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TYPE III FACTORS AND INDEX THEORY

HIDEKI KOSAKI

1. INTRODUCTION

These notes are based on a series of lectures given at Seoul National University
in February of 1993. The Jones theory on index ([33]) has brought a revolutionary
change to the theory of operator algebras, and since the appearance of the theory
tremendous progress has been made for the subject matter and related subfactor
analysis by many authors. The paragroup theory due to Ocneanu ([54, 55]) and
classification results for subfactors due to Popa ([58, 59]) should be particularly men-
tioned. Details on the former can be found in Kawahigashi’s work [36]. In the lit-
erature on the index theory type I/ factors are mainly emphasized (although there
are many important exceptions). The main purpose here is to give an account on
the index theory and related topics with main emphasis on type II] factors. The
author believes (and hopes) that structure analysis of type I factors will be further
enriched by the index theory (and vice versa).

In §2 we recall main ingredients of the modular theory and structure analysis on
type 111 factors (see [63] for example). However, instead of going into technical
details we consider typical examples arising from ergodic theory. In §3, after briefly
explaining Jones’ work [33] of index for 11, factors, we describe a notion of the index
for a normal conditional expectation onto a subfactor ([38]), Longo’s approach to the
index theory ([51]), a notion of the minimal index due to Havet, Hiai, and Longo
([26, 27, 51]), and the important work [56] by Pimsner and Popa. The importance
of graphs (as well as other combinatorial invariants) derived from successive basic
extensions was recognized from the early stage of the index theory (see [16]), and in
84 those graphs are described for factor-subfactor pairs arises from group-subgroup
pairs (the approach based on bimodules can be found in [45]). In §5 inclusions of
type 11 factors are considered, and we begin by comparing the flows of weights

of two factors in question ([23, 39]). Classification results for certain subfactors of
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the Powers factor due to Loi and Popa are briefly explained ([48, 49, 60]). Factor-
subfactor pairs arising from relation-subrelation pairs or factor maps via the Krieger
construction (see [13, 46]) is very useful to describe typical inclusions of type I11
factors ([25]), and brief explanation on related topics is also given. The sector theory
originally occurred in [9], and its usefulness for the index theory was first noticed by
Longo ([51]). It is closely related to bimodule theory whose relevance in subfactor
analysis was first noticed by Ocneanu. The importance of this technique was further
confirmed in a series of papers by Izumi. Basic facts on the sector theory as well
as typical applications are explained in §6 (see [29, 30, 31, 32, 52, 53] for further
applications). For the reader’s convenience basic facts on conditional expectations
and operator valued weights used here are summarized in Appendix.

The author thanks Professor Sa Ge Lee and all the members of the operator algebra
seminar at Seoul National University for giving him the opportunity to give lectures.
The author is also indebted to Professor Jeong Hee Hong for typing a part of the
manuscript and various useful comments on materials. The main emphasis here being
type I1I factors, the author was forced to omit many important topics on subfactor
analysis in the type I]; setting. Also very recent works are not listed in our references.
Quite a complete updated list of references on the index theory and related topics
(especially those on type II; factors) can be found in the recent textbook [11].
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2. STRUCTURE OF TYPE [/l FACTORS

A von Neumann algebra M (C B(H)) means a strongly closed *-algebra of op-
erators on a Hilbert space H containing the identity operator /. A von Neumann
algebra M is called a factor if Z(M) = M NM' = CI, where

={z € B(H)|yz = zy, y € M} (commutant).

The reduction theory says that every von Neumann algebra (with separable predual)

can be expressed as the direct integral (over the center) of factors

M = / M(w
Factors are classified into the following types:

type I, factor (i.e., M,(C)) forn=1,2,---,

type I, factor (i.e., B(H)),

type I1; factor,

type Il factor (= (type II; factor) ® B(H)),
~ type I factor. o

A trace tr : M, — Ry U {oo} is a linear functional with the tracial property
tr(zz*) = tr(z*z) for £ € M. The pair (M,,tr) can be considered as a “non-
commutative” integral, and integration theory without Fatou’s lemma is meaningless.
Therefore, we always assume the normality of tr, i.e., tr is lower semi-continuous
with respect to the o-weak topology. It is said to be faithful when the condition
tr(z) = 0 (z € M,) implies z = 0. Finally, it is said to be semi-finite if {z €
My tr(z) < oo} is o-weakly dense in M. R g ~
Let M be a factor. It is a type Il; factor if there exists a (unique) trace tr
with ¢r(I) = 1 (the normalized trace). In this case, we have tr(M,) = [0,1]; i
the continuous dimensions for the projection lattice M,, and the trace ir can be
extended to a linear functional tr : M — C with tr(zy) = tr(yz). The factor M
is of type Il if there exists a (semi-finite) trace ¢r with tr(I) = co. Here we have
tr(M,) = [0,00]. As in a type II; case one can extend a trace to a linear functional
on M, but in.this case the domain of tr is just a dense part in M. For example,
let M be the abelian von Neumann algebra L°(X, u) with u(X) = oo (although it
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is not a factor). The trace tr = [, -du defined on L*°(X, x), is an infinite trace
- (tr(I) = 00), and it is linearly extended to L!(X, u) N L>®(X, u).

Detailed analysis on type II factors can be carried out by making use of traces
while traces are not available for type III factors. For analysis on the latter the
modular theory is required.

2.1. Modular Theory and Structure of Type III Factors. After recalling the
modular theory (the Tomita-Takesaki theory), we will briefly explain main ingredients
of the structure analysis of type III factors. Most works were done in the 70’s, and
details (and quite complete references) can be found in standard textbooks such as
[63].

Let M be a von Neumann algebra with a faithful state (or weight) ¢ € M. By the
GNS construction, we may and do assume that there exists a cyclic and separating
vector £ € H with (z) = we(z) = (£, €). Then

Sp 1 €, € ME, = 2*6, € M,

1/2

is a conjugate-linear closable operator. Let 5'9, = JAY” be the polar decomposition

of the closure. We have
A, = S;S’g,,
JA,J = | A; L

and J is a unitary involution with J2 = I. (When £ is a trace vector, S, is isometric
so that we have A, = I.) The fundamental theorem of the modular theory states

JMJI =M and AJMA;* =M (forteR).

Hence {0f = AdA¥|m}ier is a one-parameter group of automorphisms of M, called
the modular automorphism group (associated with ¢). The modular automorphism
group satisfies the following condition: For z,y € M we set f(t) (= fey(®) =
¢(zof(y)). Then, f extends to a bounded continuous function on the strip —1 <
Sz < 0 analytic in the interior satisfying f(—i +t) = (0¥ (y)z). This condition is
known as the KMS condition, and it actually characterizes the modular automor-

phism group {0 }scr.

Example 2.1. Let H = M,(C) equipped with the inner product (z,y) = Tr(y*z).
Then M = M,(C) acts on H = M,(C) as left multiplications. A positive linear
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functional on M is of the form ¢(z) = Tr(hyz) with a unique density matrix hy, > 0.
When  is faithful, h, is invertible and § = hi,/ %2 ¢ H is a cyclic and separating vector.

Then we compute

(a€,€) = (hif? BY?) = Tr((hf?) ehy?) = Tr(hyz) = (),

e 1
showing ¢ = we. It is an easy (and amusing) exercise to check

Az = hyzhy,', Jr=2z", oy) = hiyh,*

(for a vector z € H = M,(C) and for an operator y € M = M,(C)). Note that the
function f (= fzy) af)pearing in the KMS condition becomes f(t) = Tr(zhyh'~%).

Recall that C;(H), the trace class operators, is the predual B(H). and B(H) acts
on the Hilbert space Cy(H) = H ® H of Hilbert-Schmidt class operators as left
multiplications (or as z® 1 in the picture H ® H). The reader is strongly encouraged
to do the above game for M = B(H).

Definition 2.2. The crossed product M = M x4 R is the von Neumann algebra
acting on the Hilbert space K = H ® L*(R) = L*(R,H) generated by the operators
Toe(z) (x € M) and At) (t € R) defined by '

(moe (2)€)(5) = 0Z,(2)€(5),
(A®)E)(s) = &(s — 1)

Note that £ € M — m,e(z) is a normal representation, and we have the covari-
‘ance relation A(t)7ye(2)A(t)* = T,v(0f (z)), which shows that the x-algebra (alge-
braically) generated by the two kinds of generators is exactly {D i_; Tow(s)A(ti)}.
By passing to the closure, we can imagine that any r € M can be expressed as
z = [ mee(x(t))A(t)dt (and it is obvious that elements of this form form a dense
subalgebra). Although the above expression can be justified for any = by making use
of M-valued distributions, we do not need it.

On the other hand, the crossed product M x, G by a discrete group G (relative to
an action a : G — AutM) is much easier to handle. In fact, any € M x,G can be
written as £ = ) g Ta(74)Ag. But the reader is still warned that the convergence
here is in the L?-sense (not in the strong operator topology, etc.). If we further
assume that G is a finite group, there is no subtle problem on convergence at all. For

example, let us assume that « is an automofphism of period n (i.e. @™ = Id). Then,
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it gives rise to a Z,-action on M. Since C=H Q@ *(Z,) =H&--- O H, T(z) and

n—times

A(g) are indeed B(H)-valued n x n matrices

To(2) = ) ag1(z) @ egg Mg) = > I® eqnn,

g€Z, ‘ heZ,

where {eg,q}g,qcz, denote the obvious matrix units. In this case it is easy to see
that the crossed product (= {3} ¢z Ta(2zg)As}) consists precise of M-valued n X n
matrices [Zg,q]sgez, satisfying the condition a(zgy) = Thgpy

Let us now go back to M= M Moo R. Identifying M with 7,+(M), we always
regard M as a subalgebra in M x,» R and hence we write z = 2 z(t)A(t)dt € M
(i-e., we suppress 7). A crucial fact is that the crossed product M= M Xoe R is
a von-Neumann algebra of type I1. In fact, it admits the natural (infinite) trace tr
given (at least formally) by -

W([ZﬂﬂMﬂﬁ)éw@Gﬂ)=¢(Ljﬂﬂ€ZQ,

where Z(t) = 5= [* z(s)e™ds. The reason behind the fact that the above is a trace

is the KMS condition.
We define the unitary operator U; (s € R) by

U)(®) = (1), |
It is plain to observe [mye(z),U;] = 0 and UA(t)UF = e~*A(t). Therefore, AdU,

leaves M (= M X4 R) invariant, and {Ad U] %i}ser gives rise to a one-parameter
automorphism group of M. This is denoted by {0s}ser and called the dual action
(of {of'}ter). From the construction, the dual action satisfies

05(z) =z (€M), O,(A() =e " A(t).

The construction so far depends on the choice of ¢, but the Connes Radon-Nikodym
theorem guarantees that (up to equivalence) the pair (H ,05) does not depend on the
choice of ¢, and hence it is a very canonical object (attached to M). Very important
properties are: '

(i) the fixed-point subalgebra (Mv)" under the dual action is exactly M,

(i) the dual action is centrally ergodic (as long as M is a factor), i.e., {6;] Z(X1) JseR

—_~

is an ergodic action on Z(M).



For z = [ z(t)X(t)dt € M, we see

bua) = [ aond,
p:@)(r):% / ® eisg()emidt = 5(r - 9).

. With these, we conclude .

tro6,(z) = ( /:(Z(Z) ) = ¢< /_:é(r—s)e-rdr> 2.1)

= ( T)e (’J’s)dr) = e °tr(x).

[e e}

Thus, we have seen the trace-scaling property of the dual action, i.e., tr o0, = e~%tr.

Consider z = [%° z(t)A(t)dt € M with z(-) regular enough in the sense that the
integral ff° o 0s(x)ds cbnverges. Then, this integral is a 6-invariant element and hence
falls into the fixed-point subalgebfa M. Therefore, the map

T € A7—» P (/ooooes(x)ds) |

gives rise to a (normal semi-finite faithful) weight on M. This is called the dual
weight of ¢ and denoted by ¢. We point out that the value ¢(z) is (formally) given
by | |
o . _ ,
7 (/ (e7*z(t)A(t)dt) ds) = o(z(0)).
-0
Also note that the invariance ¢ o 8, = ¢ is obvious from the definition.

Since {A(t)}ier is a one-paraméter group of unitaries, the Stone theorem guaran-
tees A(t) = e'tHo with a self-adjoint operator Hy. We set H = e (> 0) so that
At) = H*. This turns out to be a Radon-Nikodym derivative of ¢ relative to the
canonical trace tr with the scaling property, i.e., ¢ - tr(H-). The following (for-
mal) arguments clarify the meaning of the factor e~* introduced to define tr: Let

‘z= [ xz(t)\(t)dt be as usual, and we note

zA(a) = /oo (At + a)dt = /oo a:(t — a)A(t)dt.

—o0 -0
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Considering the both sides as functions of , we differentiate them at o = 0 and then
divide the results by 7. In this way one gets y = zH, = J. ;° y(t)A(t)dt with

1 d 1d| [® : [ .
y(t) == —| z(t-a)==— / #(s)e =g = / sZ(s)e *tds,
a=0 v —oco —0o0

1 da 1 do

a=0
showing §(t) = t&(t). Since H = efo, we have z = zH = [ z(t)A(t)dt with
2(t) = e'z(t). Now the trace value is computed by

tr(zH) = ( /_ ” é(t)etdt)' . ( /_ ” a“c(t)dt) = (2(0)) = 3(x).

(o¢] o0

Note that ¢ = tr(H-) implies ; ,
of = AdH™ = AdA(¢), (2.2)

which is of course inner.

The preceding arguments are very formal in the sense that we did not worry about
convergence, etc. (although everything can be justified based on theories of weights,
left Hilbert algebras, and so on). However, in the next §2.2 the objects appeared so
far will be dealt with in a very concrete form. Indeed they are written in terms of
measure-theoretic data. We also point out that the map

zE HJr — / 0s(z)ds € M,

is a typical (and probably the most important) example of an operator valued weight
(see Appendix 4). Note that the convergence of the integral is not guaranteed here
so that the value “+00” could be possible. (For example, when z € M = '(.//\/iv)o,
we get [*° 0,(z)ds = (+00) x x.) Therefore, more precisely we have to consider
the extended positive part M, as the “range” of an operator valued weight (see
Appendix 2).

—_—

Definition 2.3. (Connés-Takesaki, [8]) The above-mentioned pair (Z(M), 6] ().
is called the (smooth) flow of weights of M.

—~

Note Z(M) = L*°(X) and 6, z(#1) 1s realized as a point-map F;. Therefore, in
what follows (X, {F}scr) will be referred to as the flow of weights. The flow {Fs}ser
is a (non-singular) ergodic action on X as was pointed out, and it is an extremely
important invariant for the study of type III factors.

In his thesis A. Connes classified type II] factors further into type 11y, I11, (0 <
A < 1) and 11, factors. In terms of flows of weights, this finer classification means
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(i) M is of type I, if and only if X is a singleton (i.e., M is a type I factor),
(i) M is of type III (0 < X < 1) if and only if {Fs}ser has period —log A,
(ili) Otherwise M is of type I11,. '

Theorem 2.4. (Takesaki Duality) The crossed product (‘Mxog R) xg R relative to
the dual action is isomorphic to the tensor product M ® B(L*(R)).

Since M 2 M ® B(L3(R)) for type III factors, the duality shows that M admits

the continuous decomposition
M= Mv Xo R

with the type I/ algebra M and a (centrally ergodic) trace-scaling (tr o, = e™*tr)
action {6;}scr: - g

It is also possible to express a type I1I, (0 < A < 1) factor as a discrete crossed
product. A type III, (0 < A < 1) factor can be written as M = My xg, Z with
a type Il factor My and tr o g = Atr. In the type Il case, such a discrete
‘decomposition is M = My xg, Z with a von Neumann algebra My of type Il
and tr o 0y = tr(e™-) with f € Z(Mg)* = L®(Xo)*. In this picture, the flow of
weights of M is the one built under the ceiling function f together with the base

transformation (X, F), where F is a point-map realization of 6o|z(at)-

2.2. Krieger Construction and Examples of Factors. Murray and von Neu-
mann used the group-measure-space construction to produce many non-trivial (i.e.,
non-type I) factors. Here, we will explain the Krieger construction. The difference
here is: the former requires the freeness and the ergodicity to get a factor while
the freeness is not needed for the latter. The description presented here is due to
Feldman-Moore ([13]), and it is slightly different from the original description in [46].

Let (X, ) be a Lebesgue space, G a countable\g‘roup of non-singular transforma-
tions acting (ergodically) on X. We introduce an equivalence relation ~ on X as

follows:
T~y yzgxfors'omégeG.
‘Denote the graph of ~ by |
Ro ={(z,y) € X x X; .~ y} (= Ugec{(z, 92); = € X}).
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Since the graph {(z, gz); = € X} of each z — gz is Borel in X x X (equipped with
the usual product structure), the countability of G guarantees that so is Re. Hence,
(by restricting the structure) we see that R itself is a Lebesgue space. Let y; be the
left counting measure on R¢g defined by

w(C) = / #(C N1 (W) du(y)

for each C' € Rg. Here, m : (z,y) € Rg — y € X is the left projection, and the
above definition justifies the symbolic notation du,(z,y) = du(y). We have

/ f@,y)du(z, y) = /Zf:cydu

Y~z
We can also define the right counting measure x, (du,(z,y) = du(z)) on R analo-
gously (by using the right projection ). Then, both of dy;, du, are o-finite measures
(if p is) on R, and they are equivalent in the sense of absolute continuity. Let § = dﬂ
(the module of the equivalence relation R¢) be the Radon-Nikodym derivative. Note
dur(z,y) _ du(z)
o(z,y = ..
(®,9) = du(z,y)  du(y)

(2.3)

from which we see

o(z,y) = 6(x, 2)(2,y)
for (z,2),(2,y) € Re (and hence (z,y) € Rg). Note that for (z,y) € R with
z=g"'y (g € G) we have ‘

3avy) = g~y = L

showing that the module is the Jacobian (relative to the measure u) of the non-
singular transformation z — g¢z. In particular, we have § (z,y) = 1 in the case that
G is measure preserving. - ,

Let f,g € Rg be nice functions on R¢ (bounded and “very small” supports). We
define the convolution product by

(f*9)(zy) =Y f(z,2)g(2,y),

and we set Ly(g) = f * g by regarding g as an element in L?*(Rg, dy). Then Ly (the
left convolution operator) is a bounded operator, and we consider the von Neumann
algebra W*(R¢) (acting on L*(Rg, dw;)) generated by L;’s.
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We can prove that an arbitrary element in W*(R¢) is of the form Ly, i.e.,

(Ls6)(z,y) =Y fe z)f(z y) (for € € L*(Ra, du)).

T
The precise meaning here is that the right side is absolutely convergent for a.e.

(z,y) € R and the sum is equal to the left side. Moreover, we have
LiLg = Ljvg, and (Ly)" = Ly~ with f*(z,y) = f(z,y).
For example we compute

0 f &) = / > 6w, 0) [+ &)@ v)duly)

_ /zgla;y)(z:f*xz&zy)>dﬂ()
= /Egl(xy)(Zfzxézzy)du()
- /Z(Zfzx&wy)fz(zy)dﬂ(y)

= /Z F*&)(2,9)&(zy)duly) = (f *&,&).

z~y
We now assume that Suppf C D = {(z,z); = € X}, the diagonal. We set

_ | F(z) whenz =y,
f(z,y) = { 0  otherwise.

For another f’ (supported on D) corresponding to F” we compute

(f * )@, 2) =Y f(2,2)f'(2,3) = F(2)F'(a)

zZ~T

and (f * f')(z,y) = 0 when z # y. This computation means
W*(Ra) 2 {Ly € W"(Ra); Suppf C D} = L*(X, )

with the correspondence f <« F. The abelian algebra {L; € W*(R¢); Suppf C
D} (=2 L*°(X)) will be denoted by A.

Lemma 2.5. The abelian subalgebra A is a MASA (mazimal abelian subalgebra) in
W*(Rg), i.e., W (Rg)N A = A.
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Proof. Since A is abelian, it is enough to show W*(Rg)NA' C A. Assume z = L; €
W*(R¢) commutes with L,, where g is supported on D and corresponding to G as

above. We notice f(z,y)G(y) = (f * 9)(z,y) = (9 * f)(z,y) = G(2)f(z,y). Since g
(and hence G) is arbitrary, we must have f(z,y) =0 if z # y. O

We point out that the equality f(z,y)G(y) = G(z)f(z,y) in the above proof is
actually for a.e. (z,y) € Rg. Therefore, to conclude f(z,y) = 0 for a.e. (z,y) with
x # y, one is not allowed to use uncountably many G’s. But we have a countable
family of separating subsets here, which does the job. This kind of arguments on
measurability, etc. is everywhere in the theory.

Let T'(g) = {(z,92) : £ € X} C Rg be the graph of g (and xr(y denotes its
characteristic function). For a function f on Rg we compute

(xr) * N)(@,9) = D xrie) (€ 2)f(2,9) = f(gz,y)

T

so that the convolution operator. Ly, . (in W*(R¢)) is a unitary because of

lxre) * fII* = / > £ (g7, ) Pdu(y) / > 1f(gz,v)Pdu(y) = ||fI1%

Y Y

It is straight-forward to check
XT(g) = Xr(g=1) 80d  Xr(gr) * XI(g2) = XT(g102)-
Theorem 2.6. When the action of G on X is ergodic, W*(Rg)‘is a factor.

Proof. If z € W*(Rg) N W*(Rg)', then it belongs to W*(Rg) N A’ = A by Lemma
2.5. Therefore, x is of the form Ly with a function f supported on D (corresponding
to F'). Notice

(xr) * )(@.92) = > xr(e)(® 2)f(2,97) = Xr)(z, 92)f(gz, 9z) = F(ga),

zZ~T

(f *xr@) (@ 97) = > f(z,2)xr)(2,98) = f(z,z) = F(z).

T

Since z must commute with all L, ’s, the above commutation shows the invariance
F(gx) = F(z). Since G acts ergodically, F'(z) must be a constant function. O

In the rest we assume p(X) = 1 and set & = xp. Note

6ol = |3 beote, ) Pauty) = u(x) =1

T~y
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so that & is a unit vector (in L?(Rg; 1)) Since L& = f, it is a cyclic and separating
vector for W*(R¢g). Let ¢ = wg, be the corresponding vector state on W*(R¢). The
value of this state is computed by

o(Lg) = (Lgo, &) = (f*xp,xp) = (f,xD)

= /fony(wydu /f du(w

Y~z

We set
JE—

(J€)(z,y) = é(z,y)2¢(y, 2),
and note that J is a unitary involution. In fact, we compute

el = [ S IeEnPdu)

T~y

-/ S 62, )l ) Pdiy)

a:~y

_ / 5(2, ) €y, ) s (v, )
Rg

B /n €@y, 2)*dmy, z) = |I€]I*.

Here, the third equality follows from %%(y, z) = 6(y,x) = 8(z,y) ! (see (2.3)). Let
A be the multiplication operatorv defined by the module 6. Then, A and J are the
modular operator (i.e., A,) and the modular conjugation respectively. In fact, we

gompute _

- (JAEf)(z,y) = (z,y)? (A2f)(y,x) 5(z,9)28(y,2)2 [y, %) = f(y, ).

This formal argument is a bit dangerous, and actually more careful arguments (with

consideration of a core for the modular operator A, etc.) are needed. However, the
argument is quite standard, and the above description of A shows

O’f(Lf) = Léit‘f,
where 6% f denotes the point-wise product (i.e, (6°f)(z,y) = é(z,y)" f(z,y)).

Example 2.7. Let X = {1,2,--- ,n} with the counting measure. When G = &,,
the symmetric group, acts on X in the usual way, the action is transitive and hence
Re = X2. We also note that g is the counting measure on X? = {1,2,--- ,n}?. The
Hilbert space L?(Rg, ) in this case can be identified with M, (C) equipped with
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the Hilbert-Schmidt norm via f < [f(4, 5)]; ;. We observe W* (Re) = M,(C), acting
on L*(Rg, w) = M,(C) as left multiplications.

It is worth pointing out that what is relevant for the structure of W*(Rg) is the
graph R¢ (i.e., the orbits) rather than the G-action itself. For instance in the above
(somewhat simple-minded) example let us consider just the action of the subgroup
Z,, generated by the n-cycle (1,2,--- ,n). The subgroup also acts transitively (Rg =
Rz, = X?), and hence the resulting factor is the same M, (C). Therefore, we will
often write R instead of Rg. Our R = R is a most typical measured groupoid
([4], see also [20, 21]), i.e., a principal measured groupoid. Furthermore, note that
each orbit R, = {y € X; z ~ y} = Gz is countable. It is known that an (abstract)
principal measured groupoid with countable orbits is always of the form R for some
countable group G (and its action).

The case when the action of G is ergodic and (X, y) is non-atomic is important,
and in this case W*(R¢) is a non-type I factor. When G admits an invariant measure
1, then p(Ly) = [, f(z,z)du(z) is a trace. Therefore, we get _

(i) W*(Rg) is a type 11, factor if there is a finite invariant measure on X equlvalent
to u,

(ii) W*(Rg) is a type I1, factor if there is an invariant (but not finite) measure on
X equivaleht to u,

(iii) W*(Rg) is a type I1I factor if there is no invariant measure on X equlvalent
to u. A

Example 2.8. Let X = [0,1). For a fixed irrational number 0, define Tz = z +
0 (mod 1) for x € X. Then T is a Z-action on X and W*(Rz) is a type I, factor.
When X = R and Q acts on R as translations, W*(Rq) is a type I, factor. Indeed,
there exists a unique invariant measure up to scalar multiple on X (i.e., the Lebesgue.

measure), but it is not finite.

Let us assume that G acts ergodically and freely on X (e, {zeX; gr=1}isa
null set for g # e). Since z = gy for a unique g € G, we can define the map

®:E(,) € LR, duy) — / &, ()duly / (R, )duy),
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which is a surjective isometry. Here, R, (= Gy) means the orbit of y, and &(z) =
¢(z,y). Thanks to the freeness we can identify ¢*(R,) with %(G) via &z = gy)
&,(g), and hence

[ #R)aut) = X EGs) (2 X © £@))
In this picture we have | o o | | | 3
b €(2) € LR, i) — (&) yex € LA(X, E(Chipy)

with &,(g) = &(gy,y). Itisan amusing exercise to see that ®@W(R)*®~ = L®(X, p)x
G, the crossed product, i.e., the group-measure-space construction by Murray and
von Neumann. In the usual group-measure-space construction both of ergodicity and
freeness are assumed to guarantee that L=(X, u) x G is a factor. On the other hand,
the only ergodicity was required in Theorem 2.6. Notice that the ¢2-space over the
orbit R, is smaller than ¢(G) (unless the action is free). This means that W*(Rg)
acts on a smaller Hilbert space than L%(X, ) ®¢%(G), i.e., the standard Hilbert space
of L*(X, 1) x G, and the above-mentioned difference is caused by this fact.

Recall that a MASA A in a von Neumann algebra M is called a Cartan subalgebra
if there exists a (unique) normal conditional expectation £ : M — A (automatic

in the type II, case) and there are enough normalizers (i.e., unitary normalizers for

A generate M).

Lemma 2.9. The abelian subalgebra A = L*(X, p) is a Cartan subalgebra in
WH(Reg).

Proof. We have already known that A is a MASA. Since 0%(Ls) = Lgiy, we see
0¥|a = id and there exists a normal conditional expectation E : WHR) — A
(conditioned by ) by Takesaki’s theorem. In fact, E is simply the map cutting
“off-diagonal components”, i.e., E(Lg) = Lyps- '

The unitaries L} . (see the paragraph before Theorem 2.6) normalize A. In fact,
when f is supported on D, it is plain to see LXF(g)LfL;r(g) = Ly with f’ supported
on D (and f'(z, a:) = f(gx, gz)), which shows Ly, AL} = A.

Notice Rg = Ugecl'(g), and it is easy to see that any function supported on I'(g) is
of the form f * xr(s) With a function f supported on the diagonal D. Therefore, each

convolution operator is a (possibly infinite) linear combination of unitaries Ly, with
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coefficients coming from .A. Therefore, Lyy,, s together with A generate W*(Rg).
O

Conversely, a factor admitting a Cartan subalgebra arises from a relation R. Rough
idea for a proof is: A % L*°(X) and unitary normalizers give use to transformations
on X, which generate an equivalence relation. Since we have enough normalizers, the
resulting W*(R¢) recovers the original algebra. Strictly speaking, in this proof a 2-
cocyle enters. This is something one cannot avoid. In fact, in the famous construction

of a factor M not anti-isomorphic to itself a certain 2-cocycle plays an essential role
| ([3]). However, in the AFD case a 2-cocycle vanishes so that we will not worry about
2-cocycles in what follows.

The complete classification of AFD factors is known, and in all the cases model
factors can be constructed by using equivalence relations (see Examples 2,8, 2.12,
2,13, and 2.14). Therefore, every AFD factor admits a Cartan subalgebra. A very
deep result on conjugacy for Cartan subalgebras can be found in the Connes-Feldman-
Weiss paper [7].

2.3. Poincaré Suspension. In this section, for M = W*(Rg) we try to express
the algebra M=M Xqse R in terms of an equivalence relation, which will enable us
to compute the flow of weights of W*(R¢) obtained via the Krieger construction.
We at first find a Cartan subalgebra in M. Since M = W*(R¢) is generated by
Ly (9 € G) and A = L=(X, ), M is generated by 7 (Lxroy) (9 € G), moe(A)
and A(t) (t € R). At first we notice '
A(O)Tao (LA = 7o (0f (Lg)) = Toe(Ly) (for Ly € A)

because of §|p = 1. We set B = (7,4 (A), A(R))” 2 A® A\(R)".
Lemma 2.10. The abelian algebra B is a Cartan subalgebra in M.

Proof. First let x € M N B'. Recall that the modular automorphism group of the
dual weight ¢ is 0¥ = AdA(t) (see (2.2)). Since B contains A(t), we get

T e Mv¢ = <M¢,/\(t)>" — MLP ® )\(R)”

(see Lemma 5.3 in [19]). Thus, z is considered as an M,-valued function on R

(after the Fourier transform). Also since B contains a ® I & a € 7,+(.A) and = must
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commute with a, we get
€ M,NA)®AR)"C MNA)®AR) = A0 A\R)",

showing that B is a MASA in M. For the existence of a conditional expectation,
notice that 3|z is the dual weight of p|4 on AQA(R)” = A x4+ R from the construc-
tion. Hence @ is semi-finite on B, and 0¥ (B) = B. Then it follows from Takesaki’s
theorem that there exists a conditional expectation from M onto B.

It remains to show that B contains enough normalizers. But, for g E G we claim
Ad (7109, (ang))) (7o (B)) = me(B) (and we know that mye(Ly,, )’s together with
B generate the whole algebra). At first we note

Ad (7o (Lyryy) ) (o (A)) = 7o (L XF(Q)AL;F( )) oo (A).

"We also note

A(t) e (pr(g-l)) A(t)* = Moo (af (Lxr(g_l))) := oo (Lé“xp(g—l)) .

This is equivalent to A(t)7T,« (LX[‘(g—l)) = Tge (L&itxr(g_l)) A(t), and hence

Mo (Lxm-l)) Alt)mos (Lé"‘xf@—l)) = Mow (L(x;(g_l)>*(6itxrgg_i))) A(2).
We'compute

((hemny) * (F*xre-n)) (@ y) = D> X (22)(0"xr@1)(z9)
8(gx,z) forx =y,

= 8"(97,9)xr)(92,y) = {0 otherwise

so that we conclﬁde
Mg (LXr(g)))‘<t)7r0“’ (LXF(g))* = Toe (Laf,t))‘(t) (2'4)

with the function a, supported on D and defined by a4(z, ) = §(gz, z). .Ther‘efore,
we have shown Ad(L,. . )(A(t)) € B as desired. O

The lemma shows that M can be written by using an equivalence relation, which
can be easily read from the computations in the lemma. Note that the above Cartan
subalgebra B C M is

B~ A®\R)" = A® L®(R) < L*(X x R)
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under the Fourier transform on the second variable. Via the Fourier transform, the
generators my0(a) = a® I (a € A) and A(t) (or more precisely I ® A(t)) correspond
to

a®I and IQ®myg.

respectively, where m.::. means the multiplication operator induced by the character
u— e Let f be a function supported on D and f(z,z) = F(z), and .we compute

()30 ()
= Tov (Lxm) LfL;cr(w) floe (Lx”*”) A)moe (pr(g)) *

= Mo (L LrLigg, ) Tov (Lag ) M),

where the last equality comes from (2.4). At first note that L #A(t) appearing in
the far left side corresponds to the multiplication operator arising from the function
(z,u) — F(z)e**. Secondly, since Xr(g)* f *X‘F( 9 (supported on D) corresponds to the
function z € D — F(gz), the above far right side corresponds to the multiplication

operator arising from the function
(CL‘, U) — F(gx)a;teit“ — F(gx)é(ga: l,)zt itu _ F(gz,)eit(u-i--log()"(gz,x)).

Thus, we observe that the transformation induced by Ad (7Ta¢ (Lxr(g))) on X xR

is ' o o
(z,u) — (gz, u+log5(gw x)). |

This is exactly the skew transformatlon of g (induced by the ° cocycle” 0(+,-), the

Jacobian of the transformation).

Based on the computations so far we set X = X x R equipped with the measure

dp ® e"*du (the meaning of the factor e~ will be clarified shortly) Let g € G act
on X by

g(z,u) = (gz,u + log 6(gz, z)) | (2.5)

(we use the symbol § to indicate the fact that it is acting on X). Let R (CXxX )
be the equivalence relation generated by the above action. From the discussions SO

far one gets

~ —_~

WHR) = M.

14
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A few remarks are in order: First notice
dp(gi) ® e~ (wHo88 022 gy = dy(z) @ e du

since 6(gz, ) = dulgz) The measure preserving property here implies that

du(z)
tr(Ly) = / £ (@), (2, w)dp(z)edu

gives rise to a trace (which corresponds to the general fact that M = W*(’R) is
semi-finite). Secondly recall that the dual action §s acts trivially on M and as
the multiplication of characters on A(R) (i.e., as the translation after the Fourier

transform). Therefore, we should consider

T : )A(; - X

(z,u) — (z,u+s). (2:6)
Then, T, commutes with each § so that it normalizes R (ie., (T, x T,)(R) = R). As
pointed out above, the dual action is given by 0,(Ls) = Lyr_,.T_,) Notice

tr(6s(Ly)) = fl(z,u—s), (z,u— 5))dp(z)e™ du

XxR

= f((x,.u), (z,uw))du(z)e"“)du = e *tr(Ly)
XxR

as expected (see (2.1)).

Lemma 2.5 and the argument in the proof of Theorem 2.6 show that the center
Z(W*(R)) is the fixed point subalgebra L* (X )C. We write L*°(X)S = L=(Y), i.e.,
the ergodic decomposition of the G-action on X. Since T, and § commute, T} induces
T,onY. ‘

The discussions so far show

Theorem 2.11. Let Y be the space of the ergodic decomposztzon of the G-action
(2.5), and T, be the transformation onY induced by Ts (see (2.6)). Then, (Y, {Ts}ser)
is the flow of weights of M = W*(Rg).

We will use the theorem in the following examples:

Example 2.12. Let X = R with the Lebesgue measure dt, and G be the “at + b”-

group
a b
G—{(O 1>,a,b€Q,a>0}
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with the natural action ¢ — at + b. Since the subgroup

-{(32) vea)

already acts ergodlcally on X, we see that G acts ergodically on X. For g =

8 ll) We have 4(gt, t) = a. Set X = R x R with dt ® e~“du, and g(t,u) =

(at 4+ b,u + loga). We need to look at the ergodic decomposition of X x X under
the G-action. If we choose a = 1, then the first space is killed by the density of Q.
Then, loga (a > 0) kills the second space. Hence the G-action on X is also ergodic
and we conclude L*(X)¢ = C]. Therefore, W* (R¢) is a type I11; factor.

Example 2.13. We keep the same notations as in Example 2. 12, but we use a €
M (0 < X< 1) and b in the countable group generated by A% and Q. In this
case, we get L(X)C = L*([0, —log \)) and T is the translation (of period —log \).
Therefore, W* (Re) is a type 11 factor.

Example 2.14. Let {F,},cr be a non-singular ergodic flow on (I',m). Here we
construct a type I11; factor whose flow of weights is eXactly the given one, and the
construction below is due to T. Hamachi ([22]).

Let (So, Yo,v) be a type I1I; ergodic transformation. For example one considers
the infinite product space Yy = I1°,_{1, 2,3} with the shift Sy. The measure v is the

product measure of

1 A 7
{1+A+u’ 1+ X+pu’ 1+/\+u}
on the three-point space {1,2, 3} with log A, log u rationally independent. Set X =
I'x Yo x R with m ® v ® e”¥dv, and let

- ’ dmo F,
Fi(v,y,v) = (Ft%y,v+t+log - t(v)),

20)).

From the definition S is measure preserving. On the other hand, due to the presence

~ dv o
S(v,y,v) = (% Soy, v + log

of t in the third variable, F; scales the measure by e~t. Note they commute so that
one gets the action of the product group R x Z. We would like to have an action of

a countable discrete group. Therefore, we take G = Q x Z and restrict the action to
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this subgroup. More precisely, for g = (¢,n) € G the action is

: dmo F, dv o S¥
_ n q/.; 0
9(7,y,v) = (Fq% 56,0 + g+ log ———=(7) + log — (y)) :

(2.7)

At first we note that this action is ergodic. The crucial fact here is that the above
transformations for ¢ = 0 act ergodically on the second and third spaces. In fact,
when ¢ = 0 the action on the last two spaces is exactly the one defining the Poincaré
suspension of Sy (see (2.5)). But it is ergodic thanks to the I1]; assumption. Note
that a function (on I') invariant under {F,},eq is also invariant under {F;}.cr since
Q is dense in R. Therefore, the desired ergodicity of the G-action comes from that
of the given flow Fj.

For the computation of the flow of weights, as usual we set X =TxY, xR x R
with m ® v @ e Vdv ® e *du, and let '

. n ' duoF,, dv o S¥ ' '
vy, v,u) = <Fq%80y,v+q+109 ”dm,q(v)»Jrlogv - O(y),u—q>,

(2.8)
which is measure preserving. We need to look at the ergodic decomposition under
g’s. At first by specializing g to 0, as above we immediately see that the second
and third spaces disappear. Thus, it suffices to look at the ergodic decomposition of
I' x R under the Q-action '
(v, u) = (Fgv,u—q).

As above the density of Q permits us to go back to the R-action (v, u) — (Fyy,u—t),
and the dual action 05 here corresponds to (v,u) = (v,u+s). We observe that an

~

invariant function under the above R-action is of the form f(y,u) = f(Fyy) with a

function f on . The dual action 0, behaves like

~

forw) = f(ruts) = f(Fuwsr) = f(F(F0))
(see (2.6)). Thus, we have seen that the flow of weights is exactly the given flow

(F7 {Fs}seR)'

3. INDEX THEORY

We briefly recall the Jones index theory ([33]) for II; factors. Let M D A be an
inclusion of I]; factors, and we regard that they are acting on the GNS Hilbert space

Hi = L2(M) induced by the unique normalized trace tr. The unitary involution
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J of My, determined by Au.(z) — A (2*) (where Ay : M — 'H,, is the canonical
injection) satisfies M’ = JMJ. It is well-known that the commutant A" is a factor
of either type II; or I1,,. Let ey be the orthogonal projection on the closed subspace
Aer(N) (€ Ay (M) = L2(M)). This projection is referred to as the Jones projection,
and it is easy to see that ey satisfies exr € N’ and Jey = enJ. In fact, these

properties come from the fact that Ay (A) (and hence its closure) is invariant under
the left multiplication of A" and the adjoint operation (i.e, J). When NV is a type I
factor, the Jones index of M D A is defined by making use of coupling constants.
In the present case, M is acting standardly on L?(M), and the Jones index M : N]

is (defined by)
‘ B 1 _dimy LEH(M)
(M N = tra(en) (~ dimag L2(M) )’
where try denotes the unique normalized trace on . When N is of type [, we
simply set [M : N] = oo.

Theorem 3.1. (Jones) The index (M : N for an inclusion M D N of type I,
factors belongs to the set
2 (M), Ly
{4cos (n) n=34,5, }u [4, 00].

Moreover, all of the above values are actually realized for some subfactors in M : Ro,
the hyperfinite I, factor.

The restriction of the projection ey : L2(M) — L2(N) to M (= Ay (M) C
L%(M)) gives rise a normal conditional expectation Ey : M — N Basic properties

are:

Lemma 3.2. (i) Ey(nimny) = nlEN(m)ng forme M and n; € N,
(i) Enly = Idy,

(143) enzen = En(z)en for z € M,

(iv) = € M satisfies exx = zey if and only if z € N.

Proof. (iii) It suffices to check exmenyéy = En(z)enyéo (y € M), where & = Ay, (1)
is the GNS (trace) vector. However, we compute
exzenyéo = en A (Ex(y)) = A (En(zEn(y))) = Aur(En(z) Ex(y)),
En(z)enyéo = En(2)Ae(En(y)) = Aw(En(z) Ex(y)).
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(iv) When [ey, ] = 0, we have Ex{(z)ex = exzen = zex by (iii). Hitting the both
sides to &, we get Ex(z)€ = x€o due to exéy = &o, showing = Ex(z) € N. O

" The above (iv) means N = M N {en}’ so that we have N' = M’V {ex}. The
basic extension M; of M 2 N is defined as

= IN'J = JM'IV {Jew T} = MV {ex} (= M, ex)").

We obviously have N' C M C M, and (when [M : M] < co) the index is preserved
[M : NT = [M; : M]. Iterating this procedure, one obtains a canonical tower of
type 11, factors (called the Jones tower):

Ng M g Ml = <M760> g M2 - <M1,60,€1> g Ty
with eg = en, €1 =€, - .. The successive Jones projections eg, €3, eg, --- satisfy

€i€; = €j€; when |’l — ]l > 2,
€;€i4+1€; = [M :N’]_lei.

This is essentially (3.5) (to be proved later) and restriction of index values comes
from these relations (see [33]). .

When [M : N] < oo, one can let the factors act on a Hilbert space K in such
a way that the action of N is standard. For example, one can choose a prOJectlon
o in the commutant of M (C B(L*(M))) satisfying trav(p)) = [M : N7,
we set K = p'L?(M). The amplification z € M +— zp' € Mp' being 1somorph1c
(and the same for ), we can regard that M 2 N are acting on K, and easily see
that the action of N is standard (by looking at the coupling constant - - - dimpy K =
trae (p') dimy L2(M) and trae = trar |ar, see [33] for details). Let Jy be the unitary
involution on K as above arising from A/, and we set P = JyM'Jy, a subfactor of
N. Tt is obvious that M is the basic extension of N D P, and because of this reason
P is called a down-ward basic extension of M D N. k

3.1. Index for General Factor-subfactor Pairs. Let M D A be (not necessarily
type I1,) factors. Here, we explain how to define

Ind E € {40052(%); n= 3,4,5,--~} U [4, 0]
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for a given normal conditional expectation E : M — N. The definition is based on
Connes’ spatial theory ([5]) and Haagerup’s theory ([18]) on operator valued weights
(see Appendix 4), and details can be found in [38]. |

Let M be a von Neumann algebra acting on a Hilbert space K (the action is
not necessarily standard). Let ¢’ be a weight on the commutant M’ with the GNS
representation (Hy/, Ay, 7y ). For € € K let R¥'(€) be the operatdr from Hy to K
defined by |

RY()Ap(a') = ¢ with D(RY) = Ay(My) (C Hy),
where My = {2’ € N; ¢/(2’*2’) < 0o} is the definition ideal. It is plain to see
yRY(§) C R (Omy () fory e M,
RY(y¢) =yRV(§) forye M.
When R¥'(£) is bounded (the extension is still denoted by R¥' (€)), & is called a /-

bounded vector. The set of all such vectors (in K) is denoted by D(K, ') (the density
of which can be proved). For each &€ € D(K, 1) we set

6v(6,6) = RV (©RV(€)".
The above first (intertwining property) shows 6¥'(¢, €) € M_. while the second means
the bimodule property 8% (y¢,y¢) = yo¥'(¢,€)y*. We now take a weight ¢ € M2,
and set
§ € D(K,¥') — q(&) = $(6"'(€,€)) € Ry U {o0}.

It is a quadratic form, and actually lower semi-continuous. We set
D(q) = {¢{ € D(K,¢"); q(€) < o}, the domain of g.

By the Friedrich theorem, there is a unique positive self-adjoint operator H such that
D(q) is a core for H2 and (¢ €)= ||Hz2¢||? for € € D(q ) This H is referred to as the
spatial derivative of ¢ relative to 9/, and denoted by 2 yand ¢,

Remark 3.3. We consider three typical cases. Details are left to the reader as an
exercise.

(i) Assume that the action of M on K is standard. Let 1/ = wg' with a cyclic and
separating vector {, € K. Then, we may regard Hy = K and Ay (z') = 2'&. It is

easy to see 0% (£, €) = za* for £ = x€y € M&. Therefore, the above quadratic form

d¢

is z&y € M& — ¢(zx*), and the spatial derivative 77 is nothing but the relative
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modular operator A, ; with ¥ = wit e M.

(i) Assume M = B(K). Then M’ is one-dimensional, and let ¢ = 1. Then, we
have %' (¢€,€) = £ ® £°, the rank-one operator determined by £ € K.

(iii) Assume M = CI. Then, we have M’ = B(K) and ¢’ = Tr(hy-) with the
density operator hy. In this case we get 0%'(¢,€) = (hy/'€,€).

Important properties of spatial derivatives are '

, -1 it —it
dy’ _ (%) and (ﬁ) T (ﬁ) = o¥(x) for x € M.

dp  \dy' dy! dy’

We also have

g1 )" a0 - = (D¢y1; Dp): (Connes’ R don-Nikodym cocycle)
d’l/)l d’dl' - 1, t nha : y Yy

for another ¢; on M.

At first we see that the spatial theory gives us a canonical (order-reversing) bijection
between the weights on M and the operator valued weights B(K) — M'. Let ¢’ be
a weight on M’ as before. For a weight ¢ on M, we consider the weight x = T’"(%')
on B(K). Then, for 2’ € M’ we compute

ao\t dw\ o
oX(z') = (dfﬁ) ' (%) = oV ().

Therefore, we have a unique operator valued weight F' : B(K) — M’ such that
x =Tr( 5‘%') = 1’0o F. We claim that this ' does not depend on ¢ and it is uniquely
determined by ¢. In fact, let 1; be another weight on M’ (giving rise to F;). Then

we have

d 7N\ it d / —1t
(DG o F)d(w 0 F)e = (DY ). = (—&%) (—(—}%) ,

which in the Radon-Nikodym derivative between T’I‘(%-) and x = T'r( %')- These

are 1’ o F and 9] o F} respectively so that we conclude
(D@ o F);d(¥; o F)): = (D(4' o F); d(4] © F1))e.

This means 1] o F' = ] o F; and hence F' = F; as desired. The operator valued
‘weight F' to M’ constructed so far is denoted by ¢~'.
Conversely, assume that an operator valued weight F' to M’ is given. Let ¢y, be

weights on M, M’ respectively. Then, the composition ¢’ o F is a weight on B(K)
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so that ¢' o F' = Tr(K-) with a non-singular positive self-adjoint operator K. For

' € M’ we have
( l) . < 1)
dyy’ dz/z’

1\ it ’

K*' K™ = o}°F (') = 0¥ (¢) = (dw ) (CM )
déy

Therefore, D, = K~ (%)_z is a unitary in M, and it is actually a o%1-cocycle

because of
dé g\ 1
Diyo = Dy ( y /)f) D, <d_1/)1> = Dof*(D,)  (for t,s € R).
Thus, one finds a unique weight ¢ on M with D, = (D¢; Dé¢1) thanks to the converse
of Connes’ Radon- leodym theorem. We denote this weight ¢ on M by F-1. Since

(Dé; Dgpy) = (d—,/),) (f{fﬁ) - , from the definition of D, above we get K = (dw)_l —

d'/’ . Thus, we get 9/ o F = Tr(( ) ) Y o ¢! so that F = ¢~! (= (F h=h,
The above discussions show that ¢~! is characterized by

oo () |
P oo —-TT(% ) (31)
B(KC)
¢—1
_ dy’ ,
M =1 (% ) M
o) Y’
C

Figure 1 (the inverse ¢™')
For a rank-one operator £ ® £€° (€ € K) we have

av'\* |
1 2
(%) ¢

W od (€@ E) = Tr (‘W (5®5°>) -
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which is equal to v/(6%(&, €)) from the definition of the spatial derivative %%i. There-

fore, we see
o7 (E®E) = 07(&,€). | - (32)

The computation
| . AN AN
(D7t Dg3Y)e = (D 0 67"); D(W © 63)): = ( ¢> <i)

do, deo
(de —it déy it__ .
o (W) (-@}—) _ (Dé1:Déo)s

shows that the bijective correspondence ¢ «— ¢! is order-reversing.

If M = B(K), then ¢ is a weight on B(K) and ¢ = Tr(h-) with the (non-singular
positive self-adjoint) density operator h. The operator valued weight ¢~ : B(K) —
M’ = CI actually means a weight on B(K). Remark 3.3,(iii) and the above imply
¥~ = Tr(h™!) in this case.

Let M D N be a factor-subfactor pair with an operator valued weight E. We
assume that they act on a Hilbert space K (not necessary standard). Let ¢’ be a
weight on M’ respectively. Then, 9’'~! is an operator valued weight B(K) — M
and we consider the composition E o/~ : B(K) — N. Its converse (Eoy/™')"! is
a weight on V. Let ¢ be a weight on NV. From (3.1) we note

Tr (i(—E—fT)—— ) — (Boy/ ™) oy = (po Boy ™),
The composition ¢ o E o 9’'~! is a weight on B(K). Recall that the density of its
inverse weight is just the inverse operator of the density of p o E o1’ —1. This means

() )-verev-n((859) )

and hence
d(E o ,¢/—1)—1 _ d¢/

dy Cd(poE)
This equality obviously implies that modular automorphism groups associated with

(Eot/~1)~! and ¢’ (on M’) agree on N". Thus, there is a unique operator valued
weight F' : N7 — M’ such that (Eo4/~')™! = ¢/ o F, that is, Eot/~! = (Y o F)7L.
Let us write F = E~L, and since ¢ o (¢ o F)~! = (¢ o E) o9/~ we get

(W o F) oy

dp  d(poE)
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The construction of F does not depend on . Indeed, let Y, be another weight on
M’ (giving rise to F}). Then, we see

d' o F)\" (dwio F)\™ _
(F&7) (%57) - wiow,

- (aftn) (a8te) - (452 (52)"

Hence, we get 9] o F = ¢} o F}, that is, F' = F} as desired.
Let us write F = E~!, and we note
di' o E7Y)  dy’

dp dlpoE) (3:3)
B(K)
N/
/ lE--l
(E' o w/—l)—l M,

Figure 2 (B~ : N' — M)

It is obvious that this relation uniquely determines E~'. In particular, we get
(E~1)"! = FE and the chain rule

(EOOE)"I:E"IOEO"] foo MEZNZ2 ‘
Since E~' 0 ¢7! = (¢ 0 E)~! (¢ is a weight on N), from (3.2) we have the following
description of E~1:

E7H(09(8,€)) = 0%°F (¢, €). (34)

From now on we assume that £ : M — N is a normal conditional expectation.
For each unitary u’ in M’ we have

u/E-—l(I)u/* — E—I(U/Iu/*) — E—I(I)
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by the bimodule property. Since M is a factor, the above computation means that

E~1(I) is a positive scalar (or +00).
Definition 3.4. Ind E = E~'(I).

It is possible to show that the value E~!([) is independent on the choice of a Hilbert
space on which M acts (by checking the effect under reduction and amplification).
The above chain rule for E~! readily says the multiplicativity of our index Ind(Eq o
E) = (Ind Ey) x (Ind E).

To get a basic extension and so on, we now assume that factors are acting on
Hoor = LEHM) (p is a faithful state on N'). As in the type I; case we get the Jones
projection ey € N’ defined by exz&y = E(:c){o (po E = wg, and & € L2(M),).
This projection e does not depend on the choice of ¢ and satisfies the properties in

Lemma 3.2. As in the II; case we set
M; = JN'J = ({M,ey), the basic extension of M D N.
We assume Ind E < co. The map (Ind E)7'E~!: N’ — M’ satisfies
(Ind EY'E7Y(z) = (Ind E)'E7'(VzI /)
= (Ind Ey'"VzE Y (I)Vr = x

for z € N, which means that (Ind E)"IE“1 is a conditional expectation. The basic

extension F; of F is defined as
Ey = (Ind )" JE"Y(J-J)J: My — M.

We have Ind E = Ind E; (which easily follows. from (E~!)~! = F). Recall we saw
69°F (&9, &) = I (Remark 3.3,(i)). Since exHyop (= L*(N)) is a standard Hilbert
space for NV, the operator R?(£) used to define (¢, &) is given by

enzo € eNHLpoE — xf € H(pOE

in the present case. In particular, 89(&,&) = enx and (3.4) say E*(ey) = I

Therefore, we conclude
Ei(ex) = (Ind E)™'I. ‘ (3.5)
As in the II; case, by iterating the above-explained procedure we get the tower

NCMIMC--
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of factors and successive conditional expectations. When M D N are type II;
factors, we have the canonical conditional expectation F = Ej determined by the
unique trace trq. In this case we have Ind E = [M : N], the Jones index. In fact, let
o € L?(M;trpq) be the unit trace vector for M. Then, wé;”' is a unique normalized
trace trap. Since trag = try o E, we observe

dtr p dtras
T dirpe dirag o B

(see (3.3)). This shows that tryy o E~! (on N) is tracial, and it is proportional to

1

tryr. Recall that the Jones index comes from the coupling constant
M2 N] = dimp (ZA(M, tr0)) = tra(en) !
while we get tryy o E~Y(ep) = 1. Therefore, we must have
trar =M : N rpp o E7L

Comparing the values of the both sides against the identity operator I, we see
Ind E = [M: N]. ‘

3.2. Longo’s Approach. Let M D A be properly infinite von Neumann algebras
acting on the Hilbert space L%(M) with a common cyclic and separating vector &.
Therefore, we have the modular conjugations Jy,¢,, Jum, g, acting on the same space.

The endomorphism v (= v¢,) = AdJn, oI, : M — N is called the canonical
endomorphism of M 2 N ([50]). In fact, for another cyclic and separating vector &
we have v¢, = Aduo~yg, for some unitary u € NV, i.e., v doesn’t depend on the choice
of & (up to inner perturbation). Actually we need not use a common cyclic and
separating vector in our further theory. Any modular conjugations Jyr, Ja (coming
from a state or a weight) work fine for our purpose.

We begin with the semi-finite case. Let A O B an inclusion of type II; factors.
Then, M = A® B(H) 2 N = B ® B(H) is that of type I, factors, and we
have the canonical endomorphism «. Let trus be a trace on M. Since a trace is
unique up to a scalar multiple, ¢r x4 and trpq o y are proportional. Actually we have
trpoy = [A: B] traq. Instead of showing this, we look at the following more general

situation:

Lemma 3.5. Let M D N be an inclusion of type Il factors. Furthermore, we

assume that a trace traq is semi-finite on N so that tra gives us a conditional
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expectation from M onto N satisfying try = try o E with try = traq |v. In this

case we have trypgoy = (Ind E) traq.

Proof. We set

trae = traq(JInm " Jm) and  trar = tra(JInv " In),

where everything is acting on ‘H - L*(M;trap). At first we show %Mi = 1. For
T € My, (the definition ideal of tr ), R (A4, (2)) is given by

AtrM (y) I byAtTM (33) = AtTM (y.’L’)

Therefore, R (A4, (x)) is the right multiplication by x, that is, Juz*Jum, and

hence the quadratic form giving rise to the spatial derivative —t-fMi is

At'rM (iE) — tTM’(etrM (AtrM (SE), AtTM (.’17)))
= tr e (JMmT* I M) = trm(@*x) = (Agrpy (2), Atrpe (2))-

Therefore, we get "%ﬁi = 1, and the identical argument also shows %_AL’ = 1. From

(3.3) we compute
d(t’f‘M' OE_I)‘_ dtr pp o dtr ag 1= dtr
diry Cd(tryoE)  dtrag - dirw

so that we see tray o E~1 = try». For x € M/, we compute
trae(2) = trae(E™(2)) = (Ind B) trau (),
showihg trae | m= (Ind E)trpy. From this (for z € M) we compute
trpm(y(z)) = trv(v(2)) = trar(In(Ima™ Im)* JIn)
= try(Jma"Ip) = (Ind E) trae(Jma"Jp) = (Ind E) tru(z).
| O

Note that the arguments in the above proof work as long as E7!(1) is a scalar
(even if M, N are not factors).

Next let M D N be type III factors with a normal conditional expectation E :
M — N For a faithful ¢ € N, we consider the composition p o E € M. Then

the modular automorphism o¥°% satisfies

(1) oy =0f, and (2) EoofF=0f0oE.
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From (1) we get the inclusions M= M Moeor R D N = N %0 R of type Il
algebras, and (2) implies that E extends to £ : M — N via E( [ z(t)A(t)dt) =
ffooo E(z(t))A(t)dt. From the construction, we get the compatibility of all the relevant
structures (such as the dual actions, the canonical traces, and so on). The canonical
trace-scaling traces actually satisfy tr |y = try, and E indeed arises from tr
(details are at the beginning of §5.1).

Let us assume that M D N are type I1]; factors at first, and let 5 : M — N be
the canonical endomorphism. Since M D N are type 11, factors by the assumption,
as before we conclude tr;075 = A trg. However, we point out that this phenomenon

is completely general.
Lemma 3.6. The same conclusion holds in general, i.e., tr MOV =Atrgy

Proof. At first note that tr o7 is also a trace and hence tr o7 = try(h) with

—~

h = %-%:—7 affiliated to the center Z(M). Also the modular conjugations Joop and

Js coming from the respective dual weights are given by

(Jogb) (8) = Dl g ImE(=1), (JoE)(t) = AltTye(~t)

for a vector £ € L2(M) ® L*(R) = L*(R.: L?(M)). The unitary U(s) implementing
the dual action (see §2.1) obviously commutes with the above J’s so that the canonical
endomorphism ¥ = AdJ@J;,; and the dual action 6, commute. From (2.1) we notice

(tr;‘ 04)(0-s(x)) = trggo0_s09(x) = e’ try o y(x),
triz(h0_s(x)) = tr 0 0_s(0s(h)x) = e tr;(0s(h)x).

Thus, we see trg; = trg; o 7(0s(h)-) and h = 6,(h) for each s € R thanks to the
uniqueness of a Radon-Nikodym derivative. Hence, we get the lemma from the central

ergodicity of {0s}scr. - O

In [51] the constant A in Lemma 3.6 was defined as the index of E. Although
M, N are not factors, we actually have (E)~}(I) = (Ind E)I (as will be seen based
on Theorem 3.12). Therefore, Lemma 3.5 (and the comment after the proof) shows
that the index in this sense is the same as Ind E.

3.3. Minimal Expectation. If M NN’ = CI, then there exists a unique normal
conditional expectation E (if it exists). But generally there are many E's, and let
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us minimize Ind E over all possible E’s. At first we consider the simple-minded
example:

=N C M, (C)=M
acting on C". Note N/ = M,(C) and M’ = CI. A normal conditional expectation
(onto C) means a state E = Tr(h-) while an operator valued weight E~' = Tr(k-) :
M,(C) = N' — C = M’ means a positive functional. We have k = h™! as
was pointed out before, and the eigenvalues {\;};=12.., of h sum up to 1 due to

Tr(h)=1. Weget Ind E = E~'(I) = 3., A\;'*; and hence

[ 2

min{i:)\i_l; Ai>0, ) N=1 } =

Note that the minimum is attained exactly when \; = =, i.e,, E : M,(C) — C is
the normalized trace.

Let us go back to the general case, and we assume Ind E < oo b(which does not
depend on the choice of E). We will here see that mln{Ind E} is attained for a
unique conditional expectation ([26 27, 51]). '

At first we recall the notion of a local index. From-a projection p in M NN we
get the inclusion pMp 2 N'p. Note E(p) € N NN’ = CI, and the map E, defined
by ‘ o | |

z € pMp — E(p) ' E(z)p € Np
is a conditional expectation. As was seen in Propositions 4.2, 4.3, [38], the index of
E, (i.e., a local index) is given by |
E(p)E~'(p) > Ind E, (and the equality holds if o (p) = p).
' ‘ (3.6)

The conditional expectations are parameterized by the state space of the finite-
dimensional algebra M N N’. More precisely, E «— FE |pen is known to give
rise to a bijective correspondence to the state space of the finite-dimensional relative
commutant M NN’ (see Appendix 3). Let

| .
MON' =Y ®M,(C)
i=1

and we at first require that £ |pna~ I be tracial. Let p; be a minimal projection in the
i-th component M, (C) (note that the values E(p;) e NNN'=C (i = 1,2,--- ,k)
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determine the trace £ |rnn7). We secondly require E~' = const. x E on M NN’
(the constant is of course Ind E). Look at the reduced system piMp; 2 Np;. This is
an irreducible inclusion so that the index (= y;) is unambiguously determined. Qur
requirement and (3.6) force y; = p x E(p;)?, that is, E(p;) = ‘/\/’g with u = Ind E
for simplicity. On the other hand, we must have the normalization property

E(I) = ZnJ (p)) Zln%'u—]

It means /i = Zle n;4/Mi, and hence we conclude

\/,LT k
i =yt and E_l ) = i n; 5 .
Bl = 5 ( () WT(Z w—))

We have seen so far that the two conditions
(i) E is tracial on M NN’
(ii) 7' = const. x E on M NN’
uniquely determine a state on M NA” (and hence a normal conditional expectation).

By Eo we denote the unique conditional expectation specified in this way ( [27]).

Theorem 3.7. We have Ind Ey = minInd E, furthermore Ey is a umque mini-

maizer.

Thanks to this theorem, Ey is referred to as the minimal conditional expectation
of M D N. We often write

Ind Eo = [M :MO- .
We point out that in the II; case the conditional expectation F = Fj is not neces-

sarily minimal. A typical example is the locally trivial inclusion -
MDON ={z+6(z); z € pMp}

arising from a projection p € M and an isomorphism 60 "pMp — (1 =p)M(1 —p).
In fact, the Jones index is [M : N] = Ind E = e p) + tr(p) (Corollary 2.2.5, [33])
while the minimal index in M : N = 4. An inclusion for which E E) is minimal

is called extremal in the literature.

Proof. We start from an arbitrary conditional expectation F' (i.e., a state on MNN").

For each ¢ € {1,2,--- ,k} we choose and fix a family {pi;};=12..  of orthogonal

1
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minimal projections in M,,(C) summing up to the identity in this matrix algebra.

We set a;; = F(pi;), and notice that the normalization condition F'(I) = I is

ZZ%_. (3.7)

i=1 j=1
On the other hand, p;; and p; are unitarily equivalent via a unitary in M N N’ and
hence p;;Mpi; 2 N'p;; is conjugate to the irreducible inclusion p;Mp; 2 Np; so that
(3.6) says F~'(p;;) = £ and ‘

k. n;

Ind F = ZZE p,JzZ o
ij

i=1 j=1 i=1 j=
The use of Lagrange multipliers tells that the minimum of Zi=1 Z?}_:l a"—; subject to
(3.7) is Ind Eqy = (Zf=1 niy/Bi)?. Therefore, we establish the minimality Ind F >
Ind Ej. Moreover it is straight-forward to see that this minimum is attained only
when a;; = _Z—ﬁk_n—\/__ (independent of j for each 7). If Ind F' = Ind Ey, then this
condition has to be satisfied for all p;;’s. This means that F' must be at first tracial

on M NN’ and that the value of F' against a minimal projection in each component
M,,(C) has to be —Y%__ Therefore, we must have F' = FEj. O
' zl:l ﬂe‘\/ﬁ_e

If E : M — N is minimal, then so is the basic extension E; : M; — M (notice
the general fact 0f = 0%, ', a consequence of (3.3)). Note that even if MNN" = CI
we have M; NN’ # CI and the minimality of F o E; : M; — N is not so clear.
But it is indeed the case as was shown in [43], and more generally the composition
of minimal expectations is always minimal ([52]). A very interesting proof (based on
bases, see Theorem 2.9) of this fact can be found in [37].

Let {p;}i=12.. » be a partition of I consisting of minimal projections in M NN,
The arguments before the above lemma tell the additivity of square roots of indices

1 n 1
M N = [piMpi : Npil§ (3.8)
i=1
(p,M p; 2 N p; is irreducible). From the arguments in the above proof we observe that
the validity of the additivity (3.8) for all partitions consisting of minimal projections
‘actually characterize the minimal expectation Fy ([26, 51]).

We claim that the reduced expectation E, : pMp — Np (p € MNN') is also

minimal as long as E is. In fact, let ¢ be a (minimal) projection in pMpN (Np)' =
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p(M NN")p. Then we note

(Bp)q(z) = (Ep(q)™ ()q—(E(p)‘lE(q)p)*lE(p)‘IE(x)pq=E(q)‘lE(x)q-

Thus, we get (Ey), = Eq, and \/Ind (E,), = \/Ind E, = VInd E E(q ) since E is
minimal. On the other hand, we have I nd Ep = (Ind E)E(p)?, and hence

Ind(E), = VTd B, ) Bla) (= VA B B,(o)

(p is the identity in pMp). Therefore, the additivity (3.8) is valid for E, and E, is
minimal as desired.

Note that this claim shows the additivity (3.8) is also valid for any partition even
if pi’s in M NN’ are not necessarily minimal projections In fact, in this case (3.6)
becomes [p; Mp; : Np;Jo = E7 (p;) E(p;) = [M : NoE(p;)?.

3.4. Pimsner-Popa Paper. The're are various useful ways to compute Ind E. Let
us briefly mention the work by Pimsner and Popa ([56]).

Theorem 3.8. (Pimsner-Popa inequality)
E(z) > (Ind E) 'z for all z € M,.

The equality is attained for x = ey Furthermore, (except type I case) if & > 0 is
the best constant satisfying E(z) > ex for z € M, then Ind F is the reciprocal of
€.

Proof. We consider the standard action of M on H = L*(M). Let ¥ € M't

(faithful) with the vector &, = A/(I) satisfying ' = we . A vector § = y&, € ME,

is a X'-bounded vector and RX'(€) = y. Hence, we see X (£, £) = yy* € M (Remark

3.3, (i)). Since E~'(I) = Ind E < oo, we have X’ o E~! € N+ and we consider the

operator ' ' 2
I Ay(2) € K — Ayop-1(2') € Hyop-1.

Since |

1Axop=1 (@) = X' 0 E™!(a""2') = (Ind B) x X/("*&') = (Ind E) x ||A(2)|?,

I gives rise to a bounded operator with horm less than (Ind E)%l' Notice

/

R¥(§) € RY°E™ (&)1 and I"RX*E™ (¢)" C RY (¢)".
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Therefore, we get
6% (£,€) = RX(§)R¥(6)" < |[I||? x RX°E™ (§)RX°F™ (¢)"
< (Ind E) x RX°F7 (€)R¥°E™ (6)* = (Ind E) x 6¥°F7 (£,¢).

(If ¢ = y&, is a (x' o E7')-bounded vector, the above estimate is obvious. Otherwise,
the both sides still make sense as elements in the extended positive part of M,
see [18].) Recall E(0X (£,€)) = 6X°F7'(¢,€) because of (E-H)~1 = E (see §3.1 and
especially (3.4)) while we have 6% (¢, €) = yy*. Therefore, the above inequality means
yy* < (Ind E)E(yy*), and we are done. O

Note that the above proof works even if M 2 N are not factors.

Theorem 3.9. (Pimsner-Popa baéis) If Ind E < oo, then we can find elements
{A1, A2,y An} © M such that

S hewdt = 1. (3.9)

This {A1, A2, - -+ , A} is called a Pimsner-Popa basis for N' C M (it is really a basis
as will be seen below), and the theorem can be proved based on the next lemma. (In
fact, after performing a down-ward basic extension M 2D N D P, one can repeat the

argument in the first paragraph of the proof of Theorem 3.12 for the Jones projection
ep € M) .

Lemma 3.10. (Push-down lemma) When Ind E < oo, for each x € M, there exists
T € M satisfying xen = Teys.

The lemma readily follows from zey = (Ind E)Ei(zenx)en (x € M;). This
formula is trivial for £ € M and = = aexd (a,b € M), and hence it comes from the
fact that an element generated (algebraically) by M and ey can be rewritten as a
sum of the preceding two kinds of z’s (a consequence of basic properties of ey).

For z € M, thanks to (3.9) we compute ’

Ten = Z AienAjzen = Z MEn(Az)en.
‘Then, by hitting the both sides to & = Ay (I), we get & = Y MEnx(Ajz)o, that is,

z=Y MEx(N2).
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This means that M is a finitely generated (actually projective) N-module (when
Ind E < 00). Furthermore, by applying F to (3.9), we get

I=E(I)=Y Ei(\exA) = > MBi(en)X = (Ind B)1 Y A,
and hence Ind E = > M\Af. Such bases also play important roles in Watatani’s

C*-algebra index theory ([66]), and indeed the above is the definition of Ind E in his
theory.

Example 3.11. Let N be a factor equipped with an outer action o : G — Aut(N)
of a finite group G. We set M = N x, G, which is a factor thanks to the outerness.
Let
E : ng)\ge./\/(——»:cee./\/
g9eG
be the unique (due to M NN’ = CI) normal conditional expectation. Recall

L*(M) = L*(N) ® £3(G) and an operator here can be expressed as B(L2(N))-valued
matrix with indices from G. In this matrix picture we have A\, = 3, _~esn s and
en = €. (Where e denotes the unit in G). It is plain to see Agen A, = eg 4 and hence
Z)\ge/\//\; = Zeg,g = 1.
geG geG
Therefore, {Ag}sec gives rise to a Pimsner-Popa basis, and Ind E = Y .o A} =
#G as expected.

3.5. Characterization of the Basic Extension. The following characterization
of the basic extension is useful:

Theorem 3.12. Let E: M — N be a normal conditional expectation. Assume
that L is a von Neumann algebra containing M and a normal conditional expectation
E: L— Mis gwen. If L possesses a projection € with the central support I such
that

tm

(&) = A7 (A > 0 scalar)

NE(3€)é = 6 for 1€ L

éxé = E(z)é for z € M,
then there exists an isomorphism m from L onto the basic extension M satisfying
m(€) =€, m(z)=x (x €M) andmo Eon~t = \"VJE-Y(J - J)J. In particular, we
have E~1(I) = M.
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The second condition is nothing but the content of the push-down lemma (see the
paragraph after Lemma 3.10). Some characterization results are known for factors
(see [57] and also [25]). But note that algebras are not necessarily factors in the

theorem.

Proof. Choose partial isometries v;,0s, -+ In £ such that > >, 9,607 = I (when
M D N are type I, factors the number of v;’s needed here is [Ind E] + 1). Hence,
each z € £+ can be written as z = Sy x%ﬁiéﬁ;‘az%. Therefore, the second condition
guarantees
T = Z ziéx; with z; = )\E(a:%f;ié) e M.
i=1

At first we note E o E(zé) = E o E(éz) for each z € L. In fact, we may and
do assume r = aéa* (a € M) from the above and then this follows from the first
“and third conditions. We choose and fix a faithful normal state ¢ on A and set
Y =gpoFE € M. Let A = Ay be the canonical injection from M into the GNS
Hilbert space Hy, and we set m(z)A(m) = AA(E(zmé)) for z € M and m € M. We

estimate
|IAA(E(zmé))||* = Azw( (zme)* E(zmé’)) < )\2w( (ém*z xme))
< N|ja|l*p (Bemme)) = N*||e|*p o B (E(E(m*m)?))
= Nal[p 0 B (m*m) = Al|z || A(m)]|.

Therefore, 7(x) extends to a bounded operator on Hy, (still denoted by m(x)). It is

routine to see that 7 is a normal *-homomorphism. For example we compute
(A(ma), w(2*) A(mz)) = MA(my), A(B(z"maé)) = M ( (emzx)ml)
= Mo E(émizmy) = Mo E(mgxmlé) =\ (ng(xmlé’))
= (m(z)A(m1), A(my)),
where the fourth equation follows from the fact that € is in the centralizer of E o E.
The image W(Z) is a von Neumann algebra acting on Hy. We claim that 7 is
injective. To see this, let us assumé 7(z) = 0. As was seen in the first paragraph we
‘have z ~ L vieamv; = 1 with v; = AE(9;€) € M. Since A is injective, by hitting 7(z)

to the vector A(v;) we see E(zv;€) = 0 and hence zv;év} = - \E(zv;€)év; = 0. Thus,

we get x = 0 by summing up over .
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For x € M and ey we compute
m(2)A(m) = M(E(zm8)) = M(zmE(€)) = Azm) = my(2)A(m),
(€)A(m) = A(E(ém&)) = A(E(E(m)8)) = A(E(m)) = exA(m),
where 7T.¢,(£E) > 7 denotes the GNS representation. Since M and é generate £, we
have 7(£) = (M A= Mj.
We claim E(-) = A~'n~L(JE~!(Jx(-)J)J). By the discussion in the first paragraph,

it suffices to check the both sides against z = aéa* (a € M). But, the both sides
obviously give us A™'aa*. Thus, we conclude 7o E o™t = A=1JE~1(J - J)J. a

As a typical application of the above characterization, we consider the compatibility
of taking crossed products and the basic construction. Let M D N be a factor-
subfactor pair with a normal conditional expectation £ : M — N (Ind E < c0).
Assume that a : G — Aut(M) is an action with ay(N) = N (i.e., a, € Aut(M;N))
and ago F' = Eoa,. Note that the second requirement is automatic if MNN’ = CI
or more generally if E' is minimal since o, o F o (a)~! is minimal. This condition is
also automatic when M D N are type I]; and E comes from the unique trace. We
set M %, G D N x4 G. Note that E extends to £ from M x4 G onto N x,, G.
Let ex be the Jones projection, and u, be the canonical implementation of a,. We

compute
UgeNUGTEp = UgEnN Oy (x)&p = ugE(ag‘l(x))@,
= ug0," (E(2))§, = E(2)€, = enzéy.
(poag = ¢ = we,) so that we have ugenuy = ey. Therefore, Adu, gives rise to
an action of M; = (M, ey)”, which is denoted by o, again. Note that this is an
extension of the original action o, (on M) and ay(ex) = en. We have ey = mo(en) €
M; x G. Let Ey : M; — M be the basic extension. Since E(ey) = (Ind E)~'I

(see (3.5)) and q,(en) = e, we see E; o, = a, o E; and we get the extension
Ei: MixG— MxG.

Proposition 3.13. The above M; X, G is the basic extension of M x,G D N x,G.
Moreover, E is the basic extension of E: MxaG— N x,G

Proof. The central support of ey in M; is I, and hence that of ey = m,(en) as
an element in M; X, G is also I. We easily check all the conditions in Theorem
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3.12 for the triple (M; x4 G, ey, El) based on the fact the same is true for My, en
and E;. For example we check the second condition (Ind E)E, (zen)en = xeys for
x € M;%,G. By the continuity, we may and do assume that z is of the form > g TgAg
(finite sum with z, € My). Since Ajex A} = ay(en) = en, We get

Tey = Z:cg)\ en = ng/\ ENAGAg ngeN)\

Note E; acts on the above “coefficient-wise”. Therefore, by applying (Ind E)E;, we

get

(Ind E)Ey(zen) = (Ind E)EL(D_ zgendg) = >_(Ind E)Ey(zoen) g = Y Toeng,
. g g g

which is exactly zey. , O

The original inclusion M 2 N and M x, G 2 N x, G are sometimes quite
different. In fact, they may have completely different invariants (for inclusions), and
the simultaneous crossed product is sometimes used to get new inclusions (called the
orbifold construction). Very thorough investigation on this construction was made
in [10] (see also [17] for the non AFD case).

4. FACTOR-SUBFACTOR PAIRS ARISING FROM GROUP-SUBGROUP PAIRS

Here we consider factor-subfactor pairs arising from group-subgroup pairs to see
many concrete examples of principal and dual principal graphs. The discussions here
are common for all (non-type I) factors.. ‘

Let P be a factor equipped with an outer action a of a finite group G. For a

subgroup H we get the factor-subfactor pair
M - Px,GON =P x, H

by lookmg at the crossed products We have M ﬂN "CMNP = - CI and Ind F =
#(G)/4(H), and furthermore the unique conditional expectatlon is glven by

Z .’L‘g Z xh>\h .'L’g E 7))

geG heH
Set Hy = {h € H; ghg™' € H for all g € G}, which is the maximal normal sub-
group of H. If Hy # {e}, then Hy is normal in G and it is easy to see that the pair
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M 2 N is isomorphic to the pair
(P X Ho) X (H/Ho) 2 (P X Ho) A (G/Ho)

By considering H/H) instead of H, we may assume that Hy = {e}.
We will compute the principal and dual principal graphs of M D N in this section.
Our argument here are very direct, and the (better in some sense) proof based on

bimodules can be found in [45].
4.1. Basic Extensions. For ¢ € £2(G/H) we set
(p(9)€)(g'H) = &(g7 g'H).

Then, g — p(g) is a unitary representation, and a, ® Adp(g) gives rise to a G-action
on P ® B(¢*(G/H)). We imbed ¢*°(G/H) into B(/*(G/H)) as diagonal matrices,
Le., f € £2°(G/H) is identified with the corresponding multiplication operator my €
B(¢2(G/N)). For m; € £*°(G/H) (or more precisely f €4*(G/H)), we compute

(0(g)msp(9)"E) (g H) = (myp(9)*€) (9~ g'H)

= f(g™'g'H)(p(9)"€) (g™ ¢ H)

= f(g7' g H)E(g'H) = (my(p-1€) (¢ H),

and hence Adp(g) leaves ¢*°(G/H) invariant.
" We set
My = (P@L*(G/H)) Xagaa G,

the crossed product. Then M, is a factor since the action a, ® Adp(g) is outer
on P ® £*(G/H) and free on the center Z(P ® (*(G/H)) = (*(G/H). The map
Er(32, TgAg) = 37, YgAg determines a normal conditional expectation E; : M, —
M, where y; = g 3 hea/n To(9'H) is the average of z, € P @ (=(G/H). We
set e = (1 ® dy) € My, and note that 5y (= Mgy, ) corresponds to the matrix e zr.

Lemma 4.1. M, is the basic extension of M D N and e is the Jones projection.

Proof. We check the conditions in Theorem 3‘.'12. At first we note
1 - ' 1
E(e) = 757504+ +0+1+4+0+---4+0) = ——1T.
= Fam! )= #erm

Suppose T = ) zyecy,A, belongs to M. Then, z, is an element in P = PQ [ —
P ® ¢>(G/H) and we have E(x) = 3,5 zaAn. Since (Adp(h))(0g) = 8y, we have
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[An, €] = 0 and
E(az)e = the)\h = Z(Ilﬁh ® I)(I X 5}1))\;, = Z(.’Eh X 5H))\h
h h h
On the other hand, we have
exe = Z eTgAgeA Ny = Z(xg ® Om)AgeA Ay
g ’ g
Since AgeA; =1 ® dgr, We get
exre = Z(:Cg ® 5H59H)>\g - Z(Ih ® 6H))‘h7
9 h
and hence eze = F(z)e for z € M. |
Let z = 3 x40, € M;. Then, each z, is an element in P ® ¢*°(G/H)) so that
it is a P-valued function on G/H or the diagonal matrix 3_ 5 (zs(g'H) ® dyn). We
note
ze = ng)\ge)\g)\; = Z:cg(l ® Ogr)Ag = Z(xg(gH) ® OgH)Ag-
g 9 9
Hence, we have

#(G/H)E\(ze)e = Z(%(QH) ® I)Age = Z(:Eg(gH) ® bgr) g,

which means #(G/H)E,(ze)e = ze for x € M. O

Set
M, = (P B(*(G/H))) Xagady G-
Then M, is a factor since a, ® Adp(g) is an outer action on P ® B(£*(G/H)).
Let Ey be the canonical conditional expectation from B(¢2(G/H)) onto £*°(G/H),
i.e., the one kills all the off-diagonal components. Then, the formula E3(3, z,A,) =
>, (idp ® Ep)(z4) Ay determines a normal conditional expectation Ej : My — M,.
Note that B(¢2(G/H)) is regarded as matrices with indices coming from G/H. In
the lemma below the matrix ‘
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plays a crucial role. Namely, what is so special about this matrix is the following

rules:

din dip -+ dig 11 -1 Dok Yopdie oo >opdik
dp dyp oo dpn | |11 - L 3T da Yopdak cc Y da
dn1 dng dnn 11 --- 1 Zk dnk denk Zk dnk

Sdk 0 o0 11 - 1

0 S.dw - 0 11 - 1

0 0 Sdw) \1 1 1
11 --- 1 d 0 --- 0, 11 --- 1 11 --- 1
11 1 0 dy 0 11 --- 1 n 11 --- 1
o T . : N Zd" 1. . :
. . . . . . . . . . . . i=1 . . ‘. .
11 -+ 1 0 0 --- d, 11 --- 1 11 --- 1

Lemma 4.2. The factor My is the basic extension of My 2 M and the Jones

- projection is given by e; = m (I@ Z egH,g/H>.

gH,g'H

Proof. We use Theorem 3.12 again. At first Ey(e;) = ﬁ—(—éﬁl is obvious. As-
sume z = ) z,\; € M;. Then, 7, € P ® £°(G/H), and we have Ei(z) =
2 ((W)‘ D ooH xg(g’H)) ® I) Ag. Since 3y oy gy n and Ay commute, we get

Bi)es = ey & ((z ““”(g'H’) ® < 2 >) &

IH kH

From the second rule before the lemma it is easy to see that e;xe; gives rise to the
same result.

Also one has to check #(G/H)E,(xze1)e; = ze; for £ € M,. Note that z =
Y xgAg € M with z, € P ® B({*(G/H)), i.e., a full matrix with entries from P.
Based on the first rule before the lemma one easily checks the identity, and details
are left to the reader. ’ - 0O
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- Repeated use of the two lemmas obviously gives us the following description of the

Jones tower:
N =P xy H,
M =P x,G,
M =(P*(G/H)) Xagadp G, v
My = (P B(*(G/H))) Xagadpy G,
Ms = (P ® B(*(G/H)) ® £*(G/H)) Xapadpids G,
My = (P @ B(*(G/H)) ® B(*(G/H))) Nagadpoidp G,

with product actions a ® Adp ® --- ® Adp of G. Also note that imbeddings are
specified by ' ' .
§(£2(G/H)) ®:--- ®B(€2(G/H))l

NV
n-times

— B((G/H)) ® - ® B(*(G/H)) &(>(G/H)

n-times

withz; ® - ® z,, — x1®-=‘-®xn®l,iand
B((G/H))® - ® B(X(G/H)) ®*(G/H)

v

-~

n-times

— B(*(G/H))) ® --- ® B(*(G/H))
‘ (n—l—l‘)‘-rtimes ‘
as diagonal matrices. Tt is of course possible to write down successive Jones projec-
tions.

Let us com-pute the relative commutants, and we begin with
My NN = {(P @ 6%(G/H)) Xagady G} N{P xq HY.
An element z = Yz A, € M; (2, € P ® £*°(G/H)) belongs to € M; NP’ if and
only if

Yz, = To(ay ® Adp(g))(y) forallyePandge G. (4.1)
Note that everything here is a (P-valued) diagonal matrix and moreover y € P =
P ® I is constant along the diagonal. For g # e, comparing (¢'H, ¢’ H)-components
of the both sides, we get yz,(¢’H) = z4,(¢'H)ay(y). Since a4 is outer, we must
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have z,(g'H) = 0. This is true for each ¢’H so that we get zy = 0. On the other
hand, for ¢ = e we must have z.(¢ H) € PN P = CI. Therefore, we conclude
MNP = £*°(G/H) and hence M; NN’ = £*(G/H)H, the fixed-point algebra
under the H-action Adp(h).

Next we compute
MaNN' = {(P® BIX(G/H))) Xagagy G} N {P 0 HY.

Let z = ) x,\; € My, and as before we begin with the computation of My N P,
The requirement is (4.1), but notice z, € P ® B(¢2(G/H)) this time, i.e., x, is a full
matrix. Based on the outerness as before we observe that the (g, H, g, H )-component
z4(g1H, g2H) can be non-zero only when g = e and z.(g1H, goH) must be a scalar.
Therefore, we get My NP' = B({*(G/H)) and hence My NN" = B(¢3(G/H))H.

Inductively, the algebras Mg NN', MyNN', MsNN’, --- can be computed. The
similar arguments also give us description of the algebras {M; N M’ |7

Theorem 4.3. Wz'th the imbeddings described before, we have

M NN = (¢>(G/H)",

My N = (B(*(G/H))T,

Mz NN = (B(*(G/H)) ® £=(G/H))H,

M,ON' = (B(*(G/H)) @ B(*(G/H)))H,

Ms NN’ = (B(A(G/H)) @ B(*(G/H) ® £=(G/H))H,
and

My 0 M’ = (B(E(G/H)))°,

MznN M = (B(*(G/H)) ® £*°(G/H))C,

Myn M = (B(E(G/H)) ® B(*(G/H)))°,

MsN M = (B(*(G/H)) @ B(*(G/H)) ® (=(G/H))°,

Here, the action (of H or G) is given by Ad(p(g9) ® p(g) ® - -- ® p(g)).
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4.2. Principal and Dual Principal Graphs. We begin with the computation of

the dual principal graph, which is much easier. The tower M; "M’ C MyN M’ C
MzN M’ C .- is determined by the inclusions

(BE(G/M)®  (BG/H)) © £2(G/H))° e
C (B(A(G/H)) @ B(A(G/H))¢ C --- .

Since the G-action here is transitive, we have the folloWing:

- Lemma 4.4.
| (B(*(G/H)) ® £°(G/H))® = B(¢*(G/H))".

Proof. Let

o : (B(*(G/H)) ® £2(G/H))® — B(E(G/H))"
be the map defined by >z, ® oy — zg. (Note that since the H-action does not
move dy we observe zy € B(¢2(G/H))H.) Then this gives the required isomorphism.
In fact, when z € B(£2(G/H))H, we have (Adp(gh))(z) = (Adp(g))(z). Therefore,
the map &' defined by &' (z) = 3 _,(Adp(g))(x) ® b, is well-defined. It is easy
to see that ®~! is indeed the inverse of ®. O

It follows from Lemma 4.4 that the first two steps of the inclusions (4.2) become
B(£*(G/H))® € B(*(G/H))" C (B((G/H)) ® B(¢*(G/H)))®.

The first imbedding is the natural one as a subset. In fact, we have
B(¢*(G/H))® < (B(*(G/H))®(*(G/H)® = B(*G/H))",

T — @I =3 yT®dH 2 .

The above second imbedding is given by
B(e*(G/H) = (B(*(G/H)) ®£=(G/H))® C (B(*(G/H))® B(*(G/H)))¢
v B Ta(Ade(e)@) @0 = T,u(Adp(9))(@) ® qngn.

Note that the fixed-point algebra B(¢2(G/H))€ is the algebra of self-intertwiners for
the representation p (on £2(G/H)) of G. Hence, its algebra structure determines the
irreducible decomposition. Note that B(¢%(G/H)) is the algebra of self-intertwiners
- of plu, and the above first imbedding (i.e., the natural one) corresponds to 7 € G —
Rest§m at the level of representations. On the other hand, the second imbedding
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corresponds to m € H — Ind$rm (see standard textbooks for details on induced
representations). Hence the dual principal graph is determined by
{ ¢ &g,
(The starting point (corresponding to M N M’ = CI) is the identity representation
of G.) The assumption Hy = {e} at the beginning of the section implies that all the
irreducible representations appear in the n-fold tensor product p® p® ---® p (for n
large enough). Therefore, the above induction and restriction procedures exhaust all
the irreducible representations.
We next go to the principal graph. From the relative commutants M N N’ C

MiNN' CM;NN'C--- we get
B(£*(G/H)® € (B(*(G/H)) @ £°(G/H)H (4.3)
C (B(G/H)) @ BEG/H) C - .
The H-action on £*°(G/H) is nof transitive here, and let
O1={H},0,={gH,g'H,--},--+,0n

be the orbits of the H-action on G/H (i.e., we consider the double cosets). Choose
and fix a representative g;H € O; for each ¢ (g1 = e). The isotropy subgroups of g; H
is

H;={h€H; hg;H = g;H} = g;Hg;' N H.
(Note Hy = H and H/H; = O;.)

Lemma 4.5. The map

& (BU(G/H)) ® C*(CIH))" — 3 *B((G/H)™

defined by ® (Z Ton ® 59H> = Z Oz4,u gives rise to an isomorphism.
gH

i=1
Proof. At first we note z,,;r € B(¢2(G/H))™i so that the above map makes sense. Let

T = Zaa:ci with z; € B(¢*(G/H))#:. When gH € O; we can choose h € H satisfying
i=1 '
gH = hg;H and we set z;5 = Adp(h)(z;). Note that h is not unique but ambiguity

comes from the isotropy subgroup H;. Hence, the H;-invariance of z; shows that the
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above z,y is well-defined. We easily observe that Z ®z,5 ® dyp is invariant under
‘ gH .
the H-action and that the map assigning this to z is obviously the inverse of ®. [

Via the above isomorphism the first two steps of the inclusions (4.3) become

B(( (C’/H ZGBB (C(G/H)™ € (B(*(G/H)) ® B(€2(G/H)))

=1

: The first 1mbedd1ng (B( €2 G/H C Z@ (2(G/H)H is given by z — 269

=1

while the second imbedding ZGB B((*(G/H))®: C (8(62(G/H))’® B(EZ(G/H))H

=1

given by Z ® ;i Z T,i ® egr gr- Here, in the second imbedding z,x’s are de-
. =1 - gH .
termlned as in the proof of Lemma 4.5.

Summing up the discussions so far, we see that the principal graph is described by

~

H oM A
{ H = 17, H;.

(The starting point-(corresponding to N'N N’ = CI) is the identity representation
of Hy = H)

Example 4.6. Let M = P x &, D N = P x &,_; with the symmetric group
S, (n > 3) and the subgroup ‘

Sn1 = {0 € &y; o(n) =n}.
Notice 6,/6,-1 = {1,2,--- ,n} on which &,_; acts. Since G,,_; shuffles the first

n — 1 points and fixes the last n, we have two orbits: the trivial one O; = &,,_; and
the other O,. Take g; = e and gé = (n,n — 1) (transposition) as representatives, and
we observe ‘ ,
H, =6,_; and H, = 9260197 NGpoy = Gpy

with 6,5 = {0 € &,,; o(n) = nand o(n—1) = n—1}. Therefore, the vertices of the
principal graph are parameterized by S,_; II Sn—s (even levels) and S,_; (odd levels)
while those of the dual principal graph are parameterized by S, (even levels) and Spi
(odd levels). For the pair P x 2, 2 P x ,_; arising from the alternating groups
2, we can do the same thing. For n > 4 we have two orbits (when n = 3 we have
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2, = {e}), and the two isotropy subgroups are 2,_; and 2,,_, again. For 2, and &,
irreducible representations are parameterized by Young tables, and the irreducible
decomposition of their induction and restriction is described by the branching rule
(for Young tables). For n = 3,4 the principal and dual principal graphs coincide.
However, for n = 5 they are different (for both of &,, and A,).

Principal graph l/\l/\t

i iy -
] ™
Dual principal graph /\/’\/\
E F B B° o

Figure 3 (the graphs for 6,/6,)

Q B |5

Principal graph !/N
' Q se B

H B B

Dual principal graph /\A/‘

: F B T

Figure 4 (the graphs for 2(4/2(3)
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 Pringipel M\l/\]
graph ‘

g N NN\
principal
graph :

y F BpE® = =

Figure 5 (the graphs for 6;5/6,)

PP B P B

Principal I/W/\J
graph _ . ‘

Mo o
T4
=)
28]

graph

i F B PP
Figure 6 (the graphs for 2A5/24)

5. INCLUSIONS OF TYPE II] FACTORS

Here we analyze structure of inclusions of type ‘I I1 factors (of finite indices). When
a pair M D N of type I, factors has finite index, M and N possess many properties
in common (see [56]). For example A is AFD if and only if M is, and hence in this
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case M and N are isomorphic as factors due to the uniqueness of the hyperfinite
II; factor. On the other hand, in the (AFD) type III setting the assumption of
finite index does not guarantee that involved factors are isomorphic (see Example 5.5
for most typical examples). Therefore, when analyzing a pair of type 111 factors,
we should begin by investigating how close the I11y-types (0 < A < 1) of involved
factors are. This can be done by comparing flows of weights.

5.1. Stability of III, Types. Assume that M D A are type I11 factors and F :
M — N is a normal conditional expectation with Ind E < co. Let E; : M; — M

woFEoF; |

be the basic extension of E. Since o¥°F |v= of and of = 0%, we can

consider the inclusions
MIMl N ypoEoE RQMVZM XazpoER:_Jﬁszo«pR

of crossed products (which are algébras of type I1y). Recall that dual actions and
dual weights, etc. are around for these algebras. From their definitions we easily see
the compatibility:

M o= 6 and @oEo B |g=gpoE,
0 |x=0" and QoF |g=

In particular, the dual weights ¢ cEo. Ey, JD\E give rise to the natural conditional

expectations E and E respectively. It is easy to see

B ( / x(t))\(t)dt) - / E(z(t)A®)dt for / s(BAB)dt € M
and the similar expression for E; (think about the projection from LZ(MV) onto
L2(N). Tt is lmportant to notice (from Proposmon 3.13) that M; and E; are the
basic extensions of M 2 N and E : M — N. Note that Theorem 3.12 says
E~Y(I) = (Ind E)I. Moreover, the compatibility of the canonical traces is also valid

tr g I = tri,
since the dual weights are compatible and the Radon-Nikodym derivative H between

the dual weight and the trace (recall (2.2)) is affiliated with /. Also we may consider
E’, E as the ones arising from the canonical traces because of

trzio B = o E(HE()) = p(H'E()) = trg o E.
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From M 2 N , we have
E | MNON' — Z(N)
by passing to the relative commutant, and moreover the Pimsner-Popa inequality

(Theorem 3.8)
E(z) > (Ind E)'z for z€ (MnNN'),

is valid. Notice
ZIN)=NON' CMnN N(MVN)=ZMnN).
Thus, we can consider the further restriction
E |z 2(M NN") — Z(N),
and of course the Pimsner-Popa inequality remains valid. Let N = i) )e{a " N (w)dp(w)
be the central decomposition so that we have
_ ®
Z(N) = / CLdu(w) = L°(Xy).
XN
Notice
ZMNN)CMNN' CNVN = ZWNY
so that the center Z(MNN" ) of the relative commutant is decomposable over Z(\/)

and we have
®

ZMNN') = A,dp(w)

XN
with abelian algebras A,,.
Let

~ : ®
El g minim = /X Eydp(w)
N

be the disintegration of E| 2 Mhﬁ/’)’ and notice that {E,, : A, — C},, is a field of states
in the present case. We obviously have E,(z) > (Ind E) 'z for a.e. z € (A,);. At
first we claim dim A, < Ind E. In fact, let {p;}i=12.. » be a partition of I consisting
of projections in A,. Let A\; = E,(p;) > 0so that 1 = E,(I) = >0, Eu(p:) =

» 1 Ai. On the other h'and, the PimsnerfPopa inequality shows \; > (Ind E)~! so

‘that we we get
n

1=> X>nx(Ind E)",

i=1
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that is, n < Ind E. Secondly, notice that the measurable function w dim A, is
invariant under the dual action {f,},cr since it commutes with E. Therefore, the

central ergodicity implies that dim.A,, is constant, and we conclude
ZMNONY) = L®(Xpy x {1,2,-- ,n})

with some n < Ind E. Hence, we have seen that the restriction of the dual action to
(Mv NN gives us an n to 1 extension of the flow of weights of A/.
Starting from E1 : M1 — M we can of course repeat the identical arguments
In this way we get

ZM N M) = L®(Xp x {1,2,-- ,m})
so that the restriction of the dual action to Z (;\—/lvl AM' ) gives us an m to 1 extension
of the flow of weights of M. On the other hand, M is the basic extension of M 2 N ,
ie., 7\2,1 = JN"J with the modular conjugation J associated with M. The map j
defined by j(z) = Jz*J gives rise to an anti-isomorphism from M; M’ onto J’\\/f NN,
and hence we have the isomorphism between Z (M AM )and Z (Mv NN" ). Note that
J commutes with the unitary defining the dual action (see the description of J in the
proof of Lemma, 3. 6) so that 7 intertwines the respective dual actions. Therefore, we

can identify Z (M1 nM )and Z (M NN ) equipped with the respectlve dual actlons

and we have shown

Theorem 5.1. (Hamachi-Kosaki, [23]) Let M D N be type III factors and we
assume that there is a normal conditional expectation E : M — N with Ind E < co.
Then, the flow (X, FN) of weights of N and the flow (Xam, F/Y) of weights of M
admit a common finite-to-one extension (X, F}):

(XN’ FN) (X Ef) 1o 1 (XM?FtM)

Moreover, integers n,m are equal or less than Ind F.

For example assume that M is of type II];, i.e., X is a singleton. Then, the
theorem says that X and X,  are finite sets. Therefore, the ergodic flow (X)\}‘,iFs)
must be the trivial one, i.e., N is of type III;. In this way we get the following
corollary ([23, 47]):

Corollary 5.2. Assume M, N are of type IIy, 111, (0 < A\, pu < 1) respectively and
Ind E < . Then, we have
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(3) A=11ifandonlyif p=1,
(i) A=01ifand only if pn =0,
(idd) if 0 < A\, < 1 then p = A% with some integers n,m < Ind E.

Note that the only measure class on the flow space X 1 is specified (from 2 (JW) =
L*®(X4)). Fine measure-theoretic structure on this matter and related quantities
(such as an entropy) seems to have direct relevance to study on finer structure of
the corresponding type III, factor. One typical and (supporting) result is: the
flow of weights of an AFD type I, factor admits a finite invariant measure if and
only if the factor contains an irreducible type I1]; subfactor which is the range of
a normal conditional expectation (of typically infinite index). This area probably
deserves further investigation, and here analysis on subfactors of infinite index might
be important. Note that the preceding theorem says (for example) that the flow of
weights of M admits a finite or o-finite invariant measure if and only if so does the
flow of weights of V.

One interesting open problem on stability is the following: Assume that (say) M
is ITPFI. Even in the case of index 2 it is not known if A is ITPFL

5.2. Decomposition of Conditional Expectation. In the above Theorem 5.1
the flow (X, F;) naturally arises as a common finite-to-one extensions of the flows of
weights of M and . Here, we will construct (two) intermediate algebras whose flow
of weights is exactly (X, Fy).

Let M D N be a pair of type III, (A # 1) factors and £ : M — N a normal
conditional expectatlon with finite index. Then a normal conditional expectation
E : M — N comes from the dual weight (or equivalently from the canonical trace)
and satisfies E o 0, =06;0 E. Thus, E extends to

é:ﬂ)‘lgR—*ﬁXaR.
More precisely, l% comes from the bidual weight z; (with ¢ = po F). By the Takesaki
duality, we have the conjugacy
M»xgRDON xR = M®B(L*R)) 2N B(LX(R)).
Via this conjugacy the bidual weight 1,2 is known to be transformed to ¥ ® Trg(L2(r))-

The conjugacy sends ¢ (which is a restriction of ¥) to ¢ ® Tra(L2(r)), and hence we
see that F is transformed to E ® I dp(12(R))-
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On the other hand, we claim
(M ® B(L*(R)),N ® B(L*(R)), E® Idgrewy) = (M,N,E).

In fact, from N one chooses matrix units {es;} and an isometry v with vo* = e, so
that

M@ B(L*(R)) = e;; Me; ® B(L*(R)) = M,
N ® B(L*(R)) ¥ ennNey @ B(L*(R)) & .

It is easy to see that these conjugacies send F @ I dp(r2(r)) to E because e;; and v
are taken from N. |
Therefore, we may identify (M 2 N, E) with (M xg R D N xR, E). We set

A=Mnz, B=NV Z with Z = ZMnAN").
We have /’VIVQ JZQ 52 ~, and.it is easy to see Z(.;l') = Z(g) =Z.

Lemma 5.3. E: M — N is decomposed into the following three conditional ez-
pectations:
G H F

Moreover, each of @, H , F commutes with the dual action 0.

Proof. Let x be a faithful normal state on A/. Notice

on xoF

v =0f and of%| g = 0£T°E~'IMQAT’ = id.

Therefore, we get the invariance
oXF(A)=A and oE(B)=8

The first invariance guarantees the existence of a conditional | expectation G:M—A
(uniquely) determined by x o E = (x o E)I io° G (and aon'“‘ = X°E | 7). From the
second invariance, there is a conditional expectation H : A — B determined by
(xo E)[A =(xo E)|3 o H. We finally set F = E|B B — N, which is obviously a
conditional expectation. Notice that the composition Fo HoG is a normal conditional
expectation from M onto N Since we have XOF'OFI oG = XOE’ from the construction,
we conclude E = FoHoG (since E is unique subject to the condition xoEoF = XOE).
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Let ¢ be a normal semi-finite faithful weight A/, and we set ¢ = p o E. Notice
that the dual weights 12), ¢ are related by

| p=@poE=¢poFoHoQG.
This shows that ) is semi-finite on A and B and that F . H , G come from @I B JJI A TZ)
respectively. We claim 6,0 Fof_, = F. Since M NN and its center Z (JTA/ NN") are

invariant under 6, so is A. Therefore, 8, o Fo 0_s is a conditional expectation from
M onto A. We observe

f&uo@soﬁo@_s=1,Z;|;Oﬁ09—s:1/;|joe—s="j)lﬁ

due to the fact that the dual weight is invariant under the dual action. Therefore,
by the uniqueness again, we get 6, o Fo 0_, = ﬁ, that is, Fo 0, = 050 F. The

commutativity with H and G can be proved in the same way. O

From the lemma we get

onRﬁzng—ﬁgxeRﬁﬁng.
G H F
Note that the composition of the three conditional expectation is E. Therefore, from

the discussion in the paragraph before the lemma we get the following theorem ([39]):

Theorem 5.4. Let M D N be type I11 factors, and E : M — N be a conditional
expectation with Ind E < oo. Then we can find subalgebras A,B such that M 2
ADBDN. Also E: M — N splits into the three conditional expectations

M—-A—B->N.
G H F

Let us investigate the covariant systems (crossed products by the relevant modular
actions together with the dual actions) of the three-step inclusions in Theorem 5.4.
appearing in Lemma 5.3. To do this, one should use the weight ﬁ; (on N = N xsR)
dual to the canonical trace tr A~/ on N. The proof is once again based on the Takesaki
duality (in a geggral form). It is important to notice that the associated modular
action oy “(:"GIW ) is the action dual to 6, (on N).  Therefore, we can use the
duality, which shows that the crossed product A », R is conjugate to N @ B(L2(R))
and the dual action on the former corresponds to 6, ® Adv(s)* on the latter with
the regular representation (v(s)f)(t) = f(t —s). Since (N, 0,) was the covariant
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system (of the original N), we can find a unitary w in N ® B(L*(R)) satisfying
I®v(s)* = w(l; ® id)(w*). For z € N ® B(L*(R)) we compute

w(fs ® id)(w zw)w* = w(b; ® id)(w*)(8s ® id)(x)(8, @ id)(w)w*
= (I ®v(s)") (0 @ id)(z)(I ®v(s)) = (6, ® Adv(s)*) ().
This means that 6, ® Adv(s)* is conjugate to 0, ® id via Adw. One then chooses

matrix units {e;;} and an isometry v with vv* = e;; from the fixed-point subalgebra,
N\ 0 ~
(/\/ ) = N. The discussion before Lemma 5.3 shows that (/\/ ® B(L*(R)),0, ® id)
and (./V , 95) are conjugate.
We can consider the conjugations in the preceding paragraph simultaneously for all
of M, A, Band N (and everything is compatible with inclusions) so that we conclude

Proposition 5.5. The covariant systems associated with the three-step inclusions
M—->A—B-o>N
e H F

wn Theorem 5.4 are exactly

Mo A—BoN
G " F
i Lemma 5.3.

We can show that the two finite-to-one extensibns in Theorem 5.1 come from
M D Aand B N respectively, and full details are left to the reader.

5.3. Structure Results for Inclusions of Type [I] Factors I. Let M N
be an inclusion of type III, (A # 1) factors with finite index. For simplicityv let us
assume M NN’ = CI. Theorem 5.4 says that we can split study of such inclusions
into the following three cases (by lookingat AD B,BDO N and M D A respectively):

1. M D N admit the common central decomposition
—_ D __ ~ ® _
M:/ M(w)dw, N:/ N (w)dw,
X ' X :

with the field {M(w) D N(w)}wex of type I factors. In particular, in the type

IITy (0 < X < 1) case we get the common discrete decomposition
MZANQZ:_)NZBNe)Z ‘ :

with A D B of type I1,, factors and 0 € Aut(A, B) satisfying tr o0 E = \tr 4.
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2. Z(M)=L"Xy x{1,2,---,n}) and Z(N) = L®(Xy).

3. Z(M)=L®(Xn) and ZN) = L®(Xpm x {1,2,--- ,m}).

Example 5.6. Let N be the Powers factor of type 111, with the Powers state .
Let Tp be the period of of (0%, = Id), and we set a = o7, 5 (a Zz-action on N). The
crossed product M = N x4 Z, is of type 1112, and the inclusion M 2 N is of the
above second type. On the other hand, the fixed-point algebra N is also of type
III,2, and N' D N“ is of the above third type.

The above second and third types are dual to the each other in the sense that one
goes to the opposite type by passing to the basic extension. In fact, with the modular
conjugation J of M we compute the basic extension of MD2A=MnZ (M NN
as follows:

J(MAZMNY) T =0 (MVZMnA)J
=MV JIZMNN)J = MV Z(M; N M).
Therefore, we here explain inclusions of just the second type. Those of the above
first type will be explained in §5.5.

Theorem 5.7. (Loi, [48]) Assume that E : M — N satisfies: (1) M is the Powers
factor of type II1I\n (0 < X < 1), (%) N is of type I11,, and (#1) Ind E = n, then
we have M NN" = CI. Furthermore, such a subfactor is unique up to conjugacy.
More precisely, M D N is conjugate to Ry Xo Zn, D Ry with the Powers factor R,
(of type I11,) and o = 0%, , where @ is the Powers state on R.

In the type I11, case, we have

Theorem 5.8. (Hamachi-Kosaki) Let M D N be AFD factors of type 111y of the
form M = A = B. Assume that E : M — N induces an n to 1 map between the
flows of weights

ZM) = L®(Xn x {1,2,---,n}), Z(N) = LX)

Then we have the following:
(1) Ind E=n and MNN"=CI,
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(46) Classification (up to conjugacy) of pairs M D N (described here) is equivalent
to that (up to strong conjugacy) of n to 1 extensions between the flows of weights,
(46)) M DN can be always written as M = PH D N = PG with a pair G D H of
a finite group and its subgroup.

The AFD assumption is of course irrelevant for the first assertion. Note that in
the type I11) case (i.e., in Theorem 5.7) the subfactor Ry can be expressed as the
fixed-point subalgebra of Ry X Z, under the dual Z,-action. However, in the type
I1ly case the subgroup H in the theorem cannot be avoided. Typical examples can
be found in §7 of [25] (where the symmetric groups &3 D &, appear).

5.4. Factor-subfactor Pairs Described by Equivalence Relations. We here
look at two typical inclusions described by the Krieger construction. The first one
comes from a factor map while the second comes from a subequivalence relation.
They are dual to the each other, and the constructions explained here are common
for all types. Typical examples of inclusions described in Theorem 5.8 (i.e., ones
of type 2 at the beginning of §5.3) are ones arising from factors maps (and in fact
always of this form in the AFD case). On the other hand, dual inclusions, i.e., ones
of type 3 arise from subrelations. Detailed study on inclusions considered here and
closely related (more general) ones can be found in [25] (see also [14, 64]).

(A) We begin with an inclusion arising from a factor map (i.e., an extension).
Let Sy € X? and Ry C Y? be two ergodic measured equivalence relations (with
countable orbits), and we use the subscripts X,Y to indicate underlying spaces.
Furthermore, we assume that the former is an n to 1 extension of the latter. This
means at first X =Y x {1,2,---,n} and a measure dux on X is the product of duy
on Y and the equally distributed probability measure on {1,2,--- ,n}. Secondly we
require that one can find an &,-valued cocycle a on Ry (i.e., a(u,v)a(v,w) = a(u,w)
for (u,v), (v,w) € Ry) such that the relation Sy is described by

z=(u,i) ~y=(v,j) (ie, (z,y) € Sx)
if and only if (u,v) € Ry and i = a(u,v)(j).
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x K
o

~_, 7~ 7

Figure 7 (picture of extension)

Let 7 be the projection from X onto Y. When (u,v) € Ry, each of points in the
fiber m~1(u) is Sx-equivalent to a unique point in 77(v) (determined by a(v,w)).
We also point out that two points in the same fiber 77!(u) are equivalent (in the
sense of Sx) only when they are the same point. o '

We set M = W*(Sx), the Krieger construction, and

N={LyeM; f(z,y) = fr(z), 7)) ((z,y) € Sx) with a function f on Ry},

which is a subfactor isomorphic to W*(Ry) via Ly «— L.

Lemma 5.9. Let A (&2 L>*(X)), B (= L*(Y)) be the Cartan subalgebras of M and
N respectively. Then, we have M NB = A and MNN' =CI.

Proof. Let us assume L_;, € MNB. The commutativity against arbitrary elements
in B means F(m(z))g(z, y)v: g(z,y)F(m(y)) ((z,y) € Sx) for each function F' on Y,
that is, | ‘
g(z,y) =0 aslongas m(z)# m(y).
Note that g is defined on Sx, and as noted above (z,y) € Sx satisfies 7(z) = 7(y) if
and only if z = y. Therefore, ¢ is supported on the diagonal D C X2, ie., L, € A
and the first assertion has been shown.

We now assume L, € M NN Since L, € MNN' C MNB = Aby the first
half of the proof, g is supported on the diagonal. We set G(z) = g(z, z), and note
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‘that from the commutativity of L, against L; in the above definition of A we have

G(2)f(n(2),7(y)) = f(n(z),7(¥))G(y) ((z,y) € Sx).

This means that the function G is Sx-invariant, and hence due to the ergodicity of
Sx it is constant. O
dm(z) _ dm/(n(z))

dm(y) — dm/(n(y))
on (m(zx),7(y)) € Ry. This means that A is invariant under the modular action

Notice so that the value of the module §(z,y) on Sx depends only
arising from we, with & = xp (thanks to 0, (L;) = Lguf). It is easy to see that
the orthogonal projection from L*(M) onto L2(N) = N&, is given by the following

averaging procedure:

. = : ~ _ 1 I
ex:Em & with Emy) =~ Y &y, (5.1)
(' y)esx
2’ en—1(n(x))
. y'en=1(n(y))
which implies that the corresponding (unique) normal conditional expectation E is
given by E(Ly) = L.
We introduce a larger equivalence relation R’y on X by

(z,y) € R (€ X?) if (m(x),7(y)) € Ry.

Note Sx C R’y (C X?), and all points in the same fiber 1 (u) are equivalent invth.e‘
sense of R'y. Since S is already ergodic, so is the larger R’y. The factor W*(RYy),

the Krieger construction, contains the subfactor
{L; € W*(R%); f is supported on Sx}, (5.2)

which is of course isomorphic to W*(Sx) = M. We note that E;(L;y) = Ly, ¢
(killing “components outside of Sx”) gives rise to a normal conditional expectation
from W*(R'y) onto the subfactor (5.2).
Let fo be the function on R’y defined by
N Lif r(2) = n(y),
o= { § =

0 otherwise.

It is easy to see that ég = Ly, € W*(RY) is a projection and F; (&) = £ I (since
(z,y) € Sx satisfies m(z) = 7(y) if and only if z = ).
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Proposition 5.10. The triple (W*(RY), E1, €y) satisfies the conditions in Theorem
8.12, and hence M; = W*(RY) is the basic extension of M D N with Ind E = n.
Here, M means the factor given by (5.2).

Proof. Let Ly € W*(R'y). Then, L¢éy = Ly.f,, and for (z,y) € R’y we compute

Fei)en)= Y f@abzn=" S (@) (63

(z,9)ERYy zen~ 1 (n(y))

from the definition of fo. We note E1(Lj€o) = Ly, (f+5,) and compute

((esx(fx f)) % fo)@y) = D (xsx(f * fo))(w, 2) fol2,)

(z,9)ERY

= 2 Y ey o)),

zen~1(m(y))

Notice that in the last sum only one 2z in 77! (7(y)) is Sx-equivalent to x (recall what

an extension means), and this unique point is denoted by p(z, 7(y)). Then, we have

((xsx (F * fo) * fo)(z,y) = %(f * fo)(z, p(z, (y)))-

Since 7(p(z,m(y))) = w(y), it is equal to nl‘?Z:zerl(w(y)) f(z,z) by (5.3), which is
the quantity (5.3) divided by n. Therefore, we have shown nFE;(Lsép)éy = Lsé, for
Ly € W*(RY).

We then take Ly from the subfactor (5.2). We have

Gorfrfden) == S fnz)

z€n~(n(z))
ze€r~1(n(y))
Since f is supported on Sy, only n of n? summands could be non-zero and we have
1
(foxfxf)@y)== Y. flapr®) (y)eRy). (54

zen—1(n(x))

From (5.1) we get E(Lf) = Ly, where the function f (on RY) supported on Sy is
-defined by

fan=- ¥ fepEmw) (@) €Sy,

zem~1(mw(z))
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Thus, by noting 7(p(z,7(y))) = 7(y), from (5.3) we get
(Frfden=— S flzw) (55

zen—(xn(z))
wer=1(n(y))

Since f is supported on Sx, (5.4) and (5.5) are actually the same and we have shown
éoLféo = E(Lf)éo for Lf in (52) O

(B) This time we start from two ergodic equivalence relations Sy € Rx (C X2) on
the same space X. We set M = W*(Ry), the Krieger construction and

N ={L; € W*(Rx); [ is supported on Sx}

which is isomorphic to W*(Sx). Note that M O AN contain the common Cartan
subalgebra A = L*°(X) so that

MNON' CMnNA = A

Thus, the ergodicity of Sy (corfesponding to N) shows M NN’ = CI. Note that
E(Ly) = Ly, s as above gives us a (unique) normal conditional expectation from M
- onto NV, and the corresponding orthogonal projection ey from L2(M) onto LX(N) =
N%€, is of course given by exé = Xsx§-

Since Sx C Ry, each (Rx)-orbit (Rx), is decomposed into several (Sx)-orbits.
Let #(x) be the number of (Sx)-orbits. The integer-valued function #(z) being
invariant under R, from the the ergodicity #(z) is constant (= n). This constant
n turns out to be Ind F.

Note that Sx acts on Rx from the left in the obvious way, i.e., (z,y) € Sx acts
like (2,2) € Rx — (z,7)(z,y) = (2,y) € Rx. Let X; be the space of the ergodic
decomposition of this action, that is,

X1 ={(z,U); z € X and U is an (Sx)-orbit in the (Rx)-orbit (Rx),}.
Note that (z,U) € X; — z € X is an n to 1 map. From the measure dux on X
we define the measure dux, by dux, (z,U) = tdux(x). Assume (z,U),(y,V) € X3
satisfy (m(z,U),n(y,V)) € Rx, ie., = and y are (Rx)-equivalent. Therefore, U,V

are (Sx)-orbits in the same (Rx)-orbit (Rx), = (Rx),- We now introduce an
equivalence relation Sk, on X:

(= U), (4, V) € Sk, (€ X?) if (¢,y) eRxandU =V.
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We note that Sy, is an extension of Rx. In fact, when = and y are Rx-equivalent,
we look at the fibers

™ Hz) = {(z,0h), (z, ), - , (z,U,)},
7T_1(y) = {(y7 ‘/1), (ya ‘/2)’ T (y’ Vn)}

Note that both of the U;’s and the V;’s exhaust the n (Sx)-orbits in the (Ry)-orbit
(Rx)z = (Rx)y. Thus, each of U;’s is the same as exactly one of V;’s and this
determines the &,-valued cocycle a at the beginning of (A).

Let M; = W*(S%,), the Krieger construction. We get the subfactor

{Ly e W (Sx,); f((z,U)w,U)) = f(z,y) (z,y) € Rx) (5.6)

with a function f on Rx}

isomorphic to M = W*(Rx) as in (A), S%, being an extension of Rx. Moreover,
we have the normal conditional expectation E; given by (5.1). More precisely, let
Ly € W*(S%,), and we notice that if Ey(Ly) = L, then the function g((z,U), (y,V))
depends only on (m(z,U), 7(y,U)) = (z,y) € Rx. From the definition of the relation
Sk

, and (5.1) we easily see

9((z,0), (4, U)) = §(z,y) with §(z,y) Z F((z, W), (y, W),
" Wémx)e (5.7)
Le., the average over (Sx)-orbits W in the (Rx)-orbit (Rx), = (Rx),. (Remark
that f is defined on S, so that U = V' always.)
Let fi be the function on S, defined by

1 ife=yelU,
0 otherwise.

(@, 0), (0,0)) = {

Note the above first condition meéns z =y and U must be the (Sy)-orbit (Sx),. We
set &, = Ly, € My, which is a projection. We easily see E;(é;) = % 1.

Proposition 5.11. The triple (\W*(SY,), E1, é1) satisfies the conditions in Theorem
3.12, and hence My = W*(SY,) is the basic extension of M O N with Ind E = n.
Here, the factor M 1is the one given by (5.6)
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Proof. Let Ly € W*(S¥,). We compute
(f*fl)((x’ U)(y7 U)) = Z f((x7 U),(Z, U))fl((za U)’(ya U)) (58)
(U)W U))esy,

_ { g((w,U),(y,U)) ifyeU,

otherwise,

from the definition of f,. Thus, we see Ey(Lsé;) = L, with g((z, U), (y,U)) = g(z,vy)
and

. 1 1

g(zy) =~ Yo (F )W)y, W)) = —f (2, (Sx)y)(y, (8x)y))

We(Rx)x

from (5.7). Now (5.8) says (g * f1)((z,U), (y,U)) can be non-zero only when y € U
and in this case we get

(9+ f1)((2,U), (v, V) = 9((z,U), (y,U)) = g(z,y) = %f((x, (Sx)y) (¥, (Sx)y))-

Thus, we have shown nE;(Lé,)é, = L;é for Ly e W*(S%,). :
We take L; described in (5.6) (together with f). Almost the same computation as
(5.8) shows |

o

otherwise.

(fox £+ fo)((z, U), (3, U)) = { f(2,0),(y,0)) = f(z,y) if z,y €U,

Let E(Ly) = L, with g((z,U), (y,U)) = §(z,y). By (5.8) we get
(g% 1)((2 U)(w, 1) = { o(( V). 0) = 3(ap) iy e U

otherwise.
However, from the definition of E we have § = xs, f. Also note if (z,y) € Sx and
y € U then one gets = € U. Therefore, we observe that the preceding two convolution
products are the same, i.e., & Lsé; = E(L;)é& for Ly in (5.6). O

Example 5.12. ([24]) Recall the construction in Example 2.14 from a non-singular
ergodic flow {F},cr on (I',m). We assume that {F,},cg is an n to 1 extension of
another (automatically ergodic) flow {F!},cr lives on (I, m’ ). In that example we
introduced the action of G = Q x Z on the product space X = I'x ¥ x R (see (27)) ’
Note that one can also introduce the G-action on Y = IV x ¥, x R in the same way
(but by using F instead in (2.7)). Of course the former action is an n to 1 extension
of the latter. Therefore, from this we get Sy (= (Sx)¢) and Ry (= (Ry)g), and -

of course the former is an n to 1 extension of the latter in the sense specified at
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the beginning of (A). Therefore, as in (A) we get the pair M = W*(Sx) 2 N of
factors (where N is the one defined as in the paragraph before Lemma 5.9 and it is
isomorphic to W*(Ry)). The resulting inclusion is irreducible with index n and of
the type described in Theorem 5.8, i.e., M = A= B.

To see this, we look at th inclusion M D N of von Neumann algebras of type
Il (i.e., the crossed products with respect to the relevant modular actions). As
explained in §2.3 they appear as the Poincaré suspension. Namely, let X=XxR

and X = X x R, and we consider the equivalence relations

SX (C (X )?) = the equivalence relation generated by (2.8),
'Ry (C (Y)?) = the equivalence relation generated by (2.8) with F}, instead.

From the construction it is plain to see that :S; is an n to 1 extension of 72; and
that the inclusion of algebras arising from this extension as in (A) is exactly M2ON
(although they are no longer factors due to the lack of ergodicity). Note that the

arguments in the proof of Lemma 5.9 show
| Z(M) = MnN' (= ZMnNY).
Therefore, the relevant expectation induces a map from Z(M ) Z (M NAN") onto

Z (./\7 ), and it is plain to see that this is exactly the n to 1 extension Fy, — F, we
started from. Hence, the index between A and N is n, and we conclude M = A = B.

Let M D N be the inclusion in the above example, and M; be the basic extension.
By Proposition 5.10, M; D M is an inclusion described in (B), i.e., the one arising
from R’y 2 Sx, a relation-subrelation pair. Let X = X x R. By passing to the
Poincaré suspension, we get the relation-subrelation pair 7/2\'/ D Sy in (X )2 (Whlch
are not necessarily ergodic unless in the I11; case), and the inclusion M; D M of
algebras of type Il is

W*('E’;) D {Ls € W*(E’;); f is supported on Sx}

described in (B). Since they contain the common Cartan subalgebra (isomorphic to
L>®(X)), as before the relative commutant M; N M falls into this Cartan subalgebra
and

MM = Z(M).
The flow of weights of M; (= the one for ) appears as a factor flow of that of M,
which is exactly F;, — F. in Example 5.12. This happens because ’RN’X has more
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relations than 3‘; and hence the space of the ergodic decomposition of the former is
smaller than that of the latter.

5.5. Structure Results for Inclusions of Type III Factors II. Here we con-
sider inclusions of the first type described at the beginning of §5.3. Assume that
A 2 B is an inclusion of type I1; factors and N is a type I11 factor. Of course the
very simple-minded inclusion N ® A D N ® B of type II] factors is of the above
first type. An important problem here is: For an inclusion M 2 A of the first
type how do we decide if it splits into the tensor product as above ? In the type
ITI, (0 < A < 1) case, quite a satisfactory answer can be found in [49, 60] (see also
[34)). '

Before going further, let us recall graphs canonically attached to an inclusion in
question ([16]). Let M D N be (type II1) factors with finite index, and

NCMCIM CM;C---

be the Jones tower as usual. Since Ind(E o Eyo---0 E,) = (IndE)"*! < oo, each

M, NN is finite dimensional and we get the increasing sequence
NN CMAN CM NN C---

of finite dimensional higher relative commutants. Hence it is described by a Bratteli
diagram, which yields the principal graph. Similarly from

MM MM MNMC---

we get another graph, the dual principal graph. When IndE < 4, the two graphs are
known to coincide. Furthermore, in this case the following Dynkin diagrams appear

from inclusions:

An (n Z 3), D2n (n Z 2), Eﬁ, E8
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A, o —e e o —— - - —o o (n vertices)
Dyy o&—o—o—@o — - - —- (2n vertices)
FEs y—c—I——o———a

Es . . . ? . . '

|

Figure 8 (Dynkin diagrams)

We assume that M D N is an inclusion of type IT1, (0 < A < 1) factors (of the first

type). As noted before we get the common discrete decomposition
M:A)GgZQN:BNgZ.

Note that A D B is an inclusion of type Il factors with the index equal to IndE,
and this gives rise to the principal and dual principal graphs again. For convenience
let us call them type II graphs. On the other hand, the graphs coming from the
original inclusion M D N is referred to as type III graphs in what follows. Note
that the trace-scaling automorphism 6 € Aut(A, B) can be canonically extended to
the basic extensions A, (of A D B). Indeed, the extensions are specified by the
requirement that they fix the successive Jones projections. Note that the (extended)
0 gives us an automorphism on A, N B'.

When E is a minimal conditional expectation (automatic when Ind £ < 4 or more
generally when M NN’ = CI), we have

M. NN = (4. NB) .

In fact, this follows from M, N B = A, N B’ (and this happens because a trace-
scaling automorphism is strongly outer - - - see §6.4, 3). The action of 0 on the tower

of higher relative commutants is called the Loi invariant or the standard invariant
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(of ). For simplicity let us assume that Ind E < 4. For example when the type
IT graph is A,, all of A, N B’ are generated by the Jones projections so that 6 acts
trivially on A, N B'. Similarly (by looking at relevant trace values) we also observe
that no graph change occurs for Es and Eg. The only (type II) graph admitting a
non-trivial Loi invariant is Da,, and the invariant is described by

e g

Figure 9 (non-trivial Loi invariant for D)

In this case the type /1] graph “shrinks to” A4,—3. The meaning of graph changes
was completely clarified in [32] by making use of the sector theory.

The discussions so far imply:
(i) if the type [1I graph is one of A,, (m # 4n —3), Da,, Es, Fg then the type [T
graph is the same and no Loi invariant,
and (ii) if the type III graph is Ag,_3, then the type I graph is either Dy, or'
Asn—3. Of course the Loi invariant is as above in the former case while it is trivial in
the latter. The classification result of Loi and Popa (when Ind F < 4) states

Theorem 5.13. Let M 2 N be an inclusion of Powers factors of type 111, (0 <

A < 1) (of the first type) with Ind E < 4.

(i) If the type I1I graph is one of Apm (m # 4n—3), Doy, Es, Es then this inclusion
splits into the tensor product (a,s explained above).

(#) If the type 111 and type II graph are both Agn_s, the inclusion splits again,
(#5) If the type I1I and type II graphs are Agn_3z, Doy respectwely, then a subfactor

is unique (up to con]ugacy) subject to this condition.

Of course a model inclusion for the case (4i¢) can be constructed in an explicit
fashion. Description is particularly easy when n = 2 (i.e., Ind E = 3 and the graphs
are As, Dy). Let a: &3 — Aut(Ry) be a (unique) outer action of the symmetric
group &3 on the hyperfinite [1; factor Ro. In the crossed product Ry X G5 =
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(Ro, Ag)” we consider the two subfactors .

Ao = Ro Xa A3 2 By = Ro,
where 23 = Zs is the subgroup generated by the 3-cycle (1,2,3). We also consider
the automorphism 8 = Ad Aq2) € Aut(Ag, By) of period 2. Let A; be the basic
extension of Ag O By. Then,

AiNBy = ; a,bceCp (2L7(As))

oo
o oo
o oo

is generated by the three projections es,, A1,2,3)€8,A(123) A(1,2,3)2€B0A(1 2,32, Where
eB, = (§ g §) is the Jones projection. Remark that the (extended) 3 switches the
last two projections because of (1,2)(1,2,3)(1,2) = (1,2,3)2, which means that 3
acts on 4; N By as in the above figure (with n = 2). Let Ry = Ro1 xg Z be the
discrete decomposition of the Powers factor. Then, the discussions so far imply that

the inclusion
(Ro1 ® Ao) Xogs Z 2 (Ro1 ® Bo) Xogs Z,

serves as a model inclusion.
Another description for (Ao, By, ) is also possible. At first we consider

Co =Ro Xa 63 2 Dy = Ry Xq Ga.

Then the (one-dimensional) “signature representation” € of G3 gives us the automor-

phism 7 of period 2 for the above pair

Te(z) = Z €(g)zgAy for z= Z ZgAg € Cop = Rp X Gs.
9€63 g€6G3

We set Ay = Cy X, Z2 and By = Dy X, Zs, and let 3 be the dual action of 7, €
Aut(Ag, Bp). The triple consisting of these also does the job.
- As was explained so far subfactors (with index say less than 4) in the Powers factor

are quite rigid although they are slightly less rigid than those in the hyperfinite 11;
factors. On the other hand, situation is completely different in the (AFD) type I1],
case, where one can usually distinguish uncountably many non-conjugate subfactors"

(see [41, 44] for typical examples).
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6. SECTOR THEORY

The theory of super selection sectors originally occurred in QFT ([9], see also [61])
This was further polished by R. Longo, and it played an fundamental role in his
approach on index theory ([51]).

At first we recall that an M-M bimodule X means a Hilbert space (= X =
mAXm) equipped with commuting representations of M and its opposite algebra M°
(it is called an M-M correspondence by A. Connes, see Chap. V, Appendix B,
[6]). The representations of M, M° give rise to left and right M-actions, and we
use the notation m; - £ - my to indicate them. Two M-M bimodules are said to
be unitarily equivalent when there exists a surjective isometry (between the two
underlying Hilbert spaces) which intertwines both of the left and right M-actions,
and unitarily equivalent M-M bimodules are sometimes identified.

Assume that M is a type III factor throughout with the standard Hilbert space
H = L?(M). Let End(M) be the unital (normal) *-endomorphisms of M into itself.
For each p € End(M) we consider the commuting normal representations of M and
M° on the standard Hilbert space H defined by

my - & - mg = p(my)Jm3JE (for m; € M and € € H),

where J (= Ja) denotes the modular conjugation. This M-M bimodule is denoted
by H,. Assume that two M-M bimodules H,,, H,, (p1, p2 € End(M)) are unitarily
equivalent, i.e., there exists a surjective isometry u : H,, — H,, satisfying

u(my - € - mg) = my - (u€) - my.

Note H,, = H,, = H as Hilbert spaces, and the compatibility between the right M-
actions forces u € (JMJ)" = M. Next, the compatibility between the left M-actions
means up;(m) = pa(m)u for each m € M, i.e., inner conjugate p; = ups(-)u* with
a unitary u € M. Therefore, we have seen that H,,, H,, are unitarily equivalent
(as M-M bimodules) if and only if p;, p2 are inner conjugate. In [51] the author

mentions that the following important observation is due to A. Connes.

Lemma 6.1. Any M-M bimodule X is unitarily equivalent to 'H, for some p €
End(M).
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Proof. At first note that any representation is faithful since M is a factor. We denote
the left and right M-actions on X (i.e., the representation of M and that of M°)
by m¥, ¥ respectively. Let m;, 7, be the usual representation and anti-representation
of M on the standard Hilbert space L2(M) = H (i.e., m(m) = m is the GNS-
representation and m,.(m) = Jm(m)*J = Jm*J). Ignoring the left M-action on X at
first, we regard that M° is (faithfully) represented on X by 7. On the other hand,
M is also represented on the standard Hilbert space H by .. Since M° is of type
111, the two representations of M° are spatially implemented. Thus, there exists a
surjective isometry U : H — X satisfying ¥ (m) = Um,.(m)U* (m € M). We note

(M) Ca¥(M) = Ur, (M)U?) = (UIMJIU?Y = UIM JU* = UMU",

where the first inclusion comes from the fact that the left and right actions commute.
From the above we have U*rj*(M)U C M, and hence p(m) = U*n¥ (m)U gives rise
to an endomorphism of M. The M-M bimodule H, is unitarily equivalent to X via

U. In fact, we compute

U(my - €-mg) = Up(my)JImsJE = UU*W[Y(ml)UJmEJﬁ

= 7 (m1)Ume(ma)€ = 7 (my)m ¥ (ma)UE = my - (U€) - ma,

(where my - £ - my and my - (UE) - my of course indicate the actions on H, and X

respectively). O

We define p; ~ p; when they are inner conjugate, and we set
Sect(M) = End(M)/ ~, the sectors.

A class [p] is called a sector (or M-sector). When no confusion is possible, we simply
write p (instead of [p]) to ease the notation. The discussions so far show that (for a
type I11 factor) study of M-M bimodules up to unitary equivalence is completely
the same as that on sectors.

From p € End(M), we get the inclusion M 2 p(M) (both considered to be acting
on M). Since p(M) is also a type 11 factor, it acts on M standardly. This means
that we have the modular conjugation J,rq) of p(M) on the same Hilbert space H.
Let v be the canonical endomorphism defined by

v = AdJypy : M — p(M)
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(see [50]). Since v(M) C p(M), we can set
p(m) = p~toy(m) (me M),
which is an endomorphism of M. Its class [p] depends only on that of p, and we set
[o] = (7], the conjugate sector of [o]-
Recall that the contragredient M-M bimodule X of an M-M bimodule X means
the conjugate Hilbert space X (= {¢; ¢ € M} with a& + 8¢, = aé, + B& and
(&1,8) = (&,€1), etc.) equipped with the following M-M action:

my-€-my=mj-€-m (for m; € M and £ € X).

In the bimodule picture, passing from p to the conjugate sector 5 corresponds to
considering a contragredient bimodule.

Lemma 6.2. The bimodule H; arising from the conjugate sector p is unitarily equiv-
alent to the contragredient bimodule H, of H,.

Before going to a proof, we point out that an endomorphism p always admits an
implementation as another consequence of being type I7I. In fact, we choose and
fix a faithful normal state ¢ on M, and set ¢ = ¢ o p™' € p(M)}. Let ¢ = wg,
(resp. ¢ = wgé) with a cyclic and separating vector & € L*(M) for p(M) (resp.
¢ = we, with a cyclic and separating vector & € L%(M) for M). Then, the map
m& € M& — p(m)é; € p(M)E; gives rise to the unitary U on L*(M) (due to
Yo p=¢). Note that

UzU*p(y)é1 = Uzyés = p(zy)ér = p(z)p(y)é;

for each z,y € M. The subspace p(M)&; being dense, we get p(z) = UzU* (z €
M). Let Sp, Spay be the S-operators (in the modular theory) associated with
(M, &), (p(M), &) respectively. Note ' ‘ AN

USmU*p(m)& = USymés = Um*&y = p(m)*€, = Sprmyméy ’
for each m € M, showing US\U* = Sp(my. Therefore, we have US\U* = US\U* =

Sp(m) by passing to the closures and hence we conclude
UJU* = Jymy (6.1)

by the uniqueness of the polar decomposition.
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Proof. The contragredient M-M bimodule ’H is the oppos1te Hilbert space L2(M)
equipped with the M-M action

m 'Z'm2 =mj-§-mj= p(m3)JmyJE.

On the other hand, the M-M bimodule H; associated with p € Sect(M) is the
Hilbert space L?(M) with the M-M action £ — p(m)JmbJE. Before the lemma
we saw p = p~ ! oy = Ad(U*Jpa)J); and hence this action is
p(my)JmiJE = U JynyJmad JynUJmiJE

= JU " IJmyJUJJIm3JE

= JU*JImy JUmM3JE

= JU*JmiJp(m3)UJE

= JU"p(m3)Jmy JUJE.
Here the last equality comes from the fact p(m3}) € p(M) (C M) and JmyJ €

JMJ = M’ commute. Now it is plain to see that the surjective isometry ¢ €
L*(M) — UJE € L2(M) gives rise to the desired unitary equivalence. O

Passing to the contragredient bimodule twice 0bv1ously means that one come back

to the original bimodule so that we get
Corollary 6.3. We have p = p as sectors.

What makes the use of bimodules so useful is the notion of relative tensor products.
Namely, from two M-M bimodules yXr, mYm One can construct a new M-M
bimodule s X @ MY M, called the relative tensor product (over M). The rigorous
definition of this notion is based on the spatial theory ([5]) and hence somewhat
involved (see [62]), however it is relatively easy to show (and it is intuitively trivial)
that the standard Hilbert space p(L%(M)uq (ie., H = H;q) with the standard left
and right M-actions (i.e., m - £ - my = myJm3JE) is the multiplicative unit for the
operation @ :

MLEAM) M @t M = MM Om mLEM) pt = mXpm.

What is relevant to define the underlying Hilbert space structure for the relative
tensor product are the “inside” M-actions (i.e. Xy Qm m)), and the “outside”
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M-actions are used to introduce an M-M action on the relative tensor product.
Anyway, the standard left and right M-actions give us
LY (M) © 4 mLA(M) = LE(M),

and this is the only thing we need in what follows.
In the sector picture taking a relative tensor product simply corresponds the usual

composition operation, which is a great advantage of the sector theory.

Lemma 6.4. Forn,( € Sect(M) we have
H,®m He = Hey  (as M-M bimodules).

Proof. For p € Sect(M), by H? (= H as a Hilbert space) we denote the M-M
bimodule equipped with the following “opposite” action

my - & - mg = myJp(m3)JE.

We at first claim that H? and H, are unitarily equivalent. In fact, by recalling
p = AdU* JysmyJ, we see that the M-M action on H” is given by

mlJﬁ(m’z‘)Jf = mljU*Jp(M)JmZJJp(M)UJS
= mJJU ImyJUJJE  (by (6.1))
= mU"Im3JU¢
= U*p(my)JIm3JUE,
where the last equality comes from p = AdU. Therefore, the implementing unitary

U (for p) gives rise to the desired unitary equivalence, and the claim is proved.

From the claim we see
HyOrmHe =H, Om HC_,

and note that the Hilbert spaces here are all L?(M) and the inside M-actions in the
above right side are the standard ones. Therefore, wee see that H, ® HS is the
standard Hilbert space L?(M) equipped with the M-M action

n(ma)J¢(m3) J€
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(see the paragraph before the lemma). Let V' be the implementing unitary for ¢ with
VJ = JemV (see (6.1)). We repeat the computations in the first half to get
n(my)J¢(m5)JE = n(m) IV JeimyImad JeaanV JE
= n(my)JJIV*Im5JV JJE = n(m)V*Im3JVE = V*((n)(mi) Jms JVE.

showing that V' gives us a unitary equivalence between H, ® M HE and He,. a

We point out that H, ®m Hz’appearing in the above proof is also unitarily equiv-
alent to H™. In fact, let W be the implementing unitary for n with WJ = JyyW
(see (6.1)), and hence the M-M action of H™ is

miJ(7C)(m3)JE = muJW* Jyan JC(m3)J Tyan W JE
= mW*J((m})JWE
= Wn(mi)J((m3)JWE.
Note that this action is unitarily equivalent (via W) to the action appeared in the
second half of the above proof (i.e., the one for H,, @ HE).

We notice that the formula H” @ HS = H; @ HS = H™ is valid, by changing
7, ¢ to their conjugates (see Corollary 6.3). We then observe

Hez = HT = H @M H = He OpmHy = Ha.

This means f_ﬁ = H, (as sectors), and by taking the conjugates of the both sides
(recall Corollary 6.3), we get

Lemma 6.5. We have (i} = n¢ for n,¢ € Sect(M).

This result corresponds to the well-known fact X @, Y = Y @ X for bimodules.
The algebra of self-intertwiners of an M-M bimodule H, (p € Sect(M)) is the

relative commutant
Hom(H,, H,) = {T € B(H,); T(m1-& -mg)=my-TE ma}
e = MnpM). "
In fé,ct, the compatibility between the right M-actions forces T € (JMJ)' = JM'J =

M as was pointed out before, and then the compatibility between the left M-action
implies Tp(m) = p(m)T for each m € M, i.e., T € M N p(M). The above fact
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means that H, is irreducible as an M-M bimodule if and only if M N p(M)" = C1.
In this case, p is called an irreducible sector.

From now on we just consider sectors p such that the inclusion M 2 p(M) admits a
normal conditional expectation F (and most often we consider the case when IndE <
o). The square root of the minimal index [M : p(M)]o (see §3.3) of the above
inclusion is called the statistical dimension of p

T ,
dp = +/[M: p(M)]o (E {2005 (;{) in=23,4,--- } U2, +oo]) ,

which is by definition the dimension dim ™, of the M-M bimodule H,. Let M D

N D L be a two-step inclusions of factors, and E: M — N, F : N — L be the

minimal expectations. The composition F' o E' being minimal as pointed out in §3.3,
the minimal index is multiplicative

IM: L]y = Ind (F o E) = (Ind E) x (Ind F) = [M : No]\" : L.
Let p1,p2 € Sect(M) (or more precisely their representatives from End(M)) so
that M D pi1(M) D p1pa(M). The second inclusion is conjugate to M D py(M)

(via p1), and they obviously have the same minimal index. Therefore, we get the
multiplicativity of statistical dimensions

d(p1p2) = dp1 dps.

6.1. Irreducible Decomposition of Sectors. At first we explain what the (direct)
sum of sectors is. For py, py € Sect(M),

meM— ("I(Om) pZ(Om)) € M® My(C)

is a homomorphism. Let v;,v, € M be isometries with orthogonal ranges summing
up to I. Of course they give rise to the usual identification map ® : M ® M,y(C) —
M given by [y;;] — Z” viyi;v; (With the inverse ®~!(z) = [vfzv;]). The above
homomorphism followed by @ is

p: meM — vip(m)v] + vepe(m)vy € M,
which of course gives us an element in End(M). The class of p depends only on the
classes [p1], [p2] (and not on the choice of v;’s). The sum p; @ p, is defined as (the
class of) p. Via ® the inclusion M D p(M) is conjugate to

M® M(C) 2 {(plg)m) pz(Om)> me M}
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(so that the minimal index of this inclusion is (dp)?). Notice that the projections
p1 = ((1) 8) and ps = (8 (D are in the relative commutant. It is obvious that the

reduced inclusions arising from py, p, are M 2 p;(M) and M D p2(M) respectively.
As was seen at the end of §3.3 (see (3.8)), we have dp; = dp x E(p;) (i = 1,2) (where
E is the relevant expectation) and get the additivity of statistical dimensions

d(p1 @ p2) = dp1 + dpa.

When dp < oo, the inclusion M D p(M) is of finite index so that the relative com-
mutant M N p(M)’ (i.e., the algebra of self-intertwiners of H,) is finite-dimensional,
and hence (as in the representation theory) one can perform the irreducible decom-
position for p as will be seen below.

Let {p;}i=12,.. » be minimal prOJectlons in M N p(M)" summing up to I. Then
we choose and fix isometries v; € M (i = 1,2,--- ,n) satisfying v;v; = p;. We set
pi = vip(-)v; € Sect(M) (it is an endomorphism since p; = v;vf is in the relative
commutant). Assume x € M satisfies the intertwining property zp;(m) = p;(m)z

for each m € M. Then, we have
zv; p(m)v; = vip(m)viz = vizv; p(m)p; = pip(m)vizv]
= vvi:w; p(m) = p(m)v;zv],
showing v;zv} € ,, (M N p(M)'),,. Thus, v;zv] = Ap; (A € C) by the minimality of

p; and = = v} (v;zvf)v; = M. Therefore, we have seen that each p; is an irreducible

sector. The obvious intertwining property v;p;(-) = p(-)v; shows

n
vaz m)v} *Zp m)v;u; = p(m),
i=1
which means
P=p1Dp2®D--- D pn.

When p;, p; belong to different central summands in M N p(M)’, then they are
disjoint (i.e, admit no non-trivial intertwiner). In fact, an intertwiner  between p;
and p; satisfies vizv} (= pivizvy = vizvip;) € M N p(M)" as before. Then, the

“assumption forces v;zv; = 0 and hence z = 0. On the other hand, when p;, p; belong

to the same central summand, on can find a unitary v € M N p(M)’ satisfying

up;u* = p;. The isometries uv; and v; have the same range p; and (uv;)*p(-)(uwv;) =
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vip(-)v; = p;. Notice also that U = v}(uw;) is a unitary and U (uv;)*p(-)(uv;)U* =
vip(-)v; = p; so that we have seen p; = p; as sectors. ,

Note that an irreducible sector 7 appears in the irreducible decomposition of p (the
standard notation 1 < p will be used) if and only if one finds a non-zero intertwiner
v € M: vn(m) = p(m)v (m € M). In fact, when this condition is met, by taking
unitaries m € M we observe ‘

vo* = vn(m)n(m”)v* = p(m)vv*p(m”),

v'v = v*p(m*)p(m)v = n(m)v*on(m).
Thus, we see vv* € M N p(M)" and v*v is a scalar (due to the irreducibility of 7).
Hence, when v is normalized (||v|| = 1), it is an isometry with the range projection

in M N p(M)" and we get n < p (i.e., one of the above p;’s is the same as 7 as a
sector).

6.2. Basic Extensions. Let M 2 N be an inclusion of (type I11) factors with finite
index acting on the standard Hilbert space L2(M). Recall that the basic extension is
My = JN'J = JIyN JyJ, and the next basic extension (i.e., the one for M; D M)
is
My = T, M Iny = Jpy IMIT I py,
Let & be a common cyclic and separating vector for M D N, and we may assume
J = Jme and Jy = Jyg,. As noted above, we have M; = UNU* with U = JJIy.
Since U¢&y = &, it is also a cyclic and separating vector for M;. By considering the
S-operator associated with (My, &) and the polar decomposition of the closure, we
see Jyp, = UJyU*, that is, |
Im, = JInd.

Hence, we compute
Mo = JINJ(IMI)JInd = JIyMIpJ.
Similarly, we see Jyp, = (JJn)J (JyJ) and
Iy Iy, = (JINTINT)(JInT) = JIpr.
Therefore, we get
M3 = Jp,(M1) Iy = Ity Ity Mi Iy I,
= Inme Ity (JINMINT) Ity I, = Ad(JIn)* M,
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and so on. In this way we observe that the Jones tower is described by
N € M C Mi=AdJIy)N) € My=Ad(JJIy)(M)

C M;=Ad(JIy)2(N) C My= Ad(JJy)H(M)

C M;s=Ad(JIv)}N) C M= Ad(JJy)3}(M)

N

Down-ward basic extensions are
M = IvM' Iy = InIMI Iy = (M),
Ny = IWM Iy = INJINN'InT Iy = INnIN Ty = y(N),
N3 = IWMydy = InJINM Ind Iy = InJ In I MIT Iy Iy = ’)’2(M),

and so on. Therefore, down-ward basic extensions give us the following tunnel of

factors:
M2 N 2y(M) 29(N) 274 (M) 2¥*(N) 2 ---.
We now assume p(M) = N so that v = pp and the above tunnel becomes
M2 N = p(M) 2 pp(M) 2 ppp(M) 2 pppp(M) 2 - --

(In particular, we have dp = dp.) The decomposition rules for p, pp, ppp, pppp, - -
are described by the following algebras (of self-intertwiners):

MnpM) = MnNN' — M nNM
MnNppM) = MNN] «— M;nM
= MNON] «— MsnM

M ppp(M)’

via AdJ. Similarly, the decomposition rules for p, pp, ppp, pppp,- - - correspond to

MNOpM) = pM)NppM)" «— MNN
MnNpp(M) = p(M)Nppp(M) «—— M NN
= pM)Npppp(M)' «—— Myn N’

M N ppp(M)’

via AdJy (and the first identification 2 is given by p).

From the discussions so far, we conclude that the decomposition rules for
Ps PP, PPPs PPPP; -,
Ps pﬁa pﬁP? pﬁpﬁv e

are described by the principal and dual principal graphs respectively.
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In Ocneanu’s approach on subfactor analysis ([54, 55]), the following four kinds of

bimodules are important:

N (Mi)xr, mLAME)n, AL (M) ity L2 (M) s

where {M}} denotes the Jones tower. We point out that they correspond to

(20)%, (pp)*p, (PP)*p, (pD)*
respectively. We note that , arising from pp = v € Sect(M) is unitarily equivalent
to the M-M bimodule pL?*(M) . In fact, since M, is also acting on H = L2(M)

standardly, we have H = L?*(M;). Since Jy, = JJyJ as was seen before, the M-M
action on H = L?(M,) is given by

my - & - me = mypmydan§ = myJInImyJInJE = Ty (my)Imb Iy J€

because of v = Ad(JxJ). Obviously this action is unitarily equivalent (via JyJ) to
that of H,. We then see "

ML (Ma) = ML (Mi) pt @it LA (M) g = Hy @ s My = Hop,

- and so on ([57]). In this way, we see that (pp)* corresponds to pL?(M;y) . Similar
things can be done for other three kinds of bimodules with the identification between
M and N via p, and full details are left to the reader.

We remark that pp (= ) always contains the identity sector. A “sector-theoretical”
proof can be found in [51], but this happens because of the presence of the Jones pro-
jection. The Jones projection ex (= Jr emdag, ) sits in M’, which means that e,
is an intertwiner for the M-M bimodule x(L?(M;) . Note eps(L2(M;)) = L3(M),
which is nothing but the definition of the Jones projection. Note that the restriction
of the M-M action myJr,msJay, (on L*(M;)) to the subspace is obviously the
standard one on L?(M). Thus, the M-M bimodule 5(L?(M; ), contains the trivial
bimodule p(L?(M)r = Hiq. By using this fact for 5, we have id < pp, i.e., there is
an isometry v € M satisfying the intertwining property vm = pp(m)v (m € M). A
crucial observation in [51] is that from the intertwining property the map

m € M — p(v*p(m)v) € p(M) (6.2)

is a conditional expectation.
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6.3. Frobenius Reciprocity. As explained so far sectors arise naturally from a sub-
factor, and decomposition rules for them (fusion rules) contain enormous amount of

information. A very useful fact on fusion rules is the following Frobenius reciprocity:

Lemma 6.6. Let . ¢, p € Sect(M) be irreducible sectors of finite statistical di-
mensions. Then p < n¢ if and only if ¢ < 7p.

Proof. The statement is symmetric so that we just prove one direction, and let us
assume the existence of an isometry u satisfying up(m) = n¢(m)u for each m € M.

Consider the two-step inclusions
M 2 n(M) 2 n¢(M)

with (unique) conditional expectations F; and E,. From the projection p = uu* €
N(n¢(M))" we get the reduced inclusion pMp 2D (n¢ (M))p, which can be rewritten
as |
uMu® 2 (n¢(M))uw” = u(p(M))u".
Note that it is conjugate to M D p(M) via Adu* so that the index of the reduced

inclusion (i.e., the local index) is (dp)?. The local index formula (§3.3) thus says

FroEslp) = 5y = - Snce Ex(p) it in nM)N(C(M)Y = n(MOC(M)) =

we actually have Fi(p) = dnd(

Let v be an isometry satisfying vm = fjin(m)v (m € M) so that we have F;(m) =
n(v*n(m)v). We thus have : ‘
e = By(w’) = n(w (o)

Since 7 is faithful, this means ——3— = v*7(u)f(u*)v, and 77( *)v is an isometry mul-

tiplied by the square root of -5 dn T This is an intertwiner between ¢ and 7jp by the

following computation based on the intertwining property for v and that for v:
v (u)np(m) = v i(up(m)) = v A(n¢(m)u) = v*H(n¢(m))i(u) = ((m)v*i(w).
a

" The explicit construction of intertwiners in the above proof is important to deal
with connections in the paragroup theory ([54, 55]).

Remark 6.7. The fact p; < ps <= p; < P2 (where the irreducibility of ps is not

assumed) is obvious in the bimodule picture. But we can show this by repeating
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similar arguments as in the above proof, and we indeed construct an intertwiner
in an explicit fashion. By symmetry we assume up1(m) = pa(m)u for an isometry
u € M. With isometries v, w € M satisfying

vm=ppi(m)v and  wm = pypy(m)w,

we compute uvm = up1py(m)v = papr(m)uv. By applying 5, to the both sides, we
get p2(uv)pa(m) = Papep1(m)pa(uv). Then, by hitting w* from the left, we get

w* B () Ba(m) = w* oo (M) pa(wv) = py (m)w* iy (wv).

Hence, py(v*u*)w is an intertwiner between 5, and ps, and it remains to show that
this intertwiner is non-zero. To see this, we recall that the isometry uwv intertwines
id and pap1. We set ¢ = uvv*u* € M N pp; (M)’ and note pyp; (M)q = voMv*u*.
Therefore, the reduced inclusion gMg D pypy(M)q is trivial and hence E,E, (9) =
d—plld—pz by the local index formula, where E; : M —s py(M) and E, : p2(M) —
p2p1(M) are minimal expectations. Since py(M) D poiy (M) is irreducible, F(q) is

a scalar and E(q) = L.

1
dp1dps

By making use of the expression (6.2) for E;, we get

= Ei(uwv'u) = po(w*po(uvv*u®)w),

showing m = w”pp(uwvv*u*)w. Therefore, /dpidp, pa(v*u*)w is an isometry inter-
twining p; and ps. '

Thanks to the remark, we also have the following dual version:

p=nC = n=<p.

In the principal and dual principal graphs, a vertex appearing at a certain level is
known to appear in two steps below. In the sector (or bimodule) picture going two
steps further down means to hit p and then p from the same side (or the other way
around). Therefore, this phenomenon is exactly the Frobenius reciprocity. Also note
that (if p is irreducible) the conjugate sector 7 is characterized as an irreducible sector
n satisfying id < pn (or equivalently id < np).

Several versions of Frobenius reciprocity are known (see [67, 68] for example, where
bimodules are considered). The following version for (not necessarily irreducible)

sectors is quite handy:



86
Theorem 6.8. For sectors (,n,p € Se‘ct(M)of finite statistical dimension, we have
dim Hom(¢n, p) = dim Hom/(¢, p7f) = dim Hom(n, {p).
Here,
Hom(py. p2) = {x € M; zp1(m) = po(m)z for each m € M}

is the space of intertwiners.

The result readily follows from Lemma 6.6 since dim Hom(-,-) is obviously additive
in both variables (with respect to ®).

6.4. Applications of the Sector Theory. Let N/ C M be an inclusion of factors
with finite index. To compute many invariants for subfactor analysis, we may and
do assume that AN and M are isomorphic (type III) factors. In fact, one can find
a factor £ such that N ® £ and M ® £ are isomorphic (see Lemma 2.3, [52]) and
then one can consider N ® £L C M ® L instead. In the rest we assume that N, M
are isomorphic.so that N’ = p(M) with some p € End(M).

1. Non-occurence of E7 and Do, 41
When index is less than 4, the Dynkin diagrams A, (n > 3),Ds, (n > 2), Es, Es
occur as principal graphs. However, the Dynkin diagrams Ds,41, F7 cannot occur,
and this fact can be easily seen from the sector theory.

Assume that N/ = p(M) C M possesses the Dynkin diagram Ds

5
id I Q

v

Figure 10 (Dynkin diagram Ds)

Since the statistical dimension dp is the Perron-Frobenius eigenvalue of the corre-

sponding incidence matrix, we know

dp =205 () (= 2+ v2)

(see [16]). Since pp = id & o, we see
do = (dp)* =1 =14+ V2.
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We notice
ap=p+pf+7, fp=a, vp=a

(From the last two relations we see d3 = dy = ‘;—‘; = g%;_l. Then, the first relation

says ((dp)? —1)dp = dp + %ﬁ, from which we easily get dp = /2 + v/2.) Notice

_d_a_ﬁ_\/i=1_306...<2

A Va1 2
Therefore, this value has to be one of 2cos (%)’s (n = 3,4,---). However, this is
impossible since the value is smaller than v/2 = 2cos (%), and hence actually the
Dynkin diagram Ds cannot occur.
The above simple but powerful argument was first used in [50], and is known as
the “2cos(m/n)-rule”. We can also eliminate the Dynkin diagram E; based on the
same rule. With a little bit more careful argument one can actually see that Dz.nH’s

are also impossible, and details can be found in [29].

2. Goldman type theorems

Assume that a factor M is equipped with an outer action o : G — Aut(M) -of
a finite group G, and we consider the irreducible inclusion N' = M% C M. Then,
the basic extension M is the crossed product M x, G and My N M’ = °(G) ‘(see
Theorem 4.3). Actually we have the converse.

Theorem 6.9. Let N' C M be an irreducible inclusion of factors with indezx n. If
MyNM' is an n-dimensional abelian algebra, then we can construct an outer action
on M of a group G of order n such that N' = MC.

Proof. Let N' = p(M) (p € End(M)) be as usual, and recall that M, N M’ is the
algebra of self-intertwiners of pp. The assumption means

pP=01Das P -- P ay,.

Since d(pp) = n, each q; is of statistical dimension 1, i.e., a; € Aut(M) (or more pre-
cisely [o;] € Aut(M)/Int(M)). Generally, (when p is irreducible) a one-dimensional
sector « satisfies & < pp if and only if ap = p (thanks to the Frobenius reciprocity).

From this characterization, we see that these one-dimensional a’s form a (finite)
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group. Hence, the above [a;]’s form a group G of order n and we write
pp = Z@[a’g] (with [ag, Jlag] = [agg))-
- g€G
Since [agp] = [p] € Sect(M), after inner perturbation we may and do choose a
representétive a, € Aut(M) in such a way that a,p = p € End(M) (and a, = id ).
We claim that o : g € G — a, € Aut(M) is an (outer) action. In fact, we note
Qg Qgy = Qg, g, 8S sectors so that a,, oy, = Adu o ay,,, as endomorphisms (with some

unitary u € M). From the choice of a,’s, for each m € M we compute

up(m)u* = uay,g,p(m)u* = ag ag,p(m) = aglp(m) = p(m).

Thus, u € M N p(M)’ is a scalar so that we see ay 0y, = a4, as desired. Note
N C M@>G) C M, and we conclude N = M) (by comparing indices). O

When [M : N] = 2, we have MNN’ = CI and MoNM' = C®C. Therefore, the
assumption in the theorem is automatically satisfied with n = 2 and hence N' = M?%2
or equivalently M = A xZ,, which is known as the Goldman theorem [15] (see [28, 30]
for more sophisticated Goldman type results).

In the above example N' = M® we had pp = 3 € ®a, and a,p = p. Hence all
the irreducible components appearing in powers of (pp) already appear in pp. Such an
inclusion is called an inclusion of depth 2. When N’ C M is an irreducible inclusion
of depth 2, then N is the fixed-point Subalgebra of M under a Kac algebra (whose
dimension is [M : N]) action. This result is due to A. Ocneanu and proofs can be
found in [12, 31, 53, 65].

3. Non-strongly outer automorphisms
Importance of automorphisms in (pp)™ for subfactor analysis was first pointed out in
[29] (see also [30, 32]). Here, we characterize automorphisms appearing in (pp)".
Let N'C M be as usual with a minimal expectation E. When an automorphism
6 € Aut(M,N) is given, we have § o E = E o 0 by the uniqueness of a minimal
expectation. Thus 6 is uniquely extended to an automorphism of the basic extension
M; (still denoted by 6) subject to the condition §(ex) = ex. Similarly, 6 is extended
to all the basic extensions {My,}n=12.. Let 0 : G — Aut(M;N) be an (outer)

action of a (discrete) group G, and consider the inclusion

B-:N)GOGQA:MXQG.
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As was seen in Proposition 3.13, the n-th basic extension A, is given by A, =
M., X G so that n-th relative commutant is

A NB = (M, 3 G) N (N x4 G)'.

We begin by computing (M,, xg G) NN’. An element z = > gec Tghg € My %9 G
belongs to this relative commutant if and only if

ang)\g = Z TgAgn = Z To0,(n)A,

geG geG g€eG

for each n € NV, that is, for each g € G we have nz, = z404(n) (n € N).

Definition 6.10. ([1, 60]) An automorphism 6 € Aut(M; N) is called strongly outer
of the following condition is satisfied for each k: we must have z = 0

whenever x € My, satisfies nz = z0(n) for eachn € N. (6.3)

An action 0 : G — Aut(M;N) is called strongly outer if each automorphism
8, (g # e) is strongly outer.

The above discussion shows that when the action @ is strongly outer we have

(Myn 49 G)NN" = M, NN and hence
A, NB = (M, NN")°.

We begin with an even integer k = 2n and assume that z € M., satisfies (6.3),
that is, 20p(y) = p(y)z for y € M. Since My, = Ad(JJy)"(M) (see §6.2), this
means that Z = Ad(JyJ)"(z) in M satisfying Z(pp)"0p(y) = (pp)"p(y)Z, ie., T €
Hom((pp)"0p, (pp)™p). The Frobenius reciprocity says

dim Hom((pp)"0p, (0p)"p) = dim Hom((pp)"0, (pp)™*') = dim Hom(8, (pp)>"*").

Hence, the condition in Definition 6.10 breaks for Mo, if and only if § < (pp)2n+.
The above characterization remains valid regardless of the parity of k. In fact, let
us assume that z € My, satisfies (6.3). Then Z = Ad(JyJ)"*'(z) € N satisfies

2(pp)" ' 0p(y) = (0p)"'p(y)@ (for each y € M).

By hitting o~ to the above both sides, we see that Z = p=(Z) € M satisfies

(pp)"pp(y) = (p)"*(y)Z,
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that is, z € H om((ﬁp)”ﬁep, (pp)™*1). Once again the Frobenius reciprocity shows
that the condition in Definition 6.10 breaks if and only if 6 < (pp)?"*? thanks to

n+1) _

= dim Hom(6p, p(pp)2"*)

dim Hom((pp)" pbp, (pp)
= dim Hom(6, p(pp)*"*'p)
= dim Hom(6, (pp)*"*?).

Therefore, we have shown

Theorem 6.11. ([1, 40, 42]) An automorphism 6 € Aut(M; N = p(M)) is strongly
outer if and only if § does not appear in U (pp)*. More precisely, the strong outerness
of 6 breaks at My, if and only if 0 < (pp)F+!.

See [35] for “analytic characterization” of non-strongly outer automorphims and
[60] for classification of strongly outer actions.



91

APPENDIX A. CONDITIONAL EXPECTATIONS AND OPERATOR VALUED WEIGHTS

For the reader’s convenience basic facts on conditional expectatlons and operator
valued weights are summarized here.
1. Connes’ Radon-Nikodym cocycles
Let v, o be (fns) weights on a von Neumann algebra M. Then one can construct
a continuous one-parameter family {(Dy; Dyo):}icr of unitaries in M satisfying

= (Dg; Dipo)10f°(-)(Dy; Dyg); and the following o%°-cocycle property:
(D@3 Dpo)ers = (Dp; Dipo)sof®((Dp; Dipg),)  for each ¢, s € R.

The construction of these unitaries are based on the celebrated 2 x 2-matrix trick due
to Connes, and {(Dy; Dyg):}ser is called Connes’ Radon-Nikodym cocycle. More-
over, the converse theorem is alsq valid. Namely, if {u;}:cr is a continuous one-
parameter family of unitaries in M with the above o¥°-cocycle property, then there
exists a unique weight ¢ on M such that u; = (Dg; Dyy);.

2. Extended positive part
The extended positive part M. ([18]) is the set of all lower semi-continuous (in the
o-weak topology) maps m : M; — [0, 00] such that

m()\lcpl + )\2(,02) = /\1m(<,01) + )\gm((pz) for p; € M: and \; >0

(with the convention 0 x co = 0). When M = L®(X), its extended positive part is
the set of [0, co]-valued functions.
Each z € M admits the spectral decomposition z = f0°° Adey, and the map

mg: @ € Mf — p(z) =/0 Adyp(ey) € [0, 00)

gives rise to a (“finite”) element in M+. Therefore, we get the natural imbedding
M, C M+. Conversely, each m € M, admits the spectral decomposition

m{g) = / " Mop(es) + 00 x plew) (o€ M2)

Note that the above right side becomes the familiar quantity [ Ad(e,&, &) + oo x
(ex€, &) when M C B(H) and ¢ is a vector state we. The projection 1 — eq; (in M)
corresponds to the closure of the subspace {¢£ € H; m(we) < oo}.



92

3. Conditional expectations

In the rest we assume that an inclusion M D N of von Neumann algebras is given.
Let ¢ be a weight on M. Takesaki’s theorem is: If ¢ | is semi-finite on N and
of(N) = N for each t € R, there exists a conditional expectation £ : M — N
satisfying 9o E = ¢. We have 67 |y= o} v , and furthermore F is uniquely determined
by this requirement. .

Let ¥ be a weight on M. Then the restriction of the modular automorphism
0% to N is of. Thus, 07°F leaves N invariant and induces an automorphism
of M N N". The restriction of 0?°F to M NN’ does not depend on ¥, and it is
denoted by of. For another conditional expectation F;, the Radon-Nikodym cocycle
(D(3 o E1); D(¢ o E)); belongs to M NN’ and it does not depend on . This
Radon-Nikodym cocycle is denoted by (DE;; DE); € MNN.

Assume that there exists a conditional expectation from M onto N. Let E(M,N)
be the set of all conditional expectations from M onto N. For each E € £(M, N),
its restriction to M NN’ is obviously a conditional expectation from M N AN’ onto

Z(N). The map
Ee€c EM,N) — E |pnv€ EMNN', ZN))

is bijective (Combes-Delaroche, [2]). In particular, when N is a factor, E(M,N) is
parameterized by the (faithful) state space of M N A’. Hence, when M NN’ = CI
in addition, we have a unique conditional expectation (if any).

4. Operator valued weights
An operator valued weight F : M, — N, (roughly speaking, an unbounded gener-
~ alization of a conditional expectation) means an additive homogeneous map satisfying

the bimodule property
F(ymy*) = yF(m)y* form € M, and y € N.

Here, J\7+ is the extended positive part in 2. Notions such as normality, semi-
finiteness, and faithfulness can be introduced as in the theory of weights, and we
consider only normal semi-finite and faithful operator valued weights. Note that if
F(1) = M with XA > 0 then A"'F(-) is a conditional expectation (after linearly ex-
tended to M in the usual way). For a weight ¢ on N the composition % o F' is

a weight on M and o/°" = ¢ on. . The following important result is due to
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Haagerup ([18]): Let ¢, be weights on M, N respectively. If o7 (y) = o¥(y) for

y € N, then there exists a unique operator valued weight F satisfying o =1 o F.
For weights 1,1 on N we have o7°" (y) = o¥(y) for each y € N and (D(¢ o

F); D(¥10 F)); = (Dy; D) € N. The modular automorphism of € Aut(MNN")

and the Radon-Nikodym cocycle (DFy; DF); € M NN are defined analogously.
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