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PREFACE

Let M be a smooth manifold and let H be a subbundle of the tangent bun-
dle TM (sometimes H is called a polarization). Vector fields in H are said to
be H-horizontal or simply horizontal. A piecewise smooth curve in M is said
tobe (H-) horizontal with respect to H if the tangent vectors to this curve are
H-horizontal. The metric defined in terms of the horizontal curves in M is called
Carnot-Caratheodory metric (C-C metric,or sub-Riemannian metric etc).

When H is bracket-generating, we may sometimes define a C-C metric. For
examples, a contact structure satisfies that TM = H + [H, H] where [H, H] ~ R,
and has a sub-Riemannian metric on M.

In 1960’ s S.Sasaki defined an (almost) contact metric structure and many ge-
ometers have studied this topics. The contact structure in this note is different
from his one. And N.Tanaka (1975) studied the harmonic theory of CR-structures,
which is similar to M.Rumin’s one.

1996, I talked this topics in Santiago Compostrela and had a chance to write
it in Lecture Note Series in Seoul National University. Recently, some papers and
books about this topics are published and so I try to rewrite the new version with
respect to view of

LKupka, Géométrie sous-riemannienne, Séminarire Bourbaki, 48 &me année,
1995-96, no.817,351-380

This note is dedicated to the memory of my wife, Keiko, who died suddenly on
October 24,1997.

I would like to thank Professor A.Alvarez Lépez and Universidade de Santiago
Compostela for inviting me and giving me the opportunity to talk on this topic
and I also like to thank Professor H.J.Kim and the Department of Mathematics
in Seoul National University for giving me the oppotunity to rewite this note of
revised form.

I have also hearty thanks to Professor H.K.Pak in Kyungsan University for his
comments of this note.
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CHAPTER 1. CARNOT-CARATHEODORY METRICS.

§1.1 Carnot-Caratheodory metrics (Sub-Riemannian structures).

1.1 Definition. A sub-Riemannian structure (or abbreviated to SR-structure) on
a manifold M is a pair (E, g) where E is a distribution with the constant rank and
g s a Riemannian metric on E.

Remark 1.1. Given (E, g), we can define a metric g* onT*M, i.e., a C*®-function
g* : T*M — R whose restriction to each fiber T} M is a positive semi-definite form
:forzeTr M,

v,z 2 |
9"(2) = max{ =7 v € Efm] \ {0},

where < —, — > is the canonical pairing TM x5 T*M — R. If we give g*, we also
determine E and g, i.e., E is the annihilator of the kernel of g* and, for v € E[m],

g(v) =min{A € R |[< v,z >*< Ag*(2) V z € T M}.

Remark 1.2. By Remark 1.1, we can generalize the notion of SR-structure : We
choose g* : T*M — R, which is a positive semi-definite quadratic form for each
fiber of T*M. We suppose the following condition ; if E is the sheaf generated by
vector fields V' such that, for allm in the domain of V, all z € T}, M with g*(z) = 0,
< VIm],z >= 0, T'(E) satisfies the rank condition.

g* defines a structure (E,g) on M. E is a subset of TM, but, in general, not a
subbundle as followings ; we set »

E = U E[m],
meM
Elm] C TpM, Elm]:={v|<wv,z>=0forz € T, M: g*(z) = 0}
and the function g : E — R by setting
g(v) :=min{A € R|< v,z >2< A\g*(2) V z € T M}

if v e Elm].
1.2 Horizontal curves.

A horizontal curve is an absolutely continuous curve ¢ : I — M, I interval,

such that, for almost all ¢ € I, the tangent vector %(t) belongs to E[¢(t)].

1.3 Length of a horizontal curve.

For a horizontal curve ¢ : I — M, we define its length L($) by

L(¢) :=/I\/g (%?(ﬂ)dt < #oo

If I is compact, L(¢) < oo.



1.4 Energy of a horizontal curve.

We define the energy FE(¢) of a horizontal curve ¢ : I — M by means of

B() = /I o2 (0t < o0

Example 1.1.

Let M := R? be the Euclidean plane, and let E be the set of piecewise linear
curves where each segment is either vertical or horizontal. Then the corresponding
distance between the points v1 := (z1,y1) and vg := (z2,y2) is equal to |z; — z2| +
ly1 — y2| where we use Euclidean metric of R? for g.

Let M be the Euclidean 3-space R3, and let E be the standard contact subbundle
which is the kernel of the (contact) 1-form 7 := dz + zdy in R3. This means that
the tangent space E,, C T,,R® = R3 is given at each vy := (z0,%0,%0) € R3 by
z+ zoy = 0.

e E is generated by the following two independent vector fields 9, := 9/9z and
0y := 0/0y — x0/0z. These field do not commute.
In fact,
[01,00] = [0/0z,0/0y — z0/02]
= [0/0z, —20/0z]
= —0/0z

and so these fields 01,8, and [81,0:] span the tangent bundle TR? at each point
v e RS

§1.2 Bracket generating, Hérmander theorem.

Let E be a smooth distribution and let U € M be an open set. Let T'(E,U)
be the set of all smooth sections of £ on U. For each positive integer k, we set
Tk (E,U) the set of all vector fields X on U such that X is a linear combination
with smooth coefficients of iterated brackets of degree > k of members of I'(E, U),
and ['y(E) := Uy Tk(E,U). For p € M, we set T'y(p) := {X(p) | X € ['x(E)}. And
we set

o0
Ewo(p) == | Ex(p).
k=1
1.5 Definition. A smooth distribution E on a manifold M is bracket generating
(or sometimes Hormander condition, nonholonomic) if Eo, = T, M for all p € M.
If k is a positive integer, a smooth distribution E such that Ey = T,M for allp € M
is called k-generating.

Let P : I'(M)(:= smooth functions on M) — I'(M) be a second order partial
differential operator (abbreviated by 'PDE ') with real smooth coeflicients. We
assume that there is a subbundle E of TM such that P is of form

N ,
_ 2
pP= Z X7 -+ lower order term
=1
on any sufficient small open set U C M, where X4, ---, Xy span E on U. Then we

have
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1.6 Theorem (Hérmander). If E satisfies Hormander’s condition, then P is
hypoelliptic, i.e., any distributional solution u of the equation Pu = f is also smooth
when f is smooth.

For a proof, see [H6.1.2]. Hormander has shown the hypoellipticity for more
general PDEs. (See, [O]). We assume that F satisfies Hormander’s condition. The
leading term of P defines a sub-Riemannian metric g as follows ;

N
9(z) =) X;(z) ® X;(x).

Jj=1

This is an analogue of the relation between a Riemannian metric and the leading
term of its Laplacian.

1.7 Definition. A smooth distribution E on M is said to be strongly bracket-
generating (abbreviated to ABG) i.e., k = 2 at a point p € M, if E(p) +[X, E](p) =
TpM for every X € T'(E) such that X (p) is defined and is not equal to 0.

e The case where F # TM but E is SBG, is the contact case. Let E C T M be
a smooth bundle (poralization) spanned by smooth vector fields X1, X5, -, X,.
Every E of rank E = n; can be spanned by m < nj + n fields (n := dim M) and
locally we need only m = n, fields. In fact, we work locally, and so m = n, sufficies.
We denote successive commutators of our vector fields by X; for suitable indices
¢ > m and for each X; the number deg X; which is the degree of the corresponding
commutator. ‘

edeg X; =1<=1i<m,

edeg X; =2 <= X; =[X,,X,], 1 <p,v < m. In the followings, we assume that
E is strongly backet-generating. Let N be the annihilator of £ in T*M. Then N
is a smooth subbundle of rank k(:=m — q) in T*M.

1.8 Lemma. Every Riemannian metric on E gives rise to a unique Riemannian
metric on N.

Proof. Let p € M with 0 # w, € T,N. Let w be a local section of N through wp. If
X,Y are local sections of E near p, then we have

do(X,Y) = F{X (@) - Y (@(X) ~ w(X, Y])} = - su(X., Y]

in particular, dw(X,, Yy) only depends on w,, not on the choices of the extension w.
Since the commutators of sections of E span T M, the restriction of dw to E, does
not vanish. This means that there is a natural injective bundle map j of N into the
exterior product E* A E*. Since a Riemannian metric on E induces a Riemannian
metric on E* A E*, this metric can be pulled back via j to a metric on N. O

For w € I'(N), we define a map jw : E — T*M by
(Jw(X))(Y) := dw(X,Y)

Since F is strongly bracket-generating, jw is an injective bundle map and jw(E) is
complementary to V.
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1.9 Lemma. Letw?,--- ,wF be a local orthonormal basis with respect to the metric
of Lemma 1.8. Then, for everyi € {1, -'~, k}, the (m — 1)-dimensional subspace of
T; M, which is spanfad by jw'(Ep) U{w] | i # j}, only depends on w},, e »“’1]; and
is transverse to {\wj, | A € R}.

Proof. Tt is evident that A} =< (jw'(E,) U {w] | i # j} > is transverse to
w}. To show that A} only depends onwy,---,wk, let @},--- , @5 be another local
orthonormal basis of N near p with @}, = w;,. Then there is a smooth function [g;;]
of a neighbouhood of p in M into SO(k) such that [g;;](p) = Id and @* = 3 ; 9w’
We have

[dgij]p:()a j=1,---,n

Let X1,---, X7 be a local orthonormal basis of E near p and let ¢/ = jw!(X7).
Then _ B N ’
dgij = Z aao® + Z bgwﬂ smooth functions ay, by
B

dwt = Z dg,;j Aw? + Zgijdwj
J J :
= Zaaijaa Aw? + Z biﬂjwﬁ Aw! + Zgijdwj
0.3 Bsj
Since aa?/ = 0 for j = 1,--- ,n, this implies that
(@) (X) = (') (X) + 2 Z a¥ (X)w? for every X € E,,
i#j] a

ie., (Jo')(X) — (jw')(X) €K w? | i # j > as claimed O

1.10 Corollary. If E is strongly bracket generationg, then every Riemannian met-
ric < —,— >g on E can intrinsically be extended to a Riemannian metric on M.

Proof. Let p € M. Lemma 1.9 implies that, for every i € {1,---,k}, the choice of
an orthonormal basis wzl,, e ,w;f on N, determines an (m—1)-dimensional subspace
of Ty M, which annihilates a 1-dimensional subspace A of T,M transverse to the

kernel of wi. Let Z* € A* be such that wj(Z;) = 1.

The vectors Z1,-- -, Z* span a k-dimensional subspace of T, M which is comple-
mentary to Ep. Thus we can define an extension g(wg,--- ,wk) of < —,— >p, by
choosing the vectors Z1,--- , Z* orthonormal and perpendicular to E,.

Now the space of orthonormal basis of IV, can be identified with O(k). Let u be
the normalized Haar measure on O(k) (which satisfies 4(O(k)) = 1), and define

<XY >y [ IOV XY €T

Then < —,— >, is a scalar product on T,M extending the product on E, and
moreover is a scalar intrinsically by (E,< —, — >g). O

The Riemannian metric < —, — > on M defined in 1.10 will be called the canon-
ical extension of < —, — >g .
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1.11 Lemma. D
HE/\(X) (t)]|t=0 = Pad*(Pé?X (1- )QX)

— (1 — P)ad*(P6X, POX).

Proof. Let ¢ = /\(X) Then 6¢'(0) = POX, dt9¢’(t)|t oo = Pad*(P()X 6X), and,
by definition, §2.¢'(t) = L0¢'(t) —ad* (¢’ (t),0¢'(t)). Together with this yields the
claim. O

1.12 Corollary. If E is strongly bracket-generating, then every geodesic (with
respect to dg) is uniquely determined by its tangent and its covariant derivative at
p- In particular, exp,, (with respect to dg) is intrinsically defined.

Proof. For Y € E,, the map ay : E;* ~— E,, Z+— Ié'cz,',((S’Y7 6Z7) is independent
of the choices of the local trivialization of TM near p, and its inverse. The claim
follows from Lemma 1.11 and the fact that every Riemannian metric on a strongly

generated distribution can intrinsically be extended to a Riemannian metric on
M. O

1.13 Chow’s connectivity theorem. Let (E,g) be a SR structure. FEvery two
points in M can be ]omed by a horizontal curve in M.

Remark 1.3. This theorem is independent of the choices of SR-metrics, and also
it holds for a generalized SR-structure in the sense of Remark 1.2. In this case, a
horizontal curve means an absolutely continuous map ¢ : I — M such that, for
Vitel,

d¢
—(t) € Elo(t)].
FAOE )
1.14 Connectivity Theorem for the contact polarization E. Every two

points in R3 can be joined by a smooth E-horizontal curve.

Proof. Take a curve ¢ := (z(t),y(t)), t € [0,1], in the (z,y)-plane joining two given
points (z1,%:) and (z2,y2) and the formal area "bounded” by ¢ defined by the

integral
/ zdy = / z(t
c 0

is equal to a given number a. (We easily find such ¢, i.e., among curves of constant
curvature). Then we take the horizontal lift of ¢ := (z(t), y(t)) to R® by letting

z2(t) = 21 — fot z(t)y'(t)dt for a given value z; of z. Then the lifted curve ¢ :=
(z(t), y(t), 2(t)) is indeed horizontal as dz(t) = 2/(t)dt = —z(t)y' (t)dt = —z(t)dy(t)
and it joints the given points (z1,y1, 21) and (22,y2,22 1= 21 +a). O

Example 1.2.
In R?, we consider the system of TR? generated by

x| g] v - [f(ox)] |

where f is a C°°-function defined by

f =0, negative x
> 0, positive z



Chow ' theorem does not hold but any two points are ”accessible ”.

This result appears in the 1909-papers by Caratheodory on formalism of the
classical thermodynamics where horizontal curves roughly correspond to adiabatic
processes.

The metric structure on the SR-structures. For a SR-structure (M, E, g), we
can define a distance function dg by means of Chow ’ theorem. For (z,y) € M x M,

dg(z,y) := min{L(¢) | ¢ : [a,b] — M horizontal ¢(a) = z, ¢#(b) = y}.

This number is well defined by Chow ’s theorem. It is clear that dg satisfies the
axiomes of distance. We can also show that dg(z,y) > 0 if z # y as followings
; every point m € M has a relativly compact open neighbourhood V' and a Rie-
mannian metric G on V, such that dg(z,y) > dg(z,y) for V (z,y) € V x V, where
dg is a metric on g. We obtain the following fundamental theorem ;

1.15 Fundamental theorem. A SR-structure on a manifold M defines a metric
on M which induces the original topology of M. In particular, M is paracompact.

Remark 1.4. i) Theorem 1.15 also holds for generalized SR-structures in the sense
of Remark 1.2.
it) In M :=R", if g* is bounded, for all x,y € M,

dg(z,y) = sup{|d(z) — ¢(y)| | p € C=(M), g*(d¢) < 1, pwith compact support}.

Although the metric dg may be considered to be the same as Riemannian metric,
but it is very different each other. For example, in the Riemannian case, there is an
open neighbourhood of the diagonal Aps of M x M so that the distance function
is of class C'®°, but this phenomenon does not always occur in the sub-Riemannian
case.

Since M is paracompact, M has a Riemannian metric. The distance functions
defined by Riemannian metrics are equivalent on all compact sets of M, but it does
not hold in a sub-Riemannian case.

Contact C-C metric on (M, E). The E-horizontal curves c in R® are the lifts of
curves in the (z, y)-plane, such that the z-coordinate of ¢ is equal to the formal area
of the (z,y)-projection c of c. If two points v; and vz in R? lie on the same vertical
line (or z-line), i.e., have equal (z,y)-coordinates then the (z,y)-projections ¢ of
curves ¢ joining these points are closed in the (z,y)-plane and so the (formal) area
of these curves ¢ is bounded by

area ¢ < const(length ¢)? < const(length c)?

where const = (47) 1.
It follows that the C-C distance between v, and vs is bounded from below by
the Euclidean distance as followings ;

* dg > const_l/z(dcan)l/2

since the Euclidean distance d¢,, between our points is equal to z; — z; = area c.
We also have the upper bound

dg < aconst~1/24}/2

can
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where « is a certain positive function depending on the Euclidean norms of the
points v; and vy. (We may take o := (1 + ||v1]| + |ve]])?).
In fact, We can join v; and vy by a curve c in R® which projects to a curve ¢ in
R? such that
dean = area ¢ = (47) " !(length ¢)?

while
dg < length ¢ < alength c.

e The C-C metric is locally equivalent to vEuclidean metric on every vertical line
in R3.

e The C-C metric is locally equivalent to the Euclidean metric on every horizontal
curve.

Heisenberg group in view of the contact example.

Let G be the 3-dimensional Heisenberg group which can be defined as the only
simply-connected nilpotent non-abelian Lie group and let g be its Lie algebra Wthh
admits a basis z, y, z with

[.’E,Z] == [y,Z] =0, [xay] =Zz.

We introduce a polarization £ C TG by taking the left translations of the (x,y)-
plane
Ey C g= T;qG.

o There is a diffeomorphism between G and R® sending this E to the standard
contact subbundle in R3.

Next, we take a left invariant metric g on G and let dg be the C-C mietric defined
with F and g.

e dg is a metric.
In fact, there are two methods to prove this statement.
(1) We look at the homeomorphism (projection)

G — R? = G/center,

where the center of G is equal to the one parameter subgroup obtained by the
exponentiation of the (central) line spanned by z in g. The (contact) geometry of
this projection of G = R3 to R? is identified to the (x, y)-projection of Example 1.1
and the proof of the connectivity theorem 1.14 applies.

(2) We give the Lie group theoretic proof of connectivity. We consider the one
parameter groups G and G, of right translations of G corresponding to z and y
in g. The orbits of these subgroups are obviously tangent to E. On the other hand,
Gz and Gy, as subgroups in G, generate G since the derived Lie algebra generated
z and y is equal to g. It follows that every two points in G can be joined by a
piecewise smooth curve whose every segment is a piece of the orbit of G, or of
Gy,. O
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Connectivity theorem for general Lie groups. Let G be any connected Lie
group and let FEy be a linear subspace in g. This Fy define a left invariant polariza-
tion £ C TG and so we define the C-C metric distg on G. This is a metric if and
only if the derived Lie algebra of Fy is equal to g. Furthermore, if any Riemannian
metric used in the definition of disty were left invariant, then distg is also left
invariant on G.

§1.3 Chow connectivity theorem. Let Xi,---, X,, be smooth vector fields on
a connected manifold M such that the derived Lie algebra of these vector fields
span each tangent space T, M (v € M). Then every two points in M can be joined
by a piecewise smooth curve in M where each piece is a segment of an integral
curve of one of the fields X;.

o (Lie group) Let £ be the Lie algebra generated by the fields X;(: = 1,---,m)
and let G C Diff M be the subgroup of diffeomorphisms generated by the one-
parameter subgroups corresponding to X;(¢ = 1, -+ ,m). The theorem claims that
G is transitive on M provided £ spans TM. This is immediate if £ is of finite
dimensional, for £ can be identified with g (which makes G finite dimensional as
well), and the condition ” £ spans T'M” amounts to surjectivity of differential of
the orbit map G — M : g — g(vo), (vo € M). In fact, this argument applies to
the infinite dimensional case as well.

e (polarization) If the dimension of the span E, C T,M of the fields X; at v is
independent of v, the span F of these fields is a subbundle in 7'M, i.e., a polarization
of M in our sense where the orbits of X; are horizontal. Thus Chow theorem implies
the connectivity property for E-horizontal curves.

e (polarization defined by 1-forms) We can define a polarization E C T M as the
zeros of a system of 1-forms on M. This suggests a dual approach to the connectivity
property of E which does not directly use orbits of vector fields tangent to E but
it appeals to leaves of 1-dimensional foliations obtained by intersecting E with
submanifolds W C M with codim W = rank F — 1.

Let E be a contact subbundle on a 3-dimensional manifold M and Wy C M is a
curve transverse to F, we take 2-dimensional cylinders W, C M, ¢ > 0 around Wy
and ENTW, give us (spiral) curves in W, tangent to E which closely follow Wy
for small e.

Proof of Chow connectivity theorem. We are given vector fields X, -, X,
on a connected manifold M which derived Lie algebra is equal to TM, and we
want to join a pair of points in M by a piecewise smooth curve where each piece
is a segment of an integral curve of some field X;, (i =1,---,m). Since we works
locally, we may assume that the fields X; generate a one-parameter groups of dif-
feomorphisms of M and we must join given points by piecewise orbit curves. In
other words, we must prove that the group G of diffeomorphisms of M generated
by those subgroups is transitive on M.

1.16 Trivial Lemma. If G contains one-parameter subgroups, say, Y1(t), -,
Y,(t) where the corresponding vector fields Y1,Ya,- -+, Yy, span TM (without taking
commutators), then G is transitive on M.
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Proof. This follows from the implicit function theorem. Namely, for each v € M
we consider the composed action map E, : RP — M defined by

(t17 . ,tp) —_ Yl(t) oYYz(t) o ,OY;J(tp)(’U).

The differential of F, at the origin 0 € R? sends R? onto the span of the fields Y;
in T, M and so is surjective in our case. Thus the orbit G(v) is open in M for each
v € M by the implicit function theorem and G(v) = M since M is connected. O

Let X (t) be a one-parameter group on M and let Y be a vector field. Let us
look at the transport X, (t)Y of Y by X (¢). We note that for small ¢t — 0,

X.()Y =Y +#[X, Y] +o(t),

and conclude that, since the commutators of X; span T'M, there are vector fields
Y;, j=1,---,p>m) on M which span TM and such that

HY,=X;fori=1,---,m,

(ii) each field Y; for j > m is equal to (X;(t;)).Yj, i.e., the transport of some
Yj:, j < j, by the flow X;(t) at t = ¢; (where ¢ also depends on 7).

Finally, we note that the one-parameter group Yj(t) are contained in G since the
transport of a field Y by X (t) corresponds to the conjugation of the one parameter
group Y (7),

Y(7) — XY ()X 1(t)

for Y — X.(t)Y and the proof follows by the Trivial Lemma. O

Improving Chow theorem into the smooth case.

In the original Chow theorem curves joining given points must necessary consists
of pieces of orbits of different fields and so they cannot be made smooth. But if we
have a smooth polarization H, where the commutators of H-horizontal fields span
T'M, we may slightly improve the results as followings ;

1.17 Chow theorem in the smooth case. Fvery two points in M can be joined
by a smooth H-horizontal curve in M, i.e., by a smooth immersion f :[0,1] — M
with f(0) := v and f(1) :=v and f'(t) € H fort € [0,1].

Proof. Either of our two proofs of the Chow theorem provides a smooth family
® of piecewise smooth curves issuing from v, say ¢(t) € ®,¢ € [0,1], such that
the map ® — V defined by ¢ — ¢(1) contains a given point v in its image,
i.e., (1) = v for a certain ¢. The curve ¢ consists of segments of orbit of certain
H-horizontal vector fields Y7,---,Y; and when these fields are fixed, then ¢ is
uniquely determined by the lengths of the segments. In fact, these lengths serve as
coordinates in @ and so the curves in ® close to ¢ are obtained by slightly varying
these lengths, called ¢; := ¢;(¢), i = 1,--- , k. Next, let us smoothly interpolate
between Y; and Y;; for all ¢ = 1,--- | k. Namely, we introduce a smooth family of
fields Y; = Y;(£1,- -+, £x), k € [0, Lg] for Ly := Y%, £;, such that

() Yy =Yiq1forte[L;+¢ Liyr+¢€), for L; := 41 + ---+ £; and small € > 0,

(ii) ||¥2]] < constant for some constant > 0 independent of .

Now we define f(t) as the integral curve of the field Y; issuing from vy, i.e.,
f(0) = vo and f'(t) = Y; at v = f(¢), and observe that f — ¢ for ¢ — 0. It
easily follows that the map f —— f(1) contains v in its image for a sufficiently
smalle. O
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A new proof of the Chow theorem and the Hoélder bound on the C-C
metric. It is well known the following ; approximate expression for the commutator
of one-parameter groups X;(¢) and X»(t) in Diff(M) in terms of the one-parameter
group corresponding to the Lie brackets of the fields X; and Xo,

(") [X1(0), X2(@)]° = Xa(t) 0 Xa(t) 0 X7 (1) 0 X5 ' (t) = [X1, Xa](t7) + o(t?)

where the additive notation refers to some Euclidean structure in a relevant neigh-
bourhood and so we should note that X; ' (t) = X;(~t), (i = 1,2).

Proof of (¥). The following elementary formulas hold ;
(1.1) (tY)(t) = Y (tr).
(1.2) (X +7Y)(t) = X(t) o Y(7t) + o(tT) = Y (7t) 0 X (t) + o(t7) for t,7 — 0.

(1.3) X1 ()Xo (1) XTH(t) = (X2 + 7[ X1, X2))t + o(tT)

Note that (1.1) is obvious, (1.2) follows from the Taylor expansion for the compo-
sition X (t) o Y(rt), and (1.3) is implied by (1.1), (1.2) and the definition of Lie
bracket.

Now we have (x) in the form

X1(t) 0 Xa(t) o XT1(t) = [X1, X3)(£2) 0 Xa(t) + o(t?)

by applying first (1.3) and then (1.2) and (1.1) to the left hand side.
Next we observe that (x) by induction implies

[Xl (t)’ [X2(t)7 X3(t)]0]0 = [Xl’ [XZ’ XS]](t3) + O(ts)

(X1 (8), [, Xa@®)) 10 = (X, [+, Xa], - 1(E%) + o).
|
1.18 Proposition. For arbitrary degree,

C-C metric < (Riemann. dist)*/?

Proof. We consider the simplest case where dim M = 3 and T'M is generated by
X1, X2 and Y = [X1, X5]. We denote by Y°(t) the one-parameter family (not a
subgroup) of diffeomorphisms defined by
YO(t) = { [X1([t[/2), Xo([t/2))°  fort >0
L), X (A fort <0

and we observe that the composed map

FO: (ty,t0,t3) — X1(t) 0 Xa(t) o YO(t)(v)
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sends the box B(e) C R® defined by |t1] < ¢, |ta] <€, |t3] < €2 into the €-C-C ball
in M around v for € ~ € (in fact, for ¢ < 10e.) It remains to show that the image
of this box contains a Riemannian d-ball around v for § > €2. We compare F° with

the composed map
F:(ty,ta,t3) — X1(t) 0 Xa(t) o Y(t)(v),

for which the image of the e-box is d-large by the implicit function theorem. In fact,
the F-image of the €? cube defined by |t;| < €2, i = 1,2,3, contains the required
d-ball. Then we observe with (x) that FO = F + o(e?) in the e?-cube. It follows by
elementary topology that the F°-image of the e2-cube is essentially as large as the
F-image. O

§1.4 The tangent cone of the C-C metric spaces.

Let G be the Heisenberg group, i.e., the simply connected 3 dimensional nilpotent
Lie group (diffeomorphic to R?). And let X and Y generate the Lie algebra g so
that X, Y, Z := [X,Y] is the basis of g. There is a family of automorphisms {¢;} of
g, whose representation with respect to the basis X,Y, Z is

0
0
2

S =+ O

t
0
0

o~

Take the left-invariant Riemannian metric g on G for which X, Y, Z are orthonor-
mal. On g, this metric is represented by the matrix

0
1
0

O O =
-0 O

The metric (1/t)g is isometric to (1/¢2)¢}(g) (¢; provides the isometry), which is
represented by the matrix

1 0 0
01 0
0 0 t2

Then, as t — 0, the lengths of vectors transverse to the distribution spanned by
X and Y (considered as left-invariant vector fields on G) become infinite, while
the lengths of horizontal vectors remains unchanged. In the limit, only horizontal
curves have finite lengths, and the sequence of metric spaces (G, g/t?) converges to
the metric (G, d.).

1.19 Theorem(Pansu[P]). If G is a nilpotent Lie group with left-invariant Rie-
mannian metric g, then

lim
t—+4o00

(G.g/t) = (G, do),

where Gisa nilpotent Lie group and d. is a C-C metric on G. If G is graded, then
G = G ; otherwise G is the graded nilpotent Lie group associated to G.

Here, the limit is means the Hausdorff limit of a sequence of metric spaces ;
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1.20 Definition. The Hausdorff distance Hx (A, B) between two compact subsets
A, B of a metric space X is defined by

inf {e | B C N.(A),AC Ne(B)},

where N is the e-neighbourhood.

The Hausdorff distance H(A, B) between two ”abstract” compact metric spaces
A, B is equal to

where the infimum is taken over all isometric imbeddings of the pair A, B into all
possible metric spaces X. Note that such metric spaces exist ; e.g., X := A x B.

A sequence {A;} of compact metric spaces is said to converge in the sense of
Hausdorff to a metric space B if lim;_,o, H(A;, B) = 0. The more practical definition
is in the following ;

1.21 Theorem(M.Gromov[Grl]). A sequence {A;} of compact metric spaces
converges to B if and only if there is a sequence of positive real numbers ¢, — 0
such that, for each i, there is an €;-dense net I' C A; and an €;-dense net ', C B
which is €;-quasi-isometric to T';.

An e-dense net in a space A means a set of points with the property that each
point of A is within distance € of some point of the set. An e-quasi-isometry between
two metric spaces is a mapping which preserves distances up to a factor 1 4+ e.

If the spaces A; are not compact, convergence means that for each R > 0, the
balls of radius R about fixed base points in A; converge to the ball of radius R
about a fixed point in B.

1.22 Definition(M.Gromov[Grl]). The sequence {A;} is uniformly compact if
(1) the diameters, diam(A;) are uniformly bounded,
(i) For any € > 0, the minimum number of -balls needed to cover A; is bounded
(uniformly in i).

”Uniformly compact” is the necessary and sufficient condition for the existence
of a convergent subsequence of a sequence of compact metric spaces.

1.23 Definition. The tangent cone of a metric space (M,d) at a point x € M is
TpM = limyo0 (M, X - d) if the limit exists. = is chosen as the base point for all
the metric spaces (M, X - d).

In the case of Heisenberg group, we see, in the canonical coordinate,

de((0,0,0),(0,0,2)) = v/z.
Thus d. is, in general, not smooth.

1.24 Lemma(Metivier[Me]). Let Q be a neighbourhood of p € M. Suppose that
v; := dim(E;(x)) is constant for each i (z € Q) and that dim(E,(z)) := n = dim M
for some . (Assume r is minimal). Then for any x¢ € Q, there exist neighbourhoods
Qy C Qo C Q of xg, a neighbourhood Uy of the origin 0 in R™, and a C™ map
6:Q1 x Qo — R™ such that ;

(i) For each x € Qy the map 0, : y — 0(z,y) is a C°° diffeomorphism from Qq
to 61(90) = Uo, and «935(3:) = 0,
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(i3) For each x € Qy, the vector fields X; , == 0z,+X;, i =1,--- , k are of degree
<1ar0,

(1) If X’i,m denotes the homogeneous part of degree one of X, ,, then the vec-
tor fields )’f,;,z generate a nilpotent Lie algebra of dimension n. Furthermore, let
Ei(€) = (¢, X140, Xps). Thendim E;(€) =v; forall € €R", i=1,---,r.

(iv) The vector fields )?i,m and X; ; depend smoothly on z € Q.

Now, we define a one-parameter group of dilations of M (locally). Let X be the
m-fold commutator [X;,,---,[X;, _,, Xi,.],---] for a multi-index I := (i1, ,%m).
We may choose from among the X;’s a subset {Y;}, j = 1,---,n, of vector fields
such that {Y;}ier is a basis of T, M for all z € Q. Thus, any point z €  (or in a
smaller neighbourhood, again denoted by Q) may be uniquely written in the form

T = exp (Z aiY,-)
=1

for some real numbers a;. The a; are the normal coordinates of z. We define the
dilation -, in terms of normal coordinates as followings

(’Yrﬂf)i = T[i]az',

where [i] = k if dim(Fk_1) < ¢ < dim(FEy). The Xi,z are homogeneous with respect
to vr. ‘ .

We may choose, for each k, 1 < k < 7, a subset {X;5.},j = 1,2,-- of the
commutators of the X; ;’s which yields a basis for Ex(z)/Ex_1(z). A vector field
Y on R™ may be written

Y= Zaijjk,za ajx € C*°(M).
Jok

If we expand the a;’s in their Taylor series about 0 in normal coordinates, ¥ will
be exhibited as a formal sum of homogeneous differential operators. Y is of degree
< A if each term in this formal sum is homogeneous of degree < A.

Let D, be the distribution spanned by {7,.(X;)} and d, be the associated C-
C metric. And let Dy be the distribution spanned by {)?,} and let do, be its
associated metric. Let B, (k) and S, (k) be the ball and sphere of radius k in the
metric d,., 1 < r < oo.

1.25 Lemma. d, converges, in the sense of Hausdorff, to do as  —> oo.

The quasi-isometric distance (X,Y) between two metric spaces (X,dx) and
(Y,dy) is defined as the logarithm of the infimum of the metric dialation of all home-
omorphisms f: X — Y. If X and Y are not homeomorphic, then (X,Y) := oo.

1.26 Lemma. The quasi-isometric distance between (M,rd;) and (M,d,) tends
to zero as 1 — c0.

1.27 Lemma. There is a function F(p) > 0 defined for p > 0 such that F(p) — 0
as p —> 0 and di(p, q) < p implies d(p,q) < F(p) for all r > R and for any p,q
in any compact ball B. This R may depend on p but not on p and q.

Proof. We recall the main idea in the proof of Chow theorem. We choose a linearly
independent set from among the X;’s which spans T, M. Denote the multi-index
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subscripts appearing in this set by I, Is, - - - , I,,. To each multi-index I we associate
a flow ¢; on M as followings ; If I := i, set ¢ (t) := exp(tX;)(z), and I := (¢, J), set
b1(t) := (=) 0 di(—Vt) 0 7(V/t) 0 ¢i(\/t) (Here, (4, J) denotes the multi-index
obtained by appending an i to the beginning of the multi-index J). Now, we define
amap ¢ : R®* — M by

¢(t17t27 T 7tn) = ¢In (tn) o ¢In—1 (tn—l) ©-:-0 ¢I1 (tl)

Note that ¢(0) = z. It is easy to check that ¢ is a C1-map and that ¢.(8/0¢t;)|t=0 =
Xp; for j = 1,---,n. The inverse function theorem implies that ¢ is a C! diffeo-
morphism near the origin. Moreover, by the construction of ¢, #(t) is the endpoint
of a horizontal curve, and so any point near x € M may be reached by a horizontal
curve.

If we apply this construction to a local basis of vector fields for D, we see that
some Riemannian ball B, (€¢) about £ € M is contained in the image under ¢ of
some ball B(d) in R™. Now it is clear that we may choose a local orthonormal basis
{XT} for D, which depends continuously on 7. Then we may construct a map
¢" : R® — M associated to each basis {X}, and it is clear that ¢"|p depends
continuously on the vector fields used to define it, and so ¢"|p depends continuously
on 7. Thus, for large 7, ¢"(B) contains B(e/2,z), e.g., p := €/2 and F(p) := & we
see that

d(g,z) < p=>d,(q,z) < F(p)

for large r. Clearly, we may take 6 — 0 as ¢ — 0 and the estimate is obviously
uniform on compact sets in M, and so Lemma 1.27 is proved. O

Proof of Lemma 1.25. Lemma 1.27 implies that 3y’ will be close to y with respect
to the metric d, for large r. We associate to any piecewise smooth curve c; joining
z to y which is tangent a.e. to D,, a curve cz of the same length which joins x to
a point 3’ and which is tangent a.e. to D,,. If r; and 7, are large, y’ will be close
to y. The procedure is as followings ;

The curve c; satisfies

n
a(t) =Y a®)X[ (a(t)), ea(0) ==, a(T)=y
=1
for a.e. t, 0 <t < T. The curve ¢y satisfies
n
&) = ai()X]*(ca(t)), 2(0) =z, c1(T) =y
i=1

for a.e. t, 0 <t < T. Since we may assume that {X} is an orthonormal set for
all 7, we have ||c1(t)]| = ||c2(¢)|| and so length(c;) = length(cz). An elementary
estimate based on the Gronwall lemma shows that 3’ is Riemannian close to y if r;
and 7, are sufficiently large. Thus there is a d,.,-short path from y to y’, and so,

dry(z,y) < dr, (z,9) +€(R) forry,r > R,
where €(R) — 0 as R — oo. Similarly, we see that

dr, (7, y) < dr, (7, 9) + €(R).
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The estimates are uniform for all z,y € B if B is compact, so H ((B,dy,), (B,d,,))
— 0 as r1, and ry — oo. In particular, letting 71 := oo we have

Jlim H((B,d,),(B,ds)) = 0.

This completes the proof of Lemma 1.25. [J

Proof of Lemma 1.26. We may identify a neighbourhood in M with a neighbour-
hood of 0 € R™ via 6. Let B;(1) be the C-C ball centered at 0.

First, we show that up to bounded distortion, ,, applied to curves or vectors
in v1/-(B1(1)) which are tangent to D, multiplies length by 7. Let zo € S1(1).
To estimate the C-C distance of v;/,(zo) from 0, we need to estimate the actions
of 7, on vectors in D whose base points lie in v, /r(B(1)). Let y € B(1) and let
V € D(31/r(y)). Then

V = ZviXi=Z|'71/r(y) + Z viRi"h/r(y)’ v; €ER

~

where R; := X, ; — X, , is a vector field of degree < 0. Thus

Yru(V) =7 Z Ui)?i,:c + Z 'Ui')’r*Ri('Yl/r(y))

where .. ()’(:m) =r. )/(:m Now the definition of local degree implies that if R; has
degree < 0, then the length of 7,.(R;(v1/,(y))) remains bounded as r —s co.

(In deed, The homogeneous terms in the formal expansion of R; as a sum of
homogeneous operators (with respect to +,) look like ajw)?jk,x if aj; has the
formal expansion ajr = Zfio ajk,e, where aji 4 is a function homogeneous of degree
{£. Since

ajke(v1/r () = " agre(y) and s (X o (v1/r (1)) = 75 X ji

we have R R
Vrs(@jr,e X ke (110 (1)) = 15 a0 X1 (y).

"R; is of local degree < 0” means k — 1 < 0, and so such a term remains bounded
as r —» oo. This implies the result.)

Since R;(0) = 0, we have ||R;(v1-(y)|| — 0 as r — oo, where || — || denotes
the Riemannian length. Therefore we have

L)l 1lIr 30X aly + 2 vpeaRi(r0 (9))]

r V| IDY Ui)?i,zlfyl/r(y) + 22 viRi(v1r(v))]]
—1

as r — oo, and so this expression is bounded above and below by 1/c an ¢
respectively for some ¢ > 1, for all sufficiently large r.

Second, from this estimate on vectors we have the estimate on curves. If p:
[0,1] — R™ is a curve joining 0 to v, /r(Zo) which is tangent to the distribution D
a.e. and which lies in ;,,(B(1)), then v,(p) is a curve joining 0 to zo. Therefore
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its length is bounded below by a positive constant, and with the above inequality
on vectors, we see that

* const. < length(v,(p)) < length(p).

Lemma 1.25 implies that B (k) C B, (k + d) for all large 7 and some 4. Also, it is
clear that B1(1) C Buo(p) for some k, and so B(1) C B,.(k + 6) for all large r. This
shows that we may choose a piecewise-smooth curve p tangent to D, and joining 0
to zo, of length < K 4 § = constant. Then § = v,/,(p) is tangent to D, joining 0
to 1/r(wo) and satisfies

const.

(**) length(p) < for some constant

T

Therefore we have
: length(y-(p))
m ——~— 77 —

r—oco  rlength(p)

)

which proves Lemma 1.26. O

Remark 1.5. (*) and (**) imply the following inequality ; for some ¢ > 1 and all
large T, :
Bi(1/er) C y1yr(B1(1)) C Ba(e/r).

1.28 Lemma. If X and Y are two metric spaces with finite diameters, then

H(X,Y) <
diam(X) + diam(Y) —

X,Y).

Proof. Let (X,d;) and (Y,d2) be two metric spaces with finite diameters. If
(X,Y) < oo, then there is a homeomorphism f : X — Y whose distortion is
arbitrarily close to e(X;Y). By identifying Y and X by f, we have a single X
with two metrics d; and dp. We may imbed each of these metric spaces isomet-
rically into a third metric space ; namely, let C°(X) be continuous functions on
X with metric induced by the sup norm. A point z € X is sent to the point
Fy(z) = di(z,—) € C°(X), i = 1,2. For any z1, =2 € X,

d1(z1,z2)
‘log <d2(f’31»$2)>

max{d(z1, x2), d2(z1,22)} < diam(X) + diam(Y")

<(X.Y)

and

It follows that
|dy (21, 32) — da(z1, 72)] < (1 — e~ EY))(diam(X) + diam(Y)).

Thus we have
H(X,Y) < (diam(X) + diam(Y))(X,Y).
O

A distribution D is said to be generic if, for each 4, dim F;(x) is independent of
the point £ € M, i.e., D is a subbundle of TM.
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1.29 Theorem(J.Mitchell[M]). For a generic distribution D on M, the tangent
cone of (M, d.) on M 1s isometric to (G,d.), where G is a nilpotent Lie group with
left-invariant C-C metric.

§1.5 Isoperimetric inequality and Sobolev’s inequalty.

1.30 Boxed Theorem. The C-C balls By, (p) in M around m € M are uniformly
equivalent to the exponential images of the bozes. This means that there are strictly
positive continuous functions C := C(m) and p = po(m), such that

exp,, Boz(C~'p) C B (p) C exp,, Box(Cp)

for allm € M and p < po(m).

This theorem immediately implies the universal bound on the Riemannian vol-
ume of concentric C-C balls in a compact manifold M ;

1.31 Corollary. Fiz a volume element on M. For all compact K of M, there
is a constant C such that, for all m € K and all positive real number p with
B(m,2p) C K,

vol B(m, 2p) < C vol B(m, p).

We can easily estimate the Hausdorff dimensions by this Corollary. We replace
C-C-balls by boxes. For example, Let m € M be a regular point. We can choose a
field of adapted framing (e1, e, -+ ,e4) d := dim M on a neightbourhood V of m.
We have the following equality by means of boxes associated to a field (e1,-+- ,eq)

dimpay M = h(m),
where we define an invariant h(m) := Y, ., kdim{£*[m]/EF1[m) (E%m] = 0).
Here and hereafter, we set £ := ['(E) := the sections of E, and £* := [£, £F-1] (k >
2), where the stalk [£,£5~1)(m) at m € M is defined by

[£,E5 N (m) ={[V\W]|V €&, W e F1}.

If the SR-structure on M is regular, M is of same dimension at all points of M,
and so dimy,, is of constant value of h(m). In general, for a structure which is
neccesarily regular, we have

dimygay, M < sup{h(m) | m € M}

And, for a compact subset X C M with topological dimension > dim M — 1,
Gromov showed that,if (D, g) is regular,

dimygay K > dimg,, M — 1.

In fact, we choose an open set U of M which is projected onto a manifold M’
of dimension dim M — 1 by 7 such that 7(K NU) = U’ and the fibers of 7 are
horizontal curves. We use boxes on a field of framings whose vectors are tangent
to fibers of m. Then we proved the claim. [J

In particular, we have
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1.32. If C-C-structure is contact, and K is a compact subset of M of topological
dimension at least equal to %, then

dim M + 3

dimg,, K > __IE_Z_JL_

1.33 Isoperimetric Inequality. Let M be a connected compact manifold with
a C-C-structure. Suppose that (E,g) is reqular. For a compact domain whose
boundary is a hypersurface H and with mesy_1H > %mesNM,

mesy—1H > C(mesyD) wal

where, mesy_1 denotes the Hausdorff measure of dimension N — 1, and C is a
constant independent of D.

M.Gromov([Grl]) showed this inequality by using Corollary 1.31 together with
the following Lemma of Vitali type. Let mes := mesy.

1.34 Vitali’ covering lemma. For each A > 1 there are positive numbers pu > 0
and § > 0, such that for every measurable subset D C M of measure i there are
balls B; := B(m;,R;) i = 1,---,v around some points m; € M satisfying the
following properties.

(1) B; are mutually disjoint ; moreover, the concentric balls B} := B(m;, AR;) are
also mutually disjoint,

(2) B; contain at least 6-part of the total measure of D, i.e.,

Z mes(B; N D) > §mes D,

=1
(8) The intersection B; N D is é-substantial in each ball,i.e.,
mes(B; N D) > dmes(B;)

(4) The intersection of D with the (larger) AR;-balls B} are somewhat smaller than
Bi, i.e.,

1
mes(D N B;) < 5mes(Bi) i=1,---,0.

(5)
mes(DN B;) < RidAmesy—1(HNB;]) i=1,---,v.

Proof. Consider concentric balls B(m, R;) for m € D of radii R; := 27/R, for
Ry :=diam M and j = 1,2,--- If m is a density point of D, mes(D N B(m, R;)) >
2mes(B(m, R;)) for large j. If § > 0 is small and p < dmes(B(m1, R1)), there is
first j, i.e., jo, such that mes(B(m,Rj,) N D) > dmes(B(m, Rj,)). Furthermore,
by making p and § smaller, we arrive at the situation where AR;; < R; and the
intersection of D with B(m, ARj,) is somewhat smaller than B; in the sense of
(4). Thus for each density point m € D we constructed a ball B(m,R := R,,)
satisfying the above (3) and (4) and now we select the required B; among them.
We start with the ball By := B(my, R,,,) for the point m; where the function
R,, assumes its maximum on D (note that R,, takes finitely many values). Then
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we take the point my € D outside B(my,2AR,,,) where again R,, is maximal
on D\ B(my,2\Ry,,). Clearly the ball AB; := B(mgz, AR,,,) does not intersect
AB; := B(mi,AR,,,). Then we take the maximal ball outside 2AB; U 2AB; for
B3 and so on. The resulting balls B; satisfying (1), (3) and (4). Furthermore,
the concentric balls 2AB; cover D, (it is trivial) and so by the doubling property
these B; contain definite part of D, i.e., satisfy (2) with some §’ > 0 which may be
somewhat smaller than the one used above.

To conclude the proof we must ensure that all (or almost all) points m € D
are density points with respect to the C-C distance. In fact, D is open or at least
contains an open dense set of full measure. 0O

Remark. The above proof does not need equiregularity of M if " mes " is under-
stood in the Riemannian (Lebesgue) sense.

1.35 Isoperimetric inequality in compact domains My C M. There is con-
stants p > 0 and C > 0 (depending on My) such that every domain D inside M,
with mes D < p bounded by a closed hypersurface H satisfies

(++) mes(D) < C(mesy_, H) V1

where N := dimyga, M.

Proof. Take B; from Lemma 1.34 with a sufficiently large A and apply (5) to each
intersection D N B;. Then we note that each (small) ball B := B(R) has mes(B) >

RY and since the measure of D N B is compatible with mes(B) (5) gives us the
bounded measure mesy_1(H N B') > RV~ which implies that

N

Rmesy_1(HNB') < (mesy_1(HN B'))¥-1.,

Thus we have ((5) of R), for all 4,
mes(D N B;) < Cy,mesy_1(H N AB;).

Since the balls B; exhaust (an essential part of) D and the balls AB; do not intersect
owing to (1), the claim holds. O

Remarks.

(1) If M is a compact manifold, we must restrict D in size. For example, if M
is a closed connected manifold, then (++) also holds true with C := C(M)
for all D C M with mes(D) < Fmes(M).

(2) The inequality (++) and its proof can be transplanted to the asymptotic
frame work, that is, for a smooth automorphism A : TM — TM, we set
gt := A*g. In this case, it can be used for evaluating the Sobolev constant
and the first eigenvalue of (M, g¢) for t — +o0.

The isoperimetric inequalities give one Sobolev inequalities. Let f : M — R
be a C'-function (which is supposed for simplicity). Let dgf : D —> R be the
restriction of the differential df : TM — R to E. For all m € M, dgf(m) belongs
to £*[m], dual to £[m], which is isomorphic to T}% M/E°[m], where £°[m)] is the
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annihilator of £[m]. We can measure dgf by means of the cometric g*. Let <
dgf >4+ be the norm of dgf with respect to g*.

For a C'-map M — V between Riemannian manifolds, < dgf(m) > is set as
the norm of the map df (m) : £[m] — T(m)V with respect to the metrics £[m)]
and T5,,Y.

The isoperimetric inequality yields the following Sobolev inequality for the L,-
norm, p = % of a function f on M in terms of the Li-norm of dgf ;

N/N-1
*) / |f (m)|Y/N~1dvol < const </ < dgf(m) >4 dvol)

M M
This implies the bound

(*a) lfllz, < consty < dgef >L,

for all ¢ in the interval 1 < ¢ < N and 7 = ¢ — 3 as follows. Apply (¥) to |f|* for

N-—
a= ﬂN—l), we have

1712, < IIFI°" < def >z, |

where < means that " < const;. Then we use the Holder inequality

1% < def > Iz, <WF1° iz, < dBf >r,
for b= (1~ ;)~*, and note that

A1 Iz, = £z,

for ¢ := pb~! Thus Hflli;c << dgf >r,, which yields (xq) since a —c =1 with our
choice of a,b and c.

The inequality (*) for ¢ > 1 can be also derived from the following estimates
for convolution integrals. Let M be a nilpotent group and K (v) be a function (
convolution kernel), such that

|K(m)| < (dist(0,m))" MY, meM
Then

(**a) LK % fllz, < constql|f]lz,

for all ¢ in the interval 1 < ¢ < N and % =

This is classical for M := RV.

Finally, we recall the Green form wo(m). Let M be a nilpotent group with a
self-homotopy A : M — M. A closed (n — 1)-form wo on M \ {0}, 0 stands for the
identity element, is said to be a Green form if it is

(1) E-horoizontal,

(2) A-invariant,

(3) closed and non-exact,

(4) ||wollm < const dist™V=1(0,m), meM

1_ 1
g N°
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Note that the non-exactness of wy makes

[ lollsas > ‘ / v
S H

for a fixed ¢y and all smooth closed hypersurfaces H around the origin, where ds
refers to the (IV — 1)-dimensional Hausdorff measure on H.

=co#0

Example. If M :=R", such an wy may be obtained as the radial pull-back of the
volume form on S™~1 C R™.

We consider smooth maps p : M — B™! with E-horizontal fibers. Note that
such a p pulls back (necessarily closed)(n —1)-forms on B"~1 to closed (n—1)-forms
w on M which vanish on F, i.e., vanish on every (local) hyperplane field containing
E, and such forms are called E-horizontal.

1.36 Linear Lemma. If the subbundle E C TM Lie generates TM, then every
(n—1)-dimensional de Rham cohomology class in M can be represented by a closed
horizontal (n — 1)-forms w.

Fiirst proof. Passing to the double cover of M if necessary, we assume that M is ori-
ented and so the cohomology H"~!(M;R) is dual to H;(M;R). Then every integral
class in H;(M;R) can be realized by a closed horizontal curve ¢ which gives one a
closed (n — 1)-current, called ¢*, representing the class [c]* € H"=1(M ; R) where
the latter * denotes the Poincaré duality. Now, in order to pass from currents to
forms one needs some smoothing or diffusion of currents preserving E-horizontality.
This is easy if M admits a transitive action of a connected group G preserving E
as one can diffuse the current ¢* by taking fG c*dp, where dyu is a smooth measure
with a compact support on G ( localized near id € G). For example, this diffusion
Is available if our polarization E is a constant structure. In the general case, the
diffusion is achieved with a smooth family of horizontal curves, say ¢, C M, b € B,
such that the corresponding map S’ x B — M (for ¢, parametrized by the circle
S’) is a submersion. The existence of such family is proven in the same manner as
of an individual c. O

Second proof. We assume that M is oriented and take a non-vanishing oriented
volume form Q-on M. Then the interior product with € establishes an isomorphism
between vector fields X and exterior (n — 1)-forms, i.e.,

X+— X Q,
and similarly bivectors correspond to (n — 2)-forms

XAY ¢+ (XAY)-Q

Closed (n — 1)-forms correspond to divergence free vector fields, where the diver-
gence 6X of X is the function defined by the equality

LxQ=(6X)Q
where Lx denotes the Lie derivative. We recall the formula

d(XAY)-Q) =[X,Y] - Q+Y LxQ— X - LyQ
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which implies that the field
(X, Y]+ 46(X)Y —6(V)X

has zero divergence and, moreover, corresponds to an exact (n — 1)-form. Then, for
all functions a, the field

a[X, Y]+ (Xa+ad(X))Y - 6(aY)X

corresponds to an exact (n — 1)-form, or in other word, a[X,Y] is equal to (Xa +
ad(X))Y — 6(aY)X modulo(the fields corresponding to) exact forms. (The latter
expression is antisymmetric in X and Y since Xa + ad(X) = §(aX)).

We note that (n — 1)-forms vanishing on E C T M corresponds to vector fields
sitting on E. Thus, to show the Lemma 1.36, we must find a divergence free E-
horizontal field in a given cohomology class. We pick up some fields Xq,---, X,
spanning E (here s may be greater than rank F) add to these X; their successive
commutators, say, X;, j := s+ 1,---,r, which span TM and note that every
cohomology class in H"~1(M;R) can be represented by a divergence free field of
the form >"_, a;X;. But the above formulas allows us replace every (commutator)
term in this sum with ¢ > s by (cohomologically) equivalent lower terms and thus

we have a desired divergence free representative of the form > °_, a/X;. O

1.37 Lemma. FEvery M admits a Green form.

Proof. Divide M\ {0} by the (infinite cyclic) group { A’} generated by A, take some
E-horizontal closed non-exact (n — 1)-form @ on the quotient space (M \{0})/{A’'}
(which exists according to Linear Lemma) and pull @ back to M for the quotient
map
M — {0} — M\ {0}/{A"}
O

Let X (m) be the divergence free vector field associated to the Green form wq(m).
Then we have
| X (m)|| < const(dist(0,m))~ V-1,

We note that every function f on M decaying at oo can be reconstructed from dg f
by convolution with X (m), as f(0) = [,, df (X (m))dvol, and so

(**q) =N (*q) for q> 1.

Remark 1.6. [t is easily proved from an estimate of vol(By(€)) (here vol. means
Riemannian volume) that

C~1e? < wol(By(e)) < Ce?
for some C > 1 and Q is the Hausdorff dimension of the metric space (M,d.), i.e.,

Q= Zi(dim(Ei) — dim(E;_1)).

Remark 1.7. The Hausdorff Q-dimensional measure u@ is commensurate with
Lebesgue measure (on By(1)) ;

-
<C~Q2Q> p< u® < (C-Vo)u,

where p is the Lebesgue measure and Vg is the volume of unit ball in R9.
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CHAPTER 2. LENGTH AND TIME OPTIMALITY

§2.1 Minimizing curves and Geodesics.

2.1 Definition. Let (M, E, g) be a sub-Riemannian manifold. A minimizing curve
is a horizontal curve ¢ : [a,b] — M such that L(¢) < L(2)) for all horizontal curves

¥ : e, d] — M with ¢(c) = ¢(a), ¥(d) = ¢(b).

If ¢ is minimizing, then the restrictions of ¢ to all closed intervals are the same.
In the Riemannian case, every minimizing curve is the projection of an extremal.
These curves can be defined by two methods - one is dependent on the square of
Lagrangian, and other is dependent on Hamiltonian. We shall use Hamiltonian
formalism. To use the Lagrangian formalism, it is neccesary to introduce the mult-
plifiers of Lagrangian, which is not easy to define in the sub-Riemannian case. If

H .= 3 g", g* is the cometric of g, then extremals are the trajectories of Hamiltonian

field ﬁ of H (for the canonical symplectic structure on T*M).

For a SR-structure (F, g), the situations are very different from the Riemannian
case. We have two cases of minimizing curves in terms of theory of variations. One
generalizes the Riemannian cases ; they are projections of trajectories of hamilton

s 1 .
field H of H = -2—g* on which H does not vanish, where g* is the cometric of g.

Other is founded by Montgomery ([Mo]).

Let E° be the annihilator of E which is a vector subbundle of T* M. Generally, the
restriction wgo of the canonical symplectic form w of T*M to E° (more preicisely,
to TE* x go TE®) is not symplectic.

2.2 Definition. A characteristic curve of E° is an absolute continuous curve ¢ :
I — E° I is an interval not reducing to one point, such that, for almost all t € I,

d
?i%(t) belongs to the kernel of wgo|yy).-
This class of minimizing curves consists of horizontal curves which are projections

of characteristic curves included in E° \ Ops. Note that the intersection of these
classes of minimizing curves is not empty ; A minimizing currve may have two
—

liftings into T* M, one is a trajectory of H, other is a characteristic curve of E°.
Example 2.1.

We consider canonical coordinates (z,y,z) on M := R3. We set

2
E := ker(dz — %—daj)

g:= d$2+dy2|Ea
¢:R— M, ¢(t) := (t,0,0)

N

Ifp,q,7 : T*M — R are dual coordinates of dz, dy, dz, a trajectory of H, contained

in TM \ Op, which is a lifting of ¢ is ®(t) :z =¢t,y=2=0,p=1,g=r=0 (it
N v

is not a lifting trajectory of H). A charactersistic curve in E°\ Oy, a lifting of ¢,
isU(t):z=ty=2=0p=¢=0,r=1.
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Contact structures.

If SR-structure is a contact structure, E° is a real line bundle and E°\ Oy is a
symplectic submanifold of T7* M. The we have exceptional geodesics.

In the followings, an ordinary geodesic, or simply, a geodesic is the projection of

—
a trajectory of H contained in TM \ Ojs and an exceptional geodesic is a horizontal
curve which is the projection of a characteristic of E® contained in E°\ Oyy.

The notion of characteristic curves is not so geometric..

We work locally, and so let M be an open set in R? and let E be the kernel
of a vectorial form w : TM — R°. We extend the SR-metric g : £ — R to a
Riemannian metric on M such that w is the isomorphism on orthogonal vectors to
E. Let HY(M;a,b), a,b € M be the space of curves ¢ : [0,1] — M with finite
energy and ¢(0) := a and ¢(1) := b, and let Hor(E, a, b) be the subset of horizontal
curves in H*(M, a,b) ;

Hor(E, a,b) := o *(0),

where @~ 1(¢) = w(%?).HI(M;a,b) and L2([0,1];R®) are manifolds modelled as

Hilbert spaces and w is a C°°-map. Then exceptional geodesics are singularities of
map w on the kernel(manifold) of @ = 0.

§2.2 Ordinary geodesics.

A fundamental difference between (ordinary) geodesics in the sub-Riemannian
case and in the Riemannian case is as followings ; in the Riemannian case, a geodesic
is not determined by its initial vector but is determined by its initial covector. This

5
is the initial point of a trajectory of H lifting the geodesic. More precisely, if z is
its initial covector, then the initial tangent vector is determined by the condition ;

<w,v >g=<w,z> Ywe Elrp-p(2)]

In the Riemannian case, this condition determines z if v is known, and the corre-
spondence v — z is nothing but the Legendre transformation associated to the
metric g. In the sub-Riemannian case, this claim does not hold and the parameters
of z which is not determined by v are differential invariants of order > 2 of the ge-
odesic. We can interpret this fact by means of curves. We can state the minimality
of small arcs of ordinary geodesics as in Riemannian case.

2.3 Proposition. Let ¢ : [a,b] — M be an ordinary geodesic of the SR-structure
(E, g) parametrized by arc-length. For all t € [a,b], there is an € > 0 whose restric-
tion to [a,b] N [t — €, t + €] is minimizing.

Exponential maps.

For all m € M, we can define an exponential map exp,, : O — M such that
ON{H = 0} = 0,, (zeros of T, M), where O is an open set of M. Note that the set
{H = 0} in T}, M is nothing but the annihilator E°[m] of E[m]. For z € O, z # Op,,

we have
expm(z) =TT*Mm (d)( V 2H(z)72)
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_)
if ¢(\/2H(z),%) is defined, where ¢ — ¢(¢,%) is the trajectory of H such that
d¢ z
—(0,Z) =2 = ———= and exp,,,(0,n,) = m.
0, s and exp, Om) |
This map does not have good properties in the Riemannian case ;

e The image of exp,, is not contained in O, and, in particular, exp,, is not a local
diffeomorphism at 0,, C T;;, M.

o If z € {H = %—} N Ty M, a conjugate point pc(z) of z is defined to be the
point exp,, (tcz), if it exists, such that exp,, is a local diffeomorphism at ¢z for all
t; 0 <t <t.andis not so at t = t.. Then there is a compact set K C T%, M such
that, for z ¢ K N {H = 1}, pc(z) is defined and tends m when z tends to co in
{H=3}nT:M.

§2.3 Exceptional geodesics.

A horizontal characteristic is defined to be a characteristic which is projected
onto a horizontal curve. We distinguished these horizontal characteristics accord-
ing to the rank of the distribution D. In the case where the rank is of odd,for a
generic distribution D, there is an open set Oy in D° whose complementary os of
codimension 1 in D? and there is a line field 6 on O tangent to D°, such that all
horizontal characteristics contained in O are integral curves of . In the case whrere
the rank is of even, there is generically a saturated set ¥ of D°, of codimension
1 in D°, and there is a line field § tangent to ¥ on the union of saturated sets of
codimension 1 of ¥ ; Every horizontal characteristcs are contained in ¥ and if it is
contained in O, it is an integral curve of §. In the followings, we say the horizon-
tal characteristics contained in O to be generic, and call their projections generic
exceptional geodesics. " exceptional” geodesics are related to their rigidity.

2.4 Definition. A horizontal C*-curve ¢ : [a,b] — M is rigid if there is a neigh-
bourhood U of ¢ in the space C*([a,b]; M) with C-topology such that, if ¢ is a
horizontal C*-curve in U with ¥(a) = ¢(a), ¥(b) = #(b), then there is a C!-
diffeomorphism f : [a,b] — [a, b] such that ¢ = ¢ o f.

Minimality and rigidity of small arcs of exceptional geodesics for the
distribution of rank 2..

2.5 Proposition. Suppose that the distribution on M is of rank 2. Let ¢ : [a, b] —
M be a generic exceptional geodesic parametrized by the arc-length. There is an
€ > 0 whose restriction to the subinterval of [a,b] with length < € is minimal and
rigid.

For proof,see [L-S] appendix.

§2.4 Critical points of the energy integral.
For a fixed point p € M, let C, and Cf be the set of smooth curves on M and the
set of horizontal smooth curves on M respectively. C’f is a submanifold of C,. Let

€1, " ,en be an orthonormal framing on a some neighborhood U of p such that
e1---ex is the basis of E. And let w!, - ,w™ be the dual framing to e, -- ,e,.
Then w := (w!,---,w™) is a R™-valued 1-form. The tangent space T.C, at c is

the set of vector fields along ¢ with p = ¢(0). For X € TCCf , there is a horizontal
variation curve o : (—e¢,€) x [0,1] = M. If we set

d Oa d .
(2.1) D X := (—igw(a)lgo = Ew(m) — 2dw(é, X)
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(This definition is independent of the choices of @), then that X is an element of
TWCf is equivalent to that D.X is a curve on R¥ C R”. On the other hand, for the
endpoint map T : C’f — M : ¢+ ¢(1), its differential 7, (c) : chf — TeyM :
X — X(1) is not necessarily surjective. In fact, if ¢ is one point, then image
of 7, is equal to the fiber E, of E. Thus the set CE := n71(q) of all horizontal
curves joining p and ¢ does not have the structure of manifolds. Now, we define the
tangent space chﬁz to Cﬁl at ¢ by the set of all variation vector fields X := %%| 5=0
corresponding to the Dirichlet variation problem « : (—¢,€) % [0,1] — M.

e This set is contained in ker 7, (c).

2.6 Lemma([Ki]). If ¢ is regular (i.e. not abnormal), then
TCC;% = ker m,(c).

In the following, we assume that horizontal curves are regular. We consider the
Dirichlet variation problem o : (—¢,€) x [0,1] — M of a horizontal curve c. Let
X be the corresponding variation vector field. Then, the energy integral E(c) :=

%fol < w(é),w(¢) > dt of c can be written as

1d ! .
§d_SE(CS)|S=O = /0 < D X,w(é) > dt,

where c¢s(t) == a(s,t).
We take an inner product g. on T.Cp:

1
0e(X,Y) = / < DX, D.Y > dt.
0

Let JE be the orthogonal complement to the subspace ker m,(c) = chﬁl in TCCf
with respect to the inner product g..

e That c is a geodesic is equivalent to that

D tw(e) € JE.

If Cpq is the submanifold of Cp (consisting of curves not necessarily horizontal
joining p and g), then the tangent space T,Cpq consists of vector fields along c with
value 0 at endpoints. Let J. be the orthogonal complement to T.Cpq in TcCp. If
we define a gl(m; R)-valued 1-form a by

a(u)w(v) = —2dw(u,v),
then, we have, for X € T,.Cpq
Yood
9.(X,Y) = / < Et-w(X) +a(¢)w(X), DY > dt
0

1
= -/ < w(X), %DCY — a*(&)DeY > dt,
0
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where a*(¢) denotes the transpose of a(¢). Then we have
‘ d
(2.2) Jo={Y € TCCPIEDCY —a*(¢)D.Y = 0}
On the other hand, if we set the orthogonal projection
P:=D;'oPoD,:T.Cp,— T.CF

(where P is the orthogonal projection R* — R¥), then we have

PJ.C JE.
2.7 Lemma. If ¢ is reqular, then
JE =PJ.
Namely, for VX € JE, there is a map ¢ : [0,1] — R™, such that
D.X = Py
{ ' —a*(¢)p =0

2.8 Theorem(Hamenstadt) ([H]). If ¢ is a regular geodesic, there is a map ¢ :
[0,1] — R™ such that

w(c) = Py
} ¢ —a’ (&g =0.
For a variation curve a : (—¢, €) x (—¢,€) x [0,1] — M of a geodesic c, if we set
X = 60(/88](3’10:(070) and YV := 6a/8u[(sm):(0)0), then
2
ME(Cs,u”(s,u):(O,O)

(2.3)

(2.4)

= /1{< D.X,D.Y —a*(Y)p > — < §(X),24%(&,Y)p >}dt,
where ¢, .(t) := oz(s,ﬂu, t) and A* is the gl(m;R)-valued 2-form defined by
A*(u, ) = da*(u, v) — —;—[a*(u),a*(v)].
We define the index form I.(X,Y’) as regarding the right hand side of (2.4) as a
symmetric bilinear form on on TCC’;I . Now, we assume that Y € T, CC;},LI satisfies
I(X,Y)=0 Y eTCk.
If we take v : [0,1] — R™ so that
W — a* () = —24*(¢, V)
¥o(0) =0,
then .
I.(X,)Y) = /0 <D.X,D.Y —a*(Y)p — 1 > dt

1
- / < DX, DY — P(a*(Y)p + ) > dt
0

= 9e(X, D71 (DeY — P(a*(Y)e + t0)))-

Thus we have D7 (D.Y — P(a*(Y)p+10)) € JE. Therefore, there is 47 : [0,1] —»
R™ such that .
D.Y — P(a*(Y)p + %) = Py
Y1 —a’ (@Y1 =0

Summing up, we have



31

2.9 Definition([Ki]). A vector field Y is a Jacobi field along c if there is a v :
[0,1] — R™ (¢ = o + ¢1) such that

D.Y = P(a*(¥)p + )

2.5
(2:5) Y —a*(e)y = 24%(¢,Y ).
2.10 Proposition([Ki]). If (cs, ps) is the solution to (2.3) with the initial con-

dition ¢s(0) = p, ¢s = u+ sv (u,v € R™, |s| < €), then its variation vector field
Y :=0cs/0s|s=0 ts a Jacobi field satisfying Y (0) = 0,1(0) = v.

If Y is identically zero, (2.5) implies that P is identically zero and satisfies that
' — a*(¢)y = 0. Since c is normal, v is identically zero. Therefore, a Jacobi field
Y is uniquely determined with initial condition (Y'(0), %(0)).

Appendix. The first conjugate locus of Heisenberg group ([N-S], [Pa]).
Let H be the Heisenberg group with Lie algebra b,i.e.,

T

We fix a left invariant metric on H, and choose an orthonormal basis { X1, X2, X3}
of b as followings ;

O =
=8N

(X1, Xo] = X3, [X1,X3]=0
It follows from Cambel-Hausdorff’ formula that for g,h € H

z1(gh) = z1(g) + z1(h)
z2(gh) = z2(g) + z2(h)

23(gh) = 2(9) + 23(1) + 5 (21(0)2a(h) — 21 (W) (0)

Since X1, X9, X3 are left invariant,

0 1 0
X= o Y 2%,
0 1 0
2. = — — ——
( 6) X2 8.’22 21: 81'3
0
X, = —
! 8173

Let o(t) be a geodesic through the identity e € H, i.e., o(t) := Z?:l a;(t) X, (o(t)),

a;(t) are smooth functions. The fundamental fact on Lie groups implies that

dor _ .
sz
da

(27) —gf— = a3zas
da _

dt
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Since a3 is constant and
[ é;Tl = a3 0 -1 [al
%iat_l 1 0 as ’
(2.9) ai(t)| _|cosast —sinast] [ay
’ az(t) |  |[sinast cosast | |ay

is the solution of the ordinary. differential equation (2.7) with the initial condition
ay,az € R We set o(t) := (z1(t), z2(t), z3(t)). Since 6(t) = ¥, a;(t) Xi(o(t)),
z;(t) (1 <4 < 3) are a solution of ordinary differential equations

% = al(t)
%—%2 = az(t)
B2 = a3(t) - L (a1(t)z2 — aa(t)zy)

by (2.6). It is evident to see that if az # 0,

ay . a
z1(t) = h—; sin agt + a—Z(COS agt — 1)

za(t) = 22 in ast + ﬂ(cos agt — 1)

as as
1
T3 = a3(t) - — (al(t)xg - azilfl)

is the solution of (2.9) with the initial condmon 4:(0) = a;,;(0) =0 (1 <7 < 3),
and if a3 = 0,

ry = a1t
Ty = azt .
I3 = 0

Now, we consider Jacobi fields J along a geodesic o(t) such that J(0) = 0 and
V5J)(0) = w. Let T.H be the tangent space of H at the identity e € H and
Expe : T.H — H the exponential map. We consider the variation field of the
one-parameter family of geodesics Expe(t(6(0) + sw)). By (2.10),for a geodesic o (t)
with 6(0) = (a1,a2,a3), as # 0, a basis of Jacobi fields along the geodesic o(t) is
given by

d.’L‘l d.’L'z d123

:td(t)z(t—cgtd tdt)

1 1
Jy = (— sin ast, ————(cosa3t - 1), a1y a—sma3t>
as as as
1 1
J3z = <——(cos ast — 1), — sin agt 2y 2 sm agt)
a3 a 3
By (2.10),(2.11), for a geodesic o(t) with &(0) = (a1, az,0), a basis of Jacobi fields

along the geodesic o(¢) is given by

']1 = (a1t7a270)
J2 = (—azt, alt, 0)
J3 = (0,0,1)

From (2.13) we see that there are no conjugate point along a geodesic o(t) :=
(a1, azt,0). Now we compute the first conjugate point along a geodesic o(t) with
d(0) = (a1, a2,a3), as # 0, where a? + a2 + a2 = 1.



33

2.11 Lemma. We define a function f : R — R by

sin 6 cosf —1 aycosf — assinf
f(@):=| 1—cost sin 6 ay s§n9+a% cos
a1(0 —sinf) ay(f —sing) = — =% cosh

Then we have
f(6) = {2(1 — cos8) — (1 — a3)fsin 6}

f(0) = f(-0)
f(6) >0(0< 8| < 2a)

Proof. Our first claims a straightforward computation. Note that

f'(0) = (14 a2)sinf — (1 — a2)f cos §
£"(8) = a%cos + (1 — a2)fsin b

For 0< 0 < %, f’(6) > 0 and so f'(f) > 0 for 0 < 6 < 7 since f'(0) = 0. Oviously
f'(0) > 0for T <8 < mandso f(f) >0 for <@ <. It is evident that f(6) > 0
formr<@<2r. O

From (2.12) and Lemma 2.7,setting 6 := ast, we see that the first conjugate
point along a geodesic o (t) with &(t) = (a1, az,as3), ag # 0 is given by

(1 + a3)
=(0,0, ——=—=).
)= (0.0, 7 7

2m

“(aal

2.12 Theorem. For a left invariant metric on the Heisenberg group H, the first
conjugate locus of the identity element of H is contained in the center of H and
given by

1+ a3 -
{(o,o,i”(a—t%)) 10<a?< 1} = {(0,0,+s7) | s > 2}.
P _

Remark. Let o(t) be a geodesic and ¢ := o(t) a conjugate point to (0). The
dimension of Jacobi fields J such that J(0) = J(to) = 0 is called the order of the
conjugate point q of the geodesic o(t). The order of the first conjugate point of a
geodesic o(t) in H with o(0) := (a1, az,as) az # 0 is given as followings ;

1 ifag 76 1
{ 2 ifa3 =1

2.13 Theorem. Let H be the Heisenberg group with a left invariant metric. For
each g € H the cut locus of g coincides with the first conjugate locus of g. Moreover
the cut locus of the identity element of H is contained in the center of H.

Proof. Since H acts as an isometry group via left translations, it is sufficient to see
our claim at the identity element e C H. Let C(t) be a geodesic through e which
is contained in the center of H and let x be the first conjugate point to e along
C(t). Then the point z is also a cut point of C(t) with respect to e € H. Now,we
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consider a geodesic o(t) with ¢(0) = (ay, as,as) through e which is not contained
in the center of H and let z be the first conjugate point to e along o(t). We claim
that o(t) realizes the distance between e and z. It follows from Theorem 2.8 that
the first conjugate point z is contained in the center of H. Set z := (0,0, sm). We
may assume that 1 > a3z > 0. Then s > 2. By (2.10), we have

agto =2mm (m € Z), sm = asty + L(ar"{ +ad)ty = L(1 + a2)to
2a3 2a3

Since z is the first conjugate point to e along o(t), the length of o(t) from e to
x is given by to = /s — 12m. Since /s — 127 < sm, the length o(t) from e to =
is less than that of the geodesic C(t) := (0,0,¢) (0 < t < s7) contained in the
center of H. Let 7(t) be a minimal geodesic from e to z. Then z is also a conjugate
point to e along 7(¢) by (2.10) and Lemma 2.7. Since 7(t) is minimal, z is also
the first conjugate point to e along 7(¢). In this case we have ¢ty = /5 — 127 where
z := 7(t2) by the same computation as above and so o(t) and 7(t) have the same
length. This implies that if z is the first conjugate point to e along o(t) then o(t)
realizes the distance d(e, z) and so the point z is also a cut point to e. [l

§2.5 Hopf-Rinow’s theorem.
M is said to be complete if it is complete as a metric space.

2.14 Theorem(Hopf-Rinow). (i) If M is complete, then every geodesic can be
extended indefinitely, and any two points can be joined by a geodesic,

(i) Assume that E is SBG. If there is a point zo such that every geodesic from
o can be indefinitely extended, then M is complete.(Here, M is assumed to be con-
nected).

Proof. (i) Let c(t) be a geodesic on the interval 0 < t < T, parametrized by arc-
length. Then d(c(t1, c(t2)) < |t1 —¢2|, and so the completeness implies that there is
a point zo such that lim; 7 c(t) = zo. By extending c to [0, T] we have a continuous
map, and so its image is compact in M. By the method of the analytic continuation,
there are curves of length minimizing joining two points and they are geodesics.

(ii) By the similar way in Riemannian geometry it is proved that every point of
M can be joined to zo by a length minimizing geodesic.

Given a Cauchy sequence {x;}, we consider a sequence {c;} of length minimizing
geodesics parametrized by arc length joining zy to xj:. By Arzela-Ascoli theorem
argument, it is proved that,by passing to a subsequence if necessary, there is a
uniform limit ¢(¢) := lim; e ¢;(t) on a small interval 0 < ¢ < e. Now, c(t) is a
geodesic and so we set c(t) =: exp,, (tu) for some unit cotangent vector u. similarly
cj(t) =: exp,, (tu;) for some unit cotangent vector Uj.

We must show that u is the limit of {u;}. It is not clear because the unit sphere
in the cotangent space is not compact. The SBG implies that there is to > 0
small enough such that exp, is a local diffeomorphism in a neighbourhood of #,u.
Then by using the uniqueness of the length minimizing geodesics cj(t), 0 <t <
to we have tou as the limit of tou;. Finally, the continuity of exp,, implies that
lim; ;o5 €xpy, (tju;) = exp,, (Tw) if t; — T, and choosing t; := d(zo,z;) we have
lim; o0 z; = exp,, (T'u), proving completeness. [

2.15 Corollary. Assume that E is SBG, and let T > 0 be such that the closed
ball of radius T about the point xo is complete. Then the subset of the unit sphere
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in the cotangent space of all u such that the geodesic exp, (tu) on [0,T] is length
minimizer,is compact.

Since the topology of M is locally Euclidean, the completeness of M is equivalent
to the compactness of all closed balls.

2.16 Theorem. The completeness of M s equivalent to the existence of a sequence
of functions ¢; : M — R satisfying

(i) ¢; has compact support,

(1) imj_oo ¢;(x) = 1 pointwise for each x € M,

(tit) |¢;(z) — ¢;(y)| < €jd(z,y) for all z,y € M for a sequence ¢; — 0.

Proof. Assume that M is complete. Take ¢;(z) = h;j(d(zo, z)), where h; is the real
function taking value one on [0, j] and zero on [2j, c0] and linear in between. Then
(i) follows from completeness, (ii) is clear, and (iii) follows from

16(2) = ¢;(y)] < 57 d(zo, &) — d(wo,y)| < 77 d(w, y).

Conversely, suppose that such functions exist, and let {zy} be a Cauchy sequence.
Choose j large enough such that ¢;(z1) is close to one, say ¢;(x1) > 1/2, and so
that e;d(z1,zx) < 1/4 for all k (since {zx} is Cauchy, d(z1,zx) is bounded). Then
by (iii) we have ¢;(z)) > 1/4 for all k, and so the sequence {z} lies in the compact
support of ¢;. Then the compactness shows that {z;} has a limit. O

2.17 Theorem. Let M be a sub-Riemannian manifold. If there is a Riemannian
contraction of the metric with respect to which M is complete, then M is complete
in the given sub-Riemannian metric.

Proof. Let {z;} be a Cauchy sequence with respect to d. Then it is a Cauchy
sequence with respect to dg (since dg < d) and so there is z € M such that
z; — x in the dg metric. But topologically the two metrics are equivalent, and
so z; — z in the d metric. 0O

Example 2.2. Let M := R" and |g?%(z)| < c(1 + |z|) for all j,k, and all z.
Then it contracts to a Riemannian metric satisfying the same estimate, and the
Riemannian metric is complete. Thus M is complete.
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CHAPTER 3. RuMIN COMPLEXES

§3.1 Rumin Complexes.

Let M be a smooth manifold of dimension 2n + 1 with a contact structure,
Le., a hyperplane bundle E C TM such that there is a 1—form n on M such
that ker 7 = E, and dn|g is non-degenerate. Let A*M be the graded algebra of
differential forms on M. Let I* be the ideal generated by n, i.e.,

I":'={nAB+dnpAvy|B,yeAN*M}.
Let J* be the annihilator of I*, i.e.,
J' ' ={aeN"M |nAa=dypAa=0}.

e I* and J* are independent of choices of the contact form 7, and stable by the
exterior differentiation d.

We consider the complexes induced from the de Rham complex on A*M /I* and
J*. Let dg be the differential operator induced by d on E. Since dn|g is a symplectic
form, the following lemma, is useful;

Lefschetz lemma. The operator L : AFE — A**2E, o +— dn A a is injective
for k <n —1, and surjective for k > n — 1, where 2n := rank E.

Then we have
A*M/TF = {0} fork>n+1

JE ={0} fork <n.
Thus we have the Rumin complex ;

3.1 Theorem (Rumin,[R1,R2]). There is a second order differential linear op-
erator D : A"M/I™ — J"*+1 such that

0 — R — C®(M) 28 A1 M/t 25 ... 42, Anpp/m

e e I Y
is a resolution of R. The cohomology of this complex is equal to the cohomology of
the de Rham complex of M.

In order to construct D, it is sufficient to define its lifting D : A"M/{nAa|ac
A"IM} ~ A"E — J™1 as followings ;

3.2 Lemma. Let o € A™E. There is a unique lifting & of a in A™M such that
da € J*L. Then we set
Da = da.

Proof. 1f @ is any lifting of o, there is 3 € A"~ E such that & = @ +n A 3 satisfies
nAda = 0,ie.(da+dnAB)|g = 0. The operator L is an isomorphism in deg. n—1
and so & is uniquely determined. It is obvious that dn A d& = d(n A d&) = 0. Thus
we have da € J*t1. O
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Therefore, taking the quotient, we have D : A"M/I" ~ A"E/{dn A3 | B €
A"2M} — J"*1. In deed, let dn A B be the projection of dn A 8 in A"E. We have
ddnAB-nAdB)=0¢e J.

Then dn A B —n A dB is the requested lifting of dn A 8 in A" M and so
D(AnAB) =d(dnAB—nAdB)=0.
Thus we have D by taking the quotient of D.

D is a second order differential operator with respect to the derivations along
E and 1st order one with respect to liftings. The dg is of order 1 with respect to
derivations in the horizontal directions. Moreover, by construction, D and dg are
independent of the contact structure E and also the choices of contact forms 7.

Now, we show the (local) exactness of Rumin complex.

(i) Let @ € A¥M/I* such that dpa = 0, i.e., there is a lifting & of o in AFM
such that d& = n A B+ dn A~ € I¥*1. Then we have

d@—nAy)=nAB+dnpAy—dpAy+nAdy
=nA(B+dy)
where & — 1 A v is another lifting of . Thus it is reduced to da = n A 8. The
differentiation of the above implies that

0=dpnAB—nAdB.
Thus, restricting on E, we have

dn A Blg = L(Blg) = 0.
By the injectivity of L for k < n — 1, we have 3|g = 0. Then we can write (3 as
B=nAd
and so d&@ = n A 8 = 0. Therefore there is locally u € A*=1M such that & = dp.
Projecting p into & € A¥~*M/I*~1, we have a = dgfi. Therefore the local exactness
of deg. kK < n —1 holds.

(i) Let a € J* satisfy dga(= da) = 0. Then there is locally 3 € A*~'M such
that o = dB. By the surjectivity of L in deg.k —3>n—1,ie,degk > n+2, we
can write 3 as

B=nAy+dnAp,
Thus we have

B—dnAp)=nAy+dnpAp—dnAp+nAdu.
Then
B =nA(y+du)
is a desired one. Indeed, it is immediate that d3’ = d3 = a and n A 3’ = 0. Since
a € J*, we have
dnA B =dnAB)+nAdf
=d-0+npAa=0,
so that 8 € J*~1. Therefore the local exactness in deg. k£ > n + 2 holds.

(iii) The case in deg. n. Let a € A" M/I™ satisfy Da = 0. Then, by definition,
there is a lifting & of a such that d& = 0. Therefore there is 3 € A" 1M such that
& = d@, and so, by projection, a = dgB.

(iv) The case in deg.n+ 1. Let a € J"*! satisfy dga(= da) = 0. Therefore there
is locally B € A"M such that o = df € J™*! and so, by projection, o = D(8). O



38

§3.2. The hypoellipticity of the contact complex, Hodge Theory.

For a contact form 7, there is a unique vector field T transverse to E satisfying
the equation n(T) = 1 and Lrn = 0. T is called the Reeb field associated to the
contact form 7.

We choose a Riemannian metric g on M such that T is normal to E and Ty =1.
To get a metric associated to the symplectic form dn, we give a complex structure
Jon E ; J is an endomorphism of E satisfying

J? = —Id,
dn(X,JY) = —dn(JX,Y), VX,VY € E,
dn(X,JX)>0 VX e E\ {0} '

e Such a J can be chosen globally on M | if F is orientable.

Proof. (Weinstein [W]) Let g be any Riemannian metric on M. Restricting on F,
we can write dn as
dnlg = glg(A—, -),

where A is antisymmetric. We decompose A as
A=S8-J,

where S is positive definite symmetric and J is orthogonal, i.e., J is a complex
structure. [J

We define a metric gg on E by
9 = anE(_7 J*)
Then we have an adapted metric defined on T'M by

gn =n®n+dn(—,J-),

here, we extend J on TM by JT := T. We can ;:anonically extend this metric to
A*M.

3.3 Remark.

In 1960’s a (almost) contact metric structure on a (2n + 1)-dimensional manifold
M has defined by S.Sasaki ([S]); there are a Riemannian metric g and a tensor field
J such that

9(T, X) = n(X)
29(X,JY) = dn(X,Y) VX,VY € TM
J2X = X +9(X)T

Our contact structure is different from his one in the sense that we use a Riemannian
metric on M auxiliary. Moreover, we can consider his one as a 1-dimensional
Riemannian foliation, in fact, S.Yorozu ([Y]) has studied the ”basic” cohomology
from the point of view. Unfortunately, we can not catch it in detail. see Theorem
4.4. v ,

We can also identify the quotient spaces A¥M/I* (k < n) with J* := {a €

AFM | ip(a) = 0,Aa = 0} where A is the adjoint operator of L := dn A —.
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By means of the above metric g,, we can define the *-operator by ;
a0 :=(a,f)n A (dn)", Va,VB € A*M.
e J*¥ and J?**1-F are mutually dual by x-operator.
Proof. Let a € J*™+1=k ie., nAa =0 and dyp A a = 0. Then we have
(n A B,*a)dvol = n A B A x(xa), VB € A IM.
a = a, we have (n A 3, xa) = 0. By the same way,
(dn Ay, xa)dvol = dn Ay Ax(xa) =0 Vye A¥2M.
Thus *« is orthogonal to I*¥ = (J¥)+. O
We define the formal adjoints of the operators dg and D by
bg:=(-1fxdg*x onJ* (k#n+1)
D* .= (-1)"' %« Dx onJ"

Since %2

That is, for o € J* and 8 € JF+1,
(dga, B) = (a,0gp) and (D, B) = (o, D*B) when k = n.

Hereafter, we shall use the same notation for the local inner product and the global
inner product.

Proof. For k # n,
(ds, B) — (e, 8) = f dpa A +B + (=1 Fa A dg « B
M
It is sufficient to prove that

d(aA*B) = dga A (x8) + (=1)*a A dg(6).

Now, we have, by definition, that dg = d in degree k¥ > n and im(dg — d) C I* in
degree k < n. Moreover, forms in I* are annihilated by exterior products of forms
in J*. Thus the requested formulas hold for k& # n.

In the case that k = n, it follows from the definition of D that there are @ :=
a+nApand 6 := *8 + n A v such that Do = da and D(*8) = d(*F). Then we
have

(Da,6) - (@, D) = [ dan(s)+ (~1)"a n d(+)

M

= / da A+ (=1)"aAd(xB) — DaAnAv
M

= (=1)"n A p A D(xB)

= / d@An*p) =0
M

since, by definition of D, DaAn = D(x8) An=0. O

e Rumin complex is not elliptic.
In fact, on the Heisenberg group H3, the Laplacian is written as

Apf = (dgdp + 6pdp)f = —(X? +Y?)f, f € C®(H?).



40

3.4 Definition (maximal hypoellipticity). Let P be an operator on functions or
forms on M of degree k with respect to the contact field E. P is mazimal hypoelliptic
if there are local estimates '

*) 2.k, < K- (|IPfll2 +If]l2)

where K is a constant independent of f with compact support in a neighbourhood
U. ||fll2 is the Ly— norm of f and

12k =D 11Xa - Xiy -+ X, - fll2,

<k

here 2n vector fields {X,, Xo,--- , Xa,} are chosen so that they generate E on U.

e The estimates (*) mean that P controls the maximum of derivatives.

3.5 Theorem. Let M be a contact manifold with an associated metric. The fol-
lowing Laplacians are mazimal hypoelliptic ;

(i) Ap == (n— k)dgdp + (n — k +1)dgdg on J* (0 < k < n—1).

(ZZ) Ap = (dEéE)z +D*D on J™,

(m) Ag :=D*D + (5EdE)2 on J"’+1,

(z'v) Ag = (n —k+ 1)dE5E -+ (n - k)&EdE on Jk (n+ 2<k<2n+ 1).

3.6 Corollary. The weak solutions of Aga = (3, B € C®(M) are of class C*°.
The Laplacian Ap induces an orthogonal decomposition of C*°-forms with compact
support ;

J*¥ =ker Ag @ im Ag,

where ker Ag is of finite dimensional.

There is a unique coclosed representative in each class of dg-cohomology with
compact support. In particular, if M is compact its cohomology can be represented
by Ag-harmonic forms.

We define dg on A*E := {a € A*M | t«ra = 0} by

dg :=1Ilod
where II is the orthogonal projection onto A*E.
e dp is a 1st order derivative with respect to E.
e Moreover, we have
(3.1) d% = —LLr = —LpL,

where Lt is the Lie derivative with respect to T. ,

Proof. Let a € A*E. Then we have

dya =do—nAiwpda =da—nA Lro.
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On the other hand,
ddgo = —dn A Lra+n A dLra,

and

nANdLra€ekerll=nAANM, dypA Lra € im I1.

In fact,
tr(dn A Lra) = vrdn A Lra+dnpAirLra =0+ dn A Lrira = 0.

By projection, we have thus d4a = —dn A Lra = —LLra = —LrLa. O

The complex structure J induces a decomposition of forms on E with respect to
their bidegrees ;

AFE®C= Y APIE.
p+q=k
We denote the projection of A*E ® C onto AP9E by IIP4. For an operator P on
A*E ® C, we set
Pkt .— an+k,q+£ o PolIP4

p.q
for k,£ € Z.

Then we have
(3.2) dyg = d° +dy' + T(J),

where T'(J) is a tensor and equal to zero if the complex structure is integrable, i.e.,
[EI’O,El’O] I El,O'
Proof. For a € A*E, and Xo, X1,---, Xy € E, we have

dga(Xo, X1, Xk)

— ~1)'X; (X, Xz, X
(3.3) O;iSk( (a(Xo k)

+ Y DX X Xo e X Xy X
0<i<j<<k

It follows that

dgAP9E C APYLIE 4 \POHLE | APT241E 4 APLaH2E

ie., dg = d}]’,o + dgf’l + dfv_}_l + d;{m. difl and dI';-l’2 depend only on the second

part of (3.3), i.e., algebraic. O

Let P be a linear differential operator on A*E. We define the degree of P by
the maximal degree of horizontal derivatives of components of forms « in a local
expression of Pa. For example, Or is of second order defined by

orf:=T-f, f€C®M).
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In fact. Tf = (Y1X1 — X1Y1)f + X f where we choose X; € E of norm 1,7 =
JXleEandX T— [Yl Xl]EE
In the following, let o(k) be the linear differential operator on A*E if deg.< k.
We set ;
Oy = d}q’o Oy = 'd?}l.

Then (3.2) can be written of form :

(3.2") dy = 0y + 0 + o(1).
By the same way, we have

(3.4) Ly = (Lr)"° +0(1)

where 0(1) is a tensor and equal to zero if the Reeb flow preserves the complex
structure, i.e., L7J = (.
The equations (3.27), (3.1) and (3. 4) imply that

(3.5) 0% = 0(2), O = o(2)

(3.6) 040u + OOy = —LLr + o(1),

where o are zero if the complex structure is integrable and invariant by T. In this
case, Oy defines a complex (see, N. Tanaka[T]).

Now, we define the adjoint of the operator dg. A*E can be identified with
{a € AZ""‘1 KM | nAa =0} ~npaAFE by the «-operator. Then we define
*p : A*E — A *F defined by

aAN*xgf = (a, B8)(dn)".

We have »
*Eﬂ = *(n/\,ﬁ') for ,3 (S AkE (k > n)v

and so ‘
= (=1 A %z on \ ARE (k <n).

Thus the adjoint of dg can be written as

(3.7) 0g =~ *pdy 5 .
We set
dyy = J Yy J,
and so its adjoint is
51‘{1 = J—l(SHJ.
We have the following relations on A*E ;
(3.8) (A d] = =35 +o(1), [A.djf] = b + o(1).

Proof. Choose a local orthonormal framing {X1,JXq, -, X,,JX,} on E. They
give local expressions of the above operators on A*FE Wthh are similar in Kahlerian
geometry. The only different terms of dy are algebraic functions of the bracket of
Xi, JX;. By the same way (3.7) makes us calculate the commutator [Ady]. O

We rewrite N.Tanaka’s formulas of AH :=dgdg+ogdy, N, = On0f +050n
and AgH = 51{5}1 + 5;151{
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3.7 Proposition. (1) A, — Ag—=/—=1(k —n)Lr + 0(2) on A*E,
(it) Ag = AY° 4 0(2), i.e., Ay preserves the bidegrees up to o.
Proof. (i) (3.8) implies that
AaH = 8;{8}] + 8;16;1
= (V—=1[A, 0u))0u + 0 (V—1[A, Ox]) + 0(2)
= V/~1A0y 0y — V—10g A0y + V—10u A0y — /~105 0 A + o(2).
By the same way, we also have
Ag—= —V—=1A0y 0y + V105 A0y — V~10uAdy + V—10u0u A + o(2).
It follows from (3.6) that
Aoy — Ay = V—-1M0u0u + 0udu) — V—1(0u0x + 0 du)A + o(2)
=V—-1A(—LrL) +V—-1LrLA + 0(2)
= —VZI[A, L)Ly + o(2)
=v-=1{k—=n)Lr +0(2).
(ii) Since dg = 8y + 9u + o(1), we have
Ag =AY + AP + A 4+ 0(2)
where
Ap~! = 050n + 00 + o(2)
= (=v-1[A, 0u))0u + 0u(—V—1[A, 0x]) + o(2)
= —V=1ADY + V=10 Ady — V=105 A0y + V—104A + 0(2)
= 0(2),

because of (3.5). It is similar for A;’l. O

e Ay is an almost ”scalar,” i.e., modulo o on each AP?E.

In fact, let {Xk; Yy := JXj} be an orthonormal framing on a neighbourhood of
a point. We set '

Iy = (Xk - \/—_].Yk)/ﬂ e E10
Zr = (Xg +V—1Y3)/V2 € E™

and 0% and 6F are their dual framing.
For o := ZI,J aI,JHI AB7 € A*E ® C, we have

L = a(Zk, —), et = 6% A a, Oy = Z(ZkaLJ)OI A 07.
1,7
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By the same way, we set the conjugate operators by ey, ¢, and ;. Then we have
the following relations ; ,

%@k - 8}63? ~ \/—1(97', L= v—1 Zeke-k‘, A= v—1 ZL’CLE
k=1

H =~ Zakek Zekak , Z sk (= — Zbkag), Ly >~ 0Or
k=1 k=1

k=1

here, A ~ B means that A and B are of the same order p, i.e., A = B + o(p).
3.8 Proposition. On APYE,

Doy == (1-2) 3 050 - 23" 005
~ L (XE+Y)+ V=1 (p-5)or

2
and
pP—q p pP—q
Ay ~ — <1+ T) Zakd,;— (1 — T) Zagak
1
~-> 5(le +Y2) +V-1(p - q)0r.
Proof.

Ap, = 05 0n + On oy
_(Z.BE%)(Z e0p) — (Z ezae)(z O5tk)
k ¢ ) k
~ — Z Or0p(ties + eqlr) — Zazakbkek - Zakazekbk‘
kL

Using the identity
exte + toeg = Opg,

we have

Doy == 0pk + Y _ 050k — Ox0p)extn
= 00k +V=10r(>_ exur).

Now, the identity

- I J :
ekLkOI/\eJ:{e /\9 lkaI
otherwise
holds. Then
ZekLk =p-Idon APYE,
and so

Ap,, ~ — Zagak + v —=1p0or.
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Thus we have the requested formula for Ap,, using the relations
V=10p =n"1) " 050k — Ok
and
> 00k + 005 = D (XE+ V).
Finally it suffice to note that from Proposition 3.7
Ag ~ Ap, + AE
O .
The Laplacian — (X2 + Y}2) + v/—1AT acting on functions is maximal hypoel-
liptic for |A| # n,n+ 2,n+4,--- . In particular, we have
3.9 Corollary. Ay is mazimal hypoelliptic on AP4E for p and q < n.

We will discuss the regularity of Ag after we prove the identities between Ag
and Ap. First, we rewrite these operators by means of dg,dr and D.

3.10 Proposition.
(3.9)  (i)dg ~dg+ (n—k+1)" L} anddg =6y on J* (0 <k <n—1),

(3.10) (ii)or D ~ Lp — dgdj; on J"

Proof. (i) Let « € J¥ (0 < k < n —1). dga is, by definition, the orthogonal
projection of dga onto ker A. Lefschetz decomposition theorem implies

dgpa = Z asL°A°dya (as; the universal constants).
520
We show that A*dgo = o(1)a (s > 2). In deed, (3.8) and o € J¥ C ker A imply
Adga = dgAa — §fa+ o(1)a
= —dfa+o(1)e.
Hence, [A, %] = 0 implies that A’dga = o(1)a. In order to compute a1, note that
Adga = 0 = A(dg + a1LAdg)a + o(1)a and [A, L} = (n — k + 1)Id in deg.k — 1,
which imply
ay=-(n—-k+ 1)_1.
The relation (3.9) can be proved by using (3.8). Finally, using [0z, A] = 0, we have
5E = 5H on Jk.
(ii) Let @ € J™. Then there is uniquely 8 such that
Da =d(a+nAp).

0 is the solution of L3 = —dga, i.e., B = —Adga holds. In fact, since @ € ker A =
ker L in deg.n,
Ldga =dgLa =0,

and so
LAdyoa = ALdga + dga.

Thus, using (3.8), we have
trDa = Lra+ dgAdga.
O
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3.11 Proposition. Ag preserves ” almost” bidegrees, n.e., Ag ~ A%O.
Proof. (i) In the case that k <n — 1. (3.8) and the above relations imply that
dpdp ~ dudy + (n—k +2) " Lo} 6y

and
0pdg ~dgdy + (n— k + 1)~ 105 L6

)~
~dgdy + (n—k+1)"HLéxdf — dfo3y)
~dpdy + (n—k+1)"(Ldgd} + di;Ady)
~dpdy + (n— k+ 1) Légdf + Adfdy — Spdy)
Thus we have

Ap=(n= k)dE5E + (n —k+ 1)6EdE

-k

On the other hand, we proved that Ay ~ AO 0 By Prop081t10n 3.7 and (3 5) we
see that

*)

dfdp ~ /=10 — Ou)(0r + O )
~ /~1(0ydy — OOy ~ —dgdj,
which means that d{,d g and dgdj; are of same type (1,1) up to o. Thus
Ap ~ AO 0

(i) In the case that k = n. We rewrite operators dg,dg and trD by means of
Om,0%,0r and 0%. These formulas need to prove the hypoellipticity of AE in
deg.n. (3.8) and (3 9) imply that

o1
dpdp ~ dgéy + §L6,{,5H ~ dudn + 5 (~dg + 84 L)y
1 1
(3.11) =~ 5dudn + 55{,(5;,1: +dpJ) (since L|jn =0 = A|;n)

1 .
~ §(dH<)H + 5}]1(1[{[).

On the other hand, we have D*D = D*(n A upD) = (tvD)*(vr D) by (3.10).
Recall that '

dg ~ Op + On, 65 ~ O3 + 0y,
dfy = J Mg J ~ =10 — 0n), 6% = T 6y J ~/—1(8} — 0%).
These relations yield
(dgép)t ! ~ 0y 0y
(dgép) ™'t ~ Oy o}
(ds06)"° ~ LAy
(trD)b ™ = V/=-10u 0%
(tp D)™V =~ —/—100}
(17 D)0 ~ L + V—=1(0r0% — 90},

(3.12)
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here, we use the fact that %6}} ~ —B;IE and %BH ~ —8H5§ when we develop
that Ag ~ (Ag)®°. Summing up, we have by (3.5)

A%7? ~ (dpdp) b~ (dedp) " + ((t7 D)) e D)V
~ —05 000} + (—V—1050n)(V-1050})
= o(4).
By the same way, we see that
AL~ (dgdp)tHdEdE)"° + (dpdr)*°(dpdp)b

+((trD))2"Her D) + (e D)*) > (er D)V

~ 0 Ar + 3 0Ty

+V-10u05 (L1 + V-1(0u 0 — 0udf))

+(=Lr = V-1(0n0% ~ 0n0y))(V-1050%)

~ L (OnT A + AuduTy)

OO0 + Oph0n0y + 00500, — OndyOuDy.

Note that L L
8H8;“{8H6;I ~ —3;18118116}} = 0(4)

and
0030503 ~ —0g0n050% = o(4).

It follows that
——3]{5*;31{8* o~ —8H@(8H8;1 -+ 3}‘{31-1)'

~ -—8H8_;;A—a—; ~ —%3H@Ag, (cf Prop. 3.7)
and, similarly
~0p050y0% ~ —(0n0f + 03 0m)0u0y
~ —Np, 0g0 ~ —%AHaHBi,—.

Thus we have
A;}—l = o(4).

By the conjugation,
AT22 = At =o(4).

Finally, we have
A H = A%’,O.

(iii) In the case of deg. > n + 1, it suffices to note that
AE* = *AE,

kere, x : AP9ENker L = JP9 — nAA" " PM Nker L =: J*~¢""P. [0
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3.12 Definition. Let A and B be linear differential operators (LDO) defined on a
vector bundle over a contact manifold. We define A > B if there ezists an LDO P
such that A~ B + P*P.

The criterion of hypoellipticity by Helffer-Nourrigat implies that

3.13 Proposition. If A 2 B 2 0, then the mazimal hypoellipticity of B gives one
of A.

For f € C®(M) and o := ¥ a7 ;67 A 67 € A*E, we set
Agfi==) (XZ+YD)f.
i=1

(called Kohn Laplacian) and

Aga = ZAK(aLJ)OI A 97.
I.J

e (By the criterion of Helffer-Nourrigat) Ag is maximal hypoelliptic and

- (3.13) nAg 2 Ax on AP9E (p,q < n).

Proof. 1t is seen from Proposition 3.8 that

pP—q P—q
AH’:—(HT)Z%%— (1— - )Za,;ak.

and
D (50 + 00g) = > _(XE +YP).
Then we have
nAp~Ag —(n—1+p-q)> kg~ (n—1+q-p) > 3,
ie.,
nAg ~ Ag + P*P,

where
P:AP9E — A"YE® APIE + A" E ® AP9E, o — (A 00a, Ao 100),

and Mo=n—-1+q—p, A, =n—-1+p—¢q. O

3.14 Proposition. (i) (n—k+2)Ap 2 (n—k)(n—k+1)Ag on J* (k <n-1),

(i) 4Ag 2 A% on JP9 (p+q=n, p,q < n),

(i) Ap ~ (A + vV=1(n 4+ 1)dr)? on J° (resp. (Ax — v/=1(n +1)07)? on
Jon). .
(iv) The above formulas hold by replacing k by 2n + 1 — k.

In bidegree # (n,0) and (0,n), the maximal hypoellipticity of Ay implies one

of Ag. In this case, P,y1 := Ag ++/—1(n + 1)0r and its adjoint P_,_; are also
hypoelliptic although they are not positive (Folland [F]).
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In order to use the criterion of Helffer-Nourrigat, note that

8;Pn+1 ~ Pn_lc‘),; (1 S k < n)
O Px ~ Py_20¢ (in general).

If I(Pot1)f = 0, then II(P,_;)TI(8) f = 0. Since P,_; 2 2K, P,_1 is hypoelliptic.
Thus we have
(3;) f = 0.

It follows that
1 1 .
Pay1 =~ ) 050k - (2+ E) > 80y, (by — 0~ 82).
Hence

(k) f = 0.

Finally, II(X)f =0, VX € E, and thus f =0.
The proof of Proposition (3.14).
(i) We define A’; on J* by

Al = (n—k+ 2)dgdg + (n — k + 1)dpds.

Then
(A};)O’O ~(n—k+1)Ag.

In fact, Proposition 3.9 and (3.8) yield
BE~m—k+2)(dudg+(n—Fk+ 2)_1L5‘}]I(5H)
+(n—k+1)(0pgdg+(n—k+ 1)_15HL5}:{)
~ (n—k+1)(dudy + dudy) + dudy + 65 Lof + Léfon
~ (n—k+1)Ag +dgdy — dud} + L(6F%0m + 6uéF).

Moreover, we have
(dudn — dfoE)™° = ((Ou + 0n) (9% + 0g) — V-1(0r — 0u)V—1(0% — 0F))"°
~ Oy} + Op0% — Ondy — Oudy = o(2)
and
(5h0m + 6r67) ™ = V=103 T — D0 + D0y — 03 0) = o(2).
Finally, for 0 < k<n-—-1
(n—k+2)Ag ~ (n—k+2)A%° (cf. Prop. 3.10)

~(n-k+2)((n—k)dgdg + (n—k+1)dgdg)>’
~ (n —k)(A)*° + 2(n — k + 1)(65dg)™°

~ (n—k+1) [(n— K)An +2((d5")" (d5") + (@) (@)
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ie., .
(n—k+2)Ag 2 (n—k)(n—k+1)Ay

(ii) In deg.n, we have
_} Ap =~ A% ~ ((drde)* + (LTD)*(LTD))O’O

Developing the above, we see that

Ap = (dpop)*°(dpdp)®® + > ((dpdp)* %) (dpdg)t~*

k=-1,1

+ Z (v D) k k ( TD)’C’_Ic
k=-1,0,1

here, by (3.12), we have

2(d555)0’0 ~ AH,

so that
4AE > A%,

(iii) In bidegree (n,0), we write all terms by developing of Ag. First, we have
Ag =~ Dp, + Ag— =~ 2Ap,, in deg. n cf. Prop. 3.7).
Since dy = 0 in bidegree (n,0) (A"*19F = 0), we may set
Ap ~2050%.
On the other hand, (3.12) gives rise to -

((r D)) (i D) = (—V/ =T - B03y) (V=055
= o(4) (0% = 0 in bideg. (n,0)).

By the same way, we have

((dedp)t 1) (dpdp)" ™ ~ (9ndk) (0 dy)

and

(D)1 (er D)™ ~ ((dpdp) ') *(dpdp) ~H
~ (0 03)(Ou o) :
~ O (0505 + Om03;) 03 (T = 0 on A" 10101,
~ On Az 0.

Now, by Proposition 3.7,

Az-=~Ap, +V-1Ly on (n—1)— forms.
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Hence
(rD)™21)*(er D)™ = m (Do, +V=1L1)0F
*) ~ V=1L100} + Doy Ond}y
~ /=1L70g 0} + (00})?
And, we also have

(17D)* ~ L + V=104 — Ond}y) ~ L1 — V—1050};.

Thus Agp ~ (0p8%)? + (—Lr + V—=10r8%)(Lr — vV —1050})
+2(v=1Lr0u 0} + (0u0}))?
~ 4(0d%)? — LE + 4/ —1L70g0}
~ (200 +V—1Lr)?,

le.,

Ap ~ (AH -+ \/——lﬁT)z,

where Ay ~ A ++/—1nL7 on bideg.(n, 0).
(iv) The identities in deg.> n + 1 can be shown by the x-operator. [
We can have simple expressions in deg. (n,0) and (0, n). For it, we consider two
operators;
Pi = dEéE + (\/~_1)n+1 x D.

e P* are self-adjoint ; Ap = (P*)? = (P~)% (Note that D? = (—1)" * Dx and
x2 =1.)

e P and P~ do not preserve bidegrees but preserve the pairs JP9 @ JP+1a-1
More precisely, we have

3.15 Proposition. P* (resp.P~ ) preserves the spaces

A2k,n—A=2k g JA+2k+1n—A—2k—1
J ®J

up to o, where k € Z, A= (n+1)(n+2)/2+1 (resp.(n +1)(n +2)/2). -

Proof. Note that *xD = x(n A vy D) = *g(¢erD). Since ker L = ker A in deg.n, we
have J* = tpJ"t!. And 7D has values in J® = A”FE Nker A. On such forms, *g
can be written by

(—l)n(n+1)/2 Ca i= Z(, /_].)P—qap,q'
(3.12) implies that on JP+
(PH)L=l o (14 (—1)(mH D4/ 240ty 5, e
(P7)~1l o (1 4 (=1) D42/ 240\ 5 5

and the similar formulas for P~! also hold by replacing ¢ by ¢ + 1. Thus we have
proved. O

Since JOn*1 = jn+1.0 — 0 Proposition (3.15) means that J™° and J%" are
preserved by PT and P~ up to o. Thus Ag can be written as the square of scalar
operators.
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§3.3 The spectral sequence of the Rumin Complex ([J],[JKa]).

Let M be a smooth manifold of dimension 2n — 1. Let Q be a subbundle of TM
and @+ be a subbundle of T*M orthogonal to Q.

First, we assume that @ is of codimension 1. Following Rumin, define the ideals
I and J of the graded differential algebra Q := AM as follows ; I is the ideal
generated by I'(Q*) and dI'(Q*), and J is the annihilator of ['(QL) and dI'(Q™).
Then we have J C I.

3.16 Lemma. The injection J — I induces an isomorphism in cohomology ;

H*(J) ~ H*(I).

Proof. 1t is sufficient to show that I/J is acyclic. Let 7 be a local base of the bundle
Q1. Ifa:=7AB+dr Avis an element of I, we set s(a) := 7 A~. s is well-defined
as a map of I/J onto itself, and satisfies s(da) + ds(a) = a for a € I/J. O

3.17 Corollary. We define the boundary operator D : H*(Q/I) — H**1(J) by
Dla] := [da] where o € Q satisfies that do € I, and & € Q satisfies that « — @ € I
and da € J. Then we have the eract sequence ;

- By BR ) - HRQ) = HRQ/D) 2 BRI) -

When (M, Q) is a contact manifold, the operator D is non-zero only in degree n
and defines an operator (written by the same letter) D : Qm~—1/m~1 — J™. This
is just the operator appeared in the Rumin complex which is given in Theorem 3.1.

Now, we assume that the subbundle @ of TM is of codimension ¢ (> 1). For
all £ (0 < £ < q), we define the ideals I, and Jy of  as followings ; I, is the
ideal generated by T'(A*1Q1) and d(T'(A+1Q7L)), and J, is the annihilator of
L(AI1QL) and d(T(AT~41Q1)). Note that I, = 0 and Jo = Q. The ideals I,
and Jp are stable under d, and graded : we have I, = @IF where IF := I, N Q* and
Je == @J; where J§ = J, N Q. We also have that Jopq C I, C J.

3.18 Lemma. The injection of Jpi1 into I, induces an isomorphism in cohomology
N Hk(J[_H) ~ Hk(Ie).

With the filtration Q > I D - -- D I,_1 D 0, we will associate a spectral sequence
which converges to the cohomology of M. By means of the isomorphisms in Lemma
3.18, we have the spectral sequence associated with (M, Q) by Forman ; for r > 1,

Ef =im(H(Jy/I; — H(Jp—rs1/I¢))
=g+ JeN d_l(Ig_H«_l))/(Ie + JeNd(Je—r41))

and have boundary operators corresponding to d : Ef — Ef.
Note that Ef = H(Cy, d,) where we set

Coi=Jo/I; CF:=JF/I}

and d; : Cf — Cf"'l is induced by d. Then df are Rumin operators which gener-
alize De : Hk(Cg,de) —_— Hk+1(Cg+1, de+1).
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§3.4 L2-cohomology of complex hyperbolic space.

Let A be the Laplace-Beltrami operator on the complex hyperbolic space B?"
of complex dimension n and H* the Hilbert space of L2-forms of degree k which
are harmonic, i.e., in the kernel of A. We have (cf.Gromov.1.2B and 1.4A)

3.19 Theorem. For any a € A¥(B?™), k # n, we have
<Aa,a>>c <a,a> ¢ >0.

In particular, H* = 0 for k # n. Moreover, for k = n, 0 is an isolated point in the
spectrum of A. '

Let L be the operator of the exterior multiplication by the Kéhler form, and L*
its adjoint. Recall that a form is primitive if it is in the kernel of L*.

3.20 Corollary. L2-harmonic forms are primitive.

Proof. Since L* is bounded and commutes with A, it maps L2-harmonic k-forms
to L2-harmonic (k — 2)-forms and so we have the claim since H* =0 for k #n. O

3.21 Theorem (cf. Corollary 3.6). We have the Hodge decomposition ;
L2Ak — sz o d(LZAk—l') @ d*(LzAk+1)

where d(L2A¥=1) and d*(L?A**') are closed. The orthogonal projection onto H*
induces an isomorphism of the (unreduced) L?-cohomology

(kerd N LZA*)/d(L2A%1)

onto H*. In particular, the (unreduced) L?-cohomology vanishes in all degrees except
n.

3.22 Proposition (cf. Gromov[Gr2], Lemma 1.1 A). Let @ and 3 be L2-
forms of degrees T and s respectively such that r + s = 2n — 1. Assume that do s
also in L? and B is closed. Then [da A =0.

The space H™ decomposes into the sum of #P+? of L2-harmonic forms of bidegree
(p.q) for p+g=n.

3.23 Lemma. Let ¢ be a smooth (n — 1)-form on the sphere S**~1 such that
T ANdp = 0. Then there is a smooth (n — 1)-form ¢ on B?™ such that

(1) Plsen-1 =9,
(2) dy is L? with respect to the Bergman metric on B*".

Moreover, if dip = 0, then we may choose ¥ such that dip has compact support in
B,
Proof. Consider the projection m : z — % from B2\ {0} to S~ 1. Let ¢ be

any smooth form on B?" which coincides with 7*¢ outside a neighbourhood U of
0. It extends to a smooth form on B2" whose restriction to S?*~! is ¢. (Note that
if dp = 0 then d¢) has support in U). Since 7 A d¢ = 0, we have outside U

m*r Adyp =0,1e., (1—7T)ANdyp =0,
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from which we get

TATAdY =0
and also (recall that 7 + 7 = d(||2||?))

dr Ndy = 0.

Then, by the formula for the Kéhler form, the n-form di on B2?" satisfies the
conditions Ldy = 0 and L*dy = 0 outside U. (Note that on forms of degree n, we
have LL* = L*L, so that the kernels of L and L* cincide).

3.24 Proposition. Let w be a primitive (p,q)-form, p+ q =n, on a Kdihler man-
ifold Qf complezx dimension n. Then,

n(n+1)
) 3

*w = (—1 P,

We apply this Proposition to w := d¢ to have

/ w A *xw < 00.
BQn :

Thus, we can prove Lemma 3.23. O

3.25 Lemma. Let w be a smooth, closed n-form on B2™ such that w|gzn-1 is 0.
Then, w = do where o is L? for the Bergman metric on B2n.

3.26 Proposition. Let o be a p-form on B**. Then

o] < (1= r?)Pllo||Zua
where ||o|| (resp. ||o|leuct) is the norm of o with respect to the Bergman (resp. the
FEuclidean) metric and r = ||z||.

Proof of Proposition 3.26. It follows immediately from the formula of the metric
that if o = a+ BAT+YAT+6AT AT with o, 8,7, 6 orthogonal to 7 and to 7,
then

ol = (1= r®)lalZact + (1 = 2P+ (1B A 720 + 17y A T 20ct)
+ (1 - ,’,2)p+2”5 AT A Tlltzaucl'

O

Proof of Lemma 3.25. We construct a smooth (n — 1)-form ¢ on B2" such that

(1) do = w outside a neighbourhood of the origin,
( 2) 7 20 = 0,
(3) UlS2n-1 =0.

Such a o is obtained as followings ; write

w =wy(r) +drA cgl(r)

where wo(r) and wy(r) are forms on S?"~! depending on r := ||z|| as a parameter.
Then the conditions on w become dwy(r) = 0,w}(r) = dw:(r) and we(1) = 0. Let
0 := 0o(r) where o4(r) = wi(r) and o¢(1) = 0. Then o satisfies (1),(2) and (3).
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Note that the above conditions (2) and (3) imply that ||o||euc vanishes on §2"~1.
Specializing Proposition 3.26 to the case p = n — 1 and noting the relation between
volume forms ;

dvol = (1 — rz)*("ﬂ)dvoleucl,

and so we have
[ Nedvol = [ (1 =rt) D o vl

The latter integral is finite because ¢ is smooth on B2® with all the components of &
vanishing on $2"~! so that ||o||2,., < const.(1—r?)2. Thus w is the sum of do, with
o in L2, and of a closed n-form with compact support which,since H?(B?") = 0,
may be written dy, where p is compactly supported. This proves that w is in

d(r?). O

3.27 Theorem. Let o be a smooth (n — 1)-form on S?"~! and let ¢ be the unique
(n — 1)-form congruent to a modulo T such that T A d¢ = 0. Then let ¢ be any
(n — 1)-form on B2?" with restriction ¢ to S, satisfying dy € L%. Such a
ezists, and the class of di in the degree n L*-cohomology space (kery: d)/d(L?)
is well defined and uniquely determined by o. We set it Sa. If dp = 0 (and, in
particular, if « € I"™1), we have Sa = 0.

Proof. Lemma 3.2 ensures the existence of ¢ and Lemma 3.23 the existence of 9. It
is evident that diy € kery: d. The choice of ¢ in Lemma 3.23 is not unique. However,
if 91 is another choice, then the difference 1; — % is an (n — 1)-form vanishing when
restricted to the sphere. By Lemma 3.25, d(¢; — %) = do with o in L? so that
dip1 — dyp € d(L?). We conclude that dep is uniquely determined modulo d(L?). If
a € I"1 then, by Lemma 3.2, diy = 0. In this case, by Lemma 3.23, di may be
chosen with compact support. But, since Hg(an) = 0, we have diyy = dx where x
has compact support, and so in L2. Then we have Sa = 0. O

3.28 Proposition. Let a; and oy be elements of A"~1/I"~1. Then we have

Sai A Say = / a1 A Das

B2n S2n—1

Proof. In view of Proposition 3.22, the left hand side is well defined. Now we have
Sai A Sag = / diy N\ dipg = / d(’(/)l A d'(/)g)

B2n B2n
= / a1 A Das.
S2n—1
g

3.29 Corollary. The kernel of S coincides with the kernel of D.

Proof. By Proposition 3.28, if Sa = 0, then for any 8 in A"~!/I"~! we have
[BADa=0,andso Da=0. O

Let P be the orthogonal projection onto the space H™ of L?-harmonic n-forms
and P, , the orthogonal projection onto the space of L2-hramonic (p, q)-forms. It
follows from Theorem 3.21 that P identifies the L2-cohomology with H™. We set
Sa := Pdi and Sy qa := P, ¢dip with 9 chosen as in Theorem 3.27, which are called
Szegd map to the space of harmonic n-forms H™ (resp. to the space of harmonic
(p, q)-forms HP9).

B2n
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CHAPTER 4. VANISHING THEOREMS ON A CONTACT MANIFOLD

§4.1 A connection adapted to contact complexes.
Let g, := n®n+dn(—, J—) be the adapted metric on a contact manifold. Then
adapted connection V must satisfy that Vgp=0and Vn®n =0 (< Vn =0).
The Levi-Civita connection does not have this property (see. Remark 3.3). In
fact, Vn = 0 implies that VxY € EVX,VY € E. The torsion Tor. of V does not
vanish ; on F x E,

n(Tor(X,Y)) =n(VxY - Vy X — [X,Y]) = dn(X,Y).
Moreover, we have

2(Vxn)(Y) = dn(X,Y) - n(Tor(X,Y)) — (Tor(T, X),Y)

*) — (Tor(T,Y),X) — (J(L7J)(Y), X)

where (L1J)(X) = [T, JX] - J[T, X] is the Lie derivative of the complex structure
with respect to the Reeb field 7. Since

Lrgy = dn(—, (Lrd)=) = —gy(—, J(LpT)-),

LrJ measures the deformation of the metric by the flow of 7.
On the other hand, VX, VY,

(J(LrD)(X),Y) = (J(LrT)(Y), X).

Thus, decomposing (*) into symmetric and antisymmetric parts with respect to X
and Y, Vi = 0 if and only if

1(Tor(X,Y)) = dn(X.Y)

and X +— Tor(T, X) + 1 J(L7J)(X) is antisymmetric for Gn-
In the following, we choose the connection which satisfies

Tor(X,Y) = dp(X,Y)T for X,Y € E

and
Tor(T, X) = —%J(ETJ)(X).

e This connection preserves the complex structure J,ie., VJ =0if J is integrable.
In general, V7.J = 0 holds.

o (Webster[We]) The unique metric connection preserving n and J with the torsion
Tor(T, X) satisfies Tor(T, JX) = —JTor(T, X), i.e., Tor(T, E%!) ¢ EL0,

See,[FGR] for the holonomy groups of the above connection, and [FGRJ,FG] for
sub-Riemannian symmetric spaces.

In the following, we suppose that a complex structure J is integrable. Such
(m, J, g) on a contact manifold is called a pseudohermitian structure.
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§4.2. Vanishing theorems on a pseudohermitian structures.
Since J is integrable, we have

dy =3H+_5§.
And for a € A*KE®C,
. % »
(ETC!)(X],"‘ 7Xk) = _Ea(le"' 7[T7 X’L]? )Xk)
=1

+ Lr(a(Xy,- -+, Xk)),

then we have
(4.1) g,}’“la = Za(. -, 1% Tor(T, -),--+)
and

Lrhta = Z a(--+ ,ITY%Tor(T, —), - - -)
where IT'0 (resp.II%!) is the projection of E ® C onto E»® (resp. E%!).

Developing d% = —LLr, we have

(4.2) 04 = —LL: ' and By = —LL7M.
4.1 Lemma.

4.3) [A,dp] = —6%, and[A, d}] = bx.

Proof. Let {X1,Y1 := JXq,---,X,, Y, := JX,} be an orthonormal framing at
x € M whose brackets at x are colinear of T. In fact, we take an orthonormal base
{X1,Y1, -+, Xn, Y} at = and translate them parallel along geodesics at x. Such
parallel vector fields are orthonormal and satisfies Y; = JX; since the pseudohermi-
tian connection is metrical and preserves 77 and J. On the other hand, at z, VxY =0
for frame fields. Then we have 0 = VxY — Vy X = [X,Y] + Tor(X,Y), and so
[X,Y] = —dn(X,Y)T. Such a framing is said to be normal in the following. [

We have easily from the proof of Proposition 3.7,
(4.4) A — DY = V=1(0% — 0 )A — V=IA} — Ox ).
In fact, we consider (Apa,a) for a € J¥ = AKE Nnker A. Then, using (4.2) and
[A, L} = n — k, we have "
(4.5) (Ag — AR)a, @) = (n - k)(Ria, @),
here, we set Ryo == v—1(L3 ' — L7 Ma for a € J*. By (4.1), we can also have
the following formulas ;

k
Ria(Xy, -+, Xp) ==Y o(Xy,---,JTor(T, X;), -+, Xi)

(4.6) =t

1

k
= ——Za(Xl,--- ,(ACTJ)(Xz) : 7Xk)
: 2i'—'l
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Moreover, we have
L4 RlJOt = —JRla,
o (Ri(Ja), Ja) = —(Rye, ).

Now, we express Ag — A%‘O. It follows from the proofs of Propositions 3.10 and
3.11, ‘

-k

(4.7) Ap=(n—k)Ay+ n—fmmgaf[ + Lopd + Adydy.

Since we consider only the case that ((Ag — A%O)d, @) for a € J¥ = A*E Nker A,

it is sufficient to write dfjdy — (dfdg)'t = —/—=1(0% —5;2). By the above
calculation, we have

(4.8) ((Ag — A%’O)a, a)=(n—-k)(n—k+1)(Ri,a).
Then Proposition 3.14(i) and (4.3) imply that

(4.9) <n—k+2

,0 s OV % g1, yLyx JU,
n_:k——f—l> AF° = (n— K)AE +2(dg")"dy° + 2(dg") dy.

Thus we write A%’ro by means of the pseudohermitian connection,

4.2 Lemma (Weitzenb6ck-Tanaka Formula for AP4E).
(410) N A%O _ (1 + p; q) (VO’l)*vO’l + <1 _ p 7_2: Q) (vl,O)*Vl,O + Rz,

where VY0 := Vo and VO := Vypa, and Ry is algebraic which is a “trace” of
the curvature -of the pseudohermitian connection. :

Proof. We recall the calculation of Proposition 3.8. Choose a local framing { Xy, Yz
= JXg}, k=1,--- ,n normal at € M. Then we set

Zy = %(Xk —V-1Ys) € BV, Zpi= —(Xi+ V=1Y;) € B!

1
V2 N
and 6%, 9% its dual. For o := ZI,J ar s0F A 97,
Vza= (Zi-ar,)6 A67,
since Vz,69 = 0 at .

On the other hand, the Lie brackets at z of any vectors of the framing are colinear
to T'. Cartan’ formula (3.3) implies that

Oga = Z(Zk ~ar,7)0% AT A 97 = Zekvka.
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This expression means that dga is tensorial in Zi, and so well-defined in a neigh-

bourhood of z, i.e.,
n
8H = Z ekvk.
k=1

And then we have 03 = — Y V. It is evident that (Vi)* = —Vy at . Thus we
have in a neighbourhood of z,

= - Z kaz-
Finally, we have [Zg, Z;] = v/—16x¢T, and so
(4.11) VEVIZ - VgVE - 5keV\/_—1‘T = R(ZE, Zg).

We shall write A(}}O on AP?E. First, since dg = O +0m, we have A%’,O = Ay, +A$
Proposition 3.8 implies that

AaH = (?HB;I + 8;;3}[

=X eVe(Q_ —uVe) - QO uVa(eVi)

= — ZekLngVZ — Z eWVsz at .
By using the relation tpe, + exte = dx¢, we have
Doy = exte(VeVi — ViVg) = Y VEVi
=Y extu(6eV mr + R(E k) — Z ViV
= ewn)Vymir + Y e AuREE) =Y VEVk.

Set ;
Agy =pV /=7 + (VEOy*ryho 4 ZekLgR(Z, k) (tensorial).

Similarly we have
Dgy = =gV y=ip + (VON)'VO 4D CepiR(ER).
On the other hand, (4.9) implies that
nV r = ViVk — ViV — R(k, k) at z
Set
(4.12) nV g = — (VIO VR0 4 (VO w0t — N " R(k, k).

Therefore, we have the requested formula (4.10) with

(*) Roi= 3 (exteR(EK) +epzRE) + 22 3 R(k k)

1<k £<n 1<k<n

for all orthonormal framings {Z;}. O
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4.3 Remark.

By (4.10), R; is self-adjoint. Let R%® and R%®! be two components of Ry in
E®C;

RYV =" R(k, k)IT'°V and R4V = > R(k, k).
k=1 k=1

We extend it to a € A*M ® C ;

(Rl‘oa)(Vl.~ ce ,Vk) = _za(vla" : 7R170V2>"' 7Vk)a

=1
where Vi, .-+, Vi € E. We extend R%! by the same way. It is easily proved that
R(Z &)k = R, k)¢
LgR(Z, k) = R(?, k)‘l,g - [‘R(Z,E)k

_ — pL0
~ > eririon = R
kL

We put these relations into (*) and so we have

Ry = Z(ekR(Z, k)ee + exR(¢, E)LZ)
k,£

N <1+ q—‘p> RLO _ <1_ q—p> ROL.
: n n
O

4.4 Theorem (Vanishing theorem of H*(M,R), k # n,n + 1).
H*(M,R) =0 (k < n)

if, for Yo € J*\ {0}, ((R2 + (n — k + 2)Ry)a, ) > 0.
OPEN PROBLEM:. In the case k = n, we have no informations.
It is sufficient to use the Weizenbick formulas (4.8), (4.9) and (4.10). In fact,
RyJa = JRya and Ry Ja = —JR;ja. The positivity condition can be written as
(Rea, @) > (n — k + 2)|(Ria, @)| Va € J*\ {0},

that is, Ry controls R;.

We write down in the case of degree 1. First, by (4.6), we have Ry = —(1/2)LJ.
R, measures the deformation of the complex structure and the metric by the Reeb
flow. Ry = 0if and only if this flow is Riemannian. For Ry, (*) is reduced the simple
form ; V4, k € [1,n], R({, k)i = 0 = R(¢, E)Lza. Then we have, on J! ~ A1E,

Roa = — (1 - 7-1;) <\/——1§; RE, e)) Ja = (1 - %) iR(Yg,Xg)Ja.

=1
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R, can be viewed as a "Ricci curvature” with respect to a contact structure.
From R(¢,£)k = R(£, k)¢ it follows that

(Roa, ) = Y K(of, X;) + K(o!,Y)
=1

+ K(J(h), Xi) + K(J (o), Ys)
= Ricg(a!, o) + Ricg(Jat, Jab),

2n
1

where K(U,V) := (R(V,U)U,V) is the sectional curvature of the plane {U, N}.

§4.3 Transversally Kéhlerian structures.

In the case that R; = 0, the complex structure, the Riemannian metric and also
the pseudohermitian connection and its curvature are invariant by the Reeb flow.
It is natural to assume that the orbit space N := M/(T) of Reeb flows has the
structure of manifold, i.e., all flows are closed and have the same period. Then we
identify M with the total space of the S'-bundle over N. We denote the canonical
projection M — N by m. Then we have

4.5 Proposition. For k < n,

{a € J*M | Aga =0} = {a € A*M | Aa = 0}
=7*{a € A*N | Aa = Ao = 0}.

Proof. We denote the above three spaces by Hg, Har and 7*Hy respectively. It
is sufficient to prove that Hg C Har when k < n. The equalities follows from
that dim Hg = dim Hgg = dim H*(M,R). It follows from (4.1), (4.2), (4.4) and
(4.7) that Ay = A%’ and Ag = AR’ if LrJ = 0 = Tor(T, —). By (4.9) we have
that Aga = 0 implies Aga = 0. In fact, since Ay preserves the bidegree, each
component oP? € JP? of a is harmonic, i.e., dga?? = 0 = dgaP 9. Taking the
decomposition of dg and dg, we have

dga = 0ga = 8§a=5§*a=0,

ie.,
AaHCM =0= Aaa.

Then W-e have
Apy — A—BT{ =+v-1(k —n)Lr,

which implies Lra = 0. We write d and d by means of dy and éx

(4.13) di -v—-projker pd=d—nANird=d—-nALr

(4.14) 0H = PIOjker 170 =0 —NALTd =0 —nAA

since t7d + Sur = A is the adjoint relation of d(n A —) + n Ad = L. We have
da =da =0.
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We must prove that harmonic forms on M are in J* in degree k < n, ie.,
vra = Aa = 0. This means that they are invariant by the flow of T. Thus they are
pullbacks of 7 of primitive forms on N.

We shall prove the case of degree n, and prove in deg. k < n by the same way.
Let a € Hg.

e Harmonic forms are invariant by the Riemannian flow.

Then we show that Lra = 0.

In fact, the flow ¢f generated by T is an isometry, i.e., (¢T)* = (¢) "t =77
Then we have, by definition, that Ly = —Lp. Thus LET = LgL implies that
AL7p = LpA. Moreover, Lrip = tpLy = vpdur, and so Lt preserves the spaces J*
of the contact complex. On the other hand, Lra is a Apg-harmonic. (3.10) implies
that

Lra = LTDa + d;ﬂ}’;a = dEdgwa
Lra is the harmonic representative of the zero class of dg-cohomology, and so
[,TCI =0.
The identities in Proposition 3. 11 and 3.13 must be equal since they depend on

the elementary formulas dH O = = 0(2) and [dg, A] ~ —4¢, which are exact in
this cases. In particular, in J",

Ap=A%°
A2

- T ((dedp)* %) (dgdp)*F + ((LrDY>—*)* (Lp D)k,

» —1<k<1 ‘
Thus we have that Aga = 0, which implies, by (4,13) and (4.14),that

do=dga+nA Lra =0,
da =dga+nAAa=0.

That is, o € Hgr. O

e H'(M,R) = H'(N,R).

Then we hawe H(M,R) = 0 if the Ricci curvature of N is positive. In fact, this
condition can also be obtained by using the pseudohermitian connection VZ and
the contact complex of M.

In fact we can show that V¥ is the pull-back of the connection V¥ of the
Levi-Civita connection of N, i.e., VEY € E, VXY and VY = VY, Y. This
means that V¥ can be characterlzed as followings ; it preserves g|g, 7 and torsion
Tor(T, X) = L7JX = 0. Thus we have 7R¥(X,Y)Z = RN (x X, nY)nZ. Therefore
the positivity of the Ricci curvature of V¥ is equivalent to the positivity of Rj.

Appendix ; Geodesics on a contact manifold.
It is natural to study geodesics in a contact manifold M from points of Carnot-
Caratheodory metrics. We use the pseudohermitian connection on M. For two
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points , z2 € M, let v,(¢), t,u € [0,1] be a family of curves with z; := v,(0) and
Ty := v,(1). Let V := 0v/0u and X := 9y/0t. We consider the energy functional

E(y) := / 4(0)|12dt
and the length .
o) = / 1F3(0) 1.

The minimum of F is equal to one of £ up to parametrizations.

1
ba_uE('Yu)1u=0 = V/O (XvX)dt

- 2/01(VVX,X)dt
—9 /0 (VW + (Tor(V, X), X))dt
- 2/01 X(V, X) = (V, VxX) + (Tor(V, X), X)dt
—2 /0 (V.Y xX) + (Tor(V, X), X)dt,
where (Tor(V, X), X) = Tor(n(V))T + Vi, X)
— (V) Tox(T, X) + dn(Vg, X)T

= n(V)(Tor(T, X),T).

e E(v) is a minimum in parametrizations of v if and only if
(VxX,X)=0= X|[}4(t)|*.

In the following, we assume that this condition is satisfied. We decompose Vx X
as
VxX =a(t)JX +7,

where Y is orthogonal to X and JX. Then

B (u)lumo =2 / —at)(V,JX) — (V,Y) + 1(V)(Tox(T, X), X)dt.

Recall that
dn(V,X) = Vn(X) = Xn(V) —n([V, X])

=Xn(V)=—-(V,JX).
Thus we have

2 Bwlumo =2 [ ~ale)(V.JX) = (V.Y) + (V) (Tor(T, X), X)d

=2 / 1 2(V)(Xa(t) + (Tor(T, X), X)) — (V,Y)dt.
0
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Conversely, if 7 is not constant, all vector fields V along v with value 0 at endpoints
satisfying
Xn(V) = (V,JX),

can be integrated in the family of curves with endpoints. Therefore E(v) is sta-
tionary if and only if

Y =0, and Xa(t) + (Tor(T, X), X) = 0.

Summing up, we have

4.A.1 Proposition (Equations of C-C geodesics). v is a C-C geodesic if and
only if Vx X, X := 4(t) is colinear to JX, i.e.,

VxX = —CVJX,

where 1
Xa(t) = —(Tor(T, X), X) = —2-(J(£TJ)X,X).

4.A.2 Example.

Let H* be the Heisenberg group of dimension 3. We give H? the pseudohermitian
structure invariant by translations. The projection 7 : H3 — H3/ < T >=R?isa
Riemannian submersion. Indeed, 7 is projected to the area form A := (1/2)(zdy —
ydz). A simple closed curve in R? can be lifted to a simple closed "Legendre”
curve if and only if its area is zero. And Legendre curves joining z; and z5 in
H? are liftings of curves mz, and 7z with fixed area. Thus C-C geodesics are
minimal for fixed area, i.e.,arcs of circles. Their tangent vectors X := F@&) /11 @®)||
satisfy, by definition, VxX = kJX where k is the curvature of a directed circle
and V is the Levi-Civita connection of R2. Since the pseudohermitian connection is
projected onto V and the complex structure is invariant by T, we see, by equations
of geodesics, that :

VxX =kJX,

where
Xk = —(Tor(T,X),X) = 0.

0O
e A pseudohermitian structure is complete if the C-C distance is complete.
In this case, it is equivalent to

e The pseudohermitian connection is geodesically complete.



65

CHAPTER 5. GEOMETRY OF PFAFFIAN SYSTEMS

§5.1 Horizontal cohomology.

Let M be a connected compact manifold, and let H be a smooth subbundle of
TM. Let H, := H+ [H, H] be the subbundle of TM consisting of vector field X of
local form ;

X =Y+ [Yl,Yz], Yy, Y1, Yo € H.

Then there is an anti-symmetric bilinear map u(—,—) : H x H — H;/H defined
by

(5.1) u(X,Y) :=[X,Y] mod (H),

e (5.1) is well defined.

o If M is the total space of a principal fiber bundle and H comes from a connection,
then p is just the curvature of the connection. ‘

Suppose that the vector bundle H;/H is of rank k;, then u(—, —), is R**-valued
2-form on H,, thus it determines k; elements of A2H,, which are denoted by
6',---,0% . Thus we can write g := (8%,---,0%). Let I,(9*,--- ,6%1) or simply I,
be the exterior algebraic ideal in AH, generated by 6%,--- 6%,

If H has non-degeneracy r > 0, i.e., there is the biggest number r > 0 such that,
for (r — 1)-forms a1, -+ ,ax, on Hy,

ar NG + - +ag AOF F£0
unless a; = --- = ak, = 0, then H is two-step generating, i.e., H, := H+ [H,H] =
TM . A contact stracture H is a spacial case of 2-step generating one.

5.1 Definition. H is strongly bracket generating if for, VX € H,, X # 0, the
induced map Hy — TM;/H;; Y — p(X,Y) is submersion.

e (Weinstein) Let M be the total space of a principal fiber bundle and let H come
from a connection. Then H is strongly bracket generating if and only if M is flat.

5.2 Lemma. If H is strongly bracket generating and (M, H) is not a 3-dimensional
contact manifold, then H is two-step generating.

Proof. Assume otherwise, i.e., there are 1-forms a1, - - , ax,, which are not all zero,
such that

(5.2) ar A + - -ay, NG =0,

Without loss of generality we assume that a,:--,ax are linearly independent at
z € M. Choose a coordinate system {z;} such that a; = dz1,--- ,ax, = dzk, at z.
Write

0" := 60} ydze A dzy = 0,
Lk
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then from (5.2) at z we have
Z 92kd3}[ Adxg =0,

£2k1+1,k>k1+1

which contradicts to the strongly bracket generating of H. [

Now, we shall define partial connections which is a generalization of Levi-Civita
connection to sub-Riemannian metrics.

5.3 Definition. Assume that there is a subbundle K in TM complementary to H,
ie,TM=HQ®K and 7 : TM — H the projection. A bilinear map

(X,Y) € Hy, x C®(H) —> DxY € H,

depending smoothly on x, is a partial connection if

1) Dx(fY)=<df, X >Y + fDxY, X,Y € C*°(H), f e C°M
where < —, — > is the pairing between T*M and TM.

(2) ' ny—DyX:W[X,Y], X,YECOO(M)

3) ' X(Y,Z2)= (DxY,Z) + (Y,Dx Z)

e Suppose that M is the total space of a fiber bundle W — M — B over a
Riemannian manifold and H comes from a connection on the fiber bundle, then
horizontally lifting the Levi-Civita connection on B to H, we have a partial con-
nection.
e For given H, K and (—, —) on H, there is a unique partial connection.

An orthonormal framing {e;} for H is normal at a given point zo € M if
Dejei(.’L'o) =0. ‘
e Such a normal framing always exists, and so 7[e;, e;](zo) = 0.

The (partial) curvature of the partial connection is a trilinear map

R:C®(H) x C®(H) x C°°(H)E — C(H)

defined by
R(X,Y)Z := DxDyZ - Dy DxZ — Dy xy|Z.
e R(X,Y)Z is not a tensor in the ” usual " sense.

5.4 Lemma. Let X, Y and Z be smooth horizontal vector fields on M and fa
smooth function. Then we have

R(fX,Y)Z = fR(X,Y)Z, R(X,Y)fZ = (WX, Y)f)Z + fR‘(X, Y)Z.

Remark. In general there is no partial connection and volume form canonically
associated with the sub-Riemannian metric. However, if H is a contact structure,
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then there is a natural volume form dvol and a éomplemen’cary bundle K to H
defined as follows ; let  be the 1-form such that n = 0 defines H and

(5.3) (X,Y) :=dn(X,JY), X,Y € H

where J is an endomorphism of H such that det J = 1.
e Such a 1-form 7 uniquely exists.
o We set

(5.4) K :={X |dn(X,-) =0}

and dvol := n A (dn)™. The induced partial connection D is called the canonical
partial connection of the sub-Riemannian metric.

Let A*M be the sheaf of smooth differential forms on M, and AyM be the
subsheaf consisting of w such that if H is locally defined by & 1-forms w; = wy =
~oo = wg = 0, then

w=Y (fi Nwi+gi Ndw;),

where f; and g; are smooth differential forms.

There is a natural filtration A% M and d(A%M) C A% M. A3 M is a algebraic
and differential ideal of A* M. Let d¥; : Ak, M — A% M be the restriction of d. Let
A% M be the quotient sheaf A*M/A} M, which has a natural filtration AgM :=
®A% M and a natural operator ‘

dy = d% : Ny — ASTIM
defined as the followings; if py : A*M — AL M is the projection,

dupg(w) = pu(dw).

In the following, we assume the technical condition ; A% M satisfies the condition
(L) if w €. A%, M satisfies w(z) = 0 for every € M then w = 0 (as a cross-section of
AFM).

5.5 Lemma. Suppose that H satisfies the following condition ; there are 1-forms
Wi, ,wk such that H is defined by w1 = -+ = wg = 0 locally,and dwy, 41, -+ ; dwg
can be uniquely written as

k k1
dwpri =3 fIAwj+> gl Awjy i=1, k= ki,
j=1 7=1

where fij , gf «are smooth forms, then A% M satisfies condition (L).
5.6 Corollary. If H is two-step generating, then A% M satisfies condition (L).

We shall determine the stalk of A% M over z € M A% T, M explicity. Clearly, if
k=1, AT, M = H,. However, for k > 2, A’;ITmM is not freely generated by H,.
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5.7 Lemma. Suppose that Hy/H is of rank ky, p, = (%, -- ,0%1). Then the stalk

of A3, M overz € M is
AYT, M = A*(H,)/span(8*, - -- ,6%1).

Proof. Choose a subbundle V; in TM which is complementary to H. Suppose that
H, is spanned by ey, -, e, V; spanned by by, --- , by, and ,

[eires]:= D cli(@)bele) mod (ex,-- ,em). cfj = ~ck;.

Then we can choose a local coordinate neighbourhood (1, - - - , Zp, y1, - - - , Yk) such
that H is determined by w; = -+ = wy = 0, where
' { dyg—Zcfj:cidxj+O(y2—l-x2) £=1,---,k
~loE?+y?), E=ki+1,--- ,k

Here O(z? + y?) denotes 1-form Y fdz; + 3 g;dy; where f; := O(z? + y?) and
g5 = O0(z%> + y?). And so
._{ - Y chidz; Adzy + O(Jy| + |z|) =1,k
T o] + ), L=k +1, &

Thus lemma is easily followed. O

The above result can be easily generalized to k > 2,
5.8 Lemma. The stalk of AgM over z € M is

AgT,M = AH,/I,(6%,--- ,6%.

e This corresponds to J*. k

‘According to Ginzburg and Rumin, we consider the exact sequence

0 — HN(M) — HYM) — HL(M)
— H{ (M) — H*(M) — Hi{(M) —» - -+,
where
HE (M) := ker d; /im d%?
H (M) := ker d¥/im d%?

e (Rumin[R1.2]) Let (M, H) be a contact manifold of dimension 2n + 1. Then we
have HE M ~ H*(M) for k=1,--- ,n — 1.

We shall generalize the above result to a two-step generating subbundle H.
5.9 Lemma. If every z € M admits a neighbourhood U such that HE(U) =0 for
k=0,1,---,r+1<n, then H*(M) is isomorphic to H&(M), fork=1,--- ,r.
Proof. We have the commutative exact sequence

0 —— AUUV) —— AU)BAV) —— AUNV) — 0

| | [u

0 —— Ag(UUV) —— Ap(U) @ Ax(V) —— Ag(UNV) —— 0
SO
0 —— HYUUV) —— HYWU)® HY(V) —— HYUNV) —— ...

lpH lm lpﬂ
0 —— Hy(UUV) —— HL{U)® HY(V) —— HLUNV) —— ...
and by a standard argument we can prove the lemma. O
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5.10 Lemma. If at every z € M, H, has non-degeneracy r, then Hy, (M) = --- =
H{ (M) =0.

Proof. Fix some point in M. Then there is a coordinate system (z;,y;) and k 1-
forms w1, - - - ,wy such that H is defined by wy = -+ = wg, = 0, where

wi =dy; — Y dymidze+ O(lal® + y), j =1,k
and _
dwj =6’ +O(|.’L’|+ |y|)) .7 = la ?k'
Now let o, be a closed s-form (s < r) of the form Y~ fi Aw; + Y i A dw;. Then

da, =Y dfi Awi+ z((—l)s‘lf,- + dg;) A dw;,

thus by assumption we have (—1)*~!f; + dg; = 0 mod << w >>, where << w >>
is the algebraic ideal generated by wq,---,ws. It need only to prove that for an
s-form o := Zil<~~-<ik frAwi, A+ w;,, da = 0 if and only if @ = 0. Here, f; is an
(s — k)-form fy:=> hydz;, A---ANdxj,_,.

do= dfy Aw? +) (<1)°T s Adwi, A Aw,
o Y (1T Awi A Adwi, A Awi

which implies that Zpk fa,2, k—1,5) Adwj = 0. Again by assumption that 7 > s,
we have f(12,... k-1,7) = 0. By the similar way, f; = 0 for any J. O

5.11 Corollary. Under the same condition as in Lemma 5.10, Hy (M) = H*(M),
fori=1---,r—1. ‘

Let N be a (smooth) manifold. A map f: N — M is said to be horizontal if
the pull back f*H of H by f is zero.

Let 19 := [0,1] x - - - x [0, 1] (¢ —times). Let Cgq(M) be the free abelian group gen-
erated by g-singular cubes f : 19 — M, and Cq gz (M) be the subgroup generated
by horizontal ones, and we set

C(M) :=aCy(M), Cuy(M):=aCquCM).
We define the k-th horizontal singular homology group by

ker 6%

Hk’H(M) = W’

where ¢ is the restriction of the boundary operators to Cg(M). There is a well
defined pairing between Hy (M) and Hy g(M). Suppose that f represents a k-th
horizontal singular homology and w does a k-th horizontal cohomology, then we
define

(5.5) < [f],[w] >i= /f w.
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5.12 Lemma. The pairing (5.5) is well defined.

Proof. Let w' (resp. f') represent the same element as w (resp. f). Then there is a
horizontal & such that f’ = f + Jk. Without loss of generality we assume that H
is defined by k I-formse; = --- =¢;, =0 Wlthln the image of f, f' and k. Then we
have o’ -—w+2h /\e,-i—g,/\dez and

(5.6) /flw— f,(w—w)+/lw—/(w—w /dw—i—/

Now the first term above is
/ hi Ne;+ g, Nde; = / 9i A de; = (—1)deel9:) / dg; Ne; = 0.
! fl fl

For the second term above, note that dw = 3" h. A e; + g/ A de;, and so
1 gl

,,/dw:/gz’»/\dei:v/dg;/\ei-(/ —/)gz{/\ei:(l
k k k f! f

Therefore, we have
b
f ’

O
e (Thom) If (M E) is a contact mamfold of dimension 2n + 1, Hy g(M) ~
Hy(M), k=1,---,n—1, and the pairing (5.5) is nondegenerate modulo torsion
elements.

§5;2 C'hara)cteristic classes of horiiental connections. .
Let V' be a vector bundle over M, and H* C T*M the subbundle dual to H.

5.13 Definition. A horizontal connection is a linear smooth map
D:CR(V) — CX(H 2 V)
which satisfies
D(fs)=dpf®s+ fDs, feC®(M), se C(H).

Example 1. Let TM := E® K be a splitting where K is a vector bundle over M,
and let g : TM — K the projection onto K. We define the horizontal connection

Ds := ZWK[s,ei] ®e, se C*(K),

Where e; is a local frammg for K.

Example 2. Let M be the total space of a fiber bundle W — M — B and let
H come from a connection, and let Dg be the Levi-Civita connection on B, and D
be the horizontal lift of Dg. Then we define

Ds _Z(D s)®e', s€ C®(H)
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where e; is an orthonormal framing for H.

e D is a horizontal connection.

Example 3. Let Dxa, X € H, a € C*°(H) be a partial connection for the sub-
Riemannian metric.

e The partial connection is a horizontal connection.

If an orthogonal framing e; spans H, we define a horizontal connection D :
C*®(H) — C*(H*)® C*°(H) by

(5.7) Ds:=Y €' ® D,(s)

where e are the dual framing of e;.
e (5.7) is well defined.
Set s := Y fisi, then we have

(58) Ds = Zwij ® S5

and w;; € AL (M). The connection 1-form relative to the local framing s; is the
matrix valued horizontal 1-form w = [w;;].
We extend D to be a derivation map

C®(AL(M)Q V) — C®(ALTH (M) @ V)

(5.9) D(6, ®s) :=dgb, ® s+ (—1)P, A Ds.
Then we have

D?fs) = D(dgf ® s + fDs)
=d4f®s—dgf ADs+dgf ADs+ fD?s
= fD?s

Set D?(s)(xo) := Q(xo)s(zo)- Q is called the curvature for the horizontal connection
D. In tems of a local framing s;,

(5.10) N=dpw —wAw.

o Q) is well defined, ie., Q' = hQh™!, h € GL(C*). We say P : End(C*) — C
is an invariant polynomial map, if P(hAh™!) = P(A) for any h € GL(C¥). Set
P(D) := P(S). |

5.14 Theorem. Let P be an invariant polynomial map.
(b) Given two connections Dy and D1, we have a differential form TP (Dg, Dy)
so that
P(D,) — P(Dy) = dg{TP(D1,Dy)}.

The proof is similar to the usual Chern-Weil theory.
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Let V is a real vector bundle with a fiberwise metric < —, — >y . A horizontal
connection D is said to be sub-Riemannian if

d < 81,82 >y=< Ds1,89 >y + < s1,Ds9 >y, 81, 89 € COO(V).

If D is a sub-Riemannian connection, we define the total horizontal Pontragin class
as

p(D) := det <I+ 2—17;Q) = p1(D) + pa(D) + - - -

where py (D) is the 4k-form, called the 4k-th horizontal Pontragin class. Moreover,
if the vector bundle V' has even rank 2r, then we can define

(=1

Similarly, we can define the secondary invariants. Namely we have

5.15 Theorem. Let P be an invariant polynomial map. Let D. be a family of
horizontal connections with curvatures Q(7), which satisfy
PH(P(Q(T)’ e 79(7-)) = 07
Pu (57000 .00 =0
Then the horizontal cohomology class TP(D;, Do) € Hy(M) is independent of .

In the following, let D be the partial connection associated with a splitting
TM = H @ K, and we assume the technical condition (L)

5.16 Theorem. Suppose that AL M satisfies the condition (L). Then the curvature
of the horizontal connection (7.7) can be written in terms of the partial curvature
as followings ;

(5.11) Qs =" Pu(e' Ae? ® R(ei, ¢5)s)
iVj

Moreover, if pr and Py are the k-th Pontragian class of H —s M and k-th Pon-
tragin polynomial respectively, then

P = Py(px).

Proof. By the technical condition (L), we only need to prove (5.11) at a point zo.
Note that the right hand side of (7.11) is defined independent of a local framing e;.
And so we prove (5.11) for a local framing e; normal at zo. Now,

Qs(zg) = ZPH(dHei ® D,,s)(zo) + Zei A el ® Rle;, ej)s(xo)-

1<j

We need to prove de(e;, ex)(zo) = 0. In fact,

(e5(e*(ex)) — ex(e’(e;)) — €' ([e;, ex])) (wo) = O,

dei (6]', ek) =

| =
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Thus we have (dge’ ® De,s)(zo) =0. O

Remark. Let I, be generated by 6%, - - , 6% which are orthonormal with respect
to the inner product on A2H,

0" = Oret nel,

i?j

where e; is an orthonormal framing for H, then (7.11) can be written as

Q= z R(ei, e5) — Z R(ee, ex)0p.0;; | © et nel.

i, Lk,r
Then we have
(5.12) R(ei, ej) — Z Z 0705, R(ee, ex)
r Lk

is a tensor.

In deed, we need only to prove that in view of Lemma 7.4
(5.13) plei, e5) — z Zefkefjﬂ(eeu, ex) = 0.

r Lk

If H is given by 1-forms w; = -+ = wy = 0, where

dw; = 6 mod(e?)

then [e;,e;] = 2, 67;n, mod (e,), where n, is the dual vector field to w,. Thus

we have n
w(ei,ej) = ZZB,TjnT.
There T
ulei, e;) = Z;cjozkezju(ez, ex) =2 Ofn, — 2Z§;ezkozjozknt
=2 On.—2) tzk: Xt: Srtbme = 0.

We can write the horizontal Pontragin classes in terms of the second jets of the

sub-Riemannian metric, moreover, if H is contact, the construction is canonical

and the lower horizontal Potragin classes are in fact the Pontragin classes of H.
We define a tri-linear map T : H @ H ® H — H by

T(z,y,2):= R(z,y)z — Z 2(0',5/\ 7)(67,¢* A e?)R(e;, e)z

Here T denotes the dual tox € Hin H*. T is a well defined tensor. Indeed, note
that 07, = (67,€* A e’)/2, expand z = (z,e1)e1 + - + (T, em)em and similarly we
expand y.
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§5.3. The Hodge Theory of H!(M) for a Paffian system.

Let V be the Levi-Civita connection of (M, g). The relation between the Levi-
Civita connection of g and the partial connection of the sub-Riemannian metric
is R
(5.14) DxY =nVxY, X € H, Y € C*(H),

where 7 : TAM — H is the projection.
For two horizontal forms wy, w, of the same degree their inner product

(w1, w2)0 :Z/‘(wl,wg)dvol
M

where (-, —) is the inner product induced on AH,. We define the dual d of dy
with respect to (—, —) and define the Laplacian Ay by

Apg :=dgéy + 0ngdy.

For w € AgM, its weighted Sobolev norm is denoted by
[|w]? := (w,w); = / Z(beiw,Deiw)dvol,
J M i

where {e;} is an orthonormal framing on H. In the following, we assume that I is
generated by 6,--- 6% which are orthonormal with respect to the induced inner
product on A2H. '

5.17 Lemma. If {e;} is an orthonormal framing, {y1,--- ,yx} is an orthonormal
framing for K := H*, then if w is a horizontal 1-form or 2-form,

dygw = Zei /\Deiw —:Z (er,yz et A De,-w) 0",

dgw = — E te;De,w — D
i

(5.16)

where D° is the 0-th order operator

(5.17) o DO::ZpH(Lijy,j).

Remark. DO is.only depend on dvol, g and K. In particular, if H is contact, then
D is canonically defined tensor, thus it is another invariant of the sub-Riemannian
metric. ' : ' :

Proof. Let py : AM — AH and py : AH — An M be the orthogonal projections
respectively. Then py := py o p; and define d := p;d. Then, by (5.14), we can
rewrite d as

(5.18) d:=Y e;AD,,. .
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Thus, for horizontal 1-forms or 2-forms,

dgw = padw = dw — Z(G’,Ew)m.

And so (5.15) is proved. Next we compute . Let 6 be the adjoint of d with respect
to g,
dgw = p1dw

= pl(z te; Ve,w + 1y, Vy w
= Z 1e;De,w + p1i(y, Vy,w).
O
5.18 Lemma. If, for any x, y € C®(HL), Voy € C®°(H*Y), then D° = 0.

Remark. If HY is an integrable subbundle (e.g., H is contact), then D° = 0 if
every leaf of H* is totally geodesic with respect to g.

5.19 Lemma. For a horizontal 1-form w,

~Ahw =Y DeDew—Dp, ew+ Y € Ate,R(De,, De;)w
i,J

D° (Z e A Deiw) + 3 € A De,Dow
—Zej (0 Ze A D, w) Z(er Ze A D, w) te; De, 0"

Proof. Choose an orthonormal framing {e;}, normal at zo € M. Using (5.18), we
have

(5.19) Ay = (5 +6d)w — 6> _(w, 67)6").

O

5.20. Corollary. If M is the total space of a fiber bundle W — M — B over
a Riemannian manifold with totally geodesic fibers and the sub-Riemannian metric

is the horizontal lifting of the Riemannian metric on B, then
(5.20)

Hw*ZD D..w— Dp, elw+Ze A te; R(De,;, De; )w
,J

=Y e (OT,Zei A Deﬂﬂ) DD (9’,Zei A Deﬂ’) te; De; 0"
i.j @ :

T

where D is the horizontal lift of the Levi-Civita connection on B.

We suppose that I, is generated by 61, -- , 6% such that

20'6 Ne, 07 = =07,
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Without loss of generality. we assume that they are orthonormal,
Z 011655 = Ors

We define the technical quantities ;

(5.21) A1(2) := max

E 2 Zt,]},s.t ggjggt (usi7 “fj)‘ - Zi,j,s,t ijﬁgt (Ustf uij)
- ’ Zs,i |usi|?

(5.22) Az(x) := max

Z Zz Jol.s.kt 9:; 07k 05205 (us, uek)
o Zs,i usi|?

5.21 Lemma. /\1(:1:) Az2(zx) are depend only on I, (and independent of the choices
of 01, 07 €1, en).
By a simple calculation we have the proof.

5.22 Theorem. If, at every point x € M, 1 — A(z) — 2X3(z) > 0, then A}, is
hypoelliptic.

Proof. By definition, it is sufficient to prove that there is a positive dy > 0 such
that

(5.22) (Ajw.w)o 2> do(w,w)1 — N(w, w)o.

Now,
(Apw,w) = (dgw, dgw)o + (dgw, dgw)o

= (Ew,:iw)g - Z(Ew,@r)g + (5Hw, 6]-[&1)0
= ((don + dd)w,w)o — > (dw, 07)3.

T

Modulo a 0-th operators, dg := Y, i, D.,, thus modulo 1st order operators, we
have

d§+6d = DeD., +Y € ANieR(D., De,).
. ij
Let w:=)", uset. Let O; denote a sum of terms of the form (De,uj, ug)o, which is
bounded (for any positive € > 0) by

01(@)lo < ellwllf + Nellwlf3.

Now
2
(67, dw)? = Ze Deuj | +0;.
Thus
(AHUJ,UJ)O = Z(Deiui3 Deiui) + Z(R(DeinEj)uivuj)o
1,7 i.j
(5.24) 2

-3 (Z 07, D, u7) +0,
T 1.7

0



By integration by parts the second term above is

> (R(De;, De,yuisug) = > Y (0505 R(De,, DeyJuis uj)o + O
(5.25) & bi bk

=2 Z 0707; (De, wis Dejuj)o + O1

Here we used the fact modulo 0-th order operators,

(5.26) R(De,, D;) Zzelke R(De;; De,)

Using integration by parts repeatedly, the third term in (5.24) is

2
£ (S
T %, 0

= Z 9&% (Deiuj’ De[uk)o

1jlkr

= 3" 0385;(De,j, Deyur)o
ijlkr

- Z HZkoirj (R(De;; De,)uj; uk)o + O1
ijlkr

= Z GZke'Lrj(Deiuj’De[uk)O

(5.27) ijtkr :

- Z 031050507 (R(De,, De,)uj, u)o + O1
ijlkru

= Z 0707 (De;j, De,uk)o
ijlkr

~ 3" 6460585 (R(D,, De,Juj, ux)o + O
ijlkru

= Z 0707; (De, ) s De,ux)o
ijlkr

+ Z 030526297 i(De,uj, De,)ur)o + O1
ijlkru

Here we have used (5.26) again. Inserting (5.25) and (5.27) into (5.24), we have
(Agw)o > Z(De, ui, De;uj)o — 2> 01 (De i, Deguj)o

+ Z 07,07 (De s, De,tix)o
ijlkr

- Z 0 alko agt(Desuijetuk)O
ijlkru

+ Z 0702 05005: (De, uj, De,ur)o + O1
ijlkru

> (1= A1 = 2X2) > (De;uj; De,uj)o + Or

ij
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Therefore we proved (5.23). O ,
5.23 Corollary. If H has non-degeneracy 4 0, and 1 — A (x) — Ao(z) > 0, then

HYM) ={w e A4 M | dyw = dgw = 0}.
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