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Preface

This is a survey article on the theory of Gromov-Hausdorff topology and its
applications to Riemannian geometry. Classically, the Hausdorff distance is defined
on the space of closed subsets of a fixed metric space.

In the beginning of 80’s, M. Gromov (|G-L-P]) introduced generalized Hausdorff
distance between abstract two metric spaces to what we shall call the Gromov-
Hausdorff distance (For a precise definition, see §1.1).

Two metric spaces which are close in the Gromov-Hausdorff distance generally
do not have to be topologically alike. Thus, it is interesting to find natural topo-
logical or geometric assumptions, which ensure that close spaces also are close
topologically alike. In [G-L-P], M. Gromov had proved two important theorems,
the precompactness theorem and the convergence theorem. and applied those to
the study of the global Riemannian manifolds.

In this article, we describe compactness theoréms and convergence theorems of
Riemannian manifolds. There are good expositary survey articles about this topic
(For examples, [Fu2], [Pet]). However, in the aspect of application to Riemannian
geometry, those are focused on Riemannian manifolds with sectional curvature
bounded below or pinched together with the diameter bounded above. Whereas we
mainly are going to be concerned about Riemannian manifolds of Ricci curvature
bounded below or pinched rather than the sectional curvature condition.

When replacing the condition of sectional curvature by Ricci curvature condi-
tion, one might face a difficulty in controlling Riemannian manifolds with Ricci
curvature condition rather than those with sectvional curvature condition. If one

has a Riemannian manifold with sectional curvature bounded below or pinched,



then one can apply the Toponogov triangle comparison theorem and Rauch com-
parison theorem ([C-E], [DoC], etc.) to this manifold. But one can’t apply those
theorems to Riemannian manifolds with Ricci curvature bounded below or pinched.

On the other hand, there is an effective and important theorem which is able
to control Riemannian manifolds with Ricci curvature bounded below or pinched.
Namely, the volume comparison theorem due to Bishop ([B-C]) and the relative
volume comparison theorem due to Gromov ([G-L-P]) play an important role in
Riemannian manifolds with Ricci curvature bounds (see § 1.4).

Also there is a tool to control those manifolds, so called "harmonic radius”. The
harmonic radius is the infimum of the radius of geodesic balls on a Riemannian
manifold on which there exists a harmonic coordinates. The harmonic radius was
introduced and studied in [Anl] and [A-C].

After Gromov introduced the Gromov-Hausdorff convergence theory, many
mathematician could proved several problems which are not clear so far. Now
we have clearer image about the concept of Gromov-Hausdorff convergence.

This article consists of three chapters. In chapter 1, we shall Vdiscuss the
Gromov-Hausdorff distance of metric spaces in a very general context and with a
few geometric applications. In section 1.1, we introduce the definition of Gromov-
Hausdorff distance and prove various properties about it. In section 1.2, we give
an equivalent definition of the Gromov-Hausdorff distance. In section 1.3, we in-
troduce the length space (inner metric space) and the Lipschitz distance which is
stronger notion than the Gromov-Hausdorff distance.

In chapter 2, we are going to discuss precompactness theorems which is impor-
tant and we shall also deal with Haudorff dimension of metric spaces. Precom-
pactness theorems show that the Gromov-Hausdorff distance is really useful in

the studying of global Riemannian geometry. Section 2.1 is devoted to prove the



precompactness theorem for metric spaces and a class of Riemannian manifolds as
an appliction. In section 2.2, we give a definition of the pointed Gromov-Hausdorff
distance in noncompact case. In section 2.3, we deal with Hausdorff dimension
and Hausdorff measure.

In chapter 3, we discuss applications of the Gromov-Hausdorft distance to some
classes of Riemannian manifolds. In section 3.1, we introduce the harmonic coor-
dinates and discuss regularity of the Riemannian metrics on a smooth manifold.
In section 3.2, we define the harmonic radius and give some basic results. Section
3.3 is the main section in this article. We shall dicuss the convergence theorems of
some classes of Riemaannian manifolds with Ricci curvature condition via hamonic
radius.

We expect this article together with [Fu2] would be an exellent reference to
those who want to study this kind of topic and research further in this direction.
Fihally, we would like to mention that we should omitted many important results.

For these, one can refer the original papers quoted in the reference in this article.



CHAPTER 1

GROMOV-HAUSDORFF TOPOLOGY

 Global Riemnnian geometry has long history and many results are now known.
For example, recall the classical uniformization theorem for surfaces. If M? is a
closed oriented surface, then the uniformization theorem asserts that M? carries a
smooth Riemannian metric of contstant Gaussian curvature equal to -1, 0 or +1.
In 3-dimensional case, there is also a similar result due to W. Thurston ([Thul-
3]). But it is much more complicated and difficult . In general, let M"™ be a
compact smooth n-dimensional manifold. Consider the space of isometry classes
of Riemannian metrics on M, which is the quotient space of Riemannian metrics
by the group of diffeomorphisms of M. Now consider a subclass of it, e.g., the
space of constant sectional curvature metrics, the space of Einstein metrics or the
space of constant scalar curvature metrics, etc. Our main concern is to study the
boundary of these moduli spaces for a suitable given topology. If the boundary
is empty set, then any sequence in this space has a convergent subsequence such
that the limit is also contained in the given space. However, if the boundary is not
empty, then there is a sequence which degenerates and so we want to understand
how this sequence does degenerate.
For example, let M be a smooth manifold and suppose M C R"™ is embedded
for some n. Consider metrics on M induced from different embeddings of M in
R"™. We could say two metrics on M are close if and only if the images of the

embeddings are close in R".
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To develop results in Riemannian geometry in this direction, we need a topology
as week as possible, but still able to describe what limits of sequences in the given

Space€ are.

§1.1 Gromov-Hausdorff distance

We start with the classical Hausdorff distance between subsets of a fixed metric
space. And then we give generalized Hausdorff distance between abstract two met-
ric spaces due to M. Gromov. Of course, we are mainly interested in Riemannian
manifolds. But sometimes it is useful to work in wider classes of spaces, namely,

metric spaces to analyze the limits.

Definition 1.1.1. Let Z be a metric space with metric d. For subsets A, B of
Z, we define the Hausdorff distance between A and B in Z by

d%(A,B) = inf{e ACT.(B) and BcC TG(A)} (1.1.1)

where T, (B) is a tubular neighborhood of radius € about B defined by T.(B) =
{2 € Z :d(z,B) < ¢} and T.(B) denotes the colsure of T,(B).

Remark 1.1.2. The Hausdorff distance is not actually a metric on space of
subsets of Z. If we take the closed unit disk as Z = A and open disk as B, then
we have d% (A, B) = 0 but A # B. Of course, we consider only closed subsets and
delete the closure in the definition, then it becomes a metic on the dosed subsets.
However even if the Hausdorff distance is not a metric, it does define a topology
on the space of all subsets of Z.

M. Gromov generalized the concept of the Hausdorff distance to abstract two

different metric spaces.
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Definition 1.1.3. Let X,Y be arbitrary metric spaces. The Gromov-Hausdorff

distance between X and Y is defined as
den(X.Y) = inf{df; (F(X).9(v))} (1.1.2)

where the infimum is taken over all metric spaces Z and all isometric embeddings

f:X—>Zandg:Y — Z.

| Remark 1.1.4. One can easily show that dgy(X.Y) < oc for compact metric
spaces X and Y. In fact, consider the disjoint union Z = X [[Y endowed with the
obvious metric on X, Y and d(z,y) = max{diam(X),diam(Y)} forz € X,y €Y,
where diam(X) denotes the diameter of X. It is easy to see that d is really a

metric on Z = X [[Y. Thus, dey(X,Y) < oc by definition.

Example 1.1.5.

(1) du([0,1], QN[0,1]) = 0. Thus, two metric spaces of finite diameters whose
Hausdorff distance is zero are not necessarily isometric.

(2) Let A= {a1.as.a3} with metric d(a;,a;) =1 for i # j and let B = {b} be
a single set. For any isometric embeddings f : A — R", g: B — R"™, one

can see from an equilateral triangle on R™ that

di (£(4).9(B)) >

&l

However, we have

don(A.B) = -

O —

by taking the disjoint union. In fact, defining d(a;.b) = 1/2, we have
d(a;,a;) = d(a;,b)+d(b.a;). Sodisametricon Z = A]] B and d;y (A, B)
1/2. O

Next we introduce point-set theoretic concepts which are needed to understand

degeneration of a sequence of metric spaces and Riemannian manifolds.

Il
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Definition 1.1.6.

(1) For € > 0, a subset A of a metric space X is called an e-net if
d(z,A) = ireljf4 d(z,a) <e (1.1.3)

for any z € X.

(2) For 6 > 0, a subset B of a metric space X is called 6-separated if

d(y1,92) >0 forall yi1.y2 € B, y1 # ya.

Obviously, for evéry € > 0 there exists a 2e-separated e-net. For example, every

maximal 2e-separated subset Y C X is an e-net.

Remark 1.1.7. From the definition, one can see immediately that if N, is an
e-net in X, then dgy (N, X) <e.

From now on, we assume all nets consist of points.

Theorem 1.1.8 (Gromov). Let X;. X be metric spaces.

(1) Suppose X; — X in the Gromov-Hausdorff topology, i.e., doy (X;, X) — 0.
Then for any € > 0, any e-net N of X Is a quasi-isometric limit of 2¢-nets
N; of X; for @ sufficiently large, i.e., for zj, zx € N and x;,x; € N;,

dXi (:rZ:CQ)

—_— 1| =0 1 — 0. 1.14
X (z).20) as i (1.14)

(2) Conversely, if sup(diam(X;),diam(X)) < oo and for any € > 0, there
exists an e-nets N; C X; as above, then X; — X in the Gromov-Hausdorff

topology.
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Proof. (1) Since dou(Xi, X) — 0 as i — oo, there exist ; > 0,8; — 0 and

metric spaces Z;, isometric embeddings g; : X; — Z; and f, : X — Z; such that
i (F:(X). 9:(X:)) < 6. (1.1.5)

Let {z;},ea be an e-net in X. Since f;(X) C Ts,(g:(X;)), there exists a set of
points {z%} C X; such that d% (f; (z;). gi(x%)) < 0;. Since we also have g;(X;) C
Ts, fi(X), it is easy to see that {2} forms an (e +24;)-net in X;. In fact, if y € X;,
there is a point z € X such that d% (g;(y), f;(z)) < &; since g;(X;) C Ty, fi(X).

Since {z;} jea is an e-net in X, there exists a point z; such that d(z, z;) < e. Thus

d(y.2) = d (0:0). 0:(2) < d0:(0). (o) + AU (2). (o) + (), 0u(25)

< €+ 20;.
Now we claim that |dX (), z) — d%¢(x}, z})| < 20;. One has

dX(xj,xk)‘= d% (fi(z;). fi(ax))
< d% (filx)). 0:(25) +d% (9i(=}). 9i(21)) + d% (gs(ah). filzn))

< 20; + dX (I; .’132)

Thus we have

d*(zj, ax) — d¥ (2, 2}) < 26;. (1.1.6)

Similarly we can get

4% (2t 2L) — dX (2, 2) < 26,. 1.1.7
J J

Finally, dividing by d*(z;, z1), we obtain

ll<——————0 as 1—0.

{dXi (563»562) _ 20;
dX(xj:xk) dX(Ij:l'k)
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(2) Suppose {z;} is an e-net in X and {z;} is a quasi-isometric limit of e-nets {y?}

in X;. We have to find spaces Z; and embeddings X; C Z;, X C Z; satisfying
d%(X;,X)—0 as i— oo.

Let Z; = X [ X; with obvious inclusoins of X;, X in Z; and define a metric d on

Z; as follows:

d% =dX and d% =d%
XxX XixX;
and for z € X,y € X;, define
d(z,y) = irj;f (X (z,z;) + d5 (¥}, y) +€) . (1.1.8)

If d is a metric on Z;, then we have d% (X,X;) < 3¢ and so X; — X in the
Gromov-Hausdorff topology. It remains to verify that d is really a metric on Z;.

We just check the triangle inequality, namely, for z,z’ € X,y € X;,
d(z,z') <d(z,y) +d(y,2’) and d(z,y) <d(z,2') +d(z,y).

We have d(z,2') < d(z,z;) + d(z;, zk) + d(zk, 2’) by the triangle inequality and
d(z;, xr) < (14 0;)d(y} y;) by assumption (quasi-isometric limit). So, choosing -
d; so that &;d(y},yi) < 2¢, one has

d(z.2') < d(z,z;) +d(}, vi) + d(zx, &) + 8:d(¥}, vi)

<d(z,z;) +d(y}, ) + d(y. vi) + d(zk, ') + 2.
Taking the infimum over j, k, we get
d(z,2') < d(z,y) + d(y, z').
Similarly, one can easily show that

d(z,y) < d(z,2') +d(2',y). O
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Lemma 1.1.9. Let X,Y be compact metric spaces and let {x;}]", and {y;}7-,

be e-nets in X and Y, respectively. Suppose they are related by
|d(zi, z5) — d(yi yj)| < e (1.1.9)

Then dap(X,Y) < 3e.

Proof. As in the proof of Theorem 1.1.8, we define a metric on the disjoint

union X [[Y by
d(Ie 1'/) = dX(x’ ZL‘/) and d(y y/) = dy(y7y/)

and

d(z,y) = min {dX(ztsci) +d¥ (y,u:) + e}

1=1,...m
Then d ’satisﬁes the triangle inequality and so d is really a metric on X []Y.
Furthermore, it is easy to see X C T3 (Y, X [[Y) and Y C T3.(X, X [JY). Hence
dGH(X, Y) < 3e. O

Example 1.1.10.

(1) Let X be a metric space with metric d. For each A > 0, let AX denote
the metric space (X, \d). If diam(X,d) < oo, then the Gromov-Hausdorff
limit of AX for A — 0 is a point.

(2) Let X,, = Y'xZ, and suppose diam(Z,) — 0asn — oo. Then dgy (X,,Y) —
0asn — oc.

(3) Let m : E — M be a Riemannian submersion, i.e., E and M are Rie-
mannian manifolds and 7, restricted to each normal space of the fibers

F =771(z),z € M is an isometry. Suppose that M and F are compact.
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Let g; be the Riemannian metric on E obtained from the original met-
ric by multiplying the length of vertical vectors by v/¢t. Then M is the
Gromov-Hausdorff limit of (E, g¢),t — 0.

(4) Any (path connected) compact set without interior in R™ is the Gromov-
Hausdorff limit of smooth compact (n—1)-manifolds with extrinsic metrics.
In fact, by Whitney theorem (see [Hir|), any closed set Z CR™ is the zero
set of C* function f :R™ —R, i.e., Z = f~1(0). By Sard theorem. we can
choose a sequence of regular values A; — 0 so that f~!()\;) is a smooth
(n — 1)-manifold and one can see easily that f~!(\;) — Z in the Gromov-

Hausdorff topology.

Proposition 1.1.11. Any compact Riemannian n-manifold M™ is a Gromov-
Hausdorff limit of smooth compact Riemannian manifolds of dimension < c - n?

foe some constant ¢ > 0.

Proof. Applying the Nash’s embedding theorem, we can embed M in RC‘”Q,
l.e., there exists an embedding i : M — Re™ such that g, = gm, where g,
is the Euclidean Riemannian metric. Take the e-tubular neighborhood and their

boundary. Define
M. =8 (T.(i(M))) = {x e R™ . dist(z, i(M)) = e}.

For sufficiently small € > 0, M, is a smooth compact manifold with dimension

c-n? —1. Give M, the extrinsic merics, i.e., gr, = go|nm.. Then one can show

that M, - M ase — 0. O

In all examples above, the dimension goes down under the Gromov-Hausdorff

limit and we call such cases collapsing. However, this is of course not always true.
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Example 1.1.12.

(1) Take any compact Riemannian manifold M and for €; — 0, choose €;-nets
N;in M. Then N; — M as 1 — oo.

(2) Let

Jn={(x,y)€RxR:x=§+l or y:—§+l,k=0,l,...,n and lEZ}.

If we give on J,, a metric d(z,y), the length of shortest curve in J,, between
z and y. Then as n — oo, J, — (R? ds), where ds(z,y) = |zo — z1] +

|y2 — y1| which is a non-Riemannian metric on R?.
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§1.2 An Equivalent Definition

In this section, we give another definition which is equivalent to the Gromov-

Hausdorft topology.

Definition 1.2.1. A (not necessarily continuous) map f : X — Y between

metric spaces is called an e-Hausdorff approzimation if

(1) 1d(f(z). f(y)) — d(z,y)| <eforall z,y € X,
(2) The e-neighborhood of f(X) covers Y.

Then the Hausdorff distance di;(X.Y) is defined as the infimum of € such that

there exist e-Hausdorff approximations from X to Y and Y to X.

Lemma 1.2.2. dgy and di;, are equivalent on the set of all compact metric
spaces (modulo isometry). In fact, we have degy < 9-dyy and dgg > ¢ - dgy for

some constant ¢ > 0.

Proof. Let f : X — Y be an e-Hausdorff approximation and choose an e-net
{z;}, in X. Denoting y; = f(z;), we claim {y;}/~; is a 3e-net in Y. In fact,
if y € Y is any point, then one can choose z € X such that d (f(z),y) < € since
Y = T.(f(X)). Since {z;}/", is an e-net, there exists 7 such that d(z,z;) < e.
From the definition of Hausdorff approximation, one has

d(f(z), f(z:) <e+d(z,z;) < 2.
Thus.
d(f(z:).y) <d(f(x:), f(z)) +d(f(2),y) <3e.
Consequently, one has an e-net {z;}?, in X and 3e-net {y;})¥, in Y. Moreover,
by definition, one has also
|d(yi, y;) — d(xi, z5)| = |d (f (i), f(z;)) — dlzi, z5)| <e.
Thus, applying Lemma 1.1.9, one has dgu(X,Y) < 9e.

Similarly, one can also prove dgH > ¢ df;j for some constant ¢ > 0. [

Lemma 1.1.9 also implies the following
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Lemma 1.2.3. Let (X, dx) and (Y. dy) be two metric spaces. Thendgy(X.Y) <

€ if and only if there exists a metric on the disjoint union X [[Y such that
(1) d| =dx andd| =dy
X Y
(2) T.(X)=X]1Y and T.(Y) = X []Y.

The notion of nets can be used defining another definition which is equivalent
to the Gromov-Hausdorff distance. Note that if {z;} | is a e-net in a metric space

X, then the map f: X — ’RN defined by

f(z) = (d(z,z1),d(z,22). - .d(z.zn))

is an embedding, i.e., f is continuous and injective. It is obvious that f is contin-

wous. To show f is one-one, let f(z) = f(z') for z.2’ € X. Then

d(z,z;) = d(z', z;) | (1.2.1)
for all ¢ = 1,---,N. On the other hand, since {z;}}Y, is a e-net, there exists j
such that x € B(zj,€). Then by (1.2.1) one has 2’ € B(z;.¢) and so z = z’.

Lemma 1.2.4. Let X and Y be metric spaces. Then dey(X,Y) < € if and
only if there exist e-nets {z;})¥., in X and {y;})*., in Y such that the images of

maps f1 : X —RY and f»: Y — RY defined by
fl(x) = (d(l: 1’1), d(.’L'. xQ)-, U $d(xexi\f))

and
f2(y) = (dy. z1).d(y, z2). - ,d(y. zn))

lie in each other’s e-tubular neighborhoods in RY.

Proof. Tt follows from the original Definition 1.1.3 due to M. Gromov. 0
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Theorem 1.2.5. Let M be a smooth compact manifold. Then there exists a
positive number € = €(M) > 0, depending only on M, such that if doy (M, N) < €
and N is a smooth compact manifold, then there exists a canonical homotopy
class of smooth map f : N — M which gives an e-Hausdorff approximation.

Furthermore, f, : 71 (N)— 71 (M) is surjective.

Proof. For a given smooth compact Riemannian manifold M, we can find an
€ > 0 such that all enets {z;}72, in M have the property that the map f; :
M —R™ defined by fi(z) = (d(z,21), - ,d(z,z,,)) is an embedding. (In fact,
one can prove f; is almost an isometry with respect to the two metrics). If N is
a smooth compact Riemannian manifold with dgy (N, M) < €, then there exists
a map g : N —R™ whose image lies in an e-tubular neighborhood of f;(M)
by Lemma 1.2.4. But T.(f;(M)) retracts canonically onto fi(M) provided ¢ is
sufficiently small. Let r : T.(f1(M)) — f1(M) be the retraction. Define F = rog:
N — fi(M) and f = f{'oF : N — M. Then it is easy to see that f is an

e-Hausdorff approximation. [
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§1.3 Length space and Lipschitz distance

In this section, we will define Lipschitz distance which is stronger than the
Gromov-Hausdorff topology in some sense. And then we also define special types
of metric spaces, called length spaces which are lying between metric spaces and
Riemannian manifolds. Length spaces play an important role in the Gromov-
Hausdorff topology. Those spaces could be a limit of a sequence of Riemannian

manifolds with curvautre bounded below.

Definition 1.3.1. Let X and Y be metric spaces. The dilation of a map

f:X — Y is the (possibly infinite) number

dil(f) = sup dy(f(xl)ifgxg)) | (1.3.1)

For a point z € X, the local dilation of f at x is defined by

dil, (f) = lim dil (le ( )) . (1.3.2)

e—0

If ¢ = dil(f) < oo, then we say that f is a Lipschitz map with Lipschitz constant
c. A Lipschitz homeomorphism is a homeomorphism f such that f and f~! are

both Lipschitz maps.

Lemma 1.3.2. If f : [a,b] — X is a Lipschitz map of an interval [a,b] into a

metric space X, then the function t — dil;(f) is measurable and bounded.

Proof. Tt is easy to prove and we leave the proof to the reader. [
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Definition 1.3.3. For a Lipschitz map f : [a,b] — X of an interval [a, b] into
a metric space X, define the length of f by

, |
I(f) = / dil, (£) dt. (133)

If f is only continuous, then we are able to define [(f) as

sup Zd(f(ti)v f(tig1)) (1.3.4)

a=t, <t < --<tni1 =b i=0
for any subdivision on [a, b].

Remark 1.8.4. If ¢ is a homeomorphism of a closed interval I’ onto [a, b], then
we have I(f o ¢) = [(f). In fact, it is true with weaker condition that ¢ is just
stirctly monotone. This shows that [(f) is invariant under the change of parameter.

Two definitions are equivalent when f is absolutely continuous (cf. [Rin], p.
106). This allows us to define [(f) as the integral of the dilation when f is a

Lipschitz map.

Definition 1.3.5. Let (X,d) be a metric space. We define the distance of
length on X by

di(z.y) = inf{l('r) y(0) ==, ~(1)= y}, (1.3.5)
where the infimum is taken over all continuous curves in X joining x and y.

Remark 1.3.6. In general, there is no reason for that d; = d for a given metric
space (X,d). In fact, the topologies induced by d and d; may be different (cf.
[G-L-P)).

Definition 1.3.7. A metric space (X,d) is called a length space (or inner

metric space) if d = d;.
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Example 1.3.8.
(1) Any Riemannian manifold with a Riemannian metric is a length space.
(2) For the induced metric (extrinsic metric) in R?, R* — {point} is a length
space but R? — {segment} is not.
(3) The sphere S™ is not a length space for the induced metric (extrinsic)in
R™"!. Generally, if M C R"™ is a smooth manifold, then M with the
induced metric (extrinsic .metric) in R™ is never Riemannian metric unless

M is an affine space.

Theorem 1.3.9. If (X,d) is a complete metric space satisfying the following
condition: For any z,y € X and any € > 0, there exists an element z € X such
that

. 1
max{d(x,z), d(y,z)} < id(:t,y) +e. (1.3.6)

Then X is a‘length space.

Conversely, any length space satisfies the condition (1.3.6).

Proof. Given z,y € X and any € > 0, choose €, > 0 such that ), ex =c < o
and so that [],” (1 +€x) < oc. Let = d(z.y). By (1.3.6). there exists z1/» € X

such that
max{d(z.212), d(g.5172)} <
Then there exist 27,4, 23/4 € X such that
| 1.0 €9
max{d(:c, Zl/-l)a d(y- 33/4)} < _(_(1+€1))+ 7(

and

1.0 €9 6
max{d(zl/2,33/4), d(23/4,y)} < 5(5(1 +e€1)) + —2_“ 5(1 +€1))
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by assumption. So, we have

max{d(x. Z1/4) d(zl/4, 31/2) d(zl/z, 23/4)7 d(ya 33/4)}
1

_2(2(1-}'61)) ( (1+€1))_ 2(1+€1)(1+62).

Continuing this process inductively, we get a map f : R[2] C [0,1] — X such that

¢(1g1050) < gr [l +e) <o0

where R[2] is a set of rational numbers modulo 2. Since X is complete, f can
be extended to a continuous map f : [0,1] — X. Furthermore, we can choose
c =Y, € to be arbitrary close to 0 so that [[;-;(1 + €x) is arbitrary close to 1.
Hence f is what we want and I(f) is arbitrary close to d(z,y) = 6 and so X is a
length space.

Conversely, suppose X is a length space and let z,y € X and € > 0 be given.
Then since d(z,y) = inf, [(y), it is easy to see that there exists z € X satisfying
(1.3.6). O

Theorem 1.3.10. Let X be a complete metric space and suppose
don (X, X) — 0 as i — oo. If X/s are complete length spaces, then X is a
length space.

Proof. Tt is enough to show that X satisfies the condition (1.3.6). Let z,y € X
and € > 0 be given. By Definition 1.2.1, there exists an €¢/8-Hausdorff approxima-
tion! f: X — X, such that

(1) [d(f (1), f(z2)) — d(z1,22)| < €/8,
(i) X; =Tes(f(X)).

LRigorously speaking, it is not e/8-Hausdorff approximation. However since the original
Gromov-Hausdorff topology is equivalent to it, we use the same constant without any modification
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So, there exist points z;,y; € X; such that
d(f(z).z;) <€/8 and d(f(y).v:) <e€/8. (1.3.7)

Since X; is a complete length space, there is a point z; € X; such that

1
max{d(xi, :i),d(yi,:i)} < 5d(xi,yi) +¢/8. (1.3.8)
We also have

d(zi.y:) < d(z:, f(x)) +d(f(2), f(v)) +d(f(¥), v:)
<€/4+ d(f(x)f(y)) < 3¢/8+d(z.y).

Thus, from (1.3.8) we get

o e 1
max{d(:z:.i,Ni), d(yi,%‘)} <A§ + §d($y)

On the other hand, since z; € X; = T, /3(X), there exists an element = € X such

that d(f(2),z;) < €/8. Thus, by triangle inequality and (1.3.7), we get

d(z, z) <d(f(z). f(2)) +¢/8
<d(f(x),z;) +d(z;, z) +d(z, f(2)) +€/8

1
<e+ 5d($, v).

Similarly, one can prove

Hence

max{d(:c,z), d(z,y)} < %d(z,y) +e

and so X is a length space. [
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Definition 1.3.11. Let (X, d) be a length space.

(1) A minimizing geodesic + is a continuous curve 7 : [a,b] — X such that
d(y(t),y(t')) = |t —t'| for any t,t’ € I = [a,b].
(2) v is a geodesic if v . is a minimizing geodesic for any I’ C I sufficiently

small.

Definition 1.3.11 (2) does not look clear but the meaning is obvious, that is, it
means for any point a in I there exists a sufficiently small interval I’ of a in I such
that ~ . is a minimizing geodesic.

Recall the Hopf-Rinow theorem showg a Riemannian manifold is complete if
and only if any two points can be joined by a minimizing geodesic. We have a

theorem analogue to the Hopf-Rinow theorem in length spaces.

Lemma 1.3.12. Let (X.d) be a complete length space and let a € X and

0 < p. If B(a.r) is compact for all 7,0 < r < p, then B(a. p) is also compact.

Proof. Recall for a metric space, compactness is equivalent to limit point com-
pactness or sequential compactness.

Let (z,) be any sequence in B(a, p). One has to show (zn) has a convergent
subsequence in B(a,p). Note that one may assume d(a,z,) — p as n — oo. In
fact, if there exists a 7,,0 <71, <p such that B(a,7,) contains infinitely many zn,
then (z,) has a convergent subsequence‘ since B(a,7,) is compact.

Choose a sequence (€x) with € > 0,ex — 0 as k — oo and assume 0 < e < p.
For each k, there exists N = N(k) €N such that |d(a,z,) — p| < e foralln > N
since d(a, n) — p. So, p—ex < d(a,z,) < p. Thus there is a point y& € B(a, p—ex)

such that d(z,,9") < ex. Consequently for fixed k, (y*) C B(a,p —€x), n >



22 I. GROMOV-HAUSDORFF TOPOLOGY

N(k). Since B(a,p — €x) is compact, (y¥) has a convergent subsequence (¥k).

Thus

d(xnuxnj) < d(Tn;sYn;) + d(yiieyﬁj) + d(yﬁj:xnj)

< €n; + Enj + d(yfy,,* yﬁj }'

That is, (zn,) is a Cauchy sequence. Since X is complete, (z,,) converges to a

limit z € B(a, p) and so B(a, p) is sequentially compact. O

Theorem 1.3.13. S uppose that X is a complete, locally compact length space.

Then we have

(1) Closed balls in X are compact, or equivalently, any closed and bounded
set 1s compact in X.
(2) Given any z,y € X, there exists a minimal geodesic ~y : [0,1] — X such
~that v(0) = z and (1) =>y.

Proof.
(1) First note that since X is locally compact, for a € X, closed ball B(a,r) is

compact for 7 > 0 sufficiently small. We claim that
sup{ T I Bla,r) is compa.ct}

is infinite. Suppose sup{ rl—g(a, r) is compa.ct} = p < co. Then B(a. p) is compact
by Lemma 1.3.12 and so is S(a,p) = {z € X|d(z,a) = p}. The remainder is
standard point-set topological argument. By choosing a finite covering of S(a, p)
by compact balls, we can find p’ > p such that B(a, p’) is compact.

(2) Suppose first X is compact. Since X is a length space, given z,y € X, there
exist curves 7, : [0,1] — X with v(0) = z and (1) = y such that

1) < d(z.3) + % (1.3.9)
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We may assume 7, is parametrized proportional to arc length. Thus, {7} are
equicontinuous. Since X is compact, by Arzela-Ascoli theorem (see §3.3), there
exists a subsequence of {7,} which converges to a continuous map v : [0,1] —» X

with v(0) = z and v(1) = y. Since

d(z,y) <l(v) < liminfl(y,) = d(z,y),

one has d(z,y) = I(v).
Now assume X is just locally compact which is not necessarily compact. Note
that v, C B(a, 2d(x, y)) from (1.3.9). Since B(a,2d(z,y)) is compact, by above,

one can conclude d(z,y) =I(v), v C B(a,2d(z,y)). O

Corollary 1.3.14. Let X be a compact length space. Then for any free ho-
motopy class in X, there exists a minimal geodesic of least length. Similarly, if
one fix a base point x, € X, then there is a geodesic of least length based at z,, in

given class in 71 (X, z,).
Proof. 1t follows from the same argument as Theorem 1.3.13. O

Definition 1.3.15. The Lipschitz distance between metric spaces X and Y is
defined by

dr(X.,Y) = inf{ |log dil(f)] + |log dil(f V)| }, (1.3.10)

where the infimum is taken over all Lipschitz homeomorphisms f : X — Y. If no

such homeomorphisms exist, we set dr (X,Y) = oc.

It is clear that dy, is symmetric, i.e., dr,(X,Y) = d (Y, X).
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Proposition 1.3.16. If X and Y are compact metric spaces and d,(X,Y) = 0,

then X and Y are isometric.

Proof. The assumption dy (X,Y) = 0 implies that for each n € N, there exists

a Lipschitz homeomorphism f, : X — Y such that
1 , 1
1—=<dil(f,) <1+ —. (1.3.11)
n n

Thus {f.} is equicontinuous. Since X and Y are compact, Arzela-Ascoli theorem
implies that there exists a subsequence {f,, } of {f.} and a Lipschitz homeomor-
phism f such that {f,, } converges to f. Obviously, dil(f) =1 from (1.3.11) and

hence f is an isometry. [

Theorem 1.3.17. Suppose X.Y are compact metric spaces. If depy(X,Y) =

0, then X and Y are isometric.

Proof. Tt suffices to show that d i (X.Y) = 0 implies dy, (X.Y) = 0 by Theorem
1.3.16. For each n € N and for any %—net N7 of Y, there exists a sequence of
%egets NZ% of X such that NL.’L’ — N& in the Lipschitz distance by Throrem 1.1.8.

For each € > 0, define f. : Y — X as follows:

For any € > 0, there exists an integer 7; and a function f;, : N . Nii such

that
max{dil(f;,). dil(fizl)} <l+e (1.3.12)

For each y € Y and for each n, there is an element y,, € N % such that d(y,yn) <
2/n. Then f;, (y,) is a sequence in Ni C X by (1.3.12). Define

fely) = Tim fi (yn).

One can show that f. is an e-isometry. In fact, since max{dil(f;,),dil(f; ")} <
1+ ¢, one has dil(f) <1+ €. Since € is arbitrary, by diagonal method, we have
di(X,Y)=0. O
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Corollary 1.3.18. The Gromov-Hausdorff distance dcy is a metric on the

isometric classes of compact metric spaces.

We remark, however, that without compactness the Gromov-Hausdorff distance

dgy is not a metric anymore.

Corollary 1.3.19. Let (X,,) be a sequence of compact metric spaces and X

be a metric space. If d,(X,,X) — 0 asn — oo, then dgy(X,,X) — 0 asn — oc.
Proof. 1t follows from Theroem 1.1.8 (2). O

Remark 1.8.20. The converse of Corollary 1.3.19 is obviously wrong. Ifdy (X0, X) —
0 as n — oc and X, is compact for all n. then obviously X must be compact.
However, as mentioned above, the Gromov-Hausdorff distance dg g just becomes a
pseudometric on the set of all metric spaces and the limit of a sequence of compact

metric spaces with respect to the Gromov-Hausdorff topology may be noncompact.
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CHAPTER Il

PRECOMPACTNESS THEOREMS
AND HAUSDORFF DIMENSION

In this chapter, we shall discuss precompactness theorems, the pointed Gromov-
Hausdorff distance between noncompact metric spaces and Hausdorff dimension of
metric spaces. vAlso we are going to deal with applications of those to Riemannian
manifolds. Precompactness theorem has two types. One is about metric spaces
and another is about Riemannian manifolds as an application. These theorems
are.very»important- in studying global Riemannian geometry.

For unbounded metric spaces, the Gromov-Hausdorff distance is not useful and
so we have to modify it appropriately. It is so called the pointed Gromov-Hausdorff
distance.

In the last section of this chapter, we are going to discuss Hausdorff dimension
for metric spaces. The Hausdorff dimension of a space need not be an integer.
However this might be used to measure the structure of limit spaces of a sequence

of metric spaces or Riemannian manifolds.

§2.1 Precompactness Theorem

In this section, we shall prove compactness theorems about metric spaces and

some classes of Riemannian manifolds as application.
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Definition 2.1.1. Let X be a compact metric space. For ¢ > 0, define
Cov(X,€) as the minimal number of closed e-balls needed to cover X and Cap(X, ¢)
as the maximal number of disjoint e-balls in X. Cov(X¢) is called e-covering and

Cap(X,€) is called e-capacity of X.

Lemma 2.1.2. For a compact metric space X and ¢ > 0,

Cou(X,2¢) < Cap(X,e¢).

Proof. Let N = Cap(X,¢) and let {B; = B(z;,€)}Y | be a maximal disjoirft €
balls in X. Then it is easy to see that { B(z;, 2¢)}¥, cover X and so Cov(X,2¢) <
N by definition. [J

Lemma 2.1.3. Let X and Y be compact metric spaces. If dgy(X,Y) < 9,

then for any € > 0, one has the estimates
Cov(X,¢€) > Cov(Y, €+ 26)

and

Cap(X,€) > Cap(Y, e + 20)

Proof. Suppose X is covered by N e-balls, say, {B; = B(z;,¢)}¥, so that N =
Cov(X,€). By assumption, we have a d-Hausdorff approximation f: X — Y. The
same argument as Lemma 1.2.2 shows that the balls {B(f(z;),€ + 26)} of radius

€ + 20 about f(x;) cover Y. Similarly, one can prove the second inequality. O

Let (Met, dc ) be the set of all isometric classes of compact metric spaces with
Gromov-Hausdorff distance. One of the most important properties for Gromov-
Hausdorff topology is convergence of a sequence of metric spaces or Riemannian
manifolds in Met. First, we shall prove the space Met is complete with respect

to the Gromov-Hausdorff distance dgg.
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Theorem 2.1.4. (Met, dc ) is complete, i.e., every Cauchy sequence in (Met. dg,

converges to a limit in Met.

Proof. Let {X;} be a Cauchy sequence. It suffices to show that some subse-
quence converges, so we can without loss of generality assume that dgg (X;. X;11) <
27¢ for all ¢+ = 1,2,.... Then choose metrics d"*t! on X;[[X;;1 such that
di[;iH(Xi,XiH) < 27% With these choices we can construct metrics d*7 on
X; [T X, where ¢ < j as follows

] Jj—1
d(z,y) = inf{ Zd""k“(xk,xwrl) rzk € Xk and z; =z,7; = y}

k=1

These metrics clearly satisfy
d* (x4, 2) < d (zi, z5) + &7 (2, z1)

ifi<j<Kanduz; €X;.z; € Xj,zx € Xi. Therefore

j=1 ”
4 (X X5) <> dp T (X X)) <277 i i<
k=i ‘

Let X ={(z;):z; € X, and d’ . —0 as i,j— 0}. There is a pSéu-

(21.25)
dometric on X defined by d((z;), (y;)) = limj—. d(xj,y;). We contend that the
metric space X, obtained from X by identifying points which have zero distance,
is the limit of {X;}.

Construct a metric d* on X; [ X by d*(y. (z;)) = limsup,_,.. d"J(y. z;), where

y € X; and (z;) represents an element in X. This is easily seen to give a well

defined metric on X [ X;. We claim that d%,(X. X;) < 272, Let (z;) represent
H j
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an element in X. Choose n > i such that d"(z,, (z;)) < 27%, and then y € X;
with d""(y.z,) < 27*"!. Thus

d'(y. (z;)) = limsup d*’(y, (z;))

J—oe

< limsupd"™(y, z,) + d" (2, ;)

Jj—oc
<Ay, zn) F A (2, (25)) < 2704270 < 272
Conversely suppose y € X;. We can then successively find z; € X;,5 > 7 and
y = x; and d?7 1 (x;,2;.1) < 277. The sequence (z;) then defines an element in

X and by construction

-1
d'(y, (z;)) = limsupd’(y,z;) < lim ZQ—k _ =it
Jj—oo Jmoo i~

g

Definition 2.1.5. A metrix space X is called totally bounded if for any € > 0,
there exists a finite number N (¢) of e-balls { B; = B(z;, e)}fvz(f ) which cover X.

Note that a subspace of a metric space which is precompact is totally bounded.

Furthermore, one has the following easy property.

Lemma 2.1.6. A family C C Met of metric spaces Is totally bounded if and

only if for any € > 0, there exists a finite e-net in C.

Proof. Recall Met is the set of all isometric classes of compact metric spaces
and the Gromov-Hausdorff distance dgy becomes a metric on it by Corollary
1.3.18.

Suppose C is totally bounded. Then for any € > 0 there is a finite number
N = N(e) of e-balls {B; = B (X;,e)}Y, which cover C, where X; € C and
B (X;.€) ={Y €C:dou(X;,Y) < €}. Thus {X,}¥, is an e-net in C. To prove
the converse, let € > 0 be given. Then there exists a finite €/2-net {X;}. It is then
easy to see {B“H (X;,€)} covers C. [
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Theorem 2.1.7 (Gromov Precompactness Theorem I). Let C C Met be
a family. The followings are equivalent:

(1) C is precompact, i.e.. any sequence in C has a subsequence which converges
in Met.

(2) There exists a function N : (0,1] — (0, oc) such that Cap(X,€) < N(e) for
any e € (0.1]. X € C.

(3) There exists a function N : (0,1] — (0.0c) such that Cov(X,€) < N(e)
for any € € (0. %;],X eC.

Proof. (1) = (2). Suppose C is precompact. Then it is totally bounded and so
for any € > 0, there exists a finite set X1,... , X;(¢) € C such that for any X € C,
there is an 7 such that dep (X, X)) § €/4. ie., {.XL-}?:(? is a €/4-net in C. Therefore.
by Lemma 2.1.3, one has Cap(X,€) < Cap(X;.e — 2¢/4) = Cap(X;,€/2). So just
defining N (€) = max; Cap(X;. €/2). we get (2). o

(2) = (3). This is immediate since Cov(X, 2¢) _<_ Cap(X.e¢) < N(g).

(3) = (1). It suffices to show that for every sequence {X;} in C and every € > 0
there is a subsequence { X/} where de g (Xi, X;) < € for all elements in {X/}.

Every X; is covered by at most N = N (e) e-balls. Thus, for fixed N; < N, there
is a subseugence { X} } of {X;} such that X| is covered by exactly N; e-balls. Let
{22} | be the centers of these balls covering X}. For each k consider the matrix

of numbers {d(z¢, azf)}gb:l. All these number are bounded by diam(X}) < e Nj.
So Pigeon hole princz'ple“implies there exists a subsequence X' of X} such that
daf ) — dlah.@h)| < g
for all [, m. By Lemma 1.1.9 one has
doy(X). X)) <e
forall ,m. O

The following theorem is the main result of this section.
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Theorem 2.1.8 (Gromov Precompactness Theorem II). For given D >

0,k and n > 2, the space of compact Riemannian manifolds (M™, g) satisfying
Ric(M) > (n—1)k, diam(M) < D (2.1.1)

is precompact in the Gromov-Hausdorff topology.

This implies that if (M;,g;) is a sequence of Riemannian manifolds satisfying
(2.1.1), then there exists a metric space X such that M; converges to X in the
Gromov-Hausdorff topology. We will see X must be compact in this case. In fact,
X is a length space by Theorem 1.3.10 and one has diam(X) < D. Note that k
might be also negative number.

To prove this, we need the following volume comparison theorems due to Bishop

and Gromov.

Theorem 2.1.9 (|B-C], [G-H-L]). Let (M, g) be a complete Riemannian man-
ifold and B,(r) denotes the geodesic ball in M. If Ric(M) > (n — 1)k, then
vol(B,(r)) < Vi(r), where Vi (r) denotes the volume of a ball of radius r in the

space form of curvature k.

Theorem 2.1.10 ([G-H-L], [G-L-P]). If(M,g) is a complete Riemannian man-
ifold with Ric(M) > (n — 1)k, then for any point p € M,

vol(B,(r))
Vie(r)

is nonincreasing, i.e., one has forv’ >r >0

vol(B, (")) _ vol(By(r))
Ve(r') = Valr)

(2.1.2)
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In particular, if M is compact with the diameter diam(M) = D, then for r < D

we have ‘
vol(B,(r)) < vol(M)

V) V(D) (213)

Proof of Theroem 2.1.8. For given € > 0 and a Riemannian n-manifold M sat-
isfying (2.1.1), choose a maximal set of points z;.x»....,zy in M such that
d(z;.z;) > 2e¢. Then B(z;.2€) covers M and so Cov(M,2¢) < N. On the
other hand. since B(z;.€).i = 1.....N. is mutually /disjoint in M. one has N -
vol B(z,.€) < vol(M) where vol B(z,. €) = min{volB(z;,€). ....volB(zn.€)}. Thus
Theorem 2.1.10 implies :

 vol(M) - VA(D)

N < —,
Vs volB(zo,€) = Vi(e)

The proof follows from Theorem 2.1.7. [
We are going to close this section with the proof of the following theorem.

Theorem 2.1.11. The diameter, diam, as a map from Met to R is continuous

with respect to the Gromov-Hausdoff topology.

Proof. It suffices to show that

|diam(X) — diam(Y)| < 6dau (X.Y) | (2.14)

for compact metric spaces X and Y. Given € > dgy (X.Y) there is by definition
a metric d on X [[Y extending the metrics on X and Y such that the Gromov-
Hausdorff diastance between X and Y in X [[Y is < 3¢ (see also Theorem 1.1.8).
Then if z;, 20 € X. there are y;,y2 € Y with d(z;,y;) < 3e. Hence d(y1,32) <
6e +d(x;,z2) by the triangle inequality. Consequently, diam(Y") < 6e + diam(X),

and by symmetry this proves the inequality (2.1.4) O
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§2.2 Pointed Gromov-Hausdorff convergence

In section 2.1, we have seen the Gromov-Hausdorff distance actually defines a
metric on the set of all compact metric spaces. For unbounded spaces, it is not
useful, but the notion of pointed Gromov-Hausdorff distance is effective. By a
pointed metric space we mean a pair (X,p) of a metric space X and a point

pe X.

Definition 2.2.1. Let (X;,p;) and (X.p) be pointed metric spaces. We say
(X;.p;) converges to (X,p) in the pointed Gromov-Hausdorff distance if for any
r > 0 and any sequence of positive real numbers ¢; — 0, the closed balls B(p;.,7+¢;)

in X; converges to the closed ball B(p,7) in X in the Gromov-Hausdorff distance.

As in the section 1.2, we can define the notion of the pointed Gromov-Hausdorff

distance by using Hausdorff approximation.

Definition 2.2.2. For pointed metric spaces (X,p) and (Y, q), the pointed
Gromov-Hausdorff distance d, ¢ ((X, p), (Y, ¢)) is defined as the infimum of € > 0
such that there exist e-Hausdorff approximations f : BX(p, 1) — BY (¢, +¢) and
g:BY(q.1) = BX(p. 1 + €) between metric balls with f(p) = ¢ and g(q) = p.

Example 2.2.3.

(1) Let S™(r) be the n-sphere with radius 7 and p be a point on it. Then one
can easily see that (S™(r),p) —(R™,0) as r — oc.

(2) (Blowing up) Let (X, z.d) be a pointed compact metric space with the
metric d. Then we have

;imO(X, z, A - d) = {point}.

(3) One can easily prove the following fact: Let g, be the Euclidean falt metric
on R™. Then

)l\il’l’%)(Rn, 07 A go) = (Rna 0) go)-

In fact, since g, is a flat metric, A - g, is isometric to g,.
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Theorem 2.2.4. Let (M, g) be a Riemannian manifold. Then for any x € M,

lim (Maxv A g) = (TIM":P’Q|T,M)’

A—o00
where (T, M, x,ng A7) 18 isometric to (R™,0, g,) with the Euclidean flat metric
Jo- ‘

Proof. Denote, for convenience, (T, M, z, g| ok ;)= (T:M,z,g,). Consider balls
B(x, M andb B(0,%) C (TxM.g,). For X sufficiently large, these balls are
almost isometric since the exponential map exp, : T,M — M is well-deﬁned and
d(ezp,)(0) = I, the identity map. Multiplying by A, B(z, §) C M is equivalent to
B(z,r) on (M,\-g) and B(0, %) C‘ (T M, g,) is equivalent to B(0,7) onv‘(_‘,Tva, A .
Jo)- Since go is a flat metric', A g, 1s isometric fo,:go as in Example 2.2.3 (3). So,

B(z,7) C (M, )\ g) is almost isometric to B(0,r) on (T, M, g,). Hence

A— 00

lim (M,z, )\ g) = (T.M, a:,ngxM).

d

For pointed metric spaces or complete metric spaces which are not necessarily

compact, there is a similar tool to examine the convergence as in the section 2.1.

Definition 2.2.5. Given a complete length space X and two positive real
numbers €, R,0 < € < R, define N(e, R, X) as the maximal number of disjoint
e-balls in R-ball B(z, R) for all z € X.

Remark 2.2.6. If R = diam(X) or more precisely, R = Rad(X), the radius of
X defined by the smallest positive real number so that a singie closed ball of such
radius covers X, then N(e, R, X) becomes Cap(X,¢€), the e-capacity of X.

If {x;} are the centers of the maximal disjoint e-balls in B(z, R), then {z;} is a

2e-net in B(z. R), i.e., the balls {B(z;, 2¢)} cover B(z, R).
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Lemma 2.2.7. For any fixed € > 0 and R > ¢, the function X — N(¢, R, X)

is almost continuous in the Gromov-Hausdorff distance.

Proof. Let B(z,R) C X and B(y,R) C Y be R-ballsin X and Y, respectiveff,
such that dei(B(z, R), B(y,R)) < 6, 6 <e. Let N = N(e, R, X) and {B(zi,¢)}
be a maximal disjoint e-balls in B(z, R). Then {z1,...,zn} is a 2e-net in B(z, R)
by Remark 2.2.6 and d(z;,z;) > 2¢ if i # j. Since deu(B(z, R), B(y, R)) < 0,
there exists y; € B(y, R) such that d(z;,y;) < 6 foreach i =1,... , N, where d is

an extended metric on the disjoint union of X and Y, X [[Y. Thus,
2¢ < d(xi, x5) < d(zi,9:) + (i, y;) + d(vy, z5).

That is, d(y;,y;) > 2(e — d). This means {B(yi,é — 0)} are mutually disjoint in
B(y,R) and so N(e —6,R,Y) > N(e, R, X). By interchanging X with Y, we also
get Ne—0,R,X)> N(e,R,Y). O

Corollary 2.2.8. Let F = {(X,d)} be a set of complete locally compact length
space. If F is precompact in the Gromov-Hausdorff topology, then {N(¢, R, X) :

X € F} is uniformly bounded.
Proof. It follows immediately from Lemma 2.2.7. [

One can also define the notion of totally bounded for a pseudometric space and
it is easy to see Lemma 2.1.6 still holds for pseudometric spaces. Keeping these
in mind, one has the following theorem which is similar to the precompactness

theorem 1.
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Theorem 2.2.9. A family F of complete, locally compact, pointed length
spaces is precompact if and only if for any fixed e. R > 0, {N(e, R, X): X € F} is

uniformly bounded

Proof. One direction follows from Corollary 2.2.8. To show the converse, fix

€ >0and R > 0 and let N = sup{N(e.R. X): X ¢ f} By assumption and
Theorem 2.1.7. {BX(z,R) : X € F} is precompact. "'A similar argument as in

the proof of Theorem 2.1.7 and by using diagonal sequence, one’can prove F is
precompact. However the proof is quite long and so we omit it here. For reference,

see [G-L-P]. O J

Corollary 2.2. 10 Let (M;, z;, gl) be a sequence of pointed n-dimensional Rie-

mannian manifolds such that

vol(BMi(z;,7))

- <C3" forall r>0,
/rl

Ch

IN

where C'y,C, are fixed constants and BM: (z;,7) is a geodesic ball of radius r in

M;. Then {(M;.xz;.g;)} is prcompact in the pointed Gromov-Hausdorff topology.
Proof. Gi:‘ven anyg > 0 and R > 0, let ”N(é;R, M;) ="N; be the' number of

maximal disjoint e-balls. { B(z?, ¢) }jl\iil, in B(z;, R) C M;. Then we have

§ \

N;
Ci-N;-e" <> wolB(z].e) < Cs- R |
j=1 - N
In other words, we get
' Cs- R"
Ni S - R s
Cl - €n

i.e., N; is uniformly bounded (independent of ). Hence {(M;,z;,9:)} is precom-
pact by Theorem 2.2.9 [J
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Theorem 2.2.11 (Precompactness Theorem III). For given k € R, the
space of all pointed complete n-dimensional Riemannian manifolds (M, p) satisfy-
ing

Ric(M) > (n—1)k

is precompact in the pointed Geomov-Hausdorff distance.

Proof. Let (M.p) be a pointed Riemannian n-manifold satisfying Ric(M) >
(n —1)k. For 0 < e < R, let N = N(e. R, M) be the maximal number of disjoint
e-balls in B(p, R) in M. Together with the relative volume comparison theorem,

one has
Vi (R)

Vie(€)
That is. IV is uniformly bounded which is independent of (M, p). Then the proof
follows from Theorem 2.2.9. O

N -vol(B(e)) < vol(B(p, R)) <

vol(B(e)).

We close this section with the notion of tangent cone of a length space or
a Riemannain manifold. By Theorem 2.2.11, for any sequence, r; — oo, there
exists a subsequence, r; — 0o. such that the sequence of pointed Riemannian
manifolds. {(M",:c,rj_lg)} or { (M™ z,7;g)}, converges to some length space,
(Moo, oo, dse) or (M,,z,d) in the pointed Gromov-Hausdorff distance, respec-
tively. Any such space, M. or M., is called a tangent cone at infinity or tangent

cone at x, respectively.

Definition 2.2.12. Let (X.d) be a length space and z € X be a point.

(1) A tangent cone to X at z is a space of the form
GH
/\lim (X.z, A - d)

in the pointed Gromov-Hausdorff topology.

(2) A tangent cone at infinity to X is a space of the form

GH
l_imo(X, z, A - d)

K3

in the pointed Gromov-Hausdorff topology.
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Proposition 2.2.13. For given postive real numbers k and D and a natural
number n € N, let (M;,g;) be a sequence of Riemannian n-manifolds satisfying
Ric(M;) > —(n — 1)k, diam(M;) < D. Suppose X is a Gromov-HausdorfF limit

of (M;. g;). Then every point x € X has a tangent cone

GH def
hm (X.z,rd) =T, X.
Proof. It suffices to show that there is a bound on N = N (e, R, (X, r-d)) for any
7 >> 1 and €, R > 0 by Theorem 2.2.9. That is, one has to show N is independent
of r. First note that
. R
N(e,R,(X.r-d))=N(-, .

AR

LX),

S |ien

: (X d)) = ]V( :

€
,
Since X is a limit of M; and N is almost continuous,

N(E.E,A)<N(§ R M)+1

el <
- for 1 sufficiently large.
From the definition of N. one has

N(;,g,M) vol(B(xU ))<vol(B( .R)),

where z; € M; and z;; € B(z;, R, M;). Thus

c R vol (B(zi, )
N(; —;,]\41') S ’UOZ (B(l'ij} i))

The last inequality follows from the relative volume comparison theorem (Theorem

2.1.10) and the final term is independent of r.
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In fact, for » >> 1 sufficiently large, one has

e -e(0)

whatever the sign of Ais. O

For a complete locally compact length space, it is not true in general that
limit is unique nor independent of rls. Also the limit limgf_{w(X,x,/\i -d) =
T,.X may not be a cone. Recall that a metric space is a cone over Y if X is
homeomorphic to Y x [0,1]/Y x {0}, or ¥ x [0,00)/Y X {0}, where the metric
d]Yx () =5 dly' However if we assume the volume condition, any tangent cone
is a metric cone. More precisely, assume (X, d) is the Gromov-Hausdorff limit of a
sequence, { (M, p;) }, of Riemannian n-manifolds satisfying Ric(M;) > —(n —1)
and vol(B;(p;)) > v > 0. Then at any point z € X,

ﬁl’?l (X, z,7:d)

T;—00

is a metric cone ([C-C2]). For more details in this direction, refer to [B-G-P],

[C-C1. C-C2], etc.
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62.3 Hausdorff dimension and measure

Let X be a separable metric space and p an arbitrary real number, 0 < p < oo.

Given € > 0, let

Shve 71-}7/2 : > ) ’a -
HP'C(A):mmf{ E P X = UB(mi,ri),rige},
2 i=1 =1

where B(z;,r;) denotes the open ball in X with radius r; centered at z; € X and

I' is the Gamma function defined by

F(t)=/‘ e~ st~ ds.
0

Note that if p > 2 is a positive integer, then the constant

7Tp/2 1 Wp—1
— = —pol(SP7Y) = 22—
(5 +1) pw(, ) p

which is exactly equal to %—multiple of the volume of round (p — 1)-sphere. Re-
call that the volume of a ball of radius r in the Euclidean space R? is given by

}—l)vol(Sp_l)rp.

Definition 2.3.1. Let X be a separable metric space and p an arbitra.ry real

number, 0 < p < oc. The p-dimensional Hausdorff measure of X is defined as

Hy(X) = lim H,, (X).

The Hausdorff measure looks like the Lebesgue measure. In fact, if A is a
Lebesgue measurable subset of R™, then the n-dimensional Hausdorff measure
H,(A) is equal to Lebesgue maesure of A.

For smooth manifolds, the Hausdorff measure can be considered as a general-

ization of the Lebesgue measure. The basic properties are the followings
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Proposition 2.3.2. (A) For the zero dimensional Hausdorff measure, we have
(1) Ho(X) =0 if X is empty
- (2) Ho(X) =n if X is a finite set of n points
(3) Ho(X) = oc if X is an infinite set
(B) If p < q then Hy(X) > Hy(X): in fact p < ¢ and H,(X) < oo imply
H,(X)=0.
(C) An n-dimensional polytope has finite n-dimensional Hausdorff measure. Con-

sequently its g-dimensional Hausdorff measure is zero for all ¢ > n.

Theorem 2.3.3. Let X be a compact separable metric space. Then H,(X) =0

if and only if for each € > 0 there exists a finite decomposition of X :
X:BlLJBQU...UBk, BLZB(LlilT'l)

such that

4 <e

Proof. Suppose H,(X) =0 and let € > 0 be given. By definition, there exists a
countable number of balls B(z;,r}), B(z2,7)),... such that

>

X = UB(:UL',T;) and Zr’f <€/2.
i=1

i=1
It is possible to enlarge each ball B(z;,7}) slightly to an open ball B(z;,7;) such
that

r <! +21+1

Since X is compact, there is a finite cover By,...,Bx, B; = B(z;,r;) of X and
sorf +...+rf <e.

The converse is obvious from the definition. [
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Definition 2.3.4. The Hausdorff dimension of an arbitrary separable metric

space X is defined by
dimy (X) =inf{p > 0: Hy(X) =0}
=sup{p>0: H,(X) > 0}.

Note that even if dimy(X) = p, we may have Hp(X) = 0,00 or positive real
number. In particular, for a smooth Riemannian n-manifold (M™,g), we have
dimg (M) =n and H,(M) =vol(M,g).

Theorem 2.3.5. For given positive real numbers k,D > 0 and a natural
number n € N, let (M;,g;) be a sequence of Riemannian n-manifolds satisfy-
ing Ric(M;) > —(n — 1)k, diam(M;) < D. Suppose X is a Gromov-Hausdorff
limit of (M;, g;). Then dimpyX < n.

Proof. By proposition 2.3.2 (B). it suffices to show that H,(X) < oc. Recall
that X is a compact length space with diam(X) < D. For any € > 0, recall also
that Cov(X, €) denotes the smallest number of closed e-balls in X which cover X.
Since Cov(X,€) is continuous in the Gromov-Hausdorff distance(Lemma 2.1.3),

one has
Cov(X,e) < Cov(M;. e — 5?1) 0; =0 as i — o0

i
for i sufficiently large. The volume comparison theorem together with diam(M;) <

D implies that Cov(M;, €) depends only on €,k and D. Thus one get
H,(X)= hn%) W,;l—lenC'ov(X.e) < lin(l) (hmsup - —Le"Cov(M;. e — —)>

11— 00

Wn—1 3
— e N - —
= lim sup (hm) - Cov(M;, € 5 ))

1—0C (2

= hr_nsupHn(Mi) < Vi(D) < 0.

The last inequality follows from the volume comparison theorem and the fact that
H,(M;) = vol(M;) for a compact smooth Rlemannlan manifold. O
Remark 2.8.6. One can also show that in the Theorem 2.3.5,
liminf H,(M;) < Hn(X).

1—00
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Theorem 2.3.7. For given positive real numbers k,v,D > 0 and a natural
number n € N, let (M;,g;) be a sequence of Riemannian n-manifolds satisfying
Ric(M;) > —(n—1)k, vol(M;) > v and diam(M;) < D. Suppose X is a Gromov-
Hausdorf limit of (M, g;). Then dimyX = n and the tangent cone T, X at any
point x € X also has Hausdorff dimension n, 1. e.,

dimyT. X = dimyg lim (X,z,7-d) =n

T—0C
for any point z € X.

Proof. Since vol(M;) > v, one has dimpy(X) > n and so it follows from the
Theorem 2.3.5 that dimgy (X ) = n. It remains to prove dimgT, X = n.

It is known from the volume condition that for each point x € X, T, X is a
metric cone, i.e., metrically cone on tangent space and so it becomes a length
space. As in the proof of Proposition 2.2.13, one has N(e, R, (X,rd)) < C (%)n
and so dimyT,X < n. To show the equality, it is enough to verify that for any
a>0,H,—o(T, X NB(1)) > 0, where B(1) denotes the unit ball in 7, X centered

at z. The claim is that

N(e&, R, (X,rd) > C’ (—R~>n

€
for some positive constant C’ = C’(k,v, D,n) > 0. Note that for N = N(e, R, X),
N
volB(R) < ZvolB(Ze) < N - max{vol B(2¢)}. (2.3.1)
=1

Since N is almost continuous by Lemma 2.2.7, one has

R R
N(&,R, (X,rd)) = N(f, ~ (X)) 20 ~N<§, =, M)
IB(£
volB(; ) by (2.3.1)

~ max{volB(%)}
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Note that
volB(gE) < Vk(%) <C- (—26) (2.3.2)
r

for r >> 1 sufficiently large. So

R I B(E
Wbl ) s MBL) s
max{volB(=)} (%)
M) Vi(£

>C, - Mil( M) A>< r,} by relative volume comparison theorem
(D) (%)
v (E) n <R> n

>C,- T =C|—| . C =C'(kv.D.n).

Finally, choose a d-net in B(1) so that balls of radius d are disjoint and 24-balls

cover B(1). Then for any a > 0.

Yo Sty = PrelgnaN (5,1, T, X) = it

n n n

Henée dimy (T, X) > n by definition. The proof is completed. [J
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CHAPTER III

HARMONIC RADIUS AND
SMOOTH CONVERGENCE THEORY

In this chapter we will discuss smooth convergence theory of Riemannain man-
ifolds as an application of the Gromov-Hausdorff topology. We have seen in the
previous chapter that some classes of Riemannain manifolds satisfying geomet-
ric conditions are precompact in the metirc spaces with respect to the Gromov-
Hausdorff topology. However the limit space is just a metric space not a smooth
manifold in general. Thus, it is interesting to find conditions which the limit
space becomes a smooth manifold. We will focus our attention on this problem
throughout this chapter.

As is now well-known, the Cheeger-Gromov convergence theorem ([Che], |G-
L-P]) implies that the space of compact Riemannian n-manifolds of sectioanal
curvature |K| < A, volume > v > 0 and diameter < D, is precompact in the C!®
topology (c.f. See also [G-W], [Kas], [Pet]). The key step is that the bounds above
give a uniform lower bound for the injectivity radius of Riemannian manifolds
in this class. Or in our sence, the bounds above give the existence of harmonic
coordinates, i.e., charts for which the coordinate functions are harmonic functions,
on balls of uniform size (depending only on the constants above), and uniform
Cl“ estimates of the metric tensor g;; in these coordinates ([Che], [J-K]). In
section 3.1 and 3.2, we shall define the harmonic coordinate system and harmonic
radius and prove some various properties about these concepts as preliminaries for
convergence of a sequence of Riemannian manifolds. In section 3.3, we shall prove

several types of convergence theorems related with the harmonic radius.



46 III. HARMONIC RADIUS AND SMOOTH CONVERGENCE THEORY

§3.1 Harmonic coordinates

Let (M",g) be an n-dimensional Riemannain manifold and let {z*} be a lo-
cal coordinate system around a point in M. Then the Laplace operator in the
coordinates {z‘} is given by

- 1 « 0 ” 0 J
= — *J -
A NG E P (Q \/‘aaxj>’

1,7=1

where g = det(gi;), gi; = 9(32, 55) and (¢*) = (gr1)™". From now on, we shall
follow the Einstein convention and so drop the summation notation. First we

define the harmonic coordinate system.

Definition 3.1.1. A coordinate system {(h!,--- ,h™)} defined on an open sub-

set of a Riemannian n-manifold (M, g) is called harmonic coordinate system if

ARt =0foralli=1,---,n
For any C? function u on M, we can write down the Laplacian of u as

%u 1 8 ,, . u
)] .
50w + 50w (9V9) g

| Au = g¥

(3.1.1)

So, for the coordinate function u = z*, we have

. . 0%z* 1
Azt =g" O0x0x’ + _\/_ﬁ (
ﬁ(gik\/gl

k

VD) 55

Il
3l

We define
1 0

f ozt

so that z* is harmonic if and only if T* = 0.

= - — (g% V/3) (3.1.2)
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A strightforward computation shows the followings.

Excecise 3.1.2

(1) TF =377, ¢”T};, where I'}; is the Christoffel symbol of the metric g.

(2) If {z'} is a harmonic coordinate, i.e., Az* =0 forall i=1,--- ,n, then for

any function u € C*(M),

(3.1.3)
(3) The Ricci curvature R;; in the harmonic coordinate {z'} is given by

1 L PPy
R;j = 2 g W+Q’ (3.1.4)

r,s=1

where @ is the lower order term.

Given a point m € M and v € T, M with |v| = 1, we define

r(z) = d(m, z),
p(z) = expm (r(z)v),

q(z) = exp, (=1 (x)v),

and then set

(@) = g7 (€@ a(@) - L p())

In R™, [, would be the linear functional determined by inner product with
v, i.e., l,(z) = (v,z). If {v;.---,v,} is an orthonormal basis for T, M and let
I* =1,,, then {I!,---,I™} gives a local coordinate system on a ball of fixed radius
p. On a geodesic ball B(m,p), solving the following Dirichlet problem for each
1=1,---,n

AR*=0 in B(m,p), R'|op = l'|aB,
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we get n harmonic functions {h!.--- . h™} which is a coordinate system on B(m, p).
In other words, since the Dirichlet problem is always solvable (see [G-T]), the
harmonic coordinates alwyas exists on a small ball of given Riemannian manifold.
. So far, we have discussed metric tensors g in smooth category. From now on,
we will also consider metric tensors with weaker regularity, that is, in the category
of C’" @ or the Sobolev space L**?. First of all, we consider the topology on the
spacé of Riemannian metrics of a fixed manifold M. Let M be a compact smooth
n-manifold and let {¢, : B™(1) — M}, B™(1) C R"™ be a locally finite C> atlas
on M.

Definition 3.1.3. For ¢ > 0, two covariant tensors 77 and 75 are called e-close

in the C* topology on M if
”O:X(Tl - Tz)]]rﬂ(@.z)nck(Bn(1)) S € <315)

Note that expressing the tensor as local coordinate system, it becomes
oulh = T2 o) = ST, dzt 3o dat,

Thus the C*-norm means the summation of the C*-norm of functions T,..;,.
Recall that for a function f.
Ifllcr(ge 1y = sup |fl+ sup [Df[+---+ sup |[D"f].
B (1) B (1) Bn (1)

If we change atlas to vg3, we gef an equivalent norm so that € is changed to
c - € where ¢ is a bound ||(v)™! o ¢gl/ck. Thus, this gfves a well-defined metric
topology on space of covariant k-tensors, independent of the choice of atlas. We
also can do the same thing for C¥®, a € (0,1). topology with C*:-norm

\D* f(x) — D* f(y)|
|z —yl|*

Hf“C’*‘-“(B‘“(l)) = Hf“ck(Bnu)) +51;p
7y
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and for the Sobolev space LFP with the norm

1/p
£l Lkr(Br 1)) = (/ \fIP d:c+/ |DfP d$+'“+/ |D* f|P dfﬂ) '
B (1) B (1) B (1)

Note that C=(B™(1),|| - ||Lx») is not complete and so making the completion of
C>®(B™(1),|| - ||Lx.»), we get a complete normed vector space, i.e., Banach space
L*P(B™(1)) which is called the Sobolev space.

Example 3.1.4. (C° topology on metrics) Let g, h be two Riemannian metrics
on a fiexd compact smooth n-manifold M and let {¢} be a smooth atlas. Then

the C°-norm between g and h is given by

lg = hlice = llg5(g = R)llce =D llgi; — hijlice.
i.j
where 5 P
and

. , a o
Ooh = hij, hij=h((@a)g 7. (0a)i55)

in local atlas ¢,. Thus, ||g—hl||co < €is equivalent to (1—€")h;; < g;; < (1+€)hy;
for some ¢ = €(h;;). We call in this case h is € quasi-isometric to g. Hence the

C° topology gives the quasi-isometry of Riemannian metrics on M.

Now let M’ denote the set of all Riemannian metrics on a compact smooth
manifold M. In the compact open C* topology, M’ is an open convex cone. If
D(M) denotes the diffeomorphism group of M, there is a natural right action on
the space M’ by pull-back, i.e.,

D(M)x M' = M, (6.9) = &'g.
Clearly, two metrics in the same orbit have the same geometric properties since
they are isometric. Thus from now on, we will consider only the isometry classes

of metrics described by the quotient M’/D(M), which is often called the space
of Riemannian structures and we denote M’/D(M) by M. With the induced

topology on M, we can define the notion of e-close between two metrics as follows.
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Definition 3.1.5. Two metrics ¢g; and go in M are said to be e-close in the

C*@ topology if there is a diffeomorphism f : M — M such that

”f*gl - gQ“Ck.a <€

with resprct to the same atlas on M.

Lemma 3.1.6. Let {z'} be a local coordinate system on an open subset Q) C M
containing m € ). Suppose a metric tensor g on M is C*:® in {z'} coordinates.
Then there exist an open set ) CC Q and harmonic coordinates {h!,--- ,h"} on
Y such that these harmonic functions, {h*}, are C* +Le functions of {z?}. In fact,

we have

[ lcrragor (aiy) < C - [1R]lo= (D),
where C = C(“Q”C’Cv’—'(Ql,{m.i}))j

The proof of Lemma 3.1.6 follows from the existence of the Dirichlet problem
and interior regularity theorem of second order elliptic partial differential operator
due to Schauder. Let 2 CR"™ be a conneted bounded open subset which has

smooth boundary 91) and let
I = aij.Dvij + szz + c, a’L] _ a]L

be a second order differential operator whose coefficient functions are defined in

). Moreover we assume that L is elliptic, that is,
@ (z)66; > NE®, VzeQ, £eR”

for some positive constant A. ,
Note that if g is a C*** metric tensor on M, then by eq. (3.1.1), the Laplace
operator is an elliptic second order partial differential operator whose coefficient

functions are C*—1, First we have
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Theorem 3.1.7 ([G-T]). Let L be an elliptic second order P.D.E and let f
and the coefficients of L belong to C*()). Assume the coefficient of zero order

term c Is nonpositive. Then, if ¢ is continuous on 0f), the Dirichlet problem
Lu=f in Q, u=¢ on 01,

has a unique solution u € C°(Q) N C%*(Q).
Lemma 3.1.8 (Local elliptic regularity). Let u € L}, .(Q) be a solution of
the equation Lu = f.

(a) (Schauder estimates) If f € C**, then u € C****(K) for any compact

subset K CC , and if u € C*(Q) then

lullcrrza(ry < C (|Lullera@) + lullox@)) , (3.1.6)

where C' depends only on the C***(Q)) norm of the coefficient functions
a'l. b and c.
(b) If f € LFP(Q), then u € L***P(K) for any compact subset K CC (), and

ifu € LP(Q) then

lull rzp(xcy < C (| Lull prra)y + NullLe@)) » (3.1.7)

where C' depends only on the L¥?(Q) norm of the coefficient functions

a'?.b* and c.

By using local charts, these results can be transferred to a compact Riemannian

manifold.
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Theorem 3.1.9. Let M be a compact smooth Riemannian manifold, and sup-

pose u € L}, (M) is a weak solution to Lu = f.

(a) If f € C**(M), then u € C*+>*(M), and

[ullersze < C([Luflera + lJulle) . (3.1.8)
(b) If f 6 L*P(M), then u € L*+*P(M), and

[ull Lrzr < C (| Ll pes + [luflre) . (3.1.9)

Proof of Lemma 3.1.6. We have already seen that there exist harmonic coordi-

nates {h'} on a subdomain ' C 0. Recall that the Laplacian

1 9 - 0 N )
- i 7 9 ) i Ty
A Vg 0z <g ﬁ(’)ﬂ) 9 9zi07i r Oz’

is an elliptic second order P.D.E with C*~1:¢ coefficients. Applying Lemmas 3.1.7.

and 3.1.8 to Ah* =0in O CC O, we get h* € C**1:2(Q) in {27} coordinates and

IR |crtrngary < C (AR lornary + R lcnqar) = CHhi“Cu(Q'),

where C = Clllgijllcr.ay: T | cr-r.a(q)). O

Corollary 3.1.10. Suppose g is a C*** metric in local coordinates {z'}. Then
g is also C*** in the harmonic coordiantes constructed above. In fact, g is C*** for
any harmonic coordinates, i.e., harmonic coordinates give an optimal regularity

for g. In geodesic normal coordinates, g is at best C*~2:<,

Proof. Let {y’} be a harmonic coordinates so that {y?} are functions of {z*}.

Then %; is C* and so

_(i 0 *33:"835‘3(8 8)
. gm"g 8y‘8yJ - Gyl aylg ax"’axﬁ
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is C*> functions. However, in a normal coordinates {z*},2* = tv*, the geodesic

equation shows
02zk 020027

iz g a

Since the regularity of O.D.E shows {z*} is C**1:* functions of t and I'¥, is C*~12,
{z*} expect to at best C¥~1 in other variables, i.e., S*~! parameters, {v*}.

Thus, g is at best C*=2< in {z*}. O
We close this section with the following theorem.

Theorem 3.1.11 ([J-K]). Let M be a compact Riemannian n-manifold with
|Knr| <1 and let p = inj(M). Then there exists € = €(n,p) and C = C(n, )
satisfying the following: For each point p € M there exists h; : B,(e) — R,
i=1,---,n, such that H = (h1, - ,hy) : Bp(e€) —~UCR"isa diffeomorphism
and that || gijl|c1.« < C, where the g;;s are metric coefficients relative to H and

the C1:®-norm is taken in the H-coordinates.

Sketch of the Proof. We follow Green-Wu's method ([G-W]). Using eq. (3.1.5)
and (3.1.6), one can get harmonic coordinates H = (hi, -+, hy). Letvi(z) e T.M
denote the parallel transport of v; along the minimal geodesic. Using comparison

theorems we have
HVIli —vi(z)|| < C- r(az)g, ||Dzli(ac)|| < C-r(z). (3.1.10)

We can use these formulae to show that (I!,---,[") is a diffoemorphism. Take

€ << p << u. Let h; be the unique solution of

Ah; =0, hilop, ) ='|oB,)- (3.1.11)
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Then, by formula (3.1.10), we have
IACR; =) < C-r(2)?, (hi = )lop, (e =0
Applying an elliptic regularity to the above inequé.lity, we obtain
V(R —1)] < C -e.

This formula implies that H = (hy, - - - , hy,) is also a coordinate system. Now using
Bochner technique and Nash-Moser type estimate, we obtain a uniform C'1* bound

of the metric tensor. O
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§3.2 Harmonic radius

As mentioned in introduction of this chapter, the harmonic radius gives one tool
to handle the convergence of a sequence of Riemannian manifolds. Furthermore,
we have seen that harmonic coordinates give, in a certain sense, optimal regularity

for the coefficients of the metric tensor. We begin with definitions.

Definition 3.2.1. Let (M, g) be a Riemannian n-manifold and let a fixed pos-

itive constant C > 0 be given.

(1) For each point z € M, the C¥:® harmonic radius at x, denoted by rfk'a (z) =
r(2), is defined by the radius of the largest geodesic ball B(z,rs(z)) on

which there exist harmonic coordinates u; : B(x,7h(x)) — R™ satisfying

e 0 < gi; < €%, (as binear forms) (3.2.1)

k+a
[r ()] lgijllcraBern@)) < C- (3.2.2)

(2) The C** harmonic radius of (M, g) is defined by
rfk (M) = 1nf rh “(z).

(3) Similarly, the L*? harmonic radius of a point z, rﬁk’p(x) = rp(z), is the
radius of largest geodesic ball B(z,rx(z)) on which there exist harmonic

coordinates u; : B(z,mr(z)) — R" satisfying

_COU <9< 6067;]‘, (as binear forms)

. o
[ (@))% |gijl| Ler (B2 irn(2))) < C- (3.2.3)

(4) The L*? harmonic radius of (M, g) is defined by

rEM(M) = inf L7 (z).
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We remark that g;; = g(52. -2~ ) and the left-hand side of the inequality (3.2.2)

Ou; * (l)”ll.j

means, more precisely,

sup  |gij| +7a(z)  sup  |dgi,l +rh(ac)2 sup ]d’-’gijl 4.
B(a"h(‘ﬂ)) B("Etrh (7’)) B(lrh(:ﬁ))

+7rp (Jc)A sup |d*gis| +7h(2)" T sup =
B(z.rh(z)) z£y lz =y

Similarly, denoting B, = B(z, r,fk'p(x)). the left-hand side of (2.2.4) means

rh(x)"% (/B lgi ;¥ dvg> ’ +'r;,,(a:)l—% (/B |dgi;|P dvg> ’ + -

ra(z) T </B @ a0l dvg) ”

It ié"easy to see that if (M.g) is a closed smooth (in fact, C*?) Riemannian n-
manifold, then r, (M) > 0. The harmonic radius, of course, may depend on the
constant C. But we may omit the constant C' and just say the harmonic radius
unless one is confused. Also, the harmonic radius behaves like distanceA of raidius,
i.e., if we rescale g = A\?g, A > 0, then 7,(z) = X - rn(z), where 7), denotes the
harmonic radius with respect to the metric g. This is one reason that we put r
factor in (3.2.2) and (3.2.3). |

g = A?g. X > 0and {u;} are harmonic coordinates for the metric g, then setting
{d; = \-u;}, we have

., 0 0

G2 2 5
95 =954, a,

8114 ’

) g (3.2.4)

)= A"g( o,

> =
> =

On the other hand, for a smooth function f € C> (M),

1 1
@l = 51dfl, and |d'fly = 57l fl, (3.2.5)
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Since 7 (z)' = AL - 71, (z)", the C* harmonic radius is scale invariant.
For the L¥P harmonic radius, recalling the volume form dvg = A" - dvy, we get
foreach [ =0,1,--- ,k,

= ()T F Lg|p p - -z Lo n Ve
Th(z) 7 /B‘dfbdvg =X"rrp(z) e '/Bw|df[§’)\ dvg>

jn l 1/p
= (@) ([ 1dslyan,)

Hence the L*P harmonic radius is also scale invariant. We will consider, mainl
’ Y,
C*, CY*, LY and L*P harmonic radius which are the most important cases in

some sense. For instance, we have the following

Corollary 3.2.2. For given A > 0 and p > 0, if (M, g) is a Riemannian n-
manifold satisfying
|Ku| <A, ing(M) > p,

then
r&" (M) > C = c(n, A, p).

Proof. Tt follows directly from Theorem 3.1.11. O

Furthermore, L?*? harmonic radius is used in [An3] to prove the geometrization

conjecture in dimension 3 of nonpositive case.

Definition 3.2.3. A sequence of Riemannian n-manifolds (M;, g;) is said to
converge in the C*® topology to a C** Riemannian manifold (M, g) if M is a C*°
manifold with a C* metric tensor g, and there is a sequence of diffeomorphisms
F; : M — M;, for 1 sufficiently large, such that the metrics F*g; converge to g in
the C* topology on M. Here the C* structure is defined with respect to some

fixed C¥ atlas on M, compatible its C* structure.

The next lemma shows that the harmonic radius is contiuous in the C*'® topol-

ogy or L*P topology.
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Lemma 3.2.4. If (M;. g;) converges to (M., g) in the C** topology, then
' qu e
ry,  (M;) — rh (M),

The same is true pointwise, Le., for the harmonic radius at any sequence {z;} —

zeM.

Proof. First. note that on a C'® Riemannian manifold the Laplace operator
is well defined as in (3.1.3). so that one may speak of harmonic functions on M,
which are then at least in C*. Similarly, the concept of C'* harmonic radius is
well defined on M. We first show that 7, is upper semi-continuous, namely,

(M) > limsup i, (M;).

1= 00

Let 7 = 7" (M;) = r&"" (i, M;) and let {uf}?:l be harmonic coordinates on

2

B; = B(z;, ;) such that with these coordinates
e 0r < (g < e 0n (3.2.6)

and

ri P ginllerapy £ C. ' (3.2.7)

Since M; — M in the C"“ topology, that is. gi — ¢ in the C*® topology, the
charts {u;} converge in the C%“ topology to a limit map u : B —R", where
B = B(z.7),z; — x and r = limsup,_, . 7;. [t is easy to see that the limit map u
is also harmonic with respect to the metric g. Since the bounds (3.2.6) and (3.2.7)
are clearly preserved under the C1© convergence, we have

rp(M) > 7 =limsupr;.

71— 00
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To obtain the converse

rh(M) <liminf r;, (3.2.8)

suppose r < 7,(M) is finite and let {zx} be harmonic coordinates on B = B(r) C
(M, g) satisfying (3.2.6) and (3.2.7). Via diffeomorphisms, we may view the metrics
g; on B, for ¢ sufficiently large. Let A; be the Laplace operator of g; in-the

coordinates {zx} on B, i.e.,

i = Zax( zai)

Lkl 1

Let {y.} be solutions to the Dirichlet problem for A; on B with boundary values

{zi}, and set w} = zx — yi. Thus,
Aswh = Ajzx, w,i]aB = 0.
By the Schauder estimates (Theorem 3.1.8), on}e has the estimates
[willera sy < Cllgsllce, BY)|Aiwillca(s). (3.2.9)

where B’ CC B, since w} has zero boundary values. By definition, we have

Az = 0. Furthermore,

in the C* topology. In other words,

“Az’w;}”ca = ”AikaCO‘ —0 as 17— o0.
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Thus one has w}. — 0 by (3.2.9) and so y;. — z in the C?* topology and uniformly
on compact subsets of B. Since the bounds (3.2.6) and (3.2.7) are continuous in the
C1* topology, they are satisfied for the charts {y}} on arbitary compact subsets
B’ cc B, with constants C; — C as i1 — oc. Hence r,?l'u(xi,Mi) > r — ¢ for any

0 > 0.This then establishes (3.2.8). O

Remark 3.2.5.

(1) The same proof shows that Lemma 3.2.4 is true when C1:* is replaced by
CF:« k > 1 by Theorem 3.1.8.

(2) The same proof with replacing the Schauder estimates by the L estimates
]ill’znthk~P(B’) <C(B)- |AizkllLeB).

shows that the same is true for the L*'?, k > 1 convergence.

(3) It is not clear that if the C* harmonic radius is continuous in the C°
topology, since one does not have the estimates (3.2.8) in this case.

(4) The injectivity radius is not continuous in the C1*® topology for any o < 1.
In fact, injps(x) is upper semi-continuous in the C° topology. but not lower
semi-continuous in the C%® topology with a < 1. However inj,; is lower

semi-continuous in the C* topology (cf. [Sak]).
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§3.3 Convergence theorems

In this section, we are going to prove some convergence thorems. Fisrt we start
with the classical compactness and convergence theorems for functions which are

called Arzela-Ascoli theorem and Aloaglu theorem.
Theorem 3.3.1 (Arzela-Ascoli). Let Q) be a domain of R™ and let {f; : O —

R} be a sequence of smooth functions. Assume for a < 1,

[ fillgrw(ay £ C

for some constant C' which is independent of i. Then for any o < «, there exists
a subsequence {f;, } which converges, in C**" topology, to a C** limit function

foe-

Theorem 3.3.2 (Aloaglu). Let B be a reflexive Banach space and let {f; :

B — R}be a sequence of functions satisfying

fillB £C

for some constant C. Then a subsequence {f;, } converges weakly to a function

f:B—R.

Here weakly means f; converges in the weak (*) topology to a function f, that

is, for any element A in the dual space B* of linear functionals, one has

A(f)) — A(f) as i— oo
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Corollary 3.3.3. Let ) be a domain of R™ and let {f; : @ — R} be a sequence

of smooth functions satisfying

I fill ey < C

for some constant C. Then a subsequence {f;,} converges weakly to a function

f e Lk?(Q).
The next theorem gives one convergence criterion which is important.

Theorem 3.3.4. Given a sequence (M;, g;) of closed Riemannian n-manifolds,
suppose that there exist atlas A; = {F} : U — R"} and constants d, > 0,C >0 -
such that o

(1) " (M;, g;) > 6, > 0 with bounds (3.2.1) and (3.2.2)
(2) (M, g:,A;) satisfies overlap condition, i.e., for some constant C, indepen-

dent of i, one has
1o (Ff)Mlortra < C

on Ui NU} #0.
(3) There is a uniform bound N on the number of coordinate charts as well as

on the multiplicity of their intersections.

Then, there is a subsequence, say it also (M;, g;), and a smooth manifold M such

that (M;, g;) converges, in the C* " topology, for &’ < a, to a limit C** metric g

on M.

Proof. The proof is consisted of two steps. The main idea is to embed M; into

an Euclidean space of large dimension so that the image looks like a graph in it.
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Step 1 The first step is to prove M; can be embedded in the Euclidean space
of large dimension as the whitney embedding theorem. Without loss of generality,
we may assume, by passing to a subsequence and adding new charts if necassary,
that the cardinality of altas A; are all equal to N and there is a covering B;j (01)

e 6.

DO =

of M; such that each ball is contained in a domain of some F}, where 6; =
Rearranging the subindex and normalizing so that F, “(zx) = 0 € R™ by overlap

condition, we have
B,(e7€4,) C Fi(Bs,(x1)) C Bo(e“d,)

by (3.2.1).

Choose a cut-off function £ : Rt — R satisfying

(i) 0<€£<1, supp(§) C [0,61]
(ii) £€=1on [0,02],0 < d2 < 6; and & = 0 on [d,, 00).

Define & on B;, (zx) by
&(z) = E(1Fe(2)ID)

and extend it to M; by 0. Then define a smooth map
®: M; — RN

by
®(z) = (&1(2)Fi(z), - En(2)Fy(2), & (@), - En(2))

We claim that ® is an embedding. To show this, it is enough to prove & is one-one.

Suppose ®(z;) = ®(z2). Then for all j =1,---,N,

Ei(z1)Fi(z1) = §5(22) Fj(z2), and  &(z1) = &;(2).
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On the other hand, by definition of s, there is an j,, 1 < j, < N such that

J

&, (x1) = &, (x2) # 0. Thus F} (z1) = F} (22) and so 21 = z since F} is a
diffeomorphism. '

Step 2 We claim that the image ®(M;) is locally a graph with uniformly
bounded C**1:® norm. Consider for instance ®(B}) € RN+ where B| =
Bgi (z1) CC By, (z1) C Uy.0] << 0,. We will show that ®(Bf) is a graph over

F}(B}) CR". Recall that -

®(B}) = {(&1(2)Fi (). - .Ex(2)Fi(2). &1(), - .&n(z)) -z € By}

Let y € B so that &;(y) = 1 and set z = F}(y) = &1 (y)F;(y) € R". The for any

7 > 2, we have

J

Fio Fi(z) = Fi(y)
and letting o, = £(|F! o (F{)~']).
05(x) = E(IF} o (F) ™ (2)]) = E(IF; @)I) = & (w).
Thus,

®(B) = {(z.02(x) Fy 0 (F}) "' (2). - .on(2) Fy o (F1) ™' ().

o1(z), - ,on(z)): z € By}

which is a graph over F{(B}). Now letting G; =F J‘ o (F})~!, graphing functions

have a ball of a fixed size contained in them, i.e.,

Gl crstn = || Fio (FH) Y erria <C
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by the overlap condition and ||@||ck+1.« < C’. Applying the Arzela-Ascoli The-
orem, we get a subsequence {(G%, $;)} which converges in the C**1* o/ < a

topology to limit functions {(G3°,¢5°)} as i — oo and these are C* 1. Define

My = Ugraph(G‘;C, o5)
which is smooth embedded manifold in RY. Moreover, note that the e-tubular
neighborhood of M. satisfies M; C T.(My) for i sufficiently large and so the
retraction of M; to M., gives an immesion V¥, : M; — M., which is one to one.
Thus, M., is diffeomorphic to M; for i sufficiently large. On the other hand, as

proved in Cheeger’s finiteness ([Che]), one can see that

(0 0
gkz=9(@,@)—’gw

in the C k’a', o/ < a topology. This completes the proof. [

Remark 38.3.5. (1) Although phrased in terms of compact manifolds, it is
easily to see that Theorem 2.3.4 is also valid locally, for bounded domains in
a Riemannian manifold, as well as for pointed complete Remannian manifolds,
provided one works on compact subsets.

(2) We remark that the conditions (2) and (3) in Theorem 3.3.1 are less im-
portant than the condition (1) in some sense. For instance, suppose (M, g) be a
compact Riemannian n-manifold with atlas {Fj : Uy — R"™} of harmonic coordi-
nates satisfying

e %6 < gij <edy;
and
lgijllcraw,y <C (3.3.1)
with respect to the harmonic coordinates Fi. Then the condition (2) holds auto-

matically, that is, from (3.1.8)
1F o (F) Mlersraimimy = I Fkllertraw,) < C
on U, NU; # 0. On the other hand, the condition (3) follows from lower bound of

Ricci curvature and upper bound of diameter of the given manifold. In fact, we

have the following theorem.
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Lemma 3.3.6 (packing lemma). Let (M™,g) be a complete Riemannian n-
manifold with Ric(M) > —(n — 1)k, k > 0. Then for any point p € M and for
given positive real numbers r,e > 0, there exists a covering UYB(p;.€) D B(p.7)
withp; € B(p.7) and N < Ny(n, k,r.€). Moreover, the multiplicity of this covering

is at most N»(n. k).

Proof. The proof follows from the volume comparison theorem. For given r, e >
0. choose a maximal disjoint €/2 balls, { B(p;,€/2) }, in B(p,7) so that {B(p;.€)}

covers B(p,r). If N denotes the number of €/2-balls, then we have
N -vol(B(e/2)) < vol(B(p.r)).

Thus the volume comparison theorem implies that

vol(B(p.r)

r Vie(r)
vol(B(e/2)

N= Vele/2)

) <
g

Hence if M is compact with diam(M) = D and Ric(M) > —(n —1)k?, then for
any € > 0, we can choose a finite covering M € UY B(pi.€), N < N; = Ni(n. k. ¢).

The general scheme to prove a precompactness theorem for a sequence of Rie-
mannian manifolds with geometric constraints by using the Gromov-Hausdorff
topology is the following. First suppose the conclusion one wants to prove dose
not hold. Then there is a sequence of Riemannian manifolds in the given class sat-
isfying given geometric conditions. Rescale the sequence of Riemannian manifolds
by some sequence of real numbers and then consider the limit space with respect
to the Gromov-Hausdorff topology. After studying the structure of limit space by
using given geometric conditions, one gets a contradiction. The following theorem

which gives a structure of limit space is on line of this general scheme.
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Theorem 3.3.7. Assume M is a complete Riemannian n-manifold with non-
negative Ricci curvature and infinite injectivity radius. Then M is isometric to

the Euclidean flat manifold R".

Proof. Note that M must be noncompact. Fix a point p € M and choose a ray
7(t) from p. Considering a function defined by ¢;(x) = d(z,~(t)) — t, we have

n—1 n—1 0 f oo
= — as e

since Ricy; > 0. Furthermore, by triangle inequality, the functions ¢; form a

|A¢:| < 7

family of equicontinuous functions on M, bounded by d(z,p) and non-increasing.

Therefore, it we set 3(z) = lim;—,o d(z,7v(t)) — ¢, it is well-known that

AB=0, |VA=1.

To finish the proof, we use the Bochner formula
1 5 .
S AV = [D?B[ + (VAS.VB) + Ric(V5, V).

Thus we have

Ric(V3,VB) =0 and |D*B|=0.

Since V3 denotes an arbitary direction, it follows that M is Ricci flat and D23 = 0
implies that V3 is a parallel vector field. Thus the metric on M splits isometrically
along V3 and this shows M is isometric to R™. For more details, see [C-G], [S-Y]
or [Bes]. O

As we have seen in Theorem 3.3.1, the main idea to prove a precompactness
is the proof of the existence of harmonic coordinates on balls of uniform size
(depending only on the given constants).

It is natural to seek geometric conditions which guarantee that a manifold has
harmonic charts on balls of uniform size. We carry this out here in the next

theorem.
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Theorem 3.3.8. For given positive constants A, D and 1i,, let (M,g) be a

Riemannian n-manifold (not necessarily complete) satisfying
|Ricyr| < A, ing(M) >14,, diam(M) < D. (3.3.2)

Then for any a < 1 and a constant ¢ > 0 there exists a constant C = C(n, A, i,.c, o) >
0 such that the harmonic radius with constant ¢ has the estimates

d(:l), 8]\/[)

T‘g u(x,]b[) ZC W

o, (3.3.3)

where L&9M) 1 if oM = 0.

diam (M)

Proof. Suppose the theorem is false, i.e., the (3.3.3) dose not hold for any
constant. Then there is a sequence of Riemannian n-manifolds (M;, z;, g;) such
that

|Ricar,| < A, ing(M;) > i,. diam(M;) < D
but

r& " (2, M) ~ diam(M;)

i d(z,00L) " (3:34)

as i — oc. Note that (3.3.4) is scale invariant. Assume without loss of generality
that z; is realized minimum value of the ratio (3.3.4). Denote r; - r& " (zs, M;) so
that r;, — 0 as ¢ — oo since the diameter condition implies that the quotient of the
second term in (3.3.4) does not go to 0. Consider the rescaled metrics g; = r; g;
on M; and let 7; = rhcl’u(xi, M;. ;). Then we have the followings

(i) 7 =rC" " (2, My, gi) = 1

(i) |Ricar (gi)| < A-7r? =0

(iil) ing(M;, g:) >r ' i, — o0

(iv) dg (z;,OM;) — .
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By rescaling the harmonic coordinates {u’} by setting v* = r; ' - u?, together with

(i), one has hi, = h*(Vui, Vi) satisfying hi, = (gi)xt, so that

e - I<h(y)<e 1,

||h1'(y)”c1a < c,

on all balls of radius =~ 1 on (M;,z;.h*), but no harmonic coordinate system
satisfying inequalities above on Biy,(z;), pu > 0.

In other words, there is a covering of (M;, z;, h*) by geodesic balls of fixed (but
not large) radius, on which one has harmonic coordinate system for which the met-
ric tensor {h*} are uniformly bounded in the C** norm. Thus by Theorem 3.3.4,
it follows that a subsequence of {(M;,x;, h')} converges, in the C1® topology,
o’ < o, to a C* Riemannian manifold (N, z, h), with z = lim z;. We note that,
by (iv), (N, h) is a complete Riemannian manifold. Since |Ric(M;)(h*)| — 0 in the
C° topology, by Exercise 3.1.2 (3), h is a weak solution to the Einstein equation

ij aghrs’ 8h‘ki
() —_
h 5707 | @ <<‘9xm> 0

Then the regularity theory implies that h is a smooth, in fact, real-analytic Ricci-
flat metric on M. Furthermore, by (iii), one has inj(N,h) = oco. Therefore by
Theorem 3.3.9, (N, h) is isometri to the Euclidean R™ with the flat metric. Since
the harmonic radius is continuous in the C1:* topology, one has r;(z, g) = 1 but for
R", r,(z) = oo which is a contradiction. Hence the harmonic radius is uniformly

bounded below. O
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such thatt
|Ric|) <X, imjj >, >0, diom < D, (33.5)

s precempact im theC"* topallogy. Mare precisely, given any sequemce {(3;, g:)} €
M. iy, D). there are diffeomonphisms f; of M; such that: { f*g,} suboomvenges, i
the C**' topology, for o’ < @, to a C"* Riemanmianm mamifold (M, g). In partic-
wllar, there are anly fimitely mamy diffeomonphism types satisfying these houmds.

Proof. Tt folllows from Theorem 3.3.8, Lemma 3.3.6 and Remerk 3.3.5. I

Theorem 3.3.10 ([Che], [G-L-P], [G-W], [Kas]). Let {(M.g:)} be 2 s
@ﬂ. u H R.. . m— "Tm .- 6 . N

K| <A, wol(M;) > w,  diom(M;) < D, )

them there exists a subseguence which comverges, im the C topology, for ¢ < a,
to a C™ meamiftold M for amy 0 < a < 1.

Prooff. By the well kmown theorem due to Cheeger, the imjectivity radios for the

by below. Thos it follows from Corelllary 3.39. LI

Remantk 3.3.11.
(1) Let (M., g) be & Riemammizn n»-manifold and assmme

IK(M)| <A diam(M) < D.
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Then by a Cheeger’s theorem, the lower volume bound gives a lower bound
for the inectivity radius and vice versa. However if one replaces | K| < A
by |Ric| < A, then it is not true anymore (cf. [An2]). Thus it is interesting
to ask what one can say if one replaces inj(M) > i, by vol(M) > v in
(3.3.5).

(2) Suppose a Riamannian n-manifold (M, g) satisfies
Ric > =\, inj > i,. (3.3.6)

Then an elementary packing argument, based on the volume comparison
theorem (cf. [G-L-P]), shows that the bound vol(M, g) < V is equivalent to
a diameter bound diam(M) < D. It is obvoius that diam(M) < D implies
that vol(M) < V. To show the converse, first note that vol(M) < V and
Ric(M) > —X imply M is compact. Let N be the maximal number of dis-
joint %,- balls in M. Then the volume comparison theorem and inj(M) > i,
show that N is bounded above by a universal constant C = C(V,1i,).
Therefore, diam(M) < 4i,- N < D = D(i,, V).

Thus, we have the following.

Theorem 3.3.12. The space of compact Riemannian n-manifolds (M, g) such
that
|Ricar| <A, ingy > 4o, vol(M) <V (3.3.7)

is precompact in the C** topology for any a < 1. And so there are only finitely

many diffeomorphism types of n-manifolds satisfying these bounds.
We will next consider the following class of Riemannian n-manifolds:
Ric> -\, inj>i,, wvol <V. | (3.3.8)

As mentioned in Remark 3.3.11, the volume condition can be replaced by diam(M) <
D. The remainder of this section is devoted to prove the following precompactness

theorem.
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Theorem 3.3.13 ([A-C]). For given A > 0, i, > 0 and V' > 0, the space of

compact Riemannian n-manifolds (M, g) such that

Ric(M) > =\, injgy > 4o, vol(M) <V (3.3.9)
is precompact in the C* topology for any o < 1. More precisely, given any sequence
of n-manifolds {(M;. g;)} satisfying the bounds (3.3.9). and given any fixed a < 1,
there is a compact smooth manifold M, and diffeomorphisms f; : M — M;, for a
subsequence {3} of {i}, such that the metrics f}g; converge, in the C*" topology

for o’ < o, to a Riemannian manifold (M, g) with C* metric g.
To prove this theorem. one needs some lemmas.

Lemma 3.3.14. Let M be a Riemannian n-manifold with injyy > i, and
Ricar > =A%, A > 0. Let p = p, = dist(z,-) be a distance function from z € M.
Then one has the estimate

|Ap| < (n—1)A- coth Ap, (3.3.10)
provided p < i,/2.
Proof. Recall Ap is the mean curvature of geodesic spheres 9B, (r) and it is
given by
Ap(y) = —‘—/_(TT, r= ,0(1/) = d(xy>
Thus. a well-known version of the Bishop volume comparison theorem implies that
Ap < (n—1)\-cothAp. (3.3.11)
provided p < i,. Given z fixed, let p be any point with t = d(z.p) < i,/2; let ¥
be the geodesic with v(0) = z and ~(t) = p; then set p1 = v(2t). Thus (3.3.10)
holds for p = p, and for p; = p,, on B,(i,/2). On the other hand, the function
o =p+p—2t: M — R is nonnegative by the triangle inequality, and achieves
its minimum value, 0, along the line segment ~ between p and p;. Hence, we have
Ao =A(p+p1)ly = 0.
ie., Ap > —Apy > —(n— 1)\ - coth Ap, which establishes (3.3.10)‘ O
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Theorem 3.3.15. Let (M;,z;,g:;) be a sequence of pointed Riemannian n-
manifolds satisfying
i) rf" (Mi,g:) > 1
(ii) Ric(Mi,g;)>—r2-A—0, r,>0, as i— oo
(iti) inj(Mi, ;) > 7' 4o —> 00 as i— oo
Then a subsequence converges in the strong L'P topology for any p < oo to a

limit LY'* Riemannian manifold (N, Zoo. o).

Proof. By the loval version of convergence criterion theorem 3.3.4, there is a
subsequence which converges weakly to a L'*? manifold (N, 2. g,) and uniformly
on a compact subset of N. Now let us show this subsequene converges, in fact,
in the strong L!* topology to N. For any tangent vector v; € Ty, M;, let +; be
the geodesic in M; with ~;(0) = z; and 7/(0) = v;. Set y; = vi(—si), where
$; = %io . r:l — 00 as ¢ — 00. Then the distance function p; = d(y;,-) — s; is

smooth on B(xz;,s;/2), and by Lemma 3.3.14, with conditions (i), (ii) and (iii),

one obtains estimates
|Aipil < (n—1)AicothA;p; = 0 as i— ¢ (3.3.12)

on B(z;,s:/2), where A\; = ATy

n—1

On the other hand, by (i), on each ball B = B; C M, of bounded distance to

z; but fixed radius, one has harmonic coordinates {ux} = {u}} with L'"? bounds,

and for which the Laplace operator has of the form

A; = gkl i

S e (3.3.13)

Then applying Theorem 3.1.8, one has

Ipill 2By < Cla. B') ([|Aipill Lacmy + ol L2(m)) (3.3.14)
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on B’ CC B for any q(q > p). In particular, {p;} is uniformly bounded in L*%(B).
and thus by compactness of the embedding L*? C L9, {p;} has a subsequence
converging strongly in L'9 and weakly in L?9 to a L*Y limit p, where p is a
distance function (or more precisely a Busemann function) on (N, g,).

We claim that in fact {p;} has a subsequence converging strongly in L*4. To
see this, we apply LY estimates Theorem 3.1.8 again to p — p;. (Here we are
abusing notation slightly, namely, p; is actually p; o F,f1 ‘R™ — R, where F; is
the harmonic coordinate chart {ur}. Thus every function can be considered as a
function defined on domains in R™. This is also implicit in what follows.) One

has estimates

lp = pillL2rpry < Cla. B') (1Ai(p = pi)llLacs) + lo — pill2m))  (3.3.15)

Clearly, ||p — pi]|z2 — 0. To show that ||A;(p — p;)||ze — 0, we have |A;p;| — 0 by
(3.3.12) and .also Ai;p — Ap in L7 since p € L*4, and the coefficients in (3.3.13)
converge in ce topology. Thus we need to show that Ap = 0 in LY. Letting
f € C(B), we compute

/f-Apdv:/Af-pdvz_lim /Aif-pidviz lim /f-Aip.idvi=0,

which establishes the claim.
We are now in position to verify that g; — g, strongly in the L' topology for
any ¢q. Namely, fix 7 for the moment and consider the distance function p = p;)

constructed above. Then we have

Vol => ¢ orp =1,

where pr = O9p/Ouk, and the {ux} are harmonic coordinates on B C (M;, g;).

Choose for instance an orthonormal basis e, of 1%, M;, where z; is the center point
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of B, and consider the n(n + 1)/2 vectore e , e, + ey, v = 1,--- ,n. We let

p™, 1 <m < n(n+1)/2 equations
kl m m __
> e =1 (3.3.16)
k,l

on B. We view this as a system of linear equations with g*' as unknowns and
prtpy as coefficients. Suppose we could solve this system for a moment. Then
g*' and so gi; are rational functions of {p}*}. It has been shown that the {o]"}
converges strrongly in the L9 topology for any q to limit L!:¢ functions; hence the
same is true for {gr} = {gr1(?)}.

Finally we prove the solvability for the linear system (3.3.6). One may alge-
braically solve this system for g*! provided the determinant of the coefficients is
nonzero. Clearly, by choosing the constant c sufficiently close 0, where c is the
constant asociated with harmonic radius, g*! is arbitray close, in the ce topology,
to the Euclidean flat metric 6. By the L7 estimates (3.3.15) and the argument
above, each p™ = p™ (i) is close in the C L’ topology to a limit distance function p
on B C (N, go). By choosing sufficiently small ball B’ C B (depending on (N, g,)),
we see that all p™ (i) are close, in the C L’ topology, to the correspondingly de-
fined Euclidean distance functions on B’. One may easily check that the matrix
P pi™ is nonsingular in R™ and thus, by continuity of (3.3.16), it is nonsingular

on B’ for i sufficiently large. This proves the final claim. O

Proof of Theorem 8.3.18.  In view of Theorem 3.3.4, Remark 3.3.5 and Lemma
3.3.6, and the Sobolev embedding theorem L'? C C*,n < p < occ,a =1—n/p, it

suffices to show that for any p,n < p < o©

rE (M, g) > C(\, i, Vin). (*)
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This in fact gives one stronger result.
Suppose (*) does not hold. Then there is a sequence of Riemannian n-manifolds
(M;. g;) satisfying bounds (3.3.9). but
r}fl'p(ﬂﬂ,gi) =71 —0 as 11— oc.

P

Let z; € M, be a point realizing r}fl (M gy, ie..
r,{‘lip(&fi, gi) = r,LLl'p(M[i, Ti.gi) =T
Resééhng the metrics g; by ¢g; = 'ri_z - g;, one obtains
rE Y (Mizi.g) =1 and rF (M, z.g) > 1.Vz € M,
And one has. as i — oc.
(1) Ric(M;.g;) > —r7>-A—0

(i) ing(M;,g;) >, —

- (iil) vol(M;, g:i), diam(M;. g;) — oc
Consider the sequence of pointed Riemannian manifolds (M;, x;, g;) which satisfies
r}fl'é(]%—,fzi) = 1. Since the convergence criterion theorem (Theorem 3.3.4) holds
also locally, applying it to (B(z;. R).g:), R > 0, (B(z;, R), g;) subconverges weakly
in the L' topology to a L'? manifold (B(zu, R), Jo)-

Now choose a sequence of real numbers R; so that R; — oc as i — oc and apply
(B(z;, R;).g;) to the above argument. Taking the usual diagonal sequence proce-
dure, one has a subsequence, say it also (M;, z;, g;), which converges weakly in the
L'P topology to a complete noncompact L7 manifold (N, Z, g,). and converges
uniformly on a compact subset. But by Theorem 3.3.15, (M;, x;, g;)converges in
the strong L' topology to (N, Z .. g,). From (i) and (ii) one has Ric(N) > 0 and
inj(N) = oo, and so by Theorem 3.3.8, N is isometirc to R", and hence

k(N 2w o) = 7 T(RY) = 0.
which is a contradiction since one has
lep( .

Th . Go) :il_i,rilc”%l'p(Mi-,Iuﬁi)=1

by Theorem 3.2.3 O
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