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Preface

This note represents the lectures I gave in a course, “Introduction to knot
theory,” in the Fall semester of 1990 at the Seoul National University. The lectures
were intended to give a graduate student a brief exposure to introductory knot
theory.

The topics covered in the note are far from complete and biased by my taste.
Reading the note requires a basic knowledge of algebraic topology and elementary
techniques in manifold theory. Proofs are given in full detail, within the scope of
the note, whenever they are attempted.

I would like to take this opportunity to thank Professors Hyuk Kim and
Hyunkoo Lee for encouraging me to write the note, especially the latter, for read-
ing the manuscript and making valuable suggestions. I am also indebted to the
students who listened to the lectures and Ms. Chaeun Park who typéd the note.
Finally, I thank the Department of Mathematics, Seoul National University, for
making the publication of the note possible.



1. Basic definitions and a theorem of Lickorish

We introduce some of the basic definitions and notation we use in this note.
The study of knots and links plays an important role in the study of 3-manifold:
this can be explained by a theorem by Lickorish which says that any orientable,
closed, connected 3-manifold is obtained by doing a framed surgery along a link in
53, the 3-dimensional sphere. We give a proof of this theorem later. We consider
everything in smooth category. Note that there is no difference between the smooth
and piecewise linear category in the dimensions we are interested in.

A knot is defined to be a (smoothly) embedded circle in S%. A link is defined to
be a finite collection of disjointly embedded circles in S3. If each component of a
link is oriented (by an arrow), the link is called an oriented link. Two links L, and
Ly are equivalent if there exists a diffeomorphism f of S® such that f (L) = L,.
Another equivalence relation often considered in knot theory is that of isotopy:
two links L; and L; are isotopic if there exists a diffeomorphism f of $3 isotopic
to the identity map such that f(L;) = L,. Here we remark that every orientation
preserving diffeomorphism of S® is isotopic to the identity map. The ultimate goal
in the study of knots and links is to classify them under some equivalence relation:
an approach to this goal is to discover as many invariants as possible by which
we can distinguish distinct knots and links. The main purpose of this note is to
introduce various known invariants to the reader.

It is convenient to consider a link as a subset of R3, the 3-dimensional Euclidean
space, rather than a subset of S®. Consider S* = R® U {00} as the one-point
compactification of R3. Since every link can be isotoped away from oo (general
position), we may assume that a link is a subset of R3. Furthermore, the new
point of view does not affect the equivalence relations discussed above.

We state a theorem which makes it possible to draw a diagram of any link
on a plane. A proof of the theorem is an application of the Thom transversality

theorem. Assume that R3 has the usual z, y and z axes.



Theorem 1.1. Let L be a link in R3. Then L is isotopic to a link L' such that
L' c {(z,y,2) : z > 0} and the projection of L' onto z-y plane is an immersion
with double points only.

We call L' a link projection.

We have some of the well known links in Figure 1.

Trivial knot Oriented Figure-eight Left handed
or Unknot right handed knot trefoil knot

trefoil knot

/ \J

Trivial 1link Whitehead's L, L
of 3 components  link

N

FIGURE 1.

A knot K is called a trivial knot if it is isotopic to the knot in Figure 1 with no

crossing.

Remark. A knot is trivial if and only if the knot bounds an embedded 2-

dimensional disk in S3.

Any embedded circle in an orientable 3-manifold has a compact tubular neigh-
borhood diffeomorphic to S* x D?, where the circle corresponds to S* x {0}. Sim-

ilarly a link in an orientable 3-manifold has a disjoint union of copies of S x D?
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embedded in the 3-manifold as a tubular neighborhood. In general a tubular
neighborhood of a submanifold is unique up to isotopy of the ambient manifold.
Suppose that L is a link of n components in an orientable 3-manifold M and

suppose that
[ V1<ign(51 x D*); — M

1s an embedding onto a tubular neighborhood of L such that
L= f‘(V1gign(Sl x {0}):)-

Let
M' = (M = f(VycicnS" % D) Uj; (Vigian(D? x S1),),

where the identification is made by f| \/, <, (0D? x S');. We call M’ the result
of a surgery on M with framing f.

Example 1. Let L be the trivial knot, and given an integer n define
fa: St xD? > 83

as in the figure 2.

S8 Six D2
fn
[T3 °
Wrapped around
n times
FIGURE 2.



Denote by S3(L; f,) the result of the framed surgery on S® with framing f,. It
can be seen that S3(L; fo) is diffeomorphic to S x S%, S3(L; f1) to S3, S3(L; f2)
to RP3, and m1(S®(L; f»)) is isomorphic to Z,.

Theorem 1.2 (Lickorish). Let M be an orientable, closed, connected 3-
manifold. Then M can be obtained from S® by a framed surgery along a link

in S3.

Proof. Every orientable closed 3-manifold bounds an orientable compact 4-
manifold [20]. Let W be an orientable, connected, compact 4-manifold with OW =
M. Let D¢ be an embedded 4-dimensional disk in the interior of W. By Morse
function theory [19], we may assume that W is obtained from Dj by attaching
handles of dimensions 0,1,2,3 and 4. We may further assume that the handles
are attached in the order of their dimension. Let Wy be the union of Dé and all
the 0-handles in the above handle decomposition of W, and let W;, 1 <1 < 4, be
the union of W;_; and all the ¢-handles in W. Note that Wy is a disjoint union
of 4-disks, and W, and W have the same number of components. Since W is
connected, so is W;. This implies that all the 0-handles can be cancelled with
the equal number of 1-handles. By inverting the handle decomposition of W it
can be shown that all the 4-handles can be cancelled with the equal number of
3-handles. Hence W admits a new handle decomposition, with only one 0-handle
D}, 1-handles, 2-handles and 3-handles. Define W;, 1 <1 < 3, as before.

We claim that OW; can be obtained from 8D§ = S® by a framed surgery on
a link (trivial) on S%. To see this let V; be a connected, orientable, 4-manifold
with a connected boundary. Suppose that V; is an orientable 4-manifold obtained
from V; by attaching one 1-handle. Since 0V} is connected, we may assume that
the attaching is done on an embedded 3-disk in 0V,. From the fact that Vj is
orientable, V; is diffeomorphic to Vo#S! x D? (boundary connected sum). Hence
dV; is diffeomorphic to dVo#S! x S2. But in the above example S! x S? is
obtained from S3 by a framed surgery along the trivial knot. This implies that
OVy#S! x §% can be obtained from 0V} by a framed surgery. Continuing with the
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proof of the claim, if W; is obtained from D§ by attaching k 1-handles, then the

above discussion implies that
oW, = (0Dy) # V15i5k(51 x $%)i,

where & means “is diffeomorphic to.” Therfore, 9W; can be obtained from S3 by

a framed surgery along a link.

By applying the above argument to the inverted handle decomposition of W,
we may assume that W, is obtained from 0Wj3 by a framed surgery along a link
in OW3. It follows immediately from the definition of framed surgery that if a 3-
manifold N’ is obtained from N by a framed surgery, then N is obtained from N’
by a framed surgery: Therefore, 9W3 is obtained from 0W; by a framed surgery.
Since OW, is obviously obtained from 0W; by a framed surgery, we conclude that
OW = O0W; = M is obtained from S® by a sequence of framed surgeries. But a
standard argument using general position implies that the framed surgeries can be

done at the same time. Thus M is obtained from S3 by a framed surgery along a
link in S3.



2. Knot complement and knot group

o

Given a knot K, let V denote a tubular neighborhood of K. Then S: -V
is a compact 3-manifold that is homotopy equivalent to 53 — K. We call either
one of these two manifolds the complement of K. Clearly, equivalent knots have
diffeomorphic complements, so any topological invariant of the complement of a
knot is an invariant. of the equivalence class containing the knot. We mention that
if the complements of two knots are diffeomorphic, then the knots are equivalent.
A proof of this assertion has been completed recently by Gordon and Luecke [6].
In applying the assertion, one faces the task of deciding whether or not two 3-
manifolds are diffeomorphic, which is a difficult problem itself.

The next theorem characterizes the trivial knot in terms of the complement.

We leave the proof as an excercise.

Theorem 2.1. A knot K is trivial if and only if its complement is diffeomorphic
to S' x D2.

Remark. The links L; and L, in Figure 1 have the diffeomorphic complements
but they are not equivalent.

We now turn to algebraic topological invariants of knot complements. From the

Mayer-Vietoris sequence associated to S* = (S® — Ij') UV, we obtain
H(SP—ViZ) = Hi (S~ V,Z)2Z, Hi(S*—V;Z)=0ifi#0orl,

Therefore, the homology group of knot complements can not distinguish distinct
knots.

Given a knot (or a link) K, define the knot group of K to be
71'1(53 - V,(L'o) = 7‘-1(53 - I{, mO)v

where z is a base point. A knot group does not depend up to isomorphism on the

choice of base point since the knot complement is pathwise connected. We study
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Wirtinger presentations of knot groups. We first recall Van Kampen’s theorem
[17].

Suppose that the space X is a union of two open subsets X; and X;. Let
Xo = X1 N X,, and suppose that X; is non-empty and pathwise connected for
© =0,1,2. Suppose that the fundamental groups of these spaces with respect to a

base point in X, have the following presentation.

Wl(Xl)z (xl,... ;rl,...)
T (X2) = (Y1, 581, )
T (Xo) = (21, -+ ;t1,-+)

If 21 : Xo — X1 and 73 : Xy — X, denote the inclusion maps, then

7"1(X)5<$17"' YY1yttt 3T1,0 0 5 81,0 7i1*(21)=i2*(2’1),"'>-

Let K be a knot projection (the argument works for links as well). Consider K
as the union of two kind of arcs ; under arcs and over arcs. A connected arc u j in
K is called an under arc if

(1) u; passes under every crossing it encounters,

(i) the endpoints of u; are not projected as double points onto the z-y plane,

(iii) u; meets at least one crossing, and

(iv) u; is maximal with properties (i), (ii) and (iii) in the sense that there is
no connected arc u in K containing u; such that u satisfies (i), (i) and (iii) and
encounters more crossings than u; does.

We call each component of the closure of K — Uu; an over arc. Note that
under arcs do not cross under arcs (similarly for over arcs). A projection of the
right handed trefoil knot is given in Figure 3, where under arcs, {u;}, are given

by broken curves and over arcs, {v;}, are given by solid curves.
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FIGURE 3.

Now let

D3 ={(z,y,2) e R®: 2® + % + 2% < 1},
D} ={(=z,y,2z) € D* : z > 0},
D? = {(z,y,2) € D*: z <0},
D*=D3nD3.
Without loss of generality we may assume that K is contained in the interior
of D3 such that each over arc in K is contained in the interior of Di except for

the two endpoints and each under arc is contained in D%. Let V be a thin tubular

neighborhood of K contained in the interior of D3. Then
m(S? —V) 2 (R = V) & (D — V).
We compute 71 (D3 — {}) by the Van Kampen’s theorem. Now
D~V = (D} - V)U(D* — V) and (D2 — V)(\(D* — V) =D?—V.

Observe that Dﬁ_ — V is diffeomorphic to a solid torus with holes, where each

hole corresponds uniquely to an over arc, D> — V is diffeomorphic to the 3-disk,
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and D? — Tj' is diffeomorphic to a 2-disk with holes, where each hole corresponds

uniquely to an under arc.
o

With respect to a base point p in D? -V,
7T1(Di — {}) = (21,29, -+ ), a free group on generators {z;},
where there is a one to one correspondence between {z;} and {v;},
W](Di—-{}) =~ {1}, and 7r1(D2-—T°/) = (ry,r2, - ), a free group on generators {r;},
where there is a one to one correspondence between {r;} and {u;}. Let
il:D2—{}——>Di—{}andi2 :DZ—{;'—%D?_—I(}
denote the natural inclusion maps, then by the Van Kampen’s theorem
11 (D¥ = V) 2 (21,29, 3i1a(r1) = 1, ina(rz) =1,-+-).

This presentation is called a Wirtinger presentation of the knot group of K.

We now work out a Wirtinger presentation of the right handed trefoil knot
using the projection in Figure 3. With the generators represented by the loops in
Figure 4,

7T1(D3_ V) = (z1,z2,23), 7r1(D2 - V)= (r1,r2,r3).

In Figure 4, assume that the page is a part of the z-y plane and the positive
direction of z-axis is toward us. A reader should understand that a thin tubular

neighborhood of the knot is missing. A careful study of Figure 4 should show

i1+(r1) = z{lx:;lxzzl,

1_ -1
zq .’123)562,

i1u(r2) = 27 (2207
t14(r3) = x;lx;l(wlxgml_lwz_l)xg,zg.

12



FIGURE 4.

From the fact that a relation in a presentation of a group can be replaced with
another conjugate to it without affecting the group, and by eliminating redundant

generators,

o-1.-1 _ -1 -1, _ —1,.-1 _
(z1,T9,T3;T5 T3 T2T1 = T2T3 T L3 = T123T; Ty =1)

7'('1(53 —K)

IR

1R

o-1.—1 -1 _ -1,.-1_-1 _
(z1,T2;T5 X7 Ty T1T2T1 = L2T7 Ty Iy Tozy = 1)

1

(301,582;501102«’31 = $2$1$2)-

We use this computation to show that the right handed trefoil knot is not
equivalent to the trivial knot. Add relation 2 = 1 to get an epimorphism from
(z1,T2;T1T2T1 = T2T172) tO (z1,z9;2% = 23§ = (z122)® = 1) = S3, where S3 is
the group of permutations on 3 letters. The trivial knot group is isomorphic to
Z, and any homomorphic image of Z is cyclic. Since S3 is not a cyclic group, it

follows that the right handed trefoil knot is not equivalent to the trivial knot.
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Example 2. (Figure-eight knot group)

FIGURE 5.

In any Wirtinger presentation of a knot group, one relation is always redundant.

From Figure 5, the figure eight knot group is isomorphic to

1 i14(73) 1)

(z1,23;27" -2:3_1:101"1:103 -xlwg_lxl'l “Ty T Ty =
By adding 22 = 2% = 1 (notice that 22 = 1 implies z2 = 1), we see that the
group has (z1,z3;2} = 22 = (2123)° = 1) as a homomorphic image. This group
is an index 2 subgroup of the reflection group associated to the spherical triangle
(2,2,5), in particular, the group is not abelian.
The knots, Granny knot and square knot, in Figure 6 have the isomorphic knot

groups (excercise) but they are not equivalent, which we show later.
Granny knot Square knot

FIGURE 6.
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3. Dehn’s Lemma and framed surgery

We give three important theorems by Papakyriakopoulis in 3-manifold theory

without proof. The reader may refer to [9] for proofs.

(Dehn’s Lemma) Suppose that J C 0M is an embedded circle in the boundary
of a 3-manifold M and J is homotopically trivial in M. Then J is the boundary
of a properly embedded 2-disk in M.

(Loop theorem) Suppose that M is a 3-manifold and the homomorphism from
m1(OM) to (M), induced by the inclusion map, has a non-trivial kernel. Then
there exists an embedded circle in OM representing a non-trivial element in the

kernel such that the circle bounds a properly embedded 2-disk in M.

(Sphere theorem) Let M be an orientable 3-manifold with (M) 2 {0}.
Then there exists an embedded 2-sphere S in M such that S is not contractible
in M.

Before applying the above theorems to our study, we introduce the notion of
preferred meridian and longitude of a knot. Let K be a knot and V a tubular
neighborhood of K. Then there exists an embedded circle y in 9V = S x S*
unique up to isotopy such that u bounds a properly embedded 2-disk in V. We
call p or an element of Hy(S' x S1;Z) represented by u a preferred meridian of
K. Let

o

i1:0V—>V and i,:0V 83—V
be the inclusion maps. Then there exists a short exact sequence
0 — Hy(8V;2) 20T, g (v, Z) @ Hi(S® - V;Z) — 0.

Choose an element z € H;(0V;Z) such that {u,z} is a basis for H,(0V;Z).
Assuming that H,(V;Z) and H,(S® — V; Z) have been identified with Z, we have

f(u) = (0,m) and f(z) =(p,q) for some integers m, p and q.

15



Since f is an isomorphism, m - p = £1. Now Ker(iz«) = Z is generated by
+(gu — mz). We define one of these two generators of Ker(iz4) to be a preferred
longitude A of K. So it is either gu — mz or —qu + mz. Since m = %1, A can
be represented by an embedded circle in 0V, and we may further assume that
u intersets A exactly at one point. The above discussion also shows that u is a
generator of Hy(S® — {}; Z)=17.

In Figure 7, preferred meridians and longitudes are drawn for the right handed

trefoil knot and the figure eight knot:

FIGURE 7.

Theorem 3.1. A knot K is trivial if and only if the knot group of K is iso-
morphic to Z.

Proof. If K is trivial, then the complement of K, S3 — I(} is diffeomorphic to
S! x D? by Theorem 2.1. Hence the knot group of K is isomorphic to Z.
Suppose that m(S* — V) = Z. Then

H(S*—V,Z) = my(S° — V)= Z.

Let A be a preferred longitude for K. Since A is homologous to 0 in S3 — Ic}, A s
homotopically trivial. By Dehn’s lemma A bounds a properly embedded 2-disk D
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in $3 — I(} It can be easily seen that K and A bound a properly embedded annulus
Ain V. Now AU D is a smoothly embedded 2-disk with boundary K. Therefore,
K is trivial.

We leave the proof of next two theorems to the reader.

Theorem 3.2. A knot K is trivial if and only if the knot group of K is abelian.

Theorem 3.3. A knot K is not trivial if and only if 1, : m1(0V) — m1 (S — 17)

is injective, where i : 8V — S — V is the inclusion map.

Theorem 3.4. For any knot K, m;(S® — T}) =~ {0} for 1 > 2, and the knot

group of K is torsion-free.

Proof. Suppose that mp(S® — 10/) % {0}. Then by the Sphere theorem there
exists an embedded 2-sphere S in $% — Ic} such that S is not contractible in S% — IO/
From the well known theorem that every embedded 2-sphere in S* bounds two 3-
disks whose interiors do not intersect, we see that there exists an embedded 3-disk
Din§° — V with 8D = S. This is a contradiction. Hence mp(S® — V) 2 {0}.
To show that other homotopy groups are trivial, let X be the universal covering
space of S3 —IO/. From the homotopy long exact sequence associated to the covering
projection, we see that m5(X) 2 {0}. On the other hand, Hi(X;Z)={0},:>3,
since X is a 3-manifold with non-empty boundary. By the Hurewicz isomorphism
theorem, m;(X) = {0} for ¢ > 3. It follows again from the homotopy long exact
sequence that m;(S® — 13') =~ {0} for ¢ > 3.

To prove the second assertion, suppose that m1(S® — {}) contains a torsion
element. Then there exists a prime number m, where the cyclic group of order m,
Z ., is a subgroup of m1(S® — 13') Since mi(X) = 0 for all i, X /Zy, is a K(Zm,1)
space. Hence Hi(X /Zm;Z) = Hi(Zp; Z), where the group on the right hand side
is the i*"* homology group of Z,, with coefficients Z. It is well known [15] that
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Hi(Z;Z) is not trivial for infinitely many i’s but H;(X/Zmn; Z) = {0} for ¢ > 3.

Therefore, a knot group is torsion-free.

We consider connected sums of oriented manifolds as an introduction to con-

nected sums of knots.
(Connected sum of oriented manifolds)

Let M and N be connected, oriented, closed n-manifolds. Suppose that D; C M
and Dy C N are embedded n-disks. We give d(M — 151) and O(N — 1;2) the
orientation compatible with that of M — D; and N — D,, respectively. Define a
connected sum of M with N by

M#N = (M - Dy)U,(N - Dy),

where f is an orientation reversing diffeomorphism from (M — Dol) to O(N — 132)
The connected sum does not depend on the choice of D, and D, but depends on
f. For example, when M = N = S7, the connected sum produces 7-manifolds all
homeomorphic to S7 but distinct as smooth manifolds [18], [26].

The connected sum also depends on the orientation. Let CP? be the complex
projective 2-space with the natural orientation, and let CP2 be the same manifold
with the reversed orientation. Then the signature, o( CP?#CP?), of CP2#CP?
is equal to 0 whereas o(CP2#CP?) # 0. This implies that CP?#CP? is not even
homotopy equivalent to CP2#CP?2.

Finally we remark that the connected sum operation is well defined for manifolds

of dimension less than 5 by a theorem of Cerf [1].
(Connected sum of oriented knots)

Let K be an oriented knot such that there exsits an embedded 2-sphere S in
R? with K transverse regular to S. Suppose that K NS consists of two distinct

points p and ¢q. Let a be an embedded arc on S from p to ¢, and let D be the
embedded 3-disk in R® with 0D = S (see Figure 8.)

18



Define K3 = (KN D)U a and K2 = (K — D)U a, and orient K; and K,
compatibly with K. After smoothing K; and K, near p and ¢, we regard K;
and K, as oriented knots. We call K a connected sum, Ki#K,, of K; and Kj.
One can show that the connected sum operation is well-defined for the isotopy
(respecting orientations on knots) classes of oriented knots.

The next theorem says that we can not untangle knots by taking connected

suins.

Theorem 3.5. Let K; and K, be oriented knots. If Ky# K, is trivial, then
both K; and K, are trivial.

Proof. Put K = K #K,. Let S be an embedded 2-sphere in R? and D the
embedded 3-disk in R? such that 8D = S as in Figure 8. Let C = R® — lo)

Let V be a tubular neighborhood of K. Then R* -V = (D -V)U (C - V),
and (D — V) N(C — V) is diffeomorphic to an annulus. Denote the annulus by A.
Let

1:A—-D-V and 12:A—-C-V

be the inclusion maps. From the Van Kampen’s theorem it follows that ;. and
i, are monomorphisms from 7;(A) &£ Z =< z > to m(D — V) and m(C - V),

respectively, where z is represented by the loop in Figure 8. Furthermore,
7'('1(.D - V) = 7!'1(53 - Kl) and 7T1(C - V) = 7'('1(53 -—Kz).

Hence 7 (R® = V) = 7 ($% — K) is an amalgamated free product [16] of 71 (D —V)
and 7 (C—V') by the Van Kampen’s theorem since 1. and 7o, are monomorphisms.
Therefore, 71(S? — K3) and 7; (S — K3) can be considered as subgroups of 71(S% —
K). This implies that

7T1(53 - Kl) = 7'('1(53 - Kz) ~ 7.

By Theorem 3.1, K; and K are trivial.
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S

4

FIGURE 8.

A knot is defined to be a prime knot if it is not a connected sum of two non-

trivial knots.

Remark. A list of prime knots with the number of crossings less than or equal

to 10 is given in the knot table in [24].
We state two theorems without proof.

Theorem (Waldhausen [30]). Let K; and K, be knots. Let u; and ); be,
respectively, a preferred meridian and longitude for K;, 1 = 1,2. If there exists an
isomorphism f : m;(S® — &(Kl)) — m(S® — {)/(K2)) such that f(p1) = pe and
f(A1) = Az, then K is equivalent to K.

Theorem (Whitten [31]). Prime knots with the isomorphic knot groups have

homeomorphic knot complements.
This theorem, together with the theorem by Gordon and Luecke [6] mentioned

in Chapter 2, implies that prime knots are completely determined by their knot

groups.
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(Dehn surgery)

Suppose that K C S? is a knot and V a tubular neighborhood of K. Given a
diffeomorphism f : 8D? x S — 9V, define

S3(K; f) = (S* = V)U,;D* x S*.

We call S3(K; f) the result of a Dehn surgery on S* using f.

Let p € S* be a fixed point and let « = dD? x {p}. Let A be a small, closed arc
in S! containing p in the interior. Let D denote the closure of (D? x ST — D? x A).
Then D is diffeomorphic to the 3-disk, and

S}K; f)=(S° - 10/)Uf|aD2><A(D2 x A)UapD-

Observe that in the first union a 2-handle is attached and in the second a 3-handle
is attached. Therefore, S3(K; f) is completely determined by f|9D? x A, and
thus by f(a).

To specify f(a) in 8V, first orient K. Then, orient a preferred meridean p
and longitude X such that the linking number of 4 with K is equal to 1, and the
orientation of ) is in the direction of that of K. Now there exist integers a and b,
unique up to sign, such that f.(a) = £(bu + a)) in H;(0V;Z) with the + signs
depending on the orientation on a. Note that a and b are relatively prime since
f is a diffeomorphism. We call b/a the surgery coefficient of the Dehn surgery. If
a = 0, we use oo for b/a. One should note that the surgery does not depend on
the choice of orientations of K and a.

We can easily extend the Dehn surgery to a surgery along a link by specifying
a surgery coefficient for each component of the link. We remark that if all the
surgery coefficients are integers for a link, then the Dehn surgery on the link is

just a framed surgery which we discussed in Chapter 1, and vice versa.
Remark. For any knot K and integer n, S*(K; %) is a homology 3-sphere, i.e.,
1
H,(S3(K; ;), Z) =~ H,(S*2).
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If K is the trivial knot, then 53(K; 1)~ $3 for all n.

We say that a Dehn surgery on a knot is trivial if the surgery coefficient is equal
to 1/0. A knot K is defined to have propery P if every non-trivial Dehn surgery
on K yields a non-simply-connected 3-manifold. Clearly, the trivial knot does not
have the property P by the above remark. It has been known that various knots,
for example, connected sums of non-trivial knots, have property P. It is a long
standing conjecture that every non-trivial knot has property P. If the conjecture
were true, one could not construct a counter example to the 3-dimensional Poincaré

conjecture by doing a Dehn surgery along a knot.

Example 3. Let K be the right handed trefoil knot. We study S*(K;n/1)
by computing 71(5%(K;n/1)). When n = 1, $3(K;1/1) is known as the Poincaré
homology 3-sphere.

(n-1) Teft
handed windi

FIGURE 9.

With the generators given in Figure 9,

7r1(53 - V) = (z,y;yzy = zyz).
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So
771(53(K;n/1)) = (z,y;yzy = :cy:r,y_zx_ly_"+4x_1 =1).

It follows easily

H(SP(K;n/1),2) = (g™ = 1).

Hence S3(K;n/1) is a homology 3-sphere if and only if n = +1.
Suppose that n = 1. Put M = S3(K;1). Then

(M) = (z,y;yzy = zyz,y 2z 1yl = 1).
Let z = zy or y = 2~ '2. Then

yry = zyz = = (zyzy) = (zy)z = 2712% = 22 = 2 = 2222 = (22)7.

Now y =z 1z = zzz~!. Hence
y 2zl = 22T (2T e T )2 2T e T = 2(2 T R T )23
=zt (277 = 27 %R
So

(M) = (z,2;(22) = 2° = 2°).

This group is known as the binary icosahedral group [2], and it has 120 elements.
One can show that there is a 2 to 1 epimorphism from 7, (M) to As, the alternating
group on 5 letters.

Now we suppose n = —1, and let N = S3(K;—1). Then

2 1

m(N) 2 (z,y;yzy = ayz,y 2z~ Y’z =1).

Let z = zy. Then it follows that
m(N) 2 (z,2;(22) = 2* = 27).

This group, (z, z; (22)? = z* = 27 = 1), is the hyperbolic polyhedral group associ-
ated to the hyperbolic triangle (¥, ¥, F) [2], and it acts on the hyperbolic plane
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with a compact fundamental domain. Therefore, the group is infinite, and so is

™ (N)
(Kirby Calculus)

Let L = {Ky(r1), K2(r2),...,Kn(rn)} be a framed link of n components in S3,
where each surgery coefficient r; is an integer. Let S3(L;ry,...,r,) be the result

of framed surgery along L. Now construct W by
W(L;r1,-- ) = D4UfV1gign(D2 X Dz)i’

where W is a 4-manifold obtained from D* by attaching n 2-handles using the
attaching map

f : vlSiSn(aD2 X Dz)i — 3D4 = ,5'3’

that is induced by the framing, ry,ry, -+ ,7,. From the construction,
S} (Lira,ray - 1) ZOW(L;ry, g, - ,Tn)-

We orient W such that the orientation restricts to the standard orientation
of D*. We also orient each component of L arbitrarily. For each i, let CK;
be the cone of K; with respect to the center of D*. Then CK; U (D? x {0});
is a topologically embedded 2-sphere in W. We orient this sphere by orienting
(D? x {0}); so that the orientation restricts to that of K;. Let a; € Hy,(W;Z)
be the unique element determined by this oriented sphere, : = 1,2,--- ,n. Then
{a1,a2,--- ,a,} is a basis for Hy(W;Z) from the fact that W is a homotopy type
of bouquet of these n 2-spheres. We further orient ({0} x D?); for each ¢ such that
the orientation induces the orientation of W together with the orientation already

defined on (D? x {0});. This orientation and the inclusion homomorphism:
Hy(({0} x D?);, ({0} x 0D?);;Z) — Hy(W,0W; Z)

determines a unique element of Ho(W,0W;Z), i = 1,2,--- ,n. We denote this
element by a. Using an excision isomorphism, one can shows that {a},a},--- ,a’}

is a free abelian basis for Ho(W,0W; Z).
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It is not hard to see that the intersection number

(ai,aj) = link(K,’,Kj) ifi # j,
(ai, ai) =T;.

Let A be the matrix representing the intersection pairing of Hy(W; Z) with respect
to the ordered basis (a1, a2, - ,an). We have the following commutative diagram

27).
0 — HL(OW;Z) — H2(W,0W;Z) — HX(W;Z) — H2(OW;Z) — 0
ln[aW] ln[W,&W] ln[W,aw] ln[aW]
0 — HOW,Z) — H(W;Z) 2 Hy(W,0W;Z) — Hi(8W;Z) — 0

" The vertical maps are isomorphisms. It follows from the diagram that the matrix
A is the representation of homomorphism j, with respect to the ordered bases
(a1,az, - ,a,) and (a},a}, - ,al,). Note that H;(0W;Z) is isomorphic to the
cokernel of j,. Therefore, H;(OW : Z) = 0 if and only if A is unimodular.

We introduce two operations 6; and 65 on framed links.

Operation #; : Given a frame link L we add to or subtract from L an unknot
with framing 1 or -1, which is separated from the other components of L by an
embedded 2-sphere in S3. If we denote the new link by L', then W (L) = W (L)
since OW (L)#S% = OW (L") or OW (L) = OW(L')#S* dependending whether or
not the unknotted circle is added or subtracted. But note that W (L) % W(L').

Let K; and K5 be two knots in S3. Let f: I xI — S2% be an embedding such
that f(I x I)NK; = f({i} x I), i = 0,1. Then define

K Ko = (Ko UKs — F(Ix D)UAT x 0,13),

We call f a band.

Operation 8, : Let K; and K; be two components in L. Replace K; with
K; = Ki# sK;, where K; is obtained by pushing K; off itself by a small isotopy
using the framing of K;, and f is any band missing the rest of L. Orient K
compatibly with K;. We also assign a new framing r; =r; n r; 2 link (K;, K;)
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to K ;-, where + is used when the orientation of K ]’ is in the same direction as that
of K; and - is used otherwise. Let L' = {Ky(r1), -+, K}(r}), -+ , Kn(rn)}. It can
be seen that W (L) = W(L') since W(L') is obtained from W(L) by sliding the
j™ 2-handle along the band f over the i** 2-handle.

Example 4. The following diagram shows that CP2#CP24CP? is diffeomor-
phic to CP?#5? x S?. Both manifolds are given in terms of 2-handle attaching

on D*.

CP2#CP24TPZ— Bt : 6 é é % d éd % OCQ@

1 10

wrsss-bn OQ = QD

Suppose that framed links L and L' are related as in Figure 10. One can show

that by a sequence of operations #; and 6,, L can be deformed to L'. Hence

oW (L) = oW (L').

K.(r. (r! =vr. 3 j y
5(r) l I Kty =y E inkig s k)
e + +(a right handed
QK"(“]) full twist)
L Ll
FiGURE 10.
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Example 5. Using the move described in Figure 10 as many times as necessary,
one can show that the 3-manifold, obtained by surgery on any one of the framed

links in Figure 11, is diffeomorphic to Poincaré homology 3-sphere.

AL CQUR00

We end this chapter by stating a deep theorem of Kirby [13].

Theorem. Given two framed links L and L', 0W (L) = OW (L") (preserving
the orientation) if and only if L can be deformed to L' by a sequence of operations
61 and 0,.
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4. Seifert surface.

Let K be a knot. Choose an isomorphism from H,(S® — 1(}; Z) — Z. Since S!
is a K(Z,1) space, there exists a map f : $° — T‘} — S! realizing the isomorphism.
Let p € S! be a fixed point. Approximate f by a map ¢ transverse regular to
p. Then ¢~!(p) is a 2-dimensional orientable surface since its normal bundle in
S3 — Visa pull-back of the trivial normal bundle of {p} in S'. The boundary
of g7(p) is a union of embedded circles in OV and at least one component is
essential (homotopically non-trivial) in OV'; otherwise, g sends a meridian to a
contractible loop in S*. Each component of dg~!(p) which is inessential in OV
bounds a disk in 8V. By attaching a disk to g~!(p) along each inessential boundary
component and by pushing the disk into S — {} (the inner-most disk the farthest),
we may assume that g is transverse regular to p and each boundary component
of g(p) is essential in V. This implies that all the components of dg~*(p) are
homologous to each other in 9V, i.e., they are parallel curves in V. From the
fact that g, : H1(S® — I}; Z) — Z is an isomorphism, it follows that d¢g~!(p) has
‘odd number of components. Notice that any two adjacent (in V') components
bound an annulus in V. Attach the annulus to ¢g~!(p) along any pair of adjacent
components, and push it into $3 — IO/ to get a new orientable surface with two less
boundary components. By repeating the process, we obtain an orientable surface
F whose boundary is a circle, say A, in V. Since A bounds F, X is homologous
to 0 in H;(S3 — {}; Z), thus ) is a preferred longitude of K. Now there exists a
properly embedded annulus A in V with 04 = K U A. Since F is embedded in
S8 — 1‘} properly, AU F is an orientable surface in S* with boundary K.

Given a knot K, an orientable connected surface F' embedded in S® is called a
Seifert surface of K if OF = K.

The above argument shows that every knot has a Seifert surface. It can be

modified to show that every link has a Seifert surface.
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(Canonical Seifert surface)

Let K be a projection of a knot (the construction works for links with some

modification). Orient K and change the diagram of K at each crossing as follows.

A=) X

The diagram becomes a union of disjoint circles in the z-y plane (see Figure
12.)

K Seifert surface of K
FIGURE 12.

We push the circles in the positive direction of z-axis, and put them at different
levels such that if a circle is contained in the interior of another, then the inner
circle is placed higher than the outer one. A circle which is not contained in the
interior of another is placed on the z-y plane. After this adjustment the circles
bound disjointly embedded disks in R3, all parallel to the z-y plane. Join the
disks by bands of half-twist, where there is one band for each crossing and the
direction of the twist of each band corresponds to that of the crossing. Let F' be
the resulting surface. Clearly, F' is connected and 0F = K. To see that F is
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orientable, observe that each disk in the above decomposition of F' as disks and
bands has a boundary that has an orientation induced from that of K. Now orient
each disk compatibly with its boundary. Finally, observe that bands are attached
to the disks such a way that the orientation on disks extends to an orientation of
F. This orientation of F' is compatible with that of K.

The surface F' constructed above is called the canonical Seifert surface of the
projection K. The surface does not depend on an orientation of K but the canon-
ical Seifert surface of a link projection depends on the orientation of the compo-
nents.

The genus g(K) of a knot K is defined to be the minimum genus of all Seifert
surfaces of K. Clearly, a knot K is trivial if and only if g(K) = 0. It is not difficult
to show that

(K 1#K32) = g(K1) + g(K2).

Remark. There is an algorithm of Haken (8] for deciding whether or not two
knots are equivalent. It can be used to compute the genus of a knot but the

algorithm is too complex to be practical.

(Cyclic covers of knot complements)

Let K be a knot and F a Seifert surface of K. Denote S® — IO/(K ) by X
and FNX by F. We may assume that F is properly embedded in X. Now F
has a thin tubular neighborhood in X diffeomorphic to F' x [—1,1]. Identify the
neighborhood with F' x [—1,1] such that F x {0} is identified with F. Let Y be
the space (manifold with corners) obtained by splitting X along F. Let

Nt =YNF x[0,1] and N~ =YF x[-1,0] (see figure 13).
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Y Yin
T 1
NN
F F F F

FIGURE 13.

For each integer 7 let Y; be a copy of Y. For any positive integer k > 2 define
Xi = Uo<i<k—1Yi, where Y; is joined to Y41, 0 <7 < k — 2, in such a way that
N[ is joined to N{'_'H along F and N,_, is joined to Ng along F. Then X isa
compact 3-manifold with a boundary diffeomorphic to S 1 x S1. We call X; the
kt* cyclic cover of X.

We also define X = U;czY;, where N~ is joined to N;L'_l along F for all 7. X is
called the infinite cyclic cover of X.

The next theorem shows that these covering spaces do not depend on the choice
of Seifert surfaces. From the construction, there exists a natural k-fold covering

projection p : X — X, and an infinite covering projection p : X — X. Let
ie (X)) = Hi(X;2) ™2 2, and ju:mi(X) - Hi(X;2) = Z
be the natural homomorphisms.

Theorem 4.1. Both covering projections p and p are regular projections, and

p*(m(X’k)) = Ker(i«) and ﬁ*(ﬂl(X)) = Ker(7+).

Proof. From the construction, the group of covering transformations of p (or
p) acts transitively on each fiber. Hence both projections are regular. Let zo € X
and Zo € Xj (or X) such that p(Zo) = zo (or (Z9) = o). Then p*(wl(Xk,io))
and p,(m (X, &)) are normal subgroups of 7 (X, zo) [27].
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Now
T1(X, 20)/Pe(m1(X, &0)) = (The group of the covering transformations of p)=Z.

Hence the commutator subgroup of 7 (X, z¢) is contained in p,(71(X,Z)). De-

note 7 (X, z9) by G and the commutator subgroup by G'. Then we have
1 — pu(m(X,%0))/G' = G/G' — G/pu(m1(X,50)) — 1.

Since G/G' = G/pu(m1(X,%0)) 2 Z, pu(m1(X,%0)) = G = Ker(j,).
Similarly, it follows that p,(m; (X' k) = Ker(z,).

The above theorem implies that X r and X are invariants of equivalence classes

of knots, since the covering spaces correspond to specific normal subgroups of

7T1(X).

Example 6. Let K be the figure eight knot and X = §3 — I}(K) Let F be the
canonical Seifert surface of K drawn in Figure 14, and choose generators a and
bof H(F;Z) =2 Z @ Z as in the diagram. Note that F' deformation retracts to
the bouquet of circles, a Ub. Hence we may choose {a, 8} as a basis for H;(Y;Z)
_as in the figure, where Y = $® — F. Then o and 3 have the property that link
(a,a) = link(b, 8) = 1. We call (a, 8) the dual basis of (a,b).

Y
(D
b
/)
FIGURE 14.
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We remark that if F is a canonical Seifert surface of a knot, then S — F has
the homotopy type of a bouquet of circles.

Let it : FC Nt CcYandi~ : FC N~ CY be the natural inclusions. From
the diagram, we have

2:.t-(a) = —a, Zi(b) =—a+ :37 Z:(a) =—a- /37 Z:(b) = ﬂ

f we let M = (”01 ‘11) then

(i (a) 15 (0)) = (@ )M and  (i7(a) 7 (b)) = (e B)MT,

where MT is the transpose of M.

Remark. Suppose that z and y are basis elements of Hy(F';Z) for a Seifert
surface F of a knot K, and z* is the dual element of z in H;(Y;Z). Then the
coefficient of z* of i} (y) is equal to link(z,y™), where y* is obtained by pushing
y off F' in the positive direction of the tubular neighborhood.

We are now ready to compute the homology groups of X, =Yy UY;. Let
i;’:FCN;'CYj and ¢ :FCN; CY;

be the natural inclusions for j = 0,1. With coefficients Z, we have an exact

sequence,
0 — Ho(X) - Hy(Fo vV Fy) 2 Hy(Yy) @ Hy(Y:) — Hi(X)
——a—) Ho(Fo \% Fl) — Ho(}/o) @ Ho(y’l) — .HO(X2) g 0,

where F; denotes the copy of F' in N J+ ,J = 0,1. Observe that Im(9) = Z. Hence
Hi(X) = Coker(ix) ® Z. If we choose {aj,b;} and {aj,5;} as bases for Hy(Fj)
and H;(Yj), respectively, for j = 0,1, then {ao, bo,al,b’l} and {ao, Bo, 1,51} are
bases for Hy(Fp V Fy) and H;(Yy) @ H(Y1), respectively. Then

ix(ag) = i[)"*(ao) —i5(a0) = —ap — (—oq — 1)
Z*(bO) = Z(-)'-*(bo) - Z;*(bo) =—ap+ Bo— b
tu(ar) = ig,(a1) — i (a1) = a0 — o — (—eu)

i*(bl) = 20_=c=(bl) - Zii-*(bl) = /80 - (_al + ,31)
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In matrix notation,

-1 -1 -1 O
: 0 1 -1 1
Z*(ao by a1 bl) = (010 ,30 o /61) 1 0 1 1
1 -1 0 -1
M MT
= (ap fo a1 ﬂl)(_MT —M)
The cokernel of :, is isomorphic to quotient group of Z ® Z & Z @ Z modulo the
subgroup generated by the column vectors of the above matrix. By a sequence of

column operations we obtain

-1 0 0 O
0 1 0 0
1 -1 -1 0
1 -2 -3 -5

It follows that the cokernel of 7, is isomorphic to Zs, and i, is injective. So we
conclude

Hi(X;Z)2Z®Zs and Hy(X2;Z)={0}.

If the matrix M is found for a knot K as in the above example using a Seifert
surface F' of K (F does not need to be a canonical Seifert surface), then M is called
a Seifert matriz of K. The matrix clearly depends on F, on the choice of positive

direction of the normal bundle of F', and on the choice of basis of H;(F;Z). Then

. M MT
the matrix (—MT M

X, is the cyclic double cover of S® — K.

) becomes a presentation matrix of H; (Xg; Z), where

Continuing the example, we compute H,(X3;Z). A presentation matrix for

H](Xg; Z) is given by

-MT M 0]

M o -MT
o -MT M
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The matrix can be reduced to the following matrix by column operations.

-1 0 0 0 00

0 1 0 0 0O
1 -1 -1 0 0 O
1 -2 0 1 00
0o 0 1 -1 40
0 0 1 -2 0 4

Therefore,
Hi(X3;Z)2Z&Z,®Zys and Hy(Xs;Z) 0.

Remark. There are knots with Hy(Xy;Z) 2 {0}. For example, if X is

the 6-fold cyclic cover of the complement of the right handed trefoil knot, then
Hy(Xe;Z)=Z @ Z.

(Computation of H,(X;Z)).

Using the notation already introduced,

X =U,ezY; and FjC N} CYj,

and we have the natural inclusions zj' and z]_ of F into Yj.

Let A be the ring of Laurent polynomials,
A=Z[tt7 ) = {ant ™ + anat ™D 4 fatT fag + byt 4+ bpt™ ).

Let 7 be the covering transformations of 5 : X — X moving Y; to ;. We regard
H,(X;Z) as a A-module by defining for any z € H.(X;7Z),

(@nt™™ 44 ag +bit+- +bpt™) -z
= a7, () + -+ a7 (2) + a0z + bima(2) + -+ b (2).
We have now Mayer-Vietoris exact sequence of A-modules and A-homomorphisms:
~ a i* ~
0 — Hy(X) = Hi(V;ezFj) — Hi(VezYs) — Hi(X)
61 I,. <
- HO(VjEZFj) - HO(VjeZYJ') — Ho(X) — 0
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Here the homology groups are taken with coefficients Z. If we let 1 be a generator
of Hy(F}), then (1) = —1+t. Hence I, is injective and Ho(X) = A/(—1+1) = Z,
where (—1 + t) is the ideal in A generated by —1 + ¢. Since X is connected, this
is what we should expect. Finally, H;(X) 2 Coker(s,).

Example 7. We again take the figure eight knot. Under the notation of the

previous example, we have

te(a1) = if,(a1) — ig,(a1) = —tan — (—a0 — Bo),

ta(b1) = i14(b1) — 15, (b1) = —tag +tBo — fo.

Note that Hi(\;¢z F}) is a free A-module on generators (a3, b1), and H; (V;ez Yi)
is also a free A-module on generators (g, B). Therefore, H;(X) is isomorphic to -
the quotient module of A @ A modulo the A-submodule generated by the column

vectors of the matrix

—t+1 =t _ . o7
(7)) =

In other words, the matrix is a presentation matrix of H; (X' ). By column opera-

_ 2 _
t+1 ¢ 3t+1). Hence

tions, the matrix reduces to ( 1 0

H\(X;Z) 2 A/(—t?2+3t—1), Hy(X;Z)={0}.
Note that as an abelian group Hy(X;Z) = Z & Z.

In general if M is a Seifert matrix of a knot K, then tM — M7 is a presentation

matrix of Hy(X;Z), where X is the infinite cyclic cover of the complement of K.
(Alexander polynomial)

Let K be a knot and F a Seifert surface of K of genus g. Let B = (ay, b1, as, b,

-+ ,a4,b,) be an ordered basis for H; (F'; Z) which is isomorphic to the direct sum
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of 2¢ copies of Z. With the standard orientation on S, the Alexander duality [27]

gives a canonical isomorphism,
®: H,(S® - F;Z) — H*S*,F;Z) > H'(F;Z) — H\(F;Z).

Let a; = ®(a;) and B; = ®71(b;), 1 <i < g. Then «; and §; are represented by
embedded circles in S* — F such that link(a;, a;) = link(b;, 6;) = 1.
Choose a positive direction in a tubular neighborhood of F in S2, i.e., choose a

trivialization of a tubular neighborhood of F in S3. Let
it :FCNtTCS*-F=Y

be the natural inclusion map defined in the previous section. Let Mp be the
matrix representing i : Hy(F;Z) — H(Y;Z) with respect to the basis B =
(a1,b1,- -+ ,ag,by) and its dual basis B* = (a1, 81, , g, Bg)- So

(ij(a1)7ij(b1)’ e 7i:(a9)a Zj(by)) = (al’ﬁl, s, O, /Bg)MB-

We call Mg a Seifert matriz of K. We may also call ME a Seifert matriz of K

since 77 would be represented by M%.

Suppose that B' = (a},b}, - ,aj,by) is another ordered basis for H,(F;Z).

Then there exists a 2¢g x 2¢ unimodular matrix A(|A| = £1) such that

ay a

b by

| =4]

a; ag

b; by

We have
a
by
link ; (011,81 ---agﬂy) =1

Qg
by
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By multiplying the above identity by A from the left and by A~! from the right,

we get
a; all
by by
link [ A] : |, (caB1 - ayBy)A™" | =link (alﬂl---agﬂg)A_l =1.
ay a'g
by b

Hence the dual basis B™* of B’ is equal to (a1By -+ -ayBy)A™L. This implies

if (ay - agby) = i} ((arby - agby)AT) =it (asb; - ~aghg)AT

= (01f1 -0y )MpAT = (a1 8] - -- ) B) AMB AT.
Thus, we have proved:

Theorem 4.2. Under the above notation, if bases B = (a1b, -+agbg) and
B' = (a}by---a}b))) are related by B'T = ABT, then the corresponding Seifert

matrices are related by Mg = AMpgAT.

We define Alezander polynomial of a knot K as the determinant of tM — M T
where M is a Seifert matrix of K. The Alexander polynomial for a link is defined
the same way. But we require that the link is oriented and that M is obtained
from a Seifert surface that can be oriented consistently with the link. For example,

if F' is the shaded surface in the figure,

L= (Y and F=@

then F can not be oriented consistently with L. Note that every canonical Seifert
surface of an oriented link can be oriented conistently with the orientation of the

link.

38



Theorem 4.3. The Alexander polynomial is well-defined for equivalence classes

of knots up to multiplication by t", where n is a positive integer.

Proof. Let K be a knot. We first assume that K is given by a fixed embedded
circle in the equivalence class of K. We divide the argument into several parts.

(1) Choice of a positive direction of the tubular neighborhood of a Seifert surface
F, when F and a basis for H,(F';Z) are given:

Let B = (a1,b1,...,a4,by) be a basis for Hy(F;Z), and let Mp the Seifert
matrix representing i} : Hy(F;Z) — H;(Y;Z). Suppose that Mp = (m;;). Then

m;; = link(c,d"), where ¢ and d are i*

" and j** vectors in (ay, by, - yag,by),
respectively, and d* is obtained by pushing d off F' in the positive direction of the
tubular neighborhood of F. Let M p = (7;;) be the Seifert matrix obtained by

reversing the positive direction. Then
mi; = link(c,d”) = link(d™, ¢) = link(d, ¢*) = m;;.
Hence M p = Mg. So
M — 7| = tMT — M| = |tMT — M)T| = tM — MT).

Hence if the positive direction is reversed, the polynomial remains unchanged.
(2) Choice of a basis for H1(F'; Z), when F and a positive direction of a tubular
neighborhood of F' are given:
Suppose that B and B’ are bases for H;(F'; Z). By theorem 4.2, Mp: = AMpAT

for some unimodular matrix A. Then
[tMp — M%,| = tAMBAT — (AMpAT)T| = |A| [tMp — ME||AT| = |tMp — ME).

There is no change in the Alexander polynomial under different choices of bases
for H,(F;Z).

(3) Choice of a Seifert surface:

Let F' and F' be Seifert surfaces of K. By an isotopy make F transverse regular

to F' such that FNF' is a union of K and circles contained in the interior of both
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F and F'. This is possible since the preferred longitude is unique up to an isotopy.
Note that an isotopy of a Seifert surface does not change the Alexander polynomial.
Now $% — FU F' is an open 3-manifold with more than one component. Let C be
the closure of a component. Let F; = CNF and F; = CNF'. Then we may regard
C as a cobordism between Fy and F} (the cobordism has corners along FyNFg.) By
Morse function theory, Fj is obtained from Fj by attaching handles of dimensions
0,1,2 and 3. Since C is connected we can eliminate 0-handles with equal numbers
of 1-handles, and similarly eliminate all 3-handles. So we may assume that Fj is
obtained from Fy by attaching 1-and 2-handles. Since a 2-handle is a 1-handle
when viewed from Fj, it suffices to show

(Alexander polynomial associated to F")

= t(Alexander polynomial associated to F')

when F’ is obtained from F' by attaching a single 1-handle. Then it follows for

any two Seifert surfaces F and F',

(Alexander polynomial associated to F")

= t"(Alexander polynomial associated to F')

for some integer n.

Assume that F' is obtained from F by attaching a single 1-handle. Let B =
(az,bs,- -+ ,a4,by) be a basis for H,(F;Z). Choose a; and by in Hy(F';Z) as
in Figure 15. Then B' = (ai,b1,a2,b2, - ,a4,by) is a basis for Hy(F';Z) by
regarding the elements a3, b;,--- ,a, and b, as elements of Hy(F';Z). '

d1

FI

FIGURE 15.
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Choose positive directions of the tubular neighborhoods of F' and F' so that
they agree over F'N F' and the positive direction along F' points into the 1-handle
over the two disks where the handle is attached. Let Mg and Mp' be the Seifert

matrices associated to F' and F', respectively. Then we have

o 0 0 --- 0O

1 x x -+ X
Mg = 0 x ’

S Mg

0 x

where an entry denoted by x is unspecified.

So |tMp: — MZ,| = t|tMp — MZ|.

We finally show that two embedded circles K and K’ in the equivalence class
of a knot give the identical Alexander polynomial if Seifert surfaces are chosen
properly. Since K is equivalent to K', there exists a diffeomorphism f of 53 onto
itself with f(K) = K'. Let F be a Seifert surface of K. Then f(F) is a Seifert
surface of K'. Choose positive directions for the tubular of neighborhoods of F
and f(F) so that they are preserved under f. Let B be a basis for H;(F; Z). Then
B' = f,(B) is a basis for H,(F';Z).

(4) If f is orientation preserving, then the Seifert matrix associated to F’ with
respect to B is equal to the Seifert matrix associated to F' with respect to B'.
Hence we have the identical Alexander polynomial.

(5) Suppose that f is orientation reversing. If z and y are two basis elements

in B, then
link(z*,y) = —link(fu(2)", fu(¥))

as Figure 16 shows. Hence Mg = —Mp:. So
tMp — M5 = | — tMp + ME| = (-1)|tMp — M| = |tMp — Mg|.

Therefore, the Alexander polynomial does not change.
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FIGURE 16.

Remark. Theorem 4.3 is true for oriented links if we restrict the equivalence
class to the isotopy (preserving orientations on links) classes of oriented links. The
restriction on the Seifert surfaces ensure that F'NF' is a union circles in the interior
of both F' and F' except for the link itself in part (3) of the proof of the theorem :
if we let V denote a thin tubular neighborhood of a compohent of link L, then by
homological considerations V' N F is unique up to isotopy of 8V for any oriented

Seifert surface F'.
(Signature of knots)

Let K be a knot and M be a Seifert matrix of K. We define the signature o(K)
of K as the signature of the symmetric matrix M + M7T.

Recall that every symmetric matrix over R is congruent to a diagonal matrix.
The signature of the symmetric matrix is defined to be the number of positive

entries minus the number of negative entries of the diagonalized matrix.

Theorem 4.4. The signature of knots is well-defined on the isotopy classes of

knots. If rK denotes the mirror image of a knot K, then o(rK) = —o(K).

Proof. We prove the theorem by ckecking the steps of the proof of theorem 4.3.
(1) If positive direction of a tubular neighborhood of a Seifert matrix is reversed,

then the Seifert matrix is changed from M to M7T. Clearly,

o(M+MT)=o(MT +(MT)T).
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Hence there i1s no change in the signature.
(2) Suppose that B and B' are two ordered bases for Hy(F;Z), where F is a
Seifert surface of K. Then Mg = AMgAT for some unimodular matrix A. So

Mp + ME = AMgAT + AMEAT = A(Mp + ME)AT.

The signature does not change since congruent symmetric matrices have the iden-

tical signature.

(3) Suppose that

0 0 O 0

1 x X X
Mg =10 X

Do Mg

0 x

We need to show that

O'(MBl +Mg,) = O’(MB +M§)

Now
0 1 0 0
1 x X X
Mp + ML =10 X
: Mp + ME
0 x
This matrix is congruent to
0 1 0 0
1 x 0 0
0 0
Co MB+M§
0 0

To see this, add a proper multiple of the first column of Mp + M}, to each
column (with column number > 3) of the matrix, and do the corresponding row

operations. So

o(Mp + M%) =0 ((‘1’ i)) +o(Ms + M%) = o(Mz + ML)
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e (1)) =0

(4) Suppose that K and K' are isotopic knots. Then there exists an orientation
preserving diffeomorphism f of S* onto itself with f(K) = K'. Hence K and K’
have the identical Seifert matrices, so o(K) = o(K").

The argument so far proves that signature is well defined for the isotopy classes
of knots.

(5) To show the second assertion of the theorem, observe that there exists an
orientation reversing diffeomorphism f of $% such that f(K) =rK. Soif M is a

Seifert matrix of K, then —M is a Seifert matrix of r K. Therefore,

o(rK) = o((=M) + (=M)T) = ~o(M + MT) = ~o(K).

We denote the Alexander polynomial of a knot K by Ag(t). For the trivial
knot K we define Ag(t) = 1. One should note that this is consistent with the
definition of Seifert matrix, i.e., if one computes Ag(t) for the trivial knot K from
a Seifert surface of K with genus greater than 0, then Ag(t) = t™ for some positive

integer n.

Example 8. (1) Let K be the left handed trefoil knot. A Seifert matrix of K
is equal to M = (1 _1) from Figure 17.

0 1
M+MT—< 2 —l)cong’r\ljence (2
,:t"’—t+1.

-1 2 0

Niw O

—t

r_|t-1
|tM—M|_l o

Hence

o(K)=2and Ag(t)=t>—t+1.

The signature of the right handed trefoil knot (the mirror image of the left handed
trefoil knot) is equal to —2 by Theorem 4.4.
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Left handed trefoil knot 65 ([24])

FIGURE 17.

(2) Let K be 63 knot in Figure 17. Using the basis elements given in the

diagram, a Seifert matrix of K is equal to

-1 -1 -1 0
0o -1 0 O
M= 0 O 1 -1
0O 0 O 1

One way to check that (ay,b,,az,b2) is indeed a basis for the first homology group
of the Seifert surface is to compute det(M — MT). If the determinant is equal
to +1, then (aj,b;,a2,b;) is a basis. The statement holds in general and the

converse is also true. This will be explained in the subsequent section. In our

case, det(M — MT) =1.

Now
[tM — MT| =t* — 33 + 5t — 3t + 1,
-2 -1 -1 0 -2 0 0 0 -2 0 0 0
-1 -2 0 o) (0 =% 3 o] (o -3 00
-1 0 2 -1 o 1 3 -1 0o o0 £ o
0o 0 -1 2 0 0 -1 2 0 0 0 2

>
o



Hence

Ag(t)y=t*—3t*+5t2-3t+1 and o(K)=0.

(3) Now we consider the oriented link L given in Figure 18. Using the basis
a,b,c) in the figure, we find that a Seifert matrix of L is
g

Hence we have

Ap(t)=—t*+2t*-2t+1 and o(L)=1.

FIGURE 18.
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5. Properties of Alexander polynomial and signature

Let L be a link and F' a Seifert surface of L. Suppose that a positive direction
for a tubular neighborhood of F' is chosen. Then orient F such that the orientation
of F followed by the positive direction of the tubular neighborhood of F' gives the
standard orientation of R®. Let B be a basis for H;(F;Z), and let z and y be two
basis elements in B. Figure 19 shows that

link(z,y") — link(z™,y) = —(z,y),

the intersection number of  with y. Therefore, if we let Mg be the Seifert matrix,

and N the matrix representing the intersection pairing for H;(F'; Z) with respect
to B, then Mp — Mg = —Npg.

FIGURE 109.

Theorem 5.1. If K is a knot, then Ak (1) =1, and if L is a link of more than
one component, then Ar(1) = 0.

Proof. Let Mg be a Seifert matrix of K. Then from the above discussion

Ak(1) = |[Mp — Mj| = | - Ng| = (-1)**|Np| = |Ng|,
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where g is the genus of the Seifert surface from which Mp is computed. We note

that Np is congruent to the 2¢g X 2¢g matrix

T o

0 1
\ -1 0/
Hence |[Ng| =1 and so Ag(1) = 1.

Suppose that F' is a Seifert surface of a link L with n (> 2) components, and
that the genus of F' is equal to g. Then it can be shown that Np is congruent to

(g g) Hence |[Ng| =0, and Af(1) =0.
Corollary 5.2. Let M be a Seifert matrix of a knot K. Then |M + MT| is an
odd integer, in particular, M + M7 is non-singular.
Proof. Let Ak(t) be the Alexander polynomial obtained from M. Then

Ag(l) = Ag(-1) (mod2).

So
IM+MT|=1 (mod?2).

From the definition, it is clear that the signature of a non-singular even dimen-
sional symmetric matrix is even. Hence it follows from the above corollary that

the signature of a knot is always an even integer.

Theorem 5.3. Let
Ag(t)=ao+art+---+ant™ (a0 #0, an #0)
be an Alexander polynomial of a knot K. Then
ag+art+---+apt" =ap +ap_1t+--- 4 apt”
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as polynomials in t, i.e., the coefficients of Ak(t) are symmetric.

Proof. Suppose that M is a 2g x 2g Seifert matrix of K. By theorem 4.3,
tM — MT| =t'(ag + ayt + - + ant™)

for some non-negative integer [. Then
[t~ M — MT| = t_l(ao +at™ 4 ant™) = t-l—"(aot" +ait" - 4ay,).

On the other hand,

[tIM — MT| =729\ M —tMT| =729\ M7 —tM| =t"9|tM — M"|
=172 .t (ag + art + - - - + ant™).
Hence
—l—n=-2g+land ag+ajt+---+ apt" —faot"+a1t"—1 +---4a,

as desired.

In the above theorem, if K is an oriented link with ¢ components, then the

proof the theorem shows that

ap + a1t + -+ + ant™ = (=1)°"(an + an_1t + - - + aot™).

In the notation of theorem 5.3, the integer n is called the degree, d(K), of K.
Clearly, d(K) < 2 - g(K). If K is the 63 knot, then d(K) = 4. On the other

hand, the knot has a canonical Seifert surface of genus 2 (see Figure 17). Hence
9(K) = 2.

Let K; and K, be two knots. Then K;#K> has a Seifert surface F' = Fy#F}
(where # is a boundary connected sum), where F; is a Seifert surface of K;,
i = 1,2. We may further assume that there exists an embedded 2-sphere S in
R3 such that F N S is the arc at which the connected sum is made. Hence there
exists Seifert matrices M, My and M, of K, #K,, K, and K», respectively, such
that M = M; ® M, (direct sum of two matrices). Hence we have the following

theorem.
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Theorem 5.4. For any knots K; and K,

Axi#ka(t) = Ak, (1) - Ak, (t) and  o(Ki#K») = o(K1) + o(Kz).

Example 9. We can now show that Granny knot is not equivalent to the
square knot. Observe that if K denotes the right handed trefoil knot, then the
Granny knot can be considered to be K#K and square knot to be K+#(rK). So

by the above theorem and a previous computation,
o (Granny knot) = —2—-2=—4, o (square knot) = —2+ (2) = 0.
Hence these two knots are not equivalent.

Example 10. Let K be the knot in the solid torus V in Figure 20. Choose an
oriented, preferred meridian x and longitude A in 8V as shown in the diagram. Let
K be an arbitrary knot, and let 4’ and A’ (respectively) be the oriented, preferred

meridian and longitude of Kj.

Untwisted double of the
v K, right handed trefoil knot

FIGURE 20.
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Given an integer m, let h,, : V — V(K;) be a diffeomorphism with
hm(u) = 'y hm(X) =mp' + X

Let K3 = hp(K). We call Ky an m-twisted double of K;. A computation of the
knot group of K, shows that K, is not trivial for all m if K is not.

We compute the Alexander polynomial of K,. Choose a Seifert surface F of K,
as in Figure 21, and choose a basis, (a, b) of H;(F;Z) as in the diagram. Then a

Seifert matrix of K, is (_61 -1 . Therefore,

Ag,(t) = —mt® + (14 2m)t — m.

Hence if m = 0 (K is called an untwisted double in this case), then Ag,(t) =1t.

2(m + winding number of )

(‘/(,f) half-twists
L7\
L

FIGURE 21.

(Unknotting number)

For a knot K, define the unknotting number u(K) of K to be the minimum
number of crossing changes that turn K into the trivial knot. Note that every
projection of a knot can be turned into a projection of the trivial knot by a finite

number of crossing changes : orient the projection and travel along the projection
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in the direction of the orientation from a base point. As we go, change each
crossing so that the crossing is passed under when it is encountered the first time.
The result is a projection of the trivial knot. This shows that unknotting number
is well-defined.

There is no known algorithm for the computation of the unknotting numbers.
It is not even known whether or not the unknotting number is additive under the
connected sum of knots except when both knots have unknotting number 1 [25].
We can compute the unknotting numbers in some cases by relating them to other
computable knot invariants. We investigate one such case.

Let K, K_ and K, denote the three oriented projections as indicated in Figure

22 when they are identical except in a neighborhood of a crossing where they differ

XX

FIGURE 22.

as shown.

Note that if K} is a knot, then K_ is again a knot and Kj is a 2-component
link.

Theorem 5.5. For any two knots K and K_,

o(K_)=0(K4+)+2 or 0.

Proof. Let F and F' be the canonical Seifert surfaces of K; and K_, respec-

tively, where K_ is given as in Figure 23.
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FIGURE 23.

Let (ag,bs,- -+ ,aq,by) be a basis for Hy(F';Z). Choose (a1, b1,az, bz,--- ,a4,by)
as a basis for Hy(F';Z), where a; and b; are given in Figure 23. Let M be the
Seifert matrix of K associated to the above basis, and the positive direction of
the normal bundle of F' as indicated in the figure. Then a Seifert matrix M’ of

K_ has the following expression.

1 0 0 0
1 0 x X
M =100
Co M
00 ’
Then
2 1 0 0
» 1 0 x X
M+MT=|0 x
Do M+ MT
0 x

Since M + M7 is non-singular (Corollary 5.2), a linear combination of row vectors

of M+ MT equals the second row of M' + M 'T with entries whose column number
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is greater than 2. This implies that M' + M'T is congruent to

2 1 0 0
1 x O 0
0 O

- M+ MT

0 0

Hence
2

U(M'+MIT):0 (1

1
. ) + (M + MT).
2 1 ) X
Now o (1 y ) = 2 or 0, so we obtain the conclusion of the theorem.

Corollary 5.6. For any knot K, |o(K)| < 2u(K).

Example 11. Let K be 7; knot (Figure 24). Then o(K) = —4. We also
see that two crossing changes turn 73 into the trivial knot. So by the corollary
u(K) = 2.

~Z\)

FIGURE 24.
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(Normalized Alexander polynomials of K, K_ and K))

Let L be an oriented link with ¢ components, and let
Ar(t)=ao+art+ -+ ant™ (a0 #0, an #0)

be an Alexander polynomial of L. By Theorem 5.3 and the remark following the
theorem, if we define Az(t) by Ar(t) = t% AL(t), then

Rp(t™) = (1 Ao (o).

We call Ay (t) the normalized Alezander polynomial of L.
Recall Example 8(2), (3). We may consider 63 knot as K and the link L as
K,. Notice that K_ is the trivial knot. Now

A, (t)=t* =3t +5-3t71 +¢72,
A]{'_(t) = 1,
A, (t) = —t% +2¢% — 273 4475,

We have
A, (t) = Ag_(t) + (t* —t77)Ag,(t) = 0.

The next theorem shows that this identity holds not by an accident.
Theorem 5.6. For any K, K_ and K, we have
A, (t) = Ag_(t) + (17 —t75)Ag, (1) = 0.

Proof. Let Fy, F_ and Fp be the canonical Seifert surfaces of K, K_ and Kp,
respectively, as in Figure 25. Choose positive directions of the normal bundles of

the surfaces as in the figure.

A AL

Figure 25.
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Let (b1,b2,...,b,) be a basis for H;(Fy;Z). By choosing an embedded circle
a; passing through the band exactly once we may assume that (ay,by,bs,...,b,)
is a basis for Hy(Fy;Z) and Hy(F-;Z). We let M, M_ and M, be the Seifert
matrices of K, K_ and K, respectively, associated to these bases and the given

positive directions of the normal bundles of the surfaces. Then there exist integers

ramay7”'7z3x1,y’,"‘,Z,SUChtha,t
rozT Yy - oz r+l z y - 2
z' z
M+‘_ y, ,M_: y’
: M, f M,
2 5!
Therefore,
rt—r xt—=z' zt — 2/
T 't — 2z
[tM_ — M- | =
. tMo — M{F
Z't—z
t—1 zt—2 zt — 2!
L 0
: tMy — MT
0

So there exist I[,m,n € Q such that
AR (1) =t™Ag, (t) +(t = 1) -t" - Ak, (2).

Differentiate the identity in ¢, and replace ¢ with 1. Using the fact that A%.(1) =0
for any knot K and A(1) = 0 for any link L with more than one component, we

obtain [ = m. So we have
(A4) Ag_(t) = Ak, (8) + (¢ — 1™ Ag, (1)
If Ag,(t) =0, then Ag_(t) = AK+(t), and we have

Ak, (&) = Ag_ () + (2 —t73)Ak, () =0.
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So suppose that Ag,(t) # 0. By replacing t with ¢~ in (A),

Ap_ (t71) = A (¢ + (71 =Dt A (#71)
This implies
(B) Ag_(t) = Ak, (t) — (71 = 1)t~ ("=™ Ak, (¢)

From (A) and (B),
(t—1)t"™ = —(t7 = 1)t~ (nmm),

This forces n —m = —1. Now (A) is equivalent to

Ary(8) = Die () + (82 —t7)Ag (1) = 0.
Remark. We can compute inductively the normalized Alexander polynomial
of a link using the identity in the above theorem.
Suppose that a crossing in a link K is labelled ¢. Define ¢; = 1 if the crossing is
a positive crossing and €; = —1 if the crossing is a negative crossing . Let

0; K be the link obtained from K by a crossing change at the crossing. Define n; K
to be the link obtained from K by splitting K at the crossing:

( \\,)/\/=7'>< )

Under this notation, the identity in Theorem 5.6 is equivalent to

(+) Aok (t) = A (t) +ei(t? —t72) A, k(t).
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Theorem 5.7. If K is an oriented link of two components, C; and Cs, then
A'(1) = =I(K), where I(K) denotes link(Cy,C,).

Proof. By changing some of the crossings between C; and Cs, unlink C; from
C,. Let L be the new link. From (x), it follows Az(t) = 0. So A’ (1) = 0. Label
the crossings we have changed 1 through k. Then K = oox_;---01L. Suppose
that the theorem holds for o;---0;L. Then

AU.HU. UlL(t)_ o alL(t)+51+1(t2"t 2)An.+1o; 01L(t)

By differentiating in t,

1 1 1 3+
a‘.,;l alL(t)_ a, olL(t)+€i+1(—t 2+_t 2)An;+1d;--~01L(t)

+€1+1(t2 —t_E)A'I],_‘,lU, 0’1L(t)'

Notice that A% ror o,0(1) =0, for niy10;---01L is a knot.

Hence
A"_H alL(l)— —l(O’, 0’1L)+€i+1 = -—l(O’i+1'°°0'1L).
Use an induction on 2 to complete the proof.
Corollary. For any K., K_ and K, (K is an oriented knot),

Ak, (1) — Ak _(1) = 2(Ko).

" Proof. Differentiate the identity in Theorem 5.6 twice in ¢, and apply Theorem
5.7.
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6. S-reduced Seifert matrices

Most of the knot invariants we have studied come from the Seifert matrices
of the knots. But a Seifert matrix itself is not an invariant of a knot, unless we
modify the matrix under an equivalence relation.

Let K be a knot and F' a Seifert surface of K. Suppose that a positive direction
of the normal bundle of F' is chosen, and F is oriented consistently with the positive
direction. Let B = (aj, b1, -+ ,a4,by) be an ordered basis for ‘Hl(F;Z), and let
Mg be the Seifert matrix obtained from these data.

Suppose that det(Mp) = 0.

Then Ker(i}) is a non-trivial subgroup of H,(F;Z), where i} : H{(F;Z) —
H,(S3 — F;Z) is the homomorphism which Mp represents (refer to Chapter 4).
Choose a primitive element a} in Ker(:}). Then there exists new basis B' =
(ay,by, -+ ,al, b)) for Hi(F;Z) such that (a},bd}) = 1, and for any u € {a},b}}

77979

and v € {ay, by, -+ ,ay, b}, (u,v) = 0. Now Mp is congruent to Mp, and there

exists a (29 — 2) x (29 — 2) matrix M; such that

0o -1 0 --- O

0 x x -+ X
Mg =10 X

Do M,

0 x

If det(M;) = 0, then we apply the same process to M; to reduce it further. Hence

we can show inductively that a Seifert matrix M is congruent to a matrix of the

form
0 -1 0 --- O
0 x x -+ X
0 x
b
: : M,
0 x

where M, is a non-singular matrix.
We call M, a S-reduction of M [21] [29]. Note that an S-reduction of a Seifert

matrix could be empty.
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Remark. It can be easily seen that for a knot K, Ax(¢) = 1 if and only if an
S-reduction of any Seifert matrix of K is empty. Furthermore, for each knot K,
d(K') (degree of Alexander polynomial of K) is always even.

Let M and M; be even dimensional square matrices over an integral domain R
with 1. Suppose that M and M; are related by

0O -1 0 --- 0

0 x x -+ X
M=10 x

. M1

0 x

Then we call M; a column reduction of M, M; = C, M, and M a column enlarge-
ment of My, M = C.M;. If M, is obtained from M by a sequence of column
reductions, we still call M; a column reduction of M. Define a row reduction,
M, = R, M, and an enlargement, M = R.M,, similarly, where each entry of the

first row and column of M is 0 except that the 2nd row of the first column is 1.
(Symplectic bases and symplectic matrices)

Let F' be an oriented Seifert surface of a knot. A basis B = (as,b1,- - ,a,,b,)
of H\(F;Z) is called a symplectic basis if

ax 0 1

by -1 0 0

( , (a1, by, - ’awbg)) = .
ag 0 0 1
by -1 0

Note that such a basis always exists. Denote the matrix in the right hand side of
the above identity by J. Suppose that B’ is also a symplectic basis for H;(F;Z).
Then these exists an unimodular matrix A such that B’ = BA. It follows that
ATJA = J. We call any unimodular matrix A over an integral domain satisfying
this identity a symplectic matriz. Two matrices M and M’ are called symplectically -

congruent if M' = AT M A for some symplectic matrix A.
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Lemma 6.1. Suppose that non-singular matrices, M, and M), are column
reductions of matrices, M and M', respectively, over an integral domain. If M
is simplectically congruent to M', then M, is simplectically congruent to M/. In
particular, dim(M,) = dim(M]) and det(M,) = det(M)).

Proof. Let A be a 2n x 2n symplectic matrix such that
ATMA=M"or ATM = M'A™! - (%).
From ATJA = J, A=! = JTATJ. This implies that A™! is obtained from AT

(or from A) by simply rearranging the entries with +, singns added: for a 2 x 2

matrix U = z 2 , let D(U) = _(_ib —ac). For any even dimensional matrix

V, we define D(V) to be the matrix obtained from V be applying the operation
D to each 2 x 2 submatrix when V is partitioned into disjoint 2 x 2 submatrices.
Then A~ = D(AT). _

Suppose that dimensions of M, and M/ are 2p and 2q, respectively. Without
loss of generality we assume that p < ¢. Let A = (a;;).

First, compare (1,1) entries of both sides of (*). This gives ap; = 0. Next,
compare (1, 3) entries to get as; = 0. By repeating the steps, obtain

azi(2j-1) =0 for1<i<n-p, 1<j<n-gqg

To illustrate the information we have obtained on the entries of A, we look at an

example, with n =4, p=1 and q = 2.

AT M M A?
2n-2p 2p 2p
X 0 x 0 x0fxxy (01000000 (0-100j0000) (x x X X X X
ol X X X X X XX X[ |0 X x X X X|x X 0x x x|xxxx| |0x0x0x
N
(éxOxOxOxx 0x0-100/00O0 0x0-110000] [xxx xxx
X X X X X XIx X OxOxxxxx=0xOxxxxx 0x0x0x
' 0x0x0-/00| [0x0x
o 0x0x0x{0x 0x0x M
N C: r C
0x0x0xM 0 x 0 x 1
L J O0Ox0x0x ") Vxo0x J \

Let C; be the 1st column of A™! consisting of the last 2¢ entries. The identity
(%) implies that M, - Cy = 0. Since M] is non-singular C; = 0. Equivalently, the
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last 2q entries of the 2nd column of A7 are equal to 0. Similarly, it follows that
the last 2¢ entries of any (2:)™ column of AT, 1<i<n —p, are 0.

Now any (2i)** column vector of AT, 1 <i<n— p, can have non-zero com-
ponents only at (n — ¢) rows common to all .. If n — ¢ < n — p, then these
column vectors are not linearly independent, thus A7 can not be non-singular. So
n —q 2 n — p, which implies that p = q.

Let B be the 2p x 2p submatrix of A consisted of the last 2p columns and

rows. The identity (*) and the information we have on the entries of A imply that

BTM,B = M! and BTJB = J. Therefore, M, is symplectically congruent to M.

Lemma 6.2. Let M = R.C.M; be a Seifert matrix (over Z). Then M is

congruent to C.R.M;.

Proof. Let B = (ay,b1,a3,bs,- -+ ,a,,b,) be the basis associated to M. Let mo3
be the (2,3) entry of M. Let

!
B = (az - m23al7b2aa1ab1 +m23627a37 b3,"' 7ag,bg)~

It is easy to check that B’ is a basis, and with respect to B’, we obtain a new

Seifert matrix:

I ’)

0 x 0 0 o© 0

M' = 1 x x - x
x 0

o % 0o« )

Now M' is congruent to M, and this completes the proof.
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Lemma 6.3. Suppose that M = R.M; is a Seifert matrix associated to a
symplectic basis, where M, is non-singular. Then M, is a column reduction of a

matrix which is symplectically congruent to M over an integral domain containing

det(M,) as a unit.

Proof. Suppose that M represents i} : H,(F;Z) — H;(S® — F;Z) with respect
to a symplectic basis B = (a1,b1, -+ ,a4,by). Let R be an integral domain in
which det(M;) is a unit. Then there exist uq, u;, and v;, 2 <1: < g, in R such that

if we let

by = b +uja; + Z (uia; + vibi),
2<i<yg

then i+ (b)) = 0. Let
B' = (b}, —a1,a2 —v2a1,bs + uza1, -+ ,ay — vga1, by + ugay).

Check that B' is a symplectic basis for Hy(F;Z). With respect to B’, i} is
represented by C.M;. This matrix is symplectically congruent to M over R, thus
the proof is completed.

(Seifert matrices of oriented knots)

Let K be an oriented knot and F a Seifert surface of K. Orient F' such that
it induces the orientation of K. We choose a positive direction of the normal
bundle of F' such that the orientation on F followed by the positive direction of
the normal bundle agrees with the standard orientation of R®. Choose a basis B
for H,(F;Z). A Seifert matrix with respect to B is called a Seifert matrix of the
oriented knot K. An S-reduction of a Seifert matrix of an oriented knot is called
a non-singular Seifert matriz of the knot.

We now give a proof of the following theorem of Trotter [28] [29].
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Theorem 6.4. If M, and M] are non-singular Seifert matrices of an oriented
knot K, then M, is congruent to M) over an integral domain in which det(M,) is

a unit.

Proof. By the proof of theorem 4.3, it suffices to prove the theorem when M,
and M/ are S-reductions of Seifert matrices M and M' of K corresponding to
Seifert surfaces F' and F', respectively, where F” is obtained from F by a single
1-handle attaching. There are two cases to consider as in Figure 26 depending on

whether or not the handle is attached on the positive side of F'.

200D { 9.okb
Case 1 ::aseZ

FIGURE 26.

Case 1. By choosing a basis for H;(F';Z) properly, we see that
M 5 CeM (congruence over Z).

Hence C? M, 5 CIM, for some integers p and ¢q. By choosing symplectic bases,

!

we see that there exist non-singular matrices M'r and M, such that M ~ M,
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M, ~ M, and CfM—'r is symplectically congruent to CIM,. over Z. By lemma 6.1,
-]\_/.f—’r is symplectically congruent to M,. Therefore, M/ 5 M,.

Case 2. In this case, we have M’ 5 R.M. Then there exist integers p and ¢
such that

CP?M] 5 RngMr’ZCeqReMr by Lemma 6.2.

Let R be an integral domain in which det(M,) is a unit. The last matrix in
the above equation is congruent to C¢*! M, over R by Lemma 6.3. By choosing
proper symplectic bases, it follows that there exist non-singular matrices H’r and
M, such that —.7\-/[—; ~ M!, M, ~ M, and ngM’ 1s symplectically congruent to
CI*1 M, over R. Again apply Lemma 6.1 to conclude that M; is symplectically

congruent to M, over R, thus M is congruent to M, over R.
(Oriented cobordism)

Let K be an oriented knot, and let F' and F' be oriented (consistently with K)
Seifert surfaces of K. We say that F' is positively cobordant to F' if F' can be
obtained from F' up to isotopy of R? by adding ambient 1-handles (more precisely,
by doing ambient 0-surgeries) to the negative side of F', and by adding 2-handles
to the positive side of F'.

The next theorem follows from the proof of Theorem 6.4.

Theorem 6.5. Let F and F' be oriented Seifert surfaces of an oriented knot
K. Suppose that M, and M| are non-singular Seifert matrices induced from F

and F', respectively. If F' is positively cobordant to F, then M, is congruent to
M] over Z.

Example 12. Let K be the 103 knot oriented as in Figure 27, and let F' and
F' be the oriented Seifert surfaces. Both surfaces consist of a disk and two twisted

bands; horizontal and vertical ones. In F, the disk is behind the vertical band,

and in F", the disk is in front of the vertical band.
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FIGURE 27.

Choosing (a, b) as a basis for the 1st homology group of both surfaces as in the

figure, we obtain two non-singular Seifert matrices

(-2 -1 (-2 0
M-(O 3> and M_(l 3>

corresponding to F' and F', respectively. We prove that F is not positively cobor-
dant to F' by showing that M is not congruent to M’ over Z. If M is congruent to
M', then there exists a unimodular matrix A = (f g such that ATMA = M'.
This implies that —2p? —rp+3r?2 +2 =0. So —(4p +r)? + 25r% + 4% = 0. Hence
2572 + 42 must be the square of an integer but this is only possible by elementary
number theory when r = 0. This forces p = s = +1 and ¢ = ZF%, thus showing
that M is not congruent to M' over Z.

In theorem 6.4, if det(M;) is a prime number, then M, is congruent to M, over
Z [29]. |

Suppose that K is an oriented knot. Let K be the same knot with the reversed
orientation. We say that K is invertible if there exists an orientation preserving

diffeomorphism f of R3 such that f(K) = K, respecting the orientation. In
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general, if M is a Seifert matrix of K then M7 is a Seifert matrix of K. Therefore,
if M is a non-singular Seifert matrix of an oriented knot K, det(M) is prime, and

M is not congruent to M7 over Z, then K is not invertible. It is shown [29] that

it M= [g 111] , then M is not congruent to M7T over Z. Therefore, any oriented

knot with a Seifert matrix equal to M is not invertible. In Figure 28, one such

knot is given.

10 right handed:

+ 22 right handed
half-twists J

half-twists

=

OO
QOC

FIGURE 28.
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7. Concordance, Signature and Arf invariant

In this chapter we show that the concordance classes of oriented knots form an
abelian group under the connected sum operation, and prove that signature and

Arf invariants give homomorphisms from this group to Z and Z;, respectively.
(Concordance)

Two oriented knots K, and K; are concordant if there exists an embedding

h:S'x I — S%x I such that
R(S* x {i}) = K; x {i} € §® x I, i = 0,1, respecting the orientation,

where S! is given an orientation. Here h is not required to preserve the I-level.

A knot is called a slice knot if it is concordant to the trivial knot. It is clear
that a knot K is a slice knot if and only if K C S® = 8D* bounds a properly,
smoothly, embedded 2-disk D in D*.

Remark. Note that every knot bounds topologically embedded 2-disk in D*.

Example 13. We show the 6; knot K (Figure 29) is a slice knot. The knot
bounds a singular disk f : D? — S$3 with double point set, @ U 3 as in the figure.

FIGURE 29.
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Choose two small embedded disks C; and Cs in the interior of D? as in the
figure. Let D, be a 4-disk of radius 2, and D; the concentric disk of radius 1 in
D,.

Identify S® with dD,. By pushing f(é’l) and f(&’z) into D, while leaving
f(8C,) and f(8C) on 8Dy, we find an embedding (not proper) g : D> — D; such
that g(0D?) = K. Now there exists an embedding

h:S'xI—Dy—D =8 xI
such that h respects I-level, with
h(S! x {0}) = K C 8D; and A(S' x {1}) C 9D,

and g(D)UA(S* x I)isa proper embedding of D? into D,. Since h(S? x {1}) is
equivalent to K, K bounds a properly embedded 2-disk in D,, thus K is a slice
knot.

A knot K is called a ribbon knot if there exists a singular embedding
f:D* - S% f(0D*) =K,

with double points only such that for each component A of the double point set,
f~1(A) is a union of two arcs; one is in the interior of D? and the other intersects

0D? at the two endpoints.

Example 13 shows that every ribbon knot is a slice knot. It is not known

whether or not the converse is true.

Theorem 7.1. If knots Ky and K, are concordant, then Ko#rK, (rK, is the
mirror image of K, and K, is K, with the reversed orientation) is a slice knot. In

particular, for every knot K, K #rK is a slice knot.

Proof. Let h : S1xI — S3 % I be a concordance from Ky to K. Let z € S* bea
fixed point. By an isotopy of S® x {1} onto itself we can assume that 7h(z x {1}) =
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mh(z x {0}), where m: % x I — S3 is the projection. Define f: {z} x I — S3 x I
by f(z,t) = (wh(z,0),t). Since f and k| {z} x I are homotopic embeddings of an
l-manifold into a 4-manifold, they are isotopic [7]. Hence after composing with a
diffeomorphism of 5% x I onto itself, we may assume that h(z,t) = (mh(z,0),t)
fort € I.

Let D' be a closed tubular neighborhood of z in S!. Again, after an isotopy,
we may assume that h| D! x I is a product embedding. Therefore, there exists an
embedding

F:(D*xI,D' x I) = (S x I, h(S* x I)

of pairs such that F(D' x {0}) and F(D" x {0}) are arcs in K¢ x {0} and K; x {1},
respectively, where we consider (D%, D1) as the standard disk pair.
Let
D*=SxI—F(D*xI), D=h(S"xI)—F(D" x1I).

We may consider
oD* = s* #?3 (-.S'-3 is S® with the orientation reversed), 0D = Ko#rK.,

D is a properly embedded 2-disk in D*, and 0D C dD*. Therefore, Ko#rK; is a
slice knot.
Since every knot is concordant to itself the second statement follows immedi-

ately.

Remark. By slightly modifying the proof of Theorem 7.1, it can be shown
that connected sum respects concordance relation. Hence the concordance classes
of oriented knots form an abelian group, with the trivial knot as the identity and
the mirror image of a knot with the reversed orientation as its inverse. The next
theorem shows that the signature of knots induces a homomorphism from this

group to Z.
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Theorem 7.2. If K is a slice knot, then o(K) = 0.

Proof. Let D C D* be a properly embedded 2-disk with 0D = K. Since D is
contractible, D has a tubular neighborhood diffeomorphic to D x D? (see Figure
30). Let X = D* — D x 1072. Identify X N D x D? with D x S, and denote by
f:D x S*— S the projection to the second factor. There exists an extension g

of f over X since the obstruction to extending lies in a trivial group,
H*Y(X,0XN\D x D*;m;(SY)) = H'*'(D*, D x D?;m;(S")) = {0},

where the isomorphism is an excision isomorphism. We may further assume that
g is a product near D x S*. Let p be a point in S*. Clearly, g is transverse regular
té p in a collar neighborhood of D x S! in X. Approximate g by h transverse
regular to p so that ¢ = h near D x S*.

Now h~!(p) is an orientable 3-manifold in X such that

Y (p)ND x S* = D x {p}.
Let W, be the component of A~!(p) containing D x {p}. Let
Wy = {(z,0p) e Dx D*: 0 <6 < 1}.

Let W = Wo UW; and F = W N 8D* Then F is an orientable surface with
OF = K and OW = F U D identified along K. At this moment F' may have

several components.

Let Fy be the component of F with 8F, = K. Each component (close 2-surface)
in F — F} bounds a unique 3-dimensional submanifold in S* which does not contain
K. Choose a minimal component of F' — Fp in the sense that the 3-manifold it
bounds does not contain any other component of F. Let Y be the 3-manifold
which the minimal component bounds. Attach Y to W to close up the boundary

component, and push Y into D* by a small distance to get a new 3-manifold (we
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FIGURE 30.

call it W again) which has one less boundary components. Repeat the process to
modify W so that W N dD* = F is connected. Then F is a Seifert surface of K
and OW = FU D.

Let ¢ : OW — W be the inclusion map. Then we have a commulative diagram
of long exact sequences,

—  HY(W) — HY W) -5 HYW,0W) —  HXW)

ln[W,aW] ln[BW] ln[W,BW] l

— H,(W,0W) -5 H(0W) =  H(W) — H(W,0W)

where the homology and cohomology groups are taken over R and the vertical

maps are duality isomomorphisms. From the exactness of the bottom sequence,
H1(8W) = Ker(iy) @ Im(i. ).
Furthermore, H*(W) = Hom(H;(W),R),
H'(8W) = Hom(H,(8W),R), H*(W,dW) = Hom(H,(W, W), R),
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and, 6 = Hom(0). Therefore, dim(H;(0W)) — dim(Im(9)) = dim(Ker(8)). From
the commutativity of the diagram, dim(Ker(6)) = dim(Ker(z,)). This implies that

dim(Ker(e4)) = (1/2) dim(H,(0W)).

Since H;(F) = H,(OW), there exists a basis B = (ay,az, -+ ,a4,b1, -+ ,by) of

H,(F) such that h,(a;) =0,1 <1 <g, where h : F — W is the inclusion map.
Choose a positive direction of the normal bundle of W in D* and restrict it to

a positive direction of the normal bundle of F in S3. With respect to this positive

direction, we claim that link (a,',a;-*') =0for 1 <z, y <g¢g, which we show later.

So a Seifert matrix of K has the form, M = (g g)
So

T 0 D+CT
M+ M = <C+DT E+ET>'

Let U =D+ CT and V = E+ ET. Since M + M7 is non-singular, U is non-

singular. We have

0 U _ O U cong}:}ence O U
vt v)  \UuT iv4liv - \UT o
_(ut o o U\/[UDH? o

o -I1/J\UT o 0] -I

_(O0 -I\ (-2 -I\ (-2 O

“\-I O -I O o 1ir

o(K)=0o(M+ MT) =0,

Therefore,

To show the above claim, let G; and G be properly embedded singular surfaces
in W such that 0G; = a; and 0G; = a;. Such surfaces exist since a; € Ker(h,). We
let G;’ be the surface obtained from G; by pushing it off W in the positive normal
direction of W. It is well known that link(a;,a}) = (G, GT). But (Gi,G}) =0
since G; N Gj = ¢. This finishes the proof of the claim.
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Remark. The proof of the above theorem shows that if K is a slice knot, then
there exists a polynomial p(t) € Z[t] such that Ak (t) = p(t)-p(t~!), in particular,

Ag(—1) = % (square of an integer). For example,
Ag, (t) = =2+ 5t — 2t* = #(t — 2)(% —2).
If K is the figure eight knot, then
Ag(t)=-1+3t—t*, Ag(-1)= -5.
Therefore, the figure eight knot is not a slice knot (Note that o(K) = 0.)
(Arf invariant) [22]

Let f : S2 — M* be a piecewise linear embedding into a closed, oriented,
simply connected, smooth 4-manifold. Suppose that f is differentiable except at
one point z € S2. Let D* be a smoothly embedded 4-disk in M centered at f(z)
such that f(S%) N AdD* is a knot K in dD*. Let £ = [f] € Ho(M;Z). Suppose
that the mod 2 reduction of the Poincare dual of £ is the 2nd Stiefel-Whitney
class wo(M) € H*(M;Zy) of M. Under these assumptions f : S — M is called
admissible for the knot K. Define the Arf invariant

= 5_'§_:_8ﬂ1_) (mod 2),

w(K)
where £-€ denotes the self intersection number of ¢ and o(M) denotes the signature

(index) of M. We first see why f'ﬁ_g(M) is an integer.

(Unimodular symmetric bilinear form)[10]

Let V be a finitely generated free abelian group, and let A : V@V — Z a
unimodular symmetric bilinear form (the determinant of the matrix representing
h is equal to +1). Then there exists an element £ € V (not unique) such that
h(z,z) = h(z, ) (mbd 2) for all z € V. Such an element € is called a characteristic
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element. For example if V = (a)®(b) and h is represented by (? 1) with respect

to the basis (a,b), then £ = a is a characteristic element. Given a symmetric

bilinear form (h, V), let o(h) denote the signature of A.

Theorem. Under the above notation

’ h(&,€) —o(f)=0 (mod 8).

A symmetric bilinear form is defined to be even if h(z,z) = 0 (mod 2) for all
z € V. A symmetric bilinear form is even if and only if all the diagonal entries of
a matrix representing h are even. For an even form h, 0 € V is a characteristic

element. Hence we have

Corollary. If (h,V) is an even form, then o(f) = 0 (mod 8), in particular,
dim(V') > 8.

Note that there exists an even form represented by the 8 x 8 matrix Ej.

For a closed, oriented, 4-manifold M (M only needs to be a topological man-
ifold), let (R',H?*(M;Z,)) be the pairing induced by the cup product. There
exists a unique element w, € H?(M;Z,) such that h'(z,z) = h'(ws,z) for all
z € HY(M;Z,). By the Wu formula, w; is equal to the 2nd Stiefel-Whitney class
wq(M). Suppose that there exists £ € Hy(M;Z) such that the mod 2 reduction
of the Poincaré dual of ¢ is equal to wy(M) (such € may not exist), then £ is a

characteristic element for the unimodular symmetric bilinear form
h:Hy(M;Z)® Hy(M;Z) - Z

induced by Poincaré duality. We denote z - y for h(z,y). Then by the above
theorem £ - € — o(M) = 0 (mod 8). This shows that in the definition of p(K),
(€-£—0(M))/8is an integer. Before we prove that ¢ is well defined we state some

other important theorems in 4-dimensional manifold theory.
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Theorem (Rohlin). If M is an oriented, closed, smooth 4-manifold with
wo(M) =0, then o(M) = 0 (mod 16). '

This theorem is a corollary of the next theorem which was proved later.

Theorem (Kervaire, Milnor). Let M be a closed, oriented, smooth 4-
manifold such that the pairing (h, Ho(M;Z)) has a characteristic element £. If
€ can be represented by a smoothly embedded 2-sphere in M, then

£-£E—o(M)=0 (mod 16).

Theorem (Freedman). There exists an oriented, closed, topological 4-mani-
fold M with we(M) = 0 and o(M) = 8. Such a manifold M does not admit a

smooth (or PL) structure.

The next theorem shows that Arf invariant is well defined up to concordance.

Theorem 7.3. If knots Ko and K, are concordant, and if the Arf invariant is’
defined for them, then ¢(Ky) = ¢(K;).

Proof. Let fi : S — M; be an admissible map for K;, ¢ = 0,1. Let D} be an
embedded 4-disk in M; centered at the singular value f;(z) with D% N f;(S?) =
K;. Suppose that h : ST x I — S§® x I is a concordance from Ky to K;. Let
N = h(S* x I). We consider N as a properly embedded submanifold of Dj — %1073

by identifying D§ — 3 D§ with S® x I such that S® x {0} = dDg. Let
1e o
X0=M0—§Dé and Xl -:Ml—D%

Both manifolds have the natural orientation induced from M, and M;.

Let M = Xy Uy X1, where g is an orientation preserving diffeomorphism from
08X, to X such that g(K; C B%Dg) = K, C 0D7 (See Figure 31)
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FIGURE 31.

Orient M so that it is compatible with My. Then M = My#M,, where M, is
M, with the orientation reversed. Define a smooth embedding f : S? — M by

F(SHNXo = (fo(52) = DHUN and  £(SH)NX1 = f1(S?) - Dy.

Furthermore, define f such that f~1f, preserves the orientation, and f~!f; re-
verses the orientation.

Let & = [fi] € Hy(M;;Z), i = 0,1. Regard &; as an element of Hy(X;;Z)
since the homomorphism: Hy(X;;Z) — Hy(M;; Z), induced by the inclusion map,
is an isomorphism. Identify Ho(M;Z) with Ho(Xo;Z) @ H2(X1;Z). Then € =
[f] = & — &1. Let w; = wa(M;). We regard w; as elements of H?(X;;Z,). Then
wa(M) = wo + wy. From naturality, the mod 2 reduction of the Poincaré dual of
€ is wy(M). Therefore, € is a characteristic element of (h, Hy(M; Z)).

By the above mentioned theorem of Kervaire and Milnor,
£-£E—o(M)=0 (mod 16).
So

(bo—£€1)-(bo—&1)—(0(Mo)—o(My)) = &o-bo+&1-Er—0(Mo)+0(M;) = 0 (mod 16).
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Then
(o - €o)nt, — o(Mo) = (&1 - & )m, — o(My)  (mod 16).

Hence

(6o - €o)mo —0(Mo) _ (&1 - &1)my — o(Mi)
8 - 8

(mod 2)

as desired.

Remark. Theorem 7.3 implies that the Arf invariant does not depend on the

choice of admissible map.

Theorem 7.4. For any knot K, o(K) is defined.

Proof. Let W = W(K;1) be the result of a handle attaching on D* along K
using the framing 1 (See Kirby Calculus of Chapter 3). Then

Hy(W;Z) §‘H2(W; Z)=7, and H;(W;Z) = {0} if i # 0 or 2. |

Furthermore, 0W is a homology 3-sphere. Every homology 3-sphere bounds a
parallelizable, simply connected 4-manifold [12]. Let X be such a manifold which
OW bounds. Let M = W U X. M is an orientable, closed 4-manifold. Orient M
consistently with the natural orientation on W. Regard S? = D3 U D?, and let
z € D? be the north pole of S?. Let CK be the cone of K in D* with respect to
the center of D*. Define a piecewise linear embedding
f:S8* - M = D*JD? x D X

by f(D1) = CK, f(z) = center of D*, f(0D2)=K and f(D2)= D?x{0}.

We claim that f is an admissible map for the knot K. From the construction,
f(S*)NdD* = K. Let & = [f(S?)] € Ha(M;Z). Then ¢ is a generator of
Hy(M;Z) > Z and £-€ = 1. Let w be the mod 2 reduction of the Poincaré dual
of . We need to show that w = wy(M).

Let w € H?*(M;Z). Then there exists n € Hy(M;Z) such that the mod 2
reduction of the Poincaré dual of 7 is equal to u since H*(M;Z) = {0}. Express
n=kE4+7, where k € Z and 7 € Hy(X;Z). Now 77-7 = 0 since X is parallelizable,
and 77- € = 0. In modulo 2,

(uUu)([M]) =n-n = (kE+7)-(kE+7) = k477
By the Wu formula [27] w = wo(M).

k= (kE+7)-€ = (uUw)([M]).
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Theorem 7.5. For any two knots K; and K,

o(K1#K2) = o(K1) + o(K2).

Proof. Let f; : S? — M; be an admissible map for K;, for i = 1,2. Let D} be
embedded 4-disks containing the singular point of f; such that K; = f;(S?)NoD?.
Form the connected sum M = M{#M; in such a way that D = (DjUDj) N M
becomes an embedded 4-disk in M, f1(S5?)#f>(S?) is embedded (piecewise lin-
early) in M, and f1(S?)#f2(S?) intersects 0D* in K1#K,. Define an embedding
f: 8% = M such that f(D%) = C(K1#K>) (see the proof of theorem 7.4 for the

notation) with
f(z)= center of D,  f(D) = [i(S*)#f:(5%)] — D*.
It follows that f is admissible for K1 #K, and € = [f] € Hy(M;Z) is equal to
&1+ & € Ho(M;Z) = Hy(My; Z) @ Ho(M3; Z),
where &; = [fi] € Ho(M;; Z). Since
o(Mi#M;) = o(My) + o(Mz),
the theorem follows.

We have now shown that the Arf invariant gives a homomorphism from the
concordance classes of knots to Z,, in particular, the Arf invariant of any slice
knot is 0. The next example shows that the Arf invariant of the right handed
trefoil knot is 1.

Example 14. Let M be the projective complex 2-space. Then

M = (D2 x D*J,D* x D*)gD*,
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where a : 9D? x D* — D3 x D? is the diffeomorphism given by
a(e® reite) = (0 pei@i+2)y,

Orient M so that it restricts to the standard orientation of D'f’,_ x D2.
Let
v =[D} x {0}UDZ x {0}] € Hy(M;2Z),

where 7 is oriented consistently with D% x {0}. Then v is a generator of Hy(M;Z)
2 Z. To find v - v, let

y' = C(a(0D% x {p}))U, D x {p},

where p is a point in D? with |p| = 1, and the cone is taken with respect to the
center of D% xD?%. Clearly, [y] = [y] in Ho(M; Z), and v intersects ' transversally
at one point, (0,0) € D3 x D%. Hence

17 =77 = (D% x{0},Ca(dD2 x {p})) = link(dD} x {0},a(dD? x {p})) =1

(see Figure 32.) This implies that o(M) = 1.

a(aD?x{p})

2
BD+x{O}

FIGURE 32.
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Let L be the knot in 8D% x D? as in Figure 33, and let K = a(L) C D3 x D?.
Clearly, L is the trivial knot in (D2 x D?) 2 §3 and K the right handed trefoil
knot in (D% x D?). Let D be a properly embedded 2-disk in D? x D? such that
0D = L, and let CK be the cone of K in D3 x D? with respect to the center
(0,0) of D3 x D?. Define f: §* = M by

f(D2)=CK, f(D%)=D, f(@D2)=K and f(z)=/(0,0),

where S? = D2 U D? and = € D2 is the north pole of S2.
+ ¥

aD3xD* 3D2xD?

FIGURE 33.

Let £ = [f] € Ho(M;Z). From the construction, £ = 3y with a proper orienta-

tion on f. For any integer k,
ky-ky=k =k=ky -3y (mod 2).

Hence the mod 2 reduction of the Poincaré dual of 3v is wo(M). Therefore, f is
admissible for K (right handed trefoil knot). So

—o(M) 9-1
8 8

o(K) = 3737 =1 (mod 2).
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We finish this chapter after stating two theorems which relate the Arf invariant

to other invariants.
Theorem (Robertello). For any knot K,

H(K) = %A’,;u) (mod 2)

For any oriented homology 3-sphere M, let u(M) be the y-invariant. By defi-

nition,
u(M) = (W)

(mod 2),

where W is a paralellizable 4-manifold [12], 9W = M. By Rohlin’s theorem u(M)
is well-defined.

Theorem (Gordon). For any knot K,

¢(K) = p(S°(K;1)),

where S®(K;1) is the result of frame 1 surgery along K.
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8. Generalized polynomial

A new polynomial invariant for oriented links was discovered by Jones in 1985.

Jones polynomial Vi (t) for an oriented link K satisfies the skein relation,
t Wi, (1) = tVik_(8) + (£7 — 17 7) Vi, (t) = 0.

This identity is similar to the one which the normalized Alexander polynomial
satisfies (Theorem 5.6).

It turned out that both Jones and Alexander polynomials are contained in a
polynomial with two variables, the “Generalized polynomial”. The generalized
polynomial was discovered in 1985 by several people; Freyd, Yetter, Hoste, Lickor-
ish, Millett and Ocneanu [4]. In this note we follow the treatment of the polynomial

by Lickorish and Millett in [14].

The next theorem characterizes completely the generalized polynomial.

Theorem 8.1. To each oriented link K a unique element K(I,m) € Z[I*!, m*]
can be associated so that K(I,m) depends only on the isotopy (preserving orien-

tations on links) class of K; if U is the trivial knot, then U(I,m) = 1; and
(%) IK. (I,m)+ 7' K_(I,m) + mKy(I,m) =0

We first study some properties of the generalized polynomial before we turn to
the proof of the theorem.

(Properties of generalized polynomial)

(1) For each link K, define

Vi(t) = K@it~ i(t™7 — t7)).
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Put [ =it~! and m = 4(¢72 — £3) in (%):
it K (it i —43)) i K (7Y i(tE — 7))
Fi(tT7 —t7) Ko (it i(t2 — 7)) = 0.
This implies
1V, (8) =tV i_ () + (17 =t~V g, (t) = 0.

Since Vy(t) = 1, Vi (t) = V().
Similarly,
Ak(t) = K(i,i(t? —t~7)) for any link K.

(2) K(lI,m) can be computed for any oriented link K using (*) and U(l,m) = 1.

Example 15.

ZK(t) Vi (t) K(2Z, m)

By (t)=1-(t¥-2). Vo ()= ~t+t%+t K (2, m)=-207%2 7

K, K Ko

L
B (£)-0+(t™tT) |y (£)=toRatte K, (L, m)-27t (a4t
+ -
@ 000~ R e
N ) K (2, m)=2"%(e+g 7"
PR I COERIC R g
+ iN_ 0 + m “=£='m

TH(ETT L TR | ek (2, m)=0

C’/S)mOD (t)=0. Vi, (£)=0. Ko (£, m)=-(L+£71)m
K, K K| 2

- e 2 =12
AKO(t) 0 VKo(t) T+t
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(3) Under the notation introduced in the paragraph preceding Theorem 5.7, the

identity () is equivalent to
(+) (oK) (1, m) =~ K (1, m) = =m(n; K ) (1, m)
(4) If K is the trivial link of ¢ components, then
K(l,m)=p°"!, where p=—(I+1"")m™".

We prove the statement by inducting on the number of components. If ¢ = 1, then
K(l,m) =1 = u® So the assertion holds. Suppose that the assertion holds for
the trivial link of (¢ — 1) components. With K, K_ and K, = K as in Figure 34
we have by (*): _
| =2 4 1712 +mK(l,m) = 0.
So
K(l,m)=—(+1")m™ - p7 = p,

thus proving the assertion.

C components
(——_/\
Ko=K

COO0-O COO-O O

+ -

FIGURE 34.

We assume from now on that for each link, an ordering is given to the compo-
nents of the link and a base point is specified for each component. Given such a
link K, beginning at the base point of the first component of K and proceeding

in the direction of the orientation of K, change those crossings necessary so that
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each crossing is first encountered as an under-crossing. Continue the procedure
with the rest of the components in the prescribed order. This results in a trivial
link (see Figure 35.). We denote this link by a(K), and call the link the stan-
dard ascending projection associated to K. Label those crossings that have been

changed 1 through k so that K = ox0f—1 - - o1a(K).

/ (Cs

K a(K)

Figure 35.

(5) For any link K, the lowest power of m in K(I,m) is equal to 1 — ¢, where c
1s the number of components of K, and the powers of [ and m are either all even
or odd depending upon whether ¢ is odd or even, respectively.

We prove the assertion by an induction on the number of crossings in K. If

there are no crossings in K, then
E(lm) = [~(1+17)m™Y,

Hence the lowest power of m in K(I,m) is equal to 1 — ¢, and also the sec-
ond statement holds. Assume that the assertion holds for projections with the
number of crossings less than n. Suppose that K has n crossings and K =

OTkOk—1"" -o1a(K). The assertion holds for a(K). Suppose that the assertion
holds for ¢;_; ---0;a(K) = L. Then

(0:L)(1,m) = =15 L(1,m) — I¥m(n;L)(I,m).
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By assumption, the lowest power of m in L(I,m) is equal to 1 — ¢. On the other
hand, since n;L has less than n crossings, by the induction hypothesis, the lowest
power of m in (n; L)(I,m) is equal to 2— c if the i** crossing is between two distinct
components of L, or equal to —c if the crossing is in a component of L. Hence
the lowest power of m in I**m(n;L)({,m) is equal to 3 — c or 1 — ¢. So the lowest
power of m in (o;L)(I,m) is equal to 1 — c.

Finally, observe that the parity of powers of [ and m in —I2¢/ (I, m) is the same
as that of / and m in L(l,m), and from the induction hypothesis, the parity of
powers of [ and m in [**m(n; L)(I,m) is the same as that of [ and m in L(I,m), not
depending upon whether 7;L has ¢ — 1 components or ¢ + 1 components. Hence
the parity of powers of [ and m in (0;L)(I,m) is the same as that of powers of [
and m in L(I,m), thus proving the induction hypothesis for link projections with
n crossings '

(6) Reversing the orientation of every component leaves the polynomial un-
changed.

This property follows immediately from the observation that the sign of each
crossing does not change if the orientation of every component is reversed.

(7) For any link K,

(rK)(I,m) = K(I™',m).
Hence if K is amphicherial (rK is isotopic to K), then K(I,m) is symmetric in [
and [71.

To prove the assertion, we again induct on the number of crossings in K. If K
has no crossings, then the assertion holds clearly. Assume that the assertion holds
for links with less than n crossings. Suppose that K has n crossings.

Let K =0y - - 01a(K). Suppose that the assertion holdsfor L=0;_; - - 0ya(K).
We label the crossings in ra(K), corresponding to the crossings labelled 1,2,--- , k
in oK) by 1,2',--- | k', respectively. Then ¢, = —¢; and rK = o - - opra( K).
Now

(ro;L)(l,m) = (oprL)(l,m)
= —1*"rL(l,m) — I m(nyrL)(1,m)
= —(IT L m) = (TS (L), m)
= U,‘L(l—l, m).
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Therefore, the induction hypothesis holds for links with n crossings.

(8) If Ky and K, are links separated by an embedded 2-sphere, then
(Kl V I\"z)(l,m) =u- Kl(l,m) . Kg(l, m)

Furthermore,

(K71 #E,)(1,m) = Ky (I,m) - Ka(1,m).

Note that connected sums of links are not well-defined. So the second identity
gives many non-isotopic links with the identical generalized polynomial.
To prove the first assertion, let L = K; V Ky and let ¢; be the number of

components in K;, ¢ = 1,2. If L has no crossing, then
L(l,m) — ﬂ01+02—1 — qucl—l ﬂ02—1 — /III{:[(Z, m)Ifg(l,m)

So the assertion holds. Suppose that L = oy - - - 0ya(L). To finish the proof, induct
on the number of crossing changes as before. ‘

The second assertion follows immediately from the first. We may assume that

(K1#K2)4 and (K;#K>)— are as given in Figure 36.

12 b | | D

(K1#K2) (K1#K2) KivKz
+

FIGURE 36.

Then

Z(I{I#Kz)(l, m) + l_l(Kl#I{2)(l, m) + m(Kl V Kz)(l, m) =0
I+

m

(Ky#EK)(I,m)I+ 1Y) +m- (- )- K1(l,m) - Ko(I,m) = 0.
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Hence

(K1#K3)(I,m) = K1(I,m)K (1, m).

(9) It is shown in [14] that there exist pairs of knots with the same generalized
polynomial but different genus, different unknotting numbers, and different signa-
tures. There also exists a knot (with 11 crossings) whose mirror image can not
be distinguished by the Jones polynomial but is distinguished by the generalized

polynomial.
(Existence and uniqueness of the generalized polynomial)

Here we recall the following well-known fact: if K and K' are isotopic projec-
tions of a link, then K can be deformed to K' by a sequence of three Reidemeister

moves:

@ Qe Qe
@ e ) ( . &) (

~

(i) \F& 7X_ “}{" < -\A\

Proof of Theorem 8.1. [14]

We use induction on the number of crossings in the link projections to prove the
existence and uniqueness of the generalized polynormial. Let £, be the set of all
oriented link projections with the number of crossings less than or equal to n. We
assume that each element of £, is ordered and based, thus two projections, with
different ordering or basepoints of the same projection, are regarded as distinct
elements of L.

Induction hypothesis (n — 1): (1) Assume that to each K € £,_1, there is an
associated element P(K) € Z[I*!, m*!] which is independent of a choice of base

points and ordering of components, is independent under Reidemeister moves in

89



Ln_1, and satisfies the identity (*). (2) If ¢ is an ascending projection of ¢
components, then P(U¢) = p~1, where p = —(1 +171)m™1.

The induction hypothesis (0) is automatically satisfied if we define P(K) =
p¢t, where K € Ly and K has ¢ components. Note that every element of £, is
an ascending projection.

Assume induction hypothesis (n —1). Suppose that K € £,. If K is an ascend-
ing projection, then define P(K) = u°~1, where c is the number of components in
K. If K is not an ascending projection (with prescribed base points and an or-
dering of components), then K = o0k—_1 -+ 01a(K), where a(K) is the standard
ascending projection associated to K. Here we allow that a crossing is changed

more than once. Supposing that P(o;_; -+ oya(K)) is already defined, let
P(oi---o1a(K)) = —lésiP(ai_l --o1a(K)) = I5mP(nioi—y - - - o1a(K)).
Notice that P(n;o;—; - - 01a(K)) has been uniquely defined since
nioi—1 - o1a(K) € L.

So the above equation defines P(K') recursively for each K € L,,.

Assuming that P(K) satisfies the induction hypothesis (n), we finish the proof
of the theorem. Let K and K' be isotopic projections. Then there exists a large
integer ng such that K, K' € £,,, and Reidemeister moves deform K to K’ in Ly,-
By the induction hypothesis (no), P(K) = P(K'). Furthermore, P(K) satisfies
(%), and P(U) = 1.

We prove the induction hypothesis (n) by a sequence of five lemmas.

Lemma 8.2. Let K € £, and K = o} ---01a(K). Then P(K) does not

depend on a choice of crossings and the order of operations o;.

Proof. We first show that the interchange of two adjacent operations, o;4; and

0y, in oy - - - 010(K) does not change P(K). Let L = 0;_1 - - - 010(K).
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(1) First assume that the crossings labelled ¢ and ¢ 4 1 are distinct. Then
P(0ip10:L) = =1+ P(o;L) — 15+ mP(n;i10;L)
= P[P P(L) — I%mP(n:L))]
— 5 m[~ %P (i1 L) — 1%mP(nini41 L))
— l2(€i+€‘+1)’P(L) + 12€i+1+5im'P(niL) 4 [eirt2e: mP(nip1L)
1T M P(niniga L).
The expression is symmetric in ¢ and ¢ + 1. Hence
P(oit10iL) = P(oioiy1L)
by the induction hypothesis (n — 1). Then, again by the induction hypothesis,
P(og -+ 0it10i - 01a(K)) = P(ok - - - 0i0541 - - 010(K)).
(2) Assume that the i** crossing is the same as the (i + 1)st crossing. Then
P(oigr10:L) = PERTOP(L) 4 PeriteimP(n; L) — 15+ mP(n; L).

Since

Ei+1 = —E&y4, P(U,'_HU,‘L) = 'P(L).
Hence
P(ok - -0it10i - 01a(K)) = P(ok -+ - 0i0i41 - - 01a(K))
=P(ok - 0it20i-1 - o1a(K)).

Now suppose that {I,2,---,7} is the minimal set of crossings necessary to be
changed once to obtain K from a(K). Then for any set of crossings 1,2,---,k
with K = o -+-010a(K), (1) and (2) imply

’p(o-7 .. O'TOl(K)) = P(Uk - a'loz(K)),

thus showing the independence of P(K) on a choice of crossings.
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Lemma 8.3. Let K € £,,. Then P(K) does not depend on the choice of base

points.

Proof. It suffices to show that the base point of a component can be moved
accross a crossing leaving the polynomial unchanged. Let b, and b, be base points
in component ¢; accross a crossing, where the crossing is between components ¢;
and c;. Let K; and K, be the projections corresponding to the base points b
and by, respectively. If 7 # j, then a(K;) = a(K;). Hence the polynomial is
unchanged. Suppose that ¢ = j. By interchanging the role of b; and by, we may
assume that the direction from b; to b, agrees with the orientation of ¢;. As shown
in Figure 37, a(K}) differ from a(K>) only at one crossing, say crossing k.

A $ 4

ki: —— —|— . —[—
1 *b1 e

4 A
a(Ky) * 'r a{Ky): Tk

FIGURE 37.

Therefore, if K, = 0;---01a(K;), then Ky = oj---o10ra(K3). To prove
P(K;) = P(K,), it suffices to show that

P(ora(K,)) = P(a(Ky)) = pu°,

where c is the number of components in K;. Using the observation that nra(Ky)
is the trivial link of ¢ + 1 components with less than n crossings, we have

Pora(Ky)) = —125% 4°=1 — [k
— “c—l(_l2sk . le’“(—l _ l—l))
— [,Lc_l(—l2€k +lek+1 +lek—l)

c—1
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Lemma 8.4. The identity () holds for links in L.

Proof. First note that K and K_ have the same standard ascending projection,
say L. We label the crossing in L at which K differ from K_ by 1. There are
two cases to consider:

(1) K4 agrees with oK) at the 1st crossing.

(2) K4 does not agree with a(K ) at the 1st crossing.

We only give an argument for the 1st Case since the 2nd Case is about the
same. Now there exist crossings labelled 2,--- ,k in a(K4) such that K, =
ok ---020(K). Then K_ = 010y --- 0ya(K). By definition,

P(K_) = ~IP(Ky) — ImP(n Ky).
Since 1 K4 = K,

IP(KL) + I7YP(K_) + mP(K,) =0.

Lemma 8.5. For links in L,, P(K) is invariant under Reidemeister moves

which do not increase the number of crossings beyond n.

Proof.

(i) First Reidemeister move: Put a base point as in Figure 38.

SARRCA

FIGURE 38.
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Then a(K) is the same as K at the crossing in the figure. There exist cross-
ings 1,2, -+, k different from this crossing in a(K) such that o ---o1a(K) = K.

Furthermore, oy ---07a(K') = K'. By induction hypothesis
P(a(K)) = P(a(K")) = p7,
where c is the number of components in K. Suppose that
P(oi—y1---01a(K)) =P(oi—1 - - o1a(K")).
By the induction hypothesis,
P(nioi—1---01a(K)) = P(nici—1 - - o1a( K")).
So

P(o;i---010(K)) = —I**P(0;_1 - 01a(K)) — I5mP(n;04_1 - - - 010( K))
= —l2€ip(0i_1 tee ala(K')) - le‘m’P(mai_l tee ala(K'))
=P(o;---o1a(K")).

Hence by inducting on 7, we obtain P(K) = P(K").

(ii) Second Reidemeister move: We first introduce notation. Let a; and a, be
disjoint arcs in a link K. Then we say that a; < a, if we encounter a; before asy
when we travel K according to the orientation, ordering and the choice of base
points. In Figure 39, 2nd Reidemeister moves are described between two arcs a;
and ay. If a; < ay, then there exist crossings 1,2, -,k in a(K) distinct from the
crossings p and ¢ such that K = oy ---07a(K) and K' = oy ---01a(K'). Using

the induction hypothesis, it follows that P(K) = P(K') as in (i).
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K K

) e )|
/q /

a a: a az a ar a

az a az
a;<a:z a;>ar

FIGURE 39.
Suppose that a; > a;. Then there exist crossings labelled 3,4,-- -k in a(K)

such that K = oy ---030201a(K) and K' = oy - --o3a(K"). Hence it suffices to
show that P(oy01a(K)) = pu°!, where c is the number of components in K.

Poyora(K)) = (2Eate) yom1 | erternypip o K)) — 2mP(ny01a(K))
= put + 1I2m(P(na(K)) — P(naora(K)))

since €1 €9 = —1.
By the induction hypothesis, it follows that P(na(K)) = P(n2010(K)) as
shown in Figure 40 and thus P(o,0,a(K)) = p°1.

a(K) n1o(K) n2030(K)
7

2

Jaeet

/\

OL(K/)' n1o(K) nz01a(K)
, A -
( b |
1st Reide-
1 meister move
N\ /N /
Figure 40.
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(iii) Third Reidemeister move: Let K € L,, and a;,as and as be the three
arcs involved in the Reidemeister move. Let 7K be the result of the move as in
Figure 41. We first prove that it suffices to show that P(K) = P(rK) assuming

a; <ag < as.

ax

az as

FIGURE 41.

Let : be the circled crossing in Figure 41. Then

P(oi;K) = —I**"P(K) — I*mP(n; K),
PloitK) = —I**P(rK) — I*mP(n;7K),
P(oiTK) = P(r0;K).

And by Figure 42,
- P(niK) =P(nitK).

Therefore, P(K) = P(7K) if and only if P(0;K) = P(r0;K). This observation
implies that it suffices to show P(K) = P(rK) assuming a; < ay < as.
Suppose a; < a3 < a3. Then K, 7K, a(K) and a(7K) are identical in the

support of 7. Hence there exist a set of crossings 1,2,--- , k outside of the support
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of 7 such that K = o ---01a(K) and 7K = o ---01a(7K). Now induct on the

number of crossing changes using the induction hypothesis as in (i) to finish the

proof.
sotopy ﬁznd Reidemeister move
in £
/ n-1
T]_i’l'K /\ (

Figure 42.

We define a loop in a link projection as a simple closed curve which is a projec-
tion of a sub-arc of the link (Figure 43); a loop could be the projection of a whole

component of the link with no self crossing, or it has a double point as endpoints;

but a loop may have many crossings.

Lemma 8.6. Let K € L£,. Then P(K) is independent of the ordering of

components of K.

Proof. Let K € L, and K' be the link K with a different ordering of components
of K. We need to show P(K) = P(K').
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Suppose that K = \/, .,., K, a disjoint union of connected diagrams, where
each K is connected when projected onto the plane and it does not have any

common crossings with Ky if [ # I'. Then from the definition, it follows that
P(K) = p™ <1< P(K)).
Furthermore,
K'=Vi<i<mK] and P(K') = pm M L << PKY).

Hence it suffices to prove P(K;) = P(K]) for each I.

Assume that K is a connected diagram. Suppose that
K=ok -010(K), o(K')=o05---0ra(K) and K' =o;-- copa(K').

Then we have

So
P(K) = P(ok--- o1a(K)), ’P(K') =Py - Ul;a(K')).

Since o - - - o105 -01a(K) = K with the ordering ignored, by Lemma 8.2,

P(K)="P(oi - -op o3+ ora(K)).

Therefore, to show P(K) = P(K"), it suffices to prove P(oz---ora(K)) = pt,
where ¢ is the number of components in K.

In o(K"), let L be a minimal loop in the sense that it does not contain any
other loops in its interior. If L has a double point (L is not a projection of a
component.), we denote the point by p. If L has no crossing other than p, then L

is a loop with a single crossing p since the diagram of K is connected. In this case,
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eliminate the loop by the 1st Reidemeister move to get a projection K with less

than n crossings. By Lemma 8.5,
P(a(K") = Plog - ora(K)) = P(a(K")) = "

by the induction hypothesis.

If L has no double point, let p be an arbitrary point on L away from the crossings
on L. We assume now L has crossings with other arcs of a(K’). Let D be the
disk which L bounds. Near D, a(K') is a union of L and short arcs. If no pair
of these short arcs intersect more than once in D, then there exists a short arc ¢
whose crossing points with L are the farthest from p, i.e., any other short arc has
at least one crossing point with L closer to p than one of the crossing points of ¢
with L. Since a(K') is an ascending projection, we can push t off L away from p,
not increasing the number of crossings, by the 2nd and 3rd Reidemeister moves.
By the induction hypothesis and Lemma 8.5, P(o5---ora(K)) = p~'. So finally,
we assume that there exists a pair of short arcs intersecting more than once in D.
Such pairs bound disks in D. Choose a minimal such disk, say D', i.e., D' does

not contain any other disk of this type (see Figure 43.)

FIGURE 43.
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Let a; and a2 be the arcs bounding D'. By 2nd and 3rd Reidemeister moves, we

can eliminate the crossings between a; and a, to reduce the number of crossings
from a(K'). It follows that

Ploy- ora(K)) = u*7".

This finishes the proof of the lemma.
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