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Forward

In October 1994, Seiberg and Witten introduced a new set of equations into gauge theory.
These equations greatly simplify and clarify the technical details of gauge theory. In these
lectures we will reprove several results which were first proved using Donaldson theory with
the newer Seiberg-Witten theory. In particular, we will show that there are topological 4-
manifolds which admit infinitely >many differential structures. In addition we will show
that there are smooth 4-manifolds which may not be built with complex pieces. With these
results as motivation, we will proceed to take a closer look at the mathematics behind
gluing formula. These notes will not, however, include an introduction to the Seiberg-
Witten equations. For an introduction to the Seiberg-Witten equations, we recommend our
earlier notes [A1], the book by Morgan [M], and the forthcoming book by Salamon [S].

Before the advent of gauge theory, the theory of 4-manifolds was largely dominated by the
study of specific examples. Complex surfaces form a very rich collection of 4-manifolds.
Complex surfaces may be grouped into rational surfaces, elliptic surfaces, and surfaces
of general type. Elliptic surfaces have structure which simplifies their study and are a
fascinating collection of 4-manifolds.

In the first lecture we will discuss the topology of elliptic surfaces, beginning with the
K3 surface. We will also discuss two methods for constructing new 4-manifolds from old:
the log-transform and rational blow downs. Using these two methods we will construct
all of the elliptic surfaces with the homotopy type of K3, and an additional collection of
manifolds that were studied by Gompf and Mrowka.

With the advent of Donaldson theory, it became possible to prove that there are 4-
manifolds which are homeomorphic but not diffeomorphic. New examples of this phenom-
enon were found as people became more proficient at computing Donaldson invariants. For
a while it was conjectured that every 4-manifold could be expressed as a connected sum,
X1#Xo# ... #X,, where each of the X; are complex or anti-complex or S*. Gompf and
Mrowka constructed counter-examples to this conjecture and proved that their examples
were indeed counter-examples.

" In the second lecture we will compute the Seiberg-Witten invariants of the elliptic sur-
faces homotopy equivalent to K3 and of the Gompf-Mrowka examples. This will verify
that there are infinitely many distinct differential structures on the K3 surface. It will also
show that not every 4-manifold is built out of complex parts.

There are many approaches to computing the Seiberg-Witten invariants. We will use
the rational blow-down approach of Fintushel and Stern. This approach has a very topo-

logical feel. It is an example of a neck-stretching result or pinching technique. The first
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neck-stretching result was Donaldson’s vanishing theorem. Donaldson also proved that
the simplest invariant was unchanged under the connected sum with a negative definite 4-
manifold, for example, with CP2. A connected sum with CP?2 is called a blow-up. It became
important to understand the effect of a blow-up on the Donaldson invariants. Many people
worked on this problem: Donaldson, Taubes, Morgan, Bryan, Leness, Ozsvath, Fintushel,
and Stern. Kronheimer and Mrowka developed a blow-up formula for the Seiberg-Witten
invariants in their paper [KM]. The second lecture ends with an outline of a proof of the
rational blow-down formula.

- The third lecture begins by discussing a method to organize gluing results, called Floer
theory, as developed by Austin and Braam. The lecture proceeds to discuss this theory for
the Seiberg-Witten invariants. In the Seiberg-Witten case, this produces a homology theory
which is a topological invariant for 3-manifolds when' by > 2. We conclude by working out
the Seiberg-Witten Floer theory for manifolds of positive scaler curvature and for Euclidean

manifolds.

I would like to thank Suhyoung Choi, Hyuk Kim, Seoul National University and the
GARC for the invitation to gives these Lectures and for their hospitality. I would also like
to thank Rob Kirby for several blackboard discussions, and Ron Fintushel for sharing his

Joint work with Ron Stern on rational blow-downs.



Lecture 1

Handlebody Decomposition

In this section, we will describe the K3 surface both algebraically and topologically. We
will also use a cut-and-paste technique to construct an infinite collection of 4-manifolds
with the homotopy type of the K3 surface. By M.Freedman’s work, all of these manifolds
are homeomorphic. We will see that these manifolds are not all diffeomorphic, and that
some of them do not admit complex structures, even though they are irreducible.

The K3 surface is an algebraic variety, so an algebraic description will consist of the
solution sets of polynomial equations glued together by algebraic relations. The topological
description will be a handle body decomposition.

The K3 surface is an example of an elliptic surface. An elliptic surface or elliptic fibration
is a smooth algebraic variety together with a map onto CP! so that the fibers are elliptic
curves. Even though the total space is nonsingular, the fibers might have singularities.
Some people allow the base to be any nonsingular algebraic curve and allow rational double
points in the total space. The smallest elliptic surface is the half Kummer surface, denoted
E(1).

We will begin by describing this surface in detail, because it may be used as a building

block to build all other elliptic fibrations. In equations it is given by:

E() ={([z :y:1],z) € CP? x C|a?t+y° + (° — 1)t* =0}
U {([u:v:s],w) € CP? x C | u?s +v° + (w—w®)s® =0}

related by zw = 1, uz® =z, vz? =y, s =1 with projection map « : E(1) — CP1;
(le:y:t),2) = [z:1] and ([u:v:s],w) = [1:w].

The implicit function theorem may be used to show that E(1) is a complex manifold
with complex dimension two. In particular, E(1) is a smooth 4-manifold. Most points in
CP! are regular values of . In fact, let [p : ¢] be any point except [1: w] when w = w®.

Thus we may write [p: ] = [z : 1], and points in 7~ !([2 : 1]) are given by
2+ (P-1)=0 if t#0,

or [1:0:0]. The map 7 is regular at [z : 1] if dr is surjective, that is, if we can solve for

either dz or dy in the linearization:
5z4dz + 3y?dy + 2zdx =0 .

Clearly this may be done unless z = 0 and y = 0, which implies that 2z° = 1, but we have

already excluded these points. We will analyze the singular points later in this section. If
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[z‘ : 1] is a regular value, there is a small disk about [z : 1], so that
#~1(D,.) = n71([z : 1]) x D,. The map,

p:w’l([z:l])={[z:y:t]|zzt+y3+(z"’—1)t3=0}—)CP1;[3::y:t]H[z:t]

is clearly a 3-fold branched covering with branch points [1 : 0], [£(1 — z°)% : 1]. Figure 1

is a picture of this cover.

o D | N D
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FIGURE 1: 3-FOLD BRANCHED COVER

By inspection, the surface in this branched cover is orientable and has Euler characteristic
zero. It is, therefore, a torus. Thus »~!(D,) & T? x D2.

We will now digress to give a handle decomposition of 72 x D? and a large subset of
E(1). When W, is an n-dimensional manifold with boundary, adding a k-handle to W,
constructs a new manifold by Wy = W) Ugk-1y pa—s D¥ x D"=*% Here $¥-1 x D"—*
(0D*) x D*~F s §(D* x D"*), and we just pick any embedding of $*¥~! x D"~* into
OW,. The set D* x {0} C D* x D"~* is called the core of the handle. If we add handles
to the empty set and end up with a manifold diffeomorphic to X™, we will have a handle
decomposition of X™. Figure 2 is a handle decomposition of T?2.

Core a |- haall,

v | D‘Lx D6 = 'Z.-‘\qm“{.
S

FIGURE 2: T?
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FIGURE 3: T? x D?

In order to get a handle decomposition of T? x D?; we just multiply the above handle
decomposition by D?. This is drawn in figure 3. The boundary of a 4-dimensional 0-
handle is S® which we visualize as R?® U {co}. All of the other handles may be glued onto
the R®. A 1-handle is a D! x D® attached along an S° x D* which is drawn as a set of
balls in figure 3. It is a useful notation to replace a pair of balls by an unknotted circle
with a dot on it. A 2-handle is a D? x D? attached along a S x D?. To visualize the
attaching map we draw S x {0}. The curve S* x {1} is parallel to S x {0}, but it might
link it some number of times. This linking number is called the framing and it is usually
written next to the S x {0} [A1],[HKK],[R].

There is a large open set inside E(1) which is of fundamental importance in the theory
of 4-manifolds. We will now describe this set. The set,

V={zy2eC s+’ +:°-1=0}
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is clearly an open dense subset of F(1). Let
Vi={(z,y,2) €C* | 2* +y° +2° = 0} .

When |z| > 1, |y| > 1 and |2]| > 1, the 1 in the definition of V may be disregarded. That
is, V and V' are diffeomorphic near co. This is just an application of the implicit function
theorem.

Now let £(2,3,5) = V' N 51(0) and note that the map h : R x £(2,3,5) — V' — {0};
h(t,z,y,z) = (t'3z,11%,1%2) is a diffeomorphism. This implies that

V = Es Ug(z,3,5) [1,0) x £(2,3,5) .

The manifold Eg is a compact manifold with boundary. It is called the Eg-plumbing or
Eg manifold. There is an obvious 3-fold branched covering map

p3:V = C pi(z,y,2) = (z,2) .

The branch set is § = {(z,z) € C | 22 + 2% — 1 = 0}. The 5-fold branched cover
S = C; (z,2) — z, shows that S is a once punctured surface of genus 2. The branch set
intersects a large 3-sphere {(z,2) | (|z|=10 and || < 10) or (|z| < 10 and |z|=10)} only
inside the solid torus {(z, z) | |z|=10 and |z| < 10} in the shape of a right-hand 5,2 torus
knot, Figure 4.

FIGURE 4: THE BRANCH SET
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FIGURE 5: £(2,3,5)

This shows that Es is the 3-fold branched cover D* branched along the Seifert surface
in figure 4 pushed into the interior of D*. In particular, £(2,3,5) is the 3-fold branched
cover of S® with branch set T(5,2). A Rolfson twist will untie the branch set [R]. After

the branch set is untied, it is easy to construct the branched cover as drawn in figure 5.

In the total space of the branched cover, the branch set is the axis of symmetry together
with the point at infinity. The Boromean rings may be isotoped until they are reminiscent
of our picture of T2 x D?. This is not an accident and we will discuss it further after
describing Es. Blowing down the two components that correspond to 1-handles in T? x D?
shows that £(2,3,5) is —1 surgery on a left trefoil.

To construct Es, we will use the technique of Akbulut and Kirby for constructing handle
decompositions of branched covers [AK]. Begin with an example in one lower dimension.
To describe the 3-fold branched cover of D? x I branched along {0} x I, first note that
the branch set may be isotoped into the boundary relative to the endpoints. Cutting out
the image of the isotopy will produce a fundamental domain for the cover. The cover may
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be built by gluing three of these fundamental domains together. Finally, the cover may be
decomposed into a neighborhood of the branch set; neighborhoods of the remaining parts
of the copies of the image of the isotopy, and three copies of D? x I minus the isotopy. See
figure 6.

beranch
set ‘
(ot )
4

:501!9\, -Fvnlﬁ"'”’*ﬁ\

*,mﬂ: (4

FIGURE 6: BUILDING A BRANCH COVER

The same decomposition works for any branch cover when the branch set may be iso-
toped into the boundary. In the case of Es, D* minus the isotopy is diffeomorphic to D*.
There is a I x 0-handle in the neighborhood of the isotopy minus the core, glued along
S° x D®. The first two of these glue together with the three D*’s to make one O-handle.
The final I x 0-handle becomes a 1-handle in Es. A 1-handle in the branch set becomes
a l-handle in the part of the isotopy outside of a neighborhood of the branch set. This
in turn becomes a I x D' x D? attached along §° x D! x D2 U I x S° x D?. In other
words, there is a 2-handle in Ej for each 1-handle in the branch set. Figure 7 is a handle
decomposition of Eg. The handles in Eg coming from the three copies of the isotopy are
black. The neighborhood of the branch set is just D? times the branch set. The 0-handle
therefore becomes a D? x D? attached along S! x D? drawn in green. The 1-handle be-
comes a D? x D! x D! attached along S! x D! x D' UD? x S° x D! = §? x D!, ie.
a 3-handle. The S! x D' x {0} part of the 3-handles consist of the cores of the black
2-handles together with the twisted strips.

The 3-handles pass geometrically once over some 2-handles, thus we may cancel 2-
handle/3-handle pairs. The green 2-handle cancels the 1-handle, leaving the simple de-
scription of Eg in figure 8.

The second picture in figure 8 is the description that arises from the obvious 2-fold cover.
The second picture is the usual picture of Ej.
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FIGURE 8: FEg

Now that we have a good picture of V, we will describe the remainder of E(1). A section

of E(1) may be defined by
0:CP' 5 EQ1); [2:1]+~([1:0:0],2)
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in the first chart and [1,0] — ([1: 0: 0],0) in the second chart. The remainder of E(1)
consists of the section and the fiber over [1:0]. A neighborhood of the union of a section
and this fiber is called a nucleus. The fiber over [1:0] is given by

{lu:v:s] € CP? |uls 4+ % =0}.

The real part of this fiber in the v — u plane is drawn in figure 9.

c’iﬁ—?

FIGURE 9: A CUSP FIBER AND NUCLEUS

There are cusp fibers over the points [ : 1] where A3 = 1 and [1:0]. Algebraic geometers
usually draw E(1) as a section together with six cusp fibers (figure 10).

FIGURE 10: ALGEBRAIC GEOMETRY PICTURE OF E(1)

The same argument that showed that V' is an open cone on ¥(2,3,5) proves that the
cusp fiber minus the point at infinity is an open cone on the right-hand trefoil. Thus,
the cusp fiber is geometrically a 2-sphere with one singular point. A neighborhood of the
cusp fiber may be cut into a 4-disk around the singular point plus the remaining part
of the neighborhood. In other words, the cusp neighborhood is constructed by attaching
a 2-handle along the right trefoil. One other way to describe the cusp neighborhood is
n~1(D?) where D? is a small disk around [1:0]. The inverse image of [1 : 1] describes

the framing of the 2-handle. The answer is that the handle is zero framed. Adding two
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FIGURE 11: THE CUSP NEIGHBORHOOD

1-handle/ 2-handle pairs demonstrates that the cusp neighborhood may be obtained by
adding two 2-handles to T2 x D?. See figure 11.

Looking at figures 2 and 3 shows that the section intersects the cusp neighborhood in the
dotted circle. The nucleus is the union of the cusp neighborhood and a 2-handle which is
the part of the section outside of the cusp neighborhood. To compute the framing, notice
that the image of the section is given by S = {([1:0:0],2)}U{([1 : 0: 0],w)}. Linearizing
the definition equations of E(1) gives:

dt + 3y?dy + 3t2(2° — 1)dt + t352*d2 =0, etc.

On S this becomes dt = 0 and ds = 0. It follows that the tubular neighborhood of S is
given by N(S) = {([1 : dy:0],2)} U{([1 : dv : 0],)} where

([1:dv:0],2) = ([*:2%dv: 0],%)
=([1:%dv:0],%) .

Since the transition function is  the framing is e(N(S))[S] = —1.

Putting the preceding discussion together gives the picture of the nucleus in figure 12.
A 1l-handle glued to the 4 disk creates an S* x D*® which has boundary S x §%. This is
exactly the same as the boundary of a D? x §? which is a 2-handle attached to D* in the
trivial way. This means that if we replace every 1-handle with a zero-framed 2-handle,
the boundary will not change. Replacing the 1-handles and blowing down the -1 framed
components in the nucleus generates the picture of its boundary in figure 12. Notice that
this is the same as the boundary of Eg, but with the opposite orientation. Thus E(1) is

just the union of the nucleus and Ej.



FIGURE 12: THE NUCLEUS AND ITS BOUNDARY

Handle decompositions of 4-manifolds are often very complicated. For example, since
H3(E(1)) = Z', the smallest handle decomposition of E(1) would have ten 2-handles,
requiring a picture of a ten component link. It is, therefore, a good idea to write a 4-
manifold as a union of several 4-manifolds with boundary, and describe these pieces with
handle decompositions. The pieces may then be moved around. The nucleus is the union
of a T? x D? and a “buffer zone” created by adding three 2-handles to [0,1] x T3. We
will draw a picture of [0,1] x M?, where M is a 3-manifold, by drawing a Dehn surgery
description of M and putting an I on each component. With this convention, we draw a
picture of the buffer zone, B, in figure 13.

FIGURE 13: THE BUFFER ZONE, B

Interchanging the order of components changes a k-handle D¥ x D™*~* into an n — k-
handle, D"~* x D*. Performing this on an entire handle decomposition is called turning
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the manifold upside down. Given a manifold W with boundary 6W = M II —N, we can
turn W upside down by doubling along M, D(W) = W Uy —W, and converting W into
a Dehn surgery description of M. If W only has 0-handles, 1-handles and 2-handles, then
we just have to figure out how to add new 2-handles, because there is no real choice for
adding 3-handles and 4-handles. As figure 14 demonstrates, the new 2-handles are just
zero framed meridians of the old 2-handles.

FIGURE 14: DOUBLING

Applying this technique to the buffer zone means adding zero framed meridians to all of
the +1-framed 2-handles, then blowing down the +1-framed 2-handles.

In the decomposition, E(1) = Eg Ug(z,3,5) BUrs T? x D?, BUrs T? x D? is the nucleus.
In ordér to see Eg Ug(2,3,5) B, note that B is the total space of a 3-fold branched cover.
The manifold, Es U B is obtained by adding the three 2-handles to Es. We can construct
a handle decomposition of Eg U B by first constructing a handle decomposition of the
quotient, then passing to the cover. Figure 15 is a more symmetrical picture of B.

By passing to the quotient of the obvious Z3 action, we get the first picture in figure 16.
This is exactly the same as figure 5 except the quotient has one extra 2-handle which misses
the boundary. Repeating the construction described around figures 6 and 7 produces the
handle decomposition of Es U B in figure 17.

We are now ready to construct a K3 surface. A K3 surface is a compact, complex
analytic, simply connected surface, X, with ¢;(X) = 0. Not all K3 surfaces are the same
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FIGURE 17: EgU B

as complex surfaces, but they are all the same as smooth 4-manifolds. Let

EQ) ={(z:y:t),[p:q € CP? x (CP! — {[£1:1]}) |
(? — )*2%t + (0 — )y + (119 = 10¢°)° — (p° — ¢*)°)¢" = 0}
U{([u:v:s],[p:qg]) € CP? x (CP' — {[+v110:11]})) |
(11p7—10g%)°u®s + (11p* —10¢*)%° + (119 ~104°)° (¢* = ") + (p = ¢*)*)s" = 0}
glued together in an appropriate way. Projection onto the CP?! factor shows that E(2) is

an elliptic fibration. The map

2 _ 2
r:E(2)—+E(1);([x:y:t];[P=¢1])'""([-"—‘=y=t],%§)i)’

13



on the first chart and
2 _ 2
([u:v:s],[p:q])n—)([u:v:s],ﬁiz—_(lg-w—z) ,

on the second chart is a two fold branched cover. The easy way to see this is to get rid of
the homogeneous coordinates and solve for p? as p? = i—’_‘}%. The branch set is therefore
the pair of regular fibers over z = 10 and z = 11 in E(1) or [0:1] and [1:0] in E(2). We
could also construct the n-fold branched cover of E(1), branched over a pair of regular
fibers. The n-fold cover is the n*? elliptic surface, E(n).

We can now easily give a topological description of E(2) and all of the E(n). Divide E(1)
into two parts, before taking the 2-fold branched cover. All of the fibers with |z— 10| < 2 are
regular so they combine into a T? x D?. The remainder of E(1) is Es U B which is disjoint
from the branch set. Since Es may be constructed with no 2-handles (figure 8), m; (Es) = 1.
VanKampen’s theorem and figure 13 show that m;(B) = 1, thus m; (Eg UB) = 1. It follows
that E(2) contains two disjoint copies of Es U B. The branched cover of T? x D? is just
the product of T2 and the n-fold branched cover of D? branched at two points. Because
the n*® fold branched cover of D? is §2 —nD?, E(n) = T? x (82 —=nD?)Un(Es UB). See
figure 18.

FIGURE 18: E(3)

Each of the E(n) have a nucleus which is the union of a section and a cusp fiber. Call
the nucleus of E(n), Ny,. In particular,

E(2)=EsUBU(T? x (S* -~ D*))UBUE;s
=E8UBU(T3XI)UBUE3
= Eg Ug BUps BUg Ejg

14



and there is an N, embedded in B Urs B.

Since B is obtained by adding three 2-handles to T° x I (figure 13), BU7s B is obtained
from T3 x I by attaching six 2-handles to T° x I, three to a side. We can construct a handle
decomposition of T® x I from a handle decomposition of T®. Think of T? as [-1,1]*/ ~.
A 0O-handle is [-1,1]>. Tubular neighborhoods of the z, y and z axes in T° minus the
0-handle are three 1-handles. Tubular neighborhoods of the zy, yz and zz planes in T°
minus the 0-handle and 1-handles form three 2-handles. The leftover part is a 3-handle.
Any 1-handle is equivalent to a pair of 1-handles with a 2-handle passing geometrically
one time over each (figure 19).

J N \_4

FIGURE 19: A COMPLICATED 1-HANDLE

The 2-handles which are added to T x I to produce BUrs B are attached along {((z,0,.1),€)},
{((.1,,0),€)} and {((0,.1,2),€)} for e = 0 or € = 1. They are all -1 framed, when the
framing is compared with the T? sections of T® x I. The 3-handle in T? is attached
mostly to the boundary of [-1,1]%, so the 3-handle in T® x I is attached mostly along
(8(—1,3]®) x {0}. This separates the boundary of the 0-handle into two parts, the inside
of this cube and the outside of of this cube. The inside corresponds to the left boundary
of T® x I and the outside corresponds to the right boundary. In our picture of a handle
decomposition of B Urs B, we draw all of the attaching maps in OD* which is the union
of a large 3-disk and a small 3-disk. See figure 20.

In figure 20 there are two 1-handles labeled with r, and four 2-handles labeled with r.
These should be colored red. The one 1-handle and four 2-handles labeled b should be left
alone and the remaining handles should be colored green. With this convention the red
handles together with the z-axis are drawn in figure 21. Sliding the vertical red handle
over the other two vertical handles produces a handle decomposition of an N embedded
in B Urs B (figure 21).

By sliding on the y-axis, we see that the green handles may form a disjoint nucleus. In
fact, by adding a cusp fiber from the right side and a cusp fiber from the left side, we could
extend the black handles into a third disjoint nucleus.

15
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FIGURE 20: BUys B

We will now discuss several cut-and-paste techniques which may be used to construct
new 4-manifolds. The first method is called blowing up a point. Let Dg be the disk of
radius R in C? and define

Drp={la:b:c] € CP? ||c|* < R*|ab*(laf* + [b]*)™"} .

Let S = {[z:y:0] € CP?}. It is clear that h : D — {0} = Dr—S; (z,y) — [y : = : zy] is
a biholomorphic map. By definition, when p is a point in a complex surface, X, there is an
R and a biholomorphic map, ¢ : Dg — N(p) C X. Note that X & (X={p})UDgr—{0} —D=r
as complex manifolds. The orientation on Dp is important in this construction. The blow-
up of X is X = (X — {p})U Dr—{0} —Dr. This construction is complex, so X has a natural
complex structure. Topologically, we may think of —Dpg as a 0-handle in X, so to build
X we remove —Dpg and add —f)R. By letting R — 0 it is evident that ﬁn is a tubular
neighborhood of S in CP2. This is just the Euler class one disk bundle over S§2. Thus
ﬁR is just a O-handle with a 1-framed 2-handle attached and —f)R is a 0-handle with

16



FIGURE 21: THE RED NUCLEUS

a —1-framed 2-handle attached. Thus X is just X with an additional trivial ~1-framed
2-handle.

The next technique is called a log transform. Every regular elliptic curve is equivalent
to C/Z[1,w]. This implies that given any regular elliptic fibration over a disk, my : Y1 = D
(think Y; = {([z : v : t},2) | |2| < }, 2% + 4® + (2° = 1)t* = 0}) there is a holomorphic
map w : D = C and a fiber preserving biholomorphic map Y: — Y; where

Y= {(\2) € C? | 2] %}/~ (A 2) ~ (A+1,2) ~ (A +w(2),2)

The periods of the Weierstrass gp-function are nbn-elementary holomorphic functions of
the coefficients of the associated cubic. Our function w(z) is just gﬁ% where w; and w3
are the periods of the p-function. Let
) 1l/p
vi={haeC <y Vo~
(A 2) ~ (A+1,2) ~ (AFw(2F),2) ~ (A+ g,exp(2m'§)z) .
The map f : Y3 — 75 1(0) = Yz — 75 2(0); f(\,2) = (A — 5 Inz,2P) is fiber preserving,
biholomorphic with inverse
1
-1 _ _
2 = (A + e In z,exp(1/plnz)) .

This implies that we may replace Yz with Y3 inside any complex surface. This new

surface is called the p-log transform of the old surface. A p-log transform may still be
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performed when the projection maps are smooth but not holomorphic. In this case there
is no reason that the resulting manifold should be complex.

In order to get a topological description of a p-log transform, look at the case w(z)=1.
In this case Y = R/Z x R/Z x D, (\,2) = (Im A\,Re A ,2) and V3 = YE;/Z where
V3 =R/Z x R/Z x D, (A 2) = (Im A, Re A, z2) is just Y3 without the third equivalence
N2y ~(A+ £ ,exp(2m:) z)). The group Z, acts by this third equivalence which is
clearly trivial on the first factor of R/Z. This means that a p-log transform is just R/Z
cross the change in the last two coordinates. Forgetting the first factor of R /Z, we see that
Y is just a solid torus (S§' x D?) with Z,, acting by 1/p rotation in both factors (figure
22).

Ve
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&

FIGURE 22: Y3 AND Y; FOR p = 3

It is evident that Y3 and Y; are both diﬁ'eomofphic to T? x D?, so the only difference
between X and the p-log transform is the gluing map of this T2 x D2. A p-log transform
is just S? cross Dehn surgery. As an example consider the 3-log transform of N, which we
will call N3(3). The nucleus, N, is obtained by adding three 2-handles to T2 x D? (figure
21), so N;(3) will be obtained by adding three 2-handles to T2 x DZ. In N, one 2-handle
is attached along the fiber of pt x S! x D? with -1 framing relative to the natural framing
coming from pt x 9(S* x D?). Thus N,(3) has a 2-handle attached along the fiber in the Y;
fibration of pt x §! x D? with framing -1 relative to pt x (S! x D?). One 2-handle in N,
is attached along * x {1} x D? with framing -2. The image of this in Y is * x S1 x {1}.
The third 2-handle in N, is attached along the first S factor with —1 framing. This is
unchanged in N3(3). Putting this together gives the picture of N, (3) in figure 23.

The vertical 1-handle is the first S* factor and pt x 8(S x D?) is the horizontal plane
together with part of the outside of the horizontal 1-handle. This picture may be simplified
and generalized as in figure 24. Cancel the vertical -1-framed 2-handle and 1-handle to get
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FIGURE 23: N;(3)

\\.—o

FIGURE 24: N;(p)

the general p-case in the first part of figure 24. Cancel the horizontal ~2-framed 2-handle/
1-handle pair to get the second part. By construction, ONz(p) = ON; since we are only
changing the interior of N, with a p-log transform. The second picture in figure 24 shows
that 7, (N2(p)) = 1 since there are no 1-handles, and

0 1
QNQ(P)=(1 _2p2+p_1) :
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The bracket with a p-label is used to indicate that there is a cable with p strands.

The final cut-and-paste technique is a generalization of the blow up called a rational
blow up. A blow up replaces a disk D* with the neighborhood of a sphere. A rational blow
up replaces a rational homology disk with the neighborhood of a configuration of spheres.
Let R(p) be the 4-manifold in figure 25.

?-\ @Vﬂ
Q

FIGURE 25: R(p) AND OR(p) = L(p?,p—1)

It is evident that m (R(p)) = Z, and Hx(R(p)) = 0 for k > 2, so that H.(R(p); Q) =
H.(D*; Q).

Let C(p) be the manifold in figure 26. A sequence of rational K-moves shows that
0C(p) = L(p?,p—1). The cores of the 2-handles in C(p) coned off to different cone points
in the 0-handle is a configuration of spheres which intersect one another. The manifold

C(p) is just a neighborhood of those spheres.

- - -"‘ _
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M e

P-<
FIGURE 26: C(p)

A p-rational blow up of a manifold just replaces a copy of R(p) in the manifold with
a copy of C(p). A p-rational blow down replaces C(p) with R(p). A p-log transform is
a combination of p — 1 blow ups followed by a rational blow down. Figures 27 and 28

demonstrate this.
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FIGURE 27: Ny#(p — 1)CP?

Figure 27 shows N; blown up p — 1 times. The 0-framed 2-handle is slid over all of the
~1-framed handles, then the lowest —1-framed is slid over the next —1-framed handle going
up, and so on. This ends by sliding the top —1-framed 2-handle over the (1 — p)-framed
2-handle. In this last picture there is an obvious copy of C(p). We need to cut out this
C(p) and glue in a copy of R(p). Cutting out C(p) amounts to putting an I-lable on each
of the components in C(p). In figure 28, we draw (N #(p — 1)CP?) — C(p) and rearrange
the new boundary until it looks like the boundary of R(p).

From the last picture in figure 28 we see that ((N2#(p — 1)CP?) — C(p)) U R(p) = N2(p)
as drawn in figure 24. ‘

We will now use these cut-and-paste techniques to construct many smooth manifolds
with the homotopy type of K3. Let E(2;p) be the result of a p-log transform applied to a
regular fiber of E(2). This amounts to removing the red N, from figure 20 and gluing in
N 2 (p), ie.

E(2;p) = (E(2) — N2) Uan, Na2(p) -
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FIGURE 28: (N#(p — 1)CP?) — C(p)

By looking at the intersection form of Nz(p), we see that E(2;p) ~ E(2) if and only if p is
odd. Recall that the two quadratic forms

01 0 1
Ga) = ()
1 n 1 m
are equivalent over the integers if and only if n = m (mod 2).
We may apply a p-log transform to one fiber and a g-log transform to a different fiber
to create a new manifold E(2;p,q). In order to draw a picture of E(2;p,q), we will do

both log transforms inside the nucleus, N;. To see the result of a g-log transform applied
to Na(p), first redraw Na(p) so that a regular fiber is easily visible. Figure 29 shows a new
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picture of N, in which two regular fibers are visible. To construct figure 29, we double the
1-handles with the method from figure 20. Also double the O-framed 2-handle. In other
words, we replace the 2-handle with two copies of itself and a 3-handle glued to a sphere
constructed from one copy of the core of each of the doubled 2-handles.

FIGURE 29: N, WITH AN EXTRA FIBER

Now we repeat the description of a p-log transform described around figures 22, 23 and 24
to get the new picture of Na(p) with an obvious regular fiber in figure 30.

After sliding the —1-framed 2-handle over the 0-framed 2-handle in the doubled 1-handle,
we may apply a g-log transform to the regular fiber. This creates the manifold N2(p, ¢) in
figure 31.

Define

E(2;p,9) = (E(2) — N2) Usn, Na2(p,q) -

The fundamental group of N;(p, ¢) may be computed from figure 31 with VanKampen’s
theorem. Label the 1-handles from left to right as a;, a2, a3, as. The fundamental
group of N2(p,q) is generated by the ax with relations coming from the 2-handles. As
an example, the p-framed 2-handle contributes the relation aza7”?. The final answer is
71(N2(P,q)) = Zgea(p,q)- In the same way we can compute the intersection pairing of
Na(p,q). This form is even if and only if both p and g are odd. We conclude that E(2; p,q)
has the homotopy type of K3 if and only if p= ¢ =1 (mod 2) and gcd(p, q) =1

Kodaira proved that every complex surface with the homotopy type of a K3 surface
is deformation equivalent to one of E(2), E(2;p), or E(2;p,q) [K],[BPV]. In particular,

23



FIGURE 30: A REGULAR FIBER IN N,(p)

any complex surface with this homotopy type is diffeomorphic to one of E(2), E(2;p), or
E(2;p,q). Freedman proved that all of these manifolds are homeomorphic. In the next
section we will prove that they are not all diffeomorphic. :

There is one more interesting construction. Perform a p-log transform in the red nucleus
and a g-log transform in the green nucleus in figure 20 to create the Gompf-Mrowka
manifold, '

GM(p,q) = (E(2) — Nj*! — N§™*") Uzan, (N2(p) U Na(g)) -

This situation is similar to Dehn surgery in a Seifert fiber space. Dehn surgery along fibers
will construct new Seifert fiber spaces, but Dehn surgery at random will not produce a
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FiGURE FIGURE 31: N;(p,q)

Seifert fiber space. Log transforms along fibers in an elliptic surface will produce complex
manifolds but log transforms applied at random will not produce complex manifolds. The
manifolds E(2; p,q) is constructed by a pair of log transforms on fibers, but GM(p, q) is
constructed by a p-log transform on a fiber and a g-log transform on the image of a fiber
in the natural Z; ax:t?on on Eg U B. See figure 32.
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FIGURE 32: E(2;p,q) vs GM(p,q)

In the next section we will prove that GM(3, 5) is not diffeomorphic to any connected sum

of the form X;#X,# ... X, where either X; or X is complex for each k¥ and no X; is
diffeomorphic to S4.
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Lecture 2

In the previous lecture we constructed a large collection of interesting 4-manifolds. In
this lecture we will use some of the main theorems from gauge theory to study these
manifolds. Any gauge theory starts with a usually nonlinear system of partial differential
equations which depend on the geometry of some underlying manifold. The space of
solutions to these differential equations mod out by the relevant symmetry group is called
a moduli space. The moduli space encodes some subtle information about the underlying
manifold. We will first list some of the results about manifolds which have been proved
with moduli spaces. After some sample applications of these theorems, we will consider
some of the technical details involved in the proofs.

The first type of topological result proved via moduli spaces, was a non-existence the-
orem. A typical argument would be to assume that some smooth 4-manifold has a given
intersection form and prove that the moduli space would have to be an impossible ob-
ject. For example, any smooth 4-manifold with intersection form Eg @ Eg would have a
compact 1-dimensional moduli space with one boundary point. Since there is no compact
1-manifold with boundary the point, there can be no smooth 4-manifold with intersection

form Es @ Es. The first theorem along these lines was Rochlin’s theorem.
Theorem. If X is a smooth spin {-manifold, then 16 |Sign X.
The most surprising theorem along these lines is Donaldson’s Theorem A.

Theorem A. If X is a smooth, simply connected 4-manifold with definite intersection
form Qx, then Qx is diagonalizable over Z.

The most recent theorem in this direction is Furuta’s 10/8 ths theorem [F].

Theorem. If X is a smooth spin 4-manifold with Sign X # 0,
10, .
rk Ha(z) > —é—|81gn X|+2.

The second application of gauge theory was to define invariants of smooth 4-manifolds.
For example, the Seiberg-Witten moduli space associated to a Spin, structure is a finite
collection of signed points. When b7 (X) > 2, the number of these points counted with
sign depends only on the first Chern class of the Spin, structure. This number defines a

function

n:HY(X;Z)—> Z

called the Seiberg-Witten invariant. This function is non-zero only on a finite subset of

H?(X;Z), called the set of basic classes of X.
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For an invariant to be useful, there must be some method to compute it. It is not hard
to compute the Seiberg-Witten invariant for Kihler manifolds. Recall some definitions. An
almost complex structure is a map J : TX — TX so that J2 = —I. When X is a complex
manifold, multiplication by i is an almost complex structure. This example is called a
complex structure. A metric, g, is compatible with a complex or almost complex structure if
9(Jz,Jy) = g(z,y). If h is any metric, g(z,y) = 2(h(z,y)+h(Jz,Jy)) will be a compatible
metric. Given an almost complex structure and a compatible metric, we may define a non-
degenerate 2-form by w(z,y) = g(z, Jy) = g(Jz,J%y) = —g(y, Jz) = —w(y,z). A complex
manifold is called Kahler if this form is closed, dw = 0.

Using an almost complex structure, the complexified tangent bundle, TX ®g C, may
be split into the i eigenspace of J, T X and the —i eigenspace of J, TV X, Let
APIX = AP (TR0 X)* @ AY(TOD X )*. Any almost complex manifold has a natural Spin,-
structure with positive spinners A®°X @ A%2X | negative spinners, A°! X, and determinant
line bundle A%2X. The first Chern class of the bundle (A%2X)* is called the canonical
class, K.

With the above notations we may state the following theorem of Witten [W].

Theorem. If X is a Kdhler manifold with b2 > 1, then

n(K)=1, n(-K) = (_1)(Sisn(X)+x(X))/4 .
Furthermore, n(L) # 0 implies that 1(L — K) € H*(X;Z),
1 >
0< (L -K) W <-K-[u]

with equality only ff L=K or L = - K.
Corollary. The only basic class of E(2) is 0 and n(0) = 1.
PROOF. It is well known that E(2) is Kahler. In fact, using the techniques from

Lecture 1 it is possible to prove that E(2) is diffeomorphic to {[w : z : y : 2] € CP? |
w4zt +y? + 2% = 1}. Now,

c1(Kgp(z)) = —c1(A%2E(2))
= —a(TVE(2))
= +¢1(TE(2))
= +c1(TP? |pz)) — c1(NE(2))
=4h—-4h=0.
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Here h is the generator of H2(CP3;Z), and ¢;(NE(2)) = 4h because E(2) has degree
4. O

It is almost possible to think about the Seiberg-Witten invariant axiomatically. The

invariant associates to any smooth 4-manifold a function
n:HY{(X;Z)> Z.

For E(2) this function is 1 at 0 and 0 everywhere else. There are a few formula describing
how this invariant changes under cut-and-paste operations. These formula may be used
to compute the Seiberg-Witten invariants for many 4-manifolds and conceivably all 4-
manifolds. ‘

All of these formula are proved with neck-stretching arguments. We will first state the
formula, then apply the formula to the examples from Lecture 1, then discuss the proofs

of these formula.

Theorem (Vanishing). If m(Z) =1,
Z=X#Y, and bWi(X)2> y)>1,
then the Seiberg- Witten invariant,

ng:H*(Z;Z) - Z is zero.

Theorem (Blow-up formula). If every basic class of X satisfies K*[X] = 2x(X) +
3Sign(X), then the only basic classes of X#CP? are of the form K+ E, and nx#@?(K:}:
E) = ny(K) where E is the ezceptional divisor (generator of H*(CP?)).

We should remark that the condition K?[X] = 2x(X) + 3Sign(X) is equivalent to the
Seiberg-Witten moduli space having dimension zero. A manifold is said to have simple
type if all basic classes satisfy K2[X] = 2x(X) + 3Sign(X). It is conjectured that every
manifold with 2 > 1 has simple type. We will see that all of the examples in Lecture 1
have simple type. It is true that all basic classes are characteristic. A class, c, is called
characteristic if Q(c,z) = Q(z,z) (mod 2). The final gluing formula is Fintushel and

Stern’s rational blow-down formula [FS].

Theorem (Rational blow-down). Let Y = X UC(p) and Z = X UR(p). If Ky €
H*(Y;Z) and Kz € H*(Z;Z) are characteristic elements so that K3[Y] > 2x(Y) +
3Sign(Y) and i} Ky = 13Kz whereiy : X =Y and iz : X — Z, then

ny(Ky)=nz(Kz) .
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It is probably necessary to include a formula for the Seiberg-Witten invariant of a
surface sum in order to have a complete set of axioms for the Seiberg-Witten invariant.
If X is a possibly disconnected four manifold with two disjointly embedded surfaces of
genus g and opposite self intersection numbers, then we may define the surface sum of
X to be X#p, r, = (X — N(F1UF,)/ON(F;) = ON(F3,). One indication that a surface
sum formula would be important is its importance in symplectic topology. CLff Taubes
has shown that the canonical class of a symplectic manifold is a basic class with Seiberg-
Witten invariant +£1. If F; and F are symplectly embedded surfaces in a symplectic
manifold, then X#p, r, is a symplectic manifold. Each of the previous Seiberg-Witten
glueing formulae has a symplectic counterpart. There is no symplectic connected sum;
there is a symplectic blow-up. Recently, J. Etnyre proved that a rational blow down may be
performed symplectically, provided that the spheres in the configuration are symplectically
embedded [E].

As a first application of these theorems, we will compute the Seiberg-Witten invariants
of E(2;5). Four applications of the blow-up formula show that +e; +e;-ez+ey are the only
basic classes of E(2)#4CP2. Write the intersection form of E(2)#4CP? as 2Eg®3H®4(—1)
with basis vectors z1, ..., Tz for the first 2Eg®2H, f and s for the third H and ey, ..., e4
for 4(~1). The third H is represented by the red N, in figures 20 and 21. In particular,
f?=0,s* = -2, and f-s = 1. The configuration C(5) embeds into N,#4(—1) representing
the elements ug = f +2e; +es+e3+eq, ug =e€x— €1, Uy = e3 — e and uz = ey — e3. See
Figure 27. Over the rationals, the cohomology splits as

H?*(E(2)#4CP?) = HX(X) @ H*(C(5)) .
It follows that i}, K is just the projection of K into H?(X). In other words,
iy K = K + agug + - - - + asug
where the a,, are the unique rational numbers so that 1y K - up, = 0. In our case, we get

iy(er+es+est+eq) =% f,
i;‘;(el + ey +e3 — 64) = i;‘;(el +e2—e3 +€4)

=i;’(el"e2+e3+€4)=i§,(—el+62+e3+e4)= % f,
and

1:;/(61’1'62—63—64) =i§r(61 —62+63—e4) =i§/(—61+62+83—64) =0.
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With rational coefficients,
H*(E(2;5)) = H*(X) @ H*(R(5)) = H*(X) .

so it appears that 0, :{:% f, and 3 f are the candidates for basic classes on E(2;5). Even
though £ f looks like a rational class, it is really an integral class in H2(E(2;5)). In Figure
24, -é— f is the O-framed 2-handle. It is a multiple fiber. Nearby regular fibers wrap around
1 f five times as in Figure 22. After realizing that § f is an integral class, it is easy to check
that e; + e + €3 + €4 and % f satisfy the conditions of the rational blow-down formula. In

fact the previous discussion generalizes to give:
Fact. If p=2k + 1, then i%" f are basic classes for E(2;p) when 0 <n <k.

Since E(2;p) has p basic classes, and E(2;q) has g basic classes, we see that E(2;p)
is diffeomorphic to E(2;q) if and only if p = ¢. All of the E(2;p) are homeomorphic,
so E(2;p) is an infinite family of different differential structures on the topological K3
manifold.

The 0-framed 2-handles in Figure 31 represent % f and % f. Repeating the preceding
argument of blowing up then rationally blowing down to the regular fiber in Figure 30

proves:

Fact. The basic classes for E(2;2n + 1,2m + 1) are (:i:2—3:';-i + 2”":11) ffor0<k<n
and 0 << m.

Notice that the dimension of the space spanned by the basic classes is zero or one in all
of these examples. This is in fact true for any minimal complex surface.

As a final example, we will compute the Seibérg—Witten invariaints of GM(3,5). Pick
a basis for H2(E(2)) = 2Es @ 3H with f, and s, representing the classes in the red
nucleus and f, and s, representing the classes in the green nucleus. The blow-up rational

blow-down procedure implies:

Fact. The basic classes of GM(3,5) are 0, £2 f, +2f,, :!:%f, +if,, +3f,, and +2f, +
$fo-

Notice that the basic classes of GM(3,5) span a two-dimensional space. It follows that
GM(3,5) is not diffeomorphic to any of the manifolds E(2), E(2;p), E(2;p,q). Work of
Kodaira shows that any complex manifold homotopy equivalent to +E(2) is diffeomorphic
to one of E(2), E(2;p) or E(2;p,q) [K],[BPV]. It follows that GM(3,5) is not complex
with either orientation.

More than this is true. It was conjectured that every smooth 4-manifold is diffeomorphic
to a connected sum, X1#Xz...#X, so that either Xi is complex, or X4 is complex,
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or Xi is §*. The manifold GM(3,5) is a counter-example to this conjecture. Since
X#S* = X, we may assume that the connected sum decomposition has no $* factors,
unless the manifold is S*. As we have seen, neither GM (3,5) nor ’G'J\'i(:s,—m is complex,
so for GM(3,5) to satisfy the conjecture, it would have to be a nontrivial connected sum
GM(3,5) = V1# ... #Y,. By Van Kampen’s theorem each of the Y} are simply connected.
If one of the Yi had an odd intersection form (i.e. z € H2(Y}), Qy, (z,z) = 1 (mod 2)) then
GM(3,5) would have an odd intersection form. Since GM(3,5) has an even intersection
form, we must conclude that all of the Yj are even and simply connected, therefore spin.
By Donaldson’s Theorem A there is no smooth 4-manifold with a non-trivial even definite
intersection form. It follows from the classification of even unimodular indefinite forms
that Qv, = niEs @ miH. Rochlin’s theorem implies that each of the nj is even, say
ni = 2k. The Meyer-Vietoris sequence shows that

Qcm@s) = @2pkEs &miH .
k

This gives
22 =1k Qom,5) =28 Ipel +2 Ima
k k

and
—-16 = Sign QG’M(3,5) = —IGZpk .
k

The first equation implies that at most one of the p; may be non-zero, say p; # 0. The
second equation implies that p; = 1. Furuta’s 10/8’ths theorem and the first equation
imply that Qy, = 2Es @ 3H and H*(Y;) = 0 for k > 1. If Y; had a complex structure,
there would be a ¢; € H?(Y?) so that c?[Y3] = 2x(Y2) + 3 Sign(Y3), but this is impossible
because m;(Y2) = 1 and H?(Y2) = 0 imply that c?[Y3] = 0, x(¥2) = 2 and Sign Y5 = 0.

‘With these applications as motivation, we will now look at some of the technical details
involved in the proofs of the gluing theorems. All of the gluing theorems are proved
with a neck-stretching or neck-pinching technique. In order to study the moduli space
on Z = XU([0,T] x M)UY, look at the case when T is very large. Decay estimates,
compactness results and the implicit function theorem are used to described the moduli
space of Z in terms of the moduli spaces of X and Y. After the moduli space of Z is
understood, a gluing theorem for the invariants may be proved.

Leon Simon proved a general theorem about the decay rate of solutions to evolution
equations [Si]. We will sketch a proof of a decay estimate for the Seiberg-Witten equations
on a cylinder R x M. Without presenting all of the details, remember the general structure
of the Seiberg-Witten equations on a cylinder. Start with a Spin. structure on M. This
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amounts to a complex line bundle, L, a complex plane bundle, W, some multiplication

maps:

c:T"MQW - W
[-, ] WQW >T*M

and a method for constructing a differential operator 84 : I'(W) — I'(W) from a connection
A on L [A1],]A2],[S]. A 1-parameter family of connections on L may be thought of as a
connection on the pull-back of L to R x M. A l-parameter family of spinners on M is a

spinner on R x M. With this notation the Seiberg-Witten equations on R x M are:

0A

=7 = 2, ¥] - +F4 ,
Y oup.

Under mild assumptions about a solution to these equations, we will prove that the solution
decays exponentially as t — co. The basic idea is to define an energy functional and show
that it satisfies a differential inequality.

Let

E(T) = /T°° /M[IVAWZ + %|l/)|4 + 'Z|¢I2%|FA|2]dvolM dt .

The underline is used to indicate that we are thinking of the object as an object on R x M.

Now compute

dE _ 2 1 f 21 2
= [ VWP + gl + 101 GIEAP] doolg

and
IVadl* = %t'é ®dt + V41 2
= [04¥|* + |Vay|
and
-;-|F_4|2 - %|FA +dtA %’;P

= 3IFAP + 31 Fa - 20[, 9]
= (+Fa, 2, 9]) = 591" +1 % Fa — 20, 91
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Plugging into the expression for 4E dT gives
G = [ 10V + [V + 3P + (Fa 20, 9])
+ | * Fa — 2i[1, ]| dvol pr dt
== [ oY + (V3T + 6 S+ Fa-py0)
+ | * Fa — 2i[sp,9]|? dvolpy dt
- /M 21049|* + | * Fa — 2i[¢),9]|> dvolpr dt = —J.
In the above computation, we used the Bochner-Weitzenboch formula:
3§3A¢=VZVA¢+§¢—%*FA'¢ :

We will now bound everything by J in order to derive a differential inequality. Assume

that A, converges to a nondegenerate limit in the sense that

. [A_Aoo]
¢_¢m

with J(Aoo,%e0) = 0, and there is a constant § > 0 so that §||z|| < ||Lz||, where

—0 as T — o

Lo

[T} d*a
L|a| =|xda+idu—4i[¢, V0]
(15 6A°°¢ - %c(a, 1)bOO)

The function L is just the linearization of the right-hand side of the Seiberg-Witten equa-
tions about the point Ay, ¥oo. The Seiberg-Witten equations have a large group of sym-

metry, so we are adding an extra gauge fixing condition:
d*'(A-Ax)=0.

This is not the most geometrically natural gauge fixing condition. We will discuss gauge

fixing further in lecture 3. Compute

=01

- 2

d*(A - Aco)
<E72||| *d(A = Aoo) — 4i[th — Yoo, Poo)

_6Aw(¢—'§boo)—%c(A"Aoo,¢oo) L2
2

0
<2672 ||| #F4 — 2i[3), 9]
Oa9 L2
0 2
+ K¢ = oollfes || | A — Aco
@b - 1/)00 L2
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for some large constant K independent of A and %. Pick Tp so that t > Ty implies
K||$ — o]} < 2 and rearrange the above inequality to get:

0 2 0 2
A- Ay < 3672 || | #F4 — 2i[¢), ¥] <3572J .
Y — Yoo L2 6A¢ L2

We may now bound E by a constant times J,

— = 2, 5.2 l l
BT = [ [ 9abP + 3P + ol + 5IFAP duolys

=Lw/Md*(VA¢,¢>—%FAAFA

+ Va9 + S = 5(FT,9)

+IFL P~ 2(F] il o) + 51 dvoly dt

= [ [ d(Vas,0) - 504 - Ax) AR
T M £

11 Bawl + |Ef = itp, F1F] dvolag

= fM %(A — Aoo) ANFy — *(aA";bv"b)

2

! 0 0 0
355'1 < A—-Ax |, L|A-Ax > +const ||| A - A
¢—¢oo ¢"¢’oo "p"d’oo L2

In the above computation, we used the 4-dimensional Bochner-Weitzenboch formula:
* * S 1 -+
Bh Pa =VuVad+ Z¢ - EFA )
and the fact that the 4-dimensional Seiberg-Witten equations may be written as
Ff =i, 9]
Pap=0.
Putting together the inequalities for E and %% gives

dE 1
Tl
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A bootstrapping argument starting with this differential inequality will prove that A — Ao
and 9 — 1o decay exponentially.

We will now look at the other components of a gluing argument. The implicit function
theorem states that under suitable hypothesis, for every point zo, so that f (o) is small,
there is a nearby point z; so that f(z;) = 0. The compactness results show that the
hypothesis holds for the Seiberg-Witten equations. One version of the implicit function
theorem is [AMR]:

Theorem. If f € C*(E,F) and Df|,, is an isomorphism so that
ID*flol| < K for |lz—zol| <R,
let
Ry = min{3 K| D152 B}
1
1 ’2
1

R3 = 5 Ra|| DSzl

Ry = min{R{", Z|IDfI75 I (IIDflse | + KR1)™) ™'} and

then f maps DR,(zo) diffeomorphically to a subset of F' containing D, (f(zo)).

If Ax,%¥x is an irreducible, nondegenerate solution to the Seiberg-Witten equations on
X U[0,00) x M, approaching Aeo, Yo, and Ay, 9y is a good solution on ¥ U (—o0, 0] x M
approaching A, %e. Then the decay estimate will prove that there is an approximate
solution on X U [0,T] x M UY given by Ax,vx on X U[0,17] x M and Ay,¢y on
[3T,T] x M UY. The implicit function theorem will then show that there is a nearby
solutionon X U[0,T] x MUY = Z.

For many applications the case when Ax,yx is irreducible and nondegenerate, and
Ay, ¥y is reducible and degenerate is more useful. In particular, assume that there is only
one solution to the Seiberg-Witten equations on R x M and assume that this solution is
reducible, say (Aar,0). This happens when M has a metric with positive scalar curvature.
Also assume that Y'U((—o0,0] x M) has exactly one Seiberg-Witten solution with boundary
value (Apm,0) and assume that this solution is reducible, say (Ay,0). If b3 (Y) > 1
this will not happen for generic metrics. The most interesting case therefore is when
b3 (Y) = 0. Let the moduli space of Seiberg-Witten solutions on X U ([0,00) x M) with
boundary value (Aps,0) be M x(An,0). We will assume that M x(Apr,0) consists entirely
of nondegenerate irreducible solutions.

With the above assumptions one would generically find that dim M x(As,0) > dim Mz,
so that gluing a solution from X to the solution on Y will not always produce a solution
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on Z. Looking at this situation in more detail, the Seiberg-Witten equations together with

a global gauge-fixing condition define a map:
F:TA'ZoW,)=sT(AZoA ZoW_)

and S! acts on I'(A'Z @ W) as constant gauge transformations. The Seiberg-Witten
moduli space over Z is Mz = F~1(0)/S!. Pick T large and ¢ > 0 small once and for all
and define the space of approximate solutions to be F~1(D,(0))/S*. There is a map

¢ : Mx(Ay,0) = F7H(D:(0))/5

sending A, to an element which is A4, when restricted to X U[0,T —1] x M and (Ay,0)
on Y. This map is well defined because of the decay estimates. If CoKer T( 4, 4)F = 0 for
all (A,%) in F~1(D.(0))/S* then the implicit function theorem would imply that there is
a map from F~1(D.(0))/S* to Mz. Unfortunately, CoKerT(4 4)F # 0. This allows us
to define an S'-equivariant vector bundle over F~!(D.(0)) with fiber CoKerT( 4 y)F. We
will denote this vector bundle by CoKer TF and the induced bundle over F~1(D.(0))/S*
by CoKer TF/S!. The pull-back construction produces a bundle ¢* CoKer TF/S! over
Mx(Am,0).

We may fix the problem with the implicit function theorem for a price. Pick a map,
o : CoKer TF — I'(A° ® A2 Z @ W_) so that TF @ o is a surjection. This will allow us to
study (F @0)~1(0). There is a natural inclusion, F~1(D,(0))/S* = (F®o)~(D.(0))/5".
By the implicit function theorem, there is a map taking almost F' @ o solutions to nearby

F @ o solutions, say
m: (F®a)  (D:(0))/S' = (F& o)~1(0)/S" .

To see what this says about the original problem, let p, : (F & 0)~!(0) — T(A'Z @ Wy)
and p; : (F @ 0)~1(0) = CoKer TF be projections. In this case, p, o w0 i is a section of
CoKer TF/S! which induces a section % : Mx(Am,0) = ¢* CoKer TF/S'. A moment’s
thought shows that p; o 0io@ takes ¢~1(0) into Mz. In fact this map shows that ¢~*(0)
is diffeomorphic to M.

The zeros of a section of a vector bundle are Poincaré dual to the Euler class of the
bundle. There is a natural principal S! bundle over M x(Ap,0) given by framed solu-
tions, Mx(Am,0) = Fx'(0) = Mx(Am,0). The bundle ¢* CoKer TF/S! is associ-

ated to the bundle of framed solutions. We may easily compute the fiber dimension of
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¢* CoKer TF/S*. Namely,

d, =dimMg
=Index TFz -1
= Index TFx + Index TFy — 1
= dim M x(Am,0) + dim Ker TFy — dim CoKer TFYy .

So dim CoKer TFy =d,; — d,.
The base point fibration is defined to be f = M x(Am,0) xs1 RZ A bit of work will

show that
% (dz—d; )

¢* CoKer TF/S' = @ B .
1

We are now in a position to give Fintushel and Stern’s proof of the rational blow-down
formula. Recall that a mu class is defined by 4 = e(8) and that the Seiberg-Witten
invariant is given by nz = u?2/2 N [Mz]. The first step is to prove that with the bundles
specified as in the theorem there is only one solution on C(p) and only one solution on

R(p) and the solutions are reducible. Then

nxuc() = #*¥°? N [Mxuc]
= pdxuc/2 u3x=dxue) A [Mx (A4, 0)]
= u?x/2 N [Mx(4,0)]

— “dqu/2 n [MXUR] = NXUR(p) -



Lecture 3

In this lecture we will look at part of the gluing process in detail. There is a standard
method for organizing the details of a general gluing theorem. This method is known as
Floer theory. In the proof of the rational blow-down formula in the last lecture it was
important to notice that there was only one solution to the Seiberg-Witten equations on
R x L(p",p — 1). For a general 3-manifold, M, the Seiberg-Witten equations will have
many solutions over R x M. The Floer homology is a natural way to organize all of
the solutions over R x M. One other important ingredient in the proof of the rational
blow-down formula was the action of the constant gauge transformations. We will include
this group action into our discussion by studying equivariant Floer homology as pioneered
by Austin and Braam. Even though we will review the definition of equivariant Floer
homology, we recommend Austin and Braam’s original article [AB]. M. Marcolli and B.
Wang have worked out the equivariant version of Seiberg-Witten-Floer theory MW].

Equivariant Floer theory starts with some standard pieces of data. Let G be a compact
Lie group, which acts on a manifold X. Let f: X — 51 be G equivariant with a set of
critical points R. Given a continuous indexing function, p : R — Z, define Ry = p~ (k).
The space of flows is defined to be:

M(Rn,Rm) ={¢:R— X | ¢ = —grad f |4, $(—00) € Rn,$(c0) € Rm}

The indexing function should be compatible with the space of flows in the sense that
dim M(Rn,Rm) = n — m + dim R,,. The real numbers act on M by (t-¢)(s) = ¢(s + ).
Denote the quotient by M(Rp, Rm) = M(Ry, Rn)/R. We call the maps

u™ ™ M(Rn,Rm) - Ry; o ¢(—°°)

lp—m : M(RpyRm) = R ¢ ¢(00) .
The upper and lower end point maps respectively. Under reasonable assumptions, the
maps u and £ are fibrations. Denote the Lie algebra of G by } and its dual by }*. We will

also need orientations on the critical submanifolds, and the flow spaces.
With the above notation, let

Q"(Rx)° = @ T(A?R: ® Sym’}*)°

p+2q=n

be the complex of G-invariant forms where

(a-g)(X1,--- ,XP,AI,...,A,,) = a(g.X],...g.X,,,gAlg_l,...,gAqg"l) )
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Let dg : Q*(Ri)C “&5' 0*(Ry)S;
dGa(Xl,...,Xp,Al,...,Aq)
=) (- X(a(X1y. .., Xy, Xy, Ay, Ay))
k

~

+ ) (D)™™ ([Xn, Xin), X1y ooy Ximy ooy Koo, Xy Ary oy Ag)

n<m

= (A}, Xy, .. Xy, Ary. s, Axy . Ay
k

Here A;‘c is the vector field %z-exp(tAk)lmo. Finally, define C*(X, f) = Bntm=kL"(Rpm)C
and §: C*(X, f) &' C*(X, f);
ba =dga+ Z:(—l)form deg “uilra .
n>0
The homology of the complex (C*(X, f),d) is the equivariant Floer homology of X, f.

In order to get a feel for what the equivariant Floer homology measures, we will look at
several special cases. When G = 1, f is a constant map, and the indexing function is zero,
Ry = X and the equivariant Floer complex reduces to the ordinary DeRham complex.
When G = 1 and f is a Morse function, the critical points are isolated. Let H, be the
Hessian of the critical point p and define the index of p to be u(p) = 3 (rank H, —Sign H,).
In this case, the equivariant Floer complex reduces to the usual Morse complex. If G =1
and f is non-constant and not Morse, then we are in the so-called Bott-Morse case. The
equivariant Floer homology still computes the homology of X from the homology of the
critical points of f. A good specific example is X = {(z,y,2) | 22 + y? + 22 = 1},
f:X = 8 f(z,y,2z) = exp(2miz?). At the other extreme, when X is a point and
G is arbitrary, the equivariant Floer homology of (X, f) is just the ring of G-invariant
polynomials. If H is a closed subgroup of G and X = G/H, then the equivariant Floer
homofogy of X is just the ring of H-invariant polynomials. Floer’s important insight was
that this homology is well defined when X is infinite dimensional, even if the Hessian
has infinitely many negative modes. The key is to define an index or even a relative
index. Cohen, Jones and Segal are working on a homotopy theoretic interpretation of this
semi-infinite homology [CJS].

Returning to the Seiberg-Witten equations, let £ : P Xspin,(3) $P1 — T*M be a Spin,-
structure on a 3-manifold. Call the bundle of spinnors W, the associated line bundle
L, and the space of connections on L, AL [A2]. Pick a base point 7o € M and a pair
(AL,¥1) € AL x T(W). We can now describe the relevant configuration space:

X =8 x Ay, x T(W)/ ~
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where (X, A,%) ~ (Ag(z0), A — 29~ dg, g™ ?) for any g : M — S*. The Lie group S* acts
on X by multiplication in the first factor. Define a function F': X — § ! by

F,()\ A, ) =’exp(;i— /M 3(A—AL) A (Fa —2in) — %(0a,¥)) -

Here 7 is any divergence-free 1-form on M. In [A1l] we showed that F' is well defined and

computed,

0
grad Fly a4,y = | *Fa — 2l[’¢[),'(/;] —1n
Oy
Following the definition of equivariant Floer homology, we will first look at the space of
critical points of F. This space, R = {(\, A,¢) | grad F|x, 4,4 = 0} is sometimes called the
framed Seiberg-Witten character variety. We studied this space in detail in [A2]. Here we
will use a different linear model of this space which is more natural. The results in [A2]

easily transfer to this slightly different set-up.
The first step is to study the linearization of R. Let G = Maps(M,S?). Since X is a
quotient space, the tangent space to X at (), A,v) will be the quotient

R x A(T'M & W)/(Im(dLx 4.4 : TG = R x A(T'M @ W))) .

This is just CoKer Lo, where Lo = dL(x, 4,y). After identifying T.G with [(A°M), we see
that

Lo(u) — %(Aeiu(zo)t, A _ zef-iutdeiui, ¢e—iut)|t=0
= (u(zo), —2du, —tpiu) .

The last step might look a bit strange because of the identification of T»S I x T4 AL with
R x A(T'M). It is useful to compute the formal adjoint of Lo because CoKer Lo = Ker

L§. A short computation shows that

Ly :Rx AT'M @ W) - I'(A°M)
Li(t,a,¢) = téz, — 2d*a + 2(¢1, ) .

We may pro eed in the same way to compute the linearization of grad F. Let L; :
RxAT'M e W) Rx AT'M o W),

Ly(s,a,¢) = -(—%(0, *Fy +1xdat — 2i[¢) + to, ¢ + td] — in, Oatita (Y + i9))
= (0, *da — 4[¢’ 'd;]’ 6A¢ - %c(a, ¢)) .
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Putting this all together, we may conclude that R is locally diffeomorphic to the first
cohomology of the complex:

0= ATM) Z5 Rx AT'M @ W) 25 R x A(T'M & W) 22 A(T°M) = 0

where Ly = L§. This conclusmn follows from the implicit function theorem, provided that
H?(L.) = 0.

Due to the singular nature of the operators, Lo and Lo, it is easier to study the situation
without the S! factor in X, and later modify the answer to include the S! factor using
ad hoc arguments. In [A2], we showed that H°(L,) @ H?(L.) = 0 for generic choices of
Spinc-structure and perturbation n as long as H!(M) # 0. This leaves the case when
H'(M) = 0. In this situation reducible solutions may not be avoided, so we have to
analyze the linear model at a solution with ¢ = 0. Still disregarding the S! factor, we

have

Ker(d* : Q1 (M) — Q°(M))
Im(*d : QO (M) — QO(M))

H?*(L*) = CoKer 34 @
The diagrams

QM) — Q3(M) QM) —2 Q¥(M)

R O T O

QM) —— QM) QM) — QM)

show that the second factor is H*(M) = H'(M) = 0. On the trivial line bundle, any
solution with 1 = 0 would have A trivial so that H?(L,) = CoKer 8 = 0. For generic
Spinc-structures, CoKer 8 = 0. We will look at this in more detail when we study the
relationship between the Spin -structure and the equivariant Floer homology.

The geometric meaning of the gauge fixing condition, L§ = 0, is a slice that is perpen-
dicular to the action of the gauge group. The extra S! in the domain of F,, is included to
make the gauge group act freely. One useful idea is to replace the gauge fixing condition,
Lg =0, with d*(A — Ap). This is the condition that we used in lecture 2. It is also used by
Furuta in the proof of the 10/8 ths theorem. Even though this second gauge fixing con-
dition does not have a natural geometric interpretation, it is often better. One advantage
is that the operator is non-singular. The other advantage is that the second gauge fixing
condition is invariant under constant gauge transformations, so the extra S* does not have
to be put in by hand.

The upshot of the above discussion is that the space, R, is a finite disjoint union of circles

with possibly one extra point. At least for generic perturbation and Spin.-structure.
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The space of flows from (A1, A1,¥1) to (A2, Az,%2) is just the Seiberg-Witten moduli
space with boundary values (4;,%1), (Az,%2) provided that M =X ory;=0ory =0.

In order to define an index, collapse the deformation complex of R to

Day:AT°MOAN'MOW) s AT°MaeA'MaW)

0 —2d*  2(¢i,—)

Dyy = Li®Li ® Lo = —2d *d —4[—,1;]
-1 —%c(a, -) 0a

The operator D4y has a discrete real spectrum. Let 84,4 = 3 inf{|A\| | A € Spec D,y —
{0}}. If Ay, ¢y is a path, define the spectral flow, SF(D 40,50, D4y, ) to be the number of
eigenvalues which change from negative to positive minus the number which change from
positive to negative. In truth, the spectral flow counts the number of eigenvalues that
cross a line from —84, 4o t0 64, ,4,. This convention assures that the spectral flow is the
dimension of the space of flows. We define the index to be

/J(’\aA’ ¢) = SF(DA.,\IJMDA,IL') .

The equivariant Floer homology defined with the above input is a topological invariant
when dim H'(M) > 1. This is very similar to the four-dimensional situation. When
b2 > 1, there are diffeomorphism invariants, but when b% = 1 the invariants depend on a
choice of chamber. Equivariant Floer theory as defined above is called Down theory. When
the configuration space X is finite dimensional the homology of the complex defined with
a function f is isomorphic to the cohomology of the complex defined with the function
—f. The cohomology computed from the —f complex is not the same when X is infinite
dimensional, so call the — f homology the up theory. A third Floer theory may be defined
by cancelling the S? factor and disregarding the reducibles in the configuration space. This
is called irreducible theory. It is possible to combine the three different theories into one
theory which is a topological invariant independent of H 1(M). This is current research
of Froyshov, and Kronheimer-Mrowka. By including a spectral-flow counter-term, Y. Lim
was able to define an invariant in the case when H!(M) = 0 and show that his invariant
is equivalent to Casson’s invariant [L].

We will look at the down theory in greater detail. To prove that the equivariant Floer
complex is a complex, and to prove that the homology is an invariant, it is necessary to

have a gluing theorem. The basic gluing theorem is:

Theorem. For T sufficiently large there is a proper embedding
G : M(Rq, Rs) Xr, M(Ry, R.) x [T, 00) = M(Ra, R.)
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onto an end of M(Ra, R.). Moreover, every end of M(R,,R.) is of this form.

Since M(R,, Rs) = M(Ra, Ry)/R, it will be helpful to have a preferred representative
in each equivalence class. Recall that for (), 4,¢) € M(R,, Ry),

B A8) = [ [ 1Va0 + Sl + 3161+ IFAPdvola di
—ooJ M
In the proof of the exponential decay we showed that
B AS) = [ 3w = Aw) A Fae = #(0a_maer )

In particular the energy only depends on the boundary values, allowing us to denote it by
E(a,b). Let A\ = § min,»; E(a,b), and define a slice, s : M(Rq, Ry) — M(R., Ry); s(z) =
(A, %, p) by the condition

0
[-w/M lvi¢l2 + 'Ehblz + %l¢|4 + %IFAIZ dVOlM dt = )\ .

As long as R, is irreducible, M(Rq4, Rs) xr, M(Ry, R.) consists of pairs (z1,z;) where
s(z1) = (p1, A1,v1), s(z2) = (p2,A2,%¢2) and p; = p,. Let pbe a smooth cut-off function

with
) 1 if t<-1
t) =
P 0 ift>1.

Given s, define

A*(t) = p(t)Ar(t + s) + (1 - p(t))A2(t - 3) ,

Po(t) = p(t)r(t + ) + (1 = p(t))p2(t — s) .
The pair (A®,4°) is an approximate solution to the Seiberg-Witten equations built with
(A1,%1) on the left side and (A2,%2) on the right side separated by distance 2s.

We will look for an element in M(R,, R.) of the form (p, A,¢) = (p, A* + a,v¥* + ?).
The flow equations,

% =2i[¢,§;]‘-*FA 3 %tzé =—PA¢
become - ) - 5A°
L [a}_ [2l[¢,¢]] _ [22[¢3’¢3]—*FA“"T]
Wl T e, )] Tl —oapr -2 ’

after substitution. Here,

:- xd  —4i] ,zZ’]] -

L 8 W) =
(e [ $°) &+ 04,

8
ot
1
2€
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In order to solve the flow equations we will find a right inverse to the operator L4+ y+).
As a nondegeneracy condition we will assume that there are bounded operators, P; and
P, so that .

L(Al,wl)Pll' =z and £(A2,¢2)P2$ =T.

An approximate right inverse to L4+ y) is given by

(Qz)(t) = p(Kt — 2)Pi(p(t)z(t + 5)) + p(—Kt = 2)Po((1 — p(t))z(t - 3)) -

Now define -
P=> Q- L y)Q"
n=0

For K large depending only on the Spinc-structure, ||I — L4+ 4+)Q|| will be small so that
R
P is well defined. Finally, let Pz = [ ”] and

2T
2i[Ryz, R2x) }

oy =e- 25752

The map Df|o = I is clearly an isomorphism. The a priori bounds on solutions to the
Seiberg Witten equations show that D? f|, is bounded in a large ball. The term

[2i[¢3,¢381 — xF 40 — %]

oy’
0¥’ — St

is close to zero when s is large because (A1,%1) and (Az,92) converge exponentially to
a common boundary value. The implicit function theorem implies that there is a unique
small x5 so that

2i[1h*, %] — xF g0 — 24°
f(:ca)=[ i _aA],W _A% ot ] .

The gluing map is defined by

G((pa Al,"/’l)»(pv Ag,i,bg),S) = (P, A® + Rlxsa¢s + Rz:t,) .

To prove that all ends are accounted for, look at a Cauchy sequence in M(R,, R.),
say zx. Let s(zx) = (Ax,¥r,pr). By the compactness theorem, (Ak,¥x) converges to
a Seiberg-Witten solution, (A—,%_,p-). The solution (A_,¢_, p-) is not necessarily in
M(R,, R.), but it will be in M(R,, R;) for some z. To find the other half, rescale the slice
by requiring the energy up to 0 to be E(a,z)+A. This will produce a solution (A+,%+,p+)
in M(Rz, Ry). In the best case, y = ¢, and ||z — G((A-,¥—,p-),(A+,¥4,p+), k)| = O
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as k — oo. The implicit function theorem will show that the x4 are in the image of the
gluing map when k is large. If we are not in the best case, we change the energy at t = 0
and repeat the argument to get a new segment. This process will stop because the moduli
space has finite energy.

We are now ready to work out a few examples. As a first example, assume that the
metric induced from the Spin, structure has strictly positive scalar curvature. The a priori

bound implies that ¥ = 0 for small perturbations.
Lemma (A priori bound). If (4,%,p) € R) then [|¢|? < max{0,2|n| — s}.

In this case, the equations for the framed Seiberg-Witten character variety simplify to
*Fyq=un.

Chern-Weil theory implies that ¢;(L) = — 5% Fa = — 5-[#n]. This condition fails to hold

for generic perturbations if b, (M) # 0. It follows that R = ( for generic perturbations
when b; # 0. This proves the following:

Theorem. If the Spin. structure on M has positive scalar curvature and by (M) # 0, then

SWF*(M,L)=0.

Corollary. If X* has a nontrivial Seiberg- Witten invariant, then no $-manifold which
admits a metric of positive scalar curvature with Im(Hy(M) — HY (M)) # 0 embeds into
X.

We should make some remarks about this corollary at this point. The basic reason that
this result is true is that any 3-manifold which embeds into a 4-manifold with a non-trivial
Seiberg-Witten invariant must have some connection and spinnor that solve the three
dimensional Seiberg-Witten equations. The previous theorem states that any 3-manifold
with positive scaler curvature and b; > 1 does not admit any solutions to the generically
perturbed Seiberg-Witten equations. This is why we must assume that the embedding is
homologically non-trivial. In fact, S x S? embeds into any 4-manifold as the boundary of
a regular neighborhood of a trivial S2. With this in mind, we will make a short aside to
review the neck-stretching argument while paying attention to the perturbation.

The neck-stretching argument in [KM] and [A1] is proved by studying the energy func-
tional from lecture 2. With the perturbation this functional is:

E(A,¢) = / VAl + S0P + 200, 6]+ 2 + %IFA|2dvol.
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As in lecture 2, this may be rewritten,

E(A,9) = /X | Db+ |F — ilth, ) — i [2dvol
+272¢; (L) N [X] = 47r/X(—2—71T—z:FA Ant .

By Hodge theory, Chern-Weil theory and the Bianchi identity, —51%FA = ¢1(L) + de.
Integration by parts will show that this last integral is a topological invariant, —4(cy(L)U
[n*]) N [X], provided, dyt = 0. Careful inspection of the transversality arguments shows
that harmonic perturbations are sufficiently generic to force a regular moduli space when
the metric is varied. Since the Seiberg-Witten invariant of X is non-trivial, there is a
solution to the Seiberg-Witten equations with any metric. In particular, pick a metric so
that [0,7) x M embeds with T large. Since there is a topological bound on the energy,
and the energy in a segment [a,b] x M is Jipyxamr — J{a}x M, Where Jiyxpr is a monotone
function, it follows that there is an interval, [a,a+ 1], so that J{a41}xm — J{a}xa 1S small.
This in turn implies that there is a solution to the three dimensional Seiberg-Witten

equations on M:

xFa =2i[y, ¢] + 2ip
Pay=0.

The perturbations are related by:
ntnany =dtAp+xp or p= i%n*'.

The condition, dnt = 0 insures that p is divergence free and independent of t. The
only way to be sure that the solution on M is not reducible ( = 0) is to assume that
c1(L) # —1[«p]. In other words, we assume that there is an [F] € Hz(M) so that,

AN [F] = ~ 7] N [P

ci(L) N[F] #

On the other hand, if b; (M) = 0 then the Chern-Weil condition will always hold. In fact
we can see that the Seiberg-Witten character variety is exactly one point. Since b;(M) = 0,
we may write the connection A as ia. With this substitution, the Seiberg-Witten equations
become da = *7. Recall that 7 is divergence free so that d*n = 0, i.e. *7 is closed. Every
closed 2-form is exact because H2(M) = H'(M) = 0. This implies that there is an a that
solves the equations. To see that this solution is unique, let a; and a2 be two solutions, so
that d(a; — ag) = day —day = *n—*n =0, i.e.,, a; —az is closed. The difference is therefore
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exact: a) —az = dﬂ, so ia; = ia; — 29~ 'dg where g = exp(16/2). Thus, R = {(6,0,1)}.
Pick y = 0. Then the equivariant Floer complex is:

CX:F)= @ 2"(Rm)*

n+m=s=
= Q(Ro)>
= @@ I(A’R ® Sym'R)™
p+2q==»
SymIR if 2¢ = *
B 0 otherwise .

This proves

Theorem. If the Spin. structure on M has positive scalar curvature and by(M) = 0, then

R ifx=2q

SWF*(M,L) =
0 otherwise .

We can also compute the Seiberg-Witten Floer homology for Euclidean manifolds. As an
example, let A’(2,3,6) be the group of isometries of R? generated by reflections about the
lines through the points (0,0), (0, %), (v/3/2,0). Let A(2,3,6) be the orientation preserving

2r 2x 2x

subgroup, so that A(2,3,6) is generated by rotations with angles 2%, 2%, and 4F about
the points indicated in Figure 33.

FIGURE 33: A(2,3,6)
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By working with Figure 33, it is possible to prove that A(2,3, 6) has the presentation
A(2,3,6) = (a,b,c | abc = a® = B=cf=1).

Identifying R? with the affine subspace {(z,y,2) € R® | z = 1}, we may represent a, b and c
as linear maps. The group A(2, 3,6) also acts on R! x §* = {(u,v) € R2xR?| |[u—v| =1}
in a natural way. The action on R? x S? is free, so the quotient is a smooth 3-manifold.
The universal cover of this 3-manifold is the same as the universal cover of R? x S, namely,
R3. The fundamental group of the 3-manifold is an extension, A(2,3,6), of A(2,3,6):

17— A2,3,6) > A(2,3,6) = 1.
Denote the manifold R/ A(2,3,6) by £(2,3,6). A bit of work will produce the presentation
A(2,3,6) = (p,q,r | pgr =p* = ¢* =1°) .

Thinking of R?® as the affine subspace, {(z1,z2,z3,z4) € R* | z4 = 1}, we may represent

p, ¢ and r by:
-1 00 0 -1 8 o &
o 100 I S
P=1o 01 2| "o o 1 1
0 0 0 1 0 0 0 1
and _1 _8 o &
2 2 1
¥3 _1 g -3
r= |2 2 K
o o 1 1
| 0o 0 o0 1
These matrices induce an action on R? x §' = R3/Z = {(z1,...,24) | x4 = 1}/ ~ where

(z1,72,23,24) ~ (%1,T2,23+1,24). By considering the R? factor we can recover the action
of A(2,3,6) on R2.

The manifold £(2,3,6) is a Seifert fiber space. The regular fiber represents the element
pgqr in A(Z, 3,6). The regular fiber may be seen as the set of points with a fixed, generic
value of z; and z,. There are three singular fibers corresponding to (z1,z2) = (0,0),
(z1,22) = (0,1) and (z1,22) = (*2,0).

We can define a one parameter family of Spin.-structures on $(2,3,6) by

€. : £(2,3,6) x Spin,(3)Xsp1 = T*T(2,3,6) ;
tal(z1,22,23,1,1), 310 + y2J + ysk] = y1dz1 + y2dz2 + aysdzs .
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The induced metric on £(2,3,6) is: go = dz? + d22 + a?dz?, which is always flat. The
length of the regular fiber is a. These Spin.-structures are flat, so we may not conclude that
% = 0 as in the positive scalar curvature case. However, the a priori bound will imply that
¥ is small for small perturbations. This means that ¢;(L) = — 75 F4 = — 1[4, ¥]— 5=%n

2ms
is small. Since ¢;(L) is an integral class, it must be zero. Thus there are no solutions on

non-trivial bundles and
SWF*(X(2,3,6),L) =0 for L non-trivial.

On the trivial bundle there is a unique solution to the Seiberg-Witten equations.

Lemma. There is a unique solution to the 3-dimensional Seiberg- Witten equations when

the scalar curvature is zero and the perturbation is harmonic.

PROOF. The pair (4, %) solves the 3D Seiberg-Witten equations if and only if I,,(4,¢) =

0, where

I(A, ) = /M |+ Fa — 2[4, 3] — in|? + 2|0402dvol .
We can rewrite Ip)(A, ) as:
L) = [ 1FAP +12006,9] - inf?

- 2<*FA’ 27’[1)[), "Z)]) - 2<*FA3 "7)
+2(0404%, %) dvol .

Using the Bochner-Weitzenboch formula,
0304 = VaVab+ 39— F* Fa-y

will simplify the integral. The —% * Fy - ¢ will cancel the —2(*F4,2i[¢,%]) term and
s = 0. Furthermore, we may decompose F4 = (da + d*a + w)i where w is harmonic. By

the comments preceding this lemma, w = 0. By the Bianchi identity, d*a = 0. Thus,
/ (*F4,in) dvol = / (*dat,in) dvol
M M
= / (ai,d* *in) dvol =0
M
since 1 is harmonic. The final expression for I,(4,¢) is

I(A,¥) = /M \Fal? + |24, ] — in]
+ 2|V 4%|? dvol .
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By inspection, I,(A4,v) = I_,(A, 7). It follows that (A4,1)) is a solution to the n-equations
if and only if (A4,vj) is a solution to the —n equations. This shows that Fy = 0 for any
solution.

On %(2,3,6), for example, the only harmonic 1-forms are cdzz = 7. It is an easy
algebraic exercise to show that the only solutions to

2[4, ¥] = —cdzs

are ¢ = (c/a)%(1+ 7)e', so up to gauge equivalence, we may take ¢ = (c/a)%(1+ 7). The
equation, 4% = 0 now uniquely specifies A. a

This lemma proves that the framed Seiberg-Witten character variety is diffeomorphic
to S! for the given Spin.-structures. The equivariant Floer complex becomes

C"= @ T(A’R,®Sym'R)%
p+2q+r=n
= P r(4rs'@SymR)S .
p+2q=n
The only equivariant forms on S' are constants and constant multiples of df. It follows
that C2¥+! is spanned by df ® (%)k for k > 0 and C?* is spanned by 1 ® (g—;—)k for k > 0.

In this basis, the complex becomes

0-R-SLRABR-SLRIBR-YS ...

Thus
R if *x=0
SWF*(£(2,3,6),C) =
{ 0 otherwise .
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