines. SO(V, Q) is the group generated by even numbers of
reflections. More precisely, O(V,Q) = {refli, o...orefli, |l; € V} and we may
assume k < n. Similarly for SO(V,Q), only k must be even.

To define Spin(V,Q), the connected and simply connected group corresponding
to O(V,Q), we will need to generalize the notion of a reflection. Let A°V =
V®/(z®y + y®z) be the exterior algebra. Here (r®y + y®z) denotes the ideal
generated by expressions of the form z®y +y&z with z,y € V. Note that @ induces
a quadratic form on A*V which we also denote by Q. The exterior productin A*V,
(z,y) — z Ay may be interpreted as follows: Let G(i,V) C A'V denote the cone
over the Grassmanian. If z € G(i,V),y € G(4, V), thenzAy € G(i+5,V) C AV
represents the i+ j-plane spanned by = and y. If z € V, then z Ay is analogous to
the component of z in y*?. If ||y||o = 1, then ||z Ayl = ||lprojye(z)||q. Note
that we do not need @ to define z A y.

Let z Jy be defined to be the Q-adjoint of z Ay, that is Q(zly,2) = Qy,zA2)
for all z,y,z € A°V. For example, if z,y € V, then z 1y = Q(z,y). f z € V and
y € G(5,V), then z Jy is analogous to the component of z in y. Note that if y has
unit length, then ||z Jy||q = ||lprojy(z)lle-

1.5.2 Exercise. Show that z 1(z1y) =0 for all z,y € A*V.
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Consider, for z,y € A*V,
rzoy:=zxANy—zxldy

which can be thought of the “generalized reflection” of z in y.

1.5.3 Definition. Let V be a vector space with a quadratic form Q. Let CI(V, Q) :=
(A*V,0), the Clifford algebra of (V, Q).

1.5.4 Exercise. Show that
CUV,Q) = V®/(z®y + y®z — 2Q(,7)).

1.5.5 Fundamental Lemma of Clifford algebras. Let V be a vector space
with a quadratic form Q and let A be an associative algebra with unit. If ¢ : V —
A is a mapping such that for all xz,y € V

o(2)p(y) + ¢(y)p(z) = 2Q(z,y)Ida

then ¢ has a unique extension to an algebra mapping ¢ : Cl(V,Q) — A.
For a proof, see [Hv].

1.5.6 Exercise. Show that equivalently it is sufficient that ¢ satisfies ¢(z)? =
2||z|[3Ida forallz € V. :

In Cl(V,Q) = (A*V, 0), the degree of a form is no longer well defined, but there
is still a notion of parity. Let CI®**"(V,Q), Cl1°?(V,Q) C CI(V,Q) denote the

corresponding even and odd subspaces. As vector spaces, CI¢"¢™(V, Q) = A"V,
ClOdd(‘/, Q) — AOddV.

1.5.7 Exercise. Verify that the parity is well defined.
1.5.8 Definitions. Let CI*(V,Q) C Cl(V, Q) denote the invertible elements. Let

Pin(V,Q) :={acCl*(V,Q)|la=ujo...0u,u; € V,Q(uj,u;) =1}
Spin(V,Q) := {a € Pin(V,Q) | r is even }.

1.5.9 Exercises. Givena=wujo...ou, € Cl(V,Q),let a = (—1)"u, 0...0u;.
1. a — a is a well defined involution.
2. IfveV,thenaovoacV.

Using the tilde involution, we define a representation p : Spin(V,Q) — GL(V)
by p(a)v := ava.
3. pisa2:1 map Spin(V,Q) — SO(V,Q). Hint, calculate ||uowvoullq.

From now on, assume dim V' = 2m.

1.5.10 Clifford algebras as matrix algebras. We have defined CI(V,Q) as
A*V with an exotic multiplication, but in fact, as an algebra, CI(V, Q) is something
familiar as we now show. Fix U, U’ C V such that Q |[y=Q |pv=0and V =U+U".
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(Note that this implies dimU = dimU’, UNU’ =0 and V = U & U’.) Thus for
all v € V we may uniquely write v = z +y with z € U, y € U’. Define a mapping

¢:V — End(A°U)
v=z+y— (u~ V2zAu—ylu)
We calculate
W)l u=2zA@Au—yJu)—yd(zAu—ylu))

=zAzAu—zA(ydu)—yd(zAu)—yd(yJu)

=2Q(z,v)u

= |lvllgu
Thus the fundamental lemma applies and we obtain an algebra map ¢ : C (v,Q) —
End(A*U).

1.5.10.1 Exercises.
1. ¢ is a bijection and thus as an algebra,

Cl(V,Q) ~ End(A°U).
2. Moreover
Cl**™(V, Q) ~ End(A®*°"U) & End(A°*U)
CIM(V, Q) ~ (A U)* @ (A%U) & (A°4U)* @ (A ),
3. Finally show that Spin(V, Q) preserves End(A¢’*"U). Standard notation is
End(A®*"U) = Sy
End(A°%U) = S_
the space of positive (resp. negative) spinors.

1.5.11 Spinor varieties. One may describe S,, C PS,, as the @-null m-planes
E such that dim (ENU’) = m mod 2 as follows:
Define a map

(1.5.11.1) V x AU — Aoy
(v, @) — projpeday (vo a)

Here v o a € A°%V and then we project it to A°%U. In other words, for a €
A®e"U, we have a map L, : V — A°¥U. In particular, for 1 € A°U, ker L; = U’
Since the map is Spin(V, Q) equivariant, for g € Spin(V,Q), ker L, = ker Lyo; =
p(g)(ker L;) = gU’g. In summary: .

1.5.11.2 Proposition/Definition.
Sm(V,@,[U]) ={E™ CV |Q|p =0 and dim(ENU’) = m mod 2}
= P{the Spin(V, Q) orbit of 1 € A°U} C P(A®°"U)).
In §4 we will see that for 1 € AU , Tj1Sm =~ A2U; in particular that dimS,, =

(3)-
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1.6 The Severi varieties.

Here is a different generalization of the Veronese v2(PV): Let A denote the com-
plexification of a division algebra as above, and let Hg denote the Ag-Hermitian
forms on A3, i.e., the 3 x 3 Ag-Hermitian matrices. If z € Hg, then we may write

Ty Uy U
(161) = | uy 79 U3 r €R, u; € Ag.
Uz Uz T3

Let H = Hr®rC.
1.6.2 Exercise. Verify that the notion of z* and z*® make sense (one needs to
use the Moufang identites in the case of the octonians, see [Hv]).

Define a cubic form det on H by

(1.6.3) det(z) := é((trace(z))3 + 2trace(z®) — 3trace(z)trace(z?)).

det is just the usual determinant of a 3 x 3 matrix when A = C. When Ag = O
one cannot define det for 4 x 4 or larger matrices.

Now, considering H as a vector space over C, let G be the subgroup of GL(H, C)
preserving det, i.e., define

G :={g € GL(H,C)|det(gz) = det(zx) Yz € H}.

The respective groups are:

(1.6.4) Ag = G=
R SI(3,R)® = Si(3,C)
C S1(3,C)¢ = Si(3,C) x SI(3,C)
H S1(3,H)T = Si(6,C)
0 ‘SI(3,0)% = Eg

where 1 write ‘S1(3,0)C’ merely to be suggestive. We take the above as the
definition of Es. The group Fj is defined to be the subgroup of Eg preserving the
quadratic form Q(z,z) = trace (z?) where xy is the usual matrix multiplication
and one must again use the Moufang identities to be sure Q is well defined.

1.6.5 Exercise. Show that the action of Fy on H preserves the line C{Id} and
Ho := {z € H | trace (z) = 0}. (In fact, F; acts irreducibly on both factors.)

det tells us which elements of H are of less than full rank. One can also unam-
biguously define a notion of being rank one; either by taking 2 x 2 minors or by
noting that under the G action each z € H is diagonalizable and one can take as

the rank of z the number of nonzero elements in the diagonalization of z.
Let

X := P{ rank one elements of H} = P{G orbit of any rank one matrix}.

X = (ArP?)C, that is, the complexification of the space of Ag-lines in A%. The
four varieties X C PH are the Sever: varieties we met in the introduction.
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1.6.6 Exercise. Show that the first three Severi varieties are indeed v2(P?) C
P5, Seg(P? x P?) C P, and G(2,6) C P*.

1.6.7 Exercise. What are the analogous groups and varieties if one takes instead
the 2 x 2 A-Hermitian forms?

1.6.8 Exercise. Let OPZ = Ho NOP?. Show that
OP2% = P{z € Ho | z° = 0}
and deduce that it is a homogeneous space of the group Fj.

1.7 Tangent spaces to homogeneous spaces.

The tangent space to a point of a Lie group G can be identified with its Lie
algebra g, so it is not suprising that the tangent space to a homogeneous space
of G should inherit some additional structure beyond just being a vector space.
If X = G/P and p is the Lie alegbra of P, then T, X ~ g/p. In the case of the
Grassmanian, g = gl(V) = V*®@V, at a point E, we write V = E + V/E so

V*QV = E*®E+ E*QV/E+ (V/E)*@E+ (V/E)*®(V/E).
Moreover
p~E*QE+ (V/E)*QE + (V/E)*®(V/E)

8/p ~E*®(V/E)

as we have seen.

1.7.1 Exercise. Deduce the structure of the tangent spaces to and S,, and more
generally Go_nwui(k, V). Hint: Write V = E + E+/E + V/Et! and note that
V/E+ ~ E*. Also, recall that so(V) ~ A?V.

1.7.2 Exercise. Calculate the tangent space to G, —n.u(m,2m) at a point E.
(Note that sp(V,w) ~ S5?V.)
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§2. CONSTRUCTING NEW VARIETIES FROM OLD

As mentioned in the introduction, one way to study subtle properties of a variety
X™ C PV is to study coarse properties of auxilliary varieties one constructs from
X. We will be primarily concerned with studying the dimensions of auxilliary
varieties. Here are some constructions:

2.1 The Gauss images of X.
The Gauss map of X C PV is defined at smooth points by:

v : Xem — G(n,PV)
z— T, X.

v can be completed to a rational map X --+ G(n,PV) whose image we denote
v(X), the Gauss image of X. We will say v is degenerate if dimy(X) < dim X.

2.1.1 Higher Gauss images. More generally, for each z € X, we can consider
the (n + k)-dimensional projective spaces that contain T,X, and the resulting
submanifold of G(n + k,PV’). The closure of these is a variety which we denote
vx(X) and call the k-th Gauss image of X. Le.,

v (X) ={L € G(n +k,PV) | 3z € Xom such that T, X C L}

The notation is such that vo(X) = v(X). Of particular interest is the dual variety
X* =74-1(X) C G(n+a—1,PV) = PV*. One expects dim (X to be n+k(a—k)
because there are n dimensions of points on X and a k(a — k)-dimensional space
of (n + k)-planes tangent to each smooth point. We say 7, (X) is degenerate if it
fails to be of the expected dimension. We will be particularly interested in the
degeneracy of the dual variety, we let 0. = n +a — 1 —dim X* denote the dual
defect of X.

To better understand the higher Gauss images, it is useful to use a standard
construction in algebraic geometry, the incidence correspondence.

Let

I=I(X,G(n+k,PV)) = {(z,L) | T.X C L}.

/ \»

G(n+ k,PV)

We have the following picture

By definition vx(X) = peme~1(X). We will often use the notation Y, =
7(p~'L). In the most important case of Z,_1 we write Z = Z,_; etc..

2.1.1.1 Remark. In [L3] p 315, it says that the Grassmanians G(2,m) will have
degenerate k. It should say the Segre’s Seg(P' x P™) will have degenerate ~y.
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With an eye towards Morse theory (which is used in the proof of the Lefschetz
theorems, see §3), one can define X* as follows: Consider the pairing <,>: X X
V* — C. For each ¢ € V*, consider the function

<., q>: X -cC
p<pq>.
Then
X*=P{qeV*|<.q> has a critical point}

T.X C H if and only if X N H is singular at z, so another definition of X* is

X* ={H € PV*| 3z € X, such that X N H is singular at z}

2.1.2 Higher Gauss mappings. LAet T, X denote the k-th osculatinq space of
X at z and let Ny . X (1) = T, X/T, X(*=1). The notation is such that T, X (1) =
T.X. If X is a curve and z = [v(t)], then T, ®) X = {v(t),v'(t),v"(¢t),...,v® (t)}.
For higher dimensions, T %) X is the union of T,*)C for all smooth curves C such
that z € C C X. Let z € X be a general point and let n;, = dim7,*) X
Define the k-th Gauss map :
A8 X o5 Gng, V).
z - T,%X

Note that the k-th Gauss map is a rational map even if X is smooth. It is not
defined at flex points, points z where dim (T, ®) X) < ng.

2.2 Secant varieties and joins.
Let Y, Z C PV be two varieties. We define the join of Y and Z,

S(Y, 7Z) = Uer,zeZ]P);z
where the closure is not necessary if the two varieties do not intersect. This

generalizes the secant variety which is the case Y = Z. We can similarly form the
join of k varieties Y1,..., Y&,

(2.2.1) S(YV1,..., Ya) = Uy,ev, Pit o

An important result about joins is the following:

2.2.2 Terracini Lemma [Z]. Let Y,Z € PV be varieties and let z € P,,,. Then
17.5(Y,Z) 2 T,Y +1.Z.

Moreover, if z is a general point of S(Y, Z), then equality holds.

2.2.3 Exercise. Prove the inclusion part of Terracini’s lemma. Hint: consider
the two curves p + ¢(t) and p(t) + ¢, where p € Y, ¢ € Z and differentiate.
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2.2.4 Special cases.

If Z = L is a linear space, then T,,S(Y, L) contains L for all z € S (Y,L)sm and
S(Y, L) is the cone over L.

IfY; =Y for all j, we call S(Y,...,Y) the the k-th secant variety of Y and
use the notation ok (Y’). The notation is such that 1(Y) =Y and 02(Y) = o(Y).
Note that one expects dimox(Y) = min {nk + k — 1,n + a} as there are nk
dimensions worth of picking k points on Y and their span is a P*~!,

2.2.5 Multisecant varieties. A related notion is the k-th multi-secant variety of
X, MSk(X) is defined to be the closure of the union of all lines in PV containing
k points of X. An essential observation regarding them, due to Severi, is that if X
is contained in a hypersurface of degree d, then MSx(X) C X for all k > d (and
thus is empty if X contains no lines). See [R2] for one use of this observation.

2.3 Tangential varieties.

If X is smooth, the tangential variety of X, 7(X) C PV, is simply the union of
all the embedded tangent spaces. When X is not smooth, there are several possible
notions one could use to define tangent spaces (see [L5]). The notion that turns
out to be useful when studying algebraic varieties is the tangent star, T:X CPV.
Intuitively, T; X is the limit of secant lines. More precisely, let z € X, P! is a line
in T3 X if there exist smooth curves p(t),¢(¢) on X such that p(0) = ¢(0) = z and
Pl = limt_,olP’zl,q. T;X is the union of all Pl’s at z and we define the tangential
variety of X, by 7(X) = UzexTy X. If M C PV is a complex manifold (e.g. the
smooth points of an algebraic variety) we let 7(M) be the union of the embedded
tangent lines to M. In general 7(X,,,) C 7(X) and strict containment is possible,
see §9.

2.3.1 Higher tangential varieties. One can define higher tangential varieties to
be the union of higher osculating spaces, i.e., 7% (X) := UTy *) x , where at smooth
points T ®x = T X is the usual osculating space and at singular points one
takes the union of P*=1’s that are limits of k points on X moving towards z.
Tangential varieties are sometimes called developpable varieties.
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§3. TOPOLOGY AND CONSEQUENCES

Three basic theorems about the topology of subvarieties of projective space are
Bertini’s theorem, Lefshetz’s theorem and Bezout’s theorem.

Bezout’s theorem states that varieties of complementary dimension must in-
tersect. We have already seen that Bezout’s theorem has consequences for the
inifinitesimal geometry of subvarieties. We will see the same is true of the Bertini
and Lefschetz theorems.

3.1 Notation. If P € §9V*, we let Zp C PV denote the corresponding hyper-
surface. If A C S4V*, we define Base (4) = {z € PV |z € Zp VP € A}.

3.2 Bertini’s Theorem. Let A C S4V* be a linear subspace. Let P € A be a
general element. Then (Zp)sing C Base(A).

Bertini’s theorem can be understood as a quantitative version of Sard’s the-
orem for polynomials. Its proof is elementary, see e.g., [GH1]. Here is a more
sophisticated version:

3.2.1 Bertini’s Theorem, version 2 ([FL], [Fu]). Let X be a variety and let
f: X — PV be a morphism with dim f(X) > 1.

1. There is a nonempty Zariski open subset U C PV* such that for all H € U,
f~Y(H) is irreducible.

2. For all H € PV*, f~1(H) is connected.

Part 1 is classical, part 2 is due to Deligne and follows from a variant of Zariski’s
main theorem. See [FL] for a proof and discussion.

One of the most important topological theorems in algebraic geometry is the
Lefschetz theorem. Its simplest form is:

3.3 Lefschetz theorem, version 1. Let X™ C P™"% be a smooth variety and
let H C P*"*% be a hyperplane, then the restriction map on cohomology:

HY(X,Z) —» H(XNH,Z)

is an isomorphism for i < n — 1 and injective for i =n — 1.

There are two standard proofs of the Lefschetz theorem, one using Morse theory
(see [Milnor]), and the other using harmonic differential forms and the Kodaira
vanishing theorem (see [GH2]). In both proofs, an essential point is that when one
writes a n x n Hermitian matrix with complex entries as a 2n X 2n matrix with
real entries, the eigenvalues of the new matrix will occur in pairs A, —A.

Note that if XN H is smooth, then the Lefschetz theorem together with Poincaré
duality imply that the cohomology of X N H is the same as that of X in all but
the three middle dimensions.

Now let Z C P**t% be a smooth hypersurface of degree d and con51der XnZ.
By re-embedding P™"“ by the d-th Veronese, we may linearize the equation of Z,
so the same conclusion holds for the map H*(X,Z) — H*(X N Z,Z). Call this
extension version 2.

If we take X = P™t% and cut by hypersurfaces, as long as we have a smooth
variety, i.e. a smooth complete intersection at each step, we can continue iteratively
to get:
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3.3.1 Lefschetz theorem version 3. Let X™ C P™"% be a complete intersection.
Then the restriction map on cohomology:

Hi(P™+,Z) — Hi(X,Z)

is an isomorphism for i < n and injective for i = n.

Thus for smooth complete intersections, almost all the cohomology is inherited
from the ambient projective space. The Lefschetz theorem extends to fundamental
groups, see, e.g. [Ful], so a good deal of the topology of a complete intersection is
inherited from the ambient projective space.

Fulton and Hansen proved the following theorem which has striking conse-
quences:

3.4 Connectedness Theorem [FH]. Let Z" be a projective variety, let f :
Z — P™ x P™ be a finite morphism, and let A C P™ x P™ denote the diagonal.
Ifn > m, then f~!(A) is connected.

The connectedness theorem can be proved using the Bertini theorem (3.1.1.2)
and a little gymnastics to transport the problem to projective space, see [FL].

An important application of the connectedness theorem is the following result,
which reduces the studies of degenerate secant and tangential varieties to the same
problem.

IfY C X C P define 7(Y, X) to be the union of P.’s, where P! is a limit of
P.,’s with z € X andy € Y where z,y — yo € Y. 7(¥, X) is called the variety of
relative tangent stars.

3.5 Thecorem [Z], [FH]. Let X™,YY C PV be varieties, respectively of dimen-
sions n,y. Assume Y C X. Then either

dimo(Y,X)=n+y+1and dm7(Y,X)=n+y

or

oV, X)=1(Y,X).

Taking Y = X, one sees that if either o(X) or 7(X) is not of the expected
dimension, then they must be equal, which is the version proved by Fulton and
Hansen. The extension is due to Zak.

Proof. Assume dim7(Y,X) =t < n +y. We need to show o(Y, X) = 7(Y, X).
Project P™** from some linear space L™"*~*~1 avoiding 7(Y, X) to a P* and con-
sider the map F': X x Y — P! x P!, Since F restriced to each factor is finite,
dim F(XxY) =n+y >t,so F~!(A) is connected. Assume o(Y, X) # 7(Y, X), so
dimo (Y, X) > 7(X,Y) and thus 0(X,Y’) intersects L. Thus there exists z € X\Y,
y € Y, such that the line Zy N L # 0. Thus F(z,y) = F(y,y). By the connected-
ness theorem, there exists an arc (z;,y:) in F~(A) such that (zo,y0) = (x,y) and
(z1,¥1) = (y,y). By continuity there exists some minimal # such that z, = yu
and thus the limiting line as ¢ — t’ is a tangent line that intersects L, giving a
contradiction. [

The following is an important application of (3.5):
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3.6 Zak’s theorem on tangencies, [Z]. Let b = dim Xing (Set b = —1 if X
is smooth.) Let L € y(X) C G(n+k+1,V) be any point, then dim{z € X |
T.XCL}<k+(b+1). '

Proof. Assume X is smooth. Let Y = {z € X | T,X C L} and let y = dim Y.
We have 7(Y, X) C L, but since X is not contained in a hyperplane, o(Y, X) L.
Thus by (3.5), dim7(Y,X) =y+n. Thusy+n<n-+k,ie. y<k 0O

3.6.1 Exercise. Prove the general case. Hint: consider the intersection of X with
a linear space M such that X N M is smooth and apply the above argument to
XNM.

In comparison to Lefschetz theorem version 3, Barth and Larsen proved the
following theorem about an arbitrary smooth subvariety of projective space:

3.7 Theorem, see [B], [BL], [Hart]. Let X™ C P"*“ be a smooth variety, then
the restriction map on cohomology

Hi(P™+,2) — HY(X,Z)

is an isomorphism for i < n — a.

Thus, smooth varieties of small codimension have the same cohomology of com-
plete intersections in most dimensions.

A basic question in geometry is: To what extent is the geometry of a manifold
determined by its topology? For example, in Riemannian geometry, certain aver-
ages of the Riemann curvature tensor are invariants of the differentiable topology.

R. Hartshorne posed several questions in algebraic geometry to the effect of
asking when a result on the level of cohomology implies the corresponding result
on the level of geometry. For example, there is the classical question: under
what circumstances are cohomology classes represented by an algebraic cycle (or
variety)? Among his questions is the following famous conjecture:

3.8 Hartshorne’s conjecture on complete intersections. ([Hr], 1974) Let
X" C CP*** be a smooth variety. If a < 5 then X is a complete intersection.

If X is a complete intersection, then all polynomials of degree d on X are
the restriction of polynomials of degree d on PV. In other words, the map
HO (Pt Opn+a(d)) — H°(X,Ox(d)) is a surjection. If all up to the d-th maps
are surjective, one says that X is d-normal, and if all maps are surjective, one
says that X is projectively normal. 1-normal varieties are called linearly normal.
Another way of saying that X is linearly normal is that X cannot be realized
as the linear projection of some X C P+l More generally, X is d-normal if

v4(X) is not the linear projection of some Y C P(""¢™). It has been shown that
under certain circumstances, if X is projectively normal, it must be a complete
intersection. In this way, we may think of X being d normal as an approximation
to being a complete intersection.

Thus a first approximation to Hartshorne’s conjecture on complete intersections
(also conjectured by Hartshorne) is that if X™ C P™ is a smooth variety, it must
be linearly normal if @ < . Now say Y C PN*! is a smooth variety. We can
project Y to a smooth subvariety of some PV iff there exists a p € PN*+! such
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that p does not lie on any secant or tangent line of Y, i.e. iff o(Y) # PN+, Zak
proved that if N +1—n < 2 then o(Y) = PN*! and this is his theorem on linear
normality quoted in the introduction.
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§4. PROJECTIVE DIFFERENTIAL INVARIANTS

4.1 The moving frame.

As discussed in the introduction, we will study the local geometry of a subvariety
X™ C PV by studying the infinitesimal motions of flags in V, in fact of bases of
V adapted to the geometry of X.

Let N = n+a. To begin, let F denote the space of bases of V. F is isomorphic
to GL(V). We write f € F as f = (eo,...,en), where we think of the basis
vectors eg € V as column vectors.

We will use the projection

(4.1.1) m:F—->PV

f = (eo,...,eN) > [eo].

4.1.2 Exercise. Define a projection F — G(k,PV). What is the group preserving
the fiber?

We will often consider f € F as a matrix, e.g., f = (g4), and write

9%

es = |
98
4.1.3 The Maurer-Cartan form.

Let G be a Lie group and g its Lie algebra. The Maurer-Cartan form of G is a
Lie-algebra valued one-form, w € Q!(G, g). To define w at g € G, we must define
a linear map wy : TyG — g. At the identity element e € G there is a canonical
map wl|e : T.G — g, namely the identity map (via the identification T.G =~ g).
The Maurer-Cartan form at g € G is defined to be the left translate of w|.. More
precisely, consider the multiplication map

Ly:G—G

a ga

as a diffeomorphism of G and define w|y := L} wle. (Given f: M — N, a smooth
map between manifolds, f*|, : TJZ‘(Z)N — T*M is the canonical pullback map.)

If G C GL(n,C) is a matrix Lie group (in our case we will be concerned with
G = GL(n,C)), there is the following description of the Maurer-Cartan form:
Write g = (g}), 1 <4, j, < n, consider each g} as a holomorphic function g::G—
C, and consider the matrix (g5) as a map (g5) : G — Mpxn, Where Mnxn denotes
the n x n matrices with complex entries. For a € G, consider dgl, := (dg})a as a
T.G C M, «n-valued 1-form on G, where dg;'-'a is the differential of the function gj~
at a. In particular, (dg§)e is T.G = g-valued. Consider left matrix multiplication
by g7 asamap g7 : Myuxn — Mnxn.
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4.1.3.1 Exercise. With the notations above, w|, = g~dg. In particular, dg =
gw, l.e.,

(4.1.3.2) d(eo, ... enta) = (€0y...,Enta)w

We may think of each e4 as a map e4 : F — V. By (4.1.3.2), the differential
of ey is
deg =wf’460+...+w1AYeN
Thus the form wﬁ. has the geometric interpretation of measuring the infinitesimal
motion of ex towards ep. ’

In particular, consider deg : TfF — T, V. 7y = [J« o deo where [] denotes the
projection V — PV,
We see that m* (T} \PV) = {wd,...,wd}. We pause for a definition:

4.1.3.3 Definitions.
Given a fibration )
F—_ L FE

lﬂ

¢ € OF(E) is said to be semi-basic if if i*(¢) = 0, i.e., if v1¢p = 0 for all v € kerm,,
where v 1¢ € QF~1(E) is a contraction of ¢. ¢ is said to be basic if ¢ = 7*(¢) for
some ¢ € NF(B).

In coordinates, if we let {z*} be local coordinates on B and {z*,y*} be local
coordinates on E, then the general 1-form on E may be written as

¢ = f;(z*,y*)da? + gg(z*,y*)dy”.

¢ is semi-basic if g5 = 0 and basic if, in addition, the f; are functions of z* alone.

More generally, if T — E is a vector bundle, T is said to be basic if T = 7*(T)
for some vector bundle T’ — B. A section s € T'(E,T) is said to be basic if s = 7*s
for some s € T'(B,T). Similarly for distributions, etc...

4.1.3.3.1 Exercise. a € QF(E) is basic if and only if a and da are semi-basic.
4.1.3.4 The Maurer-Cartan equation. Utilizing the fact that the differential
of a constant map is zero, we calculate 0 = d(gg™') = gdg~! + (dg)g~ ! and find
that dw = d(g~'dg) = d(g™!) Adg = —g~'dgg™* A dg. Le.,

dw = —w A w,
which is called the Maurer-Cartan equation. In indicies,

dwt = —wi Aw§

(here and throughout, we use the convention that repeated indicies occuring up
and down are to be summed over).
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4.1.4 Adapted frames.
We now adapt to the geometry of our situation, the flag

icT,XCV.

We let F} = F! C F be the subbundle respecting this flag. Introduce additional
index ranges 1 < o,8<n, n+1< pu,v <n+aand write f = (o, €q,€,), Where
where [eo] = z, and {eo,...,e,} =T. Le., in indices, the flag above is

{eo} C {eo,ea} C {e0,€qa,€u}-

F!is not a Lie group, but it is a G;-principal bundle where

9% 95 9
(4.1.4.1) Gi=q9€GL(V)lg=| 0 g5 o
0 0 g

Let i : F! C F denote the inclusion. i*(wf) = 0 because dey = wie, mod eg

and for the same reason, i*(wi A... Aw?) is nonvanishing,.

4.1.4.2 Standard abuse of notation. From now on, I commit a standard abuse
of notation, omitting the ¢* in the notation, the pullback being understood from
the context.

4.1.4.3 Exercise. Prove the Cartan lemma: Let W be a vector space and let
wy,..., Wy be independent elements. If vy,...,vx € W are such that w; Av; +
.. Wg Avg =0, then v = Zihijwi with hij = hji € C.

4.1.5 The second fundamental form via frames. We calculate dw} using the
Maurer-Cartan equation (4.1.4) to obtain

dwl = —w(’f/\wg—wg/\wéj——w;‘,‘/\wg.

On the other hand, wf = 0 implies 0 = dw”. The forms w" are independent, so
we may use the Cartan lemma to obtain

wg = qgﬁwg'

for some functions ¢}, = g4, defined on F*.

Consider R R
IT = qzﬂwg‘wg@(e# mod T')

4.1.5.1 Exercises. _

1. Show that II®ej is a basic tensor, i.e., that II®e} is invariant under motions
in the fiber over [eo] and thus descends to be a well defined section of S?T*XQN X,
which, as expected, is I1.

2. Show that this definition is equivalent to the definition of 11 as the derivative
of the Gauss map given in the introduction. Hint: use the projection F' —
G(k+1,V).
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4.1.5.2 Equivalence of coordinate and frame definitions of I1. We will
often take sections s : X — F* to do computations. Nothe that s*(IT) is indepen-

dent of the choice of section. To see our definition of II in frames is equivalent to

the coordinate definition, consider a framing (section) where eq = 3% — fha 52:,

ey = 6%. Note that in this framing w§ = dz®. (Or, more precisely, s*(w§) =
dz®.) We compute

0
= f# o —_
deo = frazpd2"® 52

but using the Maurer-Cartan equation, we have

deq = whe, mod {eg,eg}

thus w4 = ff, , wg proving the equivalence.

4.2 Higher fundamental forms.

In this section we fix X C PV and a base point z € X and often supress
reference to X and z.

We will define the higher fundamental formsFF 'j(z as maps FF% - ker FF k=1,
S*T* X, where we begin by considering IT = FF? as a map N* — S2T*. Note that
in projective geometry this mapping is more natural than the dual map ST — N
as PN; X has the geometric interpretation of the space of hyperplanes tangent to
X at .

Fix a general point z € X and let

TOX =T+ I1(S*T)(-1) C V

denote the second osculating space of X at x.

4.2.1 Exercise. Show this definition of the second osculating space coincides with
the definition in (2.1.2).

4.2.2 Gauss map definition of FF?. One way to define FF® is as the derivative
of the second Gauss map. Let a; = dim I] (SQT), and recall
A X --5 G(n+ a, V).

z— T®

4.2.2.1 Exercise. Write out this definition.
4.2.3 Frame definition of FF3. To define FF? in frames, consider the quantity

FF3 .= w/':®wgwoﬁ®e,,mod 7@,

We will show that FF? descends (after twisting) to a well defined element FF® €
L(S3T*®(N/II(S?T))).

FF? has the geometric interpretation of measuring how X is moving away from
its second osculating space to first order. We sometimes use III to denote FF3.
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Let F2 — X denote the bundle of frames adapted to the flag
CcT,XcTPX V.

(Actually F2 is only defined over a Zariski open subset of X .) Introduce index
rangesn+1<&n<n+a,n+a +1<¢9<n+aandlet {e} = II(S*T)
and {es} = N mod II(ST) so in indices, the above flag is

{eo} C {eo,€a} C {€0,€as€c} C {€0,€a,ec, €8}
Then
(4.3.1) FF3 := w?®w§w€®e¢mod T®.

4.2.3.2 Exercises. _

1. Using this definition, show that FF? is a symmetric cubic form. Hint, observe
that on F2, w® =0 and calculate dw?.

2. Calculate how FF? changes under a motion in the fiber. In particular find !
such that FF3®(eo)' is invariant under motions in the fiber and therefore descends
to a well defined section of T*®S*T*®(N/II(S*T)) over X.

There is a further restriction on FF? at general points. (4.2.3.1) implies [FF?| C
(T*Q|I1)).
4.2.4 The prolongation property.

4.2.4.1 Definition. Let T be a vector space and let A C S%T* be a linear
subspace. Define the k-th prolongation of A by AR) = §dtkET* N (AR SFT™).
Geometrically, A*) is the space of polynomials of degree d + k on T having the
property that all their k-th derivatives lie in A.

4.2.4.2 Theorem (Cartan) [C vIIL.1 p 377]. Let X™ C P"** be a variety
and let x € X be a general point. Then

(4.2.4.3) [FF% .| C |FF% .|*2).

We will call (4.2.4.3) the prolongation property. It can fail to hold at special
points where II degenerates.
The two remarks above prove Cartan’s theorem for FF?.

4.2.5 The k-th fundamental form FF*.

In coordinates, the k-th fundamental form corresponds to the first nonzero
terms in the Taylor series expansion using coordinates adapted to the filtration of
N*.

To define FF* for all k without coordinates, one proceeds inductively, letting

TR X = TE-DX + FF*(S*T, X)(~1)

and then either defining a further Gauss map and taking its derivative or by
adapting frames further to the refined flag and showing the appropriate quantity
is invariant under motions in the fiber.
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4.3 Relative differential invariants.

You may wish to skip this section on a first reading. Life would be easier if one
could just skip it altogether, but the cubic form plays an important role in the
study of subvarieties of projective space.

In addition to III, there is another third order invariant called the cubic form,
which we will denote F5. The geometric interpretation of F3 is that it measures
how the second fundamental form varies infinitesimally, or in other words, how X
is leaving its embedded tangent space to second order.

Namely, differentiating

0=d(wh — qgﬁwg)
)
= (—=dgts — gl gwl — Qhpwh + 5wl + ghswd) Awh

and using the Cartan lemma, we conclude that there exist functions 'I‘ZB,Y, sym-
metric in their lower indicies, defined on F' that satisfy

(4.3.1) TheWo = —dqhg — qgﬁwg — qhpwl + quéwg + q’gaw,‘i.
For f € F1, let Fs = (F3); € 7 (S°T*®N) be
(4.3.2) F3; = rgmwgwgwg Qey,.

Note that F3 does not descend to be a well defined section of S®T*®N (even after
twisting). In fact, if (€o,€q,€,) is a new frame with

(4.3.3) €u = eu+gpeo+ ghea
éa =€q + 9260

then

- 8
(434) 7'557 = 7”5/37 + Gaﬂyggqg,y + Gaﬂ’ygquﬂqfl;é

where 6,4, is cyclic summation in the fixed indices o, 3, 7.

Motions by g, g3 also vary the rt 5, but the change they effect is cancelled by
the corresponding changes in the w§ and e,. F3 is an example of what is called a
relative invariant. We will use the notation ATZM to denote the change in 7*2[37
by a fiber motion of the type in (4.3.3). By (4.3.4),

(4.3.5) Arhy, = Gapy(90d5, + 90d0s,s)-
It is possible to define F3 as a section of a bundle well defined over X, namely

S*T*QN )
*oII+ <II,T®N*II >

(4:.3.6) Fs e F(X, T

where < -,-,- > is the natural contraction.
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One can compare F3 to the covariant derivative of the second fundamental
form of a submanifold of a Riemannian manifold, V"*™I, which is a well defined
tensor. In fact one may think of F; as an equivalence class of V™**™ [ I’s, where two
(holomorphic) metrics compatible with the projective structure are in the same
class.

Differentiating F3 one obtains a fourth order invariant Fy € n*(S*T*®N) whose
coefficients 7/, 5 ; are defined by

] 0
(4.3.7) rlhg w0 = drhs, — 21} 5,00~ TapyWh +6apy(Thsws +q5[3w2 —qhe Q5 wy).
(If III = 0, F4 is the only fourth order invariant.) The geometric interpretation

of Fy is that it measures how X leaves its embedded tangent space to third order.
Under a change of frame (4.3.4) the coeffecients of Fy vary as follows:

(438) le::ﬁ'yﬁ = 75,676 + 6&[‘375ggr§7§ + 60,3759161(T;ﬁ7qg€ + qzﬁr’{ltaf) + ggqgﬁql';d

One can continue, defining forms Fy for all k.
In coordinates, the coefficients of the Fj at z are the k-th derivatives of the
embedding.

4.3.9 Remark. Note that if z € X is a general point, then IF]F'}QI = 0 implies
FF% , =0 for all [ > k. However it is not true in general that Fj x . = 0 implies
Fit1,x,2 = 0. A counter-example is given by a plane curve, where F3 = 0 always
but Fs = 0 if and only if the curve is a conic (see §12). Higher dimensional
examples can be obtained by taking a cone or join over a plane curve. It would
be interesting to find other types of examples of this phenomenon.

4.3.10 Remark. In [L6] I give an example of a variety with F3 = 0 but Fy # 0 at
a point, but I do not show that that point is a general point. An example where
the phenomena does occur at general points is a cone over a curve in P2,

4.4 Yet another definition of fundamental forms.

Here is yet another definition of the fundamental forms due to M. Green (per-
sonal communication) that will be particularly useful for calculating fundamental
forms of re-embeddings and homogeneous spaces. If you are more at home with
spectral sequences than Gauss maps, coordinates or moving frames, then this def-
inition is for you.

Define inductively a series of maps:

(4.4.1) d¥e : (TFY®* — V/Image (&, ...,d"* )

as follows: Let d denote exterior differentiation, let _d_oeo = eg and let dleg =
deo mod eg. If vy,...,vx € Ty F!, extend vy,..., v to holomorphic vector fields
in some neighborhood of f which we denote 71, ..., 7. Let

(4.4.2) dkeo(vl, ooy k) =1 (dd(2 . .. d( Jdeo) mod 7, " (Imaged® ™)

where 1, : V — V/(Image{d’,...,d*"'}) is the projection, and J denotes the
contraction T x T*® — T*€~1  (4.4.2) is independent of the extension of v1, ..., vk
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to holomorphic vector fields. (The proof that (4.4.2) is independent of the choice
of extension to holomorphic vector ﬁelds is the same as the standard a.rgument in
the real case, see e.g. [S].) Then d*eq®(e)*~! = n*(FF*). The maps d* can be
defined more algebraically as follows:

The quotient map

(4.4.3) VY > V* it = Opy (1),
gives rise to a spectral sequence of a filtered complex by letting

(4.4.4) FOK°=Vv*  FOK'=0x(1),
F'K%=0 FP = FPK! = mP(1).

The maps are

(4.4.5) d’:V* - F°/F' = Ox .(1)/m,(1) ~ C
d' ikerd® — F'/F? = m (1) /m2(1) ~ T*(1)
d® :kerd' — F?/F3 = m2(1)/m3(1) =~ (5*T*)(1)

For example, the first two terms of (4.4.5) expressed in frames are

4.4.6 dleo = wiRe, mod I
. g 0
4.4.7 d2€0 = ww”®e, modT
= 0% H

This definition is particulary useful in computing fundamental forms of homo-
geneous spaces. Say G/P C PV and V is a vector space formed from a vector
space W (e.g. an exterior power) and originally G C GL(W) C GL(V). Then we
can use the smaller G-frame bundle to do our computations.

4.5 Fundamental forms of Veroneses v,(PV) C PSPV.

Let V = C™*! have basis {e,eq}, 1 < @ < n and let z = [(eo)?]. Using the
bundle of p,(GL(V)) C GL(SPV) frames, and the Leibinitz rule d(es o ep) =
degoep + ey odep, we have

(4.5.1)
def = pwieach
d*ef = plp — Dwiwp eacpel
d'eE=plp—1)...p—k+1)us ... wSea, ... €l "
Thus
(4.5.2) IFF; vyl = PS*T*, k<p

]F]F’lk):P(PV) = 0, k > p.
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4.6 Fundamental forms of Veronese re-embeddings v4(X) C PS?V.
I use the notation F! = FF! = Idr, F° = FF° = 2@3*.

4.6.1 Fundamental forms of v,(X) C PS?V. Assume X C PV is such that ITx
is surjective so the only differential invariants are Fy = (Fk)x,. Write 2 = [eq),
v2(z) = [eo © 0] and use the Leibnitz rule applied to eg o ey to compute (see [L6,
3.2] for details):

(462) F]Ftl,z(x)yz = 2F1F0]:i2J_
F]ng(x),x = 2(F2F0 + FlFl)l(i’f")J_
FF,(x)z = 2(FsFo + 3F2F1)er ez
Wiz()(),z = 2(FyFo +4F3F) + 3F2F2)|kerFF32(x)

FFS, x).0 = 2(Fs Fo + 5FuFy + 10F5 Fo)lyerers

4.6.3 Proposition [L6, 3.10]. The fundamental forms of v4(X) are
(4.6.4)
FFY, xy = Sty 4. +1a=kC1y.. 1 1y - .. Fi, mod (Zz<kFFid(X)(SlT))‘kerFF’;;(IX)

where the c;,. 1, are nonzero constants.

For example
(4.6.5) ]FIF?)S(X) = C400F4F()Fo + 6310F3F1F0 + CQQOFQFQFO + 6211F2F1F1.

For the proof, see [L6].

If Z is a hypersurface of degree d, then Z osculates to order p at z € X if and
only if ﬁ z € kerlF]Ffd( X), 24 where ﬁz € N¥X is the vector associated to the
equation of Z. ‘

4.6.4 Proofs of (0.5.8), (0.5.9).
Proof of [L6, 3.16]. Observe that |IF‘IF§d(X)| =PS*T* forall k < dand sumup. 0O

Proof of [L6, 3.17]. The first term in any lFIFﬁd(X) for which SIN* is not in the
kernel is (F3)¢, which appears in ]FIF?)ZI(X). Thus SEN* ¢ ker IFIF‘?JS(”;). Finally,
note that dimS¢N* = (‘“LZ—I). O

4.7 Fundamental forms of Grassmanians.

Let W = C" and let G(k, W) C P(A*W). Use index ranges'1l < i,j < k,
k+1 < s,t <n. Write the Maurer-Cartan form of GL(W) as

_(w w
4.7.1) Q—(& )

S
i Wt

Using the embedding p : GL(W) — GL(A*W), let E = e1 A... Aex € G(k, W),

2

El=eiA...Nej_1NesANejr1A. .. e where e; has been replaced by e;, let E* be



ALGEBRAIC GEOMETRY AND PROJECTIVE DIFFERENTIAL GEOMETRY 43

E with e, replacing e; and e; replacing e; and so on. Then the Egiflﬁgf,, 1<p<k,
give a basis of A¥W. Now we take derivatives at E using (4.4) and the Leibinitz
rule:

dE = wiE’ mod E

2 — s, .t t s ¥
(4.7.2) &°E = Tigjsct(wiw; — wjw;) By
wi wl o owd
3 s t u il
&E=Yicjcs<icudet | Wi w; wi | Eg,

W W w
The first line can be used to recover that TeG(k, W) = E*@W/E. Continuing,
we see that for any z € G(k, W),
(4.7.3) |FF?| = {p X p minors of (w])} = I,0,-1(Seg(PE* x P(V/E)).

In particular, the last nonzero fundamental form is the min (k,n — k)-th.
4.8 Fundamental forms of spinor varieties.
Choose a basis of V = C?™ so that Q = (O I

I 0 ) With respect to this basis
SO(V,Q) has Maurer-Cartan form

wtoWl
7 n+k
(4.8.1) ( ntl n+k>
) wj wn—l—l
where w::ilk = wl"’,w;+k = _w5+i»w;+l = _Wlnﬂ

Let E=e1A...Nepm € Sy = S (V, Q) C Go—pnur(m, 2m) C P(A™V). A priori
we should be studying the embedding S C PS,, as it is the minimal embedding,
but we work with A™V as we know the action of so(V) on A™V.

Computing as for the Grassmanians,

(4.8.2) dE =Wl E], mod E

(4.8.2) determines TgS as a linear subspace of E*QV/E. Since @ allows us to

identify V/E with E*, we may consider TgS as a subspace of E*®E™*. The subspace

is A2E* because the only relations among the forms w?“ are w;”ri = —w,?. Thus

TS = A°E*.
Continuing, we calculate the second fundamental form of S C P(A™V).

2 _  n+i, n+k il
d°E=w/"w " E, |, .4\ mod Image dE.

Thus
[[I| ~ AM*E* = [,(G(2, E)).

4.8.3 Exercise. Verify that |II| = I2(G(2, E)) by showing that II(v,v) = 0 if
and only if v = w; A we. Hint: note that IT(wi Awsa, u1 Aug) = wy Awz Aug Aus.
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4.8.4 Exercise. Show moreover that
|]F]F’°] ~ A E* = Liok1G(2, E).

Adding up the normal spaces we see S C AV E* C A™V, where we have used
@ to make sense out of this expression (for example, we identify £ € A™V with
A°E*, E? +i € A™V with the corresponding element of A*E* etc...).

Thus our embedding was in fact the minimal one in disguise as S sits in the
linear subspace of A™V corresponding to A®V¢™E*,

Thus we see that one can construct the space of positive spinors S; ~ A" E*
without any knowledge of Clifford algebras.

4.8.5 Exercises.
1. Calculate the fundamental forms of Gu—puu(m,2m), and Gu—nwu(2,2m).
2. Note that G —nuu(m,2m) (resp. Gu—nui(2,2m)) lies in a linear subspace
of PA2V (resp. PA™V).
3. Describe the subspaces geometrically.
4. Show that G.,—nuu(k, V) naturally embeds into a linear subspace of P(AFV).

4.9 Minuscule varieties.

4.9.1 Definition. Let X = G/P C PV be a homogeneous variety where G is a
complex semi-simple Lie group and P is the subgroup stabilizing a point (called a
parabolic subgroup). We say X is a generalized minuscule variety if T, X contains
no irreducible sub-P-module. X is a minuscule variety if G is simple and the
embedding is minimal, i.e., not a Veronese re-embedding.

Alternatively, the generalized minuscule varieties are those admitting a Hermit-
ian symmetric metric induced from a Fubini-Study metric on the ambient projec-
tive space and the minuscule varieties are those for which the metric is irreducible
and the embedding minimal.

Yet another definition is that X = G/P C PV is minuscule if G is simple and all
the nonzero weights of the representation V are given by the orbit of the highest
weight under the Weyl group of G.

4.9.2 Examples. Examples of minuscule varieties are the quadric hypersurfaces
Q™ C P"*!, the Grassmanians G(k, V), the spinor varieties, S = SO(2m)/P, the
Cayley plane OP?, and the Lagrangian Grassmanians, G, —nwui(m,2m). In fact
these are all the minuscule varieties except for G,,(Q?, Q) which is a homogeneous
space of E7, see [LM1].

Note that in the examples of Grassmanians and Spinor varieties above, |[FF¥| =
|FF2|%*~1) where for a general variety the prolongation property only implies
|FF*| C |FF?|(k—1), .

4.9.3 Theorem [LM1]. Let X = G/P C PV be a minuscule variety and let
z € X. Then for k> 2,
[FF5 | = [FF%,o| "7

For the proof, see [LM1]. This strict prolongation property fails for a general
homogeneous space, e.g., it does not hold for Gg—nuu(k,m) for 2 < k < [Z]. This
property has the following geometric consequence:
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4.9.4 Corollary [LM1]. Let X be a minuscule variety, and let z € X. Then
Base |1FIF§(,I[ = 0y—1(Base|FF% ,|).

See [LM1] for the proof.

4.10 Fundamental forms of Segres.

Let U = C**!,W = C**! and consider the Segre, Seg(PU x PW) c P(U®
W). Here we use G = GL(U) x GL(W) C GL(U®W) frames. Let (eq, ..., e,),
(fos- s fo)y w§mdy, 1 < a < a, 1 < j < b denote bases and dual bases. Let
[eo® fo] € Seg(PU x PW). Note that eo® fo, €4 ® fo, €0®f;,ea®f; form a basis of
U®W. We compute

d(eo® fo) = wiea® fo + Mjeo® f; mod €® fo
&’ (e0® fo) = winjea ® f; mod Tleosfo]
We see I1 surjects onto N and
(4.10.1) [FF?| = Lo(P(eo®(W/{fo})) UP(U/{eo} ® fo))

4.10.2 Exercises. Consider X = Seg(P™ x ... x P™¢) = Seg(PW; x ... x PW,),
dim W; = r;. Use the GL(W1) X ... x GL(W,) C GL(W1®...@W,) frame bundle
in the following computations:

1. Show |FF?| = I(U;P(e0; ®. . €0(j—-1)®(W;/e0;)®eo(j41)®. .. Qeo,)), where
L denotes disjoint union.

2. Compute FF* for all k, in particular, show that the last nonzero fundamental
form is FF. :
4.10.3 Proposition. Let X; C PW;, 1 < j < r, be varieties and let y = [z1®
...®z,] €Y :=Seg(X; x ... x X,.).Then

(4.10.4)
TyY = Zj.Tl@. . .®xj_1®szXj®xj+1®. LR,

Ilyy = T;k710. .01, X;02541 .. .@Tp_1 Oy, Xk O2141 8. . .0,
+5219...07;21011x, 4, 02,41 8...Qz,

4.10.5 Exercise. Prove the proposition.

4.11 Fundamental forms of the Severi varieties.

Here, it is easier to use the coordinate definition. Choose affine coordinates
based at [p] where

1 00
p=10 0 0
0 00

and following the notation of (3.1), denote the affine coordinates ui,us,us €
A,r2,73 € C where the tangent space to p is {uj,us} (the span is taken over
C). In these coordinates:

o 1 o4\
ro(u1,u) = uiu; as de'c(u1 7”2) =0
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o AN
’I"3(U1,’U2) = ugliy as det (U2 ’f‘3> =0

_ 1 o
us(u1, ug) = Uuy as de'c(u2 ug) =0

where the last equation gives us one, two, four or eight quadratic forms. The
determinants come from the vanishing of 2 x 2 minors that must be zero to make

the Severi variety consist only of rank one elements. In division algebra notation
the second fundamental forms are

(4111) [II' = P{uldl,ungg,u_gul}.

Note that since this is all of the Taylor series, there are no other differential
invariants.

4.12 Remark on homogeneous vareities.

The alert reader might have observed that, in all cases above, the base locus of
the second fundamental form corresponds to the homogeneous space one obtains
by marking the nodes in the Dynkin diagram of the semi-simple group H whose
Dynkin diagram is the Dynkin diagram of G with the nodesthat correspond to P
removed. This is part of a general pattern, see [LM1] for details.

4.13 Proof of the equality in Terracini’s lemma.
Consider the mapping

FL x FL =PV
((e0s- - en), (fo,---, fn)) = [eo + fol

The image is S(Y,Z). We compute its tangent space. Let wf,na, denote the
entries of the Maurer Cartan forms over Y and Z respectively. Let 1 < o <dimY,
1 <j <dimZ. Note that T[eO]Y = {eo, €a}, T[fO]Z = {fo, fj}. Since we know the
line P{eo, fo} = P[leo][ fo) 18 contained in the tangent space to [eo + fo] we calculate
modulo {eo, fo}.
d(eo + fo) = wiea +mpf; mod {eo, fo}

Thus T[eﬁfO]S(X, Z) C {eo, fo,€a, fj} = T[GO]Y + T[fo]Z but we already saw the
reverse inequality in (2.2.2) so we must have equality.

Alternatively, one can prove Terracini’s lemma by observing that the forms
{w§,ni} are all independent so one has T[eOJrfO]S(X, Z) ={eo, fo, €as [}

4.14 The Frobenius theorem.
In our calculations, we will consistently use the holomorphic Frobenius theorem:

Frobenius theorem. Let M™ be a complex manifold and let A C G(k,TM) be
a holomorphic distribution. Let n',...,n" "% € Q'(M) be a basis of AL, If

d’ =0 mod {n',...,n" %}

for all1 < j < n—k, then for all z € M there exists a submanifoldY C M,z €Y
such that T,Y = A forally €Y.

For a proof, see e.g., [Sp).
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§5. VARIETIES WITH DEGENERATE GAUSS IMAGES
The new results in this section are from [AGL], currently under preparation.

5.1 Examples.
We are aware of the following types of examples (which are not mutually ex-
clusive):

5.1.1. Joins.

X =8M1,...,Y%) =Uy,ev;Py, ..y has a degenerate Gauss map with at least
(k—1)-dimensional fibers because Terracini’s lemma implies that the tangent space
to S(Y1,...,Yx) is constant along each F =P5~1 . (See (2.2) for an explanation
of the notation.)

Let Y C PV be a variety. 7(Y) C PV will have a degenerate Gauss map with
at least one dimensional fibers. Examples 5.1.2 and 5.1.3 below generalize 7(Y').

5.1.2. Bands. Let Y C PV as above. For each y € Y, let L, C G(n + k,PV)
be such that T,Y C L, and let X = Uyey Ly. Then X will also have degenerate
Gauss map with at least one dimensional fibers.

Note that the higher osculating varieties of Y are special cases of this construc-
tion.

5.1.3. Partial osculating varieties.

One could seek to generalize the tangential varieties in a different way, namely
by taking a subspace of the tangent lines through each point. If z € PV and
v € TPV, we let ]P’i’v denote the line passing through z with tangent space
spanned by v. Let A C TY be a distribution. One could consider the variety
X = Uyevpea, IP’;v consisting of the union of tangent lines tangent to A. In
general X will not have a degenerate Gauss map, but it will in some special cases.
The case where Y C Z and one takes X = UyeyT,Z is one special case (This case
is covered by example 5.1.2).

Here are two more constructions:

5.1.3.1 Unions of conjugate spaces.

Let Y™~ ! c P**! be a variety such that at general points there exist n — 1 si-
multaneous eigen-directions for its second fundamental form (To make the notion
of eigen-direction precise, choose a nondegenerate quadric in Iy, to identify T
with T* and consider the quadrics as endomorphisms of T. The result is indepen-
dent of the choices.) Note that the condition on I is a genericity condition. Let
X™ c P*t! be the union of one of these families of embedded tangent lines. Such
lines are called conjugate lines.

In higher dimensions it is still possible to have a conjugate direction or conjugate
space, but in this case Y must satisfy a certain exterior differential system. As is
shown in [AG, p 85] local solutions to this system exist and depend on n(n — 1)
functions of two variables.

5.1.3.2. Unions of asymptotic spaces. Let dimY = m and let A C Base |IIy|
be a linear subspace of dimension r at each point, where Base |II| = {v € T,)Y |
II(v,v) = 0}. Let X be the union of lines tangent to A. Then dim X < m+r and
TX is constant along the P"’s tangent to A. If codimY > dimY, Y must satisfy
a differential system in order for Base |II| to be nonempty.
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5.1.4 Remark. A structure theorem for varieties with degenerate Gauss maps is
announced in [GH]. Many counter-examples to their structure theorem are given
by the examples above.

5.2 Results on Gauss maps. Let X™ C P"t* = PV be a variety.

1. Consider the distribution A C TX defined by singloc|II|,. This distribution
is Integrable and its integal manifolds are the fibers of the Gauss map 7. In
particular, dim~(X) = n — dimsingloc|II|,, where z € X is a general point.

i1. The generic fibers of 7 are linear spaces.

iii. If y(X) is degenerate, then X is not smooth. More precisely, let F be a
general fiber, then X is singular along a codimension one subset in F.

iv. [Zak, Z] If X is smooth, then v is finite. (iii. only implies  is generically
finite.)

v. [Ran, R3] If v is generically finite, then it is finite.

The case n = 2 of iii dates at least back to Cayley, the general case appears
to have been rediscovered several times. ii. is so classical I could not trace a
reference.

Although the statements overlap, I include the announcements as the methods
of proof are quite different and hold the possiblity of generalizations in various
directions.

5.3 Remark: differences between affine and projective spaces. Ran’s ar-
guments are valid in a more general ambient space than a projective space because
he does not use the linearity of the fiber, but he does use compactness in an essen-
tial way as can be seen by the smooth surface in affine space z = zy? + (1—2z)y,
which has the z-axis as an isolated fiber. See [R] for his argument.

5.4 Proofs.

From the definition of 11 as the derivative of the Gauss map, the first assertion
is immediate. A proof is included anyway, as it will serve as a model for more
complicated proofs.

Adapt frames to the flag

(5.4.1) & C {&,singloc|I1|,} cT CcV

by letting {e1,...,es} =~ singloc|II|. Use additional index ranges 1 < s,¢ < f,
f+1<4,5,k <n. Call the resulting frame bundle F7 C F%. In indicies, the flag
is

{60} C {60763} C {eansyej} C {607es7ejﬁeﬂ}

Our adaptations have the effect that w” = 0, or, more precisely, that the pullbacks
of the forms w¥ to F7 are zero.

singloc |[II| = {wj}* so to prove the first assertion in (5.2.i) we need to show
the Frobenius condition dw] = 0 mod {wk} holds.

Using the Maurer-Cartan equation, we see

(5.4.2) dwf = —w! Aw§ mod {w}
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We examine the forms w?. Differentiating w* = 0, we obtain
(5.4.3) 0=dwl = —w Aw]

Since we are assuming {e, } is the entire singular locus, for each j, there exists some
p with W’ # 0, which implies wi = C?,wk for some functions C’,. Thus dwl =
0 mod {wp} and the Frobenius theorem implies the distribution is integrable.

To see the integral manifolds F' of the distribution are linear spaces, it will
suffice to show that IT Fleo] = 0. We have

Ip (eo) = wiws ®e; + whwiRe,,.

We already know that w# = 0, so if we can show the pullbacks of the forms w? to
F' are zero we will be done. But w? = 0 mod {wf} and the wf pulled back to F
are zero, so we have proven [/r = 0 and thus F is a linear space.

To show F is the fiber of the Gauss map and that X is singular along a codi-
mension one subset in F, let p = u’ey + ue, € F C X. We calculate T, X. Since
F C T,X for all p € F we can work modulo F = P{eo, es}.

5.4.5 dp =(u’w? +u*w?)e; mod {e, es
0 j

E(uoéf + uSij)wgek

Thus, as long as the matrix (u05f + usC’fj) is invertible, TPX = T{en]X proving
that F is contained in the fiber of the Gauss map, but it is equal to the fiber by
the Bertini theorem (3.2.1).

We may think of [u°, ..., u] as parametrizing a (f — 1)-dimensional (projective
dimension) family of matrices, which must drop rank at least along a codimension
one subset, which corresponds to (X N F )sing € Xsing. O

An important feature of the proof that X is singular along a codimension one
subset of X N F, is that we were able to calculate the tangent space to F' using
first and second order information at just one point of F, namely [eo]. We will see
this type of calculation reappear when studying 7(X) and X*.

Frame free proof of iit. (Due to J. Harris.) Let F denote a typical fiber of the
Gauss map of X. We have

F— X
(5.4.6) | |
7(X)
which determines a map
(5.4.7) 7(X) — G(k,PV)

Y(z) = Fyzy =v""y(2)
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The differential of this mapping is a linear map T, (;)y(X) — ﬁ';(z)®(’f’zX /13'7(1))
which can be thought of as a map F7(x) — T,,(z)'y(X)*®TzX/F,,(I), from a k-
dimensional vector space to the space of (n — k) X (n — k) matrices. If T, X is to
have the proper dimension, the image matrix must be of full rank for all f € F, (),
but this is impossible, one cannot have a linear space of square matrices such that
all are of maximal rank, in fact the matrices must drop rank along a codimension
one subset. O

5.5 Exercise. Prove that a smooth variety X cannot be ruled by P*’s for k > a
by considering the reduced Gauss map B"~* — G(k,PV) where B is the base
space. A generalization of this result is given in §6. .



ALGEBRAIC GEOMETRY AND PROJECTIVE DIFFERENTIAL GEOMETRY 51

§6. SMOOTHNESS OF RULED AND UNIRULED VARIETIES

In this section I discuss codimension restrictions on ruled and uniruled varieties.
Ruled varieties are special cases of varieties that can be described as fibrations,
and the bound on their codimension is the same for that of an arbitrary fibered
variety:

6.1 Theorem, Remmert and Van de Ven [RV]. Let X™ C P"** be a smooth
variety that is a fibration with fibers of dimension f, then f < a.

The proof of Remmert and Van de Ven’s theorem is a simple application of the
intersection property of projective space. Let m : X — B denote the mapping of
X to the base base of the fibration, let p € B and let Z C B be a hypersurface not
containing p. dim7~!(p) = f and dim7~}(Z) =(n—f— 1)+ f =n—1. Thus if
f+n—1>n+a,ie f>a, 7 (p)N7"1(Z) # 0 which is a contradiction.

If X™ is only uniruled by k-planes, it is easier to be smooth, for example the
smooth quadric hypersurface Q™ is uniruled by [%]-planes. Nevertheless there are
still restrictions on the codimension:

6.2 Theorem [R3]. Let X™ C P™"* be a variety and let b = dim Xg;ny (b= —1
if X is smooth). If there is at least one P* C X containing x through a general
point x € X, then a > %EJ“TQ

Theorem 6.2 is actually a slight generalization of the result stated by Ran as
he only considers the case where X is smooth.

Ran’s proof follows from his discussion of generalized Gauss maps. He also
remarks that the results can be derived from the Barth-Larsen theorems. Here is an
alternative proof that is local in character, in that the only way global information
is taken into account is that the singular locus of the second fundamental form
must be empty:

Proof. We are given that at each point there is a P*~! contained in Base |[I1]. We
first reduce to the smooth case by taking X "M where M is a general linear space
of codimension b+ 1. Then X N M is smooth and of dimension n — (b + 1) in
Prte=(+1) and contains at least a P*~(**+1) passing through a general point. The
proof will follow from the following lemma:

6.3 Lemma. Let A be an a-dimensional system of quadrics on an n-dimensional
vector space V such that there is a linear space W of dimension k in the base locus
of A. If a < k/(n — k), then A has a singular locus.

Proof. Any quadric ¢ € A can be written
g=vwl +... +oFuw* + ¢
where, ¢ € S?W+, and v/ € WL, Since k > n — k, at most n — k of the v7 are

independent. Thus each quadric has at least an k — (n — k) = 2k — n dimensional
singular locus in W, so if a(n — k) < k then singloc (4) #0. O

6.4 Exercise. Generalize (6.1) to singular varieties.

6.5 Problem. Use the rank restriction theorem to get a better bound in the
situation of 6.2. (Although among bounds of the form above, Ran’s bound is
optimal as equality cases occur.)
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§7. VARIETIES WITH DEGENERATE DUAL VARIETIES

Let X™ C P"*% = PV be a variety, let X* C PV* denote its dual variety, and
let 6+ = 0.(X) =n+a—1—dim X* denote the dual defect, as discussed in the
introduction.

7.1 Examples.

1. The smooth quadric hypersurface is self dual.

iii. Let X = Seg(PW; x PW,) = Seg(P* x P!), with k& > [, then X* =
01(Seg(PWy x PW5)) and thus X* is degenerate iff k # [ with defect &, = k — [

iii’. More generally, if X = Seg(P*! x ... x P*r) where ky > ky > ... > k,, then
X* is degenerate iff k1 > ky +... + k. with defect 6, = ki — (k2 +... + k).

iv. If X is a scroll, that is a linear fibration with base a curve, then §, = n — 2.

v. If X = G(2,W) C PA’W, then X* = 0,(G(2, W*), where p = $(k—2)ifk
is even and % (k — 3) if k is odd, thus 0, = 0 if k is even and 2 if k is odd.

vi. S5(V,Q)* =S5(V*,Q), 0, = 4. (Higher Spinor varieties have nondegenerate
duals).

Note that the example of the Segre shows that there can be no absolute bound
on 0.

7.1.1 Exercise. Verify 0, for the above examples using (7.3.1).

7.2 Theorems on dual varietes. Let X™ C P"*¢ =PV be a
variety and let X* C PV* denote its dual variety. Let 6, =n+a—1 — dim X*
denote the dual defect of X.
i. [Bertini, Ber] (X*)* = X (the reflexivity theorem)
ii. [Bertini, Ber] If H € X},,, then {z € X | T.X C H} is a linearly embedded
P’ C PV.
iii. [Zak, Z] Let b = dim Xing, then 6, < a—1+ (b+1). In particular, if X is
smooth, then dimX* > dimX.
iv. [Landman, E1] If X is smooth, then n — é, is even. In particular 6, = n— 1
is impossible.
v. [Ein, E1] If X is smooth, dim X = dimX*, X ¢ P***~! and ¢ > 2, then
X is one of the following:
a. Seg(P! x Pn~1) c p2n—1,
b. G(2,5) C P°.
c. Si% c P8,
Moreover, in these cases X* is isomorphic to X.
vi. [Ein, El] [BC]. If a = 2, X ¢ P"*%~! and X is smooth, then X* is a
hypersurface unless X = Seg(P! x P?) C P5.
[Ein, E2] If X is ruled by k-planes, i.e. if X is a linear ﬁbramon with
k- d1mens1onal fibers, then 6, > 2k — n.
viii. [Ein, E2]. If 6. =n — 2 then X is a scroll.

ix. [Ein, E2]. If §, > 2 then X is ruled by P*3™’

7.2.1 Exercises. Prove the following results about dual varieties. (7.3) might
come in handy.

1. 04 >4, :=dim X —dim~(X).

2. Assume X is not contained in a hyperplane.
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a. If X is a smooth hypersurface, X* is nondegenerate.

b. If X is any curve, then X* is nondegenerate.

c. If X is a surface with nondegenerate Gauss image, then X* is nondegenerate.
3. If X is a cone over a linear space L, then X* C Lt.

4. [Ein, E2]. If X = Y N Z with Y a smooth hypersurface of degree greater
than one, then X* is nondegenerate.

5. If H is a general hyperplane, then 6,(X N H) = §,(X) — 1.

Aluffi has proved a partial converse to ii, see [Al].
There are also classification results in small dimension see [E2] and [BFS].
Landman’s original (unpublished) proof of iv. used Lefshetz pencils.

I do not know of a direct geometric proof of vi., both Ein and Ballico and
Chianti use facts about rank two vector bundles on projective space.

7.3 Theorems on the projective differential geometry of X*. Let X" C
P"*% be a variety and let z € X be a general point. Let 6, =n ta—-1-dimX*
denote the dual defect of X. Given H € X*, let Yy = {z.€ X | T,X C H}.

i. [GH], [L3] [IIx 4| is a system of quadrics of projective dimension a — 1 and
bounded rank n — é, on T, X ~ C™. Le. Ifr is the rank of a generic quadric in
[IIx |, then 6, =n —r.

ii. [IL] If X is smooth and H € X}, , then |IIx- y| is a system of quadrics of
projective dimension 0, and constant rank n — 8, on Ty X* ~ C*—9++a-1 Ja If
7 is the rank of a quadric in |IIx+ y|, then 6, =n —r.

iii. [IL]If H € X* is a smooth point, then |II|x+ i can be recovered from I X,z
as z ranges over Yy. (The precise inversion formula is given below.)

iv. [IL]If H € X* is a smooth point, then |IT x+,H can be recovered from I1x ,
and F3x . where x € Yy is any smooth point. (The precise inversion formula is
given below.)

v. [L7] Let X™ C P be an open subset of a variety . If a > 2, X is not
contained in a hyperplane, and for general x € X there exists a linear space L1
osculating to order two at z, then L, C X. In particular, any variety having the
second fundamental form of a scroll is a scroll.

vi. [L7] Let X™ C P™"* be an analytic open subset of a variety having the
property that through a general point x € X, there exists a linear space L., of
dimension k, osculating to order two at x. Then there exists a linear subspace
M, C L., of dimension 2k — n, such that M, C X. In particular 0.(X) > 2k —n.

vii. [IL] If there exists z € Xy, such that Y, N X* C X* | then 6, > a — 1.

vill.[IL] If there exists € X such that Y, N X* C X}, and H € X*  such
that Yy N X C X, then dim X = dim X*.

7.3.vi may be considered as an infinitesimal version of 7.2.ix. 7.3.v is related
to, but different from 7.2.viii.
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7.4 Frames for X and X*.
Let

I°={(z,H) | 2 € Xem,H € X,,, T, X C H}

ol

X X

and let F* — 7° be the frame bundle of bases of V over (z,H) € Z° adapted to
the flag:

(7.4.1) 0oczcgd, cl.XCcH cV.

where gy € PS?T* X is the quadric corresponding to He N:X.
Let m: F* — PV and p: F* — PV* denote the projections. Then

X=n(F) X =pF)

and thus for (z, H) € I°, -
dim (X™) = rank p,(z, 1)

To describe F* using indices, let 1 < a,f<n,1<s,t,u<n—r,n—7r+1<
1,5,k <n,1 <k X <a-1. Require that

z= {60}
4., = {eo,es}
T.X = {eo,es, €} = {€0,a}

H = {eo,eatnir}

In particular H = [e"*t%] € PV*. The flag (7.4.1) in bases is
(7.4.2)
{eo} C {eo,es} C {eo,€s,€;} = {eo,ea} C {eo,ea,en+,\} C {€eo,€a;€nir,€nta} =V

Let B be the dual basis to eg. We see
dim (X*) = rank p, = rankde™"* — 1

where we consider e"** as a map, e"t* : F* — V*.
Let <, > denote the pairing V x V* — C, so < ea,e? >= 65. We calculate:

(7.4.3) 0=d<en e’ >=<wfec,e? >+ <es,de? >

which implies
< deB,es >= —wh

i.€e.

(7.4.4) de? = —wEeC.
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Write the pullback of the Maurer-Cartan form to F* as:

wy W W Wnia Wnia
Wi Wi W Wi Wi
(7.4.5) Q=|w w! ‘*’i+,\ Wl .
0wttt wihy ults
000 Wt W Wl
where w]t* = 0 because we have adapted such that {e,} = singloc (¢"+%).

We calculate:
(7.4.6) de™t* = —wpteer — witte™ ™ mod et

Note that wpt* = Z;’“wg with q,?;."“ invertible, and the forms w'{} are all inde-
pendent and independent of the semi-basic forms for 7. Letting r = rank (¢"**),
we conclude dim (X*) = r +a — 1, proving (7.3.i).

Observe that [¢°] € PN} X*, thus if z € X,,, and H € X, then

T,.X CH & TyX* Cua.
Since Z° surjects onto X, and X ,, we have proved the reflexivity theorem
(7.2.1). Moreover, now that we know (X*)* = X, we use the dual calculation to

above to conclude that
PN X" C X,

i.e., that there is a P% tangent to (q:[;‘g‘)z that is contained in X and this P% is

the set {y € X | T,X C H}, proving (7.2.i1).

7.4.7 Exercise. Give a proofs of the above results using a naive frame argument
as we did for varieties with degenerate Gauss maps by fixing H = [¢"**] and show-
ing the distribution §"*%|s;n, = {€o,€s} is integrable and the integral manifold Y
containing [eo] has ITy = 0.

We now calculate |IIx+ g|. First note that

0 =dwit*
_ _, nta k _ nita n4X
=Wy AWy =W, 1\ AW
_ (.nta, k n+A nta 7 n+A t n+a
(7.4.8) -(qkj Ws — q5 W) Awh —qg two Awliy

In order for the expression (7.4.8) to be zero, we must have
(749) qgt = Ov V,U,, Sat

because the forms w;‘ii, 1 < XA <a-—1 are all independent and independent of
the semi-basic forms wg. (This proves Bertini’s theorem for a system of quadrics,
namely that the singular locus of a generic quadric in a system of quadrics is

contained in the base locus of the system.)
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Using (4.4) we compute I1x+ g

(7.4.10)
d26n+a = ( n+a. k Ziiwn—}—/\)es 5+ wn+aw16760 mod THX*
(7.4.11) = (riw 3+ 2¢7 W rrwe® + q;l,j'“wowoe mod Ty X*

where to derive the second line we utilized the cubic form (4.3.1):

(7.4.12) ‘ rrbwh =0

(7.4.13) ridiw = —qints + g Wk

(7.4.11) proves (7.3.iil), (7.3.iv) and (7.3.ii); the first because Q. is the quadric
corresponding to €® and the second because all the other invariants appearing are
coeflicients either of I1x,, or F3x .. The first inversion formula in turn proves
[IL, 3.4] because the rank of the quadric corresponding to €° is of rank r, but as
one moves in Nj X™*, every conormal direction gets a chance to be €® (under the
hypothesis H N Xing = 0).

7.4.14 Remark. Note that (7.4.10), (7.4.11) imply that the dual variety of a
smooth variety has the property that an arbitrary smooth point of X* is “general”
to order two.

By a classical theorem (see the next section), it is not possible to have a system
of quadrics of constant rank if 7 is odd, which, combined with (7.3.ii) proves the
Landman parity theorem (7.2.iv).

[IL, 3.4] led us to study systems of quadrics of bounded and constant rank.
Our main result on systems of quadrics is the resolution of the constant even rank
problem:

7.4.15 Theorem [IL, 2.16]. If r is even then
max {dim (A) | A C S*C™ is of constant rank r} =m —r + 1.
[IL, 2.16] proves (7.2.iii) without using the Fulton-Hansen theorem but still

using the Lefschetz theorem as will be explained in §8.

The discussion above proves the rank restriction theorem (0.3.3.4) for the case
of a generic quadric, and the case for an arbitrary quadric follows from counting
how dimensions drop, see [L3].

We may state (7.3.iv) in the more precise form:

7.4.16 Inversion formula, [IL]. With respect to the basis {w:{3, Wi} of THX*,
and e’, e of Ny X*, we have

IIX*,Hz{Q0=< n+a), Qs=( n i
0 q qsle rs;I; .
where the blocking is (a — 1,7) X (a —1,7).

Regarding (7.4.16), we made the following observation:
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7.4.17 Observation. If § <a—1, ie. if 6. <n—2(a—1), then IIx+ y cannot
be of constant rank r unless the & + 1 matrices (gj;), (ri}®), ..., (r5®) are all
linearly independent.

Were the matrices dependent, there would be a quadric in I x- .1 whose lower
right 7 X r block was zero, but if § < a — 1, such a quadric could not have rank r.
Observation (7.4.17) motivated the following conjecture:

7.4.18 Conjecture. If X™ C P*** js a smooth variety with 6, > 0, then 0, >
n—2(a—1).

7.4.19 Corollary of Conjecture. If X™ C P™* is a smooth variety with a—1 <
%, then 6, = 0.

The motivation for the conjecture is that if 5, < n—2(a—1), there are genericity
conditions placed on the coefficients of F3 that appear to be incompatible with
the closed conditions arising from the degeneracy of X*.

For proofs of (7.2.vi-ix), see [E1,E2]. For proofs of (7.3.v,vi) see [L7].
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§8. SYSTEMS OF BOUNDED AND CONSTANT RANK

8.1 Examples in coordinates.
Notation: A refers to symmetric systems, B to linear systems, and C to skew

symmetric systems. In all cases [eo, ..., es] € P?. Consider
€o 0 0 €0 €1
B;. €1 ©o Cir. (—eo 0 e
€2 €1
0 € —€1 —€2 0
0 0 0 O e O 0 0 0 0 € €1
0 0 0 0 €1 €0 0 0 0 —€p 0 €2
A 0 0 0 0 e e A 0 0 0 —e; —ey O
10 0 0 0 0 e o —e —e 0 0 0
€p €1 €2 0 0 0 €o 0 —€2 0 0 0
0 €y €1 €2 0 0 €1 €2 0 0 0 0
0 0 0 0 0 0 0 €o €1 62\
0 0 0 0 0 —eg —€) 0 0 e3
0 0 0 0 —€o 0 —€2 0 —€3 0
0 0 0 0 —€1 —€2 0 —€3 0 0
A 0 0 —€p —€1 0 0 0 0 0 €4
m-1pg —e¢ 0 —e 0 0 0 0 —e O
0 —e1 =—er 0 0 0 0 —€4 0 0
€0 0 0 —€3 0 0 —€4 0 0 0
e7 0 —e O 0 —e O 0 0 0
\62 €3 0 0 €4 0 0 0 0 0
0 0 0 0 0 0 0 €0 €1 O\
0 0 0 0 0 0 e e 0 e
0 0 0 0 0 —€p €1 0 €2 €3
0 0 0 0 €0 €1 0 €2 €3 0
C 0 0 0. —€g 0 0 €y —€3 0 0
V-l 0 0 e —-e 0 0 e 0 0 O
0 —e —-e 0 —e —e3 O 0 0 O
—€p —€1 0 —€2 €3 0 0 0 0 0
—€1 0 —€2 —€3 0 0 0 0 0 0
0 —ey —e€3 0 0 0 0 0 0 0

0 C
AIV' <tCIV 6V>

8.2 Examples via standard constructions.

8.2.1 Doubled systems. Given a linear subspace B C CF®C' of constant rank
p, one can form a system of symmetric or skew, maps of rank 2p in S2C*** (or

A2C*+Y), namely
0 B 0 B
tB 0 -tB 0 /)"

We call such systems, doubled systems. Examples Ay, Arr, Arv are doubled sys-
tems.
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8.2.2 Systems of split type. A suitably generic subspace B C C'®CF of di-
mension at most [ —k—1 (k <) is a system of linear maps of constant rank k —1.
We will refer to the doublings of such systems as systems of split type. The name
will be explained below.

8.2.3 Systems of graded algebra type. Consider a vector space V and the
inclusion

(8.2.3.1) V — Hom (A*V, AF*1V)
v (E—~vAE)

We will call these systems, systems of graded algebra type. One can also use
Clifford multiplication in the construction.

One can double these systems to get symmetric or skew systems. However, it is
not always necessary to double: If dim V' = 2k+1, then dim A*V = dim A**'V and
we may identify them using a volume form. If k is even, the maps are symmetric,
and they are skew symmetric if k is odd (see [IL]). Examples By and Ay arise
in this way.

We can also consider systems of bounded rank via

APV — Hom (AFV, AFPV)

and one can take subsystems of these to obtain systems of constant rank.

8.2.4 A mystery. Example Cry is due to Westwick [W2]. I do not have a

geometric explanation for it, although it might be related to the Horroks-Mumford
bundle.

8.2.5 Examples arising from second fundamental forms of dual vari-
eties. The varieties Seg(P! x P"), G(2,5), S5 are self-dual so their second funda-
mental forms are of constant rank:

1| seq(pr xpry agy = L(P(C®y) UP(z®C™)) = I (P* LP" ")
\II|G,5),5 = I2(Seg(E*®V/E)) = L(Seg(P* x P?))
|II|§5,E = IZ(G(Qv E)) = I2(G(2’ 5))

From the pattern, one might guess that I>(Ss) might be of constant rank. This
is not the case, although it is nearly of constant rank. We have already seen that
it occurs as the system associated to the second fundamental form of OP? C PH
and that only two ranks are possible for the quadrics.

I discuss the problems of arbitrary linear systems and skew-symmetric systems
of constant rank as well as symmetric systems of constant rank because the three
are related.

8.3 Theorems on systems of constant and bounded rank. Let
I(r,m,n) = max {dim(A) | AC C"®C™ is of constant rank r}

(r,m,n) = max {dim(A) | A C C*®C™ is of bounded rank r}

(r,m,n) = max {dim(A) | AC C"®C™ is of rank bounded below by r}
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and similarly let ¢(r,m) (resp. A(r,m)) etc... denote the corresponding numbers
for symmetric (resp. skew symmetric) matrices.
i. [W] Suppose 2 <r <m <n. Then
1) l(r,m,n) <m+n-—2r+1
(2) i(r,m,n) =n—r+1ifn—r+1 does not divide (m —1)!/(r — 1)!
3) l(rr+1,2r—1)=r+1
(i (Classical, see [IL, 2.8))
(1) I(r,m,n) = (m —r)(n—r).
@) elr,m) = ("),
(3) A(r,m) = ("]7) (r even).
iii. (Classical, see [IL, 2.10])
(1) If0<r <m<nthenl(r,m,n) >n—r+1.
(2) Ifr is even then c(r,m) >m —r + 1.
(3) If r is even then A\(r,m) >m —r + 1.
iv. (Classical, see [IL, 2.15]) If r is odd then c(r,m) = 1.
v. [IL, 2.16] If r is even then c(r,m) =m —r + 1.

To prove 8.3.iii, take A" "t1 C C"®C™ generic to show iii.1, and double
symmetrically and skew-symmetrically to get 1ii.2 and iii.3.

I recently solved a conjecture of C. Pauly, characterizing the maximal linear
spaces of skew symmetric matrices of bounded rank:

8.3.1 Proposition. If L C A2C™ is of bounded rank m—1 and dimension ("’2—1),
then L = A*’C™~ 1L,

If the dimension of L is not maximal, then the conclusion does not necessarily
hold. :

8.4 Direct geometric methods. There is a natural geometric way to study sys-

tems of bounded and constant rank. Consider o, (Seg(P™~!xP"~1)), o, (v2 (P™~1)),
and 0z G(2,m). The problem of finding systems of bounded rank is to find linear

spaces on these varieties, the problem of finding constant rank systems is to find

linear spaces contained in the smooth locus of these varieties, and the problem of

finding systems with rank bounded below is to find linear spaces on the ambient

projective space avoiding these varieties. To prove 8.3.ii, calculate the dimensions

of these varieties and use Bezout’s theorem.

8.4.1 Problem. Explicitly identify the examples above as linear spaces on

or (v2(PT))\or-1(v2(PT))
05(G(2,T)\oz-1(G(2,T))
0,(Seg(P™ x P*))\a,_1(Seg(P™ x P™)).

For example, the doubling of a system B C UQW with dimU = k,dim W =
m—ktoV =U &W, must be contained in

Tio2+..0210k (02(PV)) N Tizz, 4 42 10m—k(v2(PV))

where z1,...,Zm is a basis of V such that U = {z1,...,zc}, W = {Zk41,..., Tm }.
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8.5 Vector bundle methods.

Let A C V*®W be a linear subspace. Over the projective space PA are the
vector bundles V®Op4, W®0Opa(1l) and a vector bundle map ¢ between them.
For [a] € PA, define

(8.5.1) Pla) - VROpA — WR0p4(1)
v a(v)®a*.

The image and kernel of ¢ are in general sheaves, but if A is a system of constant
rank, they are vector bundles. Let E := #(Opa ®V) denote the image vector
bundle in this case. If V* ~ W and the system is symmetric or skew, then one
deduces that £ ~ E*(1) by considering the dual sequence.

By Grothendiek’s theorem (a proof of which is already in [HP]), any vector
bundle E — P! splits as a direct sum of line bundles, E = O(a;) & ... & O(a,).
Given a vector bundle E — P™, we let the splitting type of E denote the sequence
of integers (ai,...,a,) on obtains by restricting E to a general P! c P™. We say
E is uniform if the sequence is independent of the P! ¢ P™.

E = ¢(Opa®V) is uniform of splitting type E [p1= 0% & 0% (1), because E is
globally generated and E ~ E*(1). This proves 8.3.iv. (8.3.iv. can also be proved
using a normal form, see [HP].)

8.5.2 Examples.

Ec,ok41) = TP?(—1)®*
Esecgp1xpny = split
Es, = A*(TP*(-1))

If A is the doubling of B, then E4 = Ep & E§(1). (This makes sense because
PA ~PB.)

If A is the doubling of a suitably generic B C CZ@C™ %, then E4 = 0% &
O% (1), justifying the terminology “split type”.

Relating the systems to dual varieties, we have PA = PN} X* = P%+ E =
N% /vy~ Ein observed that £ ~ E*(1), but he failed to observe that the identifi-
cation arises from a symmetric map, although it is implicit in his proof.

We actually proved a more general result than [IL, 2.16], namely:

8.5.3 Theorem [IL,1.2]. Let Z be a nonsingular simply connected projective
variety of dimension 0, E a rank m vector bundle on Z, and L a line bundle on Z.
Suppose that S*(E*) ® L is an ample vector bundle and that there is a constant
even rank r > 2 symmetric bundle map E — E*®@ L. Then § < m —r.

Idea of proof. Consider the case that Z C PS?V* is a variety of quadrics. Consider
the incidence correspondence

(8.5.4) I={(z,P)|z€ P} CSeg(PV x Z)CP(VRS*V*)

7 is the intersection of the Segre with a cubic hypersurface, and thus we can use
the Lefschetz theorem to conclude that h*(Z) = h*(P™ x Z) for i <m+d — 1. By
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the Kunneth formula, h*(P™ x Z) = @45k (P™)h*(Z). T can be considered as
a fibration @ — 7 — Z. Since 7;(Z) = 0 there is no monodromy and were the
fiber smooth, the Leray spectral sequence would say that we could still compute
the cohomology as if it were a product, i.e. h*(Z) = @i y.—:h (Q)h*(Z). If we had
the above results, we could conclude A" "2(Q) = 2 # 1 = A" "%(P™) and unless
6 < m — r there would be a contradiction.

We can easily modify things to make the fiber smooth, we let Z’ be the fiber
bundle over Z with fiber the smooth quadric obtained by quotienting @ by its
singular locus, and note that Z’ is contained in a projective bundle whose fibers are
P(V/Q:,sing). Now Leray applies to Z’ but unfortunately Lefshetz in its standard
form no longer applies when comparing Z’ and this vector bundle. Fortunately a
version of the Lefschetz theorem due to Lazarsfeld [Laz] does apply in this situation
and one obtains the result. O

8.5.5 Problem. Classify the boundary cases 6 =m — .

[IL,1.2] is an analogue for symmetric matrices of the following result of Lazars-
feld:

8.5.6 Theorem [Laz|. Let X be a projective variety of dimension m. Let E and
F be vector bundles on X of ranks e and f respectively. Suppose that E* ® F
is ample and that there is a constant rank r vector bundle map E — F. Then
m<e+ f—2r.

8.3.1.1 follows from (8.5.6). What follows is a simplified version of Westwick’s
proofs of 8.3.i.1 and 8.3.i.2, due to B. Ilic:

Proof of i.1 and the remainder of of i.2. let K denote the kernel bundle and N
the cokernel bundle of ¢. From the resulting exact sequences, ¢(K)c(E) = 1 and
c(E)c(N) = (14h)™. Thus, ¢(K)(1+h)* =¢(N). Ifn—r+1 < i < thenc;(N) =0
and looking at the coefficient of h* we get 37" (. j) c;(K) = 0 where we use the
convention that (’;) =01if 5 <0 or 7 > n. The coefficient matrix of this collection
of linear equations is M = ((ifj))ostm_r, n—rti<i<t- Hl=m+n—2r+1
then this is a square invertible matrix with determinant I—[?:—T 4!. Thus ko = 0
which is a contradiction since kg = 1. This proves i.1. Westwick refers to a
privately published manuscript of Muir and Metzler as a reference for evaluating
this determinant however one can also refer to e.g. [ACGH, pg. 93-95]. i.2 follows

directly from considering the linear equation with i =n—7+1. O

8.6 Systems of split type.
In this section we restrict attention to systems of quadrics, the modifications
for the skew case being more or less clear.

8.6.1 Theorem (Sato) [Sa]. Let E™ — P° be a uniform vector bundle. If § > r,
then E splits as a direct sum of line bundles. If § = r then either E splits or E is
isomorphic to TP® or TP%*.

The proof of Sato’s theorem relys on Tango’s result about maps of projective
spaces to Grassmanians (which follows from an elementary Chern class calculation)
and sheafy gymnastics.

We will call systems of quadrics whose associated vector bundle E splits, of
split type. '
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8.6.2 Conjecture. If E" — P° is a vector bundle arising from a system of
quadrics of constant rank v and if 6 > § + 1, then E splits as a direct sum of
line bundles.

Note that this is the best bound possible due to the system I2(G(2,5)). I see
no reason for the corresponding conjecture to be true in the skew case, as the
corresponding Lagrangian Grassmanian is much larger than the Spinor variety.

To study this conjecture let’s examine maps of projective spaces into spinor
varieties as follows (Chern classes are not enough):

Let A C PS*T* be a system of constant rank. Fix Qo € A. Consider P(4/A4,) =
P91 = F(Qy), the space of lines in A through Qo. There is a natural vector bundle
L over F(Qo), where

(8.6.3) Lig) = span ([, ¢jepyker (sQ + tQo) mod ker Q.

Since all pencils {Q, Qo} are of the same type, L is indeed a vector bundle and

not just a sheaf.
Note that L is a subbundle of the trivial bundle O" = O®(V/ker Qo). It is of
rank 7 (see [HP]). Label the resulting exact sequence:

(8.6.4) 0— L% — Of,) — A2 =0

By Bertini’s theorem, Lig) is a Qo-isotropic subspace of (V/ker Qo). Thus the
image of the map to the Grassmanian G(%, V/ker Qo) defined by L actually lies in
the Qo-spinor variety, Sq,, a connected component of {E € G(%, (V/ker Qo))|E C
Qo}. Label the resulting map

(8.6.5) | ¢: P~ — Sq,

(@~ Lig)

L =A% as L = ¢*(S), A = ¢*(Q) where S, Q denote the pullbacks of the
universal sub- and quotient bundles on the Grassmanian to S, and S = Q* when
pulled back to S. This proves the assertion rank L = . (The isomorphism is skew
symmetric because TgS ~ A’E.)

To prove the conjecture, one would need to show that if 7 < d — 1, then L is
trivial, i.e. ¢ maps to a point.

8.6.6 Proposition. If k > 1, there are no nonconstant maps P* — S or P* —
Grag such that ¢*(S) is a split vector bundle, where S denotes the universal
subbundle on the Grassmanian restricted to S (resp. Gpg).

Thus it would be sufficient to show that L must be uniform, because if L were
uniform in this range, it would have to be split.

Proof of proposition. Given a map ¢, one gets a sequence as (8.6.4). If L splits we
may write

(8.6.7) C(L) = II; 1(1 + ait) a; < 0
c(A) =112 ,(1 — a;t)

We have
I=c(L)e(A) =1 —{Zi(c:)?}t* +...

which implies o; = 0 for all ¢ and thus L is trivial. O

The conjecture would also follow from the following stronger conjececture:
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8.6.8 Conjecture. If p < ¢ then there are no nonconstant maps, PP — S,

For the equality case p = q there are linear examples. One might hope to prove
the conjecture by a degeneration argument.

8.7 Split type systems and dual varieties.

8.7.1 Proposition. If X™ C P"** js a linear fibration with f > 5 dimensional
fibers, then 0, >2f —n

8.7.2 Exercise. Prove the proposition. Hint, consider the base locus of II at a
general point.

It seems reasonable to conjecture that split type systems correspond to fibra-
tions with linear fibers. This cannot be quite correct, as if , = 1, then |[IIx. y|
is necessarily of split type.

Fix H = [e"+*]. Let N’ C N, X be (e"™*)* and let L = ¢[;/? C T. Consider
the linear map

T/L — L*®N’

v (w— II(v,w))

which is well defined, as since g™+ is generic, its singular locus is in the base locus
of the system.

8.7.3 Theorem [L10]. If IIx. y is of split type and (8.7.2) is injective, then X

is a linear fibration with ”Jg‘s* -dimensional fibers.

For the proof, see [L10]. Note that if 4. is large and X is smooth, then (8.7.2)
is automatically injective.

Note that Ein’s fibration theorem agrees with this conjecture. That is, in the
geometric situation, 7 = n — 0, (and d, = ), so Ein proves the variety must be
a fibration in the range |II|x~ y is known to be split type. If our conjecture is
correct, then combined with the other results, this would say that if 4, > ﬂ%,
then X must be a fibration.

The fibration conjecture combined with [RVdV] would imply that 4, > 22

implies a > %n +1.

8.8 “Dual” systems of quadrics.

This section contains some observations that should have geometric conse-
quences, although I have not yet been able to determine them.

Let T™, N* be vector spaces and let IT € S?T*®@N be a system of quadrics on
T parametrized by N of bounded rank r. Given a genericaw € N*, let W = W, :=
singloc IT*(c). Bertini’s theorem implies that W C Base|II| so for each 3 € N*,
the map

(8.8.1) I . T -1
descends to a well defined mapping

(8.8.2) Iy W — w+
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Le. each generic o € N* gives a tensor
(8.8.3) L, e (N*/{a}) W, W, *

which we consider as a system of linear forms L, on (N*/{a})@W,~+ parametrized
by We. Call this system the system induced by a.

What is remarkable is that the doubling of the induced system occurs naturally
in the geometric setting. More precisely, examining the inversion formula ([IL],
3.9), one has the following proposition:

8.8.4 Proposition. Let X™ C P"** be a variety with degenerate dual variety
X* of dimension r +a — 1, let x € X,,, let H € X be a hyperplane tangent
at z and let ny € N}X be a vector representing H. Then ITx+ g modulo the
contributions of 0I1x . is the doubling of the system induced by ny. (After one
makes identifications as in [IL], 3.9).

This places further, to my knowledge so far unstudied, restrictions on the second
fundamental forms of varieties with degenerate dual varieties. For example the
system induced by ny must be of bounded rank 5.

An interesting example is when X is self-dual, as in that case, for all o € N,
the doubling of the induced system is the original system. One might hope to
characterize all such systems of quadrics.
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§9. VARIETIES WITH DEGENERATE SECANT AND TANGENTIAL VARIETIES

9.1 Examples. The only examples of smooth varieties with degenerate secant
varietes that I am aware of essentially come from varieties of rank one matricies.
Its clear that the secant variety will be the set of rank less than or equal to two
matrices, which often has a secant defect. Consider the basic examples

i. Segres, P xP*, n>m, 6, =2if n > 2.

ii. Veroneses (symmetric matrices) v2(P™), 6, = 1 if n > 2.

iii. Grassmanians of two-planes (skew symmetric matrices) G(2,n), 6, = 4 if
n > 6.

iv. Severi varieties (A-Hermitian symmetric 3 x 3 matrices) AP?, §, = dimcA

There is no known example of a smooth variety with 4, > 8.
In what follows, I only mention secant or tangential varieties in a hypothesis,
with the corresponding statement for the other understood.

9.2 Theorems on Secant varieties.
For iii, iii, let X™ C P™"** be a smooth variety not contained in a hyperplane.
i. (Zak’s Theorem on Linear Normality, [Z]) If o(X) # P™"*, then a > 5 + 2.
ii. (Zak’s Theorem on Severi Varieties, [LV],[Z]) Ifa = %42, and 0 (X)) # P+,
then X is one of the four Severi varieties AP? C PH.
iii. (Superadditivity Theorem [Z],[Fan], [L5])

dimop(X)<n+ (k—1)(n+1—10,).

iv. ([Ro], [L5]) Let Y C PV be a variety and let X = vq(Y') C PS?V be the
Veronese re-embedding. If d > 2 or d = 2 and Y is not a linear subspace of PV,
then o(X) is nondegenerate.

v. [Z] Let M (n,d) denote the maximum ambient dimension of a smooth variey
of dimension n, secant defect §. Then M(n,d) < PL”Z%&_-E——Z) where € is the
remainder of the division of n by §.

vi. [LP] If X™ C P™*® is smooth and o(X) is degnerate, then dim~(7(X)) <
2(dim7(X) — dim X). (An equality is given below.)

The Severi varieties have many other special properties. For example, they clas-
sify the quadro-quadro Cremona transforms (see [ESB])and they turn up in several
areas of geometry to construct examples of varieties exhibiting extremal pathology
(isoparametric submanifolds [C, IIL.1 p1447], tight embeddings [Kuiper]).

The d > 2 case of iv. is due to Roberts, the d > 2 case to myself.

9.3 Definitions.

Let T be a vector space and let A C S?T* be a linear subspace such that for
all v € T there exists a g € PA such that the quadratic hypersurface q is singular
at [v]. We will say that such A has a tangential defect. Let Ann (v) = {g € PA |
[v] € gsing} and let n — 7 = dimsingloc (Ann (v)) = dim {v € T'| [v] € gsing Vg €
Ann (v)}. If dim Ann (v) = 1, we will say A has a critical tangential defect. We
will call 7, the tangential defect rank of A. If X C PV is an algebraic variety or a
complex submanifold, z € X is a general point and |ITx .| has a tangential defect
with tangential defect rank r,, we will say that X has tangential defect rank r.

If M c PV is a complex submanifold, define (M) to be the union of tangent
and secant lines to M and 7(M) to be the union of tangent lines to M .
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9.4 Theorems on the local differential geometry of complex manifolds
with degenerate secant and tangential manifolds.

i. (Terracini) [GH] [L5] Let M™ C PV be a complex manifold. Let x € M be a
general point and let v € T, M be a generic tangent vector. Then

dimt(M) = n+ dimI L, (T)
In particular, if a < n, then 6, = dimkerII,.

ii. [LP] Let M™ C PV be a complex manifold with tangential defect rank 7.
a. Ifdimo(M) < 2n+1 then 7(M) = o(M) if and only if dim~(7(M)) = 2r..

. =n+dimlII,(T) if dim~y(7(M)) = 2r,
b. dima(M) { >n+dmIL(T)+1 if dim’y(T(M))) > or,.
iii. (Rank restrictions for varieties with degenerate tangential varieties, [L5].)
Let X™ C P*** be a smooth variety with degenerate secant variety that is a
hypersurface. Let z € X be a general point. Then

rr>n—a+2.
iv. [GH] If 6, > 0, then dim~(7(M)) < dim (1(M)) — 1.
v. [LP] Let X™ C P™** be a smooth variety with degenerate tangential variety.
Then
dim~(7(X)) = 2r;.
Zak had previously bounded dim 7(X)*, see [Z]. His bound is implied by(9.4.iv).

9.4.1 Remarks. The infinitesimal calculation of dim o (M) has been plagued with
confusion. In [GH] a dimension count for dimo(M) is announced using a third
order invariant that turns out to be not well defined. In [L5] a dimension count is
announced using a well defined third order invariant. However a simple example,
with M the smooth points of an osculating variety to a curve, shows that dimo (M)
cannot be calculated from local data, by which I mean that it cannot be calculated
from a fixed finite number of derivatives at a general point (see [LP] for details).

9.4.2 Exercise. Show that the condition dim I1,(T) = a; is equivalent to show-
ing the image of the rational map
:PT --+ PN
] = [II(v,v)]
has an a;-dimensional image, or, in other words, that every secant d,-plane in PT
maps to a point.

vi. is a stronger rank restriction than for arbitrary varieties in two ways: first,
the rank is higher, and second, one looks not at generic quadrics, but at generic
quadrics in the subvariety of quadrics annhilating a II-generic vector. Note that
o0 +7r, < n.

To prove 9.4.iv, one studies the subvariety XA C X* of hyperplanes H such that
at some point of tangency, H annhilates a II-generic vector. One first concludes
that over a general point z € X, dim (XX NPN}X) > 7., and then shows that in
fact equality occurs.

Each H € X} is tangent to a 0.-dimensional subvariety Yy of X whose tangent
space at z is (qn )sing- In the case of the Severi varieties these subvarieties Yy are
quadric hypersurfaces in a linear space. They were exploited in Zak’s classification
Severi varieties.
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9.5 Proofs.

proof of 9.4.i. The dimension of 7(M) is the dimension of its tangent space at a
smooth point. We work on F!, which we consider as a bundle over the smooth
points of 7(M) by the mapping
(9.5.1) Pey 1 F* — 7(M)

g [61].
We may think of p., as the composition of the map e; : F* — V with the projection

V — PV, and thus
dim7(M) = rankde; — 1

Let 2 < p,0 <n. By (4.1.3.1),
(9.5.2) de1 = wieg + wle, + wie, mod {e;}

and dimTj.,)7(M) = { the number of independent 1-forms in (9.5.2) }. Over M,
{w{,w!} are independent so we only need to know the number of independent
one-forms among the w{’, but (up to twisting)

(9.5.3) Wt ®(eymodT) = Ilx 4 (e;,-).

where e; = e{®(e; mod e9) € T*. O

Proof of 9.4.1i. We consider two frames, one at a base point z = [eo], and another
at a point along a curve z(t). We assume z(0) = 0 and that 2/(0) = ¢; = v is a
generic vector. By the Terracini lemma (2.2),

dimo(M) =dim{eo,...,en,e0(t),...,e.(t)}
for most values of t. We now let ¢ tend to zero in order to calculate at z. Consider

the Taylor series

t2
eo(t) = eo +ter + — 5 € (0)+ 3 ef(0) +..
t2 t3
eq(t) = eq +te, (0) + = 5 e’ (0) + = 30 e’ (0)+...

where ’ denotes differentiation with respect to ¢t. Note that d—dtlt:oe = v Jde.
To calculate e,¥)(0) we work as in (4.4):
ea™(0) = e; I(d(e1 d...(e1 Ides) . ..).

Introduce index ranges 2 < A <aj,a1+1<e<n,n+a; +1< ¢ < N, where
=dim I1,(T), and the following adaptations:

ker I'T, = {ec}
T= {eo,e1,ex, €}
€1 _ld61 = €n+1

e; ddey = enqa
\%4

{eo, e1,€x,€c,€nt1,Entir, €0}
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Call the bundle of such adapted frames 7 : F™ — PV.
We slightly abuse notation by identifying eg € V with the corresponding ele-
ments of Tie,) M, Nieg) M. (E.g., we identify e, with eq = e,®ef.)

Our adaptations imply that II(e1,e1) = eny1, I (e, ex) = €ntn, and wi(e;) =
0.

In such a framing

€0,...,€n,
eo +tep + ¢ ten+12+ 3,61 (0) + 1 4, e’(0)+...,
dim o (M) = dim e1 +tenp1 + 5 1(0) + L€l (0) +.

e,\+ten+>\+ (O)—i—...,
ot 0+ 5el(0) +

We consider the contributions of e;(t),ex(t),ec(t) towards the dimension of
o(M):

el (0) = w:ﬂ(el)enH + wZii‘(el)enJr,\ + wf+1(el)e¢ mod {ey, ey, e}

ex(0) = wii(eents + Wit (e1)ensn +w? (e1)es mod {er,er, e}
e/(0) = 0 mod {ei, ez, ec}.

If these terms are zero, then dim o (M) = dim7(M) because all further terms in
the series will be zero as well.
Consider the map

(9.5.4) Fs, = F3(v,v,) : 7*(T) — 7n*(N/1I(v,T))

where N = N, M.

9.5.5 Proposition. With the notations of above,

= n+dimIL,(T) if F, =0

dimo (M) { >n+dimIL,(T)+1 if Fs, #0.

In frames, F3, = r‘flawg‘qu.

Proof of 9.5.5. Calculating, we obtain

_ [} A
rfwwg = —w;,,, mod {wi}

¢ B — ¢ A
ThgWo = —why mod {w7}

¢ B
T1epWo = 0

where w? (e1) = 0. These equations imply that the w?, , (e; ,w? . (e1) are zero iff
1 n+1 kA

F3,=0.
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wf:H(el) = wﬁ+/\(el) = 0 implies that dimo(M) = dim7(M). If wﬁH(el) #0
then dimo (M) > dim 7(M)+1. If w?, (e;) = 0 but w£+,\(61) # 0 for some n+ A,
(and therefore all if we choose the ex’s generically), we can use the ex(t) term to
recover a term ey and we need to see that we can recover the e, term from

t
eo(t) — -2-61(t) = (L - 1D (0) + (5 - 1)’ (0) + ...

This will be the case if r7* = w:ﬁ:i‘ (e1) # 0. We assumed that e; was F3-
generic, the basis e, was also generic and F3 # 0 so r{‘fﬁ* #0. 0O

Proofs of 9.4.iv, v. We will use the additional index ranges 2 S ik < r+1,
r+2 < s,t < a; where singloc (Ann (v)) = {e1, es,ec}. In particular, the A index
range is the union of the j and s ranges.

9.5.6 Exercise. Show that

I (x),[e] = (2q?kwéw’f — r'faﬁwgwg)%.

Now, r‘feﬂ = 0 implies (9.4.iv).

Since
T.ftﬁwg = —q;‘flwﬁﬂ - qgt+>‘w$+/\,
we obtain .
Tftl = —q?t“w;’f+1(61) - qgj>“*’i+>\(el>-

In particular, F3, = 0 implies rfﬂ = 0. We calculate

¢ B __ +1, ¢ +X, P ¢k
Tsip%0 ——qﬁj wn+1_qgj Wpa T 4pWs -

Thus if F53, =0

rfjl = qj’kwf(el).

Recall that r‘feﬁ = 0. Hence, if F3, = 0 we may write
IL (xye1) = (20503 (Wh — wE(ea)wd) = rijpwdws )es,

proving Fs, = 0 implies dimy(7(X)) = 2r-. On the other hand, if X is smooth,
then o(X) = 7(X) implies F3, =0. U ~
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§10. SYSTEMS OF QUADRICS WITH TANGENTIAL DEFECTS

The main result of the second step in my study of the infinitesimal geometry of
varieties with degenerate secant varieties is the following:

10.1 Theorem [L5]. Let T = C*, N = C* and let II € S*T*Q N be a
parametrized system of quadrics with a critical tangential defect.

Let v € T be a II-generic vector. Consider the mapping II, : T — N, defined
by II,(w) = II(v,w). Let P € |II| denote the unique quadric such that [v] €
Psz'ng~ Then

i. (Easy Bertini type lemma) ker I, C Pyip,.

ii. If {v,kerI1,} = Pigq, then there exists a canonical (possibly degenerate)
quadratic form @, on kerII,.

iii. Under the hypotheses of ii., T/Py;ng is a Cl(ker I1,,Q,) module.

In other words, in this case, each smooth point of o(X), produces a canonical
Cl(C®") action on a vector space of dimension at most n — 4.

10.1.1 Exercise. Show that (10.1.i) together with (9.4.i, iii) imply (9.2.i).

Note that assuming a critical tangential defect is no loss of generality because

valid under slightly milder hypotheses, see [L5].

10.2 Remark/question. In the cases @, exists, its rank is linearly bounded
from below, and thus in this situation, the tangential defect d, could grow at

best logrithimically with respect to dim X. This is because dimker T, = §, and

n > dim (T/(singloc (Ann (v))). Were Q, nondegnerate, then dim (7'/(singloc (Ann (v)))
would have to be on the order of 2°~~1

~ Systems of quadrics with a tangential defect satisfy a Bertini type theorem.
Recall that the classical Bertini theorem says that if A C S?T* is any system of
quadrics (or polynomials of any degree for that matter) and q € A is a general
element, then gsny C Base(A). We can’t hope for such a strong statment for
¢ = Ann (v), because v ¢ Base|II|. But in fact the next best thing is true.

For W C T, X, we let II(v, W)+ C |II] denote the subsystem of quadrics of
|I1| such that g € II(v, W)+ C |I1| iff g(v,w) =0 for all w € W.

10.3 Bertini type Lemma, [L5, 6.16]. Let I € S?T*®@ N be a system of
quadrics with a critical tangential defect. Let v € T be I1-generic, let q € |II| be
the annhilator of v. Then gsing C Base(I1(v, §sing)™t).

Note that (10.3) implies (10.1.1)

This Bertini type lemma implies that |I1|/I1(v, §sing)" can be considered as a
quadric hypersurface in Pgsing. We let Q. denote a corresponding quadratic form.

Note that there are large linear subspaces in Base |II| because any vector in the
base locus of Q, must be (as an element of PT) in the base locus of |II|. Moreover,
there is a positive dimensional variety of different Q,’s.

Fix v € T, II-generic. We have the subspaces ker /I, and singloc (Ann (v))
giving a flag in T

ker I, C {v,kerII,} C singloc (Ann (v)) C T
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For future reference, we record here the way these spaces will be referred to in
indices:

{ec} C{en e} C{ensec e} = {ec} C {er, ec,e5, 65} = {ea}

10.4 Proofs.

Proof of 10.1.1. Although (10.1.i) is implied by (10.3) we include a proof as it is
much simpler to prove than (10.3). Let Fx — X be the bundle of frames adapted
such that e; = v, ¢"** = Ann (v) and {e.} = ker I,.. Let e, be such that ey, e, e,
form a basis of 7., X. We need to show that q?/;r“ =0 for all ¢, 8. Consider

riswh = — g5 Wi
The forms w{ are independent and independent of the semi-basic forms w§ so both
r{‘gg‘ =0 and q";‘:“ =0 0O

Proof of 10.3. Let ]:'3( — X be the bundle of frames adapted such that e; = v
and ¢"™* = Ann (v).

Let [e;] denote a basis of T'/ql;fe, 2 < j, k,l < a — 1. Since we have a critical
defect, I, : T — N has rank a — 1 and rank (¢"**) = a — 2. We may normalize
further such that I1(v,v) = en41, i.e., that e; € Base {g"**,¢"*%}, and in fact
that II(e1,es) = enys,II(e1,€j) = enyj. (We continue our abuse of notation
using ep for eg.) Let Fx — X be the resulting frame bundle. We need to show
that gl;re C Base {g"**, g™t}

Computing we have

(10.4.1) rihiwl = —witt
(10.4.2) r’fj@“wg = —w;‘i;’ + q?,:r“w’f
(10.4.3) ribiwh = —wife

Now for the essential point: Since e; is generic and the e, were taken generically,
the forms w! are linearly independent and independent of the semi-basic forms
w?. Moreover, the matrix q;‘,j “ is invertible. From (10.4.1), (10.4.3) we see that

witt, Wit are semi-basic. (10.4.2) implies we can solve for w/ % in terms of the w¥

n+j
modulo the semi-basic forms, so the forms wﬁi;‘ are independent and independent
of the semi-basic forms. Now let £, 7 range over the indices {1,s, €}, i.e. the {ec}
form a basis of q;‘ifl;‘. We have

(10.4.4) 0=gg7wit? mod {wg}

(10.3) follows as the forms w;‘]:; are all independent and independent of the semi-
basic forms. 0O

To prove (10.1.ii), observe that ¢""!|xer 11, is well defined as

ker IT, C Base {¢"*%,...,q"t*}.



ALGEBRAIC GEOMETRY AND PROJECTIVE DIFFERENTIAL GEOMETRY 73

Proof of the Clifford algebra structure 10.1.11.
We continue with the same frame bundle. Consider

(10.14) riwl = - + 2w,
Tf;;’wg =wl + q:,j’w’f.

which imply

(10.15) Wit = 2w mod {wg}.

wl = g5 uk mod {ws}.
Computing
(10316) P = g+ a4 gk

and moding out by the semi-basic forms and using (10.15), we obtain,

(10.17) a0 (=g5t W) + g (— gt wi) = ¢ (2w]) mod {wg}.
Le., that
(10.18) Qo a5t + a5 qt = —2g75 6% Ve, 0,5,k d

Consider the map

(10.19) ker IT, — End(T/qsing)

€ € n+kK *
wee — wiqr " (e;)" ®ey

By (10.18), the fundamental lemma of Clifford algebras applies. [

To finish the proof of Zak’s theorem on Severi varieties, if a = 5 + 2 and the
rank restrictions are satisfied, there are only four possible dimensions, and in each
dimension IT is completely determined at a general point. Further computations
(the case of the Grassmanian is treated in §13) show that Fj, = 0 for all k and thus
the varieties must be Severi varieties. An interesting aspect of this computation
is that one does not need to use the infinitesimal connectedness theorem except in
the case of vy(P?). In all other cases, the structure of IT is so rigid that it implies
the vanishing of F3. On the other hand, in general, the partial vanishing of F
implied by the infinitesimal connectedness theorem appears to be inadequate to
conclude F3 = 0.
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§11. RECOGNIZING UNIRULED VARIETIES

I now prove (0.10.2) stated in the introduction, in fact a more general result,
but first we need a technical definition:

Fix z € X and let L denote an osculating linear space. Assume the Gauss
map of X is nondegenerate. Let m : F — X denote the frame bundle. If L
osculates at least to order k + 1, then when one restricts the differential invariants
F; € 7*(S'T*X®@N,X) to ST, L*®T,L*, one obtains maps (see below for the
construction):

(11.1.2) R;: ST, L*®N — T,L®T, L' mod Image R;_1.

If these maps all have maximal rank for 2 < j < m, we will say that the mazimal
rank condition holds through level m. The maximal rank condition is a pointwise
genericity condition on the subspace of the space of tensors for F, ..., F;, having
the property that there is a k-plane in their common base locus.

11.1.3 Theorem [L7] (Expectation Theorem). Let (n,a,k,m) be natural
numbers satisfying m > 3 and

a[(’“;”jzl) —k—1]> k(n— k).

Let X™ Cc A"t or X™ C P™+* be a open subset of a smooth (respectively analytic)
submanifold of an affine or projective space having the properties that at each
(resp. at a general) z € X there exists a k-dimensional linear space L., disjoint
from the fiber of the Gauss map, osculating to order m and such that the maximal
rank condition holds through level m — 1. Then L, is contained in X.

If F denotes the fiber of the Gauss map at z and dim L, N F' = )\, then the
same conclusion holds as above with k,n respectively replaced by k —A\,n— A. In
fact, if the Gauss map is degenerate, one can replace L by the span of L and F.

11.1.4 Theorem [L7]. Let X™ C C""* or X™ C CP™** be a open subset of a
complex analytic submanifold of an affine or projective space, and let x € X be a
general point. If n > 4 and a linear space L™2 osculates to order four at x, then

L"?cX.

11.1.5 Proposition [L7]. There exist analytic open subsets of varieties X" C
Amte and X™ C P™ having a line osculating to order 2=1 + 2 at every point
that are not ruled. In fact over C, every variety has this property.

Proof of 11.1.8. For notational simplicity, I only prove the case -y is nondegenerate.
Let (vy,...,vn) = (v¢,v,) denote a basis of T, X adapted such that T, L = {v¢}.
The index ranges are n + 1 < p,v <n+a, 1 <<k, k+1<p,0<n

By hypothesis Fj(ve,,...,v;) = 0 for all 1 < j < m. The coeflicients of
F;41 in this range are given by the formula ([L6],2.20) which simplifies under our
hypotheses to

S o " p_ 1 o
(11.1.6) Ter o0 = O&, 6Te g o Wer
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(11.1.6) expresses the forms w¢ in terms of the forms wj. Geometrically, say we
were in the case of a unique linear space L at each point. Then we would have a
map:

(11.1.7) 1:X -G

z L,

where G denotes the appropriate Grassmanian of k planes. In this case the forms
wg correspond to a spanning set of T7*/(X). In the general case one still has
such a map, only from the bundle over X whose fibers parametrize the space of
L’s through a point. We wish to show the mapping is constant along tangent
directions to L, that is the pullback of the forms wg are zero when restricted to
T.L.

In terms of tensors, for each element of S*T,L*®N we obtain a (possibly zero)
element of T, L' that is identified with an element of T,L*®T, LY. This is the
map (11.1.2).

We see that if these maps are all of largest possible rank, then at level i we will
have filled a

1 A1) (1) (1)

dimensional subspace of T, L* ®T, L*, which is of dimension (n — k)k.

Assuming the maximal rank condition holds through level m—1 and a[(kjn"lil) —
k—1] > k(n — k), we see that wy =0 mod {wg} Vo,n. Intuitively, by the remark
above, this finishes the proof. In details, by induction, for ¢ > m we have

&

(11.1.9) Tgly-~'7§i§i+1w0 * + Tgl ’,“’Eipwg = 651 :"'1€irg17...75i_10wgi’
which implies 7‘2‘1 i = 0 for all 4, and thus the linear space osculates to infinte
order. [J

To prove theorems (0.10.2), (11.1.4) and (11.1.5), one observes that if the max-
imal rank condition fails in these cases, the relevant invariants are forced to be
ZEro anyway.
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§12. QUADRICS CONTAINING X

In this section I derive the generalized Monge system mentioned in (0.6).

X is locally the intersection of quadrics if N} X is spanned by the differentials
of quadratic equations.

In order that N} be spanned by differentials of quadratic polynomials, it is
necessary that

(12.1.k) {dP.|P € ker FF;, x\} = N}

for all k. (We supress reference to the base point z in what follows.) For k < 2,
(12.1.k) automatically holds; for £k = 3 (12.1.3) will hold if and only if

(12.2) Ff =3al wiI1”

for some constants af, € C. Notice that if rﬁm = Gap,al, 49,5 in some frame,
it holds in any choice of frame (with different constants a{,ﬁ/), so the expression
(12.2) has intrinsic meaning. If (12.2) holds, then

(12.3) ker FF; x) = {z"z° — qgﬂm“xﬁ — affﬂx”zﬁ, zhz¥}.
Continuing in the same fashion, we uncover the following conditions:
(12.4) F{ =3al wyI1”

F} =dab WG FY +3b8 11V 117

F{ = 5al w] Fy +10b}, F 11"

where a¥,, bl = b, € C. Moreover, if there are no linear syzygies among the

quadrics in ||, as explained in §14, then Fz = 0 and thus N} is spanned by the

differentials of quadrics and these uadrics are smooth along X so they generate

I(X). In this case, we will call (12.4) the generalized Monge system for quadrics.
In summary:

12.5 Theorem [L6]. Let X C PV be a variety and x € X a general point.
Assume [11x, = 0 and that there are no linear syzygies in |I1|,. Then ’

(12.6)
dim {quadrics osculating to order three at z} < a + (a _2l— 1) -1
dim {quadrics osculating to order four at z} < a — 1.
If the generalized Monge system (12.4) holds, then
I, = kerlli‘]Fﬁz(),()z

Equality occurs in the first (respectively second) line of (12.6) if and only if the
first (resp. second) line of (12.4) holds at z. If the generalized Monge system does
not hold, then I'x is not generated by quadrics.

If one assumes appropriate genericity conditions, there exist analogous Monge
equations for I of order 2d + 1 in small codimension, see [L6].
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§13. RECOGNIZING HOMOGENEOUS VARIETIES

Before studying homogeneous varieties, let’s consider a general question:

If one fixes the dimension and codimension of X, there is an integer ko such that
if Fy, ..., Fy, satisfy some mild genericity hypotheses, then all Fy’s are determined
by the F»,..., Fy,’s and their derivatives. Since X is analytic, this means that
X is entirely determined by ko derivatives on any open set. For a hypersurface,
with n > 2, Jensen and Musso [JM] proved that ko = 3 (the case n = 2 is due to
Cartan and Fubini). For a plane curve, ko = 6. In general, the function ko(n,a)
appears to be unknown.

13.1 Problem. What, if any, values of a have ko(n,a) = 27 ko(n,a) = 37

Note that the Codazzi equation in Euclidean geometry implies that if ITI® = 0,
then k5 = 2.

13.2 Locally uniform varieties.
Now let’s specialize our question to the case of locally uniform varieties.

13.2.1 Definition. A variety X C PV is locally uniform to order k in the neigh-
borhood of a point z € X if there exists a local framing (section of F!) in which
the coefficients of F; are constant for 2 < [ < k.

For example, all hypersurfaces are locally uniform to order two in neighborhoods
of general points.

13.2.2 Remark. R. Bryant has proven that varieties that are locally uniform to
order oo are in fact locally homogeneous (personal communication).

13.2.3 Questions. How does (13.1) simplify for locally uniform varieties? Are
locally uniform varieties always rational (assuming a # 1 and perhaps some ad-
ditional conditions)? How can one characterize the varieties of codimension two
that are locally uniform?

13.2.4 Exercise. For any variety X C PV, we can always take a local framing
such that w§ = 0.

On any section of F' we have w/ = ak w8, w§ = bg wg for some functions
alo, b3, Thus, assuming dqg‘ﬂ =0, i.e. local uniformity to order two, we obtain
restrictions on F3. Namely, at each point, let

(13.2.3) AeNQN*'®T* BeT*®TeT*
be any elements, then
(13.2.4) F3e A-II+S(B-1I)

where A - II, B-II are the natural contractions and S is symmetrization in two
factors.

F; is symmetric in all three factors which places significant restrictions on the
admissible A’s and B’s.- Moreover, F3 can be modified by T* o IT+ < IT ,T*®
N, II > so one might hope that using all these conditions to show F3 must be zero
in certain situations, or at least severly limited.
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13.2.6 Problem. Give a clean cohomological description of the restrictions de-
scribed above.

In the example below, these conditions are not enough to conclude F3 = 0,
higher order considerations must be taken into account.

Further differentiation places systems of partial differential equations on the
functions a¥,,b3,, and it is these overdetermined systems of pde that finally allow
one to conclude F3 = 0 in the calculations below.

13.3 Homogeneous varieties.

Homogeneous varieties usually have rather special differential invariants. How-
ever, even when I is invariant under a large group, it may not determine X (e.g.
the adjoint varieties).

13.4 Idea of the proofs.

The idea of the proofs is as follows: given any variety X C PV, consider the
first order adapted frame bundle, 7 : Fx — X.

Write the pullback of the Maurer-Cartan form of GL(V) to F ! as

0 0
Wo Wﬁ w,,

e 3 e
Q=|w wg w,
0 wp wi

with index ranges 1 < o, 3 < dim X, dim X +1 < p,v < dimPV.
If X = G/P, one can reduce F! until it is isomorphic to G (with fiber isomorphic
to P). In that case one obtains the Maurer-Cartan form symbolically as:
wd wg 0
Qo= |ws wg=pr(h) wi=Az(wp)
0 wh=Aiw) wf=pn(H)

where H is a maximial semi-simple subgroup of P, T = T, X, N = N,X are
H-modules with representations pr, pn, and A, A2 are H-equivariant maps. The
zero in the upper right hand block may be interpreted as a “transversality” con-
dition that dN C {T + N} where this equation makes sense on F ! but not on X.
The dependence of the wS block on the forms wg indicates that if one changes the
choice of T, there is a corresponding change in choice of N mandated.

If X is a variety with the same second fundamental form as G/ P, by restricting
bases we can reduce F§ to a bundle F% where the pullback of the the Maurer-
Cartan form looks like:

wy w3 Wl
Q= | wy w§=PT(b)+w1 wy
0 wj wt = pn(h) +we

where w,, w, are linear combinations of the other forms appearing in the Maurer-
Cartan form. The proofs proceed by showing that there are reductions of F% to
G, in partiular that wy = wy = 0.
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In the case of the Severi varities, one has

b AT PN

sly(T) T ST
sly(A) +sl,(B) Ae B A®B
sh(E)+s4(U) EQU A’EQANU

5010(V) A+ (V) Vv

where A denotes one of the 16-dimensional spin representations.
In practice, the rigidity proofs proceed by showing the invariants Fy, € 7*(S*T* X®
NX) are zero for k > 2.

13.5 Proof of the Grassmanian case.

N = (7) — 1 because |[II|(M) =0.

Let V have basis {eg, €1, €25, €x}, where 3 < j,k,l < n+2, {a} = {17,25}.
Normalize such that IT = (wy’w3* — wikwd’)®ejr, j < k. Note that the forms
wit, w3k, wif, wit, wit,wy! are all independent and independent of the semi-basic
forms because they represent infinitesimal motions that preserve our normalization
of II. We have

(13.5.1) rdxans = 0 Vi j k, 1 distinct and V3
(13.5.2) Tgk)(m)ﬁ = 0 V41,3, k, distinct and V3

From now on, assume all indices are distinct. Using (13.5.1), (13.5.2), we have

(13.5.3)
(29) 1 ,.(45) 1, (i5) 2i (i) 25 (i) 21
T FTanm )’ F TN E)@0 F Tk e)@o’ (k@)@
— 29
= W(ik)

The right hand side of (13.5.3) is independent of i, so comparing with the same
expression using m instead of i, (here we use that n > 4) we obtain:

(13.5.4) 7‘83(11@)(11‘) =0

(13.5.5) 7”83(1@(”) = ngrzg(lk)(lj)
(13.5.6) 7”83(11«)(%) = "gﬁguk)(zi)
(13.5.7) ng(lk)(zj) = Tgmg(lk)(%)
(13.5.8) ng(w)(zl) = Tégnrig(lk)(Zl)'

Now

(i _ (25)

A’"(ﬁ;(lk)(zz) = g(kg)

A9 BCT B
(1) (1k)(25) = I(gk) T 9(1k):
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Using these equations and the corresponding equations with the role of 1 and 2

reversed, we reduce to frames where 7"((1 g(lk)m) =0 T(1zg(1k)(2g) =0, r(zg(%)(u)

0 ngg(zk)(u) = 0. In these frames, wy¥, wi¥ = 0 hence

(13.5.9) 0=r{D0awh = —23

and similarly with the role of 1 and 2 reversed. Thus the only nonzero terms left
. ij (ij .
in F3 are Télg(lj)(lk)’r(zji;&j)(zk)‘ Consider

) B o (i) 1k
(13.5.10) (1,)(1J)(h)5wo = 270 1) (1)L

Both sides of (13.5.10) must be zero because the forms wi¥ are all independent

and independent of the semi-basic forms. The analogous equation holds with 2’s.
Hence we see F5 = 0. B

To have a nonzero coefficient of Fyj, TSZJE,& in the lower indicies there must be
two 1’s and two 2’s, and at least two of the k-indices must be ¢ or j. Consider

%] 27 25
(13.5.11) M el = @i

(i3) 2 _ 92
(13.5.12) TIpaEE)o = Wil -

Since the right hand side of (13.5.11) is independent of i, we conclude (after switch-
ing the roles of i and j) that r((zlg(l ky(21)(25) 15 independent of , j (with neither k, 1
equal to i or j, but k = is possible). Using

(i3) 0
AT (1)@ 25) = R

we normalize all these terms to zero. This implies w’’ = 0 and thus T((ﬁ%( 1)(20)(25) =
0 for all 4, 7, distinct as well, and s1m11arly with the role of 1 and 2 reversed. Thus

ij) (9
the remaining nonzero terms in F} are r(h)(h)@])(zj), (19)(20) (17)(2))" Consider

(23) 1i (7) 1j

(13.5.13) ")) (k) @)1 W0 T (1) 25)(1k)@)(17) W0
(23) 2i (25) 2j
T TR EE)¥ T T () @) k)0 (25)Y0

0
= —Wy-

Since the right hand side of (13.5.13) is independent of ¢, j, we conclude wy; = 0
and hence the left hand side is zero as well. Now it is easy to see the rest of the
terms in F5 are zero and all higher forms are zero. O

13.5.14 Problem. Determine rigidity for the case G(2,5).
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§14. COMPLETE INTERSECTIONS

While the other pathologies we have so far studied could be calculated locally,
failing to be a complete intersection is a global issue. For example, at any z € Xsm,
X is locally a complete intersection. To attempt to recognize whether or not a
variety is a complete intersection from computable local information would be
futile. In this section I will discuss computable local conditions that insure X is a
complete intersection.

Let V = C****! and let X™ C PV = CP"** be a variety of dimension n. Let
Xsm denote the smooth points of X. Let Ix C S*V* denote the ideal of X and
let Ixg=1,=S 4V* N Ix denote the d-th graded piece of Ix. Fixing a smooth
point z € X, there is a distinguished subspace of I;, namely the hypersurfaces of
degree d that are singular at z, i.e. P € I; such that (dP), = 0, where dP denotes
the exterior derivative of the polynomial P.

The following definition is due to Lvovsky [Lv]:

14.1 Definition [L6]. Let X C PV be a variety. Let P € I, and let Z =
Zp C PV be the corresponding hypersurface. We will say Z trivially contains X
ifP=01'P +...I™P,, with P,,...,P,, € I;_, and I*,...,I™ € V*, and otherwise
that Z essentially contains X.

[L6, 1.1] stated in the introduction generalizes to the following statement:

14.2 Proposition [L6,1.6], A local characterization of complete intersec-
tions. Let X C PV be a variety. The following are equivalent:

1. X is a complete intersection.

2. Every hypersurface essentially containing X is smooth at all z € X,,,.

3. Let x € X,,. Every hypersurface essentially containing X is smooth at z.

(14.2) localises the study of complete intersections to a point, and further, fil-
ters the conormal bundle at that point to enable us to study one degree at a time.
Unfortunately, to determine if a hypersurface essentially contains X, one might
need to take an arbitrarily high number of derivatives. To have computable con-
ditions, we will work with osculating hypersurfaces rather than the hypersurfaces
containing X. The advantage will be that we will only need to study a fixed num-
ber of derivatives for each fixed degree of hypersurface; the disadvantage is that
we will only obtain sufficient conditions to be a complete intersection.

By [L4, 3.16, 3.17] stated in the introduction, we see that at best one could
prove there are no singular hypersurfaces of degree d osculating to order 2d + 2 at
x; and that the first restrictions one could hope for are at order d + 1.

Now specialize to the case d = 2.

Looking at (4.6.2), we see that ker FF 32( X),z 18 as small as possible if there are
no linear syzygies among the quadrics in ITx ;.

(If A C S?T*, a linear syzygy among the quadrics in A is a relation of the
form [; o @7 = 0, where [; € T* and Q7 € A. More invariantly, consider the
symmetrization map S : T*®S52T* — S*T* and its restriction to A, S |a: T*QA —
S3T*. Let Al =ker (S]4). Then Al' is the space of linear syzygies of A)

We have the following linear algebra lemma:
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14.3 Lemma [L4, 6.19]. Let AP C S?T* be an p-dimensional system of quadrics
on an n dimensional vector space. Say there is a linear syzygy

'Q+...+0PQ, =0
where both I € T* and Q; € A are independent sets of vectors. Then YQ € A,
rank Q < 2(p—1).

For the proof, see [L6]. If one now compares [L4, 6.19] with the rank restriction

theorem, one sees that if a < %H)H then there are no linear syzygies in |I1].
Combined with the generalized Monge system, we obtain:

14.4 Theorem [L6, 6.26]. Let X™ C P"*“ be a variety and z € X a general
point. Let b= dim Xg;ng. (Set b= —1 if X is smooth.) If a < %H)H then

1
dim {quadrics osculating to order three at z} < a + (a; ) -1

dim {quadrics osculating to order four at z} < a— 1.

Equality occurs in the first (respectively second) line of (14.5) if and only if the
generalized Monge system holds to order three (respectively four) at z. If the
generalized Monge system holds, then X is a complete intersection of the a — 1
dimensional family of quadrics osculating to order four.

[L4, 6.28] stated in the introduction follows immediately in the following stronger
form:

14.6 Corollary [L6, 6.28]. Let X™ C P™"** be a variety and z € X a general
point. Let b = dim Xy;ng. (Set b= —1if X is smooth.) If a < % then any
quadric osculating to order four at x is smooth at x and any quadric osculating to
order five at x contains X.

While the higher order Monge equations are more complicated to write down,
in principle they are no more difficult to understand. Thus the problem of deter-
mining the subbundle of the conormal bundle consisisting of trivially containing
hypersurfaces is in principle resolved. The dengeneracy conditions on the differen-
tial invariants of X, while more complicated to write down, is also, in principle re-
solved. The first condition corresponds to the existence of (excess) linear syzygies.
The first real problem in attempting to generalize (14.4) is that for polynomials
of higher degrees, the presence of linear syzygies is not a serious pathology, in
particular, it has little relation to the “cone locus” (maximal multiplicity locus) of
the polynomials. Moreover, while there are indications that there may be higher
order rank restriction theorems, none have yet been proven.
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