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Preface

From Dec. 16 — Dec. 18, 1996, THE 4TH KOREA-JAPAN PAR-
TIAL DIFFERENTIAL EQUATIONS CONFERENCE was held at KAIST
in Taejon, Republic of Korea. Many different topics, including fluid
mechanics, solid mechanics, semilinear equations, Schrodinger equa-
tions and etc., were discussed and presented. Most of the talks were
in the highest quality and the audience were very much involved in
the discussions. There have been good communications among all the
participants. We would like to express good gratitude for the help of
CAM at KAIST and GARC at SNU.

Dec. 1, 1997

Hi Jun Choe and Hyeong—Ohk Bae,
KAIST, Taejon, Korea
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L*-BOUND OF WEAK SOLUTIONS TO
NAVIER-STOKES EQUATIONS

HYEONG-OHK BAE AND HI JUN CHOE

ABSTRACT. We prove that a solution u = (u1,u2,u3) to Navier-Stokes
equations is locally bounded, therefore, u is locally smooth if any two
components of u are locally bounded.

1. INTRODUCTION AND STATEMENT OF THE RESULT.

In this paper we study the regularity of the weak solutions of the incom-

pressible Navier-Stokes equations with viscosity v

du;
(L1) S~ vAui+ (u V)ui + Vip = fi,
Veu=0

in @ = R3 x (0,00). We assume that any weak solution
u € L*(0,00; HY(R?)) N L*®(0, 00; L*(R?))
satisfies
/u-¢t—vVu-V¢—(u-V)u~¢>+pV-¢+f-¢d:cdt=O

for all ¢ € C5°(Q). The existence of weak solutions was proved by {Leray,
[5]} and {Hopf, [4]}. Since the viscosity can be treated by scaling, we simply
assume that » = 1. Also for the simplicity we assume that f is a smooth
function in Q.

It is well known that if the viscosity is large, or initial data are small,
then the solution lies in L*(0, 0o; H(R?)) N L2(0, 00; H2(R3)). We know
that boundedness of v implies higher regularity of u in the interior and
hence we can bound various higher norms in terms of L*-norm of u. From
Sobolev’s embedding theorem we know that the solution space of weak so-
lutions L2(0, o0; H!(R?)) N L*(0, oo; L?(R3)) is continuously embedded in
LE_OC(Q)‘ But we do not know yet how to bound L®-norm of u in terms
of L% -norm of u. On the other hand as far as interior is concerned, it

was proved by {Serrin, [6]} that any weak solution u of (1) on a cylinder

The first author was supported in part by KOSEF, and the second author in part by
RIM-GARC,KOSEF and BSRI Program.
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B x (a,b) satisfying

b o
/(/[ul'dx)Tdt<0Q, with §+—?7<1, r>3
A ror |
is necessarily L™ function on any compact subsets of the cylinder. Observe
that when r = ' = 5, u is in L% and 5 is the critical number for the
homogeneous Lebesgue space. The limiting case 3/r +2/r' = 1,7 > 3 for
the initial value problem was considered by {Fabes, Jones & Riviere, [2]}
and their method seems not applicable to local problems. See also {Giga,
3]} and {Sohr, von Wahl, [7]}. Also {Struwe, [8]} improved Serrin’s method
and proved the boundedness of weak solutions in the interior for the critical
cases, that is, %4— ;27 = 1,7 > 3. Since all the above results usés the vorticity
equations, they are not applicable to boundary L™ estimate. {Takahashi,
[9]} found some criterion for L*° regularity near boundary for the weak
solution satisfying u € L”',% + -rg,— < 1. He imposed some integrability
conditions on the velocity gradient and pressure in domain Q, that is,

! . 2
Vu,p € L™"0(Q) forall 1<r,ry<oo with 'rz + 7= 3.
0 0

{Choe, [1]} showed the L regularity of u up to boundary for the limiting
case that u € L™ (Q), 3+2<1withr>3oruc L3 :"with lull 3. < €0
for some small £ > 0 under the assumption that the boundary data of the
pressure is bounded. He also showed that the weak soluﬂ:ion is as regular as
the boundary data of the pressure. '

We show that if any two components, for example u;, u of a weak solution
w = (u1,uz, u3) lie in L%(Q), then u is in L{2,(0, oo; HL (R3)) N L2,(0,00°:
H? _(R3)). To show this, we use the result of {Struwe, [8]} that if u lies in

L5(Q) then u is locally bounded and hence regular in Q. Here L™(Q) is
the set of u that :

/(/‘m'dz)'"dtmo with 2+ 2 <1,
N T r

The Sobolev space W*™(Q) is the space of fuhctions in L™(Q) with
derivatives of order less than or equal to k in L™(Q) (k an integer). This is
, _ s
a Banach space with the norm ||f||yxm(g) = (Zl]’lsk ”V]f”anm(Q)) ™. In
particular when m = 2, W*2(Q) = H*(Q) is Hilbert space. We denote C a
constant.

Now we state our main result.
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Theorem. Suppose that (u,p) is a weak solution. Let f is locally smooth,
that is, f € L*(0, T; W,t’clz/ R3)NLE (Q), where w12/ (R3) is a Sobolev

loc loc
space. Let u def (uy,u9,u3) and Q df B3 « (0,00). If any two of the three

components u1,usz,u3 of u belong to L§.(Q), for ezample u1,us € Lig,(Q),
then

u € Li5(Q)-

Therefore, u is locally smooth.

2. PROOF OF MAIN THEOREM

We let u def (u1,u2,u3) be a weak solution to Navier-Stokes equations -

(2.1) dt

d—u‘—Au+u-Vu+Vp=f,
I1V-u=0

in Q = R3 x (0, 00) and the initial condition u(z,0) = ug for z € R3.
To estimate that J|juz|l < C, we use the the result of {Struwe, [8]}:

Suppose that u € L#®(Q x (0,T); R?) with |Vu| € L?(Q x
(0,T)) is a weak solution to the Navier-Stokes equations for
an open domain © C R3, and that v € L™ (Q x (0,T)),
where 1 < r,r' < o0, 3/r +2/r' < 1. Then u is locally
bounded in © x (0, c0).

We use the above theorem for r = v/ = 5. In other words, we want to
show that uz € L>(Q). We notice that, for a solution v of Navier-Stokes

loc

equations,
// [v|*7® dzdt = / [v|3n3|v|®n? dx dt
| <c / ( / jon|? dz)ll 3( / jon|® da;)zl ® it
<c / ( / IVlon21? de) ( / jon|® dx)zl it

< Csup [lonlZs // Vo2 dz dt,
t

where 7 is a smooth cut-off function. Thus, if

(2.2) : sup/ log|3dz < C
t

and

(23) // Vo2 dzdt < C,
Q
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then we have v € L} (Q). From now on, we show that for 7 > 0 and for a
smooth cut-off function 7, (2.2) and (2.3) hold.
To get our result, we consider the third component us. Let w def ug for
short.
dw

(2.4) — —Aw+u-Vw+ — Op = f3, in R? x (0,00),
dt Oz3

where f3 is the third component of f. Denote D; def ‘9 , V= def (D1, D2, D3)

and Dy & EZ for short. Let 0 < p < § be real numbers and 7 def n(z,t) a

standard cut-off function such that 7 =1 in a cylinder @, and 7 = 0 on the

parabolic boundary of Qs, where Q, = B,(z¢) X (to — p?, to) for some generic

point (zo,%). Let £ > 0 be an integer which will be determined later.
Before going further, note that for any T' with 0 < T < oo,

/ / luf dodt = / / (32 w2 de dt
R3
1/4 3/4
< 6 2
_/0 (/Ra]u| dx) (/Ra|u| dx) dt
3/4
<sup||u||L2 / / Va2 d:c) dt
3
3/4
<o / / qu|2d:cdt)/ <c
0 R3

We consider the inner product of (2.4) with |w|wn®*. Notice that

(2.5)

1

(2.6)  (Dyw, |w|wn*) = —~Dt/ |w|n* d — —IE/ |w)3n* =Dy de,
3 R3 3 Jgrs3

(2.7)  (—Aw, |wjwy*) = 2/|w[ [Vw|?*n* dz + k/w|w’D,~w "D dz,

(2.8) (u- Vw, |w|wn®) = wlw*n* 1 Din dz,

3
(29)  (Dap,wlolnt) = —2 / plwlDywnf — k / puwlwln*~1Dyn da.

By inner product of (2.4) with |w|wn* and integrating with respect to time
variable over (0,T), we have from (2.6) — (2.9), and (2.5) that

1
gsup/|w|3n’c d:L'+2/ lw| |Vw|*nt dz dt
t
<c // lwl?| Dyl | Din] dedt + C // ol Dsn] do dt
e // Ip| [w] | Dswln® de dt + C // 1p| [wfr*~"| Dsn] de dt

+/ |f3] lwf*n* dz dt + C.

(2.10)
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We now estimate the right terms. By Holder’s, Young’s and Sobolev’s in-
equalities, we have

/ lw|n* 1| Dyn| da dt

< 11¥7lloo // = o7 w1977 i i

2/7 5/7
7(k—1)/2|,, |9 2
gc/(/n jwl? dz) (/|w| ax)”" at
6/7
< ngp“w”g;ﬁ / ( / [V (jwf /260022 )" gy

< e [[ |9l ) aa

< g+eC// (o] [Vl D76 4 juBn(5=19/6|7n(2) drdt

< -f—+ec//nk|u}[ |Vwl|? de dt
for k > 7, because of (2.5). Thus,

(2.11) // lw|*n*~1| Dyn| dz dt < g +eC // nFlw| [Vool? dzdt.
Notice that

//|f3||w|277k dzdt < //|f3|2n’c da:dt+// lw|*n¥ dz dt
(2.12)
< C+/ lw|*n* de dt
if f € L2 (Q). Look at the first term of (2.10);

loc

J[ Dl Din) s
(2.13) <eC / / n?*=2|y| |Diw|? dz dt + g / / lw|®n? dz dt

<eC // n*lw| |D;w|? dzdt + C

for 4 < k. Notice that, by Young’s inequality,

c
// I ] [Dawl* dodt < = // Ip[? wln* dz dt

(2.14)
+eC// lw| | Vw|?n* dz dt.

From (2.11) - (2.14), we have
sup/|w|3n'c dz+6/ lw| |Vw|*n* dz dt
t
<C+ eC// |w| |Vw|?*n* dz dt

+C // I wln® dedt +C // ip| [Pt da dt.
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Take € > 0 such that eC < 1. Then, for k > 7,
sup/|w|3nk dz +5/ |w| |Vw|*n* dz dt
t

(2.15)
<C+ C’// p|?|w|n® dz dt + C// p| |w|?n* 1 dz dt.

We now estimate [[ |p|? |w|n* dz dt. To do this, we need to represent p
locally. We observe that

Ap = —DiDj (uin) +V-f
in R® x (0,00). That is, p can be represented as Newtonian potential

p(z,t) = lim G(z-y)Ayp dy
€0 JR3\B, (z)

\ |
=~ 1) = [ DD, Gla-yui; dy+ [ Gla—y)V-say

where G(z) = —3/(4r|z|) is the fundamental solution of Laplace equation,
Dy = £, and Dy, = 2-. Let £> 0 be an integer with £ < k. Since

Anf = £(¢ — 1) ?|Vn* + 0" A,
one has
Alpn’) = n"Ap + 200"~ Vp - Vi + £ — 1)pn*~*|V|* + epn’ " An.
Thus, by Newtonian potential, we have

(2.16) pr* = lim G(z—y)Ay(pn) dy.
€0 JR3\ B, (z) ‘

Integrating by parts, we have
[ Gle=vitap dy= gl (w,0) - [ G-y DD (uins) dy
+ / G(z—y)n'V-f dy
= / (D;D;G(z—y)n* + 2¢D;G(z—y)n* 1 Djn

+£(¢-1)G(z—y)n" "> DinDjn
+ ZG(m—y)nl—leDm)uiuj dy

+ / G(z—y)n'V-f dy,
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and
¢ / G(z—y)n"~'Vp- Vn dy = / G(z—y)Vp- V(n*) dy
=- / D;G(z—y)Dipn* dy — / G(z—y)n*Ap dy
= / AG(z—y)pn' dy + / DiG(z—y)D;s(n*) p dy — / G(z—y)n*Ap dy

= p(z)n’(z,t) + / D;G(z—y)D;(n*)p dy — / G(z—y)n‘Ap dy.

Thus, from (2.16), we have
pn'(z,t) = —-:lg&juiujnu - /D,-D]-G(x—y)neuiuj dy
- ZE/DiG(z—y)nl*len uzu; dy
—t(e-1) [ Glo—y)n' 2 DinDymuiny dy
- E/G(w-—y)nl_lDiDjn uu; dy — 2/D,~G(w—y)pDi('r)l) dy
—tie=1) [ Ga—pr2(9ni dy ¢ [ Glo-y)pn'~an dy

+ / G(z—y)V-fn* dy

3
def 1o 5
= D (= 305w + Pugj + Pagj + Py + Pagi)
ij=1

3
+ZP5;1'+P6+P7+P8-

i=1

We now return to estimate [[ |p|?|w|n¥dz dt. Using Sobolev’s inequality -
for b= 3a/(3 — 2a), where a = 12/11 and b = 4, we have

1/2 1/2
// \Psf2 w2 dzdt < C / ( / (P dz) / ( / o420 dz) " 4
22/12
50/(/|V2P8|12/11 da:) "2

22/12
SC/(/IV'flm/unm/u dac) / dt <

Thus, we have
J[ o doas
1 -
<Cy, // (I- 3 it 1% + P |* + | Poij | + | Paijl? + | Pgi) ) fw| n* =2 de dt

+CY // |Ps.i |2 w|n*~2% dz dt + C // (I1Ps]? + | P7)?) Jw|n*=2% dz dt + C.
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First we consider —% ijuiujn” + Py;;. Fori=1,2and j =1,2,3, we

obtain, by Young’s and Calderon-Zygmund type inequalities,
1
//l - gaijuiuj"?% + Pyij[*|win*~2 dx dt
1
< C//’ - g(sij’uz‘u]"llze + Pl;ijIB dz dt + C// |w|3n3(k"2l) dr dt

< c// lu;|® dzdt +C < C.
Notice that

1 _
—§(u3(m, t))? + Praz = Z/DWG(x—y)nlugDysu;; dy + Z/DysG(z—y)ugnl 1Dysn dy

def
= Py.33 + Pip;33.

By the divergence free condition of (2.1), we have

Py 33 = —2/Dy3G($—y)U3(Dy1U1 + Dy,u2)n® dy

def
= Pi1;33 + Pio;33.

Clearly, Pi2;33 can be treated similarly to Pj1.33. Integrating by parts, we

have

Prigs =2 / Dy, Dy, G(z—y)usuin’ dy + 2 / Dy, G (z~y) Dy us war’ dy

+ 2/ / DysG(x—y)uwme*lDym dy.

The first term of Pj;;33 can be treated as done for P;;3, and the last term
can be treated as for Py;;, which will be done later. Let

def
= /DysG(z_y)Dyluﬁulne dy

Pi333 =

Then, for i # 3
DiP13;33 = /DztiG(x—y)Dylu:_g ulnl dy
= _/DyiDy3G(‘T_y)Dylu3 um" dy,
and for: =3

1
D;Py333 = —§D$IU3(cc, t)ul(x,t)nz(x) + /DIiDyzG(x—y)Dylug ume dy

1
= “'3"Dm'u'3(z7t)ul (:Ba t)ﬂt(m) - /DyiDyzG(x_y)Dm“B "1177Z dy-

Therefore, by Calderon-Zygmund type inequality,

/ / |VPi333)% dzdt < C / / [Vus|? |ui|*n? dz dt

< C// |Vus|*n* dzdt < C.
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Thus,

// |P13;33|2|w]nk_2£ dz dt
1/3 2/3
< C/(/Ipm;gglﬁdw) / (/Iw|3/2n3(k_2l)/2 d:l?) / dt
1/2
SC/(/|VP13;33I2da:)(/|w|2172(k_2e) dx) / dt

< Csup||ul|p2(rs) // |V Pi3;33/? dzdt < C.
t

Now return to Pjg;33. By Sobolev’s and Calderon-Zygmund type inequal-
ities, we have

//|P10;33|2Iw|nk“2‘ dz dt

<C / ( / |VP10;33]2dx)( / |w|3/ 2 (k=20/2 dx)2/3 it
: C/(/|VP10;33I2d:v)(/|w|2n2(k—2e) d:z:)l/2 i
s¢C / / |w|*n*¢=Y) dg dt

< g+eC// |w| |Dsw|?*n* dz dt,

for k > £ > 3k/7+1. Thus we have finished estimating the terms containing
Py;;

(2.17) Z// |Prij 2 |lw|n®~2¢ dedt < C + C // |w| |Vw|?n* dz dt.

We now estimate Py;;;. For 4,5 = 1,2 and for i = 1,2, j = 3, P,;; can be
treated as done for Pi3.33. For P33, consider

//IPz;sslzlwlnk‘% dz dt
2/3
(2.18) < C/(/IVP2;33|2d.’L')(/|U)|3/2'f]3(k_2l)/2 dz) / dt

< C//|VP2;33|2 dzdt < 0/,,2(!—1) wt dodt,

which can be estimated in the same way to (2.11).
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We now estimate Pj;;;. We use Sobolev’s inequality for b = 3a/(3 — 2a),
where a = 5/4 and b = 15/2. By Sobolev’s and Holder’s and Calderon-
Zygmund type inequalities,

//|P3;ij|2|w|77k_2l dz dt
4/15 B 11/15
SC/(/IPs;ijlls/zdfv) (/|w|15/u’715(k 20)/11 da:) dt
8/5 1/2
<0 [ ([ Iv2puspan)™ ([ 20 ao) " a
8/5
< C’/ (/n5(5_2)/4|uiu7~|5/4dx) / dt.
Fori=1,2and j = 1,2,3,
8/5
[ [Pttt dvae <. [ ([ 8 sa0) "
gc//ﬁWﬁMPﬁga
For ¢,5 =3,
2 1 k—2¢ 5(6-2)/4), 15/2.0..\*/°
|P3;33|%|w|n”™ " dzdt < C ( n |w]| dx) dt
< C//n2(£_2)|w|4 dz dt,

which can be treated similarly to (2.11) for £ > £ > 3k/7+2. Thus, we have

(2.19) Z//|P3;ijIzlwlnk“z‘lf dzdt < C+eC// [w| |Vw|*n* dz dt.

We can treat with Py;; in the way that we done for Ps;;.
To estimate Ps;, we use Sobolev’s inequality for b = 3a/(3 — a), where
a=12/7,b=4;

/ | Ps,il*|wln* =% dz dt
< C/(/|P5;i|4d.'1:)1/2(/w2n2(k_2e) dx)1/2 W
<Cswlulze [ ([ 1P )"
<C / ( / |P|12/7n12“'1)/7 dx)mdt,
Here, notice that

1
p= géijuin — /DiDjG(JE"‘y)Uin dy+/G(x—y)V-fdy def Epij +V-f,
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which V-f term is bounded as we mentioned before. For 4,5 = 1,2 it has
no problem. For ¢ =1,2 and j = 3,

7/6
/(/|Pi3|12/77712(e_1)/7 dx) Pat< C// pis>n* Y dz dt

SC//|w|2 dedt +C < C.

For 4, j = 3, using the divergence free condition of (2.1), we have
P33 = —2 / D3G(z—y)wDsus dy
= 2/D3G(x—y)w(D1u1 + Dausg) dy
= —2/D1D3G(x—y)wu1 dy — 2/D3G(:z:—y)u1D1'w dy
- 2/D2D3G(x'—y)wuz dy — 2/D30(z—y)u2D2w dy

© P+ Pi5 + Pig + Pr7.
For P14 and P167

7/6
/(/|P14|12/7n12(€—1)/7 d([,') / dt < C// le? dzdt < C.

For P15 and P17,

/(/'P15§12/77712(k—£)/7 dac)-{/6 dt
1/3
SC/(/|P15|6 dx) / dtgc//|VP1512 dz dt

< C// lurDyw|? dz dt < C//|171w|2 dzdt < C.

Thus, we have
(2.20) / | Ps.i|?|w|n*~2¢ dz dt < C.

Terms Ps and P; can be treated in the same way. To estimate Ps, use

Sobolev’s inequality for a = 11, b = 33,

[ [Pl s

< C'/ (/|P6|33/8d:1:)16/33(/w33/177733(k_2£)/17 dx>17/33 it
< C'/ /lePGIH/lOdl_)ZO/ll(/w33/17n33(k—2£)/17 dm)17/33 it

(
SC/ (/|Pl“/1°n”(£"2)/mdx)20/11(/w2nz(k—2l) dz)1/2 i
( .

20/11
< C/ /lplu/mnn(l_m/w dz) dt.



12 BAE, HYEONG-OHK AND CHOE, HI JUN

Fori=1,2and j =1,2,3,

20/11
[ ([waprrogneao a)® g < ¢ [ o> doat

< C’//Iujl2 dzdt < C.

For P14 and P16 of P33,

/(/Ipmlu/wnu(z—z)/w dz)%/u dt <

For Pi5 and Pi7 of pss,

/(/|P15|11/10n11(k—2z)/10 d$)20/11 dt
1/3
<C / ( / | Py5|0nS(k—20) dz) "t <C // |VPs|? dz dt

< C// |uy Dyw|? dzdt < c// |Dyw|? dzdt < C.

Thus, we khave

(2.21) / \Ps P wln* 2 dz dt < C.

From (2.17), (2.18), (2.19), (2.20) and (2.21), we have

(2.22) // pRlwlr* dzdt < C + €C / / (| [Vl dz dt.

We finally consider [[ |p||w|?>n*~! dzdt. Notice that, for i = 1,2, j =
1’2’ 37

1/3 2/3
// pij| lw|*n*~! dz dt < C/(/|pij|3 dx) / (/|w|3nk'1 dx) / dt
< C’//|w|3 dzdt <C.
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In fact P4 and Pjg has no problem. For Pj5 and P,7, use Sobolev’s and
Calderon-Zygmund inequalities,

// |Pis| fwf*n" " da dt
< C/ (/‘P15|2172 d:z;)l/2 (/lw“lnz(k_z) dx)1/2 i
< C/ (/|P15|6n6 dz) 1/6 (/lw|4712(k—2) dx) 1/2 i
< C’/ (/WP15|2 dx) 1/2 (/]w'4n2(k-—2) da:) 1/2 i
<c / ( / vl dr) " ( /|w|4n2(k_2) )"
SC// |Vw|? dzdt+0//|w!4n2(k_2) do dt

< % +eC’// |w] |Vw|*n* de dt.

Thus, we have

(2.23) // o] |w|?*n* ! dz dt < C + eC // lw| |Vw|*n* d dt.

By taking € > 0 such that eC <1 and k > 7, we have from (2.15), (2.22)
and (2.23) that

sup/]wlg’nk dx+/ lw| |Vw|?n* dzdt < C.
t

This completes the proof.
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ABSTRACT. We prove the uniqueness of the very singular solution for an equation of the
form

(1) ut = Apu— |ul?lu in Q=RN x(0,00),

where Apu = div(|Vu|P~2Vu), with 2N/(N+1) <p<2, N > 2,and 1 < ¢ < p—1+p/N.
The solution we find is of the form

—g—ptl
u(z,t) = ¢V (), 0= jalt”PED,
where f is the unique solution of an ordinary differential equation

g—p+1 1

p—2 / p—-2/ _ g-1lp _
@) APy + S+ SRS g -1 =0, >0

with conditions:
f>00n [0,00), /(0) = 0 and limy_c0 77/(4=P+1) f(n) = 0.

1. INTRODUCTION

In this paper we consider a quasilinear degenerate diffusion equation - involving the
p-Laplacian - with absorption

(1.1) up = Apu—|ulf 'y in Q=R x (0,00)
1991 Mathematics Subject Classification. 35B30, 35B40, 35K65.
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mum principle.
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where Apu = div(|Vu[P~2Vu), with p > 2N/(N + 1), N > 1, and max{l,p— 1} < ¢ <
p—1+p/N. A very singular solution W of (1.1) is a nonnegative continuous function
in @ — {(0,0)} such that

(i) W(z,0) =0 for = # 0;

(ii) Vw € L} (0,00 : WEP"H(RN)) and (1.1) is satisfied in the sense of distribution
in Q;

(iil) [gv W(z,t)dz — 00 as t — 0.

Such a solution arises natually when we study the long time behaviour of solutions
of (1.1) with an initial data u(z,0) = uo(z) satisfying

(1.2) lim |z|P/@ Py, (z)de = 0,

|z|—o00

see [4], [5], and [8]. Brezis, Peletier and Terman ([1]) found in 1986 that the heat
equation with absorption admits a unique very singular solution for the range corre-
sponding to p = 2. For p > 2, Peletier and Wang ([6]) have proved an existence of a
very singular solution of (1.1) and Kamin and Vazquez ([3]) has proved its uniqueness
for more general absorptive terms. Later the existence proof was extended for the case
2N/(N +1) < p < 2 in [8]. The main purpose of this paper is to show its uniqueness.

Theorem A. Let 2N/(N+1)<p<2, N>2and1 < qg<p—1+p/N, then there
exists a unique very singular solution Wy(x,t) for (1.1).

For the proof, we borrow some ideas from [3] and construct a minimal and a maximal
very singular solution. These solutions are invariant under a scaling transformation and
become self-similar solutions. Hence these solutions will be of the form

W(iL‘, t) — t_l/(q_l)f(ﬂ), n= |xlt"pt_q-1lj ,
where f is the unique solution of an ordinary differential equation

g—p+1
p(g—1)

(13) (FPFY + 2P fo 2l =l =0, >0

with conditions:

(1.4) f>0 on [0,00),f(0)=0 and T’li)nolo n?/(@=P+D) f(n) = 0.

The uniqueness proof is then reduced to showing that the above O.D.E problem has a
unique solution. When p > 2, f has a compact support and the support of the scaled
function fy(n) = Af(A~%n), 6 = (p — 2)/p, covers the support of f for A > 1. These
facts were essential in the proof of the uniqueness, see [3] for details. On the other hand
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when 2N/(N + 1) < p < 2, the support of f becomes the whole RY and the argument
for the case p > 2 can not be applied directly. The case p = 2 has been treated in a
different way in [1] (see [1], p. 206) and the proof can not be applied to the case p<2,
either. We here investigate the exact asymptotic decay rate of solutions of (1.4) and
prove Theorem A in a rather simple way by adapting ideas from [3].

Concerning the asymptotic behaviour of solutions, we in particular prove the follow-
ing.
Theorem B. Let u(z,t) be a solution of (1.1) with a nonnegative initial data u(z, 0)=
uo(z) satisfying (1.2), then '

Lm |z 7 u(zs,t) = K55
|z|—o00

B Byt =
K. = (1 By Y —N))

2. A PRIORI ESTIMATES

for every t > 0, where

and p. =p/(2 —p).

Thoughout this paper we assume

2 p
1 - 14 =
N+1<p<2’ and <g<p -I-N

and we denote for notational simplicity

(2.1) N>2,

-1
a=—P _ 5_ ple-1)
g—p+1 g—p+1
Then the assumption implies that

N<a<—13—

2—-p
We now consider an ordinary differential equation

y.x—_llullp_zul + Eu’ +

(22) (WY + S S

u—|u?lu=0, z>0

with conditions:
! — . o .
(2.3) o >0 on [0,00), %(0)=0 and wll)l{.lox u(z) = 0.

Let u be a nontrivial solution of (2.2), (2.3). Then the main purpose of this section
is to derive the exact decay rate of solution u(z). We first have a lower bound.
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Lemma 2.1.

(2.4) lim infa:z/(z_”)lu’| > AL/ (P=2),
T—00
(2.5) liwrgg}fxpf(z“l’)u(x) > z;p71/(p—2)’
p

where 7y s a constant given in (2.8).

Proof. We see from Lemma 1, (6] that u(z) < c* . = (g — 1)@= for all z > 0 and
u(z) is nonincreasing on [0, oo) Thus 1/(¢ — 1)u —u? > 0 and ¥’ < 0. The equation
(2.2) is rewritten as

1 1
N-1y, np—2,/\/ 4 ~ N,/ N-1, _ .N-1,q __
(2.6) (™ MU P 3 = & u—g 0.
Let w = 2V~ 1|u/|P~2¢/, then v’ = —(Iw]/x”'l\)l/(f’fl) and we have from (2.6) that
(2.7) w' - %xN_N T lw|"/®-Y <0, x>0,
or

|~/ @Dy < %Q;N—%,

An integration of this inequality over (€, z), € > 0, yields

w(z)] > [Jw(e)|P=2/P=D 4y (zN 1755 — N5~ D/ 5 5 ¢,
where

> 0.

2—-p 1 1 1 2—p
2.8 = L S —
(2:8) TTp—1' B N+1-XZLI NB p-2+2

In a limit, one gets (2.4).
Moreover, given any € > 0, there exists R > 0 such that

(2.9) W (z) < —(1+ )y P P2 forall z > R.

If we integrate over (z,00), x > R, we obtain -

u(z) > (1+ 6)71/(”‘2)2 —Pyp/0-2) 1> R

p

Since € is arbitarily chosen, we have (2.5).

Lemma 2.1 and Lemma 1, [6] imply that u(z) > 0 and v/(z) < 0 for all z > 0.
Moreover Lemma, 2.1 suggests that limg_, zP/ (2“”)u(:c) might exist and nontrivial. In
fact, this turns out to be true as we will see below.
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Lemma 2.2.

lim zV = /[P~ 20 = 0.
T—r00

Proof. An itegration of (2.6) over (0, z) yields

(2.10) N1/ [P=2u/ () + %u(m) -2 ;N /0 © N1y (s)ds + /O © V=148 (s)ds

The assumption (2.1) implies @ > N and the decay condition in (2.3) implies that
integrals on the rlght side of (2.10) has a limit as taking z — oco. Hence a limit

limg o0 ¥~ 1|u’ |P=24' = —I, 1 > 0, exists. Suppose [ > 0. There exists Ry > 0 such
that

l
N7 P72 (z) < ~3 for z > Ry,

or
(2.11) u'(z) < —(1/2)Y/ P~ Vg=(N=1)/(e=1)  for g > R,,.

Choose R > = > Ry, and integrate (2.11) over (z, R) to obtain
u(B) — u(@) < ~(/2)Ve 2- Do (R o),

Since p < 2 < N, one has (by taking a limit as R — 00)

u(z) > (1/2)1/@-1)]’z,‘_;x@*NV(P—U for <> Ro.

This is incompatible with the decay condition lim,_,. z%u(z) = 0 since o > N and
N > (N —p)/(p—1). This completes the proof.

We now integrate (2.6) over (z,00) to obtain

_ oo oo
(2.12) N P 4 %/ sNlu(s)ds = x—ﬁ—u +/ sV 1ud(s)ds.

Dividing by z™Vu, we have

!PTt Lo N [ sN1u(s)ds _ 1 N [2° sN=1yd(s)ds

x

(2.13) TU Ié; Ny B Ny

Then we prove



Proposition 2.3.

.zl
@ J, = =P
. JuPTt 1 a—N
2 = _(1-
(2) J = =50 o)
(3) xlggo 2P/ (2=Ply(z) = K,
Here )
* 1-— a=-N_ ) * 2 — p
px—N

Proof. Assume that lim;_, . % = | < oo exists. By ’'Hopital’s rule,

. [ sV u(s) ) —zN—1y(x) ) 1 1
(2.14) zll}ngo zNuy - mlggo ZNu + NzN-1y 2500 zlu'|/u— N [-N
and
L sV Thui(s) L wiT ()
(2.15) A Ny T AR wu-nN

Using these in (2.13) we obtain

Thus [ > a.
Since we assume that lim;_,, z%u = 0, we have

(2.16) lim z°u/| =0

T—>00

and thus I > a. In fact if we define ¢(z) = [° sV~ 1u(s)ds, then (2.12) is rewritten as

T

a—N
T

(2.17) ¢ (z) + d(z) = =Bz 2/ P + g/oo sV 1ud(s)ds.
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Mutiplying (2.17) by an integrating factor 2>~V we get

(2.18) (>N p(2)) = —Bo*2|u/|P~1 + Bz~ N-1 /oo sN=1ud(s)ds.

x

Now, " N¢(z) = 22N g(z) /z*(1=9 and by 'Hépital’s rule,

Jm =00 = Jim, a((fa_l)vfﬁl)q'-l

B 1 1 N [ N-
— — 1 ag— p— 1 *q- 1,49
ol —q)( Jim z lu' [P~ + lim z /m s T ul(s)ds),

which becomes 0 from (2.16) and another application of I’Hépital’s rule. Note that
ag—1= (a+1)(p—1). This and (2.14) imply that lim,_, o 2*%u(z) = 0, which in turn

implies { > a.
|ullp—l B x'u,l p—1 1
zu  \ wu xPu2-p’

Writing
we have limg_, o 2Pu®"P = BIP~1 /(1 — 9= and lim,—, o0 z?/@~P)u(z) # 0. Hence one
must have | = p/(2 — p) and it suﬂices to prove that lim,_,. z|u'|/u exists for the
completion of proof. This is done in the next lemma.

lemma 2.4. lim,_, ., %"'l exists and is finite.

Proof. We first observe that for every R > 0 there exists z > R such that z|u'|/u > o.
Otherwise, there exists R > 0 such that z|u'|/u < « for all z > R. Upon integrating
one sees that z%u(z) > R*u(R), x > R, which contradicts to the assumption (2.3).
A differentiation gives
" 2

(2.19) (mlull)' _ [  zu N x|u2’| '
u u u u

We multiply (2.19) by (p — 1)|u/|P~2/z and use (2 2) and the fact that (Ju/|P~2u/) =
(p — 1)|u'|P~2u" to obtain

(P" 1)|u’|” 2 $|U"| ' |U’|p v x[u’| v 1 xlu | o -1
.20 = -N=""""4+9p9p-N + = —q? 1
(2 2 ) x Uu TU ((p ) u P ) ,3 U Jo]

At each point = where m'“ | = p —=F, the right side of (2.20) becomes 1/8(a— (N —p)/(p—
1)) — w91, which is p081t1ve for large z and :t:lu' |/u increases. Hence lim inf, o, z|u'|/u

is not less than (N — p)/(p — 1). When 22! = o

= (Y (- =)

z u zTu |u/|p—1




and z|u'|/u also increases for large z since

p—1
zu? - U (xau)q—p+1,
lu|P=t \zlu|

which tends to 0 as z — oo. This reveals that liminf,_, . z|u'|/u > a.

If limsup,_, ., z|u'|/u = @, then lim;_,o z|t/|/u = «. Hence we may assume that
lim sup,_, ., z|t'|/u > . By the above reasoning, z|u'|/u > o for large .

(2.20) is rewritten as

(2.21)
oo (1) = -2y
4/ (_%w" £S5 ).

|w'[p=1/ (:c'u,) u

Let us assume that (z|u'|/u)’ = 0 for some z = zo > 0. leferentlatlng (2.21), w
obtain, at x = xg,

(2.22) | |
-2 (1) = (- R
ey () ()

With the use of (2.6)7, one has

|x/|p—1 / ZEN_llullp_l !
2. —_ = —_— )
(2.23) x ( TU ‘a: Ny

'(xN—1|u/|p-1)/

1zNu + Nz -1y

"N 1p—
=T N1, ® [P 22N 2
1 z|u| -1, WP [zl
L8 iy (2 iy FA
ﬁ U + I} - , + TU U
When (z|u'|/u)’ = 0, one has by (2.20)
lu/|P~1 Lzl 1zl| « 1
8 P el S QR . S G
o (i(p ‘) — +p )» 5% gt

Using this in (2.23), one gets

(EP) < 2 -ty

ru Iru




at x = zg. Now equation (2.22) is rewritten as

(2.24)
p—1)a" (wlg l) = - 1)uq_l#

1 /()

+(%xf/|—%+u“> ((2 p Al p>}
ST G CRRE SR

3 (51-0) -3

ol /u (wlu’l _a> (g p s Dur-

T WP (zu) \u

+% ((2—17)#—1))}-

Suppose that lim;_,o z|u'|/u does not exist. At the critical point = = z, if z|u'|/u >
p/(2 — p), then z|u'|/u is convex and thus z|u'|/u does not have any local maximum
larger than p/(2 — p). Hence limsup,_,. z|u'|/u < p/(2 — p). On the other hand
if o < zlu'|/u < (p—B(g—p+ 1)ui™1)/(2 — p), then z|u|/u is concave. Since
limg 0o w9~ = 0, for large = z|u’|/u does not have any local minimum smaller than
1/2(limsup,_, ., z|v'|/u + liminfy_, z|u'|/u), which is strictly less than p/(2 — p).
Therefore we may conclude that lim,_, z|u'|/u exists.

Moreover limg_,o z|t'|/u < p/(2 — p). Otherwise, there exist ¢ > 0 and R > 0 such
that

/
:c|u| > L—i—e for all z > R.
U 2 —
An integration yields that zP/(2=P)*ey(z) < RP/(2=P)+ey(R) for £ > R. This implies
that limg_, o 2P/ ?~P)u(z) = 0, which is incompatible with Lemma 2.1. This completes
the proof.

3. UNIQUENESS

We now turn to the proof of the uniqueness of the very singular solution. A very
singular solution may be found as a monotone limit of singular solutions and we see
that a monotone limit of W4(z,t) yields also a very sigular solution, where W (z,t) is
a unique solution of (1.1) with an initial data u(z,0) = Alz|~, see Proposition 4.1, [5].

As we have seen in [3] and [5], we can show that there exist a minimal and a maximal
very singular solution. Remarked earlier, such a solution has to be invariant under a
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scaling transformation T which associates to any solution of (1.1) another solution Thu
defined by

(3.1) (Thw)(z,t) = Xu(Az, \Pt)

and becomes spherical symmetric self-similar solution. Hence such a solution must be
of the form
w(z,t) =t~V V@), = |zjt7/P.

Moreover f satisfies an ordinary differential equation

q—p+1

B2 (FP2Y + P+ A

1 N
f+ F=I1f =0, r>0
q—1
and additional conditions:
(3.3) f>0 on [0,00), f(0)=0 and lim rP/ @t () = 0.

The uniqueness proof is then reduced to showing that the above O.D.E problem has a
unique solution.

Let F and f be solutions of (3.2) and (3.3). Without loss of generality, we may
assume that F' > f. Following [3], we define

(34) fulr) = kf(h7r), 6= 222

and then fr will be larger that F on [0,00) for sufficiently large k. We first observe
that when u(z,t) = t~Y@Df(r), r = |z|t71/P, is a solution of (1.1), ux(z,t) =
t=1/(a=1) f, (r) satisfies

(ur)t — Dpug +ul = k(K%' — 1)u?(k’z,t) > 0
and is a super-solution of (1.1). By Proposition 2.3,

lim rP/C=P) f(r) = hm rYC-PF(r) =1

r—00

for some [ > 0 and

(3.5)
lim |z|P/ G Py (z,2) = hm |z|P/G-Pg~ /(e f (g0 2] )
2|00 21/8
k6|$| p/(2—p) |$C|
= 1 1/B(p/(2—-p)—a) [ 2 171 il I
e (S8 ()

= 9ol/B(@/(2-p)=a)] 5 |
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uniformly for ¥ > 1. Thus we may find k large enough so that ug(z,2) > F(|z|) for all
z € R". Using the Maximum Principle ([2] and [7]) we obtain that

(3.6) ug(z,t +1) >t~V @D p(|g|t~1/P)

for every z € RN and t > 1. Put r = |z|[t~/#. Then

t 1/(‘1—1) t ]-/ﬁ 5
—ee — k > > 1.
k<t+1) f(<t+1) r)>F(r) for t>1

We now let t — oo to get fx(r) > F(r) for all r > 0 as we claimed.
We now define

(3.7) m =min{k > 1: fi(r) 2 F(r), 0<r<oo}.

The uniqueness proof is now reduced to showing that m is not greater than 1. Suppose
m > 1 to the contrary.

aACRE o

Td
D) =10 = [ I (s

]
T —1(a=D-15_T 1 1r/sYA|f'(r/s'/P)|
=/1 s—1/(a-1) lf(sl/ﬂ)(—q—l 3 T /517B) )ds.

We see from Proposition 2.3 that the right side is positive for large r and there exists
R > 0 such that

(38) r VD (5) 2 £(r)

forallr > Rand 1 <7 <2. Thus

(3.9) Uum(z,7) = 77/ Dmf (ml|a|r~P) > mf(m®|z]) > F(|z))

forall |z)] >Rand 1 <7< 2. |

We also note that f,(r) does not touch F(r) in a compact subset of [0,00). In fact

fm(r) solves

Gt = = f = (m = m7) .

If f, touches F at ro > 0, then f! (ro) = F'(ro) # 0 and

(fmlP~2 f) (ro) < (IF'[P2F") (ro).

(310) (P ) + Al 2+
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But f,(r) > F(r) near r = rq, which obviously violates the Strong Maximum Principle
([2] and [7]). The other possibility to be checked is the case when f,, and F' touch at
the origin. We have from (2.15), [5] that

! |\p—2 ¢t \/ _ 1\p—2 g1/ _m q ______1
(7l ) (0) = m(F P2 1) (0) = H(£2(0) = =7 4(0))
m qfq ! _ /| p— 1AV
< FmIf9(0) = = £(0)) = (F'P°F') (0)

which leads to a contradiction since fn,(r) > F(r) near the origin. Hence we may find
e >0 and 7 > 1 so that

(3.11) Um—e(z,7) 2 F(|2|)
for |z| < R. By (3.10), (3.11), and the comparison argument as above, we obtain that
Fme(r) > F(r) for r>0,

which means that we can slightly reduce the factor m. Hence we may conclude that
m =1 and f(r) = F(r), which proves the uniqueness of the very singular solution.

4. ASYMPTOTIC BEHAVIOUR

Let u(z,t) be a solution of (1.1) with a nonnegative and nontrivial initial data ug(z)
satisfying (1.2). We have already seen that the asymptotic behavior ast — oo (and |z| —
o) are deduced from the limiting behavior of a family of scaled functions uy(z,t) =
Xu(Az, Mt) and determined by the very singular solution Wo(z,t), see Theorem C,
[k]. In fact we see that

lim |u(z,t) — Woy(z,t)|=0
t—o00

uniformly on the set {z € RN : |z| < ~t1/8 } for every v > 0. The main purpose of this
section is to derive the exact decay property in Theorem B.

For fixed t > 0, we put A = |z| and s = t/|z|?, then A — oo and s — 0 as |z| — co.
Thus

lim ‘$|p/(2 Pu(z,t) = lim lim (© )l/ﬁ(p/(2 P)—O‘))\a ()\I_l A8s)

Izl—}oo s—=>0)A—00 8

= lim(- )l/ﬂ(p/(Z—p)—a)Wo(_,S)

s—0'§ ) . |z|
— 41/8(@/(2-p)—a) 4 -1/8\p/(2-p) £(—1/B
t lim(s™") f(s™77)

= K,t'/P®/(2=P)=2)  (hy Proposition 2.3).
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JUMPING PROBLEM IN A WAVE EQUATION

-HEUNG CHOI!, SUNGKI CHUN AND TACKSUN JUNG?
b

0. Introduction

In this paper we investigate multiplicity of solutions u(z, t) for a piecewise
linear perturbation —(bu™ — au™) of the one-dimensional wave operator u; —
Uy, under Dirichlet boundary condition on the interval (—%, %) and periodic

condition on the variable t,

Uy — Uy + Ut —au” = f(z,t) in (-—-g, g) X R, (0.1)
u(E5,8) =0, (0.2)
u is T — periodic in t and even in z and t. (0.3)

When a string with nonuniform density vibrates up and down, the upward
restoring coefficient and the downward restoring coefficient of it are different.
Hence it happens a nonlinear perturbation in a wave equation. Here we
assumed that the ﬁpward restoring coeflicient and the downward one in the
vibrating of the string are constant and they are different.

We let L the wave operator, Lu = s — Uy,. Then the eigenvalue problem
for u(z,t)

T

. T
Lu=MAu in -E,i)xR

1Research supported in part by GARC-KOSEF and BSRI Program BSRI-96-1436.
Research supported in part by BSRI Program BSRI-96-1436.




with (0.2) and (0.3), has infinitely many eigenvalues
Amn = (2n+ 12 —4m®> (m,n=0,1,2,--)
and corresponding normalized eigenfunctions ¢,,(m,n > 0) given by
don = l/7—r——§cos(2n+ 1)z for n >0,

G = %cos 2mtcos(2n+ 1)z for m > 0,n > 0.

We note that all eigenvalues in the interval (—9,9) are given by
)\21=—7</\10=—3</\00=1<A11=5.
Let @ be the square [-7, 7] X [-§, 7] and H the Hilbert space defined by

H={ueL2(Q): uisevenin z and ¢ }

Then the set of eigenfunctions {@,} is an orthonormal base in H. Hence
equation (0.1) with (0.2) and (0.3) is equivalent to

Lu+but—au"=f in H. (0.4)

Our concern is to investigate multiplicity of solutions of (0.4) when the
nonlinearity —(bu* — au™) crosses finite eigenvalues and the source term f is
generated by two eigenfunctions ¢g, @10-

Let V be the two dimensional subspace of H spanned by ¢g and ¢;9. Let
®:V — V be a map (cf. equation (1.6)) defined by

®(v) = Lv+ P(b(v+0(v))" —a(v+0(v))”), veW.

In Section 1, we suppose that the nonlinearity —(but — au™) crosses two

eigenvalues Ay, A\;g and the source term f is generated by ¢gp and ¢y9. In

2



subsection 1.1, we investigate the properties of the map ® and we reveal
a relation between multiplicity of solutions and source terms in equation
(0.4) when f belongs to the two-dimensional space V (cf. Theorem 1.2). In
subsection 1.2, we determine the region of source terms in which (0.4) has

no solution. The main result of this section is the following.

THEOREM A. (cf. Theorem 1.1, 1.3) Suppose —5 < a < —1 and
3<b< 7. Let f = s1¢p0 + s2¢b190. Then we have :
(i) If f belongs to the interior IntR; of Ry, (0.4) has a positive solution, a
negative solution, and at least two sign changing solutions.
(ii) If f belongs to the boundary OR; of R;, (0.4) has a positive solution, a
negative solution, and at least one sign changing solution.
(iii) If f belongs to Int(Rs\R;), (0.4) has a negative solution and at least one
sign changing solution.
(iv) If f belongs to OR3, (0.4) has a negative solution.
(v) If f does not belong to the cone Rj, (0.4) has no solution.

In Section 2, we suppose that the nonlinearity —(but — au™) crosses an
eigenvalue Ay and the source term f is generated by ¢ and ¢y9. In subsec-
tion 2.1, we investigate the properties of the map ® (cf. Lemma 1.3, Theorem
2.2). In subsection 2.2, we reveal a relation between multiplicity of solutions
and source terms in equation \(0.4) when f belongs to the two dimensional

space V. That is, the main theorem of this section is the following.

THEOREM B.  (c¢f Theorem 2.3) Let —1 < a < 3 < b < 7 satisfy
7,}-;? + ﬁ < 1. Then there are cones Ry, R, R3, R, in V such that the
followings hold.

(i) If f € Int Ry, then equation (0.4) has a positive solution and at least two

3



sign changing solutions.

(ii) If f € OR,, then equation (0.4) has a positive solution and at least one
sign changing solution.

(iii) If f € Int R;(i = 2,4), then equation (0.4) has at least one sign changing
solution. '

(iv) If f € Int R, then equation (0.4) has only the negative solution.

(v) If f € OR3, then equation (0.4) has a negative solution.

1. The Nonlinearity Crosses Two Eigenvalues

In this section, we investigate multiplicity of solutions u(z, t) for a piece-
wise linear perturbation —(bu* — au™) of the one-dimensional wave operator
Ug — Ugz With the nonlinearity —(but — au™) crosses two eigenvalues. We
suppose that -5 <a< —-1and 3<b< 7. ‘Under this assumption, we have
a concern with a relation between multiplicity of solutions and source terms

of a nonlinear wave equation
Lu+bu™—au =f in H (1.1)

Here we suppose that f is generated by two eigenfunctions ¢py and ¢y, that
is, f = 8100 + s3b10(s1, S2 € R). ‘

To study equation (1.1), we use the contraction mapping theorem to re-
duce the problem from an infinite dimensional one in H to a finite dimensional

one.

1.1. A Variational Reduction Method
Let V be the two dimensional subspace of H spanned by {0, ¢10} and W
be the orthogonal complement of V in H. Let P be an orthogonal projection

4



H onto V. Then every element u € H is expressed by
u=v+w,
where v = Pu, w = (I — P)u. Hence equation (1.1) is equivalent to
Lw+ (I — P)(b(v +w)" —a(v+w)”) =0, (1.2)

Lv+ P(b(v +w)* —a(v+w)”) = s1¢0 + S210- (1.3)

We look on (1.2) and (1.3) as a system of two equations in the two unknowns

v and w.

LEMMA 1.1.  For fixed v € V, (1.2) has a unique solution w = 6(v).
Furthermore, §(v) is Lipschitz continuous in terms of v.
Proof. We use the contraction mapping theorem. Let § = %(a—i»b). Rewrite
(1.2) as

(=L —-8)w=({I—-P)blv+w)" —a(v+w)” — v+ w)),

or equivalently,

w = (—L—8)7'(I - P)g,(w), - (1.4)
where
go(w) =bv+w)t —a(v+w)” — (v +w).
Since
|90(w1) — gu(we)| < [b— 6wy — wl,
we have

llgo(w1) = guo(w2)|| < 16 = 6]fjwy — wall,

where || || is the L? norm in H. The operator (—L — §)~!(1 — P) is a self
adjoint compact linear map from (/ — P)H into itself. The eigenvalues of
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(L =8I — P) in W are (Ap, — )71, where Ay > 7 or Ay < —5.
Therefore its L? norm is max{7—£7:, #5} Since |b — 8| < min{7 — 4,5 +
4}, it follows that for fixed v € V, the right hand side of (1.4) defines a
Lipschitz mapping W into itself with Lipschitz constant v < 1. Hence, by
the contraction mapping principle, for given v € V, there is a unique w € W
which satisfies (1.2).

Also, it follows, by the standard argument principle, that (v) is Lipschitz

continuous in terms of v. .

By Lemma 1.1, the study of the multiplicity of solutions of (1.1) is reduced
to the study of the multiplicity of solutions of an equivalent problem

Lv + P(b(v+0(v))" —a(v+0(v))”) = s1é0 + s2d10 (1.5)
defined on the two dimensional subspace V' spanned by {¢g0, P10}

While one feels instinctively that (1.5) ought to be easier to solve, there is
the disadvantage of an implicitly defined term 6(v) in the equation. However,
in our case, it turns out that we know 6(v) for some very important v’s.

If v >0o0rv <0, then (v) = 0. For example, let us take v > 0 and
0(v) = 0. Then equation (1.2) reduces to

L0+ (I — P)(bv* —av™) =0
which is satisfied because v* = v,v" =0and (/ — P)v =0, sincev € V.
Since the subspace V' is spanned by {@g, #10} and ¢w(z,t) > 0 in Q,
there exists a cone C; defined by
c
C= {'v = c1¢o + 210 | €1 > 0, o] < 7-15}

so that v > 0 for all v € C; and a cone Cj3 defined by

lca

Cs = {v =c19w + ¢ | €1 L0, ]z < ﬁ}

6



so that v < 0 for all v € Cs.
Thus, even if we do not know 6(v) for all v € V, we know 8(v) = 0 for

v E Cl U Cg.
Now, we define a map & : V — V given by
®(v) =Lv+ Pbv+0(v)" —a(v+0())), veV (1.6)

Then & is continuous on V and we have the following lemma.
LEMMA 1.2. &®(cv) = c®(v) for ¢ > 0.

Proof. Let ¢ > 0. If v satisfies
LO(v) + (I — P)(b(v +0(v))" —a(v+6(v))") =0,

then
L(cB(v)) + (I = P)(b(cv + cB(v))" — a(cv + cB(v))™) =0
and hence 0(cv) = cf(v). Therefore we have
®(cv) = L(cv) + P(b(cv + 6(cv))™ —a(cv + 6(cv))7)
= L{cev) + P(b(cv + B(v))" — a(cv + cB(v))7)
= c®(v). =

We inv&tigate the images of the cones C; and C; under ®. First we

consider the image of the cone C;. If v = ¢1¢g + caig > 0, we have

®(v) = L(v)+ P(b(v+0(v))* —a(v+06(v))")
= c1ApPoo + c2 10010 + b(c1¢00 + cad10)
= ¢1(b+ Aoo)doo + ca(b+ Ayg) 1o
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Thus the images of the rays ¢;¢g =+ %qﬁm (¢; > 0) can be explicitly calculated
and they are

c1(b+ Aoo)boo ;_%(b +ho)do (e > 0).

Therefore & maps C; onto the cone R in the right half-plane of V, where

le={d1¢00+d2¢1old1>O}d2|< = (i:i\\g)d}

Second we consider the image of Ca. If v = —ci¢hoo + a0 < 0, we have

d(w) = L(v)+ Pbv+0(w))" —a(v+6(v))7)
= Lv+ Plav)
= —C1Aodoo + c2A10P10 — aciPoo + aczdio
= —ci(doo + a)goo + c2(A10 + a)dro-

Thus the images of the rays —c;¢g + %«ﬁw {¢1 > 0) can be explicitly calcu-
lated and they are

—c1(Aoo + @)oo £ \/—()\10 +a)po  (c1 >0).

Thus ® maps the cone Cj onto the cone .

Ry = {dl¢m+d2¢mid1>o do] < }(i;g:)dl},

which is in the right half-plane of V and R; C Rj3, since —5 < a < —1 and
3<b<T.

Last we investigate the images of the cones C; and Cy under ®, where

Co = {c1¢00 + 210 | €2 > 0, l%‘ < &},



C
Cy = {c1¢o0 + c2¢10 | 2 < 0, I\—/%-I < e}

To investigate the images of the cones Cy, Cy, we need the following lemma.

LEMMA 1.3.  For every v = c1¢go + cop19 in V, there exists a constant
d > 0 such that

(®(v), poo) > dlcal-

Proof. Let us write h(u) = bu™ — au™. Let u = ci1¢o0 + ca¢pr0 + 0(c1, c2).

Then we have
®(v) = L(c1¢oo + c2¢10) + P(h(c1¢poo + cadro + 0(cy, 2)))-
Hence we have
(8(v), du0) = (L — Aan)(crdhn + cabio)s doo) + (A(w) + Aogts, boo).

The first term is zero because (L — Ago)doo = 0 and L is self-adjoint. The

second term satisfies

h(u) + dgou = but —au™ + Agout + Agou”
= (b+ doo)ut + (Moo + a)u™ > 7lul,

where v = min{5 + Ao, Aoo + a} > 0. Therefore
(8(0), dw) = 7 [ luldoo
Now there exists d > 0 so that Y@y > d|¢10| and therefore

= d162|.

’Y/|U|¢oo > d/ |u||p10] > d|/U¢1o

This proves the lemma. .



Lemma 1.3 means that the image of ® is contained in the right half-plane
of V. That is, ®(C;) and ®(C,) are the cones in the right half-plane of V.

The image of C; under @ is the cone containing

1 (Ap+a 1 (Ao+b
= - < —
i {d‘¢°°+d2¢1°|d’20’ ﬁ(Am+a)d1“d2S\/§(Am+b)dl}

and the image of C4 under ® is the cone containing

B 1 [Ap+d 1 (Aota
R4_{d1¢00+d2¢10|d120,—-\/—§ (/\00+b>dlsd2s ﬁ(/\m_*’a)dl}

We note that all the cones R,, R3, R4 contain the cone R;. Also Rj3, R,

contain the cone Ry\R;, and Rj, R4 contain the cone R4\R;. Hence we have

the theorem.

THEOREM 1.1. Suppose -5 < a < —1and3 <b< 7. Letf =
S1¢00 + S2¢10- Then we have :
(i) If f belongs to the interior IntR; of Ry, (1.1) has a positive solution, a
negative solution, and at least two sign changing solutions.
(ii) If f belongs to the boundary OR; of Ry, (1.1) has a positive solution, a
negative solution, and at least one sign changing solution.
(iii) If f belongs to Int(R3\R;), (1.1) has a negative solution and at least one
sign changing solution.

(iv) If f belongs to OR3, (1.1) has a negative solution.

REMARK. If f = s1¢0 + S2¢10 and s; < 0, then (1.1) has no solution.
Also, if f = s1¢go + s2¢10 and s; = 0, sp # 0, then (1.1) has no solution.

Proof. If we consider the inner product

(Lu+bu+ - au—7¢00) = (f7¢00))
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then the right hand side is s; and the left hand side is nonnegative. Hence

we have the conclusion. "

REMARK. With Theorem 1.1, we can not claim that if f does not belong
to R3 then (1.1) has no solution.

1.2. A Region without Solution
In this subsection, we conclude the region of source terms without so-
lution. We assume that —5 < a < -1, 3 < b < 7 and f is generated by
{dw, $10}, that is, f = s1dpo + s2¢10(s1,52 € R). We consider a semilinear
beam equation »
Lu+but —au " =f in H, (1.7)

The study of the map ® : V — V defined in (1.6) will give a powerful theorem
to conclude the region of source terms without solution. We consider the

restriction ®|¢,(1 < i < 4) of ® to the cone C;. Let ®; = ®|¢, ie,
@-i . Ci - V.

First, we consider the restriction ®;. The restriction ®; maps C; onto
R;. Let l; be the segment in R;, defined by

l, = {¢oo+d2¢1o | |do| < % (:I—f\\;ﬁ)} .

Then the inverse image ®7(;) of [; is a segment, in C;

1

L= {m((boo + c2¢0) | lez| < -\71—5}

It follows from Lemma 1.2 that ®; : C; — R, is a bijection.
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Second, we consider the restriction ®3 : C3 — V. It maps Cj onto R3. If
we let [3 the segment in Rj, defined by

1 [fa+ Ao
- < —
l3 {¢oo+d2¢106'|dzl_\/§(a+)\oo>},

then the inverse image ®3(l3) is a segment

1 1
L3 = {m(¢oo+02¢1o) | leo] < —\/—5}

It follows from Leﬁma 1.2 that &3 : C3 — Rj is a bijection.

Now we study the restrictions &, and ®4.- Let ¢ = 2,4. Let v be a
simple path in R;. We investigate the inverse image ®;!(-y) of y and conclude
the region of source terms that (1.1) has no solution. We note that ®;(C;)

contains R;.

LEMMA 1.4. Let i = 2,4. Let v be any simple path in R; with end
points on OR;, where each ray (starting from the origin) in R; intersects only
one point of ~. Then the inverse image ®;(7y) of vy is a simple path in C; with
end points on OC;, where any ray (starting from the origin) in C; intersects

only one point of this path.

Proof. We note that ®;!() is closed since ® is continuous and ¥ is closed
in V. Suppose that there is a ray (starting from the origin) in C; which
intersects two points of ®; (), say, p, ap (@ > 1). Then by Lemma 1.2,

<I>,~(ap) = a<I>,- (p) ,

which implies that &;(p) € v and ®;(ap) € . This contradicts that each ray
(starting from the origin) C; intersects only one point of .
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We regard a point p in the plane V as a radius vector. For a point v in
V', we define the argument‘ argp of p by the angle from the positive @yy-axis
to p.

We claim that ®;'(y) meets all ray in C;, starting from the origin. In
fact, if not, ®;'(y) is disconnected in C;. Since ®;(7) is closed and meets
at most one point of any ray in Cj, there are two points p; and ps in C; such

that ®_;(-y) does not contain any point p with

argp; < argp < arg ps.

On the other hand, if we let I the segment in C; with end points p; and ps,
then ®;(!) is a path in R;, where ®;(p;) and ®;(p;) belong to . Choose a
point ¢ in ®;(I) such that argq is between arg ®;(p;) and arg ®;(p:). Then
there exist a point ¢’ in 7y such that ¢ = B¢ for some 3 > 0 since v is a simple
path. But ®;'(q') satisfies

argp; < arg®;'(¢) < argp,,

which is a contradiction. This completes the lemma. "

With Lemma 1.4, we have the following theorem, which is very important
to investigate the multiplicity of solutions of a semilinear wave equation when

the source term varies.

THEOREM 1.2. For 1 < 1 < 4, the restriction ®; maps C; onto R;.
Therefore, ® maps V onto R3. In particular, ®; and ®3 are bijective.

The above theorem implies Theorem 1.1. Furthermore, we conclude the

region of source terms in which (1.1) has no solution.
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THEOREM 1.3.  Under the same condition as in Theorem 1.1, if f does

not belong to the cone Rj, then equation (1.1) has no solution.

2. The Nonlinearity Crosses An Eigenvalue

In this section, we investigate multiplicity of solutions u(z,t) for a piece-
wise linear perturbation —(but — au™) of the one-dimensional wave operator
Uy — Uy With the nonlinearity —(bu™ — au™) crossing the eigenvalue A;g. We
suppose that —1 < a < 3 and 3 < b < 7. Under this assumption, we have
a concern with a relation between multiplicity of solutions and source terms

of a nonlinear wave equation
Lu+but —au"=f in H. (2-1)

Here we suppose that f is generated by two eigenfunctions ¢gy and ¢yg.
We shall use the contraction mapping theorem to reduce the problem from
an infinite dimensional one in H to a finite dimensional one and investigate

multiplicity of solutions and source terms of equation (2.1).

2.1. A Variational Reduction Method

Let V be the two dimensional subspace of H spanned by {0, ¢10} and W
be the orthogonal complement of V in H. Let P be an orthogonal projection
H onto V. Then every element u € H is expressed by

uU=v+w,
where v = Pu, w = (I — P)u. Hence equation (2.1) is equivalent to a system

Lw+ (I — P)(b(v + w)* —a(v+w)™) =0, (2.2)
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Lv+ P(b(v+w)" —a(v+w)~) = 8100 + S2010- (2.3)

LEMMA 2.1.  For fixed v € V, (2.2) has a unique solution w = 6(v).
Furthermore, 6(v) is Lipschitz continuous (with respect to L? norm) in terms

of v.

The proof of the lemma is similar to that of Lemma 1.1 in Section 1.
By Lemma 2.1, the study of multiplicity of solutions of (2.1) is reduced
to the study of multiplicity of solutions of an equivalent problem
Lv + P(b(v + 0(v))* — a(v+ 0(v))7) = s1600 + S2d10 (2.4)

defined on the two dimensional subspace V spanned by {0, $10}-
Let C;(1 <% < 4) be the same cones of V as in Section 1. We define a
map ¢ : V — V given by
®(v) = Lv+ P(b(v+0(v))* —a(v+0(v))”), veV. (2.6)
Then & is continuous on V, since @ is continuous on V and we have the

following lemma.
LEMMA 2.2. ®(cw) = c<I>(v) for c > 0.

Lemma 2.2 implies that ® maps a cone with vertex 0 onto a cone with
vertex 0. Let Ci(1 < i < 4) be theysame cones of V as in Section 1. We
investigate the images of the cones C; and C3 under ®. First we consider the
imagek of the cone C;. If v = ¢;dg + c2¢19 > 0, we have

®(v) = L(v)+ P(b(v+0(v))" —a(v+6(v))7)
= c1ddo0 + c2h0b10 + b(cidoo + c210)
= a(b+m)do+ab+do)bo
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Thus the images of the rays c;¢p 71501¢10(c1 > 0) can be explicitly calcu-
lated and they are

c1(b + Aoo)doo + %Cl(b + Aw)g (e = 0).

Therefore & maps C; onto the cone

{d1¢00+d2¢10|d1>0ld2' \/—(Z::\\;Qd}

The cone R, is in the right half-plane of V and the restriction ®|¢, : C; — R;

is bijective.
We determine the imé,ge of the cone Cs. fv = —ci¢p0 + c2p10 < 0, we

have

B(v) = L(v)+ P(b(v+0(v))* — a(v+0(v)))
= Lv+ P(av)
= —c1(Aoo + a)doo + 02(/\10 + a)d10-

Thus the images of the rays —cl¢00 + 7-01¢10 (¢; > 0) can be exphc1tly
calculated and they are ’

—ei(A0 +a) oo %cl(xm ta)dy  (a20).

Thus © maps the cone (s onto the cone

1 )\10+a
Ry=1{d d <0, dy < — dy| b
o= {artn+ dao | 4 <0, < 21302}

The cone Rj is in the leftv half-plane of V' and the restriction ®|¢, : C5 — R3
is bijective. We note that R; is in the right half plane and Rj3 is in the left
half plane.
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THEOREM 2.1. (i) If f belongs to R;, then equation (2.1) has a positive
solution and no negative solution. (ii) If f belongs to R, then equation (2.1)

has a negative solution and no positive solution.

The cones Cj, Cy are as follows

Cy = {C1¢00 + oo | >0, 2> \/—lcll}

Ci={c1dn+ 2010 | 2 <0, e < —Tlcd}

Then the union of four cones C; (1 <1i < 4) is the space V.
Lemma 2.2 means that the images $(C,) and ®(Cy) are the cones in the

o)

Ry = {d1¢00+d2¢10|d2S0,\/§(;\\(ZiZ)dz<dl <\/_(b+/\m) |d2|}

Then the union of four cones R;, Rj, R3, R) is also the space V.

plane V. Before we investigate the images ®(C;) and ®(C,), we set

Ao + b+ A
Ry = {d1¢00+d2¢10ld2>0 \/—Ioo a|d2<d1 \/_l )\(1)2

To investigate a relation between multiplicity of solutions and source

terms in the nonlinear beam equation
Lu+but —au” =f in H, (2.6)

we consider the restrictions ®|¢,(1 < ¢ < 4) of ® to the cones C;. Let
®; = P|¢, ie,

For : = 1, 3, the image of ®; is R; and ®; : C; — R; is bijective.
From now on, our goal is to find the image of C; under ®; for i = 2, 4.

Suppose that v is a simple path in C; without meeting the origin, and end
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points (initial and terminal) of «y lie on the boundary ray of C; and they are
on each other boundary ray. Then the image of one end point of v under
® is on the ray ci1(b + Aoo)doo + %cl(b + A10)d10,¢1 > 0 (a boundary ray
of R;) and the image of the other end point of v under @ is on the ray
—c1(Ap + a)doo + 71-2-01()\10 + a)$io,¢1 > 0 (a boundary ray of Rj). Since
® is continuous, ®(v) is a path in V. By Lemma 1.2, ®(7y) does not meet
the origin. Hence the path ®(7y) meets all rays (starting from the origin) in
Ry U R}, or all rays (starting from the origin) in Rj U R3.

Therefore it follows from Lemma 1.2 that the image ®(C3) of C> contains
one of sets Ry U R and R U R3.

Similarly, we have that the image ®(Cy) of C; contains one of sets R;U R
and R, U R3.

LEMMA 2.3. Let A be one of the sets R; U R and R)U Rg3 such that
it is contained in ®(C5). Let y be any simple path in A with end points on
OA, where each ray (starting from the origin) in A intersect only one point
of v. Then the inverse image ®;'(7) of 7y is a simple path in Cy with end
points on OA, where any ray (starting from the origin) in C intersects only
one point of this path. ‘

Proof. We note that ®;(y) is closed since ® is continuous and 7 is closed
in V. Suppose that there is a ray (starting from the origin) in C; which
intersects two points of ®;'(7), say, p, ap (a > 1). Then by Lemma 1.2,

y(ap) = ad(p),

which implies that ®,(p) € v and ®3(ap) € . This contradicts that each

ray (starting from the origin) in A intersect only one point of v.
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We regard a point p as a radius vector in the plane V. Then for a point
p in V| we define the argument argp of p by the angle from the positive
Poo-axis to p.

We claim that ®;(y) meets all ray (starting from the origin) in A. In
fact, if not, ®;'(y) is disconnected in A. Since ®;'(7) is closed and meets
“at most one point of any ray in A, there are two points p; and ps in C; such

that ®5(y) does not contain any point p with

argp; < argp < argps.

On the other hand, if we let [ the segment with end points p; and ps, then
®,(1) is a path in A, where ®2(p1) and $2(p2) belong to 4. Choose a point ¢
in ®,(!) that arg q is between arg ®,(p;) and arg ®(ps). Then there exist a
point ¢’ such that ¢ = 3q for some 8 > 0. But ®;'(¢’) meets [ and

argp; < arg ®;'(¢) < argpe,

which is a contradiction. This completes the lemma. .

Similarly, we have the following lemma.

LEMMA 2.3'.  Let A be one of the sets Ry U R}, and R, U R3 such that
it is contained in ®(C4). Let vy be any simple path in A with end points on
OA, where each ray (starting from the origin) in A intersect only one point
of v. Then the inverse image ®;'(7) of 7y is a simple path in Cy with end
points on 0A, where any ray (starting from the origin) in Cj intersects only
one point of this path.

With Lemma 2.3 and Lemma 2.3, we have the following theorem, which is
very important to investigate a relation between the multiplicity of solutions

and source terms in a nonlinear suspension bridge equation.
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THEOREM 2.2.  Fori = 2,4, if we let ®;(C;) = R;, then R, is one of
sets Ry U Ry, R, U Ry and Ry is one of sets R3U R}, Ry U Rj. Furthermore,
for each 1 < i < 4, the restriction ®; maps C; onto R;. In particular, ®; and

®; are bijective.

To determine the images Ry = ®(;) and Ry = ®Cy), we shall investigate

the nonlinear beam equation
Lu+but —au” =s¢p in H,

where we —1 <a <3 < b< 7 and s is real.

2.2. Multiplicity of Solutions and Source Terms
In this subsection we reveal the relation between multiplicity of solutions
and source terms in the nonlinear beam equation (2.1). Now we remember

the map ® : V — V given by
®(v) = Lv + P(b(v+0(v))* —a(v+0(v))7), veEY,

where —1 < a < 3 < b < 7, 6(v) is a solution of (2.2), and V is the two-
dimensional subspace of Hy spanned by two eigenfunctions Ag, A1p. The map
& is continuous on V, since @ is continuous on V. For 1 < i < 4, let C; be the
same cone, in V, as in subsection 2.1.

For f € V, we establish an a priori bound for solutions of

Lv+ P(b(v+0(v))" —ab(v))")=f in V. (2.7)

LEMMA 2.4. Let C = {(a,b): 751_'_=1 + #i = 1}. Let k(> 16) be fixed
and f € V with ||f]| = k. Let a,3,¢ > 0 be given. Let 3+a <b<7-q,
~14f < a < 3—f satisfy the condition =+ == # 1 and dist((a, ), C) 2
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€. Then there exists Ry > 0 (depending only on k and a, 3, ¢) such that the
solutions of (2.7) satisfy ||v|| < Ry.

Proof. Let -1<a<3<b<7 feV.Letw €V be given. Then there

exists a unique solution z € W of the equation
Lz+(I-P)bv+2)"—alv+2)"—f]=0 in W.

If z = 6(v), then 6 is continuous on V' and we have DI, ,(v+0(v))(w) = 0 for
all w € W. In particular §(v) satisfies a uniform Lipschitz in v with respect
to th L? norm (cf. [7]).

Suppose the lemma does not hold. Then there is a sequence (b, as, Un)
such that b, € [-1+a,7—0], a, € [-1+ 3,3 — f] satisfy dist((a,b),C) >,

llonll — +o0, and
vy = L7Yf — P(b(vn + 0(vn))" — a(vy +0(v,))”) i V.

Let u, = v, +0(vy,). Then the sequence (by, a,, u,) with b, € [-1+¢a,7—a],
a, € [—1+ (3,3 — (3] satisfies ||u,|| — +0o and

up=L7Nf—bul +au”) in H.

Put w,, = l—"u":ﬁ Then we have

— bw} +aw”).

=

I

The operator L~! is compact. Therefore we may assume that w, — wy,
b, — by € (=1,7), an — a9 € (—1,3) with (ao,b) ¢ C. Since |Jw,|| = 1 for

all n, ||wo|| = 1 and wy satisfies
wy = L™} (—bywi +awp) in Hy.
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This contradicts the fact that for —1 < a,b < 7 with the condition 7,;—1 +
l_ 1 Lu+but — au™ = 0 has only the trivial solution. .
Va+i

LEMMA 2.5. Let -1<a<3, —1<b<7 satisfy
1 1
Jbrl Vari
Let k(> b+ 1) be fixed and f € V with | f|| = k. Then we have

1. (2.8)

d(v — L™Y(f — P(b(v + 0(v))* — a(v + 6(v))")), Bg,0) = 1

for all R > Ry.

Proof. Let b= a =0. Then we have
d(v — L7'(f), Br,0) =1,

since the map is simply a translation of the identity and since ||L71(f)|| < Ro
by Lemma 2.12.

Incaseb,a # 0(-1<a<3,-1<b<7)with 75+ L <1, the result
follows in the usual way by invariance under homotopy, since all solutions

are in the open ball Bg, (cf. [15]). u

LEMMA 2.6. Let —1 < a <3 < b < 7 satisfy the condition (2.8) and
f = (b+1)¢wn. Then equation (2.7) has a positive solution in IntC}, at least
one sign changing solution in IntCy, and at least one sign changing solution
in IntCj.
Proof. First we compute the degree (R > Ry)
d(v— LY(f — P(b(v + 0(v))* — a(v+68(v))7)), BR N Cy,0)
=d(v— L}f - ), BN Cy,0) = —1,
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since v — L™}(f — bv) = 0 has a unique solution in IntC; and 1 + ;\% > 0,
1+ ;% < 0. Since, for f = (b+ 1)dg, equation (2.7) has no negative solution
in IntCj,

d(v — L7Y(f — P(b(v + (v))* — a(v + 8(v))7)), Bk N C3,0) = 0.
By the domain decomposition lemma,
d(v—L7Y(f — P(b(v+0(v))* — a(v+6(v))7)), Br N (C2 U Cy),0) = 2.

Hence equation (2.7) has at least one sign changing solution in Int(Cy U Cy).
Suppose that (2.7) has a solution in Int Cy. Then ®(Cy) N Ry # ¢ and
hence Ry = ®(C2) = Ry U R} by Theorem 1.2. Let B:V — V be a linear

map, where the matrix B is given by

( btra+2)g0 b—a
2 2
b—a b+a+2A190 ) .
22 2

Then B(C3) = Ry = ®(C2) and Bv = ®(v) for all v € 0Cy. Now we may
assume that the solution of Bv = f isin Bg,. Hence if 0 <t < 1 and R > Ry,

then we have
tBv+ (1—-t)®(v) # f, v € d(BrNCy).
So we hyave

d(v — L7(f = P(b(v + 0(v))* — a(v +6(v))7)), Be N C2,0)
=d(v— L™}(f — Bv+ Lv), BgN C,0) = 1,

since Bv = f has a unique solution in IntCy and det(L~'B) > 0. Since
d(v— L7Y(f — P(b(v+0(v))* — a(v+6(v))7)), Br,0) = 1 and d(v — L}(f —
P(b(v + 6(v))t —a(v+0(v))7)), BeN C3,0) =0,

d(v — L7(f = P(b(v + 0(v))* — a(v + 0(v))")), BN Cy,0) = 1.
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Therefore (2.7) has at least one solution in IntCj.
Similarly, if we assume that (2.7) has a solution in IntCj, then d(v —
L7Y(f — P(b(v +0(v))" —a(v+0(v))7)), Bg N Cy,0) = 1 and hence we get

d(v — L7(f — P(b(v + 8(v))* — a(v + 0(v))7)), BN Cy,0) = 1.
Therefore (2.7) has at least one solution in IntCj. .

With Theorem 2.2, Lemma 2.6, we get the following.

LEMMA 2.7. Let —1 < a < 3 <b < 7 satisfy the condition (2.8). For
1<1i<4,let ®(C;) = R;. Then Ry = R U R and Ry = R, U R}, where Rj,

R} are the same cones as in subsection 2.1.

Proof. It follows from Lemma 2.6 that Ry N R; # ¢. Since R; is one of
sets R; U Ry, R3 U Ry (Theorem 2.2), the image R, of C; under & must be
R; URj.

On the other hand, it follows from Lemma 2.6 that R4 N R; # ¢. Since
R, is one of sets R; U R}, R3 U R} (Theorem 1.2), the image R4 of C; under
® must be R; U R;. .

If a solution of (2.4) is in C}, then it is positive. If a solution of (2.4) is
in Cj, then it is negative. If a solution of (2.4) is in Int(C; U C), then it has
both signs. Therefore we have the main theorem of this paper with aid of
Theorem 2.1, Theorem 2.2, and Lemma 2.7.

THEOREM 2.3. Let —1 < a < 3 < b < 7 satisfies the condition (2.7).
Then we have the followings.
(i) If f € Int Ry, then equation (2.1) has a positive solution and at least two
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sign changing solutions.

(ii) If f € OR,, then equation (2.1) has a positive solution and at least one
sign changing solution.

(iii) If f € Int Ri(i = 2,4), then equation (2.1) has at least one sign changing
solution.

(iv) If f € Int Ry, then equation (2.1) has only the negative solution.

(v) If f € ORs, then equation (2.1) has a negative solution.
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1. Introduction. Let 2 C R™ be a bounded domain with a smooth boundary
9. We denote by A; < A < -- - the eigenvalues of the problem

(L) —Azu=\u, u€ H;().

In the last decade, the existence, multiplicity and stability of periodic solutions
of semilinear parablic equations of the form

Ou .
E-Aagu—g(m,t,u) in RxQ
u(t,z) =0 on R xoQ

u(0,z) = u(27,2) on €

(P)

has been studied by many authors(cf. [1],[2],[9],[13],[15], [18]). The main tools
to attack this kind of problems are Leray Schauder degree theory and sub- and
supersolution method. We restrict ourselves to the case that g is given by the
form g(t,z,u) = g(u) + h(t,z), where g is a continuous function on R and h €
C(R,L?*(f)) is a periodic function with period 27. In this case, the existence,
multiplicity and stability of periodic solutions depends on the growth condition
imposed on g. It is known that if

vlixfoog(v)/v < A1,
then problem (P) possesses at least one periodic solution(cf. Amann[2]). More-
over if h € C(R,C}(12)), then problem (P) has at least one stable solution (See
Dancer and Hess[9] and Hess[13]). In case that

Ak < vlirdr:loog(v)/v < Ak+1,

for some k > 1, problem (P) has a periodic solution(cf. Hirano & Mioguchi[15])
. On the other hand, In case that g satisfies the jumping nonlinearity condition:

vli)gloog(v)/v <A < vlir_i{loog(v)/v,

the existence of stable and unstable periodic solutions of (P) was studied by the
authors[14]. In the present paper, we consider the case that g and h satisfies the
Ambrosetti - Prodi type condition. That is we consider the problem

— —Azu—Mu+g(u)=sp+h in RxQ
(AP) * u(t,z) =0 on R x9N
u(0,z) = u(2m,2) on €

1



where ¢ denotes the positive normalized eigenfunction corresponding to the first
eigenvaule A; of problem (L), s € R , and h € C([0,27], CA(Q)) with

(H) /Q h(t, 2)é(x)dtdz = 0.

This type of result, so called an Ambrosetti-Prodi type result has been initiated
by Ambrosetti-Prodi [3] in 1972 in the study of a Dirichlet problem to elliptic
equations and developed in various directions by several authors to ordinary and
partial differential equations. A notable discussion for AP type results for periodic
and Dirichlet boundary value problem has been done by Fabry, Mawhin and
Nkashama [11] and Chiappinelli, Mawhin and Nugari [7], respectively, for second
order ordinary differential equations. For AP type results for periodic solutions
of higher order ordinary differential equations, we refer the results of Ding and

awhin in [10]. AP type results for Lienard systems have been done by Hirano
and Kim [13], AP type results for dissipative hyperbolic equations have been
done by Kim [17]. Lazer and Mckenna treated AP type multiplicity result for
elliptic and parabolic equations in [18]. In our result, we assume the coercive
growth condition on g and consider the multiple existence of solutions of (AP)
and stabilility and instability of the solutions.

We assume that g € C?(R) and satisfies

(G1) lim inf g(v) = oo,

Jv]—= o0
(G2) 'vlir_nc>o sup g(v)/v < Ag — Ay.

Then we have that

Theorem. For each h € C([0,27],C3(Q)) N C*((0,27),C(RY)) satisfying
h(0) = h(27) and (H), there exist real numbers sy < s; such that
(i) (AP) has no solution for s < sg;
(ii) (AP) has at least one solution for s = s;;
(iii) (AP) has at least one stable solution and one unstable solution for s > s;.

2. Preliminaries. Throughout the rest of this paper, we _assume that (G1)
and (G2) hold, and fix k € C([0,27],C5(Q)) N C1((0,27),C(Q)) satisfying (H).
We put Q = (0,27) x . We denote by || - || and (-,-) the norm and the inner
pr oduct of L*(Q2). || - |l and (-, -)) stand for the norm and the inner product of
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L?(Q), respectively. || - ||c and || - |2 stand for the norm of Co(Q) and C1(Q), )
respectively. We define a linear operator L : Dom(L) C L*(Q) — L*(Q) by

ou
Lu= &-—Axu—)\lu

Dom(L) = {u € L*((0,27), H*(Q) N Hy(Q)) :

Then it is easy to see that kerL = {cp : ¢ € R} and L is a surjective operator
from (DomL) N E — E, where E is a subspace of L?(Q) such that L*(Q) =
kerL ® E. We denote by P; and P, the projections from L?(Q) onto kerL and
E, respectively. We set X1 = {u € C$(©) : u > 0on Q}. Then X is a closed
cone in C(Q2). We employ the standard order in Cj(f)
t3yeor—yeX,
x>y T2y TEY
T>>ye—x—yE€intXy.
JFrom (G1), we have that
d = inf{g(s) : s € R} > —o0. (2.1)

On the other hand, it follows from (G2) that there exists a € (0,2 — A1) and
C > 0 satisfying that

lg(s)|<al|s|+C for all s <0. (2.2)
Here we consider the initial boundary value problem

B ' Lu+g(u)=sp+h in R xQ
(IP) u(t,z)=0 on RT x 09
u(0,z) = ug ~on
where ug € Co(Q). It is known for each uo € Co(%Q0), problem (IP) has a local

solution. Let [0,%,,) be the maximal interval on which the solution u of (IP)
exi‘sts.' Then u can be represented by the integral form . :

u(t) = S(t)u0‘+ /0 S(t - 5)(g(z,u(s)) + h(s,x))ds | (2.3)
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for 0 < t < t,,. Here {S(t)} is the semigroup of linear operators generated by
—A. It is known that for each ¢ > 2, there exists c¢(q) > 0 satisfying

I S@F llwra@< (@t || £ llLage) for all f € LU(Q) and t > 0. (2.4)

(cf. Tanabe[19], Amann[2]).
Lemma 2.1. For each ug € Co(Q), problem (IP) has a global solution u €

C([0,00),Co()) - |
Proof. Let ug € Co(Q) and u be the solution of (IP) on [0,%,,). To show that

ty, = 00, it is suficient to show that

sup || u(t) ||e< oo. (2.5)
t€[0,24,) '

For each n > 1, we define a trancation g,, of g by
G,(s) = min{g(s),n} for s € R,
and consider a initial value problem of the form

Lu+7g,(u)=sp+h in R" xQ
(IP,) u(t,z) =0 on Rt x 00
o u(0,2) = up on f.

Since g,, satisfies that there exists C,, > 0 and
|9.(5) I<a]s|+Cy for all s € R, (2.6)

we have by a standard argument(cf. theorem 1 of Amann[2]) that problem (IP,)
has a global solution uy, for each n > 1 and sup,¢jg o) || un(?) [|< co. Here we fix
ng > 1 such that || uo ||c< no. ;From the definition of § Grn,» We have

Lu+7g, (u)<sp+h in Rt xQ.

Then
L(u - uno) + (gno (u) - gno (uno)) < 0.

Then by the parabolic maximum principle, we have that u(t) < u,,(¢) for all
t € [0,ty,). Then from the definition of g,,, we have that there exists n; > 1
such that u(t) < nq on [0,%,,). This implies that u,,(t) = u(t) on [0,t,,) and
therefore

sip | u(t) o< sup [y (1) flo< co.

tE[Ovuov te[onlg



This completes the proof. i

It is known that if ug € D = H?(Q2)NCy(Q) and u is a solution of (IP), then
u € CH2((0,27) x Q)(cf. Amann|[2]). We define a mapping T(Poincaré mapping)
by Tug = u(27). It is known that T is a compact mapping on C¢(Q) and T is
strongly order preserving(cf. [1], [2], [16]), i.e., u > v implies that Tu >> T.
(From the definition of T', the solution u of (IP) is a solution of (AP) if and only
of ug is a fixed point of 7. We denote by F(T') the set of fixed point of T. The
function u € C12((0,27) x Q)N C%1((0,27) x Q) is called supersolution for (AP)
provided

Lu+g(u) >sp+h in[0,27] x Q
u(t,z) >0 on [0,27] x 99
u(0,z) > u(2m,z) on Q.

A supersolution is said to be a strict supersolution if it is not a solution. Cor-
respondingly, subsolution and strict subsolution are defined by reversing the in-
equality signs. Let ug € C}(Q2) and u be the solution of (IP). If u is a supersolution
of (AP), then from the parabolic maximum principle, Tuy < ug. If u is a sub-
solution of (AP), the converse relation holds. We note that from the maximum
principle, the eigenfunction ¢ satisfies

9y
3 >0 on 0. (2.7)

Here we define a homotopy {g. : ¢ € [0,1]} of mappings defined by
9c(s) = (1= c)g(s) + cm forse R (2.8)
where m > 0. For each ¢ € [0, 1], we denote by (AP,) the boundary value problem
(AP) and (IP,) the initial value problem (IP,) with g replaced by g., respectively.
We denote by T, the Poincaré mapping associate with (IP,) , and F(T,) stands
for the set of fixed points of T,. If the constant m in (2.8) is sufficiently large, we

can see that the set U.T, is bounded from below. That is we have

Lemma 2.2. Let vy € C§(Q). Let s be a real number. Then there exists
m > 0 such that for each m > m,

sup{|| © ||c1: u € F(T.) N (—o0,v0] : c € [0,1]} < o0,
where (—00,vp] = {u € C}(Q) : u < v}
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Proof. Let vo € C§(f2) and s € R. We choose € > 0 and 6 > 0 so small that
1-7¢>0,1> 6 and that

L [ Pdz<elol?, (2.9)

for any measurable set A C 1 with | A |< 6. We next choose Qo C Q such that
Qo C Qand | Q\Q |< 6/4. Let B > 0 such that

e(z) 2B on Q. (2.10)

We fix a positive number M, such that
(6/4) My + d/ pdx > 27s. (2.11)
Q

We set m = max{2M, /03, 4s7} and fix m > m. Let ng > 1 such that SUP;¢0,27] |
v(t) ||c< no, where v(t) is the solution of (IP) with ug = vg. Then since

9c(8) = (1 = ¢)gn,(s) +cm for s € (—o0, ng]

we have that _
| ge(s) |<a|s|+C . forall s € (—o0,ny] (2.12)

where C is a positive constant independent of s. This implies that

| 9c(w) llzay< @ || w || Laga) +Cq (2.13)

for all ¢ > 2 and u € LI(2) , where C|; is a positive constant independent of ¢ and
u. We denote by S, the set of solutions u of (AP,) with u(0) < v for ¢ € [0,1].
Let u € S, c € [0,1]. Then u satisfies u(t) < ny on @ and

%;—t- —Agu—Mu+ge(u)=sp+h inQ (2.14)

We will see that there exists Cy > 0 such that
| u(t) |I< Co for all t € [0,27] and u € S.. (2.15)

Multiplying (2.14) by du/dt and integrating over @, we find from the periodicity
of u that 5
u

ou Ou
I 5o W= G, 2 <t ol 22 o

6



Then we find that
|| Ou/ot ||o<|| ~ llq - (2.16)

Then to show that (2.15) holds, it is sufficient to show that there exists M > 0
such that

| ullo< M for all u € S.,c € [0,1]. (2.17)
Suppose contrary that there exists {u,} C Ucepo,1]Sc such that u, € S., and
limy, o0 || un ||g= 0o. For each n > 1, we put u, = ul + u2, where u} = Pyu,
and u2 = Pyu,. By extracting subsequences, we may assume that o = lim,, . ||
ul |lo / Il ©2 ||o exists. We first assume that o = co. Then we have from the
positivity of ¢ that

lm |un(t,z)|=00 a.e. on Q.
Since g is bounded from bellows and ¢ is positive , we find
Tim ((ge, (un), ¢) > m. 2.18)

Here we multiply (2.14) by ¢ and integrate over (). Then we have

4sm < (gen (un), ) = «8(,0, p) = 2sm. (2.19)

This is a contradiction . We next assume that 0 < o < oco. Then there exists
ng > 1 such that

(@/2) 1% o<l u} o< (Bo/2) [ 2 o foralln>no.  (220)
On the other hand, we have from the definition of g, that
mo = sup{| s |: Bg.(s) < My f(;r some ¢ € [0,1]} < oo.
We put
Qn={(t,z) €[0,T] x Q:| up(t,z) |>mo} for n > 1.

Then from the definition of mg, we have that | Q, |< 6/2. In fact, if | @, |> 6/2,
then | @, N Qo |> 6/4 and we have

; Qn Q

Qn

> (6/4)Mo + d/ pdzdt > 2ms.
Q

7



This is a contradiction. Therefore we find by (2.9) that
/ |l Pdedt> (1—¢) [ ul 2 forn>1. (2.21)
Q\Qx

On the other hand, we have

0= ((ug,up)

= / ul - u?dedt + / ul - uZdxdt
R\Qn

n

=(1/2) /Q\Q (Jup +u? 2 = | ul |? = | u? |*)dadt

+/ | ul || 2 | dadt.

n

;From the definition of My, (2.21) , (2.20) and (2.9),
0< (1/2=8/4)mg — (1/2)(1 — €)(/2) || uj, |I* +€(3/2) || u ||?
= (1/2 = 6/4))mg — (a/4)(1 = Te) || u}, |?
for all n > ng. That is
(a/4)(1 = Te) || v2 ||*< (2 — §)m3 /4 for all n > ny,.

Then since || u2 ||— oo, this is a contradiction. We lastly assume that o = 0. We
multiply (2.14) by u, and integrate over (). Then we find

(A2 = A1) [l uz 1[G +(gen (un)sua)) < sl un ll + 11 2 llell w3 lle -
(From (2.12) , we have
(G =) [l Nl =[] wn |
<SCLQ "l un llg +sa llun llo + 1l A llell ¥ lle -
Since a = 0, we have lim || u2 || / || un ||= 1. Then we have

limsup(Az — A1 = @) || u, o< C Q" + | ke -

n—oo

Then we obtain that {|| u2 ||} is bounded and this contradicts to the assumption.
Thus we obtain that (2.15) holds. Then applying (2.4) and (2.13) to the equation
(2.3) repeatedly, we have that

sup{|| u(t) ”C([o,z,r],z,q(g): u € S} <oo for each ¢ > 2.

8



Then we obtain the assertion by using the Sobolev’s embedding theorem. |

3. Proof of Theorem.
Lemma 3.1. There exists so € R such that there exists no solution of (AP)
for any s < so.

Proof. We can choose sq < 0 such that
| QM2 d > s.

Suppose that s < so and u be a solution of (AP). That is u satisfies (2.14) with
gs = g. Then by multiplying (2.14) with ¢ and integrating over ), we find that

27 [ Q12 d < (g(u), @) = 2ms | ¢ |* +(h,p) = 27s.

This-is a contradiction. |

Lemma 3.2. There exists s; > 0 such that for each s > s;, there exists a
strict subsolution v of (AP).

Proof. We put V = E N H}(Q). Then from the definition of L and E, we have
that L:V = EN H}(Q) — V* is a maximal monotone operator (cf. [5]) . Since
H}(Q) is compactly embedded in L%(Q), Pog : V — L*(Q) C V* is a compact
mapping. Then we have the sum L + P,g is a pseudo-monotone operator from
V to V*(cf. Browder[6]). On the other hand, from (2.3), we have that for each
v € ENHY(Q),

(Lv + Prg(v),v)) = «LU + g(v),v))
> =M lvlp=alvlg-(C-DQI"|v].

Then we have L + P,g is coercive. That is

lim  (Lo+ Pag(v),v)/ || v llo= co.
vEE,||vllg—o0

' Then we obtain that there exists a solution v such that Lv + Pag(v) = 0(cf.
.-Browder[6]). Therefore we find

Lv + g(v) = Lv + Pyg(v) + Pyg(v) = Pig(u). (3.1)

9



(From (2.7), we can choose s; > 0 so large that
Pig(v) < sip + b

Then from (3.1) , we obtain that for s > s1, v is a strict subsolution of (AP).
: i

Here we fix a C' mapping go such that gy is monotone increasing and

go(s) = g(s) for s € (—o0, —1]
go(s) =s for s € [0, 1],
go(s) =1 for s € [2,0)

We next set
g1(v) = max{go(v),g(v)} for v € R.

Then from the definition of g;, we find that
M = sup{| g(s) — 91(s) |: s > 0} < co.
Lemma 3.3. For each real number s > s, there exists a strict subsolution v

and a strict supersolution 7 of (AP) satisfying

v<< . (3.2)

Proof. Fix a real number s > s;. By Lemma 3.2, there exists a subsolution v of
(AP). We put ¢ = (M, ¢). Then P, M = cp. Since P,L*(Q)) C Range(L), there
exists a solution vy € F of the problem

Lvy = B, M.

Since v € C([0,27], C¢(Q)) and g1(s)/s > 1 on [0, 1], we can see that there exists
bo > 0 such that for each b > by,

g1(bp+v) > (s+c)p+h on €.
We now choose b > by so large that
b + ve >> v.

10



Then putting ¥ = by + vo > 0 on 2, we have

LT+ g(v) > Lt + 9:1(v) — M
=Lvo+g1(v) - M
>—-P M+ (s+c)p+h
= sp+ h.

Thus we have seen that ¥ is a supersolution of (AP) satisfying v << . |

Proof of Theorem. (i) follows from Lemma 3.1. We will see that (iii) holds.
Fix s > s;. Then by Lemma 3.2 and Lemma 3.3, there exist a subsolution v of
(AP) and a supersolution ¥ of (AP) satisfying v << ¥. Then by theorem 1 of [9],
we have that there exists a stable solution u; of (AP) with v < u; < 7. On the
other hand, by Lemma 2.2 and Zorn’s lemma, we can find a a minimal element
up of F(T) in (—oo,us] with respect to the order defined in Cj(f2). Let u be a
solution of (AP) with u(0) = uo. We will see that uo is an unstable solution of
(AP). We fix m > 0 so large that the assertion of Lemma 2.2 holds with v = ug
and

m/ @dxdt > s and m > g(u) on Q. (3.3)

Q

Let {g. : c € [0,1]} be the homotopy of mappings define in section 2. Then since
ge(u) > g(u) for all ¢ € [0, 1],

we have by the maximum principle that u is a supersolution of (AF,) for all
c € [0,1]. This implies that

Toug < ug = Tug for all ¢ € [0, 1].

We put X = (—oo,ug] = {u € C3(Q) : u < up}. Then from the observa-
tion above, we have that T,(X) C X for all ¢ € [0,1]. Then by proposi-
tion 1 of Dancer[8], to show that ug is unstable, it is sufficient to show that
indexx (T, (=00, ug]) # 1. ;From the homotopy invariance of indices, we have
that »

indexx (T, (—o0, o)) = indexx (To, (=00, up]) = indexx (71, (—00, uo))-
Let vy € F(T1) and v be the solution of (AF;) corresponding to vp. Then v
satisfies .

Lv+m=sp+h.

11



Multiplying the equality above by ¢ and integrating over @), we have

m / pdadt = (m, o) = (50, 0) =

This contradicts to (3.3) . Thus we obtain that F(T;) = ¢. This implies that
indexx (T1, (—00, up]) = 0. Therefore we obtain that ug is unstable. This com-
plete tfe proof of (iii). We lastly show that (ii) holds. Suppose that s = s;.
Then from the arguement in the proof of Lemma 3.2, there exists a subsolution
v of (AP). We note that v is not neccesarily a strict subsolution. On the other
hand, we have by the argument in the proof of Lemma 3.3 that there exists a
supersolution T of (AP) such that ¥ << T. Then again by theorem 1 of [9], we
have that there exists a solution u of (AP). We note that u is not necessarily
stable because v is not necessarily a strict subsolution. |

Remark. The argument to find an unstable solution of (AP) was suggested by
Prof. E. N. Dancer in personal communications.
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Regularity and convergence of crystalline motion
in the plane

Katsuyuki Ishii
Department of Mathematics, Kobe University of Mercantile Marine
Higashinada, Kobe 658 JAPAN

1 Introduction

This is a brief report of my joint work with Prof. H. M. Soner [14].

Several models in phase transition give rise to geometric equation relating the normal
velocity of the interface to its curvature. The curvature term is related to surface tension
and the surface energy is a function of the normal direction, indicating the prefered direction
of the underlying crystal structure.

Let I' C R™ be a smooth hypersurface. When the surface tension H is smooth and
convex, the evolution of the hypersurface is governed by

(1) V= -V.(DH(7)),

where 7, V' are, respectively, the outward unit normal vector and the normal velocity and
the curvature of the solution I'(t). The mean curvature flow corresponds to H(p) = |p|.
The equations of this type have been treated by many authors. We notice that, in two
dimensional case, we may rewrite this equation as

(2) V=—(f(0)+ f"(0)),
where 77 = (cos 6,sin @),  is the curvature of the curve I'(¢) and
f(8) = H(cos8,sind).

In this report we consider the case f is a nonsmooth energy. It arises in models for crystal
growth, as it is well known that solid crystals can exist in polygonal shapes. Especially we
treat the crystalline energy, whose Frank diagram {z = r(cos,sinf) € R? : rf(0) = 1}
is a polygon. Let © := {6y, --,6,} be the angles corresponding to the corner points of the
Frank diagram of f. We note that we only consider polygonal solutions with normal angles
taking values in ©.

For simplicity, we restrict our considerations to the case where the Frank diagram of the
enregy f is the regular n-polygons circumscribing the unit circle. Then

2k

@:@n::{ : k:o,1,...,n—1}.

n

1



In this case the evolution of the side ¢ is governed by

2tan(m/n)
X

where V;(t), l;(t) and x;, are, respectively, the normal velocity, the length and the discrete
curvature of the side . The discrete curvature x; is equal to +1 if both edges of the side
i are locally convex, it is equal to —1 if they are locally concave, and it is equal to 0 if
otherwise. The evolution rule for the length of I;(t)’s, the sides of a solution of (3), consists
of a system of ordinary differential equations:

1 (2 cos(2m/n)x? X%, X1 )

3) Vi(t) =

Li(2) L) La)

We call a solution {I'(t)} of (3) crystalline motion or crystalline flow.
For the discussions to more general case, see Angenent - Gurtin [2], Gurtin [8].

4) fllzli 0= cos(m/n)

In the sequal we treat a two dimensional problem with a crystalline energy whose Frank
diagram is a regular n-polygon and consider the following problems

e Existence of “smooth” solutions of (3) globally in time and its behavior,

e Behavior of “smooth” solutions as n — +o0.

2 n-smooth solutions of (3)

In this section we discuss the n-smooth solutions of (3). At first we define the notion of
the “smoothness” of polygons. For a polygon I' C R2, let N(I') be the total number of
sides of I'.

Definition 2.1 We say that a closed polygon I' is n-smooth, if N(I') is finite and
(1) T encloses a simply connected, bounded, open subset of R?,

(2) for everyi=1,---,N(T'), the normal angle 0; belongs to O,

(3) |6 — 0i—1]| = 2m/n for everyi=1,---,N(T).

We say a family of polygons {I'(t) }+>o is an n-smooth solution of (3) or n-smooth crys-
talline flow if, for each ¢ > 0, I'(¢) is an n-smooth polygon, each side of I'(¢) moves by the
law (3) and continuously in t.

As to the existence and behavior of n-smooth solutions of (3), we have the following
theorem.



Theorem 2.2 LetT'y be an n-smooth polygon enclosing an open set Q. Then there exist
n-smooth polygons {I'(t) }o<i<T solving (3) with the initial condition I'(0) = I'g. Moreover
['(t) shrinks to a point ast 1T T, where T 1is given by

_ %]
T= 2ntan(m/n)’

Remark 2.3 (1) This theorem is an discrete analogue of a theorem of Gage - Hamilton
[8] and Grayson [12].

(2) In [16] Taylor showed the existence of n-smooth solutions of (3) globally in time in
more general situations. But she did not obtain the behavior of solutions. '

(3) Uniqueness follows from Gurtin [13], Giga - Gurtin [9] and Taylor [16].

Outline of the proof. The proof is very similar to [16]. Using the system (4), we can
easily prove the local existence of n-smooth solutions {I'()}+>o of (3) satisfying the initial
data. Let t; > 0 be the first time this solution is no longer n-smooth. Then there are two
possibilities:

e the length of onr or more sides tend to 0,
e the solution self-intersects.

However, the latter does not happen. Assume the side ¢ vanishes at ¢;. Then we show
Xxi = 0 by contradiction arguments. This is the crucial point in the proof. Hence we observe
I'(t1) is still n-smooth and N(I'(¢;)) < N(I'(0)) — 2. We repeat this procedure starting
from I'(t1) and have only to do so finitely many times since N(I'(0)) is finite.

Let £ > 0 be the time when all sides such that x; = —1 or 0 vanish. Then I'(¢) is convex
for all t > ¢. By the above arguments we can see I'(t) shrinks to a point at finite time.

The extinction time T of I'(¢) is determined by the equality:

d ™
a|ﬂ(t)| = —2ntan -

3 Weak Viscosity Limits

Let {I'n(t) }o<t<T, be a sequence of n-smooth solutions of (3) and let ,(¢) be the open
set enclosed by I'(t). For t € [0,T), we define the upper limit {{(t)}o<t<r and the lower
limit {Q(¢) }o<t<T as follows:

) =N ( U Qn(t))

>0 |s—t|<r,0<s<T
N>1 n>N
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>0 |s—t|<r,0<s<T
N>1 n>N

Q(t) .= J int ( N Qn(t))

Assume that there is a constant R > 0 for which ,(t) C B(0,R) for all n € N and
t € (0,7). Then we have

Lemma 3.1 (1) {Q(t)}o<t<r is a weak subsolution of the mean curvature flow V = —k
in the following sense: for any family of smooth compact subsets {O(t) }o<t<T,

Vo(zo,t0) < —ko(Zo, to),
at each to € (0,T) and zo C 00(to) satisfying

Q) ccot)  Vt#t,
Q(to) CO(t), 80(to) NBO(to) = {zo}-

(2) {Q(t)}o<t<r is a weak supersolution of the mean curvature flow V = —« in the following
sense: for any family of smooth compact subsets {O(t) }o<i<T,

Vo(o,t0) = —ko(Zo, o),
at each ty € (0,T) and zo C 90(ty) satisfying

O(t) cc Q1) Yt # 1o,
O(to) C Q(to), 80(750) n 6Q(t0) = {170}

This lemma is a set-theoretic analogue of the stability result for viscosity solutions of
nonlinear PDEs by Barles - Perthame [3, 4]. Also, see Crandall - Ishii - Lions [5]. We
note that, in general, this type of the stability is a simple consequence of the maximum
principle. However, the crystalline flow is not defined for smooth curve and this fact is the
major difficulty in proving this lemma.

4 Convergence

Let 'y = 0 be a smooth Jordan curve and I',,g = 02,0 be an n-smooth approximation
of I'y satisfying
(5) Jm dr (2o, o) =0,

where dj is the Hausdorff distance. We have already known that there is a unique n-smooth
solution of (3) satisfying the initial condition I',(0) = I'no by Theorem 2. 2. Moreover, the
extinction time T;, of T',,(¢) satsifies

|90|

Let {Q(t)}0<t<T and {Q(¢)}o<t<r be as in the previous section. Then our convergence
resuls is stated as follows



Theorem 4.1 Let T'y(t) = 00,(t) be the n-smooth solution of (3) with initial data Ty
and let I'(t) = O0(t) be the smooth mean curvature flow with initial data Qy. Assume (5),
then

lim dy(2.(2), (t)) =

n—-+4-00

locally uniformly in t € [0, Ty).

Remark 4.2 (1) By the results of Gage - Hamilton [8] and Grayson [12], we know the
existence and uniqueness of smooth mean curvature flow in R2.

(2) This convergence result has already been proved by Girao [10] for convex solutions and
Girao - Kohn [11] for graph-like solutions. They also obtained the rate of convergence. We
generalize their convergence result to general curves which are not necessarily convex.

Outline of the proof. We devide our consideration into some steps.
Step 1. Q(0) = c1Q(0) = cl ©(0).

The proof of this equality is based on the comtainment principle for crystalline motions
(cf. Gurtin [13] and Giga - Gurtin [9]).
Step 2. Let d(z,t) (resp d(z,t)) be the sigened distance function for {0 )}o<t<r (resp.,
{Q(t) Yo<ier) and let (d A 0)(z,t) = max{d(a: t),0} (resp., (dV 0)(z,t) = min{d(z,1),0}).
By Lemma 3.1 we observe that (d A 0)(z,t) (resp., (dV 0)(z,t)) is a viscosity subsolution
(resp., a viscosity subsolution) of the mean curvature flow equation:

Du
(6) — |Du|div—=— =0 R? x (0,T).

| Dul
See Soner [15] and Ambrosio - Soner [1] for the main part of this proof and the notion of
the distance solution for the mean curvature flow.

Step 3. Let d(z,t) be the signed distance function for {Q(t)}o<i<my. Since {Q(t)}o<t<r, is
a smooth mean curvature flow, we have the following properties: for any § > 0, there are
positive constants o, K such that

o u(z,t) = e ®*(d Vv 0)(z,t) A o] is a viscosity subsolution of (6) with 7' = Ty — 8.

o v(z,t) = eX*(d A 0)(z,t) V o] is a viscosity supersolution of (6) with 7" = Ty — 6.
Step 4. Let T (resp., T) be the extinction time of Q(t) (resp., Q(t)) and T := min{T, Ty, T}.
Then, by the above steps and the comparison principle for viscosity solutions (cf. 5, 6, 7],
we observe

Q@) c Q) c @) Vielo,T-6).
Since cl Q(t) C ﬁ(t) by construction, we have, by letting § — 0,
Qt) =l Q(t) = Q) Ve [0,T).

By a lengthy elememtary argument we have our desired result. The uniform convergence
implies that 7' = Tp. o
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Ginzburg-Landau equation with variable coefficients
-an approach to prescribing zeros
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§1. Introduction

In this note we consider certain kinds of stable solutions (with zeros) of the Ginzburg
- Landau (type) equations. The Ginzburg-Landau (GL) equation was first intro-
duced as a model of the low-temperature superconductivity and the idea of that
formulation has been used in many fields of physics and so the similar that type
equations come into mathematical physics in many aspects. The following semilin-
ear elliptic equation can be regarded as one simplified version of the GL equations
by neglecting the magnetic effect. However it is still regarded as a good model of
those phenomena. We are interested in the stable solutions of the Ginzburg-Landau
equation (Neumann B.C.)

(1.1) AR+ A1-12*)@=0 in Q, 88/0v=0 on 80

where the unknown variable & is a C—valued function in © and v is the outward
unit normal vector on 9. Note that in this case a stable solution corresponds to
a local minimizer of the following (GL) functional

1 A
(12) Ha() = / SIVOP + 2(1 - [8[2)? ) da
o \2 4
First we note a certain property of solutions of (1.1).

Proposition 1.1. If 2 is bounded and simply-connected, any non-constant solutlon
® of (1.1) has zero in Q.

(Proof) If a non-constant solution ® does not have any zeros and € is simply-
connected, it can be expressed as

&(z) = w(z)exp(4(z)), w(z)>0, ¢:Q—R.
¢, w are as smooth as ®. Note that ¢ satisfies

o4

a0 =0 on ON.

div(w?Ve¢) =0 in Q,
From the maximum principle, ¢ must be a constant function and we have ¢(z) = c.

Denote ®e~* by ®. @ is a positive valued function and satisfies the following
equation,

A<I>+/\(1—|$I>{2)<I>=O in Q, g—f—o on 0.
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From ® > 0 in Q, we have & = 1. Consequently the solution @ is constant. [

The property of zeros of solutions arise as a mathematical subject if we consider
nontrivial solutions.

Remark. There are several related works on the zeros of solutions of GL equations
(see References). Among them, the results in Baumann-Carlson-Phillips [1], Brezis-
Bethuel-Helein [2] are excellent. They are dealing with characterization of the
locations of zeros of global minimizers of the GL functional under the first kind
boundary condition. The problem for local minimizers seem to be more interesting.
In the proof of our main result, we apply the idea in [1].

Notation.
Z[®] = {z | ®(z) = 0}.

Basically we are interested in the existence of non-constant stable solution. In
Jimbo and Morita [7], it was proved:
(%) If Q is convex, there are no non-constant stable soutions to (1.1).

We conjectured that the conclusion will be still true even if the assumption in
(%) is weakened. That is the “convex” may be replaced by “non-simply-conneced”.
However it turned out that this is not true in general. That is, there exists a
contractible domain with non-constant stable solutions in Dancer [4] and Jimbo
and Morita [8]. Note that in this example zeros necessarily arise. See Figure 1.

r__;g.‘l ! @ clomtcu‘m, woot €l ‘QQY'C

It should be mentioned that the domains of these examples are 3—dimensional or
higher and so the conjecture is still open for 2—dimensional domain. From this
reason, we consider a case of a variable coefficient equation in place of (1.1) to
construct a stable non-constant solution.

(1.3)  div(a(z)V®) + 1 —|2[*)@=0 in Q, -66% =0 on 9%,
(14 —Ldiv(a(@)Ve)+ A1 @)@ =0 in 0, 22=0 on 00
. o) v(a(z =0 i v 3= .



§2. Physical background

As we mentioned in §1, the equations (1.1) are related with the superconductivity
(or superfluid) phenomena. One of the important features those phenomena is the
vortex pinning. The vortex is trapped by some defect or some special part of the
material. This is a pattern made by a non-uniform environment of non-uniform
shape of the material. Note that the vortex corresponds to zero of . Let us
consider a thin 3—dimensional domain,

6(77) = {(‘T'? 1'3) S R3 | 0 < T3 < 770(37'), xl € Q}a 1:, = (xl)$2)

where Q C R2.

Fip . 2

The vortex is expected to stay around a narrow part of the domain. Because
solutions corresponding to realizable phenomena are local minimizers (stable solu-
tions) of GL functional and a stable solution want to make the value of the GL
energy smaller. Note that the neighborhood of the zero gives large contribution in
the GL energy and we naturally think that the solution will place its zero point
in the narrow region of the domain. It suggests that the non-uniform a may bring
a stable pattern featuring the shape of the domain. When n | 0, the Laplacian
A= Z;’ﬁl 0?/0z?% with the Neumann boundary condition on dQ(n) approaches
the operator .

mdiv(a(z')v 3
and so the GL equation in (2(77) approaches the equation in (1.4). We want to
construct a stable solution due to a non-uniform shape of domain to explain the
pattern formation of vortex pinning. (1.3) and (1.4) can be dealt with quite simi-
larly. Hereafter (1.3) is mainly considered.

§3. Main result

We consider the following equation.

(3.1) div(a(z)V®) + A(1 - |2/)@=0 in Q, g—(f =0 on 0%Q,

where @ C R? is a bounded domain with smooth boundary and v is the unit
outward normal vector on 9.
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Problem. Can we construct a non-constant stable solution to (3.1) (with zeros)?
Can we control the location of zeros by giving a = a(z) ?
Note that solutions of (3.1) are critical points of the functional:

(3.2) Hoal®) = [ (‘—’-(2’”—)|V<1>12+§(1—|¢|2>2) ds

We can give a partial answer to the problem.

Theorem (X.Y.Chen, S.Jimbo, Y.Morita). Let p1,ps,---,pN be any N distinct
points in Q. For any € > 0, there exists a variable coefficient a(z) > 0 and a stable
solution @ to (3.1) for A = 1 such that

Z[®) C Ui_, B(pk;e), #(Z[®] N B(pr;e)) =1

where B(px; €) is the ball of radius € centered at p; and #(C) denotes the number
of the set C.

Remark. This result is a sha,rper.than that of Chen, Jimbo, Morita [3].

§4. Sketch of the proof
Step 1: Punctured Domain D(p)
The main idea is to consider a punctured domain

D(p) = @\ UiL, B(pk; p)-

In such a domain we can construct a stable solution (without zero). From this stable
solution we aim to get a true solution by approximately extending that solution to
the whole . We review a previous result concerning existence of stable solution in
D(p) from Jimbo, Morita, Zhai [1].

Proposition 4.1. Let 4 be any continuous map from D(p) into S*. There exists
a Ag > 0 such that the equation

(4.1) A®+X1-|®*)®=0 in D(p), 0®/0v=0 on 38D(p)

has a stable solution @, for A > A¢ such that

(i)  2x=)#0 in D(p),
(ii)  the map D(p) 3 = — ®a(2)/|®x(z)| € S' C C is homotopic to 7.

The above stable solution @) is of course a local minimizer of the functional:

(+2) Hon@®= [ (31ver + 30 - 18P)?) ds



We can also claim a more comprehensive stability property for this solution.

Proposition 4.2 (Stability inequality). There exist § > 0, §' > 0,

(4.3) Hp()(2x +¥) — Hp(p)(22) 2 61P)[72(p,y)

for U € N(®,) such that 1%l L2(D(py) S 6" where
N(®,) = {¥ € H'(D(p);C) | / Im(U))dz = 0}.
D(p)

Remark. Prop. 4.1 holds also for higher dimensional case (cf. [9]).

Hereafter in this proof, we choose v € C°(D(p); S?) as a special one, as follows,
(#*): For any anticlockwise cycle ¢; around 8B(py;p) (which is a generator of
71(D(p))), 7 © ¢k is winding number 1 in S*.

Step 2: Construction by Variational method

We prepare a subset of H!(;C) in which we seek for a local minimizer. First we

construct an approximate solution & Ae € WH(Q), such that d re(z) = @x\(z) for
z € D(p).

&) (z) = Bx(z) for z € D(p),
|z — pi|2 ®alpr + r—"—[i:,,: )

By (z) = for z € B(pk;e),
A,E( ) 62 'Q)\(pk‘i' |z:p2:|)l (pk ) .

~ @\ (pr + =Lk

Be(2) = = Bls for 2 € B(pkip/2) \ Blpki€)

(e + 2222)]

Baule) = (1 - 222 2ye, (4

T — pi )+2|$—Pk| Ex(pr + =)
|z — pi| P |®a(pr + =2

|z—pkl

for z € B(pk;p)\ B(px; p/2),

for 1S kESN.
We define the diffusion coefficient a = a. € W1°°(Q) (uniform in € > 0).

1 for z € D(p)
(44)  ad(z)=1q ae(lz—prl)  for =z € B(px;p)\ B(pk;p/2)
e for z € B(pk;p/2)for 1Sk SN,

where

ge(r)=€(p—1)/(p/2) +(r = p/2)/(p/2) for p/2ST <)



Let us define a set

E(f,ﬂ’ 6) = {¢ € HI(Q; C) n Co(ﬁ; (C) | 'Hﬂ,ae (Q) - Hﬂ,ae(&;,\,e) g 7,

inf ||®— ew@,\,enp(p(p)) <€} (&m,e>0: positive parameters).
0s4<2r

Now we will consider the minimizing problem of the functional Hg 4, in E(£,7,€)
and seek for a global minimizer as an interior point. We can assert by the aid of
the following lemma, that the minimizing sequence can not approach OE(§,7, €) for
small € > 0.

For that purpose we prepare the following main lemma.

Lemma 4.3 There exists a constant §” > 0 and ¢’ > 0 such that
Ha,0.(8) = Ha,a (2r,6) 2 (6/2)[1@ = Bxcll}2(piey) — €
for & € E(¢,m,¢) , (B — Bxe)p(p) € N(®2), 0 < £ < 8.

(Proof) This is a straightforward calculation from the construction of ® e and the
coefficient a. and the definition of Prop.4.2.

(Sketch of the variational direct method)

Fixanyn > 0, £ € (0,6') and consider the minimizing problem of Hg q, in E(£,n,€).
Let {®m}3-, C E(£,n,€) be a minimizing sequence. That is

Jim Mo (Bm) = inf Hoe,.

(&,n,€)

We can assume without loss of generality that Hg o (®m) S Ha,a,(Bac) form 2 1.
Let 6,, € [0,27) such that

|®m — ‘I:'Ae”L‘-’(D(p))— mf II<I> — 3 |12 (D(y)

and ®'(z) = e~ ®,,. Then (&', — &, )|D(p) € N(®») natura.lly holds for each
m.
Note also Hq at(@m) =Hq,q.(®,,). From Lemma 4.3, we have

||‘I’m =& ell3apiay S Ce(6/2)7
Therefore we take €y = £26/(4c'), then

(4.6) sup | @, — 3 ellzzppy) <€ for 0<e< e.

mzZ 21

This implies that the minimizing sequence {®/,}35_; can not approach the bound-
ary. By the standard technique of the elliptic variational problem in the above
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situation, we can find a global minimizer &, of that functional as an interior ele-
ment of E({,n,¢€). We can also prove that

(4.7) lim | @ — &5l L2(p(ay) = 0.

By applying the elliptic estimate, {;I;e}e:sman is relatively compact in
C*(Q2\ UL, B(pr;30/4)) and so the above convergence in (4,7) is improved to
classical one. That is

3, — &, in CY(D(p)) as e—0.

Therefore (i) 3, # 0in D(p) and (i) . is homotopic to @ as a map from D(p)
into C\ {0}.

Considering a map @, from B(pk; p) into C with above properties (i)-(ii) with
the property () concerning v , we conclude that &, must have at least one zero
in B(px; p) for each k by the aid of the degree argument of continuous maps. We
conclude

Z[®.] N B(px; p) # 0.

To get a solution which has exactly one point in each B(px; p), we have to set up,
in the first step, the following situation. By taking po small and then taking A > 0
large,

d
(4.9) 7 418 ®a(pk + p(coss,sins)) 2 1/2 s €0, 2m)
and ®(0B(ps; p)) encloses a star-shaped region with respect to the origin (actually
it is almost the unit disk). From this condition and the smooth convergence &, —
®x in D(p) in (4.8), @, satisfles the same condition as in (i),(ii) and (4.9). For each
k, consider the variational problem

. ac A
4100 = jog [ {060+ J0- 1o}

where

By = {¢ € H'(B(px; p;C)) | 4(z) = c(x), = € OB(pi; p)}

The important point is to note that &, (restricted to B (p&; p)) is a global minimizer
of the above variational problem. Thus we are in a position to apply the Proposition
5.1, which is a characterizing theorem for a single vortex of a global minimizer of
GL type functional for a first kind boundary condition of winding number 1. We
can clain that @, has exactly one zero in B(py; p).
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§5. Baumann-Carlson-Phillips’s result (modified version)

Let G C R? be a contractible bounded domain with a smooth boundary and g €
C'(8G; C) satisfy the following condition:

(A) g: G 3> s — C\ {0} is widing number 1 and its image encloses a star-shaped
domain with respect to the origin and (d/ds)argg(s) > 0 for s € 0G, where s is the
canonical parameter which is anti-clockwise on 0G.

Let us consider the following functional
b
(5.) 7o) = [ (Livar + Lxer) ) e
G

for ® satisfying ®5¢ = g, where a = a(z) > 0, b = b(z) are real valued Holder
continuous function in G and K = K (r) is a real valued C?! function in R.

Proposition 5.1. Assume (A). Let ® be a global minimizer to the above variational
problem (5.1). Then ® has exactly one zero in G.

Remark. The case a = b = 1 is celebrated result due to Baufnann, Carlson,
Phillips [1]. The proof is quite similar as that in [1]. We need this modified version
for the proof of the main result.
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ON THE INVERSE CONDUCTIVITY
PROBLEM WITH FINITE MEASUREMENTS

HYEONBAE KANG AND JIN KEUN SEO

1. INTRODUCTION

Let Q be a bounded domain in R™ with a connected C? boundary. Let D be a
subdomain of 2. Assume D and § are both conductor of elasticity with conductivity
coefficients 1 and k(0 < k # 1), respectively. We are interested in determining the
size and location of unknown object D from the relationship between a given flux ¢
to the boundary of the body  and measurement of the voltage u on a portion of the
boundary 0S2. The voltage u satisfies the Neumann Problem

Lpu:=div((1+ (k- 1)xp)Vu) =0 in
PID.gl: {%z on 01, aQu——-O,
where 0 < k # 1 and xp is indicator function of D and v is outerward unit normal

vector. Let us define the Neumann-to-Dirichlet map Ap : L2(9Q) — H'(9Q) by

Aplg) = ulon, g€ I3(Q) = {y € L*(0Q) - /a 6=0)

where u is the solution of the Neumann problem P[D,g]. Clearly, the size and
location of the object D influence on the relationship between the Neumann data ¢
and the corresponding Dirichlet data f = u|q. Conversely, the pair (g, f) has some
information on D. The inverse problem is to determine D from one (or two, three,...)
pair (g, f). In this note, we will discuss about the following two important questions:
[Uniqueness] Does Ap,(g) = Ap,(g) on a portion of OQ imply Dy = Dy?
[Stability] If |Ap,(g9) = Ap,(9)|lz2(aq) is small, is | Dy \ Da| + | Dy \ D;| small ?

Authors are partially supported by GARC-KOSEF, KOSEF, and BSRI, 1997.

Typeset by ApS-TEX



Here, we assume D; C  and |E| is the Lebesgue measure of the set E.

However, in one dimension, Ap,(g) = Ap,(g) for non-zero g if and only if [D;| =
|D2|. Indeed, this uniqueness and stability do not hold in one dimension. But we
have some uniqueness and stability result within a restricted class when n > 2. We

will first explain the uniqueness result

UNIQUENESS RESULT

The uniqueness question with m— measurements can be stated as follows:

Suppose that D; and D, are subdomains in Q. Can we choose appropriate func-

tions fi, f2,.., fm so that if u;,z = 1,2,5 = 1,...,m, is the solution to P[D;, f;l,

1 _

uf,j =1,...,m, on 00 imply Dy = D,?
Throughtout this section, we assume that u; are the solution of P[Dj,g] (j = 1,2)

and ¢ is not identically zero. Let u = k — 1. By setting
u® = ulg\p and u' = ulp,

the equation div((1 4+ pxp)Vu) = 0 may be written as
Au®=0 inQ\D,

Auv'=0 in D,

u® =u' on 8D
Ou® k@ui
ov v
From integrating by part, we obtain the following useful identity
[a+ i) —w)fdetp [ Vuaptie
Q

D2\Dy

on 0D.

- / (Aps(9) — Apy(9))gdo + g / Vusl?da.
a0 D1\D->

So,if D; C Dy , u> 0 and Ap,(g9) = Ap,(g), then it must be
VUQ =0 in D2 \.D1

If D, \ D; contains a non-empty openset, it follows from unique continuation theorem
that us is constnat in 2. But this is not possible from the condition that g is not

identically zero.) So, one can arrive the following:

2



Theorem. If D; C D, and Ap,(g9) = Ap,(g), then Dy = D,.

It is easy to see that if u1 = us = f on 9%, then D; N Dy is not empty set. Indeed,

it follows from the harmonic continuation that
U = Uy IHQ\Dl U.Dz.
By the maximum principle, we have

m - < —
e it SA

Hence, if eithor Dy = Dy or Dy N Dy = 0, uy = up in Q. It follows from unique
continuation that Dy N Dy = @ implies that ¢ is identically zero. So, if g is not
identically zero, it must be that D; N Dy is non-empty.

A lot of research has been devoted on the uniqueness question within restricted
classes of domains. Friedman and Isakov [FI] proved that if D; and D, are assumed
to be convex polyhedrons so that diam(D;) < dist (D;,09Q),7 = 1,2 and if, for
nonzero g € L?(9R), the solution u; of P[Dy,g] and the solution uy of P[Ds,g]
satisfy u; = ug on 0Q, then Dy = D,. Barcelo, Fabes, and Seo [BFS] are able to
remove the above distance restriction with an appropriately chosen Neumann data

g. We will explain this uniqueness results for the class of polygon when n = 2.

Theorem. Let Dy, D, be two polygons compactly contained in Q. Let g be a nonzero
piecewise continuous function on 0 so that {z € 0Q : g(z) > 0} is connected.
Suppose ui,t = 1,2 are the solutions to the Neumann problem N(D;,g). If uy = us
on 02, then

convex hull Dy = convex hull D,.

Seo [S] remove the convexity restriction on D; when n = 2 with cost of two

measurements.

Theorem. Let Di,D; be two polygons compactly contained in 2. Let g1, go be

two nonvanishing piecewise continuous functions on 0S) with average zero such that

3



for each real o, the set {z € OQ : ¢1(z) — apo(z) > 0} is connected and g1 is not

identical to ags. Suppose uf,i,j = 1,2 are the solutions to the Neumann problem

P(D;, g;). If'u{ = u%(j =1,2) on 0L, then
D, = Ds.

Recently, we are able to answer the uniqueness questions within the class of disks
or balls. (See [KS2] for balls.) Previously, Friedman and Isakov proved the uniqueness
of the disk with one measurement when  is assumed to be the half space [FI]. Isakov
and Powell [IP] extend this result to the union of disjoint disks contained in the half
space under a certain condition. Kang and Seo [KS1] remove the condition that () is
the half space, and prove that any disk contained in a Lipschitz domain { in R? can
be uniquely determined with one measurement. In the paper [KS1}, we introduce a
useful represention formula which states as follows:

The solution u to the Neumann problem N[D,g] can be decomposed into the

harmonic part and the refraction part, namely,
u=H + Sphp

where H is a harmonic function in Q, Sp is the single layer potential on D, and hp
is uniquely and explicitly determined by the domain D and the harmonic part H.
Moreover, H can be computed explicitly from the boundary measurement (g, Ap(g))
and H is decomposed by two different singular integarls. This representation seems
to somehow inherit geometic properties of 0D and can be applied to the inverse con-
ductivity problem to find D. Moreover, this formula is so concrete that a numerical
implementation is possible (see [KSS2]). We apply it to prove the uniqueness of the
disk and the ball. The uniqueness of ball in three dimensional space has been open

for a while. (see [I] ) Precise statement of the result is as follows;

Theorem. Let Q be a bounded simply connected Lipschitz domain in R"*(n =
2,3,..). Let g € L3(0R) (not identically zero). If Ap,(g) = Ap,(g), then By = Bs.

Here, By and B, are disks or balls compactly contained in (2.
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To prove this Theorem in R3, we investigate the smallest closed convex set E;
where the harmonic function Sp;¢;|rs\p; extends R®\ E;. Using special properties
of the single layer potential on balls, we are able to derive E; = E, and B; = Bs.

Recently, Fabes, Kang and Seo deals with the uniqueness and stability within the
class of small perturbation of disks. To explain this result, let us fix the notion of
e—perturbations of disks. For a C? domain D being an e—perturbation of a disk
means that there exists a disk B C Qo of the radius larger than a fixed number, say
do, such that >

0D : P+ ew(P)v(P), Pe€dB

where ||we|lc1ap) < 1 and v(P) is the outward unit normal to 8B at P. Let Cle]
be the class of all e—perturbations of disks contained in the region Qo := {z € Q :
dist(x, 0Q) > do} where &y is a fixed positive number. |

Theorem. Let g € L§(0Q) and Do € Cle], and let Ap,(g) = f. If D € C[e] and
Ap(g) = Ap,(g), we show that

|DoAD| < Ce

for some constant depending on (f,g) not on D or e.

Of course this is not a uniqueness result. What it says instead is that if the bound-
ary measuements are the same then two domains must be very close. For this reason
we call this result an approximate identification. It seems that this approximate
identification of a domain is quite meaningful in a practical sense.

There are some local uniqueness results( see [BFI], [P], [AIP]) which we will not

explain here.

STABILITY RESULT

In the paper [BFI], Bellout, Friedman, and Isakov obtained a local stability result
and local uniqueness results when n = 2 under the assumption that two objects are

sufficiently close.



Theorem [BFI]. Let n = 2. Let Dy be piecewise analytic boundary given by
z = f(s) and let
ODy, : x = f(s) + hdn(s)v(s) a.e.

where |dp| 4+ |Vdy| < C and d, — 0 as h — 0. Assume that the set {dy # 0} consist
of a finite number of components. Suppose that the Neumann data g € C*(9) have

a unique local maximum and unique local minimum on 9S). Then
dist(Dy, Do) < C [ |Ap,(9) — Ap(9)]
o

where C may depend on the family {ds}.

Kang, Seo, and Sheen [KSS1] obtain first global stability estmate (log type) when
D; is assumed to be disk. Fabes, Kang, and Seo[FKS] obtain hélder type gloal
stability estimate for the class of small perturbation of disks under a certain condition

on g. The result for disks states as follows.

Theorem. Let g be a Neumann data with the the following condition (N).

(N1) There exists a positive number M such that |g'(P)| > M if |g(P)| < M,
P € 0Q. (Here, g’ means the tangential derivative on 92.)

(N2) {P € 8Q : g(P) > 0} and {P € 99 : g(P) < 0} are nonempty connected
subsets of 0f1.

There exist & > 0 and C depending only on &y and do such that

(3.1) |D1AD;| < C||Ap,(9) — AD2 (9T (a0)

for every disks Dy,D; €C [0]

The condition (N) guarantee the existence of the lower bound of |Vu| which de-
pends only on M when D € C[e] and u is the weak solution to P[D, g]. (See [KSS1].)
To extend this global stability result for diskes to small perturbation of diskes,
we need uniform stability of the solutions to P[D, g] under C L perturbation of the

domain D. If h > 0 and D}, be a C? subdomain of § such that the Ch@ distance
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between D and Dy, are less than h. Let u and uj, be weak solutions to the Neumann

Problems P[D, g] and P[Dy, g], respectively. We prove that
||u - ’Lth”Loo(Q) S Ch.

This type of stability question of the solutions to the diffraction equation was
considered by Bellout, Friedman, and Isakov in relation to the stability question of
the inverse conductivity problem [BF, BFI]. They proved the LP-stability when p < 4.

The proof of the diect stabilty estimate is based on our earlier result on the repre-
sentation of solutions to P[D, g]. In [KS] authors proved that the solution of P[D, g]
can be represented as sum of a function harmonic in 2 and a single layer potential
of a certain function on dD. Then, standard Schauder estimates and precise local
estimates of integral operators arising from the layer potentials and their derivatives

lead us to the estimate.

Using this uniform stability estimate, we obtain the global uniqueness and stability
for the class C[e]. To be precise, we prove that, for a Neumann data g satisfying the

conditon (N),
D1Ds| <€ (IAD,(9) = Apa(@)lI§=(omy +€)

for every Dy, D, € C[e] and for some constants C' and o < 1 independent of e.
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1 Introduction

In this abstract, we consider the following first-order PDE of max-min type
under a boundary condition which will be derived from state constraint re-
quirement:

u(z,y) + H(z,y, Dyu(z,y), Dyu(z,y)) =01in Q x Q, (1.1)
where the (upper) Hamiltonian is

H(.’E, Y,D; Q) = max min{“(f(xa a)7p> - (g(ya b)7 q> - h(.’E, Y, a, b)}
a€A beB
for (z,9,p,9) € @ x @ x R" x R". Here A and B are compact sets in R™,
for some integer m, € is an open bounded set in R", f : 2 x A —» R" and
g: Q2 x B — R" are given functions, and u :  x @ — R is unknown. Also,
D, and D, denote the partial derivatives with respect to z € R" and y € R",
respectively.

It is well-known that this kind of min-max PDE arises when we discuss
differential games. More precisely, we can expect that the unique solution of
(1.1) under certain boundary condition must be the “value function” of the
corresponding differential game.



A particular interest for game theorists is the case when h = 1, which
is called “pursuit evasion game”. Via the viscosity solution theory, Aliziary
de Roquefort first studied a simple case of the pursuit evasion game under
state constraint requirement. Recently, following the setting in [8], Bardi,
Koike and Soravia in [3] discuss the uniqueness and representation formula of
solutions and the convergence of numerical schemes for more general pursuit
evasion games.

Our aim here is to give a key idea of the uniqueness result in [3] and to
show that it works even for the above slightly more general PDEs than those
in [3].

2 Value function

In this section, we recall the value function for (1.1) with state constraint
requirement.
First, we give our regularity assumption on given functions:

feC(lx AR, sug | f(-, a)|lwreomrny < 00,
. a€
(A0) g€ C(Q2 x B;R"), sup llg (-, b)llw1.ee(srm) < 00,
and h € C(Q x @ x A x B;R).
Let us recall the state equation corresponding to (1.1): Given measurable

functions a € A = {a : [0,00) — A measurable} and g € B= {§:[0,00) —
B measurable}, we denote by (X (-;z,a),Y(:;y, 5)) the unique solution of

X'(t) = f(X(¢),a(t)) fort>0,
Y'(t) =g(Y(t),8(t) fort>D0, (2.1)
(X(0),Y(0)) = (z,y).
We define the subsets of A and B, which involve the state constraint
requirement: For (z,y) € Q x Q,

A(x) ={a € A| X(t;z,a) € Q for all t > 0},

and
B(y) ={B € B|Y(ty,3) € Q for all t > 0}.



We will suppose certain hypotheses which imply that A(z) # 0 for z € Q,
and B(y) # 0 for y € Q.
Next, we introduce the set of strategies:

Dla,y) = { 71 Alz) = By)

If a =dae in (0,t) fort > 0,0, &
€ A(z), then v[a] = y[a] a.e. in (0,1).

Using these notations, we define the value function: V : @ x @ — R by

V(z,y) = sup inf Oo6"th(X(t;x,a),Y(t;y,v[a])ﬂ(t)m[a](t))dt
,yep(x’y)aGA(z) 0

At least formally, we can verify that V satisfies (2.1) in Q x Q. See [5]
and [4] for instance.

Following (7], we shall adapt the notion of A(z) and B(y) for (z,y) €
QxQ:

: o, —
A(x):{aeA’ There is r > 0 such that X (¢;2',a) € Q }’

for t € [0,7],2' € B(z,r)NQ
and

i h 6y Q
B(y):{beB, There is 7 > 0 such that Y'(¢;¢/,b) € O }

fort € [0,7],y' € B(y,r)NQ

We note that A(z) = A and B(y) = B provided z € Q and y € §, respec-
tively.
In what follows, we suppose the hypothesis:

(A1) A(z) # 0 for z € 99, and B(y) # 0 for y € 9.

We shall consider the PDE in Q x 2 for the boundary value problem of

(1.1): o
u(z,y) + H(z,y, Dyu(z,y), Dyu(z,y)) =0 on Q x 0, (2.2)

where

H(z,y,p,q) = Jnax, bgg){—(f(x, a),p) — (9(y,b),9) — h(z,y,a,b)}

for (z,y,p,q) € 2 x O x R"* x R™.



Definition. A function u in 2 x ) is called a viscosity subsolution (resp.,
supersolution) of (2.2) if, for any ¢ € C'(2 x Q), (x0, %) € argmax(u* —
¢)(z,y) (resp., (o, Yo) € argmin(u, — ¢)(x,y)) yields

u* (0, Yo) + Ha(To, Yo, Dzd(To, Yo), Dyd (0, %0)) <0

(resp., Uy (x()a yO) + H*(JCO, Yo, Dz¢($0, yO)a Dy¢(x07 yO)) Z 0) .

A function v in § x € is called a viscosity solution of (2.2) if it is a vis-
cosity sub- and supersolution of (2.2).

Remark. Because of the lower semicontinuity of the mappings z €  —
A(z) c 24 and y €  — B(y) C 27, it is easy to observe that the following
properties hold: For (p,q) € R" x R",

H.(z,y,p,q) = sup min{—(f(z,a),p)—(g(y,?),¢)~h(z,y,a,b)} on oOxQ,

a€A(x) beB

and

’H*(.’I), Y, D, q) = max inf {_<f(xa a)ap>_<g(yv b)7 q>-—h(Z, Y, a, b)} on {2x 9.
a€A beB(y)
For the other cases, H, and H* are equal to H.
The sub- and superscripts * in the above denote the lower and upper
semicontinuous envelopes, respectively. See [2] for the standard notations.
We shall omit the terminology “viscosity” since we only treat viscosity
solutions.

3 Comparison Principle

In order to show that “subsolutions < supersolutions in Qx”, we will adapt
two different methods; the one is Soner’s technique in [9] which is available
only when the sub- or supersoultion has some continuity condition. The
other was originally developed by Dupuis-Ishii for oblique boundary value
problems. We will barrow a “test” function from [8] for this technique.

We refer to [6] and references therein for the latter technique. We also
refer to [7] for a similar one to the state constraint problem.

We will combine these ideas in the argument below.



However, to our knowledge, it seems hard to obtain the comparison prin-
ciple for (2.2) directly without assuming any continuity for sub- or superso-
lutions.

On the other hand, the formal value function may be expected to be the
unique solution under some hypotheses and also it may be possible to show
that it is a continuous solution of (2.2).

Therefore, we will suppose that the value function is a continuous solu-
tions of (2.2) even for the comparison principle. In [3], we give some suffi-
cient condition which yields that the value function is a continuous solution
of (2.2).

We remark here that, although we suppose the existence of continuous
value function, our comparison result holds among possibly discontinuous
solutions. Therefore, it is impossible to have a discontinuous solution un-
der our hypotheses since our comparison principle implies the continuity of
solutions.

Following [7], we shall suppose the following:

(42) For any = € 012, there are r,0 € (0,1), and & € cof(z, A(x))
such that 2’ + B(t£,t0) C Q for t € (0,7) and 2’ € B(z,r).

and

(42) For any y € 0Q, there are ,0 € (0,1), and 71 € cog(y, B(y))
such that y' + B(tn,t0) C Q for t € (0,7) and y' € B(y,r).

Our comparison result is as follows:

Theorem (Comparison principle) Assume that (A0), (A1), (A2) and
(A2') hold. Let u and v be an upper semicontinuous subsolution and a lower
semicontinuous supersolution of (2.2), respectively. Assume that the value
function V is a continuous solution of (2.2).

Then, v < v in Q x Q. More precisely, u <V < v in Q x Q.

Before going to the proof, we prepare to a result from [8]:

Lemma (Lemma 6.1 in [8]) Assume that (A0), (Al) and (A2) hold.
Fix o € 09, and £ € R" and 6 € (0,1) in (A2). There exist constants

5.



o, Co, C1, >0 and p € C*(R") such that

(1) colzl® < @(2) < Col2f* for z € R,
(2) |Dy¢(z)| < Ci|z| for z € R",
(3) (€, Dy(z)) < 0if 2 € |J B(t€, 0¢) and € € B(,7).

t>0

Sketch of Proof of Theorem: We shall only show u < V in  x Q since
the other assertion can be done similarly.

As in the standard proof of comparison principle for viscosity solutions,
we shall suppose

max {u(z,y) - V(z,y)} =O > 0.
(z,y)€EQXQ
Then, we will get a contradiction.
Let (2o, o) € © x Q be a maximum point of u — V over Q x Q. We may
suppose that it is unique in view of the standard perturbation technique.
We shall only give a brief proof of the hardest case;

(.’110, y()) € 0N x Of.

Following the standard argument, we consider the function ® on  x Q x
QxQ— Rby

(DG(I’ Y, xl’ y,) = ’U,(.'L', y) - V(xla y,) - ¢€(IE, Y, CL',, y,)

for a C'! function ¢., which will be chosen later. We will derive a contradiction
at the maximum point (2., ye, =, 9") of & over @ x Q x Q x Q.
In our argument below, we will avoide the cases when z. € 0f) and
y! € 0N for small € > 0. For this purpose, our “test” function here is chosen
by
plz—a) (Lz-d)
€t €

+

y—y
be(z,y,2',y') = le

2
of
where ¢ and 7 come from the assumptions (A2) and (A2') for z = zo and
y = yo, respectively, and ¢ is the function in Lemma associated with zo € OS2
and &.

Let (2, ye, 7., 9.) be the maximum point of ®. with the above ¢.. We
shall omit the subscript € in what follows.
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The standard argument with the continuity of V' (with respect to y vari-
able in this case) gives the properties:

limc,o(z,y,2',y") = (o, Yo, Zo, Y0),

)
(Zi) lim_,g Jx_;f“lﬁ =0, (3 1)
(i) Time 0| 5L +n| =0, '
(tv) limesou(z,y) = u(zo, Yo).

Recalling (A2') with (ii3) of (3.1), we can check that y' € Q for small € > 0.
Now, we shall show that x €  for small ¢ > 0. In fact, otherwise, the
definition of u yields that, for any a € A(x,),

02 pip{- (£, 2L E) R

beB et

Notice that C includes the “h” term.
Hence, taking the same convex combination as for £ € cof(zo, A(xo)), we
find ¢ € B(&,r) (with 7 > 0 in Lemma) such that

C(H@) 2_<§I,9w_@;—_x’>_§>21}_@

for some v > 0. Here, we have used (ii%) of (3.1) and (3) of Lemma.
Thus, for small € > 0, we get a contradiction.
Therefore, the definitions of sub- and supersolutions, we have

u(z,y) = V(',y') < H(@,y, Ded(z,y,7",y), Dyd(z,y,2',y'))
—H(J?, Y, D:l:¢(xa Y, xla yl)a Dy¢($a Y, .’L", y’))

It is sufficient to check that the right hand side of the above goes to 0 as
€ — 0. This assertion can be checked by the standard calculation with (3.1).
We leave it to the reader. (See [3].) QED
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THE RIEMANN PROBLEM FOR A SYSTEM
OF CONSERVATION LAWS OF MIXED
TYPE BY THE VISCOSITY APPROACH

CHOON-HO LEE

ABSTRACT. We prove the existence of solutions of the Riemann problem for a system
of conservation laws of mixed type using the viscosity method which was developed
by Dafermos and characterized the solutions of that problem.

0. Introduction

In this paper we have a concern with the initial value problem

(0‘1) U + F(U)x =0,
U_ <0
(0.2) U(z,0) = {U+ z>0,

where F' : R® — R" is continuously differentiable, and U_, Uy are assigned vec-
tors in R™, which is called the Riemann problem. For n = 1 equation (0.1) is a
generalized form known as Burger’s equation

(0.3) Up — Uy = Ulgg
with the viscosity term. Cole[1] and Hopf[5] found a transform

U= —2/12
v

which converts (0.3) into a linear heat equation
(0.4) ' UVt = gy

They investigate some properties of solutions of (0.1) using the explicit solution of
(0.4) as p — 0. This idea was developed by Kalashnikov([7] and Tupciev[11][12].
They used to the viscosity term eu,, in the general form

(0.5) ug + f(u)e =0,

1991 Mathematics Subject Classification. 35145, 35L65.
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and proved the existence of solution of (0.5) by vanishing the viscosity term. This
method is available in case that f is not genuinely nonlinear in the sense of Lax|[8].

In this paper we study the existence and properties of solutions of the Riemann
Problem for a 2 x 2 system of conservation laws of the mixed type

ug — f(v)e =0,

(0.6) v — glu)e = 0

with the initial data

(u+,v+) z >0,
(u—,v-) z <0.

(0.7) (u,v)(z,0) = {
Here we assume

(I) f € C?(R) is a strictly increasing convex function.

(1) g € C%(R) and there exist «, 3, n with o < 7 < 3 such that

g'(u) >0ifu ¢ (a,B) and ¢'(u) < 0 for u € (a, B),
g"(u) <0ifu<mnand g"(u) > 0if u>n.

(IIT) g(u) — +o0 as u — +oo.

If f(v) = v, then the typical model of equation (0.6) is the one-dimensional isother-
mal motion of a compressible elastic fluid or solid in the Lagrangian coordinates.
In this case the existence of solutions to the Riemann problem (0.6), (0.7) has been
studied by Dafermos [2], Dafermos and DiPerna [3], Fan [4], James [6], Slemrod [10].
Our approach was based on a vanishing ”viscosity” term pursued by Kalashnikov
[7], Tupchiev [11] [12]. Their idea is to replace (0.6) with the system

us — f(v)z = etugy,

0.8
(08) v — g(U)z = €tvgy

for z € R, t > 0 and construct solutions as the limit of the solutions of (0.8), (0.7)
as € — 0+. Since the system is invariant under the transformation (z,t) — (az, at),
where a > 0, (0.8) and (0.7) admit solutions of the form (ue(€), ve(£)), where £ = £.
A simple computation shows that u = u.(£),v = v.(£) are solutions of (0.8) and
(0.7) if they satisfy

—&u' = f(v) = eu”

"

(0.9)

—&' —g(u) =ev
with the boundary conditions
(0.10) (u,v)(£o0) = (ut,v4)

where ' = Edg' and " = ;—;. We shall call the boundary value problem (0.9) and

(0.10) the problem (P.). Similarly the initial value problem (0.6) and (0.7) are
called the Riemann problem (P).




THE RIEMANN PROBLEM FOR A SYSTEM OF CONSERVATION LAWS OF MIXED TYPRB

This paper consists of three sections. In Section 1 we establishes that if the data
are in different phases there is a solution of P. which exhibits one change of phase.
In order to prove the results, we use the arguments of Dafermos [1] and Slemrod [6].
In Section 2 we discuss the existence of solution to the Riemann problem to give
conditions on which solutions of P, possess limits. In order to prove this we use
the uniform bounded variation of solutions of the problem (P.) and the Helley’s
theorem -the convergence on the bounded variation functions. In Section 3 we
study the properties of solution of the Riemann problem (P).

Throughout this paper we always assume Assumptions (I) and (II) unless other
mentions it.

1. Existence of solutions of Problem (P,)

In this section we will prove the existence of solutions of Problem (P). In order
to prove this we first consider the following equation

evw = —&u' — pf(v),
(1) e = —¢/ — pglu,
(ua U)(iL) = (u:i:a U:I:)>

where L > 1, and 0 < p < 1. Using the Leray-Schauder fixed point theorem, we
can prove

Lemma 1.1. Let u_ < a, uy > 3. If there exists a constant M such that every
possible solution of (1.1) with u'(§) > 0 when a < u(£) < B satisfies the a priori
estimate

(1.2) sup ([u(§)] + |[v(§)]) < M,
lelI<L

then problem (P.) has a solution with u'(§) > 0 if a < u(€) < B.

In order to obtain the a priori estimate we use the behavior of solutions of (1.1)
which is modified by Lee [9]. The following lemma is originated by Dafermos [1]
and Slemrod [10].

Lemma 1.2. Let (u(§),v(£)) be a solution of (1.1) on [—L, L], p > 0 with u'(§) >
0. Then we have:

(1) On any subinterval (11,12) for which g’(u(€)) > 0 one of the following holds:

(1) u(§) and v(§) are constant on (ly,12).

(it) v(€) is a strictly increasing(or decreasing) function with no critical
points in (I1,12); u(§) has, at most, one critical point in (I1,ls) that neces-
sarily must be a mazimum(or minimum).

(i) u(§) is a strictly increasing (or decreasing) function with no crit-
ical point in (l1,12); v(§) has, at most, one critical point in (l1,l3) that
necessarily must be a mazimum(or minimum,).



4 CHOON-HO LEE

(2) On any subinterval (I1,l2) for which ¢'(u(§)) < O the graph of v = v(u) is
convex(or concave) at points where u'(§) > 0(or u'(§) < 0).
(3) If a < u(f) < B, then u and v can have no local mazima or minima at §

for which u(§) = a or u(§) = G.

If the initial data lies in the different phases, the properties of solutions of (1.1)
is as follow.

Lemma 1.3. Assume that u_ < o, us > B and let u(§), v(§) be a solution of (1.1)
with p > 0 for which u'(§) > 0 when o < u(§) < B. Then one of the followings
holds:

(1) No extremal points: u(§), v(§) have no local mazima or minima on [—L, L].
They are non-constant and monotone, u being monotone increasing.

(2) One extremal point: (a) u(§) has a minimum at some {_, u(€-) < u—; v(§)
is decreasing on [—L,L]. (b) u(€) has a mazimum at some &4, u(€+) > uy;
v(€) is decreasing on [—L, L]. (c) v(€) has a mazimum at some n_ (or N4 );
u(n-) < a (or u(ny) > B) and u(&) is increasing on [—L, L]. (d) v(€) has
a minimum at some 1; a < u(n) < B and u(§) is increasing on [—L, L].

(3) Two extremal points: (a) v(€) has a local mazimum at n— (or ny) and a
local minimum at 1, u(§) is increasing on [—L,L] and u— < u(n-) < o
(or uy > u(ny) > B), a < u(n) < B. (b) u() has a minimum at &_,
u(é-) < u—; v(€) has a local minimum atn, n > &, a < u(n) < B. (c)
u(€) has a mazimum at &4, u(€4) > uy; v(€) has a local minimum at 7,
n<é&t, a<u(n) <p.

(4) Three extremal points: (a) v(§) has local mazima at n—, N4+ and a local
minimum at n, n- < n < ny; u(€) is increasing with u— < u(n-) < a,
a<um) <B,B<u(ny) <usp. (b)u(€) has a minimum at £, u(é-) < u—
and mazimum at &4, u(€+) > ut and v(§) has a local minimum at 7,
E-<n<&, a<u(n) < pB. (c) u(§) has a minimum at {—, u(é-) < u_,
v(€) has a local minimum at n, o < u(n) < B and a local mazimum at Ny,
D < uny) <, £ <7< e () u(E) has o mazimum at &, u(€s) > u, .
v(€) has a local mazimum at n—, u_ < u(n-) < a, and a local minimum at
n, a<u(n) <6

. ‘C_ombining Lemma 1.2 and 1.3, we have the a pﬁom’ estimate of solutions of
(1.1)

Lemma 1.4. Assume vy < v— and u—,uq < afor v— < vy andu—_,uy > ().
Then there is a constant M such that every possible solution of (1.1), 0 < p < 1, sat-
isfies the a priori estimate (1.2), where M depends at most on u_,u4,v_,v4,¢€, f, g
and is independent of p and L.

Lemma 1.1 and 1.4 imply

Theorem 1.5. Ifu_ < a, uy > 0 (oru_ > a, uy < B), there are solutions
(ue(€),ve(§)) of (Pe) satisfying u'(§) > 0 when a < u(f) < B.

2. Uniform boundedness of solutions {(u¢(),ve(§))}
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In this section we state that the solutions {(ue(£),ve(€))} of (1.1) is uniformly
boundedness.

Lemma 2.1. Under the assumption I and II, the set {(ue(f),ve(ﬁ))} is uniformly
bounded independent of €.

Using Lemma 2.1 and Helly’s theorem, we can prove the existence of weak solu-
tion of (1.1)

Theorem 2.2. Under the assumption I and II, there exists a weak solution of (0.6)
and (0.7).

3. Properties of Solutions

¢{From Section 2 we have known that the set {(uc(£), ve(€)} is uniformly bounded
in e. We will consider uc(§)(ve(€), respectively) as a multivalued function of
Ve(ue, respectively). For convenience, we parameterized the curve v = V(u) by
(U(s),V(s)) where s is the length of the arc of v = V(u) joining (u_,v_) and
the point (U(s),V (s)). Since the curve v = V(u) does not intersect itself, the
parameterization is bijective. In this kind of parameterization, s increases when ¢
increases. We call the curve (U(s), V (s)) the base curve of the solution (u(£), v(£)).

Now we study the discontinuities of (u(¢), v(£)). Let & be a point of discontinuity
of (u(§),v(£)). Denote C¢, by the portion of the base curve in the (u, v)-plane that
connects points (u(§o—),v(§o—)) and (u(&o+),v(o+)). We fix (i4,9) € C¢,. For n
large, we define &, (u; @, 7) to be the branch of the inverse function of u = u., (£)
for which

(3.1) Ve, (&, (B;T, D)) —

as n — oco. For n large, we define &, ., O, by the relations
(3-2) €en = £en (T) + €€,

(3.3) Ve, (€) = ve, (§n),

(3-4) te,, (€) = e, (6n),

Lemma 3.1. Let & be a point of discontinuity of (u(€),v(£)). Then for any
(@, ) € Cg, it follows that
(a) if U(s) is increasing (decreasing) at (i, ), then

—&o(@ —u(éo—)) — (f(0) = f(v(é—))) 2 0 (L 0).

(b) if V(s) is increasing (decreasing) at (@,v), then
—&0(0 — v(é—)) — (9(2) — g(u(é—))) >0 (L 0).
Moreover we can change all £o— to &o+.

Next theorem show that the solution u(€) of (0.6) must lie in the a-phase (—o0, ]
or B-phase [, 00).
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Theorem 3.2. u(&) takes no value in (o, ) and may take at most one of o and
G as a value.

Since the base curve (U(s), V (s)) is oriented in the direction in which s increase,
we can talk about the right and left sides of (U(so), V(so)) for the portions of the
curve with s < sp and s > sg respectively. We define

(3.5.a)
(1 if both U(s) and V/(s) are strictly increasing or strictly

decreasing at s,
S(U(s),V(s)) = ¢ —1 ifboth U(s) and — V(s) are strictly increasing or strictly

decreasing at s,

{ 0 otherwise

S(U(s0), V(s0); +) = lim, S(Us),V(s))
S(U(s0), V(s0) =) = lim_S(U(s),V(s))

So—

(3.5.b)

If U(s) or V(s) attains a local extremum at s = sq(ors = sg) in the region u < a
(or u > (), we set
);V(sa))

(8a
(s8),V(sg))-)

v(€)) if (u(€),v(§)) is‘constant in some

(or (ug,vg) =

(u1,v1) is called a constant state of (u(§
interval of R.

(Uasva) = (U
U
),

Lemma 3.3. The solution (u(¢),v(€)) has no constant state other than (u—,v-),
(ut,v4) and possibly (uq,va) and (ug,vg).

Let £y be a point of discontinuity of solution (u(€),v(§)). Then

S(u(éo—), v(éo—); )V —F'(v(€o—))g(u(éo—)) = &
> S(u(éo+), v(éo+); =)V —F (v(€o+))g(u(éo+))-

If u(€) or v(€) is strictly monotone from the left at §o € R, then

(3.7a) €0 = S(u(éo—),v(&—); =)V —f' (v(&0—))g(u(éo—))-

If u(€) or v(€) is strictly monotone from the right at {o € R, then

(3.6)

(3.7b) g0 = S(u(bo+),v(&o+); +)v/—F (v(&o+))g(u(éo+))-

Combining these facts and Lemma 3.3, we have

Theorem 3.4. Let & be a point of discontinuity of (u(§),v()). If (u(éo—),v(é0—))
(OT (u(§0+)>v(£0+))) is dz’jj’er from (u_,v_), (U+,’U+), (ua7va)7 (Uﬁ,’vﬁ), then 50
is a contact discontinuity from the left (or right).
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Corollary 3.5. (a) At least one of (u(0—),v(0—)) and (u(0+),v(0+)) is a con-
stant state of (u(§),v(§)). Furthermore, £ = 0 is either a point of continuity of
(u(§),v(§)) or the phase boundary (at which the shock jumps from one phase to
another).

(b) Besides the constant states and the phase boundary, (u(€),v(€)) consists of
shocks and simple waves of the first kind for € < 0 and of the second kind for € > 0.
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EXISTENCE OF BOUNDARY OPTIMAL CONTROL FOR THE
BOUSSINESQ EQUATIONS
HYUNG-CHUN LEE

February 20, 1997

ABSTRACT. This paper deals with Neumann boundary optimal control problems
associated with the Boussinesq equations (including the solid media). These prob-
lems are first put into an appropriate mathematical formulation. Then the existence
of optimal solutions is proved.

1. INTRODUCTION

We study boundary optimal control problem for an steady natural convection fluid.
The control is heat flux on the portion of the flow boundary. 4

We consider the nondimensional Boussinesq equations (including the solid media)

as follows:

(1.1) —PrAu-l—(u-V)u:—Vp+PrRa%T+f in Q,
(1.2) V.u=0 iny,

(1.3) u=0 ondQy,

(1.4) u=0 inQ-0Q =0,

(1.5) ~V-(,kVT)+(u-V)T=¢ inQ,

(1.6) T'=T, onlp,

This work was partially supported by BSRI-96-1441 and Ajou University faculty fund.
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and

(1.7) or =g onlg,
on

where I'p = 90\ I'c and u denotes the velocity field, p the pressure field, T the
temperature, and control g. The domains Q; and Q, are disjoint polyhedral domains
in R?, Q = interior (; U{),). g is the gravitational force vector, & is the thermal
conductivity coefficients function such that k = ks in Qf and k = &, in Q. n denotes
the outward unit normal to Q and Pr and Ra denote the Prandtl and Rayleigh
numbers, respectively. The data functions f , @, T, are assume to be known. Note
that as a results of our assumptions about the flow, the mechanical equations (1.1)-
(1.4) are fully coupled with the thermal equations (1.5)-(1.7).

We now define the optimal control problem. Seek (u, T, p,g) € H§(Qf) x H(Q) x
L3(Ys) x L*(T¢) such that the cost functional

*i 2 7y 2
(18) T, Top9) = g5 [ 1T =T a2+ 3 [ |gf ar

is minimized subject to (1.1)-(1.7) where T, is some desired temperature distribution
and §; is a portion of . The nonnegative parameters § and v can be used to change
the relative importance of the two terms appearing in the defintion of J as well as
to act a penalty parameter. Incidently, the appearance of the control g in the cost
functional is necessary because we are not imposing an a priori limits on the size of
this control.

We close this section by introducing some of notation used in subsequenct sections.
We introduce some function spaces and their norms, along with some related notation
used in subsequent sections (for details see [1]). Throughout, C will denote a positive
constant whose meaning and value changes with context. We define the Sobolev space

H™(Q) for nonnegative integer m by

(1.9) H™(Q) :={T € L*(Q)|D*T € L*(Q) for 0 < |a| < m}
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where D*T is the weak (or distributional) partial derivative, « is a muti-index, |a| =

Yia;. Clearly, H°(Q) = L*(R}). The norm associated with H™(2) that we use is

I [lm, given by
%
(1.10) ih={ > oot}
0<jal<m
One particular subspace
(1.11) HY(Q) = {SE HYQ): S =0on rc}.

The usual inner product associated with H™ () will be denoted by (-, )m.

For vector valued functions, we define the Sobolev space H™(Q) by
(1.12) H™(Q):={u|u; € H"(),1 = 1,2},

where u = {uy,us}, and its associated norm || - || is given by

1

2 1
2
(113) Ml = { 3 sl }
=1
We also define a subspace of L*(f2)
(1.14) L3(Q) = {q € L¥(Q)] /Q qd9 = 0}.

In all subspaces, we use norms induced by the original spaces. We also make use of

the well-known space L*(Q) equipped with the norm || - ||ps(q).

We denote
(1.15) HL(Q) ={S e H'(Q):S=00nT¢},
(1.16) HL(Q)={Se H'(Q):S=00nTp},

We also define the solenoidal spaces
Vi={ue Hy(Q)|V-u=0}

If  is bounded and has a Lipschitz continuous boundary (these are kinds of do-

mains under consideration here), Sobolev’s emmbedding theorem yields that H*()
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< L*(Q), where <~ denotes compact embedding, i.e. a constant C' exists such

that
(1.17) ullza@y < Cllulls-

Obviously a similar result holds for the spaces H'(Q) and L4(f).

We introduce the following bilinear and trilinear forms, for u,v and w € H(Qy),

T,S,R e H'(Q),

(1.18) a(u,v) = /ﬂf Vu:VvdQ Yu,veH(Q)),
(1.19) b(v,q) = —/Qf gV -vdQ v e HY(Q,), Vg e [3(Q),
(1.20) c(u, w,v) = /Qf(u V)w-vdQ Yu,v,we H\(Q),
(1.21) A(T, 8) = /an:r-vs dQ VT, € HY(Q),

(122)  C(u,T,5) = /Q, (u-V)TSdQ Yue HY(Qy), VT, S € H(Q),

(1.23) d(T,v) = /Q! Te,-vdQ v e HY(Q), VT € HY(Q),

where e; = g/|g|.

2. THE WEAK FORMULATION OF THE BOUSSINESQ EQUATIONS

The weak form of the constraint equations (1.1)-(1.6) is then given as follows: seek

u € H)(Qy), pe L) and T € H(Q) such that

(2.1)
Pra(u,v)+c(u,u,v) +b(v,p) = Pr Ra d(T,v)+ < f,v > VYveHQ),

(22) _ b(uv Q) =0 Vqe Lg(Qf)7
(2.3) A(T,8) + C(u,T,8) =< Q,5 > +r,(g,S)r, VS € HL(Q),
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and

(24) T = Tb on I‘D7

Lemma 2.1. There are constants Cy 234 such that for all u,v,w € H}(Q;) and for

al T,S € H'(Q):

(2.5) |A(T, S)| < max(ky, k)| ThalShae VT,Se H' (),

(2.6) A(T,T) > min(ks,5)|T|T g VT, S € H'(Q),

(2.7) IC(U,T, S)l < Cll‘ul|L4(Qf)|T|1,Q||SH{_,4(Q) vT,S € HI(Q)and‘v’u ev,

(2.8) | C,T,TY=0 if ueV,

(2.9) la(u,v)| < Cllulhllvlly,  a(u,u) > Cllulff,
(2.10) le(u, w,v)| < Callul||v]]i|wls,

(2.11) (v, v)| =0, ifueV,

and

(2.12) |ld(u, T)| < Cs]|Tfo2lVllo2 < Ca|T|1]uls

where || - ||oz and || - |lo.s denote the L2(Q) and L*(2) norm respectively.

We now show that solution always exists for data Q € H~}(Q) and f € H™'(Q).
Further, that solution is unique for either small data or an equivalent restriction on
the Rayleigh and Prandtl number. The existence and uniqueness of the solution for
the homogeneous case can be found in many papers ( e.g. [3]). We extend their work

with suitable modifications.

Lemma 2.2 (Leray-Schauder). Let V' be a Banach space, and let G : [0,1] x V —

V' be a continuous, compact map, such that G(0,v) = vo is independent of v € V.
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Suppose there exists M < oo such that, for all (o,z) € [0,1] x V,
Glo,z) =2 = ||z|| < M.

Then the map Gy : V — V given by G1(v) = G(1,v) has a fized point.

Proposition 2.3. For every g € L*(I'c), @ € H(Q) and f € H™Y(Qy) (2.1)-(2.4)
has a solution (u,T,p) € H{(Qy) x H'(Q) x LE(Q;) satisfying the estimates

(2.13) lully + 171l < C(IE]-1 + [1Q]1-1 + llglh/2.re)
and |
(2.14) lIpllo < C([IE]]-1 + [1Ql1-1 + [lgll1/2,0c + [lul]1)

Proof. Given Ty € H'/*(I'p), by the virtue of the trace theorem, we may choose a
To in H'(R), satisfy To = Ty on I'p and ||To|[1 < C ||Ty/1/2,r,- By setting T = T—To,
we may see that seeking a (u, T, p) € Hy () x HY(Q2) x LZ(Qy) satisfying (2.1)-(2.4)
is equivalent to seeking a (u,T’,p) € H3(Qy) x HL(Q) x L2(Q;) satisfying
(2.15)

Pra(u,v) + c(u,u,v) +b(v,p) = Pr Ra d(T,v)+ < f,v> VveHLQ),
(2.16) b(u,q) =0 Vg€ LI(Qy).
(2.17) A(T,S)+Cu,T,8) =< Q,5 > +rs(g,5)r. VS e HL),

Thus, without loss of generality, we can consider only for the case of homogeneous
Dirichlet boundary condtion.

For u € V, A(,-) + C(u,-,-) is a continuous, elliptic, bilnear form on H} () x
H}(Q) by (2.5)-(2.8) of lemma 2.1. Thus, for given g € L*(Q) and Q € H~(Q), by
the Lax-Milgram lemma there is a unique solution 7' € H} () satisfying (2.3) and

the estimate

(2.18) 1Tl < C(llgllore +11Q1-1)
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Thus, we may define a mapping F' : V — HL(Q2) by F(u) = T. In fact, |F(u)]; <
min{k¢, ks }||@||-1. The theorem will be proved if one can show that there is at least

on u € V such that
(2.19) Pra(u,v)+ c(u,u,v) = Pr Ra d(F(u),v), VYveV.

From inequalities (2.9) it follows that a(-,-) is a continuous elliptic bilinear form on
V x V and | —c¢(u,u,v) +d(F(u),v)| < (Co|lul|? + Pr Ra C4||F(u)|]1) ||V]]1, for all
v € V follows from (2.10)-(2.12). Thus we may define a mapping G : V. — V by

(2.20) Pra(u,v) = —c(u,u,v)+ Pr Ra d(F(u),v) VveEeV.
Clearly u is a solution of (2.19) if it is a solution of
(2.21) G(u) = u.

Now, we may apply the Leray-Schauder Principle to prove the existence of the
solution to (2.21). First we verify the complete continuity of G. Let u;,u; € V. Set
w = G(uy) — G(l_h)-

Substracting the equations obtained from (2.20) by substituting u, and u; for u
and w for v, we get

(2.22)
Pra(w,w) = —c(uz — uy;uz, w) — c(ug; up — ug, w) + Pr Ra d(F(uz) — F(u,),w).

Now, we estimte |F(uz) — F'(u;)|;. Substitute uz and u; in (2.3) and subtract to

get

(2.23) A(F(uz) — F(uy), )
= —C(uy — ug; F(up),5) — C(uy; F(up) — F(w,),S) VS € HL(Q).

Substituting F(u;) — F(u,) for S and using (2.6)-(2.8)

(2.24) |F(uz) — F(ui)li < C|Q]]-1 [Juz — uylo,s
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Thus,
(225)  |wh < Pr'{|luslloq + [luillos + Pr Ra C||Q||-1] Juz — uyl]o

Since H(€2y) is compactly imbedded in L*(Q;) and hence so is V. Tt follows that G
is absolutly continuous.

Now, we define G(o,v) = 0G(v) for all (5,v) € [0,1] x V. Clearly, G(0,v) = 0 is
independent of v.

Suppose o € (0,1] and v € V satisfies 0G(v) = v. Then
(2.26) o~' Pra(v,v) = —¢(v;v,v)+ Pr Ra d(F(v),v).
From the above fact, we have
(2.27) Vli <o Ra Cy F(v)l1 < C||f]|-

which complete the proof. [J

3. THE OPTIMIZATION PROBLEM AND THE EXISTENCE OF AN OPTIMAL SOLUTION

We state the optimal control problem. We look for a (u,T,p,g) € Hj(Qy) x
H'(Q) x L) x L*(T'¢) such that the cost functional

_ L Crdo+ Y 2

(3.1 T, T,p,9) = g5 [ 1T =T a2+ 3 [ |gfar
subject to the constraints
(3.2)

Pra(u,v)+c(u,u,v) +b(v,p) = Pr Ra d(T,v)+ < f,v > VYve HL(Qy),
(3.3) b(u,q) =0 Vge Lg(Qy),
(3.4) AT, 5) +C(u,T,5) =< Q,5 > —x4(g,S)ro VS € HH(),
and

(3.5) T=T, onTlp.
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The admussibility set U,q is defined by
Usa ={(v,5,q,2) € Hy(Qp) x H'(Q) x L§(Qy) x L*(T¢):
(3.6)
(3.2) — (3.5) are satisfied}.

Then, the constraint minimization probelm (3.1)-(3.3) can be stated as follows:

find (u, T, p,‘g) € Uy,q such that

Uu,T,p,g) SU(V,S,q,2), V(v,5,¢,2) € Uad
satisfying
(3.7) lla =Vl + 1T = Sl + lIp = gllo + llg — zllore < €

We now show the existence of optimal ‘solution. The existence of an optimal
solution can be proved based on the a priori estimates (2.13) and (2.14) and standard

techniques.

Theorem 3.1. There is an optimal solution (u,T,p,g) € Uyq to the problem (3.7).

Proof. U, is apparently nonempty because of lemma 2.2. Thus we may choose a

minimizing sequence {u, T p(* ¢(™} in U,, such that

(3.8) lim J(u®™, 7™M p™ g™y = inf  J(v,S,q,2).

n—}oo (v+5,9,2)€EUaa
By the definition of U,y
Pr a(u™ v) + c(u™ u™ v) + b(v, p™)
(3.9)
= Pr Ra d(T",v)+ < f,v > Vv e H}Q;),
(3.10) b(uM, q) =0 Vge L3(Qy).

(3.11) AT, 8) + C(u), T, 5) =< Q,5 > +x,(g",5) VS € HY(®),
and

(3.12) T=T, onIp.



10 HYUNG-CHUN LEE

From (3.1), we easily see that {||g(™||or.} is uniformly bounded. Also, by (2.13) and
(2.14) we have that {|[u™]|;}, {/|T™]],} and {||p"™||o} are uniformly bounded. We

may then extract subsequences such that
g™ = gin L*(I'¢),
u™ —~uin H(;) and Vu™ — Vuin L),
T™ = Tin H(Q) and VT®™ —~ VT in L3(Q),
p™ = pin L*(Qy),
u™ — uin LYQ;),
for some (u, T, p,g) € HA(Q;)x HY(Q)x L(25) x L*(T¢). The last convergence result
above follows from the compact embedding H'(€2;) <> L*(Q;). We may pass to the
limit in (3.9)-(3) to determine that (u, T, p,g) satisfies (3.2)-(3.5). Indeed, the only

troublesome term when one passes to the limit is the nonlinearity ¢(-,-,-). However,

note that

cu® u™ v) = /

F(u(n) -n)u(") vdl — /Qu(") Vv -ul™ d0 VCOO(Q_J‘)-

Then, since u(™ — i@ in L) and u™|r — d|r in L*(T), we have that

lim c(u(k),u(k),v):/(ﬁ~n)ﬁ-vdI‘—/ Q- Vv-ido
T Q

k—o00

= c(,0,v) Vv e C?(Qy).
Then, since C*°(€);) is dense in H!(f2), we also have that

lim c(u® u® v) = c(d,a,v) VYveH(Q).

k—o0

Thus we have shown that (u, 7, p, g) indeed satisfies (3.2)-(3.5) so that (u,T,p,g) €
Upd-

Finally, it is easy to see that J(-,-,-,) is weakly lower semicontinuous so that

(3.13) J(u,T,p,g)= inf  J(v,5,q,2).

(v,S,q,z)ELlad
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Thus an optimal solution belonging to U, 4 exists. O

S

10.
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EXISTENCE AND MULTIPLICITY RESULTS OF POSITIVE RADIAL SOLUTIONS
FOR SEMILINEAR ELLIPTIC PROBLEMS IN AN EXTERIOR DOMAIN

YoNG-HooN LEE

ABSTRACT. We prove various aspects about the existence of positive radial solutions for semilinear elliptic problems
in an exterior domain using the method of upper and lower solutions and several fixed point index arguments.

1. INTRODUCTION

In this paper, we consider the nonexistence, existence, uniqueness or multiplicity of positive radial solutions
for semilinear elliptic problems of the form

(1.1) Au+ pg(lz]) f(u(z)) =0, in Q,
(1.2) u =0, on 09,
(1.3) u(z) = 0 as |z| — oo.

where Q= {z € R" : |z| > 1o}, o > 0, n > 3 and p is a positive real parameter.

We introduce some terminology to facilitate the statement of propositions. We say that given problem
(P) holds Prop A for solutions if there exists py > 0 such that (P) has at least two solutions, at least one
solution or none according to 0 < p < py, p = py or g > py, (P) holds Prop B for solutions if there exists
py > 0 such that (P) has at least one solution or none according to 0 < p < py or u > py, and we say that
(P) holds Prop C for solutions if (P) has a solution for all x > 0.

Now let us give some conditions on g and f for precise description.

(H1) g :[ro,00) — (0,00) is continuous and frio rg(r)dr < co.
(H2) f:[0,00) — [0,00) is continuous, f(0) = 0, fo = lim,_o+ ﬂuﬁ =0 and foo = limy_oo L(t—:il = 0.
(Hs) f:[0,00) — (0,00) is continuous, nondecreasing and fo, = c0.

For © an annulus, problem (1.1),(1.2) has been studied by Bandle, Coffman and Marcus [1], Garazia [4],
Lin [10], Santanilla [14], Nagasaki and Suzuki [11] and Pacard [13].

Among them, Lin [10] considered the problem when g = 1 and proved that the problem holds Prop A for
positive radial solutions if f > 0 on [0,00) and f, = oo, and the problem holds Prop C for positive radial
solutions if f satisfies (H2).

For Q an exterior domain, works related to problem (1.1), (1.2) include Noussair and Swanson [12], Bandle
and Marcus [2], Santanilla [15] and Ha and Lee [6].

In particular, when g satisfies (H;) and f(u) = €*, Ha and Lee [6] proved that problem (1.1)~(1.3) holds
Prop A for positive radial solutions.

In the present work, we mainly present similar results as Lin [10] that under assumptions (H;) and
(H3), problem (1.1)~(1.3) holds Prop A for positive radial solutions and under assumptions (H1) and (Hs),
problem (1.1)~(1.3) holds Prop C for positive radial solutions.

Since we are looking for radial solutions, we may reduce problem (1.1)~(1.3), via suitable transformations
to the following problems of ordinary differential equations

(14) W) + paF(u(t)) =0, 0<t<1 :
(1.5) u(0) = 0 = u(1),
1991 Mathematics Subject Classification. 34B15, 35J25.
Key words and phrases. positive solution, positive radial solution, singular buondary value poroblems, semilinear elliptic

problems, upper solution, lower solution, fixed point index.
This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1996
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2 YONG-HOON LEE

where ¢ is singular at 1.

Problem (1.4),(1.5) itself also has some references, for example, Choi [3] proved that the problem holds
Prop B for positive solutions when f(u) = e“, and ¢ is singular at 0 with certain growth restriction. Wong
[16] generalized Choi’s result that the problem holds Prop B of positive solutions if f satisfies (H3), together
with a condition like (by) in Section 4 and g is singular at 0 with somewhat stronger growth restriction than
Choi’s. Ha and Lee [6] also generalized Choi’s result that the problem holds Prop A for positive solutions
if f(u) = e*, g is singular at 0 with fol sq(s)ds < co. Zhang [17] proved that the problem holds Prop C for
positive solutions if f(u) = wP, 0 < p < 1 and ¢ is singular at 0 and 1 with fol s(1 = s)g(s)ds < 0.

As we indicated in the introductory comment for problem (1.1)~(1.3), we shall prove that problem (1.4),
(1.5) holds Prop A (Prop C) for positive solutions if f satisfies (H2) ((Hs)) and g is singular at 0 and/or 1
with a suitable integrability condition. These extend the results of Choi, Wong and Ha and Lee, and provide
results we expect for problem (1.1)~(1.3). Our techniques of proofs for problem (1.4),(1.5) mainly use the
method of upper and lower solutions and several fixed point index theories.

2. PRELIMINARIES

Let us consider

(L1) Dut pgle) f(u(@) =0, in fo|> 7,
(1.2) u=0, if |z| = ro,
(1.3) u—0, as |z]| — oo,

where r, > 0 and n > 3.
Since we are concerned with radial solutions, applying series of transformations r = |z|, s = 7
t = (r2"" — 5)/r2™", we can rewrite problem (1.1)~(1.3) as

2'(t) + pq(t) f(2(1)) = 0,
2(0) = 0 = z(1),

2-n and

—2(n
n

where ¢(t) = (—n—r:%)—z(l —1) = g(ro(1 —-t)n__—IZ). Thus by (H1), ¢ : [0,1) — (0, c0) is continuous and singular

at 1 satisfying fol(l — 5)g(s)ds < oo, and problem (1.1)~(1.3) with condition (H;) are reduced to problem
(1.4),(1.5) with ¢ and conditions on ¢ described above.

We now present a theorem on upper and lower solutions for the singular problems we are dealing with.
Consider the problem

(2.1) ' u’(t) + F(t,u(t)) =0,
u(0) = a, u(l) = b,

where F : D — R is a continuous function and D C (0,1) x R. A solution u(-) of (2.1) means a function
u € C([0,1],R) N C?((0,1),R) such that (t,u(t)) € D for all t € (0,1) and w”(t) + F(¢,u(t)) = 0 for all
t € (0,1) with u(0) = a and u(1) = b.

Definition 2.1. o € C([0,1],R) N C*((0,1),R) is called a lower solution of (2.1) if (¢, «(t)) € D for all
t €(0,1) and ‘

Q"(t)+ F(t,at)) >0, t€(0,1)

a(0) < a, a(l) <b.

We also define an upper solution 8 € C([0,1],R) N C2((0,1),R) if B satisfies the reverse of the above
inequalities.

If « and 8 € C([0,1],R) are such that a(t) < B(t), for all ¢ € [0, 1], we define the set Df = {(t,z) €
(0,1) x R : a(t) < z < B(t)}. The following is a fundamental theorem of the method of upper and lower
solutions for problem (2.1) due to Habets and Zanolin [7].
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Proposition 2.1. Let « and 8 be a lower and an upper solution for (2.1) such that
(a1) a(t) < B(t) for allt € [0,1]

(a2) DI CD. ‘

Assume also that there is a function h € C((0,1),(0,00)) such that

(az) |F(t,z)| < h(t), for all (t,z) € D? and

(as) fol s(1 — s)h(s)ds < 0.

Then (2.1) has at least one solution u such that

at) < u(t) < B(t), for allte|0,1].

Remark. It is easy to see that if we assume, instead of (a4), the condition fol sh(s)ds < oo, then the solution
u we find belonds to C1((0, 1]). Similarly, if fol(l — 5)h(s)ds < oo, then u € C*([0,1)).

We also state some properties for fixed point index which are well known and crucial in our arguments,
see Guo and Lakshmikantham [5] for proof and further discussion of the fixed point index.

Proposition 2.2. Let E be a Banach space, and let K C E be a cone in E. Assume that Q; and Q» are
bounded open subsets in E with 0 € @ and Oy C Q. Let T : KN(Q22\ Q1) — K be a completely continuous
operator such that

ITull < llull, v € kN8 and ||[Tul] > |lull, u € K N6y,

Then T has a fixed point in K N (Q2\ Q4).

Proposition 2.3. Let E be a Banach space, K a cone in £ and Q bounded open in E. Let 0 € Q and
T:KNQ— K be condensing. Suppose that Tz # Az, for allz € K N0 and all A > 1. Then

i(T,KNQK)=1.

Proposition 2.4. Let E be a Banach space and K a cone in E. Forr > 0, define K, = {z € K : ||z|| < r}.
Assume that T : K, — K is a compact map such that Tz # z for z € 8K,. If ||z|| < ||Tz||, for z € 8K,,
then

i(T, Ky, K) = 0.

3. EXISTENCE AND UNIQUENESS

We expect Prop C for positive solutions, if f satisfies (H3). Therefore, it is enough to consider the following
problem

(3.1) u' () +q()f(u(t) =0, 0<t<1

(1.5) u(0) = 0 = u(1).

For more general approach, we assume that ¢ is singular at 0 and 1. Our main existence result is
Theorem 3.1. Assume (H2) and

(H) ¢€C((0,1),(0,00)) satisfies fol s(1 — s)q(s)ds < oo.

Then (3.1),(1.5) has at least one positive solution.

Proof. First, it is well known that the problem (3.1), (1.5) is equivalent to the integral equation

u(t):/0 G(t, s)q(s)g(u(s))ds,

where G(t, s) is the Green’s function corresponding to the linear homogeneous problem explicitly written by

s(l—1t) for0<s<t
t(l—s) fort<s<1.

G@@:{
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Thus (3.1), (1.5) is equivalent to the fixed point equation
u="Tu

in E = C([0,1]), where T : E — E is given by

1
Tu(t) = [ Glt,)a(e)o(u(s))ds.

By the condition (H), T" is completely continuous on the cone of nonnegative functions in E. We define a
cone K in E by

K={ueBu(®)20, te 0,1, min ut) 2 gllulle}.
te[§,2

Then it is not hard to check T(K) C K.

Second, by (H), we may choose 7 > 0 so that nfol s(1—s)q(s)ds < 1. Since fo = 0, there exists RB; > 0 such
that g(u) < nu, for 0 < u < Ry. Let Q; = {u € E : ||u)lcc < R1}, then Q; is bounded open in E and 0 € ;.
Moreover, let u € K N9, then u € K, ||ul|cc = Ri, and thus

1
Tu(t) = /0 G(t, s)q(s) f(u(s))ds
oo
< /0 s(1 = 8)g(s)f(u(s))ds
1
<n / s(1— $)g(s)u(s)ds
<n / s(1 = 8)a(s)|[ulleods < |[ulleo-

Therefore

1Tu)|oo < ||t]lco, for all u € K NOQy.

Third, choose p > 0 such that & f3[4 3,8)ds > 1. Since foo = 00, there exists R > 0 such that g, f(u) >
pu, for all w > R, where ¢, = mlnt€[1/4,3/4]q(t). Let Ry = max{2R{,4R} and Q3 = {u € E : ||u|]|c < R2},
then Q5 is bounded open in E and €y C Q2. We show ||Tu/|co > ||tt]|cc, for all u € K NQy, so let u € K and
[lullo = Ra2, then minge1/4 374 u(t) > 1/4||ullc > R. Thus ¢(t)f(u(t)) > pu(t), for all t € [1/4,3/4] and

1 1
uy)= [ 6390 s(uts)is
[ G% Jals)f(u(s))ds

>u / G(59)u(s)ds

3
pofr 1
>4 / G(5 5)lulleods

> [[ulleo-

Therefore ||Tul|oo > ||t]joo, for u € KN 692, and by Proposition 2.2, T has a fixed point u in K N (Qa\ Q;)
such that Ry < |Jul|oc < Ra. Futhermore, since G(t,s)q(s) > 0 for all s € (0,1), it follows that « > 0 on
(0,1), and this completes the proof.

We have a similar result as Theorem 3.1 when ¢ is singular at 0. The proof generally follows that of
Theorem 3.1, and it is enough to check the second part in the proof of Theorem 3.1.
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Theorem 3.2. ([8]) Assume (H3) in Theorem 3.1 and
(H') q€C((0,1],(0,00)) satisfies fnl sq(s)ds < oo.
Then (3.1),(1.5) has at least one positive solution.
Since the problem having the singularity at 0 and the problem having the singularity at 1 are equivalently
transformed, we get the following corollary;
Corollary 3.1. Assume (H3) in Theorem 3.1 and
(H") q€C([0,1),(0,00)) satisfies [ (1 — s)g(s)ds < oo.
Then (3.1),(1.5) has at least one positive solution.

We now state the uniqueness of positive solution for problem (3.1),(1.5). Let u be a positive solution of
(3.1),(15) and let L, = max;e[o,1) 9(u(t)). Then q(t)g(u(t)) < Lag(t) and [y [u”(t)|dt < L, [} q(t)dt < oo,
provided by ¢ € L![0,1]. Thus both u/(0%) and w/(17) exist and consequently, all positive solutions of
(3.1),(1.5) are of C*[0,1]NC?(0,1). Based on this fact, we obtain the existence of a unique positive solution
for (3.1), (1.5) as follows. One may refer to Lee [8] for the proof.

Theorem 3.3. ([8]) Assume (H3) and also assume
(H") ¢ €C((0,1),(0,00)) satisfies f; q(s)ds < oo.
(H4) f is increasing and ﬁ;—‘l is strictly monotone.
Then (3.1),(1.5) has a unique positive solution.
Let p > 1 and let f(u) = uP. Then f obviously satisfies (Hz) in Theorem 3.1 and (H4) in Theorem 3.3.

Thus we obtain the existence and uniqueness results of positive solutions for the following Emden-Fowler
problem

(3.2) u’'(t) + q(t)u(t)’ =0, 0<t<1
(1.5) u(0) = 0 = u(1).

Corollary 3.2. Let p > 1 and assume (H) in Theorem 3.1.

Then (3.2),(1.5) has at least one positive solution.

Moreover, assume (H'") in Theorem 3.2.
Then (3.2),(1.5) has a unique positive solution.

Let us consider the semilinear elliptic problems of the form;

(3.3) Au+ |z] 2 g(|2]) f(u(z)) = 0, in Q,
(1.2) u=0, if |z] = 7,
(1.3) u—0  as|z|— oo,

where @ = {z € R" : |z| > r,} and n > 3. For any real number A satisfying A < 2(n — 1), we prove the
existence of positive radial solutions for (3.3) ~ (1.3) if f satisfies (H2) and g satisfiesthe following condition;
(H{) g€ C([ro,0),(0,00)) satisfies [ &'~*g(z)dz < oco.

By the transformations in Section 2, we can rewrite (3.3) ~ (1.3) as (1.4),(1.5) with

7,2-—>\ —2(n=1)+2 -1
q(t)=(7"_—2—)2-(1~t) = f(ro(1—1)==7).

Thus by (H}), ¢ : [0,1) — (0,00) is continuous and singular at 1 satisfying fol(l — 5)g(s)ds < co. Therefore
by Corollary 3.1, we obtain an existence result for problem (3.3) ~ (1.3) as follows.

Corollary 3.3. Let A < 2(n — 1) and assume (H{) and (H>).
Then (3.3) ~ (1.3) has at least one positive radial solution for all 0 < r, < 0.

It is easy to check that if frto 1= f(z)dz < oo, then fol q(s)ds < co. Thus we obtain a uniqueness
result for the problem too.
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Corollary 3.4. Let A < 2(n — 1), and assume (H5) and (H,). Moreover, assume
(HY) g€ C([ro,00),(0,00)) satisfies [~ z"~1~*g(x)dz < co.
Then (3.3) ~ (1.3) has a unique positive radial solution for all 0 < r, < 00.
Example 3.1. If f(u) = w?, p > 1 or f(u) = e* — u, then (3.3) ~ (1.3) has at least one positive radial
solution or a unique positive radial solution provided f z'=*g(z)dz < oo or f 2172 g(z)dz < oo,
respectively.
4. NONEXISTENCE, EXISTENCE AND MULTIPLICITY
Let us consider the problem

(1.4) u’(t) + pg®) f(u(t)) =0, 0<t<1
(4.1)) u(0)=A= u(l),.

where A > 0. We first state an existence theorem for the above problem.

Theorem 4.1. Assume (H) and also assume

(b1) f :[0,00) — (0,00) is a continuous.
du u
(bg) Iy = SUP¢€(0,00) fO _F(\/—Z)——.F—(—) < oo, where F(u fO f(S)dS
Then for each A > 0, there exists a positive real number p such that (1.4),(4.1,) holds Prop B for positive
solutions.

We need a lemma to prove the theorem. Let us consider the problem with k a positive real parameter.
(4.2) o)+ kf(u(t)) =0, O0<t<l1
(4.3) u(0)=a>0, u(l)=5>0.
Lemma 4.1. If f satisfies (b,) and (by), then (4.2), (4.3) does not have a positive solution for all k > 200 +1.

Proof. Let k > 2I2 + 1 and suppose that (4.2),(4.3) has a positive solution u(t), and let u, = u(t,) =
max;epo,1] ¥(t). Then we obtain

N o du Yo du
I VP~ F() v V)~ F (@)
Yo du ;
< 2./0 F(u,) — F(u)

Thus

(4.4) <2rI2.

kE<2( / )
VF (uo — F(u)
This contradicts to k > 2IZ 4+ 1. Similarly, we can get contradictions when u attains its maximum at ¢ = 0

or t = 1 and the proof is done.

Proof of Theorem 4.1.. First, we show that for each A > 0, (1 4) (4 1)) has a positive solution for some p
using the method of upper and lower solutions. 8(t) = A + fo s)gq(s)ds, the solution of

u”(t) + q(t)‘: 0, O<tx1
u(0) = A =u(1)
satisfies
B (1) + pa®) F(B(1)) = a(t)(nf(B(1)) — 1) <0,

for p < 35, where My = max;epo,1) f(B(t)), and G2, s) the Green function given in Section 3. This shows
that ﬂ(t) is an upper solution of (1.4),(4.1,) for p < 3= On the other hand, & = A is obviously a lower
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solution of (1.4),(4.1,) and a(t) < B(t) for all ¢ € [0,1]. Thus by Proposition 2.1, the problem has a solution
for0 < pu< —17};. Let p1 > 0 be fixed and assume that (1.4),(4.1») has a positive solution u; for g = py, then
for all g € (0, p1), the problem also has a positive solution, since u; and A are upper and lower solutions
respectively. For fixed A, let puy =sup{p > 0:(1.4),(4.1,) has a positive solution for u}, then uy > ML,;'
We show that p) < co. Suppose puy = oo, for some A > 0, then we may choose a sequence of parameters ()
with pn, — oo such that the problem has a positive solution u, for each u,. Consider the following equation
on the interval [, 2],

(4.5) y%0+quw@D=0»t€ﬁ3

74
(46) WP = (3 13 = wl3),

where ¢, = min;4<i<3/4¢(t). Then u, and «, the straight line connecting (%,un(;li)) and (%'uﬂ(%)) are
upper and lower solutions of (4.5),(4.6) respectively. Thus for each n, (4.5),(4.6) has a positive solution.

Since lim,, .o pn, = 00, the above conclusion contradicts to Lemma 4.1 and the proof is done.

Under the assumptions of Theorem 4.1, we know that (1.4), (1.5) has at least one solution for p € (0, po)-
The existence of the second solution for the same value of y will be proved, under additional conditions on
f, by using fixed point index arguments.. The first step in this direction is to prove e priori boundedness of
possible positive solutions for (1.4),(1.5). Define I(c) as

¢ du h
I(c)z/o m, where F(u):/0 f(s)ds.

One may refer to Lee [9] that condition (Hs) implies that I(0) = 0, Iy < oo, I(¢) — 0 as ¢ — oo, and that
there is no point ¢ > 0 such that I(c) = 0. Therefore,

(4.7) L<<>oforc>0 and L—>c>oa,sc—>c>oorc—>0.

I(c) 1(e)
Lemma 4.2. Assume (H3). Let k > 0 be fixed and assume that (4.2),(4.3) has a positive solution for k,
then there exists M (k) > 0 such that for all k* > k and for all possible positive solutions u of (4.2), (4.3) for
k*, one has

lulleo < M (k).

Proof. Let k be fixed and assume that (4.2),(4.3) has a positive solution. Let £* > k and u be a positive
solution of the problem for k*. Then by (4.4),

= syh

where u, = max;e[o,1) u(t). The above inequality and (4.7) imply that u, is bounded above and its upper
bound depends of k, but not of £*. The proof is complete.

Lemma 4.3. Assume (H) and (Hs). Let p > 0 be fixed and assume that (1.4),(1.5) has a positive solution,
then there exists M, > 0 such that for all p* > p and for all possible positive solutions u of (1.4),(1.5) for
u*, one has

llulloo < M.

Proof. Let p be given and assume that (1.4),(1.5) has a positive solution for p. Suppose that the conclusion is
not true, then we may choose a sequence (), not necessarily distinct, and positive solution u, of (1.4),(1.5)
for each p, such that p, > u and ||us|lee — o0 as n — oo. Consider problem (4.5),(4.6) again. By
similar arguments in the proof of Theorem 4.1, for each u,, (4.5),(4.6) has a positive solution y,. Since
limy, oo |[tn]le = 00, liMp—n [|¥n || = o0 and this contradicts to Lemma 4.2.

We now state the main theorem.
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Proposition 4.1. ([6]) Let f : [0, 00) — (0, o) be continuous and nondecreasing. Let pu and o, 0 < pt < fio,
and M > 0 be given. Then there exist i € (u, pto) and A, € (0, 1) such that

pf(u+A) < pf(u),
for all w € [0, M] and all X € (0, A,).

The proof is simply done by uniform continuity of f on [0, M + 1].

Lemma 4.4. Assume (H) and (H3). Let p € (0, uo) be given, where o is in Theorem 4.1. Then there
exists A > 0 such that (1.4),(4.1,) has a positive solution for given p and .

Proof. Let p € (0, o) be given, and let u be a positive solution of (1.4),(1.5) known to exist by Theorem
4.1. For p, po and M, given in Lemma 4.3, we may choose i € (u, pt0) and A > 0, by Proposition 4.1, such
that .

pflu+ ) < Bf(w),

for all u € [0, M,]. We know by Theorem 4.1 that (1z) has a positive solution @ which, without loss of
generality, satisfies u(t) < @(t) for all ¢t € [0,1]. It also satisfies by Lemma 4.3 that 0 < a(t) < M, on [0, 1].
Let ux(t) = 4(t) + A, then u is a lower solution of (1.4),(4.15) for g and A. On the other hand,

uS(t) + pa(t) f(ur(t)) = v"(t) + pg(t) f(a(t) + A)
= a(t)[nf (a(t) + 1) - £ (a())] <0
and ux(0) = A = ux(1). Thus uy is an upper solution of (1.4),(4.1x) and obviously u(t) < ux(t) on [0, 1].
Therefore (1.4),(4.1,) has a solution between u, and uy and the proof is complete.

We can set up an operator equation for fixed point arguments by the same way as in Section 3 so that
problem (1.4), (1 5) is equivalent to the fixed point equation v = Tu in E = C([0,1]), where T : E — E
is given by Tu(t) = p fo (s)f(u(s))ds. Then T is completely continuous on the cone of nonnegative
functions in Eand defining agam acone K in Eby K = {u € Elu(t) > 0, t € [0,1] min;ep1 syu(t) > Fllulleo }-
We get T(K) C K.

Proof of Theorem 4.2. Let p € (O o) be given, then by Lemma 4.4, there exists A > 0 such that (1.4), (4.1,)
has a positive solution uy for given p and A. Let Q@ = {u € X : =M, < u(t) < ux(t), t € [0,1]}, where M,

is given in Lemma 4.3, then Q is bounded openin £, 0 € Q and T : K N Q — K is condensing, since it is
completely continuous. Let u € K N JQ, then there exists t, € [0,1] such that u(t,) = ua(t,) and

1
0< Tult) = / UGt 5)a(s) f(u(5))ds

0
<At [ HGtts (o) w6
= ur(t,) < vualto) = vu(t,),
for all v > 1. Thus Tu # vu, for all u € K N9Q and all v > 1 and by Proposition 2.3,
| (T, KNQ,K)=1.
Next, let us choose M > 0 such that

M o[
T/; uG(§,s)ds>1,

and let ¢, = mm,E[x B q(t). Since foo = 0o, we may choose R; > 0 such that g¢of(u) > Mu, for all u > Ry.
Let R = max{M,,,4R1, llualloo }, then by Lemma 4.3, Tu # u for u € 0Kg. Furthermore, if u € 0K, then

Iflllne.]u(t) > —HuHoo > Ry
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Thus q(t)f(u(?)) > gof(u(t)) > Mu(t), for all t € [;li, ;31-] and
1 ! 1
Tu(z) = [ WG ale) (u(e))ds
i
> / kG5, 9)a(s) f(u(s))ds
1

> M/4 uG(%,s)u(s)ds

M [ 1
> = -
2 : pG(z,s)Hul[oods
> lulloo-

Therefore ||Tu||lcc > |||l and by Proposition 2.4,
i(T,Kgr,K)=0.

Consequently by the additivity of the fixed point index,

0=4iT,Kp,K)=iT,KNQ,K)+iT,Kr\ KNQ,K).
Since (T, K NQ,K) =1, {(T,Kr \ KN, K) = —1 and thus, T has a fixed point on K N and another on
Kr\KNQ.
Finally, to show the existence of a solution at pt = po, choose an increasing sequence (g5 ) such that pn, — po
and each (1.4),(1.5) has a positive solution for s = pin. Let u, be a solution of (1.4),(1.5) for pn, then by
Lemma 4.3 and Arzela-Ascoli Theorem, (u,) has a subsequence converging to u € C[0,1]. Writing (1) in

integrating form and applying Lebesgue Convergence Theorem, we can easily show that u is a solution of
(1.4), (1.5) for po and the proof is complete.

Example 4.1. Let us consider the problem
u”(t) + pg®)(u()f +€) =0, 0<i<1
u(0) = 0 = u(1),
where p > 1 and € > 0. Let f(u) = v + ¢, then f satisfies (H3), thus by Theorem 4.2, there exists o > 0

such that problem has at least two positive solution for 0 < p < po, at least one positive solution for p = po,
and no solution for p > po, if ¢ satisfies (H).

If ¢ is singular at ¢ = 0 (¢ = 1), then Theorem 4.2 is valid modifying (H) suitably. We state the facts as
the following corollary without proof.

Corollary 4.1. Assume (Hs) and if q Is singular at 0 and satisfies
(H')Y ¢:(0,1] — (0,0) is continuous and fel sq(s)ds < oo.

Then problem (1.4),(1.5) holds Prop A for positive solutions.
Similarly, assume (H3) and if q is singular at 1 and satisfies

(H") ¢:[0,1) — (0,00) is continuous and fol(l — s)g(s)ds < oo.
Then problem (1.4),(1.5) holds Prop A for positive solution.

We conclude this section describing one of the aims of this paper for problem (1.1)~(1.3). Consider

(L1) At pglz)f(u(@) =0, in Ja] > r,
(1.2) u=0, . if |z|=r,,
(1.3) u—0, as |z]| — oo,

where 7, > 0 and n > 3.

We know that problem (1.1)~(1.3) can be reduced to problem (1.4),(1.5) and condition (H;) corresponds
to condition (H") via the trasformations we used. Therefore by Corollary 4.1, we obtain the following
corollary.

Corollary 4.2. Assume (H) and (H3), then problem (1.1)~(1.3) holds Prop A for positive radial solutions.
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On regularity for heat flows for p-harmonic maps
Masashi Misawa

Department of Computer Science and Information Mathematics,
Faculty of Electro-Communications,
parindentOpt The University of Electro-Communications

We establish a regularity for solutions to the evolution problem associated to p-harmonoc
maps, provided the target manifold has nonpositive sectional curvature.

0 Introduction.

Let M, N be compact, smooth orientable Riemannian manifolds of dimension m,! with
metrics g, h, respectively and suppose that M, N = 0. Since N is compact, we assume
that V is isometrically embedded into a Euclidean space R™ for some n. For a C'—map
u: M — N C R", we considera the p-energy functional given by

I(w) = /M %|Du]PdM, O (01)

where p > 2 and, in local coordinates on M, with (¢°%) = (gag)™*, |g| = det(go) and
Dy =0/0z% (a=1,---,m),

dM = /|gldz, |Duf® = YZ: Zn: 9°P Dou’Dgul.
a,B=1i=1
The Euler-Lagrange equation of a variational functional I is
—Apu + Ay(u)(Du, Du) = 0, (0.2)
where A, denotes the differential operator on M

1
vl

and, with the second fundamental form A(u)(Du,Du) of N in R™ at u,

Dpu = Do ( |g|gal3lpulp—2pﬁu)

Ay(u)(Du, Du) = |DulP~2g*? A(u)(Dqu, Dau).

Here and in what follows, the summation notation over repeated indices is adopted.

For ¢ > 1, we now define a set of Sobolev mappings between M and N, denoted
by W4 (M, N), as a space of maps v : M — R™ belonging to usual Sobolev space
W14(M, R™) such that u(z) € N for almost everywhere = € M. To look for maps belonging
to W1P(M, N) satisfying (0.2) in the distribution sence, we are concerned with heat flows

Typeset by ApS-TEX



u(t) € WHP(M,N), 0 < t < oo, for the p-energy (0.1) with a given map uo € W"?(M, N)
where the heat flows are prescribed by Cauchy problem for a system of second order
nonlinear partial differential equations of parabolic type

0w — Apu+Ap(w)(Du,Du) =0 in (0,00) x M, (0.3)
u(0,z) = uo(z), =€ M. (0.4)

The partial regularity of minimizing p-harmonic maps has been widely discussed (see
[12,18] for p = 2, [11, 14] for p > 1). We also recall that the partial regularity of p-
harmonic maps of C'—class are investigated in [17] for p = 2 and [10, 13] for p > 2.
On the other hand, Struwe[19], Chen and Struwe[3] have proved the global exstence and
partial regularity for a weak solution to the evolution problem for harmonic maps(p = 2).

To study the partial regularity of weak solutions, one needs to establish so-called the
monotonicity formula for solutions. The monotonicity formula has been obtained for sta-
tionary p-harmonic maps (refer to [17, 10]) and C' —weak solutions to heat flows for har-
monic maps (refer to [19,3]). However it remains open problem whether the mnotonicity
type inequality holds for C'—weak solutions to heat flows for p-harmonic maps(p > 1) or
not, so that it has been difficult to investigate the partial regularity of weak solutons to
heat flows for p-harmonic maps. Here we note that the global existence of a weak solution
to the heat flow for p-harmonic maps(p > 2) has recently shown in the case that the target
manifold is a sphere, N = S""![1] and that the C'*—regularity of solutions of degenerate
parabolic systems with only principal terms was accomplished in [6,7,8,9] ([20] for corre-
sponding elliptic systems). In this paper we show the compacteness for weak solutions
to (0.3) of C'—class with the same initial value, provided the sectional curvature of the
target manifold is nonpositive.

For simplicity, we assume that the domain manifold is an Euclidean space, M = R™
and that the metric is flat, (¢*?) = the identity matrix.

We are now interested in weak solutions of (0.3) and (0.4): u € L*((0,+o0); W1 ?(R™,
N)) satisfying, for almost all ¢;, t5, 0 < #;1,%; < 400, and all ¢ € L? ((0,+00); WHP(R™,
R")) NL2 ((0,+00) x R™, R™), 8y € LE ((0, +oo) x R™, R™) and the support of which
is compactly contained in [0,400) X R™

e
{t} xR™

and satisfying the initial condition

t=ty

de + / {—u-8sp+|Dulf*Du-Dy +¢ - Ap(u)(Du, Du)}dz = 0
(i]_,iz))(Rm
(0.5)

t=t;

(u(t) - ’LL0|W1,p(Rm) — 0, t— 0. (0.6)
To state our results, we need some preminalies: Let us introduce the parabolic metric

6(z1, 22) = max{|z; — 25|, [t1 — "%}, 2= (ti,e), 1=1,2 - (0.7)
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and denote by dists(z,4) a distance between a point z with respect to § respectively.
Here we recall some function spaces: For a positive number T and a open set & C R™,
Holder space CY#((0,T) x £, R™), denoted the space of Hélder continuous functions in
(0,T) x Q (with respect to the metric §) with an exponent p, the usual Lebegue space
LI(Q) = LY, R™), ¢ > 1, and Sobolev spaces with ¢ > 1: Wh4(Q) = Wh4(Q, R™).

Then our main theorem is the following:

Theorem Suppose the sectional curvature is nonpositive and ug € W P(R™, N). Let
{ur} be a sequence of weak solutions up € C°((0,+00); CL_(R™,R™)) to (0.3) and (0.4)
satisfying Duy € Lz(pul)((O,—I—oo); LAPp=1(R™ R™)). Then there exist a subsequence

loc

{ur} and a map u :[0,4+00) x R™ — R™ such that

sup I(u(t)) <I(w), Ou € L*((0,+00)x R™, R™), (0.8)
0<t<+c0
and
Duy — Du  weak-star in L*°([0,+00); LF(R™, R™")), (0.9)
dyup — Oyu  weakly in L*((0,+oc0) x R™, R™), (0.10)
up —u  weakly in W;-P((0,400) x R™, R™)
and strongly in C°((0,+00); Cih. (R™, R™)). (0.11)

Moreover u is a weak solution to (0.3), (0.4) and there ezists a positive number a,0 < a < 1
such that u, Du belong to Clo2((0,+00) x R™) and it holds that

Ou — Apu+ Ap(u)(Du,Du) =0  almost everywhere in (0,400) x R™. (0.12)

Remark. We use the assumption {Duy} C lecff—l)((O, +00); L¥*P~1(R™, R™")) in deriving
the energy inequality (Lemma 2.2). The assumption is satisfied by weak solutions in the
case p = 2.

Remark. We are able to make simple modification of the arguments for the proof of
Theorem to obtain the same assertion as in Theorem in the case where the domain is a

compact, smooth orientable Riemannian manifold(refer to [16]).

Some standard notations: For zg = (%9,%0) € (0,+00) x M and r,7 > 0
B.(zo) ={z € R": |z — zo| <7},Qnrr(20) = (to — 7, t0) X Br(xo).

and Q,(z0) = Q,2(20). The center points zo, 2o are omitted when no confusion may arise.



1 Preliminary.

We now state some algebraic inequality, for convenience.

Lemma 1.1 There ezists a positive constant v depending only on p such that, for all
vectors P,Q € R™ with V(s) = Q + s(P — Q) for any s,0<s <1,

(P-Q)-(PP?P—|QF2Q)> P - QP / [V (s)P~2ds, (11)

HPP”P—WQP”QI§7H”—Qt/IVQNFQ%, (1.2)
. 0

HPP*—wQP*lsvur—QyLlvunrﬁa. (13)

Proof. By a usual calculation, we have
|PIP~2P — |QIP*Q

- / (V)PP = Q)+ (p—2)[V(s)P~4V(s) - (P — @)V (s)}ds,

so that
(P-Q)-(IPP*P - |QF*Q)

; . (1.5)
N /; {IVE))PT2IP = QF + (p = 2)IV(s))PH(V(s) - (P — Q))* }ds.
Noting that the second term in the integrated function in (1.5) is nonnegative, we have
(1.1).
Applying Schwarz inequality for (1.4), we immediately obtain (1.2) with v =p — 1.
Since we may calculate

[Pt — QP

- {’V(s)'rz“’ - % -2V (P Q). V(s)}"s,

we have (1.3) by Schwarz inequality.



2 Energy estimates and Bochner formula.

Let ug € WHP(R™, N). In this section we give a-priori estimates valid for weak solu-
tions u € C°((0,+00); CL (R™, R™)) of (0.3) and (0.4) such that Du € Li)(f_l)((O,—}-oo);
L2(p—])(Rm, Rm")).

First of all we have the following estimate (refer to [4,7,10,15]).

Lemma 2.1 4 function | Du[?/*~ Du has weak derivatives which lie in L2 _ ((0,+00)x R™)

loc
and there ezists a positive constant v depending only on m,p and N such that, for all

Qz2r = Q2r(t0,z0) C (0,+00) X R™,

sup / |Du|2dm+/ |DulP~2|D*u|?dz
B,.x{t} Qr

to—r2<t<to

(2.1)
<Ar? (/ |Du|?*dz + (1 + |D'14[%,°<,(Qh))‘/;2 ]Dulpdz).
2r 27

Proof. We now put, for a positive number h, Ay ;ju(t,z) = (u(t,z + he') — u(t,z))/h and
Apu(t,z) = (u(t,z) — u(t,z — he*))/h as the difference quotients in the i—th direction
(¢t =1,---,m) and, as Steklov averagings on the t—variable, dpu(t,z) = f:+h u(s,z)ds/h
and dpu(t,z) = ftt_h u(s,z)ds/h. Let n € C3(Bs,j2) ben=1in B,, 0 <7 <1 and |Dy
< 4/r,and o € CJ((to — (2r)%,%0]) be o = 1in (to — r2,to) and |8;0| < 4/r%. We put h, 1
as 0 < h < g, 0 <[ < dist{supp 7,8B,}, where ¢ is sufficiently small. Also let a cutoff
function o7 (t) € Cy((to — (2r)%,20 — €)) be o7(t) = o in (to — (2r)%,tg — 7 — €) with a
sufficiently small 7 > 0. Taking dx(Ay; (07n?dn(Ariu))) as a test function in (0.3), we
have, by a change of variables,

0= / {8(dn(Ariw)) - dn(Ariw)oTn? + dn(Aei(|DulP~ Du)) - D(oTn?dn(Agu))
QZr

+ oTn2dp(Ayu) - dy(Ai(|DufP~2 A(u)(Du, Du)))}dz

1
- - —/ n2|dh(Az,iu)|28t¢:dz
2 Bg,.x(to—(Zr)z,to—'r—e)
1/ / 2 2 T
- = n |dh Az,,’u l 30‘c dxdt
2 (to—T—¢,t0—¢) J By, x {t} ( ) ‘ (2.2)

* / o7 dn(Awi(|DulP~2Du)) - D(d(Aru))de
27
2 / 07| Dl dn(Dy(|DulP~? Du)) |da( Ay )| dz
27

B ‘/ oTnPdn(Arsu) - dn(Ari(|DuP~2A(w)(Du, Du)))dz|.
27
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Let 7, tend to zero so that we have

1
0 Z-—/ nzidh(Al,iu)Pdw
2 Bz,.)({t:to}
- / on’dn(Ari(|DufP~? Du)) - D(dn(Au,iu))dz

—/Q n2|atai|dh(A,,iu)|2dz—2f on|Dn||dn(Ari(|DulP~2 Du))||dn(Aru)|dz

27 .

/ on*dn(Aru) - di(Ari(|DulP 7 A(u)(Du, Du)))dz|.

(2.3)
Since u € C°((0,400); CL (R™)), Ay u € C°((0,+00); CfL(R™)). Thus we find, for any
sufficiently small [ > 0,as h | 0,

dn(Ariu) = Agzu in C°((0,400); Cpoo(R™)),

. 0 0 (2.4)
dp(Ari(Du)) = Agi(Dw) in C°((0, +00); Cioc (R™))-
Adopting (2.4) in (2.3), we obtain from letting h tend to zero
1 2 2 2 -2
= | (Agu)|*dz + on’Ayi(Du) - Ayi(|DulP™ " Du)dz
2 {t=tO}XB2'r 27
< [ iocliagurds + [ onDnllulan(DuptDu)ids (25)
27 2r .

+ '/ on®Argu - Ayi(|DulP72 A(u)(Du, Du))dz|.
2r

To evaluate the each term in (2.5), we set the abbreviation: ux = u -+ MA;;u with A,l > 0.
By (1.1), (1.2) and Young’s inequality, we have, for the second terms in the both side,

/ a'nzAz,,'(Du) . Az,i(ID’u,|P_2Du)dz
Q21
1
2/ 0'172|A1,,-(Du)|2/ |Dux[P~2d)\dz, (2.6)
27 0
[ anlDallawu a1 Dup=2 Du)ldz
QZ'r
1 1
< —/ a‘nzlAl,i(Du)P/ |Dux|P~2d)dz
4 er 0

1
+/ a‘|Dn|2]A1,iu|2‘/ [Dux|P~2d\dz. (2.7)
Q21~ Y
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The last term is estimated similarily as in [10, Page 389-390], so that we have, with a
positive constant v depending on N,

Ariu - Ayi(|DufP~* A(u)(Du, Du))

1 1
< YAl AL(Dw)| ] Dus P~ d) + 7| A suf? / |Dus[Pd) (2.8)
0 0

1 1
< Lapw) / DuP~2dA + 1Al / |Dux[Pd.
0 0

= N N

By substitution of (2.6), (2.7) and (2.8) into (2.5), we derive from routine estimate

/ on? |Al,,-u|2da:
{t=to} XBan

1
+/ 0'172|Al,i(Du)|2/ | Dux|[P~2d\dz
2r 0

_<_’Y7"_2/ ﬂzlAl,iu|2dz+‘YT_2/
27 (

to —(27‘)2 7t0) XBST/ 2

1 (2.9)
|Ayul? / |Duy[P~2d)dz
0

1
+’Y/ anzlAz,iulzf |Dux[PdAdz.
27 0

As a result, we arrive at the desired estimate (2.1).
The following estimate is fundamental(refer [1,3,19]).
Lemma 2.2 (Energy inequality) It holds

T
sup I(u(t))+// |8su|®dzdt < I(ug). (2.10)
0<t<+oo o JRrRm

Proof. First of all we observe that
dyu € L% ((0,4+00) x R™). (2.11)

For this purpose take a bounded domain B C R™, a positive number T and sufficiently
small positive numbers €, h. We put a usual cutoff function n € C§°(B) and continuous
piecewise linear functions o = o for sufficiently small § > 0 such that o5 = 0 on (—o0, 6+
e)U(T —h—6,+0), 05 =1 on (26 +¢&,T — h—26). Also put Apsu(s,z) = (u(s +h,z) —
u(s,z))/h.

Take a function ¢ € L2((0,400); Wy '?(R™)) satisfying ¢ = 0 in R\ [0,+00). By
substitution of a valid test function dj¢ into (0.5) with ¢; = 0,¢; = T + h, we immediately
have

/< o (8N -+ (1D D) D - (1Dl 4 (D D))}z =,
0,4c0)XR™
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which implies that dp(|Du|P~2Du) is weak differentiable in (0, +o00) x R™ and that

div{dy(|Du[?"2Du)} = 8;(dnu) + dp(|DulP~ 2 A(u)(Du, Du))

2.12
almost everywhere in (0,+00) x R™. (2:12)

Multiplying (2.12) by osn?Apu and integrating it in (0,T) x B, we have

/ osn?|Ap pul?dz = / o5’ Ap 4u - div(dp(|DulP~2 Du))dz

(e,+00)xB (e,+00)x B (2.13)

- / o5m% An gt - dn(|DulP~? A(u)(Du, Du))ds.
(ey+o0)x B )

The first term of the right hand is estimated from above by
| ourtlAnallds(div(iDul 2 Du))
(e,400)xB i

=(p-1) 51| A eul|d (| DulP~* | D?ul)|dz
(e,+00)xB

1 —
< Z/ a,;nz(Ah,tulzdz+’y/ as51” dp((|DulP~2| D*u|)*)dz
(e,+00)xB (e,+00)xB

) :
< —/ a',snzlAh,tu|2dz+'y/ osn?|Du|*P~?| D%u|?dz.
4 (ey+o0)xB (e,+o0)xB )

(2.14)

Similarily, the second term of the right hand side is bouded from above by

/;4_ x5 osn?|Ap gulldp (| DulP "2 A(w)(Du, Du))|dz

1 _ » -
< z/ o5 | D gul*dz + 4 / _ognPdn(|DulP "2 A(u)(Du, Du))*dz (2.15)
(e,+00)xB (e,40)xB

1
< 2 / 0'5772|Ah,tu|2dz +(N) agnz{Du|2pclz.
(e,+o0)xB (e,+0)xB

By combination of (2.14) and (2.15) with (2.13), we have

/ osn?|Apculdz < fy/ : osn?| Du|*®~? | D?u|?dz
(,T-h)xB (e,T-h)xB

+ / osn°| Du|*Pdz.
(e,T-h)xB

Now we note that Du € L*°((0,T) x B) and that |Du[P/?>~! Du € L*((0,T) x B) by Lemma |
2.1, sn that, letting § tend to zero, we obtain (2.11). Since dyu € L ((0,+00) x R™) and
Du e C ((0,400) x R™), we find that

div(|DuP~2Du) € L%,((0,+00) x B™)



ans that

8yu—div(|Du[P">Du)+ |DufP"?A(u)(Du,Du) = 0 almost everywhere in (0,+o0) x R™.

(2.16)

Next, for v € C®((t1,t2) X B;.), 0 <t; <ty <T, and n € C§°(B,,) satisfying n = 1 in
B, and |Dn| < 2/r, we readily verify, by integration by parts,

/ div(|Dv|P~2Dv) - 8,un’dz = —/ (|Dv[P~2Dv) - D(n*8,v)dz
(tl,tz)XBzr

(t1,t2) X B2y

1
=— / ~8,|Dv|Pndz — 2/ |Dv|P~2Dv - (8,9 Dn)ndz
(t1,t2)x B2,

(t1,t2) X Ba»
=— 2/ |Dv|P~2Dv - (8,vDn)ndz
(tlytZ)XBZr
1 2 1 2
- - |Dv|Pn*dz + = | Dv|Pn*dz.
p {t:tz}XB, ' p {t=t1}><B,
‘ (2.17)

Now, by Lemma 2.1 and the assumption Du € C_((0,+00) x R™), we observe, for all
a € R, .

|Du|® € L}, ((0, +00); Wy Z (R™N{| Du| > 0}))NL{S,((0,+00) x R™N{|Du| > 0})). (2.18)
In view of Du = |Du|?~P)/2| Dy|(®=2)/2 Dy (2.18) immediately implies that
D?*y € L} ((0,+00) x R™ N {|Du| > 0}).

To prove our lemma, we approximate u by a sequence of smooth maps {urp} C O
((0,400) x R™) (refer to [10, pp 391-392]) such that Du;, converges to Du locally uniformly
on (0,+00) x R™ and 8,ur converge to 8;u in L _((0,+00) x R™) and that, for arbitrary
a € R,as k — +oo,

X|Dug|>0 — X|Du|>0 in Llloc((0,+°°) X R™ ),

div(|Dug|*Dur) — div(|Du|*Du) in L ((0,+00) x R™ N {|Du| > 0}), (2.19)

D(|Durl?) — D(IDul?) in L2, ((0,+00) x B™ N {|Du| > 0} ). '
Since Dﬁ(]Duklp_zDauk) = 0 a.e. on {|Dug| =0} for a,8 = 1,--- ,m, the domains of
integration in (2.17) with v = uj are restricted to the intersection of the domains with
{|Dur| > 0}. Integrating (2.16) multiplied by n?8;u in (%1,t2) X Bz, and applying (2.17)
with v = uj, and (2.19) to the resulting inequality, we have, for all By, C R™ and t,1,,
0< t1>t2 S Ta

0 :2/ |Du[P~2 Du - (8;uDn)ndz
(t1,t2) X B2,

1
+ l/ |DuPdz — —/ ]Du|pdw+/ |0sul*n?dz,
P J{i=t,}xBa, P J{t=t1}xB;, (t1,¢2) X Baa
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where we used the fact that d;u is orthogonal to A(u)(Du,Du) in R™. The validity is
verified as follows: Note that there exists a tubular neighborhood N, C R™ of N such that
each point y € N, has a unique nearest point 7(y) € N and that a map m : N, — N is C1.
Since u(z) € N for almost everywhere z € (0,+00) x R™, m(u) = u almost everywhere on
(0,+00) x R™. Thus, by the chain rule for weak differentiation, we have

Ou = Gym(u) = (dm)y(8iu) € T,N almost everywhere in (0,400) x R™. (2.20)

By Young’s inequality, we have

1 1 ¢/
]—)/ |DulPdz + E/ / |8yu|?n*dz
{t:tz}szr (t1,t2)XB'n BZr (2.21)
< —/ |Du|Pdz +7r_2/ | Du|*P~V gz,
{t tl}Xsz (tlytz)XBZr

Noting the assumption |Du|*®~1 ¢ Lloc((O +00), L}(R™)), by letting » tend to +oo in
(2.21), we have the desired estimate. .

Lemma 2.3(Bochner type est1mate) It holds, for any ¢ € L% ((0,+00); Wy'*(R™)) ﬂWﬁ)c2
((0, +00); LE . (R™)) with ¢ >0 in (0,T) X R™ and all t1,1;, 0 < 1,1, < 400,

/ |Du|?pdz
{t}xR™

t=tz

— / | Du|?8ypdz
t=t, (t1 ,tz)XRm

all:* D v
+ / | DulP—2 (5““’ +(p— 2)2‘——2-@3)D,3|Du|zpa¢dz ,
(t1,t2) < ™ | D (2.22)
~2
+2 / |Du|P~2|D?ulpdz + £ = |Du[P~*|D|Dul?|Ppdz
(tl,tz))(Rm 2 (tl,tz)XRm

= —/(t . SOIDu|P—2Dﬁ(A(u)(Du,Du)).Dﬁudz_
1,t2) X m

Proof. Let ¢ € C°((0,400); C3(R™)) NC*((0,+00); C°(R™)) be a function with ¢ > 0
and take an interval (tl,tg) C (0,+00) and a sequence {ux} C C2 ((0,+00) x R™)
satisfying (2.19). By integration by parts and simple calculations (also see [10, pp 391-
392]), we see that each uj satisfies

f Byuy, - div(pDug)dz
(tl ,tz)x R™

:/(t o §|Duk| dupdz
1,t2)XR™

_ / 5|Duk|2¢dz+ / 5|Duk| odz,
{t=t:}xR™ {t=t1}xR™ (2.23)
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/ div(f'(|Dug|?*)Dug) - div(p Duy)dz
(t]_,tz)XR""

1 _ _
- /( ) 5 (8| DusP™* + (p = 2)| Dux [P~ * Doug - Dpug) Dg| Dy |* Doz
t1,t2) X R™
-2
+ oI Dugf? =2 D?us Pz + 22 ¢|Dus =4 D | Duy 2 ds.
(t1,t2) xR™ (t1,t2) xR™ (2.24)

Noting the convergnce (2.19) of uj to u, we are able to let k tend to infinity in (2.23) and
(2.24) to have (2.23) and (2.24) replaced up by u. Multiplying (2.16) by div(pDu) and
integrating the resulting equality, we have

0=— / div(pDu) - (8yu — div(f'(|Duf?)Du)
(tl,tz)XRm

+ |DulP~? A(u)(Du, Du))dz.

(2.25)

A substitution of (2.23) and (2.24) with replacing uj by u into (2.25) gives

1
- / ~|Duf?8spdz
(t1 ,tz)XRm 2

1
+ / 1|Du|2<pd:c —/ =|Dul*pdz
{t=t;}xR™ 2 {t=t,}xRm 2

+ / -1—(5"‘/3[Du|1”_2 +(p-— 2)|Du|p'4Dau . Dﬁu)Dﬁ|Du|2Dacpdz (2.26)
(t1,t2)xR™ 2

-2
+[ R ¢|DulP~3|D*ul?dz + pT @|DulP~*|D|Du?|*dz
t1,t2) XR™

(tl ,tz) xXR™

- / oDs(|DulP~? A(u)(Du, Du)) - Daudz.
(tl ,tz)XRm

Noting that Dgu (8 = 1,--- ,m) is orthogonal to A(u)(Du,Du) in R™ (see the proof of
(2.20)), we observe

Dg(|Du|P~? A(u)(Du, D)) - Dgu = |Du[P~2Dg(A(uw)(Du, Du)) - Dau. (2.27)

Combining (2.26) with (2.27), we have (2.22).
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3 Proof of Theorem.

Now we give the proof of our Theorem. We make assumption that the sectional cur-
vature of the target manifold is nonpositive, which has not needed until now. Firstly we
derive Harnack type estimate by the technique of DeGiorgi (refer to [6,7,8]).

Let {ux} C C°((0,+00); CL _(R™, R™)) be a sequence of weak solutions to (0.3) and

(0.4) satisfying {Dux} C Lz(p—l)((O,-l—oo); L =) (R™ R™n)).

loc

Lemma 3.1 Then there ezists a positive constant v depending only on N,p and m such
that, for each v = u, and any Q, C (0,4+00) X R™,

sup |Dul? < max{ 2'""'1( |Du|pdz),22/(p‘2)}. (3.1)
Qr/2 JQTI Q.

Proof of Lemma 3.1. We know that, for any smooth vectorfield v satisfying v(v) € (T, N)*
for any v € N,

Z W NVviw u(v).,;x(v)(v,W) for any V,W € T,N. (3.2)

i,j=1

Noting that Dau € TyN and A(u)(Dau, Dgu) € (T, N) (a8 =1,---,m), we have, for
«a :3,7’7 =1,---,m,

Do(A(u)(Dt, D)) - Dy = Do - -(A(u)(Dyu, D)) - Dy
= —A(u)(Dyu, D;,u) - A(u)(Dau, Dgu).

- (3.3)

Since the sectional curvature of the target manifold is nonpositive, we obtain, from (3.3),
"
|DuP= " Dp(A(u)(Dav, Dau)) - Dgu > 0, (3.4)
a,f=1 : k ‘

so that, from (2.52), it follows that, for any ¢ € L2 _((0, 00); Wa'*(R™)) NWL2( (0, +0);
L2 (R™)) with ¢ > 0in (0,+00) X R™ and all ¢1,%3, 0 < t1,#; < 400,

/ | Du|?pdz
{t}xR™

t=tz

- / |Dul?8,pdz
t=t; (t1,tz)><R'"‘ .

Dyu-D
+ / | DulP~2 (5“’8 +(p— 2)_u—25u> Dg|Du|?Dypdz
(tl,tz)me "Dul
-2
+2 / DufP~2|D?ufpdz + E=2 \DulP~4|D|Dul Podz < 0.
(tl,tz)XRm 2 (tl,tg)XRm

(3.5)
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Thus we are able to proceed with our estimates similarly as in [6, pp 234-235, pp 238-240,
Theorem 5.1] to have (3.1).

Proof of Theorem. The validity of (0.8), (0.9) and (0.10) immediately follows from our
energy inequality (2.10). The first assertion in (0.11) is obtained from Lemma 2.2 and
Sobolev imbedding theorem..

We now consider the validity of the latter statement in Theorem.

Applying our energy inequality (2.10) for (3.1) in Lemma 3.1, we have that, for any
region @ C (0,+00) x R™, with a positive constant 4 depending only on N,p,m,|Q| and
I(u0)7

|Duk| < v in Q. (3.6)

Thus we observe from (3.6) that,with a positive constant ¥ depending only on N,p,m, |Q|
and I(uo),
|Ap(uk)(Dug, Dug)| < v(N)|Dugl? <% in Q, (3.7)

which implies that the nonlinear term A,(ug)(Dug, Duy) in the equation (0.3) is uniformly
bounded in @ with respect to k. By (2.16) with v = uy and (3.7), we argue similarily as
in the proof of Theorem 1.1 in [6, pp 245-256, pp 275-291] (see also [2,7,8,9]) to observe
that each Duy, is locally Holder continuous in @, independently of k. On the other hand,
similarily as the proof of Theorem 1 in [2] (also see the proof of Theorem 1 in [5]), by
(2.16) with v = uy, and (3.7), we also find that each uy, is locally Holder continuous in Q,
independently of k. Thus we see by Ascoli-Arzela theorem that there exists a subsequence
{ux} such that, as k — +oo, ur and Duj, converge uniformly on @ to u and Du respectively
and that u,Du are locally Hélder continuous in @. As a rsesult we obtain the second
assertion in (0.11). Passing to the limit k — +oo in (0.5) for {uy} with ¢ the support of
which is contained in @, we find that v satisfies (0.5) in Q. Since u, Du are locally Holder
continuous in @, we are able to argue similarily as in the proof of Lemma 2.1 and 2.2 to
have (0.12).
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Notes on Decay Properties of

Nonstationary Navier-Stokes Flows in R”
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1. Introduction and main result

We consider the incompressible Navier-Stokes system of equations in R™, n > 2:

Odut+u-Vu=Au—-Vp (z€R" t>0)

(NS) V-u=0 (x €eR™, t>0)
Uli—o = a, lllim u=20
for unknown velocity w = (u!,---,u™), unknown (scalar) pressure p, and a given initial

velocity @ € L? such that V- a = 0. Here and in what follows,

V= -,8), 8;=0/0z (j=1,---,n), & =0a/o,

n n
Au =) du, w-Vu=>Y vou, Veou=>) o
j=1 J=1 J=1
Introducing the heat semigroup

(e7a)(z) = /Ez(w ~y)a(y)dy,  Ez)= (4nt) " exp (—'—ﬂ:) :

and the bounded projector P : L" — L] (1 <r < co) onto the subspace L’ of solenoidal
vector fields, one can transform problem (NS) into the integral equation :

(IE) u(t) = e a — /Ot e~ t=DAPp(qy . Vvu)(r)dr.

The standard results as given in [2,3,4,6,8,9,10,11, 18] together ensure the existence of a
weak solution u with the following decay properties:
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(a). If @ € L? and ||e7*al|; < C(1+t)"* for some a > 0, then

|lut); <C(1+t)"  with B=min(a,(n+2)/4).

(b). ¥1<r<nf(n—1)andae€ L,NL. then

u(®)ll; < C(1+ t)_(n/r-n/q)ﬂ forall r<g<2.

(c). fae L2N L. and |[e”*a|; < C(1+1t)™" for some v > 0, then

lu®): <CA+1)°  with §=min(1/2,7).

The results above suggest that if @ and w are smooth, then
(d). |a| ~ |z|=* for some n/2 < a < n would imply |u| ~ |z|7Pt~7 with 8+ 27 = a.
(¢). Evenif @ > n in the above, we would have |u| ~ |z|#t~" with 42y = min(a,n+1).

Takahashi [14] has recently proved (d) and (e) for smooth and bounded weak solutions,
which are known to exist globally in time for a specific class of smooth and small initial

data. However, the smoothness and boundedness of general weak solutions remain open
when n > 3.

In this paper we shall verify the above properties in terms of some norms which can be
regarded as substitutes for the L?-(quasi-)norms, 0 < p < 1. To state the results, we recall
that the Hardy space H? = H?(R"), 0 < p < 1, of vector-valued distributions is defined to
be the set of all n-tuples of tempered distributions f = (f*,---, f*) such that

M

sup |¢; * f| € LP(R™), with (quasi-)norm || f||gr =
>0

sup |, * f|
>0

P

where ¢, is the standard Friedrichs mollifier and || - ||, is the L?-(quasi-)norm. It is well
known ([13,16,17]) that H' is a Banach space with norm || - ||gn and, when 0 < p < 1, H?
is a complete metric space with metric d(f,g) = ||f — g|/i»- Furthermore, we know ({13])

that
(H")* =BMO, (VMO)"=H', and (H?)*=€* with a=n(l/p—1),

where BMO is the space of functions of bounded mean oscillation, VMO the closure of
C®(R") in BMO, and € is the homogeneous Holder-Zygmund space of order « ([13,16, 17]).
Using these duality relations, we introduce the norms

. 5 = su -gdx
(11) 151 = sup| [ £-9

/9l (a=n(l/p—1), 0<p<1),



where [-], is the seminorm of the space €* and the supremum is taken over all g in the
closure €3 of C?°(R") in €. We then introduce the Banach spaces

X? = (€5) (O<a=n(l/p—1)<1) withnorm ||-||x»= |-
X' = H' withnorm || ||x1 = || - ||zn-

We denote by € and X7 the closure of the space Cg, of compactly supported smooth
solenoidal vector fields in €5 and X7, respectively. As will be shown in Section 2, one can
show the Helmoltz decomposition

C=€®C, X'=X'®X?,

where the subscript 7 means the spaces consisting of functions of the form Vgq for some
scalar distribution ¢. Furthermore, note that

H? C X* with continuous injection.

Employing the norms || - || x», we can now state our result in the following way.

Theorem. Given an a € L2 N H', there exists a weak solution u of (NS) such that :
(1) Letn/(n+1)<p<r<1. Ifac X%, then u(t) € X2 N X’ for allt >0, and

(12 (@l = O3 as t oo,
(1.3 Jim [fu(t) s = .

(ii) Let0<p<nf(n+1)<r<1. Even if a € H?, we can only show that

(1.4) u(t) € X" forallt >0,
and
(1.5) lu(t)]|x- = O@t~C+1=m/D2) g5t oo

When p = r = n/(n + 1), assertion (1.5) has to be slightly modified by introducing a new
function space via the real interpolation method. The precise statement on this case will be
given in Section 2 (see (2.16) and (2.17)). The result above covers those given in [8,9].

It is possible to understand that our Theorem above reflects the (possible) asymptotic
behavior of u as stated in (d) and (e). To see this, observe that the norm || - ||x» can be
regarded as a substitute for the usual L?-(quasi-) norm. Indeed, if we write

M=) = f(z/})

3



for an arbitrary A > 0, then we easily see that

IAllxe = X7l fllxs and |l = A1 -

Thus, if we formally replace || - ||x» by || - ||, and if we apply the formal correspondence
Ifllp <400 <= If(@)] ~ |27,

then it is easy to deduce properties (d) and (e) from the statements of our Theorem.

Schonbek and Schonbek [12] discuss the large time behavior of the moments
/Ix|m|u(w,t)|2dx (0<m<n)

of smooth solutions u of (NS) corresponding to a specific class of initial data a. Writing

I fllam = ([ |2]|™|f(z)|2dz)"/?, we easily see that ‘
I Aallzm = ’\(m+‘n)/2“f|l2,m (A >0),

and so the norm || - ||2,» has the same scaling property as || - ||2n/(m4n). The assumption
0 < m < n implies 1 < 2n/(m+n) < 2. Using this cprrespondence, one can exactly state
the decay result of [12] in terms of the results (a)—(c) described above. Our Theorem further
suggests that the result of [12] would be true even for n < m < n + 2, although this case 1s
not treated in [12].

Chen and Miyakawa [4] deal with the Cauchy problem for equations of motion of an
incompressible rotating fluid ; and deduce the decay results of L* and L'-norms of exactly
the same form as obtained in [8, 18] for the Navier-Stokes system. As will be shown in the
next section, the proof of our Theorem is based only on the decay rates of L* and L'-norms,

so the results of this paper hold also for weak solutions of the equations treated in [4].

In Section 3 we consider the same problem as in Theorem for a perturbation problem of
the stationary Navier-Stokes flows w in R™ satisfying

ol < C/+el), Vel < C/(1+|z])

Invoking the properties of the semigroup which solves the corresponding linearized problem,
we show that the same result as in the above Theorem holds provided that n/(n+1) <p<L
Our result in this case will be stated in Theorem 3.4.



2. Proof of Theorem
Recall that (see [7,15]) every weak solution u of (NS) satisfies

(D), ¢) = (e a,g)— [ fu- Vu, e IMPg)ds

0
t/2

(2.1) = (e “a, ) —/ (u-Vu,e t=)4Py)ds
0
¢

- tﬂ(u -V, e (794Pp)ds

for all ¢ € C°(R"), where {-,-) is the duality pairing. Here,
Pp=(I+RQRR) ¢

is the bounded projector onto the subspace of solenoidal vector fields and R = (Ry,---, R,,)
are the Riesz transforms ([13]), which are written via the Fourier transform as

B = [ B nw)e = 2, (=VT j=10m)

Recall also that (see [8]) the operators P and e~*4 are bounded on both of VMO and €,
and we have the estimates

(2.2) le”allge < Ct=P=/2)a||g (0 < p < g), [e"alvmo < Clalvmo,

(2.3) [e_tAa];; < Ct’(ﬁ“"m[a]a, [e‘tAa]a < Ct“o‘/z[a]VMo 0<a<p).

(i) Ifa € L2 N H? for some p with n/(n+1) < p < 1, then (2.2) and the boundedness
of the semigroup {e™*},50 in L2 together imply that

lle=all; < C(1 + ) /4=n(/p=1)/2,

Thus, the results in [6, 10,11, 18] ensure the existence of a weak solution u such that
(2.4) ()|, < C(1 4 t)~M/4-1/p=1)/2,

A result of [8] then shows that the solution u satisfies

(2.5) lu()l < €

u(t)|[m < C(1 + t)~/p-D)/2,

Here we recall the Helmholtz decomposition of the spaces X?, €% and VMO :

XP=Xt®X?, C{=C*®eC% VMO = VMO, & VMO,



where o means solenoidality and = means the subspace of vector fields which are the gradients
of scalar functions. All these decompositions are immediately deduced from the fact that
the operator P is bounded on X7, € and VMO, respectively. Moreover, we know (see [8])
that the space C3, of smooth solenoidal vector fields with compact support in R™ is dense

N

in VMO, . The same is true of the spaces X” and €f, as shown in the following

Lemma 2.1. (i) Let 0 < a < 1. Then the space Cg°, is dense in €.
(i) Let n/(n+1) <p < 1l. Then C§, is dense in X7.

Proof. (i) First we note (see [16]) that (€5)* equals the homogeneous Besov space Bl_(:

Suppose f € (Cg)* = BLT annihilates Cg’,. By a theorem of De Rham, f = Vq for some

scalar distribution ¢, and by the definition of Bl—;Y (see [16]), we may assume that ¢ € B:a
Since A is an isomorphism between B'ﬁz and Bf,l for all B € R, we have

qu = AA_I'AJ:q = —8kA'1c‘?j8kq

= —RjRq = (I - P)Vq;

for j = 1,---,n. So we conclude that f = Vg € X? with a = n(1/p —1). Since X7 is
defined to be the annihilator of €2, it follows that f = 0 on €. The result now follows from
the Hahn-Banach theorem.

(i) This time, we have (X7)* = (Bl_?)* = B:ooo = €%, with a = n(1/p — 1),.and so

f = Vq € C%. Hence we may assume q € C°*l. Since A is an isomorphism between er+?

and @ for all 3 € R, the same calculation as in the proof of (i) shows that f is in N(P),
where P is regarded as a bounded projector on €*. Hence, f = 0 on X% and this proves
the result.

Suppose now that @ € L2 N H® for some n/(n + 1) < p < 1 and write
1/p=1/2+1/q, 1 <q<oo.
A result of [5] then implies w - Vu € H? if w € L, with estimate
(26) - Valle < Clluly el

From (2.1), (2.2) and (2.6) it follows that, with p <r < 1 and 8 =n(1/r — 1),

~y —(n/p—n/r t/2 —(n/p—n/r
el < € (140 [ e [Tl )

t
+C /t/2 [ - Vau|la-ds - [¢]s.
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Since

u(s)]l, < C(1+ s)~ @02 = O(1 4 t)="/*,
we see by (2.6) that, with 1/r' =1/r —1/2,

“u(t)“XT < C((1+t) (n/p— n/r)/2+t (n/p— n/r)/2/ “u” ||Vu||2ds)
' t
+C [l Vullads
t/2
t/2
< C ((1 + t)—(n/P—n/r)/2 + t—(n/P—n/T)/2/ 1+ 5)—71/4!‘(7“”2(15)
0
t
+C [ Iullel [V lads,

where § = 2(1/r — 1). Direct calculation using (2.4) and (2.5) gives

()23 < C(1+ ) orUrDI(L 4 5)= 000 14000/

C+ 5)‘(”/1’—"/7‘)/2—71/4.
We thus obtain
t
@1 Ol < C (1470 OO [ ) Vulds)
0

Suppose first that n > 3. Since n/2 > 1, we have

¢ o 1/2 / poo 1/2
[+ ulas < ([ +s72as) " ([T Ivalids) - < Clalle
0 0 0
Here we have used that [5° ||Vu||3ds < 1||al||3, which follows from the energy inequality
i
lu(®)3 +2 [ IVulids < lal}  forall ¢>0.
0

Hence, we obtain (1.2) from (2.7) if n > 3.

When n = 2, we have

t [}
[a+9721Vullds < [T+ )72 Vullds
0 0

_ (/ +/ ) 1+ 8)7V2|| V|| ods



and

[e%} o l+l
/ (14 )" Y2|| V| ods Z/l (14 5)"Y2|| V|| ds
1 =0 2

Q41 1/2 Qt+1 1/2
( (1+s) lds) (/ ||Vun§ds> ‘
2[ 24

O3 u@)], < C (142927 < foo.
=0 £=0

IA

l 0

IN

Here we have used (2.4) and the fact that

[ Ivuliir < Sluli - 0 <s<o,

which follows from the energy equality, valid for n = 2 (see [7,15]):
t o
lu@l3+2 [ IVulfdr = Jlu(s)l;  ©<s <.

This, together with (2.7), implies (1.2) for n = 2.
To prove (1.3), we note that (2.1) implies

@l < € (e allm + /OtHe“(t’s)AP(u~Vu)Hdes)

IN

M
C (IIe‘“‘allm + / |e”(t=94P(u - Vu)Hdes>
0 B

1
+C [ ulIVullds,

with 0 < M <t and 1/r = 1/p — 1/2. Inserting ||u(s)||, < C(1 + s)~™/* gives

e < (e alln+ [ 1P Vs

1 .
+C /M(1 + )74 Vo ds.
Here we take an arbitrary € > 0 and then choose M > 0 so that

C /:(1 +8)Y V|| yds < e,

which is possible since

(2.8) /0 (1 + )4Vl ds < +oo
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as we have shown in the proof of (1.2). On the other hand, the functions ¢ € .% such that
J2%pdz = 0 for every multi-index o are dense in the spaces H? (0 < p < 1) (see [13]).
This, together with (2.2) and the uniform boundedness of the operators e7*4 : H? — HP,

implies that

—tA

tlirgo leallgr =0  forall 0<p<1.

We thus conclude that
lim le=t=)AP(u - Vau)||g»r = 0

provided P(u - Vu) € H? for some n/(n + 1) < p < 1. Furthermore, we have
lem = P(u - Vu)|lge < Cllull,[|Vallz < C(1+ )™ Vull,

with C' > 0 independent of s and the right-hand side is integrable with respect to s over the
interval [0, M]. We can thus apply the dominated convergence theorem to get

limsup [[u(t) e < C /]:(1 + 8)||Va||ads < e.
t—o00

Since € > 0 was arbitrary, this proves (1.3).

(ii) To treat the case 0 < p < n/(n+1), we need the weak Hardy space H? . To this end,
recall that a function f on R" is in the weak LP space, denoted L2 (R") (0 < p < 00), if and
only if

1/ llpw = sup th{z : |f(2)] > t}'/P < +oo.

A (vector-valued) tempered distribution f is in the weak Hardy space H? = H” (R") if

[ fllaz =

< 400,

sup |, * f|
>0 pow

where ¢, denotes the Friedrichs mollifier. Obviously, H? C H?, with continuous injection ;
and, as is well known (see [13]), we have the following characterization :

H? = (H™,H"); ., (Po#p, 0<0<1, 1/p=(1-10)/po+8/p),

where the right-hand side is the real interpolation space ([1]). Thus, if 0 < py < p < p; < 1
and if we write ao = n(1/po — 1), o1 = n(1/p1 — 1), 1/p = (1 — 8)/po + 0/p1, then the space

(2.9) Y = (€%, €5 )on

is defined independent of the choice of py and p;, and we see that

(2.10) HE c X"+ = y~ with continuous injection.

Applying the real interpolation theory ([1]) gives

leallaz < Cllalluz,  lle™allus < Ct=C/r=n/0lja]l e (0 < p < q<1),

(2.11)
le™ allxs < Ct=0r=riD la]xs (n/(n+1) <p<q<1)
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and, withy=n+1—-n/¢>0,

(2.12) leallxe < CE @]l minen < C2 @l ynioeny  (nf(n+1) < ).

Now let @ € L N H? for some p with 0 < p <n/(n+ 1). As shown in [8,18], we have
(2.13) lu(Oll, < CO+ 07 Ju(@)l < OO+ 072
On the other hand, it is proved in [5, 8] that if
1+1/n=1/2+1/q, 1<g<o0, n=2,
and if w € L7, then u - Vu € HY"*Y) and we have the estimate
(2.14) llw - V| griesn < Clluflol| Va2
It should be noticed here that (see [8,9])

u-Vu e H/+D implies u=0.

il

Thus the result (2.14) is optimal.
Now fix n/(n 4+ 1) < r < 1. Invoking (2.9)-(2.14), we estimate (2.1) as follows:

t/2
R (e A e P A M R
o

1
+0 [l Vulds - [els
where 1/r' =1/r —1/2 and 3 = n(1/r —1). But,
lw(®)]l, < C(1+ t)-"(1+1/n—1/q)/2 =O(1+ t)—n/4,

so we get

/2
||u(t)||X, < C ((1+t)‘(n/P—n/T)/2 + t—n(1+1/n—1/r)/2/ (1+s)'"/“||Vu||2ds)
0

t
+C [ ffulls | Vaulads.
t/2

Since 1 < 1/r < 1 + 1/n, it follows that 1/2 < 1/r' < 1/2 4+ 1/n < 1. Thus, writing
6 =3 —2/r, we obtain

lu@)l < Ju()IEllu(s)lls < C(1+ )72 (1 4 )70/
= (1 + )V < O(1 4 o) RN 20/,

10



Therefore,

13
(2.15)  Ju()|x- < C ((1 + t)~(n/p=n/)/2 g (it n1/r)/2 / (1 +s)_"/4HVu||2ds).
0

Assertion (1.5) now follows from (2.8) and (2.15). This proves (ii).

Similarly, one can show the following, which extends (1.5) to the case r = p = n/(n + 1).

Corollary. Ifae€ LN LN X" hen

(2.16) u(t) € XV forall t >0,
and

(2.17) lw(t)||xnin+y < C forall t>0,

with C > 0 independent of t.

The space X™/("*+1) jg employed as a substitute for H™ ("1 or L/ ("1 We know nothing
about the existence of a weak solution u which never decays in X™ ™t a5t — co. The

assumption on the initial data a holds, e.g., if @ € L2 N HZ,/("‘H). Indeed, in this case the
real interpolation theory for Hardy spaces as given in [16,17] implies @ € H' C L.

Proof of Corollary. 1t suffices to prove (2.17). We take
0<ap<l<o; and 0<f<1 with (1-0)ag+0y =1

so that
Y = (€5°,€5")o,1-

Interpolating between the operators e=** : VMO — €%, k = 0, 1, we see that
le=*ally < Ct™lalvmo
and therefore
le4all < Clleallm < Ct 2 lallxmmsn, [l Aally < O jal] gusiurs.
Since @ € L2 N L} by assumption, it follows that
leal < CL+072,  fleall, < C(1L+ 1)/,
Hence, by [8, 18] there exists a weak solution u of (NS) such that

(2.18) le@®ih < CA+H72, Ju(t)], < O+~

11



We can now prove (2.17). This time, we apply (2.9), (2.11) and (2.14) to (2.1), to get

()} < (e algmonn + € [ [l Tullds) - el

with 1/¢ = 1/2 + 1/n. Since (2.18) implies ||u(s)|[; < C(1 + 5)~™/*, we obtain
. T
Nw() | xnsnny < ||e_tAa||Xn/(n+l) + C/o (1+ s)‘"/4||Vu||2ds.

Since ||le~*a|xn/mi1) < Cll@|| xnins1), we get (2.17) from (2.8). This proves the Corollary.

3. Decay of perturbations of stationary flows in R", n >3

In this section we assume n > 3 and study the decay properties of solutions u of
(3.1) du+(A+Byut Plu-Vu)=0 (t>0), u(0)=a,

where
Au=—-Au,  Bu=Pw Vu+u Vw),

and w is ‘a smooth solenoidal vector field on R" satisfying
32) | <C/0+R]), Vel <C/(1+ el

As is shown in [8,9], there exist stationary flows w in R" with decay property (3.2); and in
this case problem (3.1) is the perturbation problem for stationary flows as treated in [3,9].

In terms of the semigroup {e"*£},50, with L = A+ B, we can write (3.1) in the form
t
(3.3) w(t) = a - [ eWIEP(u. Vu)(r)dr
A ;

or, with 0 < s <'t,

(34 (ul)) = (), o) [(u Vu, W g)dr (o€ CF,).

S

- To deduce our desired result (Theorem 3.4 below), we need first to discuss properties of the
semigroup {e"*£"},5¢ in the homogeneous Holder-Zygmund spaces €%, 0 < o < 1. To this
end, we establish the following lemma. In what follows we write

|w|| = sup|a|-lw(z)] and  ||Vaw| = sup|z|*|Vw(z)],
and [-], denotes the norm Qf €g if a > 0. Furthermore, we understand that [-]o =[*]vmo-

Lemma 3.1. (i) Letn/(n+1)<p<qg<1. For0 <w < m/2, there exists a constant
N = Npw > 0 such that if

Nl + [Vl <9,

12



then the estimate
(3.5) 1A + L) | < Clfu|gge /| A~ (/=n19/2

holds for A € C\ {0} satisfying |arg A\| < 7 — w.
(i) Let 0 <a < B <1. For0<w < w/2, there is a constant ' =7, , > 0 such that if

l[wl]l + [Vl <,
then the estimate
(36) [(A+ L) als < Clala/|A['~7-)/2
holds for A € C\ {0} satisfying |arg A\| < 7 — w.
(iii) Letn/(n+1)<p<qg<1. For0 <w < /2 there is a constant u > 0 such that if
Nl + [Vl < g,
then we have
Bn 1A+ L) ullxs < Cllullxe /A~ /=02
for A € C\ {0} satisfying |arg\| < 7 — w.
Proof.  Assertion (iii) is immediately obtained via duality from (ii), and assertion (ii)

follows from (i) via duality. So we need only prove (i). Since (n/p — n/q)/2 < 1, the
Hardy-Littlewood—Sobolev inequality for fractional integrals in Hardy spaces ([13]) gives

IO+ L) e < CIAD+ D) ulli (7= (n/p —n/a)/2).

To estimate the right-hand side we invoke the (formal) Neumann series expansion

AA+ L)y u = A\ + A) i[—B(/\ + A)ru.

k=0

Applying the Mikhlin multiplier theorem gives

0 p
1A (A + L) ullf < CPAPOD ST [-B(A + A) 7 Fu
k=0 HP
Since the quantity || - ||5;, satisfies the triangle inequality, and since (see [9])

1B+ A) Ml < CP(|wl” + [ Veo|P) ul s,

we see that if ||w|| 4 || Vw]| is small enough, then

p 00
< 2 CP(lwl” + Ve |P) el < Cllulffs.
Hr k=0

S =B+ A)u
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This shows (i).

Now, €5 and VMO are Banach spaces, so we can invoke the representation

* ].
‘—tL _ ’)\t A L* _1d)\
e /1"6 (A+ L")

C 2m
with an appropriate choice of I, to deduce part (i) of the following
Corollary 3.2. (i) We have the estimates
(3.8) e als < Ct~F~?a),  for0<a<pB<I

Here we understand that [-]o = [ - ]vmo.

(i) Let n/(n+1) <p<1. If |w|| + ||Vw]|| is small depending on p, we have

(3.9) tlim leallx» =0  for all a € XP?.

Proof. We need only show (ii). Note that the semigroup {e™*‘};5¢ is defined on X7 as
the dual semigroup of {e *"},5¢. Thus, there holds the estimate

(3.10) |Le7 || < Ct 1.

In view of (3.10), it suffices to show that

(3.11) (D) = X*

in order to get (3.9). Indeed, if @ € R(L) with @ = Lb, then (3.10) yields
(3.12) le allxs = |Le~Eb||x» < Ct7}|bllx» — 0 as t — o

Now, if (3.11) holds, then for each @ € X? and each ¢ > 0, there is a b € R(L) such that
lla — b]|x» < e. From (3.12) and

e alxs < lle(a—b)llxe + [le™ bl x»

IN

Clla — b]|x» + |leEb||x» < Ce + |le"b||x»,

it follows that
limsup ||e"*Fa||x» < Ce + lim ||e7*Xb||x» = Ce,
t—00 t—o0

which shows the desired result (3.9).

It thus remains to prove (3.11). To do so we prepare

14



Lemma 3.3. We have the estimate

(3.13) 1Bullx» < C(llw]l” + [[Vew||”)!/7)| Au| x5.

Admitting Lemma 3.3 for a moment, we shall complete the prof of (3.11). Let
D = the completion of D(A) in the norm llullap = ||Au| x»

and consider in the space D the equation

(3.14) Lu=f

for any given f € X*. Equation (3.14) is rewritten as

u = A7 (f — Bu) = du

and by Lemma 3.3 the affine map & satisfies

N

IRullay < [flxe + Clllwll? + [Veol?) /7 lulla,
1ou — @v|la, < C(lwl?+[[Vw|?)?llu— v,

Thus, by the contraction mapping principle, equation (3.14) has a unique solution u € D
for any given f € X provided that ||w]| + ||Vw|| is small enough.

To complete the proof of (3.11), we have to show that A is injective on X*. But, this is
obvious since X? = B 1 with & = n(1/p—1) and, for all s € R, the operator A is isomorphic
from B:l onto Bi;z

Proof of Lemma 3.3. We already know that (see [9])
I1BA™ v|lm» < C(l[w]l” + |V |[?)!/?||v]| .

Applying duality argument two times yields (3.13).

Using the above results, we can prove the following result in the same way as in Section 2.

Theorem 3.4. Letn/(n+1) < p < 1. There exists a number u > 0 depending only on n

and p such that if |w|| + || Vw|| < p, then for each a € L2 N H®, problem (3.1) has a weak
solution w satisfying

(3.15) |u(t)||x- = O~ /P12y g5 ¢ oo
for all v such that p<r <1, and

(3.16) Jim [[u(t)]x» = 0.
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The case p = n/(n + 1) remains an open problem. The proof of Theorem 3.4 is the same as

in the previous section, if we use the estimates
(B17) Julls < CO+O™ 2 Ju@lm <CO+7  (8=n(l/p—1),

which were deduced in [9]. The details are omitted here.

Remark. In (3.17), it is impossible to replace the H'-norm || - ||z by the L*-norm || - |1
If one wants to use || - ||; instead of || - || 1, then, as we have shown in [9], one must replace
assumption (3.2) on w by

(3.2) we LMI(RY),  Vw e LOAVRT),

where L®? stands for the Lorentz space ([1,13,16,17]) with norm Il - llp,g)- In this case, the
statement of Theorem 3.4 holds with ||w|| + ||[Vw|| replaced by |||y + |VW||(r/2,1)- The
details are given in [9].
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STABILITY AND BIFURCATIONS OF TRAVELLING WAVES
OF REACTION DIFFUSION EQUATIONS

SHUNSAKU NII

ABSTRACT.

Stability problem of travelling waves of bistable type is treated. Especially, trav-
elling waves which emerge from heteroclinic loop via heteroclinic bifurcation is
focused.

1. TRAVELLING WAVES AND STABILITY
Consider a one-dimensional reaction diffusion system:
uy = Bug, + F(u), (1.1)

where t > 0, z € R, u(z,t) € R*, B is an n x n positive diagonal matrix and
F:R* —» R™ ,
Set ¢ = —0t, then on the moving frame (¢, ¢) this equation is expressed as follows.

us = Buge + Oue + F(u). (1.2)
A steady state solution of the equation (1.2); i.e. a solution u(§) of the equation
B’U{f + 0u§ + F(U) =0, (13)

corresponds to a solution u(z,t) = u(z — 6t) of (1.1) which translates at a constant
velocity 0 preserving its profile. This kind of solutions are called travelling waves.

- -
at a velocity

In this paper we restrict our attention to travelling waves of bistable type, which
means u(€) satisfies the boundary condition

lim u(§) = ug, (1.4)

E—Fo0
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where we assume that u = u. are stable steady state constant solutions of (1.1).
In such a case, (u(£),u'(¢)) becomes a heteroclinic solution connecting (u-,0) and
(u4,0) of the following first order system.

o ('=4) (1)
v'=—B7'F(u) - 0B "v. % ‘

The existence problem of such travelling waves or, equivalently, the existence prob-
lem of heteroclinic (homoclinic) orbits of (1.5), already commands a large body of
literature, and it is also one of the main sources of motivation for the development
of bifurcation theory for homoclinic or heteroclinic orbits of vector fields.

In this paper, we investigate stability of travelling waves. Formally, we define
stability of a wave in the following way:

Definition 1.1. A travelling wave uy(§) is said to be asymptotically stable relative
to (1.2) if there exzists a neighborhood N of ug in BU(R,R™) such that each solution
u(&,t) of (1.2) that starts in N at t = 0 satisfies

Jul€ ) —uo(E+B)lle =0 (t— +00) (1.6)

for some k € R depending on u(¢,t), where BU(R,R") = {v : R — R"|bounded
uniformly continuous}.

Remark 1.1. , ‘
If ug(€) is a travelling wave, then so is ug(§ + k).

Thanks to the well-known fact of infinite-dimensional dynamical system below, -
linearised eigenvalue problem suffices to prove stability of a given wave.

Fact ([1],[4] and [9]).
ug(&) is asymptotically stable if the spectrum o(L) of the linearisation L of (1.2) at
ug(€) (i.e. LP := BPg + 0P; + DF (uo(§)) P ) satisfies the following:

(1) there exists 3 < 0 such that o(L) \ {0} C {\ReX < 8};
(2) 0 is a simple eigenvalue (0 is an eigenvalue corresponding to translation).

Remark 1.2.

If uy are stable for (1.1) then there exists a simple closed curve K and a constant
B < 0 such that

o(L) N {\ReX > B} C K°, (1.7)



3

where K° is the interior enclosed by K. Moreover o(L) N K° consists of isolated
ergenvalues with finite multiplicity.

The equation (1.5) may undergo various bifurcations. Especially, if a heteroclinic
orbit or a homoclinic orbit emerges through the bifurcation, a travelling wave cor-
responding to it appear. In this situation, it is natural to expect that there should
be some relation between the structure of the bifurcation and stability of the wave
which is produced by the bifurcation.

Yanagida and Maginu’s early work [18] treated stability of double pulse solutions
corresponding to double homoclinic orbits generated from a Shil’nikov type homo-
clinic orbit. In that paper, crossing direction of stable and unstable manifold of the
equilibrium when the wave speed 6 varies played and essential role. This result was,
recently, generalized by Alexander and Jones [2] [3].

The topic of this paper is stability of tarvelling waves corresponding to homoclinic
or heteroclinic orbits bifurcating from what is called a heteroclinic loop.

2. STABILITY OF PULSES

This section is devoted to stability of travelling waves which correspond to homo-
clinic orbits bifurcating from a heteroclinic loop.

KX

> X
1
> X
First, we summarise the frame work. Consider a system of ordinary differential
equations on R?" depending on a parameter u € R¥ (k > 2):

&= f@)+g(zp (=42, (2.1)
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where f and g are smooth and g(z;0) = 0. Assume (2.1) has three equilibria O,, O,
and O3 and the eigenvalues

ey (), -, =15 (1), =" (1), v (), K5 (), - Ky (1)
of linearisations of F' at each equilibrium satisfy
—Ren®_,(0) < --- < —Reni(0) < —p(0) < 0 < *(0) < Rex’(0) < --- < Rex,_,(0).
Also assume that for u = 0 the system

&= f(z) (2:2)

has heteroclinic orbits I'; of (2.2) from O; to O;4; (i = 1,2) simultaneously.
In what follows, we consider bifurcations of these heteroclinic orbits under the
following non-degeneracy conditions.

(1) For each 4, the heteroclinic orbit I'; = {h;(¢)} is tangent to the eigenspace
associated to the eigenvalue v*(0) of lenearisation of f at O; as t = —oo and
the eigenspace to —p**1(0) of O, 4s t — +o0.

(2) For u = 0, the unstable manifold 20%(0O;) and the stable manifold 20°(O;41)
(¢ = 1,2) has one-dimensional intersection ¢.e. for all p € T';

dim (T,,QU“(O,) N Tpﬂﬂs(oiﬂ)) =1.

(3) For u =0, 20%(0;) is transverse to the (n + 1)-dimensional v-stable manifold
20*%(0;41) (¢ = 1,2) which is invariant and is tangent to the sum of the
eigenspaces corresponding to v*1(0), —p**1(0) and —npi** (1 < j < n—1).
Also 20°(0,41) is transverse to the (n+1)-dimensional (—p)-unstable manifold -
corresponding to the eigenvalues —p*(0), *(0) and £%(0) (1 <k <n—1).

(4) For a non-trivial bounded solution §'(t) (: = 1,2) of the linear system of
ordinary differential equations

t=-'Df(h(t))z  (i=1,2), (2.3)
the vectors given by the integrals
+00 . a
[ @6) 5 alhls)0)ds (2.4)

are linearly independent, and hence non-zero.

Remark 2.1. A
The bounded solution §'(t) is unique up to multiplication by constants.

Under these conditions, the following holds.



Proposition 2.1 (Kokubu [11]).

If the conditions (1)—(4) are satisfied, then there exist two hypersurfaces M; (i =1,2)
of codimension 1 in a sufficiently small neighborhood of 1 = 0 in R¥, so that each of
M; consists of parameter values p for which the system has a heteroclinic orbit T;.
Moreover My and M, intersect transversely at p = 0.

The analysis of the existence of a heteroclinic orbit from O; to Oj is divided into
two cases.

(i) ¥2(0) # p?(0) (the case of non-critical eigenvalues.)
(ii) ¥*(0) = p?(0) (the case of critical eigenvalues.)

Proposition 2.2 (Kokubu [11]).
For the case of non-critical eigenvalues, there exists a hypersurface M of codimension
1 with the boundary

aM:MlﬂMg

in a sufficiently small neighborhood of u =0 in R¥, so that M consists of parameter
values p1 for which the system has a heteroclinic orbit I' = {h(t)} from O; to Os.
Moreover,

(a) if v2(0) < p*(0), then M is tangent to My at pn = 0;

(b) if v2(0) > p*(0), then M is tangent to M; at = 0.

For the case of critical eigenvalues, we impose a further condition:

(5) The set {u|v?(u) = p*(u)} forms a surface I in the parameter space R¥ and
is transverse to both of M; and M, at u = 0.

Proposition 2.3 (Kokubu [11]). For the case of critical eigenvalues, there exists
a hypersurface M of codimension 1 with the boundary

OM = M; N M,

in a sufficiently small neighborhood of u =0 in R*, so that M consists of parameter
values p for which the system has a heteroclinic orbit T' = {h(t)} from O; to Os.
Moreover M is tangent to neither My nor My at u= 0 in II.

For some reaction diffusion equations, this kind of bifurcations take place. In the
sequel, let us assume that the system (1.5) undergoes the bifurcation as in Proposi-
tions 2.2 and 2.3 with O, = Oj3. In such a case, the two heteroclinic orbits I'; and
I’ form a loop called a heteroclinic loop and the orbit I' = {h(£)|¢ € R} bifurcating
from the loop is a homoclinic orbit. '

The structure of heteroclinc loop is classified according to the following two types
of twisting.



Let (V"’l,n' ey 1) (resp. (V?l, e VI 1)) be a basis of the unstable (resp.

u s

stable) eigenspace of O, satisfying

S . h(§) > N 1(3)
VO = lim , V9 = lim
M e [ha ()] " eovoo [ha(€))]
and
det (V2 -+ VTt V2, - V) > 0.
Then, (V,ﬂl, e ,f/;'fl‘ 1) determines the orientation of the local unstable manifold of

O, and it propagates to the orientation of the global unstable manifold 20%*(0;) of
O;. Let (VUO,Q, o Vo 1) be a basis of the unstable eigenspace of Oy with

SR 1(3)

Yer = S (e
and let

T OY(9)

= lim
27 gotoo [y (€)

From the assumption (2) for the heteroclinic orbit I';, the tangent space
Th,()20%(01) is tangent to the space spanned by V2, V.ly, -+, V75! in the limit of
& — +o0o. We determine the orientation of (1/3,2, o Ve 1) so that the orientation
of (VSZ, 17,},2, ‘e ,V,{f{ 1) is compatible with that of 20%(0,), and then the orientation
of 20%(0,) is naturally determined by that of (V,f’z‘, Vi, oo Vi 1). Similarly the
orientation of 20%(0O.) again determines the orientation of the unstable eigenspace of

O, but this orientation is not necessarily compatible with that of (17,21, cee ‘7,21_1)
which we defined at the beginning.

Definition 2.1. The heteroclinic loop consisting of I'y and T’y is said to be non-
twisted with respect to the strong unstable direction if the above orientation is com-

patible with that of (V,gl, e ,V,Zf 1) defined at the beginning, otherwise it is said to
be twisted with respect to the strong unstable direction.
Twisting with respect to the strong stable direction is similarly defined.

We have another definition of twisting, which is directly related to the structure
of bifurcation. (See for example B.Deng [5] and references in it.)
Let ¢?(t) be a solution of the variational equation

2= Df(ha(t))z (2.5)
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along hy(t), for which the next limits exist and are non-zero, and ¢?(t) points to O,
along the heteroclinic orbit T'; in the limit of t — —oo:

: 2 02(0)t : 2 —v1(0)t
Jim | (6)]e” O, lim |g?(t)[e" O (26)

Here, we may assume
: 2 2 %
lim g*(€)e”* = —V,

{——00
and
lim (€)™t = V2,

{—+o00
for some non-zero c.

Definition 2.2. The heteroclinic orbit Ty is non-twisted if c is positive, and twisted
if ¢ is negative.

With these two kinds of twisting, we define the sign o of I' = {h(¢)} as follows.

Definition 2.3. 0 = +1 if either of the following holds.

(1) The heteroclinic loop is non-twisted with respect to the strong unstable direction
and I'y is non-twisted. .

(2) The heteroclinic loop is twisted with respect to the strong unstable direction
and Ty is twisted.

Otherwise o = —1.

Remark 2.2.
If either of the following is satisfied, then o = +1, otherwise o = —1.
(1) The heteroclinic loop is non-twisted with respect to the strong stable direction
and I'y is non-twisted.
(2) The heteroclinic loop is twisted with respect to the strong stable direction and
I’y is twisted.

Theorem 2.1 (Nii[12]). ;
If one of the travelling waves which correspond to heteroclinic orbits I'; and T is
unstable, then the wave corresponding to I is also unstable.

If both of them are stable, then provided that o is given, then the stability of the
travelling wave corresponding to the homoclinic orbit is determined by the bifurca-
tion diagram which includes speed of travelling wave as a bifurcation parameter. i.e.
Stability of the wave is determined as in the figure below.

Here, each line labeled T;’ expresses the bifurcation curve on which the heteroclinic
orbit I'; persists. If the homoclinic orbit ' bifurcates along one of the thick curves
labeled ’Stable’, then the wave corresponding to T is stable, whereas if the homoclinic
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orbit T bifurcates along one of the broken curves labeled 'Unstable’, then the wave
corresponding to I' is unstable.

Fl T
-
0, 0) 0, fo)
rz
m vi<p?
6 9 unstable

stable T : r

"
unstable 2

o =+1

@ v = p?
0

stable unstable 6 unstable stable r

unstable _ _ N stable sable____ N0 . unstable

AY /,
stable unstable rz unstable stable rz
C =+] o=-1
3 V> p?
0 uns'tablc

stable 2 unstable 2

G =+] c=-1

3. STABILITY OF MULTIPLE FRONTS

- The bifurcation near heteroclinic loop can be a little more complicated. For in-
stance, when the heteroclinic orbits I'; and I'y are both twisted, then countably many
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heteroclinic orbits also bifurcate from the heteroclinic loop. In fact, this is exactly
the case for FitzHugh-Nagumo equations.
The following system is called FitzHugh-Nagumo equations.

{utzum+f(u)—w

wy = e(u — yw), (3-1)

where z € Rt > 0 and u(z,t),w(z,t) € R, and 1 > € > 0,7 > 0 are parameters. In
what follows, the non-linear term f(u) is assumed to be a smooth cubic-like function
of u satisfying the conditions:
(1) £(0) = f(a) = f(1) =0, for some constant @ with 0 < a < 1.
(2) f'(0) <0 and f'(1) <O.
(3) f(u) > 0if u € (—00,0) U (a,1) and f(u) < 0if u € (0,a) U (1, +00).
(4) 2 f(w)du> 0.
In this paper we shall restrict our attention to large v > 0 so that the system
(3.1) has three spatially homogeneous stationary solutions (u, w) = (uy,wr) == (0,0),
(uy, w;) and (ug, ws). Here u, and w, (* = 1,2 or t) are constants which satisfy

{f(u*)—w*zo

_ 19
e — 1w, = 0, i=1,20rf

O0=u; <us <up <l

Again, let £ = z — 0t be a moving frame for some constant ¢, then in (&,t) coordi-
nate, (3.1) is expressed as

Uy = Uge + 0u§ + f(u) —w
(3.2)
wy = Owe + (u — yw).
The equation of travelling wave is
Uge + Oue + f(u) —w =0
e¢ + Oug + f(u) (3.3)
Owe + e(u —yw) =0
or in form of first order equations,
u =
v'=—60v— f(u)+w ('—i
- Tde (3.4)

w = —g(u — yw).

Notice that a; := (uy,0,w;) = (0,0,0) and a := (ug,0,w,) are equilibria of (3.4).
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It is well known that (3.4) has a heteroclinic solution z;(£) from a; to ay (22(€)
from a; to a,) for certain parameter values. This solution corresponds to a travelling
wave of (3.1) which satisfies

{Er—noo (u(€)7 ’Ul(f)) = (ulv wl) gli)gloo (u(i), w(é)) = (u27 w2)

( lim (u(€),w(§)) = (ug,wsq) EETOO (u(é),w(§)) = (u1,w;) respectively ) .

{——00

This wave is called travelling front, or simple front (travelling back or simple back
respectively). :

Deng [6] proved that for certain parameter value o = (y(¢),6(¢),€), the system
(3.4) has heteroclinic solutions z; and z; simultaneously forming what is called a hete-
roclinic loop Furthermore, there is a sequence of N-heteroclinic solutions {z(n)1(§) }%¥-1
from a; to as ({2(w)2(§)}%=; from ay to a;) which correspond to travelling waves
called N-fronts (N-backs respectively) bifurcating from the heteroclinic loop, to-
gether with homoclinic solutions to a; and a, which correspond to travelling pulses.

-0 ' (27}

oo

Concerning the stability of these waves, the following is proven.

Theorem (Nii [13] [14]). :
Assume that the system (3.4) is linear in some small neighborhoods of equilibria
a; (i = 1,2), then the N-front ( N-back) bifurcating from the heteroclinic loop at

p= pio = (70(€), co(€), ) 15 stable for p = po.
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Remark 3.1.

B.Sandstede [15] proved same result. The proof was based on what is called Lin’s
method.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
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WELL-POSEDNESS OF DISPERSIVE SYSTEM ON WATER WAVES
INTERACTION

TAKAYOSHI OGAWA
GRADUATE SCHOOL OF POLYMATHEMATICS
NAGOYA UNIVERSITY
NAGOYA 464-01 JAPAN

1. INTERACTION PHENOMENA

This note is concerned with the time local well-posedness of the system of dispersive equations
‘which describes the interaction phenomena appearing in the waver wave theory. Let é(t, z,y)

be the fluid velocity potential and 7(¢, z) be the surface displacement. Then the motion of the
fluid surface is described by the following system of equations.

Ap=0, z€R, -—h<y<n(z),

on_0¢  0¢0n _o . _

ot "oy Tozoz O Y=

o 1._ c & _
ot T2V g e =0

where y = n(z) and t > 0.

In order to extract interaction phenomena, so called multiple-scaling expansion is employed:
Introducing scaled variables (¢, zx,yx), where t, = et, 1 = e*z (k = 1,2,---), unknown
functions are expanded in the following forms:

¢(t7 z, y) = Z E”(n)¢n(tl7 t27 <y L1, T2, )

n

T}(t, iL‘) . Z Sﬂ(n)ﬂn(tl, to, .., Z1,T9, )
n
We then suppose that the first approximation of the surface displacement is given by
Mm(ty, z1) = S(t1, z1)e®@D 4 S(t), 21)e™*®s=wD L L(¢ty, ;)

where the first two term describes highly oscillating wave and L(¢, z) denotes the slowly drifting
long wave. Comparing to the same order terms of e#™ we obtain an interaction equation (
Kaupman [22], Grimshaw [19]):

’Lats + 335 = CYLS,
0L + 8, L = B0,(|S]?),

1



(special case is the modified Zakharov system (Yajima-Oikawa [43]).
Slightly general form of the equation is obtained by Djordjevic-Redekopp [15] and Benney

[7] (8]:

0L + c;0,L = :Baz(lslz)’

cg, C1, @, 3, 7y are real constants. When the long wave L is governed by a dispersive equation,
two kinds of models are suggested: Coupled Schrodinger-KdV equation (Kawahara-Sugimoto-
Kakutani [24]):

{ i(8,S + ¢,0,S) + 32S = aLS +1|S|2S,

i(0pS + ¢40:5) + 828 = aLS,
oL + 10, L + 83 L+ 8,L* = B8, (|S|?),

and an interaction on surface between two phase flow (Funakoshi-Oikawa [16]):

10,9 + 828 = aLS,
;L + vD,0, L = B8,(|S]?),
where v > 0 and D, = H3, with Hu = F~1((—1i)sgn(£)4) being the Hilbert transform.
Common structures among those equations are summarized as follows:

e Short wave envelope “S” is governed by the Schrodinger type equation
e Long wave “L” is subject to the dispersive or wave equation with the drift effect.
e Common coupling nonlinearities.

We note that the Benney’s equation is solvable by ”inverse scattering method” (Yajima-
Oikawa [43], Ma [32] )

2. WELL-POSEDNESS

On a view of the theory of evolution equation, it is desirable to show the well-posedness of
those systems. By using Galilei-Gauge transform

[ ult,z) = \/|aB|eittcs—cn2=ics=c)z* /4G (¢ g + cit),
v(t,z) = BL(t, z + at),

Tsutsumi-Hatano [39] simplified the second system and consider the Cauchy problem in the
following form:

i0pu + 02u = vu + y|u|?u, t,z € R,

B = 0 ([uf?),

u(z,0) = uo(),

v(z,0) = vo(z).
They showed the time local well-posedness Benney’s’ equation in the Sobolev space H™+1/2 x
H™ where m = 0,1,2,---. Analogous observation was done for the coupled Schrédinger-KdV



equation (M.Tsutsumi [37]):

i0pu + 02u = vu + y|ul?u, t,r € R,

{ O + O2v + 9,02 = O, ([uf?)
u(0,z) = up(z), v(0,z) = vo(x).
Here we precisely define the meaning of “well-posedness” in the Sobolev space in H®. For

s 2> 0 we let

H*(R) = {u € L*(R); (¢)*a(¢) € L?},
where (-) = (1+]- [?)¥2.
To consider the weaker solution, we solve the corresponding integral equation to the Cauchy
problem of interaction system. For example to Benney’s equation,

t
2.1) u(t) = U(t)uo — i /O Ut — t’){u(t’)v(t’) +’y[u(s)|2u(t’)}dt’,
13
(2.2) v(t) = vo + /O B0, |u(t')|dt,
where U(t) = €% is the free Schrodinger evolution group.

Definition. (Well posedness in H*) The equation (B) is (time locally) well-posed in H* if for any
(ug,v0) € H® x H*"1/2, there exists a time interval T = T (ug, vo) and unique pair of solutions
(u,v) of the integral equations (2.1)-(2.2) such that
e (u,v) € C([0,T); H¥) N X x C([0,T); H-?) Y, where X and Y are properly chosen
subspaces in C([0,T); H®) and C([0, T); H*~/?) respectively.
e (u,v) is unique in the above space,
e (u,v) is continuously depending on (ug, vo).
Under this framework, Tsutsumi-Hatano established the local H™*/2 well-posedness in [?]
and [39]. In fact by observing three conservation laws:
o Ju(®)llz2 = |luollz,
o P(u(t),v(t)) = P(uo,vo)(momentum),
o E(u(t),v(t)) = E(uo,vo)(energy),
where
P(u,v) = |lv(t)|I3 + 2Im [p u(t)0,1(t)dz,
E(u,v) = [|0:ull} + Fllulll + Jr vlul*dz,
they also proved the time global well-posedness to the Benney system for H?/2 initial data.
Since the largest space where Tsutsumi-Hatano obtained the well-posedness was H'/2 x L?, the
following natural question arose: Can we obtain the well-posedness in larger space than H/2?
Concerning the Cauchy problem of the nonlinear Schrodinger equation with a single power
nonlinearity:
10y + O%u = y|ulP~u, t,z €R,
{ u(z, 0) = uo(z),



the well-posedness in the Sobolev spaces was obtained one by one in the last two decades. For

example,
H? solvability: Baillon-Cazenave-Figueria [1]
H! solvability: Ginibre-Velo [18]
L? well-posedness: Y.Tsutsumi [40]
H™ well-posedness (m € N): Kato [23]
H?* well-posedness: Cazenave-Weisslar [13].

We should also note that for the smooth polynomial nonlinearity up to third order, it is shown
by Kenig-Ponce-Vega [29] that the well-posedness in the negative order Sobolev space.

The crucial point of the solvability is how to choose the proper subspace X and Y in the
definition. This is strongly related to the explicit form of the nonlinearity and to find a suitable
estimate for the linear Schrédinger evolution operator U(t) = €% is essential if the initial data
is in a weaker class. Initially the LP-L? type estimate and the Strichartz type estimate were
utilized for the proof of well-posedness:

o (1) LP-L* estimate.

U (tuolly < CE=/20=2P) gl
e (2) Strichartz estimate (Ginibre-Velo [18], Yajima[42], Cazenave-Weissler [13]).

”U(t)uonL"(R;LP) < C”Uo”2
”U() * f”LT(R;LP) < C”f”L"(R;LP’)

Later the local smoothing property was found and used for the well-posedness:
e (3) Local smoothing effect (Sjélin [36], Vega [41], Constantin-Saut [14]).
| DY2U (8)uoll2(-r,zi22) < Cluoll2-
¢ (4) Inhomogeneous Kato’s smoothing effect (Kenig-Ponce-Vega [25]
IDU(#) * flleo(rizzy < Clfllariz)-

The well-posedness in H'/2 by Tsutsumi-Hatano used the local smoothing properties (3) and
(4) as well as the time derivative version of them: For simplicity, we consider the simplified
equation:

u(t) = U(t)uo —1 /Ot U(t — 7)u(r)v(r)dT,

v(t) = vo + /Ot Bz (|u(T)|})dr

Suppose that 8, be a point wise function (for example, in L*(R; L?(0,T))). The smoothing
effect of U(t) gives DY/?2 gain and for the inhomogeneous term, [3 U(t — t')F(¢')dt’ gives a full
derivative 8,. Therefore,ug € H/? is a sufficient (almost necessary) condition to obtain the
contraction mapping associated with the integral equation . If we assume ug € H® (s < 1/2),



we have a regularity gap (so called derivative loss) and can not treat the nonlinear term with
a full derivative O, u.

3. COMMUTATOR METHOD

One possible method to avoid the above mentioned difficulty is to employ the commutator
argument. If we pass the half derivative D}/? from

t
/0 By lu(r)|*dr

into u then the half derivative DZ/2 can be absorbed by the smoothing properties of U (t) in the
inhomogeneous part. Define D; = HD; with (0 < s < 1), we arrange the nonlinearity (here
we omit y|u|?u):

[ 06 =€) {ooutd) + Nom(u(t) + (DY) [ DY2(utr)Par
— Dy (u /0 ‘ Dy/*(|u(r)|?)dr) }dt’,

where

¢ — t
Nom() = u [ 0u((u(r) )dr - (D¥*u) [ DY (fu(r)P)dr).
0
—~ t v
+ DV2(u [ DY (Ju(r)P)dr).
0
Note that the second and the commutator term N, (u) includes up to the half derivative. This
enable us to treat the equation under the weaker initial data. According to the commutation
estimates in Kenig-Ponce-Vega [25], it is possible to establish the semi well-posedness of the
Benney’s equation up to up € H® where 0 < s < 1/2 (Bekiranov-Ogawa-Ponce [2]). However,

the extremal case, s = 0 with the full well-posedness for the full system (B) was left for the
proof.

4. MAIN RESULTS

To cover all non-negative exponent s > 0 and to treat the full system we introduce the
Fourier restriction norm used by Bourgain [9],[10],[11] as auxiliary function spaces X and Y.

lullx = [ (r +€9%(€)*a(r, ) Pdedr,
ol = [ (7 +c6)(€)|o(r, ) dear.



For the Benney’s equation

i0u + 02u = vu + vy|u|?u, t,z € R,
O + cO,v = 9, (|ul?),

u(z, 0) = up(z),

v(z,0) = vo(),

(B)

we have:
Theorem 1 [4]. Let s > 0 and 1/2 < b < 3/4. For (ug,vo) € H® x H*"/2 Benney’s equation
(B) is locally well-posed i.e., T = T(uo,vo) > 0 3(u,v) € C([0,T); H®) x C([0,T); H*"/?):
unique solution of (B) with

veX; veYy

and the map from (ug, vo) to (u, v) is the Lipschitz continuous from H*x H*~Y/2 to C([0,T); H®) x
C([0,T); Hs'l/z).
For the two phase flow equations
i0su + 0%u = vu, t,z € R,
8y + 10, Dyv = 9, (|ul?),
u(z,0) = uo(),
v(z,0) = vo(z),

(FO)

we use the following space instead of Ys—l/ 2

lollz; = [ (7 + velel™)Io(r, O)Pdear.

Theorem 2 [4]. For s > 0, 1/2 < b < 3/4 and |v| < 1, (FO) is locally well-posed with
(uo,v0) € H® x H*V? ie., 3T = T(ug,v) > 0 3(u,v) € C([0,T); H*) x C([0,T); H*~*/?):
unique solution of (FO) and

ve Xy vezV

o Remark 1: .
Structure of the nonlinear terms requires the regularity difference 3. Let (u,v) be a solution
pair of the Benney’s equation. Then setting

up(x,t) = X3 2u(Az, \%),
ua(z,t) = ANv(dz, \%t),

(ignoring ~y|u|?u). (ux,v,) solves Benney’s equation with initial data

x0 = A ug(Az),
vy = Nvo(\z).



uy and s — 1/2 to vy

[ Dzuall3 = X**2°|| D3ul|3
1D5=205]I§ = A>3 Dy~/0](3

The difference of order 1/2 is required to keep them equivalent under the scaling.
o Remark 2:
A similar result for Schrodinger-KdV system is possible (Bekiranov-Ogawa-Ponce [3]):

i0yu + 02u = vu + y|u|?u, t,z € R,
O + 0%v + 0,02 = 9, (|ul?),

u(z,0) = up(z),

v(,0) = vo(z),

(SK)

i.e.,H® x H*~'/2 local well-posedness (s > 0). This improves the previous result by M.Tsutsumi
[37].

o Remark 3:

An analogous result for the Zakharov system (c.f. [45]):

i0u + 8%u = vu, t,z € R,

v — v = 3(Jul?),

u(z,0) = uo(a), ()
v(z, 0) = vo(z), v(z, 0) = vi(z)

is considered by Bourgain [12] and Ginibre-Tsutsumi-Velo [17].

o Remark 4:

For (FO), if |v| = 1, our method does not work well. A sort of cancellation prevents to establish
the crucial estimate. We are expecting that if s > 0 then a similar result hold for (FO) with
v ==l1.

o Remark 5:

In view of Theorem 1 and 2, whether the second equation (long wave) is dispersive type or wave
equation, it does not concern on the well-posedness result. In the other words, any smoothing
effect in the second equation does not give any effect to obtain up to L? x H~/2 solutions.

o Remark 6: ‘

We are expecting so far that the case s = 0 is optimal. For example we can show that the
crucial estimate in our result does not hold for s < 0. ’

Proposition 3. If s < 0 then there is a counter example of the following estimate:

lluvllx;_, < Cliulixglivll go-1r2-



One application of the well-posedness for the equations is a limiting problem in the system
(FO).

. 2 —
{ 10u + Ozu = vu, t,z € R, (FO)

0y + 18, Dyv = 8,(|ul?),
Passing the parameter v — 0, the solution strongly converges to the solution without the
dispersive term 9, D,v. Namely:

Theorem 4 [4] As v — 0 in (FO) the L? x H~'/2 solution converges to the solution of Benney’s
equation with ¢ = 0. i.e., Let (u,,v,) be L? x H~Y/2 solution of (FO) and (u,v) be of (B) with
¢ = 0 with the same initial data. Then

llus = wllorize) = 0,

low = vllcrm-12) = 0
as v — 0.

The system (FO) describes the model under the deep water flow, and (B) with ¢ = 0 is
for the shallow flow, Theorem 4 states that the solution in the deep flow equation (FO), is
approximately getting close to the shallow setting solution as parameter v — 0.

In the regular case, the similar result is relatively easy to show. However our Theorem 4
proves that the system is stable even in the weaker space L? x H~'/2. This stability stems
from the smoothing properties not only by free Schrodinger evolution operator but the nonlin-
ear coupling term in the second equation. In fact, the nonlinear coupling 8,|u|? has a better
smoothing property itself than other term. One can observe that if we multiply the solution u
with the complex conjugate of u, a sort of cancellation happens and the singularity is disap-
pear. Therefore to obtain the weaker solution for (FO) or (SK), we do not need the dispersive
properties for the second equation but only need the Schrodinger part and this special structure
of nonlinearity.

5. BASIC STRATEGY

We basically follows the idea introduced by Bourgain [9], [10]. Consider the linear Schrodinger
equation:

i0u + 02u = F, t,z € R,
The corresponding integral equation: 7
1
(5.1) ult) = U(t)uo — i /O Ut — ¢)F(t')dt'.

Introduce a cut off function, 15 = §9(t/6), where

1 ifj <1
1/’(t)‘{O: if [t] > 2.



By the space-time Fourier transform, the integral equation (5.1) is expressed as the follows:

U(t)ult) = ¢ [ H=Ep(6(r + ) Tadrds

(] — it ) o
_ itT+izg drd
vs e © { i(T +&2) }Tg
Roughly speaking, the second term in RHS =~ (7 + £2)~! and this yields a smoothing effect
except the point 7 = —¢2. Along with the characteristic 7 = —¢2, there is no smoothing effect,

however, the characteristics from nonlinear terms fill this gap. To see this, let F' be replaced
by wv for the short wave equation. We consider the first approximation:

1
4 — ————— X smooth cut off

T+ ey
(€)'

v — ————— X smooth cut off

(T +c£)?

and also take into account of the smoothing effect from linear inhomogeneous term:

(r+&)7

the nonlinear term is approximately given by the convolution of the coupling nonlinear term:

T+ ()2 (r + ct) ™).

Therefore we shall investigate

t 1/2
s [ V(e = OO — e (e * o)

(T+@) T +8)° (T +cg)
and . € 1 1
) / ! %
1/’5/0 W(t = t)0:|u(t)|*dt’ — T+ ) ((7- =) Chy - §2>b)
respectively.

Utilizing the norms
||<T+62>”f||Lz(L2) = ||fllxe
[[{T + c£)*(€)~ 1/29”L2(L2) = llglly-2
we apply the Banach fix point theorem into a map defined by integral equations:

U(u,v) = YU (t)uo — itds / Ut — )u(t)o(t)dt’
= (u, v) = PsW (¢)vo — iths /0 W (t — )8, u(t)|d¢’

where W (t) = e,
Choose ¢ small and consider ¢ € [0, §), the map (u,v) — (¥, ZE) is shown to be contraction on
the spaces and conclude the existence and well-posedness results.



6. LINEAR AND NONLINEAR ESTIMATES

More specifically, we states some lemma which leads to the our conclusions. Recall that P(t)
be a cut off defined in the previous section. and ¢5 = 64 (t/6) for some 6 > 0..
Lemma 5. ([Bourgain], [Kenig-Ponce-Vega]) Let b € (1/2,1), s € R, § € (0,1) and U(t) = eitdz
be the Schrodinger evolution group.
s (£)uollx; < CE=2)/2lug]| s,
lsU(-) * Fllx; < C(1+ 6422 Fllx;

where U(-) x F(t) = [fU(t —t')F(t')dt'.
Analogous estimates for W (t) = e~ and V() = e™**%P= also hold for the same exponents.
Lemma 6. ([Kenig-Ponce-Vega]) Let b € (1/2,1), s € Rand 6§ € (0,1).

[sF | x; < C6U)/|F||x;

—1?

if0<a<b<1/2
1sFllxz, < COC-D| Fllxe,
We give three nonlinear estimate in the norm X; and Y;® which is the crucial to obtain our

results.
Lemma 7. For s >0,a<0be (1/2,1)

1) lulullx; < Cllullk;,
(2) 19aul?[lys-12 < Cllull;-
3) luvllxs < Cllullx;l[vlly

Lemma 7 (1) follows from a simple application of the Strichartz estimate:
U (t)uollLsr;zey < Clluoll2-

Lemma 7 (2) is an Immediate corollary of the following lemma.
Lemma 8. For s >0,a<0,b€ (1/2,1),

19ekul? 5 ge-105) < Cllules

Note that Lemma 8 shows the nonlinear term of the 2nd equation, &,|u|® has slightly better
property. Related estimate is known as a special quadratic form estimate in the context of
nonlinear wave equations. (Klainerman-Machedon [30)).

Since they are all bilinear estimate, it is easy to see:

Lemma 9.
lul?u — v/ ||xs < C(llullx; + llellxg)?llw — 'l x;,
102 ([ul® = 4/ [)llys-1/2 < Clllullxg + llullxp)llw — wllx;,
luv — || xg < Cllu = llxsllvllve + [l llxgllv — V'l



A similar way, estimates for equation (FO) also hold.
Lemma 10. Analogous estimates as in Lemma 7 & 9 hold for v € Z§ where C depends on
1 -1
Proposition 11. If v = +1 and s < 0, there is a counter example of the above estimates
corresponding Lemma 7-(3) for v € Z§.

Gathering Lemma 5-7, if t < §, the maps

W(u,v) = U)o — i | Ut = ¢ )t

=(u,0) = GiW (t)oo — it [ Wt~ ¢)bsDulul’a
satisfies the following estimates:
1,0} lxp < Cllualzs + Clivsunlg
< Clluollze + C&lullxplivlly,-r2
12, 0)ly 172 < Clvollg-vr + Clibsdelull -y
< Cllvoll g-172 + C&[lull-
Hence the map (u,v) — (¥(u,v), E(u,v)) is bounded if

[ullxo < 2C|luoll = M
“'U”Yb—l/z S 20”1)0“1.1‘1/2 =N

and § is small. Similarly we have
11, 0) = (', ")l xg + 15w, v) = B, ) llyovra
1
< 5(”“ — |l xo +[lv — U'“yb—llz)-

This shows that ® and Z give us a contraction mapping and the well-posedness will be shown.

7. OUT-LINE OF PROOF OF LEMMA 8

Finally we briefly sketch the proof of Lemma 8. For simplicity, we show the case s = 0. Let
£(r,6) = (r + €4,
.f*(T’ 5) = (T - €2>bﬁ'v
9(1,€) = (T + c£)*(€) 0.

Recalling a convolution estimate:

/ do < C
(0 —a)y{oc—b) ~— (a—Db)r
for r = min(p, q) with p+¢> 1+,



Note

(c+n)—(c—7+(E-n)?) =1-E+2m¢
~ 2n€.

13elul g g3, = 16€4E) ™R 2oz

= ||i§(§)‘1/2(<7_ _g€2>b * (r _f*§2>b) ”Li(Lg)
- do 1/2
= “|§|1/2(/ (o + 172)2”(7'?— jn—— (€ - 77)2)21’)

x (P 1))

< AP # 17 Plloseany %

L2(1)

dod 1/2
”léllﬂ(/ <0,,+n2>2b<,r fo.n_ (é—' 77)2>2b) ||L$°Lg°

<N llzzalF ez )

d77 1/2

1/2

x [I1gM (/w) llzeozge
< C”f”%z(z,g) = C”“”%{g

For the proof of Lemma 7 (3), see Bekiranov-Ogawa-Ponce [4].
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SPATTIAL CRITICAL POINTS NOT MOVING ALONG
THE HEAT FLOW AND A BALANCE LAW

SHIGERU SAKAGUCHI

ABSTRACT. We consider solutions of the heat equation, in domains in R¥,
and their spatial critical points. In particular, we show that a solution u has
a spatial critical point not moving along the heat flow if and only if u satisfies
some balance law. Furthermore, in the case of Dirichlet, Neumann, and Robin
homogeneous initial-boundary value problems on bounded domains, we prove
that if the origin is a spatial critical point never moving for sufficiently many
compactly supported initial data satisfying the balance law with respect to
the origin, then the domain must be a ball centered at the origin.

§1. Introduction.

This note is a summary of my recent work with Magnanini [MS]. We
consider spatial critical points of solutions of the heat equation. Among
spatial critical points, hot spots have been studied by Chavel and Karp.
At each time, a hot spot is a point where the solution attains its spatial
maximum. In [CK] they considered the Cauchy problem for the heat equation
in Riemannian manifolds and studied the location and the limit of the hot
spots of the nonnegative solution as time goes to infinity. The problem for the
initial-boundary value problems on unbounded domains in R¥ is considered
in [JS].

There is a conjecture by Klamkin [K! 1] concerned with the location of
the hot spots of solutions of the initial-boundary value problems on bounded
convex domains in RY. The conjecture, modified by Kawohl, is that if the
hot spot does not move in time for positive constant initial data under the
homogeneous Dirichlet boundary condition, then the convex domain must
have some sort of symmetry. Partial answers to this conjecture have been
given by Gulliver and Willms, and Kawohl (see [GW, Ka)).

Motivated by Chavel, Karp, and Klamkin, we consider the following prob-
lem:

Determine when and how the spatial critical point does not move.



To understand this problem more precisely, let us consider the unique
solution u(z,t) of the one-dimensional Cauchy problem for the heat equation:

Owu = 0%y in R x (0,00) and u(z,0) = ¢(z) in R, (1.1)

where ¢ is a nonzero bounded function. Then the set of spatial critical points
C(t) of u is defined by

Ct)={zeR; dyu(z,t)=0} (1.2)

Let us suppose that there exist a point zy € R and a nonempty time interval
(t1,%2) such that o € Ny 1,)C(t). Namely, zo is a spatial critical point
not moving in (¢1,t2). Then, by analyticity of u we get

d,u(zo,t) =0 for any t € (0,00). (1.3)
Define the function v(z,t) by

u(z,t) if z <z

14
u(2zg —z,t) i 2z (1.4)

v(z,t) = {

Then v is a solution of the heat equation on R x (0, 00), and v satisfies the
following:

v(z,t) = v(2z¢ — z,t) for any (z,t) € R x (0, c0), (1.5)

v(z,t) = u(z,t) for any (z,t) € (—o0,zg) x (0, 00).
(1.6)

By using the spatial analyticity of u and v we get
u=v in Rx(0,00).
Namely,
u(z,t) = u(2z¢ — z,t) for any (z,t) € R x (0, 00). (1.7)

This implies that p(z) = ¢(2z¢ —z) for almost every 2 € R. Consequently, in
the one-dimensional Cauchy problem the existence of a spatial critical point
not moving in some time interval implies the symmetry of the initial data.
Conversely, the symmetry of the bounded initial data implies the existence
of a spatial critical point not moving along the heat flow, since this point of
symmetry is exactly the spatial critical point not moving in the whole time
interval. The same argument as above works in the one-dimensional initial-
boundary value problems on bounded intervals. For instance, in the case of

2



the homogeneous Dirichlet initial-boundary value problem with nonnegative
initial data ¢ , the existence of a spatial critical point not moving in some
time interval is equivalent to the kind of symmetry described above for .

In the sequel, we will address this problem in higher spatial dimension.
In this case, it is easy to show that the existence of a not moving spatial
critical point does not imply any symmetry of the initial data. For example,
let Ay and t1(z) be respectively the first eigenvalue and a first eigenfunction
of —A under the homogeneous Dirichlet boundary condition in a bounded
domain & C RY. Then u(z,t) = e~ 1ty (z) is a solution of the homogeneous
Dirichlet initial-boundary value problem with initial data u(z,0) = Y1 (2).
Here, any critical point of ¢; is a not moving spatial critical point of u.
However, if €} is not symmetric, then 1; is not symmetric.

Our first result is proved easily by using the explicit representation of the
solution, but it suggests a general principle. For brevity, let us take the origin
as a not moving spatial critical point of the solution.

Theorem 1. Let u be the unique solution of the Cauchy problem for the
heat equation

O =Au in RY x (0,00), and u(z,0) = ¢(z) in RV,

where N 2 1 and ¢ is a bounded function in RN. Then the following three
conditions are equivalent:

(i) Vu(0,t) =0 for any t € (0,00),
(ii) There exists a nonempty interval (t1,t,) C (0, 00) such that
Vu(0,t) =0 for any t € (¢1,t,),

(iii) / we(rw) dw =0 for almost every r 2 0.
SN -1

Here, w = (w1,...,wnN) is a vector in the standard (N-1)-dimensional unit
sphere SV~1 in RN, dw is the volume element of SN=1 and V denotes the
spatial gradient.

Condition (iii) in Theorem 1 can be regarded as a balance law. Precisely
this condition means that for almost every r = 0 the first moments of the
function ¢(re) on SV~ with respect to the origin of R are zero. In partic-
ular, if the spatial dimension N = 1, this balance law implies symmetry. We
also want to emphasize that this balance law is a general principle, in the
sense that, as is proved in the following theorem, on any domain in R" the
balance law for a solution of the heat equation is a necessary and sufficient
condition for the existence of a spatial critical point not moving along the
heat flow.



Theorem 2. Let Q) be a domain in R containing the origin 0, and let (a, b)
be a nonempty interval. Suppose that u = u(z,t) satisfies

Oiu=Au in QX (a,b).

Then, Vu(0,t) = 0 for any t € (a,b) if and only if
/ wu(rw,t) dw =0 for any (r,t) € [0,d,) x (a,b),
gN-1

where d, = dist (0,0Q).

Now, let Q be a bounded domain in RV with smooth boundary 92, and
let 0 € Q. Consider the following initial-boundary value problem: ’

Oiu=Au in Qx (0,00),

u(z,0) = p(z) in Q, (1.8)
(1—a)gi‘+au =g on 89 x(0,00).
v

Here, ¢ is a bounded function on €, v denotes the exterior normal unit vector
to BQ a is a constant with 0 < « < 1, and g = g(z,t) is a given continuous
functmn on A2 x [0, c0). When 0 < & < 1, problem (1.8) is known as Robin’s
problem, and is reduced to Dirichlet and Neumann problems when a = 1 and
o = 0, respectively.

When Q is a ball centered at the orlgm the balance law for initial and
boundary data is also a sufficient condition to ensure that the origin is a
spatial critical point not moving along the heat flow. :

Theorem 3. Let Q be a ball in RN centered at the origin with radius R > 0.
Suppose that for almost every r € [0, R) and for any t € [0, o)

/ we(rw) dw = / wg(Rw,t) dw = 0.
SN-1 SN-1

Let u be the solution of (1.8). Then u satisfies

- Vu(0,t) =0 for any t € (0,00).

This result suggests the following question:

If the origin is always a spatial critical point not moving for sufficiently
many compactly supported initial data satisfying the balance law, must the
domain Q be a ball centered at the origin?

Our last result answers this question.
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Theorem 4. Let Q be a bounded C* domain in RY, and let Bs(0) be a ball
centered at the origin with radius § > 0 such that Bs(0) C Q. Consider the
initial-boundary value problem (1.8) with ¢ = 0. Assume that for any C'™
initial data ¢ with support in Bs(0) and satisfying fSN-l we(rw) dw =0 for
any r € [0,8) the corresponding solution u is such that

Vu(0,t) =0 for any t € (0,00).

Then Q = Bg(0) for some R > 0.

It is worth to mention that as in Theorem 1 the conclusion of Theorem 4
still holds if we assume that Vu(0,t) = 0 only on some time interval, since
problem (1.8) with g = 0 is solved by an eigenfunction expansion ( see [I,
Theorem 15.3, pp. 121-122] for example ) and in particular Vu(0,) is a real
analytic function of ¢ on (0, 00).

For proofs of the theorems we refer to [MS].

§2. Remarks.

Let us give several remarks concerning the theorems.

1. Let us consider the Cauchy problem for the heat equation
du=Au in RY x(0,00), and u(z,0)=p(z) in RV,

Suppose that the initial data ¢ is a bounded function having compact sup-
port. Let z € RV satisfy

/ we(z +rw) dw =0 for almost every r 2 0. (2.1)
SN-1

Namely, suppose that ¢ satisfies the balance law with respect to the point
z. By multiplying (2.1) by r" and integrating the resulting equation with
respect to r from 0 to oo, we get

/ yo(z +y) dy = 0.
RN

Since ¢ has compact support, we obtain

z/RN o(z) de = /RN zp(z) dz. ' (2.2)

Therefore, when [pv ¢(z) dz # 0, by Theorem 1 at most one point z deter-
mined by (2.2) can be a spatial critical point not moving along the heat flow,
and when [y ¢(z) dz = 0 and [py zp(z) dz # 0, by Theorem 1 there is
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no spatial critical point not moving along the heat flow, namely, every spa-
tial critical point of the solution must move. For example, when ¢ is nonzero
and nonnegative, then the point z determined by (2.2) is called the Euclidean
center of mass of ¢, say m,. In this case, with the help of the explicit rep-
resentation of the solution, it is known that the set of spatial critical points
of the solution is contained in the closed convex hull of the support of ¢ for
any t > 0, and it consists of one point, the hot spot, after a finite time, and
further it tends to m,, as t — oo ( see [CK, Theorem 1, p. 274] and [JS,
Introduction, pp. 810-811] ). Consequently, if ¢ satisfies the balance law
with respect to m,,, then m,, is only a spatial critical point not moving along
the heat flow. On the other hand, if ¢ does not satisfy the balance law with
respect to m,,, then every spatial critical point of the solution must move
along the heat flow.

Similarly, let us consider the initial-boundary value problem for the heat
equation in the half space RY = { z = (¢/,zy) e RV ;2' e RV ! and zn >
0 } for nonzero nonnegative initial data having compact support under the
homogeneous Dirichlet boundary condition. This problem is equivalent to
the Cauchy problem for the initial data ¢ having compact support with
e(z',—zn) = —p(z';zn) £ 0 (zy 2 0). In this case, the similar fact
concerning the spatial critical points of the solution is known in [JS, Theorem
1, p.812]. Of course, for any such initial data ¢ we have [py ¢(z) dz = 0 and
fRN zp(z) dz # 0, therefore, by (2.2) and Theorem 1, in this initial-boundary
value problem every spatial critical point of the solution must move along
the heat flow. v

2. Consider the function v € C?*(Q) satisfying
—Av=2Xv in

for some constant A € R and for some domain Q in RY. For example, let v
be any eigenfunction of —A. Then by Theorem 2 any critical point z of v
satisfies the balance law

/ wv(z +rw) dw =0 for any r € [0,d.),
gN-1

where d, = dist (z,0Q). Indeed, if we put u(z,t) = e *uv(z + z), then
u satisfies the heat equation in Q x (0,00), where @ = { z € RY ; z =
y—z, and y € Q }. Therefore Theorem 2 is applied to u.

3. Theorems 3 and 4 have their elliptic counterparts respectively. Precisely,
let Q be a bounded domain in RY with smooth boundary 99, and let 0 € Q.
Consider the problem:

—Au=¢ in ,

2.3
(1—a)g—u+au=g on 01, (2:3)
v



Here ¢ is a bounded function on §, v denotes the exterior normal unit vector
to 02, o is a constant with 0 £ o £ 1, and g is a given continuous function

on 0.

When a = 0, in the case of the Neumann boundary condition, we assume
that '

/ﬂ o(z) dz + /6 _g(z) do =0, (2.4)

where do denotes the surface measure of 95).
The elliptic counterpart of Theorem 3 is

Theorem 5. Let Q = Bg(0) for some R > 0. Suppose that

/ wp(rw) dw = / wg(Rw) dw =0 for almost every r € [0, R).
gN-1

SN—l

Let u be a weak solution of (2.3). Suppose that u belongs to C*(Q) N C°(£)
when a = 1, and that it belongs to C'(Q) when 0 < o < 1. Then u satisfies

Vu(0) = 0.

The following is the elliptic counterpart of Theorem 4 proved along the
same line as in the proof of Theorem 4.

Theorem 6. Let 0 be a bounded C? domain in RY, and let Bs(0) be a
ball centered at the origin with radius § > 0 such that Bs(0) C Q. Consider
the boundary value problem (2.3) with ¢ = 0. Assume that for any C*
function ¢ with support in Bs(0) and satisfying [¢y_, we(rw) dw = 0 for
any r € [0,6) (and further (2.4) with g =0 when a = 0 ) the corresponding
solution u is such that Vu(0) = 0. Then Q = Bg(0) for some R > 0.

4. Let us state two theorems for centrosymmetry which correspond to The-
orem 3 and Theorem 4. The centrosymmetry has been mentioned in [Kl
1].

Theorem 7. Suppose that () is centrosymmetric with respect to the origin
( that is, if z € Q, then —z € Q ), and that ¢(z) = ¢(—=z) for any z € Q, and
g(z,t) = g(—=z,t) for any (z,t) € 0Q x [0,00). Let u be the solution of (1.8).
Then u(z,t) = u(—z,t) for any (z,t) € Q@ x (0, 00). In particular Vu(0,t) = 0
for any t € (0, 00).

Proof. Let v(z,t) = u(—z,). Then v is also a solution of (1.8). Uniqueness
of the solution implies that v = u, which proves this theorem. 0O



Theorem 8. Let  be a bounded C? domain in RY, and let Bs(0) be a
ball centered at the origin with radius § > 0 such that Bs(0) C Q. Consider
the initial-boundary value problem (1.8) with ¢ = 0. Suppose that a = 1
or o = 0 ( that is, we only consider the Dirichlet or Neumann problem ).
Assume that for any C* initial data ¢ with support in Bs(0) and satisfying
@(z) = ¢(—=z) for any € Bs(0) the corresponding solution u is such that

Vu(0,t) =0 for any t € (0,00).

Then Q is centrosymmetric with respect to the origin.

Of course these theorems have their elliptic counterparts respectively, as
in the previous remark 3.

5. Instead of spatial critical points let us consider spatial zero points.
Namely, instead of Vu(e,t) = 0 consider u(e,t) = 0 for each time ¢. Then,
along the similar arguments we can get all theorems by replacing the balance
law fsN—l wu(rw,t) dw = 0 or fsN—l we(rw) dw = 0 by fsN—l u(rw,t) dw =10
or [ sn-1 ¢(rw) dw = 0. Especially, the corresponding proof of the symmetry
results are much easier.

6. There are related symmetry results due to Alessandrini [A 1,2] which
proved another older conjecture of Klamkin [K! 2]. We quote a theorem of
[A 2] ( see [A 2, Theorem 1.3, p. 254] ).

Theorem ( Alessandrini ). Let ) be a bounded domain in RV and let
all of its boundary points be regular with respect to the Laplacian. Let
¢ € L*(Q) with ¢ # 0 and let u = u(z,t) be the weak solution of

O =Au in Q x(0,00),
u(z,0) = ¢(z) in Q, (2.5)
u=0 on 0§ x (0, 00).

If there exists 7 > 0 such that, for every t > 7, u(e,t) is constant on every
level surface { z € @ ; u(z,7) = const. } of u(e,7) in Q, then one of the
following two cases occurs.

(A) ¢ is an eigenfunction of —A under the homogeneous Dirichlet bound-

ary condition.

(B) Q is a ball.

Moreover, if case (B) occurs, then u(e,t) is radially symmetric for every
t 2 0 and u never vanishes in Q x [r,00).

Roughly speaking, this theorem shows that if all the level surfaces are
invariant with respect to the time variable ¢ under the homogeneous Dirichlet

8



boundary condition, then the initial data is an eigenfunction or the domain

is a ball.
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Curved moving planes and applications

Takashi Suzuki*
December 12, 1996

1 Introduction

In 1979, Gidas, Ni, and Nirenberg [3] applied the method of moving planes of
Alexandroff [1] and established some results concerning qualitative features of
solutions for the semilinear elliptic boundary value problem

—Au=f(u), u>0 in and u=0 on O (1)
Here, Q C R™ denotes a bounded domain and A = §%/9z% + -- - + 8%/9z2 the
usual Laplacian for z = (z1, 22, - - -, z5,) € Q. The following theorem is a typical
example.

Theorem 1 Let Q= {x € R"||z| < 1} be the unit ball and f € C*. Then,
any solution u € C*? @) of (1) is radially symmetric: u = u(|z|), and satisfies

ur <0 on 0<r=lz|<1 2)

Let us recall the proof. First, a family of moving hyper-planes {73} are
prepared. Then, the reflection Sy :  +— 2> with respect to 7% induces the
transformation u*(z) = u(z*), which satisfies the same equation. The compar-
ison between v and u*, based on the maximum principle and the continuation
argument with respect to A give the above conclusion.

The argument still works if {73} is replaced by a family of concentric spheres
and S, by the Kelvin transformation. This method, called the moving sphere
method, was adopted by several authors recently ([4], [7], [6]). We refer to the
following theorem of [10] as a typical example.

*Deparatment of Mathematics, Osaka University, Machikaneyamacho 1-1, Toyonakashi,
560, Japan



Theorem 2 Let Q) = {z € R" | a < |z| < 1} be an annulus with 0 < a < 1
and n > 2, and consider the problem (1) with f(u) = n=1 Then, any solution
u € C?*() satisfies

o= (3) () e

(|:.,-|i‘r’u)r<o (Va<r=lz|<1). 3)

and

On the other hand, the authors obtained the following theorem ([9], [8])-

Theorem 3 Let Q = {z € R* | |z| < 1} be the unit ball and and f(r,s) be
continuous on [0, 1] X [0,00). Suppose that it is C! in s and also the property

re(0,1) - (1—r2) g (r,(l—ﬁ)—"T"s)

: decreasing for each s > 0. 4)
Then, any solution u € C*(B) N C(B) of
—Au=f(z|,u), u>0 in B and u=0 on 9B (5)
is radially symmeltric and satisfies

((1—72)%211) <0 for O<r=|z|< 1

This theorem is applicable to f (|z|,u) = K (Jz|) u” for instance, if 1 < o <
242 and (1- rz)("”_d("“z»/ % K(r) is decreasing in r € (0,1). In connection
with this, it should be noted that the method (3] still works for (5), provided
that f(r,s) is nonincreasing in s. This proves that any classical solution of (5)
is radially symmetric and satisfies (2) if (4) is replcaed by

r€ (0,1)  f(r,s) : nonincreasing for each s > 0. (6)

In the case of n = 2, the assumption (4) implies f(r, s) > 0. Restricted to the
positive nonlinearity, conversely, the property of (4) is weaker than that of (6).
Actually, the condition (12) is motivated by [11] concerning two-dimensional
domains.

Details are not desribed here, but taking the infinitesimal generator of the
Mobius transformations implies a partial result of theorem 3. Proceeding to
the general case, we provide 2 = {|z| < 1} with the Poincaré metric ds®> =

(1- |.1r:|2)2 dz? because the standard hyper-planes cannot be applied for the




situation (4). We take a family of geodesic hyperplanes to introduce the trans-
formation of reflection. This transformation is isometric with respect to that
metric, under which the corresponding Laplace-Beltrami operator A, is invari-
ant. Writing the equation in terms of A4, we have seen that the argument of the
continuation used for the proof of Theorem 1 works and Theorem 3 follows.

The purpose of the present paper is to show that the moving sphere method
is interpreted as a variant of the above argument of ours. Namely, we can
show that the Kelvin transformation is regarded as an isometry with respect to
a certain metric, under which the corresponding Laplace-Beltrami operator is
invariant. Consequently, a general form of Theorem 2 can be proven by this
observation.

2 Kelvin Transform and Cdulomb Metric

The well-known property of the Kelvin transformation y = z/|z|? is expressed
as

AU = |z|"P2Azu for U(y) = |z 2u(z). (7
This section is devoted to an underlying geometrical structure, which leads to
a generalized form of this transformation. The key observation is the following,.

Lemma 4 The transformation z +— y = z/|z|* is an isometry with respect to
the metric ds®> = dz?/|z|?.

In fact, the Laplace-Beltrami operator A4 on this Riemannian space (R™, ds?)
is given as

Agv = |z|*Av — (n — 2)z - V. (8)
See [5]. Therefore, writing u(z) = |:t|_"+2'v(z) we obtain
_ )2
B0 = [oPAv—(n—2)z- Vo " 42) v
_ 92
SN k) ©)
4
From Lemma 4, this operator A, is invariant under the transformation z - y
so that o2 o2
Agv — (n_—_l_v =A,V - uv

4 4

for V (y) = v(z). Then, similarly to the first equality of (9) this quantity is equal
to |y|*F AU for V(y) = |y|*T U(y). This leads to (7). We call ds? = dz?/|z|?
the Coulomb metric.

Lemma 4 is proven in the following way. First, the metric is radially sym-
metric about the origin. Therefore, the geodisc segment ¢ connecting z and



y = z/|z|? lies in the half line L starting from the origin, containing z and y.
That is, £ C L.

On the other hand £ is divided into two parts of the same length at z, the
crossing point of £ and S”~! = {|z| = 1}. This is a consequence of

vl gs
— = —log |z].
/|z|3 ﬁ S og |z

Crucial is that the unit sphere T = S™~! is a geodesic hyper-plane, that is, any
geodesic curve connecting any two points on 7' lies in 7. This implies that L is
perpendicular to 7" and the transformation z + y is a reflection with respect to
T. Therefore, it is an isometry and the proof is completed.

The key fact mentioned above is a consequence of the following proposition.

Proposition 5 The sphere Tx = {|z| = A} is a geodisc hyper-plane with re-
spect to the metric ds?> = p (|z|) dz? if and only if

(log p)' (A) = —2/X. (10)

As is described above, if the condition (10) is satisfied, then the transforma-
tion

' A : a(t)
y=o(jz)z  with / p(s)2ds = f p(s)2ds (11)
t A

is an isometry. In particular, the associated Laplace-Beltrami operator is in-
variant under this transformation.

We note that the case p(r) = 1/r? admits the relation (10) for any A > 0.
This induces a family of isomeric transformations defined by (11), namely

z - Mx/|z|?.

Then, the corresponding Laplace-Beltrami operator A, descibed as (8) is in-
variant under this transformation, and the argument of moving planes works.

To conclude the section, we give the proof of Proposition 5.
First we note that the geodesic curve z = z(t) is a solution of
4 Qo) (el { (Gl )2 -bPaf =0 @)
See [5]. If z(t) € T\ is a geodesic, we have

|z =22, z-&=0, and Z-z+]E° =0.



Therefore, operating z- to (12), we have (10) by || # 0.

Conversely, let (10) hold. Given a,b € T\, we can take a geodesic curve
z(t) € T satisfying (12). To see this, let a’,b’ be the crossing points with
S™~1 and the half lines connecting a,b with the origin, respectively. In use of
the rotation of the axes, we can suppose that a/,b’ are located on the circle

S' c S™! indicated by ; = T2 = --- = Zp_» = 0 and |z| = 1. Then, those
two points are connected by an orbit expressed as
0
w(t) =
0
cost
sint

We have |w| = |w| = 1 and @ + w = 0. Therefore, the orbit z(t) = \w(t) € T
connects a and b, satisfying

lz| =]z| = A and z+z=0.

This means (12) under the assumptions of (10), and z(¢) is a geodesic curve. O

3 A symmetry and mononicity theorem

The rest of the present paper is devoted to the following equation on the annulus
A={reR"|a< || < 1}.

—Au:f(z, |z|2;‘gu,(z-V) (|:1:|2;—2u)), u>0 in A (13)
Here, f = f(=z, s,q) is a continuous function on A x [0, c0) x [0,0), C! in s and
g, and even with respect to ¢:
flz,s,—q) = f(=z,s,q) (reA,s>0,gqeR).
We suppose the properties
r € (a,Va) = f(rw, s, q) : non-decreasing (14)

and

_ r € (Va,1) - f(rw,s,q) : non-increasing (15)
for each w € 8" !, s > 0, and ¢ € R. Then, we can prove the following
theorems. If they are applied for

_n43 ni2
f(Z,S,q):—'IIl;l 2 sn3,

then Theorem 2 follows.



Theorem 6 Suppose, furthermore, that

= f (1w, s,q) < r* (r*w 5,q) in re€(1,a), (16)

where w € S*1, g € R, and r, = a/r. Then, any u € C%(A) N C(A) satisfying
(13) and u =0 on |z| = 1 has the properties

@< () (o (a7)
“=\va) “UpP

on a<|z| <1 and (3).

Theorem 7 Similarly, let

r3 f(rwsq)>r,. f(r‘wsq) in re€ (Va1

fora<r<+a weS8" s>0, and g € R. Then, any u € C*(4) N C(A)
satisfying (13) and u = 0 on |z| = a has the properties (17) on a < |z| < v/a

and _2
(|z|2’2’"u) >0 (a<|z| < Va).

We shall only show Theorem 6. Given \ € (v/a, 1), we set
T ={|z] = A} and Y ={A<|z| < 1}.

Writing z* = A2 - z/|z|?, we have |z| > |z*| for z € E.
The function v(z) = l:clnT_nu(z) solves

|z|2Av — (n —2)z - Vv—( 4 v+|z|';"f(zv (z-V)v) =

on A. In use of the Coulomb metric ds? = dz?/|z|?, this is written as

(n—2)
4

Agv — v+ |.'I:| (.'l: v,(x-V)v) = in A

Let v*(z) = v(z*). From the description given above, we have Agv* = Agw.
On the othe hand, z - V = 7, for r = |z| and hence y - V,v* = —z - V.
Therefore, the property f(z, s, —q) = f(z, s,q) implies the relation

(n— 2)

Ag* —— v +|z’\l # f@EE-V)v*)=0 in A

We show that the assumption on f guarantees

| f@*,5,9) > o1 f(z,5,9) (18)




for /Ja< A< |z| <1, s>0, and ¢ > 0. This follows from

i frw, 5,9) > 78 f(rw, 5,9) (19)

forweS™ !, Ja<r<l,r.=a/r<m<r.
In fact, if r; > +/a, then (19) is a consequence of (15). Otherwise, r, <1 <
Vva so that

ni2 n42
it frw,s,g) 2 it f(rws,q)
ni2
2 7 f(rw,s,q)

by (14) and (16). The inequality (18) has been proven.
Therefore, the function wy = v* — v satisfies.

(n—2)?
2
+Iz|l-£_2 (f (:l:, v")’ (z-V) v)‘) —f(z,v,(z-V) —v)) <0

on X = {\ < |z| < 1}. Writing

Agw —

wx

ba(z) = /(; fs (z, 0} () + (1 — t)v(z), tz - Vo (z) + (1 - t)z - Vo(z)) dt,

di(z) = L fa (=, to* (z) + (1 - t)v(2), tz - Vo (z) + (1 — t)z - Vo(z)) dt,

and fx(z) = dx(z)z, we obtain

—92)2 -
Agwy — (n 1 ) wy + |:t:|__’2t'2 (ex(@)+ Oa(z)-V)war <0 on X,.

We apply the identity (9) for za(z) = |z|“"+2'w,\(z). Then we obtain the
following lemma.

Lemma 8 Under the assumptions of Theorem 6, each A € (v/a,1) admits
the inequality

Azy +by(z)zx + Oa(z)-Vz, <0 on Xy, (20)

where z)(z) = |z|~ T (v* —v).

4 Proof of Theorem

Once Lemma 8 is proven, Theorem 6 follows from the standard argument
([2]). We shall sketch the proof for completeness.
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Putting
A={r€(a,1)| 2 >0 in Xy},

we see that the desired consequence follows from A = (v/a,1). Let A € A. We
have zy = 0 on T}, and z, > 0 in X). Therefore, Hopf’s boundary lemma can
be applied by (20) so that

3
£<0 on T, 1)

where v denotes the outer unit normal vector on T from .

The coefficents by(z) and Bx(z) are uniformely bounded. For 7o close to 1,
the maximum principle holds for the equation (20) on any subdomain of A\ By,
and for any X. Here and henceforth, B,, = {x € R" | |z| < ro}. This implies
[’I'o, 1) CcA.

We note the following lemma.
Lemma 9 If \ & A, there exists some To € X N By, such that z)(zo) < 0.
Proof: As we have proven, A < o and hence ¥ N B,, # 0. Suppose
z(x) >0 - on X\NB,.
Then we get
Azy +ba(z)za + falx) - V2o <0 in Xy \ By,

and
z >0 on 6(2;\‘3}0).

Now the maximum principle guarantees zx > 0 in X \Er(,-
However, we have z) > 0in %, and hence z) > 0in Xx. This means ) € A,
a contradiction. O

-~ We show that A is left-open. Let Ao € A. If not, there exists a sequence
{An} satisfying

)\0—;1;</\,,S/\0 and )\, € A.
Therefore, Lemma 9 guarantees the existence of z,, € X, N By, satisfying
2, (zn) £ 0.
We have z), = 0 on Ty,. We have a point y,, satisfying

0z,
or

(¥n) <O (22)



on the segment connecting z, and )‘“]%fl'

Ta_.l(ing a subsequence if necessary, we may suppose the existence of some
Zo € Xy, N By, satisfying z,, — xo. This implies 2z, (zo) < 0.

Here, Ao € A and hence zo € Ty,. In particular, y, — o and 8;? (z0) <0
follows from (22). However, this is equivalent to

62)0
v (ZO) > 0’

which contradicts to (21) valid for A = Ao € A.

The final stage is to show that A is left-closed. In fact, let {\,} C A be a
sequence satisfying A, | A\1 > v/a. Then, we have

Azx, + (ba, (T) + B, (2)V) 22 < 0,
ZA], Z 0, a-nd ZAI ¢ 0 in EAI'
Actually, the last relation follows from 2, > 0 on || = 1. Therefore, the

maximum principle implies zy, > 0in ¥,,, or equivalently, A\; € A.

In this way, A = (1/a, 1) and the proof has been completed. O
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Spiky patterns and their stability in a reaction-diffusion system

Izumi Takagi

Mathematical Institute, T6hoku University
Aoba, Aoba-ku, Sendai 980-77, Japan

1. Introduction

We consider the stability of stationary solutions to the following reaction-diffusion system
due to A. Gierer and H. Meinhardt ([GM]):

' P
At:eQAm—A+%
(1.1)

A‘I‘
TH, = DHae — H + 73

+ 09,

for « € (0,1) and ¢ > 0, under homogeneous Neumann boundary conditions

(1.2) A, =H,=0 at = =0,1.

Here, A = A(z,t) > 0 and H = H(z,t) > 0 represent the respective concentrations of
biochemicals called an activator and an inhibitor; €, 7 and D are positive constants, gg is

a nonnegative constant, and the exponents (p, q,r, s) are assumed to satisfy

(1.3) 0< P

(p>1,¢>0,7>0, s>0).

This reaction-diffusion system was proposed to model pattern formation in develop-
mental biology. It is interpreted that changes in cells or tissues begin at the place where
the activator concentration is high.

When oy = 0, the system without diffusion

dA AP

» = A T
dH A"

= HY g

s+1

has a unique steady-state (A, H) = (1,1), which is stable if 0 < 7 < and is unstable if

s+ 1
p.—_

T >

. Due to the boundary conditions, this steady-state is also a stationary solution
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to (1.1) & (1.2). It is known that even if the constant steady-state (A, H) = (1,1) is
stable as a stationary solution to (1.4), it becomes unstable as a solution to (1.1) & (1.2)
if the ratio €2/D is sufficiently small (Turing’s diffusion-driven instability). Numerical
simulations suggest that in such situations there is a stationary solution which exhibits a
spiky pattern.

As a first step in studying (1.1) & (1.2), we consider the limit D — oo. Heuristically,
as D — oo, Hyg(z,t) — 0, and hence H(z,t) — £(t) because of (1.2). The equation for
¢ is obtained by integrating the second equation in (1.1) over 0 < x < 1 and using (1.2).

This results in the following so-called shadow systern:

P
At=e2Am—A+A—+ag for z € (0,1),

Ha
(1.5) L9 / .
T = 5-{—58 A" dz,
A, =0 atz =0, 1.

Concerning stationary solutions to (1.5), we have the following

Proposition 1.1.  There is an €y > 0 such that if 0 < € < €, then (1.5) has a solution
(A(z;€),&(€)) satisfying
i) Az(z;¢) < 0on (0,1),
ii) A(z;€) — 0g as € | 0 locally uniformly in the interval (0,1] ;
iii) A(0;€) = +oo ase | 0 ;
iv) &(e) = oo ase |0 .
A stationary solution (A(z),£) to (1.5) is said to be of mode k if A’(x) has exactly

k — 1 zeros in the interval (0,1).
Proposition 1.2. Let A(z;¢€) be as in Proposition 1.1 and put

Az €) = A(2m —x;e) if 2m—1<z <2m
T Al —2mge) if 2m <z <2m+1),

form =1, 2,3, .... For each natural number k, set
At (z;€) := A(kz + 1; ke), A (z;€) := A(kz; ke), and  &j(€) := E(ke)
for z € [0,1] and for € € (0,€9/k). Then both of
(4} (556),€ae) and (Af (w;),x(e)

are stationary solutions to (1.5) of mode k.



Stability of Spiky Patterns

For the proof of Proposition 1.1 and Proposition 1.2, see [T).
To state our results on the stability of these stationary solutions to the shadow system,

we introduce the following two quantities:

(1.6) o= z%f —(s+1)
qr 1 1
1. = _ .
(1.7) h p—l(p—l 27‘)
Note that « > 0 because of (1.3), while g < 0 if r < %(p —-1),=0forr = %(p - 1),

and g8 > 0 for r > %(p —1). The following four theorems are obtained in a joint work
with Wei-Ming Ni and Eiji Yanagida [NTY]. The first three of them are concerned with

stationary solutions of mode one, i.e., solutions with only one peak at the boundary:

Theorem 1.3. (Instability) If 7 > f, then the stationary solution (A(-;€),£(€)) is un-
stable, provided that a > 0 and € > 0 are sufficiently small.

Theorem 1.4. (Stability, I) If 1 < p < 5, r is sufficiently close to 2 (so that, in
particular, $ > 0), and 0 < 7 + max{Cpc, C1\/a} < B, then (A(-;€),£(€)) is stable, as
long as ¢ is sufficiently small. Here, Cy and C; are positive constants depending only on

(P g,7).

Theorem 1.5. (Stability, II) If1 < p <5, r is sufficiently close top + 1, and 7, < 7 <
B — C1\/a, then (A(;¢€),€(€)) is stable whenever a and € are sufficiently small. Here, 7.

and C; are positive constants depending only on (p,q,r).

For the shadow system, stationary solutions with interior peaks are turned out to be

unstable:

Theorem 1.6. Ifk > 2, then both of the stationary solutions of mode k, (A,f(-; €),&k(€)),

are unstable for e sufficiently small.

3
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2. Characteristic Equation

To make the arguments transparent we restrict ourselves to considering the case oo = 0.

We point out, however, that the case og > 0 is treated as a perturbation of the case og = 0

and no essential difficulty comes in. As is well-known, if the eigenvalue problem

PA(z; €)' qA(z;€)
or 1 e

1 e Y71 1 T
—h+'r/ Madm—s/ A—(m’——e—)——d:chzf)\h,
0 : 0

e2ad —a+

P
h =Xa, in (0,1)

£(e)® £(e)sH!
a'(0) = d'(1) = 0.

has no eigenvalue in the left half plane Re A > 0, then the stationary solution (A(z;€), £(€))

is stable, whereas if there is an eigenvalue with positive real part, then it is unstable. To

study this eigenvalue problem it is convenient to introduce the scaling

A(zye) = £(€)Y P Dy (z), a(z) =£(©YP Vg(z), h=¢E(e)n.

Then by a straightforward computation we see that the eigenvalue problem above is equiv-

alent to the following:

(2.1) €9 —p+pul ' —quln =X  in (0,1),

. ol r—
Jo ur de
(2.3) ¢'(0) = ¢'(1) = 0.

In what follows, L. denotes the linearized operator defined by the right hand sides of
(2.1)-(2.2) subject to boundary conditions (2.3).

Lemma 2.1. Under homogeneous Neumann boundary conditions, the spectrum of the

linearized operator
2

d
Le=€2w—1+l)ue

consists of the eigenvalues {l; }52, satisfying
loe>260>0>—bg2lie>lae> " >lje>ljp1,e>- | —00,

provided that e is sufficiently small. Here, 6y is a positive constant independent of .
If @j . is a normalized eigenfunction belonging to l;., then {p;}52, forms a complete
orthonormal system of L?(0,1). Moreover, ¢;(z) has exactly j — 1 zeros in the closed

interval [0,1].



Stability of Spiky Patterns
By making use of this lemma and the observation that Lu. = (p — 1)u?, we obtain

Proposition 2.2. (i) ly . is not an eigenvalue of L..
(i) X € C\ {lj} is an eigenvalue of L. if and only if it satisfies the characteristic

equation

(2.4) me%=a+A<pm Jo e (Le =) “““_T>=u

1 flurda:

We observe that w.(z) := u(ez) satisfies
wl! —we +wP =0 in (0,1/¢),
{wum:wxua=o
and as € — 0, it converges to w, which is the unique positive solution to
w' —w4+wP =0 in (0, +o00),
w'(0) =0, lim w(z)=0.

Z— 00

Under the boundary conditions ¢'(0) = 0, lim,_,o ¢(z) = 0, the linearized operator
d2
L:= -1 w -1
has a finite number of eigenvalues lp > 0 > Iy > --- > [, > —1, which are simple. By the
cigenfunction expansion and by a uniform decay estimate of the function (Le— M) ue, we

can prove

Lemma 2.3. (i) The characteristic function x(X, €) is meromorphic in A € C \ {Lie}520

and admits the following expansion:

xX(Ae) =a+ A il ,

7=0

where

— qr ! r—1 d ! d
Cj’e—m o o PRy e ts
0 Ye

(ii) As € — 0,

K6) = xo() = A (m 2w (L = ) wdz ~T) .

p—1) fo w” dz

locally uniformly in {A € C|Re VA +1 > max{1—r,0}}\{} = L}

5
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Finally, we make a crucial observation on the sign of ¢; . and compute the exact value
of x5(0):
Lemma 2.4.
(i) coe > 0.
(ii) If r =2, then ¢j e > 0 forall j =0, 1, 2, ....

(iii) Ifr =p+1, then ¢ <0 forallj =1, 2, 3, ...
(iv) xo(0)=p8—r7.

3. Proof of Theorems

Again we consider only the case o9 = 0. By Lemma 2.3 and Lemma 2.4, we see that, in

the small neighborhood of A = 0, the characteristic equation can be approximated by
xo(A) = aMA+(B-T)A+a=0
in which a(0) # 0 and k > 2. By eclementary reasoning we get the following

Lemma 3.1.

(i) If « is sufficiently small and 8 < 7, then xo()\) = 0 has at least two positive roots in
the interval (0,1y).

(ii) If a(0) > 0, k = 2, B — 7 > 0, then there is a 6; > 0 such that, for a > 0 satisfying
3a/(B—7) < & and a(0)a < (B —7)?%, the equation xo(\) = 0 has two negative roots
in the small neighborhood of A = 0.

(iii) In addition to the assumptions of (ii), suppose that c¢; . < 0. Then there is a 6; > 0
such that if B — 7 < 4a(0)6; and 8a(0)a < (8 — )%, then x(),€) = 0 has at least three

negative roots in the interval (I3 ¢,0), provided that € is sufficiently small.

Clearly Theorem 1.3 is an immediate consequence of Lemma 3.2 (i). By making use of
Lemma 2.4 (ii) and (iii), it is not difficult to see that (i) if = 2, then we have necessarily
k=2 and a(0) > 0 and that (ii) if r = p+ 1 and 1 < p < 5, then we have k = 2 and
a(0) > 0. Therefore, Lemma 3.2 (ii) implies that if » = 2, then the characteristic equation
x(X, €) = 0 has at least two negative roots in the interval (I;.,0), provided that o and ¢
are sufficiently small. To finish the proof of Theorem 1.4, we need to show that x(),€) =0
has no root in the half plane Re A > 0. By the Rouche theorem there is a na.tur&l number

m such that x(),€) and the rational function

Xm(A, €) == a+ A Z—c-’ﬁ——'r
=0 l.’ivf—“A
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has the same number of zeros in the half plane Re A > [} .. Since we may assume that
cje > 0forall j =0, 1, 2, ..., it turns out that x,,(A,€) has at least m zeros in the
interval (—oo,; ¢). This implies that x,, (), €) can have at most two zeros in the half plane
ReX > ;¢ because xm(A, €) = 0 has exactly m + 2 roots in C. Therefore, x(),€) = 0
cannot have any root in the half plane Re A > 0. Once the assertion of the theorem is
proved for r = 2, we have by continuity that it holds true also for r sufficiently close to 2.

The proof of Theorem 1.5 is carried out along the same line as in that of Theorem 1.4.

To prove Theorem 1.6, we put

d? _
Lte = ezw -1 +puf’e(:r;)p !

in which we define UZ.:,E(%') = &u(e)~Y PV AE(z;¢). Then we have the following

Lemma 3.2. If € is sufficiently small, then the operator Lf . under homogeneous Neu-

mann boundary conditions has exactly k positive eigenvalues l(’)”"e > l{“ye > > l,’&_lye > 0.

We need to distinguish between the case where & is odd and the case where k is even.
When & = 2m is even, we see that the eigenfunction tp,k;l’e(:v) belonging to lfn,é has a

symmetry such that

1
/ u,:f_:,e(m)"_lgof;he(w) dx = 0.
0

Hence, we see that A = l'rlir.,e > 0 is an eigenvalue of the linearized operator E,fs and (¢,n) =
(¢k ,0) is an cigenvector (see (2.1)-(2.3)). This shows the instability of (A,:f(, €),&x(€))
in the case where k is even. When k = 2m —1 is odd, we see that the second eigenfunction
(pfye(:n) vanishes at a point close to z = (k — 2)/k and it is approximated in each subin-
terval [(¢ — 1)/k,i/k], (i = 1, ..., k), by the scaled first eigenfunction g of L.. From
this we see that, in the expansion of the characteristic function x (A, €) corresponding to
(AL (5 €),&x(€)), the coefficient of the second term is positive: ¢; o > 0. Therefore,

lim xi(A, €) = +oo,

NS

lim xi(A €) = —o0

All’f’c Xk( ) ) )
whence follows that xx(),€) = 0 has a positive root in the interval (If,If ). Thus,

(AE(-;€),€k(€)) is unstable. This completes the proof of Theorem 1.6.
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LP-continuity of wave operators for Schrodinger operators
and its applications

KENJI YAJIMA

Department of Mathematical Sciences, University of Tokyo,

Komaba, Meguroku, Tokyo 153, Japan

Let H = —A 4V be the Schrédinger operator on L*(R™). There are many cases that we
need estimate the norm of functions f(H) of the operator H between suitable function spaces,
e.g. between L? spaces. For example, the solution u(t) of the time dependent Schrodinger

equation

10uf/0t = (—=A + V)u, u(0) = ¢

is given by u(t) = e*H ¢ via the exponential function e~ and the LP-L¢ estimates, hence the
Strichartz type estimates of the solutions follow from the norm estimates of the corresponding
operator e~ from LP(R™) to LY(R™). Likewise, the solution of the wave equations with
potentials ,

PufOt? — Du+V(z)u =0, u(0)=¢, u(0)=1

may be written in the form u(t) = (costv/H)¢ + (sin tv/H//H)s and LP-L? estimates of the
solutions reduce to those of the operators cos tv/H and sintv/H / VH.

The purpose of my talk is to present a method to obtain LP-L9 estimates of functions
f(H), more precisely a method that reduces the estimates f(H) to those of the corresponding
function f(Ho) of the free Schrédinger operator Hy = —/\. The latter operator may be

expressed explicitly by using the Fourier transform:

F(Hoyu(z) = [ = f(€?)a(e)de

and may be estimated by using various means. Here and hereafter the Fourier transform (¢)

is defined by

~ 1 —iz
e = Gy / e"¢u () dz.

The method is based on the scattering theory and we briefly review the latter theory. We
assume that the potential V' is short range, viz., for some € > 0, the multiplication operator

(x)!*€V is compact from H*(R™) to L*(R™). Then, the following limits exist (cf. [1], [12]):

Wiu = lim eHemitHoy o ¢ L(R™), (1)

t—too



and the operators Wy are called wave operators for the pair (H, Hy). The wave operators are
isometries on L2(R™) as the strong limits of unitary operators. A deeper result also in [1]
and [12] is the completeness of the wave operators, that is, the image of Wy is equal to the
continuous spectral subspace L2(H) for H. Actually the singular continuous spectrum of H is
absent and the image of Wy is equal to the absolutely continuous spectral subspace L2 (H) for
H. Write P,(H) for the orthogonal projection onto L2(H). The completeness result implies
that the limits
Ziu = lim et~ p (Hyu, ue L*R™)

—Foo
also exist and Zy = W], where * means the.adjoint operator.
The important property of the wave operators which especially concerns us here is the

intertwining property: W intertwine the continuous part of H and Hp:
Hu =Wy HWjiu, ueLl(H).
It follows then that, for any Borel functions f,
F(H)P(H) = Wy f(H)WZ,  f(Ho) = WLf(H)P(H)Ws (2)

on L*(R™). The relations (2) immediately imply that, once we know that Wy are bounded
from a suitable function space to another, the estimate of the operator norm of f(H)P.(H)
between such spaces may be derived from the corresponding estimate of f(Hp). For example,

if we know that Wy is bounded in the Sobolev spaces W*P, then f(H)P.(H) and f(H,) have

equivalent norms between these spaces:

CHF(H) s wrray < N (H)P(H)l pwrs iy < ClF (Hollpgwmr,wray-  (3)

Note that the constant C in (3) is independent of the functions f.

In this paper, we show, under suitable conditions on V(z), that W are bounded in
LP(R™) for any 1 < p < oo, and give its applications to the LP-L? estimates on the solu-
tions of Schrodinger equations, wave and Klein-Gordon equations with potentials, and to the
“Fourier multiplier theorems” for the generalized eigenfunction expansions associated with the
Schrodinger operator H.

We assume that the spatial dimension m > 3 and V/(z) satisfies the following assumption,
where F is the Fourier transform, (z) = (1 + |z|?)"/2, £ = [(m — 1)/2] is the smallest integrer
greater than (m — 3)/2if m > 4 and £ = 0if m = 3, and m, = (m — 1)/(m — 2). For
multi-indices a = (ay,..., o), D* = D{*--- D% and |a| = a1 + -+ + .

Assumption The potential V(z) is real valued and for any |a| < ¢, (z)*’ D*V € L*(R™) for

“some ¢ > 1/m,. Moreover V satisfies one of the following conditions:

2



L. ||()*(D)*V| 2 is sufficiently small.
2. For some py > m/2 (or po = 2 if m = 3) and § > 3m/2 + 1, there exists a constant
C > 0 such that

1/po
s ([ DVERa) <oy, st
le—y|<1

zeRm™

The assumption implies (z)7V € L®(R™) for some ¢y > m/2 (or go = 2 if m = 3) and V
is short-range in the sense as mentioned above. It follows that H and H, with the domain
W22(R™) are selfadjoint in L2(R™), the wave operators (1) exist and are complete. The wave

operators are a fortiori bounded in L*(R™).

Theorem 1 Let V satisfy Assumption and let zero be neither eigenvalue nor resonance of
H. Then, for any 1 < p < oo, Wy and Zy originally defined on L* N LP can be extended to

bounded operators in LP and

IWefller < Collfllirs 122l < Gollfllins € L* N L7, @

Remark 1 Zero is said to be resonance of H if there exists a solution u of —Au(z) +
V(z)u(z) = 0 such that (z)~"u(z) € L*(R™) for any v > 1/2 but not for v = 0. Under
the Assumption, it is well known ([7], [15]) that zero can never be a resonance of H if m > 5;

and that zero is neither eigenvalue nor resonance of H if |[(z)2(D)*V |1 is sufficiently small.

Remark 2 If zero is resonance of H Theorem 1 never holds. If zero is eigenvalue of H, then

Theorem 1 does not hold in general. This can be seen by comparing the results of Jensen-

Kato([7]) or Murata ([15]) with Theorem 3 below.

We list some immediate consequences of Theorem 1. For Banach spaces X and Y we write

B(X,Y) for the space of bounded operators from X to Y, B(X) = B(X, X).

Theorem 2 Let the assumption of Theorem 1 be satisfied, and 1 < p,q < co. Then, for any
Borel functions f on R,

C7|f(Ho)llB(ze,Ley < IIf(H)Pe(H)|IB(zr.o) < C||f (Ho)l|B(Lr L) (%)

where the constant C does not depend on f.



Remark 3 The intermediate results that also follow from (2) and Theorem 1:
If(H)Pe(H)ullr < C||f(Ho)Wiullre,  ||f(Ho)ullr < ClIf(H)P(H)Weullz»  (6)
are also of use, where the constant C is independent of Borel f or u.

We should mention here the boundedness of the wave operators Wy between weighted
L? spaces has been shown by Isozakai [6] when W, are restricted to the part of strictly
positive energy. We also mention the works of Melin [14] and Jensen-Nakamura [8]. The wave
operators are in fact not the only operators which satisfy the interwining property (2) and
the LP continuity. Indeed, Melin [14] has constructed a family of such operators Ag, 8 € S™!
when m is odd and V is smooth and small. Thus, his Ay may as well be used to obtain the
estimates (5) for such case. It is not clear to us, however, whether his results immediately
lead to the boundedness of W,. Jensen-Nakamura [8] studies the mapping property of f(H)
between Besov spaces when f is smooth and vanishes at infinity.

Combining the well known Kato’s LP~L? estimate [10] for e~##° with Theorem 2 we obtain
—itH

the following estimate for the propagator e of the time dependent Schrédinger equation.

This is a generalization of Journe-Soffer-Sogge [9].

Theorem 3 Let the assumption of Theorem 1 be satisfied. Then, for any 2 < p < oo and
1/p+1/q = 1, there exists a constant C, such that for all t # 0 o

| T PH) fllzr < Coltl™ /D) flpa,  f € LL2 @)

As mentioned above. Theorem 2 can be applied to‘ the wave and Klein-Gordon equations
with potentials ‘
0u 9
ol Du+V(z)u+p*u=0, u(0,2)=¢(z), u(0,2)=e(x). (8)
Combining Theorem 2 with thé well-known LP-L? estimates for the free wave and Klein-
Gordon equations (cf. Strichartz [20], Pecher [16]), we obtain the following result. The

statement for the wave equation is a generalization of Beals and Strauss [2].

Theorem 4 Let the assumption of Theorem 1 be satisfied. Then, for any 2 < p < 2(m +
1)/(m—1) and 1/p+1/q = 1, there ezists a constant C > 0 such that for any ¢, ¥ € L2(H)NL?
with /H + p?¢ € L9, the solution u(t,z) of (8) satisfies

futt, Mzs < ClP*m 030 (|4 p2olla+ [9llze) . 12 1. (9)



It is well known that estimates (7) or (9) lead to various space-time integrability properties
of the propagators of corresponding equations which are important in non-linear analysis.
We omit here, however, the detailed discussion into such direction and content ourselves by
showing an inequality of Strichartz type [21] as a prototype (cf. Ginibre-Velo [5], Yajima [25],
Pecher [17] and Brenner [3]).

Theorem 5 Let the assumption of Theorem 1 be satisfied and let ¢, ¢ € L:(H) be such that
(H + p*)4¢ € LX(R™) and (H + p?)"Y4%) € L*(R™). Then the solution u of (8) belongs to
LP(RH) with p=2(m + 1)/(m — 1) and

el oty < CUCH + 1) *Bllze + I(H + p*) 7/ |1z)- (10)

Proof Write By = +/Ho+p? and B = /H + p?. By Strichartz’s inequality (cf. [21],
Corollary 2), we have

[{cos(tBo)/Ba'*}8llus(rm+1) + | {sin(tBo)/ By} rrmsr) < Cléllz2(rm)-
Applying (6) to {cos(tB)/B?}P,(H) at every fixed t, we have with

l|{COS(tB)/Bl/2}P (H)¢|!Lp Rm-H) - /—oo ”{COS(tB)/BI/Z}PC(H)¢”%I)(R?)dt
<O [ |{oos(tBo)/ B/ "YWl apydt < CEC )%

This implies || cos(tB)Pe(H)¢||zr(rm+1) < C||BY24||r2. The norm || sin(tB)Po(H )| po(rmi1)
may be estimated in a similar fashion and we obtain (10). g

We can make Theorem 2 more precise as follows. When H admits the generalized eigen-
function expansions, the result may be called the ‘Fourier multiplier theorem’ for the expan-
sion formula. For j = 1,...,m, define Df = W,.D,;W}, whete D; = —id/dz;. We call
D* = (Df,..., D) the asymptotic momentum operators. D;t are commuting selfadjoint
operators in L*(R™) and, for any Borel function f on R™, f(D%) can be defined by functional
calculus. We have f(D*)P.(H) = W.f(D)W; and the application of Theorem Theorem 1
yields the following

Theorem 6 Let the assumption of Theorem 1 be satisfied and 1 < p,q < co. Then, there

ezxists a constant C independent of u and Borel functions f such that
IF(D*)Pe(H)ullze < ClIF(DYWiullrs,  f(D)ullze < CIf(D*)P(H)Waulle, (11

CF(D) e Loy < IF(DF)P(H ) (Lr,rey < CF(D)lB(zr,L9)- (12)



Remark 4 When f(£) is a function of |€|*, f(£) = FUEP), we have f(D) = f(Ho) and
f(D*)P,(H) = f(H)P.(H). Hence Theorem Theorem 2 follows from Theorem 6.

We relate Theorem 6 with the Fourier multiplier theorem for the generalized Fourier trans-
form associated with H. For simplicity, we assume (2) of Assumption and that zero is neither
resonance nor eigenvalue of H. We write ¢o(z,¢) = €¢ and () = Fu(é). M, is the
multiplication operator with (z)~7 and R(z) = (H — z)™', Ro(z) = (Ho — z)™" are resolvents.

Kato and Kuroda [11] have shown the followings: For v > 1, B(L?)-valued function
M, R(2)M,, of z € C'\ [0, c0) has continuous boundary values M, R(A +£:0)M, on [0, c0); and
the functions defined by ¢ (-, &) = (1—R(£2£40)V)o(- , €) are outgoing (incoming for — sign)
generalized eigenfunctions of H in the sense that they are solutions of (—=A+V(z))¢+(z,¢) =
|€2¢+(x, €) satisfying the outgoing (incoming) radiation condition:

cHilelle
#1(2:) = o2, 6) + T (f(&,6 +0(l=I™)

as |z| — oo with fixed & = z/|z|. Define the generalized Fourier transform by

Fenf(§) = @a) ™" [ 8@ O)f(@)da. (13)
Then, Fy y are unitary from L?(H) onto L*(R™) and vanish on the point spectral subspace
LY(H) for H; Fiu diagonalizes H., viz., i uH.F% gg(€) = |€[°g(§); moreover Wy can be
expressed in terms of Fy p :

Wef(a) = FLnF () = @n) ™" [ ou(e.0f(€)dE. (14)

Note that the unitarity of F g implies the generalized eigenfunction expansions:

fl@)= @0 [ 6u(@OFenf©de, e LAH). (15)

For a function f write M; for the multiplication operator with f(£) (this is a little abuse

of notation but should not cause any confusion). In virtue of (14), we have
F(D*)P.(H) = We f(DYW} = FL g Ff(D)F Fe = FigMsFen,

that is, f(D*) is nothing but the Fourier multiplier My for the generalized Fourier transform
Fi.p. Thus Theorem 6 immediately implies the following

Theorem 7 Let V satisfy the condition (2) of Assumption and let zero be neither eigenvalue
nor resonance of H. Let 1 < p,q < co. Then there ezists a constant C > 0 independent of
Borel functions f on R™ such that

CUNF(D)IBwr.rey < WFi aMiFe mllawe.ioy < CllF(D)Bre Lo)- (16)



Remark 5 The argument above shows that estimate (16) remains valid if either one of
Fipg or Frpg may be replaced by corresponding operator for another Schrodinger operator

H' = Hy + V' satisfying the condition of the Theorem 7.

Theorem 7 and the well know (ordinary) Fourier multiplier theorem(cf. Taylor [22]) yield

the following L? boundedness of the multiplier in the generalized Fourier transform.

Corollary 8 LetV satisfy the condition (2) of Assumption and let zero be neither eigenvalue
nor resonance of H. Suppose that P({) satisfies

-m || o p 2 <
sp R [ NelIog P)PdE < oo, ol < [m/2)+1, (17

where [m /2] is the greatest integer < m/2. Then Fi ypMpFs g € B(LP) for any 1 < p < oo.
In particular, if P(¢) = f(€?) satisfies (17), f(H)P.(H) € B(L?).

Remark 6 The same remark as in Remark 5 applies and Corollary 8 remains valid if one of
Fi g or Fi g may be repalved by the corresponding operator for another Schrodinger operator
Hl - Ho + VI.

We outline the proof of Theorem 1 for W,. The proof for W_ is similar. Ro(z) = (Ho—z)™"
and R(z) = (H — z)~! are the resolvents of Hy and H, respectively and R*(\) = R(A £10),
RE()\) = Ro(\ £ 0) are their boundary values on the upper and lower banks of C \ [0, 0).

We start with the Duhamel formula

gmitHo _ o=itH | i/t emilt=s)HY/ gmisHo gg
0

Multiplying both sides with e and taking the limit ¢ — oo yield
Wiuw=u+ i/ooo ey e~isHoyds. (18)

Rewriting the last integral by using the Plancherel formula produces the well known stationary

representation formula of the wave operator ([12], [18]):

1 o
Wiu=u— = A R(\)V{RI(\) — B3 (\)}ud>. (19)
Expanding R=()\) = 20 o(—1)"Rg (A\)(V Ry (A))" in (19) yields the formal expansion
o ny 1 * - n p+ ‘
Wow=u+ S (—1)"Wou, Wou = %/ (R; (\V)"RF (\ud), (20)
n=1 -
which of course is a disguised form of the iteration of the Duhamel identity in (18):
Wiu=u+ i/oo etHoy e=itHoy g 4 i2/ etifloyg=ili=t)Hoy o=it2Hoy gy ¢, 4 ...
0 Ostlst250°
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Let X = (Xi,...,X;n) be the vector of multiplication operators by the variables z;. If we

write
VX) = [ X606y,

and use the identity e"Hoe'Xée=itHoy(z) = iXEeit(2DEHE)y (1) = e+ y (g 4 24€),

t

wwt oite? /277 tE)dtde. 21
3 Jowoykn € € (Ou(z + t&)dtde (21)

Wiu(z) =

Introducing the polar coordinates { = rw,0 < r < co,w € ¥, ¥ being the unit sphere, and

changing the variable (¢,7,w) — ((t — 2zw)/r,r,w), we arrive at the formula

Wiu(e) = / ‘va(t,w)u(tw + z,)dtdw (22)

[2zw,00)x T

where z, = ¢ — 2(2w)w is the reflection of z along the w-axis and
Ky(t,w) = %/Ow V(rw)rm=2et /2 dr.
It follows by Minkowski inequality and the fact that x — z,, is measure preserving that
[Winl|Le@my < ||R>V”Ll(RxE)H"”LP(Rmy (23)
By Holder’s inequality, we have for any o > 1/m.,,

1(m-1)
IR vllz: sy </ (/ Vo | R (£, 0)|™ 1dt) du

By using Hausdorff-Young’s inequality in the first step, Holder’s inequality in the second, and

again Holder’s inequality and Plancherel’s formula in the last, we estimate

— L\ /(m-1)
/(/ Ky t.w)lm“ldt> dw

1/m
< c,n/ (/ (rw) | ldr) "dw < Col[ Ve < Cull(D)PV 12
for p > (m —3)/2 (or p =0 if m = 3). Likewise,
1/(m-1)
/ (/ [tKy (¢, w)|™" ldt) dw < Cp (DY ({x)V)]| 2
It follows by interpolation that
IRVl Rowy < ClH@) DYV 2 eyl o om)- (24)

(Actually Plancherel’s formula with respect to the radial variables implies

// II&V t,w |2dtdw<7r// (rw)rm™?| drdw—/]ﬂm SV (6)Pde



and similar estimate for the ¢-derivative of K v(t,w). Hence Holder’s inequality and the inter-
polation inequality imply the following estimate which is slightly better than (24) as far as

the regularity is concerned:

1Ky [l (0,00)x) < Cl(=) " Vlgem-sr2mmy, o> 1/2

Nonethless, the method used to obtain (24) produces better estmates for W, when n > 2 and
this is why we employ the former method in what follows.)
Repeating the computation which lead to the indenty (21), we write W, f(z) in the fol-

lowing form:

Wof(e) = |

[0,00)" x Rnm

e e Dl S T V(6o — ) f (2 + 3 16)dTdE (25)
1=1 J=1

where dT = dt, ...dt,,d= = d¢ ...d¢§,. Then, manipulating in a way similar to that is used

for deriving (22), we obtain,

Waf(e) = [ KT, Q) (20, + p)dTdSL, o (26)

[0,00)7—LxIxE"

where dQ = dw; ... dw,, I = (2zw,, ), is the range of the integration by the variable ¢, and
p=tiwr + -+ taw,. Here Ku(ér,...,8) = (5/2)" [T0ey V(Ejo1 — &), ko = 0, and.
R’n(TaQ) = /[ ) ei2?=1tjsj/2(sl 8" TEK ($1w1, - S )dsy - dsy.
0,00)™

Since £ — x,, + p is an isometry, it follows by Minkowski’s inequality that

IWafllze < 20Kl oooyrxsm |l flle, 1< p < oo (27)

On the other hand, the estimate similar to that is used to derive (24) implies
1K allz2 o0 2 zm) < (Cll (DY ()2 V) 122)", (28)
and by combining (27) with (28), we obtain
IWallszey < (Crll(D)"(()*7V)||2)" - (29)

Thus, the series in (20) converges in the operator norm of B(LP) and W, is bounded in
LP(R™), if [ (D)?((x)*V)z2 < Cy'. This proves Theorem 1 when [[(D)?((x)**V)]|z> is small.

When ||(D)?({x)?**V)||2 is not small, (20) no longer converges in norm and the argument
above breaks down. Using the identity R™(A) = Ry (A) — Ry (A)VR™()), we write W,u =

u— Wiu+ Wgu, where W, is as above and

Wyu = — / (MV{RE(A) — R3 (\)}ud). (30)



We wish to show that W, is bounded in L? (R™) by proving that the integral kernel Wz(:c, )
satisfies the well known criterion for the L? boundedness:

max{ sup / [Wa(z,y)|dy, sup |W2(x,y)|dx} < o0. (31)
zeR™ Rm yeR™ Rm

The integral kernel Wz(x, y) is given by

— 1 oo .

Wa(a,y) = 5= [ (B (K)V (G = Goya), VG aa)dR?, (32)
where Gy ,1(2) = Gi(x — y,k) are that of RF(k?) or the incoming-outgoing fundamental
solutions of —A — k2, which satisfy G4 (z,k) ~ Cetklel|g|=(m=1/2f(m=3)/2 a5 |z| — oo, and
where (-, -) is the coupling between suitable function spaces. Thus crude estimations would

only yield
|the integrand of (32)] < Ck™3(z)~(m=1/2(y)~(m-1)/2 (33)

and we are evidently faced with the following two difficulties:

(1) High energy difficulty: The integral (32) does not converge absolutely at k = oo;

(2) Low energy difficulty: Even if we restrict the integral (32) to a compact interval via a
smooth cut off function of k, (33) produces only [Wy(z,y)| < C(z)~(m=D/2(y)=(m=1)/2 which
is far from (31). For improving the decay property of WZ(x,y) by exploiting the oscillation
property of Gi(z,k), we apply the integration by parts with respect to k. However, the
singularity at & = 0 of G1(z, k) prevents us from doing this as many times as necessary.

For separating the two difficulties, we decompose W, into the low and the high energy
parts and treat them separately. We decompose by using the cut off functions ¢, € C$°(R")
and ¢, € C*®(R!) such that ¢;()\)? + ¢2(A)2 =1, and ¢;(X) =1 for [A| <1 and ¢;(A) =0 for
|A] > 2. Note that Wy = ¥, ¢;(H)Ws¢;(Ho) thanks to the intertwining property of Wi.
We show that Wy o, = ¢1(H)W2¢1(H0) and Wi pign = ¢2(H)I7I72¢2(H0) are both bounded
in LP. Of course it is well known that ¢;(Hy) is bounded in LP. It can be shown that the
integral kernel of ¢;(H) is bounded by Cn(1 + |z — y|)~", hence ¢;(Hp) is also LP bounded.
(Incidentaly the statement on the integral kernel of ¢;(H) was a conjecture of Simon [19].)

For evading the singular behavior of the resolvent kernel at zero energy, we split R~ (A) =
R=(0)+ R~(\) and single out the contribution of R~(0). We decompose W jo,u = Wé},lwu +

w® accordingly. In virtue of the orthogonality of Hardy functions in the upper and the

2,low

lower half planes, we have

Wit = o) {5 [~ REOOVR- OV RSN} o (Hou (34)

271
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and using the identity (RF(A\) — Ry (A\)¢1(Ho) = (BT (A) — Ry (A))1()), we write
Wihow = 5= [ (R OWVR- VRS () - By ()b (M) (Hojudd,  (39)
where ¢; € CP(R) is such that ¢;(A\)¢;(A) = ¢1(A). What is important here is to observe
that, if we write R~(0) as an integral operator of the form
RO)f(x) = [ K(x,2 = y)f(e ~ y)dy

and if we set M (z) = V(2)K(z,z —y)V(z — y), W2( w Can be expressed as a superposition

Wi = = [ o(E)WA(M,)1 (HoJuydy,  uy(w) = u(e ~ y), (36)

where Wi (M,) is defined by (22) with M, in place of V. One can show under the condition
of the Theorem that M,(z) satisfies

Jo 1), oy dy < 0 (37)

for some ¢ > 1/m, and, applying (24) to (36), we see that W 5 low 15 bounded in LP.
We set G ox(y) = eX*elGy , k(y) to make the oscillation property of G4 ,x(y) explicit
and write the integral kernel of W low 10 the form W2( llw(x, y) = W2(2low( y) — W; l())w( ,Y):
1 =5}
Witk (e,9) = 5= [ DR ()Y Gy VGRS, (38)

l .
sow 271 Jo

where we ignored the harmless factors ¢(Ho) and ¢, (H) (recall (32)). We apply the integra-
tion by parts with respect to k, choosing ¢ suitably:

- 1 oo Dle=tklelld) X o
Wit (e, y) = o n/o ey B )V Gy V) () )
1 o e—zk z|Fly . . . .
= — — DY K(R (VG VG, k%) }dk,
Wi/o (le T |yl)g k{ < ( ) +,y.k +, ,k>¢1( )}

and gain the addition decay factor (|z| F |y|)~¢. Here the boundary terms do not appear for
¢ < [(m + 3)/2] and the integral converges absolutely because R~ (k?) vanishes at k = 0. In
this way it is possible to show that

(Wit (2, y)| < C(L+ ||| F Jyl|) ="/ (g)~(m=D/2(y)=(m=1)/2 (40)

and W'Z(i))w(x, y) indeed satisfies the criterion (31). Though the splitting of R~(\) as above is
unnecessary when m is odd because of the simpler structure of G4 (z,k), it makes the proof

of the theorem simpler even in that case.

11



To show that W5 high = ¢o(H )Wg(ﬁz(Ho) is also bounded in LP, we need to overcome the
high energy difficulty mentioned above. We expand R~ (k%) in (30) as

(k%) =NZ k) (VRy (k*))" + (R™(K)V)NR™(K*)(VRy (K*))Y  (41)

‘and decompose W, into 2N + 1 summands accordingly: W, = YAINE(_1)"W (™). As we have
proven W = W,,... WEN+D) = 1}, are all bounded in L?. On the hand, by using the
well know results on the mapping property of the resolvent, we see by letting N sufficiently
large, Fy(k?) = (R=(kK*)V)N R~ (k*)(V R (k?))" can be made to decay as rapidly as desired
as k — oo as an operator valued function between suitable function spaces and the integrals

1 , e s N
o D (2, y) = / R (PN (R2)V Gy g, VG o) ba(K2) AR (42)

omi

converge absolutely, where ¢, € C®(R) is such that ¢,(A) = 0 near A = 0 and ¢,(N)ps(A) =
é2(N). Set W (g y) = WENTD+(g y) — W’,S?QJZH)’ (z,y) and write thgNhH) for the

igh igh
integral operator with this kernel. Then ¢2(H) CN+2) 6, (Ho) = ¢o( H)W, ZX“ ¢o(Hop) and
virtually the same technique as was used for proving (40) for (le,f (z,y) yields

[WEREDE (2, )| < O+ ||| F [y[)~ 22 (z)=(m=D/2 ()= (m=1)/2,

igh

and VV,SZ;;:M)(&C, y) satisfies the criterion (31).

We refer the readers to our papers [25], [26] and [27] for the details and possible extensions.
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Critical Exponents in Semilinear
Diffusion Equations
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This article is based on a joint work with N. Mizoguchi [5, 6, §].
We are concerned with the Cauchy problem with source

(1)

Us = Uge + |[UlP 10 in R x (0,00),
u(z,0) = up(x) in R,

and the problem with absorption

(2)

Us = Uze — |[ulP7u in R x (0, 00),
u(z,0) = uo(x) in R,

where p > 1. Since the pioneering work of Fujita [2], many results have
been obtained concerning the critical exponent for the behavior of positive
solutions. However there is no result concerning the critical exponent for
solutions with sign changes. See, e.g., the survey paper of Levine [3].

Our aim is to determine critical exponents when the number of sign
changes is prescribed for initial data. To describe our result precisely, we
introduce the following definitions. For a function v on R with u # 0, de-
fine the number of sign changes z(u) by the supremum of j such that the
inequalities

7L(ZE¢)‘U(CC¢_|_1)<O, i=1,2,---,7,

1



hold for some —oo <1y <2y < -+ < x4 < +00. We denote by ;. the set
of initial data with z(ug) = k for which (1) has a time-local classical solution.

Finally, put

2
=1 ) k=07172a'”'
P T

First we give our result for (1) concerning the blowup and global existence
of solutions.

Theorem 1

(a) If1 < p < px, then any nontrivial solution of (1) with ug € Ly blows up
in finite time.

(b) If p > pi, then there exists a nontrivial global solution of (1) with
Ug € Y.

Next we consider (2). It is easy to show that any bounded solution of (2)
satisfies
lu(z,t)| < Ct7VPD ) ¢ >0,

for some constant C' > 0. We say that a solution u decays fast ¢t — oo if

Jim tY/®PVy(x,t) =0 uniformly in R.

Otherwise the solution is said to decay slowly.

Our second result is stated as follows ,

Theorem 2

(a) If1 < p < pg, then any nontrivial solution of (2) with uy € Xy decays
slowly as t — oc.

(b) If p > px, then there exists a nontrivial solution of (2) with up € g
which decays fast as t — oo.

Our strategy to show the above theorems is as follows. We introduce the
similarity variables
u(y,s) = (¢ + 1)/ Du(z,1)



with 2 = (t + 1)'/2y and t = ¢* — 1. Then (1) and (2) are written as

Y 1 _ .
3) Us = Uyy + S0y + p— TV + [vP~ty in R x (0, 00),
v(y,0) = uo(y) in R.

Set
p(y) = exp(y?/4),
and let H ;(R) be the Sobolev space with the weight p(y) defined by

H(R)={v |/R('v2 +v§)pdy < 00}.
Let L be a linear operator defined by
] 1
Ly = - e
P =Pyt 2‘Py+p_1997
and consider the eigenvalue problem
Lp=XMp inH ;.

We denote by A; and ¢, the jth eigenvalue and its associated eigenfunction,
respectively. Then we have

1 j+1

ITp—1 2
and

os(y) = %exp(—f/zx)

for j =0,1,2,---. Thus the exponent py is related with Ay as
{ A >0 if1<p<py,

M=0 ifp=py,
)\k<0 ifp>pk.

Using the above properties of L and applying the theory of infinite di-
mensional dynamical systems to (3), we can prove Theorems 1 and 2 when
initial data wg are restricted in H ,}. Using this result, we construct certain

3



special solutions and compare them with other solutions. Then we make use
of the nonincrease of intersection numbers [1, 4] to prove Theorems 1 and 2
for general initial data. See [5, 6, 8] for details.

Finally, we remark that our method is applicable to problems on the half
line (0, 00) with the Dirichlet or Neumann boundary condition at z = 0. We
also refer to [7] for some related results on a bounded interval.
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