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PREFACE

The first GARC Symposium on Pure and Applied Mathematics was held
at the Global Analysis Research Center, the Seoul National University, from
Thursday, February 13 to Friday, February 21, 1992. All the meetings were
held at the Department of Mathematics Building.

The Global Analysis Research Center was inaugurated on March 1, 1991
under the Science Research Center Program of the Korea Science and Engi-
neering Foundation to promote research ability in the field of mathematics
in Korea. The central aim of the Global Analysis Research Center is the
cooperative study of various analytic problems defined on manifolds such as
partial differential equations, nonlinear analysis, operator algebra, dynami-
cal systems and other related problems. The approach is a comprehensive
one that also requires basic understandings of topological, geonietric and
algebraic properties of manifolds.

In order to maximize the efficiency of research, the Global Analysis Re-
search Center has 6 Research Sections adapted to the natural division of
research activities of the participating members. In accordance with the 6
Research Sections of the Global Analysis Research Center, the first GARC
Symposium was carried out in 6 sessions; Partial Differential Equations,
Nonlinear Analysis, Operator Algebra, Differential Geometry and Dynam-
ical System, Topology and Geometry of Manifolds, and Complex Analytic
Manifolds and Varieties.

The aim of the GARC Symposium was intended to set up mutual under-
standings on the interest of each research member and to explore current
problems in the area of Global Analysis. Accordingly, almost all the research
members of the Research Center including post doctors participated at the
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symposium. In addition, the organization committee invited several mathe-
maticians from abroad. A few speakers were asked to survey their fields but
the majority of speakers presented their recent research works.

In this proceedings of two issues, we collect all the lecture materials which
were presented at the symposium. We would like to thank all the speakers,
especially those professors from abroad, for their enthusiastic participation
and their cooperation in writing up their talks. We would also like to thank
the Korea Science and Engineering Foundation for their support to the Global
Analysis Research Center and the Department of Mathematics of the Seoul
National University for its hospitality.

We hope that in publishing this proceedings we will allow much wider
audience to share in some of the work and enthusiasm of the participants at
the symposium.

1992.10.

Jongsik Kim

Director

The Global Analysis Research Center
The Seoul National University
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THE GENERALIZED MYERS
THEOREMS ON SPACE-TIMES

SEON-BU KM

1. INTRODUCTION

Let M™ be a Riemannian manifold and v a geodesic joining two points
of M™. Recall that Myers[11] actually showed that if along v the Ricci

curvature, Ric, satisfies

Ric(T,T)>2a>0

and the length of v exceeds mv/n — 1/+/a where T is the unit tangent to 7,
then v is not minimal.

Moreover, there have been several applications of Myers method to general
relativity. T. Frankel[6] has used Myers theorem to obtain a bound on the
size of a fluid mass in stationary space-time universe. In [7], G. Galloway
made use of Frankel’s method to obtain a closure theorem(which has as
its conclusion the “finiteness” of the “spatial part” of a space-time obeying
certain cosmological assumptions for cosmological models more general than
the classical Friedmann models. S. Markvosen[9] obtained another extension
similar to G. Galloway’s work.

On the other hand, J. K. Beem and P. E. Ehrlich[1,2] proved that if
(M, g) is a globally hyperbolic space-time with all Ricci curvature positive
and bounded away from zero, then (M, g) has finite timelike diameter.

In this paper, we used generalized Myers theorem on Riemannian man-
ifolds given by G. Galloway[7] to extend the Lorentzian version of Myers
theorem given by J. K. Beem and P. E. Ehrlich. Moreover, we compute the
upper bound of diamy(M,g) with respect to the spacelike submanifold K
for the suitable curvature tensor and second fundamental tensor conditions.

1
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2. PRELIMINARIES

Let (M, g) be an arbitrary space-time. Given p,q € M with p < q i.e.,
p = q or there is a smooth future directed nonspacelike curve from p to
g, let ©, ; denote the path space of all future directed nonspacelike curves
vy : [0,1] — M with 4(0) = p and (1) = ¢q. The Lorentzian arc lenth
L :Qp4 — R is then defined as follows. Given a piecewise smooth curve
v € Sp,q, choose a partition 0 = t, < t; < t; < ... < t, = 1 such that
¥|(t:yti41) is smooth for each : =0,1,2,...,n — 1. Then we define

=Y [ V@ o

Thus it is natural to make the Lorentzian distance d: M x M — R U {oo}
given by, if ¢ ¢ J*(p) = {g € M|p < g} set d(p.g) = 0, and if ¢ € J*(p)
set d(p,q) = sup{L() : v € Qp,¢}. Now, we define the timelike diameter,
diam(M, g), of the space-time by

diam(M, g) = sup{d(p, 9)lp,q € M}.

If a complete Riemannian manifold has finite diameter, it is compact by the
Hopf-Rinow theorem. But for a space-time (M, g), since

L(v) < d(p,q)

for all future-directed nonspacelike curve v from p to ¢, every timelike geo-

desic must satisfy _
L(y) < diam(M, g).

A space-time (M, g) is timelike complete if all timelike geodesics may be
defined for all values —oo < t < oo of an affine parameter £. Thus if a
space-time (M, g) has finite timelike diameter, all timelike geodesics have
finite length and hence are incomplete, cf.[2, p.329]. Physically, the timelike
diameter represents the supremum of possible proper times that any particle
could possibly experience in the given space-time.

A space-time (M, g) is strongly causalif (M, g) does not contain any point p
of M such that there are future-directed nonspacelike curves leaving arbitraz-
ily small neighborhood of p and then returning. Thus a strong causal space-
time (M, g) is said to be globally hyperbolic if J*(p)NJ~(q) is compact for all
P,q € M where J~(p) = {¢ € M|q < p}. It should be noted that global hy-

perbolicity guarantees the existance of a maximal geodesic segment v € £, ,,
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i.e., a future directed nonspacelike geodesic « from p to ¢ with L(v) = d(p, q).
cf.[2, Theorem 5.1]. But global hyperbolicity does not imply any of these
forms of geodesic completeness. This may be seen by fixing points p and q
in Minkowski space with p << g, i.e., there is a future-directed piecewise
smooth timelike curve in M from p to ¢, and equipping M = It(p)NI=(q)
(here I'*(p) = {g € M|p << q} and I"(q) = {p € M|p << ¢} with the
Lorentzian metric it inherits as an open subset of Minkowski space. More-
over, the global hyperbolicity does not imply the existance of the timelike
maximal geodesic segment joining all pairs of causally related points. With
respect to the conjugate points it is well known that a timelike geodesic is
not maximal beyond the first conjugate point.

For a complete Riemannian manifold, the diameter is finite if the manifold
is compact. In this case we may always find two points whose distance realizes
the diameter. On the other hand, on an arbitrary space-time (M, g), suppose
d(p, ¢) = diam(M, g) < oo and let ¢' € I*(q) be arbitrary. Then

d(p,q') > d(p,q) + d(g,¢') > d(p,q) = diam(M, g),

in contradiction. So d(p, ¢) = co. Thus the timelike diameter is never realized
by any pair of points in (M, g) of finite timelike diameter.

Let v : [0,5] — (M, g) be a unit timelike geodesic segment. One considers
an R-vector space V1(v) of continuous piecewise smooth vector fields Y
along  perpendicular to 7' and let Vg*-(y) = {Y € V1(v)|Y(0) = Y(b) = 0}.
Then we may define the Lorentzian indez form I : Vi(y) x Vi(y) — R
given by, for X,Y € V1(v)

b
I(X,Y) = - / [9(X",Y") = g(R(X, 7' )", Y)]dt

where R is the curvature tensor with respect to the Levi-Civita connection
V on (M, g). Moreover, t,t; € [0,b] with ¢; # t, are conjugate with respect
to the timelike geodesic + if there is a nontrivial Jacobi field J (i.e., J" +
R(J,7')y’ = 0) along v with J(¢;) = J(¢2) = 0. Then we have the following
maximality property of Jacobi fields with respect to the index form, cf. [1,2].

Proposition 2.1. Let v : [0,b] — (M, g) be a unit speed timelike geodesic
with no conjugate points and let J € V1(y) be any Jacobi field. Then,
for any Y € V4(y) with Y # J and Y(0) = J(0), Y(b) = J(b), we have
I(J,J) > I(Y,Y). :
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Corollary 2.2. Let v : [0,b] - M haqve no conjugate points. Then the
index form I is negative definite on V3-(7) x V5H(7).

In [1.2], J. K. Beem and P. E. Ehrlich proved the Lorentzian analogue of
Myers theorem for complete Riemannian manifolds given in [3,8] as follows.

Theorem 2.3. Let (M, g) be a globally hyperbolic space-time of dimension
n > 2 satisfying
Ric(y',¥)2(n-1)k >0

for any unit timelike unit geodesic v. Then
diam(M, g) < n/Vk.

In fact, if (n — 1)k = a, we may check that this theorem reduces to Myers
result on complete Riemannian manifolds.

On a space-time (M, g), a future-directed nonspacelike curve v from p to
q is mazimal if L(y) = d(p,q). Now we may generalize Myers theorem for
the Lorentzian version given in [1,2] as follows.

Proposition 2.4. Let (M, g) be an arbitrary space-time of dimensionn > 2
and let v : [0,b] — (M, g) be any unit timelike geodesic joining two points
of M with length L. Suppose that

df

Ric(v',v') > a+ o

where a > 0, f is a differentiable function of arc length s with |f(s)] < ¢
along v, and L > % (c + v/ +a(n— 1)) Then v can not be maximal.

Note that if f = ¢ = 0 then Proposition 3.1 reduces to Myers theorem. In
this Proposition 3.1 the Ricci curvature does not require positiveness along
4. Finally, we are ready to give the Lorentzian analogue of Myers diameter
theorem for complete Riemannian manifolds.

Theorem 2.5. Let (M, g) be a globally hyperbolic space-time of dimension
n > 2 and let v : [0,b] — (M, g) be any unit timelike geodesm joinnig two
points of M with length L. Suppose that

Ric(y,¥)>a+ %

where a > 0, f is a differentiable function of arc length s such that |f(s)| < c
along v. Then

; T 2 _
diam(M,g) < - (c+ 2 +a(n 1)) .
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3. EXISTANCE OF MAXIMAL GEODESICS
FOR THE SPACELIKE SUBMANIFOLDS

Let K be a spacelike submanifold of dimension ¥ > 0 and let for ¢ €
M, K << ¢ if there exists p € K such that p << ¢q. K < ¢ if there exists
p € K with p < ¢. And let I*(K) = {g € M|K << ¢} chronological future
of K, I7(K) = {¢ € M|q << K} chronological past of K, J*(K) = {q €
M|K < ¢} causal future of K, J=(K) = {g € M|q < K} causal past of K.

Cleatly, I*(K) = T ex I* ().

Now, let Qx 4, be the path space of all future directed nonspacelike curves
v : [0,8] = (M, g) with 4(0) € K and ¥(b) = q. The Lorentzian arc length
L:Qxgq — R for a partition 0 = ¢y < t; < ...... < t, = b such that
Yl(t;,t;) i smooth for i = 1,2, .....,n given by

=3 / Nar e ORI 0))

Given a timelike curve v from K to g, we have a variation « of (t) and
define the variation vector filed V of a along v by

V(t) = $xa(t,8)|s=0, V(b) =0, V(0) € Ty() K.

Then we have some facts:

if v : [0,b] — (M,g) is a unit speed timelike geodesic segment, then
L'(0) = g(V(0),7'(0)). Thus, v is maximal iff v is orthogonal at v(0) to K.

Moreover, if y : [0,b] — (M, g) is a unit timelike geodesic which is orthog-
onal at v(0) to the spacelike submanifold K and assume that V is a piecewise
smooth vector field along v orthogonal to 4, then we have

L"(0) = g(SyV(0), V(0)) + I(V, V),

where I(V,V) = — [J[g(V', V') — g(R(V,7')7', V)]dt and where S, is the
second fundamental tensor given by Sz = —(V,4')T for z € T, K where T
means “tangential part”.

Hence we may define the Lorentzian submanifold index form

Ing : V(1 K)x VH(1,K) - R
on V1(v, K) the vector space of piecewise smooth vector fields Y with ¥ L
v',Y(0) € T,K or Vi-(v,K) the subspace of V4i(v,K) with Y(b) = 0 as
follows; for X Y € Vi(v,K),

I, 1) = 9(Sy(0)X(0), Y(0) + I(X,Y)
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where I is the index form on V+(y).

Now a smooth vector field J € V1(v, K) is called a K-Jacobi field along
v if J satisfies

(1D7'(0) + Sy J(0) € (LK),

(2)J" + R(J,¥' )y = 0.

Hence we may define a K-focal point 4(%o), to € (0, ] if there is a nontrivial
K-Jacobi field with J(to) = 0.

Theorem 3.1. (Maximaity of K-Jacobi fields) Let 7 : [0,6] - M be a
timelike geodesic segment with no K-focal points and let X € V+(v,K). If
J € Vi(q,K) is a K-Jacobi field along v with J(b) = X(b), then

I, 1) (X, X) < Ip, 17 (I, T),

and equality holds if and only if X = J.

Corollary 3.2. Let v : [0,b] = M have no K-focal points. Then the index
form I3 ) is negative definite on V5! (v, K) x V- (v, K).

Recently in [4,5], P. E. Ehrlich and S. B. Kim extended Proposition 2.1.
to the focal points for null geodesics.
Now we define the Lorentzian distance from K to ¢ by

{0, if ¢ ¢ J*(K);
d¥, ) = { sup{L(7)ly € Rk}, if g € JH(K).

Clearly, d(K,q) > 0iff g € I*(K). ¢ € J*(K)—I*(K) implies that d(K, q) =
0, But the converse does not hold since d(K,q) =0 for ¢ ¢ J*(K).
Using the index form [ k) it is well known that a timelike geodesic or-

thogonal to a spacelike submanifold K fails to maximize arc length to K
after the first focal point.[2,9]

Theorem 3.3. Let « be a unit speed timelike geodesic segment orthogonal
to a spacelike submanifold K at y(0) = p € K. If there exists to € (0, ) such
that y(to) is a K-focal point along v, then there exists a variation vector field
Z € V1(v,K) such that Is,k(2,Z) > 0, i.e., there exists a timelike curve
from K to q longer than 7.
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4. THE FOCAL MYERS-GALLOWAY THEOREM ON SPACE-TIMES

Now, we generalize Proposition 2.4 to the K-focal sense.

Theorem 4.1. Let (M,b) be a space-time of dimension > 2 and v : [0,b] —
(M, g) be any unit speed timelike geodesic segment in Qk 4 for any space-
like submanifold K and any point ¢ € M. Suppose g(R(u,v'(t))Y'(t),u) >
2i(a+ %) for all u € (v'(t))* with g(u,u) = 1 along v, and suppose
9(Syoyw, w) > ;%(_9% for all w € T, o) K with g(w,w) = 1, where a > 0,c > 0
and f is a differentiable function with |f(t)| < c¢. Assume

L) > < ((1 - %;-’-“_T))H \/(1 - 2(n’°_ [y +al(n—1- ‘1—")) .

Then v can not be maximal.

PROOF. Suppose that v : [0, L] = M is parametrized as a unit speed time-

be n — 1 spacelike spacelike parallel fields such that {E;(t), E2(t),....., Ex()}
forms an orthonormal basis of T',(4) K and {E;(t), Ez(t), ....., E4(t)} the ortho-

normal basis of T.(;) M. Set

W: = COS(%I—?)E" 1= 1, 2, ..... ,k
" sn(B)E;, i=k+1,.,n-1
Then

E;(0) e Ty K, 1=1,2,....,k

Wi(0) =
( ) {OET.y(o)K, i:k+1, ..... ,n—1.

- pL
I(b,K)(VVi’ Wl) = 9(57'(0)VVt(0)’ I/V'(O)) + A [g(R(WH 7’)7’7 Wt)
- g(VVi,a Wa')]dt
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I 10 (W Wi) =0(S @ Ei(0), Bi(0) + / feos?(37 )g(R(Ez,'r o, B
— (57 sin’(57 )g(E.,E)]dt
f() /[ 1 ( +—f)—(1“’sin2 lr—t-)]dt

f(O) a wt df
“n—1 n——l/ ( )dt_/ cos’ (57 ) gyt

/ (57)? sin? (2% )dt |

n(_")l “1—§+ oGO
+ [ sy - ()
1 L

n-—12+ 12L( )~ ( )2

For i=k+1,......,n-1,

o We?)= | et By Y B~ (o o By, B
> [t (e L) - (2 ot D
=ni1/ sin? (= )dt+——/ 2( dfdt

-/ oy cos“’(—)dt

=22+ o (C)
/ & )mn(@)f(t)dt] (3’3
Lot (e - (DL
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Therefore,

n-—1

L
> I, KW, Wi) > o= —me+

l—l

kre  (n—1)x*  3kx?

2(n — 1) 2L 8L

k 3k, ,
m)‘n’cL—(n -1- —4—)7I' ]

= 2iL[aL2 —o(1-
> 0.

The last inequality is given by our hypothesis:

>z ((1 1)) c+ \/(1 Sy Heln =1 %)) .

By Corollary 3.2, v has a K-focal point. By Theorem 3.3, ¥ can not be
maximal.

Set diamg (M, g) = sup{d(K,q)|q € M}. Then the following corollay may
be shown similar to Theorem 3.2.

Corollary 4.2. Let (M, g) be a globally hyperbolic space-time of dimension
n > 2 and suppose g(R(u,7'(t))7'(t),u) > 5(a+ &) for all u € (v'(2))t
with g(u u) = 1 along any unit speed timelike geodes1c segment v : [0.L] —

(M, g) in Qg,, with length L for any spacelike submanifold K and for any

q € M, and suppose g(S.(oyw.w) > ;’-::12 for allw € T, o) K with g(w,w) =1,

where a > 0,c > 0 and f is a differentiable function with |f(t)| < c along 7.
Then

diamg(M,g) <— ((1 (nki— 1))c

ko, 3k
+‘/(1—§(-;l_—1)-) c +a(n—1-—z—)).

Note that if £ = 0 we have the same result of Theorem 3.2 and that if K
is any spacelike hypersurface of M we have

diamg(M,g) < (c + \/c"’-i——T—_l-)_a)

which is exactly a half of the upper bound of diam(M, g) given in Theorem
2.5.
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ABSTRACT. The torsion of a CW complex was first introduced by Reidemeis-
ter [Rei], Franz [Fra] and de Rham [deR] and developed by Milnor [Mil2], Ray-
Singer [RS], Cheeger [Che] and Miiller [Miill]. This article is an elementary
introduction to the analytic torsion, which reappeared recently in Quillen’s
metric [Qui], Jones-Witten theory of knots [Bra, Miil2, FG], Quantum Gauge
Theory [Wit] and Casson’s invariant [Joh].

CONTENTS
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Torsion 7
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7| =T

Zeta Function and the Determinant of an Elliptic Oper-
ator '

7. Flat Bundles and the Analytic Torsion

ISR o

1. NOTATION

For a finite dimensional real vector space E, let
det E := N4 EE,

be the highest exterior power of E. When E = {0}, det E = R by definition.
The dual space of E will be denoted by E~!. When dimE = 1 and e €
E — {0}, e™! € E~! is the unique element with e(e) = 1.

If f: E — F is an isomorphism between finite dimensional vector spaces,
then f induces a map from det E to det F', or an element of (det E)™! ®

11
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(det F'). Note that when E = F this element “is” the ordinary determinant
of f. The torsion is a generalization of “determinant” to arbitrary chain

complex.
For any finite sequence C* = {C?,C1,...,C"} of finite dimensional vector

spaces, let!
det C* := (det C°) ® (det C?) ™' @ - -- @ (det C™)(~ V",

2. LINEAR ALGEBRA

First, we will review the torsion for a chain complex of finite dimensional

vector spaces over R [RS, Che, Miil2, BGS].
Fundamental Theorem of Torsion. For any chain complex

dn—l

® g0 0 d° 1 ! n
(2.1) (c%d):0-C"—>C"—...—C"—>0
of finite dimensional vector spaces, there exists a canonical isomorphism
det C* ~ det H®,

or a nonzero element T € (det C*)~'Q®(det H®), where H* := {H°, H!,... H"}
denotes the “cohomology spaces” of the chain complex (2.1).

Proof. As a special case of the proposition, we will first see that for any short
exact sequence

0 1
(E°f):0-E L L g2 0
of finite dimensional vector spaces, there exists a canonical isomorphism

det E° ® det E? ~ det E!

or equivalently,
det E* ~R.

To show this it suffices to find a nonzero element ¢ of det E°. Let dim E* =
ng. Then ny = ng + nz. Choose a basis €},...,el of E°. Since f° is
injective, one can extend f°(e}),..., f%(el ) to a basis

fo(cg), . ,fo(eg,o),‘c%, ceny e},z

1Some authors have a different convention of the sign.
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for E!. Then

E:=(e A Aen ) ®(fUD)A--Afo(en,) At A Aep,)T'®
® (fl(e) A=+ A fi(ex,))
is the desired element of det E®. This construction is independent of the
choice of basis.

Now for the general case, we split the chain complex (2.1) into the short
exact sequences

(2.2) 02151 BH o

(2.3) 0-B*>2zF o HE S0

where Z*¥ = kerd* and B¥ = im d*~!. Then we have

)k—l

det C* = @x(det C*1)("D*™" ~ @ (det 25! ® det B¥)(~!
~ (@i(det Z5)"D") @ (®x(det BX)(-D* )
~ @i(det Z* @ (det B¥)~1)-1"
~ @i(det H*)"D" = det H*

This completes the proof.

3. TORSION T
Definition. The element 7 = 7(C*,d*) € (det C*)~'®(det H*) in the above
Fundamental Theorem is called the torsion of the chain complex (C*®,d*).

Explicitly, the torsion is given as follows: Let
dim C* = ¢f, dim Z* = 2%, dim B* = b*, dim H* = r*
so that
2k k=0, F -+ RF =0

Pick a basis ‘
U
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for H*, and let
n* = AnE A Ak, € det H* — {0}.
Then .
n:=0"®(") '@ - ®»") ™" edet H* - {0}.

Now choose elements
ef,...,eﬁ,. € Zk

which represent the cohomology classes n¥, 75, ..., 17,’5,,. Now extend the basis

€d,...,e% for Z° to a basis

0 0 0 0
el,...,eho,vl,...,vbl

for C°. Then
d(v?),...,d(v}h),el,... ek

is a basis for Z1. Extend this to a basis
d(?),...,d(v}),el, ... ep1,01,...,050
for C'. This way, we find, inductively on k,
vf, .. ,v,’,‘,,.,.1 e C*

so that .
k-1 k-1 k k k k
d(v7 ™)y d(Vpe )y €150y ERRy VT 5 ey Vg

is a basis for C*. Put
5" ;=d(vf'1)/\---/\d(vf,f1)AefA---/\ef,k /\vf/\---/\vfhu
and n
E=0E)T e e edetC -~ {0}.

Then
r=¢(1@.

31. 0 - C° - C! - --- = C™ — .0 consists of trivial maps, then
7 € (det C*)™! ® (det C*) ~ R is equal to 1.
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3.2. Let (C},d}) and (C3,d3) be finite chain complexes with cohomology
spaces Hy and Hj, respectively. Then the cohomology spaces of
(C*,d°):=(C1,d}) & (Cz,d3)
is H* = H} & Hj and
det C* =~ det C; @ det Cy
det H® =~ det Hy ® det H;.
Now :
(det C*)™' @ (det H*)=~((det C7)™* ® (det H))®((det C3)™! ® (det Hy))
and
7(C*,d*) = £7(C7,d}) ® 7(C3, d3).
3.3. This time, suppose
(C*,d*) =(C1,d}) ® (C3,d3),

ie., C*F =3 +Cl ®Cf and d(v} ® v]) := div} ® vf + (—1)Pv® ® dyvd,
for v} € CY, v € Cf so that H* ~ Hy @ H3.
Now
detC® = ®(det C*)(-D*
(-n*
~ ® (@p+o=s(det O)%F © (det )7

—1)Pte

(
= ®, 8 ((det C1)% © (det Cf)% )

] ® [@, (®q(det cHv)

4,9
C2

(-1)
~ [@, (®,(det c? )(‘1),)
~ (det C?)X(CD @ (det C3)x(n

where ¢f = dim C?, ¢} = dim C§, and x denotes the Euler-Poincaré charac-
teristic of the complex. Similarly, -

det H® ~ (det Hy)X(CD @ (det Hy)X(CD),

(—1)’6‘1’]

Thus
(detC*)™! ® (det H®)
~ ((det C3)™! @ det H) D @ ((det C5) ™" © det H3) XD

Now we have

7(Cf ® C3) ~ 7(C3)X(CD) g r(CpXED),
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4. INNER PRODUCTS

Now we define analytic torsion for a chain complex of finite dimensional
inner product spaces.

We will use the following notation. If f is an endomorphism of a finite
dimensional vector space E, then

det *f e R — {0}

denotes the product of all nonzero (complex) eigenvalues of f counted with
multiplicity, which may be called the “renormalized determinant” of f. Thus
det * f is a finite nonzero real number equal to

. (=DFdet(f—X) . det(f+A)
Y X\ = fm =

for some nonnegative integer k = lim;_, o, dimker f' < dim E. The renormal-
ized determinant has the following properties

i) If f is nilpotent, i.e., f* = 0 for some positive integer k, then det * f =
g

1.
(il) If f] . El — El and f2 . E2 — E2, then det X(fl @fg) = det Xfl .

det xfg.

(iii) If f is an isomorphism, then det * f is equal to the ordinary determi-
nant.

(iv) For any nonzero real number ¢, det X(cf) = c'det* f, where [ =
limk—oo fH(E).

(v) Ingeneral, det *(fog) # det * f-det Xg. For instance, if f = ((1) g) )

0 1 0 1 ' ‘
g=<0 0),thenfog=(0 0) and det *(fog)=1#2-1=

det ¥ f - det *g. But det * is invariant under the conjugation, i.e., if
g is an automorphism, then det *(g o f 0 g71) = det Xg.

(vi) Suppose that E is equipped with an inner product and let f* be the
adjoint of f : E — E. Then

det * f* = det * f.
If we consider hermitian inner products over complex vector spaces,

then we have

det X f* = det X f.
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Suppose we are given a chain complex

du—l

(4.1) (C”,d’):O—»C’oiCli..f——-»C”—-»O

of finite dimensional inner product spaces. Then we have the adjoint (dF)* -
C*+1 — C* of d* : C* — C**!, and the operator

Ak = (dk)* o dk +dk—1 o (dk—l)*

is a self-adjoint positive semi-definite endomorphism of C*.
The analytic torsion T = T(C*,d*) of the chain complex (4.1) is a positive
real number defined by

T := [](det *A%)(-D** k72,
k=0

4.2. Lemma. Let (C7,d}) and (C3,d3) be two chain complexes of finite
dimensional inner product spaces and let (C*,d*) = (C},d})®(C3,d3). Then

Proof. Let A*, A¥ and A% be the Laplacians of (C*,d*), (C},d}) and
(C3,d3), respectively. Then
Ak = A o AL

and hence
det X AF = det XA¥ . det X A%,

Thus
T(C*,d*) = [](det *A*)=D**"¥/2 = T](det * Ak - det X Ak)(-D"* /2
=T(C7,d}) - T(C3, d3).
This completes the proof.
4.3. Example. Let

110 1 00 2 00
f=100 1}, =100}, ff*=101 0}.
0 0O 010 0 0O

T(f) = det *(Ff*)?* = V2 #1=|det *f|

Then
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5. |r] =T

We now see the relation between the torsion 7 and the analytic torsion T'
of a chain complex (4.1) of finite dimensional inner product spaces. In this
case, the cohomology spaces H* are canonically isomorphic to the kernel of
A¥, by Hodge theory, and hence it has an inner product induced from Ck.
Thus one can measure the length |7| of the torsion

7 € (det C*)™! @ (det H®).

5.1. Proposition. || =T.

Proof. Let
Cck .= @)\ZoC),f ‘

be the eigenspace decomposition of C* with respect to the Laplacian AF.
Since A commutes with d, we have

d(C¥) c CX*+1.

Similarly, we have

d*(C¥ c ot
The chain complex (4.1) splits into the direct sum of

(5.2) (€3,d3):0-C{—>Cy—---=Cy—0.
Note that A% := A¥|C} = \id and hence

1 A=0

det AL =
gl {,\c'i A>0

where c§ = dim C¥}. ,
If A = 0, the maps in (5.2) is “trivial” and the cohomology space is
C¥ = ker A* =: H}
which is isomorphic to the cohomology space H, % of (4.1). Then

(5.3) T(C5,dg) =1 =1(Cg, dg)-
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Now assume A > 0. Then the sequence (5.2) is exact and the associated
cohomology spaces are trivial. We have

o 70 = —1)k+1pck
T(Cy,dy) = [ AV *372 (x £ 0).

k=0
Put z§ := dimkerd%. Then

cf{ = z,\ + z""’1

and hence

D (—1)FHkek =) (~1)kHL
k

k

We have, therefore,

T(C3,d}) = [[ A0 5/2,
k

Note that
= d(C 1) ® d*(Cy 'H), A#£0
and hence

dimd(C5™!) = 2%, dimd*(C§*?) = 25+

for A > 0. Thus the torswn T is obta.med as follows. First pick a basis
ed,el,... for C3 and let e =e]AedA.... Then extend d(e?),d(el),... to
a basis d(el), d(el),... e}, el,... for C,\, where e}, el,... are now clements
of d*(C2). Put d(e°) = d(e?) A ded)A...and e =elAelA.... Now
extend d(e]),d(e}), - € C? to a basis for C} by addmg elements el e, ..

of d*(C3). Put d(e') = d(e}) Ad(el) A ... and e2 =e2 AeZ A.... This way

we obtain
= ((eo) ®(de® Ae!) ' @ (de' AeP)® - ® (de""l)('l)") -1,
Thus

7| = 1% - (|de®| - [e]) - (Ide*| - [e2[)™" ... (Jde™ 2 )"
= (|eol—l . |d€0|)(|el|—1|del|)fl L (Ien_ll—llden—ll)(_l)”—l.
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. . k41
Now since e € det(d*(CF1!)), we have Ake* = A" e, and

|de¥|>  (d*deF,e*)  ((d*d+dd*)eF,eF)  (AFeF,eF) s
lek|2 — |e¥|2 - ek |2 T |eF2 T )

Thus

n—1

n
[r = TIOS")" = L A0
k=0

k=0
and hence T(Cy,d3) = |7(C3,d3)|. Now
T(Cc*,d") = [] 7(C3,43) = [] Ir(C5, a3l = Ir(C*,d")].
A>0 A>0
This completes the proof.
5.2. Corollary. T(C} ® C3) = T(C$)*(C3) . T(C3)x(°D
Proof. This follows from 3.3. O

6. ZETA FUNCTION AND THE DETERMINANT OF AN ELLIPTIC OPERATOR

We now explain the “renormalized (zeta) determinant” of a self-adjoint
positive semi-definite elliptic (pseudo differential) operator P of order m > 0
defined on the space C*®°(M, E) of sections of a Riemannian vector bundle E
over an n-dimensional compact Riemannian manifold (M, g).

Let
O< M <X<...

be the eigenvalﬁes of P, each nonzero eigenvalue repeated according to its
multiplicity.

6.1. Theorem [See, Bro]. As k — oo, A} is asymptotic to ck™/™ for some
constant c. ’

We will prove rather easy statement.

Proposition. There exist a constant ¢ > 0 and § = §(n,m) > 0 such that
Ar>c¢ k®

forallk=1,2,....
Proof. Take an integer ! large enough so that

Im—-n/2>0.
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Then the Sobolev L% sections of E are continuous, and there is a constant
¢1 > 0 such that

(6.2) lIsllec < erllsllz,m, s € L (M, E)
where ||+ ||, denotes the LP-norm and || ||2,im is the Sobolev L? -norm. Now

P! is a self-adjoint elliptic operator of order Im and hence there is a constant
¢z > 0 such that

(6.3) lIsllz,im < c2|lP's]|

for sections s of E orthogonal to ker P = ker P'.
Let ¢1,¢2,...,dr be orthonormal sections of E with

P(¢j) = /\j¢j, 1=12,...,k.

Then for any scalars a;,as,...,ax, the section

k
s(z) := Zajtbj(z), reM

J=1

of E satisfies the inequality

(NI
(ST

IPlsle =13 aiXdile = | o(aX)* | < | 3af)| A
J J

J
and hence

2

ls(2)] < Isloo < e1lslaim < crc2lP'sle S cicy [ Y _al ) Ak
J

We fix a point z € M and choose a local orthonormal frame e, ..., e for
E at z. Then

¢i(z) = Z $iuneu(z)

p=1
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for some constant ¢;, and

1™

|s(z)| = 'Z“J%#en(‘”)l = (Z(Z a;jPju) )

Jp

In particular, for each y, the inequality

1
2
|3 aibiul < Is(@)] < cres (z ) A
d j

is true for any scalars a;, a3, ...,a;. With a; = ¢;, we get
k
2 21
Z"S.iu < dighi
Jj=1

for each p = 1,...,r and hence

S WP = E(Z«ﬁ?n—}:@q& ) < rd L.

i=1
Now we integrate this term over M and get
k < rc2ck vol(M, g)A%.

Take | = [;%] +1 < (n +2m)/2m. Then

M >ckl, k=1,2,...

for § = é(n,m) =
completes the proof.

TERD = s 2and ¢ = (rejc vol(M, ))~°. This
Now from the Proposition, the series [Gil]

¢p(s) := Z .)‘IE’ Re(s) > n/m
k=1
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converges and the series?

hp(t)=) e~
k=1

converges for any ¢ > 0, as
o ]
/ e %" dr < 0o
1

for any a,b > 0.
6.4. Proposition [Gil]. Ast\ 0, there is an asymptotic expansion

hp(t) ~ ) ax(P)tE-m/m
k=0

for some real number ax(P).

Recall that Euler’s Gemma function is defined by

(=2 18
I(s) = / t*"le~*dt = lim i
0

n—oo s(sfl)...(s +n)’ Re(s) > 0.

Note that I'(1) = 1, I'(n + 1) = n!, for positive integers n, and I'(1/2) =
/7. The functional equation I'(s + 1) = sI'(s) extends I' to a meromorphic

2For each t > 0, let
e~ P . C¢®(M,E) — C*°(M,E)

be the heat operator of P [LM]. The heat operator is defined by the heat kernel

Ki(z,y): Ey > Ez, (z,y)EM xM, t>0

and

(e=*Pu)(z) = / Ki(z, y)u(y) dg(v)
M

for any section u of E, and

hp(t) = Ze'**‘ = (e~*P) — dimker P.
k
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function on C with simple poles at s = —k of residue (—1)¥/k! , for k =
0,—1,—2,.... The Gamma function satisfies the relation [Lan, Ahl]

T

[(2)[(1 - z) =

sin w2

and has no zeros. Thus 1/I" is an entire function with simple zeros at s =
0,-1,-2,....
From the Mellin transform?

1

____L ooa—l -t
/\’_I‘(s)/o t*" e Mdt, A>0,Res>0

we have ) o
(ps=———/ t*"lhp(t)dt, Re(s)>n/m.
=35 | thrOd Re(@) >/
6.5. Proposition. The “zeta function” (p(s) of P extends to a meromor-

phic function on C, which is holomorphic at s = 0. Moreover, (p(s) is real
for real s.

Proof. For Res > n/m, we have

_ 1 ! s—1 | oov s—1
(o) = 715 ( /0 t= 1 p(t) dt + /1 ¢ hp(t)dt).
From (6.1) it is easy to see that
8 / t* " hp(t)dt
1

can be analytically continued to all of C.
Now given any positive integer ko, we have

 [ko—1
hp(t) = (Z ay(P)tk=m/m 4 0(t<ko-n>/m))

k=0

3The Mellin transform is scale invariant, i.e., for any absolutely integrable function

f() on0< t < oo, 4
o0 t [ dt
- /0 T = /0 0%

for any A > 0.
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for 0 < ¢t < 1. Thus for Res > n/m

1 1 ko—1
/ t*1hp(t)dt = / o1 (Z ap(P)tk—m/m 4 O(t(ko‘")/"‘)> dt
0 0

k=0
ko—1 1
> a"(f_)k +/ ot~ =""1) dt
k=0 $ m 0

where the last integral is holomorphic for Re s > "—:nk"- This shows that

1
/ t* " hp(t)dt
0

is a meromorphic function on C having, at worst, simple poles at s = "T_k,
with residue ax(P), k = 0,1,2,.... Thus (p(s) is a meromorphic function
on C. Since I'(s) has a simple pole at s = 0 with residue 1, (p(s) is regular
‘at s = 0 and (p(0) = an(P). The remainder of the proof is obvious. This
completes the proof.

Now we define
det X P := exp(— Ede

i ¢p(s)),

which is a positive real number, and call it the renormalized determinant of
P. Formally,

det *P ~ H k.
k=1

6.6. Riemann zeta function. Recall that the Riemann zeta function is
defined by, for Res > 1,

=T a-27"=35
k=1

p:prime

= Z ﬁs_)/oot’—le""talt = ﬁfowt"l (i e'"tk> dt

S k=1
s
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oota—
SH/

extends easily to an entire function. We show that

The integral

1 ta—-l

(6.7) s+ dt

0 Ct -1
extends to a meromorphic function on C. Note that

1 1 1 -~ k-1 Bk k-1
et—1 t 2 +k§(_1) (2k)'t

where B}’s are Bernoulli numbers. Thus
1 go—1 1 11 & e—1 Bk 1
/0 e‘—ldt_s—1—§;+§(—1) @k s = (1= 2%)

and, as before, (6.7) is a meromorphic function on C with simple poles at
s = —k of residue (—1)¥/k! for k = 0,1,2,.... We conclude that ((s) is a
meromorphic function on C with a 81mple pole at s =1 with Res,=; {(s) =1,
vanishes at s = —2,—4,—6,..., and {(0) = —3, ((1 — 2k) = (—1)*B/2k,
for k =1,2,3,.

It is well known [Tlt] that

¢(s) = 2°7*"'sin %sl‘(l —35)¢(1 —s)

and
(6.8) ¢'(0) = —log V21
Formally, we have

ool 2 exp(=('(0)) = V2.

6.9. Example. On the unit circle S! = R/27Z, let P = —d?/dt? be defined
on the space of smooth functions. Then

0,12,1%2,22 2% 32 32 ...
are the eigenvalues of P and hence

Cr(s) =Y 725 = 20(29),
k=1

where ( is the Riemann zeta function. From (6.8) we have (p(0) = —4log V21
and hence [, k* = exp(—(p(0)) = 472, or

(oot m (V2r)*.
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7. FLAT BUNDLES AND ANALYTIC TORSION

Now suppose we have a flat connection d4 on a Riemannian vector bundle
E over a compact Riemannian manifold M. Then we have a chain complex

(1.1) 0 Q%M,E) 24 Q' (M,E) 24 ... 24, Q"(M,E) - 0
of infinite dimensional pre-Hilbert spaces. The “Laplacians”
A= () o b i o (7"

are self-adjoint positive semi-definite elliptic operators and have the “renor-
malized zeta determinant” det XA¥. Then the analytic torsion T(d,) of the
complex (7.1) is defined by

T(d) = J[(det XAk) -0 4/2
k=0 '

or
+log T(da) = 1) (~1)¥k¢Ax(0).
k=0

Note that a flat connection on a Riemannian vector bundle is equivalent to
an orthogonal representation of the fundamental group of M, see e.g., [Kob).
Recently Miiller has generalized the notion of analytic torsion for unimodular
representations [Miil2].

7.2. Proposition. If M is even dimensional and orientable, then T(d4) =
1.

Proof. Fix an orientation of M and let x : Q¥(M) — Q*¥(M) be the Hodge
star. Then * extends to an isometry

*: Q¥ (M,E) —» Q" %M, E)

and
d:a =*—1dA*.

Let (x(s) be the zeta function of the Laplacian AF. Then it suffices to show
that

n

Y (—D*kG(s) = 0.

k=0
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Let C¥ be the A-eigenspace of Q% (M, E) with respect to A*. Then for # 0,
Cy=dCy hHed ().
Since the Hodge star commutes with the Laplacian, we have isomorphisms
*:Ck ~CyF
and
* 1 d(CF™1) ~ d¥(CPFFY,
Let c§ := dim C¥, 2% = dimd(Cf™). Then

k K1k —k+1
cx =25 + 25t zy = 23k,

Thus
n n ck
I;(—l)*kck(s) => (D)

k=0 A

= XA: Xk:(—l)"k(z;'i +25)/x
= ; D (—1)kzE /e
- XA: Y;(-nkzg-k“ /2
=—(-1" EA: Xk:(—l)"z’i/A’

= —(=1)" Y (~1)*k¢(s)-
k=0

This completes the proof.

7.3. Theorem. Let M be orientable. Then the analytic torsion T is inde-
pendent of the choice of a Riemannian metric on M.

The proof for the “acyclic case” is given in [RS]. Once we notice that the
“heat trace” hax(t),t >0, is

har(t) = (e7¥2%) — p*

where h* = dim H} (M, E) is independent of the choice of the Riemannian

metric on M, then the proof is exactly the same as in [RS].

As a consequence, if p is an orthogonal representation of the fundamental
group of a compact oriented smooth manifold M, then the analytic torsion
T(p) is an invariant of the smooth structure of M. We will see, however,
that T'(p) is not a homeomorphism invariant.
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7.4. Example. The lens space L;’,(q) for a primepand g € {1,...,p—1}is
defined by the quotient of the 3-sphere S* = {(z1,2;) € C? : |2, |* +|2;|? = 1}
by the Z, action induced by

(z1,22) — (ez""/’zl,ez"‘”"zg), (21,22) € S3.

The fundamental group of L;(q) is isomorphic to Z,, which acts on C as the
p-th roots of unity. This representation p of the fundamental group of L3(q)
induces a flat bundle E,,.

It is known that L3(¢1) and L3(gz) are of the same homotopy type pre-
verving the orientation (respectively reversing the orientation) if and only if
q192~! is a square (respectively a negative of a square) in Z,. For instance,
L3(1) and L3(2) are not homotopically equivalent. On the other hand, L3(q),
¢=12,...,6, are all homotopic to each other. But one can show that [Ray]

T(Ly(a), p) = —2log |(*"/? ~1)(™"/P ~1)|, r=¢7 €,

In particular, T(L3(1), p) # T(L3(2),p) and hence L3(1) and L3(2) are not
homeomorphic. On the other hand, by a theorem of Mazur [Mil2, Maz,
DFN]*, M; = L3(1) x S* and M, = L3(2) x S* are homeomorphic. Since

T(My, p) =T(LH(1), )XY = T(L3(1), 0)* # T(L3(2), p)* = T(Ma, p),

we conclude that M; and M, are not diffeomorphic, ‘a counter-example to
the Hauptvermutung [Mill].
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ON THE MOD 2 COHOMOLOGY
OF THE LOOP SPACE OF Spin(n)

YouNGGI CHOI

1. Introduction

In this note we compute H*(QSpin(n); Z/(2)) by induction on n by study-
ing the spectral sequence for the fibration.

QSpin(n) — QSpin(n+1) — Q5"

After this we will try other methods to compute H*(2Spin(n); Z/(2)) using
the Eilenberg-Moore spectral sequence with the path fibration:
QSpin(n) — P(Spin(n)) — Spin(n) and exploiting the Verschiebung map V
with H,(QSpin(n);Z/(2)).
The computation is not hard but it is the background for the computation of
H,.(Q?Spin(n); Z/(2)) and H.(Q3Spin(n);Z/(2))[2].

2. Priliminaries

Let E(z) be the exterior algebra on z and P(z) be the polynomial algebra
on z and I'(z) be the divided power algebra on  which is free over v;(z) with
coproduct

A(mm(2)) = Y- m-i(2) ® %i(2)
=0
and the product

Yi(zhi(z) = (2 -:]) Viti(T) -

First recall the following standard fact. Let V(z;,,...,=;,) be the commutative
associative algebra over Z/(2) such that

31
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L {(zs,)4,..., (=) : € = 0,1} is a basis.

2. (zi,)? =, if 2i,=1, forsome 1<s<t
(z:,)* =0 otherwise.
where |z;| = 1.

For Spin(n) choose s where 2° < n < 2°%1,

H*(Spin(n); Z/(2)) = V(23 < i <n—1and i # 2') @ E(2),

Sq"(z;) = (:)w,'.l.r where |z| = 2+ 1, (0.1)

In fact, we have the steenrod operation on z [4]. But we do not need it here.
For example

H*(Spin(10); Z2/(2)) = V (x5, 5, T6, 27, T9) @ E(2), where|z| = 15
So (x3)? = g, (z5)? = 0, (26)? = 0, (27)? = 0, (z9)? = 0. Hence
H*(Spin(10);Z/(2)) = P(z3)/(z3)* ® E(zs,27,29) ® E(2)

quxs = Ts, Sq4$5 = Ty, 5‘12937 =9

3. The cohomology of Q2Spin(n)
Lemma 3.1 H*(QSpin(8n);Z/(2)) is

Plasiz:1<i<n)/(afi_;) ®T(asnt244r : 0 <k < (n— 1))
®I'(csn—242k : 0 < k < (4n —2), k£3mod 4)
where v;isthe power of 2 suchthat 8n < v;(4i — 2) < 16n — 8.

H*(QSpin(8n + 1);Z/(2)) is

P(agi—z:1<i<n)/(ag ;) @T(aansz4ar : 0 <k < (n—1))
®T (Canpai : 0 < k < (4n — 1), k#£2mod4)
where v; isthe power of 2 suchthat 8n < v;(4i — 2) < 16n — 8.

H*(QSpin(8n +2);Z/(2)) s
Pasi-z: 1 < i <n)/(ag_;) ® D(antz4ar : 0 < k< (n— 1))

®F(an+2+2k 0 S k S (4n - 2), k$ 1 mod4)

®i>o P (72:(dsn))/ (72i (dsn))*
where v; is the power of 2 such that 8n + 8 < v;(4i — 2) < 16n
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H*(QSpin(8n + 3);Z/(2)) is

Plagi—2:1<i<n)/(afi_;) ®T(asmpoqar :0< k< n-— 1)
®P(08n+2+2k : 0 S k _<_ 4n, k$1 mod4)
wherev; is the power of 2 suchthat 8n + 8 < v;(47 — 2) < 16n.

H*(QSpin(8n + 4); Z/(2)) s

P(a4,-_2 3 | S ') S n)/(az;i_z) ® P(a4n+2+4k :0 S k S n)
®P(08n+2+2k : 0 S k S 4n, k$l mod4)
wherev; isthe power of 2 suchthat 8n + 8 < v;(4i — 2) < 16m.

H*(QSpin(8n + 5); Z/(2)) is

Plagi—2:1<i<n)/(agi_3) T (aanta4ar : 0 < k < n)
QI (cente42k : 0 < k < 4n, k3 mod4)
wherev; isthe power of 2 suchthat 8n + 8 < vi(4i — 2) < 16n.

H*(QSpin(8n + 6); Z/(2)) s

P(a4;_2 o | S ) S n + 1)/(GZ:_2) ® F(a4n+3+4k : 0 S k S n — 1)
®I(Cantot2k : 0 < k < dnm, k#3 mod 4)
®i>0 P(72i(bsn+a)/ (72 (bsnsa))*
where v; 1s the power of 2 suchthat 8n + 8 < vi(4i — 2) < 16n + 8.
H*(QSpin(8n +7); Z/(2)) is |

Plagi2:1 <1< n+1)/(afi_;) ® T(aante4ar : 0< k< n — 1)
®F(C&n+6+2k :0 S k S 4in + 2, k$3mod4)
where v; is the power of 2 such that 8n + 8 < vi(4i — 2) < 16n + 8.

Note thdt a; become the stable element.

Proof. Let H*(25";Z/(2)) = I'(an—1). We will prove this lemma by induction.

Remind that QSpin(3) ~ Q5°%. For H*(QSpin(8n + 4)), we have
QSpin(8n+3) — OSpin(8n +4) — NS8+3

Since H*(QG;Z/(2)) is concentrated in the even dimensions for any finite H-
space G and H*(25°**%,Z/(2)) is even dimensional, the spectral sequence
collapses. And there is no extension problem by the dimension reason.
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For next step consider the following fibration.
QSpin(8n +4) — QSpin(8n +5) — Q5%+

Since H*(QSpin(8n+5); Z/(2)) is concentrated in the even dimensions and
H*(5%+4; Z/(2)) contains an (8n + 3) dimensonal element, we have the first
non—zero differential which comes from a (8n + 2)-dimensional generater and
goes to agn43. But in H*(QSpin(8n + 4); Z/(2)) we have two generator agn+2,
Can42 Of that dimension. Consider

QSpin(8n+3) — QSpin(8n+5) — QSpin(8n+5)/Spin(8n+3)

fl l !
QSpin(8n+4) — NSpin(8n+5) — Qg8
gl ! hl
R i — * — 588

From the naturality of the differential we have

h*(T(asn+2))
h*(zgn+3)
0.

7(9"(asn+2))

o

Hence we have the differential with the source cg 42 and v;(csny2) hits cgny2 -
agny3 and so on. Hence I'(cg,42) are the sourse of the differentials. 7zi(agn43)
survives permanently for i > 1. Put 7;(aga43) = Ci6n+6-

For H*(2Spin(8n + 6)) consider the following.

QSpin(8n +5) — QSpin(8n +6) — QS5

By the same reason as H*(Q2Spin(8n + 4);Z/(2)), the spectral sequence col-
lapses. So we get E.,—term for H*(2Spin(8n + 6);Z/(2)) is

Pagi-z : 1 <i < n)/(afi_3) @ T(Gant2, Gans2y- .- G8ns2) @ I'(agnia)
®F(68n+6+2k : 0 S k S 4n, ki 3mod4)
wherea; = 24420 > 0and 8n + 8 < v;(41 — 2) < 16n.

But in this case there are extension problems. We claim that (a4n+2)? = asnia-
From H*(Spin(8n + 6) : Z/(2)) we can compute
Tor He(spinsn+6)(Z/(2),2/(2)). Since S¢***?z4n43 = (::Ig)xsws = ZTgnts In
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H*(Spin(Sn +6)) by (2.1), ((14“.’.2‘)2 = Sq4n+20'($4n+3) = a($8n+5) = dgn+4- So
T(a4nt2) ® T(asnsa) = P(12i(aan+2))/ (Y2 (@ant2))*;, 1 2 0. Let

P ("/,(a4,,+2))/ (7t(a4n+2))
P(agny2)/ (a4n+2)4 ® P(72i+1(aan42))/ (1241 (aan42))*,

¢ > 0 and let ¥2(@4n42) = bgnt4. Hence we extend the conditions:
1<i<n+1,r(4i-2)<16n+8.
Consider the next fibration.

OSpin(8n+6) — QSpin(8n+7) — QS+

Since H*(25%"*8) contains ag,4s, we have a nonzero first differential from
bgni4 tO agnys and the next differentials from 42(bsn+4) tO agnts - bsn4a, from
bsn+4-72(bsn+4) t0 Agnys Y2(bsnts) and so on. Then (72i(B8n+4))? is a permanent
cycle for each i > 0. But (72i(bsn+4))? = (72i+1(G4n42))? = Y2i+1(agnsa) fors > 0
in the previous step and ~;i(asn+s5) is also a permanent cycle for each ¢ > 1.
Let (71(bsn+4))? = cients and 72(asn+s) = Crent10-

We can prove the other four cases in similiar ways, however, compared
with H*(QSpin(8n + 6);Z/(2)), we have a little different extension prob-
lems for H*(QSpin(8n + 2);Z/(2)). Note that in H*(Spin(8n + 2);Z/(2))
S¢* ™ Tant1 = Tent1, ST Tans1 = Tant1. S0 agn = 0(Tent1) = 0(S¢* " Tyny1) =
5¢*"0(2ant1) = S¢*(a4n) = (@)’ = (0(Tan41))? = (0(S¢"T2mn11))* =
(S¢*"az,)? = a},. In fact, the difference come from the property of the number:
8n = 222n,8n + 4 = 2(4n + 2). ]

Remark 3.2 In fact, using the Eilenberg-Moore spectral sequence with E; =
Tor ge(spin(n)z/(2))(Z/(2),Z/(2)), we can choose the primitive generators a;,
b;, c; such that

o(z:) = a? * where 25§ =i — 1 or bj_; according to the dzmenszon and o(z;) =
¢i—1 and p(:z:,2 ) = cori_p where p(z?") is the transpotence of 22" . Here we can
solve the extension problems using the Steenrod operation.

For example, for H*(Q2Spin(10); Z/(2))

E, Tor g(spin10):2/(2))(Z/(2), Z/(2))
Tor P(zs)/(ra)‘®E(z‘5,z7,r9)®3i515)(Z/(2)’ Z/(z))
E(a3) ® T'(aa,as,as) @ I'(c10, c14)

o
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Since F,-term concentrates in even dimension, the spectral sequence collapses
from E,, i.e. , E; = E,. But we have the extension problems. Since the
Eilenberg-Moore spectral sequence is the spectral sequence of the steenrod
module,

Sq?a; = ay,
Sq4a4 = ag,
v2i(as),1 > 1

(az)?
(aq)?
(72 (%))2

Hence H*(Q2Spin(10);Z/(2)) is

P(az)/(a3) ® T'(as)
: ®T(c10, C14)
®ix0 P(72i(ds))/(72i(ds))*

,Where dg = y2(ay).

Now we will try another method to compute H*(2Spin(n);Z/(2)) using
the Verschiebung map V with the information of H,({Spin(n)Z/(2)).
The generating variety for the homology of QSpin(n + 2) is

Gy, = SO(n +2)/SO(2) x SO(n)

and lim, G;’n = C'P* is a generating variety for the homology of QSpin =
SO/U, that is, we have a map from G, ,, to QSpin(n + 2) such that the image
of H,(G,,) under the induced map generates H,(Q2Spin(n + 2)). Note that
 H,(QSpin; Z/(2)) = E(az, 4, as, .. .). From [1] or [5],we know that
H,.,(G;'zn; Z/(2)) is free on

{az,a4,... 020} U {Ban, Bont2s- -+ Ban}

as a module and

H.(G 30413 Z/(2)) is free on

{a27 Q4y...y C“271.} U {,B2n+2’ ﬂ2n+49 ey ﬂ4n+2}

as a module. The following lemma just comes from the Eilenberg-Moore spec-
tral sequence with E; = Ext g«(spin(n)iz/(2)(2/(2), Z/(2)).
Note that H,(Q2Spin;Z/(2)) = E(agi 1t > 1).
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Lemma 3.3 H.(QSpin(4n);Z/(2)) is

E(azi:1<i<n-1)Q@Plag:n<i<2n-1)®
P(Bsi—2:n<i<2n-1)

‘H,.(QSpin(4n +1);Z/(2)) is

E(azi:1<i<n—-1)®@P(a:n<i<2n—-1)®
P(Bsit2:n<i<2n-1)

H,(QSpin(dn +2);Z/(2)) is

E(azi:1<i<n—-1)®P(ay:n<i<2n)®
P(Bsit2:n<i<2n-1)

H.(QSpin(4n +3);Z/(2)) 1is

E(az:1<i<n)@Pag:n+1<i<2n)®
P(Baiy2:n <t < 2n)

Note that ay; in H.(G),; Z/(2)) corresponds to
az; in H(QSpin(n + 2);Z/(2))

and f,; corresponds to f; or (;)? according to the dimension. In order to
compute the cohomology we recall by [1] or [5]

H*(Gy5,52/(2)) = =2/25"" @ E(y2n)
H*(G’Z,2n+l;z/(2)) = $2/$3+1®E(92n+2)

From here we can consider the Verschiebung map V. The good explanation
for the Verschiebung map are in ([6] or [3],p234-235 ).

V(044i) = Qg
V(014i+2) =0
V(Bsi) = 0

Let A be a Hopf algebra and @(A) be the module of indecomposable elements
and P(A) be the module of primitive elements. We have the useful relations
between primitive elements and indecomposable elements (generators);

Q(A)" = P(4)
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, whereQ(A)* is the dual of Q(A). So if we pass from H.(X;Z/(2)) to
H*(X;Z/(2)), each primitive element in H.(X;Z/(2)) corresponds to a gen-
erator in H*(X;Z/(2)) and each generator in H,(X;Z/(2)) corresponds to a
primitive in H*(X;Z/(2)). We also have the same situations if we pass from
H*(X;2/(2)) to Ho(X;2Z/(2)).

For example

H*(Qspin(S);ZV((@)g = E(c2) ® P(au,6) ® P(Bs; bro)

So we have the following primitives:
az, azm, aéi, 62‘, ,Hf(‘, for:>0.
- Hence we get
H*(QSpin(8);Z/(2)) = P(az)/a; ® I'(ae) ® [(ce; s, Cr0) -

We will give two more examples. First

H.(QSpin(10);2/(2)) = E(az) ® P(ay, as, as)

Q®P(B10, P14)
with
V(a4) = a2.
V(ad) = a2,i120.

Hence we get the following primitives:

2i+1 -zt' 2i 2i .o
ag, a0, Pigs Biy for 1 >0.

From the above
H*(QSpin(10);Z/(2)) = P(az)/(a3) ® T(as)®
: I'(c10,€14)®
®ix0 P(72i(ds)/ (72:(ds))* -

For the next

H,.(QSpm(lLl), Z/(2)) = E(az, (14) ® P(ae, Qag, (010, (112)
QP (P14, Prs, Baz)
with |
Vi) = @, V(ag) =y
V(ad) = o2,i>0.
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Hence we get the following primitives:
L

2t 2itl gf
Qz, g, Qg , Oy Prgy 18’ ﬁ22 for: > 0.
Therefore

H*(QSpin(14);Z/(2)) = P(az)/a3 ® P(as)/ag ® [(a10)®
I(c14, €16, €18, €22)®

®i>0 P(72i(br2)/ (72 (br2))*

,where b2 = v2(a¢). The above two examples illustrate the difference between
H*(QSpin(8n + 2); Z/(2)) and H*(2Spin(8n +6); Z/(2)). In this way we can
also compute H*(QSpin(n); Z/(2)).
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INVOLUTION ON THE MODULI SPACE
OF ANTI-SELF-DUAL CONNECTIONS

YoNG SEUNG CHO

§1. Introduction

Let o be an involution on a smooth simply connected closed 4-manifold
M. Suppose that the fixed point set B of ¢ on M is a 2-dimensional sub-
manifold. Let M' = M/o be the orbit space and p : M — M' the pro-
jection map. There is a smooth struction on the orbit space M' such that
the projection map p is smooth. The involution map ¢ induces an isomor-
phism o* on H™®(M) to itself. The projection map p induces an isomorphism
p*: H*(M') — H™(M)® where H®(M)? is the invariant subspace of H"(M)
under the involution o*. Using this isomorphism p* we have the relations
x(M) = 2x(M') — x(B) and 7(M) = 27(M') — B where (M) is the signa-
ture of M and B? is the intersection number of B. In case M is Kéhler mani-
fold there are such relations as b; (M) = 2b;(M'), b2(M) = 2by(M')—x(B)+2
and b} (M) = 1+ 2bF (M") where bj (M) is the rank of the maximal positive
subspace of H?(M) under the intersection pairing.

Let E be a vector bundle over M with the structure group SU(2). Suppose
that E has a lifting endomorphism of the involution ¢. This lifting acts on
the connections on E by pull-back, and the induced action on the orbit space
of the gauge equivalent classes of the connections is independent of the choice
of the liftings. There is a lifting of o to ¢ : E — E which restricts trivially
to the sub-bundle E/B. We can form the quotient bundle E' = E/& over
the orbit space M' = M/o. We have the moduli space of the -invariant
anti-self-dual connections. We define polynomial invariants on this moduli
space. We also have the moduli space of anto-self-dual connections on the
quotient bundle E' — M’ and we can construct polynomial invariants on the
moduli space.

41
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Our goal is to understand the orbit space M’ and the invariant part of the
moduli space of anti-self-dual connections, and polynomial invariants on the
moduli spaces.

§2. The Equivarient Geometry on Bundles

Let G be a finite Abelian group. Let G acts on a smooth, closed, simply
connected 4-manifold M and lift to an SU(2) vector bundle = : E — M on
which 7 is a G-map. Choose Riemannian metrics on M and E on which G
acts as isometries. A Riemannian connection is a linear map. V : Q°(E) —

Q!(E) which satisfies

V(fo)=df @o + fVo
d{o,7) = (Vo,7) + (0,VT)

where f € C°(M) and 0,7 € Q°(E) and ( , ) is the given Riemannian
metric on E. There are Riemannian connections on E. Let C be the space
of all Riemannian connections on E. In fact C is an affine space as a model
space Q!(adP) where adP is the associated Lie algebra bundle of E. For
V € C let FV € Q%*(adP) be the curvature of V. Let G be the group
of gauge transformations of E which are the sections of the associated Lie
group bundle by the adjoint action of SU(2) on itself. The group G acts on
Cby g(V)=goVog™

Let B = C/G be the orbit space and 7 : C — B be the projection. Let
* be the Hodge star operator on the oriented Riemannian 4-manifold M. A
connection V € C is said anti-self-dual if +FY 4+ FV = 0.

Let A be the subspace of C consisting of all anti-self-dual connections on
E. The action of G on C can restrict on A. The orbit space A/G = M
is called the moduli space of the gauge equivalence classes of anti-self-dual
connections on E. the action of G on the bundle E — M induces on action
of Gon C. If 0 € Q°(E) and h € G, then we define

h(c) = hoo o h™! where h™! is an action on M and h is an action on E
as a bundle map.

If v € TM, and V € C, then we define h(V)v(c) = h(V,-1h™ o g o h).

Finally we define an action of G on Q¥ (adP) by

(hQ)Ul,...,'Uk == h o Qh:l(vl),...,h:l(‘Dk) (o} h—l.
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Lemma 2.1. For any V € C and any h € G, we have h(V) € C.

Proof. Let v € TM, 0,01,02 € Q°(E) and f € C®(M)

R(V)(fo) = h[Vh™! o (fo)o k]
=h[Vf(h™ ' oo oh)|
= h(df ® h™'oh) + h(f o VA 0 0 0 h)
=df @ o + f[h(V)o]

Compatibility of the connection h(V) with the Riemannian Structure:

(h(V)vo1,02)Ez + (01, h(V)vos)Ex
= (K(Vyo1,h " 00 0h),05)Ex + (04, h(V4-1,h 7 003 0 h))Ex
= (Vh:lvh_lah, h_lag)Eh-x(,) + (h_la'l,Vh‘-lv(h—lazh))Eh—l(x)
by h is an isometry on E
= (Vyhlo1h, k7 ozh)Ex + (R o1k, V,h 7 03h) Ex
by h is an isometry on M
= v(h~'o1h,h" oyh)Ex

= v(01,02)Ex by isometries on M.and E.

Since G acts on M as isometries, the action of G on C preserves A. The
set of invariant connections of E denotes C¢ = {V € C|h(V) = V} and the
invariant anti-self-dual connections A% = C% N A. The G-equivariant gauge
group denotes GG = {g € G|hg = gh for all h € G}. Then G acts on CC
and AC. Let and B¢ = C%/G% and MP = A%/GC and Q*(adP)C be the
G-invariant subspace of *(adP). Connection on E induces a connection on

adP by for ® € 2°(adP) and for o € Q°(E).
(V&@)(0) = (o) — ®(Vo).

Then we have the following immediate consequences.
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Lemma 2.2. IfV is a G-invariant anti-self-dual connection.
1. 0 — Q%adP)® Lo (adP)C L+, Q2 (adP) — 0 is an elliptic complex.
2. FV € Q*(adP)S.
3. G2, acts on CF and A§ where C{ is the Sobolev-Completion {V +
A| A € L3(Q'(adP)®)} by the L2-norm.

Remark 2.3. If the bundle E — M is an SO(3)-bundle. Let 7 : C — B be
the projection. Then

BGt — cG*/gG — ﬂ,(cGt)
MG* = AG#/gG — W(AG*)

Proof. Suppose V is a G-invariant irreducible connection and V' = ¢(V).
For each h € G, h(g(V)) = (V) = g(V) = g(h(V)) and g~ A~ 1gh(V) =V,
g~ 1h~1gh is an element of the isotropy subgroup I'V of the gauge transforma-
tion group G. Since the connection V is irreducible, the gauge transformation
g is G-invariant.

§3. Involution on K3 surface

Let an anti-holomorphic involution ¢ on a K3-surface M lift to an SU(2)
vector bundle E 5> M on which 7 is o-equivariant.

~ Remark 3.1. Let E; — S* be the canonical quaternion line bundle. Let
f: M' — S* be a map with degree k and let E; = f*E; and E = n*E;.
The involution o : M — M can be lifted to E; — E; by choosing an isomor-
phism 7 : E — o*E. Since f has degree k(c2(E1),M') = (c2(f*Ez), M'),
(f*ca(E2),M') = (ca(Ez), f * M') = (co(Ez),kS*) = k, and since 7 is a
branched double cover with codimension 2 branch set (cz(E), M) = (7*cz(E1),
M) = (c2(Ey), ™ x M) = (c2(E1),2M') = 2k. The involution ¢ on the K3
surface M is an orientation preserving isometry & acts on the set C of con-
nections for E — M and acts on the group G of gauge transformations, via,
(V) =6Vé! and 6(9) =695~ for Ve C and g € G. Since G is an
isometry & acts on the set of anti-self-dual connections.
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Lemma 3.2. (1) & acts B and M.
(2) Let My p be the moduli space of equivalence classes of anti-self-dual

connections with c; = k on E — M. Let M' = M/o be the orbit space of 5.
Then dim Mag pr = 2 - dim My ppv.

Proof. (2)

dim Mok, = 8(2k) —3(1 + bt M) since b*(M)=3
= 2(8k) — 3(4) since bt(M')=1
= 2[8k — 3(1 + b*(M")]
= 2dim Mg m-.

Theorem 3.3. The moduli space My pm+ on the orbit space M' can be
identified one of the components of the o-invariant moduli space M3, ,, on

M.

Proof. Consider the fundamental elliptic complex
0 AAPSY ¥ 02
0— @(Gp)” =V (Gr)” — X1.(GR)" — 0

where V € M3, ,,. By Lefschetz fixed point theorem dim M3, ;, = Ind(é Vit
dy)=1/2Y ¢ L(o,D) where D : T(V4 ® V- ®G¢)? = T(V4 ® V4 ® Gc)?
is the twisted Dirac operator and Gc = G ®r C. Let A: T(VL Q@ V_) —
T(Vy @ V4)?. Let

L(1,D) = P(Ge ®C)[X]+3 IndA
=2k-8-3/2-2[(x(M') — o(M")) - (dx — do)]
= 2. [8k — 3/2(x(M') — o(M")) — 3/2(dx — do)
= 2. dim M; pr — 3(dx — do)
L(6,D) = 3L(o,A)|m> = 3(dx — do) since o acts trivially on Gg|p-. Thus

dim M3, r = 1/2[L(1, D) + L(5, D)] = dim M pp.
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Remark 3.4. When we compute

Ind, (D)

_ chy(V- = V4 )ch(Vy)chy(Ge ® C)(T ® C)td(T” ® C) (M7)
- chy(A_1N) ’

if M? non-orientable, twisted coefficients are used. Let 7 : M — M' = M/o
be the projection and let A(E) be the space of the connection with ¢;(E) =
2k. And let A(E;) be the space of the connection with cz(E;) = k and
E = 7*E,. As before choose a g-invariant metric g on M, then 7 induces a
singular metric g; on M' such that g = 7*(g1). We would like to pull back
the connections 7* : A(E;) — A(E) by setting for V € A(E;). ¢ € Q°(E)
and v € TM, 7*(V)y¢ = Vrepd(r). Since E = n*Ey, ¢(7) is a section of
E; — M'. For any function f € C®°(M), we extend the definition of 7*(V)
to be a connection on E — M;

T (V)o(fo) = v(f)- ¢+ f-77(V)od

where 7*(V)y¢ = Vyepd(m). By construction 7*0* = 7* and 7 * g% = 7 *
o(1*(V))od = 0((1*V)640080) = 0(Vrxosv®(V)) = Vs p (1) = 7%(V)o 9.

Hence the image 7* : A(E;) — A(E) is contained in the invariant subspace
A(E)°. Thus we complete the proof of theorem 3.3.

§4. Polynomial Invariant on K3-surface

For any a € Ho(M : Z), we choose an embedded oriented surface
representing a. For 7 * (a) = f € Hy(M' : Z), we choose an embedded
oriented surface ¥; representing /3.

Let N and N; be small tubular nbds of ¥ and ¥; respectively. We may
assume that 7(Z) = £;. Let 75 : B(M) — B(N) be the restriction map
and 7g, : M(B') — B(N;). For A € My M, consider the twisted Dirac
Operators over N and Ny:

I(Vg ® E) 24, T(V{ ® E)

"'T T“.

T(Vg, ®Th) —2 I(V{ @ %)
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+
For any (¢ ® s) € I'(Vg, ® £1),

Prram*(0 @ 8) = Pa(n*0 @ ©*s)
=Ps(r*0 @ m*s + n*0 @ w*(A)(7*s))
=7*(Pg,0®s+0Q A(s))
=7* Pa(c ®s), since n*( By,0) = Ps(n*o)

Thus the inclusion map 7* : Mg pp — Moy m from My ppe into the
invariant anti-self-dual connections of My s induces a bundle map on he
determinant line bundles.

Ly, —— Ly

1 !

"‘
My —— Maokm

There is a universal bundle E over M x C*/G with its Chern class c;(E) €
H*(M x C*/G). For any class ¥ in Hy(M), we have a map uM : Hy(M) —
H?(C*/G) which is defined by the slant product u(Z) = c;(E)/E.

Lemma 4.1. Given our two fold branched cover n : M — M', we have the

following commutative diagram

Hy(M)” 22, g2(Mg,

‘| E

Hy(M') 225 B2 (M 40)

Proof. For any a € H3(M)?, let T be an embedded oriented surface repre-
senting a. Since the indusion map 7* : My pp — Mk, m induces a bundle
map and pM(a) = ¢;(Lg) and 7 * (X) = £;, we have

m*2uM (o) = 7*(2¢1(Lx)) = c1(n*(Lsg))

= c1(Lg,) = c1(Lrsz)
= uM(W * (a))
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Given homology classes a; ---aq € Ho(M : Z), we represent them by em-
bedded surfaces ¥; --- L4 in M in general position such that any triple in-
tersections N; N N; N Ny of small tubular neighborhoods of ¥;, ¥; and i
respectively are empty. There is a determinant line bundle Ly, over By with
a section whose zero set Vs is a codimension 2 submanifold of Bys and meets
all of the moduli spaces M; for i < k transversaly. If 4K > 3(1 + b7 ), then
the intersection Vg, N---N Vg, N My is compact.

Definition 4.2. For any homology class a; ---aq € Ho(M : Z), the polyno-
mial invariant is defined to be

gk X (0[1, cee 7ad)(#’(a1) u---u #(ad), [Mk,M])
= #(Vz}1 n---NVg, ﬂMk,M)

where # denotes a count with signs.

Remark 4.3. Suppose that g¢;,g; are two different metrics on the base 4-
manifold M. The moduli spaces M(g;) and M(gz) of gauge equivalence
classes of anti-self-dual connections with respect to the metrics g; and g
respectively differ by a boundary in B*. The pairing is independent of the
choice of metric if b7 > 1. Thus Donaldson invariants are smooth invariants.
Let the manifold M be Kahlerian.
Let w we the Kahler class in H*(M : C). By the Hodge index

II_";_::.;:']REBH2'0 and b‘2"=1+2Pg.

We fix the orientation of H? by —wA (complex orientation of
H?9%(M;C) which specifies the orientation of the moduli space. Let H be
the hyperplane class in Hy(M;Z) which is the Poincaré dual to w. As a real
manifold H is a compact Riemann surface. Over a small tubular neighbor-
hood of H in M, we have, for each connection A, a coupled Dirac operator
PH :T(V- ® E) » I(V* ® E). We may construct the determinant line
bundle Ly by using the index of the Dirac operators SH over By:

Ly = Amax(ker fg)* ® Amax(ker O5).

The determinant line bundle Ly descends to a bundle over Mpy. In fact,
My is a complex manifold and each connection A defines the associated
O-operator 04 : Q°(E) — Q%!(E) and defines a holomorphic structure on E.
Thus we have the holomorphic line bundle Ly — My. .
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Theorem 4.4. (Donaldson) (1) The determinant line bundle Ly — My is
an ample line bundle.

(2) p(a) = e1(Ls) € H3(Myy), where Ly, is the pull back of Ly on My
and I is a representative of [a] € Hy(M : Z).

In the SU(2) universal bundle E — M x C/g, the orthogonal complement
to orbits of SU(2) gives the connection A. The curvature Fy of A is a
horizontal 2-form with values in the Lie algebra SU(2). The tangent vectors
are of type (2,0), (1,1) and (0, 2) in the tangent space Tp(M) x T4(C/G). Let
p € H2 p(M : R) be the poincaré dual to a homology class & € Hy(M : Z).
The slant product c;(E)/E € H?(B* : Z) and

W(E) = a®)/E = [ a®)Ap
= g7 [ DDA

is the de-Rham representation of u(X).

If a,b € TpoB* ~ Ker6# C Q'(GE), then pu(Z)(aAb) = iz [ tr(a Ab)Ap.
Let M be a complex Kahler surface with Kahler from w. Let H be the
Poincaré dual to w. u(H)(a Ab) = zX; [ tr(a A b) A p is the Kahler form on
the moduli space M for the usual L?-metric on M. For the generic metric on
M, the tangent bundle of M is the index bundle for D4 : (V- QV+tR®Gc) —
(Ve V*ege).

If A, is a connection on Ly — My, then
: i
a(L)= o=Fa, and Fa,(a8) = -1 /M tx(a AB) A (p- dT)

where a,b € QI(QE).‘

Theorem 4.5. Suppose that Ly — M is the complex line bundle induced
by a homology class £ € Hy(M : Z) and A is a connection of this bundle.
Then the curvature is given by

Fa(a,b) = Z}E /M t{aAB) A,
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where a,b € Q(Gg) and 6 = Poincaré dual of ¥.

§5. Involution on polynomial invariants

Recall that a K 3-surface is a compact, simply connected complex surface
with trivial canonical bundle. All K3-surface with trivial canonical bundle.
All K3-surfaces are diffeomorphic and Kahlerain, but not necessarily biholo-
morphically equivalent. Some K3-surface are elliptic surfaces, that is they
admit a holomorphic map « : M — CP' whose generic fiber is an elliptic
curve. bt (M) = +3, the stable range 4k > 3(1+b), i.e., k > 4, the invariant
Qk,m is a multilinear function of degree d = 1/2 dim M kM =4k — 6.

Let @ be the quadratic form of the intersection form on M, and let K
be the linear function K : Hy(M) — Z defined by the pairing K(a) =
{(c1(M), a) for any a in Hy(M).

Let D, ~ CP? #9?1-52 be the complex surface formed by 9 points blow-up
on CP?. Let Dy(2,2q + 1) be obtained from D; by logarithmic transforma-
tions of multiplicities 2 and 29%1. Let D,(p, q) be obtained from K 3-surface
D; by logarithmic transfortions of multiplicities p and g.

The polynomial invariants can be expressed as polynomials in Q and
K : Hy(Ds(p,q)) — Z. And have the form 5.1 : Q, Dsy(p,q) = peQ!1 +
Do, QU1K where £ = d/2 = 1/4dim M, and QU = 1/£1Q* and QYzy,
Tt 22!) = (1/2!)t ) ZUQ(EUI ’ 202) U Q(Ehl“ 7202‘)'

We introduce the results of Friedman and Morgan.

Theorem 5.2. (Friedman, Morgan)

1. No two of the manifolds D;(2,2q + 1)(¢ = 0,1,---) are diffeomorphic,
but all homeomorphic.

2. The product pq is a smooth invariant.

In particular, no two of Dy(1,2k + 1) are diffeomorphic.

Ezample 5.5. Let M be a K3-surface. Let E — M be an SU(2) vector bundle
with c;(E) = 4. The moduli space My M of anti-self-dual connections has
dimension 20.
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Let @ be the quardratic form of the intersection on M. By (5.1) we have,
for z1,...,210 € Hy(M, Z),

Q4,M(zla ceey 210) = Q(s)(zl’ sey 210)

=1/5!1/2° Z Q(zo1)203)s 7+, Q20,5 201,) = 1.
g€S10
This result also proved by Fintushel and Stern for homology K 3-surface.
Suppose that a;,:-- ,aq € Hy(M : Z)°. We use the Lemma 4.1 to com-
pute polynomial invariant.

(2uM(c1) - - - 2uM (o), ™ My, )
= (r*(2pM(a)1) - - - 2uM(aq)), Mik,m')
= (m*2uM(ay)-- - 7*2uM(ayq), Mg pm)
= (pM'[ry(e1)] - - - pM[m(ea)], My, mv)

= Qk’M:(w*al, s ,W*ad)
Thus we have a theorem.

Theorem 5.4. Let o be an anti-holomorphic involution on a K 3-surface M.
If M' = M /o is the orbit space, then the polynomial invariant Q v+ can be
computed by the pairing invariant moduli space M} k,m and the cohomology
classes in Mk pm.

For a K 3-surface M, let Oq be the isometry group of the intersection form
Q on the integral homology H,(M) and the homomorphlsm h : Diff( M) —
Oq.

The isometry group Oq contains an index Q subgroup O+ consisiting of
transformations which preserve the orientation of the positive part Hf (M) ~
Z3 of H,. Since —1 does not lie in 0+ there is a splitting Og = O, o®(— 1)0+

Theorem 5.5. (Donaldson and Matumoto)
The 1mage of h : Diff(M) — Oq is the subgroup 03.

Theorem 5.6. Let o be an anti-holomorphic involution on a K 3-surface M.
Then 0*Qar m = Qak,m : SP(HAM, 2)) — Z.

Proof. If o is an anti-holomorphic involution on a K3-surface M then o
is an orientation preserving diffeomorphism. By Donaldson and Matumoto
Theorem, o* is an isometry on H2(M : Z) and preserves the orientation of
the positive part of the second cohomology group H*(M : Z)* = Z & Z &
Z. Thus o™ preserves the polynomial invariants on S2¢(Hy(M;Z)), where
S24(Hy(M;Z)) is the symmetric product of 2d copies of Hy(M;Z).
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THE SHARP ISOPERIMETRIC INEQUALITY FOR MINIMAL
SURFACES WITH RADIALLY CONNECTED BOUNDARY IN
‘ HYPERBOLIC SPACE

JAIGYOUNG CHOE* AND ROBERT GULLIVER

Given a plane domain D bounded by a curve C, it has long been known that
the area A of D and the length L of C are related by the classical isoperimetric
inequality

47A < L2,

where equality holds if and only if C is a circle. Many mathematicians have
also sought isoperimetric inequalities for a domain in a curved space. An
interesting one for a domain in the sphere was obtained by F. Bernstein in
1905 [B] :

4rA< L[* + A%

Then Schmidt [S] proved in 1940 the analogue for the hyperbolic plane :
drA < L - A2

In each case, equality holds if and only if the domain is a geodesic disk. In fact,
these three isoperimetric inequalities can all be expressed in one inequality as
follows :

ATA < L? + KA?,

where K is the Gauss curvature of the simply connected space form in which
D lies.

On the other hand, it has been a long-standing conjecture that the classical
isoperimetric inequality 4rA < L? should hold for an arbitrary domain in a
minimal surface in R". Until now this inequality has been proved only for
minimal surfaces with one or two boundary components, or more generally,
with weakly or radially connected boundary ([C, OS, LSY, Ch]). In view of
this conjecture and the works of Bernstein and Schmidt, one may ask whether
their inequalities hold for domains on a minimal surface in S™ or H". In

*Supported in part by GARC; to appear in Inventiones mathematicae
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this paper we show that any two-dimensional minimal surface £? in H™ such
that 0% is radially connected from some point p of X, i.e. such that { r =
dist(p,q), ¢ € 0L} is a connected interval, satisfies the sharp isoperimetric
inequality

4rA < L2 - A%

But the isoperimetric inequality 47 A< L% 4+ A? for a minimal surface in S™
still remains open.

In our companion paper [CG] we obtain two different types of isoperimetric
inequalities: First, we introduce a modified area M (D) of a domain D, and
show that

4rM(D) < L(8D)?,

where D is a domain on a minimal surface in S} or H", whose boundary is
radially connected or weakly connected in analogy with [LSY]. Second, weaker
isoperimetric inequalities

21A < L? + KA®

are obtained for any minimal surface ¥ in S} or in H", where K =1 or —1
depending on whether ¥ is in S} or in H™. Surprisingly, while the modified-
area inequality is valid for S} or for R", the result of this paper is valid for
H™ or for R™; compare Remark I below.

We would like to thank Henry Wente for suggesting a shorter proof of
Lemma 3.

1. Estimates for the volume and angle of a cone

Every minimal surface considered in this paper is assumed to be differen-
tiable up to its boundary.

Blaschke, earlier than [Ch], pointed out the value of comparing a minimal
surface ¥ in R™ with the cone over its boundary [Bl, p. 247]. Estimates for
the volume of the cone p>x 0¥ and for the angle of ¥ viewed from an interior
point of ¥ play crucial roles in the proof of the sharp isoperimetric inequality
for ¥ with radially connected boundary in [Ch]. In this section we obtain
the analogous estimates for minimal surfaces in H™. In fact, this will require a
more exacting choice of test function: compare Proposition 1 and Proposition 2
of [Ch] with Proposition 2 and Proposition 1 below.
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Lemma 1 Suppose h'(r) = ro(r) for some smooth ¢ : [0,00) — R, and

write h(q) = h(ry(q)) where r = r,(q) = dist(p,q) for a fivzed p € H*. If
X% C H™ is either minimal or a cone over p, then

Ah =r9"4+ 0Q + (1 — |[Vr>)(rgcothr — p — ry)
where Q(r) =1+ (k— 1)rcothr.
Proof. One shows that the Hessian in H™,
¥V’ coshr = (coshr)g,
from which it follows that the Laplacian on X,
Ar = cothr(k — |Vr[?)

when ¥ is either minimal or a cone over p. See Lemma 5(b) of [CG]. Lemma 1
follows by direct computation.

The following lemma addresses the case where h(r) is the solution of Ak = 1

on the totally geodesic submanifold £ = H* C H". The conclusions may also
be found on p.483 of [A].

Lemma 2 Let ¢(r) = a(r)/(rd/(r)), where a(r) is the volume of the geodesic
ball of radius r in k-dimensional hyperbolic space H*; thus a(0) = 0 and
o/(r) = kwy sinh*~' . Define Q(r) as in Lemma 1. Then

(a) for allr >0, ¢'(r) <0 and 0 < p(r) < p(0) = 1/k;
and

(0) r¢'(r) + (r)Q(r) = 1.
Proof. Differentiation of ro(r) = a/o’ yields
re' +o=1+rpa"/a’ =1~ (k—1)ercothr,

from which (b) follows. Elementary asymptotic analysis shows that ¢(0) = 1/k
and ¢’(0) = 0. Since sinhrcoshr > r, we find @Q'(r) > 0, so that Q(r) >
Q(0) = k, for all r > 0. The derivative of (b) now yields r¢” + (1 + Q)¢’ < 0,
or (¢'(r)exp P(r))’ < 0 where P'(r) = (1+Q)/r. Since ¢'(0) = 0, we conclude
that ¢’(r) < 0 for positive r. ‘
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Definition Let C C H™ be a (k — 1)-dimensional rectifiable set and p a
point in H™. The (k — 1)-dimensional angle A*~!(C, p) of C viewed from p is
defined by setting

A*1(C, p) = sin'~*t - Volume[(pxC) N S(p, )],

where S(p,t) is the geodesic sphere of radius ¢t < dist(p,C) centered at p,
and the volume is measured counting multiplicity. Clearly, the angle does not
depend on t.
Note that
AF(C,p) = kwi®*(pxC, p),

where ©%(px C, p) is the k-dimensional density of pxC at p.

Proposition 1 Let ¥ be a k-dimensional compact minimal submanifold with
boundary in H", and let p be an interior point of £. Then

AT, p) > kwy.

Equality holds if and only if ¥ is a domain on a totally geodesic H* that is
star-shaped with respect to p.

Proof. We use the Green’s function G(r) of H*: G'(r) = sinh’*r. Writing
G'(r) = re(r), we see that r¢’ + pQ = 0 and

rocothr — ¢ —r¢’ = ksinh™* 7 coshr > 0

for r > 0, where @ = 1+ (k—1)r cothr. Thus by Lemma 1, G is subharmonic
on X, and harmonic on the cone p»dX. Let v be the exterior unit normal
vector to ¥ and 7 the exterior unit normal vector to the cone along dX. Then

or <0r

v = oy
implying

kwr = kwi +lim AG = G’(r)ﬁ
8% v

t=0 E—B(p,t)

or
< soh1-k — Ak-1
< /a - sinh* ™" r on A*(0%, p).

Equality holds if and only if AG(r) = 0, ©*(Z,p) = 1, and v = 5 if and only
if ¥ is a star-shaped minimal cone with density at the center equal to 1. Since
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S*-1is the only (k — 1)-dimensional minimal submanifold in $*~! with volume
kwy, we conclude that ¥ lies in a totally geodesic HF.

The next proposition will allow us to replace a minimal submanifold X* in
H™ by the cone over its boundary, relying on the monotone dependence of the
isoperimetric inequality on the volume of ¥. This proposition and Lemma 2
are closely related to the monotonicity formula of M. Anderson[A, p. 481].

Proposition 2 Let ¥ be a k-dimensional immersed compact minimal sub-

manifold with boundary in hyperbolic space H", and let p be any point of H™.
Then

Volume(X) < Volume(px9X);

if equality holds, then p € X, and ¥ must be totally geodesic and star-shaped
with respect to p.

Proof. Let h(q) = h(r,(q)), where h'(r) = a(r)/d/(r) as in Lemma 8. Let
v be the outward unit normal vector to 9%, which is tangent to ¥, and g
the unit vector tangent to p»dX; as in the proof of Proposztzon 1, we have

Or/dv < Or/dn. This implies

/Ah /azau‘ £ Bn /xazAh’

since h'(r) > 0 for all r > 0. But according to Lemmas I and 2,
Ah =1+ (1—|Vr]*)[(rcothr — 1)p — r¢]

either on ¥ or on px 9%, where ¢(r) > 0 and ¢'(r) < 0 for r > 0. In particular,
Ah > 1; and further, Ak > 1 unless |[Vr| =1 or » = 0. On the cone px 90X,
we have |Vr| = 1. Therefore,

Volume(E) < /E Ah < / oy A = Volume(pxT).
14

Equality would imply |Vr| =1 a.e. on X, which is to say that ¥ coincides with
a subset of the cone p>x9X. Equality also requires dh/8v = dh/dn, hence for
every ¢ € O the entire geodesic segment from p to ¢ lies in ¥. At p, each such
segment is tangent to the tangent plane to X. This implies that ¥ is totally
geodesic.

Remark 1 Proposition 2is false when H™ is replaced by the hemisphere
5%, even for n = 3 and k = 2. For example, let ¥ be half of the Clifford torus:

E={(z,9) € R? x R? el =yl = 1/\/5’ z1 > 0},
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and p = (1,0,0,0). Then Area(X) = 72, which is greater than Area (px9X)
= 2v/2 7. Nonetheless, for domains 2 C ¥ we have an isoperimetric inequality
L? > min{4wA,87*} which implies the sharp S*-isoperimetric inequality

A A< [P+ A%

It is an interesting question whether this last inequality is valid for every two-
dimensional minimal surface in the hemisphere S7%.

2. Approximation lemma

In light of Proposition 2 we would like to prove that certain hyperbolic
cones satisfy the isoperimetric inequality 47 A < L? — A2 This inequality was
proved in great generality by Bol, namely, for any smooth, simply connected,
two-dimensional manifold with Gauss curvature K < —1. The following ap-
proximation lemma may be interpreted as stating in a precise way that a
hyperbolic cone has generalized Gauss curvature < —1 if the angle at its ver-
tex is at least 27. It is well known that a two- dimensional hyperbolic cone
has Gauss curvature = —1 away from its vertex.

Lemma 3 Let &y = (R?,ds?) be the singular Riemannian 2-manifold (a hy-
perbolic cone) with metric given in geodesic polar coordinates (r,0) by

ds? = dr? + (ao/2r)% sinh® r d6°.

If ag > 2x, then ds? may be approzimated in C} (R*\{0}) by smooth metrics
ds? having Gauss curvature Ks < —1.

Proof. If ag = 2w, then ds? = ds? suffices. For any angle ap > 27, we shall
construct ds? in the form

ds} = dr? + gs(r)*d6?
for an appropriate function g5 : [0,00) — [0,00). Similarly, write g(r) =

(ap/27)sinhr. The Gauss curvature K5 of (R? ds}) is determined by the
Jacobi equation :

(J) 95(r) + Ks(r)gs(r) = 0.
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The C* function g5 will be a smooth approximation to a C'! function g,

defined by

g(r) = B~ lsinhfBr, 0<r < 1]
go(r) = g(r—e), r>ry;

where € > 0, r; > ¢, and B > 1 are appropriately chosen parameters. Conti-
nuity of gj/go at r; is equivalent to

(*) B coth Bry = coth(r; — ¢).
This plus the continuity of g at r; imply that
(ao/27)* =1+ (1 — %) sinh? Bry,

which determines r; uniquely as a function of 3 € (1, 00) since ag > 27. Now
let € = €(B) < r1(B) be defined by equation (*). Then the C'! metric

ds3 = dr? + go(r)?d6?

has Gauss curvature Ko = —3? on the disk B,,(0) and Ko = —1 on R?\ B, (0).
Note also that the mapping given in polar coordinates by (r,8) — (r — ¢, 6)
is an isometry from R?\B,,(0) with the metric ds? to To\B,,_(0). Since
coth Bry > 1, it follows from () that r;(8) — ¢(8) — 0 as # — oo, so that the
complement of an arbitrarily small neighborhood of the singularity in ¥ is
isometric to a subset of (R?,ds2). Further, it may be seen from the definition

of r1(B) that ri(8) — 0 as 8 — +00, and hence also €(8) — 0.

We may now construct the smooth approximation gs by smoothing the
Gauss curvature K; of ds?: we choose K5 € C°([0,00)) with Ks(r) = —32
(0 <r <r—9), Ks(r) = —1(r > r1+6) and K}(r) > 0 for all ». We then solve
the Jacobi equation (J) with g5(0) = 0, ¢5(0) = 1. Since —8% < K4(r) < —1,
this initial- value problem has a unique solution g5 : [0,00) — [0, 00) which is
moreover positive on (0, 00). For any exponent 1 < p < 0o, we have K5 — K,
in L?([0,00)). This implies that g5 — go in W?” on any bounded interval,
and hence also in C* for any a < 1 on any bounded interval. By choosing
B sufficiently large, we make r{(8) and ¢(3) as small as desired; choosing
also § sufficiently close to 0 results in a metric ds? arbitrarily close to ds? in

Cloc (R*\{0}).

loc
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3. The sharp isoperimetric inequality

As was hinted in the preceding section, we shall prove the sharp isoperi-
metric inequality for cones in H™ by combining Bol’s theorem and the ap-
proximation lemma. The analogous result for cones in R™ was proved in [Ch,
Lemma 1] by a substantially different method of developing the cone into a
planar domain.

Lemma 4 Choose p € H", and let C be a compact 1-dimensional submanifold
of H* such that C is radially connected from p and A'(C,p) > 2x. Then the
length L of C and the area A of the cone p>xC satisfy the sharp isoperimetric
inequality of domains in H? :

4rA < L* - A%

Proof. Write r(q) = dist(p, q), as usual, for the distance in H". We shall first
show that on any radially connected 1-manifold C, there are a finite number
of points qi,...,qm, P1,---,Pm = Po such that

(2) r(g:) =r(pi) forall1 <i<m;
(1) pi and gi41 lie in the same component of C for all 0 <¢ <m —1; and

(212) C may be oriented so that the union of the m closed arcs of C' from p; to
¢i+1 in the positive sense, 0 < ¢ < m — 1, covers C exactly once.

The proof is by induction on the number J of connected components of C. If
J =1, the assertion is obvious with m = 1. Now suppose the assertion holds
- for 1-manifolds in H™ with (J—1) connected components. Write the connected
components of C as 'y, ...,I';, where min{r(q) : ¢ € 1} > min{r(q) : ¢ € I';}
forall2 < j < J. Then I';U---UTYy is radially connected from p. Applying
the induction hypothesis, we may write {Q1,...,Qum, P1,..., Py = B} for
a set of points satisfying (2), (¢¢) and (22¢) with ', U --- UT; in place of C.
Since C is radially connected, there are points P € T'y and Q@ € ', U--- U,
with r(P) = r(Q) (for example, r(P) = min{r(q) : ¢ € I'1}). Let P; and
Qr4+1 be the endpoints of the interval in which @ falls, according to (zit).
Define py = Prand ¢ = Qi for 1 <1 < k5 qey1 = Q@ = Prt2 5 Phe1 =
P = gyo; and ¢ = Qg pp = P g for k+3 <1 <m =M +2. Then
{q1,---»9m+P1,-- -, Pm = Po} satisfy (7), (¢¢) and (74%) as claimed. (Incidentally,
one may note that m +1 =2J.)
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Write ag = A'(C,p). We may now show that p>xC may be mapped
discontinuously, but locally isometrically, into an abstract hyperbolic cone
Yo = (R?,ds?) with the singular Riemannian metric

ds® = dr? + (ap/27)? sinh® rd6?,

so that r = dist(p,-) is preserved. Namely, let {q1,...,qm,P1,---,Pm = Po}
be a set of points in C' such that properties (2),(:2) and (ii:) are valid. For
0 < i < m—1, write C(p;, ¢i+1) for the closed oriented arc of C from p; to
¢i+1. Then pxC(po,q:) may be mapped isometrically into Xy so that for all
q € C(po, q1) the H™-geodesic from p to ¢ is mapped onto a geodesic segment
0 = const. starting at the vertex 0 € £o. The next sector pC(p;,q;) of
pxC is then mapped isometrically onto an adjacent sector of ¥y, so that the
geodesics from p to ¢; and from p to p; are mapped to the same radial geodesic
segment. This process continues until p» C(py,—1,¢m) is mapped isometrically
into X, so that the geodesics from p to ¢,,—; and from p to p,,_; are identified,
and the geodesics from p to ¢, and from p to p,, = py are identified. This
process closes up exactly since the angle at the vertex of Xy is ag = A'(C, p) =

sl AY(C(piy ¢is1),p). Observe that pxC is mapped, almost everywhere
one-to-one, onto a star-shaped domain 2 C ¥, of area A, such that 0 has
length L. We may assume that p ¢ C, since Area(pxC) varies continuously
with p, and since A*(C,p) is lower semi-continuous. Then ( is a star-shaped
neighborhood of 0 in Xy. Applying Lemma 3 we see that for each § near
0 there is a smooth Riemannian surface (R?,ds2), with Gaussian curvature
K;s < —1, which converges locally uniformly to ¥y, and which converges C*
to Xo on compact sets in R?\{0}. Then with respect to ds?, 99 has length
L(6) — L and Q has area A(6) — A as § — 0. By Bol’s theorem [Bol, p.230]
the isoperimetric inequality

4 A(6) < L(6)? — A(6)?

holds, and the conclusion of Lemma 4 follows.

Remark 2 Lemma 4 is false for submanifolds of dimension k£ > 3 in H™ or
even in R". In R", we may choose the reference point p near py = 0. Given R >
1,0 < € < 1 and a point ¢; € R with |¢;|*> = R?—1, let the (k—1)-submanifold
C be formed from the two unit (k — 1)-spheres Sp~'(0) N ST~ (+q;) N R**1
plus a thin “bridge” of the form [ R, R] x S¥~? connecting points ¢, and —g,
on the unit spheres, and smoothed. Then for sufficiently small ¢, there is an
immersed minimal k-submanifold ¥ with boundary C, which is uniformly close
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to the union of the two flat unit k-dimensional balls with a thin “bridge” of
the form [—R, R] x B!, by a theorem of N. Smale [Sm]. Choose p € ¥ with
dist(p,po) < €. Then the angle

Ak_l(C7 p) Z kwk

by Proposition 1. Thus C satisfies conditions analogous to all hypotheses of
Lemma 4. But
Volume(C) = 2kw;, + O(ReF?),

while a longer computation shows that
Volume(px C) = 2Rwy, + O(Re*™1),
so that for large R the k-dimensional Euclidean isoperimetric inequality
(Volume(C))* > kFwy(Volume(px C))*!

is certainly false. Thus there is no hope of extending Lemma 4 to submanifolds
of dimension greater than two. On the other hand, the minimal submanifold
¥ has

Volume(¥) < 2wy + 2Rwi_1€F1,

as follows from the proof of Smale’s theorem. For small €, ¥ itself therefore
satisfies the k-dimensional Euclidean isoperimetric inequality

(Volume(0X))F > kFwi(Volume(X))*1.

That this inequality be valid for every k-dimensional minimal submanifold ¥
of R™ remains a challenging conjecture; an eventual proof cannot be found
through the straightforward intermediation of a cone px0JX.

Using Proposition 1, Proposition 2, and Lemma 4, and the monotonicity of
the quadratic function 4w A + A2 for positive area A, we may now prove our
main result.

Theorem 1 Let X? be an immersed compact minimal surface with boundary
in hyperbolic space H". Assume there exists p € X such that 0¥ is radially
connected from p. Then Area(X) and Length(OX) satisfy the isoperimetric
inequality '

4mA < L? — A?,

with equality if and only if ¥ is a geodesic ball in a totally geodesic H?> C H™.
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Remark 3 If 0% has two components, choose two points p; and p,, one from
each component. Then there exists a point q on X with dist(q, p1) = dist(q, p,),
which implies that 0¥ is radially connected from q. Consequently ¥ satisfies
the above isoperimetric inequality.
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AN ISOPERIMETRIC INEQUALITY FOR
A COMPACT N-MANIFOLD IN N-SPACE

Y. D. CHAI

§I. Introduction

For a planer compact set K with area A and perimeter L the classical
isoperimetric inequality states:

L? —47A>0.

Geometric inequality involving integral of absolute mean curvature |M|
and surface area S in 3-space has been founded by I.A.Danelich [4,5]. -

He found the following facts:

(1) IM|(W;) > |M|(W,) if W; and W, are compact sets and W; is a
convex set contained in W, [4].

(2) If W is a compact set with bounded integral of absolute mean curva-
ture, then _

IM[? > (x*/2)S(W) [5].

In this paper we first characterize compact n-manifold in n-space by means
of the topological behavior of their intersections with regular balls. From
the characterization we get analogous results of (1) and (2) for compact n-
manifold in n-space.

§I1. Intersection property of P*(t)-convex sets

This section is devoted to list lemmas proved in [1] and to study a topo-
logical structure of the intersection of p*(t)-convex set and regular balls in
almost all positions in R™.

Now we proceed with some definitions. The tangent space of C2-manifold
M at a point p will be denoted by TM,. If g : M — N is a C%-function
with g(p) = ¢, then the induced linear map of tangent spaces will be denoted
by g« : TM, — TM,. If f is a C?real valued function on a manifold M

65
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and the induced map f, : TM, — T My, is zero, then the point p is called
critical point of f and f(p) is called critical value of f. Let (z1,...,%,) be
a local coordinate system in a neighborhood of p. A critical point p of f is
called nondegenerate if the Hessian matrix [(82 f/dz;0z;)(p)] is non-singular
and then index of the critical point is defined to be the index of the Hessian
matrix.

For a fixed point a in R", distance function d, on a k-dimensional manifold
M in R" is defined by

(3) da(z(u1,...,ux)) = ||z(u1,...,ux) — a|?, where (u1,...,us) is a local
coordinate system on M. It is well known that for almost all a, the function
d, is a Morse function, that is, the function d, has only nondegenerated
critical points for almost all @ in R". From (3), we have

(4) 8da/0u; = 2-0z /Oui(z—a). Thus d, has a critical point ¢ if and only if
vector ¢—a is normal to M at ¢. So if W is an n-manifold with C2-boundary
OW in R™ and ¢ is a critical point of a distance function d,|sw defined on
OW from a point a in R" different from ¢, then the outward normal vector
at ¢ to W is either pointing towards the origin a or escaping from the origin
a. The following Lemma 1 and Lemma 2 show the only critical points of
a distance function whose outward normal vectors are pointing towards the
origin of the distance function play the role to decide topological behavior of
the distance function near the critical points.

Lemma 1. If W is an n-manifold with C?-boundary 8W in R™, the distance
function d,|sw defined on OW from a point a in R" is a Morse function and
ry is a positive critical value of d,|sw such that all the critical points in
the level ry are the critical points whose outward normal vectors are escap-
ing from the origin a and (d,|sw)~1[r,r1) contains no critical points, then
Hi(da|lw™[0,71]) & Hi((da|lw)71[0,7]) for all i, ¢ > 0, where H; is the i-

~ dimensional homology group with integer coefficients.
Proof. see [1].

Lemma 2. Let W be a compact n-manifold with C?-boundary 8W in R™
and H;(W) =0 for all i, i > p. Let d be a distance function such that d|sw
is a Morse function. If H;(d~'[0,7¢%]) # O for some ry > 0, and for some
¢ > p and if we set r; = inf{r | H;(d"'[0,7%]) = 0 for all i > p and for all
r > 1o}, then ry? is a critical value of d|aw and H;(d~'[0,r,%]) = 0 for all
i, t > P.

Proof. see [1].

Now we generalize the concepts of convexity in the following:
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Definition 3. An n-manifold W with C?-boundary 8W in R" is called p*(#)-
convex if each point on OW has at most p principal normal curvatures less
than —1 (with respect to the inward normal vector) and homology groups
H;(W) of W of dimension ¢ greater than p — 1 vanish.

Theorem 4. Let W be a compact n-manifold with C%-boundary W in R".
Then W is p*(t)-convex only if for almost all z in R™,H;(d,|w[0,r%]) =0
for all i,i > p, and for all r less than (t-diameter of W).

Proof. To show the sufficiency let A be the set of all focal points of W in
R"™. Then it is easy result of Sard theory that A has measure zero. Now
suppose that there is a point o in A such that (H; (d,|w ™" [0,70%]) # 0
for some integer iy greater than p — 1, and for some ry less than (t-diameter
of W). Then the distance function d,,|sw is a Morse function. If we set
r1 = inf{r|Hi(d,|w'[0,7%]) = 0 for all i > p and for all r > r}, then ry is
less than (ro+ diameter of W). By Lemma 2, r2 is a critical value of d,,|aw
and Hi(dzylw[0,12]) = 0 for all i > p. Let p1,pa,..., ks Pesrs- ., pon be
the critical points in d,,|aw ~1{r12} such that p;,p,,..., px are critical points
whose outward normal vectors are pointing towards z¢ and pi41, ..., pm are
critical points whose outward normal vectors are escaping from zo. The
construct new n-manifold W* with C%-boundary OW* on which dz,|ows is
a Morse function and d;,|aw+ ~1[r12 — €,712] contains no critical points for
all sufficiently small €. Let Ug4y,...,Un be the sufficiently small disjoint
neighborhoods of the critical points pg41,...,pm in W, respectively. Then
we will construct W* from W by perturbing W in those neighborhoods in

the outward normal directions. Assume that z, is the origin of R and define
W* as follows:

T

ll|

0 <t <1, maxe; — 0},

W*=WU{yeR"|ly=z+t- 6 \i(z) 7=, = € IW,

where the C?-map \; defined on OW has been chosen to have support in
U; and equals 1 on some neighborhood V; of p; contained in U; and ¢; > 0
is constant on U;. Then W* is an n-manifold with Cz-boundary OW* and
then the distance function d,|sw- is a C?-function defined by d,, |aw-(y) =
dzo|aw(m)+e,~2 . )\,‘2(a))+2'6; . /\,-(a:) . [dzO Iaw(.’l))]l/z. Since dxo Iaw is a Morse
function, dg,|aw+ is also Morse function. Also critical points p;, ps,. .., pr
are nondegenerated critical points since d,, |sw+ = d.,|sw around the points.
Since by the construction of W*, set d,,|aw+ 1[0, ;%] is deformation retrac-
tion of dzo|ow 1[0, r1?] for each nonnegative real number r,

r1 = inf{r | H;(dzo|w+"1[0,72]) = 0 for all i > p and for all r > o}



68 Y. D. CHal

This implies that for some integer i greater than p— 1 and for all sufficiently
small positive real number &, H;(dz,|w+"1[0,m12 —€]) # 0.

On the other hand, the set d;,|aw+~1[0,712] has the homotopy type of
dgolows "1[0,r12 — €] with cells e, ..., eM¥) attached, where (i) is the
dimension of the cell which corresponds to the critical point p;. The critical
points are critical points whose outward normal vectors are escapmg from z¢
and those are the only critical points of d,, | s3+= in the level r1 where W=e;,
the closure of the complement of W*. Since H;(dy, |5+ "2[0,m12 — €])
Hi(dzo| gyee2[0,712]) for all sufficiently small positive number ¢ and for all
i, > 0 by Lemma 1, using the Mayer-Vietoris exact homology sequence, we
have the following relations:

(5)  Hi(dsolow-"1[0,1? —¢]) = Hi(dy, lw+ 1[0, —€])
® Hi(dz, ly=="1[0, ri2—¢]) and
Hi(dzolaws"1[0,m1% +€]) 2 Hi(dgo|w-""[0,m1% +])
® Hi(dy, lgee1[0,71%2 +€]) foralli, i >0.

Now consider the following exact homology sequence with the sufficiently
small positive number ¢ such that H;(dz,|w="1[0,r12 — ¢]) # 0 for some
i, t > p:

(6)
g i+1(dzo l8W‘ —1{0’ 7'12 + 5]:dz‘o|3W‘ - [0’ 7'12 - 6])
— Hi(dgolow 110,717 — €]) = Hi(dzolow="1[0,r1% +¢]) = -+

Since H;(dz, |35 1[0, 1% + €]) & Hi(dz, lye2[0, 1% + €]),

Hi(dgo|lw+"2[0,m12 — €]) # 0 and H;(dzo|w="2[0,r1%2 + €]) = 0, the ker of
h is nontrivial. Exactness of the homology sequence (6) shows that the
image of f is nontrivial, that is, Hyy(ds,low+"1[0,m2 —eJUueM U...U
e*®) d, |aws"1[0,r12 — €]) # 0 for some [, I > p. This implies that at least
one of the {A(j)|j =1,...k} is I + 1 for some I, I > p. Therefore we have
a critical point ¢ of d,,|sw with index greater than I, I > p, and on which
outward normal vector is pointing towards z,. Morse index theorem [6] for

the distance function tells that there are ! + 1 principal normal curvatures
KiyyeoosBipy, such that ¢ + ’Cﬁ_lv = tl(zo -q)+ ¢, -, 9+ 'ci1+1—lv =
ti+1(zo — ¢) + ¢ where 0 < t3,...,t141 < 1 and v is the unit inward

1

normal vector at the point q. So Kiy = 5 < -;11- < -
1

=T ki = t1+1r1 < - < - " ro+diameter of

1 <
ro+diameter of W
w < —%. Therefore we
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have a point ¢ at which at least p + 1 principal normal curvatures which are
less than —1. This contradicts that W is a p*(t)-convex set in R™.

§III. An isoperimetric inequality for 1*(co)-convex set

In this section, we use the characterization studied in section II to obtain
a geometric inequality for 1*(co)-convex set in n-space.

Theorem 5. If W is 1*(oc0)-convex set in n-space, then

n—2
V(W") S V(W) + (n : On—l)—l Z nUitl Mi*(W) . ri+1

+ Mu_p*(W) -1+ V(U) - r"

for all nonnegative real number r, where O,_, is the surface area of the
(n—1)-dimensional unit ball, ,Ciy1 = n!/[(i+1)(n—i—1)!], M*(W) is the
i-th integral of mean curvature of boundary of W and U is the n-dimensional
unit ball.

Proof. By Theorem 4, if (d;|w[0,72%]) is nonempty, then the Euler char-
acteristic x(dz|w™*[0,72]) of (d.|w~'[0,7?]) is greater than or equal to 1
for almost all position z and all nonnegative real number r. Note that
(dzlw™[0,7%]) = W N (z + D). So by the “kinematic fundamental for-
mula in n-space,” [2], we have

010z On_yV(W,) = dk
Wn(z+D,)#8

< x(W N (z + D,))dk

/Wn(z-l-D,-)#ﬂ
= 01:02:+-00-2[0n_1V (D) + Opn—1 V(W)

n—2

+(1/n) Y nCit1 - M*(W) - Ma_i—o*(D,)),

1=0
where O; denotes the surface area of the i-dimensional unit ball. So we have

(7) V(W,) V(W) +(n-Ony)™ "i nCip1 - M*(W) - ritl

+ Mu_2*(W)-r* 1+ V(U) -

for all nonnegative real number.
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Theorem 5. If W is a 1*(00)-convex set in n-space, then

My_2*(W) 2 n - [V(U) /v (W)P/"

Proof. The Brun-Minkowski inequality [7] states

®) V(W) =2 V(W) + ff wCi - V(W) -("=0/m y(D)™)]

=1

+n- VW) ry (@) D/nen=1 4 y(D,).

From (7) and (8), if r tends to co, then we have the desired result.

Theorem 6. If W is a 1*(c0)-convex set and K is a convex subset of W,
then .
M,_2*(W) > My, _2*(K).

Proof. This follows from the fact V(K,) > V(W;) and Theorem 5 by letting
r to oo. '
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THE STABILITY OF COMPLETE NONCOMPACT
SURFACES WITH CONSTANT MEAN CURVATURE

SunG EunN Kon

Let M be a complete, noncompact, orientable surface and N be a simply
connected three dimensional Riemannian manifold whose sectional curvature
is nonpositive and lower bounded by a negative constant —a2. It is shown that
if the immersion of M in N has constant mean curvature H with |H| > |a],
it cannot be a stable immersion. -

1. Introduction

Let M be an orientable surface and N be a simply connected three dimen-
sional Riemannian manifold. For a compact domain D of M, let Fpp be the
set of all piecewise smooth functions f : M — R with compact support in D
satisfying the constraint [ fdM = 0. We say that an immersion ¢ : M- N
with constant mean curvature H is stable if the inequality

*) [vsiam > [Rictay +187) 2 an

holds for all f € Fp where 7 is the unit normal vector of M in N, Ric(n)
is the Ricci curvature of N in the direction of n and |B|? is the square of
the norm of the second fundamental form B of M in N. Several years ago,
da Silveira showed that, in R3, there is no stable immersion of complete,
noncompact orientable surface with nonzero constant mean curvature [1].
An observation of his proof gives the following result.

Theorem. Let M be a complete, noncompact, orientable surface. Assume
that the sectional curvature Ky of N satisfies —a? < Ky < 0. If the immer-
sion ¢ : M — N with constant mean curvature H is stable, then |H| < |a].

In the same paper, he also proved that for N = H3, the hyperbolic space,
we must have |H| < 1 and a horosphere is stable with |H| = 1. So, our result
is sharp.
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2. Proof

We begin with the following Proposition. The proof is known (cf. (3.1) of
[1] ), but we think our proof is more straightforward.

Proposition. Under the same hypothesis, the index of L on M is at most
one.

Proof. Let f be the second (Dirichlet) eigenfunction of L on a compact do-
main D of M. Since L is an elliptic operator, the number of nodal domains
of f is exactly two by the Courant’s nodal domain theorem. Set D, = {z €
D; f(z) > 0}, Dy = {z € D;f(z) < 0} and set f; = maz{f,0}, fo =
mzn{f,O} and define g = af; — bf; where a = [}, fodM, b= Jp fidM. Then
g satisfies the constraint condition [ gdM = 0 and (*) implies

@ [ (VAP - (Rictn)+IBE) )M
D
@ + 8 /D (IV2f? - (Ric(n) + |BI2)f2)dM > 0.

Since A;(D;) = A2(D) and f; is the first eigenfunction of D;, respectively,
1 = 1,2, we have

@ / (VAP = (Ric(n) + [B[?)f2)dM = A(D) / f2dM
D D
for : = 1,2. Now (1) implies A2(D) >0. O

Let K be the Gaussian curvature of M. Then the Gauss curvature equation
~ gives

(3) Ki3 — K = h3; — hi1ho2

(4) | |B|* = 4H? + 2(K12 - K)

where K2 is the sectional curvature of N for the section determined by the
orthonormal basis e;, and e; of the tangent plane of M and h;; is defined
by the equation B(e;,e;) = hijn,i,j = 1,2. Then the elliptic operator L =
A + Ric(n) + |B|? associated with the stability inequality (*) can be written
as

L= A+RZC(T])+3H2+K12+(H2 +K12 —K)—K.
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Since

h11 + h22 — hay

h
H2+K12—K=(T)2+h%2“h11h22=( 112 )? + hi; 20,

if we assume |H| > a, (3),(4) and the curvature assumption on N give
Ric(n)+3H? + K12 + (H? + Ky, — K) > 3(H? — a?) > 0.

By Theorem 1.5 of [1], this inequality and Proposition imply that
3(H? - az)/ dM < / (Ric(n) + |B|* + K)dM < oo.
M M

Since 3(H? — a?) is a positive constant, this implies that the area of M is
finite, which is a contradiction to Theorem 1.7 of [1]. This completes the
proof of our Theorem.
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ON THE ELLIPTIC EQUATION
=D Ay 4+ Kun2? =0 AND THE CONFORMAL

n—2

DEFORMATION OF RIEMANNIAN METRICS

YOON-TAE JUNG

§1. Introduction

In this paper, we prove some existence theorem for positive solutions of
the elliptic nonlinear partial differential equation arising from conformal de-
formation of Riemannian metrics.

On compact manifolds of dimension n(> 3) and with metric go, the prob-
lem of conformal deformation of metric is to find conditions on the function
K(z) so that K(z) is the scalar curvature of a conformally related metric
g1 = ut/("= g, where u is a positive function on M.

If M admits k = 0 as the scalar curvature of go, then this is equivalent to
the problem of solving the elliptic equation

(1) i(;?_—:é-l-)Au-'-Ku:J-% =0, u>0,

where A is the Laplacian in the gy metric (See [K.W1,2], [A] or [N]).

Although throughout this paper we will assume that all data (M, metric g,
and curvature, etc.) are smooth, this is merely for convenience. Qur proofs go
through with little or no change if one makes minimal smoothness hypotheses.
For example, without changing any proofs we need only assume that the
curvature candidate K(z) is Holder continuous. In this case, the resulting
metric with curvature K(z) has Hélder continuous second derivatives.

J. L. Kazdan and F. W. Warner ([K.W.1]) have shown that there are
topological obstructions to zero scalar curvature. In fact, if M is a cofnpact
spin manifold with A genus not zero and with first Betti number not zero,
then M does not admit a metric of zero scalar curvature. But they have
studied the necessary conditions of the solvability of (1), that is, K changes
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sign and K < 0 (See [K.W.1]) and they conjectured that these two necessary
conditions on K(z) would be sufficient, much as in Theorem 5.3 of [K.W.3].

In this paper, we shall have another new necessary condition (In fact, be-
cause of the Remark in Theorem 6, this necessary condition may be omitted,
so we can see that their conjecture is right) and prove that if K satisfies our
necessary conditions, then there exists a solution of (1). For basic existence
theorems, we use the method of upper and lower solutions (See [K.W.1] or
[C.H.], pp-370-371). _

It turns out that (1) is easier to analyze if we free it from geometry and
consider instead

2 Au+ Hu® =0, u>0,
(

where H is an arbitrary function and a > 1 is a constant.
§2. Preliminaries on Au+ Hu® =0

Let M be a compact connected n-dimensional manifold, which is not nec-
essarily orientable and possesses a given Riemannian structure g. We denote
the volume element of this metric by dV, the gradient by V, and the asso-
ciated Laplacian by A. The mean value of a function f on M is written f,
that is,

1
7= a0 b

We let H, ,(M) denote the Sobolev space of functions on M whose deriva-
tives through order s are in L,(M). The norm on H, ,(M) will be denoted
by || ||s,p- The usual norm L2(M ) inner product will be written || ||.

Lemma 1. Let (M,g) be a compact Riemannian manifold. There exists a

weak solution w € Hj (M) of Aw = f if and only if f = 0. The solution w
is unique up to a constant. Moreover, if f is smooth, then w is also smooth.

Proof. See Theorem 4.7 in [A].

Lemma 2. Let H € L,(M) for somep > n = dim M. If there exist function
uy,u— € Hp p(M) such that

| Auy + Hul <0, Au_+ Hul >0,
with 0 < u_ < uy, then there is a u € Hy p(M) satisfying (2) and u_ < u <
u4. Moreover, u is smooth in any open set in which H is smooth.

Proof. For detail, see Lemma 9.3 in [K.W.3] or Lemma 2.6 in [K. W.1] or a
standard argument in pp. 370-371 in [C.H].

Here u4 and u_ are called upper and lower (or super and sub) solutions
of (2), respectively.



ON THE ELLIPTIC EQUATION 'in”—_“}lAu+ Kunii =0 7
Lemma 3. If a positive solution u of (2) exists and H # 0, then H must
change sign and H < 0.
Proof. See Lemma 2.5 and Proposition 5.3 in [K.W.1].

Lemma 4. If (2) has a positive solution for given H and if Hy = mH for
some constant m > 0, then (2) has a positive solution for H,.

Proof. If u is a solution of (2) for H, then m~1/(3=Vy is a solution of (2) for
H1 =mH.

Theorem 5. [Existence of an upper (weak) solution] Let H(# 0) belong to
C*°(M) such that H changes sign and H < 0. Then there exists an upper
solution uy > 0 of (2), that is,

Auy + Huj <0.

Proof. Taking the change of variable uy = e?,

Auy + Hul = e®(Av + |Vo|* + He® < 0.
Hence it is sufficient to find v satisfying
(3) Av + |Vv|* + He®™ <0,

where ¢ = a — 1 > 0 is a constant. .

But Lemma 1 implies that there exists a solution w of Aw = H — H. We
can pick b > 0 so small that |e®” — 1| < ~H/(4||H||o) and b|Vw|? < —H /4.
Let e = b. Put v = bw + r. Then

Av + |Vo|? + He® = A(bw + 1) + |V(bw + r)|? + Hebwter
= bAw + b?|Vw|? + bH e
= bH + b*|Vw|? 4+ bH(e** — 1)
< bH + b"’|Vw|2 + b||H || oo |e°"’” —1|
< bH — bH /4 — bF/4 =bH/2 < 0.

Thus u4 = e® = e®**7 is an upper (weak) solution of (2).

From the above theorem, if H < 0, then we can always have an upper
solution of (2). Hence in order to show that (2) has a solution, it suffices to
find a lower (weak) solution u_ such that 0 < u_ < u4 and

Au_ + Hu® > 0.
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§3. Scalar curvatures on compact manifolds

In this section, we assume that M is a compact connected n(> 3)- dimen-
sional manifold which is not necessarily orientable and has a given Riemann-
ian structure g.

We consider the first eigenvalue of Lu = —Au — Hu, that is,

— : 2 _ 2 2
M=o (V] / Ho*dV)/|lo]

= inf(|| Vo) —/Hvde) on {v € Hy (M), |v|* = 1}.

Note that the eigenfunction is never zero and smooth. In fact, since
|Vv| = |V|v|| almost everywhere (See Proposition 3.69 in [A]), the varia-
tional characterization of A\; shows that one can take v > 0, while the strong
maximum principle shows that v > 0. Thus the eigenspace has dimension 1
and we can assume that the eigenfunction is positive.

Now we prove another new necessary condition and prove that these nec-
essary conditions are also sufficient conditions for the sovability of (2).

Theroem 6. If a solution u of (2) exists, then the first eigenvalue of Lu =
—Au — mHu is negative for some m > 0.

Proof. Let u; be a solution of (2) for H. By Lemma 4 there exists a large
number M > 0 such that 0 < u = M'F%'l'ul <1 and

Au+ MHu® = 0.

Choose 1 < ¢ < a and put p = (¢ —a)/(a —1). Then —1 < p < 0. By the
change of variable v = u!/(P+1) je. y = v(P+1)

Av + (p|Vv|?)/v + M(p+ 1) Hv? = 0.
By multiflying v2~9 and integrating this equation,
R / 2= g1Vl gy 4 p / |Vo|2o!~9dV
+ M(p+1) /Hv2 dv =0,

/(p — 24 q)|Vo|?v'~7dV + M(p+1)! /Hv2 dv =0.
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Since0 <u<1,500< v <1 Thus
—/(p—-2+q)|Vv|2v1'qu—M(p+1)"1/Hv2dV
2/|Vv|2dV—m/Hvde,

where m = M(p + 1)™! > 0 and ¢ is so close to 1 that 2 — p — ¢ is greater
than 1. Hence the variational characterization of A; shows that \; < 0, that
is,

—Af —mHf = A f, f>0,
Af_+me="A1f’ f>0,

where f is an eigenfunction.

Remark. We may consider the following fact instead of Theorem 6, that is,
if H changes sign, then the first eigenvalue of Lu = —Au — mHu is negative
for some large m > 0. In fact, since H changes sign and M is a compact
manifold, there exists a smooth nonnegative function u on M such that u
is positive on some open ball in {r € M |H(z) > 0} and u = 0 otherwise.
Then, for sufficiently large m > 0, ||[Vu|> — m [ Hu?dV < 0. Thus the
first eigenvalue of Lu = —Au —mHu is negative for sufficiently large m > 0.
Therefore, by the following Theorem 7, we can see that Kazdan and Warner’s
conjecture is right.

Theorem 7. If the first eigenvalue of Lu = —Au — mHu is negative for
some m > 0, then there exists a solution of (2) for mH, so by Lemma 4,
there exists a solution of (2) for H.

Proof. Step 1. Since mH < 0, Theorem 5 implies that there exists an upper
solution u4 of (2) for mH.

Step 2. Now we have only to show that there exists a lower solution
0 < u_ < uy of (2) for mH. Like the case of the existence of an upper
solution of (2), we consider the equation (3) for mH instead of (2), that is,
we show that there exists v such that e’ < uy and

Av + |Vo|> + mHe®™ > 0.
Let f > 0 be a corresponding eigenfunction of L, that is,

(4) Af +mHf = -Mf, f>0.
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Since cf is also an eigenfunction of (4), we can assume that f > 1. Now put

v = b(f7 —r")1*H/VT 1t where r is a sufficiently small positive real number
and b and ¢ are chosen suitably so that our conditions are satisfied. Then

Vo = b(r + V) (f" =)V fTIVE

B = b+ VAN = F A+ T+ g

Since L7~ = —ILL_(W“:)%”’—I = 2F[flog f — r(logr + 1) — +0 as

r — 40, —-7— + i r, > 0 for sufficiently small positive real number r.
Hence for et = b(r + /7)(1 — r")1/V"

Av + |Vo|?> + mHe™

> Av+mHe®

= s+ VAT =P (4 L e
+ mHeS =1’ :}-fl—r{ }1N']

> B + VRS — ) - 1[—/\1f
+mB eI (L2 )

For sufficiently small r > 0, ( ;,."_"r, Y/VT 5 1asr — +0 (Note the Remark).
Therefore, pick b > 0 so small that 0 < e’ <uy and

|ecb(f'—r')1+§' ( )1/f 1 < -\ .
2m||H ||
Then u_ = e’ is our desired lower solution of (2).

Remark. Put y = {(1 —r")/(f" — f")}}/V". Since r" — 1 as r — +0,
L’Hospital’s theorem implies that , _

1—r" —r1"(logry +1)
fr—rr = frilog f —rim(logry +1)

Applying the theorem once more,

forsome 0 < r; <.

1—r" —ra"2ry(logrg + 1)2 —ry™
= —
fr=rt  frery(log f)? — ram2rg(logry + 1)2 — o™
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for some 0 < rg <ry <r. Then -

lim | log y|
= lim li log —r3"ry(logry +1)% —ry"
r=0 |7 °° Frary(log f)? = ramiry(logr + 1) = 1™
. 1 _7.21'2,.2 lo ro + 1 2 _r2r2
: }:E}o | vy o8 frary(log f)? "(ng"rz(log) rg +1)2 —ry™
. —ry"2ry(log ra+1)8 —ry"2(logry +1)2 — 3ry™2(logry + 1
- rlzlgo 2\/7.—2| Lo 2+_32rzr:(lo(g ri : ]-.'-)2 )_ ro™? 2"(logrz ¥ 1)
_ frera(log £)? + f72(log f)? — ra"2ry(logra +1)°
frarz(log )2 — ra2ra(logry +1)2 —ry™
r2"?(logrs + 1)2 +3ry72(logre +1)
frery(log f)? — re"2ra(logra + 1)2 —ra™
~ 0 because yFzlogrs 1)} — 0 3s 7 = 0.

Added in proof. [1]. In [K.W.3], J.L.Kazdan and F.W.Warner conjectured

that there exists a solution of
(5) Av+ He” =0

if H(# 0) changes sign and H < 0 on a compact manifold with dimension
n(> 3). The equation (5) is related to the problem of pointwise conformal
deformation of metrics on two dimensional compact connected manifolds with
zero curvature (For details, see [K.W.3]). They have studied the necessary
and sufficient conditions of the solvability of (5) on the two dimensional
compact connected manifolds, that is, a solution of (4) exists if and only if
both H < 0 and H changes sign (Here their proofs for sufficient conditions
depend on the dimension of the given manifold). These necessary conditions
must still be satisfied in the n(> 3)-dimensional case, too. They conjectured
that these two necessary conditions on H for the solvability of (5) on M of
dimension n(> 3) would be sufficient, much as in Theroem 5.3 of [K.W.3]
(Also see some open problems in [K], p.47). But like the proof of Theorem 7,
we can prove the existence of a solution of (5) by the method of upper and
lower solutions, regardless of the dimension of the given manifold.

[2]. When the given manifold admits zero scalar curvature, by the proofs
of Theorem 5 and Theorem 7, we can see that there exist many conformal
metrics with K as the scalar curvature if K ch>~res sign and K < 0.
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BOUNDARIES FOR ALGEBRAS OF ANALYTIC FUNCTIONS
ON DUAL BANACH SPACES

YUN SUNG CHOI AND SUNG GUEN KIM

Introduction

Let E be a Banach space with the open unit ball B(E), the closed unit ball
B(FE) and the unit sphere S(E). We denote by A*(E) the Banach algebra
of all bounded continuous complex-valued functions on B(E), holomorphic on
B(E) with sup norm, and by Ay(E) the closed subalgebra of A®(E) which are
uniformly continuous on B(E). For the dual Banach space E* of E we denote
by Ay+(E*) the Banach algebra of all w*-continuous complex-valued functions
on B(E*), holomorphic on B(E*). Each of these algebras is an infinite dimen-
sional analogue of the classical disc algebra A(D) where D is replaced by B(E).
In [3] it was shown that Ay(F) is a proper subspace of A®(E) as long as E is
a infinite dimensional Banach space. For general background on holomorphic
functions, we refer to [4] and [8].

Let K be a Hausdorff topological space and A a function algebra on K. A
subset F' of K is called a boundary for A if sup If(z)] = sup |f(z)| for all

f € A. If the intersection of all closed bounda;les for A is agam a boundary
for A, then it is called the Shilov boundary for A and denoted by JA. Since A
is not a uniform algebra in general, the existence of the Shilov boundary for A
is not guaranteed. In fact, Globevnik in [6] showed that the Shilov boundary
for Ay(Cp) does not exist. See also [3] for a more complete discussion of this
situation.

A point z € K is called a peak point for A if there exists some f € A such
that f(z) =1and |f(y)| <1, y# zin K.

We recall some definitions and results about a uniform algebra (see, e.g.,
[7]). If A is a uniform algebra on a compact Hausdorff space K, it is well known
that the Shilov boundary for A exists. The set of all peak points for A is called
the Bishop boundary for A and denoted by pA. The set of all real extreme
points of M is denoted by Extg(M). A point e of M is called a compler extreme
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point of M if there is no nonzero z in E with {e+dz : |\ <1, AeC}C M.
The set of all complex extreme points of M is denoted by Eztc(M).

Let A* be the dual Banach space of A and let Sj be the intersection of the
unit sphere S(A*) of A* with the hyperplane {z* € A* : z*(1) = 1}. To each
z € K corresponds the element 6, € Si, where §;(f) = f(z) for all f €A
The set YA = {z € K : &, € Extr(S})} is called the Choquet boundary for
A.

It is a well-known result that if A is a uniform algebra on a metrizable
compact Hausdorff space K, then pA = xA and the closure of pA is 9A.

Aron, Choi, Lourengo and Paques [2] showed that for 1 < p < oo, pA (L) =
XAy (£,) = S(£,) and 0A,+(£,) = B(£,). In this article, generalizing their re-
sult on a dual Banach space E* of a separable Banach space E, we will show
that pAy«(E*) = xAuw+(E*) = Ezxtc(B(E*)) and that 0A,«(E*) is the weak-
star closure of Eztc(B(E*)). Applying this result to £, (1 < p < 00), we will
prove that dAy(£,) = dA°(L,) = S(£,), which is a different proof from that
given in [2].

Main Results

Lemma 1. Let E be a separable Banach space. Then E* is separable with
respect to the weak-star topology.

Proof. Let {z,} be a countable dense subset of E. For each positive integer
n choose 7%, € E* so that ||z%|| < 1 and |2}(,)| > ||zall/2. Let L be the set
of all finite linear combinations of the elements z}, with rational coefficients.
Then L is countable. If the weak-star closure of L is not E*, then there is
nonzero z in E such that z*(z) = 0 for all z* € L. Since {z,} is a dense
_ subset of E, we can choose a sequence (z,;) from {z,} converging z in norm
topology. From this it follows that

"xn,‘ —z| 2 Il‘f.,(zn,- —z)| 2 I'T:zj(mnj)l 2 """'nj"/z'

Hence ||z, converges to 0 and z = 0, which contradicts that z is nonzero.

QED.
Theorem 2. Let E be a separable Banach space. Then
pAu(E*) = xAw (E*) = Ezxtc(B(E™))

and 0A,.(E*) is the weak-star closure of Extc(B(EY)).
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Proof. Let P(E*) be the uniform algebra generated by the constants and
restrictions to B(E*) of all continuous linear functionals on (E*,w*). Since
(E*,w*) is separable by Lemma 1, we obtain xP(E*) = Eztc(B(E*)) from
Arenson’s result in [1]. Since B(E*) is metrizable and compact with respect to
the weak-star topology, pP(E*) = yP(E*) = Eztc(B(E*) and OP(E*) is the
weak star closure of Eztc(B(E*). Since pP(E*) C PAw+(E™), it is clear that
Ezto( BE*) is contained in pA,.(E*). By Globevnik [5] it is easy to see that
pAw(E*) C Extc(B(E*). Hence pA,.(E*) = XAw(E*) = Eztc(B(E*)) and
dAy-(E*) is the weak-star closure of Extc(B(E*)). Q.E.D.

From Theorem 2 it follows that for 1 < p < oo,
pAL (b)) = ExtC(B(Zp)) = 5(,),
which will be used in proving dAy(¢,) = dA®(£,) = S(£,).

Theorem 3. Let 1 < p < co. Let P be a finite dimensional coordinate
projection such that

¢
P(z)=) aneq;, (z=(z;)€d,).

=1

Let
¢

Splp) ={(@:) €4, : Y |za,P =1} (1 <p < 00)

i=1
and
Sp(los) = {(z:) € Lo : la:,,,.l =1,5=1,...,¢}

If D C By(¢,) is a boundary for Ay(£,), then P(D) contains Sp(£,).

Proof. Let us consider first the case 1 < p < 0co. Assume that P(D) does not
contain Sp(¢€,). Then there is a point zo € Sp(¢,) \ P(D). Since A, (¢, C
Ay(¢y), there is f € Ay(£,) such that f(zo) = 1 and | f(z)| < 1 for every
z € B(¢L,), = # zo.

Define F : B(£,) — C by

F@)=foP(s) (zeB(t)).
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Then F € Ay(4,). Since P(D) is compact and z¢ ¢ P(D), there is some § > 0
such that |f(z)| <1 — 6 for all z € P(D). Thus

sup|F(z)] = suplfoP(ﬂv)l
< sup |f(H)I<1-6.
teP(D)

But F(zo) = f(P(z0)) = f(20) = 1. Hence sup,¢p IF(:I:)I < ||F|| = 1, which
implies that D is not a boundary for Ay(¥4,).
In case p = oo, the proof is similar to that of Theorem 1.1 in [3]. Q.E.D.

Theorem 4. Let 1 < p < co. Then 04y (¢,) = 0A®(¢,) = S(£,).

Proof. Suppose that D is a boundary for Ay(4,). Let z = (z;) € S(¢,) and
€ > 0 be given. Choose a sufficiently large positive integer N satisfying

Lo (1 1 ni/r N-3
(-(-59) <

and choose also a positive integer k so that

oo 1/p ]
( > ijl”) < —e.
) N

J=k+1

Put o = (z!,...,2, (1 — £5, |2;/7)¥/7,0,0,...). Then a is a finite vector
in S(£,). Let P be a finite dimensional coordinate projection with support
{1,2,...,£}, where £ is the smallest positive integer such that a € Sp(¥,).
Clearly 1 < £ < k+ 1. By Theorem 3, there is y = (y;) € D such that
IP(w)ll, > 1 — %e. It follows that

lz—9ll, < lle—ellp+lla-yl,

k oo
< X ziei—al,+1I X el
Jj=1 j=k+1
HIP@) = all, + 1| X vieill
j=€+1
oo 1/p
< 2( > ijl”) +11P(y) — all, + (1 = | P(y)|2)"/?
j=k+1
2 1 1 (1_ P\ 1/p
< ﬁ“ffv‘”( ‘( "1\7) )
< E'C + V- 36 =€

N N



BOUNDARIES FOR ALGEBRAS OF ANALYTIC FUNCTIONS 87

Hence z € D and we proved that S(¢,) C D if D is a boundary for Ay(¥,).
By the Maximum Modulus Theorem, S(¢,) is also a closed boundary for both
Ay(£,) and A>({,). Therefore 0Ay(¢,) = S(£,). Since every boundary for
A>(£,) is also a boundary for Ay(4,), A% (¢,) = S(¢,). Q.E.D.

It follows immediately from Theorem 4 that the converse of Theorem 3
holds for 1 < p < oo and that D is a boundary for Ay(¢,) if and only if it is a
boundary for A%°(¢,) for 1 < p < co.
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ON THE ADJOINT LINEAR SYSTEM
DONG-KWAN SHIN

§1. Introduction

Throughout this paper, we are working on the complex number field C.

‘The aim of this paper is to explain the applications of theorem A. In
the surface theory, the adjoint linear system has played important roles and
many tools have been developed to understand it. In a threefold, we don’t
have any useful tools so far. Theorem A implies that it is enough to compute
the dimension of the adjoint linear system to check the birationality. We
can compute, somehow, the dimension of the adjoint linear system. For
example, we can get an information about °(X,Ox(Kx + D)) from Euler
characteristic of |Kx + D| and some vanishing theorems. :

We are going to show the applications of theorem A in cases of smooth
threefold of general type, smooth Fano variety, and Calabi-Yau threefold.

§2. Main

Let X be a smooth projective threefold.

We denote a linear equivalence by ~. Denote by Div(X) a free abelian
group generated by the divisors on X. Denote the canonical divisor of X by
Kx.

Then we say that D € Div(X) is nefif D - C 2 0 for any curve C on X,
and big if k(D, X) = dim X, where x(D, X) is the Kodaira dimension of D
on X. :

For D € Div(X), ®|p| denotes the rational map associated with the com-
plete linear system |D| if A%(X, Ox(D)) # 0. Let’s denote h%(X,Ox(nD))
by pn(D).

89
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Theorem 1. (Kawamata-Viehweg va.m'shing theorem) Let X be a nonsin-
gular projective variety and D € Div(X). If D is nef and big, then H'(X,
Ox(Kx -I-D)) =0 for all : > 0.

For a proof, see Kawamata [2].

Lemma 1. Let X be a smooth projective threefold, and D € Div(X). Then
we have the following:
(i) x(Ox(D))=D*/6 — Kx-D*[4 + D-(K% +c2)/12 + x(Ox),
where c; is the second Chern class of X. Moreover, x(Ox) = —c; - Kx [24.
(i) Kx - D? is even.
Proof. (i) is the Riemann-Roch theorem.
(ii) comes from the following:

x(Ox(D)) + x(Ox(-D)) = —Kx - D*/2+2x(Ox) € Z. O

Lemma 2. Let X be a smooth threefold with a canonical divisor Kx. Let
D € Div(X).

(i) When Kx is nef and big, pn(Kx) = n(n—1)2n—1)

K% +(1-2n)x(Ox)

12
forn2=22.
(i) Whea —Kx is ample, pn(~Kx) = 22X DD pegy 1 o0 41) for
n=l.

n®D?® nD-c,
>
6 + 12 forn 2 1.

(iti) When Kx ~ 0, and D is nef and big, po(D) =

Proof. Suppose that L € Div(X) is nef and big.

(Ox(Kx + L)) = K(X,0x(Kx + L)) — h}(X,0x(Kx + L))
+ RA(X,Ox(Kx + L)) - B¥(X,0x(Kx + L)).

Since L is nef and big, h*(X,Ox(Kx + L)) = 0 for i > 0 by theorem 1. Thus
x(Ox(Kx + L)) = h°(X, Ox(Kx + L))-
For (i), take L = (n — 1)Kx.
pr(Kx) =h*(X,0x(Kx +(n — 1)Kx))
=x(Ox(Kx + (n —1)Kx)).
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Then our claim follows from (i) of lemma 1.
For (ii), take L = (n 4+ 1)(—Kx).

X(Ox) = ho(X, Ox) - hl(X, OX) + hz(X, Ox) - ha(X, Ox).

For i > 0, h'(X,0x) = h3"(X, Ox(Kx)) = 0 since —Kx is ample. So
X(OX) = ho(X, Ox) =1.

Pa(Kx) =h°(Kx + (n + 1)(—Kx)))
=x(Ox(Kx + (n + 1)(—Kx))).

And apply (i) of lemma 1.
For (iii), take L = nD. Since Kx ~ 0, x(Ox) = —c; - Kx/24 = 0. We
will get our claim from (1) of lemma 1. O

Lemma 3. Let X be a smooth threefold with a canonical divisor Kx. Let
D € Div(X).

(i) When Kx is nef and big, po(Kx) 2 4 forn 2 2.

(i) When —Kx is ample, p,(—Kx) 2 4 for n 2 1.

(iii) When Kx ~ 0, and D is nef and big, p,(D) 2 2 forn > 2.

Proof. When K is nef, and L is nef, then L - (3¢c; — ¢?) 2 0 by the pseudo-
effectivity of 3c; — ¢? (See Miyaoka [4].) ’

For (i), take L = Kx. It follows that x(Ox) < 0 from (i) of lemma 1.
Since K% is a positive even integer, and x(Ox)) <1,

n
pn(KX) g

(n—1)6(2n—1)+(2n._1)g4 forn 2 2.

For (ii), —K% is a positive even integer since —Kx is ample.

pa(=Kx) 2 n(n + 11;(2n +1)

+(2n+1)214 forn 2 1.
For (iii), take L = nD. Since Kx ~ 0, and D is nef, we have D - ¢, = 0.
Thus, '
n3D?
6

pn(D) 2
Hence pp(D)22forn22. O

gg- forn 2 2.
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Theorem A. Let X be a smooth projective threefold and let D be a nef
and big divisor on X. Assume that h®(X,0x(mD)) 2 2 for some positive
integer m. Then ® |k, 4 np) is birational for a positive integer n 2 m+4 such

that h%(X,O0x((n — m)D)) 2 1.
For a proof, see Shin [5].

Theorem B. Let X be a smooth projective threefold with a canonical di-
visor Kx and let D be a nef and big divisor on X.
(i) When Kx is nef and big, ®|,x| s birational forn 2 7. (cf. See Matsuki

% -
(i1) en —Kx is ample, ®|_, x| is birational for n 2 4.
(ili) When Kx ~ 0, ®|p| is birational for n 2 6.

Proof. We are going to apply theorem A to each case. So, first of all, we
have to choose the number “m” in the theorem A as small as possible.

For (i), take m = 2. For an integer n 2 7, ®nkx| = ®|Kkx+(n-1)Kx| a0nd
n—12m+4. B%X,0x((n—1)—m)Kx)) 2 4sincen—1—m 2 2. Hence
theorem A implies that ®|, k| is birational for n = 7.

For (ii), take m = 1. For an integer n 2 4, by similar way, we can show
that n satisfies all the conditions in theorem A. Hence |,k | is birational

for n 2 4.

For (iii), take m = 1. Since Kx ~ 0, @k, +np| = ®np|- For an integer
n 2 6, n satisfies all the conditions in theorem A. Hence @, x| is birational
forn26. O

Remark. (i) Smooth threefold of general type is of the case (i) in the
theorem B. .

ii) Smooth Fano threefold is of the case (ii).

ii1) Calabi-Yau threefold is of the case (i1i).
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4]0l 4.

Zc(f) = 2K7(f).

2 AN E Fee 3P0l Yot ouAAlE Teged, 342 o s 3
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M EEEXEE T ELER

4 BE gl* Yool tald gEHos APsE Aol thetel Tot A f(z)
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Y- lej| 720l 3ok 2. WA f(z)d dd =¥ (logarithmic derivative)?!
f'(2)] f(z)& D& o] FolW},
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1 1 2Recj
+;(z—-c,-+z~— N )

s
el



98 7 9 @

olg T A f(z)ol didte] ¥ J(f)E

I(f)=Utz 11z~ Recj| < lme;l}

2 Asd, RUJ(F) 4314 @& ZE 2ol dstg (2)9 &4 39 dAFF £ 2
o] 3$Re B35 vy S 44 4 & v o] AL FE A9 FFAAM F2
3 o8 g P} 293, RE 2 ¢ RUJ(N) tstd f'(z) # 0ol B3 ¥t. =P
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Jensen A, f(2)7 gl* WrolB, f'(2)9 BE d23F gAzL J(f)ol 43
o}
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E Jensen 9259 3 goltt. £ Jensen FE & o] &3, f(M(2)d RE F2
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$393% [L, Chapter 1, Theorem 6]. 23 20 ue}, =& I Col i3l
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of FelX= e B 2 &84, F CoM s f(2)d 3/ p7t
2/380 A AT pr7l 180 Ao APog gsis o Wiz P74sts
BAE S Axge e 459E dilsy B,
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m,n=0
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3t f(M(2): A9 1Ry,

wEtA f(z)ol AP A28 453 2ok f(2)7F 49 0 < Rez < 2molA 7HA =
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(f(2)9] ZE Jensen 4] FAW) J(f)) =E J@ 9] (connected compo-
nent)old 541 (A)7} AAgF e HPAe TG oA f(2)d 2ANSA 1un
Zod, f(z)9] 29 A% Auigkel Pol £V WA, AP ¥4 Ao o
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ol e wAolA, $E FANSI 1ntk FE BE f € LPA4 dstd (C)7)
AYUL (Polyat olnth ¥R o g FAE oJ3igich) $Fh: o 223
gz JAAE g5 FA7 FFH/E T

9. LPAS] 749 ¥4 f(2)7h 99 a <Rez <boA k719 2& 7HAE
f'(2)e a— A<Rez < b+ AdA Holx k—1719 2& /4.

o WA e A% BesA §8e TAARS Wtk £ RE f € LPAE
Imz| < AMA® 2& AN E AAS GPAEE olF2 Yde IPolmz, ol
BAE 2357 AR E e BAL FPSeE ST,

94, AAS B4 P(z)7h 99 |Imz| < AN 2& gz 4. P(2)7
99 a <Rez < bl k 79 2¢& 78 P'(2)€ a — A< Rez < b+ Ao
Aox k—-171¢9 2& 74 |

ABSTRACT

Let f(z) be a real entire function of genus 1*, that is f(z) can be expressed

in the form f(z) = e=** ¢(z), where a > 0 and g(z) is a real entire function
of genus at most 1. In this paper, we obtain the following theorems.

Theorem A. Assume that a,b, a < b, do not lie in the union of the Jensen
disks of f(z). If f(z) and f'(z) have 2J and 2J' nonreal zeros in the region
a < Rez < b, then f'(z) has exactly J — J' Fourier critical zeros in the
interval [a, b].

Theorem B. If there is a positive constant A such that f(z) # 0 for [Im 2| >
A, and if f(z) is at most of order p, p < 2, and minimal type, then for each
C > 0 there is a positive integer ny such that for all n > n, f™(2) has only

real zeros in |Rez| < Cn¥.

Theorem C. If there is a positive constant A such that f(z) # 0 for |Im 2| >
A, and if f(z) is of order less than 2/3, then f(z) has just as many Fourier
critical points as couples of nonreal zeros, including the case that f(z) has
infinitely many nonreal zeros.

The definitions of the Jensen disks of f(z) and the Fourier critical zeros
of f'(z) can be found in [CCS1] and [P1].
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A METHOD OF PROLONGATION AND
HOLOMORPHIC EXTENSION OF CR FUNCTIONS

CHONG-KYU HAN AND JAE-NYUN YOO

Introduction

In this paper we survey some jet theoretic aspects of tangential Cauchy-
Riemann equations and propose several problems on holomorphic extension
of CR functions.

Consider a system of partial differential equations of order m
(1) Ax(z,uq: e <m)=0, A=1,---,1,

for a system of unknown functions u = (u!,--- ,u?) of independent variables
z = (¢!, -+ ,z"), where a = (¢!, - -+ ,a") are multi-indices, |a| = a' +--- +
a™ , uq denotes the g-vector (32r)*t -+ (3%)* u and uq = u if |a| = 0.

A compatibility equation of (1) is a differential equation obtained by
prolongation, that is, a process of differentiation and algebraic operations on

(1). To be precise, let X be an open set containing the origin of R™ and U

the space of g real variables u = (u!,--- ,u?). For each nonnegative integer r,
the r-th jet space, denoted by J.(X, U), is the space of the partial derivatives
of unknown function u = (ul,--- ,u?) up to order r, namely,

J(X,U) = {(=,u”) : 2 € X},

where u" = {(ua) : |a| < 7}
A differential function of order r is a smooth (C*°) function a(z, u(")
defined on J.(X,U). By A we denote the algebra, of differential functions

§81-2 of this paper was presented on Nomber 9, 1991 and §§3-4 on Februrary 17, 1992
by the first author at Seoul National University. Research partially supported by grant
P91004 of Pohang Institute of Science and Technology and KOSEF-GARC.
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of order r. For integers r,s with s > r, we define a projection map =;
A — A by

a(z,u'®), if the highest order of the arguments of a < r

0, otherwise .

my(a(z,u?)) = {

The jet approach to differential equations is to study the properties
of the subvariety Sa of J,,(X,U) defined by (1), or equivalently, an ideal A
of A(™) §enera,ted by Ay, A=1,---,L
If a(z,u'™) is a differential function of order r, for each i = 1,--- ,n, i-th
total derivative of a is

R 3y

|la|<r k= 1

where a,i is the multi-index (a!,--- @'}, a' + 1,a**!,--. ;a™). The first
prolongation of (1), which we denote by A1), is an ideal of A(™+1) generated
by (1) and its total derivatives. r-th prolongation of (1), denoted by A", is
an ideal of A(™+7) generated by (1) and its total derivatives of order up to
T

A compatibility equation of (1) is an equation of the form a(z,u(") =
0, where a is an element of a prolongation of (1) of any order. In general,
one loses information by differentiating a given system of partial differential
equations, however, if the highest order terms are eliminated in the process
of algebraic operations, the resulting equation, which will be called a com-
patibility equation of Finzi type (cf. [CH],[OLV]), reveals those properties of
solutions that are due to lower order terms of (1). More precisely, a compat-
ibility equation of (1) of Finzi type is an equation b(z,u(™**)) = 0, where
be rmmit(AM)\ A®), for some r > s.

Example 1. Consider a system of first order equations for two real unknown
functions u, v of two variables (z,y)

(2) Ay =u, +yv? =0
and Ay =uy+u+az?=0.

Let A = (A;,A;). Then the first prolongation A is the ideal in A
generated by A1, A, D;A; = uzs + 2yvv,, DyA; = ugy + v +
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2yvvy, DzA; = uzy +uz + 2z and DyA; = uyy + uy. We see that
DyA, — D;A; yields a compatibility equation of Finzi type

v? + 2yvvy —uz — 2z = 0.

We refer to [CH] for general method of construction of compatibility equa-
tions of Finzi type.

In §1 of this paper we introduce the notion of complete system.
In §2, we show that CR equivalences between certain pseudoconvex real
hypersurfaces of a complex space satisfy a complete system of order 3. In §3,
we present two basic theorems on the problem of holomorphic extension of
CR functions. In §4, we discuss the rigidity of CR embeddings, and finally
propose several problems on holomorphic extension from the viewpoint of
the rigidity of embeddings.

§1. Prolongation to complete systems

In certain overdetermined cases, (1) has a level of prolongation in
which one can solve for all the (m+r)-th order partial derivatives of (ul, - - - , u?)
in terms of lower order derivatives :

(11) UL=H:;($,Uﬂ1|ﬂ|Sm+T—-1), i1=1,---,¢, la|=m+r,

where each H! is smooth in its arguments. (1.1) is called a complete system
of order m +r. In this case (1) is said to admit a prolongation to a complete
system of order m + r, which means that a prolongation AP(") of sufficiently
high order p(r) contains differential functions of the form

ufx——H;(w,uﬂ:IMS_m-i—r—l), t=1,---,q, alla with |a|=m + .

Example 1.1 Consider the following overdetermined system of 1st order
equations for two unknown functions u,v of independent variables (z,y).

Ar=u,+zy=0
(]_.2) ' Az Euy-l-v,, =0
A3Evy+u2+y2+1=0.
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Total differentiate A;,A; and Az to get

DAy =uzz +y=0

DyAy =uzy+2=0

D;As =uys +v:2 =0

DyAs = uyy + vy =0

DAz = vy +2uu, =0
DyAs = vyy + 2uuy + 2y = 0.

The above six equations can be solved for six variables uzz, Uzy, Uyy, Vzz; Vzy
and vy, thus (1.2) admits a prolongation to a complete system of order 2.

If a system A of order m admits a complete system of order m + r
then the AP(") is the final level of prolongation we want ; further prolonga-
tion provides essentially no more information. If the subvariety So defined
by (1) is a manifold and satisfies a mild condition called regular (cf. [P1]) the
existence of a complete system of order m + r implies that for any integer ¢
with t > p(r) the submanifold of Jy4¢(X,U) defined by A+ s diffeomor-
phic to the submanifold of Jp4,(r)(X,U) defined by AP | via the natural
projection map Jm4t(X,U) — Jmipr)(X,U). If (1) admits a complete
system then the problem of the existence and properties of solutions reduces
to that of ordinary differential equations as we see in the following

Proposition 1.2  Suppose that a system of functions u = (ul, - ,ud)
defined on an open set X of R" satisfies a complete system of order m
(1'3) ‘ ufx = H;(w’u(m—l))’ i=1,--+,q, |a| =m,

where each H! is real analytic in its arguments. Then u is real analytic
provided that u is m times continuously differentiable.

Proof. On Jn-1(X,U) we define a real analytic n-dimensional distribu-
tion D defined by the system of 1-forms

n
w =du! — 2 uldz*,
k=1

n
J_ 1, j k
wpy = duf, - Zu"e’kdx ,
k=1

and w) = dul — Z Hf;’k(:v, w(m=1)dzk,
k=1
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where j = 1,---,q, |B| <m—=2, |aof=m— 1, and B,k is the multi-
index (B,---,BF 1, BF + 1,881 ... g™)  if = (f,---,B"). Let

= (f*,--+, f9) is a system of functions that sa.txsﬁes (1.3) we claim that
the n- dlmensmna.l submanifold Z of J,,—;(X,U) defined by

w,_,(x,a‘)'fj : j=1’""Qa 0S|7|Sm—1)

is an n-dimensional integral manifold of D. The tangent space to the above
submanifold is generated by n linearly independent vectors

m-—1

Ey = zk+zakfj(m)a‘“’+zZaﬂkfj(x)a” k=1"")na

j=1 J=1|g|=1

where $3, k is the multi-index defined above. It is easy to see that wi(E}) =
w’(Ek) =0foralj=1,---,q, || <m-1, k=1,---,n. Therefore,
the submanifold Z of Jm_l(X, U) is an integral submanifold of D, so it is
real analytic and hence, in particular, f is real analytic. O

Example 1.3 Let M™ be a smooth manifold with smooth Riemann metric
g- A vector field X is an infinitesimal isometry(Killing field) if Lxg = 0,
where L is the Lie derivative. If we write X = Y . ¢'9/0z' in terms of
local coordinates, then ¢!, i = 1,--- ,n, satisfies a complete system of order

2 [H3].

Example 1.4 If F = (f',.--, f**!) is an isometric embedding of a n-
dimensional Riemannian manifold M into R"*!, F satisfies a non-linear
system of first order partial differential equations

n+1 8f°‘ 6f“

B 0a7 9
a=1

This system can be prolonged to a complete system of order 3  if the em-
bedding is rigid [CHO]. ‘



114 - CHONG-KYU HAN AND JAE-NYUN Yo0O
§2. Complete system for CR equivalences

Let M2"+! be a smooth(C*) real hypersurface in C**1, n > 1,
defined by p(z) = 0, where z = (2!,--+ ,2z"*1) is the standard coordinates of
C"t! and p(z) = 0 is a real valued function defined on a neighborhood of M
such that dp(z) # 0 on M. A nonzero complex vector field of the form

n+1

L= Za’&z

j=1

is said to be tangent to M if Lp = 0 on M. L is called a tangential Cauchy-
Riemann operator. If we assume that 8p/0Zn+1 # 0,

Op O Op O
Zn+1 az, 32,- 6§n+1 ’

j=17"'sn)

Li=3:

are linearly independent tangential Cauchy-Riemann operators. Let V be
the subbundle of the complexfied tangent bundle Tc M over M. It is easy to
see that

(2.1) - yny = {0}
and
22) [V,V]CV  (integrability condition),

where V is the complex conjugate of V and [V, V] C V means that the bracket
of any two section of V is again a section of V. V is the CR structure bundle
of M, induced by the complex structure of C™*1.

An abstract CR manifold of hypersurface type is a smooth real man-
ifold M of dimension 2n + 1,n > 1, which admits a smooth subbundle V
of complex dimension n of the complexified tangent bundle of M satisfying
(2.1) and (2.2). Let (M2"*1,V) be an abstract CR manifold of hypersurface
type. A complex valued function f on M is a CR function if f is annihilated
by V. A system of CR functions F = (f,---,f**) is a CR embedding
ifdfYA---Adf"t #£0. If FisaCR embeddmg the pull back by F of
the induced CR structure bundle of F(M) coincides with V. At each point
p € M let W, = (TcM),/(Vp + V,). The Levi form is a hermitian form
Lp:VpxVp =W, defined by £,(u,v) = v/=1[u, ], where u,v are sections
of V. Levi form is nondegenerate at p € M if Ly(u,v) =0 for allv €V,
implies that v = 0.
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Now we will construct a complete system for CR equivalence between
CR manifolds with non-degenerate Levi form. We work in analytic category
even though the whole argument is valid in the C* category also.

Theorem 2.1. Let (M;V;), i=1,2, be real analytic CR manifolds
of hypersurface type of dimension 2n + 1,n > 1, with nondegenerate Levi
form. Suppose that a diffeomorphism F of M, onto M; is a CR equivalence,
namely, F,V; = V,. Then F satisfies a complete system of order 3.

Proof. For simplicity, we will give proof for the case n = 1 and M; is a
hypersurface in C2. Let M; be a 3-dimensional real analytic CR manifold
with the structure bundle V. Let Z (instead of using the notation L) be a
C* generator of V. By a holomorphic change of coordinates M is given by

—2u = 2> + Z Njr(u)2? 2,
jtk>6
k>2
j22

where C? = {(z,w)},w = u +w (cf. [J]).
Let
p(z,w) =w+ 3+ |z)* + ZNJ-k(u)sz".

Writing F' = (f,g) coordinatewise we have

(2.3) poF=g+g+f-f+ D (NioF)fi-f*=q,
J+k>6
k>2
j22
(2.4) Zf =0,
and
(2.5) Zg =0 (tangential Cauchy-Riema.ﬁn equations).

We will get all the third order derivatives of f and g from (2.3) - (2.5)
by prolongation. Let T = /( —1)[Z,Z]. Then T = —/( - 1)[Z,Z] =
V(=1)Z,Z] = T, thus T is a C¥ real vector field. The non-degeneracy
of the Levi form implies that T is transversal to H(M) = ReV + ImY. We
use {Z,Z,T} as a basis of TcM. All the derivatives of the form T:Z7Z* f
and T*Z?Z*g with i + j + k = 3,k # 0, are zero from (2.4) and (2.5),
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respectively. If one changes the order of applications of T, Z and Z tof and
g, the results differ from the former by lower order derivatives that arise from
the commutations. So, it is enough to find the derivatives of the form T%Z7 f
and T?Z7g with i + j = 3. First, apply Z to (2.3), then by (2.4) and (2.5)
we get

(2.6) Zg+Zf-F+2Z( ), Ni(F)f -F¥)=0.
. j+k>6
k>2
j>2

We assume at the reference point 0 € M, f(0) =
Z f(0) # 0 for the following reason: Smce F.Z =
evaluation at 0 € M gives

g(0) = 0. Furthermore,
(Zf)0/0z + (23)0/0w,

(Zf-)(O)(%- + (Zg)(O)B% =X 36—2 for some A # 0,

therefore, Zf(0) # 0, Zg(0) = 0. Solving (2.6) for f, we have

f=he,f,9,2f,29,9),
where 9h/0§(0) = 0 and h € C“. Apply Z3 to the above, to get

(27) Z3f' =a(z, f,9,2f,29,Tf, Tgag’Z§7 22577 Zag)a
where 8a/8(Z%5)(0) = 0. Now apply Z2 to (2.6), to get

(2'8) Z3g=b($7f7g,f’g,Zf’Z2f’Z3f’Zg’Z2g)?

where 9b/3(Z3£)(0) = 0,b € C*. Solving (2.7) and the complex conjugate
of (2.8) we get

(2.9) Z3f =c(z, f,9,2f,29,Tf, Ty, f, Z2f,2%f,§, 23, Z%9)

and
(2.10)
ng =d(m7f’g,Zf’Zg’Tf,Tg’f’Zf’ Z2f7g’Z§’Z2g),

where ¢,d € C*. Apply Z repeatedly to(2.9) and (2.10) and reduce the
orders of the arguments in the right hand side by the complex conjugate of
already obtained ones, we get TZ2f, T2Z f, T®f, TZ%5, T?Zg and T3j as
C* functions of the derivatives of order less than and equal to 2. O
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Observe that in the process of prolongation from (2.3) - (2.5) to the
complete system, differentiations are applied six times. Hence, we see that
the complete system consists of compatibility equations of Finzi type in addi-
tion to twice differentiations of (2.4) and (2.5). A generalization of Theorem
2.1 to higher dimensions and degenerate Levi form is in [H1]. [H2] deals
with the construction of complete systems for rigid immersions.

§3. Holomorphic extension of CR functions

Let M be a real hypersurface in C**!,n > 1, and f be a holomorphic
function on a neighborhood of M. Then f satisfies the Cauchy-Riemann
equations and therefore, the restriction of f on M satisfies the tangential
Cauchy-Riemann equations. However, not every CR function extends to a
holomorphic function of the ambient space as the following example shows :

Example 3.1 Let M = {(z,w) € C? : Imw = 0}. Observe that M is Levi
flat, namely the Levi form is degenerate everywhere. The tangential Cauchy-
Riemann operator on M is 8/9z. Let f(z,w) = 2 finite @ (u)hj(2), where
each hj(z) is a holomorphic function and each a;j(u) is a differentiable (C?)
function which is not C¥. Then f is a CR function that can not be extended
to a holomorphic function on a neighborhood of M , for a restriction of a
holomorphic function to M must be C¥ on M.

The holomorphic extension problem has been extensive study in sev-
eral different approaches (cf. [BR], [B2]). In this section we present two basic
theorems on holomorphic extension which are well known but are not found
in the literature. One is the analytic disk method due to S. Bochner, which
seems to be the most function theoretic and simple minded. For simplicity,
we stay in C? with coordinates (z,w). Let 2 CC C? be an open set with
smooth boundary. Let 7 : C2 — C! be the projection 7(z,w) = z. Let
A=mn(Q). Let @, = {w € C: (2,w) €} and 9N, = {w € C : (z,w) € 3N}
for a fixed 2 € A.

Proposition 3.1 Let @ CC C?, Q. and A be the same as above. Suppose
that there exists a global smooth parameterization 4(t, z) : [0, 27] x A — 89,
such that for each fixed z, v(, 2) : [0,27] — 09, is a smooth parameterization
of 02,. Let u be a smooth CR function on 89Q. Define

_ 1t u(z,¢)
U(Z,U)) = -2?1' 50, _C——-;dc
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Then U(z,w) is holomorphic on Q.

Proof. Let M = {p = 0}, 9p # 0 on M. First, we find a smooth extension
of u to a neighborhood of M such that 8% = 0 on M. Let u; be any ambient
extension of u. Since du; A 9p = 0 on M (tangential Cauchy-Riemann
equations) du; = $8p on M for some smooth function 3 to a neighborhood
of M. Let 1 be a smooth extension of ¢ to a neighborhood of M. Now let
@ = u; — p¥. Then

5ﬁ=5u1—1/;5p~p5$
1=0 on M.

Now we show that

U(z,w) = i(,¢) d¢

27rz aq, (—w

L [ Genenar,
2 Jo 72t 2) —w

is holomorphic on §2, where we write v = (71,72), coordinatewise. Note that
Nt 2z)=2 U (z w) is clearly holomorphic in w. To show that Y = 0, first
we compute > applied to the integrand :

(3.1) £W=i((ﬂ°v) O , (i07) &
) 0z v (t,z)—w 0Z\r2—w/ 0t v, —wdz0t

By chain rule,

2 (ioq)= 9idy  0udyn _a_ﬁ_@_l_ﬁ@
0z T 920z 0z 0z ' Owdz ' Ow 0z

_ 8'& 672

= 51;—6—2- on 69,
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since 3 = 2% = 9L _ ( on HQ. Thus on 0N the RHS of (3.1) is equal to

0 oy O
w) = (@on) g2/ —wp| 2+ ZULIT,

aua"l’2/(2_

and therefore, we have

ou _ 1 o a:': aai aat _ (o) G2 9z 8t
(3.2) [ wer et gy WOV e bt gy
9z 2mi 0 Te—w 27rz (72 — w)?
1 [ doy 0272

By integration by parts the last term of (3.2) becomes

1 2"6(&07)672

T omi ), Bt\1a—w) 0z

2r 9@ 912 9y 2
_ _l/xﬁa:a;d_i_ ”(“°7)atazdt
27 Yo —w 2w (72 — w)?

so that the RHS all cancel out and we have %g— =0. O

A proof by 8 method for the existence of holomorphic extension is
found in p. 31 of [HOE]. Next we show the following

Theorem 3.2. Suppose that M is a real analytic (C“) hypersurface of
C"tl n >0, and f is a CR function on M then f extends to a holomorphic
function of a neighborhood of M if and only if f is C¥.

Proof. “Only if 7 part is trivial. Let p be an C*“ local deﬁmng functxon of
MWltha—z—”—#O For each j = 1,-+-,n, let Z; = ;222 _ 2

OZn41 az, 9z; ai +1°
Then the Cauchy problem
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Ou
{ 62n+1 =0

u=f on M,

has a unique C“ solution F' on a neighborhood @ C C"t! of 0 € M by the
Cauchy-Kowalevsky theorem (M is non-characteristic with respect to x=2— az =)

We will show that F' is holomorphic on a smaller nelghborhood of 0e M
Since 8”;1 = 0 on £, it suffices to show that 2 a_- =0, j=1,---,n,ona

smaller neighborhood of 0 € M. We have for each j=1,-

~ (%)= % ()
OzZnt1 \0zj )  0%Z; \OZnt

(3.3)

Furthermore,

i (QE)
0Zn+1 0z;

( O 0 9p 0 )F
0Zn+1 sz 651' O0Zn+41

_Z,F |
=Z;f on M, for Z; is tangential to M.
=0, for fisa CR function.
Since z£— a T 7& 0, we have
OF
(34) 6—2] =0 on M.

(3.3) and (3 4) implies that 2 is a C* solution to the Cauchy problem.

, ou 0
(3.5) O%Zny1
u=20 on M.
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The uniqueness of C“ solution to (3.5) implies that g—g = 0 on a smaller

neighborhood  C Q of 0 e M. O

Theorem 3.2 can also be proved by complexification argument, see
[HA]. Combining Proposition 1.2, Theorem 2.1 and Theorem 3.2, we have

Corollary 3.3 Suppose that M;, i = 1,2, are C* real hypersurfaces in
C"t! and F : M; — M, is a CR equivalence of class C®. Then F extends
to a biholomorphic mapping between neighborhoods of M; and M,.

[H1] and [BJT] are generalizations of corollary 3.3 to the cases of
degenerate Levi form.

§4. Rigidity of CR embeddings and open problems

Let M2"*1 is a smooth CR manifold of hypersurface type with the
structure bundle V. A CR embedding f = (f!,---, f**!) of M into C™*!
is said to be rigid if for any CR embedding g : M — C™*t1, there exists a
biholomorphic mapping & of neighborhood of f(M) onto a neighborhood of
g(M) such that g =®o f. We have ’

Proposition 4.1 A smooth real hypersurface M is rigid if and only if every
CR function extends locally to a holomorphic function.

Proof. Suppose that M is rigid and f is a CR function on M. If df # 0,
df Adz; A - -Adz;, # 0, for some ¢y, -+ ,i,. We may assume that df Adz;A- - -A
dzn # 0. Then ¢ = (21, ,2p, f) is a CR mapping of M onto ¢(M). Since
M is rigid there exists a biholomorphic mapping & = (¢1, - ,Pn+1) of a
neighborhood of M onto that of ¢(M). Then ¢, is a holomorphic extension
of f. If df = 0 at a reference point, f + z,4; extends holomorphically by
the same argument and therefore, f extends holomorphically. The converse
is trivial. O

Returning to the jet theory, we now define the notions of automorphic
system. By J.(X,U), we denote the space of r-jets of a map from an open
subset X C R"™ of a system of functions u = (u!,---,u%),q > n. Let
II.(X,U) be the open set of J.(X,U) with the condition rank(u}) = n. Let
R, C II(U,U) be a system of partial differential equations of order r (or a
subvariety given by the system of partial differential equations, which we will
identify with the system itself) defining a Lie pseudogroup (cf. [P1], [P2]).
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We define an action II.(U,U) on II(X,U) by the composition of jets at the
target :

I.(X,U) x I(U,U) - IL(X,U)

action defined by (fr, gr) — gr o fr, where g, o fr = (go f)r, and g ({, resp.)
is any function whose r-jet is g, (f,, resp.).

A system of partial differential equations A, C II,(X,U) is said to
be formally invariant under the action of R, if each ¢, € R, sends A, to A,.

Definition 4.2 A system A, C II(X,U) is an automorphic system for
R, CI,.(U,U) if the action A, +; X Ryys — Ay is free and transitive, for
each integer s > 0, where A,4, and R,4, denote the s-th prolongation of A,
and R, respectively.

Finally we propose the following
Problem 4.3
Let M2+l n > 1, be a smooth real hypersurface in C"*!. Find conditions
on the Levi form which imply the rigidity of M.

Problem 4.4 »
Let M?"t1 n > 1, be a CR manifold of hypersurface type. Let A4; C
I (M, C™*1), be the system of tangential Cauchy-Riemann equations,

(4.1) Ziu=0, j=1,---,n,

where Z ; is a basis of CR structure bundle over M and let R; C II;(C™*!,
C"*1) be the Cauchy-Riemann equations. Then A, is formally invariant un-
- der group action of R, for each integer r = 1,2,---. Under what conditions
on Levi form of M is A; an automorphic system for R; ? Observe that a so-
lution of an automorphic system is automatically rigid. So, this is a problem
of finding sufficient conditions for any CR function to be holomorphically
extendable.

Problem 4.5

Let M2™*! n > 1, be a CR manifold of hypersurface type. Find compatibil-
ity equations of Finzi type for CR embeddings of M into C"**!. Under what
conditons on the Levi form of M does the CR embedding equations (4.1)
admit a prolongation to an elliptic system ? If a real analytic hypersurface
M satisfies these conditions on the Levi form then any CR function on M is
holomorphically extendable.
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ANALYTIC CLASSIFICATION OF PLANE
CURVE SINGULARITIES DEFINED BY
SOME HOMOGENEOUS POLYNOMIALS.

CHUNGHYUK KANG

0. Introduction

Let V = {(z,y) f(z,y) = 0} be an analytic subvariety of a polydisc
near the origin in C? where f is a homogeneous polynomical and square-
free. We know that any homogeneous polynomial with two variables which
is square-free can be written as 2" + a,—1y2"" 1 +--- + a;y™" "1z + y™ where
@9, a1, " ,dn—1 are constant by a suitable nonsingular linear change of co-
ordinates in C?. Here we assume that f has the following form : (1)
f=2z" +ay“"z+ -+ a1y™” 1z+y (n>5 n > 2i 4 3). (2) either
f=2% +ayz+y or f=z2+aydz+yt If g = 2" + by I e 4
by lz+y* (n >5, n> 25 + 3), then in section 1 we show by the ele-
mentary method that f is analytically equivalent to g if and only if there is
a unit w with w™ =1 such that b = ayw* for each k =1,2,--- ,i = j. In
section 2 we prove that all homogeneous polynomials of degree three each of
which is square—free are analytlcally equivalent and that if f = 2*+ay®z +y*
and g = 2% + by®z + y* where f and g are square-free, then f and g are
analytically equivalent if and only if a* = b*. Moreover, we give examples
with which we understand the condition that n > 5 and n > 2 + 3.

1. Analytlc classification of plane curve singularities defined by
f=z"4ay™ 'z + -t ay" 2 +y" (n 25, n>2%+3).

Supported in part by the Korean Ministry of Education, 1990.

125



126 ‘ CHUNGHYUK KANG

Definition 1.1. Let V = {(2,9) : f(2,y) =0} and W = {(z,y) : 9(z,y) =
0} be germs of analytic subvarieties of a polydisc near the origin in C?
where f, g are holomorphic and square-free near the origin in C®. V and W
are said to be analytically equivalent if there exists a germ at the origin of
biholomorphisms 1 : (Uy,0) — (Us,0) such that (V) = W and ¥(0) = O
where Uy and U, are open subsets containing the origin in C2. In this case we
call f(z,y) and ¢(z,y) analytically equivalent near the origin and denote this
relation by f ~ g. Note by (3] that f =~ g if and only if f(Az+By,Cz+Dy) =
ug(z,y) for u # 0 and AD — BC # 0 whenever f and g are homogeneous.

Before proving the main result, we need the following Lemma.

Lemma 1.2. Recall the notation ,Cx = (}) = n(n—1)---(n — k + 1)/k!.
Then

nC1 at1Cr ... k101
nC2 4102 ... ngk-1C2
D=1, . .
2Ct at+1Cr ... n4k-1Ck
nCl nCO O oo O
nC2 nCl nCO PR 0
nCi=1 nCrk—2 nCik—z ... Qo
an an—l an—Z oo nCl
0 0 a+k—2Co n+k-1C1
0 n+k-3C0 n+k—2C1 n+k-1C2
= (102 : : :
2Co ... n4k-3Ck-3 n4k—2Ck—2 n+k-1Ck—1
2C1 ... a4k-3Ck—2 n4k-2Ck-1 nt+£-1Ck

= n+k-1Ck.

Proof. To compute D, subtracting (k—1)-column from k-column, we have

nCl n+ICI “ee n+k—'-2cl n+k—200
nC2 n+lC2 L) n+k—202 n+k—2Cl

2Ck n4+1Ck ... n4k—2C0k-1 n4k—2Ck-1
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Applying the same technique to (k — 1) — column, (k — 2) — column, - - -

?
second column in order, we get

2C1 2Co eor n+k-3Co n+k—2Co

nC2 nCI oo n+k—3C1 n+k—2Cl
D=, ) ) )

nCrk nCioi .ov n4k-3Ck—1 ntk—2Ck—1

Using the same technique, by induction we get

,.Cl nCO ... 0 0
nC2 nCl P 0 0
D=|: o
an—l an—Z v nCI nCO
an an—l oo nC2 nCI

This is the first form which we want.

127

, the

With respect to the k-th column only, D is linear and so, D can be represented

in the following;:

nCl nCO coe 0 0 nC] nCO
2C2 »C1 ... 0 0 2Ca 2C1
D=|: A
an—-l an-—2 ce nCI n-—lCO an—Z nClc--3
an an—l cee nC2 n—lCI an—l an—Z

nCO
nCI

= Dy + D; where D; is the k x k matrix and D, is the (k — 1) x (k — 1)
matrix. Applying the same technique to D; as in the beginning of the proof,

then we have

n-lCl n—-lC() e e 0 0
n—1C2 2—1C1 ... 0 0

D, =|; E : :
n—le—l n—le—2 “e n—lCI n—lCO

n—1 Ck n—le—l (R n—lC2 n—1 Cl

Next, applying the same method to D; and D, reversely as in the beginning
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of the proof, then we get

n—lCI nCI e n+k-—-2cl
n-1C2 nC2 ... n4r—20C2
D=D;,+Dy=|. . .

n—le an e n+k—-20k

2C1 n+1C1 coo ntk—2C1
nC2 n+1C2 v n4k—202

+ . .
nCr=1 n+1Ck=1 ... n4k—2Ck1

By induction on n+k, then D = p4+k—2Ck and Dy = n4k—2Ck—1. Therefore
D = ,4;-1Ck. Now to express D in another way, subtracting the second
 column from the first column, the third column from the second column,
..+, the k-column from (k — 1)-column in D in order, then we have

nCo  at1C ... a4k—1C1

C C C

n n+1C1 n+k—1C2
D =(-1)f|. ) , :

nCk=1 n+1Ck-1 ... n4k-1Ck

Using the same process by induction on k, we have the desired result.

Theorem 1.3. Let V = {(z,y): f=2"+ a;y" 2" + - +ayy" 'z +y" =
0} and W = {(2,9) : g = 2" + bjy" 927 + - + biy" 'z + y™ = 0} be
analytic subvarieties of a polydisc near the origin in C? where f and g are
homogeneous polynomials and square-free, and n > 2i + 3, n > 2j + 3 and
n > 5. Then f ~ g if and only if there is a unit w with w™ = 1 such that
by = arw* fork=1,2,--- ,i =j.

Proof. Assume that f =~ g. Then we know by [3] that f(Az + By, Cz +
Dy) = (Az+ By)" +ai(Cz+ Dy)"~*(Az + By)* +a;—1(Cz + Dy)" "+ (Az +
By)™' 4+ --- + a,(Cz + Dy)*"'(Az + By) + (Cz + Dy)" = ug(z,y) for a
nonzero constant u where AD — BC' # 0. Because n — (¢ +2) >4+ 1 and ¢
and j may be viewed as same integers, coefficients of the following monomials
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yz"1,y%2"2,. .. 2742 i the polynomial f(Az + By, Cz + Dy) are
zero. Let us write down these coefficients in detail as follows :

(1) o
=1 [T 4n—1 _ N=1) (2N ~vn—i—k nk 4i-lpl
yz .(l)A B+a; Yy, ( L )(l)c Dk Ai-'B
k+i=1
b ta Z (n—l) (l)cn—l—kaAl—lBl+ (n)Cn—lD=0.
k+i1=1 k ! 1

([2) o
2.n-2. (M) sn-2p2 ) =2\t \peiek k 2i-lpl
yiz .(2)A B +q.k§2( ' )(l)c DFA-'B

et ay Z (n ; 1) (:}-) Cn—i—kaAl—IBl + (;") Cn-—2D2 =0.

k+1=2

([t +2]) o
i+2 n—(i+2) ., [ T n—(i+2) pi+2 , n—z\/(t
o (2 Yo, 7 (7))
k+1=1+4+2

Cr=i~kDkAi~IBl 4 ... 4 g, Z (n - 1) (1> Cﬁ—l—kaAl-—lBl
k+i=i+2 k { .
n n—(i+2) pi+2 _

+ (z + 2)C )
Considering 1,a;,a;_1, - ,a1,1 as a nontrivial solution of the above [i +
2]-homogeneous equations, then we get an (i + 2) x (i + 2) square matrix
A consisting of coefficients of 1,a;,a;-1,--- ,a1,1 in these equations whose
determinant |A| must be zero. Now write down the determinant [A| :

0=]A|=

Q4B T (T)(Oais L ()oriD
(g)An—2B2 Hg—z’ (n;i) (;’)Cm—i—kaAi—-lBl L (;)Cn_ZDZ

.(i_:z)An—(i+2)Bi+2 ) Z (n;i) (;’)Cn—i—kaAi—lBl L ( crn—(i+2) pi+2

r2)
i+2
ki=it+2 o+




130 CHUNGHYUK KANG

Then we claim that |A| = kA"~(+2 B[C"—(+2 D]+ (AD — BC)i+:2 for

some nonzero constant k. Note that Z (n I: z) (;) = (n) for a given
k+l=j

nonnegative integer j. We know that each element in the first column of
A has A"t B as common factor. Now we are going to prove that any
elementary signed product from A has [C"~(i+2) D|**! as common divisor.
Consider the degree of C of each element in A as follows :

0 n—-(G+1) ... n—2 n—1
0 n—-(:4+2) ... n—3 n—2
0 n—(G+i+2) ... n—=(+3) n-(:4+2)

So the degree of C for each elementary signed product from A is greater than
or equal to the following number : n — (2 +2)+n —(2i+1)+---+n —
(t+2)+0+1+4---+i=(i4+1)(n —¢—2). Similarly, we can prove that
the degree of D for each elementary signed product from A is greater than
or equal to the integer (z + 1).

Now it is enough to prove that |A|/ {A"~*~2B(C™~*~2D)*+!'} = k(AD —
BC)i+2©2 for a nonzero constant k. To show this, divide each element in the
first column of A by A"~*~2B and each element in the remaining columns of
A by C"*~2D. Let the matrix got in this way from A be P = P(4, B,C, D).
Then it suffices to prove that the determinant |P| = k(AD — BC)i+2Cz,
Note that each elementary signed product from |P| has the same degree
t+2)(i+1)sincen(i+2)—(n—i—-1)—(n—i—-1)(i+1)=(+2)E+1).
Let Q(A,B) = P(A,B, A,B). Note that |Q(A,A)| = |P(A,A,A,A)| =0
and |Q(4,—A)| = |P(A,—A,—A, A)| = 0 because any two column vectors in
Q(A,A) or A(A, A, A, A) are same and any two column vectors in Q(A4, —A)
or A(A,—A,—A, A) are same up to a sign. Therefore |Q(4, B)| = (A? —
B?)i+2C2Q, (A, B). But since the degree of each elementary signed product
from Q(A, B) is always (¢ + 2)(z + 1), Q1(A, B) must be a constant, say
k. Therefore |A| = A"~(+2) B(Cn-(+2) D)i+1[P (A, B, C, D)]+2€2 where
P,(A, B,C, D) is a homogeneous polynomial of degree 2.

We claim that P,(A, B,C,D) = m(AD — BC) for a nonzero constant m.
Let Pi(A,B,C,D) = s;A> + 33 AB+353AC +34AD +s5 B2+ s BC +s7BD +
3802 + s9CD + 810D2.

First we want to prove that s; = s5 = sg = s30 = 0. To prove s; = 0,
let ap = Max{a : cA*BPC7D? is an any nonzero elementary signed product
from A}. Considering each elementary signed product from A, we see easily
that ¢p = n—14+¢+(G—-1)+---4+4140=n—-1+1::+ 1)/2. But
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if P;(A, B,C, D) contains a nonzero term s; A? in its expansion, the highest
degree of A among all elementary signed products from A would be an integer
n—(GE+2)+(E+2)(i+1). Notethat n — (¢t +2)+ (¢ +2)(i+ 1) —ap =
n—0E+2)+(@E+2)(i+1)—[n—-1+i(:+1)/2] =(E+1)(z:+2)/2 >0 for
¢ > 0. So s; = 0. Similarly, we can get s5 = sg = s19 = 0.

Next, we prove that s; = s3 = s = s9 = 0. To prove s3 = 0, let
ap = Max{a++ : cA°BPC7D? is an any nonzero elementary signed product
from A}. If P;(A,B,C, D) contains a nonzero term s3AC in its expansion,
ap =n—(i+2)+(n—(i+2))t+1)+(:+2)(i+1) = (n—1)(i+2). In fact, ao is
equal to an integer (n—1)+(n—2)+:--+(n—i—2) = (2n—:-3)(: +2)/2,
looking at all elements in A. Note that (n — 1)(¢ +2) — (2n — i — 3)(z +
2)/2=(14+1)(:4+2)/2 >0for: > 0. So s3 = 0. Similarly, we can get
89 = 87 = 89 = 0.

Therefore Pi(A,B,C,D) = s4AD + s¢BC. Recalling that |Q(A4, B)| =
|P(A, B,

A,B)| = k(A% — B%)i+2C2 and |Q(4,4)] = |Q(4,-A)| = 0, s4 = —s.
Thus we proved that |[A| = kA"~*"2B(C"~2D)*+*(AD — BC)i+>©2 for
some constant k.

To prove k # 0, consider the term rB¢ for a nonzero coefficient r in
|A(1,B,1,1)| where A = A(A, B,C, D) and d is the degree of |A(1, B,1,1)|
as a polynomial of B. To find rB¢, write down elements of A only whose
degree of B is the maximum on each column as follows :

* * e n_lcoBl ‘ nC]Bo

* n_,'CQB': SN n_ICi_lBl nC,‘BO

* n—-:'ClB" ce n—lC'iB1 nCi+1-B0
nCiy2 B2 _CB' ... ,_1Ciy1B' ,Ci42B°

Then we see that rB? is equal to

0 0 oo nC]
("‘1)i+3n0i+2Bi+2+i(i+l)/2 0 n-i+ICO e nCi—l

n—-iCo n-it101 ... oC;

n—iCi n—it1Ce ... Cip

= (—1)‘+3(—1)(i+1)i/2nC5+2 + nCiy1 - B¥2+i(+1)/2 by Lemma 1.2. But from
|A(4, B, , o |
C,D)| = kA**"2B(C"~*"2D)**1(AD — BC)i+2%2|A(1, B,1,1)| is kB(1 —
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B)#430s., Thus kB(—B)+:0 = (—1)43(—1)6+Di/2, Gy po oy BHIHEHDL2,
and so k = ,Ci42 - nCit1. Therefore we get |A(A, B,C, D)| = 0 if and only
if ABCD = 0.

Claim that |A(A, B,C, D)| = 0 if and only of B = C = 0 whenever a; # 0
for some i (2:+3 < n). It is enough to consider the following cases separately:

(a) C = 0 : It suffices to check the coefficient of y2"~! in the expansion
of f(Az + By,Cz + Dy). Then AB = 0 implies B = 0 since AD — BC # 0.

(b) D =0 : Check the coefficient of y*+22"~(+2) in f(Az+ By,Cz+ Dy).
Since | < ¢, AB = 0 implies A = 0 since AD — BC # 0. Looking at
the coefficient of yz"~!, then A = D = 0 implies C*'Ba; = 0. Since
AD - BC = —BC # 0, a; = 0. Next, apply the result A =D =a; =0
to the coefficient of y%22"~2. Trivially a = 0. Apply this technique in
order to as,--- ,a;. Then we get easily that ay = a; = --- = a; = 0. So
f(Az + By,Cz + Dy) = f(By,Cz) = (By)" + (Cz)" = ug(z,y) = u(z" +
biy'z" " + - + bjy" 'z + y™) for a nonzero constant u implies that B™ =
C"=uandar=b=0for1<k<i(204+3<n)

(¢) A =0 : Since each element of the first column in the matrix is zero
if A = 0, as in the beginning of the proof, consider a;,a;_;, -+ ,a;,1 as
a nontrivial solution of the homogeneous equations [1],[2],---,[¢ + 1] as-
suming that A = 0. Then we get an (¢ + 1) X (¢ + 1) square matrix
Ait21(A,B,C, D) consisting of coefficients of a;,a;—;,--+,a;,1 from the
equations [1],[2],---,[¢ + 1]. In fact, Ai+2,1(A,B,C,D) is called a minor
matrix of A by deleting the first column and the last row of A. Then
Ai+2,1(0a B7 Ca D) =

0 0 .. (Mc™D
6 (n—;+1)C;z—i+1Bi—1 S (ifl)cn;i-HDi—l
(rf;i)cn—iBi (n.—-li+l)Cn—iDBi—1 . (1:) Cn—iDi
(nl—:)cm—i—lDBi (n-;+l)cn—i—1D2Bi-1 . (i-tl)Cn_i_lDi-H

Then |Ai+2,1(0,B, C, D)l — Bi(i+1)/20n(i+1)—(i+2)(i+l)/2Di+1 X

0 0 oo nCl
0 n-i+1Co ... aCimy
n—iCO n—i+lcl s nCi
n—iC1 n-it102 ... 2Cina
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— Bi(i+1)/2Cn(i+1)—-(i+2)(i+1)/2Di+l . (_1)(;'+1)i/2nCH_1 by Lemma 1.2.
Since |Ai4+2,1(0,B,C,D)| =0, A = 0 and AD — BC # 0, D must be zero.
From coefficients of y2™~1,y22"~2,... |y*2" in the homogeneous equations
[1],{2],- - ,[s], then we have BCa; = BCay; = --- = BCa; = 0 because
A=D=0. Soweget a; =ay =--- = a; =0. Thus we have the same result
as in the case (b).

(d) B =0: Since AD — BC # 0, AD # 0. Just as in the case (c),
note that each element of the first column of A is zero if B = 0. So
by the similar method as in the case (c) it is enough to consider the mi-
nor matrix Aiy2,1(4,B,C,D). Let us compute A;y21(4,0,C,D). Then
Aiy2,1(4,0,C,D) =

("7 CriTiD A (“Heripa-t L (Hem'p
(n;-i)cn—-i—2D2Ai (n—21+1)Cn—i—1D2Ai-l L (121) Cn—2D2
(o Cn—i—i-1pitl i n-’:'-ll-l)cn—;'—i Ditlgi-1 (izl)cn—'(iﬂ) Ditl

Then IA.'+2,1(A,0,C,D)| — Ai(i+1)/2D(i-i-1)(i+2)/2Cr(i+1)(n—i—1)><

n—iCI n—i-{-lCl ce nCI
n—iC2 n-—i+ICZ cee nCZ

n—iCit1 n—i+1Ciy1 ... nCin

— nCi+1Ai(i+1)/2D(i+1)(i+2)/2C(i+1)(n—i-—1) by Lemma 1.2.
Since |Ai42,1(4,0,C,D)| =0, B=0and AD — BC #0, C = 0.

In the case of (a) and (d), that is, B = C = 0, by [3] f(Az + By,Cz +
Dy) = f(Az, Dy) = (A2)"+ai(Dy)™(Az)i +--+ an(Dy)™ Az + (Dyy" =
ug(z,y) = u(z" + biy™*2* + -+ + bjy" "'z + y") for some nonzero constant
u. Thus we get : A™ = u, D™ = u, D" "% Akq; = ubr(2k + 3 < n). Since
(A/D)" =1, put w = A/D. Also D"*A*a; = ub, implies that (4/D)*a; =
bx. Thus we get by = ayw* for k=1,2,--- i (26 4+3<n).

In the case of (b) and (c), that is, A = D = 0, there is nothing to prove.

Conversely, suppose that there exists a unit w with w™ = 1 such that b; =
arw® for k = 1,2,--- ,i = j. Define the map 3 by ¥(2,y) = (wz,y). Then
fod(z,y) = 2" + ay"H(w2)' + -+ + ary" H(wz) + y" = 2" + by it +
<o+ by 'z + y® = g(2,y). Thus the theorem is proved.
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Corollary 1.4. Let f and g be defined as in the Theorem 1.3. If f = g and
f(Az + By,Cz + Dy) = ug(z,y) for some nonzero constant u, then either
B=C=0,orA=D=0anda,=b;,=0for1<k<i=jwithn>2i+3.

2. Analytic classification of plane curve singularities defined by
22 +ay?z+ 93 or 24 + aydz + yt.

Theorem 2.1. Let V = {(z,y) : f = 2® + ay’z + y® = 0} be an analytic
subvariety of a polydisc near the origin in C? where f is square-free. Then
any f is analytically equivalent each other for any number a.

Proof. We know that any homogeneous polynomial with two variables of
degree three which is square-free can be written into f = 2% + ay®z + y°
by a nonsingular linear change of coordinate at the origin, and also this f
can be transformed into u(2® + ayz? + By?z) = uz(2? + ayz + By?) for
a nonzero constant u by another linear change of coordinates. Note that
uz(2? + ayz + By?) = uz(2? + 204y, 2 + y?) by a linear change of coordinates
and that this polynomial becomes uz((1—a?)z2+(y1 —a12)?) = uy 21 (22 +y2)
for a nonzero constant u; where z; = (1—a?)/22, y, = y; —ayz and a; # 1.
Thus f =~ z(2% + y?).

Theorem 2.2. Let V = {(z,y): f =2 +ay2+y* =0} and W = {(2,y) :
g = 2* + By3z+ y* = 0} be analytic subvarieties of a polydisc near the origin
in C? where f and g are square-free. Then f = g if and only if a* = 4.

Proof. Assume that f =~ g. Then f(Az + By,Cz + Dy) = (Az +
By)* + a(Cz + Dy)*(Az + By) + (Cz + Dy)* = (A* + aAC® + C*)2* +
(4A®B+ (3C?*DA+C3?®B)a+4C3D)y2® +(6A2B? + (3CD?A+3C?DB)a +
6C2D?)y?2%2+(4AB*+(D® A+3CD?B)a+4C D?)y® 2+(B*+aBD*+ D*)y* =
ug = u(2* + By®z + y*) for a nonzero constant u by [3]. So we have

(1) A* + ACPa+C' =u

(2) 4A°B + (3C?DA+C®B)a+4C*D =0
(3) 6A%B? + (3CD?A +3C*DB)a +6C?D? =0
(4) 4AB® + (D*A +3CD?B)a +4CD® = up

(5) B*+BD3+ D* =u
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Subtracting the equation (5) from the equation (1), we get
(6) (A* — B*) + (AC® = BD*a+C*-D*=0

Now consider the following two cases : (i) ABCDa = 0 and (ii) ABCDa # 0.
(i) Let ABCDa=0. Then A=0, B=0,C=0, D=0ora=0.
(a) A =0: From equations (2) and (3), we get

C®Ba +4C®D =0,
3C?DBa + 6C%D? = 0.

These two equations give 6C*D? = 0 and so D = 0 since AD — BC # 0.
From (2), C®*Ba = 0 implies a = 0. From (1) and (5), C* = u = B* and (4)
implies # = 0. Thus a* = 44 = 0.

(b) D=0: By (3), AB =0 and so A = 0. Then we get the same result
as in the case (a).

() C=0: By (2), AB=0and so B=0. By (1), (4) and (5), A* =
D* =u and D*Aa = uf. Thus Aa = DB and so a* = B*.

(d) B=0: From (2) and (3), we get

'3C?DAa +4C3D =0,
3CD?*Aa +6C*D? = 0.
These two equations give 2C3D? = 0 and so C = 0. Then we get the same
result as in the case (c).
(e) a =0: From (2) and (3), we get
4A*B 4C®D
6A2B% 6C?D?

_oaa2nmnld C
—24ABCDB D

0|

So ABCD = 0. Then we get the same result as in the case (a), (b), (c) or
(d).

(ii) Hereafter we assume that ABCDa # 0.
Then from (2), (3) and (6) which are considered homogeneous equations,
we get

4A43B  3C?DA+C3*B  4C°D
6A2B* 3CD?A+3C?DB 6C?D?
A*— B* AC®-BD? Ct- Dt
= 6C(AD — BC)}(A*C® — BD*(2AD + BC)).

0=
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Since ABCD # 0,2AD + BC # 0. So
(7 BC +2AD = AC?/(BD?)
From (2) and (3), we get
C*(3AD + BC)a = —4(A*B + C*D) and
CD(AD + BC)a = —2(A2B? + C?D?),
which by eliminating a, give 0 = 2D(AD + BC)(A®B + C3*D) — C(3AD +
BC’g(AzB2
+C*D?) = (A2B(2AD + BC) — C3D?)(AD — BC). Thus
(8) 2AD + BC = C®D?/(A?B)
From (7) and (8), A2C?®/(BD)? = C3D?/(A?B) and so we get
9) At = D»4
From (2), (3) and (4) we are going to compute « as follows : Let
4AB  3C°DA+C3B  4C®D
A= | 6A2B? 3CD2>A+3C?DB 6C?D? |, and then
4AB* D3A+3CD?’B 4CD?
|A| = 24ABC?*D?*(AD — BC).

L |44°B 0 4c®D _ugA
(10) a=—|642B% 0 6C2D?|=
|Al |44B® wp acp® | D(AD-BCY

Again, from (3), (4) and (5), we want to compute « as follows. Let

6A?B%? 3CD?A+3C?DB 6C?D?
A'=| 4AB* D3A+3CD?B 4CD?
Bt BD3 D*

Then |A'| = 6B2D*(AD — BC)? and so

642B? 0 6C2D?
4AB® upB 4CD3
B4 u D4 .

= Dz D“_ Boy (A + BC)B - 44C)

1
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From (10) and (11), we get

—ufA
D(Apuii BC: ~ D*A Du_ BOY -((AD + BC)B — 44C)

Thus

(12) 8 4AC

~ 24D + BC

Eliminating the first terms from the equations (2) and (3), we get [6B(3C?D A+
C®B) — 4A(3CD*A + 3C’DB)|a + 24BC®D — 24AC?*D? = 0. Simplifying

the above, we have

___4CD
2AD + BC

From (12) and (13), 8/A = —a/D. Since A* = D* by (9), we get 8* = a?.

(13) a=

Now, conversely, if a* = g* # 0, then f(Bz,ay) = B42* + a(a®y®)Bz +
oty = B4z + ByPz + y*) = Be(z,y).  a = B = 0, there is nothing to
prove.

Corollary 2.3. Let f and g be defined as in Theorem 2.2. If f ~ g and
f(Az + By, Cz+ Dy) = ug(z,y) for a nonzero constant u, then ABCD may
not be zero.

Proof. 1t is enough to show that there is such an example with ABCD # 0.
Let f(z,y) = 2t —4e™/4yP24+y*and A=1,B=€3"/4 C =e™/4and D = 1.
Then AD—BC =2 # 0 and f(Az+ By, Cz+Dy) = 4(z* +4e™/4yP2 4 y*) =
49(z,y) by tedius computations. Note that ABCD # 0.

Finally we are going to give an example which is a help to understand
the condition for restriction on the degree of homgeneous polynomials in
Theorem 1.3 as follows :

Let V = {(2,9) : f(2,y) = 2° + 10y32? + 5y*z + y° = 0}. By a linear
transformation T : (2,y) — (y,2 — y),

(foT)(2y) = f(y,z — y)

=y° +10(z — 9)°y* + 5(z — y)*y + (z — y)°
= 2° — 10y%22 + 15y%z — 5y°.
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By another linear transformation S : (z,y) = (z,—571/5y), f o T will be
g(z,y) = 25 +10-573/5y322 4 15 . 574/5y*z + y5. Note that without the
condition in Theorem 1.3, f =~ g.
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REDUCIBLE HILBERT SCHEME OF SMOOTH CURVES
WITH POSITIVE BRILL-NOETHER NUMBER*

CHANGHO KEEM

0. Introduction

In [S], Severi has asserted with an incomplete proof that the subscheme
4,9, Which is the union of the irreducible components of the Hilbert scheme
d,g,r Whose general points correspond to smooth, irreducible and non-
degenerate curves of degree d and genus g in P" is irreducible if d > g+r. Also
in [H], it has been conjectured that I ; . is irreducible if the Brill-Noether
number p(d, g,r) := g — (r +1)(g — d + r) is positive.
In this paper we demonstrate various reducible examples of the subscheme
d,g,r With positive Brill-Noether number. Indeed an example of a reducible
I; g, With positive p(d, g, 7), namely the example T g—8,g,g—8 (OT other vari-
ations of it), has been known to some people (including the author), but it
seems to have first appeared in the literature in [EH]. The purpose of this
paper is to add a wider class of examples to the list of such reducible exam-
ples by using general k-gonal curves. We also show that 7} 4,9, 18 irreducible
for the range of d > 2g — 7 and g —d+r < 0. Throughout we will be working
over the field of complex numbers.

1. Terminologies, notations and some preliminary results

We first recall that, given non-negative integers r,d, for every point p of
the moduli space M of smooth curves of genus g and any sufficiently small
connected neighborhood U of p, there are a smooth connected variety M, a
finite ramified covering;:

h:M-=U

*This paper was written while the author was visiting the Max-Planck-Institut fir
Mathematik to which he is grateful for the support. Also supported in part by the GARC-
KOSEF.
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and two varieties, proper over M:
E:C—o M, w:g;—»M

with the following properties:

(1) C is a universal curve over M, i.e. for every p € M, {71(p) is a smooth
curve of genus g whose isomorphism class is h(p).

(2) G parametrizes pairs (p, D), where p € M and D is a linear system
(possibly incomplete) of degree d and of dimension r, which is denoted by

g5, on C = £71(p).

Let G be the union of irreducible components of G whose general element
corresponds to pairs (p, D) such that D is a very ample linear system on
£71(p) = C, i.e. D induces an embedding of C into P".

In order to show the irreducibility of Z; , .., it is sufficient to demonstrate
the irreducibility of G since the open subset of Z; , . consisting of points
corresponding to smooth curves is a PGL,; bundle over an open subset of
G. Also we will utilize the following fact which is basic in the theory for our
purposes; see [AC1] or [H] for detailed discussion and proof.

Proposition 1.1. There exists a unique component Gy of G which dominates
M (or M,) if the Brill-Noether number p(d, g,r) is positive. Furthermore
in this case, for any possible component G' of G other than Gy, a general
element (p, D) of G' is such that D is a special linear system on C = £~ (p).

Remark 1.2. In the Brill-Noether range, i.e. in the range p(d,g,r) > 0,
we call the unique component Gy of G which dominates M, the principal
component. We call other possible components exceptional components.

The following facts will also turn out to be useful for our purposes; see
[AC2] for the proof.

Proposition 1.3. (i) Any component of G] has dimension at least 3g — 3 +
p(d,g,r).

(i) Suppose g > 0 and let X be a component of G5 whose general element
(p, D) is such that D is a linear system on C = £~'(p) which is not composed
with an involution. Then A

dimX =39 -3+ p(d,9,2) =3d+g—9.



REDUCIBLE HILBERT SCHEME OF SMOOTH CURVES 141

(iii) The variety G} is smooth of dimension:

p(d,g,1) + dim M,.

By using (1.3)-(ii), one can prove the following fact regarding a subvariety
of GJ consisting of birationally very ample linear series; see [KK].

Proposition 1.4. Let W be an irreducible closed subvariety of G}, r > 2,
whose general element (p, D) is such that D is complete, special and bira-
tionally very ample on C = ¢~(p). Then

dimW <3d+g—4r—1.

Corollary 1.5. Whenever

3-3
2 +1+ =

<d<2-2, (r>3)

G (and hence I , ) is irreducible with the expected dimension 3¢9 — 3 +
p(d,g,r).

Proof. Suppose there exists an exceptional component G’ of G. Sine we are
in the Brill-Noether range, by Proposition (1.1) there is an open set V of G’
whose elements consist of pairs (p, D) such that D is a special very ample
linear system on C = ¢ ~!(p). Consider the map

$:V -G

defined by ¥(p, D) = (p,|D|) where D € D, a = dim|D|. Then by Propo-
sition (1.4) and by noting the fact that the dimension of a fiber of ¢ over a
point in ¢ (V) is dim G(r, a), we have dimG' = dimV < 3d+g—4a -1+
(r+1)a-r)=3d+g-—1—r2—r+(r—3)e.

On the other hand, by Castelnuovo theory the largest possible a in case
d>gis Zd—":,;"il. Thus the above inequality implies

2d-g+1

3 <3g—3+p(d,g,r),

dimG <3d+g—-1—-r—r+4(r—3)

which is contradictory to (i) of Proposition (1.3).
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Remark 1.6. (i) (1.5) was also known to L. Ein; see [E-1]. He later gave a
wider range of d, g, r for which T , _ is irreducible when r > 5; see [E-2].

(ii) It is quite easy to show that in case d > 2¢g — 1, I}, . is empty if
r >d — g, and is irreducible if r < d — ¢: see [H], page 61.

19,7

2. Irreducibility of Z; , . with large d

Theorem 2.1. I  _ is irreducible ford > 29 — 7 and g +r < d, r 2 3.

Proof. For the case d > 2g — 2, it is a consequence of the Corollary (1.5)
and Remark (1.6)-(ii). For the case 29 — 7 < d < 2g — 3, we proceed as
follows. Let d = 29 — 2 — k where 1 < k < 5. Suppose there exists an
exceptional component G' of G. Then by the Proposition (1.1), a general
element (p, D) € G' is such that D is a special linear system on C = ¢~1(p),
i.e. dim|D| > d —g. Let V be an open subset of G’ consisting of elements
(p, D) with dim |D| = a@ > d — g. Consider the map

T:Y— gllcc+a+l-.‘1

defined by ¥(p, D) = (p, |K — D|) where D € D and K is a canonical divisor

on C = £71(p). Then by noting the fact that the dimension of a fiber of ¥

over a point in Qf+°'+1_g is at most dim G(r, a), we have

(2.1.1) dimG' = dimV < dim Gyt 9 4 (r 4+ 1)(a — 7).

By Clifford theorem and the inequality @« > d — g = g — 2 — k, we have
 g—1—k < a < g—1—%. Thus the following pairs for (k, a)’s are possible: (i)
{(k,g—k—1);1 <k <5} (ii) {(k,g—k);2 < k <5} (iii) {(k,g—k+1);k =
4 or 5}.

For the case (i), by the inequality (2.1.1) and the hypothesis ¢ + r < d,

dim¢G' <dimGl+(r+1)g—k—-1-7)<3¢g—3+p(29—2—k,g,7)

which is a contradiction.
For the case (ii), again by (2.1.1) and the hypothesis g + r < d, we have

dimG' <dimGi +(r+1)(g—k—r)=2g—5+2k+(r+1)g—k—r1)
<3¢ -3+p(d,g,r)
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which is a contradiction.

(iii) Suppose (k,a) = (4,9 — 3). Because a = £, any (p,D) € V is such
that C = £7'(p) is a hyperelliptic curve by Clifford theorem. But this is
a contradiction since a hyperelliptic curve cannot have a birationally very
ample special linear system.

Suppose (k,a) = (5,9 — 4). Consider ¥(p, D) = (p,|K — D|) € g: 1If
the complete |K — D| has no base point, |K — D| induces a birational map
on C = ¢ !(p) and ¢g(C) < 6, contrary to the hypothesis ¢ + r < d and
r 2 3. Thus |[K — D| has a base point and there exists a g2 on C whence
C is a hyperelliptic curve by Clifford theorem. Again this is a contradiction
because there cannot exist a birationally very ample special linear system on
a hyperelliptic curve. ’

To demonstrate the reducibility of Z}, 9—8,9,9—8> We do need the following
lemma whose elementary proof we omit here.

Lemma 2.2. Let C be a trigonal curve of genus g > 8 with the trigonal
pencil g3. Then |K — 2g}| is very ample and any g2 is equal to 2g1.

Theorem 2.3. (i) Forr < 2= r < g—8andr > 3, I34-8,9,» 18 irreducible.

(i) For 2= < r < g—8andr > 3, T3g—s8,g,r 18 reducible with two
components. Furthermore, a general element of the exceptional component
is trigonal.

Proof. We use all the notations used in the proof of Theorem (2.1). Let G
be an exceptional component of G and a = dim |D| for general (p,D) € G'.
By Clifford theorem, we have a = g — 7,9 — 6 or g — 5.

(i) If @ =g — 7 or g — 6, one can use the inequality (2.1.1) and proceed
exactly as in the previous theorem to show that these cases do not occur.

(i) If @ = g — 5, |[K — D| = g2 where D € D for a general (p, D)ed'. By
the hypothesis 3 < r < g — 8, the map induced by |K — D|on C = ¢71(p)
is not birational. Instead, C' may be either hyperelliptic, trigonal or elliptic-
hyperelliptic. But C cannot be hyperelliptic because an hyperelliptic curve
cannot have a very ample special linear system. If C is elliptic-hyperelliptic,
|K — D| = g5 = ¢*(¢3) where ¢ is the map of degree 2 onto an elliptic curve
E. Then |D| = |K — ¢¢| = gg;fe is not even birationally very ample because
|K —gs~P—Q} - g5,°, where P+ Q = ¢*(R), R € E. Thus C cannot be
elliptic-hyperelliptic.
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If C is a trigonal curve, |K — D| = g2 = 2¢} and |D| = |D| is very ample
by Lemma (2.2). Thus the only possible exceptional component of G may
arise in this way; in other words, V surjects onto an open set of M;,3 if such
G' exists. Hence

dim¢@' = dimV =dimG; +(r+1)(g —5—-r) 2 3¢ -3+ p(d,g,7),

which proves the first half of the theorem.

On the other hand, suppose the above inequality holds and let W be
the closed subvariety of G] whose general element (p, D) is such that p cor-
responds to a trigonal curve and D is a general r-dimensional subspace of
|K —2g3| on C = £7Y(p), i.e. W is just the locus in G5, s over trigonal
curves. By the preceding discussion, W is indeed a component of G other
than Gy because D is very ample. Furthermore, the uniqueness of such an
exceptional component G' = W is also obvious from the preceding discussion.

3. Exceptional components over general k-gonal curves

We now construct more examples of reducible T} d,g,r with positive Brill-
Noether number by using general k-gonal curves. We do need the following
lemma due to Ballico ; [B], Proposition 1.

Lemma 3.1. Fix positive integers g,k,£ withk > 2, g > 2k -2 and 1 <
£ < [{%4]. Let |E| = g; be the unique pencil of degree k on a general k-gonal
curve of genus g. Then dim |[¢E| =

Corollary 3.2. Fix positive integers g,k,£ with k > 3, ¢ > 2k — 2 and
1<£<[{%]-2. Let |E| = g} be the unique pencil of degree k on a general
k-gonal curve C of genus g. Then for any P,Q € C, dim |¢E + P + Q| = £.

Proof. We first claim that dim [¢E+P| = £ for any P € C: Suppose dim |[¢E+
P| =£+1 for some P € C. By Lemma (3.1), dim|(¢ + 1)E| = dim |¢E +
P+E —P|l=dm|{E+P|=£+1, E' € |[E|. Then E' — P > 0 is the base
locus of |(£ + 1)E| which is in fact base-point-free.

Suppose that dim [(E + P + Q| = £ + 1 for some P,Q € C. By the first
claim and Lemma (3.1), we have £+ 1 =dim |[{E+ P+ Q| =dim |¢+1)E| =
dim |(¢+1)E+P| = dim [{E+P+Q+E"—-Q|, where E" € |E|and E"—Q > 0.
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Then E" — @ is the base locus of the linear system |(¢ + 1)E + P|. But this
is a contradiction because the actual base locus of |(£ + 1)E + P| is P.

Lemma (3.2) implies the following immediate corollary.

Corollary 3.3. Let g,k,£ be positive integers such that k > 3, g > 2k — 2
and1 < €< [g/k—1]—2. Let C be a general k-gonal curve with the unique
pencil |E| of degree k. Then |K — £E| is very ample.

Theorem 3.4. Let g,k,¢,r be integers such that k > 3, r > 3, 2 < ¢ <
(%] -2, 29%'1'2-5—1<r<g 2~ ¢k andd =29 —2—¢k. ThenT},
reduc1b1e with at least one exceptional component containing the faJme of

general k-gonal curves.

Proof. By Corollary (3.3), there exists a family A of k-gonal curves in P”
of degree 2g — 2 — £k embedded by a general r-dimensional sub-system of
|K — £g}|. Furthermore

dim A > dim M} ; + dimG(r,g — £k + £ — 1) + dim(Aut P")
>3g~-3+p(dg,r)+(r+1)> -1

in the given range of g, k,£ and r. Thus there must be an exceptional com-
ponent containing the family of general k-gonal curves and hence Tygr is
reducible.

Remark 3.5. (i) In all the examples we demonstrated so far, we deliberately
chose the numbers d, g and r so that the Brill-Noether number was positive,
in particular p(d,g,r) > g. On the other hand, one can come up with a
bunch of examples e.g. T, _5_4 ; o gr4¢—1 Which violate the so called Brill-
Noether-Petri Principle (see [EH], § 2) for those g, k and £ in the same range
as in Theorem (3.4) and in these cases the Brill-Noether number becomes
negative.

(ii) If £ = 2 in Theorem (3.4), one can show that the family of general k-
gonal curves contained in an exceptional component of 7 g—2—2k,g,r 18 indeed
dense in the component.
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