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Preface

On Feb. 23-24, 1998 “ International Workshop on Mathematical and
Physical Aspects of Nonlinear Field Theories ” was held at Seoul National
University.

The main topic was mathematical and physical theories on vortices and
monopole solutions in various self-dual gauge field theories.

The purpose was to make environment for fruitful exchange of ideas be-
tween theoretical physicists and mathematicians working in those areas.

We would like to thank for all the speakers for their inspiring lectures and
contributions to this volume.

We would also like to thank Daewoo Foundation, Global Analysis Re-
search Center and Center for Theoretical Physics for financial support.

Finally, we express our deep thanks to Hee-Seok Nam for helping us to
edit this proceeding.

Dongho Chae and Sung-Ki Kim
Department of Mathematics

Seoul National University
Seoul 151-742, KOREA
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Nonlinear Problems in Field Theories*

Yisong Yang
Department of Applied Mathematics and Physics
Polytechnic University
Brooklyn, New York 11201, USA

There are many interesting and challenging problems in the area of classical field
theories. This area has attracted the attention of algebraists, geometers, and topol-
ogists in the past and has begun to attract more analysts. Analytically, the area
offers all types of differential equation problems which come from the two basic sets
of equations in physics describing fundamental interactions, namely, the Yang-Mills
equations governing electromagnetic, weak, and strong forces, reflecting internal sym-
metry, and the Einstein equations governing gravity, reflecting external symmetry. Of
course, a combination of these two sets of equations gives us a theory which couples
both symmetries and unifies all forces. In these lectures, I will present some of the
problems that I have been interested in which involve elliptic equations.

1 Self-dual cosmic strings

Cosmic strings arise as finite-energy static solutions of the coupled Einstein and Yang-
~ Mills-Higgs equations in which the gravitational metric housed over a Riemann sur-
face M and field configurations are independent of time and a third vertical variable.
Such a structure leads to energy and curvature concentrations at the centers of strings,
around which matter accretion takes place, which provides a mechanism for galaxy
formation. Mathematically, Abelian self-dual strings are well understood.

Let us begin with the Abelian Higgs model for which the energy density and
momentum tensor are given by

1 .0 1 . _ 1
E = Zg” gkk F}kl;},k,+§g]ijuDku+§(lu'2_E2)2, (11)

! Lt 1 = .
T = ¢ k Fjj Fyp + E(DjuDku + DjuDyu) — g;i€, (1.2)

where u is the complex Higgs field, A; (j = 1,2) is a real vector gauge field, Fjr =
0, Ay, — Ok A; is the magnetic field induced from A;, ¢ > 0 is the Higgs vacuum

*Lectures at the International Workshop on Mathematical and Physical Aspects of Field Theories
held at Seoul National University, Feb. 23 — 25, 1998.
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expectation value which determines the energy breaking scale of the model (or how
far the temperature is below the critical temperature), and g = {g;x} is the unknown
gravitational metric of a two-surface M to be determined by coupling the Einstein
equations and the gauge field model (1.1). In fact, if we use K to denote the Gauss
curvature of (M, g), the coupled Einstein and gauge field equations are equivalent
[43, 44] to the self-dual system derived by Linet [27] and Comtet-Gibbons [10]:

K, = 8nG¢, (1.3)
Dju = —iefDyu, (1.4)
sijjk = & - |ui2’ (15)

where G > 0 is Newton’s constant which is of the order of 10~%°. To find a solution
with N strings located at the prescribed points

P1,P2," PN, (16)

we need to obtain a finite-energy solution of (1.3)—(1.5) so that u vanishes exactly
at these points. Egs.(1.4) and (1.5) are simply the well-known vortex equations for
the Abelian Higgs model [17]. It is the presence of the Einstein equation (1.3) that
introduces many surprises.

Compact M : Let dS), be the canonical surface element of (M, g). Since the energy
is quantized according to

| £dq, =netn, (L.7)
M

integrating (1.3) and using the Gauss—Bonnet theorem, we have the constraint
x(M) = 4e®’GN. (1.8)

However, topologically M is a sphere with n handles and x(M) = 2 — 2n, thus the
only possibility is n = 0 and M = S?. Inserting x(S?) = 2 into (1.8), we obtain the
quantization of symmetry breaking scale,

1
FTEN T oG

Another interesting thing is that the string number N now affects existence. More
precisely, it can be shown that when N > 3, there are N string solutions with
prescribed locations p’s, whereas, when N = 2, a solution with 2 strings each sitting at
one of the poles exists [22, 45], but when N = 1, there does not exist a solution which
is symmetric about its string. In fact, it can be shown that there is no symmetric
solution for any N if all the points p’s listed in (1.6) coincide [45]. Hence I propose

N=1,2---. (1.9)

Open Problem 1.1. Is a l-string solution on S? symmetric with respect to
its string? If the answer is yes, then it implies that there is no 1-string solution
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in any compact setting. More generally, is an N-string solution on S? symmetric
about its point with N superimposed strings? If the answer is yes, it means in
view of the above nonexistence result that multi-centered strings are necessary in our
gravitational system to balance each other and avoid an energy blowup.

Noncompact M: The simplest case is when (M, g) is conformally Euclidean or
(M, g) = (R €"6;x). There are also obstructions to existence.

For radially symmetric N-string solutions, it has been proved [8, 43, 44] that there
exists a finite-energy solution if and only if the string number N satisfies

1
< ometG
Therefore, weaker gravity (smaller G) allows more strings. In particular, when gravity
is switched off by setting G = 0, there can be any number of strings, which coincide
with the classical existence theorem obtained in [17] for superconducting vortices.
The condition (1.10) is an energy constraint.
For multistrings, it has been shown [43, 44] that, in our category of field config-
urations, there exist solutions representing N prescribed strings which give rise to
geodesically complete metrics if and only if the string number N satisfies

1
< —F.
~ 4A7me?@
Thus, gravity also affects global topology in a noncompact setting. The condition
(1.11) is therefore a topological constraint.

(1.10)

(1.11)

Open Problem 1.2. Prove the existence of multistring solutions for the string

number N in the range
1

are?G N< 2me?G’
Technically, the condition (1.11) comes from a suitable L,-convergence require-
ment in the existence proof. We need p > 1 which is ensured by assuming (1.11).
Recall that in the compact case, multistrings with distinct location points p’s
in (1.6) exist for N > 3, in contrast to the nonexistence result for superimposed
N strings with radial symmetry. This feature suggests that (1.10) may only be an
obstruction to the existence of radially symmetric solutions. Hence I propose

(1.12)

Open Problem 1.3. Can it be shown that there are finite-energy multi-centered
N-string solutions for N beyond the range stated in (1.10)?

Note that these strings are magnetic objects with quantized flux, energy, and total
curvature, ®, F, and K, expressed by

5 [ *Ewday=2nN, [ £d9,=ne'N, [ K,d0,=8xGN. (113)

Let me next present a recent result on the coexistence of M strings and N anti-
strings which satisfy the revised quantization formulas of the form,

® =21r(M - N), E=2re!(M+N), K=16n%>G(M + N). (1.14)

-3 -



The energy density of our string-antistring model is rewritten as

|
5 = Zg]] gkk F}kﬂ/kl

2 kD Dra) 4 L (L lelY?
+ mg k(Dju)(Dgu) + 5 (1 n |'U'|2) , (1.15)

where we have set € = 1 to simplify our discussion. The coupled Einstein and gauge
field equations are

K, = 8rGE, (1.16)
Dju = —iefDyu, (1.17)
1 1— |ul?
kg, = —— 1.1
2% T T T (1.18)
Given the sets of points
P = {plap2a"',pN}a Q= {qlaq21”"QM}7 (119)

we are to look for a finite-energy solution (g,u, A;) of the equations (1.16)—(1.18)

for which the points p’s and ¢’s are (simple, for convenience) poles and zeros of u,

respectively. We shall see that the points ¢’s and p’s indeed give rise to M strings

and N antistrings.

Firstly, let B = e* Fj;/2 represent the induced magnetic field. Then (1.18) leads

to ‘
B(g)=1, j=12,---,M; B(p)=-1, j=12,---,N, (1.20)

which says that the magnetic field at ¢’s and p’s are oriented along opposite directions.
Next, we specify the case that (M, g) is conformally Euclidean, g;x = €"d;x. With
the substitution v = In |u|?, the equations (1.17)—(1.18) become a single scalar one,

Av = 2eﬂ(‘; ; i) 47r25,,, + 47r25q,, (1.21)

s=1

where 6, is the Dirac distribution concentrated at p € R?. In order to determine the
conformal exponent 7, we need to consider the Einstein equation, (1.16).
It is known that the Gauss curvature K, now can be written in terms of n as

K, = -ge—w,. (1.22)

Besides, in view of (1.17), (1.18) and Fy, = —Awv/2, we have

1— |ul? 2e"
) Z(1Dul? + |Dyul?)

= “nE
£ = < Fa(TTian) * T

_ (Av[e —1]+ ”IVvl"’)
= e \Zlerll T




away from the points p,’s and g,’s. Since £ is a smooth function, the above expression

indicates that we can compensate the singular sources at p;’s and g¢’s to arrive at the
relation

eE = A(ln(1+e")—-u)+27r25 rorSs,, (1.23)

s=1 s=1

which is now valid in the full R?. Inserting (1.22), (1.23) into (1.16), we see that

1
+In(l+e€") — —v+21n|x p,|+Zln|x—q3|

16 167G 2 =

is a harmonic function, which we assume to be a constant. Consequently the metric
is determined by

M 87G
e = ((1+e,,)2HI ~nl?Ile-al?) (1.2

Here go is an arbitrary constant. Note that the metric (1.24) is everywhere regular.
Thus, only infinity is to be concerned, and, at the vortex and anti-vortex points, g,’s
and p,’s, respectively, we have opposite associated magnetic field as expected,

Fiz(gs) = €"%) >0, Fi(p,) = —e") < 0. (1.25)

Recall that we are interested in solutions in the broken symmetry category so that
v=0or |u|? =1 at infinity. This fact and (1.24) imply the validity of the following
global inequality in R%:

Cr(1 + |a]) 1N < 1) < Cy(1 + | THEmEMEN), (1.26)

where Cy, Cy > 0 are suitable constants. The inequality (1.26) enables us to draw the
- immediate conclusion that a solution leads to a geodesically complete metric if and
only if the condition

1

M+N< — (1.27)

holds. Thus, in sense of a complete metric, the numbers of strings and antistrings
play equal parts and a large number of strings (either type) or strong gravity (large
Newton’s constant G) will make the metric incomplete. It is interesting to compare
(1.27) with (1.11).

An existence theorem can be proved exactly under the condition (1.27) by substi-
tuting (1.24) into (1.21) and solving the resulting governing equation using techniques
from nonlinear functional analysis [47]. Besides, it can be shown that the solution
approaches the asymmetric vacuum sufficiently fast and the magnetic flux is given by

the formula
o= / Fia= /kz

) (1.28)



This result confirms that the two types of vortices counter-balance each other mag-
netically like charged particles.

We then calculate the energy. By completing quadratures and applying (1.17),
(1.18), we can represent (1.15) as

1
2
where J;, = 0;J; — OxJ; and the new 2-current density Ji is defined by

1 . .
£ = §eJ’°F,~k + e Jix = e " Fyp + e Jps. (1.29)

Ji z (uDgu — Dy u). (1.30)

i
T l4u
Using (1.28) in (1.29), we have

E = [£d40, (@Q,=eds) = /k? Fia + /k Jiz
N
= 27(M — N) + lim f Jedz — 3 lim Jedzg.  (1.31)
PO J|z|=p

s=1 p—0 |z—ps|=p

Note that in (1.31) all path integrals (circulations of current) are taken counter-
clockwise. The asymptotic estimates for a solution near infinity first imply that the
second term on the right-hand side of (1.31) is zero. We now concentrate on the last
term on the right-hand side of (1.31) which counts possible energy contributions from
the antistrings at p;, ps,---,py but not from the strings at ¢i, ¢s, - - -, gar because Ji
is regular there.

To calculate the circulations near the antistrings, we may use Dju = udv and
Dyu = iudv to get

L (p) - j{t—p I=p Ji A7

= if [uf* ([0 — dlvdz, — i[0 + Alvdzxs)
lz—pal=p 1 + |ul|?
ev
= ﬁx_p,|=p 1ter (—agvda:l + Blvdxz). (132)

However, near p,, v can be expressed as
v(z) = —In|z — ps[* + ws(2), (1.33)

where w; is a smooth function. Inserting (1.33) into (1.32) and letting p — 0, we
obtain

lim I,(p) = —4,

which implies [ Ji3 = 47w N. Hence, we arrive at the quantized energy

E =2r(M +N) (1.34)
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as desired. From this result and the Einstein equation (1.16), we derive also the
quantized total curvature,

K= / K,dQ, = 167°G(M + N). (1.35)

When gravity is switched off, G = 0, strings and antistrings are vortices and an-
tivortices. An existence and uniqueness theorem may be proved for arbitrary numbers
of vortices and antivortices and the same flux and energy formulas hold [46, 47).

The results (1.28), (1.33), and (1.34) imply that there is a symmetry between
strings (vortices) and antistrings (antivortices). Here we observe that such a symme-
try can be broken by an external field. To see this, we switch on a constant magnetic
field along the z3 axis, say B = (0,0, H). The energy density isnow &' = £ —e " F,H.
Hence (21) and (32) lead us to

E = / £'dQ, = 2rM(1 — H) + 2rN(1 + H). (1.36)

If 0 < H < 1 (subcritical), the expression (1.36) says that strings are energetically
preferred over antistrings; similarly, if —1 < H < 0, antistrings are preferred over
strings. Consequently, in either case, the excited magnetic field Fj; chooses to be
aligned everywhere along the same direction of the applied field B. In other words,
no matter how weak the external field is, its presence breaks the symmetry between
strings and antistrings.

At the first sight, the obstructions (1.11) and (1.27) are rather different restrictions
to the total numbers of strings in the two models. However, in terms of energy or
total curvature, these obstructions are in fact identical,

1
ESZ@ or K <27 {1.37)

Open Problem 1.4. Find multistring solutions, which now define noncomplete
metrics, when (1.27) is violated. Besides, how would the obstruction (1.10) look like
for the model (1.15) with either M strings, or N antistrings, in terms of radially
symmetric solutions? In particular, will (1.10) in terms of

1 .
E<§—C—;— or K<dn (1.38)

continue to hold for either strings for antistrings with radial symmetry?

A Mathematical Application _

Suppose that ¢ : R — S2 is well behaved so that ¢ has a limiting image at
the infinity of R2. Then ¢ may be viewed as a homotopy class in m2(S?) so that
it is characterized by an integer called the degree, deg(¢), of ¢ which measures the

number of times S? is being covered by itself (S? = R?U {oo}) under ¢. Analytically,
deg(¢) can be represented by the integral

= a9 @6 A 0) - am
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It is therefore conceivable that (1.39) may not be an integer when ¢ does not have
a definite limit at the infinity of R%. Here, we show that our string (vortex) and
antistring (antivortex) solutions may be used to realize the topological integral (1.39)
as any half integer of the form n + 1/2.

In fact, let (u,A;) be a solution of our model representing M vortices and N
antivortices. Using a stereographic transformation of the form

2 2 1—|uf?

¢ = TP Re(u), ¢.= T+ Im(u), ¢3=W’ (1.40)

we get a map ¢ = (¢1, 92, #3) : R*> = S2. From (1.40), it is seen that the zero and
poles of u are mapped into the north and south poles of S?, respectively, and that the
vacuum space, |u| = 1, becomes the equator of S2. Thus, as |z| — oo, ¢(z) rotates
around the equator of S?, and (1.39) may fail to be an integer.

Indeed, we can show that the integral, I, has the explicit value

I= %(M+N), (1.41)

which takes half-integer values unless M = N mod(2).

Field theory origin

With (1.40) and the gauge-covariant derivative D; ¢ = 0j¢ + Aj(n A ¢) where
n = (0,0, 1) denote the north pole of 52, the model (1. 15) comes from a version [46]
of the gauged sigma model of Schroers [33], with broken symmetry, of the form

1 il ! 1 ; 1
E= Zg” g FyFyp + §gjk(Dj¢) - (Dxo) + §(n - 9)2. (1.42)

2 Electroweak solitons and functional analysis

We are interested in soliton-like solutions in the Weinberg-Salam theory [23] which
is a unified model for electromagnetic and weak interactions. We will describe some
analytic work concerning the existence of vortices and dyons (monopoles). The main
technique in the solution of these problems is the calculus of variations. More pre-
cisely, we shall look for critical points of a certain class of action functionals with
integral type multiple constraints.

The gauge group is SU(2) x U(1). To generate solitons, it suffices to consider only
the bosonic sector so that the Lagrangian density is of the form

1
L= Z(F*: Fu+G"Gu) + (D 9) - (Dug) + A(|@* — €2)?, (2.1)
where ¢ is in the fundamental representation of the gauge group, hence is a complex
doublet, and the field strength tensors Fy, and G,, lie in the Lie algebras of SU(2)

and of U(1), which is R, respectively, and D, is the gauge-covariant derivative. Here
we choose not to discuss (2.1) in detail but only mention that unified electroweak
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forces are characterized by several structural parameters, including the weak coupling
constant g, positron charge e, mixing angle 6, as well as the Higgs vacuum value ¢ > 0.

Vortices: In order to isolate physical properties, we need to specify the so-called
unitary gauge. In this gauge the electroweak interactions through P photons, medi-
ating electromagnetic forces, and W, Z bosons, mediating weak forces, are placed on
a correct stage.

It was first found by Ambjorn and Olesen in [1, 2] that when the critical condition

g2

~ 8cos? 0

is satisfied, the full equations of motion of the electroweak model in the unitary gauge
has the following reduced form,

(the Higgs particle mass = the Z particle mass) (2.2)

D1W = —iDgVV, (23)
_ g 2 : 2
P, = TandC + 2gsin |W|°, (2.4)
_ 9 2 2 2 -
Zyy = 2cos0(|¢| €%) + 2g cos O|W*, (2.5)
cosf
Zj = ———g Ejkak In |¢12, (26)

over a two-dimensional periodic domain, 2, where
D;W = ;W —ig(P;sin6 + Z;cos )W, Pj, = 0;P, — Ok F;.
Existence of N-vortex solutions. For any points p;,ps,:--,pn € §, if the

" equations (2.3)—(2.6) have a solution (¢, W, P;, Z;) so that W vanishes exactly at
 these points, then

4N g%
22 —— < Z—. 2.7
ge < 9] < cos?9 (2.7)
Furthermore, if in addition to (2.7), there holds
4rN  8msin’0
o < TS 8

then (2.3)-(2.6) have a solution (¢, W, P;, Z;) so that W vanishes at p1,p,--,pN. @
never becomes zero, and both the total energy and magnetic flux over (2 are propor-
tional to N.

Note that, when N = 1,2, (2.8) is contained in (2.7), and thus, (2.7) is a necessary
and sufficient condition for existence of an N-vortex solution.

Another interesting fact concerning (2.7) is that, in order to have a solution, the
number of vortices, N, should be neither small nor large.

_9__



Open Problem 2.1. Improve the sufficiency condition (2.8) for existence.

The proof [36] uses a multi-constrained variational principle and the Trudinger—
Moser inequality of the form

/nef<C’(s)exp ([ ]/lVflz) /Qf=0. | (2.9)

It is the optimal constant 167 in (2.9) that imposes on us the restrictive condition
(2.8) in our associated minimization problem. Thus, to overcome (2.8), one might
need to look for saddle points instead.

Using the substitution f = In|W|?, w = In|#|?, we have the governing equations

N
Af = —4g%f — g% +47r2<5pj, (2.10)
Jj=1
Aw = 2% +—I _(e¥ — 2.11
w g°e’ + 5 082,()(e € (2.11)

on the torus 2. To proceed, we mtroduce the functions ug and U = e*® where u,

satisfies
4 N
AUQ IQI +47TE JPJ

Now define v = f — ug. Then (2.10) and (2.11) become

Av = —4g2Ue’ — gPe® + 4;;;" (2.12)
2 ' 2
= v Y — g%). 2.
Aw 29°Ue” + 5 0820(6 %) (2.13)

It is hard approach (2.12), (2.13) directly. Our trick is to use the transformation
v =v+2w, vy =0,

to change the system into a “lower diagonal” form,

Av, = —Cp+ g?tan? 06(”1"”?)/ 2 (2.14)
Av, = % _ glem=m)/2 _ g2y7en, (2.15)

where the constant Cy is define by

C_gs 4TN

cos2f |Q]°



We can now integrate (2.14) and (2.15) to get the constraints

(1-v2)/2 _ 1 20 = v _ 1| (47TN 9 2) _
/Qe Co e co Ch, /nUe s\ 0] g°e Cs, (2.16)

which lead to the necessary condition (2.7).
We can find a solution of (2.14) and (2.15) by minimizing the functional

1 4N -
I(v1,v) = /;z {%IVWIZ + §|szl2 — Coovy + —f;l—lvg}, o = cot?f (2.17)

under the constraints in (2.16). We can show that this problem has a solution if (2.8)
is fulfilled.

We use the function space H;(f2) (noting that €2 is a 2-torus). Define
1
M) =i [ 5 1€ H(@.

We have the unique decomposition f = M(f)+f' where f' € H,(Q) satisfies [, f' = 0.
Hence I has the form

1
I,0) = | {%“Vuﬂz + 5|w;|2} — CoolQUM(v1) + 4rNM(w).  (2.18)
It will be crucial to estimate the tail terms in (2.18), i.e.,

T('Ul, 'Ug) = —CoO’IQIM(’Ul) + 47I'NM(’I)2),

in terms of v{ and vj,.
By (2.16), we have

M(’Ul)

M(vs) +2InC; —21n ( /ﬂ e(vll"”'z)/2), (2.19)

I

M(v;) = InCy—1In ( / Ue”'z). (2.20)

As a consequence, we have
T(vy,v5) = (47N — Coo|Q) M (vz) + 2Co0] In ( [ e<v’r%>/2) +C

where C3 = —2Cyo|Q|In C is irrelevant. The term containing integral on the right-
hand side of the above is bounded from below (with a lower bound independent of
v},v3) as may be seen by the Jensen inequality and the properties that [ov; = 0
(f = 1,2). Moreover, we note that

Q| 747N
Cu= 4N — Curlftl = (T - 7)) >0



in view of (2.7), and, that, by (2.9), there holds
ln(/ﬂUe”’Z) < %ln(/‘]U”) +$—ln(/ﬂe‘"”2)
< %m (/QU”) + %lnC(e) + q(% + e)uw;ug.
Hence, inserting these results into (2.18), we obtain
Iw,m) = SIVIE+ SIVo5IE + T, )

g
> SlIVull+ Vsl - Cs(9), (2.21)

where the coefficient v = (g, ) is defined by

1 1
v(g,0) = §—C4Q(F+5)
1 2|Q| [471'N , 2” 1 ] )
2(1 sin?6 | |Q 9 | 16r —}-6 1) (2:22)

Since (1,0) > 0, we can make (2.22) positive for some ¢ > 1 and § > 0. In view of
(2.21) we see that I is bounded from below. In fact it also implies coerciveness of the
problem. Hence a solution is obtained.

The structure of our problem above is similar to the prescribed Gauss curvature
problem for 2-surfaces [3].

Dyons: Unlike monopoles [12], such solutions are to carry both electric and mag-
netic charges with localized field distributions [35, 54, 18, 31]. In 1996, Cho and Mai-
son [9] published their results that dyons exist in the physically important Weinberg-
Salam model [23]. Supported by rather convincing numerical stimulations, they made
the following conclusions.

1. A new soliton (dyon) exists in the Weinberg-Salam theory which carries both
electric and magnetic charges.

2. Dirac’s monopole is contained as a component due reflecting the presence of
electromagnetism.

3. Its magnetic charge g, obeys also the Dirac condition,

m = jﬁ (2.23)
e

4. Its electric charge g, is positive.

5. The Z boson stays neutral both electrically and magnetically, ¢Z = 0, ¢Z = 0.

6. The soliton is no more singular than the Dirac monopole.

Mathematically, the work of Cho and Maison leads to a difficult 4 x 4 system
of nonlinear ordinary differential equations defined on the half line (radial variable)



subject to a set of boundary conditions realizing regularity and a partially finite
energy. Thus the existence of electroweak dyons becomes a differential equation
problem. In [48], such a problem is thoroughly solved and we can state

Existence of electroweak dyons. The above described soliton by Cho and
Maison exists in the Weinberg-Salam theory.

I now briefly describe how to solve this very interesting problem.
The system of equations is given below,

1= (P -Df - A (2.2)
(28) = 3f7p— (A= BYp+ 5r(e ~ 1)p, (2:25)
(A" = 2f°A+r*p*(A- B), (2.26)
(12B") = r2p%(B - A), (2.27)

supplemented with the boundary conditions

f(0)=1, f(0) =0, p(o0) =1, A(o0)=B(c0) = ay, (2.28)
p(0) =0, A(0)=0, B(0)=bo. (2.29)
We are to find a solution of (2.24)-(2.29) with a finite energy E where
oo 1 2 _ 1)2
B0 aB) = [ ar{i) + o) + gy + e+ L
+10 + [PA% + %r"’pz(A ~ B)* + -;-r'“’(p2 - 1)2}. (2.30)

The boundary condition (2.28) is an easy consequence of the finiteness of (2.30)
but (2.29) is not which is one of the (minor) difficulties. In fact, the major difficulty
is that (2.24)—(2.27) are not the Euler-Lagrange equations of the energy (2.30) but
the following indefinite action functional

) 2 _
FiroaB) = [ afir oy« Uy gy fage -y
Loanz_Lomne 40 122 2
— 512 (A = Sr(B) - £24° = 51 (A— B) } (2.31)
Problem. Find a critical point of F satisfying the boundary conditions (2.28)

and (2.29) and E < oo.

The negative terms in (2.31) make the problem a nonstandard one.



Our strategy is to find a suitable admissible space C which is large enough to
contain a desired solution for us but is small enough so that, on which, the functional
F becomes coercive in such a sense that a minimizing sequence weakly converges.
Since the bad terms in (2.31) are the negative terms involving A and B, we are
motivated to “freeze” them. However, we must also make sure that such a procedure
does not jeopardizing losing solutions. Thus we may impose the following constraints
to restrict A and B by

d
(—F(f> P A+ tAl’ B))
dt t=

=0, (SFUpaB+iB))| =0, @)
0

where A;, B; are test functions sétisfying (2.28) and
E(f,p,A+ A;,B) <0, E(f,p,A,B+ B;) <o0< o0

In additional to the above, a less transparent constraint is the following diagonal one.

(SFU.p, A+ 145, B +1By))

where A, B, satisfy (2.28) and E(f, p, A+ A2, B+ B;) < 0.

This design of the admissible space allows us to obtain a minimizer of F in spite
of the indefiniteness of F'. Since the analysis is rather involved, I shall not discuss it
here but, rather, indicate a few necessary steps. An interested reader may want to
consult the original article [48].

Step 1. If qq is sufficiently small, then we have the partial coerciveness

F(f0.4.8)2 [~ ari(ry+ L1

Here £1,e5 > 0 are small constants.

Step 2. Let {(fn, Pn, An, Bn)} be a minimizing sequence of F' under the constraints
(2.32) and (2.33), then (2.34) leads to weak convergence of {(fn, pn, An, Bn)} in sense
of subsequence.

Step 3. Show that in the weak limit, the constraints (2.32) and (2.33) are preserved
and that a minimizer of F over the constrained class is obtained.

Step 4. Use (2.32) and (2.33) to show that the minimizer is a critical point of F'
satisfying the boundary condition (2.28).

Step 5. Recover the boundary condition (2.29) by the fact that the critical point
is a minimizer of F' over the constrained class.

Step 6. Establish asymptotic estimates and calculate the physical quantities stated
earlier, and, hence, conclude the proof.

=0, (2.33)
t=0

4 2e17%(p)? +62f2p2+%r2(p2—1)2}. (2.34)

Electroweak strings: Consider a Minkowski manifold with metric g,,. Denoting
by R and R,, the scalar curvature and Ricci tensor, respectlvely, the Einstein tensor
and the Einstein equations are then

G = Ry — %g,,,, R, G = —81GT,,. (2.35)



On the other hand, when cosmic string solutions are sought and a string metric is
specified, G, takes a special form. In fact, it has only two nontrivial components.
Goo = —Gjs3, and all other components vanish if the metric is uniform along 3 and
independent of the time variable t = zy. Such a property imposes a severe restriction
on the energy-momentum tensor T}, through (2.35). In the Abelian gauge field models
presented in Section, the associated energy-momentum tensors happen to enjoy the
same property as G, which made the Einstein equations (2.35) reduce into a single
scalar curvature equation. However, when we try to extend such problems to non-
Abelian gauge groups, such as SU(2) and SU(2) xU(1), the energy-momentum tensor
T, no longer enjoys such a property due to the presence of nonvanishing commutator
terms, and, in order to meet consistency, it is necessary to introduce the cosmological
term into the Einstein equations, which now become

Gy — Mgy = —87GT,,. (2.36)

For example, for the electroweak strings in the framework discussed earlier, it is
necessary for the cosmological constant A to take the unique value [49, 50, 51]

2.4
A=GLs_. (2.37)
The multistrings are governed by the following 2 x 2 system of nonlinear elliptic
equations,

N
Av; = CLU(z)(e™ — 1)ed@1+u=be™ 4 0 ev2 4 4gr > bpes (2.38)

s=1

Av, = —CyU(z)elPetbutana=bes _ oy gvz. (2.39)

is a challenge to analysts [50, 51]. Here the constants Cji’s are positive physical
parameters and

_ 4nG

N
o=, b=81G, Uls)= (gu-pg

—167G/ sin? 8
) (2.40)

Open Problem 2.2. Prove the existence of a finite energy solution of (2.38) and
(2.39) under suitable conditions imposed on the coefficients and the string number NV
in these equations. In particular, a moderate problem would be an understanding of
the radially symmetric solutions when all string points p’s coincide.

3 Relativistic Chern—Simons equations
The Chern-Simons models arise in anyon physics and promise to give a theoreti-

cal framework for high-temperature superconductivity and the quantum Hall effect.
In the context of field theories, the Chern—-Simons vortices are both electrically and



magnetically charged which are absent in the classical Yang-Mills theories. Mathe-
matically, the general Chern—Simons equations are hard to solve even in their radially
symmetric reductions [11, 22, 30]. It was the original work of Hong-Kim-Pac [14]
and Jackiw-Weinberg [16] that brought light to a class of Chern-Simons equations
which may be proved to have multivortex solutions by methods of nonlinear analysis.
This class of equations are also self-dual equations. It may be interesting to bring
to the attention of mathematicians that, away from self-duality, no solutions have
been proved to exist even within radial symmetry ansatze, in contrast to the level of
understanding on the classical Abelian Higgs model [17] where one can easily prove
the existence of vortex solutions away from self-duality in the category of radially
symmetric solutions.

Many of the non-relativistic Chern-Simons equations, Abelian or non-Abelian, are
integrable (see Dunne [13] for a review and a comprehensive bibliography up to 1995).
However, none of the relativistic equations is integrable. It is this class of equations
that is interesting to people in the area of nonlinear partial differential equations. In
the following lecture, I will discuss some recent progress in this direction.

Abelian case: The (2 + 1)-dimensional spacetime is equipped with the metric
gu =diag(1, —1,—1). The Chern-Simons action density is

1, —_ 1
L= 3re P Ao Fpy + (Dau)(Dou) — F|u|2(1 — |u]?)?, (3.1)

where A, = (Ag, A1, A2) is a gauge vector field, v a complex scalar Higgs field,
Dou = Oqu — iA,u the gauge-covariant derivative, Fog = OqAg — OgAa, and & > 0
the Chern-Simons coupling constant.

The equations of motion of (3.1) are

%ns“ﬁ"FM = j* =i(uD* — wD%), (3.2)

DoD%u = ~—(fulllul? ~ 1]+ [Juf? - 1P)u. (3.3)

We are interested in static solutions of (3.2), (3.3). First it is seen from the temporal
(a = 0) component of (3.2) that

kFi3 =3° or kB =p, (3.4)

which says that there is an equivalence between magnetic and electric fields. Hence
vortices are to carry both electric and magnetic charges. Such a feature is known to
be impossible in any Yang-Mills model [18].

In [14, 16], it is found that (3.2),(3.3) can be reduced into the following self-dual
system

Diu = FDu, (3.5)

2
Fi, = ﬂ:;—2|“|2(1 = |uf?). (3.6)

—16—- -



Namely, any solution of (3.5), (3.6) also satisfies (3.2), (3.3). However, none knows
about the converse of this statement. Hence we propose

Open Problem 3.1. Are the systems of equations (3.2), (3.3) and (3.5), (3.6)
equivalent for solutions of finite energy?

It is well known that, for the Abelian Higgs model, an equivalence theorem holds
[17]. However, for the Abelian Higgs model, it is not as clear.

The solutions which satisfy the boundary condition |u| — 1 as |z|] — oo are
called topological and may be classified by winding numbers or m;(S!). Existence

and numerical approximation results have long been established [37, 41], but not
uniqueness.

Open Problem 3.2. Given the locations and local winding charges of N vortices,
is there a unique topological solution realizing such a prescription?

For radially symmetric solutions, the answer is yes [8], but it is unknown in the
general case.

Non-topological solutions are those satisfying the boundary condition |u| — 0 as
|z|] — oo which are harder to obtain. A very interesting feature of such solutions is
that they are not uniquely determined by their vortex locations and there is another
free parameter to come into play: the fractional flux or charge. In fact, this fractional
charge may assume any value in an explicitly given open interval. In literature, there
are only rigorous proofs of such solutions with radial symmetry [8, 38]. Recently,
Dongho Chae and Imanuvilov reported in [7] their progress on the construction of
non-topological solutions with arbitrarily given vortex locations.

Vortices over a doubly periodic lattice domain 2 were first proved to exist in
[6] (non-relativistic solutions were first constructed explicitly by Olesen [29]). More
precisely, it is stated that there is a critical value &, satisfying

1 19
Ke _<.. 5@]\:’ (37)

so that, for 0 < K < K, the self-dual Chern—Simons equations have an N-vortex
solution (u, A) for which u vanishes exactly at the given vortex points py,ps,- - -, pn,
but for k > k., no solutions exist. In [39], Gabriella Tarantello sharpens this existence
results in two directions. The first is that, at k., solutions also exist. The second is
the existence of another solution realizing the same vortex locations, which was quite
unexpected.

With the substitution v = In |u|?, the system (3.5), (3.6) governing vertices at
the prescribed points p;,ps,- - -,pn is seen to be equivalent to the elliptic equation
(14, 16]

N
Av = Xe'(e” — 1) +4m Y b, . (3.8)

s=1



Note that the non-relativistic version [15] of the equation is of the form

N
Av=—Xe' +41 ) 6b,,, (3.9)

s=1

which is the classical Liouville equation and can be integrated explicitly (by Liouville’s
method, Backliind transformation, or the inverse scattering theory). On the other
hand, however, (3.8) is known to be non-integrable [32].

Non-Abelian case: Let G be a compact Lie group and (G, [, ]) the Lie algebra of
G. The Chern—Simons action density is

2

L = fcs""""l‘r(a,,A,,Aa+ ;

Mm&)HWMWWW)

oy T {6, ], 6] — 9" ([19,9°), 61 — ), (3.10)

where ¢ takes value in G (adjoint representation) and D, = 0, + [A,, ‘] is the gauge-
covariant derivative.

As in the Abelian case, the original equations of motion for static solutions of -
(3.10) are hard to approach. However, again, there is a self-dual reduction to employ.
We will use the notation

D_ = Dy —-1iD,, 04 =0 %i0,,

Ai = Al + iAQ, F+_ = 3_A+ - 6+A_ + [A_,A+].

Then the self-dual equations of the model (3.10) are now,

D¢ = 0, (3.11)
Foo = 1o~ [6,66L6 (3.12)

Let 7 be the rank of G. The reduced nonlinear elliptic equations governing multi-
vortices, as the equation (3.8) for the Abelian case, are

r r T Na
Av, = - Z Kape™ + Z Z e” Kgpe" Ky + 47 Z 5,,“,
b=1 b=1c=1 s=1
o = 1,2,.“,7., Z€R2, . (313)

where K = (Ku)rxr is the Cartan matrix of G which characterizes G. Instead of
reviewing the definition of K, here we only recall some of the useful properties of K
for our purpose.

1. K is always invertible.



2. If K~ denotes the inv¢

a,b. In particular
T

D

b=1
3. K may or may not be
Besides, we note that par

Av,

is the well-known Toda syster
[21] and Leznov-Saveliev [25,
We now establish a geners
equations (3.13).
For greater generality, we
semi-simple Lie algebra but 3

where P is an r X r diagonal
symmetric positive definite m
Note. If K is a Cartan m

Ka,b =2

where @,’s are the simple roq
satisfies (3.16).
We now state our results.
Suppose that

Then the Chern—-Simons equa

r

va%ln(z

b=1

Besides, if R =diag(R;, R, -

is positive definite (in particu

exponentially fast and there

r
fi 3 e
b=1

erse of K with entries (K1), then (K~1)g > 0 for all

KY>0 a=1,2,--,r (3.14)
symmetric.
t of (3.13), namely,
T
=Y Kaue® a=1,2,---,r, (3.15)
b=1

n which is integrable due to the elegant work of Kostant
26].
)] existence theorem for the non-Abelian Chern-Simons

relax the assumption that K is the Cartan matrix of a
issume that K has the decomposition

K = PS, (3.16)

matrix with positive diagonal entries and S is an r x r
latrix.
atrix, then

| (&m ab)
(G, &)’

a,b=1,2,-~-,r,

t vectors of G. Thus, the matrix K in (3.13) of course

(K—l)ab > 0? a = 1)27“'17'- (317)
1

itions (3.13) have a solution satisfying

(K_l)ab)a [Vvg| = 0, as |z] = oo. (3.18)

-, R,) and
M = %(KRK +K™RK™)

lar, when K is symmetric), the above stated decays are
hold the quantized integrals,

ror
—/l;,‘,EZe”"Kabe"chc

b=1c=1

4 N,,

a 1,2, (3.19)

T




Ezamples: We consider the physically most interesting group, G = SU(N). Then
r=N-1.

For SU(2), r = 1, and the Chern-Simons system is a single scalar equation. In
fact this equation is the same [24] as that in the Abelian case and is well understood.

The first “non-trivial” member is then SU(3). So the Chern-Simons equations
(due to Kao and Lee [19]) are

Ny

Av, = —2e" +e + 4e2V — 922 _ U1tv2 471-2 5p‘, (3.20)
s=1

Avy, = " —2e" — 2™ +4e* — "V 4 4n Z Og,- (3.21)

s=1

According to our results, the above system has a solution satisfying
V2 + 3 + |Voy 2 + | Vg2 = O(e™V2)

for |z| large and there hold the quantized integrals

/kz(2e"‘ — € — 4e® 4 2e*2 + ") = 47Ny,

Jraloen +2e 26 — 4 i) = anh;.

For the general gauge group SU(N) (N > 3), the Cartan matrix is

[ 2 -1 0 --- --- 0 \
-1 2 -1 0
0 -1 2 -1 --- 0
K= . Ce .
.. -1 2 -1
\ 0 - 0 -1 2 )

Our results apply well for this general case. We omit the details.

A variational method: We will use the Cholesky decomposition theorem to for-
mulate a variational principle for the problem.

For the matrix S in the factoring (3.16), there is a unlque lower triangular r X r
matrix L with positive diagonal entries so that

S=LL". (3.22)
We rewrite the Chern—-Simons equations (3.13) in the matrix form

Aw = —KU + KUKU +g, (3.23)



where we have defined

N,
v(z) = - Zln(l + |2 — pas|72),

s=1

T) = 4 ,
Vg = v2+wa, a=1,2,---,r,

w = (w11w2, e )wr)T1

g = (91,92 ,9:)7,
U = (et evitws ... gthtur)
Setting
f=(PL)'w, h=(PL)!

we study the energy functional (crucial recognition)
1 1
1) = [ {5 S IVAP + 511U = (PDM1P + b w}, (3.24)
a=1
where 1 = (1,1,---,1)" and U becomes

U= (ev‘l)'l'ellfl’ o ,e°9+23=1 erbfb)"', (£es) = PL.

We show that I(f) gives us a correct variational principle for the equations (3.23).
In fact define the following r X r matrix

U = diag(etinh ... e+ lsmr bnfs),
Then, for any constant vector ¢ = (¢, ¢z, ,¢)7, we have
D¢(c” - U) = (PL)Uc.
JFrom this we can see that a critical point of I(f) satisfies
Af =—-L"U+ L"PULL™U + h.

Since PU = UP, we see that (3.23) follows.
To get a critical point for I(-), we minimize it. We notice that finite energy
condition implies that
L'U-(PL)'1=0



at infinity. Namely, U = (K~!)1 at infinity. Hence

Im @+ Ximteohi@® = SNK1)y, a=1,2,---,7>0. (3.25)
b=1

|z| =00

For convenience, we may assume Y ;_;(K!)s = 1 for all a. Thus the boundary
condition (3.25) simply becomes

lim fo(z)=0, a=1,2,---,1 (3.26)
|z|—o00

So, naturally, we can consider the optimization problem ‘
inf{I(f) | f € WH2(R?)} (3.27)

and topological solutions described earlier are therefore obtained.

Open Problem 3.3. Prove the existence of non-topological solutions of the
system (3.13) for r > 2 which vanish at infinity.

Open Problem 3.4. Prove the existence of solutions of (3.13) over a doubly
periodic domain € under some conditions similar to (3.7).

Other related problems: The method above may be used to study other systems
of nonlinear equations. For example, we consider the system

n . N;
Av; = Z aji(e” — i) + 4w Z 0
k=1 : s=1

j = 1,2,--.,n, z€M,  (3.28)

where M is a closed 2-surface or R?, A = (aj) is a symmetric positive definite
matrix, and 7; > 0 are constants. This system has wide interest. When n = 1, it
is simply the Abelian Higgs (Ginzburg-Landau) self-dual vortex equation thoroughly
solved in [17]. It also arises as the two-dimensional Seiberg-Witten equation [42].
When n = 2, it arises in the two-Higgs extended electroweak theory of Bimonte and
Lozano [5, 51]. The general case appears in the gauged sigma model of Schroers [34].
Hence it becomes highly desirable to conduct a unified treatment of (3.28). Indeed, a
fairly complete study has recently been carried out [53]. Here we present the results
obtained.

Case 1. M is closed. We use the notation
N= (N11N2,"'aNn)Ta l’=(T1,T2,"',Tn)T.

Then the system (3.28) has a solution if and only if (component-wise)

%A‘lN <r. (3.29)



Besides, if there is a solution, then solution must be unique.

Case 2. M = R?. In this case we need to supplement the equations (3.28) with
the ‘physical’ boundary condition

lim e%® =r;, j=1,2,---,n. (3.30)

|z| =00

Our existence theorem may be stated as follows: the system over R? subject
to the boundary condition (3.30) always has a unique solution. In fact, the solution
approaches its asymptotic values given in (3.30) at infinity exponentially fast. Besides,
there hold the quantized integrals

/kzZa]k —r)=—41N;, j=12--,n (3.31)

Case 3. M = R? and some of the r;’s vanish. In this case we have some non-
existence results.

(i) r; =0,3=1,2,---,n. The boundary value problem (3.28), (3.30) has no
solution.

(i) n=2,7y > 0,7 =0o0r r; = 0,7 > 0, and a2 = a; < 0: No solution.

(i) n =2,a12 = ag, > 0,7, > 0,72 =0, and

22N, <1+ N, (3.32)
an
In this case we can still prove that there is no solution.

The case 7; > 0 for all j = 1,2, - - - represents a completely broken vacuum symme-
try of the field theory model whereas the case that some of the r;’s vanish represents
a situation when the vacuum symmetry is partially broken. The above non-existence
results indicate that the existence problem in the partially broken symmetry case is
rather subtle.

Open Problem 3.5. For n = 2, find suitable conditions for the case where
71 > 0, 72 = 0 and a2 = ag; > 0 for the boundary value problem (3.28), (3.30) such
that it allows the existence of a solution. In particular, does there exist a solutlon
when (3.32) is violated?
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Abstract

Magnetic monopole solutions naturally arise in the context of spontaneously broken gauge
theories. When the unbroken symmetry includes a non-Abelian subgroup, investigation of the
low-energy monopole dynamics by means of the moduli space approximation reveals degrees of
freedom that can be attributed to massless monopoles. These do not correspond to distinct
solitons, but instead are manifested as a cloud of non-Abelian field surrounding one or more
massive monopoles. In these talks I explain how one is led to these solutions and then describe
them in some detail.

1 Introduction

One-particle states arise in the spectra of weakly coupled quantum field theories in two rather
different ways. By quantizing the small oscillations about the vacuum, one finds the states, with
a characteristic mass m, that correspond to the quanta of the fundamental fields of the theory.
It may also happen that the classical field equations of the theory possess localized solutions
with energies of order m/\, where )\ is a typical small coupling of the theory; these soliton
solutions also give rise to particles in the quantum theory. At first sight, these two classes of
particles appear quite different: the former seem to be point particles with no internal structure,
while the latter are extended objects described by a classical field profile ¢(r).

However, these distinctions are not quite so clearcut. On the one hand, in an interacting
theory even the fundamental point particles can be viewed as having a partonic substructure
that evolves with momentum scale according to the DGLAP equations. On the other, one can
analyze the behavior of the soliton states in terms of the normal modes of small fluctuations
about the soliton. The modes in the continuum part of the spectra can be interpreted as
scattering states of elementary quanta in the presence of the soliton; there may also be discrete
eigenvalues corresponding to quanta bound to the soliton. This leaves only a small number of
zero frequency modes whose quantization entails the introduction of the collective coordinates
that may be viewed as the fundamental degrees of freedom of the soliton.

These considerations suggest that the particle states built from solitons and those based
the elementary quanta do not differ in any essential way. Indeed, it can haf)pen that states
that appear as elementary quanta in one formulation of the theory correspond to solitons in

another. The classic example of this is the correspondence between the sine-Gordon model and



the Thirring model [1]. Of more immediate relevance to my talks is the conjecture by Montonen
and Olive [2] that certain theories possess an exact electromagnetic duality relating magnetically
charged solitons and electrically charged elementary quanta.

If there is such a duality, then one would expect the classical solutions to display particle-
like properties. In particular, one would expect the classical solutions with higher charges to
have a structure consistent with an interpretation in terms of component solitons of minimal
charge. This is indeed found to be the case in many theories. However, in the course of
studying magnetic monopoles in the context of larger gauge groups [3, 4], Kimyeong Lee, Piljin
Yi, and I found [5] that in some theories there are classical solutions that do not quite fit this
picture. As I will explain below, there is a sense in which these solutions can be understood as
multimonopole solutions containing both massive and massless magnetic monopoles. While the
massive components are quite evident when one examines the classical solutions, the massless
monopoles appear to lose their individual identity and merge into a “cloud” of non-Abelian
fields. Because these massless monopoles can be viewed as the duals to the massless gauge
bosons of the theory, a better understanding of the nature of these unusual solutions may well
provide deeper insight into the properties of non-Abelian gauge theories.

In thes » talks I will explain how one is led to these solutions and then describe them in some
detail. I begin in the next section by reviewing some general properties of magnetic monopoles.
In Sec. 3, I describe the Bogomolny—Prasad-Sommérﬁeld, or BPS, limit [6] and its application
to multimonopole solutions in an SU(2) gauge theory. The extension of these results to larger
gauge groups is discussed in Sec. 4. The treatment of low-energy monopole dynamics by means
of the moduli space approximation is discussed in Sec. 5, while the actual determination of
some moduli space metrics is described in Sec. 6. The theories where one actually encounters
evidence of massless monopoles are those in which the unbroken gauge symmetry has a non-
Abelian component. These are discussed in Sec. 7. Explicit examples of solutions in which the
massless monopoles appear to condense into a non-Abelian cloud are described in Secs. 8 and

9. Section 10 contains some concluding remarks.

2 Magnetic monopoles

In the absence of sources, Maxwell’s equations display a symmetry under the interchange of
electric and magnetic fields. This suggests that there might also be a symmetry in sources,
and that in addition to the familiar electric charges there might also be magnetically charged

objects, usually termed magnetic monopoles, that act as sources for magnetic fields. A static



monopole with magnetic charge Qs would give rise to a Coulomb magnetic field

;= 2—7’:‘% (2.1)

In the canonical treatment of the behavior of charged particles in a magnetic field, either

classically or quantum mecha.nically,. it is most convenient to express the magnetic field as the
curl of a vector potential A;. For the magnetic field of Eq. (2.1), a suitable choice is

Qum 7 (1 —cosf)
34r v sind

Ai = —€ij (2:2)

Note that this is singular along the negative z-axis. This “Dirac string” singularity is an in-
evitable consequence of trying to express a field with nonvanishing divergence as the curl of a
potential; any potential leading to Eq. (2.1) will have a similar singularity along some curve run-
ning from the position of the monopole out to infinity. Physically, this singularity is a difficulty
only if it actually observable. In classical physics, where only the magnetic field, and not the
vector potential, is measurable, it causes no problem. However, there are quantum mechanical

interference effects that are sensitive to the quantity

U=exp [ie f .A,-dl,-] ‘ (2.3)

C .
where e is the electric charge of some particle and the integration is around any closed curve. If
C is taken to be an infinitesimal closed curve in a region where 4; is nonsingular, U is clearly
equal to unity. On the other hand, if the integral is taken around an infinitesimal closed curve
encircling the Dirac string, U is not equal to unity, and the string is thus observable, unless the

magnetic charge obeys the Dirac quantization condition!

ou=% (3 @

for some integer n. If we want the string to be unobservable, this condition must hold for all
possible electric charges. This is only possible if all electric charges are integer multiples of some
minimum charge for which Eq. (2.4) is satisfied. Thus, the existence of a single monopole in the
universe would be sufficient to explain the observed quantization of electric charge.

There is an alternative approach that avoids the appearance of string singularities [7]. In-
stead, one introduces two gauge patches, one excluding the negative z-axis and one excluding
the ﬁositive z-axis, and in each one chooses a vector potential that is nonsingular in that region.
In the overlap of the two regions, the two vector potentials can differ only by the gauge trans-
formation that relates the two patches. In order that this gauge transformation be single-valued

in the overlap region, Eq. (2.4) must hold.

'I am assuming units in which & = 1; otherwise there is a additional factor of % on the right hand side.



One can always incorporate magnetic monopoles into a theory with electrically charged parti-
cles simply by postulating a new species of fundamental particles. However, it turns out (8] that
monopoles are already implicit in many theories with electrically charged fundamental fields. In
these theories, the classical field equations have localized finite energy solutions with magnetic
charge that correspond to one-particle states of the quantized theory. Although topological
arguments are usually used to demonstrate the existence of these solutions, their existence and
many of their features can in fact be understood on the basis of energetic arguments alone [9].

To begin, note that the Coulomb magnetic field Eq. (2.1) hasa 1 /r? singularity at the origin.
In contrast to the Dirac string, this a true physical singularity, as can be seen by noting that
it leads to a 1/r* divergence in the energy density £ = $B2. This singularity must somehow
be tamed if finite energy classical solutions are to exist. One approach might be to replace the
point magnetic charge by a charge distribution, but the Dirac quantization condition forbids
such continuous charge distributions in theories with both electric and magnetic charges.

However, there is another possibility for removing the divergence. When placed in a magnetic
field, a magnetic dipole d acquires an energy —d - B. Thus, the singular energy density in the
magnetic field might be cancelled by introducing a suitable (singular) distribution of magnetic
dipoles. This idea can be implemented by introducing a complex vector field W with electric
charge e and a magnetic dipole density d = iegW* X W, with g a real constant that for the
moment can be taken to be arbitrary. Since we waﬁt there to be a lower bound on the energy,
the energy density must also contain terms of higher order in d. In particular, adding a term
d?/2 allows the 1/r* divergence of the energy density to be cancelled if |[W| ~ 1/r near the
origin.

Since we want the W field to be localized within a finite region, the energy density should
contain a mass term of the form M2, [W|2. However, this would give a 1/r contribution to £
near the origin. This singularity can be eliminated by allowing the W mass to be dependent
on some spatially varying field ¢. In particular, let us assume that Mw = G¢, where G is a
constant and the scalar field potential V(@) is minimized by ¢ = v # 0. Finiteness of the energy
then implies that at large distances ¢ ~ v and My # 0, but at r = 0 both ¢ and Mw can be
taken to vanish. Provided that the contribution from the gradients of the fields introduce no
additional singularities (which can be arranged), the energy dénsity will then be nonsingular
everywhere.

An energy density of the sort described here can be obtained from a Lagrangian density of



the form
1 . . 1 1
L= "Z(flw - 'eng W,,)2 - il'Dqu - DquI2 + G2¢2|Wu|2 - 5(3"45)2 -V(¢) (2.5)

where Dy = 8, +ieA, and F,, = 8,4, — Oy A, are the electromagnetic covariant derivative
and electromagnetic field strength. A solution of the resulting Euler-Lagrange equations that

carries unit magnetic charge (i.e., Qu = 4r [e) can be obtained by introducing the ansatz

W = —%yéi)[l—e“cmtﬁ(l—cost?)]

W, = %@[we%w(l—wso)]

Ws = %@ewsine

¢ = h(r). (2.6)

Substitution of this ansatz into the Euler-Lagrange equations leads to a pair of coupled second
order ordinary differential equations that can be solved numerically to yield a finite energy
solution. However, that the Dirac string singularity still remains.

A very important special case is obtained by setting g = 2 and G = e. With this choice
of parameters, the theory described by Eq (2.5) is in fact an SU (2) gauge theory in disguise.

Let us define the components of an SU(2) gauge field 4, = ALT® and a triplet Higgs field
& = §5T° by
A‘l‘ + iAi = W‘“ Ai = A“

o = §%3¢(r) 2.7)

where the T are the generators of SU(2). The Lagrangian (2.5) can then be rewritten in the

form
L= —%Tr F2 + %'nr(u,‘@)2 —V(®). 2.8)
Here
Dy =8, +ieA, (2.9)
is the non-Abelian covariant derivative and
Fuv = 8,A, — 8, A, + ie[Ay, A)] (2.10)
is the field strength with magnetic components B; = (1/2)€x Fj; and electric components
E; = Fy;. For definiteness, let us assume that the potential is of the form
v(e)= —y;-’ﬁ 9% + i\-(’ﬁ 9%)? (2.11)



If 2 < 0, the classical energy has a minimum at & = 0 that preserves the SU(2) symmetry.
The spectrum of the quantum theory includes three massless gauge bosons and three massive
scalars with equal masses. If instead u2 > 0, there is a family of physically equivalent degenerate
minima given by Tr &2 = u2/A = v?%; the “vacuum manifold” of such minima can be identified
with the coset space SU(2)/U(1) = §2. In each of these vacuum states the SU(2) symmetry is
spontaneously broken to the U(1) subgroup that leaves &, invariant; this U(1) subgroup may
be identified with electromagnetism. After quantization of the theory, the small fluctuations
about the vacuum lead to a spectrum of elementary particles that includes a massless photon,
an electrically neutral Higgs scalar with mass v2p, and a pair of vector bosons with mass ev
and electric charges *e.

In describing either the vacuum or configurations that are small perturbations about the
vacuum, it is most natural to take the orientation of the Higgs field to be uniform in space;
indeed, our ansatz for the monopole solution corresponds to a vacuum with ®§ = vd°3. However,
the orientation of the Higgs field is gauge-dependent quantity that need not be uniform. In
particular, by applying a spatially varying SU(2) gauge transformation (with a singularity
along the negative z-axis), we can bring our monopole solution into the manifestly nonsingular

“radial gauge” form

. 1—u(r
A; = €jakTk er()
3 = #Gh(r). (2.12)

At large-distances the resulting magnetic field

Be = %’_rg—“ +oud) (2.13)

is parallel to @ in internal space, showing that it lies in the unbroken electromagnetic subgroup.

In any finite energy solution, the Higgs field must approach one of the minima of V(@) as
r — oo in any fixed direction. Hence, for any nonsingular solution the Higgs configuration
gives a map from the S? at spatial infinity into the vacuum manifold SU(2)/U(1). Any such
map corresponds to an element of the homotopy group Ia(SU(2)/U (1)) = Z and can therefore
be assigned an integer “topological charge” n. While the vacuum solutions correspond to the
identity element with n = 0, the radial gauge monopole solution gives a topologically nontrivial
map with n = 1. In fact, one can show that there is a one-to-one correspondeﬁoe between the
magnetic charge and the topological charge, with a nonsingular SU(2) configuration of total
magnetic charge Qa = 4mn/e having topological charge n. Although magnetic charges that are



half-integer multiples of 4wn /e are allowed by the Dirac quantization condition, they cannot be

obtained from nonsingular field configurations.

3 The BPS limit

An especially interesting special case, which I will assume for the remainder of these talks,
is known as the Bogomolny-Prasad-Sommerfield, or BPS, limit [6]. It can be motivated by
considering the expression for the energy of a static configuration with magnetic, but not electric,

charge. Assuming for the moment that Ay vanishes identically, we have

E

/ & [%'n B+ %"n (Di®)? + V(@)]
- / &z [éqy (B: ¥ Di®)? + V(®) £ ’DrB.-D;<I>] . 3.1)

With the aid of the Bianchi identity D;B; = 0 the last term on the right hand side may be

rewritten as a surface integral over the sphere at spatial infinity:
/dethB,'DiQ = /d3:c6,~(’1‘rB,-<I>) = /dSiTl'B,'Q =Qumv. (3.2)

(The normalization of Qs implied by the last equality agrees with that of Eq. (2.1).) Substi-

tuting this back into the previous equation yields the bound

E

+Quu+ / &z [%’n (B 5 D:®)? + V(<I>)]
> |Qumlv. (3.3)

The BPS limit is obtained by dropping the contribution of V(®) to the energy. This can
be done most simply by letting g2 — 0, A = 0, with v2 = p?/X held fixed. It can also
be obtained by considering the extension of this theory to a Yang-Mills theory with extended
supersymmetry. The latter approach is particularly attractive from a physical point of view,
and can be formulated in such a way that the BPS limit is preserved by higher order quantum
corrections.

Now recall that any static configuration that is a local m1mmum of the energy is a stable
solution of the classical equations of motion. Because the magnetic charge is quantized, any
configuration that saturates the lower bound in Eq. (3.3) will be such a solution. With V(&)

absent, the conditions for saturation of this bound are the BPS equations

B;=D;®. (3.4)



(I have assumed here, and henceforth, that Qp > 0; the extension to the case Qup < 0 is
obvious.) One can easily verify by direct substitution that any solution of the first-order BPS
equations is indeed a solution of the second-order Euler-Lagrange equations.

This result can easily be extended to the case of dyons, solutions carrying not only a magnetic
charge Qs but also a nonzero electric charge

Qp =v-! / dS/Tr Es® . (3.5)

The bound on the energy is generalized to

E>v\/Q} +Q% (36)

with the minimum being achieved by configurations that satisfy

Bi = OOSﬂDi@
E; = sinfD;®
De® = 0 (3.7)

with 8 = tan"(QE/QM).

An attractive feature, which was in fact one of the original motivations for the BPS ap-
proximations, is that it is possible to obtain a simple analytic expression for the singly charged
monopole solution. By a rescaling of fields and disté.nces the gauge coupling e can be set equal
to unity; for the remainder of these talks I will assume that this has been done. The solutions
can then be written as [6],

P fa [v coth(vr) — %] . (3.8)

Note that the Higgs field does not approach its asymptotic value exponentially fast, but instead
has a 1/r tail. This is because the absence of a potential term makes the Higgs field massless.
Since a massless scalar field carries a long-range force that is attractive between like objects,
this raises the possibility that thé magnetic repulsion between two BPS monopoles might be
exactly cancelled by their mutual scalar attraction, thus allowing for the existence of static
multimonopole solutions. In fact, it turns out that such solutions — indeed continuous families
of solutions — exist for all values of Q.

The actual construction of these multimonopole solutions is a difficult, but fascinating,

problem. For the moment, I will simply concentrate on the problem of counting the number of
—34 - '



physically meaningful parameters, or “collective coordinates”, needed to specify these solutions.
Each of these corresponds to a zero frequency eigenmode (a “zero mode”) in the spectrum of
small fluctuations about a given solution. However, there are also an infinite number of zero
modes, corresponding to local gauge transformations of the solution, that do not correspond to
any physically meaningful parameter. To eliminate these, a gauge condition must be imposed
on the fields.

I will start with the zero modes about the solution with unit magnetic charge. The elimi-
nation of the gauge modes is particularly transparent if we work in the singular “string gauge”
of Eq. (2.7) where &' = &2 = 0. This leaves only a U(1) gauge freedom that can be fixed by
imposing, e.g, the electromagnetic Coulomb gauge condition V - A = 0. Explicit solution of the
zero mode equations then shows that there are precisely four normalizable zero modes about
the solution. Three of these correspond to infinitesimal spatial translations of the monopole; the
corresponding parameters are most naturally chosen to be the spatial coordinates of the center
of the monopole. The fourth zero mode corresponds to a spatially constant phase rotation of the
massive vector field, W, (r) — e?*W,(r). Since this mode is in fact a gauge mode that has no
effect on gauge-invariant quantities, one might think that it should be discarded as unphysical.
The justification for not doing so comes from considering the effect of allowing the collective
coordinates to be time-dependent. In the case of the translation modes, this gives a solution
with nonzero linear momentum. For the gauge mode, allowing the phase o to vary linearly in
time produces a dyon solution that carries an electric charge proportional to da/dt.

Although explicit solution of the zero mode equations suffices for the case of unit magnetic
charge, where the monopole solution is known explicitly, index theory methods are needed to
count the zero modes about solutions with higher charges [10]. Each zero mode consists of
perturbations §4; and 6@ that can be viewed as three-component vectors transforming under

the adjoint representation of SU(2). Since these preserve the BPS equations, they must satisfy
0 = 4(Bj—D;®)
= Dj&@ - ¢5Aj - e,-,,;DkJA, N (3.9)

(Here D; = 8;+ A; and A; and & are 3 x 3 anti-Hermitian matrices in the adjoint representation
of SU(2).) These must be supplemented by a gauge condition that eliminates the unwanted
gauge modes. A convenient choice is the background gauge condition

0=D;0A; + 863 (3.10)

which is equivalent to requiring that the perturbation be orthogonal, in the functional sense, to
—35—



all normalizable gauge modes. The number of collective coordinates is just equal to the number
of linearly independent normalizable solutions of Egs. (3.9) and (3.10).
If we define [11]
Y =168 +i0j0A; (3.11)

where I is the unit 2 X 2 matrix and the g; are the Pauli matrices, Egs. (3.9) and (3.10) can be

combined into the single Dirac-type equation
0= (—io;D; +i®)p =Dy. (3.12)

We must remember, however, that two solutions 1 and i) that are linearly dependent as solu-
tions of Eq. (3.12) actually correspond to linearly independent solutions of the original bosonic
equations (3.9) and (3.10). The number of collective coordinates is thus actually twice the
number of linearly independent normalizable zero eigenmodes of D.

Note that if (r) is a solution of Eq. (3.12), then so is

¥'(x) = p(E)U 313

where U is any 2 %2 unitary matrix. This fact, which be of importance later, implies that
number of normalizablevzero eigenmodes of the bosonic equation must be a multiple of four.

The next step is to define

M? M?

IM?) = T 5z — T 5 i (3.14)
where M is an arbitrary reé.} number and
Dt = —io;D; — iQ‘ | | | (3.15)
is the adjoint of D. The quantity
- I= lim (M%) o (3.16)

is then equal to the number of zero eigenvalues of DD minus the number of zero eigenvalues of

DDt. Using the fact that the unperturbed solution obeys the BPS equations, one finds that

DD = -D?+20;B;+%°
DDt = -D?+@%. (3.17)

The second equation shows that DD! is a positive operator with no normalizable zero modes.

Since every normalizable zero mode of Disalsoa normalizable zero mode of DD, and conversely,



T would clearly give the desired counting of zero modes if it were not for the fact that these
operators have continuous spectra extending down to zero.

The contribution from these continuous spectra can be written as

Tensimsom = Jim [k oo (K) = £ (K] (3.18)
Mis0 ) (2m)3 k2 + M2

where po (k) is the density of continuum eigenstates of an operator O. This contribution can be
nonzero only if these density of states factors are singular near k = 0. For the case at hand, one
can show that this is not the case. The essential idea is that such singularities are determined
by the large r behavior of the potential terms in the operators. Since DD — DD' = 2¢;B;, the
potentially dangerous behavior is associated with the long-range behavior of the magnetic field.
But, up to exponentially small corrections, the long-range part of the Bj lies in the unbroken
U(1) subgroup and so does not act on the massless components of the fields, which also lie
in this U(1). Since only these latter fields have spectra that extend down to zero, Zcontinuum
vanishes.

Having eliminated the continuum contribution, let us now turn to the evaluation of Z. For
this purpose it is convenient to adopt a pseudo-four-dimensional notation and define a four-
vector V, with components V; = A; for j = 1,2,3 and V4 = ®. Because this is actually a
three-dimensional space, 83 = 0 and so Dy = ®. Similarly, G;; = F;; while Gis = —G4; = D;®.

Finally, the Dirac matrices

(0 —ioy (0TI (I 0

all anticommute with each other and all have square equal to unity.

With these definitions, we can write

0 D
YuDy = (_Df 0 ) (3.20)
and hence
M? M
2y — _ = 3 . .2
M) = T =5 [ #telin—5 gz (3:21)

(Here Tr indicates a functional trace, while tr denotes a trace over Dirac and SU(2) matrix
indices.) The integrand in the last expression can be written as the three-dimensional divergence

of the current
5=} [ #atalrsn—pgle) = -3 [ Eatelirrwntr- D gyl (322
T2 ‘v-D+M 2 —(y-D)? + M2



and 8o
I(M?) = / &28,Ji(x) = / dSiJi(=) (3.23)

where the surface integral in the last term is over the sphere at spatial infinity.

We now write

1 1 1 i 1
—(v- D2+ M? _ “D?+ 32 + M? + pz &2 + M2 (§7u’7vGuV) D22+ M2 o
(3.24)

where D? = D;D; and the dots represent terms of order G2 or higher that vanish at least as
fast as 1/r* at spatial infinity. When this expansion is substituted into the expression for J;,
the contribution from the first term vanishes after the trace over Dirac indices is performed.

The remaining terms give

i 1 1 »
germditr @D\ g p O oy er a2 O T)

Sy = -
1

B 1 R 1 s
= 6Pt BoorgraE!® Ol ™) (3.25)

where the trace is now only over SU(2) indices.

The evaluation of this last expression is most transparent if we work in the singular “string
gauge”. If the magnetic charge is Qu = 4mn, then asymptotically ® — T, and - B —
(n/2?)T® and one finds tﬁat

“- s ——————v_— .—s
ZJ; = 2 AT +O0(|z|™°). (3.26)
It follows that »
T(M?) = 2n_v_ 3.27
(M7 V¥ M? ( )

and that the number of linearly independent normalizable zero modes of the original bosonic

problem is

2T = 4n. (3.28)

A priori, one might have expected that classical solutions with higher charges could lead to
new types of magnetically charged particles. Eq. (3.28), together with the fact that the BPS
energy is strictly proportional to the magnetic charge, suggests that this is not the case. Instead,
all higher charged solutions should be viewed as being multimonopole solutions composed of
n > 1 unit monopoles, each with three translational and one U(1) degree of freedom.? In the

quantum theory, these solutions would thus correspond to multiparticle states.

2As was the case with the unit monopole, there is only a single gauge mode that is not eliminated by the gauge
condition; this corresponds to a simultaneous U(1) rotation of all the monopoles. The modes corresponding to relative
U(1) rotations are not simply gauge transformations of the underlying solution.



It is useful at this point to review the spectrum of particles in this theory. Quantization
of the small fluctuations of the fundamental fields yielded two particles, the photon and the
Higgs scalar, that have neither electric nor magnetic charge and that in the BPS limit are both
massless. It also gave two massive vector particles, with electric charges +e, no magnetic charge,
and mass ev. In addition to these we have the monopole and antimonopole, with no electric
charge, magnetic charges 4 /e, and mass (47/e)v. A curious feature of this spectrum is that
the pattern of masses and charges remains the same under the interchanges e <> 4n/e and
Qe ¢ Qum. There is a mismatch in spin, since the monopole and antimonopole are spinless,
while the vector bosons have spin one, but this can be remedied by enlarging the theory so
that it has N = 4 extended supersymmetry [12]; once this is done, the elementary electrically
charged particles and the magnetically charged BPS soliton states form supermultiplets with
corresponding spins. These facts suggest that this duality symmetry, which exchanges solitons
and elementary particles, and weak and strong coupling, might in fact be an exact symmetry of
the theory, as was first conjectured by Montonen and Olive [2].

4 Monopoles in theories with larger gauge groups

This analysis can be extended to the case of a Yang-Mills theory with an arbitrary simple
gauge group G of rank r and dimension d and a Higgs field ¢ transforming under the adjoint
representation. To begin, recall that the generators of the Lie algebra of G can be chosen to
be r commuting generators H, that span the Cartan subalgebra, together with a number of
generators Eq associated with the d — r root vectors « that are defined by the commutation
relations

[Ea,Hj] = aan . (4.1)

The asymptotic value of the Higgs field in some fixed reference direction can always be chosen
to lie in the Cartan subalgebra.b It thus defines an r-component vector h through the relation

& =h-H. (4.2)

The unbroken gauge symmetry is the subgroup G that leaves ®¢ invariant. The maximal
symmetry breaking occurs if h has nonzero inner products with all the root vectors, in which
case the unbroken subgroup is the U(1)" generated by the Cartan subalgebra. - If instead some
of the roots are orthogonal to h, then these form the root lattice for a non-Abelian group K of
rank k < r and the unbroken symmetry is U(1)™* x K.



At large distances, F),, must commute with the Higgs field. Hence, along the same direction
used to define h, the asymptotic magnetic field may be chosen to also lie in the Cartan subalgebra

and to be of the form
7

B,'=g'I'Ir2

+0(r7%). (4.3)
The generalized quantization condition on the magnetic charge then becomes [13]
e®H T, (4.4)

I will begin by considering the case of maximal symmetry breaking. Because II2(G/U(1)") =
I (U(1)") = Z, there are r topologically conserved charges. These can be identified in a
particularly natural fashion by recalling that a basis for the root lattice can be chosen to be a
set of r simple roots 8, with the property that all other roots are linear combinations of simple
roots with coefficients that are either all positive or all negative. There are many possible éhoices

for this basis. However, a unique set of simple roots can be specified by requiring that
h-B,>0 (4.5)

for all a. If all of the fields are in the adjoint representation, the quantization condition (4.4)

then reduces to the requirement that
g=41) naB," (4.6)
a .

where 8, = 8,/82 and the integers n, are are the topological charges.
The BPS mass formula is easily extended to this case. One finds that

M=g-h=2a:na (%lbﬁn)E;nama. 4.7

The methods used to count the zero modes about SU(2) solutions can also be applied here
[14]. As before, there is no continuum contribution Zeontinuum because the long-range part of the
magnetic field lies in the Cartan subalgebra and so does not act on the massless fields, which
also lie in the Cartan subalgebra. The calculation of Z proceeds very much as before until one
gets to Eq. (3.27), which is replaced by

1 (aheg _ 1xv_(a-h@-g)
W)= 42 Y oy + 3017 3% oy 4 BT @8

Here the first sum is over all roots a, while the prime on the second sum indicates that it is

to be taken only over the positive roots (those that are positive linear combinations of simple

roots). Taking the limit M2 — 0 gives
1 ! . J «
I='2—Za'g=2zna(za'ﬁa>' (4‘9)
L a a



In the sum inside the parentheses, the contributions from the roots other than B, cancel, so

that the sum is just 8, - B,* = 1. Hence, the number of normalizable zero modes is
2Z=4) n,. (4.10)
a

It was argued above that the SU(2) solutions with higher magnetic charge should be under-
stood as being composed of a number of unit monopoles. The mass formula and the zero mode
counting suggest that the higher charged solutions in the present case should also be under-
stood as multimonopole solutions. Now, however, there are r different species of fundamental
monopoles, with the ath fundamental monopole having mass m,, topological charges ny = 8,5
and four degrees of freedom. Classical solutions corresponding to these fundamental monopoles
can be constructed by appropriate embeddings of the SU(2) solution. Any root « defines an
SU(2) subgroup of of G with generators

fla) = \/——21=a—.2_(Ea +E_q)
t*(a) = f\/zl;a—f(Ea -E_a)
t’a) = a*-H. : (4.11)

If we denote by Af(r;v) and ®°(r;v) the unit SU(2) monopole with Higgs expectation value v,
then the embedded solution

3
> Al(r;h-B,)E°(B,)

Air) =
=1
3 .

&) = ) ®(r;h-B,)°(8,)+(-h-B;8)-H (4.12)
8=1

gives the fundamental monopole corresponding to the root 3,. It has the expected mass and
topological charges and four zero modes, three corresponding to translational degrees of freedom
and the fourth to a phase angle in the U(1) generated by 8, - H.

As an example, consider the case of SU(3) broken to U(1) xU(1) by an adjoint representation
Higgs field that can be represented by a traceless Hermitian 3 x 3 matrix. Let & be diagonal,
with its eigenvalues decreasing along tﬁe diagonal. With this convention, the SU(2) subgroup
defined by B3, lies in the upper left 2 x 2 block. Embedding the SU(2) monopole in this block
gives a solution with a mass m,, topological charges n, = (1,0), and four zero modes. After
‘quantization, there is a family of monopole and dyon one-particle states corresponding to this
solution. Similarly, B, defines an SU(2) subgroup lying in the lower right 2 x 2 block. Using
this subgroup for the embedding gives a solution with mass ms, topological charges (0,1), and

—41 —



again four zero modes. This, too, corresponds to a particle in the spectrum of the quantum
theory.

There is a third SU(2) subgroup, lying in the four corner matrix elements, defined by the
composite root B; + B,. Using this subgroup to embed the SU(2) monopole also gives a
spherically symmetric BPS solution, with mass m; +mg and topological charges (1, 1). However,
Eq. (4.10) (as well as explicit solution of the zero mode equations) shows that there are not four,
but eight zero modes. Hence, this embedding solution is just one out of a continuous family of
two-monopole solutions; in contrast to the two fundamental solutions, it can be continuously
deformed into a solution containing two widely separated fundamental monopoles. It does not
lead to a new particle in the spectrum of the quantum theory, but instead corresponds to a
two-particle state.

Let us now consider this result in the light of the Montonen-Olive duality conjecture. Al-
though this conjecture was first motivated by the spectrum of the SU(2) theory, it is natural to
test it with larger gauge groups. The elementary particle sector of the theory contains a number
of massless particles, carrying no U(1) charges, that are presumably self-dual. There are also
six massive vector bosons, one for each root of the root diagram, that carry electric-type charges
in one or both of the unbroken U(1)’s. The duals of the +p, and +03, vector bosons are clearly
the one-particle states corresponding to the 8,- and B,-embeddings of the SU(2) monopole
and antimonopole solutions. One might have thought that the duals of the vector bosons corre-
sponding to £(3; +/8,) would be obtained from the (8, + 3, )-embedding solutions, but we have
just seen that these do not correspond to single-particle states. Some other state must be found
if the duality is to hold. The most likely candidate would be some kind of threshold bound
state [15]. To explore this possibility, we need to understand the interactions of low-energy BPS
monopoles. This can be done by making use of the moduli space approximation, to which I now

turn.

5 The moduli space approximation

The essential idea of the moduli space approximation [16] is that, since the static multimonopole
solutions are all BPS, the time-dependent solutions containing monopoles with sufficiently small
velocities should in some sense also be approximately BPS.3

To make this more precise, let {APF3(r, z), ®8P5(r, 2)} be a family of static, gauge-inequivalent

SHere velocities should be understood to include not only spatial velocities but also the time derivatives of the
U(1) phases. Thus, we are considering slowly moving dyons with small (and possibly zero) electric charges.



BPS solutions parameterized by a set of collective coordinates z;. The moduli space approxi-
mation is obtained by assuming that the fields at any fixed time are gauge-equivalent to some
configuration in this family, so that they can be written as

Ao(r,t) = O
Ai(r,t) = Ut (r, t)A?PS (r,2(E)U((r,t) - iUu! (r,0)8:U((r,t)
&(r,t) = U (r,0)@°S(r,2()U((r,0). (5.1)

Their time derivatives are then of the form

Il

i

. [0A; .
Zj [E‘; + Diﬁj] = 2;0;A:

: }
¢ = % [g—— + [Q,ej]] = 2;0;® (5.2)
]
where the gauge function ¢;(r, ) arises from the time derivative of U(r, t). These are constrained

by Gauss’s law, which takes the form

0 = —D,F*™ 4+[8,8,8] = D;A; +[®, 9]
= % (Di6;Ai +[2,6;%)) - (5.3)

Because they arise from variation of a collective coordinate, the quantities §;4; and §;% form a
zero mode about the underlying solution BPS solution. The Gauss’s law constraint shows that
they obey the background gauge condition Eq. (3.10).

With Ag identically zero, the Lagrangian of the theory can be written as

L=1 / T [42 +8° + B? + D&% . (54)

Since for fields obeying the ansatz (5.1) the configuration at any fixed time is BPS, the contri-
bution of the last two terms to the integral is just the BPS energy determined by the topological
charge. This is a time-independent constant that has no effect on the dynamics and so can be
dropped. The remaining terms then give an effective Lagrangian

1 .
Lys = 394 (2)2iz; (5.5)

where

gi(2) = / &r [5:As0; Ax + 6:85,9] . (5.6)
Thus, the full field theory dyhamies for low energy monopoles has been reduced to a problem
involving a finite number of degrees of freedom. If one views g;;(2) as a metric for the moduli
spa.ce‘spa.nned by the collective coordinates, the dynamics described by Luys is simply geodesic
motion on the moduli space.



6 Determining the moduli space metric

Actually determining the moduli space metric is a nontrivial matter. To apply Eq. (5.6) directly
one needs to know the zero modes, whereas we do not in general even know the underlying
solution. However, some more indirect approaches can sometimes be brought to bear on the
problem.

First, Gibbons and Manton [17] showed how one could obtain the metric for the region of
moduli corresponding to widely separated monopoles. They pointed out that, since the moduli
space metric determines the low energy dynamics, the metric can be inferred if this dynamics
is known. The only long-range interactions between widely separated monopoles are those
mediated by massless fields. These are the electromagnetic interactions and an interaction due
to the massless Higgs field. The Lagrangian describing the interactions between moving point
electric and magnetic forces is well known, while that for the scalar force is easily worked out.
To obtain the metric, these must be expanded up to terms quadratic in the velocities and the
electric charges. A Legendre transformation must then be used to replace the electric charges
by the time derivatives of the corresponding phase angles. Apart from a constant term, the
result is a Lagrangian, of the form of Eq. (5.5), from which the metric can be read off directly.
For the case of many SU(2) monopoles, each with mass m and magnetic charge g and with
positions x; and phase angles §;, this gives

1 4
ds® = '2‘Mijdx4‘ -dx; + g—)g(M_l)ij(d& + Wi, - dxp)(d€; + Wi - dxy) (6.1)

2(4n
where
.
M; = m- Zg—’
ki Tk
g2
My = — if § # j, (6.2)
ij
and
Wi = —) wa,
ki
Wi = wij ifi#j, (6.3)

with r;; the distance between the ith and jth monopoles and w;; the value at x; of the Dirac
vector potential due to the jth monopole, defined so that
X — X;

e

Vi x wii(x; — x5) = — (6.4)



The extension of this result to the case of maximal symmetry breaking of an arbitrary simple
group G is quite simple. For a collection of fundamental monopoles, with the ith monopole
corresponding to the simple root 3;, we need only replace Eqs. (6.2) and (6.3) by

. 2% gt
Mi' - mi_zgﬂs ﬂk

oy 47rr.7,
9°B; - B; es g
M; = 22 1 .
7 prey ifi# 3, (6.5)
and
Wi = =) B Biwa,
ki
Wi = Bi Bjwij ifi#7, (6.6)

with m; = g8} - h.

Although the derivation of these expressions was only valid in the region of moduli space
corresponding to widely separated monopoles, one might wonder whether the asymptotic metric
could be exact. For the case of two SU(2) monopoles, several considerations show that it cannot

be. The matrix M of Eq. (6.2) reduces to

2 2
M=|M"gw  dw | (6.7)
L ol
4rr 4rr

The determinant of this matrix vanishes at r = g?/2wm, implying a singularity in the metric,
despite the fact that there is no reason to expect any type of singular behavior near this value
of the intermonopole distance. Furthermore, we know that there is a short-range force, carried
by the massive vector bosons, that was ignored in the derivation of the metric. If one works
in a singular gauge in which the Higgs field orientation is uniform in space, this interaction
is proportional to the gauge-invariant quantity Re[W '('1)W(2)] where W(;) and Wy are the
massive vector fields of the two monopoles. Because these fall exponentially with distance from
the center of the monopole, their overlap, and hence the interaction, falls exponentially with
the intermonopole separation.

Neither of these objections apply when the two monopoles are fundamental monopoles as-
sociated with different simple roots of a large gauge group. The simple roots have the property
that their mutual -inner products are always negative. The resulting sign changes in M elimi-
nate the zero of the determinant and make the asymptotic metric everywhere nonsingular. In
addition, the quantity characterizing the interactions carried by the massive vector fields is now

Re[TrW'(‘l)W(g)], which vanishes when the two monopoles arise from different simple roots.



This, of course, is not sufficient to show that the asymptotic metric is exact. To do this, we
first note that the coordinates for the moduli space can always be chosen so that three specify
the position of the center-of-mass of the monopoles and a fourth is an overall U (1) phase. The

moduli space metric can then be written in the factorized form

M =R3x (E%M-“J) (6.8)

where the factors of R3 and R! are associated with the center-of-mass coordinates and the
overall U(1) phase, while M is the metric on the subspace spanned by the relative positions
and phases. The factoring by the discrete group D arises from difficulties in globally factoring
out an overall U(1) phase.

Mol has several important properties. First, it must have a rotational isometry reflecting
the fact that the interactions among an assembly of monopoles are unaffected by an overall
spatial rotation of the entire assembly. Second, the SU (2) relations among the zero modes
shown in Eq. (3.13) imply that the moduli space metric must be hyper-Kahler* [18]. Finally,
the relative moduli space for a collection of n monopoles is 4(n — 1)-dimensional. Hence, we are
seeking a four-dimensional hyper-Kahler manifold with a rotational isometry. There are four
such [18]:

1) Flat four-dimensional Euclidean space
' 2) The Eguchi-Hanson manifold [19]

3) The Atiyah-Hitchin manifold [18]

4) Taub-NUT space

The first of these would imply that there were no interactions at all between the monopoles,
and so is clearly ruled out if B, - B, # 0. The Eguchi-Hanson metric has the wrong asymptotic
behavior for large intermonopole separation, and so can be ruled out. At larger (but not at small
r) the Atiyah-Hitchin metric approaches the two-monopole asymptotic metric with M given by
Eq. (6.2). It thus describes the moduli space for two SU(2) monopoles (or for two identical
monopoles in a larger group), but not that for two distinct monopoles. The only remaining
possibility is the Taub-NUT metric. This not only agrees at large r with the asymptotic metric,
but is in fact equal to it everywhere. Thus, for the case of two distinct fundamental monopoles
the asymptotic metric is in fact exact [3, 20, 21].

If a collection of more than two monopoles includes two corresponding to the same sim-

ple root, then the asymptotic metric develops a singularity when these approach each other.

4A metric is hyper-Kahler if it possess three covariantly constant complex structures that also form a quaternionic
structure and if it is pointwise Hermitian with respect to each. )



However, this metric is everywhere nonsingular if the monopoles are all distinct. It is therefore
natural to conjecture that for this case also the asymptotic metric is exact [4]. Proofs of this
conjecture have been given by Chalmers [22] and by Murray [23].

Let us now briefly return to the issue of duality in the theory with SU(3) broken to
U(1) x U(1). As noted above, duality is expected to hold only if the theory has an extended
supersymmetry, which means that the low-energy fermion dynamics must be included. It turns
out that these fermions will give rise to a supermultiplet of threshold bound states if and only
if there is a normalizable harmonic form on the relative moduli space [24]. Having determined
the metric for this moduli space metric, one can easily verify that such a harmonic form exists,

and hence that the test of the duality conjecture is met [3, 20].

7 Nonmaximal symmetry breaking

Let us now turn to the case of non-maximal symmetry breaking, where the gauge symmetry G
is spontaneously broken to K x U(1)""*. As in the case of maximal symmetry breaking, we
can require that inner products of the simple roots with h be all non-negative. It is useful to
distinguish between those for which this inner product is greater than zero and those for which
it vanishes. I will continue to denote the former by 3,, and will label the latter, which form
a set of simple roots for K, by «;. In contrast with the previous case, the condition on the
inner products with h does not uniquely determine the set of simple roots. Instead, there can
be many acceptable sets, all related by Weyl reflections of the root diagram that result from
global gauge transformations by elements of K.

The quantization condition on the magnetic charge now takes the form

g=4r [z na3,* + Z Qj'yj‘:l . (7.1)
o i

As in the case of maximal symmetry breaking, the integers n, are the topological charges, one
for each U(1) factor of the unbroken group. They are gauge-independent, and thus independent
of the choice of the set of simple roots. The g; must also be integers, but they are neither
topologically conserved nor gé,uge-invariant. We will see that there is an important distinction

to be made between the case where

g8°7; =0, all j, (7‘2)

5Consider, for example, the case of SU(3) broken to SU(2) x U(1). If one set of simple roots is denoted by 3 and
4, with the latter being a root of the unbroken SU(2), then another acceptable set is given by B+~ and —1.




and that where some of the g - v; are nonzero. (Note that these do not in general correspond
to vanishing or nonvanishing g;.) In the former case, the long-range magnetic fields are purely
Abelian with only U(1) components, whereas in the latter the configuration has a non-Abelian
magnetic charge. We will see that there are a number of pathologies associated with the latter
case.

The BPS mass formula takes the same form as before,

M=) nem, (7.3)

but with the sum running only over the indices corresponding to simple roots that are not
orthogonal to h.

The zero mode counting proceeds as before, but with some complications [25]. First, the
continuum contribution cannot be immediately discarded, since the massless fields cannot all be
brought into the Cartan subalgebra. Because of this, there can be a singularity in the density
of states factor that is strong enough to give a nonzero Teontinuum if DD — DD? contains order
1/r% terms that act on fields lying in the unbroken non-Abelian subgroup K. This will be
the case whenever there is a net non-Abelian magnetic charge. Explicit solution of the zero
mode equations in some simple cases shows that the number of zero modes is not equal to
the expression for 2Z given below, implying that ‘there is indeed a nonvanishing continuum
contribution. This difficulty does not arise when Eq. (7.2) is satisfied.

Second, the expression for Z is more complicated. The same procedures as used before again

lead to .
. 1gv_ (a-h)(a-g)
= 5}12150 ;Z 2 4 pM2Y/2
a [(a-h)?+ M?]
with the prime indicating that the sum is only over positive roots. Now, however, the contribu-

(7.4)

tion from the roots orthogonal to h (i.e., those of the subgroup K vanishes even for finite M?
and so gives no contribution to the limit. As a result, the expression for 2Z is in general much
less simple than before. But, again, matters simplify if the asymptotic magnetic field is purely
Abelian. Becg.use the roots of K are now all orthogonal to g, they would not have contributed
in any case, and the methods used for the case with maximal symmetry breaking yield

2T =4 [E ne + qu] . (7.5)
a i

As was noted earlier, the g; are not gauge-invariant. However, when g is orthogonal to all of

the -y, the sum appearing on the right-hand side of Eq. (7.5), and hence 27, is gauge-invariant.



The difficulties with applying index theory when there is a non-Abelian magnetic charge are
related to other known difficulties with such solutions. Since the unbroken gauge group acts
nontrivially on these, one would expect to find gauge zero modes, analogous to the U(1) modes
of the maximally symmetric case, whose excitation would lead to “chromodyons”, objects with
non-Abelian electric-type charge. Instead, one finds that these modes are non-normalizable and
that the expected chromodyon states are absent [26]. This can be traced to the fact that the
existence of the non-Abelian magnetic charge creates an obstruction to the smooth definition
of a set of generators for K over the sphere at spatial infinity; i.e., one cannot define “global
color” [27].

It is instructive to return to the SU(3) example considered in Sec. 4, but with the last two
eigenvalues of ®¢ taken to be equal so that the unbroken group is SU(2)xU(1). While n; remains
a topological charge, ny must be replaced by the nontopological integer ¢; . The first fundamental
monopole solution of the maximally broken case, obtained by embedding in the upper left 2 x 2
block, is still present with a nonzero mass. As before, it has three translational zero modes and
a U(1) phase mode. There are no other normalizable zero modes, even though the solution is
not invariant under the unbroken SU(2), and even though Eq. (7.4) gives 2Z = 6. Embedding
in the lower right 2 x 2 block, which previously gave a second fundamental monopole, is no
longer possible. Indeed, if one starts with the maximally broken case, and follows the behavior
of the second fundamental monopole as the last two eigenvalues of ®; approach one another,
one finds that its mass tends to zero, its core radius tends to infinity, and the fields at any
fixed point approach their vacuum value. Finally, the embedding in the corner matrix elements,
which previously gave a solution with eight zero modes that was naturally understood to be a
two-monopole solution, now gives a solution that is gauge-equivalent to the first fundamental
monopole and hence has only four zero modes. In all three of these cases the magnetic charge
has a non-Abelian component.

Eqs. (7.3) and (7.5) are consistent with the idea that even for non-maximal symmetry break-
ing one should interpret all solutions — or at least those with purely Abelian magnetic charges
— in terms of a number of component fundamental monopoles. However, there are clearly two
quite different kinds of fundamental monopoles. The massive monopoles corresponding to the
B, carry U(1) magnetic charges and appear to have four associated degrees of freedom. They
can be realized as classical solitons, even though the latter may not be unique, as the SU(3)
example shows. The remaining fundamental monopoles, corresponding to the -y;, would have to

be massless. Indeed, the duality conjecture would lead us to expect to find massless magnetically



charged states that would be the duals of the massless gauge bosons of the unbroken non-Abelian
subgroup. The difficulty is that, precisely because they are massless, these monopoles cannot be
associated with any localized clagsica.l solutions. To learn more about them, we must examine
multimonopole solutions containing both massive and massless components.

The pathologies associated with non-Abelian magnetic charges suggest that this is best
done by concentrating on configurations that obey Eq. (7.2). This should not impose any real

~ physical restriction, since the additional monopoles needed to cancel any non-Abelian charge

can be placed at an arbitrarily large distance. It also turns out to be useful to treat non-
maximal symmetry breaking as a limit of maximal symmetry breaking in which one or more
of the h- B tend to zero. As we will see, it appears that the moduli space for the maximally
broken case behaves smoothly in this limit, with the limit of its metric being the metric for
the non-maximally case. Although some of the fundamental monopoles become massless in
this limit and no longer have corresponding soliton solutions, their degrees of freedom of these

massless monopoles are still evident in the low-energy moduli space Lagrangian.

8 An SO(5) example

A particularly simple example [5] for illustrating this arises with the gauge group SO(5), whose
root diagram is shown in Fig. 1 with the simple roots labeled B and . Consider the solutions
whose magnetic charge is such that

g=4n (6" +7%) . (8.1)

With h as in Fig. 1a, the symmetry breaking is maximal and there is an eight-parameter family
of solutions composed of two monopoles, of masses mg and m~y respectively. Because the
two monopoles correspond to different simple roots, the moduli space metric is known from
the results of Sec. 6. If instead h is perpendicular to <y, as in Fig. 1b, the unbroken gauge
group is SU(2) x U(1), with the roots of the SU(2) being ++y. These are both orthogonal to
g, so Eq. (7.2) is sa.tisﬁgd and Eq. (7.5) tells us that there is again an eight-parameter family
of solutions. It turns out that these solutions, which are spherically symmetric, can be found
explicitly [28]. This makes it possible to determine the background gauge zero modes and then
use Eq. (5.6) to obtain the moduli space metric directly. The result can then be compared with
the m~ — 0 limit of the first case.
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Figure 1: The root diagram of SO(5). With the Higgs vector h oriented as in (a)
the gauge symmetry is broken to U(1) x U(1), while with the orientation in (b) the
breaking is to SU(2) x U(1).

I will begin by describing the SU(2) x U(1) solutions. Three of its eight parameters give
the location of the center-of-mass. Four others are phase angles that specify the SU(2) x U(1)
orientation. (All elements of the unbroken group act nontrivially on the soiution.) This leaves
only a single parameter, which I will denote by b, whose significance can be found by examining
the detailed form of the solutions. To write these we need some notation. Let t(c) and t(+) be
defined as in Eq. (4.11) and let '

M= \/’7 (gﬁ g_““) . (8.2)
Any adjoint representation SO(5) field P can then be decomposed into parts that are respec-
tively singlets, triplets, and doublets under the unbroken SU(2) by writing

P=P)-t(a)+ Py -t(7) +tr PgyM. (8.3)

With this notation, the solutions can be written as

A‘s"(l) = €imfmA(r) ¢‘('1) = foH(r)
A?(z) = Ga,'mfmG (1', b) ¢‘(’2) = i'\aG (T, b)
Aizy = 7F(r,b) ¢(3) = —iIF(r,b) (8.4)

where A(r) and H(r) are the same as the coefficient functions in the SU(2) BPS monopole
solution given in Eq. (3.8) and

F(r,b)

- 1/2
V8 cosh(vr/2) Lir.b)

G(r,b) = A(r)L(r,b) (8.5)



with
L(r,b) = [1 + (r/b) coth(vr/2)] (8.6)
andv=h-a.

The parameter b, which has dimensions of length, can take on any positive real value. It only
enters into the doublet and triplet components of the fields, and then only through the function
L(r,b). While the doublet fields decrease exponentially fast outside the monopole core, the
triplet fields have long-range components whose character is determined by b. For 1/v <r Sb
these fall as 1/r, resulting in a Coulomb magnetic field appropriate to a non-Abelian magnetic
charge. At larger distances, however, the vector potential falls as 1/r?, implying a field strength
falling as 1/r3 and thus showing that the magnetic charge is purely Abelian. Thus, one might
view these solutions as being composed of a massive monopole, with a core of radius ~ 1/v,
surrounded by a “non-Abelian cloud” of radius ~ b that cancels the non-Abelian part of its
charge.

In order to obtain the moduli space metric from Eq. (5.6), we need the background gauge
zero modes about these solutions. An infinitesimal variation with respect to b gives one zero
mode, which turns out to already be in background gauge. The three SU(2) modes can then
be obtained from this by a transformation of the type shown in Eq. (3.13). The translational
and U(1) modes could also be obtained in the usual fashion. However, we do not need to do
80, since the corresponding parts of the metric can be inferred from the BPS mass formulas for

monopoles and dyons. The result of all this is

2 2
dsky(a)xuay = Madx® + l?‘%dx’ +k [gg_ + b (do? + sin® adB® + (dy + cos adﬂ)z)] 8.7

where M is the monopole mass, x is the location of the center of the monopole, x is the U(1)
phase, and a, 8, and v are the three angles specifying the SU(2) orientation of the solution.
The coefficient k is a constant whose value is unimportant for our purposes.

This should be compared with the two-monopole moduli space metric when the symmetry
is broken to U(1) x U(1). Let M = mg +my and p = mﬂm/M denote the total mass and
reduced mass of the system. After transformation into center-of-mass and relative variables, the

metric given by Eq. (6.1) takes the form

2
dsfayxu) = Mdxem+ 13; dxgon + (u + l:-) [dr? + r?(d6? + sin? 0d4?)]

-1
+k? (p + é) (dep + dcosbdg)?® . (8.8)



Here xcm specifies the position of the center-of-mass, r, 8 and ¢ are the spherical coordinates
specifying the relative positions of the two monopoles, Xt and 1 are overall and relative U (1)
phases, and k is the same constant as in Eq. (8.7). We are interested in the limit where m~y =0
with M held fixed. In this limit the reduced mass y vanishes, and the metric becomes

dsfryxuy = Mdxi, + %‘idxﬁn +k [f; +r (df? + sin® 0dg* + (dyp + cos0dg)?)| . (8.9)
This is exactly the same metric as in Eq. (8.7), but with a different notation: b replaced by r,
and a, B, and v replaced by 8, ¢, and 1, respectively. Thus, the moduli space metric behaves
smoothly in the limit where the unbroken symmetry becomes non-Abelian, with the number of
degrees of freedom being conserved. However, the interpretation of these coordinates undergoes
a curious change. In particular, as one of the monopoles becomes massless, its position becomes
somewhat ambiguous. While the separation r goes over into the cloud radius b, which has
a definite gauge-invariant meaning, the directional angles 6 and ¢ are replaced by two global
SU(2) gauge phases. Hence, two solutions with the same intermonopole separation but different
values for @ and ¢ are physically distinct as long as the ~-monopole remains massive, but become

gauge-equivalent when m~ = 0.

9 More complex examples

Further insight into the nature of the massless monopoles and the non-Abelian cloud can be
obtained by considering some more complex solutions that arise in SU(N) gauge theories. The

asymptotic value of the adjoint Higgs field in some fixed direction can be brought into the form
Py = diag (tN,tN_l,...,tl) (9.1)

with &3 < #2 < ... < tn. The set of simple roots picked out by Eq. (4.5) then generate the
SU (2) subgroups that lie in 2 x 2 blocks along the diagonal and the magnetic charge is given by

g-H = 4rdiag (nN—1,"N—2 — NN-1,-..,01 — N2, —N;). (9.2)

If the ¢; are all unequal, the symmetry breaking is maximal, to U(1)V~1, and the n; are the
topological charges. Here I will be primarily interested instead in the case where the middle
N — 2 eigenvalues of @, are equal and the unbroken group is U(1) x SU(N - 2) x U(1). As
explained previously, I will focus on configurations in which the asymptotic magnetic field is
purely Abelian and commutes with all elements of the unbroken SU(N — 2); i.e., configurations
for which the middle N — 2 eigenvalues of g - H are all equal.



All choices for the {n;} that satisfy this condition can be written as combinations of three
irreducible solutions®:

1) nj =3 — 1, so that
g-H =4rdiag (N - 2),-1,-1,...,-1,0). (9.3)
2) n; =N —j — 1, so that
g-H = 4r diag (0,1,1,...,1,—(N - 2)). (9.4)
3) nj =1 for all j, leading to
g - H = 4r diag (1,0,0,...,0,-1). (9.5)

(Note that the moduli space metric for this case can be obtained from the results of Sec. 6; the
metrics for the first two cases are not known.)

Configurations of the first type can be ﬁe@ as containing N — 2 massive and (N — 2)(N —
3)/2 massless monopoles, with the massive monopoles all corresponding to the last simple root.
Eq. (7.5) shows that they depend on 2(N —1)(NV —2) parameters. Of these, 4(V —2) presumably
specify the positions and U(1) phases of the massive monopoles. Specifying the SU(N — 2)
orientation of the configuration requires another dim [SU(N — 2)] = (N — 2)? — 1 parameters.
Hence, the remaining (N — 3)? parameters describe gauge-invariant aspects of the non-Abelian
cloud, showing that it is possible for this cloud to have considerably more structure than it did
in the SO(5) example of the previous section.

Configurations of the second type also contain (N —2)(N — 3)/2 massless and N — 2 massive
monopoles, but now with the latter corresponding to the first simple root.

Finally, configurations of the third type contain two massive monopoles (one of each massive
species), together with N — 3 massless monopoles. There are 4(N — 1) parameters in all, 8 of
which specify the positions and U (1) phases of the massive monopoles. One might have expected
to find an additional (V —2)? — 1 parameters associated with the unbroken SU(N —2), as in the
previous cases. Except for the simplest nontrivial case, SU(4) broken to U(1) x SU(2) x U(1),
there are clearly not enough parameters. The explanation is tha.t, as we will see more explicitly
below, any configuration of this type for gauge group SU(N) with N > 4 can be obtained by an
embedding of an SU(4) solution. As a result, there are only dim [SU(N -2)/U(N—-4)] =4N-13

8The existence three types of irreducible solutions can be understood by noting that the states corresponding
to the two species of massive monopoles in this theory transform under the (N — 2)-dimensional fundamental and
antifundamental representations of SU(N —2). An SU(N —2) singlet can be formed from N —2 fundamentals, N —2
antifundamentals, or from a fundamental and an antifundamental.




global gauge parameters. There is but a single remaining parameter, which is associated with
the non-Abelian cloud.

Having explicit expressions for the solutions in these cases would clearly be quite helpful for
understanding the nature and characteristics of the non-Abelian cloud. Such expressions are not
known for the first two cases. However, solutions for the third case can be obtained explicitly,
as I will now describe, by making use of Nahm’s construction of the BPS monopole solutions
[29].

The fundamental elements in Nahm’s approach [30] are a triplet of matrices T, (t) that satisfy
a set of nonlinear ordinary differential equations. These then define a set of linear differential
equations for another set of matrices, v(t,r), from which the spacetime fields A(r) and &(r)
can be readily obtained. I will now describe the details of this construction for the case of a
gauge group SU(N).

The eigenvalues ¢; of ® divide the range ¢; < t < tn into N — 1 intervals. On the jth
interval, t; < t < tj41, let k(t) = n;, where n; is given by Eq. (9.2). The matrices Ty (t)
are required to have dimension k(t) x k(t). In addition, whenever two adjacent intervals have
the same value for k(t), there are three matrices cj, of dimension k(t;) x k(t;), defined at the
interval boundary ¢;. These matrices are required to obey the Nahm equation,

L = L cadTo T + T(0)adlt 1) (96)

J
where the sum in the last term is understood to only run over those values of j for which the
a; are defined. Having solved this equation, one must next find a 2k(t) x N matrix function

v(t,r) and N-component row vectors S;(r) obeying the linear equation
0= [—% +Ta+1)® aa] v+ Zagsja(t - t;) 9.7)
i
together with the orthogonality condition
I= / dtvto+ 38185 (9.8)
i
In Eq. (9.7), a; is a 2k(t;)-component row vector obeying
i

aja; = aj -0 —i(a;)ol (9.9)

with (a;)o chosen so that the above matrix has rank 1. Finally, spacetime fields obeying the
BPS equations are given by
&= / dituto + 34,815 (9.10)
j



i i
A=-1 / dt [o' Vo - Vot o] - & ; [s}vsj - vs}sj] . (9.11)

I will consider the case where the n; are all equal to unity, so k(t) = 1 over the entire range
and there are an a; and an Sj for each value of j from 2 through N —1. To begin, I will assume
that the ¢; are all diﬁerent, so that there are N — 1 distinct massive mbnopoles, although I will
soon turn to the case with unbroken U(1) x SU(N — 2) x U(1) symmetry. Eq. (9.6) is solved

by the piecewise constant solution
T@) = —Xj, tj <t<tjyr, (9.12)

where the x, have a natural interpretation as the positions of the individual monopoles. The

a; of Eq. (9.9) are simply two-component row vectors that may be taken to be

a; = /2/x; — %1 (oos(o/z)e-"¢/2,sin(o/z)e‘¢/2) (9.13)

where 0 and ¢ specify the direction of the vector a; = xj_; — x;.
Next, we must find a 2 x N matrix v(t) and a set of N-component row vectors Si (k =
2,3,...,N — 1) that satisfy Eq. (9.7). To do this, let us first define a function fi(t) for each

interval # <t < tg41, with

e(t—t:)(r-—xx) o

f(2) »
fr®) = eEtEx)T g (1),  k>1. (9.14)

These are defined so that at the boundaries between intervals fx(tx) = fr—1(tx). An-arbitrary

solution of Eq. (9.7) can then be written as

v2(t) = felng, e <t <tk (9.15)

where the 7; (1 < k< N —1) are a set of N-component row vectors. The discontinuities at the
interval boundaries must be such that

e = -1 + [Fa(t6)]5 al Sk - (9.16)

The normalization condition Eq. (9.8), takes the form

N-1 N-1
I="7" SISi+ Y m'Num (9.17)
j=2 k=1
with
tet1 t
Ny = /t dt f1 (&) fi(t) . (9-18)
ke



These equations do not completely determine the 7. This indeterminacy reflects the fact
that Eq. (9.7) is preserved if v and the Sy are multiplied on the right by any N x N unitary matrix
function of r; this corresponds to an ordinary spacetime gauge transformation. A convenient
choice is to take two columns of v, say v' and v?, to be continuous. This can be done by setting

+ =0 for a = 1,2 and choosing
m=N"%,  a=1,2, (9.19)

with N = 3", N and the 6° being the two-component objects ! = (1,0)¢ and 62 = (0, 1)%.
Orthogonality of the other columns of v with the first two, as required by Eq. (9.8), then implies
that

N-1
0= z Nkn;: (9.20)

k=1
where here and below Greek indices are assumed to run from 3 to N. Together with the

discontinuity Eq. (9.16), this uniquely determines the 5. Substituting the result back into
Eq. (9.17) then gives an equation for the Si,

N-1
& = 3" 55, + aiMijal)SY (9.21)
1,j=2

where the M;; are matrices, constructed from the N and the fi(¢x), whose precise form is not
important for our purpose. After solving this equation for the S, one can then work back to
obtain the n§ and thus v, and then substitute into Egs. (9.10) and (9.11) to obtain the spacetime
fields.

Now let us specialize to the case of unbroken U(1) x SU(2) x U(1) symmetry. The middle
N —2 eigenvalues of ®¢ are now degenerate, and so all but the first and last intervals in ¢ vanish.

Because the fx(fx) are all equal to unity, the discontinuity equation for the n; becomes
M = Nk—1 + aSk. (9.22)

In addition, the matrices M;; in Eq. (9.21) no longer depend on ¢ and j, but instead are all
equal to a single matrix M.

When the symmetry breaking was maximal, the monopole positions entered both through
the functions fx(t) and through the a;. Now however, with the middle intervals having zero
width, the positions associated with the massless monopoles enter only through the a;. But these
now appear in Eqgs. (9.21) and (9.22) only in the combination }-; a;'.S;.‘ . This fact has a striking
consequence. Consider two sets of monopole positions x; and X; with identical positions for the

massive monopoles, but with the massless monopoles constrained only by the requirement that



d; = Wjkay, where W is any (N — 2) x (N — 2) unitary matrix. If S} is a solution of Eq. (9.21)
for the first set of positions, then 5‘;‘ = WSt is a solution for the transformed set.

This implies that the positions of the massless monopoles are not all physically meaningful
quantities. This result was anticipated by the parameter counting done earlier in this section,
which indicated that there should be a single gauge-invariant quantity characterizing the non-
Abelian cloud. This quantity can be identified by noting that these transformations leave

invariant
' N-1
Yoala; =) [aj -0 —iajpl] = (x1 —xn-1) -0+ > Ixj = % (9.23)
j J j=2

The first term on the right hand side is determined by the positions of the massive monopoles,
while the second is just the sum of the distances between successive massless monopoles. The

latter can be used to define a cloud parameter b by

N-1
26+ R=Y_ |xj — Xj-i (9-24)
j=2

where R is the distance between the massive monopoles.

The subsequent analysis can be simplified by using a transformation of this type to choose a
canonical set of massless monopole positions in which x» is located on the straight line defined
by x; and xn-1 at a distance b from x;, while the remaining N — 3 massless monopoles are
located at xy_;. Once this choice is made, one is rather naturally led to choose a solution for
the Sk, and hence for the n; and v, such that the resulting expressions for the spacetime fields
have nontrivial components only in a 4 X 4 block. Thus, as promised earlier, the solutions can
all be obtained by embeddings of SU(4) — U(1) x SU(2) x U(1) solutions.

The fact that the solutions for arbitrary SU(N) can be obtained from the SU(4) solution
underscores the difficulties in pinning down the massless monopoles. When viewed as an SU(4)
solution, the configuration contains a single massless monopole, but when it is interpreted as
an SU(N) solution there are N — 3 massless monopoles. Thus, not only the positions, but even
the number of massless components is ambiguous.

These SU(4) solutions have some features that are reminiscent of the SO(5) solutions dis-
cussed in the previous section. The fields can be decomposed into pieces that transform as
triplets, doublets, and singlets under the unbroken SU(2). Only the first two depend on b,
and then only through a single function L, which is now a 2 x 2 matrix. Also, the triplet and
doublet components of the Higgs field are given in terms of the same spacetime functions as the

corresponding gauge field components, just as was the case with the SO(5) solution.



The detailed form of these solutions [29] is rather complex. However, some insight into the
nature of the non-Abelian cloud can be obtained by examining the asymptotic behavior of the
fields well outside the cores of the massive monopoles. Consider first the case b > R. If the
distances yz, and yg from a point r to the two massive monopoles are both much less than b,

the Higgs field and magnetic field can be written in the form

1y — Q%R- 0 0 0
0 ta + ﬁ; 0 0
&(r) =U7(r) Ui(r) + - (9.25)
0 0 tr — 5o 0 '
0 0 0 t+ g
& 0 0 0
0 --21;% 0 0
B(r) = U7} (r) Ui(r) +--- (9.26)
0 0 %ﬁ, 0
L
o o o -

where U (r) is an element of SU(4) and the dots represent terms that are suppressed by powers
of R/b, y1/b, or yr/b. These are the fields that one would expect for two massive monopoles,
each of whose magnetic charges has both a U(1) component and a component in the unbroken
SU(2) that corresponds to the middle 2 x 2 block. If instead y = (yL +yr)/2> b,

iy — 21—” 0 0 0

&(r) =U;(r) Ua(r) + O(b/y?) (9.27)

S 00 0
0 00 O
B(r) = U;}(r) Us(r) + O(b/y®) . (9.28)
0 00 O
0 00 -5

Thus, at distances large compared to b the non-Abelian part of the Coulomb magnetic field is
cancelled by the cloud, in a manner similar to that which we saw for the SO(5) case.

In the opposite limit, b = 0, the solutions are essentially embeddings of SU(3) — U(1)xU(1)



solutions. At large distances, one finds that

tg — 2”% 0 0 0
0 tr—g—+3—= 0 0
(r) = Us'(r) S Us(r) (9.29)
0 0 to 0
0 0 0 ti+gr
b 0 0 0
0 & -3 0 0
2y 2y
B(r) = U; (r) LR Us(r). (9.30)
0 0 0 o0
0 0 0 -

=
Viewed as SU(3) solutions, the long-range fields are purely Abelian. Viewed as SU(4) solutions,

the long-range part is non-Abelian in the sense that the unbroken SU(2) acts nontrivially on
the fields. However, because of the alignment of the fields of the two massive monopoles, the
non-Abelian part of the field is a purely dipole field that falls as R/y® at large distances.

10 Concluding remarks

I have shown in these talks how one is naturally led to a class of multimonopole solutions that
contain one or more massive monopoles, similar to those found in the SU(2) gauge theory, sur-
rounded by a cloud, of arbitrary size, in which there are nontrivial non-Abelian fields. Analysis
of the moduli space Lagrangian that governs the low-energy monopole dynamics suggests that
these clouds can be understood in term of the degrees of freedom of massless monopoles carrying
purely non-Abelian magnetic charges.

There remain many open questions relating to these massless monopoles. First, it would
clearly be desirable to obtain additional solutions containing non-Abelian clouds. Particularly
useful would be solutions with charges such that the cloud depends on more than a single
gauge-invariant parameter, and solutions containing more than a single cloud. Experience with
the solutions described in Sec. 9 suggests that, as a first step, it might be feasible to attack
the simplified problem of determining the cloud structure for a given set of massive monopole
positions. From the more physical viewpoint, one would like to use these solutions to gain
further insight in the properties of non-Abelian gauge theories. The massless monopoles clearly
seem to be the duals of the massless gauge bosons. Hence, one should be able to find some
kind of correspondence between the behavior of the non-Abelian clouds and that of the gauge
bosons. Understanding this correspondence in detail remains an important challenge.
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Nonlinear ordinary and partial differential equations are essential in vast areas
of physical sciences. Thus, the test of integrability of those equations is not only of
mathematical interest but also an important problem for the practical applications.
In this talk, We introduce one such test, the Painlevé test, which provides a criterion
for integrability. Though, the Painlevé test neither prove or disprove the integrability
of the equation at hand in an absolute manner, it provides us with quite a useful
tool in testing integrability. The Painlevé test applies both to the ordinary and
the partial differential equations and We will briefly discuss about the test for each
cases, in particular, through explicit examples. That is, the Kowalewski top for
the ODE test, the Bullough-Dodd equation and the extended nonlinear Schrédinger
equation for the PDE test. Especially, the Painlevé test for the extended nonlinear
Schrodinger equation is based on the recent work I have done with Prof. H.J. Shin
which finds nice application in the field of nonlinear optics.

The history of the Painlevé test goes back to the work of Sonya Kovalevskaya
(Kowalewski (1889, 1890)). She has applied the singular point analysis to the prob-
lem of spinning top and found a new case of integrable spinning top, now known
as the Kowalewski top. The governing equation of spinning top is given by a set of
first-order ODE as follows;

Ap = (B - C)gr+ Mg(vyo — Bz)
B = (C—A)pr+ Mg(az — vxo)
Ci = (A— B)pg+ Mg(Bzo — o)

éf = fr—-19q
B = yp—ar
Y = ag—Pp (0.1)

where @ = (p, ¢, ) is the angular velocity vector, (e, 3,7) the directional cosines of
the direction of gravity, (A, B, C) moments of inertia and (z, Yo, 20) is the coordinate
of the center of mass. In order to solve Eq. (0.1) completely, we need six functionally
independent integrals among which five integrals are easily found. Kowalewski’s
idea in finding the sixth integral was to require the system to possess solutions
without movable critical points. Movable singularities are singularities appearing
only through solutions but not in the equation itself. Critical points are singularities
which are not poles. She did so by assuming the solution to take the asymptotic
form

o0
p = (t—t)™™ ) p;(t—to)
=0
w .
g = (t—t)™™ > q;(t—to)
=0

ro= (t—1)™™ i rj(t —to)’
j=0



a = (t - to)—n1 f: aj(t - to)j
—

B = (t—ty)™ iﬂj(t — to)!
j=0

¥ = | (t - to)_n3 i}'y,(t - to)j (02)
j=

and looking for conditions which allow five arbitrary constants in order Eq. (0.2)
to become a general solution. Then, she found that the conditions are m; = my =
mg = 1,n; = ny = nz = 2 and four distinct cases of constants;

1. A=B=C, LI=pro+qy+rz
2. Zo = Yo = 2y, I2=A2p2+qu2+C'2r2
3. A=B,andzo=y=0, 3;=Cr
4

M M
A=B=2C, =0, I = (¢ - @ — 29%0%2 (o, M92B 5

c c
The first three cases have been known previously, the second was found by Euler and
the third was by Lagrange. The fourth was a new finding by Kowalewski. Note the
asymmetric relation among components of moments of inertia in the Kowalewski
case. We will see this asymmetric behavior again when we consider PDE. The
property that movable singularies of solutions are only poles is known as the Painlevé
property. The application of the singularity analysis has also been made to other
types of equations. In particular, in a series of papers, Painlevé and collaborators
have made a systematic study on the second order ODE possessing the Painlevé
property, and found that there exist fifty cannonical types of equations up to the
transformation @)y + b(z)
a(z)y z
= iy X =9, (0.4)
Among those fifty equations, six equations are distinguished while all others either
reduce to the six equation or become solved in terms of known functions. The six
equations are solved in terms of new functions, called as Painlevé transcendents,
and they are

2y

Y(X)

PI i = 6y +z
PII % = 2 +ry+a
PIII‘@ - 1 2’—1@+l(a2+ﬁ)+ 5.0
de2 =~ y \dz zdr "z Y Ll Yy
dzy 1 (dy 2 3 2 2 B
¢y _ 1 (% ° 2z — lad
PIV o 5 (dm +2y + 4zy® + 2(z a)y+y
&y 1,1\ (dy)\* 1ldy  (y—1) B\, w , Syy+1)
—_J = —_ —_ palCA S 2 4 2 I\
PV dx? <2y+y—1) (da: xdx+ z2 a+y Sz + y—1



d*y 1(1 1 1 dy\> (1 1 1 ) dy
PVI da? 2(y+y—1+y—x>(dx) (m+x-—1+y—a:)dx
yly— 1)y —z) Bz vz —-1)  bz(z—-1)

-1y (“*52‘* -1 ' (y-op )

In the case of PDE, there are certain sets of equations which are known to be

integrable in the sense that they allow solutions via the inverse scattering method.

Though there does not exist a well defined notion of integrability, it is convetional

to call a PDE integrable if it admits the inverse scattering method. The relation

between the Painlevé property of integrability through the inverse scattering has

been investigated and now it has been conjectured that every ODE which arises as

a similarity reduction of an integrable PDE through the inverse scattering method

is of Painlevé type up to a transformation of variables. (Ablowitz (1978,1980),

Hastings (1980)). This is also known as the Painlevé ODE test for a given PDE.
For example, the sine-Gordon equation

(0.5)

Par = siNQ (0.6)
under the similarty reduction
z=uxt, y=exp(id(z)) (0.7)
becomes
2y -y +yy =y’ - 1) (0.8)

which is of Painlevé III type. Thus, it passes the Painlevé ODE test. When the
same similarity reduction and the Painlevé ODE test is applied to the equation of
the form ¢ = f(¢), following three distinct cases pass the test;

sine-Gordon¢g,; = sin¢
Bullough-Dodd¢,; = €®—e %
Liouvillep,; = e° (0.9)

Note that the second case (Bullough-Dodd equation) also poses an asymmetric ex-
ponents similar to the Kowalewski top. Though, the Painlevé ODE test provides
a useful test for a given PDE, in practice, it is not easy to test it with all possible
similarity redutions. To circumvent this, Weiss et al (Weiss (1983)) has proposed the
the Painlevé PDE test which directly tests the PDE without going through the ODE
reduction procedure. Similar to the Kowalewski’s test, one assumes an asymptotic
form for the solution

W(z1, . 2n) = f7P iwj i (0.10)
j=0

where f = 0 defines a non-characteristic movable singularity manifold analytic in z;.
Inserting this ansatz to the equation, one obtains a recursive relation of the form

G = B = B)--(§ — Bn); = G (%o, -y Yn, f, 2i).- (0.11)



The coefficient function 1; is determined by Eq . (0.11) unless j is equal to one
of the resonances fi,...,Oy. At the resonance, ¥; is undetermined. If G; = 0 at
resonance values of j to saturate the consistency and if one finds enough numbers
of undetermined functions required by the equation, then the given PDE passes the
test. As for an explicit example of the PDE test, let me briefly mention our work.

Recently, we have applied this test to the coupled nonlinear Schrodinger equation
defined by (Park and Shin (1998a))

i = ¢ +aMlal?+%lel) + vsed + vda
i = g +@(rlal +mlel) + 166 + vdde; (0.12)
It turns out that resonances occur in various combination of parameters 7, ~v4 and

after lengthy and painful anaysis, we found that it passes the Painlevé PDE test for
the following cases;

Te=73=7=0

N="7, andy3=7=0

Y2 = 271, v3 = —1 and -y, arbitrary

Y2=2m, 3=m (0.13)

Ll

The first case is simply two sets of the usual nonlinear Schrédinger equation
which has been solved by Zakharov and Shabat (Zakharov (1972)) using the inverse
scattering method. The second case is the vector nonlinear Schrédinger equation
which has been also solved (Manakov (1975), Zakharov and Manakov (1976)). The
third the fourth cases are our new results. Note that they also possess asymmetric
relations in coefficients likewise the Kowalewski top and the Bullough-Dodd equa-
tion. All of them share the ratio 2:1 to certain extent. The reason behind this
- conincidence is the sympletic group structure lurking these equations. Indeed, the
integrability of the third and the fourh cases can be shown by embedding these two
cases to the nonlinear Schrodinger equation generalized in association with the Her-
mitian symmetric space Sp(2)/U(2). Details on the relationship of the nonlinear
Schrédinger equation with the group strucutre will appear in a forthcoming paper
(Park and Shin (1998b)).
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BOGOMOL’NYI SOLITONS AND HERMITIAN SYMMETRIC SPACES
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Abstract

We apply the coadjoint orbit method to construct relativistic nonlinear sigma
models (NLSM) on the target space of coadjoint orbits coupled with the Chern-
Simons (CS) gauge field and study self-dual solitons. When the target space is
given by Hermitian symmetric space (HSS), we find that the system admits self-
dual solitons whose energy is Bogomol’nyi bounded from below by a topological
charge. The Bogomol’nyi potential on the Hermitian symmetric space is obtained
in the case when the maximal torus subgroup is gauged, and the self-dual equation
in the CP(N — 1) case is explored. We also discuss the self-dual solitons in the
non-compact SU(1,1) case and present a detailed analysis for the rotationally
symmetric solutions.

1. INTRODUCTION

Recently, a coadjoint orbit method to formulate the nonlinear sigma model defined on
the target space of homogeneous space G/H was proposed [1]. It was first applied to
a non-relativistic spin system whose Poisson bracket between the dynamical variables
defined on the coadjoint orbit satisfies the classical G algebra. The Euler-Lagrange
equation of motion yields the generalized continuous Heisenberg ferromagnet. When
the target space of coadjoint orbit is given by HSS which is a symmetric space equipped
with complex structure [2], the generalized ferromagnet system becomes completely in-
tegrable in 1+1 dimension [1]. Later, this method was exploited to produce a class
of integrable extension of relativistic NLSM in 1+1 dimension [3]. It was also discov-
ered that incorporation the CS gauge field in 2+1 dimension on the same target space
produces a class of self-dual field theories which admit Bogomol’nyi self-dual equations
saturating the energy functional [4]. A detailed numerical investigation in SU(2) [5]
and the non-compact SU(1, 1) spin system [6] showed a rich structure of self-dual soli-
tons, and the quantization of the system revealed that the symmetry algebra satisfies
anomalous commutation relations, and the system describes anyons [6].

In this paper, we apply the coadjoint orbit method to construct relativistic NLSM
on the target space of coadjoint orbits coupled with the CS gauge field and study self-
dual solitons. When the target space is HSS, the Hamiltonian is bounded from below
by a topological charge, and the resulting self-dual CS solitons satisfy a vortex-type
equation, thus producing a class of new self-dual theories on HSS. This construction
provides a unified framework for treating the previous gauged O(3) model on S? and



CP(N — 1) models [7] which are well known examples of the coadjoint orbit G/H with
5?2 = S0(3)/S0O(2) ~ SU(2)/U(1) and CP(N —1) = SU(N)/SU(N — 1) x U(1). We
also study the self-dual solitons in the non-compact HSS with SU(1,1) group in which
the target space is given by the upper sheeted hyperboloid and find various topological
and nontopological solitons.

We first give a brief summary of NLSM on the target space of coadjoint orbit for
completeness. Consider a group G, Lie algebra G and its dual G* : X € G; u € G*.
The adjoint action of G on the Lie algebra is defined by

Ad(g)X = gXg', g€G. (1.1)

Denoting inner product between G and G* by < u, X >, the coadjoint action of the
group on G* is defined in such a way to make the inner product invariant:

< Ad*(g)u, X >=<u,Ad(g™1)X >. (1.2)

The coadjoint orbit is given by the orbit of coadjoint action of the group G: Fix a point
u € G*, then the orbit is generated by

O, = {z|z = Ad*(g)u, 9 € G}. (1.3)

It can be shown that O, ~ G/H, where H is the stabilizer of the point .
Let us assume that the inner product is given by the trace: < u,X >= Tr(Xu).
Then, G and G* are isomorphic and the coadjoint orbit can be parameterized by

Q=gKg_1 =QAtB7’AB; tA,Keg (A=17‘°';dim g)) (14)
where 74p is the G-invariant metric given by Tr(t4t?) = —in“P with t4’s being the
generator of G. The action for the NLSM on the target space of coadjoint orbit can be
constructed as

S(g) = €Tr / &°28,Q0*Q. (1.5)

€ = +1 for the compact case —1 for the non-compact case [8]. Let us first choose the
element K to be the central element of the Cartan subalgebra of G whose centralizer
in G is H. Then, for the HSS, we have J = Ad(K) acting on the coset is a linear map
satisfying the complex structure condition J2 = —1, which gives the useful identity [1]:

[Q; [Q7 a#Q]] =, - #Q' (16)

This paper is organized as follows: In Section 2, starting from a CS gauged action of
(1.5) on arbitrary HSS, we derive self-dual equations and Bogomol'nyi potential. We
give explicit expressions in CP(N — 1) case. In Section 3, we deal with non-compact
minimal SU(1,1) model and discuss rotationally symmetric solutions in detail. In
Section 4, we give the conclusion.

2. COMPACT MODEL
Let us consider the following CS gauged action of (1.5):
2
So= [ & [—e-;- (Du@*D*QPnus) ~ Wo(@*) - re?Ts (0, 4,4, + 2a,A4,)],

(2.1)
where the covariant derivative is defined by

D,Q=0,Q+[A,Q], Ay=AltPyup. (2.2)



We assume that the potential is given by
1
We(@Q*) = 3! 4BQAQP, (2.3)

where T4 is the symmetric tensor and its content will be determined by the self-duality
condition. The equations of motion are given by

D@, D*Q1+1Q,Q] = 0, (Q=I48Q*5).
. [Q,D*Q). (2.4)

ieuup F,,
We first treat the compact case with n4p = §4p. To study self-dual solitons, we
bring the energy functional into Bogomol'nyi expression:

I

B = [a[5(( DoQ")2+(DiQ")2)+W(Q‘)]
/ d%[ (De@4)? + (D Q* * €;(Q, D;Q4)? (2.5)

TW(Q4) + e,,FA "} + 4T,

where the topological charge T¢ is given by

Te = % / z(e;Q0:Q, 8;Q1* — 26;;6:(Q*AF)). (2.6)

In deriving (2.5), we used the gauged version of (1.6) where 8, is replaced by the
covariant derivative D, [4]. Thus, the Hamiltonian is bounded from below by the
topological charge Tz when the potential Wy is chosen such that

1
We + 5e,-jF,.;?Q" =0. (2.7)
Here, F;; is determined in terms of @Q* by the Gauss’s law which is the time-component

of (2.4).
The minimum energy arises when the self-duality equation is satisfied:

D;Q = Fe;(Q, D;Q). (2.8)

Consistency with the static equations of motion (2.4) forces

Fy=0, Ay=%0, (2.9)

which in turn puts the potential Wz = 0 and I4Z = 0. Note that the gauge field can
be chosen as a pure gauge in this case and the contents of the Bogomol’nyi solitons are
precisely the two dimensional instantons which were completely classified on each HSS

9]
More interesting cases in which the system offers other solitons arise when we gauge
the subgroup H. We consider gauging the maximal torus subgroup of G:

Su=[ds [»( LQADHQA) — WH(QA)+-'2Ee“"Pa,,A:A;]. (2.10)

Here, the index a = 1, -+, rank G denotes the maximal Abelian subgroup. Again, the
content of the potential Wy will be determined from the self-duality condition.



Using the Gauss’s law given by

SeiFg = =@, DoQl", (2.11)

we find that the energy functional satisfies
1 A 1 4 2 1 A o
Ey = 5/({2.'13 (DoQ + -’;[Q,QH] ) + §(D,'Q ie,-,-[Q, D,Q] ) + 47Ty,

Ty = é};r-/dzw[ﬁijQA[aiQ, an]A — 2e.—,-8,~(Q‘;,A;)], (2.12)

when the Bogomol'nyi potential Wy is chosen as

Wi = g (Qur, QI Qur = @it = (@ - Vo)™ (213)

Note that V*'s are free parameters associated with the vacuum symmetry breaking [10].
When the self-duality equations

Di@* = %e5[Q, D;@l*,  Do@* =11, Qul", (219
are satisfied, we see that the energy is saturated by the topological charge:
Ep = 4n|Ty|. (2.15)
The first order equation (2.14) in the static case fixes A§ to be

A= :l:% o (2.16)

which automatically solves the Euler-Lagrange equations of motion of the action (2.10)
with the potential given by (2.13).

Let us examine (2.11) and (2.14) more closely in CP(N — 1) case. We use the
expression of @ [1],

I
Q=¥ —ig (2.17)

where the column vector ¥ can be expressed by the Fubini-Study coordinate ,’s (a =
1,2,---,N=1):

1
gL | ¥ | (2.18)
Yi+w | -
N-1

with |9[2 = [¢1[? + - - - + |¥n-1[?. Using the complex notation; z =z +1iy,z2 =2 — iy,
A, = %(Ax'— iAg),As = %(Al + iAz), and D, = ‘;-(Dl - ‘iDz),Di = é(Dl + ‘iDz), we
obtain an alternative expression of the self-duality equation,

D,Q = Fi[Q, D.Q)]. (2.19)

With the above parameterization of @, the self-duality equation (2.19) for the plus sign
becomes a set of N — 1 equations [4],

o g Al g g [ g 1/%‘.’.’.‘:2« 9
D__3,+2(A,+ﬁAz+ e + —A2), (2:20)



D24, = 0. (2.21)
Similarly, for the minus sign, we have

i 1 2 o, [2e+1)
D =08, — (Al 4+ A2 4 oo gy [ AL 4[R2 ) Y .
§ =0~ 5( ,+\/§A,f +1/a(a_1) Sy e 4D, (2.22)

D24, =0.  (223)
We concentrate on the plus sign from here on. With ¢, = w, exp(i¢,), we find
that (2.11), (2.14) and (2.21) produce the following new vortex-type equation:

V2 log w, + €;0:0; =§ ;I‘"+ﬂ-a—j-—l a (2.24)
a LY At bt R g pt 21,(1,-!-1) 2 ? .

where I'* is given by

b
I‘°=V

e
2 < [7\2,-5“" +deQ° -~ Q“Q”] . (2.25)

We used the normalization: {\, AP} = (4/N)§4BI + 2d4BC)C. Also the Bogomol'nyi
potential (2.13) can be expressed by
1 )
Wi = (Ve = QY(V* - @) [d% +d™Q" - °@Y]. (2.26)

Let us give an example in the case of CP(1). With w; = w, ¢, = ¢,V =V, the above
potential becomes

Wi = 55(V = @)1 - (@), (227)

which is exactly the same as the potential in the O(3) model [10]. Next, we find that
(2.24) becomes

2 1 1—w? 1-w?)?
\% IOg’UJ + 6ij6i3j¢ = ? \ m; 1- m . (228)

A detailed numerical study of the above equation showed that the equation has various
kinds of rotationally symmetric solitons solutions connected with symmetric and broken
phases, and they are anyons carrying fractional angular momentum [10]. Similar results
are expected in the more complicated higher CP(N) case, but a detailed study will be
addressed elsewhere.

3. NON-COMPACT SU(1,1) SOLITON
In this section, we consider a non-compact HSS with ¢ = —1. We restrict to the SU(1, 1)
group with 745 = (=, —, +). The target space is given by the two-sheeted hyperboloid
H = SU(1,1)/U(1). Using the expression for the group element g of (1.4) given by
1 1 9 )
= (3.1)
! \/1—|¢|2(¢ !

which satisfies gM gt = M with M = diag(1, —1), we have (with K = ic®/2)

_ i 1+ 29
Q‘z(l—w)( T ) (32)



We restrict to [1| < 1, which corresponds to the upper sheet of M = SU(1,1)/U(1). A
couple of remarks at this point concerning the ungauged case are in order. First, some
soliton solutions associated with non-compact NLSM were discussed in connection with
the Ernst equation [11], which are not self-dual. Secondly, using the above expression,
one can check that there actually exist self-dual soliton solutions which are analytic or
anti-analytic as in the compact case [12], but the energy and topological charge diverge
at the boundary || = 1. Coupling with CS gauge field greatly improves the situation,
because the gauge field effectively provides a potential barrier to the boundary (see
(3.7)) and prevents the system from diverging.

Again, with the parameterization ¢ = w exp(i¢), we find the Bogomol’nyi potential
(2-13) and the self-dual equation (2.24) are produced as follows:

I

2 2\ 2
Viiogw + eija..a,¢=$[v— 1tw ] [(1"'"’) —1]. (3.4)

1—w? 1—w?

Let us look for the rotationally symmetric solutions with the ansatz in the cylindrical
coordinate (r,0) given by

w = tanh @ é=nb, Ai= ﬁrifia(r). (3.5)

Then, the Gauss’s law and self-dual equation become (' = d/dr)

d(r) = (r/k®)(=V + cosh f(r))(1 — cosh? f(r)),
rf'(r) = (a(r) —n)sinh f(r). | (3.6)

Now, the combined equation of motion in (3.4) becomes an analogue of the one dimen-
sional Newton’s equation for r > 0, if we regard r as “time” and u(r) = logtanh £
as the “position” of the hypothetical particle with unit mass under a time-dependent
friction, (1/r)«', and an effective potential Vezy:

1 |4
Vess(u) = mcoth2 U+ — cothu. (3.7)

The exerting force also includes an impact term at r = 0 due to €78;0;¢ = 24(r) in
(3.4).

The inspection of the effective potential suggests that solitons are basically of
two types; the non-topological vortices with n # 0 (negative integer) and the non-
topological solitons with n = 0. In the former case, the “particle” starts from u = —oo0,
reaches a turning point where it stops, changes the direction, and finally rolls down
to u = —oo. In the latter, the “particle” starting at some finite position, either rolls
down to u = —oo directly, or moves to a turning point, changes the direction, and rolls
down to u = —oo. Let us look at the solutions more closely. Near r = 0, the condition
for A; to be non-singular forces a(0) = 0. First, when n # 0, we must have f(0) = 0.
When n =0, a = f(0) can be arbitrary. The behavior of the solution near r = oo can
be also read off from the conditions f'(00) = a'(00) = 0; 8 = f(o0) = 0 for arbitrary
v = a(oo) and V. Putting f(r) = foor', a(r) = v + acor’® (I,s < 0) near r = oo, we
findl =y—n,s =2y+2—2nfor V # 1. Since [, s < 0, we have consistency condition
y<n-—1. WhenV =1, wehavel =y—n,s=4y+2—-4nand 7y <n-— % When



B = cosh™'V for V > 1, v must be equal to n (# 0). This solution which will show
oscillatory behavior before it comes to rest does not exit. Near r = 00, We assume
an exponential approach f(r) = 8+ for'e™®", a(r) = v+ aor'e™ (a,b > 0). Then
substitution leads to a contradictory output, ! = s and [ = s+ 1. Power law approach
with a,b = 0 and I,5 < 0 also leads to a contradiction. In view of the Bogomol’nyi
potential (3.3), this excludes any solitons in the broken vacuum with V = cosh f(o0),
and all the solitons are in the symmetric phases. .

Let us focus on the vicinity of r = 0. (a) V < 1, in which the effective potential
(3.7) is a monotonically decreasing function. (a-i) n # 0; Trying power solutions of the
form f(r) = for?, a(r) = aor? (p,g > 0), wefind p=—n, ¢g=2—-2nfor V < 1.
Hence n must be a negative integer. When V = 1, we have p = —n, ¢ =2 — 4n. (a-ii)
n=0,a # 0; Let us try f(r) = a+ for?, a(r) = apr? (p,¢ > 0). We find p=¢ = 2.
We note that both ag and fy turns out to be negative, so that the solution rolls down
to r = 0o. Climbing up at first and then rolling down the hill solution does not exist.
When (b) V > 1, the effective potential (3.7) develops a pool with a local minimum at
fm = cosh™ V. (b-i) n # 0; The behavior is similar to (a-i) except the fact a(r) passes
the minimum at ry, twice in the process of climbing up, passing the turning point, and
rolling down the hill to its original position. (b-ii) n = 0, # 0; There are two cases.
When a < cosh™ V, the solution, if exists, will behave similarly with (b-i) except that
it starts at some finite point . However, it cannot exist for the following reason; The
initial “velocity” of the particle is given by w'(0) o f'(0) = 0 (f/(r) o r from (a-ii)).
Hence the particle does not carry enough kinetic energy to return to its starting point
in this dissipative system with conservative potential. Note that when n # 0, even
though the initial velocity is in general equal to 0 except n = —1, the solutions are
possible because of the impact term at r = 0. In the opposite case a > cosh™! V, it is
similar to (a-ii) and only rolling down the hill is permitted. A detailed numerical study
indeed confirms the existence of these solitons and is presented in Fig.1 and Fig.2.

Note that there does not exist any topological lump solutions, because m3(M) = 0.
And the topological vortices does not exist, because there is no bump in the effective
potential where the particle can stop at the top. In the solutions, the magnetic flux is
given by @ = 27, and the energy is saturated by the topological charge; E = 47|T| =
2r|y(1 — V)|. The system also carry non-vanishing angular momentum. Let us define

J = /dzzeijz,-DoQADjQBnAB. (3.8)

A simple calculation using the Gauss’s Law (2.11) (with plus sign in the right hand side
due to the € factor), and self-dual equations (2.14) and (3.6), we find J = 7&((y—n)%—
n?). Thus the solitons in general carry a fractional angular momentum, representing
anyons. For the non-topological solitons, it is simply J = w2,

4. CONCLUSION

We showed that the coadjoint orbit approach for the relativistic NLSM coupled with
CS gauge field leads to a class of new self-dual field theories on the target space of
HSS which contain the previous O(3) and CP(N — 1) models, and a new non-compact
SU(1,1) model. We also found an explicit expression of the Bogomol'nyi potential
when the maximal torus subgroup is gauged, and showed that the non-compact NLSM
admits self~dual soliton solutions which are saturated by the Bogomol'nyi bound, and
gave a complete description of the rotationally symmetric solutions.

We also studied 141 dimensional NLSM on HSS coupled with Yang-Mills field, and
found that this model also allows self-dual Bogomol'nyi soliton solutions [13]. In this



case, the first order self-dual equation is given by the non-local integral equation as in
the case of the self-dual Bogomol’nyi formulation of the nonlinear Schrédinger equation
[14], and the soliton equations turn out to be the same as the dimensionally reduced
vortex equations of Chern-Simons gauged NLSM on HSS [4].

There remains several further issues to be discussed. Firstly, note that the identity
(1.6) and its gauged version on HSS is essential for the existence of self-duality. In
this respect, it would be an intriguing problem to extend the above formalism to other
non HSS coadjoint orbits, and also to higher non-compact group. Quantization of the
model is another problem to be addressed. Secondly, it would be interesting to see
whether there exists a well-defined procedure in which the non-relativistic NLSM of the
generalized CS Heisenberg ferromagnet system defined on the coadjoint orbits [4] could
emerge as a non-relativistic limit of the present relativistic NLSM. This will require in
the course a revelation of the connection between the symplectic structure of HSS [4]
for the non-relativistic NLSM and phase space structure of relativistic NLSM.
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Fig. 1. a(r) as a function of r for k = 1 with various (n,V): (0,0) for solid line,
(—1,0) for dashed line, and (—1,1.5) for dotted line.
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Fig. 2. f(r) as a function of r for x = 1 with various (n,V): (0,0) for solid line,
(—1,0) for dashed line, and (—1,1.5) for dotted line.
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Abstract

We explain how static multi-vortex solutions arise in non-linear field
theories, by taking the non-linear Schrédinger equation coupled to Chern-
Simons field (Jackiw-Pi model) and a fermion Chern-Simons theory as
simple examples. We then construct a fermion Maxwell-Chern-Simons
theory which has consistent static field equations, and show that it has
the same vortex solutions as the Jackiw-Pi model, but gives rise to quite
different vortex dynamics.
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I. Introduction

Magnetic vortices are found to appear in high temperature superconductors as
quantized vortex lines in the range of magnetic field between 10~2 tesla and
102 tesla [1]. It is known that the behavior of vortices dominates many phys-
ical properties of high temperature superconductors in this range of magnetic
field. These vortices show very interesting dynamical properties:in some range
of magnetic field and temperature they form vortex lattice or behave as liquid.
This phenomenon poses an important theoretical challenge in understanding
the dynamics of magnetic vortices.

One way to understand the dynamics of vortices is to consider non-linear
field theories that possess classical vortex solutions and to study the dynamics of
these solutions in the field theoretic framework. There exist many field theoretic
models that support the static vortex solutions. Relativistic models of vortices
include the Abelian Higgs model of Nielson and Olesen [2], the scalar Chern-
Simons theory of Hong, Kim and Pac, and Jackiw and Weinberg (3], and the
fermion Chern-Simons thoery of Lie and Bhaduri [4]. There also exist many
non-relativistic models including the Ginzburg-Landau model [5] which is the
non-relativistic limit of the Abelian Higgs model, Jackiw-Pi model [6] which is
the non-relativistic limit of the scalar Chern-Simons theory, and non-relativistic
spinor Chern-Simons theories [7].

The most of these models are not soluble in closed form except for the Jackiw-
Pi model and some of its generalizations. For the study of vortex dynamics in
the field theoretic framework, however, it would be more convenient to have
completely soluble models. We therefore consider the field theoretic models
which are completely soluble.

In the next section we give a brief review of the Jackiw-Pi model to show
how to find the static self-dual solutions. In section III, the simplest fermion
Chern-Simons theory which supports the static vortex solutions as solutions
of the Liouville equations is presented. In section IV, we present a fermion
Maxwell-Chern-Simons theory which supports static vortex solutions. We show
that although the static solutions are the same as those of Jackiw-Pi model
and the simplest fermion Chern-Simons theory, this model gives rise to quite
different moduli space dynamics from those simple models. We conclude with
some discussions in the last section.

II. Non-linear Schrédinger Equation coupled to
Chern-Simons Gauge Field

As a simplest model field theory that possesses vortex solutions we consider
the non-linear Schrédinger field theory coupled to a Chern-Simons gauge field



described by the Lagrangian [6],

e 1 = |
£=2ePTF5A, +i* Do — Dol + =(¢"¢)?, (1)
4 : 2 2K
where
F#y = a“All - BVA'IJ

Al—‘ = (AO, _A.)
Do = 8y +i4d°, D=V —iA.
One way to see the existence of static solutions is to consider the energy func-

tional and to find the field configurations that minimize the energy functional
[5]. To this end it is convenient to write the Lagrangian (1) as

P Cx * 1 = 1 *
L=-Zey Al +ig"d - 490~ kFi2) = 5|09 + - (9, (2)

where indices ¢ and j run for the spatial components 1 and 2. The momentum
conjugates to the field variables A* and ¢ are defined by

T = 6L = f ii AJ'
SA 2
oL
P = 3
5= )
respectively. The Lagrangian (2) can then be written as
L=mA +Po—H—A(¢"¢ — £F1a), (4)

where H is the Hamiltonian density and the last term represents the Gauss’ law
constraint,

B=VxA=-Fp,= —;¢*¢. (5)

The Gauss’ law constraint (5) shows that the magnetic field is proportional to
the charge density of the scalar field,

p=¢*o. (6)

iFrom Eqgs. (2) and (4) one finds that the Hamiltonian density of the system
is given by

_ 1 g 2 1 * 2
H=5|Dgl" — 5-(¢"¢)". (M
Using the identity,

|D@|? = |(D1 — iD2)$|? — (Bp + ¥V x J), 8)



where J = I m¢*13d> is the current density, one can write the Hamiltonian
density as

1 . 1 - =
H= §|(D1 —zD2)¢|2 - -2-V x J. (9)
The energy of the system then becomes
o /d?:m - %/d%:“(Dl —iDy)g? - ¥ x J]. (10)

If the fields are well-behavecd at infinity, then the last term does not contribute
to the energy since it is a surface term. Then the energy of the system is positive
definite:

E= % / &z|(Dy — iD3)¢f2 > 0, (11)

where the equality is called the Bogomol'nyi bound. Note that the coupling
constant of the quartic interaction of the scalar field is so chosen that the energy
functional is positive definite.

Eq.(11) shows that the minimum energy configurations of the system are
determined by the static first-order differential equation,

(D1 —iD2)¢ =0, (12)

which is called the self-dual equation.

To find the static soliton solutions one has to solve the self-dual equation
(12) together with the Gauss’ law constraint (5). To do this we write the scalar
field as

¢ =ple®. (13)
Substituting (13) into (12) one finds
A= —ip~lo_¢ = -%a_ Inp + 8_w, | (14)
or 1
fl‘=§w—§ﬁxlnp, (15)

where Ay = A; £iA; and 8+ = 8; +i0,. This shows that the gauge field Ais
completely determined by the scalar field. jFrom (14) we obtain

O0_Ay —0,A_ =2V x A=2iB=iV?Inp, (16)

which, upon substituting into the Gauss’ law constraint, reduces to the Liouville
equation,

V2lnp = -—%p, k>0, (17)

which is completely integrable.



The simplest solution of the Liouville equation (17) is the spherically sym-
metric solution,

4kN2? 1o N 2

"+ (D" (18)

p(7) = - o

where rg and IV are the constants representing the scale and the flux number of
the soliton, respectively. To find the restriction on the number N, we observe
that the regularity of the solution at the origin and at infinity requires N > 1.
'And the single-valuedness of the scalar field ¢ requires N to be an integer. Note
that the regularity of the gauge field at the origin,

1 7
Ai(® =3 oy — sz (N = 1), (19)
determines the function w:
w= (1= N)6. (20)
We thus find the static solution,
2v/kN [, rg N r N7
o) = 2L ()" 4 (2)) e, e

with A determined by Eq.(15)
(From the explicit solution (21) one finds the magnetic flux of the soliton
solution,

¢ = / d’zB = —% / d?zp = —21(2N), (22)
the electric charge,
Q=-x9?, (23)
and the angular momentum,
. J =27k(2N). (24)

This shows that the solution (18) and (21) represents the charged vortex solution
with quantized magnetic flux.

The solution (18) represents the case of N solitons superimposed at the
origin. The general solution of the Liouville equation is also known:

__4f @l
1 +1f)P)

where z = re?? and f(z) is an arbitrary function of z such that p is non-singular.
f(z) for the most general solution can be written as

(25)

f2)=> ——, (26)



where ¢; and z; are arbitrary constants. This solution contains 4N arbitrary
parameters which represent 2N position parameters, N scale parameters and
N phase variables of the solitons. In fact, index theorem confirms that (4N) is
the maximal number of parameters contained in the general solution [8] .

The Jackiw-Pi model described above is invariant under the Galilean trans-
formation, and is the non-relativistic limit of the relativistic scalar Chern-Simons
theory (3] ,

K . 1
Lret = Ze"‘ﬁ"Faa‘Av + D,¢D"¢" — §|¢|2(|¢|2 - k)% (27)

This theory possesses two types of soliton solutions: the topological solitons in
the symmetry broken sector, and the non-topological solitons in the symmetric
sector. The magnetic flux of the topological solitons is quantized as

® =27(N - 1), (28)
while the magnetic flux of the non-topological solitons is not quantized:
¢ = 27r(N + ), (29)

where « is an arbitrary parameter such that a > N.

The non-relativistic limit of the model (27) in the symmetric sector reduces
to the Jackiw-Pi model. Why then the non-relativistic solitons have quantized
flux while magnetic flux of the relativistic case is not quantized? The answer
lies in the fact that the Jackiw-Pi model has inversion symmetry which is not
respected by the relativistic model [9]. To see this note that the charge density
satisfies the equation,

am? 1 _ 2 ivisti
Venp = { % p(1— £), relativistic case (30)
—2p, non-relativistic case.

One can easily show that the Liouville equation is invariant under the inversion
transformation: :

ral, 60—0
' r
p(r) = p(3) = o), (31)

while the relativistic equation is not. The charge density for both models be-

haves as

r2IN=-1) " a5 r =0

r—2etl) a5 o0, (32)

) — {

and thus the magnetic flux is given by



- 1~
= / (-Vw+ §V x In p) - dl (33)
T—00
=27(n-1)+2n(a+1).
Due to the inversion symmetry (31) of the Jackiw-Pi model, the behavior of
p(7) at the origin and at infinity (32) must be related. This give rises to the

relation a = N, and explains the quantization of flux numbers in the case of
the non-relativistic theory.

ITI. Vortex Solutions in a Fermionic Chern-Simons
Theory

Vortex phenomena, in realistic systems are known to be dominated by the elec-
tronic structure of the systems. Thus in attempting to understand the vortex
dynamics it would be preferrable to use the fermionic field theories that sup-
port the static vortex solutions. The simplest fermionic Chern-Simons theory

that supports the vortex solutions is the one proposed by Li and Bhaduri [4],
described by the Lagrangian,

K - _ ]
L= ZeuyaF;wAa + ""l/)')'“au"p - milﬂﬁ + eA#j“, (34)

where 7 is a two-component spinor field, the Dirac matrices are chosen to be
70 = 0'3,71 = 1:0’1,’)'2 =io? (35)

in terms of the Pauli matrices o* , and

| =9, P=yh (36)
We will denote the charge density as j° = ¢ty = p.

To find the static vortex solutions in this system, it is simpler to start from
the field equations,

(10, + eAu)w -myp=0,
geme T (37)

The second equation of (37) can be decomposed into the Gauss’ law constraint,
e
B = Fi3 = —p, (38)
K
and

Ei=Fy = %e’f . (39)



By writing
— ¢+(Ea t) 40
v=\v-@o ) 0

the fermion field equation, the first of (37), reduces to the two coupled equations
for ¢4 (£,t) and ¥_(Z,t) :

(100 — m)Y+(Z,t) = (D1 — iD2)y—(Z,t)
—(i8 + m)Y—_(Z,t) = (D1 +iD2)y4(F, 1), (41)

where D; = 0; — ieA® .
We now seek the stationary solution of the form,

v=vs@ (g ) (2

where Ey is a constant. Then the fermion field equation reduces to
(Ey —m)9+ (%) =0, (43)

which determines the constant Ey = m, and the self-dual equation,
(D1 +1iD2)9+(Z) = 0. (44)

Note that this is the same type of self-dual equation as that of the Jackiw-Pi
model. o

If we take ,
v=v-@( ] ), (45)
instead, the fermion field equation reduces to
(Ef +myy—(8) =0 @)
which determines Ey = —m and the self-dual equation,
(D1 — iD)y () = 0. (47)

To find the static solutions we choose the gauge, A° = 0, and take A to
be static. Then the both sides of Eq.(39) consistently vanish, and the spatial
components of matter current vanish for spinor fields (42) and (45), since v*’s are
- off-diagonal. Thus for the upper component spinor field (42), the field equations
reduce to the self-dual equation(44) and the Gauss’ law constraint (38). If we
write the spinor field as

P4 (Z) = pie, (48)
Eq.(44) reduces to .
eAy = —%a+ Inp + 84w, (49)



which determines the gauge field in terms of the matter fields:
A= ﬁw——%ﬁxlnp. (50)

(From Eq.(49) together with the Gauss’ law constraint (38), one finds that the
matter charge density satisfies the Liouville equation:

2 2
V2Inp = —%p. (51)

Thus if we take the upper-component for spinor field (42), k > 0 is required in
order to have non-singular positive charge density p.

If we take the lower-component for the matter field, Eq(45), on the other
hand, the field equations reduce to

2¢e?
Viinp = P (52)

where k must be negative for the regularity of the charge density p.

Since the matter charge density p satisfies the same Liouville equation (51)
and (52) as that of Jackiw-Pi model, we find the same structure of the static
vortex solutions except that the energy of the solution is now given by

E= :i:m/dzmpi, (53)

where py = 1! (£)Y+(&) for the upper and lower component matter fields,
respectively. We thus find that the fermion Chern-Simons theory (34) supports
the finite energy static vortex solutions with quantized magnetic flux and charge.

In general field theories with Chern-Simons term, parity is known to be
violated by the Chern-Simons term. One can restore the parity invariance by
introducing appropriate parity partners for each field in the theory. A parity
invariant fermion Chern-Simons theory is proposed by Hagen [10]. This parity
invariant fermion Chern-Simons theory also supports the static vortex solutions
as solutions of Liouville equation [11].

IV. Vortex Solutions of a Fermion Maxwell-Chern-
Simons Theory

To find a field theoretic model which supports the vortex solutions with phys-
ically more interesting properties, we introduce a Maxwell term to the gauge
field part of the Lagrangian and a couple of new interaction terms [12]:

- - 1 -
L=~ 3 F¥ Byt e Fap Ao+ 607 Oyp = mib+ €A (J¥ +1G) + 3 g(§0)7,

‘ (54)



where F,, = 8,A, — 8,A,, J* = {y*¢ and the new current G* is defined by
G* = e#°9,J,. (55)
The new gauge coupling term can be written as
A,G* = 0,A,€""? J, + surface term
= F,,e""?J, + surface term, (56)

which is the magnetic moment coupling in 3-dimensional space-time. This is the
reason why this new coupling is called an anomalous magnetic moment coupling.
If the gauge field part of the Lagrangian (54) is eliminated, then the theory
reduces to the 3-dimensional Gross-Neveu model. If we let [ = 0,9 — 0 and
e? = oo with % fixed, the theory becomes the fermion Chern-Simons theory
discussed in the last section.
Field equations of the new theory are

B, F# + EehvPF,, = —e(J* + IGH)
YH(i8y + eAu)p — myp + g(Py)Y — elet? (8, Au)vp¥ = 0, (57)

the first of which is the field equation for a massive gauge field in 3-dimensions.
To find static solutions we choose the gauge, A® = 0, and take A to be static.
As in the last section we write the spinor field in component form,

=0 ) *

where E; is a constant. Then the spinor field equation reduces to the coupled
-equations,

[Ef —m + g([v+* — [W_|?) — ele¥8;Ai]vpy = D_y—
[~ Ef —m+ g([94+> — [W—|?) + el 0; Ai]y— = Divpy, (59)

where Dy = Dy £iD;, and D; = 3; — ieAd.
If we take the upper-component spinor field,

o 1 —1 '
v=va@ (g ), (60)
then Eq.(59) reduces to
[Ef —m+ gpy — ele¥0;Ai]py =0

Dy =0, (61)
where p; = J4° = |¢4|? is the charge density of the matter field. For this
choice of the spinor field, we find,

Tt =Py =0
G’=0 (62)
G = ¢i9;p4,



since ¥'’s are off-diagonal matrices. Then the gauge field equation reduces to

» 2e
€' Fi; = "‘;P+

0;F = elG* = ele9;p... (63)

For these two equations to be consistent, the coupling constants ! and x must
be related by

1

I=—. (64)

This shows that, for the fermion Maxwell-Chern-Simons theory (54) to have

consistent static field equations, one need to introduce the anomalous magnetic
moment coupling term.

To find static solutions, therefore, one has to solve Egs. (61) and (63), which
now reduce to
e ..
(Ef —-—m+gpy + ;Etjain]’l/).{. =0
o Dyyy = (65)

Note that, for the first equation of Eq.(66) to be consistent with the other two
equations, one need to require,

(66)
In other words, in order for the theory (54) to have consistent static self-dual
solutions, the quartic coupling constant of the matter field must be determined
by the Chern-Simons coupling by (66) as in the case of the Jackiw-Pi model.
To solve the second equation of (66), we write
e = prte (67)
Then this equation determines the gauge field in terms of the matter field:
i _
eAy = —§P+13+P+ + 04w
i _
eA_ = §p+16_p+ +0_w, (68)

from which one finds,

O_Ay —0,A_=2B= —£a+a_ Inpy. (69)

— 89 —



By substituting this equation to the Gauss’ law constraint, the third equation
of (66), one finds the Liouville equation for the matter charge density:

2¢e?
Vinp, = —— P+ (70)

where xk must be positive for the regularity of the matter density. This shows
that the fermion Maxwell-Chern-Simons theory (54) also supports the static
vortex solutions as solutions of Liouville equation.

If we choose the lower component spinor field,

pors 0 —1
v=v-@( ] ), ()
the field equations reduce to

(Ef +m+gp_ + Ee‘iajA,-)zp_ =0

D_¢y_ = (72)
e
B=—-p_,
Pl 7
where p_ = 9f_4_. For these equations to be consistent, we also need to
require,
Ef =-m
2
e
9= (73)

By writing ¥_ = p_ kei“’, we again obtain the Liouville equation for the matter

density,
: , 2

2e :
Viinp. = - (74)

where k < 0 is required for the regularity of the density p_.
We now consider the energy of the static vortex solutions. The Hamiltonian
density is given by
1 1 el
H=xmps + §Flz2 - 590&2 + —pz>. (75)
K
Due to the consistency requirements (64), (66), and (73), the last three terms
of (75) cancel out, and the energy of the static solutions reduces to

2
E=1+m / dpy = e—:mNi, (76)
where 2N denotes the flux number of the solutions. The cancellation of the

quartic terms in the Hamiltonian density is also reminiscent of that in the
Jackiw-Pi model.



One may wonder why one studies such a complicated model with an unusual
interaction term if it gives the same static vortex solutions as those of the Jackiw-
Pi model or the simple fermion Chern-Simons theory. Although the theory (54)
gives the same static solutions as those of the Jackiw-Pi model, the moduli space
dynamics of this model is quite different from the Jackiw-Pi model because of the
Maxwell term in the Lagrangian. This may give more interesting, and hopefully
more realistic vortex dynamics.

The theory we have described is a U(1) gauge theory. This theory can be
generalized to SU (V) gauge theories as has been done by Jackiw and Pi [6] for
the Jackiw-Pi model. There exist many possibilities to formulate corresponding
SU(N) gauge theories as a generalization of the fermion Maxwell-Chern-Simons
theory. The simplest example is to take adjoint representation for the matter
field and use the ansatz that the matter density and the gauge field A, lie in
the Cartan subalgebra of the grhoup [13]. One then finds the equations satisfied
by the components of matter density,

2e —
v? Inpe = :F‘;ZKaﬁpﬁ’ (77)
B=1

where K g is the Cartan matrix. Eq.(77) is not completely integrable in general,
but can be integrated numerically [6]. For the SU(2) case, Eq.(77) reduces to
the Liouville equation, and it corresponds to an embeding of U(1) in SU(2).

V. Discussions

We have constructed a fermion Maxwell-Chern-Simons theory that possesses
completely integrable multi-vortex solutions, and have shown that the solutions
are the same as those of Jackiw-Pi model. Although the model gives the same
static solutions as the Jackiw-Pi model, the moduli space dynamics of the static
solutions will be quite different due to the Maxwell term in the Lagrangian. The
Maxwell term is quadratic in the time-derivatives of gauge field, i.e., %AiAi,
which gives rise to a non-trivial contribution to the moduli space metric, while
the Chern-Simons term is linear in the time-derivatives of gauge field. This may
give an interesting vortex dynamics and may be more relevant in understanding
the vortex phenomena arising in the high temperature superconductors.

Similar construction can be done for more relatistic, non-relativistic fermion
gauge theories. Some models have already been constructed and their static
solutions have been studied [7]. These models provide simple starting point in
studying more realistic vortex dynamics in the field theoretic framework.

The most well-known method of studying vortex dynamics is that of mod-
uli space dynamics for slowly moving vortices proposed by Manton [14]. This
method, however, has a difficulty in obtaining the moduli space metric for the
theories with kinetic terms linear in time-derivatives, such as Chern-Simons the-
ory, relativistic fermion theories and general non-relativistic field theories. This



difficulty can be avoided by using the method proposed by Bak and Lee [15],
where one integrates out the momentum variables to make the kinetic terms
quadratic in time-derivatives of field variables. One can then use the Manton’s
method to obtain the correct moduli space metric.

Another way to study the vortex dynamics is the so-called string formulation
of vortex dynamics [16]. The authors of ref.[16] note that at the centers of vor-
tices the field function(scalar field ¢ in the Jackiw-Pi model and spinor field v
in the fermionic models) vanishes, and treat the points of zeros in 3-dimensional
space-time (or string of zeros in 4-dimensional space-time) as fundamental ob-
jects. They then write exact equations of motion for points(or strings) in terms
of fields that surround them. These equations of motions are rather complicated
and need approximation for practical applications.

As mentioned above, it is not a simple matter to use these methods to study
vortex dynamics in the field theoretic framework. The field theoretic models
discussed here have static vortex solutions in closed form, and it is relatively
simple to apply these methods to understand the dynamics of magnetic vortices.
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Abstract

We show that the Weinberg-Salam model, with a simple modification of the
4-point coupling constant of the W-boson, can be made to allow finite energy
monopole and dyon solutions. The existence of the new solutions is based on
the fact that the Weinberg-Salam model can be interpreted as a gauge theory
of SU(2)em which is spontaneously broken by a Higgs triplet. Our result
suggests that genuine electroweak monopole and dyon could exist whose mass
scale is much smaller than the grand unification scale.
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L INTRODUCTION

Ever since Dirac [1] has introduced the concept of the magnetic monopole, the monopoles
have remained a fascinating subject in theoretical physics. The Abelian monopole has been
generalized to the non-Abelian gauge theory by Wu and Yang [2] who showed that the
pure SU(2) gauge theory allows a point-like monopole, and by 't Hooft and Polyakov [3]
who have constructed a finite energy monopole solution in the Georgi-Glashow model as a
topological soliton. In the interesting case of the electroweak theory of Weinberg and Salam,
however, it has generally been believed that there exists no topological monopole of physical
interest. The basis for this “non-existence theorem” is, of course, that with the spontaneous
symmetry breaking the quotient space SU(2) x U(1)/U(1)em allows no non-trivial second
homotopy. This has led many people to conclude that there is no topological structure in
the Weinberg-Salam model which can accommodate a finite energy magnetic monopole.

This, however, is shown to be not true. Indeed recently Cho and Maison [4] have es-
tablished that the Weinberg-Salam model has exactly the same topological structure as the
Georgi-Glashow model, and demonstrated the existence of a new type of monopole and dyon
solutions in the standard Weinberg-Salam model. This was based on the observation that the
Weinberg-Salam model, with the hypercharge U(1), could be viewed as a gauged C P! model
in which the (normalized) Higgs doublet plays the role of the CP! field. So the Weinberg-
Salam model does have exactly the same nontrivial second homotopy as the Georgi-Glashow
model. Once this is understood one could proceed to construct the desired monopole and
dyon solutions in the Weinberg-Salam model. Originally the solutions of Cho and Maison
were obtained by a numerical integration, but now a mathematically rigorous existence proof
has been established which supports the numerical results [5].

The monopole of Cho and Maison may be viewed as a hybrid between the Dirac monopole
and the ’t Hooft-Polyakov monopole, because it has a U(1) point singularity at the center
even though the SU(2) part is completely regular. Consequently it carries an infinite energy
so that at the classical level the mass of the monopole remains arbitrary. Of course there is
nothing wrong with this as far as one wants to interpret the monopole as an elementary par-
ticle. Nevertheless one may wonder whether one can have an analytic electroweak monopole
which has a finite energy. This is indeed shown to be possible with a minor modification
of the theory [6], and the purpose of this paper is to discuss the finite energy electroweak

monopole and dyon solutions in detail. We show that the ezistence of the finite energy solu-



tions are based on the fact that the Weinberg-Salam model not only has the same topological
structure as the Georgi-Glashow model but in fact can be interpreted as a Georgi-Glashow
model which has an extra interaction between the W boson and the Higgs triplet. The new
monopoles could have important physical implications in the phenomenology of electroweak

interaction.

II. MONOPOLES IN WEINBERG-SALAM MODEL

Before we construct the finite energy monopole solutions we must understand how one
could obtain the infinite energy solutions first. So we will briefly review the singular solutions
in the Weinberg-Salam model. Let us start with the Lagrangian which describes (the bosonic
sector of) the standard Weinberg-Salam model

. 2
Lo = ~ID8P = 5 (86— )~ 2(FL) - HGW) .1)

Dy = (8, - r;ir-A,, - i%,B“)qS = (D, - i%,B,,)qS,

where ¢ is the Higgs doublet, F,, and G, are the gauge field strengths of SU(2) and U(1)
with the potentials A, and B,, and g and g’ are the corresponding coupling constants.
Notice that D, describes the covariant derivative of the SU(2) subgroup only. From (2.1)

one has the following equations of motion

2
Du(Du#) = A(#'e - 5) @,
DuFu = —j, = i3[#'r(Ds) - (D.9)'re)], (22)

/
0uC = —k, =iZ[#"(D.0) - (D,9)'4)].
Now we choose the following static spherically symmetric ansatz
| 1
= 9, 0),
¢ ﬁp(r)f (6,9)

- (sin(0/2) e-iv

A=t = —f
~ cos(0)2) ), p=¢§'1¢€=-7,



4, = 3A(r>6yt$+ S(() - 1d x 0,8, (2.3)

1
B, = —:(;—’B(T)a"t - ‘-;—,(1 — cos 0) 0,

where (¢,7,0, ) are the spherical coordinates. Notice that the apparent string singularity
along the negative z-axis in { and B, is a pure gauge artifact which can easily be removed
with a hypercharge U(1) gauge transformation. Indeed with the U(1) gauge transformation
¢ — €%¢, B, — B, + (2/¢')u¢, one can move the string to the positive z-axis. This
proves that the above ansatz describes a genuine spherically symmetric ansatz of a SU(2) x
U(1) dyon. Here we emphasize the importance of the non-trivial U(1) degrees of freedom
to make the ansatz spherically symmetric. Without the extra U(1) the Higgs doublet does
not allow a spherically symmetric ansatz. This is because the spherical symmetry for the
gauge field involves the embedding of the radial isotropy group SO(2) into the gauge group
that requires the Higgs field to be invariant under the U(1) subgroup of SU(2). This is
possible with a Higgs triplet, but not with a Higgs doublet [7]. In fact, in the absence of
the hypercharge U(1) degrees of freedom, the above ansatz describes the SU(2) sphaleron
which is not spherically symmetric [8]. The situation changes with the inclusion of the extra
hypercharge U(1), which allows us to circumbent this difficulty.

The spherically symmetric ansatz (2.3) reduces the equations of motion to

: =1, /82 o

frmt = (7P - ),

I i _ 1 2 P’
P+ op=55P= Z(B A) P+)\(§—7\')P,
« 2. 2f? _922

B+ %B - %,2(3 — 4).
The smoothness of the solution requires the folloWing boundary conditions near the origin,
f~1l+ar?
p =~ Bir’,
A~ ar, (2.5)
B ~ b+ blr,

R



where § = (—1 ++/3)/2. On the other hand asymptotically the finiteness of energy requires

the following condition,

f =~ flexP(_K‘r)7
exp(—v/2pr)
r b

p = pot+p
A

A'zA0+-r—1, (2.6)

B ~ A+BIM’

where pg = \/2p2/ )\, & = 1/(g9p0)?/4 — A, and v = /(g% + g"*)po/2. Notice that asymptot-

ically B(r) must approaches to A(r) with an exponential damping.

To determine the electric and magnetic charge of the dyon we now perform the following

gauge transformation on (2.3)

f—+£'=Uf=(‘1’), 27)
cos(6/2)
U s sin(f/2)e~"
| sin(6/2)e
—cos(0/2)

and find that in this unitary gauge
f(r)(sinpd,8 + sinbcospd,p)
A, — A= % —f(r)(cos 98,8 — sin fsin pd,p) | - (2.8)
—A(r)9,t — (1 — cosf)dup
So expressing the electromagnetic potential .4, and the neutral potential Z, with the Wein-
berg angle 0

cos by
A, _ sin 0, B,
z, | |-sin6, | \A2
cos Oy,
_ 1 : g (Bn) , (2.9)
g°+g° 1-g | \A]



we have

1 1 1
Aﬂ = —8(‘g'—2A + g—aB)B”t - ‘e—(l — COS 0)6“90,

Zy

e
Eg-,(B — A)d,t, (2.10)

where e is the electric charge

!
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e= ————0 = gsinf.
vg°t+yg
From this one has the following electromagnetic charges of the dyon
1. 1. i
— 2 —
Qe = 47!’6[7’ (?A + FB)] e = _C_Al
8w N
= T sin®6, / F2Adr, (2.11)
¢ 0
_ 4
m = e

Also, from the asymptotic condition (2.6) we conclude that our dyon does not carry any

neutral charge,

4 . .
Z, = —ﬁ-[rz(B—A)]

Zm =0, (2.12)

=0
r=00 ’

which is what one should have expected.

With the boundary conditions one can integrate (2.4) and find the dyon solution of Cho
and Maison shown in Fig.1 [4]. The regular part of the solution looks very much like the
well-known Prasad-Sommerfield solution of the Julia-Zee dyon [9]. But there is a crucial
difference. The above dyon has a non-trivial B — A, which represents the non-vanishing
neutral Z boson content of the dyon as shown by (2.10). To understand the behavior of
the solutions, remember that the mass of the W and Z bosons are given by My = gpo/2
and Mz = /g% + g%po/2, and the mass of Higgs boson is given by My = 2u. This
confirms that \/M)_z and My determines the exponential dainping of f and p,
and M.  determines the exponential damping of B — A, to their vacuum expectation values
asymptotically. These are exactly what one would have expected.

- With the ansatz (2.3) the energy of the dyon is given by

E = Eo + E]_, (2.13)

—100 —



(£ +a-py),

oo
E, = %O/dr{g;—(ri)f + gzz'ﬁp? + L:(B - A)?p? + %ﬁ(%% - “T)2
+(f)2 + l(rA)2 + -'—’i-(rB)z + f2A2}.
2 2g'2

Now with the boundary conditions (2.5) and (2.6) one could easily find that E, is finite.
As for Ey we can minimize it with the boundary condition f(0) = 1, but even with this E;
becomes infinite. Of course the origin of this infinite energy is obvious, which is precisely
due to the hypercharge U(1) singularity at the origin. This means that one can not predict

the mass of dyon. It remains arbitrary at the classical level.
Recently a rigorous existence proof of the above solutions has been provided by Ya.ngv[5],
who also established a very interesting constraint on the boundary conditions (2.6) and (2.7),

OSbOSA_zoi
[

0 < Ag < epo. (2.14)

Notice that since epy = 2Mw sinfw, k = \/m always remains positive with the
experimental value of sin fy,=0.4822. From the mathematical point of view the existence
proof was a nontrivial task because the action functional of our dyon is not positive definite.
With an indefinite action the standard minimization method in the variational calculus does
not guarantee the existence of a solution. ‘

Notice that (2.4) has another monopole/dyon solution which is much simpler. Clearly
f =0, p=py, A= B = const/r also becomes a solution of the system. This, of course,
is nothing but the “pure” magnetic monopole of the Weinberg-Salam model which has
no SU(2) tails. Unlike the original Dirac monopole, however, this one carries a magnetic
charge 47 /e, not 2m/e. This is due to the fact that U(1)em of the Weinberg-Salam model
is a composite subgroup of SU(2) x U(1). But this does not mean that the embedding of
the original Dirac monopole with ¢, = 27 /e in the Weinberg-Salam model is impossible. In

fact the Dirac monopole may be described by

1 1—cosé ~ 14 . a .
A, = E(Aaut - —“—;—“3;4<P)¢ - :‘;¢ X (p=-7),
1 1 —cosf '
B” = —?Ba,‘t - —25;——6,,,(,0. ) (2.15)
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Notice that under the SU(2) x U(1) gauge transformation
1 . .
U=exp (z§¢r @ w) X exp (zg) ; (2.16)
one has

€ — ei‘pfy
1 1 -~ -~ A
A, — E(Aa,,t + ++°‘°'oa,,<p)¢ ~13x8,4,
14 cos@

1
Blt — —EBa,,,t"l‘ 29'

Oup. (2.17)

This proves that the gauge transformation (2.16) moves the string along the negative z-axis
in (2.15) to the positive z-axis, and confirms the spherical symmetry of the ansatz (2.15).
Now, in the unitary gauge (2.7), (2.15) becomes

0
A, — o , (2.18)
-A(r)d,t — 1__2"0‘393”(;,

so that one has
1, 1 1 ’
A, = —e(g—2A + ?B)aﬂt - 2—6(1 — cos 0)d,p,
e
Z, = — (B — A)o,t. 2.19
[ g g/( ) (1 ( )
This confirms that (2.15) indeed describes the Dirac monopole with ¢, = 27/e.
From the above analysis one may wonder whether the Dirac monopole could admit
a nontrivial SU(2) tail in the Weinberg-Salam model. Unfortunately this does not seem
to be possible. The reason is that the W-boson does not allow a spherically symmetric
configuration which is consistent with (2.15). This means that only the monopole of Cho
and Maison, not the Dirac monopole, allows a spherically symmetric W-boson tail in the

Weinberg-Salam model.

III. ANALYTIC SOLUTIONS

At this stage one may ask whether there is any way to make the energy of the above
solutions finite. A simple way to make the energy finite is to introduce the gravitational

interaction [10]. But the gravitational interaction is not likely remove the singularity at the
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origin, and one may still wonder if there is any way to regularize the singular solutions. In
this section we will discuss how one can construct the monopole solutions explicitly which
have not only a finite energy but also analytic everywhere.

To do this we first notice that a non-Abelian gauge theory in general is nothing but a
special type of an Abelian gauge theory which has a well-defined set of charged vector fields
as its source. This must be obvious, but this trivial observation reminds us the fact that
the finite energy non-Abelian monopoles are really nothing but the Abelian monopoles whose
singularity is reqularized by the charged vector fields [11]. From this perspective one can
try to make the energy of the above solutions finite by introducing additional interactions
and/or charged vector fields. In the followings we will present two ways which allow us
to achieve this goal along this line, and construct analytic electroweak monopole and dyon

solutions with finite energy.
A. Electromagnetic Regularization

Remember that the origin of the infinite energy of the above solutions is the magnetic
singularity of U(1)em at the origin. We could try to regularize this singularity with a judicious
choice of an extra electromagnetic interaction of the charged vector field with the Abelian
monopole. This regularization would provide a most economic way to make the energy of
the singular solution finite, because here we could use the already existing W boson without
introducing a new source.

To show that this is indeed possible we first notice that in the unitary gauge the La-

grangian (2.1) can be written as
1 2_ 1 2 _ 1 2
Ly = —Z(FIIV) - Z(GIW) - §|Dqu - DvW#l

. * 1 * *
+ig B WiW, + 20* (Wi W, = W W,)?

1 1 . 1 Apr pA\2
_5(6#[))2 —_— Z 2(g2W"W“ + 5(9,3" - gA“)2) - 5('5' - T) , (3.1)
where
1 .
Wll = 7§(A:" + ZAz),
4 = A,
D,W, = (0, +igA,)W,.
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This Lagrangian describes the dynamics of two U(1) gauge fields A, and B, interacting
with a charged vector field W, and a real scalar field p. Notice that in the unitary gauge

the spherically symmetric ansatz (2.3) is written as

p = plr)
W, = —%L%ei“’(aﬁ—i-isinaauqa),
A, = -3,4(7-)3,,1:— 3(1 — c0s 6)3,, (3.2)

B, = —!%B(r)aut - %(1 — cos6)0,¢,

which must be clear from (2.8).
To regularize the singular dyon, we now introduce an extra interaction 6£; to (3.1) which

modifies the coupling strength of the 4-point interaction of the W boson,
a *
6L, = ZgZ(W,;W,, - Wiw,)?, (3.3)
where « is an arbitrary constant. With this modification the energy of system is given by

where now Ej is given by
o Tdr (@ . op 4
E{,:g—zofﬁ{?+l—2f +1+a)}. | (3.5)
Notice that with a = 0, E} reduces to Ey and becomes infinite. Clearly, for the energy
(3.4) to be finite, E} must be free not only from the O(1/r?) singularity but also O(1/r)

singularity at the origin. This requires us to have

1+ 5—,22—2f2(0)+(1+a)f4(0) =0,

f(0)—(1+ea)f3(0)=0. (3-6)

Thus we arrive at the following condition for a finite energy solution
1 2 1
1 g

— — T e— 3-7
l+a -I-_q'2 sin” 6, (37)
from which we have
1
= . 3.8
£O) = (38)
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At the first glance one might think that this is unacceptable because, according to the ansatz
(2.3), the above boundary condition creates a singularity in A,. But we will see that this is
precisely what one need to counter the magnetic singularity of B,.

Actually, for the purpose of a finite energy solution one could have tried a more general
oLy,

64 " * . *
0L, = 192(WuWV — WyW,.)? +iBgFu WiW, (3.9)

The additional 3-term will introduce an extra coupling constant to the theory, and leave
f(0) (and @) arbitrary. But clearly the -term will create an “anomalous” magnetic moment
for the W-boson, which one may wish to avoid. For this reason we will keep § = 0 in this
paper.

To understand the finite energy solutions it is important to realize that the Weinberg-
Salam model can be interpreted as a Georgi-Glashow model. To see this notice that with

(3.3) the modified Lagrangian is given by

1 1 . . 1 . .
L= _Z(y-',,,,)2 - 5|D,,W,, -D,W,|*+ ieFuWiW, — ZeZ(WuW,, -Wiw,)?

1 9 1 62 2 A (p2 u2>2 1 )
. - * AN A . 2z
2(6up) is7o.” WaWa-5(5 -5 4( »
1 €2 . .
" 2sin? 20+, pzz’z‘ +tecot GWZ“”W#WV + €? cot? HW(Z;%‘W-/P - IZuWulz)

- +iecot 04D W (Z, W, — Z,W,) — iecot 04, D W, (Z,W; — Z,,W[j), (3.10)
where
DW, = (0, + ieA)W,, Fu =0,A — OAy,  Zy =0,2Z, - 0,2,.

Notice that the only change made by (3.3) is the coupling constant of the 4-point interaction
of the W-boson from g2/4 to e2/4. Now it must become clear that the above Lagrangian has
a hidden SU(2)em symmetry which is different from the old SU(2) symmetry of Weinberg
and Salam. In fact, when Z, = 0, the Lagrangian (8.10) describes an SU(2)em gauge theory
with the physical coupling constant e (not g) which is spontaneously broken by a Higgs triplet
whose gauge potentials consist of the real electromagnetic A, (not A,) and W”*, ezcept that
here Higgs triplet has an extra interaction with the W boson given by

1
45in® 4,

5Ly =e(1- VPWaW, = (¢ - -’;) PWEW,. (3.11)
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To demonstrate this we introduce a Higgs triplet

@ = po,
and write
Am=AT+W, (6-W,=0), (3.12)

A m 7 1. 1 m 7 m
Al =ATd—-bx0b  (Am=d- A,
Notice that in this decomposition A;m is the gauge potential which parallelizes ¢ [12],
Dubp=08,p+eA; xd=0. (3.13)

Also notice that under an infinitesimal gauge transformation

SAT = —-%D,,G, 5b=0xd, (3.14)
one has
Aem 1 ~
§A," = ~-D,8, W,=0xW, (3.15)

so that W, becomes a gauge covariant vector field orthogonal to @. With this the La-

grangian (3.10) now can be written in a gauge invariant form

_ 1 remya2 1 2, 2 1 2 ’\(1 2 N2)2
L= —2(FZ) - 5(Du®) +e (1 4sin20w)(wux<1>) 532 -5
iz )2-1 © 82724 € coth ¢ (DuW. x (W, 2, - W,Z,))
47" 9sin?29, K2 T Y e wv

e - e?
=5 0t Bn Zu (P Wy X W) + cot? 0 (Z2(W.)* - Z,Z,W,-W,), (3.16)
where F'7 is the field strength of A;" and
D,® =0,2+eA;" x .

In this form the Lagrangian describes an SU(2)em X U(1), gauge theory where SU(2)em is
spontaneously broken by a Higgs triplet but U(1), is explicitly broken.

The above result immediately tells that the Weinberg-Salam model itself can be inter-
preted as a Georgi-Glashow model of the new SU(2)r, in the absence of the Z boson. This

must be clear because (3.16) is expressed by
L=Ly+6L,, . (3.17)
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where now
2
5Ly = -—%—cotz O(W,, x W,)2 (3.18)

It is really remarkable that one could reinterpret the Weinberg-Salam model as a Georgi-
Glashow model with such a minor modification. The origin for this, of course, is the real-
ization of the fact that the original Weinberg-Salam model is really nothing but a gauged
CP! model which has exactly the same topological structure as the Georgi-Glashow model.
Without this understanding one could not possibly have arrived at this interpretation.
Clearly the above interpretation guarantees the existence of the finite energy monopole
and dyon solutions. To obtain the desired solutions notice that in the regular SU(2)em gauge

the ansatz (3.2) is written as

® = p$ (qg = _'F)9
AT = LA+ 2 B)o,td+ ~(fsinby — 1)d x 8,8
om —e(g—2 + o7 )9utd + —(f sin b — 1) x 8,9,
e
Zs = (B = Aot (3.19)
This tells that the boundary condition (3.7) is precisely what one need to remove the mag-
netic singularity at the origin. Notice that the old boundary condition f(0) = 1 cannot
remove the singularity of the hypercharge U(1), although it does make the original SU(2)
part regular. Now, the equations of motion of the Lagrangian (3.16) with the above ansatz

can be written as

F-Lo ol (Lo m);,

p+ %i»— 2—;p= —E(B - A)zp+>\(5"2z - ”;)p,

Av2i- ii; - ?‘;(A ~B)R, (3.20)
B+ %B = g;(B — A)p%.

One could integrate this with the boundary conditions

f(O) = I/Sin 0W7 A(O) = QGo, B(O) = bO) p(O) = 03

f(o0) =0, A(oo) = B(oo) = Ao, p(o0) = po. (3.21)
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For the monopole this boundary condition is enough to guarantee an analytic solution. For
a dyon A(co) = B(0o) guarantees the finiteness of the energy. One could further try to
impose the condition ag/g? + bg/g”? = 0 to make the electric part of the solution smooth
at the origin in the regular gauge (3.19). Notice, however, that (3.20) is invariant under
(A, B) = (A, —B). From this symmetry and the last two equations of (3.20) one can show
that B(r) > A(r) > 0 everywhere [5), so that one must have by > ao > 0. This tells that in
the regular gauge the dyon solution develops a cusp at the origin, which is harmless. The
results of the numerical integration for the monopole and dyon solution are shown in Fig.2
and Fig.3. It is really remarkable that the finite energy solutions look almost identical to the
solutions of Cho and Maison, even though they no longer have the magnetic singularity at
the origin.

Clearly the energy of the above solutions must be of the order of My . Indeed for the

monopole the energy can be expressed as
E = 2T 0 (sin? 0y, \/g?) M 3.22
= 7 O(sin* 65, A/ g") My (3.22)

where C the dimensionless function of sin? 8, and A/g%. With experimental value sin? @y, C
becomes slowly varying function of A/g? with C = 1.407 for A/g* = 0.5. This demonstrates
that the finite energy solutions can indeed be interpreted as the electroweak monopole and
dyon, and are really nothing but the original solutions of Cho and Maison which have been
regularized to have a mass of the electroweak scale.

The similarity between the Weinberg-Salam model and the Georgi-Glashow model can
be made more precise just by making the interaction of the Higgs triplet with the W boson

“normal”. This can be easily done by removing the extra interaction (3.11)

_ 1 2 2 ‘
&Cz = (1 - m)e (W” X @) (323)

‘from (3.16). With this the Lagrangian (3.16) reduces to nothing but a Georgi-Glashow
model in the absence of Z boson. This observation allows us to have a Bogomol'nyi-Prasad-
Sommerfield monopole solution. Indeed in the absence of (3.23) the monopole energy func-

tional in the Prasad-Sommerfield limit A = 0 becomes ’
1 1
B = [da{7(FsP + 5027}

1 2 1
1 / dsx(Fi,- F e,-,-k‘DkQ) + 3 / d3:z:e,~,-kF,'j - Dy ®, (3.24)
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which, with the Bianchi identity €;;,D;Fj; = 0, gives the desired energy bound

E> 1% [ zesdn(Fy - )| (3.25)
The bound is saturated by the well-known Bogomol’'nyi equation

Fij = +6;x Dy ®, (3.26)

which automatically satisfies the equations of motion in the absence of Z boson. The
equation with the ansatz (3.19) (with A = B = 0) reduces to

f % epf =0,
. 1 .
pF ;—1-3(1 — f%sin6,) =0, (3.27)

which has the following solution

. _ €epoT
fsinfw = sinh(epor)’
1
p = pocoth(epor) — pot (3.28)

Clearly the energy of the Bogomol’'nyi-Prasad-Sommerfield solution is given by
4T 47 '
E = —p(c0) = — My, (3.29)
where now My is given by epy. .

B. Embedding SU(2) x U(1) to SU(2) x SU(2)

As we have noticed the origin of the infinite energy of the solutions obtained by Cho and
Maison was the magnetic singularity of the hypercharge U(1) field B,. So one could try
to to obtain a finite energy monopole solution by regularizing this hypercharge singularity.
This could be done by introducing a hypercharged vector field to the theory. A simplest way
to do this is, of course, to enlarge the hypercharge U(1) and embed it to another SU(2).

To construct the desired solutions we generalize the Lagrangian (3.1) by adding the
following Lagrangian '

1 = M . * 1 * *
L' = —z|DuX, - D, X,[> +ig'Gu XX, + -4-g'2(XuX., - X:X,)?

1 . K m?\2
~50u0) = ¢** X3 X, = 7 (0 = ), (3.30)
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where X, is a hypercharged vector field, o is a Higgs field, and E“X,, = (8, +19'B,)X,.
Notice that, if we introduce a hypercharge SU(2) gauge field B, and a scalar triplet & and

identify
1 .
X, = W(B}L+sz),
B, = B},
® = (0,0,0), (3.31)

the above Lagrangian in an arbitrary gauge can be written as
p 1o o Koo, miy2 1 2
L =-3(D,2)" - Z(‘I’ - 7) - 7(Gw). (3.32)

This clearly shows that Lagrangian (3.30) is nothing but the embedding of the hypercharge
U(1) to an SU(2) Georgi-Glashow model.
From (3.1) and (3.30) one has the following equations of motion

1 . 1 p2 2
aﬂ(aﬂp) = 592WuWup + Z(Q,B,‘ - gA,,)zp + A(-E' + T)p,
D,(D,W, — D,W,) = igF, W, — ¢*W, (W, W} — W;W,) + ig2p2W,,,

1 . . . *
OuFu = 799 (9A, ~ 9'By) +ig(Wy(DuW,, — D,W,.) — (DWW, — D,W;)W,)
+igd, (WiW, — WiW,),

1 . * (T > > * > *
0,Gp = Z.‘]’P2(9'Bu - gA) + zg’(X#(D,,X,, - DvXu) - (D,,X,, - D,,X”)X”)
+igla[1(X;Xy - X:Xy),

2
0u(0u0) = 29" X; X0 + n(0'2 - m;—)a,

Du(D,X, — D,X,) = ig'Gu X, — ¢ Xu(X3X, — X} X,) + (9)°0°X, (3.33)

Now for a static spherically symmetric ansatz we choose (3.2) and assume

o = o(r),
L) 0 (5,0 + i5in 60,0) 3.34)
Xy = —?7§—e (8,0 + isin 00,¢). (3.
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With the spherically symmetric ansatz (3.33) is reduced to

: -1, (9%, 2
f_ r2 f_(zp _A)f7
L 2.0 21 2. Fow
p+=b—smp=—7(B- AP+ A5 - 7)p,
.2

A+ A— f 2(A B), (3.35)
. h?-1 7 _2 2
h— ——h = (9”0 — B%)h, (3.36)

2, 2h? m?
0‘+—0—-—2-0‘—h‘,0' ——)a,

T K
2 g?

13+-1'3—2—’3-B_T 2(B — A).

Notice that the energy of the above configuration is given by

I

™

Ew = —fd {(f)2 f2)2 + ( Ay + A
o

Q

+2(rp) + f2 2+ 8T(B—A)2p2 '—\%r—(%—”—/\-)}

= ?Cl()\/gz)MW,
Ex = /d {y+ S5 2L 4 iy 4 o2
+—2—(r&)2 + g%h%e? + '—y—:—(0’2 - 03)2}

4
= ;:'250206/ 9%)Mx,

where My = gpo/2,and Mx = g'og = g'\/m?/k. The boundary conditions for a regular

field configuration can be chosen as
£(0)=h(0) =1, A(0)=B(0)=p(0) =0(0) =0,
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f(00) = h(e0) =0, A(co) = B(00) = Ag, p(00) = po, 0(00) = 0o (3.38)

Notice that the origin of the condition B(0) = 0 is the same as A(0) = 0. With the boundary
condition (3.38) one may try to find the desired solution. From the physical point of view one
could assume Mx > My, where My is an intermediate scale which lies somewhere between
the grand unification scale and the electroweak scale. Now, let A = B = 0 for simplicity.
Then (3.37) decouples to describes two independent systems so that the monopole solution
has two cores, the one with the size O(1/Mw) and the other with the size O(1/Mx). With
Mx = 10My, we obtain the solution shown in Fig.4 in the limit A = k = 0. In this limit we

find C; = 1.946 and C, = 1 so that the energy of the solution is given by
E= ‘Z_’;(cos2 O +0.195 5in? 6, ) Mx (3.39)

Clearly the solution describes the monopole of Cho and Maison whose singularity is regu-
larized by a Prasad-Sommerfield monopole of the size O(1/Mx).

Notice that even if the energy of the monopole is fixed by the intermediate scale, the
monopole could be interpreted as an electroweak monopole. To see this remember that the
size of the monopole is fixed by the electroweak scale. Furthermore from the outside the
monopole looks exactly the same as the monopole of Cho and Maison. Only the inner core

is regularized by the hypercharged vector field. This justifies it as an electroweak monopole.

IV. CONCLUSIONS

In this paper we have discussed two’ ways to regularize the singular monopole and dyon
solutions of the Weinberg-Salam model, and explicitly constructed genuine finite energy
electroweak monopole solutions which are analytic everywhere including the origin. The
finite energy solutions are obtained with a simple modification of the interaction of the W
boson or with the embedding of the hypercharge U(1) to a comf;a,ct SU(2). It has generally
been believed that the finite energy monopole must exist only at the grand unification
scale [13]. But our result tells that this belief is unfounded, and suggests the existence of a
new class of electroweak monopole whose mass is much smaller than the monopoles of the
grand unification. Obviously the electroweak monopoles are topological solitons which must
be stable. | '

Strictly speaking the finite energy solutions are not the solutions of the Weinberg-Salam

model, because their existence requires a modification of the model. But from the physical
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point of view there is no doubt that they could be interpreted as the electroweak monopole
and dyon, because they are really nothing but the regularized solutions of Cho and Maison
whose size is fixed at the electroweak scale. In spite of the fact that the singular solutions
are obviously the solutions of the Weinberg-Salam model one could try to object them as the
electroweak dyons under the presumption that the singular solutions could be regularized
only at the grand unification scale. Our work shows that this objection is groundless, and
assures that it is not necessary for us to go to the grand unification scale to make the energy
of the singular solutions finite. This really reinforces the dyons of Cho and Maison as the
electroweak dyons which must be taken seriously.

We close with the following remarks:
1) A most remarkable aspect of our result is that, unlike the original Dirac monopole,
the magnetic charge of the above electroweak monopoles satisfy the Schwinger quantization
condition g, = 47n/e. On the other hand, since the Weinberg-Salam model has an unbroken
U(1)em, one should be able to embed the original Dirac monopole with the charge ¢, = 27 /e
and identify it as a classical solution of the Weinberg-Salam model. However, we emphasize
that the electroweak unification forbids such an embedding, as far as one wants to add a non-
trivial structure to the monopole. The existence of a finite size monopole with ¢, = 27 /e
is simply not compatible with the Weinberg-Salam model. Whether this conclusion applies
only to the electroweak theory or to a more general type of theories is not clear at this
moment.
2) Another important result of our work is that the Weinberg-Salam model, with a minor
modification, can actually be interpreted as a Georgi-Glashow model. At the first thought
this may come as a surprise. But we emphasize that this is precisely what one.should
have expected, if one realizes that the Weinberg-Salam model has a hidden SU(2)em which
is spontaneously broken down to U(l)em with the massless photon. There is only one
gauge theory, the Georgi-Glashow model, which can describe such a spontaneous symmetry
breaking. _
3) The electromagnetic regularization of the Dirac monopole with the charged vector fields
is nothing new. In fact it was this regularization which made the energy of the 't Hooft-
Polyakov monopole finite. Furthermore it has been known that the 't Hooft-Polyakov
monopole is the only analytic solution which one could obtain with this technique [11]).

What we have shown here is that the same technique also works to regularize the solutions
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of Cho and Maison, but only with (3.3).
4) The additional interactions (3.3) and (3.11) could spoil the renormalizability of the theory.
How serious would this offense be, however, is not clear at this moment. If one views the
Weinberg-Salam model as a low energy effective theory of a renormalizable theory, it need
not necessarily be renormalizable by itself. Here we simply notice that the introduction of
a non-renormalizable interaction (like a gravitational interaction) has been an acceptable
practice to study finite energy classical solutions.
5) The embedding of the electroweak SU(2) x U(1) to a larger SU(2) x SU(2) or SU(2) x
SU(2) x U(1) could naturally arise in the left-right symmetric grand unification models,
in particular in the SO(10) grand unification, although the embedding of the hypercharge
U(1) to a compact SU(2) may turn out to be too simple to be realistic. Independent of the
details, however, our discussion suggests that the electroweak monopoles at an intermediate
scale My could be possible in a realistic grand unification.

The existence of the finite energy electroweak monopoles could have important physical
implications [14]. We will discuss on the physical implications of the electroweak monopoles

separately.
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FIG. 1. The dyon solution of Cho and Maison. Here Z(r) = B(r) — A(r) and we have chosen

sin? 0 = 0.2325, \/g?> = M%/2M%, = 0.5, and Ay = My /2.
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FIG. 2. The finite energy electroweak monopole solution obtained with different values of
)\/g? = 0 (solid line), 0.5(dashed line), and 2.0(dotted line).
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FIG. 3. The electroweak dyon solution. The solid line represents the finite energy dyon and
dotted line represents the dyon of Cho and Maison, where we have chosen \/g? = 0.5, ag = 0,
by = 0.45Myw, and Ag = Mw /2.
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FIG. 4. The SU(2) x SU(2) monopole solution, where the dashed line represents hypercharge
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part which describes a Bogomol'nyi-Prasad-Sommerfield solution.
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ON THE EXISTENCE OF SOLUTIONS OF THE
HEAT EQUATION FOR HARMONIC MAP

Donc Pyo CHi, HyuN JunGg KiM*, AND WoN Kuk KiMm

ABSTRACT. In this paper, we prove the existence of solutions of the heat equation for har-
monic map on a compact manifold with a boundary when the target manifold is allowed to
have positively curved parts.

§1. Introduction

Let (M, f) and (IV,~y) be Riemannian manifolds of dimension m and n respectively. Let
{z*}™_, and {y*}2,; be the local coordinates of M and N, respectively, and let f defined
by f = Zaﬁ fapdz®dz? in this local expression.

Let u: M x [0,00) — N be a map which is represented as v = (ul,...,u") in terms of
the above local coordinates. We say u satisfies the heat equation for harmonic maps if it
is a solution of the following nonlinear parabolic systems:

1o} i _ rap i 81//7 auk
(A - &)u (z,t) = f*(z)G (u(z, t))%(w,t)gﬁ(%t),
fori=1,...,n, where (f*%) = (fap)~" and I} (y) is the Christoffel symbol at y in N.
Let A = (M x {0}) U (M x [0,00)), and Ar = (M x {0}) U (OM x [0,T)), for all
T >0.Let ¥: A — N be a given map. The boundary value problem of heat equation for
harmonic map is to find a map u: M x [0,00) — N which satisfies

J k
(1) (8~ D (z1) = ¥ @) (0l ) o (5, 1) g (5 )
UIA(FU, t) = Y(z, ),

fori=1,...,n.

Heat equation for harmonic map has been investigated by many mathematicians for
many years. Eells and Sampson proved the existence of the unique solution of (1.1) when
the domain manifold is a compact manifold without boundary [E-S]. R. Hamilton proved it
for the case when the domain manifold is a compact manifold with a boundary, but he dealt
with only the case when target manifold is negatively curved [Ha]. W. Kendall showed the
the existence problem of solutions of the heat equation for harmonic map when the target

*This work was supported partially by Research Fund at Heseo University.
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manifold has positive curvature parts and the domain manifols is a compact manifold
with boundary in a similar fashion as R. Hamilton’s [Ke|. He proved it using not analytic
method, which was used in [E-S] and [Ha), but probabilistic method. The goal of this paper
is to give a anlytic proof of the same results of W. Kendall. Our domain manifold is the
same as Hamilton’s but the target manifold is different so our method of proof is different
from it. We get the solution of (1.1) by applying the Leray-Schauder degree theory to the
nonlinear parabolic system. The present idea of proof is from the proof in [H-K-W], but
we get the gradient estimate of solution of (1.1), which is the important part of the proof
in using the Leray Schauder degree theory, in a different way. Hilderbrandt et al. [H-K-W]
used the distance function on N from a fixed point as a convex function on N, because the
target manifold N is only nonpositively curved. Since our target manifold N is allowed to
have positive curvature parts as well we need to define a new convex function instead of
the distance function.

We would like to thank Professor Hyeong In Choi, who helped us to use Leray-Scauder
degree theory.

§2. Preliminaries

Suppose that (N,7) is a Riemannian manifold with the sectional curvature bounded
above by a positive constant K > 0. Without loss of generality, we set K = 1. Let g € N
be given and B,(q) is the geodesic ball with rajus r < {Z, 7} and center g and where 7
is the injectivity radius at g. Then B,(q) is diffeomorphic to a Euclidean ball in R™ with
center 0 = (0,...,0) and radius r, the diffeomorphism being given by any normal coordinate
system at ¢g. Hence using the normal coordinates, any map u : M X [0,00) — Br(g) can be
represented by vector valued functions u = (u',...,u™) : M x [0,00) — R™.

Now the notations which will be used through the present paper are introduced. Choose
an orthonormal frame {es, 2} in a neighborhood of (z,t) € M x [0,00) and an local
‘orthonormal frame {f;} in a neighborhood of u(z,t) € N. Let {04,dt} and {w;} be the
dual coframes of {eq, %"} and {f;}, respectively.

Denoted = d M+gt-dt is a cannonical differential on M X [0, 00) where dy is a differential
on M. Let us define u;, by

u* (wi) = z UiaOo + Ui dt.
(o4
By taking thc covariant derivative of the above equation, we get Uiap by

> iaglp + tiardt
~ ,

= duio + Z UjeU*wji + z u;g0a0.
J 8

Since duiqy = dpUia + Uiatdt,

z“iaﬂoﬁ = dMUio + z UjaU wj; + Z uig08a-
B J B .
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ON THE EXISTENCE OF SQLUTIONS OF THE HEAT EQUATION FOR HARMONIC MAP
It is well known that the heat equation for harmonic map (1.1) is equivalent to
Uit = Uiaa
fori=1,...,n.
We define the energy function e(u) of u by e(u)(z,t) = 3,4 v, (z,1).
For p € B-(q), let us define a function ¢, : N — R by

byly) = =R D)

cos p(y,q)
_ 1—cospp(y) _ 9(v)
cospg(y)  h(y)

where p € B,(q) and pg, pp are the distance functions from ¢,p on N, respectively [J-Ka).

Lemma 2.1. ¢y is convex for all p € B;(g). Furthermore,Suppose that u : M x [0,00) —
N is a heat equation for harmonic map with u(M x [0,00)) C By(q). Then

(8= D)gp 0@ 0) 2 58, (u(m D)@
> 2 (1 - cos pp(u)e(w)(z,1) 2 0,

for all (z,t) € M x [0, 00).
Proof. We have

g
(@p)is = (3)is
h%(gi;h — gihj — gjhi — ghij) + 2hghih;

ha
We can get g;; > cos ppd;; and h;; < —cos pqgdij, on Br(g). Inserting these into (¢p)ij, one
can obtain ~

(¢p)ij

> h{cos pgdi;j + sin pp sin Pqa((pp)ilpg); + (pq)i(Pp)j)} +2(1 — cos Pp) sin’ Pq(pq)i(Pq); )

73
This proves (¢p)i;¥*¢’ > 0 for all functions ¢ = (¢*) : N — R", which is the proof of

convexity of ¢p.
| Now for the convenience of notation, let g = gowu and h = h o u. Then since

(8= 2)(gou)(e0) 2 con pp(u(a O)e(ulz.0)

and (A — %)(h ou)(z,t) < — cos pg(u(z, t))e(u(z, t)),
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we can get

(A— 9—)<wpou>

(hgoz 29ha)2

> L {h(u)(A - 6>g+g(A— 2y - 2 ”"(“) e(w)

2g — sin? p,(u)
> = 7
A Y

g 1
= Eh-e(u) > ihe(u).

a

Before we state the main theorems, let us introduce the following notations. Let y =
(y',...,y™) be normal coordinates at g of B,(q). If u : M x [0,00) — B, (99 C N, u
can be wrutten as u = (ul,...,u™) with respect to this normal coordnates. Then the
norm |u(z,t)| in R™ is the same as the distance p(u(z, t), q) from ¢ in N. We shall use the
following two kinds of norms

lluller. = sup |u(z,t)|+ sup |Dyu(z,t)],
M x[0,T] M x[0,T]
lu(z,t) — u(z', )] lu(z, t) — u(z,t')]
llullgiva = ||ullcr + sup + ,
| ck Il T Mx[0,T] ¥(z, ') Mx[0,T] |t —t/|>

where y(z,z’) is the distance between z and z’ on M, for 0 < a < 1 and 0 < T < 0.
These are defined in the usual manner, using an arbitrary, but fixed, finite atlas of M.
These two different atlases yield equivalent norms.

§3. Gradient Estimate and Existence Theorem

For any given C*** function 9 : A — B,.(q) C N, we consider the following system:

ud uk
(A= g )@, 8) = FP (@)l ) 0 (2, ) 2 1),
ula(@,t) = ¥(z,2),

fori=1,...,n.

First, we have to get the C!— estimate of the solution of (1.1) in order to use the
Leray-Schauder degree theory. C°— estimate of the solution of (1.1) and Interior estimate
of energy of the solution of (1.1) can be easily obtained by the same method as that in
[Ci-C-K]. The boundary estimate of energy is obtained by a modification of the proof in
[H-K-W].
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ON THE EXISTENCE OF SOLUTIONS OF THE HEAT EQUATION FOR HARMONIC MAP

Theorem 3.1. Suppose ¥ : A — B,(q) is of class C**¢ and u is a solution of (1.1), where
¢ > 0. Then for all T > 0,

llgase < €,
where C' depends only on ||¢|| ci+e and the geometries of M and N.

Proof. First, we have to claim that u(M x [0,00) C B-(p), that is a C®—estimate of u.
As the same in Lemma 2.1, define g(z,t) : M x [0,00) — R by

g(z,t) = 1 — cos(p(u(z, t), p))-

Then 5
(A - -——)g(z t) > cos pp(u(z,t))e(u(z,t)) > 0.

Since u|s(z,t) = ¢¥(z,t) C Br(p) for all (z,t) € A, we can get g|a(z,t) < 1 —cos7. Then
by the maximum principle, we have I'(z,t) < 1 —cos 7. Therefore cos(p(u(z,t),p)) > cosT,
which implies that u(z,t) € B (p) for all (z,t) € M x [0,00).

Let 2o € M be any point and a > 0. Let v be the distance function from z¢ in M and
let B,(zo) be the closed geodesic ball of radius a and center zg in M.Take any T' > 0. Let
supy pq(¥(z,t)) = b1. And we can choose a constant b > 0 such that supps.(0,00) 9(,t) <
b; <b.

Let us consider the function

o {5

which is defined on (Bg{zo) N M) x [0,T].
Since ®|0B,(z0) = 0, ® attains its maximum on (B, (zo) N M) x [0,T]. Let

(@ = 9)e(w) 3

$z1h) = (Ba(z0)M)x[0.T] { (b—g%)2

Then we can have the three cases : (z1,t1) € Ba(zo) X {0}, (Ba(zo) — OM) x (0,T} or
(Ba(zo) NOM) x (0,T).
In the first case i.e.(z1,t1) € Ba(zo) % {0},

(a? — 7%)%e(u) (a? — 7%)%(u)
W(-’t, t) < ——(ng)z—(xl, tl)
4

< @—?_-;)—2 sup e(¥),

for (z,t) € Bg(zo) % [0,T). Then we have, for (z,t) € Bg(zo) x [0, T,

16

(3.) c(w)(o,t) < s

sup e(%).
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In the second case, i.e. when (r1,t1) € Ba(zo) X (0,7}, by a similar computations as in
[C], we have

e(u)(z1,t1) < 4max {( 2128772)2, (b—g)+ Cl(](~a'}2' :Y-)’(Yl;)— 9)
8v°(b - g)
Se=ds

For any (z,t) € Bg (o) x (0,77,
{(a2 _ 72)26@)} (2,1) < {(az — 7%)2e(u) } (21, 1)

(b—g)? (b—g)?
16a2
< dmax { 6 9(z1,0))?
a? Ci(1 + a)a?

(b=g(z1,t1))  (b—g(z1,t1))

+___8a_2____}
(b—gler,t)? [

Therefore
256a2b2
< —
e(u)(z,t) < 4max { 30— br)2at ’
16Ka*?  16Ci(1 + VKa)a?b?
9(b — by)a* 9a4(b — by)
128a2b2
(3.2) +———-—9a4(b — b1)} ,

for (z,t) € Bs (o) x (0.T].

We consider the last case (z1,t1) € OM x [0,T]. Let n be the outer normal vector of
OM at (a:l,tl) and p = u(z,t1). Since u(z,t) = ¥(z,t) for all (z,t) € Ar, e(u)(z1,t1) <
Ci(llwllZ, 3+ Il gzn(xl ,))» for the same constant C; depending only on the geometries of
M and N Hence it suffices to get the estimate of || 2% Se|l(z1,t1)-

One can choose a sufficiently small 6 > 0 such that 1 — 2sm > 0, and let pg € N be a
point on the geodesic in the direction $%|(,, +,) With pp(po) = 6 Define

w(x’ t) = fP(u(mx t)) + 5{1 — Cos p(u(x’t)a pO)} -
where f, is as defined in Section 2 and 7 is the solution of the following equation:

9
1 — cos pp(¥)

e = e @)

+ 211 = cosp(w, o).
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The well-known Schauder estimate for the partial differential equations of parabolic
type implies ||nl|cz. < O(”'K,b”c%jc). Applying Lemma, 2.1, we can easily get

(8= 2yw> 111 cos pylu) + cos p(u, po)e(w)

_ _;_ {1 _oin P2(¥) +2p(u, Po) . Po(v) —2p(u,po) } ()

1 é
> - — in —
2 2(1 2sin 2)e(u) >0,

where the last inequality comes from the fact that pp(u) — p(u, po) < pp(po) < die. wis
a subsoluiton of linear heat equation. By the easy computation, %I(xhtl)qbp(u(x, t)) =0.
Since w|p, = 0, and

1o} . ou
E{‘(mx,n)(l - COSp(’LL(:E,t),pO)) = —Sln‘s”%ll(zx,tl),
we get
Ow . ., 0u on
0< —Tzl(m,tx) = _Sln‘su—a';”(ml,tl) - .8_7’;|(ml’t1)
Ou 1 ,0n 1
H%H(xl,tl) < EH%H(ml,tl) < g.m—5||77||01 < Cz||¢||c;+°,

for some constant Cy depending only on § and the geometries of M and N.
We have by the above computation (3.1) and (3.2),

b2 sup e(t) 256a2b*
=87 %" O — Bt
16ab* 16C1(1 + a)a®b?
9(b2 — b?)a* 9a%(b? — b?)
128a2b*
+m, 02“’91’”071.“} )

e(u)(z,t) < 4max {

for (z,t) € Bg(zo0) x (0.T].
Since a is arbitrary, as a goes to infinity, we have

sup e(u) < Cs,
Mx[0,T)

for C3 depends only on II¢I|C;+C and the geometries of M and N. O

Let y = (v, ...,y™) be normal coordinates at g of B (q), and let h;; be the metric of
N with respect to this normal coordinates. For 0 < s < 1, let us define a new metric
shi;(y) = haj(sy). Note that v;; = 7i; and %i; is a flat metric on B (q). Furthermore,
since there is no change of metric in the radial direction, y is still a normal coordinates
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for the metric *h;;. The Christoffel symbol *T%; (y) with respect to *y is sT'%, (sy), and the
heat equation for harmonic map with ®h;; on the target becomes

(H) (A= i) + 10 T o) 2 0, 2% (5,) =
us(x7 t) = w(w7 t)’ (IE, t) € A,

Note that the solution of (Hq) is the solution of (1.1). To prove the main theorem, it is
important to get the energy estimate of u; independent of s. It is easy to check that the
upper bound of the sectional curvaturre with repect to *h is the same as that with repect
to h. And we can get the following theorem.

Theorem 3.2. Suppose for all 0 < s < 1,9 : A — B(q) is of class C**¢ and uy is a
solution of (H,). Then for all T > 0,

lullgse < C,

where C' depends only on Hipnc'}jc and the geometries of M and N.

Now we prove the existence of solutions of the heat equations for harmonic using Leray-
Schauder degree theory.

Theorem 3.2. Let (M, f) be a Riemannian manifold with boundary 8M and (N,v) a
Riemannian manifold with the sectional curvature bounded above by K > 0. Let A =
(M x {0}) U (M x [0,00)). To a given C**® function v : A — B.(q), there exists the
solution u : M x [0,00) — B, (q) of (1.1) in class C3 on M x [0,00) and C' on A.

Proof. Without loss generality, we may assume K = 1. We prove this theorem by using
Leray-Schauder degree theory technique. To apply the Leray-Schauder degree theory, we
need an appropriate Banach space, a bounded domain of the Banach space and a homotopy
of maps. Let T > 0 be fixed.

First let us define the space B by the set of all C* maps from M x [0,T) to R™. Then
clearly (B, || - ||) becomes a Banach space, where || - || is the C}.—norm.

Now, we define a homotopy of maps. Let 0 < s < 1. For u = (u!,...,u™) € B, define

; O’ Gu*
s — % af 27
F (u) - Z s’ k(SU)f axa 33:3’
ij,a,8
for all i = 1,...,n. Define ¥y : B — B by ¥,(u) := v = (v},...,v"), where v is the
solution of the following problem:
(A - gi)'ui(x,t) = SF(u)(z,1) on M x [0,00),

vjp =0

foralli=1,...,n
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ON THE EXISTENCE OF SOLUTIONS OF THE HEAT EQUATION FOR HARMONIC MAP

For u € B, ¥(u) is of class C*** for some 0 < 8 < 1 (see [F]), and Arzela-Ascoli
theorem implies that ¥ is a compact mapping from B into B. Now let h = h(¢) be the
uniquely determined solution of boundary value problem of the linear equation

(A - %)h(z, t)=0 on M x [0,00),
hla = 9.

Let us define a homotopy H : B — B as follows,
Hi(u) =u— Us(u) — h.

By Theorem 3.2, there is a constant C4 depending only on Hz/’”c}“‘“ and the geometries
of M and N such that ||us||cs. < C4, for all the solution u of (H), where Cy is independent
of 5. Let D = {u € B| ||u|| < 2C4}. Here the degree of H; is calculated with respect to

the set D and the element 0 € B. Note that for all 0 < s < 1, any solution u, of Hs(u) =0
is the solution of (Hs) on M x [0, T, which is in D and

sup e(us) < Cy,
Mx[0,T)

as avove. And for all 0 < s <1, us ¢ 0D, from which deg(Hj, D, 0) is well-defined and is
finite. Since ¥y = 0, a solution of Ho(u) = 0 is a the solution of linear heat equation with
1 on the bondary A, deg(Hyp, D,0) # 0. Then the homotopy invariance of degree implies
that deg(Hy, D,0) # 0. Since H; *(0) is not nonempty set, H;(u) = 0 has the solution
u € D that is the harmonic map for heat equation on M x [0, 7).

Since T > 0 is arbitrary and the solution of (1.1) on M x [0, T} is unique (see Section 4
of IV in [Ha]), we can obtain a unique solution of (1.1) on M x [0,00). O
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Abstract

In this lecture we present our recent results on the constructions
of non-topological multivortex solutions of verious self-dual Chern-
Simons-Higgs systems in R? which makes the energy functional finite.
Our method of proof is basically the Newton-Kantorovich iteration.
Thus, not only we prove existence of solutions, but also we present a
method of approximaion scheme. We also study the “Chern-Simons
limit problem” for a nonrelativistic Maxwell-Chern-Simons model, and
show that there is a sequence of our solutions that converges to a
solutions of the non-relativistic Chern-Simons equation.
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1 Relativistic Chern-Simons theory

The Lagrangian density(Hong-Kim-Pac and Jackiw-Weinberg, 1990,
Phys. Rev. Lett. ):

L= FeHPFuy Ay + (Dud) (D9) — 19 (1 — |4
Here
e Au(p=0,1,2); the gauge field on R? x [0, 00)
o F,, = &%A,, — 3—‘sz”; field strength (curvature) tensor
® ¢ = ¢ +ipa(i = /—1); complex field, called the Higgs field
e D, = -5% —1A,; the gauge covariant derivative
® £.p; totally skewsymmetric tensor with gg;2 = 1
e £ > 0; the Chern-Simons coupling constant
e Our metric; (g,,) =diag(1,—1,-1).
e Physical motivations of the model:

(i) Study of vortex solutions of the Abelian Higgs model which
carry both electric and magnetic charges(cf. Ginzburg-Landau
model).

(ii) A possible candidate of models for high T,
superconductivity, explanaion of the
quantum Hall effect.

e The static energy functional:

. _ K2 F122 2 12 1 2 212
5(¢,A)—/R2 {ZW +j2=:1|DJ¢| + 518171~ [4[) dﬂ?
Fip

2 -
23 S8 - P fdo

:i:/ Fiodz
R2

= [ o £ipag 4

e Lower bound of the energy:

£ > |./R2F12d$|,

—130 —



e The minimum of energy is saturated if and only if (¢, A), A =
(A1, Ag) satisfies the self-duality
equations, or the Bogomol’nyi equations:

(D1 +iD2)¢p =0
Fiz + 5ol (1¢* —1) =0 °

e Natural boundary conditions:
(i) Topological ( fgz Fi2dz = integer x ®¢):
lp(z)] = 1 as |z| = o
(ii) Non-Topological( [g2 Fi2dz = integer x ®¢ + a):
lp(z)] = 0 as |z| > o
Following Jaffe-Taubes we introduce new variable (u,8) by
1 . n
¢ =ez(vt0) g2 Z njarg(z — z;), z= 11 +ize € Cl,
Jj=1

where z; and n;(j = 1,2,....,m) are the prescribed zeros, called the
centres of the vorticities, and their multiplicities respectively of ¢(z).

4 m
Au = ﬁeu(e“ —1)+4n and(z - zj),
7=1

with B.C. as |z| — oc:
u(z) = 0 (topological solutions)
or
u(z) = —oo0 (non-topological solutions).
Brief history of study of the equation
(i) Topological solutions:

e R. Wang(1991, CMP), existence by variational method

e Spruck-Yang(1995, Ann. Inst. H. Poincaré), construction
of maximal solution by an iteration

(ii) Periodic solutions(Vortex condesate):
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e Caffarelli-Yang(1995, CMP), existence by super-sub solu-
tion method

e G.Tarantello(1996, JMP), multiple existence

e Ding-Jost-Li-Wang (1997, preprint), analysis of two vortices
solution

(iii) Non-Topological Solutions:

e Spruck-Yang(1992, CMP), existence of radially symmetric
solution

e Chen-Hastings-McLeod-Yang(1994, Pro. R. Soc. Lond.
A.), analysis of radially symmetric solution

Our results

1. Existence of general type of non-topological solution by an iter-
ation

2. Asymptotic decay estimates of solutions
3. Extensions of our method to more complicated Chern-Simons

systems (Maxwell-Chern-Simons, Non-Abelian Chern-Simons)

Theorem 1 Let {z;}7, C C', {n;}7t; C Z* be arbitrarily given,
and B € (0,2N + 2), where N = 3772 nj. Then, there ezists a non-
topological multivortex solution (¢, A) such that the function ¢(z) has
the zeros {z;}T-, with multiplicities {n;}]_,, and the pair (¢, A) make
the energy functional finite; moreover, those solutions satisfy the decay
estimates

1
|¢I% + | Fi2| + | D14|* + |D2¢)* = O (Wﬁ)

as |z| = oo.

2 Idea of Proof

Step 1 : The Newton- Kantorovich Theorem

Theorem 2 Let By and By be Banach spaces, and @ C By be an
arbitrary domain, P : Q — By be a given mapping which has a con-
tinous second derivative in Qy, where Qo = {v € Q||lv — voll, < T}
Suppose, in addition, that

—132 -



(i) To = [P'(vo)] ™! ezists and continous linear operator;
(i) |ICo(P(vo))ll < ;

(iii) |[ToP"(v)|| < K Vv € Qo;

Then, provided

1—v1—-2h
._._17.

1
h=K17§§, and r>rg = 3

Then the sequence {v,}52, defined by
Un+1 = vy — Lo (P(vn))
converges in By to a solution v* to the functional equation
P(v)=0 Q.

Moreover,
lv* — vollB, < ro.

Step 2 : Introduction of Function Spaces

Introduce Hilbert spaces _
X, = {u(w) € I2_(R?)| / (1 + 2 )ds < oo},
R
equipped with the inner product

(u,v)x, = / (1 + |z|*T*)uvdz,
R2

and
“ 2
Y, = {u e W2R3?)| |Au|%. + | ——= < o0
) { € Wi () el 1+ |2['*2 || 2 gy
equipped with the inner product
(u,v)y, = (Au, Av)x, +/2 m‘d .

Lemma 1 Let o € (0,1), then there exists C; > 0 such that for all
vEY,

lo(z)| < Cillvlly, (nt|z| +1)  Vz € R2.
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Step 3 : Liouville’s equation

Let us consider the Liouville equation:

4
Ap“—' ———Q-e", S Rz.
K

Let f(z) be an analytic function on whole of C!, and x > 0. Then,
the function

262p|f' (=)
(1 +plf(2)?)?

where f'(z) = % f(z), is a solution of the Liouville equation beside
the zeros of f'(z). We define f(-) by

p(xl,z2)=£n{ }, z =11 +1iz9 € C!,

m

f(z) = /0 f'(@)dt, with f'(z) = [[(z—2))",Y nj =N,n; € 2%
1=1

Jj=1
Then, the function pg ,(2) defined by

_ 26 )P
Pl = O Wl )P

is a solution of

4 m
Apoy = —’i—2-e”°'“ +4m E n;o(z — z;) in R2,
=1

pou(z) = —o0 as |z] = oo.

Step 4 : Functional setting of the problem

First we remove the Dirac delta functions singularities in the equation.
Defining v = u — pg ,, we obtain:
4 .4 4
Av = S e?Pou(eVTPon 1) 4 —ePOu,
K20 2

Next we introduce the mapping P : @ — X, defined by

P(v) = Av — ﬁe” PO (VPO — 1) — ;3690"‘.
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Here Q is a domain in Y, C Y, to be defined later.
Then the problem of construction of a solution reduces to that of
finding a solution(root) v of

P(v) =0.

Step 5 : Existence of I'g = P (0)~! and its norm estimate

Write 4 g
P(0)' = A+ —erld— —euId
K K

“formally” as
To=K,(Id+K_;A,),

where
—_— ___.4 pOu
K,=A+ ﬁ2‘e +1d,

A, = —;82-62p°'“[d

If K;! exists, and A, is “small”, then Iy exists.

We first show that K exists on suitable D(K,,).
For a given € > 0 and 2y € C! we set

z -
fe(Z,zo) = / f’(t)(t — Zo)Edt, 2€ = eelnz — eg(znr_‘_,g).
0 B

Then, the function

|z, )P
Peu(@) = Nl (e ) P2

satisfies the equation

4 m
Apey = _Eepw +4n Y njd(z — z;) + 4ned(z — zo)
i=1
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pepu(z) = —00 as |z| = +oo.

We set

Ope (2
pule ) = LB,

Then, ﬁﬁ#(z,zo) is a Green’s function of the linear differential
operator:

4
K, =0+ e 1d

Lemma 2 Let u € (0,1). Then there ezists a constant C independent
of zo € C! and p such that

1pu(z,20)| < C(|€n)z — 20|l +1) 2,20 € cl.
Now we consider the operator equation
4 PO,u i 2
Kﬂvz(A+Ee #)v =g in R“.

Lemma 3 Let a € (0,1), g € X,. Then there exists
o € (0,1) such that the following inequality holds

ol < CuWElgllx,  V(a,e) € (0,0) x (0,1),
where constant C' is indgpendent of € and .
We decompose Y, as
Yo = Ker K, ® (Ker K,)*

and denote Y, = (Ker K,)*.
Then the above Lemma implies that K, is an isomorphism beetwen
Y, and X, for a € (0,1). Moreover the inverse operator K, L. Xy —

Y,, exists and its norm satisfies the inequality

__ate
” ”L(Xa,Ya) < Ell: aN+d Y € (0,p0),€ € (0,1).

We consider another operator A, : Y;, = Xq defined by

8
Av = ——e2Pony,
n 2
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Lemma 4 Let pu € (0, o), then A, satisfies

C 4d—a—c¢ ~
1 Auvllx, < —pe lvlly, Vv e Yq, Vi e (0,uo)

for all a,e € (0,1), where C is independent of p and €.

Step 6 : Estimate of norm of P"(v)

We denote _
B, = {v €Ya||vlly, <7}

Lemma 5 Let a € (0,1), and C; be the constant defined in Lemma
1. Then forallr <11 = C%(N + 1) the mapping P : B, — X, is well
defined.

Moreover, P € C%(B,, X,) and its second derivative, P"(v) € L(Yy X
Ye, Xa) satisfies the inequality

a+2e+2Cr

. o
|P"(v)|| < =H N4 Yu € (0,p1), Vv € By,

where C is independent of €, and p.

Step 7 : Proof of the existence

We apply the Kanorovich Theorem to our functional equation.
4 v+po u(pVtPo,u 4 P0
P('v)=Av—Ee (VPO -—1)-—;56 "

Set B1=?%,Bg=X%,andeEO.

-1 ,.__5 — (L1
Also, we set a =€ = g, T = 557, B1 = pi(5, 5)-

Then, there exists the operator I'g = [P'(0)]™* = L for all p €
(0, p1), and its norm can be estimated as

_ 1
”F()"[:(X%,}"%) < Cp~ T68F8 V€ (0, p1).
Since P(0) = —;42'62”0"‘, we obtain

IToPO)lly, < ITollzx, ,)IIP(0)llx,
8 5% 8
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13
< C”POHC(XI ’?i)“A““‘(?é’X%) < CuTeN+16 = q(u)
8

for all u € (0, u1)-

On the other hand, we have

IToP"(W)lly, < IIFoII[;(X%y%)IIP"(v)H

< Cu—m“—m}n < C“"16N5+16 = K(u)
_ Y, 5
forallve Qo = {v € ¥} | Iully, < mep)-

Hence
1
h(p) = K(p)n(n) < Cuz™+2 Yy € (0,p1).
Taking the parameter p sufficiently small, we have
1

Thus all conditions of the Kantorovich Theorem are satisfied, and
there exists a solution, v* € Qp to P(v) = 0 such that

1—v/1-2Ah
G

o™y, <
g

Since b@n — 0 as 4 — 0, one can choose u € (0, 1) so that

1—v/1-2h
01—h"'—77£,3,

where we fix 3 € (0,1).

Then, v*(z) satisfies
[v*(z)| < Bln*|z| +1),
and, since
po.u(x) = —(2N + £)tn]z] + o(tn]z])
as |z| — oo, we obtain that

u(z) = v*(z) + pou(z) < —(2N +4 - B)ent|z| + C

for all sufficiently large |z|.
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3 Nonrelativistic Maxwell-Chern-Simons
theory

e The Lagrangian density(Dunne-Trugenberger, 1991, Phys. Rev.):

1
LA, N) = —@F,‘,Fﬂuﬁfeﬂ"mump
— 1
+Z¢D01/J i %‘Du’(,[)D“’l/)

—%53”/\[6“/\7 PN
Lia, o 24
+5 (g5 -2 ),

where N is a new neutral(real) scalar field
(self-duality <> supersymmetry).

e The self-duality equations:

(D1 +iD3)yy =0
2
01As — 02 A7 + %l@b? - ’)’N =0
2
(A=PIWN+ G (1+25) [P =0

with the natural B.C.(finite energy functional):
A(z),%(z),N(z) 50 as |z| = co.
Following Jaffe-Taubes’ reduction procedure, we obtain:

{ Au = Qq%e" — 2’2)'N+ 4w 259:1 n;jé(z — z;)
AN =N - § (14 Z%) e

with B.C. as |z| — oo.
u(z) & —oo, MN(z) -0 (non-topological).
For this system our result is:

Theorem 3 Let {z;}5_; c C!, {n;}}_; C Z* and B € (0,2N +
2), where N = Z_’;:l nj. Then there ezists a non-topological solution
(¥, A, N') of finite energy such that the function 1(z) has the zeros
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{zz]-}f:1 with multiplicites {"j}§=1-
Moreover, these solutions satisfy the decay estimate,

$P + D) +1D29(a) = O (s )

as |z| = oo, and the relation
' ‘ ¢’ 2 | 2
> - \4 .
N(:L‘) > |1/)(:1:)] z€eR

As g,y = oo with v/q? kept fized (the Chern-Simons limit),
there ezists a sequence {Nyq,uyq} of our constructed solutions, de-
noted by the same notation, {N., 4,u 4} and its limit {N', 4} such that
for alle € (0;1)

\ / . 0, 2 ~
Nyg =N, inC™"™(R%), uyq— U
almost everywhere in R2, and

1 . .. 2. k
Adi = -2t Sz — 2:).
e, i=-—e +47r§ n;jé(z — z;)

j=1

N =

2mk

cf. Existence results with the periodic B.C.:

e Spruck-Yang; for restricted range of parameter v, q,m (1997, to
appear in JDE)

e G. Tarantello; for all range of the parameters
(1997, preprint)

Idea of Proof

Step 1 : Transform of the system

First transform (N, u) — (S,u) by

_ . |
q N 7 u
= — ]_ E —
N 272( +2m)e + 5,
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then we obtain the equation:

2 k
Ay = —%e“ —2vS + 47 Z n;o(z — z;),
: J=1

and then, using this, the second part of the self-duality equations is
transformed into:

| 4
AS =25 9 2u, 4 ( ’7)2u
S=~S 27 (1+ )qule +23 1+2 e

¢
o2 (14 ) s
0% 2m

Next we transform (S, u) - (5, v) by
Uu=7 + p(]”u7

where pg , is a solution of the Liouville equation.
Then the self-duality equations become:

Av = —ae?TPor + gefor — 278,

AS =428 — b|V (v + po, )lze”+p°’“ + abe® 2P0 4 2bye?tPOn S,

where we set ' : ,
a=L, p=2L (1 + —7—>
v’ 292 2m

Step 2 : Functional setting of the problem

Introduce the mapping P(:,) : By X By Bi x B defined by
P(v,S) = (Av + ae’tPon _ gePor 4 2~G,

AS — 128 4+ b|V (v + po)|%e"TPon
—abe?V 2P0 _ 2byeVtron ),

We note that

P(0,0) = (0,5|Vpo %€+ — abe®#on).
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For all (w, R) € B; X By we have
P'(0,0)(w,R) =( Aw+ae*w+2yR, AR-~%R
+b|V po | 2”4 w + 2bePor Voo, - Vw
—2abe?Pomay — 2byePor R).

For all ((w1, R1); (we, R2)) € (B1 x Bs)? we have

P"(v, 8)((w1, R1); (w2, Rg)) = (ae”POrwyw,,
bV (v + pou) 2 TPorwwy + 2be P04 Vapy - Vi,
+2beVPOL Ty - Vwgw; + 2be?TPom Voo, - Vwowy
+2beVPOL Ty . Vw we + 2be?TP0x Vpo,. - Vuwwe
—4abe?Vt2P0um gy g — 2byeVTPo Swqwsy
—2b'ye"+”°"‘ Riwy — 2b'ye”+"°’“w1R2).

Step 3 : Follow previous argument

Need to find Green’s function of the linear equation:

(Aw + ae”+#w + 2yR, AR — ¥*R) = (g1,92)

4 Relativistic Maxwell-Chern-Simons
theory

e The Lagrangian density(C. Lee-K. Lee-Min,‘1991, Phys. Lett.):
1 N
L(A,¢,N) = _ZFWFW + %E“VpFuuAp — Dy¢DH¢

1 , 1 .
—30uNON = N8I = S (alél* + 9N - q)?,
e The self-duality equations:

Ag =N

(Dy +iD2)$ = 0

0143 — A1 + q|> + YN —g¢=0
AN =7q(|¢? — 1) + (* + 2¢2|¢|2)NV
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e B.C. as |z| = oo: either

|#|> =1 and N —0, (topological)
or o
$—=0 and N — %, (non-topological).

By the similar Jaffe-Taubes’ reduction procedure we obtain:

Au = 2¢%(e* — 1) + 2ygN +4m E;?:l n;jé(z — zj)
AN = yg(e* — 1) + (7% + 2¢%e*)N

with B.C. as |z| — oo: either
u(z), N(z) — 0 (topological),

or
u(z) = —oo0, N(z)—= % (non-topological).

For topological solutions existence and analysis of the Chern-Simons
limit are done by C. - Kim(1996, JDE).

For non-topological solutions our main result is:

Theorem 4 Let {7}, C C, {n;}f_; C Z* and B € (0,2N +2),
where N = Z ¢_,nj. Then there ezists a solution (¢, A, N) of finite
energy such that the function ¢(z) has the zeros {z;}]r, with multi-

plicites {n; }J=1. Moreover, these solutions satisfy the decay estimate

(B@ +1D19(@)P +1D28(@) = O ozwea=s )

as |z| — oo.

Idea of Proof

Step 1: Transform of the system

Transform (u,N) = (u, S) by

23
N=—S——(g+—%>e“+g
Y Y v
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then the self-duality equations reduce to:

4q* k
Au = —2vqS — ;qz—e“ + 47 anri(z — 2j)
=1

| 2 4q 203
AS =25+ (i + Si + 5 > e 4 (4q + ) Se" (q + —%—) |Vul|2e®.
Y 73 o 72 T
u(z) > —o0, S(z) >0 as |z|— oo.

Note the similarity with the nonrelativistic case.

Step 2 : Follow the argument for nonrelativistic case

5 Relativistic SU(3) Chern-Simons the-
ory T

. 'The‘Lagrangian density(K. Lee, 1991, Phys. Rev. Lett.):
L= -—geu'/l’t'r (A 3,,A + %A AA ) —tr ((Du¢)TD#¢)

(([[¢, #'41- 9)'([19,4'.41 - 9))
where ¢ and A, are the L1e algebra valued fields given by
¢ = ¢°T*, A, = AT

with {T%}2_,, the antihermitian generators of the Lie algebra of
SU (3), which consist of 3 x 3 martices satisfying

[Ta’ Tb] — 'ifabcTC, tr (Ta.Tb) — v__(sab,
where f%%¢ as the structure constants of SU(3).

e The self-duality equations:

{ D1¢—iDap =0
Fiz = —5([61, [, [, 811 — (61, ¢])
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e Dunne’s algebraic ansatz(choice of other “good” basis): =

1 2
4050:In|¢°* = —— > Ka|¢'|"+ 222Kbc Kael¢"I*16°1%,
b=1

b=1c=1

(Ku) = ( S )

is the Cartan matrix.

where

e Follow Jaffe-Taubes’ reduction procedure: =

Au, ZKabe b4 ——5 Z Z Ky K,ce¥vele

b=1c=1
+4m Z Najo( zaJ

a=1,2, zeR?

e cf. Toda system:
Aua———ZKabe a=1,2.

e For topological solutions existence is done by Y. Yang (1998,
to appear in CMP).

e Our main result:
Theorem 5 Let {za,J}] ,,C CL, {na]}k" , CZ, a=1,2 be arbi-
trarzly given, and B € (0,2M + 2), where M = mm{Nl,Ng} N,
ZJ 1Maj, @ = 1,2. Then, there exists a non-topological multz-
vortezr solution (¢“ A“) of finite energy such that the function ¢%(z)

has the zeros {za,,}]=1 with multiplicities {nq ; }J= Moreover, those
solutions satisfy the decay estimates

tr(¢'¢) + tr(FlFip) + tr ((DJ¢) D; ¢) (WA%JTE)
as |z| — oo. '

Proof Perform Newton-Kantorovich iteration starting from an ex-
plicit solution of the Toda system.
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