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PREFACE

The first GARC Symposium on Pure and Applied Mathematics was held
at the Global Analysis Research Center, the Seoul National University, from
Thursday, February 13 to Friday, February 21, 1992. All the meetings were
held at the Department of Mathematics Building.

The Global Analysis Research Center was inaugurated on March 1, 1991
under the Science Research Center Program of the Korea Science and Engi-
neering Foundation to promote research ability in the field of mathematics
in Korea. The central aim of the Global Analysis Research Center is the
cooperative study of various analytic problems defined on manifolds such as
partial differential equations, nonlinear analysis, operator algebra, dynami-
cal systems and other related problems. The approach is a comprehensive
one that also requires basic understandings of topological, geometric and
algebraic properties of manifolds.

In order to maximize the efficiency of research, the Global Analysis Re-
search Center has 6 Research Sections adapted to the natural division of
research activities of the participating members. In accordance with the 6
Research Sections of the Global Analysis Research Center, the first GARC
Symposium was carried out in 6 sessions; Partial Differential Equations,
Nonlinear Analysis, Operator Algebra, Differential Geometry and Dynam-
ical System, Topology and Geometry of Manifolds, and Complex Analytic
Manifolds and Varieties.

The aim of the GARC Symposium was intended to set up mutual under-
standings on the interest of each research member and to explore current
problems in the area of Global Analysis. Accordingly, almost all the research
members of the Research Center including post doctors participated at the
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symposium. In addition, the organization committee invited several mathe-
maticians from abroad. A few speakers were asked to survey their fields but
the majority of speakers presented their recent research works.

In this proceedings of two issues, we collect all the lecture materials which
were presented at the symposium. We would like to thank all the speakers,
especially those professors from abroad, for their enthusiastic participation
and their cooperation in writing up their talks. We would also like to thank
the Korea Science and Engineering Foundation for their support to the Global
Analysis Research Center and the Department of Mathematics of the Seoul
National University for its hospitality. '

We hope that in publishing this proceedings we will allow much wider
audience to share in some of the work and enthusiasm of the participants at
the symposium.

- 1992.10.

Jongsik Kim

Director

The Global Analysis Research Center
The Seoul National University
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REPRESENTATION OF QUASIANALYTIC
ULTRADISTRIBUTIONS

SOON-YEONG CHUNG AND DoHAN KM

ABSTRACT. We give the following representation theorem for a class contain-
ing quasianalytic ultradistributions and all the non-quasianaly- tic ultradis-
tributions: Every ultradistribution u in this class can be written as

u = P(A)g(z) + h(z)

where g(z) is a bounded continuous function, h(z) is a bounded real analytic
function and P(d/dt) is an ultradifferential operator. Also, we show that
the boundary value of every heat function with some exponential growth
condition determines an ultradistribution in this class. Our interest lies in the
quasianalytic case, although the theorems do not exclude non-quasianalytic
classes. The proofs of the theorems in this paper will appear in [C-K].

1. A class of quasianalytic\ ultradistributions

Let M,, p=0,1,2,---, be a sequence of positive numbers. An infinitely
differentiable function ¢ on 2 is called an ultradifferentiable function of class
(M) (of class {M,} resp.) if for any compact set K of  for each h > 0
(there exist constants h > 0 resp.) such that

6% ¢(=)]
1.1 - Lhih d a4
(1) 19lnt a0 = 520 FRTag,
a€ENg
is finite. We impose the following conditions on M,:

(M.0) For any A > 0 there exists a constant C' > 0 such that

pl < CAPM,, p=0,1,2,--- .

Partially supported by the GARC-KOSEF



2 SoON-YEONG CHUNG AND DoHAN KIM

(Ml) M: S Mp_lMp+1, P= 1,2,° .
(M.2) There are constants C and H such that

My < CHp+quMqa p,¢=0,1,2,.--.

- We call the above sequence M, the defining sequence and denote by &) ()
(€(m,}(82) resp.) the space of all ultradifferentiable functions of class (M)
(of class {M,} resp.) on Q

As usual, we denote by & m,) () (& M, }(§) resp.) the strong dual space
of Em,)(R2) (of E{a, () resp.) and we call its elements ultradistributions
of Beurling type (of Roumieu type resp.) with compact support in Q. Let
K C R" be a compact set. We denote by Em,)(K) (€{m,}(K) resp.) the set
of ultradistributions of class (M}) (of class {M,} resp.) with support in K.
For each defining sequence M, we define for t >0 -

t? M,
M(t) = sgp log i,
' . 1tP M,
(1.3) M*(t) = suplog E=-—=
‘ P p
— pltP M2
M(t) = sx;p log M
An operator of the form
o0
(1.4) PO =) aud*, as€C
laj=0

is called an ultradifferential operator of class (M,) (of class {M,} resp.) if
there are constants L and C (for every L > 0 there is a constant C > 0 resp.)
such that

(1.5) laa| < CLI®l/M},, o€ NE.

2. Structure Theorems

In this section it will be shown that every u € &(m,)(K) can be written
as an infinite sum of derivatives of a continuous function modulo a bounded
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real analytic function and that every u € & M,)(K ) can be represented by
the boundary value of a heat function satisfying some exponential growth
condition.

We denote by E(z,t) the n-dimensional heat kernel:

(4mt)~"/2 exp(—|z|2/4t), t>0,
0, ‘ t<0.

Bt = {

Lemma 2.1([M]). E(.,t) is an entire function of order 2 for every t > 0.
We have the following properties on E:

(i) [ge E(z,t)dz=1, t>0
(ii) There are positive constants C and a such that

|02 E(z,t)| < Clolg=(n+1aD/21} expl—a|z|? /4], t>0
where a can be chosen as close as desired to 1 and 0 < a < 1.

Lemma 2.2. Let K be a compact subset of R" and ) be a bounded open
set containing K. For every ¢ € €y, let

4(2) = [ Bz - 08(0)dy.
Then ¢; converges to ¢ in Epr,) () as t — 0+.

For each defining sequence M, we impose the following condition:
(C) There exists a positive integer k such that

2
lim inf (%) >k

p—oo myp

where my, = M, /M,_;, p=1,2,---.
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Remark 2.3. (i) Let m, = p(logp)®, a > 0. Then M, = my - - - m, satisfies
(C). Thus the defining sequence for this standard quasianalytic class satisfies
- (C). :
( (ii) The Gevrey sequence M, = p!°, s > 1, satisfies (C).

(iii) Furthermore, if M, satisfies the strong nonquasmna.lytw condition
(M.3) in Komatsu [K1] then it satisfies (C). In fact, (M.3) is equivalent to
the fact that for some mteger k>0

(M.3)" liminf X2 > k.

p—oo My
Thus the condition (C) is equivalent to the fact that N, = M} satisfies
(M.3) (see [P], p.300)

Lemma 2.4. Let L be an arbitrary po.éitive number and let
: 2 .. LC » n
(2.1) P(()=(1+¢) H(H‘m—), (eC™
S _ p=1 P ‘

(i) If M, satisfies (M.1), (M.2) and (M.3) then P(9) is an ultradifferential
operator of class (Mp).

(i) I M, satisfies (M.1) and 32, My—1/M, < oo then for any € > 0
there exist functions v,w € C§°(R) such that

(2.2) suppv C [0,¢], suppw C [¢/2, €]
(2.3) lv(t)| < Cexp[-M*(L/t)], t>0
(2.4) P(d/dt)o(t) = 8(t) + w(t),

where 6 is a Dirac measure.

Now we are in a poéition to state the main theorem of this paper.

Theorem 2.5. Let M, be a defining sequence satisfying (C) and u € & M,)(K ).

Then there exists an ultradifferential operator P(d/dt) such that for some
C>0andL >0

(25) P(d/d) = 3 ax(dfdt)t, faxl < CL*/M
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and there exist a bounded continuous function g(z) and a bounded real
analytic function h(z) such that

(2.6) u = P(A)g(z) + h(z)
where g(a:) € C®(R™"\K), P(A)g(z) + h(z) = 0 in R*\K, and A is the

Laplacian.

Every distribution and hyperfunction with compact support can be rep-
resented by the boundary value of holomorphic functions. Here we will give
a similar result for £, ,(K).

Theorem 2.6. Let M, be a defining sequence satisfying (C) andU(z,t) be

an infinitely dxﬂ'erentzab]e function in R ! satisfying the following condi-
tions:

(13 (8 — A)U(z,t)=0 in RGM

(1i) For any 6 > 0 there exist C > 0 and € > 0 such that
(2.7) |U(z,t)| < Cexp [M(e/t) — d(z,K5)?/8t] in RIT.
Then there exists a unique element u € £ M,)(K ) such that
(2.8) U(z,t) =uy(E(z —y,t)), t>0
and
(2.9) tgrgl_l_ U(z,t) =u

in the following sense:

(210)  u¢)= lip [ UeH4@), b€ Eu®R?)
where () is an arbitrary bounded neighborhood of K.

For a compact set K of R® we denote by M%™¢ the totality of C*
solutions U(z,t) of the heat equation (8; — A)U(z,t) = 0 in R} which
satisfy the following condition:

For any é > 0 there exist C and € > 0 such that
(2.11) |U(z,t)| < Cexp [M(e/t) — d(z,Ks)*/8t] on R}

Note that M$2™¢ is a DF-space with the best constants C' as semi-norms.
Then we have the following theorem in view of Theorem 2.5 and 2.6:
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Theorem 2.7. Let M, be a defining sequence satisfying (C). Then there
exists an isomorphism: : :

M = €y, (K).

Matsuzawa [M] has proved similar theorems for the case of hyperfunctions
and ultradistributions of Gevrey class. Thus the above theorem is an exten-
sion of Matsuzawa’s result for a class of quasianalytic ultradistributions.

Finally, we conjecture that our assertions should also remain valid without
the condition (C), i.e., for the general ultradistributions, both quasianalytic
and nonquasianalytic. :

REFERENCES

[C-K] Chung, S. Y. and Kim, D., Representation of quastanalytic ultradistributions, to
appear in Ark.Mat.. : '

[K1] Komatsu, H., Ultradistributions I : Structure theorems and a characterization, J.
Fac. Sci. Univ. Tokyo, Sect, IA 20(1973), 25-105.

, Ultradistributions II : The kernel theorem and ultradistributions with sup-
port in a submanifold, J. Fac. Sci. Univ. Tokyo, Sect. IA 24(1977), 607—628.

[M] Matsuzawa, T., A calculus appoach to hyperfunctions II, Trans. Amer. Math. Soc.
313(1989), 619-654.

[N] Neymark, M., On the Laplace transform of functionals on classes of infinitely dif-
ferentiable functions, Ark. Mat. 7(1968), 577-594.

[P]  Petzshe, H., On E. Borel’s theorem, Math. Ann. 282(1988), 299-313.

(K2]

Soon-Yeong Chung
Department of Mathematics
Duksung Women’s University
Seoul 132-714, Korea

Dohan Kim

Department of Mathematics
Seoul National University
Seoul 151-742, Korea



UNIQUENESS CLASSES FOR THE CAUCHY PROBLEM
WITHOUT UNIFORM CONDITION ON TIME

SOON-YEONG CHUNG AND DOHAN KiM

0. Introduction

In the theory of heat conduction it is well known that the temperature of
an infinite rod is not uniquely determined by its initial temperature. Consider
the following famous example

oo

(0.1) u(z,t) =Y f(t)z*" /(2n)!
n=0
where £6) = { eV 150
“lo t<0

for the nonuniqueness theorems for the Cauchy problem of the heat equation.
The function u(z,t) satisfies the heat equation :

ou_ o
ot Oz?
for t > 0, and u(z,0+) =0 for —o0 < = < o0.

=0

In general there are several uniqueness theorems of solutions of the heat
equation as follow :

Partially supported by GARC-KOSEF.
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Theorem A([7]). Let u(z,t) be a continuous function on R™ x [0, T sat-

isfying that

(¢ —A)u(z,t)=0 on R" x(0,T)
and for some C > 0 :
(0.2) lu(z,t)| < Ce**I" on R™ x [0,T]

f'or s]ome a > 0. Then u(z,0) = 0 on R™ implies that u(z,t) = 0 on R™ x
0,7).

Theorem B([1]). Let u(z,t) be a continuous function on R™ x [0, T satis-

fying that
(0r — A)u(z,t)=0 on R"™ x(0,T)
and

(0.3) /0 ' /R Ju(e, el de dt

is finite for some a > 0. Then u(z,0) = 0 on R" implies that u(z,t) =0 on
R" x [0,T]. - '

It is clear that Theorem B is much stronger than Theorem A. Note that
the growth condition (0.2) or (0.3) is quite unrestricted with respect to z
variable, but too restricted with respect to ¢ variable to apply this theorem
in many cases (see [4], for example).

In this paper, we give more generalized uniqueness theorems of Cauchy
problem under the following much weaker growth condition instead of (0.2)
and (0.3)

ju(z, 0 < Cexpk(faf* +1/1), ¢>0

for some C' > 0 and k > 0. Moreover, this growth condition does not require
the continuity of u(z,t) on t = 0. Also, we give an example of nontrivial
solutions for the Cauchy problem of the heat equation which is uniformly
bounded with respect to z variable.

The proofs of the theorems in this paper will appear elsewhere.
1. Example of nonuniqueness

We give here an exmaple of nonuniqueness for the Cauchy problem of heat
equation. In fact, this example is motivated by Morimoto and Yoshino [5] as
an example of an analytic functional with noncompact carrier.
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Theorem 1.1. There exists a continuous function u(z,t) on R x [0, 00)
which is a C*®°-function on R x (0, 00) satisfying

: Ou 0O%u
(11) —a—t'—BF=0 on RX(0,00)
(1.2) u(z,0)=0 on R
and for any € > 0
(1.3) lu(z,t)| < Cexp(e/t), on R x (0,00)

for some C = C(g), but which is not identically zero.

Remark. We note that the above u(z,t) is uniformly bounded with respect
to space variables. Considering the growth condition (0.2) or (0.3), the above
theorem implies that the uniqueness for the Cauchy problem of heat equation
depends strongly on the growth along the time.

2. Uniqueness Theorems

In this section we will give the more generalized uniqueness theorems than
Theorem A and Theorem B.

Definition 2.1. We denote by Exp(k) the set of all infinitely differentiable
functions ¢ in R" such that for any A > 0

_ o |6%4(z) exp kz]?
(2.1) |plExp(r),n = zSEuR.p" hlalg!

a

is finite. The topology in Exp(k), defined by the above seminorms makes
Exp(k) a F'S-space. In fact, it is the projective limit topology over all A > 0.
We denote by Exp'(k) the strong dual of the space Exp(k).
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Lemma 2.2. Let P(9) = ZT:I=0 a,0® be a differential operator of infinite
order with constant coefficients satisfying that there exist L > 0 and C > 0
such that

(2.2) lag| < CLI®l/a!

for all a. Then the operators

(2.3) P(0) : Exp(k) — Exp(k)
and
(2.4) P(9) : Exp'(k) — Exp'(k)

are continuous.

Proposition 2.3. Let g(z) be a continuous function satisfying that for some
C>0andk>0

(25) lg(z)| < Cexpklz|?, ze€R",

and G(z,t) = g(z) * E(z,t) where x denotes the convolution with respect to
z variable. Then G(z,t) is a well defined C*-function in R™ x (0,1/4k) and
satisfies that

(i) (8 — A)G(z,t) =0, 0<t<1/4k
(2.6) (ii) |G(z,t)| < Cexp(2k|z|?), 0<t<1/16k
(iii) G(z,t) — g(z) locally uniformly on R™ ast — 0 +.

The following lemma is very useful later. For the details of the proof we
refer to Komatsu [3] :
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Lemma 2.4. For any L > 0 and ¢ > 0 there exist a function v(t) € C§°(R)
and a differential operator P(d/dt) of infinite order such that

supp v C [0,¢], |v(t)| < Cexp(—L/t), 0<t< oo;

(2.7) P(d/dt) = f:ak(d/dt)", lax| < CLLY¥ /K12, 0< L, < L;
k=0
P(d/dt)v = § + w(t)

where w € C§°(R) with suppw C [¢/2,¢] and § is a Dirac measure.

Now we are in a position to state the main theorem in this paper.

Theorem 2.5. Let u(z,t) be a function on R™ x (0,T) satisfying that

(i) (0 — A)u(z,t)=0, 0<t<T,
(ii) For some k > 0, there exists C > 0 such that
(2.8) lu(z,t)| < Cexpk(|z|> +1/t), 0<t<T,

(iii) t_lirg'_ / u(z,t)¢(z) dz = 0 for every ¢ € Exp(2k).

Then u(z,t) is identically zero on R" x [0,T). Here T may be oo.

Remark. (i) In the condition of the above theorem, the continuity of u(z,t)
on R" x [0, T] is not required. Thus this uniqueness theorem is much stronger
than any other one already known.

(ii) It can be easily seen that this Theorem generalizes the Theroem A
and B.

(iii) The initial condition (iii) of this theorem is, more or less, unsatisfac-
tory. But in view of the example as seen in the Section 2, it can be regard as
optimal one. The space Exp(2k) can be replaced by Exp(k') for some k' > k.
Also, it can be weakened as follows:

lim u(a:,t)e""zp dz = 0.
t—0+
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ORTHOGONAL POLYNOMIALS
SATISFYING DIFFERENTIAL EQUATIONS

K. H. Kwon, J. K. LEE AND B. H. Yoo

1. Introduction.

All polynomials in this work are assumed to be real polynomials in one
variable.

Let P be the set of all polynomials. For any ¢(z) in P, we let deg ¢ denote
the degree of ¢(z) with convention deg0 = —1. A sequence of polynomials
{#a(x)}§° is called on orthogonal polynomial set (OPS in short) if there is a
linear functional ¢ on P (which we shall call a moment functional) such that

(1.1) (0, dmdn) = Knbmn, mandn=0,1,2,...

where K, #0,n =0,1,2,..., are real constants.

In 1929, Bochner (3] showed that there are essentially (that is, up to
a linear change of variable) only four OPS’s arising as eigenfunctions of a
second order Sturm-Liouville differential equation of the form

(1.2) a(z)y"(z) + B(z)y'(z) + v()y(z) = Ay(z)

where a(z), f(z), and y(z) are polynomials of degree 2, 1, and 0 respectively
- independent of the parameter n and A = A, is a constant depending on n.

They are now known as classical OPS’s of Jacobi, Laguerre, Hermite,
and Bessel polynomials. There are many other characterizations of classical
orthogonal polynomials (see Al-Salam [1]) among which we are particularly
interested in the Hahn’s theorem saying that the classical OPS’s are the only
OPS’s whose derivatives also form OPS’s.

On the other hand, Krall [5] found a necessary and sufficient condition for
differential equations of the form

N
(1.3) Lyy =) Li(z)y® = Ay
0

13
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to have an OPS as solutions, where £;(z) are polynomials independent of the
parameter n = 0,1,2,... and A, is a real constant. In [6], he also classified
all differential equations of the form (1.3) for N = 4 which have an OPS as
solutions.

In this work, we shall generalize Hahn’s theorem to the characterization
theorem of all OPS’s that arise as eigenfunctions of the differential equation
(1.3).

We are grateful to Professor W. N. Everitt who suggested the problem
for N = 4 at the conference on orthogonal polynomials and applications,
Granada, Spain, 1991 (see also [12]). This work is supported by KOSEF
(Grant No. 90-08-00-02) and GARC of Seoul National University.

2. Main results.

By a polynomial set, we mean a sequence of polynomials {P,(z)}° such
that deg P, = n,n =0,1,2,.... Any polynomial set {P,(z)}$° determines
a unique moment functional o satisfying |

(2.1) (0,1) =1 and (o,P,) =0, n=123,...,

We call o the canonical moment functional of {P,(z)}$° and the moments
{oa}$° of o given by

g = (0,2"), n=0,12,...
the moments of {P,(z)}3°.

Note that if a polynomial set is an OPS, then it must be orthogonal relative
to its canonical moment functional.

Lemma 2.1 (H. L. Krall [5]). A polynomial set {P,(z)}$° is an OPS sat-
isfying the differential equation (1.3) if and only if £;(z) are polynomials of
degree < 1, say,

l;(z):il;jxj, 1=0,1,...,N
j=0
and
(2.2) ,\,.=€oo+n£u+---+n(n——1)---(n-—N+1)€NN
and the moments {0,}§° of {Pn(z)}$° satisfy

(2.3) A, = detfoi4]] ;=9 # 0, n=0,1,2,...
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N i, , '
(24) Si(m):=)_ > (‘ - ';" 1)P(m—zk—1,i—zk-1)e.-,,-_,-a,,,-,- =0

i=2k+1 j=0

for1<2k+1< N,m=2k+1,2k+2,..., where P(n,k) =n(n—1)---(n—
k+1).
Furthermore, if then, N must be an even integer, say, N = 2r.

Following Littlejohn [11], we call an OPS {P,(z)}§° a Bochner-Krall OPS
if P,(z) satisfies

2r ‘ 2r ‘
(2.5) Ly(y) = ) L)y =) iaiy®D = Ay

=0 i=0 j=0

forn =0,1,2,... with £3,(z) # 0 and )\, given by the equation (2.2).
We call then the r recurrence relations Sx(m) =0,k =0,1,...,r —1, the
moment equations for {P,(z)}$°. Our main theorems are

Theorem 2.2 ([8]). For any OPS {P,(z)}¢° relative to a moment functional
o, the following statements are all equivalent. '

(a) {Pn(z)}8° is a Bochner-Krall OPS of order 2r satisfying (2.5).
(b) o satisfies an overdetermined system of r homogeneous differential
equations

2r . '
(2.6) Rio:= > (-1 (’ - :— 1)(e.-a)<‘-2"-1> =0

2k+1

fork=0,1,...,r—1.
(c) oLy, is formally symmetric on polynomials in the sense that

2.7 (L2r(8)o, %) = (L2r(¥)o, ¢)

for every polynomial ¢(z) and (z).
(d) There are r + 1 moment functionals {r;}§ such that 7, # 0 and

r

(2.8) Lar(¢)o = Y (-1)[¢¥r)®

0

for every polynomial ¢(z).
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Moreover, the moment functionals o and {7;}§ are related by the equations

min(r,k)

(2.9) b(z)o= Y (-1)*(kii)r§2"-“, k=0,1,...,2r

(4

where [z] is the largest integer < z.

The proof of Theorem 2.2 is based on the characterization of symmetry fac-
tor (cf. [10, 13]) of linear differential operators. It is interesting to note that
every differential operator L;, having an OPS {P,(z)}$° as polynomial solu-
tions can be made symmetric on polynomials in the sense of Theorem 2.2 (c)
and each P,(z) is an eigenfunction corresponding to an eigenvalue \,.. How-
ever, in general, not every differential operator is symmetrizable if it is of
order > 4.

Theorem 2.3 ([8]). An OPS {P,(z)}{° is a Bochner-Krall OPS of order 2r
if and only if there are r + 1 moment functionals {r;}} such that 7, # 0 and

(2.10) o Z(T;,P,(,f)P,(,i)) =0 for m#n>0.

=0

Moreover, {P,(z)}§° is a symmetric Bochner-Krall OPS of order 2r if and
only if {r;}§ can be taken to be symmetric.

As a special case of Theorem 2.3 for » = 1, we obtain an extension of
Hahn’s characterization theorem of classical orthogonal polynomials.

Corollary 2.4 ([7, 8]). An OPS {P,(z)}$° is a classical orthogonal polyno-
mials (i.e., a Bochner-Krall OPS of order 2) if and only if there is a nontrivial
moment functional T such that

(2'8) (T’ Pr'nprlz) =0

form #n > 1.

3. Remarks and open problems. - ,,
Bochner-Krall OPS’s of order 2 and 4 are completely classified by S. Bochner
(3] and H. L. Krall [6] and several Bochner-Krall OPS’s of order > 6 are now
known (cf. [4, 9, 11]). However, the problem of classifying all Bochner-Krall
OPS’s is far from being complete. In this work, we have used moment func-
tionals to introduce the orthogonality, but due to the classical theorem of
R. P. Boas [2] on Stieltjes moment problem, for any OPS {P,(z)}S°, there
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must exists (in fact infinitely many) a function of bounded variation u(z) on
[0, 00) such that

(3.1) / Po(2)Pa(2) di(z) = Kb, Kn # 0

for m and n > 0.

When the Stieltjes measure dy(z) is of the form w(:c) dz, we call w :c) an
orthogonalizing weight of {Py,(z)}5°. For all known Bochner-Krall OPS’s we
have representations of their orthogonalizing weights as generalized functions
of distributions or hyperfunctions. However, in order to develop the spectral
theory of differential operators having OPS’s as solutions, it is important
to construct functions u(z) as in (3.1) explicitly, which are not known yet
except some special cases.
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RELATION BETWEEN
SOLVABILITY AND A REGULARITY
OF CONVOLUTION OPERATORS IN K;, p>1

DAE HYEON PAHK AND BYUNG KEUN SOHN

Let K}, be the space of distributions on R™ which grow no faster than
e¥l2” for some k > 0 ; K, is the dual of space K,, which we deribe later. We
denote by Oy(K,, K, ) the space of convolution operators in Kj,. ‘

In [6] S. Sznajder and Z. Zielezny proved that, if S is a distributions
in Oy(K},K3) and $ is its Fourier transform, the following conditions are
equiva.lent

(a) There exist positive constants A, C' and a positive integer N such

that

1

sup | S(z)| > N,fER"a.nd +—=1

z€R" (1+ Ié )
lo—€1< AQlog(2+1¢])) @

(b) S*K!, =K},

In this paper we prove that, for S € £ C O (IC' K;), the statements (a)
and (b) are equivalent to the following : every dlstnbutlon u € 0y(K,,Ky)
satisfying S * u € K is in K,.

The motivation for this problem comes from the paper [7]. Here S. Szna-
jder and Z. Zielezny proved that, if S is a distribution in O'(K},K}) and §
is its Fourier transform, the following statements are equivalent :

19
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(i) There exist positive constants N, r, ¢ such that

sup | $(E+2)| > ,€ € R",

[+
z€EC™, |2|<r (1 + |61N)

i) S*xK} =K}
(m) IquO(IC 1) and S *u € Ky, then u € K4

In fact the equivalence of the first two statements is proved in [5] and the
last one in [7] by them.

Moreover, they considered the solvability condition of convolution oper-
ators in the tempered distribution space which is still open. In [7] they
proved some necessary properrties for the solvability in the tempered distri-
bution space, which is related to the result in Kj. We naturally ask the some
complemented condition in the space K. p» P > 1. But we only succeed for
convolution operators with compact support in Oy(K3, Kyp).

We have also studied the complemented condmon for the solvability of
convolution operators in the generalized distribution spaces of Beurling type
which include the classical distribution space. The report of our progress in
this direction will be avaible soon.

We now state our theorem, which complements partly the result in [6] :

Theorem. Let S be a distribution with compact support and S be its
Fourier transform, then the following conditions are equivalent:

(a) There exist positive constants A, C and a positive integer N such

that
sup 18(z)| > ——— ¢ , £€€R" and - +l—1
zER" (1 |EI)N
lz—¢|<A(log(2+[¢D) ¢
(b) S*xK, =K,

(c)IquO(IC' K,) and S *u € K, thenu € K,.

However, the conditons (a) and (b) are equivalent for every distribution
in O(K},K}) as was shown in [6].

Before presentmg the proof of our theorem we recall briefly the basic facts
about the space K,,; for further details we refer to [4].

The space K,,. Let Kp, p > 1, be the space of all C*-function ¢ in R"
such that . :

vp(9) = sup e"""plD“qﬁ(z)l <o0, k=0,1,2,...
|a|<k, z€ER™
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where D* = Dy*... D3~ and D; = i"l(—a%). Provided with the topology

defined by the seminorms v, K, is a F&'ecl:et space. The dual K}, of K, is
the space of continuous linear functionals on K,. Then a distribution u is in
K, if and only if there exist positive integers m, k and a bounded continuous
function f(x) on R™ such that

amn z
u= 5;1—‘—‘—[6"' ¥ £(z)].

ozm

K, is endowed with the topology of uniform convergence on all bounded sets
in Kp.
If u € K}, and ¢ € K}, then the convolution u * ¢ is a C*°-function defined
by
u* ¢(z) =< uy, d(z—y)>.
The space Oy(K,,K;). The space O¢(K},K}) of convolution operators in

Ky, consists of dlstnbutlons Sek, satlsfymg one of the following equivalent
conditions:

(¢) The distributions Si = k12’ S k= 1,2, ...,are in tempered distri-
bution spaces.
(i¢) For every integer k > 0, there exists an integer m > 0 such that
s= ¥ o
lo]<m
where f,, |a| < m, are continuous functions in R" whose
products withe*!*I" are bounded.

(ii2) For every ¢ € K,, the convolution S * ¢ is in K,.

If u € O,(K},K;) and 4 is obtained from u by symmetry with respect
to the origin, i.e., < @, ¢ >=< u;, ¢(—z) > for ¢ € K,, then # is also in
0.(K},K}). The convolution of u with v € K}, is defined by

(1) <u*v, §>=<v, u*x¢p>, ¢€K,.

Proof of Theorem. Since the space of distributions with compact support
is a subspace of Oy(K},K}), it suffices to show that (b) = (¢) = (a).

(b) = (¢). The proof goes along exactly the same lines as proof of Theorem
1 in [6]). For the completeness we give the proof. If S is a distribution with
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compact support, then so is T = § and, by (1), the mapping S*:u — Sxu
of K}, into K, is the transpose of the mapping T* : ¢ — T * ¢ of K, into
K. Condition (b) is satisfied if and only if T* is an isomorphism of K, onto
T * Kp(see e.g.,[1, Corollary on p92]). In particular the inverse T *x ¢ — ¢
must be continuous.

Suppose now that S * u = ¢ where u € Oy(K},K}) and ¢ € K,. Then

(2) Tsii=(-1)"$

and for the proof it suffices to show that & € K,. If ¢ is a C°°-function
with supp(y) C B(0,1) = {z € R" : |z| < 1} and %(0) = 1, we define
Yi(z) = k™P(kz), k=1,2,.... From (2) it follows that

T* (4 * i) = (—1)"¢ * thx,

and the convolutions #i*y and (—1)" @iy are in Kp. Moreover, the sequence
{t+} converges in O}(K},K}) to 6, the Dirac measure at the origin. Hence
(=1)"¢* ¢ — (-1)*¢ in Kp and @ * 1 — @ in Oy(K},K}). On the other
hand, the sequence {@ * v} converges in Kp, by the assumption that the
inverse of T* is continuous. The limit must be again %, and so 4 is a function
in KC,.

(c‘i => (a). Let F be the space of all functions u € C(R™) such that

sup e*l* |u(z)| < oo, for all k
TER"

and S * u € K,. We provide F with the topology defined by the seminorms

[lullx = séulg) X2 ju(z)| + vk(S xu), k=0,1,2,....
z n

Then F becomes a Frechet space. Further, let G be the space of all functions
u € C'(R™) such that

lull = sup [D%u(z)| <oo;
: z€R" |a|<1

with the norm || ||, G is a Banach space.

By the fact 7 C Oy(K},K;) and the assumption (c), each function u € F
isin G. Also, the natural mapping F — § is closed and therefore continuous.
Consequently there exist an integer > 0 and a constant C such that

l[ull < Cllull, = C{ sup. eV Ju(2)] + vu(S * u))
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for all u € F, which gives

3) llull = C sup e**F |u(z)| < Cv,(S *u).
ZER"

Suppose now the condition (a) is not satisfied. Then there exist a sequence
{¢;} such that |{;| — oo and

A 1
“ N e

lz—¢&; |<Alog(2+1€; ) ¥

for given N > 2Pu(1=P) 4 (u+n+1) and A > {@"# " +2(Notptntl)+d) 1},
Here N, is a positive integer satisfying |S(€)| < Co(1 + [€])M°,€ € R™ and
d = log C; satisfying |[$(€)| < C1(1 + [€])~1,¢ € R™. Both inequalities are
given by the Paley-Wiener theorem for the given distribution S and the given
test function % in the above proof. .

Now let k; = [log(2+|¢;])] and aj = pkj; , where [ ] is the Gaussian integer.
We define the function ¢; by

éi(z) = e <oi> Va; * oo * P
[ —

k;-times

where t,;(z) = afy(a;z). Then ¢; is a C®-function with [p, |¢;(z)|dz

=1 and suppg; C B(O,u'lk}.).

Substituting ¢;’s into the inequality (3), we will show that the left-side
of (3) goes to oo and the right to 0, as j — oo, which gives the desired
contradiction.

To show this, we first estimate

(4]

(5) Iesll = _sup  1D°9;(@)] 2 55 sup [45(z)]
and

supe U Igi(@) = sup e 1gy()
(6) |z|<p-1k?

<@ +1EDH T 15 loo-
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Viewing
1
1= [ 16e)ds < Cou k451
1 1
where Ca(u~'k7)" is the volumn of the ball B(0,u~"k?) in R", we have
™ sl > 5-(u7 k)™
jlloo = C, B R .

Substituting (5), (6) and (7) into (3), the left-hand side of (3) behaves, as

j = oo, .
Jim {1141 - Csup el |g;(2)}

12+ 1, b,
> —_—— o — k?
=2 im & |€51[log(2 + €))% = o
=G Jim | (log § = 00.

On the other hand, we say supp(S) C B(0,r) for some r > 0 and then
1
supp(S * ¢;) C B(0,r + p~ 'k} ). Hence

1
vu(S* ;) S etIHTRT qup DS 4))]
Z€ER™ |a|<p

-y, 1 i Sy
<RI sup [ [ <SG
al< n

<Cs(2+ Ifjl)zvpl-v ,f"e“,{’..“m(n)l(l + g
(8)

e
. sup [ lnl

d
laj<u (27)" Jgn (1 + |p|)ptntl )

1-p

< Cu(2+ €))7 sup (157 (ML + Inl)**+"+1]

In—€ |<A(log(2+1¢; 1)) ¢

+ sup S &I+ )
In—¢&; |>A(log(2+]¢;1)) ¢
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It now suffices to prove that both terms in (8) go to 0, as j — co. We first
observe

$i(n) = oy (1 - €)% = [4/3(”7_,-61)]""
and, by the Paley-Wiener theorem for v,

Bl < cbu+ L= Syy
J

S(Crag)i+ I = gD78.
From these observations, (4) and Peetre’s inequality,

the first term of the last estimate in (8) is bounded by
Ca2+ |67 7 (Crag V(1 + In = )75 A+ )P (1 + )N

< C5(1 + |§jD2ﬁpl-P_N(Claj—l)k,' (1 + "7 - €j')—kj+ﬂ+n+l2p+n+1
S+l D

Therefore the first term of the last part in (8) approaches to 0 as j — oo
because of N > 2Pu'~P + (u+ n + 1) and a;, k; — 00 as j — oo.

From Peetre’s inequality and ij < (2+¢510)4,

the second term of the last estimate in (8) is bounded by

1-p

Col+IENTH " s {4 n(Ci(1 + L= tl)rye
I~ > Alog(2+¢; ) ¥ !

(L Dy

< CG sup {2N0+u+n+l(1 + IﬁjI)No+“+n+l+2p”1-p
[n—&; |>A(log(2+1€; 1)) 9

(= G2 gyl 4 iy
J
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<C:(1+ !€j|)No+n+n+1+d+2’n"” sup {ajNo+n+n+1+d

ln—¢&; 1> AClog(2+1&; )

In =&l No+p+n+1-k;j
1+ }

1-p

<C.(1+ |§j|)No+p+n+1+d+2vu {(ulog(2 + |€j')]})No+p+n+1

A(log(2 + |£,~|))1% JNotutntik;}
pllog(2 + |&]))*

- A ‘
<Cs(1+ |§j')2(No+u+n+1)+d+zrut P(1 4 Z)Notutnti-k;

. _ N A ’ ’
< Co(1+ [¢5P(Notptmt AP0 (1 4 Z)""

< 09(1 + |§j|)2(No+u+n+1)+d+2n "1"6-6[103(2 +1&; D]
< 09(1 +|¢ jl)2(No+n+n+1)+d+2P ""’6-0(103(2 +IEiD-1)

< CIO(]- + |§j|)2(N°+I‘+ﬂ+1)+d+2p”1-p_a

where a = log(1 + -’3—) and C;, 1 < ¢ < 10, are positive constants which are

independent of j. Hence the second term of the last part in (8) approaches
to 0 as j — oo because of

A> {62’ﬂ1_'+2(No+n+n+l) —-1}p.

Combining both estimates we have

lim V(S* ¢J) =0
J—oo

which gives the desired contradiction.
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THE STUDY OF A NONLINEAR SUSPENSION BRIDGE
EQUATION BY A VARIATIONAL REDUCTION METHOD

Q-HEeuNG CHoI, *TACKSUN JUNG, JONGSIK KIM AND PATRICK J. McKENNA'

Abstract Let Lu = 4y + Ugerr and H be the complete normed
space spanned by the eigenfunctions of L. A nonlinear suspension
bridge equation (3 < b < 15)

Lu+but =1+ ¢h(z,t)in H

has at least three solutions. It is shown by a variational reduction
method.

KEYWORDS: Eigenvalue, critical points, variational reduction method.

Introduction

In this paper we inverstigate solutions of the nonlinear suspension bridge
equation '
) T
Ut + Ugzer + buT =1 + €h(z,t) in (——2-, 5) x R,

u(i-;i,t) = um(ig,t) =0, (0.1)
u 18 ™ — periodic in t and even in z.

McKenna and Walter [6] prove that if 3 < b < 15 then there exist at least
two solutions of (0.1) by the degree theory, with replacing the condition for
u(t,z) in (0.1) by

u is ™ — periodic in ¢ and even in = and t.

*Research supported in part by GARC from Seoul National University.
tResearch supported in part by grant DMS-8722532 from the National Science
Foundation.
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We improve this earlier result of [6] in two ways; first we reduce the symme-
try requirements and second we show that there are at least three (as opposed
at least two) solutions, two of which are large amplitude. For 3 < b < 15, one
solution is positive and the existence of the other solutions can be proved by
the dual variational method.

Our method shall be to reduce the problem in an infinite dimensional Hi-
bert space to an equivalent finite-dimensional one via a variational reduction
method. These methods were first used in [3], [4] and were afterwards extended
in [1], to the case we wish to use.

1. Main results

Let L be the differential operator

Lu= Ugt + Ugzzs-

The eigenvalue problem for u(z,t)

Lu=)u in (—-%,%)XR,

u(z,t) = uu(e;i,t) =0. | (1.1)
u(z,t) = u(—z,t) = u(z,t + )

has infinitely many eigenvalues -
Amn=(2n+1)*—4m?  (m,n=0,1,2,--")

and corresponding normalized eigenfunctions @mn, Pmn(m,n > 0) given by

don = —? cos(2n + 1)z for n >0,

Pmn = ;2r-cos 2mtcos(2n + 1)z for m > 0,n >0,

Ymn = -?r-sin 2mtcos(2n + 1)z for m > 0,n > 0.
We note that all eigenvalues in the interval (—19,45) are given by

/\20=—15<A10=—3<A00=1</\41=17.
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Let @ be the square [—%, §] x [-F, 5] and Hy the Hilbert space defined by
| Ho = {u € L*Q) : u is even in z}.

The set of functions {¢mn,¥mn} is an orthonormal base in Hy.
We define a subspace H of H, as follows

H= {'Ur € HO ‘U= Z(hmn¢mn + i‘mn")bmn), Z |Amnl(h?nn + E?nn) < 00}

with a norm 3 .
el = D2 Amal(R2,, + R2,)]7.

Then this normed space is complete and we have the following simple proper-
ties.

Proposition 1.1 (i) Lu € H implies u € H,
(i) |llu|ll = ||w|l, where ||u|| denotes the L? norm of u.
(iif) [l = 0 iff [|Jull| =0.
Proof (i) Let
Lu=3" Annhmntmn + 32 AmnhmnPrmn.
Then
0o > [ILulll® = 3" Amal(Annhiun + Mrnkinn)
> 2 Pmnl(Bn + b70) = [llull,

because |Am,| > 1 for all m,n. (ii) and (iii) are trivial. ' .
We note that even if 1 € Hy, 1 ¢ H. In fact, since 1 is expressed by

1= Y122 g,

oy 2n+1
1
= (> +1)* 8 o

Hence 1 does not belong to H.

Lemma 1.1 Let § be not an eigenvalue of L. Let v € Hy. Then
(L+é6)ueH.
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Proof Suppose that § be not an eigenvalue of L and finite. We recall
that
Amn = (2n +1)* — 4m? = (4n? + 4n + 1)% — (2m)%.

If n is fixed, we define
A= inf{Ann : Amn > 0} = 8n” +8n + 1,
A; = sup{Amn: Amn <0} = —8n% —8n — 3.

When n — 00,A\} — 400 and A\; — —oco. Hence we know that the
number of {A,, : |Ams| < |6} is finite, where )A,,, is an eigenvalue of L. Let

u = Z(hmn¢mﬂ + Emnzbmn)'

Th
en ]

mn ¢mn + m

(L + 6)_1"' - Z( ilmn"/)mn)-

Hence we have
A ] i
-1,0112 — 2 2
”I(L + 6) U”l - E l’\mnl (/\ + 6)2 (hmn + hmn)
< CY (k% +h%)

mn+6

for some C, which means that
(L + &) ull| < Cullull, C:=VC. .

With the above Lemma 1.1, we can obtain the following lemma.
Lemma 1.2 Let w(r,t) € H and é not an eigenvalue of L. Then all
solution in Hy of
Lu + éut = w(z,t) in Hp

belong to H.
Let V be the 2 dimensional subspace of H which is the closure of the span
of the functions ¢,o and 44, both of which have the same eigenvalue ;o = —3.

Then [||v|| = V3||v|| for v € V. Let W be the orthogonal complement of V in
H.

We first consider the uniqueness theorem when —1 < b < 3.
Theorem 1.1 Let w(z,t) € Hy and —1 < b < 3. Then the equation

Lu + but = w(z,t) | (1.2)



A NONLINEAR SUSPENSION BRIDGE EQUATION 33

has a unique solution in Hy. Furthermore if w(z,t) € H, then the equation

(1.2) has a unique solution in H.
Proof Let w(z,t) € Hy and —1 < b < 3. Let § = 1. The equation (1.2)
is equivalent to

u=(L+8)7—(b-8)ut — bu™ + w(z, 1)), (1.3)

where (L + 6)7! is a compact, self-adjoint, linear map from Hp into Hy with
norm ;. We note that

16— 8)(ug — uf) + 8(uz —u7)|

< max{[b — 6], 6}||uz — ui| < 2fluz — w4

It follows that the right hand side of (1.3) defines a Lipschitz mapping of
H, into Hy with Lipschitz constant v < %2 = 1. Therefore, by the contraction
mapping principle, there exists a unique solution u € Hp of (1.3). On the other
hand, by Lemma 1.1, if w(z,t) € H, then we know that the solution of (1.3)
belongs to H. .

Our main result in this paper is the following :

Theorem 1.2 Let h € W,|||h||| = 1, be given. Let 3 < b < 15. Then
there exists €g > 0 (depending on h and b) such that if |€| < ¢ the equation

Lu+but =1+ eh(z,t)in H (1.4)

has at least three solutions.

2. Proof of Theorem 1.2

Let us define the functional on H
1
Ii(u) = /Q[é(—-lud2 + Jugs|?) + g]uﬂ2 — u — eh(z, t)u|dtdz. (2.1)

The solutions of (1.4) coincide with the critical points of I,.

Proposition 2.1 I, is continuous in H and Fréchet differentiable at each
vin H.
Proof. Let u be in H. To prove the continuity of I, we consider

Iy(u + v) — Iy(u)

1 b
= /[U(vtt + vxz;c;p) + §v(vtt + v:ca::cx) + 5('(“ + 'U)+l2 - |u+|2)
—v — ehv]dzdt.
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Let u = E(hmnsomn + ilmn"/’mn), v = E(kmnsomn + I}mn"pmn)- Then
I/u(vtt + Vogzg )dzdt| = IZ(’\mnhmnkmn + ’\mnilmnz’mn)l < |||u||| Ml

. 1 ~
| [ 50000 + Voza)dadt] = | 5 dna (2 + B2,)] < [0l
On the other hand,

(e + o)1 = Ju* | < 2u™ o] + o],

- and hence

l/(l(u + o) = [ut*)dedt] < 2lut|llloll + [lol® < 2flfullllilo]l] + [[lo]l

With the above results, we see that I is continuous at u.
Now let us prove that Iy is Fréchet differentiabl at u in H, with

y(u)v = /(Lu + but — 1 — eh)vdzdt.
To prove the above equation, it is enough to compute the following :
[Io(w + v) — Ip(u) — Ij(u)v]|
b
= |/ [%v(Lv) + E(I(u + o) — [ut)? — 2utv)| dzd

IA

1 b
S0l + 511 (4 o)1 = e = 2uto)daat

IA

Loz 1oL [

Slloll? + 5 [ v*dzdt
1

< S+l

since 0 < |(u + v)*|* — Jut|? — 2utv < o2 .
Lemma 2.1 For b > —1, the boundary value problem

@ L pyt =1in (—F T Ty = (15 =
has a unique solution y, which is even and positive and satisfies

y'(—g) > 0 and y'(g) <0.
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For the proof see [6]. From Lemma 2.1 we can obtain the following theorem

Theorem 2.1 Let —1 < b, with b not an eigenvalue of L. Let h € H,
with |||k||| = 1, be given. Then there exists ¢o > 0 (depending on b and h) such
that if |e| < € the boundary value problem

Lu+but =1+ ¢h(z,t) in H

has a positive solution u.
Proof From Lemma 2.1 the problem

(4) +—-1in (T Ty = (4T =

has a unique positive solution yo. We note that if b is not an eigenvalue of L,
then the following linear partial differential equation

Lu + bu = eh(z,t) in H (2.3)

has a unique solution u.. We can choose sufficiently small ¢, > 0 (depending
on b and k) such that if || < € then u. + yo > 0, which is a solution of (1.4).m
Next we shall use a variational reduction method to apply the mountain
pass theorem.
Let P : H — V denote the orthogonal projection of H onto V and
I - P:H — W denote that of H onto W, where V and W are defined in
Section 1.

Lemma 2.2 Let3 <b< 15 h € W with |||h||| =1, andletv eV
be given. Then for small € > 0, there exists a unique solutzon z € W of the
equation

Lz+(I— P)[b(v+2)* =1 — eh(z,t)] =0 in W. (2.4)

If z = 6(v), then 0 is continuous on V and we have DIy(v + 0(v))(w) = 0 for
alweW. IfI,: V — R is defined by Iy(v) = v + 0(v)), then I, has a
continuous Fréchet derivative DI, with respect to v and

DI(v)(h) = DI,(v + 6(v))(h) forall heV.

If v is a critical point of I, then vo+0(vo) is a solution of (1.4) and conversely
every solution of (1.4) is of this form. In particular O(v) satisfies a uniform
Lipschitz condition in v with respect to the L*(Q) norm (also the norm ||| -|||).

Proof. Let 3 <b< 15,6 =7, and g(¢§) = b¢*. If g1(€) = g(¢) — 6¢, the
equation (2.4) is equivalent to

z=(L+ 67— P)[—gi(v+2) + 1 + eh(x, 1)]. (2.5)
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Since (L + 6)~'(I — P) is a self-adjoint, compact, linear map from (I — P)H
into itself, the eigenvalues of (L + 6)~'(I — P) in W are (A, + 6)~!, where
Amn 2 1 0r Apn < —15. Therefore its L, norm is . Since

l91(62) = ga(60)| < max{|b— 6, 8}16s — &] < 8l6s — &,

it follows that the right hand side of (2.5) defines, for fixed v € V, a Lipschitz
mapping of (I—P) Hy into itself with Lipschitz constant y < 18 = 1. Therefore,
by the contraction mapping principle, for given v € V, there exists a unique
z € (I — P)Hy (also z € (I — P)H) which satisfies (2.5). Since the constant &
does not depend on v, it follows from standard arguments that if (v) denotes
the unique z € (I — P)H which solves (2.5) then 6 is continuous. In fact, if
z1 = 0(v,) and 2z, = 0(v;) then we have

|21 — 22|
(L +8)7(I = P)(=g1(v1 + 21) + g1(v2 + 22))
(L +8)™(I = P)([(§ = B)(v1 + 21)* — 6(v1 + 21)7]
6= O)(v2 + 22)T — S(ma + )]
< Yo+ 21) = (v2 + 25))|
< A(llvr = vall = [lz2 — 22]]).

Hence .
21 — z2f| S cllor —wal, e=——.

With this inequality we have

21 — 2|l
= [I(L+ 87 = P)(=b(z1 + v1)* + 8(21 + v1))
~(=b1(22 + v2)* + 6(22 + v2) )]l

< G0 = P(-bar + )" + 61 + )
—(=b(22 + v2) " + 6(22 + va) ]|

< Allz = 22l + flor = wal])

< 4

| 73+ Dlller = vl
Let v € V and set z = §(v). If w € W, then from (2.4) we see that

/Q(-—z,wt + 2zpWop + b(v + 2)Tw — w — €h(z, t)w)dtdz = 0.
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Since

/ viw, =0 and / Vg Wy = 0,
Q Q

we have
DIy(v+0(v))(w) =0 for weW. (2.6)

Let W, be the subspace of H which is the closure of the span of functions
Pmn and ., whose eigenvalues are \,,, < —15 and let W, be the subspace of
H which is the closure of the span of functions ¢,,, and ,,, whose eigenvalues
are Amn > 1. Let v € V and consider the function & : Wi x W, — R. defined

by
h(wy,ws) = L(v + w; + wy).

The function h has continuous partial Fréchet derivatives D;k and D,k with
respect to its first and second variables given by

Dih(w1,w2)(yi) = DIy(v + wy + w2)(ys)

for y; € W;, i=1,2. Therefore, if we set 0(v) = 61(v) + 02(v) with 8;(v) € W;
for ¢ = 1,2, it follows from (2.6) that

D;h(01(v),0:(v)) =0, i=1,2. (27
If w; and y, are in W, and wy, € W, then

[D2h(w1, ws) — Dah(wy, y2))(w2 — y2)
= (DIL(v+ wy + wy) — DIy(v + w; + Y2)) (w2 — y2)

= [l = )+ (02 = a2 + B((o + w1 + )
—(v + w1 + y2)*)(w; — y2)]dtdz.
Since (g(€2) — g(€1))(é2 — &) > 0 for arbitrary & and &, and

Syl 1wz = g2 + (w2 = ya)2ldtde = s — il

it follows that
(D2h(w1,ws) — Dah(wy,y2)) (w2 — y2) > |||wz — v2||-

Therefore, h is strictly convex with respect to the second variable. Similarly,
using the fact that (g(¢&2) — g(&1))(& — &) < b€, — £)?, we see that if w; and
y1 are in W; and w, € W,, then

(Dlh(wla wz) - Dlh(yl, wz))(wl - yl)
b
< —llwr =yl + Bjwy — 3 || < (=1 + E)lel -unlll®
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where —15 + b < 0. Therefore, h is strictly concave with respect to the first
variable. From (2.7) it follows that

Iy(v + 61(v) + 02(v)) < L(v + 61(v) + y2) (2.8)
for y, € W, with equality if and only if y2 = 6,(v) and
Iy(v + 61(v) + 02(v)) 2> Li(v + y1 + 62(v)) (2.9)

for y; € W, with equality iff y; = 6,(v).
Since h is strictly concave (convex) with respect to its first (second) vari-
able, Theorem 2.3 of [1] implies that I, is C* with respect to v and

DIy(v)(h) = DIy(v + 6(v))(h), heV. (2.10)

Suppose that there exists vy € V such that DIy(v) = 0. From (2.10)
it follows that DIy(vo + 6(vo))(v) = 0 for all v € V. Since (2.6) holds for all
w € W and H is the direct sum of V and W, it follows that DI;(vo+6(vp)) = 0
in H. Therefore, u = vg + 0(v) is a solution of (1.4).

Conversely our reasoning shows that if u is a solution of (1.4) and v = Pu,
then DI(v)=0in V.

We will see that 6(v) satisfies a uniform Lipschitz condition in v. Let
v1,v2 € V and let 2z, = 0(v;), k =1,2. From (2.5) it follows that

n—2z = (L+8)7'(I- P)-g(vi+2)+a(v + 2)]
+(L + 8)"Y(I — P)[—g1(v1 + 22) + g1 (v2 + 22)],

where § = 7. Since |g1(&1) — g1(&2)| < max{|b— §|,8}|& — &,
r = max{(Amn+8)7": Apn =1 01 Apnp < —15}
_ 1
= I +87U-P) =3,

and v = r max{|b— §|,6} < 8 =1, it follows that

llz1 = 22| < 7llz1 = 22|l + yllvr — va|-

Hence
16(v1) = 6(v2)|| < flvr — vel,
where k = 4(1 — 4)~! and the claim is established. n

Let h € W with |||h]]| = 1 and 3 < b < 15. From theorem 2.1 there exists
~small ¢ > 0 (depending on %k and b) such that for all ¢ with |¢] < €, the
equation (1.4) has a positive solution ug, which belongs to W. By the above
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Lemma 2.2 ug can be written by ug = vo + 8(v), vo € V. Since the positive
solution uo belongs to W, vy = 0. Therefore we have ug = 0 + 6(0).

Lemma 2.3 Let3 < b< 15 and h € W with |||k||| = 1. Then there exists
€0 > 0 depending on h and b, and a small open neighborhood B of 0 in V such
that for all € with |€| < €, in B, v = 0 is a strict local point of minimum of
L.

Proof Since for |€| < ¢ the equation (1.4) has the positive solution ug
which is of the form up = 0 4+ 6(0) and I + 6, where I is an identity map on
V, is continuous, it follows that there exists a small open neighborhood B of
0 in V such that if v € B then v + (v) > 0. We note that §(v) = 6(0) in B.
Therefore, if v € B, then for z = 6(v) we have

L(v) = L(v+2)
1 b
= [+ P+ 10+ 2)uel) + 510+ )P
—(v + z) — eh(z, t)(v + 2)]dtdz
= [ e 2y, D 2
= /0[2( |ve)® + |vze|?) + 5V |dtdz
+ /Q[—v,zt + Vpp2pr + bvz — v — €h(z, t)v]dtdz
L1l 4 loaa?) 4+ 222 — 2 —
+/Q{2( |ze|* + |22z )+2z z — eh(z,t)z|dtdz
- (i 2y, b 2
= [ l5(lodl* + Iowel®) + 50%itdn +C,
where
_ [t noba |
¢ = /;[2( |2¢|* + |24 )+22 z — eh(z,t)z]dtdx
= 5(») = K.

If v € V, then v = ¢1010 + ¢jo%10, Where the eigenvalue of @10 and 1y is the
same integer A;o = —3. Therefore we have, in B,

Iy(v) — 1,(0)

l 2 2 f’_ 2
‘/Q[2( |vt| + Ivzzl )+ 2‘U ]dtd:c
_ 1 2
= 5 3+b)/detd:v.

Since 3 < b < 15, it follows that v = 0 is a strict local point of minimum of Ij.
[ ]



40 Q-HEUNG CHoI, TACKSUN JUNG, JONGSIK KIM AND PATRICK J. MCKENNA

Lemma 2.4 Let h € H with |||h||| = 1. For -1 < b < 15 and all
€ € [-1,1] the functional I, defined on V, satisfies the Palais-Smale condition
: Any sequence {v,} C V for which fb(vn) is bounded and DIy(v,) —
possesses a convergent subsequence. ;

Proof. If I;(v,) is bounded and Dly(v,) — 0 in V for any sequence
{vn} C V, then since V is 2 dimensional and spanned by smooth functions we
have with u, = v, + 0(v,) ‘

Lun + bu} = DIy(un) + 1 + €h(z,t) in H. (2.11)

Assuming [P.S.] condition does not hold, that is ||v,|| — +o0, we see that
llun]| — +oo. Dividing by ||u,|| and taking w, = ||u, ||~ u, we have

Lw, + bw} = || (DIy(un) + 1 + eh(z, t)). (2.12)

Since DIy(un) — 0 as n — oo and ||u,|| — +o0, the right hand side of
(2.12) converges to 0 in L?(Q) as n —» co. Moreover (2.12) shows that || Lw,||
is bounded. Since L~! is a compact operator, passing to a subsequence we get
t Wp — wp in Ho. Since |lw,|| = 1, it follows that ||wo|| = 1. Taking the limit
of both sides of (2.12), we find

with |lwo|| # 0. This contradicts to the fact that for —1 < b < 15 the following
equation
Lu+but=0 in H,

has only the trivial solution (cf. [6]). "
Let us define the functional on H :

* — 1 2 2 b +12
$0) = [ Sl + fusal) + 5t Pldtde.
Critical points of I(u) coincide with solutions of the equation

Lu+but=0 in H.

In fact, since, for —1 < b < 15, the equation Lu + but = 0, in H, has only the
trivial solution u = 0 (cf. [6]), I;(u) (=1 < b < 15) has only one critical point
u=0. Let -1 < b<15. Given v € V, let §*(v) € W be a unique solution of
the equation

Lz+(I-P)(bv+2)*)=0 in W.
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Let us define the reduced functional I}(v), on V, by I;(v + 8(v)). We note
that we can obtain the same results as Lemma 2.2 when we replace 6(v) and
I (v) by 6*(v) and I}(v). We also note that, for —1 < b < 15, I7(v) has only
one critical point v = 0.

Lemma 2.5 Forc> 0, I}(cv) = &I} (v).

Proof Ifforv e Vize W, Lz+ (I — P)(b(v+ 2)*) = 0 in W, then
L(cz) + (I — P)(b(cv + cz)+) = 0 for ¢ > 0. Therefore 0*(cv) = ¢f*(v). From
the definition of I} we see that

I} (cu) = I} (u) for u€ H and ¢> 0.
Hence, forv € V and ¢ > 0,
I (ew) = B (ev + 0*(cv)) = L (v + 0*(v)) = czi:(v).l

Lemma 2.6 Let 3 < b < 15. Then we have I}(v) <0 forallve V. wzth
v#0.

Proof To prove this lemma it suffices to show that I, *(v) does not satlsfy
the following four cases;

(1) Iy(v) > 0 and I}(vo) = 0 for some v, € V with vy # 0,
(ii) Iy(v) <0 and I(v1) = 0 for some vy € V with vy # 0,
(iif) I3(v) > 0 for all v € V with v # 0,
(iv) There exists v; and vy in V such that [}(v;) < 0 and I~;;(v2) >0
Suppose that (i) holds. It follows that I} has an absolute minimum at
vo and hence, DIb (vo) = 0. Therefore, by Lemma 2.2, ug = vo + 0*(vo) is a
nontrivial solution of the equation Lu+but = 0in H, whlch is a contradiction.
A similar argument shows that it is impossible that (ii) holds.
Suppose that (iii) holds. Then there exists to € (0,1) such that for all

t < to X 5
tl;(v) + (1 —t)I5(v) <0 for all v#0.

We note that there exists vy # 0 and (< to) such that I} (vo) + (1 — )13 (vo) =
0. Let t; be the greatest number such that

tI¥(vo) + (1 — )3 (vo) = 0

for some v and ¢. Then 0 < ¢; < to. Since t,I} (v) +(1 - tl)logv) <0 for all
v # 0 and hence v is a point of maximum of ¢, (v) + (1 — ¢1)I5(v), we have

Dt 13 (vo) + (1 — t1) I (vo)] = 0.
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Let v € V be given and 0 < t; < 1. Let 6} (v) be the unique solution of the

equation

Lz+ (I - P)(tib(v+2)*)=0 in W.
We note that we can obtain the same results as Lemma 2.2 if we replace 6(v)
and I} (v) by 8; (v) and t,I3(v) + (1 — ¢,)I3(v). Therefore, it follows that
vo + 07, (vo) is a nontrivial solution of the equation

t(Lu+but)+ (1 —t)Lu=0 in H,

that is, ,
Lu+tbut =0 in H,

which contradicts to the fact that the above equation has only the trival solu-
tion because 0 < ¢;b < 15.

A similar argument shows that it is impossible that (iv) holds. This proves
our lemma. ]

Lemma 2.7 Let3 <b< 15 and h € W with ||h]| = 1. Then we have
Ii(v) — —00 as |lol] —» oo ([l = v3]lol).

Proof We showed in Lemma 2.6 that I}(v) < 0 for all v # 0. Suppose
that it is not true that Ib(v) — —00 as ||v|| — oo. This means that there
exists a sequence {v,}$° in V' and a number M < 0 such that |jv,]| — oo as
n — oo and Ib(v,,) >M.

For given v, € V let w, = 6(v,) be the unique solution of the equation

Lw + (I — P)(b(vn + w)* — 1 — €h(z,t)) =0 in W.
According to Lemma 2.2 we have that for some constant k

19(vn) = 80| < Elloall,  1118(va) — 6(0)II| < Ellfvall]-

From this we see that the sequence {Qn-vi"'-’-ﬂ} is bounded in H. Let z, =
n
* v * w. * * *
Vp + Wy, V) = m, w) = m and z; = v; 4+ wj, for n > 1. For w, = 6(v,)
. _ W
and w}, = m, we have |

+
._ 17 _ o (vntwn 1 eh(z,t), . :
i = L P (M) s e G w
. w, + v : 1 eh(z,t .
Since —n—v—"-ﬂ is bounded and ol + T 0 as ||vs]| — oo, it

follows that —b (W) lvn" + dlzl(t”) is bounded in H. Since L™!
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a compact operator, passing to a subsequence we get that w; converge to w*
in W. Since V is 2 dimensional space, we may assume that {v}}$° converges
to v* € V with ||[v*|| = 1. Therefore, we can assume that {z}}$° converges to
an element 2* in H. 5

On the other hand, since [,(v,) > M for all n, we have, for all n,

/Q(%LG ez + glz;ﬂz + z, — €h(z,t)2,)dtdz > M.

Dividing the above inequality by ||v,||?, we obtain
z*

1 *) 12 * 2 ézt 2__ _“n
S +1e30eel?) + 1R = o (2.13)

—eh(z,t dtdz >
(& O el 2

From the definition of w, = 6(v,), it follows that for any y € W and n > 1

/Q [—(2n) et + (2n)ss¥os + b2y — y — eh(z, t)yldtdz = 0. (2.14)
If we set y = w, in (2.14) and divide by ||v,||%, then we obtain
1 eh(z,t)
—](w2)e|® + |(w2)e=]? + (B(22)F — - 2 )wy]dtdz =0 (2.15
S FIGR? + (eel + (220 =~ o = o (215)
foralln > 1.
Let y € W be arbitrary. Dividing (2.14) by ||v,|| and letting n — oo, we
obtain
/Q[—(Z‘)tyt + (2")22Yzz + b(z") y]dtdz = 0. (2.16)

we see that (2.16) can be written in the form DI}(v* + w*)(y) = 0 for all
y € W. Hence by Lemma 2.2 w* = §*(v*). Letting n — oo in (2.15), We
obtain

,Hoo/( [(w)el® + [(w})ez|?)dtdz
= — lim Qb(zn)*w:dtda:

= — /Q b(z*)tw*dtdz
= [ M)+ ()l oo) b

= /Q(—I(w*)‘l’ + (0" )as[?)dtde,
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where we have used (2.16). Hence

tim, Jo AP +1(3)ee Yoo = [ 110 + |(")ze Pl

n—+00

Letting n — o0 in (2.13), we obtain
0% = [5G0 +1()eel?) + 21 Phdtda >
b Q 2 zz 2 =

Since [lv*|| = 1, this contradicts to the fact that I}(v) < 0 for all v # 0. This
proves that [y(v) — —o0 as ||v]| — oo. : n

We now use the familiar deformation lemma.

Lemma 2.8 Let E be a real Banach space and I € C'(E,R). Suppose I
satisfies Palais-Smale condition. Let N be a given neighborhood of the set K,
of the critical points of I at a given level c. Then there exists € > 0, as small

as we want, and a deformation 7 : [0,1] x E — E such that, denoting by A,
the set {x € E: I(z) < b}:

) 0=z VzeF,
(%) n(t,z) =2z Vze€ A U(E\Act2c), Vi € [0,1],
(322) (L, )(Act\V) C Ac-e.

The proof of Lemma 2.8 can be found in [2].

Now let us prove our main results stated in the end of Section 1.

Proof of Theorem 1.2. By Lemma, 2.3, there exists €, > 0 and a small
open neighborhood B of 0 in V such that for all € with |¢] < ¢, in B, v =0
is a strict local point of minimum of ;. Since I,(v) — —oo as o]} — oo
(Lemma 2.7) and I, € C'(V, R) satisfies Palais-Smale condition, max,ecy Iy(v)
exists and is a critical value of I,. Hence there exists a critical point vy of I
such that 5 3 ‘

Iy(v) = max Iy(v).

_ Let C be an open neighborhood of vy in V such that BN C = ¢. Since
Iy(v) — —o0 as |||v]|| — oo, we can choose v; € VA\(B U C) such that
Iy(v1) < I(0). Let T' be the set of all paths in V joining 0 and v;. We write

c= ilgl sup Iy(v).
v v
Let "= {yeT:9yNC = ¢} and

' = inf sup [(v).
¢ = nf sup 5(v)
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The fact that in B, v = 0 is a strict local point of minimum of I, when
le] < €, the fact that [y(v) — —oo as |||v]|| — oo, the fact that I, satisfies
the Palais-Smale condition, and the Mountain Pass Theorem (cf. [2]) imply
that

c= }ygf; st}yp Iy(v).

is a critical value of I.

First we prove that if I~¢,(v0) = ¢, then there exists a critical point v of ]
at level c such that v # vo ( of course v # 0 sincé ¢ # Ib(O) )

We claim that if Ib(vo) = ¢, then ¢ = ¢/. In fact, since I C T, ¢ < ¢.
On the other hand, ¢/ < ¢ since c is the maximum value of ;. Hence ¢ = ¢
Suppose by contradiction K. = {v}. By the above claim ¢ = ¢. Let us fix ¢,
asin Lemma 2.8 with E=V, I = I,,c=c, N = C and taking € < 2(c—Ib(O))

Taking v € I'' such that sup, I < c. From Lemma 2.8 5(1,-) oy € T and
sup Iy(n(1,)0q9) < c—e<c,

which is a contradition. Therefore, there exists a critical point v of I at level
c such that v # v, 0, which means that the equation (1.4) has at least 3
solutions when 3 < b < 15.

Finally, if fb(vo) # c, then there exists a critical point v of I, at level ¢ such
that v # vo, 0 ( since ¢ # Iy(vo) and ¢ > I(0) ). Therefore, in case J;(vo) # ¢,
the equation (1.4) has also at least 3 solutions. .
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REFLECTED BROWNIAN MOTION AND HARNACK
PRINCIPLE

YOUNGMEE KWON

1. Introduction

The boundary Harnack principle without boundary condition may be stated
as follows.

Theorem 1.1 Let D be a domain and V an open set. Then for any compact
K C V, there exists a constant co such that for all nonnegative harmonic
functions u and v in D that vanish continuously on (6D)N D with u(z) = v(z)
for some z € KN D,

5 u(y) < v(y) < cou(y)
forally e KN D.

When D is Lipschitz, Bass and Burdzy gave a probabilistic proof of The-
orem 1.1 using elementary properties of Brownian motion. Also by a similar
way, Theorem 1.1 is proved when D is Holder domain of order a, 1/2 < o < 1
and Theorem 1.1 is not true if & < 1/2 in [BB].

The main purpose of this paper is to give a probabilistic proof of boundary
Harnack principle with boundary condition, that is the following theorem.

Theorem 1.2 Let D be a Lipschitz domain of constant v > 1. There exists
¢ > 0, depending only on +, such that if z € D, r > 0, h is nonnegative and
harmonic in B(z,6r) N D and h has zero normal derivative on B(z,6r) N dD,
then

¢ h(y) < h(z) < ch(y)

for z,y € B(z,r)N D.

Theorem 1.2 is proved in [BP] by properties of reflected Brownian motion
(abbreviated RBM). Also a generalization is given by Y.Kwon in [Kw] when

47
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the reflection on the boundary may not be normal, moreover not continuous
but satisfies some certain condition.

In section 2, we establish Theorem 1.2 by the key estimate of exit distri-
bution of RBM and the following Proposition 1.3.

Define
Osccf =sup f —inf f.
c c

Proposition 1.3 There exists p € (0, 1), depending only on «(the Lipschitz
constant) such that if ¢ € D, r > 0, h is harmonic in B(z,r) N D, continuous
on B(z,r) N D and h has zero normal derivative on B(z,r) N dD, then

OscB(z,r/2)nph < Oscper)nph.

2. RBM

Let us consider (2, F, P) -a complete probability space with an increasing
family of sub o-field (.ﬁ)t>o of F. We suppose we are given a d-dimensional
Fi-Brownian motion (Bt)t>0 and domain D C R4 Then in C? domains,
Lions and Sznitman [LS] proved the existence and uniqueness of continuous
Fi-semimartingale (X;):>o satisfying;

there exists the continuous bounded variation process L; such that X; € D
for allt > 0 a.s.

X
L,

z+ By + fyn(X,)dL,
Jo 1(x,eom)dL,

where n is the unit inward normal. We call above X; as RBM. Let P* denote

the probability measure on 2 such that P*(X, = z) = 1 and E” be the integral

with respect to P*. In case of bounded Lipschitz domain D, Bass and Hsu

proved the existence of RBM and L;. More precisely; let o be the surface

measure of boundary and p(t, z,y) be the density of X, that is, P*(X; = y) =
p(t,z,y). Then for any A >0 and z € D,

—xt _ oy [T -
[) e p(t,:z:,y)a(y)dy--E[/0 e~ "*dLy].

Another way to see L, is following;
we consider the Newmann boundary value problem on D;

(2.1) ~Au=0 on D

Ju
%——f on 40D



REFLECTED BROWNIAN MOTION AND HARNACK PRINCIPLE 49

where f is a bounded measurable and [, f(z)o(dz) = 0. Then there exists a
unique solution of (2.1) satisfying [p u(z)dz = 0 and u(z) is represented as

u(z) = Jim 2 B[ f(X.)dL.).
t—00 2 (i

We introduce the notations.

(2.2) D, = {z € D : dist(z,0D) < €}

(2.3) A(z,r) = B(z,r)ND
and if X; is RBM on D, then define

(24) 7 = inf{t: | X; — Xo| > r}
and

(2.5) Tg = inf{t : X; € D} for Borel set B.

3. Estimates

In this section, we assume the domain D is bounded and smooth, but
estimates will only depend on v, the Lipschitz constant of D not on any further
smoothness of D.

Proposition 3.1 Let x € D. Given n > 0, there exists § > 0 depending on 7
but not x, such that if C C A(z,1) and |C| > 7, then

P*[Ty < 1) > 6.

Here |C| is the Lebeque measure of C and T4 and 7, are definded in section 2.
Proof. By the fact that D is Lipschitz,

|De N B(z,1)| < ce

for some ¢ > 0. So if € is taken small enough, C' = C — D, will be a positive
distance from 9D and |C’| > n/2. We can find a large integer N depending
only on €, n and v such that we can cover B(z,2) — D, by at most N balls
of radius /4 with center in B(z,2) — D,. For at least one of these balls, say
B (y’ € / 4)’ '

|C" N B(y,e/4)| > n/2N.
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We then taken C" = C' N B(y,e/4) and we show there exists § > 0 such that
Pe[Ton < 1] > 6.

By theorem 3.2 of [BP], we can find ¢, such that
Polry < to] < 1/4.

Let G(z,y) be the Green function for P. Then

P?[X, € D.N B(z,)) foralls<1] < E°[f; 1p,np(n)(X;)ds]
< JpinB(y Gz, w)dw
< 1/4
if €, depending on 1, is sufficiently small. So we can take &' € (0,¢/4) suffi-
ciently small so that ' B -

P?[X, € D, for all s <] <1/4.

So
. P*[X, € A(z,1) — D for some s < 73] > 1/2.

By the strong Markov property, the support theorem of Brownian motion ([SV]
pp 168-169) and geometrical consideration, there exists §’ > 0 such that

P?[X, € B(y,e/4) for some s < 73] > §.
And if z € B(y,¢/4),

Pz[TC” <_1-€/2 > ‘/C”.po(l,z,w)dw > ch,II’

where p° is the transition density for Brownian motion killed on exiting B (y,€/2).
Therefore with the strong Markov property, we prove the result with

§ = cné'J2N.

Note that if a is a constant, aX;/,» is again a Brownian motion in the
interior of aD. Also aD is the region above a Lipschitz function with the same
Lipschitz constant v as F. We refer this property as scaling.

Proposition 3.2 There exists p € (0,1) depending only on v, such that if
z € D, r >0, h is harmonic in A(z,r), continuous on B(zx,r)N D, and h has
zero normal derivative on B(z,r) N 3D, then

OscA(z,rﬂ)h < pOSCA(z,r)h-
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Proof. By considering ah + b for suitable a and b, we may assume sup Ay b=

1, infg(zr) h = 0. Moreover, by considering 1 — h if necessary, we may assume
{z € A(z,7) : h(z) 2 1/2}| > 1/2|A(z, ).

Let C' = {z € A(z,r) : h(z) > 1/2}. Then by Proposition 3.1, scaling and the
fact that D is smooth,

h(y) = E*[M(Xr,a15)] 2 1/2P¥[To < 7] 26> 0
for y € A(z,7/2). Since h <1 in A(z,r/2) by the maximum principle,
OscA(z,,,mh <1-6=(1-196)0Oscapnh.
Now take p =1 —34.

Now we can prove a Harnack principle valid up to the boundary of D for
harmonic function with zero argument as Theorem 3.9 of [BP].
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1. Review on basic facts

1.1 Hyperbolicity

Let P be a differential operator of order m defined on an open set Q in
IRt and let H be a hypersurface in . The Cauchy problem for P with
respect to the hypersurface H is:

Find a solution u to the equation Pu = 0 of which the first m terms in
the Taylor expansion on H coincide with given functions on H?

This is not always possible and hence our main concern is:

For which operators P and hypersurfaces H this problem could be
solved?

One almost necessary condition to this problem is that P is non-characte-

ristic with respect to H. That is

DEFINITION 1.1.1: P is said to be non-characteristic with respect to H at
TeHif
lim A~me AR peAh(e) £ ¢ ot 7, (1.1.1)
A—o00 v
where h(z) is a defining function of H, in the sense that H = {h(z) = 0},
dh(z) #0on H.

In the analytic category, (1.1.1) is sufficient to assure the solvability
of the Cauchy problem (Cauchy-Kowalevsky Theorem). On the other hand,
(1.1.1) is far from sufficient to garantee the solvability of the Cauchy problem
for general C* data.

REMARK: If P is of constant coefficients and H is a hyperplane, this is really
necessary ([10]). In the case of variable coefficients, if we assume the existence
of a finite dependence domain, this is also necessary ([30], [14], [11]).
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Taking the remark in mind, we assume, in what follows, that P is non-
characteristic with respect to H.
~ With a system of local coordinates z = (zo, 21, ..., z4) in Q, P is ex-
pressed as follows:

P= )" a4(z)D* =) Pi(z,D), (1.1.2)
laf<m §=0

where a,(z) are C* functions on 2 and D is the differential monomial

o . 0
D* = D{"Df! - Df*, Dy = i -

and a = (ao,al, cesy a¢) € ]N.H-l’ lal = E:=0 Qjy

Pj(z,D) = E aq(z)D°. -

lel=j
We choose the local coordinates so that
h((t) =T, T = 0,
near 7 and we write Py, in the following form,
Pn=) Qm-«(z,D")D{, (1.1.3)
k=0

where Q; is a differential operator of order j with respect to z' = (z, ..., z4).
In this situation, the condition (1.1.1) yields that

Qo(T) # 0.

Hence, dividing P by Qo(z), we can assume that the coefficient of DI in
(1.1.2) is equal to one near Z.

Here we give an elegant formulation of the Cauchy problem due to [14],
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DEFINITION 1.1.2: Let P be a partial differential operator of order m with
coefficients in C°(). Let t = t(z) € C°(), di(z) # 0 in Q, be real valued
function. Then the Cauchy problem for P is C* well posed at z with respect
to t(z) if there exist a neighborhood w C © of T and a number € > 0 such
that

P:E,={veC®w)lv=0int(z) <t(T)+7} — E; (1.1.4)

is an isomorphism if |7| < €.
Our main concern is to characterize differential operators for which the
Cauchy problem is C*° well posed, that is to characterize hyperbolic op-

erators. Another very closely related problem is to characterize strongly
hyperbolic operators:

DEFINITION 1.1.3: Let P be a differential operator of order m with C*°(§2)
coefficients and t(z) € C”gﬁ? be real valued with dt(z) # 0 in Q. Then P
(or the principal part P, ) said to be strongly hyperbolc at T € Q with
respect to t%i) if, for any differential operator @ of order at most m — 1 with
C*(Q) coe c1ents, the Cauchy problem for P + @ is C* well posed at T
with respect to t(z).

1.2 Operators with constant coefficients

We take t(zx) =< 0,z >,6 € R**! as a linear function in z so that
dt(z) = 6. In this case, the hyperbohc1ty is completely characterized. Let

P(D)= ) a.D°, (1.2.1)

le|<m

be a polynomial in Dy, ..., D4. We introduce the following condition; there
exists T' > 0 such that

£€R™ r e CP(E+70)=0= Imr|<T.  (122)

Theorem 1.2.1: Let P have constant coefficients. In order that P to be

hyperbolic at T w.r.t. 6, it is necessary and sufficient that (1.1.1) and
(1 22) hold ( [8]).

Here we remark that the hyperbolicity is independent of 7 if ¢(z) is linear
in z. Recall that the principal part of P is given by

Pp=Pn(D)= Y aaD" o (1.2.3)
|al=m

If P is hyperbolic w.r.t. 6, then P,, is also hyperbolic w.r.t. 8. On the other
hand if Pis a homogeneous polynomial satisfying (1.1.1) then, for this P,
the condition (1.2.2) is equivalent to that

¢ e R P(E 4 18) = 0 = 1 is real, (1.2.4)
The following is also an important characterization of the hyperbolicity.
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Theorem 1.2.2: Suppose that P(D) satisfies (1.1.1) and Pm(D) is hyper-
bolic w.r.t. 6. In order that P is hyperbolic w.r.t. @ it is necessary and
sufficient that we have

|P(€)] < C ) |D*Pn(£)| for any £ € R*,

with some C > 0, where the sum is taken over all order derivatives w.r.t. ¢
([48))- |

DEFINITION 1.2.1: Let P(D) be given by (1.2.1) , P(D) is said to be strictly
hyperbolic w.r.t. @ if the roots of the equation Py (£ + 76) = 0 in T are all
real and distinct for any ¢ € R**! \ R4.

Theorem 1.2.3: Let P have constant coefficients. For P to be strongly
hyperbolic w.r.t. 8, it is necessary and sufficient that P is strictly hyperbolic
w.r.t. 6.

Let P(D) be hyperbolic w.r.t. #(z) = zo. Then a fundamental solution
E of the Cauchy problem for P(D) is a distribution satisfying

P(D)E = é(z),E =0in zo < 0, (1.2.5)

where 6(z) is the Dirac measure at the origin.
We define I'( Py, 6) by

I'(Ppm,8) = the component of 8 in {¢|P,(£) # 0},

which is a cone with vertex at the origin. Then one can prove that the
support of E is contained in I'°( Py, 6), which is the dual cone of I'(Pp,, §):

I°(Pm,0) = {z| < 2,y >> 0,y € ['(Pp,6)}.

For more detailed studies on the hyperbolicity of operators with constant
coefficients, we refer to (8], [1] and [10].
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1.3 Strict hyperbolicity
With a system of local coordinates z = (zo, ..., z4) in Q, P is given by

P(z,D) = Z aq(z)D“.

le|l<m
Recall that the principal part of P is defined by
Pn(z,6)= ) aa(z)E". (1.3.1)
laj=m

Py, (z,¢§) is invariantly defined as a function on the cotangent bundle T*S2.
A first basic result in the characterization of hyperbolicity, in the variable
coefficients case, is

Theorem 1.3.1: Suppose that P is hyperbolic at T € Q w.r.t. t(z). Then
there is a neighborhood U of T such that Py (z,-) is hyperbolic w.r.t. di(z)
for every z € U, that is P,,(z,-) satisfies (1.2.4) ([25], [31]).

DEFINITION 1.3.1: We say that a point z = (z,£) € T*Q\0 is a characteristic
of order k of Py, if

d'Pp(z) =0, <k —1,d*Py(2) #0. (1.3.2)
where d’ P,, is the j-th differential of Py,.

DEFINITION 1.3.2: P is said to be strictly hyperbolic at T € ) w.r.t.
t(z) € C°(Q) if there exists a neighborhood w C 2 of T such that for
any ¢ € w, Ppn(z,) is strictly hyperbolic w.r.t. di(z) in the sense of the
definition 1.2.1.

We note that Pp(z,-) is a polynomial on Ty and dt(z) € T; .

Lemma 1.3.2: Assume that Py (z,-) is hyperbolic w.r.t. dt(z) near T. Then
P is strictly hyperbolic at T € @ w.r.t. t(z) if and only if there is a neigh-
borhood w C X of T such that every characteristic on T*w \ 0 of Py, is
simple.

Theorem 1.3.3: If P is strictly hyperbolic at T € Q w.r.t. t(z) then P is
strongly hyperbolic at T w.r.t. t(z) ([46], [23], [9]).

We assume that P is strictly hyperbolic in @ w.r.t. ¢(z) and we define
I'~(z) as follows
Uz(a){y € IRnIy € z(s)}

where z(s) varies over all Lipschitz curves such that (d/ds)z(s) belongs to
I'°(p(z(s),),dt(z(s))), z(0) = z, z¢ is decreasing along on z(s).

We take w C 2, a neighborhood of Z, so that

I (z)N{t(z) 2 4T)} CCwif r € wt =wn {t(z) > t(z)}. (1.3.3)
Then we have
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Theorem 1.3.4: Assume that
Pu= finwt, u=0int(z) <#Z) and f = 0 on I'"(z).

Then it follows that
u=0o0nI"(z)

(23)).

The same conclusion holds for the singularities of the solution of (1.3.4),
i.e. if f is C* in a neighborhood of I'"(z) then so is u. A more refined
version of this is the celebrated theorem in the propagation of singularities.
For this we need to microlocalize the notion that u is singular at 7, i.e. that
u is not C*° in some neighborhood of T to that of wave front set.

-Now we introduce the bicharacteristic of P,, which carries the wave front
set of solutions. In the following we assume that P,, is real valued and set

Pm(za 6) = P(x’ 6)

for simplicity. The Hamilton vector field H » of p is given by

9p(z,§) 0 9p(z,§) 0
H Z % 55 oa OF (1.3.4)

i=0

which is a vector field on T*Q.

DEFINITION 1.3.3: A bicharacteristic of p is an integral curve of H, on
{p=0}.

Let ] be a blcha.ra.ctenstlc of p issuing from z = (%, £) with p(z) = 0, on
which z, is decreasing. ,

Theorem 1.3.5: Assume that Pis stnct]y hyperbolw atT. If u € D'(w)
satisfies

Pu=fnearfa.ndz¢WF(f)v
then
2 ¢ WF(“))

if y(—e) ¢ WF(u) with a sufficiently small ¢ > 0, where W F(u) denotes the
wave front set of u ([11]).
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1.4 Operators with constant multiple characteristics
We begin with the following definition.

DEFINITION 1.4.1: Let Q C R be an open set. P is said to be of constant
multiple characteristics if Pp(z,{) can be factorized as

( . . ,
Pm(xaﬁ) = H qj(z1€)rj,

i=1
where each gj(z,¢) is of 81mple characteristics in {2 and the sets g; 71(0) are
mutually disjoint.

Next, in order to introduce the Levi condxtxon, we define the character-
istic functlon of g;.

DEFINITION 1.4.2: ¢(z) is a characteristic function of q at T € Q if there is
a neighborhood U of T such that

q(w dg(x)) = 0,2 € U, dg(z) #0.

DEFINITION 1.4.3: Let P be of constant multiple characteristics. We say
that P satisfies the Leivi condition at T € Q if we have

e P(ac™) = O(A™ ), (A = o0),

for any characteristic function ¢ of g; and any a € C°°(Q) on whose support
dp#£0,5=1,2,...,k.

Theorem 1.4.1: Let P be of constant multiple characteristics. If P is hy—
perbolic at T € Q w.r.t. t(x), then each g; is strictly hyperbolic at T € Q
w.r.t. t(z) and P satisfies the Levi condition at T. Conversely, if each g; is

strictly hyperbolic at T w.r.t. t(z) and P satisfies the Levi condition near 7,
then P is hyperbolic at T w.r.t. t(z) ([26], [24], [32], [33], [7], [6]).

EXAMPLE 1.4.1: We give the simplest example in R?. Let
P(z, D) = D} +a(z)Dy + b(z)D; + (),

where z = (z9,z;) € R? and a(z), b(z), ¢(z) are C* functions defined near
the origin. Then in order that the Cauchy problem for this P is C*° well
posed at z = 0 it is necessary and sufficient that b(z) = 0 near the origin.
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2. Effective hyperbolicity

2.1 Effective hyperbolicity

There was a surprising discorvery around 1970, that is there are opera-
tors of second order with double characteristics which are strongly hyperbolic.
Of course this phenomenon never occur in constant coefficient case.

EXAMPLE 2.1.1: Let
P(z,D) = Dg - ngf + a(z)Dg + b(z)D; + ¢(x)

where z = (29,2;) € IR?. The Cauchy problem for this P is C® well posed
at the origin with respect to t(z) = z, for any a(z), b(z), c(z) € C* near
the origin. On the other hand it is obvious that z = (0,0,0,1) is a double
characteristic of P,. The main feature of this Cauchy problem is that the
solution of the Cauchy problem loses the regularity compared with initial
data and the loss of derivatives depends on b(z).

Lemma 2.1.1: Assume that Py, is strongly hyperbolic at T € Q w.r.t. t(z).
Then there is a neighborhood U of T such that all characteristics of Py, in
T*U \ 0 are at most double ([14]).

Let (z,£) be a system of symplectic coordinates in 7*Q. Then the
natural symplectic 2-form o in T*Q is given by

d
o= d¢jAdz;.

=0
Let h(z,£) be a smooth function on T*Q \ 0 and z = (z,£) € T*Q\ 0 be a
double characteristic so that h(z) = dh(z) = 0.
DEFINITION 2.1.1: The Hamilton map Fp(z) of h at z is defined by

o(X, Fa(2)Y) = Q(X,Y), for any X,Y € T,(T*Q),

where Q is the quadratic form corresponding to the Hessian of h/2 at 2.

‘Lemma 2.1.2: Suppose that Py,(z,-) is hyperbolic near T w.r.t. dt(z). Let
z € T2\ 0 be a double characteristic of P,. Then all eigenvalues of Fp,_(z)
are on the pure imaginary axis possibly with an exception of a pair of +e,
e€R, e#0.

DEFINITION 2.1.2: Suppose that Pp(z,-) is hyperbolic near T w.r.t. dt(z).
We shall say that P, is effectively hyperbolic at a double characteristic
z € Tz \ 0 if Fp, (2) has non-zero real eigenvalue.
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Theorem 2.1.3: In order that Py, is strongly hyperbolic at T € § w.r.t.
t(z) it is necessary and sufficient that Pp(z,-) is hyperbolic w.r.t. dt(z) near
Z and Py, is effectively hyperbolic at every double characteristic on T3 \ 0

( [14], [15], [29], [17], [34]).

Let z € T3Q \ 0 be a double characteristic of p and assume that p is
effectively hyperbolic at z.

DEFINITION 2.1.3: Let

7 : 8 7(8) = (2(3),£(s))

be a bicharacteristic of p defined in [so, +00),(resp. (—00, 80]) with some sq.
We say that v is incoming (resp. outgoing ) with respect to z if

v(8) — z as s T +o0 (resp. as s | —o0).

Proposition 2.1.4: There are exactly two incoming (resp. outgoing) bichar-
acteristics of p with respect to z. Furthermore one of the incoming (resp.
outgoing) bicharacteristics is naturally continued to the other one, and the
resulting two curves are C*® regular near z as submanifolds of T*Q). These

two curves are (real) analytic near z whenever p is assumed to be analytic
there ([18], [20]).

2.2 A geometric characterization

We start by the following definition:

DEFINITION 2.2.1: Let z be a multiple characteristic of p. The localiza-
tion p,(X) of p at z is defined by

p:(X) =d"p(z X,..., X)/r, X € T,(T*Q)

which is a homogeneous polynomial of degree r in X € T,(T*2), the tangent
space of T*( at z.
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Note that the hyperbolicity of p,(X) with respect to © = —H,, follows
from the hyperbolicity of p(z,-) with respect to dt(z) = dz¢ near T. Recall
that Hy denotes the Hamilton vector field of ¢ defined by

o(X, Hy(2)) = dg(X), X € T(T*Q).

Né,turally we are led to consider the hypérbolicity cone I'(p,,0) of p,. We
recall the definition: S

I'(p.,©) = the component of © in {X € T,(T*Q)|p.(X) # 0}.

DEFINITION 2.2.2: The propagation cone I'’(p,,0) of p, is defined by
I(p:,0) = {X € T.(T*Q)|o(X,Y) < 0,VY € I'(p,,0)}.

DEFINITION 2.2.3: Let t(z,§) be homogeneous of degree 0in ¢, C! in a conic
neighborhood of z. We say that t(z, £) is a time function at z w.r.t. ['(p, ©)
if t(z) = 0 and ,

—Hy(z) € I'(p,, ©).

~Note that ¢(z,£) is a time function at z w.r.t. I'(p,, ©) if and only if

I (p:, ©) N T.({t(=,£) = 0}) = {0}.

The propagation cone is the minimal cone containing the tangents of
bicharacterisitcs of p with limit point 2. More precisely:

Lemma 2.2.1: Let z € T*Q \ 0 be a characteristic of order r of p. Assume
that there are simple characterisitcs z; and positive numbers \; such that

zj — zand A;jp,;(©)Hy(2;) — X(#0) as j — oo.

Then X € P”(p;, ©) ([51)).

Let ¢(X) be a homogeneous hyperbolic polynomial on T,(T*Q) with
respect to © € T,(T*R2). Denote by A(q) the linearity space of ¢:

A(g) = {X € T(T*Q)|q(tX + Y) = (Y),Vt € R, VY € T,(T*Q)}.

Note that A(p,) = KerFp(z) if d’p(z) # 0. We now state a geometric char-
acterization of the effective hyperbolicity.
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Proposition 2.2.2: Notations as above. Let z € T*Q\ 0 be a double
characteristic of p. Then the following conditions are equivalent:

(a) T?(p:,©) N A(p:) = {0},
(b) F,(2) has a non-zero real eigenvalue.

Let 6 = (1,0,...,0) and assume that the coefficient of Dg* is equal to 1.
Factorizing p(z,§) as

2,8 = [] 4i(=,©)
=1
where gj(z,€) = & — Aj(x,&'), we define hj(z,€) as

lp(z, € — isO)|* = isz(m'j)hj(m,f)-

=0

It is clear that

hk(xa 6) = z |Qj1($1§)'2 ot ’qjk (:L‘,f)‘z, k= 1)2’ ey m,

1<j1<J2 < <je <m

and ho(z,€) = 1, hm(z,€) = |p(z,£)|?. We now characterize the effective
hyperbolicity in terms of time functions.

Proposition 2.2.3: Let z € T*Q \ 0 be a double characteristic. Assume
that p is effectively hyperbolic at z. Then there is a time function t(z,§) at
z with respect to I'(p,, ©) satisfying

hm-1(z,€) 2 ct(z, €)™Y

near z with a positive constant c. Conversely if the conclusion holds then p
is effectively hyperbolic at z.

DEFINITION 2.2.4: v+(z) (resp. ¥~ (2)) denotes the union of two bicharac-
teristics of p with the limit point z along which a time function with respect
to I'(p;, ©) is increasing (resp. decreasing).

Theorem 2.2.4: Let t(z,£) be a time function with respect to I'(p.,©).
Assume that

WF(u)N {t(z,§) = —e}N7y"(2) = @

and z ¢ WF(Pu) with a sufficiently small ¢ > 0. Then z ¢ WF(v) ([29],
[35] ).
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2.3 A generalization of effective hyperbolicity

Here we generalize the notion of effective hyperbolicity at characteris-
tics of order exceeding two employing the geometric characterization. We
introduce the following assumption:

(A.f),: there are a conic neighborhood U of z and finite number of time
functions t(z,§), | =1,2,...,n such that

hm—1(2, &) > ct(z,€)  hm—2(z, €)', ¥(z,€) € U

where t(a’,é) = min 15:5n|tt(f",5)|-
Lemma 2.3.1: Assume that (A.7), holds. Then we have

I'?(p2, ©) N A(p;) = {0}.

QUESTION : Let z be a characteristic of order greater than two. When the
conclusion of Lemma 2.3.1 implies (A.7),?

This is motivated by the geometric characterization given in Proposition
2.2.3. Let us denote by P; the homogeneous part of degree j so that P is the
sum of P;, j =0,1,..,m —1 and p = P,,. A general necessary condition for
hyperbolicity at a multiple characterisitc is:

Theorem 2.3.2: Let z = (7,£) € T*Q\ 0 be a characteristic of order r of
p. Suppose that P is hyperbolic at T, that is the Cauchy problem for P is
C well posed at T w.r.t. t(z) = zo. Then P; vanishes at least of order
r —2(m — j) at z whenever r — 2(m — j) > 0 ([14] ).

We assume the following;:

(A.i1),: there are a conic neighborhood U of z and C > 0 such that

|P;(z,€)| < Clhgj—m(z, )M/ |€'|™/2 Wz, £) € U

for  m/2]+1<j<m-1.

It should be noted that hgj_m(z,€) # 0 near 2z if 2j —m < m —r, i.e.
J < (2m —r)/2 when z is a characteristic of order r because there are m — r
of ¢gj which do not vanish at z and hence (A.i1), gives no restriction on P;
near z if § < (2m —r)/2.

Now we have
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Theorem 2.3.3: Assume that the conditions (A.i), and (A.ii), are satisfied
for every multiple characteristic 2 € TaQ\ 0. Then the Cauchy problem for
P is C* well posed at T w.r.t. t(z) = zo ([21] ).

In the next theorem we follow the notations in subsection 1.3 and assume
the condition (1.3.3).

Theorem 2.3.4: Assume that the conditions (A.i), and (A.ii), are fulfilled
at every multiple characteristic z € T*Q \ 0. Suppose that

Pu = finw*, u=0int(z) < ¢Z) and f = 0 on I'(z).

Then it follows that
u=0o0nI"(z)

(21]).

EXAMPLE 2.3.1: Here we give a simple example to elucidate the geometric
meanings of the conditions (4.7), and (A.ii),. Let p(z,¢) be factorized as

p(a:,f) = 6(2}, 6) H Q.i(zyf)’ Qj(z) =0

j=1

in a conic neighborhood U of z where ¢(z,¢), g(z, ) are smooth near z,
homogeneous of degree m — r and 1 respectively and e(z) # 0, dgij(z) # 0
and ¢;(%,0) > 0. Assume, for simplicity, that dq; are linearly independent
at z. Recall that the cone generated by the Hamilton vector fields H,(z)
of g; forms the propagation cone I'’(p,, ©) of the localization Pz(X). Then
the condition (A.7), is fulfilled if and only if I'?(p,, ©) is transversal to the
tangent space at z of each intersection of any two hypersurfaces {g; = 0},
{a1 = 0}:
I'?(pz, ©)NT.{gx =0, q=0}= _{0},\7% #1

On the other hand, the condition (A.i3), is satisfied if and only if Pj(z,¢)
vanishes of order r — 2(m — j) on each intersection of any two hypersurfaces
{ax = 0}, {g1 = 0} near 2 whenever r — 2(m — j) > 0.

EXAMPLE 2.3.2: Here we give an example verifying the conditions (A.2),
and (A.ii), which is not necessarily factorized smoothly. Denote by ¥ the
set of characteristics of order r of p:

T ={(,£) € T"Q\Olp(z,¢) = dp(,€) = --- = d"'p(x, £) = 0}.

We assume that
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(i) T is a C* manifold near z = (7, £).
It then follows that

p:(X +1Y) = p,(X) Vt € R,VY € T.Z,VX € T,(T*Q)

so that T,X = A(p.) and we may regard p,(X) as a polynomial on Nx(T*Q),
which is defined by T,(T*Q)/T.Z. Denoting by [X] the equivalence class of
X € T,(T*Q?) we assume that

(ii) p:([X]) is strictly hyperbolic with respect to [0] € Ng(T*$2),
and that I'?(p,, ©) is transversal to T at z:

I’(p,,0) N T,Z = {0}.

We also assume that
(iii) Pj(=, E) vanishes of order r —2(m—j) on ¥ near z when r—2(m—j) > 0.
Then the conditions (A.2), and (A.i1), are fulfilled for p.

2.4 Non effective hyperbolicity

The necessity of effective hyperbolicity in Theorem 2.1.3 is a special case
of a more general condition for hyperbolicity. At any double characteristic
z € T*Q\ 0 of p, the subprincipal symbol of P is well defined by reference to
any local coordinates z: ' .

. d
. | : 0
P*(z,€) = Pp-1(z,8) + 3 Z aTja'E;P(zaﬁ)-
. 1=0
DEFINITION 2.4.1: We define the positive trace Tr*F, of p at z as

TrHFy(z) =) ip;

where ipu; are the eigenvalues of F,(z) on the imaginary axis, repea,ted ac-
cording to their multiplicities.
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Theorem 2.4.1: Let z = (%,£) € T2Q\0 be a double characteristic. Assume
that P is hyperbolic at T w.r.t. t(z) = z¢. Then we have

Im P*(z) =0, |Re P*(z)| < TrtF,(z)

([14], [12]).

For the converse of Theorem 2.4.1 we refer to [16], [12]. When the
multiplicity of z exceeds 2, according to Proposition 2.2.2, it would be natural
to call that P is not of eftective type at z i?

I'(p:, ©) N A(p:) # {0}.

In what follows, in this subsection, we study operators of non effective
type. We recall that the localization p,(X) is a well defined hyperbolic
polynomial on T*(2)/A(p.) w.r.t. [O], where [X] denotes the equivalence
class of X as in EXAMPLE 2.3.2. It is easy to check that if 2 is a double
characteristic then p,(X) is strictly hyperbolic on T‘}Q) [/A(p;) w.r.t. [©]. It
is then natural to assume, as an ideal case, that p,( ) is strictly hyperbolic
w.r.t. [©] even when z is a characteristic of order greater than 2. When z is
a triple characteristic with

I'(p., ©) C A(p:)

we refer to a recent work [2].

As for the case
I'(p:,0) ¢ A(p.) _
we state a typical necessary condition in order that P is hyperbolic at Z w.r.t.
t(x) = zo when p has a triple characteristic z € T3 \ 0 (see also [3]). We
list up the assumptions we make:

The localization p,(X) of p at z satisfies the following conditions:
(i) p«(X) = L(X)Q(X) where L(X) is a linear form and Q(X) is a real
quadratic form such that

Ker F4NIm Fj = {0}.

(ii) Hi € A(p:)-
Theorem 2.4.2: In order that P is hyperbolic at T w.r.t. t(z) = zo the
followings are necessary:
(L1) P’(;} =0
(L2) Im Hp.(z) =0, Tr+*Fq Hy, + Re Hp.(z) € T(p,,0)

([4])-
QUESTION : What conditions are necessary when we drop the assumption
(i1) in Theorem 2.4.27

REMARK: Assuming that P is not effective type at a multiple characteristic
z, we could expect, in general, neither I'’(p,, ©) C A(p;) nor p, is factorized.
In such general cases, few facts are known concerning with both necessity and
sufficiensy of C* well posedness of the Cauchy problem. However see [40].
An interesting approach to this problem is found in [41].
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3. First order systems

3.1 Preliminaries

Let L be a differential operator of first order on C*®(Q, CV). Let (z,€)

be a system of local coordinates on T*{} and ey, ...,en be a frame in cN.
With these coordinates and frame, the principal symbol of L is given by

d
Ly(,€) = ) Lij()é;- (3.1.1)

i=0

We set.
h(z,€) = det Ly(z,§),

which is invariantly defined as a function on T*(Q.

DEFINITION 3.1.1: Let t(z) € C*™(R), di(z) # 0 in £, be real valued. We
say that L is non-characteristic w.r.t. H = {t(z) =0} at T € H if

lim )\_le—At('t)L(eAt(z)_),

A—00

is a surjection on €V at 7.
As in subsection 1.1 we are assuming that L is non-characteristic w.r.t.
H at the reference point Z.

DEFINITION 3.1.2: Let L be a differential operator of first order on C=(Q2, CV)
and t(z) € C°(Q), di(z) # 0 in Q, be real valued. Then L is said to be hy-
perbolic w.r.t. t(z) at T € § if there are a neighborhood w C 2 of Z and
€ > 0 such that | | |

L:E,={U€C®w,C")|U=0o0nt(z)<tz)+7}— E,

is an isomorphism if |7| < e.

DEFINITION 3.1.3: Let L be a differential operator of first order on C=(Q2, CV)
and t(z) € C*°(Q) be real valued. Then L; is said to be strongly hyper-
bolic at T w.r.t. t(z) if, for any Q € C*(Q2, M(N, €)), L + Q is hyperbolic
at T w.r.t. t(z).
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3.2 Systems with constant coefficients
Let

d
L(D)=)_A,;D;+B,
i=1
where Aj, B are constant square matrices of order N. We take t(z) =< 6,z >
as a linear function in z.

Theorem 3.2.1: Assume that L is of constant coefficients. For that L to
be hyperbolic at T w.r.t. it is necessary and sufficient that det L(D) is
hyperbolic at T w.r.t. 8 ([1]).

For L(D) to be strongly hyperbolic the strict hyperbolicity of det L(D)
is sufficient but not necessary:

Theorem 3.2.2: Assume that L is of constant coeflicients. In order that L
is strongly hyperbolic w.r.t. it is necessary and sufficient that the following
condition holds for every £ € R\ RY,

|L1(€ +78)™| < C(Re 1)~ for Re 7 > 0,

([22], [47]).

Theorem 3.2.3: If h is strictly hyperbolic at T €  w.r.t. t(z) then L is
strongly hyperbolic at T w.r.t. t(z). This statement also holds in the variable
coefficient case.

Recall that symmetric or symmetrizable systems are always strongly
hyperbolic. It happens that the converse is also true. We first recall that L,
is said to be symmetrizable if there is a positive definite Hermitian symmetric
matrix § € M(N, €) such that SL;(¢) becomes to be Hermitian symmetric
for every £ € R,

Proposition 3.2.4: Every 2x2 strongly hyperbolic system is symmetn'zable

([47]).

Without restrictions we may assume that Ay = I, the identity matrix
of order N. Let us set

d(Ly) = dim span{I, A,, ..., A4}

which is called the reduced dimension of L.
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Proposition 3.2.5: Assume that A; are real and

(d+1)(d+2)

d(L;) 2 5

1.

If L, is strongly hyperbolic then L, is symmetrizable ([36]).
For another related results we refer to [49].

QUESTION : Let N > 2. For what k can one find a strongly hyperbolic
system L, with d(L;) = k which is not symmetrizable? Recently a com-
plete classification of 3 x 3 strongly hyperbolic systems with real constant
coefficients is given in [42], [43]. .

3.3 Systems with constant multiple characterisitcs

DEFINITION 3.3.1: L is said to be of constant multiple characteristics if
h(z,€)
= det Ly(z, ) satisfies the conditions in the definition 1.4.1.

If L is of constant multiple characteristics then h(z, £) can be factorized
as _

k
h(za £) = H Qj(x’ﬁ)rj .

v Jj=1
We introduce the following hypothesis.

For every characteristic function ¢ of ¢; at T € §2, we have
rank L,(Z,d¢(Z)) = N — 1 for any j. (3.3.1)

If we assume that (3.3.1) holds near T € 2 then we can find N; € C*°(w, cM)
such that

Li(s,d(2))Nj(z,db(2)) = 0, 1< j < b,
where w is a neighborhood of Z. Using N; we introduce the Levi condition.

DEFINITION 3.3.2: We shall say that L satisfies the Levi condition at T if,
for every characteristic function ¢ of ¢; at T and for every a € C§°(f2) on
whose support d¢ # 0, there exists V,-(’)(a:; #,a) belonging to C*°(RQ, )
such that
rj—1 .
e_»"ﬁL{ei)‘d’(aNj + 2 /\—iVi(J))} = O(/\l-—r,' )’
=1

for j=1,2,...,k.
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Theorem 3.3.1: Assume that L is of constant multiple characteristics and
the hypothesis (3.3.1) is realized near T. If L is hyperbolic at T € Q w.r.t.
t(z) then each g; is strictly hyperbolic at T w.r.t. t(z) and L satisfles the
Levi condition at T. Conversely if each g; is strictly hyperbolic at T w.r.t.
t(z) and L satisfies the Levi condition near T, then L is hyperbolic at T w.r.t.

t(z) ([44], [52]).

Theorem 3.3.2: Assume that L is of constant multiple characteristics. In
order that L is strongly hyperbolic at T w.r.t. t(z) it is necessary and suffi-
cient that

dim KerLy(z,§) = rj, Y(z,£) with ¢j(z,€) =0, z near T
for j = 1,2, ...,k ([19]). |

For studies on hyperbolicity of systems with constant multiple charac-
teristics without the condition (3.3.1), we refer to recent works [50] and [27].

3.4 Systems with double characteristics

With a system of local coordinates (z,£) in T*$Q and a frame in TV, the
full symbol of L(z,D) is expressed as follows .

L(z,€) = Li(z,&) + Lo(x).
We define L(z,€) by

£(e8) = I*(2, L2, 8) ~ $1L0, L), ),
where

L*(z,€) = Lo<w)+22 oz agJLl(ac 6,

. oL, 0L 0L, oL
{Ls, I} = Zag, 9z, Oz, 0F

j=0

and L§°(z,€) is the cofactor matrix of L,(z,§). Note that £(z,§) is invari-
antly defined at a multiple characteristic z in

Hom (€V, ¢V)/L,(z)Hom (CV, V)
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Theorem 3.4.1: Assume that L is hyperbolic at T € Q w.r.t. t(z) and
h = det L, is not effectively hyperbolic and the rank of Ly is N — 1 at the
multiple characteristic z € T30\ 0. Then there is a real number a,|a| < 1
such that

L(z) + aTrth(2)I = O,
in Hom (€V, €V)/L,(z)Hom (CV, €V) ([37)).

Corollary 3.4.2: Assume that L, is strongly hyperbolic at T € Q w.r.t.

t(z) and z € TxQ\ 0. Then h is effectively hyperbolic at z or the rank of
L,(z) is less than or equal to N — 2.

Theorem 3.4.3: Suppose that h(z, ') is hyperbolic w.r.t. dt(z) near T € Q
and h is effectively hyperbolic at every multiple characteristic in T2 \ 0.
Then L, is strongly hyperbolic at T w.r.t. t(z) ([38] ).

In the following we assume that all characteristics are at most double
and we denote by ¥ the doubly characteristic set:

L = {z|h(z) = dh(z) = 0}.

We introduce the following hypotheses concerning the doubly characteristic
set. :

(i) ¥ is a C'* manifold,
(1i) rank Hess h = codim X.

Theorem 3.4.4: Assume that (i) and (ii) hold and h(z,-) is hyperbolic
w.r.t. dt(z) near T and one of the following conditions is verified at every
point z€ Tz N X,

(a) h is effectively hyperbolic at z,
(b) rank Ly < N — 2, near z on ¥.

Then L is strongly hyperbolic ([38], [37], [5]).

We present some interesting facts which are valid at double characteris-
tics. Let us denote by Hess h(z) the Hessian of k at z.

Lemma 3.4.5: Let z € TxQ \ 0 be a double characteristic. Then we have

rank Hessh(z) < 4.
If all Lj(z) are real valued then we have

rank Hessh(z) < 3.

.]t?EFINITION 3.4.1: We say that a double characteristic z is non degenerate
i

rank Hessh(z) =4
(resp. rank Hessh(z) =3 if all Lj(z) are real valued).
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Proposition 3.4.6: Let z be a non degenerate double characteristic.

(1) The doubly characteristic set © = {z|h(z) = dh(z) = 0} is a smooth
manifold near Z of codimension 4 (resp. 3 if Lj(x) are real).

(ii) There is a smooth symmetrizer of Ly(z,€) near %, that is there is a pos-
itive definite Hermitian symmetric matnx S(z,¢"), smoothly depending
on (z,¢') satisfying

S(:L‘, E')Ll(zas) = Ll(x’ 6)*3(:5’ fl)
(137], [5]).

We now turn to the stability of non degenerate double characteristics.
Let

d
Li(z,6) =) Lj(x)§
=0

be another system and set h(z,¢) = det L;(z,£). We assume that h(z,-) is
hyperbolic w.r.t. z¢.

Proposition 3.4.7: Suppose that L,(m) are sufficiently close to Lj(z) in C?
near Z. Then h has a non degenerate double characteristic near 7 = (z,8)

(13)).

This shows that non degenerate double characteristics are very stable
and we can not remove them by small perturbations.

We now introduce the notion of localization of L, at a multiple charac-
teristic z following [49).

DEFINITION 3.4.2: Let 2 be a characteristic of order r with

dim KerL,(z) =r.
Let Ker Ly(z) = span {uy,...,u,} and Ker *L,(z) = span {vy, ...,v,}. We set

U = (u1,...,u,) and V = (vy,...,v,) and define the localization of L, at
z as

Lioo(U, V)(X) = dL(U,V)(2; X)
where L(U,V) =t VL,(z,&)U.
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Lemma 3.4.8: Let U, V be another pair of basis for Ker Ly(z) and Ker *Ly(2).
Then with some non singular M; we have

Lioe(T, V)(X) = My L1oo(U, V)(X) M.

DEFINITION 3.4.3: Let z be a characteristic of order r with dim KerL;(z) =r.
We say that z is non degenerate if

d(L1oo(U, V)) 2 r(r +1)/2.

QUESTION : Assume that dim KerL;(z) = r(z), the multiplicity of z, for
every multiple characteristic near z. Suppose that 7 is non degenerate. Let
L, be sufficiently close to L; in C™. Is there a characteristic of order r = r(Z)

of h near 2? More moderately is there a multiple characteristic of & near z?

QUESTION : Assume that dim KerL;(z) = r(z), the multiplicity of z, for
every multiple characteristic near Z. Suppose that Z is non degenerate. Is
there a smmoth symmetrizer of L,(z,§) near z?7

3.5 Systems with multiple characteristics

In this subsection we state some recent necessary conditions for strong
hyperbolicity of first order systems at characteristics of order exceeding two.
We adopt the following definitions. ~

DEFINITION 3.5.1: Let L be a differential operator of first order on C*°(2, cV )
and t(z) € C*°(), dt(z) # 0in Q, be real valued. Then L is said to be hyper-
bolic w.r.t. t(z) both future and past at T € Q if there are a neighborhood
w C Q of T and € > 0 such that both

L:Ef={Ue€C®w,CM)|U=00n +(z)-#3)) < v} —» E=
are isomorphisms if |7| < e.

DEFINITION 3.5.2: Let L be a differential operator of first order on C=(92, CN)
and t(z) € C*(R) be real valued. Then L; is said to be strongly hyper-
bolic at T w.r.t. t(z) if, for any @ € C*(Q, M(N, €)), L + Q is hyperbolic
at T both future and past w.r.t. ¢(z).

Let us denote by M the cofactor matrix L{°(z,€) of Ly(z,£). As before
we set h(z,£) = det Li(z,£). Recall that

d
Li(e,6) = ) Li(z)é;.

§=0
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Theorem 3.5.1: Assume that L;j(z) are real analytic in Q and 0 € Q. Let
z € Ty \ 0 be a characteristic of order r of h(z,¢). Then if L is strongly
hyperbolic at the origin w.r.t. t(z) = z¢, it follows that

dM(z)=0,j <r—2ie Of0EM(2)=0,la+ | <r 2.

Moreover every element of d"2M(z;X) = d""*M(2; X,...,X)/(r — 2)! is
divisible by [] g;(X)™~! where [] g;(X)" is an irreducible factorization of

p:(X) ([39)).

Corollary 3.5.2: Assume that L;(z) are real analytic in Q@ and 0 € Q. Let
z € Ty \ 0 be a multiple characteristic of h(z,£) and V, be the generalized
eigenspace for Ly(z) associated to the zero eigenvalue. Then if L is strongly
hyperbolic at the origin w.r.t. xo we have

(Ll(z)‘Vo )2 =0,

where L, |y, is the restriction of L,(z) to Vj.
This corollary clearly corresponds to Lemma 2.1.1.

Theorem 3.5.3: Assume that L;(z) are real analytic in Q and 0 € Q. Let
z € Ty \ 0 be a characteristic of order r of h(z,£). Suppose that

T(p,,0) C A(ps).

Then if L is strongly hyperbolic at the origin w.r.t. t(z) = zo we have
dM(z)=0,j <r-1,

(139)-

Corollary 3.5.4: Assume that Lj(x) are real analytic in Q and 0 € . Let
z € TyQ \ 0 be a characteristic of order r of h(z,£) with IT?(p,,0) C A(p,).
If L is strongly hyperbolic at the origin w.r.t. zo then we have

dim Ker Ly(z) = r.

For another approach to systems with multiple characteristics, we refer
to [28], [53].

QUESTION : In Theorems 3.5.1 and 3.5.3 can we drop the assumption of
analyticity?
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Finally we state two basic questions.

QUESTION: Let z be a characteristic of order r. Assume that L, is strongly
hyperbolic and I'’(p.,©) N A(p.) # {0}. Then dim KerL;(z) = r is neces-
sary?

If this is affirmative, combining Theorem 3.5.3, we could conclude that;
if L is strongly hyperbolic and z is a characteristic of order r then we have
either

I(p:, ©) N A(p:) = {0}

or

dim KerL,(z) =r.

Clearly the first case corresponds to a generalization of effective hyperbolicity
and the second case means the symmetrizability of L, at 2.

QUESTION : Let z be a characteristic of order r with I'’(p.,0) C Ap.).
Assume that L, is strongly hyperbolic . Then the localization Li,c(U, V)(X)
is strongly hyperbolic? More moderately the localization is diagonalizable?
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INVARIANCE OF DOMAIN THEOREM FOR
DEMICONTINUOUS MAPPINGS OF TYPE (S,)

JoNG AN Park*t

1. Introduction

Wellknown invariance of domain theorems are Brower’s invariance of do-
main theorem for continuous mappings defined on a finite dimensional space
and Schauder-Leray’s invariance of domain theorem for the class of mappings
I 4+ C defined on a infinite dimensional Banach space with I the identity and
C compact. The two classical invariance of domain theorems were proved by
applying the homotopy invariance of Brower’s degree and Leray-Schauder’s
degree respectively.

Degree theory for some class of mappings is a useful tool for mapping
theorems. And mapping theorems (or surjectivity theorems of mappings) are
closely related with invariance of domain theorems for mappings.

In [4,5], Browder and Petryshyn constructed a multi-valued degree the-
ory for A-proper mappings. From this degree Pertyshyn [9] obtained some
invariance of domain theorems for locally A-proper mappings.

Recently Browder [6] has developed a degree theory for demicontinuous
mappings of type (S;) from a reflexive Banach space X to its dual X*. By
applying this degree we obtain some invariance of domain theorems for a demi-
continuous mappings of type (S;).

2. Preliminaries

In what follows it will always be assumed that X is a reflexive Banach
space with norm || || and its dual space X*. We use B(zo,r) and B(zo,r)

*Received March 14, 1991. Revised August 26, 1991
tThis research was supported by Korea Science and Engineering Foundation, 1990-1991.
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to denote respectively the open ball and the closed ball in X or X* with the
center z and radius r > 0 while B(zo,r) will denote its strong boundary.

In the followings ’locally’ means that a mapping satisfies some properties
on a neighborhood of any point in its domain. Notations — and — denote
the strong and weak convergence respectively. A map T : D(T) C X — X*
is continuous if for any sequence {z,} in D(T) with z, — z € D(T), we
have Tz, — T'x. We need the following definitions of mappings of various
monotone types.

[M] A mapping T : D(T) C X — X* is said to be monotone if for any z,
y € D(T), we have

(Tz—-Ty , z—y)>0.

[SM] A mapping T : D(T) C X — X* is said to be strongly monotone if
for any z, y € D(T), we have

(Tz—Ty , z—y) > cllz —yl?,

where c is a positive constant.
[S¢E) A mapping T : D(T) C X — X* is said to be strongly ¢-expansive
if for any z,y € D(T), we have

(Tz-Ty , = - y) = ¢(llz —yll),

where ¢ : R* — R is strictly increasing, continuous in a neighborhood of 0
and ¢(0) = 0. , ‘

[S] A mapping T : D(T) C X — X* is said to be of type (9) if for any
sequence {z,} C D(T) with z, — = € X, such that lim(Tz, , =, —z) = 0,
we have z, — z.

[S+] A mapping T : D(T) C X — X* is said to be of type (5;) if for any
sequence {z,} C D(T) with z, — z € X and limsup(Tz, , =, —z) <0, we
have z,, — =z.

The duality mapping J : X — 2%" is defined by

J(z) = {e” € X*|(z",2) = |l|* = ||="*}.

Let X be a reﬂexive Banach space which is normed so that both X and
X* are locally uniformly convex. Then the duality mapping J is single valued,
bicontinuous, strictly monotone and of type (S;) (see Browder [6]). Browder
[6] obtained the degree theory for demicontinuous mappings of type (Sy) via
Galerkin approximation processes. In this degree theory the normalized map-
ping is the duality mapping and the homotopies are of type (S, ). Futhermore
Browder [6] showed that linear homotopy is a homotopy of type (S;.).
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3. Invariance of domain theorem

By applying Browder’s degree we have the following invariance of domain
theorem.

Theorem 1. Let G be an open subset of a reflexive Banach space and
T : G — X* be demicontinuous and locally strongly ¢-expansive. Then
T(G) is open in X*.

Proof. We choose r > 0 such that T is strongly qS-expansive on B(zo,r) C
G. Let yo = Txo. Since T is strongly ¢-expansive, T is one-to-one and
Yo ¢ T(0B(zo,r)). And T(0B(zo,7)) is closed. Indeed, for any sequence {yn}
in T(0B(zo,r)) with y, — y, Tz, = yp, T, € OB(a:o,r), we have

(Txm - Txn y Tm — :En) Z ¢(”.’Dm - .’l:n“)

Hence ||Tm — Tull ||Zm — Zall = ¢(||Zm — 2.]|). Since {z,} is bounded and
{Tz, = y,} is a Cauchy sequence. Hence z, — z € dB(zo,r). Since T is
demicontinuous, y, = Tz, — Tz. Therefore y = Tz € T(9B(zo,r)). Smce
T(@B(xo, r)) is closed, we choose p > 0 such that B(to, p) N T(9B(o, r)) =
Since T is dermcontmuous and strongly ¢-expansive on B(zo,r), T is derm-
continuous and of type (S;). We have a homotopy of (S,)

H(t,z)=tTz + (1 —t)J(z — z0), y(t) = tyo.

Then y(t) ¢ H(t,0B(zo,r)) for any ¢ in [0,1]. Indeed, on the contrary we have,
for some t in [0,1], for some = € dB(zo,T),

tyo =tTz+ (1 —t)J(z — o)
= t(Tzo — Tz) = (1 — t)J(z — z0)
= t(Txo— Tz , £ —20) =(1—t)]lz —zo|® ---(1)

From (1) and ¢-expansiveness of T' we have a contradiction. Therefore d(H(t,e),
B(zo,7), y:) is constant. That is,

d(T(e), B(zo,T), yo) = d(J(e — z0), B(zo,r), 0) ---(2)
On the other hand, from a homotopy of (S,)
G(t,z) = tJ(z — zo) + (1 — t)Jz, y(t) = tJzo
we have

d(J(e = 20), B(zo,7), 0) =d(Je, B(zo,r), J(zo))=1 ---(3)
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By (2) and (3), d(T, B(xo,7), yo) = 1. Since B(uo,p)NT(3B(zo,7)) = ¢,
for any y € B(to, p) the path y(t) = tyo + (1 — t)y ¢ T(0B(zo,7)). Hence

d(T, B(zo,r), y0) = d(T, B(zo,r), y) = 1.

Therefore y € T(B(zo,r)) C T(G). Hence B(yo,p) C T(B(zo,7)) C T(Q).
The proof is completed.

Corollary 1. Let X be a reflexive Banach space. If T : D(T) = X — X*
is demicontinuous and strongly monotone, then T is a homeomorphism from
X to X™.

Proof. Since T is strongly monotone, T is one to one and T'(X) is closed.
By Theorem 1 T'(X) is open. Therefore T is onto and T is a homeomorphism.

In Hilbert space we have the following result of Minty [8] and Browder [2].

Corollafy 2. [2,8] Let H be a Hilbert space, G C H be open and let
T : G — H be demicontinuous and locally strongly monotone. Then T(G)
is open in H.

Proof. The proof of Corollary 2 is obvious from Theorem 1.

By applying Corollary 2 and Kirszbraun’s theorem. Schénberg [10] ob-
tained the following theorem.

Schénberg’s Theorem([10, Theoreml]: Let H be a Hilbert space, G C H
be open and let T : G — H be demicontinuous and strongly monotone.
If K C H is connected such that KNT(G) # ¢ and KNT(0G) = ¢, then
K CcT(G).

Similar results are obtained by Z.Guan[7] for demicontinuous monotone
mappings defined on a closure of open bounded convex subset of a reflexive
Banach space. On the other hand Browder[1] has the similar results for demi-
continuous monotone mapping defined on all of X. But Browder’s Theorem
is for bounded closed convex subsets of a reflexive Banach space.

Now we have another following similar result in Hilbert spaces.

Theorem 2. Let G be a bounded open subset of a Hilbetr space X and
T : G — X be demicontinuous and monotone. If K C X is path-connected

such that KNT(G) # ¢ and KNT(3G) = ¢, then K C T(G).
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Proof. Without loss of generality we may assume 7(0) =0 € K and 0 € G.
For any fixed y € K we have a path y(¢) (y(0) =0, y(1) = y) in K. Let
To(z) = T(z) + Lz. Since KNT(0G) = ¢ for all sufficiently large n, we have

y(t) ¢ Tn(9G) ---(4)

For such n, let s = {t € [0,1] | y(¢) € T.(G)}. Since T, is strongly monotone,
T,.(G) is open by Theorem 1. Hence S is open. Since 0 € S, S is nonempty. S
is closed. Indeed, if t,, € S, t,, — t, then we have y(t,,) = T.(zm), zm € G,
Y(tm) — y(t). Since T, is strongly monotone, {z,,} is a Cauchy sequence and
Tm — = € G. Since T, is demicontinuous, Tn(zm) = y(tm) — Tu(z). and
y(t) = Tu(z). From (4) y(t) € To(G). Hence S is closed. We conclude that
S =[0,1] and y € T,(G) for all sufficiently large n. That is, for some z, in G

¥ =T(sn) = T(aa) + 720 - (5)

Since T is monotone,

1 1
T4n T T Am 3y “n T “m SO'
(nz —Zm 2 Zm) (6)

Due to Crandall and Pazy [3, Lemma2.4] and (6), z, — z € G. By (5)
and boundedness of G we have Tz = y, ¢ € G. Hence y € T(G). Therefore
K C T(G).

In the following theorem we generalize the results of Petryshyn’s invariance
of domain theorem [9,Theoremb].

Theorem 3. If T is a demicontinuous, of type (S), locally one to one

mapping of an open subset G of a reflexive Banach space X into X*, then
T(G) is open in X*.

Proof. For any zo in X we choose r > 0 such that T' is monotone and one
to one on B(zo,r) C G. Since T is one to one, yo ¢ T(0B(zo,r)). Since T is
demicontinuous and of type (S), it is easy to show that T' is demicontinuous
and of type (S;) (see[7]). So d(T, B(zo, r),yo) is well-defined. Moreover the
image of closed subset under T is closed. Indeed, let y, € T(C), (C is a closed
subset of B(zo,r)) yn = Tz,, ., € C C B(zo,7), y» — y. Because X is
reflexive, we have a subsequence {z,,} of {z,} such that z,, — = for some z
in B(zo,r). Since y,, = Tz,, — y and z,,, — =z,

m(Tzp, —y , zn, —2) =0
= lim(Tz,;, , 2o, —2) =0

Since T is of type (S), z,, — = € C. Since T is demicontinuous, Tz,, —
Tz = y. Therefore y € T(C). Hence T(0B(zo,r)) is closed and we choose
p > 0 such that B(T'zo,p) NT(0B(z0,7)) = ¢. By similar methods of proof in
Theorem 1 T(G) is open in X*.
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THE WEAK ATTOUCH-WETS TOPOLOGY AND
THE METRIC ATTOUCH-WETS TOPOLOGY

SANGHO Kum*

ABSTRACT. The purpose of this paper is to find some relations between the
weak Attouch- Wets topology and the metric Attouch-Wets topology for the
nonempty closed convex subsets of a metrizable locally convex space X. We
verify that the former is coaser than the latter. Moreover, we show that X is
normable if and only if the two uniformities determining the two topologies
for the closed convex subsets of X X R respectively are equivalent. Our results
strengthen and sharpen those of Hola in terms of uniformity itself rather than
the topology determined by the uniformity.

1. Introduction

As a successful generalization of the classical Kuratowski convergences of
closed convex sets in finite dimensions [8], Attouch-Wets topology [1] in a gen-
eral normed space X has lately attracted considerable attention. The reason
why this topology receives a good deal of attention is that it is stable with
respect to duality without reflexivity or even completeness. This Attouch-
Wets topology is the topology of uniform convergence of distance functionals
on bounded subsets of X, and is well suited for approximation and convex
optimization. Its rich developements can be found in the literature [2] [4] [5].

Recently, Beer [3] defined, in the context of a locally convex space, the
weak Attouch-Wets topology and the strong Attouch-Wets topology for the
nonempty closed convex subsets. These topologies are, in general, different.
In fact, it is essentially only in the normed setting that we get the same
topology (see [3, Theorem 4.13]). One [3, Theorem 4.9] of his main theorems
tells us that the strong convergence of a net of continuous linear functionals

1980 Mathematics Subject Classification. (1991 Revision) Primary 54B20 ,

Key Words and Phases. Attouch-Wets topology, uniform convergence of distance func-
tionals on bounded sets, the strong convergence of linear functionals, uniformity determin-
ing a topology. '
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on a Hausdorff locally convex space X can be explained in terms of the
convergence of the corresponding net of its graphs in X x R with respect to
the weak Attouch-Wets topology for the closed convex subsets C(X X R) of
X x R. :

On the other hand, Hola [6] considered a “metric” Attouch-Wets topology
for the closed convex subsets of a metrizable locally convex space, equipped
with a translation invariant metric d. By an elementary method in functional
analysis, he has shown that the metric Attouch-Wets convergence of graphs
of linear functionals is stronger than convergence of the functionals in the
strong topology, and that two notions coincide if and only if X is normable.

When X is a metrizable locally convex space with a translation invariant
metric d, there are two topologies, namely, the weak Attouch-Wets topology
and the metric Attouch-Wets topology for the nonempty closed convex sub-
sets of X. In that case, it is natural to ask what the relation between the two
topologies is. In the present paper, we will show that the latter is stronger
than the former [Theorem 1]. Moreover, X is normable if and only if the
two topologies for the nonempty closed convex subsets C(X x R) of X x R
coincide. In fact, X is normable if and only if two uniformities determining
the two topologies for C'(X x R) respectively are equivalent [Theorem 2]. Our
results strengthen and sharpen those of Hola [6, Theorems 3 and 4] in terms
of uniformity itself rather than the topology determined by the uniformity.

2. Preliminaries

We mainly refer to Beer [3]. As mentioned in the introduction, if X is
a normed space, then the Attouch-Wets topology 74w on the nonempty
closed convex subsets C(X) is the topology of uniform convergence of dis-
tance functionals on bounded subsets of X. As is well-known, the Attouch-
Wets topology 74w can be presented as a uniform space. There are two
standard uniformities representing T4w. A weaker uniformity determining
Taw has a base consisting of all sets of the form

{(A,C)|ANBCC+eUandCNBC A+ eU}

where U is the solid unit ball of X, B is a bounded subset of X, and € > 0.
Motivated by this, Beer [3, Definition, p.7] gave the following definition in
the locally convex setting.

Let X be a locally convex space. The weak Attouch-Wets topology 5y
on C(X) is the topology determined by the uniformity with typical basic
entourages of the form:

B,U) = {(4,C) | ANBCC+U and CNBCA+U)}
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where B is a closed bounded balanced convex subset and U is a convex
balanced neighborhood of the origin.

Now we turn our attention to the metric space setting. Let (X,d) be a
metrizable space with a compatible metric d. For 2o € X and € > 0, S4[zo, €]
denotes the open d-ball with center zo and radius € > 0, and S4[4,¢] =
UaeaSad[a, €] does the e-parallel body for a subset A of X. Let CL(X) be the
nonempty closed subsets of X. The Attouch- Wets topology Taw(d) on CL(X)
is presented by a uniformity ) ; which has a countable base consisting of all
sets of the form

Uslzwo,n] = {(A4,C) |AN Sazo,n] C SilC, -71;]

and C N Sd[a?o,n] C SqlA, ;1;]}

where zo is a fixed but arbitrary point of X and n € Z%. In particular, if
X is a metrizable locally convex space with a translation invariant (in short,
invariant) metric d, the relativized Attouch-Wets topology Taw(d) on C(X)
the nonempty closed convex subsets is called the “metric” Attouch- Wets
topology in this paper.

In the sequel, X will be a metrizable locally convex space with an invariant
metric d, X* its continuous dual, and ¢/ will be the family of convex balanced
neighborhoods of the origin §. The product X x R will be understood to
be equipped with the box metric, denoted by dx | - |. Also we denote by
C(X) the nonempty closed convex subsets of X. Let us write BC(X) for the
family of all closed, bounded, balanced convex subsets of X.

3. Main Results

A set E in X is bounded if, for every neighborhood V of 8, we have E C tV
for all sufficiently large t. A set E C X is said to be d-bounded if there is
a number M < oo such that d(z,y) < M for all z and y in E. In general,
the bounded sets and the d-bounded ones need not be the same, even if d
is invariant. If X is a normed space and d is the metric induced by the
norm, then the two notions of boundedness coincide; but if d is replaced by
dy = d/(1 + d), (an invariant metric which induces the same topology) they
do not. However, we always assert the following,.
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Lemma. Let X be a metrizable locally convex space with an invariant met-
ric d. Then the family of d-bounded subsets contains the family of bounded
ones. S

Proof. Let E be bounded but not d-bounded. We may choose a sequence
{zn} in E satisfying d(6, z,) > n2. Since d is invariant, we have

d(6,nz) < nd(,z)
for every z € X and for n = 1,2,3,--.. Taking z = z,/n, we obtain
1 Tn
= < ony.
nd(G, z,) < d(6, — )
Hence d(8, z,/n)(= n) does not tend to zero. Since d is a compatible metric,

this implies z,/n is not convergent to the origin §. This contradicts the
boundedness of E ([9, Theorem 1.30, p.22]).

This simple lemma plays the crucial role in our results.

Theorem 1. Let X be a metrizable locally convex space with an invariant
metric d. Then the uniformity Y, determining 74y, for C(X) is stronger

than the one doing T4y, for C(X). Therefore, T4, is coaser than 74y (d).

Proof. Tt is sufficient to verify that every basic entourage (B,U) contains
some Ug(f,n] in )_,;, where B € BC(X) and U € U. Since B is bounded,
by Lemma there is an ny € Z% such that B C S4[6,n0]. The family
{S54[6,1/n]}2, is a local base of the origin 6, so we may assume that
Sa[0,1/ng] C U. Observe that for a subset E C X and r > 0, we have
S4|E,r] = E+ S4(0,r] because d is invariant. Then for 4,C € C(X) we have

1
AN 8406, mo] C S4[C, ] —_—c+sd[o,ni]=>AnBcc+U
0 0
Cnsd[o,no]cs,,[A,-nl—] =A+Sd[0,ni] — CNBCA+U.
. 0 0 )

Thus Uq[6, no] C Q(B,U) as desired. Therefore, 7, is weaker than 74w (d).

As a direct consequence, we obtain the following;
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Corollary. Hola ([6, Theorem 3]) Let {fn} be a net in X* and let f € X*.
The Taw(dx | - |) - convergence of Gr f,, to Gr f implies that f, is convergent
to f in the strong topology. Here Grf denotes the graph of f in X x R.

Proof. By Theorem 1, Gr f,, converges to Gr f in the weak Attouch-Wets
topology 74y for C(X x R). Moreover, T4y -convergence is equivalent to
the strong convergence of f, to f in virtue of Beer’s result [3, Theorem 4.9].
This forces us to get the result.

Remark. In the meantime, we provided a simple proof for Hold’s result [6,
Theorem 3].

Theorem 2. X is normable if and only if the two uniformities {Q(B,U)}
and del'l determining T, and Taw(dx | - |) for C(X x R) respectively
are equivalent (If X is a normed space, we take d =|| - || the norm).

Proof. If X is a normed space and d is the metric induced by the norm || - ||,
the box metric dx | - | is a norm (easily checked). Hence the boundedness
and the dx | - |-boundedness on the normed space (X x R,dx | - |) coincide.
Recall that the ball S;x|. [0, n] is convex balanced in this case. It is direct
from these and Theorem 1 that the two uniformities {Q(B,U)} and ¥, .| for

C(X x R) are equivalent. Conversely, if the two uniformities are equivalent,
then 7%, and Taw(dx | - |) for C(X x R) are the same. Thus, the strong
convergence of a net {f,} to f in X* coincides with the Taw(dx | - |)-
convergence of its graphs by means of Beer’s result [3, Theorem 4.9]. By
Hola’s result [6, Theorem 4], X is normable. This completes our proof.

Remark. Theorem 2, in fact, is a strengthened form of Hold’s theorem [6,
Theorem 4].

Acknowledgement. The author is grateful to Professor Gerald Beer for
sending his valuable research papers.
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THE GENERALIZED KKM THEOREMS
ON SPACES HAVING CERTAIN
CONTRACTIBLE SUBSETS

HOONJOO KIM

ABSTRACT. The concept of a convex space is extended to an H-space; that
is, a space having certain contractible subsets. Recently, Chang and Zhang
introduced the concept of the generalized KKM multifuntion. Applying this
concept to H-spaces, we obtain some general versions of the KKM theorem,
Ky Fan’s minimax inequality, and systems of inequalities.

1. Introduction

Applications of the classical Knaster-Kuratowski-Mazurkiewicz theorem
and the fixed point theory of funtions defined on convex subsets of topological
vector spaces have been greatly improved by adopting the concept of convex
spaces due to Lassonde [8]. This concept has been extended by Horvath
[4-7] to pseudo-convex spaces, contractible spaces, or spaces having certain
families of contractible subsets (simply, H-spaces [1]) .

Recently, Chang and Zhang [2] introduced the concept of the generalized
KKM multifuntion. Applying this concept to H-spaces, we obtain some
general versions of the KKM theorem, Ky Fan’s minimax inequality, and
systems of inequalities.

2. Preliminaries

Let X and Y be two sets. A multifunction F : X — 2Y is a function
from X into the power set 2¥ of Y. Let F(X) = J{Fz : z € X} and

Supported in part by the Daewoo Foundation, 1991 and the Basic Sciences Research
Institute Program, Ministry of Education, 1991.
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Fly={zeX:yeFz}foryeY. Let (X) be the family of all nonempty
finite subsets of X.

A convez space Y is a nonempty convex set (in a vector space) with any
‘topology that induces the Euclidean topology on the convex hulls of its finite
subsets. For details, see Lassonde [8]. A multifunction F: Y — 2V is said to
be KKM if co A C F(A) for each A € (Y') where co denotes the convex hull.

A subset C of a topological space Y is said to be compactly closed [resp.
open| in Y if for every compact set K C Y the set C N K is closed [resp.
open| in K. A topological space Y is said to be contractible if the identity
map ly of Y is homotopic to a constant map.

According to Pietsch [11], a collection G of real-valued funtions defined on
aset X is concave if, given any finite subset {g;,--gn} of Gand a;,---a, > 0
with Y51 | @; =1, there exists a g € G such that g(z) > Y7, @igi(z) for all
zeX. . .

Given any two collections G and G’ of real-valued functions on a set X,
we shall write G < G' if for any f € G, there exists a ¢ € G' such that
f(z) < g(z) for all z € X. '

Park [9,10] introduced the following notions. A triple (Y, D;T)is called an
H-spaceif Y is a topological space, D a nonempty subset of Y, and I' = {I'4}
a family of contractible subsets of Y indexed by A € (D) such that 'y C '
whenever A C B € (D). If D =Y, we denote (Y;T') instead of (Y,Y;T). For
an H-space (Y;T') and any nonempty subset X of Y, we have an H-space
(Y, X;T). A subset L of Y is called an H-subspace of (Y, D;T) if LN D # §
and for every A € (LN D), T'4NL is contractible. This is equivalent to saying
that the triple (L, LN D;{T4 N L}) is an H-space.

Any convex space Y is an H-space (Y;T') by putting 'y = coA. Other
examples of (Y; I') are any pseudo-convex space [4], any homeomorphic image
of a convex space, any contractible space, and so on. For other examples,
see [1]. Every n-simplex A, is an H-space (A, D;T), where D is the set of
vertices and 'y = co A for A € (D).

Motivated by Chang and Zhang [2], we introduce the following notions.
Let X be a nonempty set and (Y;T') an H-space. A multifuntion G : X — 2Y
is said to be generalized H-KKM if for any A € (X), there exists a function
@y : A —Y such that for any J C A, we have T, () C G(J). In particular,
if X =Y and agq = 14 for each A € (X), the multifunction G is called
an H-KKM multifunction. Let ¢ : X x Y — R and v € R. ¢ is called
y—generalized H -quasi-convez [y— generalized H-quasi-concave, resp.] in z,
if for any A € (X), there exists a function a4 : A — Y such that for any
J C A and any yo € I'y (s, We have B

<
7 < max é(z, yo)

[y > min ¢(z, yo), resp.].
z€J
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The classical KKM theorem can be stated as followes.

LEMMA A. Let Ry, -, R, be closed subsets of the standard n-simplex
and let {bo,--- ,bs} be the set of its vertices. If for any {iy,--- ,ix} C {i :
1=0,---,n},co{ej : j =141, ,ix} is contained in |J{R; : j = iy,--- ,4x}.

Then (\{R;:i=0,--- ,n} #0

LEMMA B. Let (Y;I') be an H-space where D = {yo,-*+ ,yn} € (Y).
Then there exists a continuous function f : A, — Y such that f(A;) CT;
for each J C D, where A is the face of A, corresponding to J.

Lemma B is given by Horvath [6, Theorem 1.1].
3. Main results
We begin with the following generalized KKM theorem for H-spaces.

THEOREM 1. Let X be a nonempty set, (Y;I') an H-space and G : X —

2Y a generalized H-KKM multifunction with compactly closed values. Then

{Gz : ¢ € X} has the finite intersection property. ,
Further if there exists a nonempty compact subset K of Y such that either

(i) ({Gz : z € M} C K for some M € (X);or
(ii) for each N € (X), there exists compact H-subspace Ly of Y con-
taining an(N) such that LyN({Gz:z € N} C K.

Then KN({Gz:z€ X} #0.

Proof. For each A € (X) there exists a function ag : A — Y such
that for any J C A, we have I'y,(5) C G(J). Let as(A4) = {yo, " ,yn}
and A, = by-:-b,. Then by Lemma B, there exists a continuous function
f:An =Y such that f(Aj) C T4,y for each J C A, where A; is the face
of A, corresponding to a 4(J). For each z; € A, f~1Gxz; is a closed subset of
A,. Moreover, the function H : {by,--- ,b,} — 22~ given by Hb; = f~1Gz;
is a KKM function since f(A;) C Ty, () C G(J). Therefore, by the KKM
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theorem, N1, f~1Gz; # 0, that is (), G:v, # 0. This completes our proof
of the first part.

Case (i). Clear from the above proof.

Note that, from Case (i), if Y itself is compact, then Theorem 1 holds
without assuming (i) or (ii). From this fact, we can deduce Case (ii) as
follows: '

Case (ii). Suppose that K N({{Gz : z € X} = 0; that is, K C |J{Y'\G=z :
z € X}. Since the compact subset K is covered by compactly open sets
Y\Gz, z € X, there exists an N € (X) such that K C U{Y'\Gz : =
N}. Let Ly be set in (ii) and G' : N — 2LV a multifunction defined by
G'z =GxNLy for £ € N. Then each G'z is closed in Ly. There exists a
function ay : N — Y such that for any J C N, we have 'y sy C G(J),
s0 Fon(nNLy CG(J)N Ly = G'(J). Hence G' is a generalized H-KKM
multifunction. Therefore, we have

[1G'z=Lyn () Gz #0.

zEN z€EN

Let ze LnN({{Gz:x € N}. If z€ Ly N K, then

ze€KC U (X\Gz)
z€EN

and hence z ¢ Gz for some z € N, which is a contradiction. Therefore,
we have z € Ly\K. This implies z ¢ ({Gz : ¢ € N} by (ii), which leads
another contradiction. Therefore, we must have K N(J{Gz : z € X} # 0.
This completes our proof.

A converse of Theorem 1 also holds under some additional condition.

THEOREM 2. Let X be a nonempty set a.nd (Y;T') an H-space such that
for eachy €Y, thereisa z € Y such that '(,; = {y}. Let G: X —2Y bea
multifunction. If the family of sets {Gz : E X } has the finite intersection
property, then G is a generalized H-KKM multifuntion.

Proof. For each A € (X), (){Gz : z € A} # 0. Take y. € ({G= ‘T € A}
and define ay : A = Y by ay(z) = 2, for each z € A such that I'y,y =
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y«. For any J C A, we have Ty, (5) = {ys} C Gz : = € A} C G(J).
This implies that G : X — 2Y is a generalized H-KKM multifuntion. This
completes our proof.

REMARK. If X is a convex subset of a Hausdorff topological vector
space E =Y, then Theorem 1 and 2 generalizes Chang and Zhang [2,Theo-
rem 3.1].

Next we establish the relations between the concept of the generalized H-
KKM multifuntion and the 4-generalized H-quasi-convexity [y-generalized
H-quasi-concavity, resp.].

PROPOSITION 3. Let X be a nonempty set, (Y;T') an H-space, and
¢ : X xY — R. Then the followings are equivalent:

(i) The multifuntion G : X — 2Y given by

Gz={yeY:¢(z,y) <~}

[Gz={y €Y :¢(z,y) =7}, forz € Xresp.]

is generalized H-KKM.
(ii) ¢ is y-generalized H-quasi-concave [y-generalized H-quasi-
convex, resp.] in z.

Proof. For the sake of the simplicity, we prove the conclusion only for the
first case in (i) and (ii). The other case can be proved similarly.

(i) = (ii). Since G : X — 2Y is a generalized H-KKM multifunction, for
any A € (X), there exists a function a4 : A — Y such that for any J C A
and yo € T'y (), We have yo € G(J). Hence there exists an x € J such that
yo € Gz, so we have ¢(z,yo) < 7. Therefore we have min,es ¢(z,y0) < 7;
that is, ¢ is -generalized H- quasi-concave in z.

(i1) => (i). Since ¢ is y-generalized H- quasi-concave in z, for any A €
(X), there exists a function aq4 : A — Y such that for any J C A and
Yo € Lo (), Wwe have v > min, ¢ #(z,y0). Hence there exists an z € J such
that #(z,yo) < 7. This implies yo € Gz. By the arbitrariness of yo € I'a, (4),
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we have Iy ,(5) C G(J). Therefore G : X — 2Y is a generalized H-KKM
multifunction. This completes our proof.

REMARK. Proposition 3 generalizes Chang and Zhang [2, Propdsition
2.1]. .

From Theorem 1, we have

THEOREM 4. Let X be a nonempty set, (Y;I') an H-space, and a > .
Suppose that ¢, : X x Y — R satisfy the following conditions:
(1) ¢(z,y) < ¢(z,y) for all (z,y) € X x Y;
% is B-generalized H-quasi-concave in z;
- (3) foreachz e X, {y €Y : ¢(z,y) > a} is compactly open.
Suppose that there exists a nonempty compact subset K of Y such that
either ‘

(i) for some M € (X), N,em{y €Y : §(z,y) < a} C K; or
(ii) for each N € (X), there exists a compact H-subspace Ly of Y con-
taining an(N) such that for each y € Ly\K, there exists an z € N

satisfying ¢(z,y) > a.
Then there exists a yg € K such that sup,ex #(z,y0) < .

Proof. Define multifuntions F,G : X — 2Y by

Fz={yeY :¢(z,y) < B},
Gz={yeY:¢(z,y) <a}forzeX.

Then for each z € X, Fz C Gz and Gz is compactly closed in Y. By (2)
and Proposition 3, F is a generalized H-KKM multifunction, and so is G.
Since the coercivity condition (i) or (ii) of Theorem 1 holds, so K N ({Gz :
z € X} #0. Taking yo € ({Gz : z € X} N K, we have ¢(z,yo) < a for all
z € X. Hence sup,ex ¢(z,y0) < a. This completes our proof.

As an immediate consequence of Theorem 4 we obtain the following gen-
eral version of Ky Fan’s minimax inequality.
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COROLLARY 5. Under the hypothesis of Theorem 4, suppose that X =
(Y;T) = K, ¢ = ¢ and a = B = sup,cx #(2,2). Then there exists an
yo € X such that

sup ¢(z,yo) < sup ¢(z,z).

z€X z€X )

From Theorem 1 we also have the following slight generalization of Ding,
Kim, and Tan [3, Theorem 8].

THEOREM 6. Let (X;I') be a normal H-space, K a nonempty compact
subset of X, and p € R. Let G, G' and G" be three collections of real-valued
functions on X such that

(a) 6<G'<G";

(b) for each f € G and a € R, {x € X : f(z) > a} is compactly open;

(c) the collection G" is concave.

Suppose that for any finite subset {g;,- - - ,gn} of G' and nonzero real numbers
Bi,- -, Bn with 37, B; = 1, the following holds:
(d) for each A € (X) there is a function a4 : A — X such that for any
J C A and y € Ta,(y), we have 3o, Bigi(y) < 200, Bigi(z) + p for
some z € J; and
(e) there exists a nonempty compact subset K of X such that either
(i) for some M € (X),> ., Bigi(y) < T, Bigi(z) + pfor alz € M
implies y € K; or
(ii) for each N € (X), there exists a compact H-subspace Ly of X con-
taining aN(N) such that for each y € Ly\K, there exists an x € N
satisfying > i, Bigi(y) > Y1, Bigi(z) + p, where ay : N — X is
the function in (d).
Then one of the following properties holds:

(1) there exists an h € G" such that inf,ex h(z) > p;
(2) there exists a point yo € K such that f(yo) < pforall f€G.

Proof. Without loss of generality, we may assume that p = 0. For each
feg, let Q(f) ={z € K: f(z) < 0}; then Q(f) is closed in K by (b). If
the family {Q(f) : f € G} has the finite intersection property, then by the
compactness of K we obtain the alternative (2). Suppose {Q(f) : f € G}
does not have the finite intersection property. Then there are f;,---,fr €G
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such that N, Q(f;) = 8. For each i = 1,---,n, let V; = X\Q(f;). Then

each V; is open in X and {Vj,---,V,} is an open cover of the normal space
X. Let {1, -+ ,Bn} be a continuous pa.rtition of unity surbordinate to this
open cover. Thus for each ¢ = 1,--- ,n, #; : X — [0,1] is continuous and

Supp Bi C V; such that 3 _, ﬂ,(y) = 1 for each y € X. Choose ¢1,--- ,g, €
G' and hy,--- ,h, € G" such that f; < g; < h; on X for each i = 1,-
Define multlfunctions F,G: X — 2X as follows:

Fr={yeX:) Bi(ya)- Y Ai¥)iz) < p},

=1 =1

Gz={yeX: Zﬂa(y)f.(y) Zﬂ,(y)g.<x)<p} for z € X.

=1

Then F satisﬁes all of the hypotheses of Theorem 1 and so does G, since
Fz C Gz and Gr is closed. Hence there exists a yo € K such that

Zﬂ.wo)f.(yo) < Zﬂ.@o)g.(x)
i=1 =1

for all z € X. By (c), thereisan h € G" satlsfymg h(a:) > E,_l Bi(yo)hi(zx)
for all z € X. Therefore for all z € X,

0< Eﬂ.(yo)f.(yo) < Zﬂ.(yo)y.(x) < Zﬁ.(yo)h (2) < h(=).

=1 =1

This proves the alternative (1).
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SOME COINCIDENCE THEOREMS ON
ACYCLIC MULTIFUNCTIONS AND
APPLICATIONS TO KKM THEORY, II

SEHIE PARK

§1. Introduction

In this talk, we discuss several topics on which studies were initiated from
our previous work [P6], which will be called Part I.
~ An upper semicontinuous (u.s.c.) multifunction with nonempty compact

convex values will be called a Kakutani map. Recently, Lassonde [L2] ex-
tended the well-known fixed point theorems due to Kakutani [Kk]| and Him-
melberg [Hi] to multifunctions factorizable by Kakutani maps through con-
vex sets in topological vector sapces. Such multifunctions arise in a natural
way in minimax and coincidence theories. For the literature, see [L2], [GL2],
[Gr1,2].

On the other hand, Ben-El-Mechaiekh [Bn1] obtained an elementary proof
of a fairly general fixed point theorem for composites of Kakutani maps de-
fined on a class of general extension spaces containing locally convex and
some not necessarily locally convex topological vector spaces. He also de-
duced some general coincidence theorems for composities of multifunctions.
The aim in [L2], [Bn1] lies to give elementary approach to the convex-valued
multifunctions not using homological methods.

An us.c. multifunction with compact acyclic values will be called an
acyclic map. In Part I, from a Lefschetz type fixed point theorem for com-
posites of acyclic maps, we obtained a general Fan-Browder type coincidence
theorem, which was shown to be equivalent to a matching theorem and a
KKM type theorem. From the coincidence theorem, we deduced the Him-
melberg type fixed point theorem for acyclic compact multifunctions, acyclic
versions of general geometric properties of convex sets, abstract variational

Supported in part by the Basic Sciences Research Institute Program, Ministry of Ed-
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inequality theorems, new minimax theorems, and non-continuous versions
of the Brouwer and Kakutani type fixed point theorems with very generous
boundary conditions. Further applications to acyclic maps were also given
in the author’s works [P9,10].

Our main purpose in the present talk is to give improvements of results in
[P6,9,10] and further applications of results in Part I. The detailed versions
of each section will be published separately.

In Section 3, we show that all of the key results of Sehgal et al. [SSW],
Lassonde [L3], Shioji [So], Liu [L], Chang and Zhang [CZ], and Guillerme
[Gu] are simple consequences of Part I [P6, Theorem 3.

Section 4 deals with a generalization of the main coincidence theorem
of Part I [P6, Theorem 1] to the class of composites of “admissible” maps
which properly includes that of multifunctions factorizable by Kakutani or
acyclic maps. Our new results generalize those of [L2,4], [Bnl], [BD2],
[P6]. Moreover, fundamental theorems in the KKM theory can be obtained
in far-reaching generalized forms related to admissible maps.

Finally, in Section 5, we obtain mainly sufficient conditions for the exis-
tence of fixed points of compact composites of admissible maps defined on a
convex subset of a topological vector space E on which its topological dual
E* separates points. Our arguments are based on fundamental theorems of
the KKM theory. Our main consequences are admissible map versions of
well-known fixed point theorems due to Fan [F3,5], Halpern and Bergman
[HB], Himmelberg [Hi], Reich [R5], Ha [H], Granas and Liu [GL2], and
many others. :

Consequently our new results extend, improve, and unify main theorems
in more than one hundred published works.

§2. Preliminaries

For terminology and notations, we follow mainly [P6].

Let X and Y be sets. A multifunction S : X — 2Y is a function from X
into the power set 2Y of Y; that is, Sz C Y for each = € X.

For AC X,let S(A) =J{Sr:z€ A}. ForyeY,let STy={re€ X:
y € Sz}. For any B C Y, the (lower) inverse of B under S is defined by
S~ (B)={z e X : ScNnB #0}.

Let (D) denote the set of all nonempty finite subsets of a set D.

Let X be a set (in a vector space) and D a nonempty subset of X. Then
(X, D) is called a convez space if convex hulls of any N € (D) is contained
in X and X has a topology that induces the Euclidean topology on such
convex hulls. Such conve hull will be called a polytope. A subset A of (X, D)
is said to be D-convez if, for any N € (D), N C A implies coN C A, where
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co denotes the convex hull. If X = D, then X = (X, X) becomes a convex
space in the sense of Lassonde [L1]. Note that for a convex space (X, D), X
itself is not necessarily convex. For example, let X be any space containing
an n-simplex A, as a subspace and D the set of vertices of A,. Then (X, D)
is a convex space, X is not convex, but D-convex.

For a convex space (X, D), a multifunction G : D — 2X is called a KKM
map if coN C G(N) for each N € (D). The KKM theory is the study of
KKM maps and their applications. For the literature, see [A], [AE], [Gr1,2],
(Pel, (2], |

A subset B of a topological space Y is said to be compactly closed [resp.
open] in Y if for every compact set K C Y the set BN K is closed [resp.
open] in K.

For topological spaces X and Y, a multifunction F : X — 2Y is said to be
upper semicontinuous (u.s.c.) if F~(C) is closed for each closed set C C Y.
F is said to be compact if F(X) is contained in a compact subset of Y.

Recall that a nonempty topological space is acyclic if all of its reduced
Cech homology groups over rationals vanish. In particular, any contractible
space is acyclic, and thus any convex or star-shaped set is acyclic. For a
topological space Y, ka(Y) denotes the set of all compact acyclic subsets of
Y. For a convex space Y, kc(Y') denotes the set of all nonempty compact
convex subsets of Y.

A family of sets is said to have the finite intersection property if the inter-
section of each finite subfamily is not empty.

Given a class L of multifunctions, we define

L(X,Y):={T: X - 2T |T € A};
Lo :={T = TnTpn—1--- Ty | Ti € A}.

We also define

T € K(X,Y) <= T is a Kakutani map; that is, Y is a convex space and
T is u.s.c. with Tz € ke(Y') for z € X.

T € V(X,Y) <= T is an acyclic map; that is, T'is u.s.c. with Tz € ka(Y)
forz € X.

We now introduce an abstract class A of multifunctions motivated by
[(BD2].

A class A of multifunctions is said to be admissible if

(i) A contains the class C of continuous functions;

(ii) each F' € A, is u.s.c. and compact-valued; and

(iii) for any polytope P, each F € A, (P, P) has a fixed point.

We list a few examples of admissible classes:

(1) A =C.



106 SEHIE PARK

(2) A=K. [L2], [Bnl].

(3) A =V. See Gérniewicz and Granas [GG].

(4) A is the class of approacha.ble maps in a topological vector space. See
Ben-El-Mechaiekh and Deguire [BD2].

For related examples, see [BD1,2], [L4].

§3. A unified approach to generalizations
of the KKM type theorems

In Part I, we established several KKM type theorems which subsume and
strengthen many of known generalizations of the KKM theorem. Actually,
one of our results [P6, Theorem 3] is a consequence of the Lefschetz fixed
point theory on acyclic maps and includes important KKM type theorems of
Fan [F2,7,9], Lassonde [L1], Chang [C], Park [P2,5], and others as particu-
lar cases. However, after the author completed Part I, he came to know that
there have appeared other generalizations or equivalent forms of the KKM
theorem; e.g., Sehgal, Singh, and Whitfield [SSW], Lassonde [L3], Shioji
[So], Liu [L], Chang and Zhang [CZ], and Guillerme [Gu].

In this section, we show that all of the key results of those papers are
simple consequences of [P6, Theorem 3]. Consequently, those recent results
can be stated in more general forms and unified in a single theorem. We also
discuss the most general forms of the other KKM type theorems which can
not be covered by [P6, Theorem 3].

We begin with the following:

Theorem 3.1. (Park [P6, Theorem 3]) Let D be a nonempty subset of

a convex space X,Y a Hausdorff space, F' € V(X,Y), and K a nonempty
compact subset of Y. Let G : D — 2Y be a multifunction such that

- (1) for each z € D, Gz is compactly closed;
(2) for each N € (D), F(coN) C G(N); and
(3) for each N € (D), there exists an Ly € kc(X) containing N such that
F(LN)nn{GZ :2€ LyND} CK.
Then F(X)NKN({Gz:z € D} #0.

From Theorem 3.1, we can deduce all of the main results of Shioji [So].
In fact, we have
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Theorem 3.2. (Shioji [So, Theorem 1]) Let X be a nonempty subset of a
vector space E, Y a Hausdorff space, G: X — 2¥, and T : coX — ka(Y)
such that

(1) for each N € (X), T(coN) C G(N);

(2) for each N € (X), T'|coN is u.s.c., where coN is endowed with the
Euclidean simplex topology; and

(3) for each N € (X) and each ¢ € N, Gz N T(co N) is relatively closed
in T(co N).

Then, for each N € (X),

n{G:cla: € N}ﬂT(coN) #0.

Note that other results of [So] are consequences of Theorem 3.2.

In [CZ], Chang and Zhang extended the concept of KKM multifunctions to
generalized KKM multifunctions, and obtained general versions of the KKM
theorem, Fan’s minimax inequality, and the Browder-Hartman-Stampacchia
variational inequality.

Let D be a nonempty set and Y a convex space. A multifunction G : D —
2Y is said to be generalized KKM if, for any N € (D), there is a function
o : N — Y such that M C N implies coo(M) C G(M) [CZ].

From Theorem 3.1, we can obtain

Theorem 3.3. Let D be a nonempty subset of a convex space X, Y a
convex space, and G : D — 2Y a multifunction with compactly closed values.
Then {Gz : * € D} has the finite intersection property if and only if G is
generalized KKM.

If X = D is a convex subset of a Hausdorff topological vector space E =Y,
then Theorem 3.3 reduces to Chang and Zhang [CZ, Theorem 3.1].
Moreover, from Theorem 3.3, we have the following;:

'Theorem 3.4. Let D be a nonempty subset of a convex space X, and
G : D — 2X with compactly closed values. Suppose that there exists a
nonempty compact subset K of X such that, for each N € (D), there exists
an Ly € ke(X) containing N such that

LNﬂﬂ{Gz:zeLNﬂD}CK.

Then K N(){Gz : = € D} # 0 if and only if G is a generalized KKM

multifunction.

Note that Theorem 3.4 generalizes Chang and Zhang [CZ, Theorem 3.2].

From Theorem 3.4, we have
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Corollary. (Lassonde [L2, Principe KKM]) Let D be a subset of a convex
set X (in a vector space) and F : D — 2% a multifunction with closed values
in Xy (that is; X with the finite topology). If, for every A € (D), we have
coA C F(A), then, for every N € (D), we have

coNhﬂ{F:c::vEN};é(b.

In [L], Liu proposed a form of the KKM principle and obtained some
applications. His main result can be extended as follows:

Theorem 3.5. Let X be a convex space, D a nonempty subset of X, K a
nonempty compact subset of X, Y a topological space, S : X — 2Y, and
A: D — 2Y such that

(1) S is u.s.c;

(2) Az is closed for each ¢ € D; and

(3) for each N € (D), there exists an Ly € kc(X) containing N such that

LND{EEX:SzﬂAx#@foral]meLNﬂD}CK.

Then either
(I) there exists an zg € K such that Szo N Az # 0 for all z € D; or
(II) there exist an N € (D) and an zo € co N such that Szo N A(N)
(that is, S is trappable by A° [L]).

For D = X and under a slightly weaker condition tha.n (3), Theorem 3.5
reduces to the main result of Liu [L, Theorem 2.1].

In certain cases, the KKM theorem holds for open-valued multifunctions.
Such results were first obtained by W. K. Kim [Kil]. However, the main
idea was given in the earlier work of Ky Fan [F9, Theorem 2] as a matching
theorem for closed coverings. Later, results of Kim [Kil,2] were generalized
by the present author [P2,4]. Recently, Lassonde [L2] refined Kim’s idea
and gave some applications.

Note that the following encompasses all of the open-valued KKM theorems
due to Kim [Kil,2], Park [P4], and Lassonde [L2]:

Theorem 3.6. (Park [P2, Theorem 8]) Let D be a nonempty subset of a
convex space X, Y a topological space, G : D — 2Y a multifunction and
s: X — Y a continuous function. Suppose that

(1) for each z € D, Gz is compactly open in Y; and

(2) for each N € (D) s(coN) C G(N).

Then the family {Gz : = € D} has the finite intersection property.

Theorem 3.1 is equivalent to another form of whole intersection property
as follows:
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Theorem 3.7. Let D be a nonempty subset of a convex space X, Y a
Hausdorff space, F € V(X,Y), and K a nonempty compact subset of Y. Let
G:D —2Y and H: X — 2Y be multifunctions such that

(1) for each z € D, Hz C Gz and Gz is compactly closed;

(2) for each z € X, Fz C Hz;

(3) for each y € F(X), X\H "y is convex; and

(4) for each N € (D), there exists an Ly € kc(X) containing N such that
F(Ln)N({Gz:z2 € LnND}CK.

Then F(X)NKN({Gz:z € D} #0.

A particular form of Theorem 3.7 appeared first in Tarafdar [T'1]. Some
other variations, see Horvath [H3,4], Bardaro and Ceppitelli [BC1], and
Ding and Tan [DT)].

From Theorem 3.7 we have the following:

Corollary. (Guillerme [Gu, Theorem V.1]) Let X and Y be convex spaces
and F C S CT CG C X xY relations such that

(1) for each y € Y and each polytope P of X, F~yN P is open in P;
(2) for each z € X, Sz is convex in Y;
(3) for eachy € Y, X\T "y is convex
(4) for each z € X, Gz is closed.
If Gzy is compact for some zo € X and Fz # 0 for each z € X, then
({Gz:2€ X} #0.

Note that Guillerme [Gu, Theorem IV.1] is a particular form of Corollary
with § = T. He used his results to obtain some minimax inequalities.

Now, we discuss other types of generalizations of the KKM theorem which
can not be covered by Theorems 3.1 and 3.6.

(1) The key results of Lassonde [L1, Theorems I, II, and III] were gen-
eralized, unified, and strengthened by Jiang [J3, Theorem 2.2], which is
further extended by Park [P6, Theorem 4]. This result is not comparable
to Theroems 3.1 or 3.6. Note that Lassonde [L1, Theorems I and III] are
included in Theorem 3.1.

(2) There is another generalization of the KKM theorem due to Shapley
[Sh]. Its generalizations or applications appear in Ichiishi [I1,2], Fan [F8,9],
Simons [Si], Shih and Tan [ST1,2], Ichiishi and Idzik [II], and Park [P3].
Among them the most general forms seem to be [Si, Theorem 7.1}, [ST1,
Theorems 2 and 3|, [II, Theorem 2.2], and [P3, Theorem 3.

(3) The concept of a convex space is extended to an H-space or spaces
having certain contractible subsets in the sense of Horvath [H1-5]. The KKM
theorem can be extended to such spaces. See [BC1-3|, [DT], [DKT1,2], and
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(P7,8]. The H-space versions of Theorems 3.1, 3.6 and [P6, Theroem 4] for
the case F' is single-valued are obtained as [P7, Theorems 4, 14, and 3],
respectively.

S:L) The concept of convexity is generalized by many authors. In one of
such directions, Bielawski [B, Proposition 4.7 and Corollary 4.8] obtained
the KKM theorem for a space having “a finitely local convexity.”

§4. Fundamental theorems in the KKM theory via coincidences
of composites of admissible u.s.c. multifunctions

As we have seen in Part I, there exist mutually equivalent fundamental
theorems in the KKM theory from which most of important results in the
theory can be deduced. Recently, the author has found that the acyclic
map in the most of KKM type theorems in Part I can be replaced by any
composite of admissible u.s.c. multifunctions. This remark also applies to
the results in Section 3. '

In this section, we give a generalization of the main coincidence theorem
of Part I to the class of composites of admissible maps. Qur new result gener-
alizes that of [L2,4], [Bnl], [BD2], [P6]. Moreover, fundamental theorems
in the KKM theory can be obtained in far-reaching generalized forms related
to admissible maps. Those are the KKM theorem, matching theorems, the
Fan-Browder fixed point theorem, the Ky Fan minimax inequality, analytic
alternatives, geometric properties of convex sets, and others.

"The following is the main result of this section:

Theorem 4.1. Let (X, D) be a convex space, Y a Hausdorff space, S : D —
2Y, T': X — 2Y multifunctions, and F € A(X,Y). Suppose that
1) for each x € D, Sz C Tz and Sz is compactly open;
EZg for each y € F(X), T™y is D-convex;
(3) there exists a nonempty compact subset K of Y such that F(X)NK C
S(D); and
(4) for each N € (D), there exists a compact D-convex subset Ly of X
containing N such that F(Ly)\K C S(Ly N D).
Then F and T have a coincidence point.

The origin of Theorem 4.1 is due to Browder [B2,3] and Fan [F2,6] for
X =D =Y = K and F = 1x. Note that numerous applications of the Fan-
Browder fixed point theorem have appeared in various fields as fixed point
theory, minimax theory, variational inequalities, and so on.

For K or V instead of A., Theorem 4.1 reduces to Park [P6, Theorem 1],
which includes earlier works of Browder [B2-4], Tarafdar [T1-4], Tarafdar
and Husain [TH], Ben-El-Mechaiekh et al. [BDG1,2], Yannelis and Prab-
hakar [YP], Lassonde [L1,2], Ko and Tan [KT], Simons [Si], Takahashi [T},
Komiya [Ko], Mehta [Me], Mehta and Tarafdar [MT], Sessa [Ss], Jiang
[J }-3 » McLinden [Mc], Granas and Liu [GL1,2], Park [P1,2,5], and Chang
Cl.

As in Part I, from Theorem 4.1, we obtain the followihg KKM theorem:
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Theorem 4.2. Let (X,D) be a convex space, Y a Hausdorff space, and
F e A(X,Y). Let G : D — 2Y be a multifunction such that

(1) for each x € D, Gz is compactly closed inY’;

(2) for any N € (D), F(coN) C G(N); and

(3) there exist a nonempty compact subset K of Y and, for each N €
(D), a compact D-convex subset Ly of X containing N such that
F(LN)ﬂn{Gw :z GLNﬂD} CK.

Then F(X)N K N({Gz :z € D} #0.

The origin of Theorem 4.2 goes back to Sperner [Sp] and Knaster, Kura-
towski, and Mazurkiewicz [KKM] for X =Y = K = A™ an n-simplex, D
its set of vertices, and F = 1x. Note that Theorem 4.2 properly generalizes
Theorem 3.1.

As we have done in Part I, Theorems 4.1 and 4.2 can be reformulated
other form of fundamental theorems in the KKM theory. The following is
one of them and useful in the next section of this paper:

Theorem 4.3. Let (X, D) be a convex space, Y a Hausdorff space, F' €
A(X,Y), A,B C Z sets, f,g : X xY — Z functions, and K a nonempty
compact subset of Y. Suppose that

(1) foreachz € D, {y € Y : g(z,y) € A} is compactly open and contained
in{yeY: f(z,y) € B}

(2) for each y € F(X), {z € X : f(z,y) € B} is D-convex; and

(3) for each N € (D), there exists a compact D-convex subset Ly of X
containing N such that for each y € F(LN)\K, there exists an z € Ly N D
satisfying g(z,y) € A.

Then either

(i) there exists a j € F(X)N K such that g(z,§) ¢ A for all z € D, or

(ii) there exists an (&,9) € F such that f(£,y) € B.

The first form of Theorem 4.3 seems to be Lassonde [L1, Theorem 1.1'].
Note also that if F' is single-valued, then Y is not necessarily Hausdorff.
Lassonde used his result to generalize earlier works of Iohvidov [I], Fan [F4],
and Browder [B2]. Applications of this kind results to the Tychonoff fixed
point theorem and the study of invariant subspaces of certain linear operators
were given in [I], [F4].

For X = D and V instead of A., Theorem 4.3 reduces to [P6, Theorem
5].
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§5. Fixed points of admissible multifunctions
on topological vector spaces

As an application of fundamental theorems of the KKM theory, in this sec-
tion, we obtain mainly sufficient conditions for the existence of fixed points
of compact composites of admissible maps defined on a convex subset of a
topological vector space E on which its topological dual E* separates points.
Such class of spaces properly contains locally convex Hausdorff topological
vector spaces. Our arguments are based on a geometric property of a convex
set and a variational inequality related to acyclic maps. Our main conse-
quences are admissible map versions of well-known fixed point theorems due
to Fan [F'3,5], Halpern and Bergman [HB], Himmelberg [Hi], Reich [R5],
Ha [H], Granas and Liu [GL2], and many others.

From Theorem 4.3, we obtain the following variational inequality with a
lopsided saddle point:

Theorem 5.1. Let X be a compact convex space, Y a Hausdorff space,
and T € A(X,Y). Let g: X xY — R be a continuous function such that
for each y € Y, z — g(z,y) is quasi-convex on X. Then there exists an
(z0,y0) € T such that

9(zo,y0) < g(z,y0) forall ze€X.

For V instead of A, Theorem 5.1 reduces to Park [P9, Theorem 2], which
extends Ha [H, Theorem 2] for K instead of A..

For a subset X of a topological vector space E, the inward and outward
sets of X at x € E, Ix(z) and Ox(z), are defined as follows:

Ix(z):={z+r(u—z)€ Elue X, r >0},
Ox(:c):={:c—r(u—-:1:)€E|u€X, r > 0},

The closures of Ix(z) and Ox(z) are denoted by IX(a:) and Ox(z), resp. In
the sequel, W(z) denotes either Ix(z) or Ox(z).

Let P denote the family of all continuous seminorms on a topological
vector space F. ‘

As an application of Theorem 5.1, we obtain the following Ky Fan type
fixed point theorem for admissible maps as in [P9):
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Theorem 5.2. Let X be a compact convex subset of a topological vector
space E on which E* separates points and T € A(X, E). Then either T has
a fixed point or there exist an (zo,y0) € T and a p € P such that

0 < p(zo —wo) < p(x —yo) forall z € Ix(zo)

For a locally convex Hausdorff topological vector space E, Theorem 5.2
for V instead of A, reduces to [P9, Theorem 3|, which extends earlier works
of Fan [F5], Reich [R3], and Ha [H].

As a direct consequence of Theorem 5.2, we have the following as in
[P9,10]:

Theorem 5.3. Let X be a compact convex subset of a topological vector
space E on which E* separates points and T € A.(X,E). If T satisfies one
of the following conditions, then T has a fixed point.
For each z € Bd X,
(0) for each y € Tz and each p € P, p(y — ) > 0 implies p(y — =) >
p(y — 2) for some z € Ix(z).
(i) for each y € Tz, there exists a number X (real or complex, depending
on whether the vector space E is real or complex) such that

Al<1 and Az +(1-X)y € Ix(z).

(i) Tz C Ix(z).
(iii) for each y € Tz, there exists a number A (as in (i)) such that

Al <1 and Mz +(1-A)yeX.

(iv) Tz C IFx(z) = {z + c(u — z) |u € X, Re(c) > 1/2}.
(v) Tz C X.
(vi) T(X) C X.

For locally convex spaces, Theorem 5.3 for V instead of A reduces to
[P9, Theorem 4], which extends well-known earlier theorems of Brouwer
[B], Schauder [S], Tychonoff [Ty], Rothe [R], Kakutani [Kk], Fan [F1],
Glicksberg [G], Halpern [Hl], Browder [B1,4], Reich [R1,4,6], Fitzpatrick
and Petryshyn [FP], Ha [H], and others. For details, see [P9]. For topo-
logical vector spaces E on which E* separates points, Theorem 5.3 for V
instead of A, reduces to [P10, Theorem 5], which includes Fan [F'3, Corol-
laire 2], Halpern and Bergman [HB, Theorems 4.1 and 4.3], Kaczynski [Ka,
Théorémes 1-4], Granas and Liu [GL2, Theorem 10.5], and Park [P1, The-
orems 6 and 8].

From Theorem 4.3, we obtain the following extension of the Himmelberg
fixed point theorem:
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Theorem 5.4. Let X be a nonempty convex subset of a locally convex
Hausdorff topological vector space E. If T € A.(X,X) is compact, then T
has a fixed point.

If T € K(X, X), then Theorem 5.4 reduces to Himmelberg [Hi, Theorem
2], which extends earlier works of Schauder [S], Mazur [M], Bohnenblust and
Karlin [BK], Hukuhara [Hu], Singbal [Sn], Tychonoff [Ty], Kakutani [Kk],
Fan [F1], and Glicksberg [G]. An extended version of Theorem 5.4 for V
instead of A, was given in [P6, Theorem 7]. Some partlcular forms can be
seen also in [Bnl], [BD2], [L2].

As an application of Theorem 5.4, we obtain the following acyclic version
of Reich’s theorem on condensing maps with the Leray-Schauder boundary
condition. For the definition of condensing multifunctions, see Su and Sehgal
[SS].

Theorem 5.5. Let C be a nonempty closed subset of a locally convex Haus-
dorff topological vector space E and T : C — 2F an u.s.c. multifunction with
nonempty closed acyclic values. Suppose that T has a bounded range, and
that there is a point w € Int C such that

(L-S) for every ¢ € BdC and y € Tz,

y—w#m(r—w) forall m>1.

Then F has a fixed point if one of the following holds:

(i) T is compact.
(ii) T is condensing and E is quasi-complete.
(iii) T is condensing with compact values and C is quasi-complete.

If T has convex values, then Theorem 5.5 reduces to Reich [R5, Theorem)].
Reich [R2] noted that his earlier version of Theorem 5.5 holds for a metrizable
E. However, we do not assume the metrizability of E in Theorem 5.5.
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ORDERING PRINCIPLES AND DROP THEOREMS

BYyunGg Gal KANG

ABSTRACT. We show that generalized drop theorems can be derived from
the author’s ordring principle. Drop properties of norms of Banach spaces
are discussed. We also consider the drop property with respect to another
topology in a normed space.

I. Introduction

Let E be a real Hausdorff topological vector space (TVS), B C E a convex
set and z € E\ B. The convex hull of {z}UB will be called a drop determined
by z and denoted by D(z, B). In 1972, Danes [3]proved the following “Drop
theorem”: '

Theorem. Let (E,| -||) be a real Banach space, B the closed unit ball in
E, and A a nonempty closed subset of E such that inf{||a| | a € A} > 1.
Then there exists a v € A such that D(v, B)N A = {v}.

Some generalizations of drop theorem are obtained by Danes [4], Georgiev
[6]and Mizoguchi [11]. Penot [h]obtained a flower petal theorem in complete
metric spaces and he showed that drop they are equivalent to Ekeland’s
variational principle [5].

On the other hand, Kutzarova and Rolewicz [10], Giles, Sims and Yorke
[7], and Rolewicz [13]studied the drop property of the norm of a Banach
space. Giles, Sims and Yorke [7]and Rolewicz [13]proved that in a Banach
space E, the norm has (weak) drop property if and only if every stream in
E\ B contains a (weakly) convergent subsequence if and only if E is reflexive.

Brézis-Browder [1]and Brgndsted [2]observed that Danes’ drop theorem
can be derived from an ordering principle. Also, they proved Ekeland’s vari-
ational principle [5]using their ordering principles. Mizoguchi [11]proved a
drop theorem in locally convex spaces using a generalization of Brgndstead’s
principle. In [8], [9], the author proved a general ordering principle which
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contains the results of Brézis-Browder [1]and Brgndsted [2]. In this paper,
we apply the author’s ordering principle in [8], [9]to prove some generalized
drop theorems. We also consider the drop property with respect to another
topology in a normed space.

II. Main Results

Let X be a nonempty set and =< a quasi-order (that is, a reflexive and
transitive relation) on X. We say that (X, x) is an ordered set. For r € X,
we denote S(z) = {y € X | z < y}. X is said to be countably inductive (a
CIO set) if every nondecreasing sequence in X has an upper bound. If A
is a well ordered subset of X, A can be indexed by a well ordered set A by

= {ar}xea such that A < w implies ay < a,. Throughout this paper, N
denotes the set of all natural numbers and < is the usual order in the set
of real numbers, cardinal numbers or ordinal numbers. For any set A, |A|
denotes the cardinality of A.

First, we begin with the following basic ordering principle :

Theorem A [8, Theorem I. 2. 1]. Let (X, <) be an ordered set and §
be any nonempty set. Let {A,}.eq be a collection of subsets of X. Suppose
that

(A.1) if A is a nonempty well ordered subset of X such that |A| < ||, then A
has an upper bound, and
(A.2) for any x € X and w € R, there is a y € S(z) satisfying S(y) C A..

Then for any « € X, there is a v € S(z) such that S(v) C (|, eq Aw-

From Theorem A, we can deduce the following :
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Theorem B [9, Theorem 2]. Let (X, <) bea CIO set andd : X xX — R+
a function satisfying

(B. 1) for any z € X and € > 0, there is a y € S(z) such that d(z,w) < ¢ if
ysz<w.

Then for any z € X, there is a v € S(z) such that d(v,w) = 0 for all
w € S(v).

Let E be a real Hausdorff topological vector space (TVS), B # E a convex
subset of E and x € E\ B. As mentioned above, the convex hull D(z, B) of
{z} U B will be called a drop determined by z. We say that B has the drop
property if for any nonempty closed set A disjoint with B, there exists a point
a € A such that D(a,B)N A = {a}. If E is a normed space and the closed
unit ball has the drop property, then we say that the norm of E has the drop
property. For a given B, if a sequence {z,} satisfies 2,41 € D(z,,B)\ B,
then we call {z,} a stream.

In the same situation, define a relation < on A by

r Xy <>ye€ D(z,B).

Then it is easy to show that < is a partial order on A and S(z) = D(z, B)NA
for all z € A. So in the following, we consider A as an ordered set. Note also
that a stream in A is merely a nondecreasing sequence in A.

Let p be a seminorm on E, z € E and A, B C E. We denote

p(z,B) = inf{p(c —b) | b€ B}

and
p(A,B) = inf{p(a—b) |a€ Aand b€ B}.

We say that a net {zx}rea is p-Cauchy if for every ¢ > 0, there is a A\g € A
such that p(z) —z,) < e for all \,w > A. If p=||-|| is 2 norm, then we use
d(z, B) and d(A, B) instead of p(z, B) and p(4, B).
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Theorem 1. Let E be a real Hausdorff TVS and p a seminorm on E. Let
A, B be nonempty subsets of E such that B is convex, p is bounded on B
and p(A,B) > 0. Then every well ordered subset of A is a p-Cauchy net.
Furthermore, if every nondecreasing p-Cauchy sequence in S(z) = D(z, B)N
A converges in S(z) for all x € A, then for all x € A, there exists a v €
D(z, B)N A such that p(v — w) = 0 for all w € D(v, B) N A.

Proof. Let z9 € A, A9 = D(z9,B)NA and z € Ay. Itis easy to show that pis
bounded on Ay — B. So we can choose an M > 0 so that p(z —b) < M for all
x € Ap and b € B. We claim that for all z € Ag and y € S(z) = D(z,B)N A,

P, B) 2 oy, B) sad ply —2) < i s(o(e, B) = oy, B)).

Since y € D(z,B) N A, there exist ¢ € [0,1] and b € B such that y =
(1 —t)z + tb. By the convexity of p,

p(yaB) < (1 - t)p(a:,B) + tp(b,B).
= (1-t)p(z, B)
< p(z, B)
And so (2, B) - p(y, B)
b\r, - ply,
ST

Since y — = = t(b — z),
p(y —z) = tp(b—z)

< ;(—f—m(p(w,f?) - p(y, B))

M
< M(p(ma B) - p(ya B))

Let {z.,}.en be a well-ordered subset of A indexed by a well ordered set Q.
Then {p(z.,B)}weq is a bounded decreasing net in the set of real numbers.
Since it is a Cauchy net, {z,}ueq is also a Cauchy net.

Assume that every nondecreasing p-Cauchy sequence in S(z) converges in
S(z) for all z € A. Then every nondecreasmg sequence {xﬂ} in A, bemg
Cauchy, converges to a point z¢ in S(z;). But {Zn}n>m is conta.med in
S(z;m) and so converges to a point in S(z,,) for each m € N. Since E is

Hausdorff, ¢ = limp—o z, € S(z,,) for all m € N. This shows that A is
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a CIO set. Moreover, by defining d(z,y) = p(z — y), z,y € Ao, the above
inequality :

Py —) < p(—f—B—)(p(w,m ~ oy, B))

for x € Ao, y € S(z) implies (B. 1). So the conclusion follows from Theorem
B.

Theorem A and Theorem 1 can be used to prove the following Mizoguchi’s
generalization [11]of drop theorem to locally convex spaces.

Theorem 2 [11, Theorem 3]. Let E be a real locally convex space whose
topology is generated by a family {px}rer of seminorms on E. If A is a
complete subset of E and B is a closed, convex and bounded subset of E with
pA(A,B) > 0 for any A € A. Then for all z € A, thereisav € D(z,B)N A
such that D(z,B) N A = {v}.

Proof. For A € A, let Ay = {v | px(v—w) =0 forall w € D(v,B)N A}.
By Theorem 1, every well-ordered subset of A is px-Cauchy for all A € A. So
every nondecreasing sequence in S(z) = D(z,B) N A is a Cauchy sequence
and hence converges in the complete set S(z).

Theorem 1 shows that for any + € A and A € A, there is a y € S(z)
such that y € Ax. Note that if y € Aj, then S(y) C Ax. By Theorem A,
for any = € A, there is a v € S(z) such that S(v) C (,gp Ax. That is,
D(v,B)N A = {v}.

Theorem 3. Let (E,| - ||) be a real normed space and T be any Hausdorff
vector topology weaker than norm topology. Let A be a sequentially T-closed
subset of E and B is a norm bounded, convex and sequentially T-complete
subset of E with d(A, B) > 0. Then for all z € A, thereis av € D(z,B)N A
such that D(z,B)N A = {v}.

Proof. For each r € A, S(z) = D(z,B)N A is sequentially T-complete. Since
7 is weaker than the norm topology, every (norm)-Cauchy sequence in S(z)
converges in S(z) for all # € A. The conclusion follows from Theorem 1.

If 7 is the norm topology, then Theorem 3 reduces to the generalized drop
theorem due to Danes [4]. In case 7 is the weak topology, the following holds
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Corollary. Let (E,|| - ||) be a real normed space. Let A be a weakly se-
quentially closed subset of E and B is a norm bounded, convex and weakly
sequentially complete subset of E with d(A,B) > 0. Then for all z € A,
there is a v € D(x, B) N A such that D(z, B)N A = {v}.

In the situation of Theorem 3, we say that B has the 7-drop property
if for any sequentially 7-closed subset A of E disjoint from B, there is a

v € D(z,B) N A such that D(z, B)N A = {v}. And if the closed unit ball
has the 7-drop property, then we say that the norm has the 7-drop property.

Theorem 4. Let (E,| - ||) be a real normed space and T be any Hausdorff
vector topology weaker than norm topology. Suppose that ||- || is lower semi-
continuous with respect to 7. Then || - || has the drop property if and only if

every stream in E \ B has a T-convergent subsequence, where B is the closed
unit ball in E.

Proof. Suppose that there is a stream {z,} in E\ B which does not have any
T-convergent subsequence. Then A = {z,} is a sequentially 7-closed subset of
E. We may assume that A4 is an infinite set. Since {zn}n>m C D(zm,B)NA,
there is no ,, € A such that D(z,, B)N A = {zm}

Conversely, suppose that every stream in E \ B has a 7-convergent subse-
quence and the norm || || does not have the 7-drop property. Then there
is a sequentially T-closed set A dlSJOlnt from B such that for each z €
A, d(D(z,B)NA,B) = 0. (Otherwise, A has a maximal element by Theorem
3.) That is,

inf{llyll | y € D(z,B)N A} = 1.

So we can choose a sequence {z,} in A such that z,4; € D(z,,B)N A
and lim, o ||z,|| = 1. By assumption, {z,} contains a 7-convergent sub-
sequence {z,,} which converges to a point zo € A. Since | - || is lower
semi-continuous with respect to 7,

lzoll < Lim [lza, || = 1.
So zg € B, which contradicts the fact that ANB = 0),‘

If 7 is the norm topology, then Theorem 4 reduces to [12, Proposition
2]. And if 7 is the weak topology, it is a part of [7, Theorem 5].
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POSITIVE LINEAR MAPS IN THE
THREE-DIMENSIONAL MATRIX ALGEBRA

SEUNG-HYEOK KYE

1. Introduction.

Let M, be the C*-algebra of all n x n matrices over the complex field. The
structure of the positive cone P(M,) of all positive linear maps between M,
is very complicated even in lower dimensions. In this note, we will discuss
various examples of positive linear maps between the 3-dimensional matrix
algebra. For interesting examples for the 4-dimensional case, we refer to
[Ro83, Ro85, Ta86).

We denote by M;i.(M,,) the matrix algebra of order k over M,,. For a linear
map ¢ : M, — My, we define two linear maps ¢ and ¢* between M;(M,)
by

¢k([at1]k3—1) = [¢(a,,)] i,j=1
¢k([aij]i,j=1) = [¢(aji)]i,j=1,

for [a;;] € Mi(M,). The linear map ¢ is said to be k-positive (respectively
k-copositive) if ¢y (respectively ¢*) is positive, and ¢ is completely positive
(completely copositive) if ¢ is k-positive (respectively k-copositive) for each
positive integer £ = 1,2,.... It is well known that ¢ : M, — M, is com-
pletely positive if and only if ¢ is n-positive, and this is equivalent to the
positivity of the matrix ¢n([E,-j]}"j___l) in My, where {E;; : ¢,j =1,2,...,n}
is the usual matrix unit [Ch75a]. Similarly ¢ : M, — M, is completely
copositive if and only if ¢"([E;;]7;_,) is a positive matrix. It is also known
that every completely positive linear map is of the form

Am D VFAV,  AeM,,

with V; € M,,, and similarly for completely copositive linear maps.

1991 Mathematics Subject Classification. Primary 46L05, Secondary 15A30.
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Recall that a linear map ¢ is said to be decomposable if ¢ is the sum of a
completely positive map and a completely copositive map. The notion of de-
composability is closely related with the question whether a real biquadratic
form can be written as the sum of squares of linear forms [Ch75b, CL77].
Although it is known that every positive linear map between M, is decom-
posable [St63, Wo76), this is not the case for M, with n > 3. We will see
that there are even positive linear maps which are not the sums of 2-positive
linear maps and 2-copositive linear maps.

2. Variants of Choi’s example

One of interesting examples may be obtained by adjusting diagonal en-
tries and attaching minus signs to other entries, which was initiated by Choi
[Ch72]. For nonnegative real numbers a,b and ¢, we define the linear map
¥[a, b, c] (denoted by just ¥ if there is no confusion) by

¥a,b,c](z) = ¥y[a, b, c|(z) — =,
where

T, [av ba c]((:l),‘j)) =

azyy + brag + czas 0 0
0 azyy + brss + czyq 0 ,

0 0 azr3z + bzyy + czgp

for each (z;;) € M3. ¥[2,2,2] is just the Choi’s example mentioned above.
This was the first example of 2-positive linear map which is not completely
positive. Choi also showed that ¥[2,0, 4] with 4 > 1 is not decomposable
[Ch80]. From the following result [CKL], we have plenty of examples of in-
decomposable maps, positive maps which are not 2-positive, 2-positive maps
which are not completely positive.

Theorem 2.1.

(1) The linear map ¥a, b, c] is positive if and only if the following three
conditions are satisfied;

a2l
a+b+c>3,
be>(2—a)? if 1<a<2,
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if and only if the inequality

a B gl
<1
aa+bﬂ+c7+aﬂ+b7+ca+a7+ba+cﬂ—

holds for every positive real numbers a, 3,7.
(2) The linear map ¥[a,b,c] is completely positive if and only if the
following condition is satisfied:
a>3.

(3) The linear map ¥|a, b, c| is completely copositive if and only if it is
2-copositive if and only if the following conditions are satisfied:

a>1, bec>1.

(4) The linear map ¥|a, b, c] is decomposable if and only if the following
two conditions are satisfied:

a>l,

3-a\® .
be > 5 if 1<a<3.

(5) The linear map ¥[a,b, ] is 2-positive if and only if
a>3 or

2<a<3, be=(3-a)b+c)>0.

The second condition of (5) follows from the inequality

ba + ¢y bB + ca by +cB <1
aba +bcB +acy ' abB +bey+caa  aby+bea+caB T

which holds for every nonnegatlve real numbers a, # and 4 under the condl-
tion, whenever not all of them are zero.

Remark. It would be an interesting result if we know the conditions for
Schwarz inequalities. When a = b = ¢, V¥ satisfies the Schwarz inequality
if and only if a > %, and ¥ ® I, satisfies the Schwarz inequality if and only
if a > %
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Because ¥[2,0, 1] is extremal but not 2-positive, it follows that it can not
be even expressed as the sum of 2-positive and 2-copositive maps. Tomiyama
[TT88] showed this directly and called such a map as an atom.

In order to find another examples of atoms, we consider [Ky] the following
maps motivated by [Osl]: For nonnegative real numbers a, ¢y, c; and c3, we
define the linear map O[a; ¢y, ¢z, ¢3] from Mj into M; by

Ola; 1, ¢2, c3)(zij)

ari; + c1x33 0 0
= 0 azyy + C2%13 0 — (zij)
0 0 az33 + c3T22

for each (z;;) € M;. Note that Ola;c,c,c] = ¥[a,0,|.

Theorem 2.2.

(1) The linear map Ola; c;, 2, c3] is positive if and only if the following
two conditions are satisfied:

a>2,

cicz¢c3 > (3—a)?

(2) The linear map Ola; c1, ¢z, c3] is completely positive if and only if it
is 2-positive if and only if the following condition is satisfied:

a>3.
(3) Forthe positi;fe real numbers a, ¢, ¢y and c3 satisfying the conditions:
2<a<3 and cicacz > (3 —a)?,
the maps O[a; ¢y, ¢z, c3] are atomic positive linear maps between M.
Remark. It is easy to see that the map R* — P(Mj;) given by
(a,c1,¢2,¢3) — Ola; ey, ca, c3]
is an affine map. Therefore, the map O[q; ¢y, ¢z, ¢3] is not extremal if a > 2

or cicpes > (3 —a)?. Recently, Osaka [Os2] showed that O[2; ¢, ¢z, c3], with
cicec3 = 1 is extremal using the theory of biquadratic forms.



POSITIVE LINEAR MAPS IN THE THREE-DIMENSIONAL MATRIX ALGEBRA 133

3. Another examples. _

In this section, we consider positive linear maps in 3-dimensional matrix
algebras which fix diagonal elements. The identity map and the tranpose
map are, of course, typical examples of this type. It is easy to see that such
maps are of the forms;

T11 a1T12 + a1 Piziz + Pazar
®p: (zij) > | a1z21 + az212 T22 Y1Z23 + Y2Z32 |
BPr1z31 + B213 Y132 + Y2723 T33

for (z;;) € M;. Note that the map ®p is determined by a point P =
(a1,az,B1,P2,71,72) in C°. Because the correspondence P — ®p is an
affine isomorphism, we will confuse them in some cases.

For these linear maps, they are completely positive (respectively com-
pletely copositive) if and only if they are 2-positive (respectively 2-copositive).
Also, they are decomposable if and only if they are the sums of 2-positive
and 2-copositive linear maps. In order to state more explicitly, we introduce
the following two linear maps

a;rn @iz Pizis (
®i(zij) = | aizar biraz viTaz |, =12,
Biz31 7iTzz CiT3a

where a;, b; and c; are nonnegative real numbers. We also denote by

J =

et
(S e
(S S

Proposition 3.1.

(1) The linear map ® is completely positive if and only if it is 2-positive
if and only if as = B2 = v2 = 0 and the matrix ®,(J), with a; =
by = ¢; = 1, is semi-definite positive.

(2) The linear map ® is completely copositive if and only if it is 2-
copositive if and only if a; = f; = 71 = 0 and the matrix ®,(J),
with a; = by = ¢ = 1, is semi-definite positive.

Proposition 3.2. For the linear map ®, the following are equivalent:

(i) @ is decomposable.
(11) @ is the sum of a 2-positive linear map and a 2-copositive linear map.
(1ii) There exist real numbers ay,az,by,bs,c; and c; such that

a1+a2=1, b1+b2=1, Cl+62=1,
®.(J) 20, $(J)20
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In order to characterize the positivity of ®, we denote by R the projection
onto the one-dimensional subspace spanned by the vector (z,y,2) € C3.
Then @ is positive if and only if the matrix :

|z|? a1Ty + aafz  P1Zz + Pazz
(3.1) ®(R) = | a1yz + a7y ly|? 1172 + Y22y
BrZz + BoZz  TiZy + Tayz |22

is positive for every (z,y, z) € C3. Considering 2 x 2-submatrices, we have
|z[*|y|? — lerZy + azyz|* 20,  =z,y€C.

This is equivalent to the condition

(3.2) ) o | + Jog| < 1.

Similarly, we have

(3.3) 1Bl + 1821 <1, |l + |2l < 1.

Also, if we consider the determinant of the matrix (3.1), it follows that
the inequality

|2 lorZy + axgz|® + |y|?|B122 + Bazz|? + |22 |11§2 + Y2yl
< |:z:|2|y|2 |z|2 + 2Re(a1Zy + agyz)(frzz + B2z2)(M1yz + 122y)

holds for every z,y,z € C. Because this inequality is trivial if one of z,y, 2
is zero, we divide by |z|?|y|?|z|?, and may assume that |z| = |y| = |z| = 1.
Hence, the above inequality is equivalent to the following condition;

loa + azeialz + |61+ ﬂzeial2 +|m + ’726i7|2

(3’4) 16 io ir
<1+ 2Re(a; + az2e™)(B1 + B2e') (11 + 72€'7),

with 6 + 0 4+ 7 = 0. Summing up, we have;

Proposition 3.3. The linear map ® is positive if and only if the conditions

(3.2), (3.3) and (3.4) hold for any 6,0, with§ + o + 1 = 0.
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Because the condition (3.4) is not so easy to apply, we will give an intrinsic
characterization of positivity in the case of

(35) alya21ﬂ17ﬂ2171,72 ER-

This condition is not so restrictive because if ®p is positive then @ is also
positive, where P € RS is obtained by taking the real parts of each entry
of P € C® Under this condition (3.5), our problem becomes to find the
maximum value of

Acos@+ Bcoso +Ccost

under the constraint
0+0+7=0,

where A, B and C are real numbers. Now, we put

A=ajay — alﬂz"Yz - a2ﬂl7la
B = p1f2 — asfrv2 — a1f2m,
C =12 — azfem1 — a1B17e,
D =1+2(e1fim + a2B272) — (af + o + B + B2 + 77 +72).

and denote by A the set of all triplet (p,q,r) of nonnegative real numbers
satisfying
p<g+r, q<r+p, r<p+gq

Theorem 3.4. Under the condition (3.5), the linear map ® is positive if and
only if the conditions (3.2) and (3.3) together with the following conditions
are satisfied;

ABC >0
=> 2(JA|+|B|+|C|) £ D,
ABC <0, (|AB|,|BC|,|CA]) e A
A2B? + B2C? + C?A?
B ABC <D.
ABC <0, (|AB|,|BC|,|CA|) ¢ A

=> 2max{|4| +|B| - |C|,|A| - |B| +|C|,—|A| +|B| + |C|} < D.
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Because the conditions for decomposability envolves cubic or biquadratic
curves on the plane, it seems to be very difficult to find an intrinsic conditions
for decomposability. Especia.lly, the author was unable to determine whether
every positive linear map P is decomposable or not. Instead, we give a
geometric characterization for unique decomposability.

We say that a decomposable linear map ® is uniquely decomposable if any
two decompositions ® = ®; + &, and ® = ] + ®) by completely positive
and completely copositive maps lead to &; = <I>'1 a.nd &, = &,. We denote
by Ag the set of all (a,b,c) € R? such that the numbers

ag=a,a3=1-—a,by=bby=1-b,¢c1=¢,c=1—¢

satisfies the conditions in (iii) of Proposition 3.2. It is clear that ® is uniquely
decomposable if and only if Ag consists of just one point. It is also clear that
Ag is a convex body in R®. By examining the shape of Ag, We characterize
the unique decomposability. Now, we denote by D the conex set of all P € C®
such that ®p is decomposable, and say that ®p is on the boundary of D if

sup{k : ®yp €D} =1.

While Ag is a one point or a straight line in the case that the equalities
hold in (3.2) or (3.3), it may be shown that the set Ag consists of one point
or is a three dimensional body if the strict inequality hold in (3.2) and (3.3).
From this, we have

Theorem 3.5. Assume that the strict inequalities hold in (3.2) and (3.3).
Then ®p is on the boundary of D if and only if ® p is uniquely decomposable.

We close this note by examining several examples to exhibit how Theorems
3.4 and 3.5 work.

Example 3.6. First, we consider the case
0!1=,31=71=36R, a2=ﬂ2=72.—_te][{_

In this case, we have A = B = C = st(1 — s — t), and if st > 0 then the
first condition of Theorem 3.4 becomes 2s + 2t +1 > 0. If st < 0 then the
second condition becomes (2s — ¢t + 1)(—s + 2t + 1) > 0. Considering the
condition (3.2), we see that the region for positivity of ® is given by the
convex body on st-plane determined by the four points (1,0), (0,1), (—3,0)
and (0,—1). In this case, it is also clear that every positive linear map is
decomposable. Note that the point (1,0) and (0,1) represent the identity
map and the transpose map, respectively. Also, the point (—— 0) represents

the linear 2¥(3,0,0] in Section 2.
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Example 3.7. Now, we consider the case
ay=az;=a€R, f=ph=FeR, m=r=7€R

In this case, we have A = a(a —28%), B = B(8 — 2va) and C = v(y — 2ap).
First, assume that ABC > 0. If two of A,B and C are negative and one
is nonnegative, it is easy to see that the condition (3.2) or (3.3) is violated
by the case-by-case investigation. So, we have A,B,C > 0, and the first
condition becomes

1
(3.6) a?4+p2+4% < 1 + 4apy.

Now, we consider the case ABC < 0. Because the second condition becomes
(402B%% + afy — alqy? — B24? — 42a?)?
ABC

we need not consider the case (|JAB|,|BC|,|CA) € A. Finally, the numbers
in the left side of the third condition are among

20,

A+B+C, A-B-C, -A+B-C, -A-B+C.

By a calulation, we see that the third condition becomes (3.6) again, or
vacuous. Hence, the linear map & is positive if and only if the condition

(3.6) is satisfied. In this case, every positive linear map is decomposable

with a; = b; = ¢; = % in Proposition 3.2, and ® is uniquely decomposable if

and only if the equality holds in (3.6).
Example 3.8. We also consider the case
ay=Pf=m=reR, a=p=7=s€R,

in which the third condition of Theorem 3.4 is should be considered. In this
case, we have

A=C=rs(l—r—3s), B=rs—r>—3s:= f(r,s).
First, note that

A?B? 4+ B2C? + C?A? _g(r,8)g(s,r)

D+ ABC = fre)
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where
g(r,s) =2 +s® —rs? +r2 + 2 —rs—r.

Case 1. rs > 0, f(r,s) > 0. It follows that A,B,C > 0 and the first
condition becomes 2r + 2s > 1.

Case 2. rs = 0, f(r,s) < 0. The first condition is 1 — 3s2 — 2s® > 0 or
1—3r? —2s3 > 0 depending on r = 0 or s = 0. So, we have r < % and s < %

Case 3. rs <0, f(r,s) > 0. We have A,C <0 and B > 0. Then the first
condition is

h(r,s) =2(r—s)? —(r+s)—1<0.
Case 4. rs > 0, f(r,s) <0. (|AB|,|BC|,|CA|) € A if and only if
k(r,s) = 2r3 + 25% + r2s +rs? — 3rs > 0.

In this case, the second condition is ¢(r,s)g(s,r) < 0. If k(r,s) < 0 then the
third condition is

Ur,8)=2(r—s) +(r+s)—1<0.
Case 5. rs < 0, f(r,s) <0. (|AB|,|BC|,|CA|) € A if and only if
m(r,s) = 2r® +2s% —r?s —rs® —rs >0,
then we have g(r, s)g(s,r) < 0 as above. If m(r,s) < 0 then we have
h(r,s) <0, {(r,s) <0.

Summing up, we have the picture of the region for positivity on the rs-
plane. Note that the three curves g(r,s) = 0, h(r,s) = 0 and m(r,s) = 0
intersect at the common point, at which g and h are tangent to each other.

Now, we show that every positive map of this type is decomposable. Note
that this is clear when r < 0,s < 0. So, we may assume that

s> 0, s>,
by the symmetry between r and s. In this case, the boundary consists of
g(r,s) = 0 and h(r,s) = 0 and the region of positivity is divided by the

following two cases:
Case 1. g(r,s) = 0. In this case, we have

2
Ao = {(s, = 9)}-
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Case 2. h(r,s) =0, m(r,s) < 0. In this case, we parametrize the curve
h(r,s) = 0 as follows; '

_2:1:2+:c—1 3_2:1:2—9:——1
- 2 ’ - 2

Then we have

We put

—1gzs%, 203 —224+1>0, 23 +22-1<0.

a_c__4x3——a:+1 b_2w2+w—1
R 2 ’ - 2z )
Then, we have Ag = {(a,d,¢)}.
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ON THE DISTANCE BETWEEN THE
UNITARY ORBITS OF TWO HERMITIAN
FUNCTIONALS ON A SEMIFINITE FACTOR

SA GE LEE

§1. Introduction

Let M be a von Neumann algebra, M, its predual, M} = {p € M, : p* =
o}, M} = {p € M} : o >0}, and U(M) = the group of all unitary elements
in M. For u € U(M), ¢ € M,, we define upu* € M, by

(upu*)(z) = p(u*zu), forall z € M.

The unitary orbit of ¢ € M, means the set {upu* : v € U(M)}. As
an extension of the notion in (§2[5]), we say that ¢, € M, are equivalent,
@ ~ 1, if 1 is in the norm closure of the unitary orbit of ¢. It is immediate
to see that this relation ~ is a true equivalence relation in M,.

Let [¢] denote the equivalence class containing ¢ € M,. The quotient set
M,/ ~ is a metric space with the metric

d([e], [¥]) = inf{|le’ — 9'|| : ¢ ~ @, ' ~ p}.

Because M} and M} are norm closed subsets of M, invariant under the
action (u,p) € U(M) x M, — upu* € M,, we see that both M/ ~ and
M}/ ~ inherit the metric d.

Lemma 2.1 [5] and its proof is translated verbatim to M,/ ~ and M!/ ~.

Note: After finishing this article, some of results (e.g. Propositions 6,20) have been
generalized. See [13].
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Lemma 1. Under the metric d, both M,/ ~ and M}/ ~ are complete
metric spaces.

We regard M} as a real vector space also equipped with the natural order
structure determined by its positive cone M.

§2. A lower estimate for the distance
between two elements in M,,'} [~

Throughout the section, let M be a semifinite factor on a Hilbert space H,
with separable predual space M,, and 7 a fixed normal faithful semifinite
tracial weight on M+. When M is of type I with a minimal projection e, or
type II;, we assume that m9(e) = 1 or 79(1) = 1 respectively.

Let Py denote the set of all finite projections in M and put

J= To(Pf). '

Let M dénote the *-algebra of all 7o-measurable operators affiliated with
M ([11] p.117. Theorem 5.3). It is known that 7 is extended on M+ by

To(T) = eEIgl+ Tg(T(l + GT)_I)

for every T € M, where M denotes the set of all positive operators in M
([11] p.121 (5.11)).
Consider
LY(M,7) = {T € M: ||T||; < oo},

where ||T|l; = 7(|T]) (T € M). By Theorem 5.10 ([11] p.121), we see that
LY(M, 1) is a Banach space with the norm || - ||;, in which M N L}(M, 7o)
is dense, that 7y is extended as a bounded linear functional on L!(M, 7o),
and that (z,T) € M x LY (M, 1) — 7o(zT) € C gives rise to an isometric
linear *-isomorphism of M, onto L'(M,1y). The restriction of this canonical
identification to M} is an order-isomorphism of M} onto L!(M, )", where
LY(M,1o)* denotes the set of all hermitian elements in L'(M,,) ([6] p.63
Proposition 4.2, p.71 Theorem 5.12. Or see [9] p.65 Proposition 4.5, p.67
Theorem 4.10 (V)).

For every ¢ € M,, we define the Radon- Nikodym derivative gﬁ% € LY (M, o)
of ¢, as the element in L!(M, 1) to which ¢ is mapped under the canonical
isomorphism M, — L'(M, ). Thus %,‘% is a closed (densely defined) oper-

ator affiliated with M such that To(X(a’oo)(l%,‘%D) < oo for all a € (0, 00), or
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equivalently limg_, oo To(X(a,oo)(I T [)) = 0 ([11] p.120 Corollary, [12] Chap.1,
Proposition 21). Note that 7‘115,% € LY (M, )%, if o € ML

For any selfadjoint (densely defined) operator T in a Hilbert space, if we
put

Ty = Tx(0,00)(T),
T_ = —TX(=00,0)(T)

then T, T_ are also selfadjoint (densely defined) operator such that D(T') =
D(T4+) N D(T-), where D(-) denotes the domain. When, in particular, T is
affiliated with M, so are T and T_. Anyway, we can write

T=Ty-T_, and s(T4)Ls(T-),

where s(-) denotes the support. If, in addition, T' € M, then this expression
of T is unique under such construints, where the substraction in Ty — T__ is
carried out in the sense of the substraction in M.

Lemma 2. For any (densely defined) selfadjoint operator T on a Hilbert
space, we have that, for every a € (0, 0),

X(a,oo)(T) = X(a,oo)(T+)7
X(~00,—a)(T) = X(a,00)(T-)

Proof. To get the first equality, we apply the Borel function calculus to the

equation g 0 h = X(g,c0), Where h(t) = tx(0,00)(£), 9(5) = X(a,oep(s) (1,5 € R).
The second one in the lemma is proven similarly.

Let ¢ € M}!. As an extension of the notion for the case M; ([5] Lemma
4.2), we define f, : (0,00) = J — J by

f«:(a)—fo(X(aoo)( ) X(—oo,—a)( )) (a € (0,00)),

which is right continuous.
Here if we consider the Jordan decomposition of ¢, ¢ = ¢4 — cp_, then

de _ d‘Pi _ dep— « _ga_» :
T = dn 7 1s regarded as the “Jordan decomposition of 7 in

L'(M,70)", since s(Z2) = s(p+), () = (=) ([9] p-65 (1)).
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Thus
(&), -%.
d do_
(3). =%

Consequently, by Lemma 2,

dp doy

X(a, oo)(dT) = X(a, w)(T)7
do_

X(—oo,—a)(d_r )= X(a, oo)( ‘P )

Consequently, for every a € (0,), f,(a) = f, +(a) fo_(a).
We have to prepa.re some additional facts taken mostly from §3 and §4 in

[5]-
Since 0;° = up for all ¢ € R, where ¢ is the identity automorphism
of M, the crossed product M x R that will be denoted by N, is the von
o7o

Neumann algebra on L*(R, H) generated by {7(z),A(t);z € M, t € R},
where (r(2)E)(s) = a(£(3)), (ADE)s) = &(s — ), where £ € L*(R, H), o
that
A)m(z)A(—t) = n(z).
The dual action {0, : s € R} of 0™ ([10] p.257 Definition 4.1) is determined

by following conditions;

0,(n(z)) = 7(z)

8,(X(s)) = e A(2)
(z € M, s,t,eR).

By [4], there is a faithful normal semifinite operator volued weight W from
the extended positive part N, onto that m(M}, of 7(M) determined by

ww = [ " 0,(y)ds (v e N,

where ds denotes the Lebesgue measure on R.
For any normal semifinite weight ¢ on M, its dual weight ¢ on N+ ([3]
p.112 Definition 3.1) is given by

p=gponm oW
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([4] p.131 Theorem 3.1 (d) or p.138 Corollary 3.6)
On the other hand, there exists a positive selfadjoint operator k affiliated
with N such that .
A(t) =h" (teR),

and the weight 7 on Nt defined by
T(y) =7Fo(h"'y) (yeNT)
is a faithful normal semifinite trace on N satisfying
T00,=¢e"°r (s€R)

([10] p.282 Lemma 8.2). 7 is called the canonical trace on N.

Now let ¢ € M,. By considering the Cartesian decomposition first, ¢ =
p1+ z9027 901")02 € M*a and then by conSIdermg ((‘Pl)-i-) ((‘Pt) ) (z =1 2)7
we can define 92 as a T-measurable operator affiliated with N ([12] Chap.
II, Corollary 6) by

dg _ d((e1)+) _ d(e1)-) | .(d(¢2)+)  d((¢2)-)
+i( ):

dr ~ 4 dr dr dr dr

since N is also a semifinite von Neumann algebra with = ([11] §5. pp.114—
128). Here the operations in the right hand side of the above expression is
carried out in the *-algebra of all T-measurable operators.

On the other hand, let L>°(R, M) denote the Banach space of all M-valued
essentially bounded Lebesgue measurable functions with respect to the o-
weak topology on M ([1] p.183 Proposition 11). Then L*(R, M) becomes a
von Neumann algebra by making it act on L?(R, H), as

(a§)(t) = a(t)(£(1))

(a € L®(R, M), ¢ € L*(R, H), t €R).
For g € L2(R) N L!(R), let § denote the inverse Fourier transform of 9

i) = \/% /_ Z g(s)e*ds (¢ € R).

There is a Hilbert space isomorphism of L%(R, H) onto itself determined by
sending every g(-)éo to §(-)é (¢ € L*(R) N LY(R), & € H), under which
7(z), A(t) € N are transformed to (s € R — z), e'()1 € L®(R, M) respec-
tively, where € M, t € R and 1 is the identity operator in M. Also the
center Z(N) of N is transformed to L®(R) (= L=(R)1).

The next Proposition generalizes Lemma 4.2 of [5].
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Proposition 3. Let o, € M. Then,

(i) (1) =[5 fe(a)da.
(ii) If o < ¢ then f, < fy.
(iii) d(le], [¥]) 2 [~ |fo(a) = fy(a)lda

Proof. For any t € R, we see that
t= / [X(a,oo)(t) - X(—oo,—a)(t)]da’
a€(0,00)
so that p o~ p J
@ @ ¢
—— = —) = X(=o00.—a)(=—)|da.
p /0 [X(a,oo)( drg) ™ X(=oo—0) (G- )] a
Hence,'
| p(1) = mo(Z- 1)

dp
dTo

_ o dy dyp
= [) T0 [X(a,oo)(dro) - X(—oo,—a)(d?_0 )] da
= / fo(a)da, proving (i).
0

Now let ¢ < +. Then ¢4 <94 and ¥_ < p_. By (ii) of Lemma 4.2 [5],
we see that f, < fy, and f,_ < f,_. Consequently,

feo =f<p+ —fo_ < f¢+ — fo_ = fys

= 7o(

which proves (ii).

To show (i)
I = il =200 v #)(D) - 9(1) - $(1)
— [ (@) - ful@) - fu(@)da
> [V £0)(@) = i) = fulallda
(, by ()
= [ 1futa) = fotalda
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Now, for every u € U(M), we note that

futpu‘ = f(ucpu‘).|. - f(quu")_
= fu<p+u‘ - futp_ u*

=f<P+ -f<p_. =f<p,

for any ¢ € M}. This together with the previous paragraph imply (iii).
Lemma 4. Let ¢ € M, and ¢ = v|p| be the polar decomposition. Define
fo :(0,00) = C by
d
£o(@) = o(vX 0 (L)),
0

a € (0,0), and e, € L°(R, M) by

Then, for all z € Z(N),

T(epz) = /oo 2(7)fo(e™")e ™ Vdy.

—00

Proof. If z € Z(N) = L*(R), we have

| steleean

—00

- [ o e (D ye Ty

—0o0

-/ . ro<z<v)vx<e-~,oo>(—'ﬂ>>e‘”dv

—00

=@ [ oo G

—00

= T(ze/ vX(e"',oo)( |90l)d )

= 1(ze,).
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Lemma 5. Let ¢ € M,. Then
% _o [, dl
w=o [

Proof.
dle| dle|
® v g4
/;oo('ve . )d =va- ® m(e?)
d(vlel) ~
- dTo ® ( )
_ % ¥
- d‘l’o ®m(e )

_iped) _d
d(to®e~"dy) dr’

Lemma 6. Let ¢ € M,. Then,
lel(1) = llell-
Proof.
lel(1) = /_ i fipi(e™)e"dy
— [ e (G
= /0 ooTO(X(a o) (= l('ol)da
= o / x<a,oo>(—'“°—')da)
n(E) = |2 || = el Il = Il

Corollary 7. Let ¢ € M,. Then,

lell = || i
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Lemma 8. Let ¢ € M,. Then,
I8l = I fell2-
Proof. For every z € Z(N),

b6 = [ e van
We can show that

i) = [ D\ fule My

—00

for all z € Z(N). To see this, let us put
pe) = [ sliule e,

DefineU e NbyU =9 ffooo u(y)1pdy, where

0, when f,(e”7) =0
ur) = { T%;L?;—:%’ when f,(e”7)#0’
so that f,(e™7) = u(’y)lf‘P(e 7)| for all ¥ € R.

149

We claim that Up = ¢ and U*U = supp(p), so that p = ||, as desired.

Now for all z € Z(N),
(Up)2) = o(U)
= p(® / u(7)z(7)1dy)

-0

= [ Iy

—o0

= [ e = 000)

—o0

Put V={y€eR: f,(e™7) # 0}. Then

vv=2 [~ W

—00
[e ]

= / Xv (7)1mdy

- 00
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Iy - U = / Xew (N 1ardy

In general, for an element z € N*, we have that
oo
z € kerp < / z(V)|fo(e™)|eYdy =0

= [ lfle e =0

< z(7)=0 ae ~vyeV.

In particular when z is a projection in N*, z is of the form

z=9 / xe(V)d,

— 00

so that
xe(y)=0 ae ~yeV

Then ® [%_ xg~v(7)dy is one of such projection in N+ lying in the ker-
nel of p. Actually this is the langest among such kind. Hence 1y ~
® [ xr~v(7)dy, i, ® [ x,(y)dy is the support of p. That is, U*U
is the support of p, as desired. We thus have shown that

)= [ T N fule ey

—00

for all z € Z(N).
Thus,

11 = 11611 = 1910
= [ 1l

= [ ifetalda
= fulls-
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Lemma 9. Let ¢,9 € M,. Then

16 = 9l = lIf, — fulln
Proof.
16 — Bl = sup{|@(z) — $(2)| : z € Z(N), |l2]| = 1}
I — / W) (fole™) = Fole™))e="dv]
z€EZ(N) J—oo
llzll=1
~ sup | [ (- loga)(fila) — fula))dal
2€2Z(N) Jo
=t .
- / 1fol(@) = fy(a)lda
= 1fo = Folls,
as desired.

Lemma 10. Let ¢ € M,, ¢ = v|p| be the (left) polar decomposition of .
Define '

Vr-@/ vdy € L*°(R, M) = N.

—00
Then e, = V|, and this expression is the (left) polar decomposition of e,.

Proof. Since

< dle|
elp) = ® / ooX(e—v,oo)(;l;;-)d%

we see that

) dle
Ve =2 / vX(e-v,oo)(leol)d‘f

- e¢u
Clearly e|,| is a positive (unbounded, in general) operator affiliated with
N. Now o dlol
supp(ejy)) = @ / supp( d—fo-)dv-
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On the other hand %,‘% =v di% is the polar decomposition of dir‘%. Conse-
quently,
del\ _ .
supp(—d;) = v*v.

Thus

(e o]

supp(ejy|) = eB/ viody = V*V.
—00

This implies that e, = Ve, is the polar decomposition of e,,.

Corollary 11. |e,| = €|y
Corollary 12. ¢, = VX(I’“)(I%%|) is the left polar decomposition of e,,.
Proof. By 3) of Theorem 7 in Chapter II [12], we see that

|8l = le[, for every ¢ € M,.

But

Hence e, = Ve, = Vxq, oo)( ?ly = Vxa, oo)(|—‘El) is the left polar decom-
position of e,

Corollary 13. For every ¢ € M., ¢(z) = T(ey2) = 7(Veyy)2), for all z €
Z(N) = L°°(R).

Lemma 14. Let ¢ € M,. Then

6l < lel, Nl < llell-
Proof. Note that

B = [ X (GE]ear

—00
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for all z € Z(N). But, for a € (0,00), we have that

Ir(oXce oGNP

= |70(X(a,00)(—— |<P|) VX (a,00)(5— I"o'))lz

< ro(X (e (DL ')) (a0 (R "")v )

< {"’o(X(a oo)(dl(’ol)}

Hence,

(X009 N < 7o 0 G

Hence for every z € Z(N)*,

l@l(2) < /°° To(X(e-7,00) (75— I('Dl)) ~Vdy

-0

= (lel)(2)-

Consequently, || < |¢f.
Thus, by Lemma 7 and Lemma 6, we have

Ifells = el = 1@l Il = 121(1) < (leD(@) = llell,

as desired.

The following lemma implies that our old definition of f,, for ¢ € M?
agrees with the new definition of f¢ in Lemma 4 when ¢ € M},

Lemma 15. Let ¢ € M}, and ¢ = (et — e7)|p| be the unique left polar
decomposition of ¢, where e*, e~ are orthogonal projections in M such that
et + e~ = s(|p|). Alsolet ¢ = p* — p~ be the Jordan decomposition of ¢
so that ot = et|p|, ¢~ = e |p|. Then,

for(a) = mo(e¥x(a, oo)(

fo-(a) = To(e” X(a,oo)(
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for all a € (0, 00).

Proof. Note that s(|p]) = s( dro) [p.65 [9] Stratila (1)), so that et + e~ =

s(J—l) Consequently, both et and e~ commutes with s( i )-
We first prove that for any a,b € (0,00) with a < b,

d
X(a,b)(€+ I(’0|6+)—6+X(ab)( dlp l) et

(Here all operations are considered in the setting of the *-algebra of all 7o-
measurable operators.)

Let K € (0,00) be a fixed number such that K > b. For all sufficiently
large positive integer n, a < a + % <b- % < b. For all such large positive
integer n, we find a real valued continuous function f, : [0, K] — [0 1] such
that fn(m) =0forall z € [0,a]U[b, K] and fo(y) = 1forally € [a+3, b—1],
by the Urysohn’s lemma, for a normal space.

The Stone-Weierstrass theorem now implies that there are real polynomi-
als p,, on [0, K] such that

lpn — fallk = 0 as n — oo,
where ||-|| k is the supremum norm on K. Then {llpnll& }n=1,2,... is a bounded

sequence. Also it is clear that f,(z) — x(4,5)(2) for every z € [0, K]. Conse-
quently pn(z) — x(a,5)(2) for every z € [0, K]|. Consequently

in the strong operator topology, which can be checked by the Lebesgue dom-
inated convergence theorem. Then

d|p|

djol
e+ Pn(m)ﬂ — et X(a,b)%)e+
in the strong operator topology. But

d
d|:,|)6+ = pn(e+ d|90|6+)

€+ pn(

and these converge to x(4,5)(e+ %?e.,.) in the strong operator topology.
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It follows that
dle dlel,
e+ X(a,b)(‘al;o—l)e+ = X(a,b)(€+ 71'-7,;[(%)

Now letting b — oo, we get that

d d
et X(a,oo)(’letl)e+ = X(a,00)(€+ ﬁw)
' ‘ d(e
_ X (a,00) ( ( +|‘P|))

. + ..
ie., e"’x(a,m)(%;ol)e‘F = x(a’oo)(%%—). Similarly,

. d d
€ X(a,oo)(’zl%)e —X(aoo)( (P ),

from which our desired equalities follow.

As we already noted, if ¢ € M2. Then f, = f,+ — fo-.
Indeed, for every.a € (0, 00),

dlcpl

f‘P(a) = TO((e —e€ )X(a oo)( ))

= 7'0(“3 X(a, oo)(—l—_l')) — To(e” X(a, oo)(dlcpl))
= fcp"’(a) fcp' (a)1

as desired.

Corollary 16. Let ¢ € M. Then

frol = fot + foor -
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Proof. For every a € (0, c0),
(f«p+ + fqp’ )(a) = fqp"'(a) + fsa (a)

= TO(X(a,oo)( )) + 70(X(a, oo)( d,. )
dlvl))

= To(e X(a, oo)(

+ 1o(e” X(a, oo)(dI‘PI )

( ,see the proof of Lemma 18)

= To((6+ + e‘)X(a,oo)(%I;‘%l'))

Icpl )

(,since et + e~ is the support of ——

= fio|(a), as desired.

Let S denote, the set of all complex valued L*-functions f on (0, 00) into
(J = J)+i(J — J), which are continuous from the right and the absolute
value functions |f| are decreasing. Put .

S* = {f € S : f is real valued.},
* = {f € 8" : f is nonnegative real valued}.

The next theorem is our first main result related with Theorem 4.4 of [5].

Proposition 17. The map [p] — f, (peM *) is a map of M} / ~ onto S*.
The image of M}/ ~ under this map is S*.

Proof. The well-definedness of the map [p] — f,(p € M}) follows from (iii)
of Lemma 6.

For the case when f € S, the existence of ¢ € M} such that fo=1Ff1s
known in the earlier part of the proof of Theroem 4.4 [5] Now let f € S*, and
consider f = fy — f_. We thus can find p4,p_ € M} such that f,, = fy,
fo_ = f-. Since f,, fo_ = f+f- =0, one can easily show that

do+ dp—
() 1 (55,
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so that

s(p+) L s(e-).
Then, by putting

¢ =p+—p-,

we get the Jordan decomposition of ¢. Consequently,

fsa =(f¢)+ —(fv)- =f¢+ ~fo_.=fr—f-=1,

proving the surjectivity of [¢] € M,/ ~— f, € S.

Let M be a semifinite factor with a fixed semifinite normal tracial weight
To-

Theorem 18. Let ¢ € MP*. Then there are py,ps € M such that [p;] =

[et], [p2] = [¢7), lor = p2ll =[5 |fp(a)lda, where ¢ = ot — ¢~ is the
Jordan decomposition of .

Proof. Let e*, e~ be mutually orthogonal projections in the abelian von
Neumann algebra generated by the spectral projections of %,‘% such that

do e )dlwl
dTo dTo

is the left polar decomposition of ‘%‘{%
Let h,k denote the positive selfadjoint operator affiliated with M such
that

X(a,oo)(h) p(TO(e X(a, oo)(dl(pl))

+
= p7o(X(a, oo)("'—")),

X(a, oo)(k) = p(7o(€” X(a, oo)(dlsol )

= pTO(X(a,oo)(%))

for all a € (0, 00).
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We put

det do™
Xl L= {a € (0,00) : X(G»OO)(dL;O) :‘J X(a,oo)( df‘o )},

det do~
Xo:={a€(0,00): X(a,w)(%) ~ X(ﬂ’°°)( df—o )}

ot | dp~
Xp:= {a € (0, oo) : X(a,oo)(%) o-ﬁ X(a,oo)(‘a%)}'

Define p; = 7o(h(+)), p2 = To(k(-)). Then one can show that p;,p, € M}. We
note that f,, = fu+, fp, = f,-. By [5] Lemma 4.3, we see that [p;] = [p7]
and [pz] = [¢7]. Also we note that [|p1 — p2|| = f; o, |fe(a)lda.

. Theorem 19. We keep the notation in Theorem 21. I, in particular, p; —p2
is the Jordan decomposition of p = p; — p; € M} satisfying the conditions
in Theorem 21, then either ¢ € M} or —p € M}.

Proof. Assume that p = p; — p, is the Jordan decomposition of p € M.
Then

ller — p2ll = |lpall + |l p2]|-

Thus, from the condition in Theorem 1,

/0 " Vfol@)lda = [l + lea]
> d([p1],10]) + d([p-],[0])

> /( | In(adat / _ Frlayia
- / fo+(a)da + / fo-(a)da.
(0,00) (0,00)

b

Consequently,

/X1 |f¢(a)|da+Lo |f‘p(a)|daz-{-/x2 |fo(a)|da

> /(0,00) f¢p+(a)da + -'/(.0,
/ (@) = fo-(a)lda + / (@) — fo-(a))da
X1 Xo

fo-(a)da .
00)
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+ [ Vfor(@) = S (@lda
X2
> /( | Ferladat /( | Jor(a)ia
[ @ = fr@)ia+ [ (o (@)~ Fyr(@)da
X1 X,
> /(O’w) for(a)da + /(o,w) fo-(a)da .

Because
0< /X (for(@) = fy-(@)da < /X Sor(a)da /(Om) f+(a)da,
0% [ Gor@) = fyr@)ia< | fo-(a)as [, foteria
we see that
/ (ot (@) = fom(a))da + / (fo-(a) = f(a))da
X1 X2
= +(a)da o-(a)da
Awh()+AMf()
Put
o = [ (For(@) = fye(a))de,
X1
g = /X (@ = For(@)da

a= ./(o,oo) fo+(a)da,
| p= ‘/(’O’oo) f<p‘ (a)da'

Thus we have the following situation:
0<d, B, a, f< oo
o' <a, f'<B, and
a+ B =a+8.
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Consequently, (o —a')+(8—p')=0with0<a—0a' < 00,0< - < c0.
We thus can condude that a =o' and 8 =4’

/. (@)= fy-(@)da = /( fo+(a)da

0,00

=/, ﬁ,,+(a)da+/xo f¢,,+(a)da+‘/x2 fot+(a)da,
[ @ = fort@ia= [ fp-a)ia

0,00)
= [ o @dat [ f-@idat [ f-(aria
Hence

— s “’fq,_ (a)da = /Xo fo+(a)da + /X, fo+(a)da >0
0> —/;(2 fot+(a)da = /;{1 fo-(a)da + /Xo fo-(a)da > 0.

Consequently,

for(ayda=0, [ fo(a)a=0

/i o fo-(a)da =0, /X fo-(a)da =0.

Thus, f¢+, f,- are respectively equal to zero almost everywhere on Xp.
fo+ is equal to zero almost everywhere on X3, f,- is equal to zero almost
everywhere on X;.
But (0,00) = X;UXoUX; (disjoint union).

Consequently
for(a)fe_(a) =

almost everywhere on (0, 00). Because both f¢+, fo- are right continuous
on (0,00), we see that f_ +f,- is also right continuous on (0,00). Hence
fo+(a)f,-(a) =0 for every a € (0,00).

It follows that at every a € (0,00), either
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This means that the origin 0 of the real line is either an accumulation

point of {a € (0,00) : x(a,oo)(%‘%) = 0}, or it is an accumulation point of

Ao
{a € (0,00): x(a,w)(%) =0}.
For the former case, we see that

d(p*
Koo (Sgrg) =0

for all a € (0,00), so that ot = 0.
For the latter case, we see that

dp~
X(a,00)(G—) =0
for all @ € (0,00), so that ¢~ = 0.

Thus either ¢ = —p~ or ¢ = pt ie., —p € M, or p € M}.

Corollary 20. Let o € M} If ||| = [,° |fo(a)|da, then either p € M} or
—p € M}.

Theorem 21. Let M be a semifinite factor with a fixed normal semifinite
trace 7g. Assume that @,v € M} be given as satisfying either ¢ or —p € M,
and also eithe ¢ or — € M}. Then

d((el, []) = / |Fol@) = Fy(a)lda

Proof. Case (i). Both ¢,1 € M}: This is just Theorem 4.4 [5]. Case (ii)
Both —p, —) € M}: Let e be the support of |p|. Then

Y= (_e)l(lola
—p = elp|

are the left polar decompositions of ¢ and —¢ respectively. Thus, for every
a € (0,00),

fol@) = m(—x(aon( 2D

d
F-(@) = roex(e. (A2,
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- so that f_,(a) = —f,(a).
Similarly, ‘

f—'l’(a) = _f!/)(a)’ ac (07 oo) ‘
Hence
[ = folalda = [ 1= fpla) + fo(@)lde
-/ 1 p(@) - f-y(a)lda

= d([—¢], [-¥]),
by case (i).
On the while,
A=l l=¥) =, inf  N0(=p)U" ~ (-
= U -]
= d([¢], [¥])-
Consequently,

| " \fol@) - fy(@)lda = d(le], [9])

Case (iii) ¢ € M} —y € M}:
We have to show that

d(igl, [9]) = /( o) = fofa)lda
d(ie], [9)) = /(0 Ufola) + -yl

i.e.,

UeU(M)

inf |[UU* — 9] = /( (o) + fy(a)a
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But

(UeU* — || = [ULU* + (=)l
= [UeU* + (-9)I(1)
= (UeU*)(1) + (-¥)(1)
= [ foar(@pat [ f-y(a)ia
0 0
(,by (i) of Lemma 4.2 [5])

= [ eta)da + f-y(@)de
Consequently,

d([], [¥]) = Ueig{M) IUU* — 9|

=Aﬂn@+ﬂamm,

as desied.

Remark. In this case we actually have shown that

e — %1l = d((el, [4])
=A|n@—mew

Case (iv). —p € M}, Y € M}:

The proof is symmetric to Case (iii) and omitted.

For every ¢ € M}, we recall that %? is a T-measurable operator, so that,
when we put e, = (X(1,00) + X(_w,_l)(%‘;@), we have e, € L*(N,7)NN.
Indeed, by Lemma 5, the right hand side is x(l,m)((%‘f)+) - X(l,oo)((%?)—)’
while by Proposition 4 in Chap. II of [12] %f = %‘E - %‘— is the “Jordan
decomposition” of %? in the sense that 3(%"—)Ls(%—l‘;—:‘—). Hence

ey =€y, —€,_ € L'(N,7)NN.

When ¢ € M,, we consider the Cartesian decomposition ¢ = @1 + 12
(p1,92 € MM, and define ep = €y, +ity, € LY(N,7)nN.
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As an extension of Definition 3.2 [5], we define ¢ € Z(N),, by
¢(2) = 1(ep2) (2 € Z(N)),
where Z(N) denotes the center of N. Then, by Lemma 4.5 [5], we see that
o) = [ s)fule e an,

—00

z € Z(N) = L°°(R), where & denotes the canonical identification.
The next lemma extends &1) of Theore 4.7 [5]. Its proof is similar to that
for (i) of Theorem 4.7 [5] and hence omitted.

Lemma 22. Let ¢, € M,. Then,
d(lp, [¥]) = I - ¥||.

Let Y* denote the set of all p € Z (IN)? satisfying the following conditions.

(i) There is an everywhere defined real valued L!-function on (0, 0), say
f, depending on p, with values in J — J such that

o) = [ i e ay

for all z € Z(N) = L>(R).
(ii) For the Jordan decomposition p = py — p_,

p+06,>e"°p, and
p-o0b,>ep_ forall se(0,00).

Wealsoputy"':{peyh:pzo .

The following lemma extends (i) of Theorem 4.7 [5] that dealt
with the case of Y*. Its proof can be done by aid of Lemma 4.6 [5]
and also omitted.

Lemma 23. {$: ¢ € Mt} = Y.
We are now ready to state the extension of Corollary 4.8 [5].

Theorem 24. Let M be a type II factor with separable predual. Then the
map [p] — ¢ is an isometry of M? ] ~ into Z(N).. When M is of Il then
the range of this map is the set

{p€Z(N)::pyob,>e*py and
- p-0b8;2e%p_ forall se(0,00)}.
When M is of II;, then the range of this map is the set
{p € Z(N)}k :pyob,>e %y,
p—08s>e°p_  forall
s € (0,00) and
P4rP= S 7|50}
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G-SIMPLICITY OF C*-DYNAMICAL SYSTEMS
AND SIMPLICITY OF C*-CROSSED PRODUCTS*

SUN YOuUNG JANG

1. Introduction

Let (A,G,a) be a C*-dynamical system. OQur aim is to continue the
investigation of the relationship between the property of the C*-dynamical
system (A, G,a) and the ideal structure of the corresponding C*-crossed
product A X4 G. This problem first appeared in [5] and has been studied
in [2, 3, 4, etc]. Olesen and Pedersen [6] gave the necessary and sufficient
condition of simplicity of C*-crossed products by locally compact abelian
groups. When G is a discrete group and A is an AF-algebra, Elliott [2]
showed that if (A,G,a) is properly outer and A is G-simple, the reduced
crossed product A Xqr G is simple. Later Kawamura and Tomiyama [3]
obtained the same result when A is an abelian C*-algebra. In this paper we
study simplicity of the C*-crossed product A x, G for a general C*-algebra
when G is a discrete group.

Let (4,G,a) be a C*-dynamical system and G be a discrete group. Let
A" be the universal enveloping von Neumann algebra of a C*-algebra A.

Then the action o : ¢ — @y, induces the action o : ¢ — ag on A". Then

(A",G, a") becomes a W*-dynamical system. It is said that G is a central
shift in (4, G, @) if there exists a family {p;} of mutually orthogonal central
projections in A" such that 3~ p; = 1 and aj(p;)p; = 0 for every g € G —{e}
where e is the identity of G.

*1980 Mathematics subject classifications:46 L 55
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2. G- SIMPLICITY

Let (4,G, a) be a C*-dynamical system. We say that A is G-simple if it
has no non-trivial a-invariant closed two-sided ideal of A. And A is G-prime
if any two non-zero a-invariant closed two-sided ideals of A have a non-zero
intersection. : »

Let H be a subgroup of G. We denote the fixed point algebra under ay
by AH ie.

A" = {z € A| a4(z) =z, g€ H}.

If H is a normal subgroup of G, then we can consider the C*-dynamical
system (A, G/H,[a]?) obtained naturally from (4, G, ) on the quotient
group G/H.

Let G be a locally compact abelian group and K be a subset of G. We
denote the annihilator of K by A(K).

Lemma 2.1. Let (A,G,a) be a C*-dynamical system and G be a locally
compact abelian group. Let {G;}ier be the directed system of compact
subgroups of G. Let A(G;) be the annihilator of G; for each i € I. If Sp(a)
is contained in |J; A(G;), then |J; A% is a dense *-subalgebra of A.

Proof. Since G; is a compact group, A(G;) is equal to
{veG| IMg)-1<Vv3, geGi}

Therefore A(G;) is open. Since the Arveson spectrum Sp(a) is closed in G,
{A(G)) |ieI}u {G- Sp(a)} is an open covering of G. Let K be a compact
subset of G. There exists a finite subset {ix}p=, of I such that K N Sp(a)
is contained in |J;, A(G;,;). Hence there exists an index iy € I such that
K N Sp(a) is contained in A(G;,). Since A*(K N Sp(a)) = A*(K), A*(K)
is contained in A%o. From the definition of A, A% is contained in | J; A:.
Since A% is dense in 4, |J; A% is dense in A.

Theorem 2.2. Let (A,G,a) be a C*-dynamical system and G be a locally
compact abelian group. Let {G;}ic; be the directed system of compact
subgroups of G such that |J; A(G;) contains Sp(a). Let J be an a-invariant
closed two-sided ideal of A. Then for each i € I there exists [a]*-invariant
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there exists a self-adjoint element b€ ACo such that ]Ia bl < €/3 for some
ip € I. Choose a continuous function f (t) on R such that

f(t):(&); e

Then by the functional calculus; f(b) 5@‘@-@6;0 We consider the homomor-
phism 7y : A — A/J. Since ||1rJ(b)|| < 3, we have

Therefore f(b) is contained in AG‘O ﬂ J Smce ||a - (b)|| <s U,(J N A%)

is dense in J. L EE Ry
VLSV a0 bas 0 3 oo e WS il

Corollary 2.3. Let A be a unital'C*-algebra.. Under. the samie thypothesis
of Theorem 2.2, if the C*-dynamical system' (AG§ G/ﬁ,, i‘yI‘) is G/G;ﬂsm:ple
for each ¢ € I, then (4,G,a) is also G-simple. ., ; ;

Proof. Let J be a non-zero a-mve..m% ‘ close -
orem 2.2, there exists an element 1 GIsm;h 13113,1;ﬁ ,

J A #40}

Furthermore J N A% is an [a]'-mva;mant closed two-sided ideal of A%:. Since

ASi is G/G;-simple, J N AGi = AG:, Smce AG ~has, the uxgut of Ag e, have
J = A.
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Corollary 2.4. Under the same hypothesis of Theorem 2.2 if the C*- dynami-
cal system (Ag;,G/G;,[a]’) is G/G;-prime for each i € I, then the C*-
dynamical system (A, G, a) is G-prime.

Proof. Let J;, J; be non-zero a-invariant closed two-sided 1deals of A. Then
there exist elements ¢; and i, € I such that

ASian gy # {0}, A% n J, # {0}

There exists an element iy € I such that AG: and. AGi2 are contained in
A%, Then A% N J; and A% N J, are non-zero [a]* -invariant closed two-
sided ideals of A%. Since A% is G/G;,-prime, A% N J; and A%0 N J,

have non-zero intersection. So we have J; N J2 # {0}.

3. Main Result

Let (M, G,a) be a W*-dynamical system and Mc B(H) for a Hilbert
space H. The W*-crossed product M X, G is the von Neumann algebra on
L*(G, H) generated by {m4(z), ;| = € M, g € G}, where

(Ta(2)€)(8) = au-1(2)E(s),  (Ae€)(s) =&(g7"s)

for z € M,s,g € G and ¢ € L*(G, H).

Lemma 3.1. Let (4,G,a) be a C*-dynamical system. Let I be an a-
invariant ideal of A. Then I X, G is an ideal of A x, G.

Proof. Let (7 x A) be the universal representation of A x4 G induced by a
some covariant representation (7, A, H) of A and (A x,G)" be the enveloping
von Neumann algebra of A X, G. Let I be an a-invariant ideal of A. Let p
be a projection in the center of m(A) “ such that

) =n(A) p.

It is clear that p is contained in (A x4 G)". Since I is a-invariant, we have
that AgpAg = p for all g € G. We put

Af= /G f(g)Agdg
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for all f in LY(G). For z € A and f € L!(G) we obtain that
m(z)Asp = n(z)pAs = pr(z)As.

Since (A X4 G)" is generated by {n(z)As| z € A, f € L}(G)}, p is contained
in the center of (Ax«G)". Also, since (I xG)" is generated by {n(z)A¢| z €
I, fe LY(G)},

TXNAXaG) p=rx NI xa G) .

Hence I X, G is a norm closed two-sided ideal of A x, G.

Theorem 3.2. Let (A,G,a) be a C*-dynamical system and G be a discrete
group. Let G be a central shift in (A,G,a). Then A is a G-simple if and
only if A X G is simple.

Proof. Let A" be the enveloping von Neumann algebra of A and (4", G, a")
be the W*-dynamical system induced by the C*-dynamical system (4, G, a).
Since G is a central shift in (4, G, ), by [1] there exists an *-isomorphism
¢ from the enveloping von Neumann algebra (A X4 G)" of A x4 G onto the
W*-crossed product A" x,» G. Let J be a norm closed two-sided ideal of
A X G. There exists a projection pg in the center of (A X4 G)" such that

T = (A xq G)"po
where 7~ denotes the o-weak closure of J. Then we have
$(T°Y) = (A" X G)d(p).

Since ¢(po) is contained in the center of A" Xqov G and (A4",G,a") acts
centrally freely, there exists a projection go in the center of A" such that

¢(Po) = ma(q0)-
Let W, be an operator on [2(G, H) to H such that
W =¢(s7)
for each s € G and ¢ € I2(G, H). Put

E(z) = WeaW;
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for x € B(I*(G, H)). We denote also the restriction of E to A" xqo» G by E.
Then E : A" xon G — A" is a faithful normal positive linear map. Let {pi}
be an approximate unit of J. Then py is the least upper bound of {px}. Since
p; exists in J for all ¢ € I, E(¢(p;)) is contained in A. Since ¢(p;) < é(po),
we get

E(¢(pi))go = E(¢(pi)ma(g0)) = E(S(pi)¢(po)) = E(8(pi)).

Thus we have

ma(E((pi))) = ma(E($(p:)))(po)-

Therefore 7o(E($(pi))) is contained in ¢(J) N 7y(A) for each ¢ € I. Since A
is G-simple, ¢(J)Nmo(A) is {0} or m4(A). Since J is nonzero, ¢(J)N7y(A) =
a(A). So we have

J=AX,G.

The converse is an immediate consequence of Lemma 3.1.

Corollary 3.3. Let (A,G,a) be a C*-dynamical system and G be a discrete
group. Assume that G is a central shift in (A,G,a). Then A is G-simple if
and only if the reduced crossed product A X 4, G is simple.

Proof. Let J be a nonzero norm closed two-sided ideal of the reduced crossed
product A Xor G. There exists a projection p in the center of the W*-crossed
product A” X G such that

-—ow

J = (A" Xa G)p
where J~* denotes the o-weak closure of J. We then proceed the remaining
part of this proof in the similar manner as the proof of Theorem 3.2.

Corollary 3.4. Let (A,G,a) be a C*-dynamical system and G be a discrete
group. Assume that G is a central shift in (A,G,a) Then A is G-prime if
and only if A X, G is prime

Under the same hypothesis of Corollary 3.4 we can also show that A is
G-prime if and only if the reduced crossed product A X4, G is prime.

Let (4, G, a) be a C*-dynamical system and G be a discrete group. If G
is a central shift in (A, G,a) then a is properly outer. It was shown that
properly outerness and G-simplicity is the sufficient condition for simplicity
of the reduced crossed product in the case of abelian C*-algebras and AF-
algebras. The above statement that properly outerness and G-simplicity
is the sufficient condition for simplicity for the C*-crossed product may be
conjectured valuable for more general C*-algebras.
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ON POSITIVE MULTILINEAR MAPS

SHIN DONG-YUN

1. Definitions and Preliminaries

Let € be a vector space over C. Throughout this paper let M 2 (€) denote
the vector space of m x n matrices with entries from &, let M,, , denote the
m X n complex matrices with C*-norm. We set M,(£) = M, .(€) and
M, =M, n.

If B be a C*-algebra and £ be a subspace, then we call £ an operator
space. If £ is a subset of a C*-algebra B, then we set

E* ={a: a* €&},

and we call £ self-adjoint when £ = £*. If B has a unit I and £ is a self
adjoint subspace of B containing I, then we call £ an operator system.

Throught the paper B and C will denote unital C*-algebras, S will denote
operator system, and § will denote the norm closure of S.

Definition 1. A multilinear map ¢ : §; X --- X S, — B is selfadjoint if
¢(x7, - ,25) = ¢(z1, - ,n)* for 7 € Sk (1 < k < n). A multilinear map
$:81 X+ xS, = Ais positive if ¢(z;,---,z,) is positive whenever z; is
positive in S for 1 < k < n, and bounded if ||¢|| = sup{||¢(z1, - ,za)] :
zr € Sk, ||lzk|| < 1} is finite.

Definition 2. Let ¢ : §; X --- X S, — B be multilinrar positive. we
define ¢p : Mi(S1) X --- X Mi(Sn) — Mi(B) by éx([zi;], [z%],-- ,[z])

iji)
= [#(z};, m?j, -+, z7]. We say ¢ is k-positive if and only if ¢ is positive, ¢ is
completely positive if and only if ¢ is positive for k € N and ¢ is completely

bounded if and only if ||¢||ss = sup{||¢k|| : ¥ € N} is finite.

175
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2. Some Results

Proposition 1. If a multilinear map ¢ : S1 X --- X S, — B is positive, then
¢ is bounded and ||¢|| < 2™||¢(1,--- ,1)|| ( cf. [ 12, Proposition 2.1]).

Proposition 2. Let X; be compact Hausdroff spaces for 1 < k < n,C(Xk)
the continuous functions on Xy, and let ¢ : C(X;) x --- x C(X,) — B be
positive multilinear. Then ||¢|| = ||¢(1,--- ,1)|| ( cf. [ 12, Theorem 2.4]).

Proposition 3. Let By,--- ,B,,C be unital C*-algebras, let A; be a subal-
gebra of By with 13 € A, andlet Sy = Ay + A;. If ¢ : S1 X - x Sp = C
is multilinear positive, then |¢(ay, -+ ,a,)|| < ||[6(1,--- ,D|l|la1]l - - - [|@n]| for
all ap in Ag ( cf. [ 12, Corollary 2.8]). :

Proposition 4. Let ¢ : S; X ---S,, — B be a unital 2-positive mu1t111near
map. Then ¢ is contractive ( cf [ 12, Proposition 3.2]).

Proposition 5. Let ¢ : S; X -+ x S, — B be a completely positive multi-
linear map. Then ¢ is completely bounded and ||¢(1,--- ,1)|| = ||¢]| = ||#]|cb
(cf. [ 12, Proposition 3.5)). '

Proposition 6. Let X be a compact Hausdorff Space for1 < k < n, C(X})
the continuous functions on Xi, and let ¢ : C(X;) X -+ x C(X,) — B be a

positive multilinear map. Then ¢ is completely positive ( cf. [ 12, Theorem
3.8)).

For a matrix A, let Ay = [A;j] denote the k X k matrix with A; j = A for
1<4,5<k.
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Proposition 7. Let ¢ : My, X --- X My, — B be a multilinear map, let
{E,"J‘ } denote the standard matrix units for My, and let a = ky -+ kp, t; =
ky---ki_y, s1=kig1 - kn, t1 = 1, 8, = 1, Ey = [Ef}, ]y, Then the following
are equivalent.

(1) ¢ is completely positive.

(2) ¢ is a-positive

(3) da(E1,-- , Ey) is positive.

Proposition 8. Let H be a Hilbert space and let ¢ : By x - -+ x B, — B(H)
be a n-positive multilinear map. Then if ar; € By, 1 = 1,2,--- ,n—1k =
1,---,r, we have

[#(atis- -+ sar)é(arjs - s arj)] < ||6ll[6(atianss- - aziarj)]

in My,_1(B(H)) ( cf. [5, Theorem 2].
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PIMSNER POPA BASIS FOR A PAIR OF
FINITE VON NEUMANN ALGEBRAS

Deok-HooN Boo

P.Jolissant [Jol] extends the Jones’ index to the case of a pair N C M
of finite o-finite von Neumann algebras using the completely positive maps
between Z(M) and Z(N), also J. Bion-Nadal [Bi] extends the Jones index to
the case of a pair N C M of a II; factor M and a von Neumann subalgebra
N, using the correspondence associated to the inclusion N C M. First we
review the work of P. Jolissant ([Jol]).

Let N C M be a pair of finite o-finite von Neumann algebras, and let trps
be a faithful normal normalized finite trace on M and L?(M,trps) be the
standard representation of M. Then N is of finite index in M if L2(M,tr)
is a finite representation of the pair N C M, i.e. M,M' N, N' are finite on
L?(M, tras) and the coupling operators cy and cn+ are bounded. In this case
define S¥ : Z(M) — Z(N) and T¥ : Z(N) — Z(M) by S¥(z) = cyz~'
, TM(w) = w'™ and let CY¥ = SYTM |, DY = TMSY. Then define the
index [M : N] of N in M as the spectral radius of C¥ or D¥ ([Jol]).

Let EN : M — N be the trp preserving conditional expectation i.e.
tr(En(z)y) = trpm(zy) for z € M,y € N. Let & be the canonical cyclic
trace vector in LZ(M, trps) and identify M with the algebra of left multipli-
cation operators on L2(M, trys) then the conditional expectation Ey extends
to a projection ey onto L2(N,trp) via en(zép) = En(z)é. Let J be the
involution z€y — z*&. Then ([Jon]) |

(1) enzen = En(z)eny forz € M,

(2) f £ € M then z € N & enz = zep,
(8) N'={M'U{en}}",

(4) J commutes with ey.

179
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Let (M, en) be the von Neumann algebra generated by M and ey and say
the basic construction of N C M. The followings are given by V. Jones
[Jon];

(1) (M, en) is a factor iff N is a factor,

(2) (M,en) is finite iff N' is finite,

(3) (M,en)=JN'J .

LEMMA 1. Let NC M C (M,en) C B(L*(M)) be a basic construction
of a pair N C M of finite o finite von Neumann algebras with finite index.
Then

(1) (JNJY =JN'J, Z(JNJ)=JZ(N)J; A

(2) zWn = J(JzJ)N ], ylows = J(JyJ)~J, z€JNJ, ye JN'J;

(3) zm' = (Jz*J)™, z € M';

(4) cang=Jdend, cynrg=Jend;

(5) en'n' = cIT,l,eN"("'°N> = Jey'J;

(6) [(M,en): M]=[M : N].

Proof. Using J?2 = 1 and the uniqueness of fj;n s and a5 (1),(2) can be
easily varified. For each ¢ in L2(M), we get
(INTyns = J(JINT TN T = J(ele ) T
= JcN(ef}’g)hN’J = JcNJJ(JegNJJ)hN'J

= JCNJ(egNJ)hJN’J .

So that cyjnyy = JenJ and similarly we have cjnr g = JenrJ. Let € be the
separating cyclic vector for M in L?(M) then ego" =1and ey = eg. So
1= (eg’o')“N = cn(en)'™’'. Thus en'' = cy' and exlmen) = entonts =
J(JenJ) ' J= J(en) ™' J = Jey' J. Q.E.D.

DEFINITION (1) A faithful normal finite trace ¢ on M is a Markov trace
of modulus « for the pair N C M if it extends to a faithful normal finite
trace ¢ on (M, en) such that ¢(enz) = a~1¢(z) for each z in M.

(2) The inclusion N C M is connected if Z(M)N Z(N) = C.
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(3) If F is a bounded normal linear map from Z(M) to Z(N) define a
map F, from N, . to M, . by F.(¢) = ¢ o F ol for every ¢ in N, ., where
M, .= {¢ € M. | ¢(zy) = ¢(yz) for every z,y in M }.

REMARK Let N C M be a pair of finite o-finite von Neumann algebras
with finite index .

(1) If M is a II; factor then the canonical trace trys is the Markov trace for
N C M of modulus [M : N] and [M : N] = trpy(cen)-

(2) If N is a II; factor then ¢(z) = try(z'™), = € M, is the Markov trace
for N C M of modulus [M : N] and [M : N] = ¢cy.

(3) Let N C M C (M,en) be a basic construction. If ¢tr be a normalized
Markov trace for M C (M, en) of modulus [(M, en) : M] then the restriction
tr|M is a normalized Markov trace for N C M of modulus [M : N]

(4) If Z(M) or Z(N)is of finite dimensional then they are both finite dimen-
sional, ([Jol] Lemma 4.1).

(5) If M is a factor then there exists minimal central projections g1, ,¢n
in N such that N = Ny, @ --- @ Ny,, and by ([Jol],Example 2.7) [M : N] =

Z[qu : NgiJ-

t lLet N C M be a pair of finite o-finite von Neumann algebras of finite
index. If M and N have atomic centers then the sets Min(M) and Min(N) ,
sets of minimal central projections of M and N respectively , are countable
sets, and by([Jol], Lemma 4.1) Min(M) is a finite set if and only if Min(N)
is a finite set. Let Min(M)={ p; |¢ € I } and Min(N)={ ¢; |j € J }, then
Z(M) = { Tier Mipilsupier Il < 00}, Z(N) = {5 e Aigs | supses I\l <
oo } and Min({M,en)) = { ¢j | € J }, where ¢; = Jg;J.

Proposition 2. Let N C M be a pair of finite o-finite von Neumann alge-
bras of finite index. Suppose that there is a normalized Markov trace trps for
N C M of modulus [M : N), and let tr be the extension of trpy to (M, en),
then

(1) tra(z™) = try(z), = € M;
(2) trp(en) =[M : Nl =tr(en)7};
(3) tr(z) = [M : N]"ltr(cnJz*™1 J) z € (M, ep).
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If M and N have atomic centers then
(1) trm(z) = Liertri(zpi)trm(pi), 2 € M;
(2) tr(z) = [M : N]7' 30 strm(eng;)iri(zq;), = € (M,en).

where tr; and tr; are canonical traces on (M,en),; and My, respectively.

Proof. Let a = [M : N]. Since trp is the Markov trace for N C M of
modulus a , for each z in M

trp(z) = a1 Dy (try)(z) = o~ trp(D(z™)) = a~erp((cnatm v )ine),
so trys(cny) = a and try(zh™) = trM(:z:) By Lemma 1.3 the extension tr

(M eN)

of tra is given by a~15,(try), where S = S So that for each z in

= (M, en) we get

tr(w) =a”18,(try)(z) = @ ltm\,[((cl‘,pacl"“l)"M')
= a”Ytrau((Jepyz* ™ T)M)
= a Ytry((Jepgz*™1 J))

Suppose that M and N have atomic centers. Then for each p; in Min(M),
trar(pi)~tras is the canonical trace on My, so try(z) = ), trm(zpi) =
Y iertri(zpi)tra(pi), for each z in M. And for each z € M, we get ghM =
ZJEJE';(WE) So that

tr(z) = a";trM((JcM{x*hMl J)) = a'ltrM(cNJZ{;j(m*fj)fjJ)
jeJ

=a™! Z tru(eng;)tri(2d;)
jes
Q.ED.

LEMMA 3. ([Jol] Lemma 4.2) Let N C M be a pa.ir of finite o-finite
von Neumann algebras of finite index. Suppose that M and N have atomic
centers. Then

(1) Ifz € (M, en), there is a unique y € M for which ren = yen;

(2) (M,en) = MenM = { 2?___1 aienb; |[n>1a;,b; € M }.
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LEMMA 4. Let M be a finite o-finite von Neumann algebra.
(1) If p is a central projection in M then

(zp)"™» = (z%), for any z in M.
(2) K M has atomic center, then

™ = Ztr.-(a:p,-)p.- for any z in M,
i€l

where tr; is the canonical trace on Mp,.

Proof. Since p is a central projection in M , Z(M,) = Z(M)p. Then by the
uniqueness of the center valued trace (1) can be easily proved. Since p;’s
are minimal central projections in M, M,, = Mp; is a factor. And for each
z € M, (zp;)™ = z'p; So fjp is the normalized centervalued trace on
M,,;. Therefore ghM = S (zpi)™ = Y tri(zp;)p; for any z in M.  Q.E.D.

Definition Let N C M be a pair of finite o-finite von Neumann algebras
of finite index, and let [M : N] = [ + ¢ for some integer l and 0 < ¢ < 1.
Pimsner-Popa basis for N C M is a family {m;}:<j<i+1 of elements in M
satisfying the followings:

(1) En(mjmy) =0 if j #k;

(2) En(mim;)=1 ifj=1,---,1

(3) En(miy1*mi41) is a projection of trace e.

REMARK (a) If there is a Markov trace for N C M of modulus [M : N]
then any Pimsner-Popa basis {m;};<j<it1 for a pair N C M satisfies the
followings :

(1) m;en are partial isometries , 1 <i <14 1;
I+1

(2 Zm,-eNmf =1;
=1

41
(3) Y mimi =M : N];

i=1
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(4) Every element m € M has a unique decomposition ;
I+1
m=) my
i=1
where y; E N, 1<i <l yi4;1 € EN(mH.l my41)N.
(5) If {m!}i<i<it1 is another Pimsner-Popa basis for N C M then the
matrix (En(m}m}))i<i,j<i+1 is a unitary element in Ny such that
I+1
my = EijN(m}‘m;,)
=1
where a = [M : N] and we shall identify the elements in the amplifica-
tion N, of N with (I4+1) x (I4+1) matrices (a;;);,j such that the entries
a;j satisfy a;; € N, @141 € Np, ai41,; € pN, ajy1,141 € pNp.

(b) If N and M are II, factors M. Pimsner and S. Popa ([PP]) shows
that there exists a Pimsner-Popa basis for N C M. But in our case the
Pimsner-Popa basis does not exist in general. In next theorem we consider
the necessary and sufficient condition under which the Pimsner-Popa basis
exists. The theorem generalize the Pimsner and Popa’s result.

THEOREM 5. ([Boo] Theorem 2.1.) Let N C M be a pair of finite o-
finite von Neumann algebras with atomic centers, N being of finite index in
M. Suppose that there is a normalized Markov trace for N C M of modulus
[M : N). Then there is a Pimsner-Popa basis for the pair N C M if and onIy
if en(L3(M)) > 1.

EXAMPLE Let M be a II; factor and K be a subfactor of M such that
[M : K] = k +¢, where k is an integer and 0 < ¢ < 1 for some integer
n > 1. Choose projections p;,--- ,ps in K such that }_p; = 1,¢tr(py) = &
and tr(p;) = tr(p;) for each i,j = 2,--- ,n, where a = k+¢. Let N =
Ky, ®- - ® K,, and let cy(L?(M)) = Y A\;p;, then we have

Ai = ek, (piL*(M)) = tr(pi) " ex (L (M) = tr(pi) o
So by Proposition 1.7, [M : N] = na and nk = \; < Ay = --- = \,. Thus

there is a Pimsner-Popa basis for N C M but cy is not a constant and
An — A1 > ne.
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COROLLARY 6. The elements of (M,en) are of the form ) a;enb;, for
some finite sets {a;}, {b;} of elements in M.

Proof. For any z in (M, ey)

z = Za:m,-eNm‘,-' = E yienm}
for some y; in M. Q.E.D.

Let {m;} be the Pimsner-Popa basis for the pair N C M as given in
theorem 2.1 and let K = @!_, L*(N) @ pL?(N), where p = En(m41*miy41).
Then N, C B(K). Define for each (yi,;) € Na, #((yi,5)) = 22; ; miyi,jenm;*

COROLLARY 7. N, is spatially isomorphic with (M,ey) .

Proof. For ¢ € M with z = ) m;z;, the decomposition of z using the
Pimsner-Popa basis, define u(zéy) = (2160, ,Zn+1€0) € K. Then u is a
unitary operator from L?(M) onto K, since for z = Y m;z;, y= 3 my;,

< zbo,ybo > = trm(y*z) = traa(D_ yi*mi*mjz;)
0

=Y tru(En(y:*mimjz;)) = ) tra(y:* En(mi*m;)e;)
i, J

=Y tru(yiz:) = Y <zito,vibo > .

And for ¢ = & € L*(M), z =Y mz;, and (yi;) € Na,

w*(yi,5)u(€) = u*(yi,j) (210, -+ , Tnt160)

=u* () v1,i%il0, 5 Y Unt1,i%560) = D mi 3 w370
J J i J

= ngyi,jEN(mj*x)Eo = Zm.-y.',jezvmj'w{o

= Zmiyi,jeij*(C) = ¢((i,5))(€)
i

Thus ¢ = Ad(u) and the surjectivity is clear by Y m;eym;* =1. Q.E.D.
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REMARK (1) For each z € (M, en) the element (y; ;) of N, which corre-
sponds with z via ¢ is given by y; ; = aEnEpm(mi*zmjen).

(2) I g is a self-adjoint element of Z(N) then JgJ € (M, en) corresponds to
the diagonal matrix in N, with diagonal (g, - , ¢, Ppg). |

(3) Each element = of M corresponds to (Enx(m;*zm;)) and the projection
en corresponds to (En(m;*)En(m;)).

EXAMPLE Let p;,---,p, be projections in a II, factor M such that
Ypi=landlet N=M, &---®M,, C M. Thency =3 try(p;)~'pi and
[M : N] = n. So that there is a Pimsner-Popa basis for N C M if and only
if trp(pi) = L for all 5. In this case there are partial isometries Wi j,%,] =
1,--- ,n such that w; jwi; = é;rwi; and w;; = p; and the extension trm,
of try to My = (M, en) is given by tray,(z) = 1 Y tri(zp;) for each z in
M,, where p; = Jp;J and tr; is the canonical trace on (M,en)s. Now
(M,en)s5 = Mz; and (M, en) = @, Mj;. So En(z) = > pizp;, for each
zin M and EM(x)=;l; 3o, z; for each z in My, where z = ¥ z;p; with z; €
M and also ey = Y pipi. Let mg = 3| wpiyk—y),; for k =1,--- ,n where
1<[i+k—-1]<nwith[i+k—1]=i+k—1 (mod n), then {mr}1<i<n is a
Pimsner-Popa basis for N C M. In correspondence between (M, enx) and N,
en corresponds to the diagonal operator diag(1,0,---,0), p;,z =1,--- ,n,
corresponds to the diagonal operator diag(p;,pi—1,*** ,P1,Pn," "+ ,Pi+1) and
pi corresponds to diag(p;,- -+ ,p;)-
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