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PREFACE

These notes are some fragments of a series of lectures and seminars talks
given at Seoul National University between September 1995 and March 1996
under the auspices of the Global Analysis Research Center. The talks were de-
voted to some problems in the theory of hyperbolic 3-manifolds and 3-orbifolds.

Inspired by W. Thurston lecture notes “The Geometry and Topology of
3-manifolds” this theory was widely developed in last twenty years. For ba-
sic definitions and main results of the theory we refer to beautiful textbooks
appeared in last years: R. Benedetti, C. Petronnio “Lectures on Hyperbolic
Geometry” and J. Ratcliffe “Foundations of Hyperbolic Manifolds”.

The present notes devoted to application of the theory to some interesting
examples. More exactly, we discuss volumes and other properties of some series
of hyperbolic 3-manifolds.

Firstly in chapter 1 we shortly recall famous results of E. Andreev, E. Vin-
berg, C. Hodgson and I. Rivin on the existence of polyhedra in the Lobachevsky
space.

In chapter 2, following to J. Milnor, E. Vinberg and R. Kellerhals, we
find volumes of some families of hyperbolic polyhedra such like tetrahedra,
pyramids, prisms and antiprisms, in terms of the Lobachevsky function.

In chapter 3 we recall a remarkable Thurston—-Jgrgensen theorem on a struc-
ture of the set of volumes of hyperbolic 3-manifolds.

We recall, that the first example of a closed orientable hyperbolic 3-manifold
was constructed by F. Lobell in 1931. In chapter 4 we construct a series of
manifolds which generalize Lobell’s example and discuss their isometries and
volumes.

The chapter 5 devoted to Fibonacci manifolds. these manifolds were in-
troduced by H. Helling, A. Kim and J. Mennicke and have many interesting
properties. We consider these manifolds from different point of view. In par-
ticular, we give description of Fibonacci manifolds as branched coverings of the
3-sphere and by Dehn surgery. We discuss their Heegaard genus and equivari-
ant Heegaard genus. Moreover we show that their volumes correspond to limit
ordinals in Thurston-Jgrgensen theorem.

In chapter 6 we discuss the ten smallest known hyperbolic manifolds M,
..., Mo, which were founded by C. Hodgson and J. Weeks using famous com-
puter program “SnapPea”. It is interesting that all of them can be obtained by
Dehn surgeries on the Whitehead link. We also discuss some properties of the



smallest known Weeks—Matveev—-Fomenko manifold M; and of the Meyerhoff-
Neumann manifold Msj.

I wish to thank all those who made the lectures and seminars at GARC pos-
sible. It is an even greater pleasure to thank Proffessor Hyunkoo Lee, Professor
Hyuk Kim, Professor Suhyoung Choi and all partipitiences of the seminars for
their hospitality that make my visit to Seoul enjoyable and remarkable.
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Chapter 1

Polyhedra in the Lobachevsky
space

In this chapter we recall some criteria of existence of polyhedra in the Loba-
chevsky space HI® due to E. Andreev [5], E. Vinberg [84], and C. Hodgson and
I. Rivin [34].

1.1 Acute-angled polyhedra

Let HI* denotes the Lobachevsky plane and HI", n > 3, denotes the n-dimen-
sional Lobachevsky space.

We recall ([87, p.60]), that a convex k-gon with angles 6, ..., 0 exists on
the Lobachevsky plane if and only if

b+ ...+ 0 < (k= 2)m, (1.1)

and depends (up to a motion) on (k—3) parameters. The situation is completely
different in spaces of larger dimension.

Let us consider a convex polyhedron P in HI", that is an intersection of
finitely many half-spaces:

k
P=)e, (1.2)
=1

where o; is a half-space bounded by the hyperplane ;. It may be assumed
always, that non of the half-spaces ] contains the intersection of all others.
We will be interested in polyhedra of finite volume. A family of half-spaces
{a1,..., a1} is said to be acute-angled if for any distinct indices 7, j either
the hyperplanes ; and «; intersect and the dihedral angle af N a; does not

5



6 CHAPTER 1. POLYHEDRA IN THE LOBACHEVSKY SPACE

exceed /2, or of ﬂaj+ = (). A convex polyhedron P is said to be acute-angled
if the set of half-spaces {aj,...,a; } from (1.2) is an acute-angled family of
half-spaces. v

A combinatorial type of convex polyhedra of finite volume in the space HI"
is the set of all polyhedra whose closures in HI" are combinatorially isomorphic
to a given bounded convex polyhedra P in the Euclidean n-dimensional space.

Theorem 1.1 ([5]) A bounded acute-angled polyhedron in the space HI", n >
3, is determined by its combinatorial type and its dihedral angles uniquely up
to a motion. ' '

As we remarked above, the problem of the existence of a polygon in HI?
with given angles has a satisfactory solution if the inequality (1.1) takes place.
In the 3-dimensional case existence conditions for an acute-angled polyhedron
are given by Andreev’s theorem.

Theorem 1.2 ([5]) Let P be a compact convez polyhedron in HI® with faces
F; and dihedral angles a;; < m/2 between faces F; and F;. Call a circular
sequence of k edge-adjacent faces of P such that no three of these faces have
a common point, a k-prismatic element. Then P has trivalent vertices, and

dihedral angles o;; satisfy the following system of inequalities depending only
of the combinatorial type:

(1) 0 < ay; < m/2;

(2) if F; 0\ F; N Fy is a vertez, then a;; + oy + o > m;

(3) if F;, F;, Fy form a 3-prismatic element, then a;; + aji + ag; < 7;

(4) if Fi, F;, Fy, Fy form a 4-prismatic element, then a;j+ o +agp+ai < 27;

(5) if Fy is a quadrilateral with the sides in cyclic order a5, ajs, ais, aus,
then

Qs + os + a5 + ajr + ag + oy < 3T
and
s + s + o + ok + ok + a < 3.

Moreover, these conditions are sufficient for an abstract polyhedron P with
trivalent vertices, but not a simplex, to be realizable as a compact convex poly-
hedron in HI® with dihedral angles o;.
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- Analogous theorem take place in the case of a finite-volume acute-angled
polyhedron in HI.

Theorem 1.3 ([6]) Let P be an abstract three-dimensional polyhedron not
a simplex such that at every vertex three or four faces meet. The following
conditions are necessary and sufficient for the existence in HI® of a convex
polyhedron of finite volume of the combinatorial type P with the dihedral angles
Qi S 7!'/2.'

(1) 0< a;; < 7!'/2,‘

(2) if F;NF;N\ Fy, is a vertez, then o+ ajp + ok > 7 and if F;NF;NFeNF)

is a vertez, then o;; + aji + ap + oy = 27 ;
(3) if Fi, F;, Fy form a 3-prismatic element, then a;; + ajr + o < 75
(4) if F;, Fj, Fy, F| form a 4-prismatic element, then a;j+ajr+ap+ay < 2m;
(5) if P is a triangular prism with bases Fy and F, then

o3 + 014 + ags + a3 + g4 + g5 < 3

(6) if among the faces F;, F;, Fy we have F; and F;, F; and F} adjacent,
but F; and F}; not adjacent, but concurrent in one vertex (we may say:
they touch each other) and all three do not meet in one vertex, then
a;; + o < .

1.2 The Gram matrix

A characterization of a convex acute-angled polyhedron in HI" in terms of
the Gram matrix was given by E. Vinberg [84]. Let us consider the pseudo-
Euclidean space IR™! of the vector model of the Lobachevsky space HI". Let
us assume, that the polyhedron P C HI" is represented in the form (1.2), and
consider for each 7 = 1,...,k the unit vector e; of IR™! orthogonal to the
hyperplane a; and direct away from P. It means, that P is the intersection in
IR™! of HI" with the convex polyhedral cone

K(P) = {z e R™ | (z,¢) < 0, i=1,...,k} (1.3)

The Gram matrix of the system of vectors {ey,..., e} is said to be the Gram
matriz of the polyhedron P.
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We recall, that a square matrix A is said to be decomposable if by some
permutation of the rows and the same permutation of the columns it can be

brought to the form ( ? g, ), where B and C' are square matrices.

Theorem 1.4 ([84]) Any indecomposable symmetric matriz of signature (n,1)
with 1’s along the main diagonal and non-positive entries off it is the Gram
matriz for some convez polyhedron in the space HI". This polyhedron is defined
uniquely up to a motion. '

 In particular, Theorem 1.4 admits to consider a case of a tetrahedron, which
is not covered by Theorem 1.2. According to Theorem 1.4, the statement
analogous to Theorem 1.2 will be true in the case of a tetrahedron, if we add to
conditions (1)—(5) an extra condition that the determinant of the Gram matrix
must be negative.

1.3 The Gauss map

To explain the approach of C. Hodgson and I. Rivin [34], [35], we need the
following definition.

Let P be a compact convex polyhedron in Euclidean space E3. The Gauss
Map G from P to the unit sphere S? is a set-valued function which assign to
each point p € P the set of outward unit normals to support planes to P at p.
Thus, the whole of a face f of P is mapped under G to a single point which
is outward unit normal to f. An edge e of P is mapped to a geodesic segment
G(e) on S?, whose length is easily seen to be the exterior dihedral angle at the
edge e. A vertez v of P is mapped by G to a spherical polygon G(v), whose
sides are the images under G of edges incident to v and whose angles are easily
seen to be the angles supplementary to the planar angles of the faces incident
to v; that is, G(e1) and G(e;) meet at angle 7 — a whenever e; and e; meet
at angle a. In other words, G(v) is exactly the “spherical polar” of the link
of v in P. (The link of a vertex v is the intersection of an infinitesimal sphere
centred at v with P.)

We remark, that in a graph-theoretical sense the image G(P) under the
Gauss Map of P is dual to P, while metrically, it is the unit sphere S2.

Ezample 1.1. If P is a cube in E3, then G(P) is an octahedron on $? with all
edges of the length 7 which faces are right-angled triangles. In particular, the
sum of angles of G(P) around any vertex G(f) of G(P) is equal to 27.
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Let us apply a similar consideration to a convex polyhedron P in HP.
Associate to each vertex v of P a spherical polygon G(v) spherically polar to
the link of the vertex v in P. Glue the resulting polygons together into a closed
surface, using the rule that faces G(v;) and G(v;) are gluing isometrically
whenever vertices v; and v, share an edge.

The resulting metric space G(P) is topologically the sphere S? and the
complex is still combinatorially dual to P. But metrically it is no longer the
sphere.

Ezample 1.2. Let P be a such called “Lambert cube” L(n,n,n), n > 3, in
HE?, i.e. a combinatorial cube with three dihedral angles 7 /n, corresponding
to mutually orthogonal non-intersecting edges, and the angle 7/2 for all other
edges. The Gaussian image G(P) is an octahedron with three edges of the
length 7/n and all other of the length 7/2. The sum of angles of G(P) around
any vertex G(f) of G(P) is equal to 3(1 — 5) 4+ (7 — ) > 27.

In general case, the sum of angles of a bounded hyperbolic n-gon f is less
then 27(n — 2). Hence the sum of angles around a vertex G(f) is greater then
27. Thus vertices G(f) of G(P) are a cone-like singularities (or a cone-points)
with cone angle greater then 27. In other words, an image G(P) is a cone-fold
with the underlying space S2.

The following theorem gives a precise characterization of those cone-folds
that can arise as an image G(P) for a compact convex polyhedron P in HI.

Theorem 1.5 ([34]) A metric space (M, g) homeomorphic to S* can arise as
the Gaussian timage G(P) of a compact convex polyhedron P in HI® if and only
if the following conditions hold:

(a) The metric g has constant curvature 1 away from a finite collection of
cone points c;.

(b) The cone angles at ¢; are greater than 2m.

(c) The lengths of closed geodesics of (M, g) are all strictly greater than 2.

Furthermore the metric of G{P) determines the hyperbolic polyhedron P uniquely
(up to a motion).

We remark, that this characterization is a generalization of Andreev’s the-
orem for compact acute-angled polyhedron. It is shown in [32] how Andreev’s
theorem follows from above theorem. '

Ezample 1.3. Let P be a regular icosahedron with dihedral angles 27/3.
Then Gaussian image G(P) is a cone-fold with underlying space S? and with
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singular cone-points as vertices of the regular dodecahedron. Using formulae
of spherical trigonometry, we see that cone angles are equal to 3 arccos(v/5/3).

Second result from [34] is a generalization of the Andreev’s theorem for
acute-angled polyhedron of finite volume in the case of ideal polyhedron (with
all vertices on the sphere an infinity).

We recall, that the following well-known characterization of convex poly-
hedra was proved by Steinitz: a graph is the one-skeleton of a convex polyhed-
ron in IE? if and only if it is a 3-connected planar graph. We will call graphs
satisfying the criteria of Steinitz’s theorem polyhedral graphs.

Theorem 1.6 ([34]) Let P be a polyhedral graph with weights w(e) assigned
to the edges. Let P* be the planar dual of P, where the edge €* dual to e is
assigned to dual weight w*(e*) = 7 —w(e). Then P can be realized as a convex
polyhedron in HI® with all vertices on the sphere at infinity and with dihedral
angle w(e) at every edge e if and only if the following conditions hold:

(a) 0 < w*(e*) < 7 for all edges €* of P*.
(b) If the edges €}, ..., €e; form the boundary of a face of P*, then
w(e]) + - + w'(ef) = 2m.

(c) If the edges €}, ..., e form a simple circuit which does not bound a face
of P*, then
wr(e]) + - + w(ef) > 2m.

It is interesting to remark, that above theorem is closely connected with well-
known question of Jacob Steiner. In 1832 he asked the following question [34]
: In which cases does a convex polyhedron have a (combinatorial) equivalent
which is inscribed in, or circumscribed about, a sphere?

Let us consider the Klein model of HI? in the unit ball B3. In this model
hyperbolic lines and planes are represented by Euclidean lines and planes re-
spectively. Convexity is also preserved. Thus hyperbolic convex polyhedra
with all vertices on the sphere at infinity correspond precisely to convex Euc-
lidean polyhedra inscribed in the sphere S? = 9 B3. Therefore a polyhedron is
of inscritible type exactly when it admits an edge-weighting that satisfies the
condition in above theorem.

Furthermore [34], as a polyhedron is inscrutable if and only if its planar
dual is circumscribable, the above theorem admits to get answer to the second
part of Steiner’s question too.



Chapter 2

Volumes of polyhedra

In this chapter we discuss volumes of polyhedra in the Lobachevsky space HI®.
We will start from ideal tetrahedra. Their volumes will be obtained in terms
of the Lobachevsky function A(z). Next we will describe volumes of some
other polyhedra in HI®. Most of results of this chapter are well-known and
well-discussed in literature. And we will be use approaches on J. Milnor [57],
E. Vinberg [3] and R. Kellerhals [38].

2.1 An ideal tetrahedron

2.1.1 The volume of an infinite cone

For our aims it will be convenient to use the upper half space model for the
Lobachevsky space. We recall, that the upper half model for HI"*! consists of

all (n + 1)-tuples (z1,...,2,,y) with y > 0, provided with the Riemannian

metric
_dat 4 4 dal + dy?

2
ds ;2
We recall that, in general case, if
ds* = Z gijdz; dx;
,5=1

is a Riemannian metric, then the n-dimensional volume element is
dV = \/gdzy - dz,,,

where g = det(g;;).

11
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. . . . 1 -
Therefore in our case, the (n + 1)-dimensional volume element in HI"*' is

dzry---dz,dy

an+1 =
yn+1

As a first example of a volume computation using the upper half space
model, consider a region defined as a cone over the graph of a function. Let
f(z1,...,z,) be a function f:IR" — IR, defined in some bounded region D of
IR™. The graph of f is the set

G = {(z1,...,2n, f(21,...,22)) : (21,...,3,) € D}.

Let us consider a region C of IR™™! defined as the infinite cone obtained by
joining points of G with the infnity point co , i.e. C is defined by an inequality
of the form:

C:{($1,...,$n,y) Yy > f(a:l,""m’ﬂ)}’

where (z1,...,2,) € D.
Then for its volume we obtain:

1 dz,---dz,
Va1 (C) =/0an+1 = _L(f :

n (1, s @)™

In particular suppose that our graph y = f(z1,...z,) is defined by the

equation y = \/1 —z?— ... — 22 and is the unit hemisphere in IR"*!, that is

the hyperplane in the half space model for HI**'. Then we obtain the following

Lemma 2.1 ([57]) The volume of the infinite cone C in HI"*' obtained by
jowning a compact region G in the hyperplane y = \/1 —z— ... —22 >0t
the infinity point oo is given by the formula

Vair1(C) = 1 /D( dfl“'dx” (2.1)

n 1 —a?—.. . —a2)n/2
where D is the projection of G on IR™.

As an example of using Lemma 2.1, we will obtain the well-known formula
for the area of a triangle. Let us consider a triangle 7'(0,, () in the Lob-
achevsky plane HI* with one vertex at infinity (and the angle 0 in this vertex)
and other vertices on the unit semicircle in IR? with angles o, 8 and first co-
ordinates z’ and z”, respectively. Then the triangle T'(0, @, 3) can be regarded
as an infinite cone over a compact region on the hyperplane y = /1 — 22 and
a compact region D is the segment [z', z"].
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Thus according to (2.1) we have

zII d
\/1_37_2 = arccos(z') —arccos(z") = m—a— 3. (2.2)
' -z

Va(T(0,0,8)) = |
If T = T(a,B,7) is a bounded triangle in HI® with angles o, 3,7 > 0,
a+ B +v < m, then we can continue the edge between angles o and + from the
vertex corresponding to « to the infinity and consider triangles T’ = T'(0, §, 7 —
v) and T" = TUT' = T(0,, 8 + §) for some §. Then according to (2.2) we
get
Vo(T) = W(T') = W(T") =7 —a = B - .

Therefore we have the following well-known result.

Proposition 2.1 IfT C H? is a triangle with angles o, 3, v, then the area
of T is given by the formula:

area(T) = B(T) =7 — a — B — 7.
We remark that the area V3(7T') is maximal if o = 3 = v = 0 and T is the
regular ideal triangle with all vertices at infinity. So V;*% = 7,
2.1.2 The volume of an infinite cone over a right-angled triangle

Now let us consider a three-dimensional case and use more traditional nota-
tions (z,y, z) instead (1, z2,y) for coordinates in IR*. In this notations HI® =
{(z,y,2) € R? : z > 0}, and

_de? 4 dy? + d2?

22

ds?

Let a region D be the right-angled triangle in the unit 2-disk in IR? with
one angle equals o and the length of the adjacent leg equals b, 0 < b < 1, such
that

D= {(z,y) : 0<z<b0<y<tanal}.

G = {(z,y,2) : (z,y) €D, z=1/1 — a2 — y2}

is the compact region on the unit hemisphere in IR>, and let C be the infinite
cone over G with the apex at infinity:

C={(z,9,2) : 0<2<b,0<y<tana, z>/1 — 22 —y?2}.

Then
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According to Lemma 2.1 we have

1 d.’L‘dy /xtana
Vs(C) = 2/p1l—z2—y? — y? / 1-— x2 —y?

Using the identity
/c dy _ 1, <a+c)
0o a2—y? 2 e

we get

/“ana dy 1 V1 —2? 4+ ztan o

0 1—a22—1y2 2\/1——$2 V1—z?—ztana/’
and hence

)
V- +xtana) da. (2.3)

= - 1
) 4/0 2¢/1 — 22 n(\/l—:c"’—xtana

Using the substitution z = cosf for § < 6 < 7/2, where cos3 = b, we get
sin@ = /1 — 22, and df = —dz/v/1 — z%. So from (2.3) we obtain

7r/2 sin(f + o
/ ( aa )) o,
! sin(f — )
For our next aims it will be more convenient to express this result in terms
of the following version of the Insin integral. Let us consider a function

—/OZ In | 2sin( | dC. (2.4)

Then for indefinite integral we have

I (:2““ )d() = A0 —a)— A(6 +a),

and we get

1 T

1(C) = Z(A<§—a) - A(%+a) —AB-a) +A(ﬁ+a)>. (2.5)

‘We remark. that C is the tetrahedron in HI® founded by the triangle G on
the semi-sphere and by three edges from vertices of the triangle to infinity. In
addition, dihedral angles, corresponding to the bottom of the tetrahedra C are
7/2, m/2 and B, where cos 8 = b, and dihedral angles corresponding to the
infinity vertex are o, 7/2 — « and 7/2 (see Figure 2.1).
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Figure 2.1. The tetrahedron C.

As a tetrahedron in HI® is uniquely, up to isometry, determined by its
dihedral angles, we will be use notation T'(c, 8,7;¢’,3',7') for tetrahedron
whose dihedral angles corresponding to some vertex are «, 3, and angles at
opposite edges are o', 3,7". Thus in this notation C = T(a,§ -, %;6,%,%)
and we can rewrite formula (2.5) in the form:

C uf(egengadd)
1 T

=10 (52) - A@”) ~AF-a) $ABEe).  (26)

In particular if 8 = «, then the tetrahedron T'(e, § — @, 55, %, %) has two
vertices at infinity. For its volume from (2.6) we have:

T T T 1
v (T (a,§ ——a,g,a,a,—i)) = 5 Ae) 2.7)

2.1.3 The Lobachevsky function

As we see, formula (2.7) gives a simple geometric sense of the value of the
function A(«a) as the volume of the corresponding tetrahedron.

This function A(z), defined by (2.4) , was introduced by J.Milnor [57] and
called the Lobachevsky function. This function is related to the function

—-/xlncos(d(,
0

which is traditionally called the Lobachevsky function, by the equation

L(z) = A(:c— -g) — zln2.

We will eliminate some properties of A(z) in the following
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Proposition 2.2 The Lobachevsky function A(z) has the following proper-
ties:
(1) A(z) is a continuous function.

(2) A(z) is an odd function:

(3) The derivation A'(z) exists for all x # kn, k € Z, and

A(z) = —In|2sinz |= —1In (cos (3: + %)) — In2. (2.9)

(4) A'(z) = —cotz.

(5) A(z) is a periodic function with period .
(6) A(m/2) =0.

(7) A(2z) =2A(z) 4 2A(z + 7/2).

(8) In[0,7/2] the funcﬁon A(z) has a mazimum in the unique point = /6
and
A™% = A(r/6) = 0.507....

(9) Foranyme Z

A(mz) = mmf A (3: + k”) - (2.10)

k=0 m

Proof. Properties (1)-('4), (8) are obvious; for proving (5) see [10]; (6) follows
from (2) and (5); (7) follows from (5) and (7); for proving (9) see [57], [10,
p.99] or [65, p.466]. O

2.1.4 The volume of an ideal tetrahedron

Now we will find the volume of a tetrahedron in HI® with all vertices at in-
finity, or in another words, with all ideal vertices. We will call such tetrahedron
to be an ideal tetrahedron.
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Lemma 2.2 Let T(a,B,v;0',3,7") be an ideal tetrahedron in HI®. Then
a=d,B=0,y=9 anda+p+y=r.

Proof. Because all vertices are ideal, the sums of dihedral angles at triples of
edges which are incident to a vertex, are equal 7. And we get four equalities
from which the statement follows. O

Therefore an ideal tetrahedron is determined uniquely by three dihedral
angles a, 3, v such that a + 4+ v = m and we will be use notation

T(e, 8,7) = T(e, B,7; 0, 8,7).

Theorem 2.1 ([57]) If T(a,B,7) is an ideal tetrahedron in HI®, then its
volume is given by the formula

vol(T(a, 8,7)) = A(a) + AB) + A(%).

Proof. Let us assume firstly, that all angles a, 8 and v are acute. As we
consider the upper half space model for HI?, we can suppose that three ideal
vertices of the tetrahedron T' = T(e, 3,7) lie on the Euclidean plane IE? =
{(z,y,2) : z = 0} and because o+ §+v = 7, they form an Euclidean triangle.
Let us consider in the triangle perpendiculars to edges which pass through their
midpoints. The common point for perpendiculars is the center of the circle in
which our triangle in inscribed. Therefore central angles are twice of angles of
the triangle. Let us connect the center with vertices of the triangle. Then we
will get six triangles which are three pairs of equals Euclidean triangles with
angles (o, 5,5 — a), (8,5,5 — B) and (v,5,% — ). If we consider each of
these Euclidean triangles as the base D for the infinite cone as above, then we
will get six tetrahedra with two ideal vertices whose volumes can be calculated
according to formula (2.7). Therefore, we have:

vol(T(e,6,7)) = 2vol (T (05,5 — v 3, 7))
4200l (T (ﬁ%% - ﬁﬂgg)) + 2vol (T (7%% - 77%%))
= Aa) + A(B) + A(y).

If one of angles «, B, v is not acute, we can suppose that it is true for
7. Then repeating above considerations, we will get, that the volume of the
tetrahedron T'(e, 3,7) is the sum of volumes of two pairs of tetrahedra which
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correspond to angles o and 3, minus volumes of two tetrahedra corresponding
to the angle m — . Then also

vol(T (e, 8,7)) = M) + A(B) — Al —7) = AMa) + A(B) + A(7),

where we used property (2.8). O
As it was shown in [77, p.4.4] (see also [65, p.477]), ideal tetrahedra in HI®
can be parameterized by complex numbers z, Imz > 0. More exactly, if we

denote
/ z —1 " 1
z = , z = ,
z 1 -z

then there is an ideal tetrahedron T in HI?, unique up to a motion, with dihedral
angles
arg z, arg z', arg 2".

We denote such tetrahedra by T,. As a consequence of Theorem 2.1 we get
vol(T,) = A(arg z) + A(arg 2') + A(arg 2").

We remark, that vol(T'(a, 8, 7)) is function on two variables, because a+ 3+ =
7. So we can consider a function

fle,B) = vol(T(e, B,m —a— B)) = Ala) + A(B) — Ala+ B).
Using (2.9) we get that this function has the extremal value for o = 8 = 7/3.

Corollary 2.1 An ideal tetrahedron in HI® is of mazimal volume if and only
if it is regular tetrahedron T'(3, %, %). In this case

T T m s
maz 1(T(—,—,—)> - (—):2/\(—) = oAm = 1,
V; vov 3373 3A 3 5 2A 1.0149426

We recall that in two-dimensional case the regular ideal triangle with angles
(0,0,0) also was of the maximal area. In general case the following theorem is

true.

Theorem 2.2 ([25]) In hyperbolic n-dimensional space, for n > 2, a simplex
is of mazimal volume if and only if it is ideal and regular.

We recall [25], that if we denote the maximal volume of simplex in HI" by
Vmaz then
| Ve = = 3.1415926. ..
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Ve = 2A™* = 1.0149416. . .,

1
Ve =2 (471' — 10 arccos §) — 0.2688956.. ..,

and the following asymptotic take place:

n
| i e—\/—_, forn — oo.
n!

2.2 An ideal pyramid

Let P(oy,...,05), n > 3, be an ideal (with all vertices at infinity) pyramid in
HI® with an n-gon as the bottom and with dihedral angles oy, ..., a, between
the bottom and lateral faces (see Figure 2.2).

Figure 2.2. A prism P(oy,02,a3,4) .

Theorem 2.3 ([77, p.7.12]) Let P(ay,...,a,), n > 3, be an ideal pyramid
in HB. Then

) ay+...4a,=m,
(ii) vol(P(ai,...,an)) = Alar) + ... + Alay).

Proof. Let us use the induction by n. If n = 3, then P(ai, as,a3) is an ideal
tetrahedron and this case was considered in Theorem 2.1. Let us suppose, that
the statement is true for n =k — 1. If P = P(ey,... o) is the pyramid whose
bottom is a k-gon, then we can consider a segment with divides the k-gon in
two parts: (k — 1)-gon and a triangle. Let us denote by P’ the ideal pyramid
with the (k£ —1)-gonal bottom and by T' the tetrahedron with the triangle as the
bottom, such that P = P'UT. Let us denote by 3 the dihedral angle between
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the bottom of P’ and the lateral face which is common with the tetrahedron T'.
Therefore, according to above notations, we have P' = P(oy,...,0k-2,03) and
T = T(m — B, ck-1,ax). Because by inductive hypothesis

a1+...+ak_2+,8=7'r,

and

T—f+ gy + o =,

we get

ap + ..+ o = T

For the volume vol(P) of P according to the inductive hypothesis and by
Theorem 2.1 we have

vol(P(ay, ..., ax)) = vol(P(ey,...,ak2,0)) + vol(T(r — B, ck—1, x))

= Aea) + ... + AMak-2) + A(B) + Alr = B) + Alok-1) + Alow)

= A1) + ... + Alag),

where we used that the Lobachevsky function is m-periodic and odd. O
Analogously to Corollary 2.1, for ideal pyramid we have:

Corollary 2.2 An ideal pyramid P(ay,...,a,) is of mazimal volume if and
only if it is reqular: ay = ... = a, =n/n. In this case V™** = n A(m/n).

2.3 An ideal regular prism

Let us consider an ideal (with all vertices at infinity) prism in HI® with two equal
regular n-gons as the top and the bottom. Suppose that the prism is regular in
the sense that it is invariant under the dihedral group ID,, of symmetries whose
axe passes through centers of the top and the bottom. Let all dihedral angles
at edges of the top and the bottom be equal to o and dihedral angles between
lateral edges are equal to 3 (see Figure 2.3). Because all vertices of the prism
are at infinity, we have 2o + 8 = 7. Let us denote such ideal regular n-prism
with n-gonal top and bottom and dihedral angle o by P2.
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O
V
. a /) P
@
B o A
a | f / |B
a |8
ol o /) e
~
) a /- =
T« C D
Figure 2.3. A prism Py. Figure 2.4. The piece 2.

Theorem 2.4 ([77, p.7.16]) If P% is an ideal regular n-prism in HI® with
dihedral angle o, then

@) — T Ty _ _T

vol(PY) = n (A (a + ;) + A (a - n) 2A (a 2)) . (2.11)
Proof. Let 32 = ABCDPQ be the %—piece of P% (see Figure 2.4). By the
- construction, vertices P and () are finite and vertices A, C, C, D are at infinity.
We remark, that if we consider the upper half space model for HI?, then vertices
A, B, C and D lie on the Euclidean plane IE? and PQ is orthogonal to IE? Let us
consider the infinite cone C = OQABC D over the pentagon QABC D with the
apex O at infinity which lies on the line PQ. If we denote by 7" the tetrahedron
OPAB, then C = X2UT'. Let T be the tetrahedron OQC D. We remark, that
T and T’ are isometric because the prism P2 is regular. And we have the
decomposition C = T U Cy, where C; = OABCD is the infinite cone over the
quadrilateral ABCD. Comparing two decompositions C = 22 UT' = T U(,,
and using that vol(T') = vol(T"), we get that vol(£2) = vol(Cy).

The infinite cone C; is an ideal pyramid with the bottom ABCD and its
volume can be computed according to Theorem 2.3. Dihedral angles of C; at
edges AC' and BD are equal to §/2. The dihedral angle at the edge AB is
founded by the dihedral angle from X2 and by the dihedral angle from the
ideal regular pyramid whose bottom is the regular n-gonal top of P*. Thus the
dihedral angle at AB is equal to a 4+ m/n. Using the item (z) of Theorem 2.3
we will get that the dihedral angle at the edge C'D is equal to o — 7 /n.

Therefore by Theorem 2.3 we get

vol(S2) = wol(Cy) = A (a+ %) + A (a - f) 427 (g)

n
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We recall that 2a + 8 = m, so 3/2 = n/2 — o . Using that the Lobachevsky

function is odd, we can rewrite

vol(£2) =A(a+-z—) +A(a—-%) —2A(a—%),

vol(B?) = n (A7) + A (a=7) 24 («-3))

and theorem is proved. O

hence

Corollary 2.3 An ideal regular n-prism PY with dihedral angle o is of maz-
imal volume if and only if

o = arccos (% (g)) |

Proof. By direct calculations using (2.11) and (2.9). O

Corollary 2.4 An ideal regular 4-prism of mazimal volume is an ideal reqular
cube with dihedral angles w/3 and its volume is equal

Vmer(py) = 10A(%) = 10A™ = 5.07....

Proof. According to Corollary 2.3 for the ideal regular 4-prism of maximal
volume we get a = 7 /3. In virtue of Theorem 2.4 we get

v s (3 (5+3) +2(5-5) -2 (G- 5)
- (1) 2 () + 1 (3)
_ oA (%) + 8A (%) = 10A (%),

where we used the item (7) of Proposition 2.2 for the case x = 7/12. O

We remark, that the formula from Corollary 2.4 can be obtained geometric-
ally, if we divide the ideal Z-cube ABCDA'B'C’'D’ in five tetrahedra AA'B'D’,
CC'A'D', ABCB', ADCD’' and ACD'B’ each of which is ideal regular and
according to Corollary 2.2 has volume 2A(7/6).
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2.4 An ideal regular antiprism

Let us consider an ideal (with all vertices at infinity) regular (with dihedral
symmetry) antiprism in HI® with two equal regular n-gons as the top and the
bottom with dihedral angles o and 3 and with equal triangles as the lateral
faces. The antiprism can be regarded as a drum with triangular sides (see
Figure 2.5 where for n = 3 the lateral boundary is shown).

Figure 2.5.

Because the polyhedron is ideal, we have 2o + 23 = 2m. So we denote
such ideal regular n-antiprism with n-gonal top and bottom and with dihedral
angle a by A,(a). The following formula is essentially due to [77, p.6.43] were
the case a = 7/2 was considered.

Theorem 2.5 [f A,(«) is an ideal regular n-antiprism in HI® with dihedral
angle a, then

vol(An(a)) = 2n (A (% + %) +A (g - %)) (2.12)

Proof. Let us consider the hexahedron II¢ = ABC DP(Q which is the L_piece
of A,(a) (see Figure 2.6). We recall that vertices P and @ are finite and all
others vertices are at infinity.



24 CHAPTER 2. VOLUMES OF POLYHEDRA

7T P
VAVE

Figure 2.6.

Let O be an infinite point on the line PQ and let us consider the polyhed-
ron OABCDPQ. There are two possible decompositions of this polyhedron:
OABCDPQ = TUC = T'UII2, where T = OCDQ and T' = OABP
are tetrahedra with one finite vertex and all other vertices at infinity, and
C = OABCD is an ideal polyhedron which consists of two ideal tetrahedra
OABC and OBCD. Because the antiprism A,(a) is regular, tetrahedra T
and 7" are isometric, so vol(T) = vol(T") and

vol(II2) = vol(C) = vol(OABC) + vol(OBCD).

We can calculate volumes of ideal tetrahedra OABC and OBC D according
to Theorem 2.1. For this we need to know their dihedral angles. Let us consider
the tetrahedron OABC. The dihedral angle at the edge AB is founded by
the dihedral angle from the antiprism A,(a) (which is equal to a) and by
the dihedral angle from the ideal regular pyramid with the apex O whose
base is the top of the antiprism. This angle is equal to 7/n by Theorem 2.3,
item (7). Therefore LZAB = a + m/n. Because A,(«) is regular, we have
LAC = [BC = {(m — a — n/n). Hence

T /T a o7 o m
I(OABC :A< —) 2/\(————-——~>=2A<— —),
voll ) atn) Ty 2 " on
where for the last step we used the item (7) of Proposition 2.2.

Analogously, for the tetrahedron OBCD we have /CD = a — m/n and
(BC = [BD = 3(m — a+ 7/n). Whence

™ T (8% ™ (67 T
wi(0BCD) = Aa=7) +2A(5 -5 +5) =2 (55
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Therefore

vol(An(a)) = nvol(Il) = 2n (A (% + %) +A (g_ - %))

and theorem is proved. O

Corollary 2.5 An ideal regular n-antiprism A,(c) with the dihedral angle o
is of maximal volume if and only if

(e () - 3)
a = arccos|{cos|—) — =]).
n 2

Proof. By direct calculations using (2.12) and (2.9). O
We remark, that a 2-antiprism is a tetrahedron and in this case we have
Corollary 2.1.

Corollary 2.6 The mazimal volume ideal regular 3-antiprism is the regular
octahedron with dihedral angles /2 and its volume is equal to

Vmez(Ay) = 8A (%)

Proof. According to Corollary 2.5 for the ideal regular 3-antiprism of maximal
volume we have @ = 7/2. In virtue of Theorem 2.5 we get

T o Toow
max — _ . A —_
VrA) 6<A(4+ 6) * (4 6))
= s(2 () + A () = 5 (3)
B 12 12/ 4
where we used the formula (2.10) for the case m =3, z = n/12. O
Corollary 2.7 The mazimal volume of an ideal reqular 5-antiprism is equal

to
i =10 (1(%5) +4(3).

Proof. According to Corollary 2.5 for the ideal regular 5-antiprism of maximal
volume we have

= COS <COSZr‘ - 1) = arccos \/5+1 — l = arccos \/5_1 = 271-
@ = are 5 2) " 4 2) = 4 -

and the formula hold directly by Theorem 2.5. O
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2.5 A pyramid with the apex at infinity

In this section, following E.B.Vinberg [3] we will proof the formula for the
volume of a pyramid in HI® with the apex at infinity. We start from the par-
ticular case of polyhedron of such type which is the a tetrahedron with three
vertices at infinity and will use it for getting the formula for the general case.

2.5.1 A tetrahedron with three vertices at infinity

Let us consider a tetrahedron 7' = OABC with vertices A, B, C at infinity
with dihedral angles ZOA = o, LOB = 8, LOC =+, (BC = a, LAC = b,
LAB = c (see Figure 2.7).

Figure 2.7.

Because vertices A, B, C' are at infinity, the sum of the dihedral angles in
these vertices is equal m. So we get

Lemma 2.3 For a tetrahedron T = OABC with infinite vertices A, B, C
and with the dihedral angles as above, we have
" ta-f-y T+f-a-y  _rdy-a-p

= b = =
a4 9 ’ 2 : 2

Proof. Directly from equalities for the sum of dihedral angles coming at infinite
points of T'. O

As we see, the tetrahedron T' is determined by the triple of angles (o, 3,7)
or by the triple of angles (a,b, c).

Theorem 2.6 ([3, p.127]) The volume of a tetrahedron T with three infinite
vertices and dihedral angles o, B, v, a, b and ¢ as above, is given by the
following formulae:

vol(T) = vol(T(ex, 3,7, a,b,c))
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- %(A<a>+A(ﬂ>+A<v>+A<a>+A(b)+A(e)—A(“”“‘“)),

2
~ (2.13)

and

vol(T) = vol(T(e, 8,7)) =

N =

2

A () (),

(A(a)+A(ﬁ)+A(v)+A( ”““ﬁ"’)

2 2 2
and
vol(T) = wvol(T(a,b,c))
1

= §(A(a)+A(b)+A(c)—A(a+b)—A(a+c)—A(b+c)+A(a+b+c)).

Proof. Let us continue the edges of T to infinity, We will get three new infinite
points A’, B’, C' which are opposite to infinite vertices A, B, C, respectively
(see Figure 2.8).

Cl

A/
Figure 2.8.

The polyhedron ABC A'B'C" is an octahedron with all vertices at infinity.
Continuing faces of T', we will get a decomposition of the octahedron into
eight tetrahedra with common finite vertex O and all other vertices at infinity.
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By construction, these eight tetrahedra are such that there are four pairs of
them which are symmetric in respect to the point O. Let us consider an ideal
tetrahedron T; = ABC B'. There are three dihedral angles of T} which coincide
with dihedral angles of T : /BB’ = 3, LAB = ¢, LBC = a, hence for opposite
angles we have LAC = 8, LB'C = ¢, LAB' = a. We remark that

T, = OABC U OAB'C = T U OAB'C.

Let us consider an ideal tetrahedron Ty, = ABC A’. Three of its dihedral angles
coincide with dihedral angles of T': LAA' = a, LAB = ¢, LAC = b, hence for
opposite angles we have : /BC = a, LA'C = ¢, LA'B = b. We remark, that

T, = OABC U OA'BC =T U OA'BC.
Let us consider a third ideal tetrahedron
T, = ACB'C' = OACB' U OAB'C".

We remark, that tetrahedra OAB'C’ and OA’'BC are symmetric in respect to
the point O. Therefore for volumes of above ideal tetrahedra we have:

vol(Ty) + vol(Ty) — vol(T3) = vol(T) + vol(OAB'C)

+vol(T) + vol(OA'BC) — vol(OACB') = 2wvol(T). (2.14)
Because volumes of ideal tetrahedra can be calculated by Theorem 2.1, we get
vol(Ty) = A(B) + A(a) + Alc) (2.15)

and
vol(Ty) = Ala) + A(b) + Alc). (2.16)

For the tetrahedron T5 we remark, that the dihedral angle of T35 at the edge
CC' is equal to the compation angle at CC’ in T', hence /CC’ = 7 — 7, and
opposite LAB' = m —v. An angle at AC’ in T3 is equal to the angle at A'C' in
the symmetric tetrahedron OA’BC. Hence LAC’ = ¢ and opposite LB'C = c.
Because the tetrahedron T3 is ideal, we get

LB'C' =1 —LAC' - [CC'"=m—(T—7)—c=7—¢,

and opposite ZAC = v — ¢. Therefore, using that the Lobachevsky function
A(z) is odd and m-periodic, by Lemma 2.3 we get:

vol(Ts) = A(r —7) + A(e) + Ay —©)
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=_Aw)+A@)+A<a+ﬂ+7“”)

2

From (2.14)—(2.17) we will get directly (2.13). Other formulae from the state-
ment of the theorem follows in virtue of Lemma 2.3. O

We remark that if all vertices of a tetrahedron are at infinity, formula (2.13)
coincides with the formula for volume of an ideal tetrahedron from Theorem 2.1.

(2.17)

2.5.2 The volume of a quadrilateral pyramid

Let P be a quadrilateral pyramid OCDPQ with the apex C at infinity, the
edge CD orthogonal to the base and with right angles at vertices P and @ in
the quadrilateral OPQD. Denote dihedral angles coming at the vertex O by
a, 3 and v (see Figure 2.9).

C

Figure 2.9.

Proposition 2.3 ([3, p.129]) The volume of the quadrilateral pyramid P is
given by the formula

mﬂP):%(Mﬂ+A(£iﬁ:£:1>+A(W+ﬂ—a—7>

2 2

+A(w+a;5—7>_A(a+5;7’W>). (2.18)

Proof. Continuing to infinity the two sides of the base of the pyramid P issuing
from the vertex O and denoting new ideal vertices by A and B, we will get a
tetrahedron T' = OABC which contains our pyramid P (see Figure 2.10).
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Figure 2.10.

Let us consider tetrahedra T' = OABC, Ty = CDAP, T, = CDBQ,
T3 = ABCD. Then

T=PUTyUT,UTs,

and

vol(P) = vol(T) — vol(Ty) — vol(Tz) — vol(T3). (2.19)

Because the tetrahedron T is with three infinite vertices A, B, C and with
dihedral angles a, 3, v incident to the vertex O, by Theorem 2.6 we get

T+a—F—19
2

vol(T) = % (A(a) FAB)+ A() + A (

T+08—a—vy T+y—a—p a+f0+y—m
() (52 A (255750)

The tetrahedron 7} has three right dihedral angles /ZAD = /DP = /CP =7/2
and vertices A and C at infinity, so ZAP = /CD = a, LAC = /2 — a, and
according to formula (2.7) we get

vol(Ty) = %A(a). (2.21)
The tetrahedron T3 has three right dihedral angles /CQ = /DQ = (BD =
7 /2. Because vertices B and C are at infinity, we get /BQ = /CD = f,

LBC = m[2 - 3, and according to (2.7), we have

vol(Tz) = %A(ﬁ) (2.22)
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Denote dihedral angle at the edge C'D in the tetrahedron T3 by ¢. Because the
sum of all dihedral angles at the edge CD in Ty, Ty, P and T3 is equal 27, we
get

=2m—a-f—(r—y) = r+y-a—4p.
Using Theorem 2.6 for the tetrahedron 73, which has vertices A, B, C at

infinity, and by properties of the Lobachevsky function from Proposition 2.2,
we have

vol(Ts) = %(A(g)-2A(-§-+-g)) = (%) - A(ﬂ+7;a—’3).

(2.23)
By substitution expressions from (2.20)-(2.23) in (2.19) and using that the
Lobachevsky function is 7-periodic and odd, we will get the formula (2.18). O
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2.5.3 A pyramid with the apex at infinity

Because an arbitrary n-side pyramid P with the apex at infinity can be decom-
posed into n quadrilateral pyramids of the above type by dropping perpendic-
ulars from its apex onto its base and onto the lines bounding the base, we will
get the following theorem.

Theorem 2.7 ([3, p.130]) Let P be n-side pyramid with the apex at infinity
and with dihedral angles o, . .., o, corresponding to the base and with dihedral
angles v1,...,vn at the side edges. Then

<A(,%)+A(7r+ai —20i+1 —%') +A(7r+ai+12“ o; —%‘)

vol(P) =

1 n
2 &

k2

(2.24)

+A(7T+ai+ai+1"'7i)_A(ai+ai+l+’7i_7">)'

2 2

where ap41 = 0.

Proof. By Proposition 2.3. O

We remark, that all above proved formulae for volumes of tetrahedra and
pyramids are particular cases of formula (2.24).

2.6 Orthoschemes

In this section we consider volumes of complete orthoschemes in the Lob-
achevsky space which are most basic objects in polyhedral geometry and
are useful for decomposition of an arbitrary polyhedra. In general, an n-
orthoscheme is a bounded n-simplex with vertices Py, ..., P, such that

span (Po,..., ) L span(F;,...,P,),

for 2 = 1,...,n — 1. In the 3-dimensional case we get a double-rectangular
tetrahedron Py Py P, P3 such that the edge Py P; is orthogonal to the plane P P, P3
and the edge P, P; is orthogonal to the plane PyP; P, (see Figure 2.11).
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P1 P3

Py
Figure 2.11.

By the definition, dihedral angles of the tetrahedron FPoP; P, Ps at edges
P, P,, PP; and PyP; are right, and let us denote dihedral angles at edges
PPy, PoPs and P,Ps by a, 8 and v, respectively. The Gram matrix for the
tetrahedron Py P, P P; is of the form

1 —cosa 0 0
—cosa 1 —cosf3 0

0 —cos 3 1 —cosy

0 0 —cosy 1

with the determinant
A = sin®a sin®y — cos? 3,

that is negative by Theorem 1.4.
The volume of the double-rectangular tetrahedron can be calculated by the
following formula which is essentially due to Lobachevsky.

Proposition 2.4 Let R = PyP,P,P; be a double-rectangular tetrahedron in
HI® with acute angles o, B and . Then the volume vol(R) of R is given by

vol(R) = (Ma+0) = A@=8) + A(5+6-8) + a(5-5-9)

+A(Y+6) — A(y—8) + 2A (g - 5)) , (2.25)

where

cos?f3 — sin?q sin? T
0§52arctan\/ b 7<—.
COs o CO8 7y 2

(2.26)
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Proof. See [3, p.125], or [38], or [23, Ch.9]. O

As it was remarked in [38], we can generalize formulae (2.25) and (2.26) for
more wide class of polyhedra. Let us consider the model of the Lobachevsky
space HI® in the ball B3. Let us assume, that one of vertices P, or Ps (suppose
for definitely that P,) is an ideal point which lies outside B3. We will be say
that a polyhedron R is an orthoscheme of degree 1, if R can be obtained by
cutting off the ideal vertex Py by the plane which is orthogonal to lines Py P,
Py P, and PyP;. We will be say that R is an orthoscheme of degree 2, if R can
be obtained by cutting two ideal vertices Py and Ps of an ideal orthoscheme.
We will be say that bounded polyhedron R is a complete orthoscheme if it is
one of the following types: a double-rectangular tetrahedron (an orthoscheme
of degree 0), an orthoscheme of degree 1, or an orthoscheme of degree 2.

Theorem 2.8 ([38]) Let R = R(a,B3,7) be a complete orthoscheme with
acute dihedral angles a, 3,~. Then the volume vol(R) of R is given by

vol(R) = 7 (Aa+8) — Ma—8) + A (5+8-0) + 4 (5 -5-9)

FA( +6) — Ay —6) + 2A (g - 5)) , (2.27)
where ;
X R 2
0 < § = arctan Vcos ™5 — sin“a sin'y < I (2.28)
COS @@ COS 7y 2

Proof. See [38]. O.

2.7 Some computations

In above sections we described volumes of polyhedra in terms of the Lob-
achevsky function A(z). For numeric computations it is very convenient to use
the approximation of A(z) which was given by D. Zagier [95]:

xr

4 A\ 2n+1 z
A(x)=x(9—log|2sin:c|)—ﬂ'2lcn (i) +nlogn+g + ¢,
n=1 i n—x
(2.29)

™

with
¢ = 0.14754863716,

c; = 0.00142852188,
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C3

C4
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0.00002919407,

0.00000076258,

and | € |<1.2-107!" for | z |< /2.

As an example of calculations of volumes we give volumes of compact
Coxeter tetrahedra and of bounded Coxeter tetrahedra in Figure 2.12 and F ig-
ure 2.13, respectively, where tetrahedra are given by their Coxeter schemes.

These results we obtained in [55] by decomposition a Coxeter tetrahedra in
double-rectangular tetrahedra and using Proposition 2.4.

e —— —o

V =0.039050. ..

— V =10.035885...

¢ » ¢ » V =10.093326...

V =0.085770... V =10.205289...
V =0.222229... V =0.358653...
V =0.502131... E< V =0.071770...

Figure 2.12.
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V =0.042289...

V =0.169157. ..

V =0.076330...

V =0.105723...

V =0.171502. ..
V =0.253735...
V =0.228991...
V =0.211446....
V = 0457983
V =0.211446 ...

V =0.507471. ..

1 I

AL L AD

V =0.364107...

V =0.525840. ..

V =0.672986...

V =0.845785. ..

V =0.305322...

V =0.556282...

V =0.915965. ..

V =0.152661...

V =0.084578...

V =10.343003...

V =1.014941...

<D V = 0.422892. ..

Figure 2.13
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In Table 2.1 we give volumes of Coxeter regular polyhedra in HI°. These
results can be obtained by a decomposition of a regular polyhedra in Coxeter
tetrahedra (see also Corollaries 2.2, 2.4 and 2.6).

Table 2.1.
7 /3—tetrahedron (ideal) 1.01494... | =2A(x/6)
27 /5—cube 1.72248. ..
7 /3—-cube (ideal) 5.07471... | = 10A(7/6)
7 /2—octahedron (ideal) 3.66386... | =8A(n/4)
7 /2-dodecahedron 4.30621...
21 /5—dodecahedron 11.19906. ..
7 /3-dodecahedron (ideal) | 20.58020. ..
27 [3—icosahedron 4.68603 . ..







Chapter 3

Volumes of hyperbolic manifolds

In this chapter we recall some properties of the volumes of hyperbolic mani-
folds. By a hyperbolic n-manifold M" we mean an n-dimensional complete
connected Riemannian manifold of constant negative curvature —1. According
to Hopf-Kiling theorem [94, p.69], a hyperbolic n-manifold M” can be obtained
as a quotient space M"™ = HI"/T', where HI" is an n-dimensional Lobachevsky
space and T' is a discrete group of its isometries, acting without fixed points.
The concept of the volume in HI" is carried over naturally to M™. We will be
consider the set M™ of n-dimensional orientable hyperbolic manifolds of finite
volume.

Let us consider the volume function
vyt M™ = Ry

which makes correspondence between a manifold M™ € M” and its volume
vol(M™). Denote

Vol, = {v,(M™) : M" € M"},

that is a subset of R,.

In n = 2, then a manifold M? is a Riemannian surface and the structure of
the set Vol; is described by the classical Gauss—-Bonnet theorem. If M2 is a
hyperbolic surface of genus g with k punctures, then for its area we have:

vol(M?) = 27w (29 — 2 + k).

Therefore Vol, is a discrete subset of IR, of the form 27 N, where N is the set
of integers, and Vol, can be pictured as in Figure 3.1.

39
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1 2 3 4
27 4r (Y &
Figure 3.1.

The minimal area 27 is attained by two non-homeomorphic surfaces, a
sphere with three punctures and a torus with one puncture. For given vo =
27no, no € N, there is finitely many non-homeomorphic surfaces M 2 such that
vol(M?) = vo. For each of them genus g and number of punctures k satisfy to
the condition:

2g -2 + k = Nng.

In particular, we see that for each even ng € N, there are both compact and
non-compact surfaces with the same area vy = 27no.

Because for even dimensions n = 2m > 2, according to Gauss-Bonnet
theorem,

vgm.(Mzm) = (—1)mévzm(52m)X(M2m);

we have that in this case the set Vol,,, is discrete also.

We recall that the first example of a compact hyperbolic 4-manifold was
constructed by M. Davis [21] from a 4-dimensional polyhedron, so-called 120~
cell. This polyhedron can be divided into 14400 congruent 4-simplices that are
orthoschemes in terminology of section 2.6. Volumes of Coxeter 4-orthoschemes
were calculated in [39]. Hence we get that the volume of Davis’s 4-manifold is
equal to 10472/3 and according to Gauss—Bonnet theorem its Euler character-
istic is equal to 26. More general, it was shown by J. Ratcliffe and S. Tschantz
(see also [40]), that volumes of hyperbolic 4-manifolds belong to the set of the
form 572N,

The situation is similar for all n > 4. As it was shown by H. Wang [89],
if n > 4, then for each real number = there are only finitely many (up to an
isometry) n-dimensional hyperbolic manifolds with volume less or equal to z.
Therefore, the set Vol, is discrete for n > 4.

In the 3-dimensional case situation is completely different. In this case the

following remarkable Thurston-Jggensen theorem take place (see [77, Ch.6],
(10, Ch.E], [24]).

Theorem 3.1 (Thurston-Jgrgensen) The volumes of 3-dimensional hyper-
bolic manifolds form a closed non-discrete set on the real line. This set is well
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ordered and its ordinal type is w¥. There are only finitely many manifolds with
a given volume.

The schematic picture of the set Vols is shown in Figure 3.2.

1 2 3 w 2w w?
} " et —t—-+-@ ° ° 00—
094... 0.98... 1.01... 2.02...
Figure 3.2

In particular, it follows from Thurston-Jgrgensen theorem that there exists
a smallest volume v;, next smallest volume v,, and so forth. This sequence
v < v <...< Vg <...has alimit point v,, which is a smallest volume of a
complete hyperbolic manifold with one cusp. The next smallest manifold with
one cusp has volume vy, and so forth. The first volume of a manifold with two
cusps has volume vz, and so forth.

The smallest known volume manifold, whose volume is equal to 0.94...,
was constructed by J. Weeks [90] and by S. V. Matveev and A. T. Fomenko
[47]. Second smallest known value is 0.98.. ., and corresponding manifold was
constructed by W. Thurston [77]. The third smallest value is 1.01 ..., that is
the volume of Meyerhoff-Neumann manifold investigated in [56].

In [47] S. V. Matveev and A. T. Fomenko firstly conjectured the structure of
the initial part of the set of volumes. In [36] C. Hodgson and J. Weeks refined
the ten smallest known manifolds and their volumes, using famous computer
program SnapPea [91]. These ten manifolds will be discussed in chapter 6.
We will obtain them by Dehn surgeries on the Whitehead link and as two-fold
branched coverings of the 3-sphere S3.

The smallest value 2.02. . . of volume of a non-compact manifold (which cor-
respond to the first limit ordinal) is volume of the figure-eight knot complement
[1]. In [77, p.6.26] W. Thurston constructed an example of two non-compact
manifolds with different numbers of cusps, but with the same volume. He asked
are there exist closed manifolds corresponding to limit ordinals. In section 5.5
we will show that Fibonacci manifolds have this property. In particular. we will
obtain a closed manifold with volume equals to the volume of the figure-eight
knot complement.

According to Thurston-Jgrgensen theorem, there exist only finitely many
manifolds with a given volume. But these finite numbers are not bounded.
We will discuss it in section 4.3, where we will show, that for any integer



42 CHAPTER 3. VOLUMES OF HYPERBOLIC MANIFOLDS

N there exists a right-angled polyhedron which is fundamental for at least
N pairwise non-homeomorphic closed manifolds. Moreover, we will calculate
their volumes.



Chapter 4

Lobell manifolds

This chapter is devoted to the first example of a closed orientable hyperbolic
3-manifold constructed in 1931 by F. Lobell and its generalizations.

We recall [87, p. 190], that in 1890, inspired by a number of examples due
to Clifford, Klein formulated the problem of describing all connected compact
Riemannian manifolds of constant curvature. Then Killing showed that these
manifolds are Riemannian manifolds of the form X/T', where X is one of the
spaces of constant curvature and I is a co-compact discrete group of its isomet-
ries, acting without fixed points (see [94, p. 69]). He called them Clifford-Klein
forms. In the case of the negative curvature examples of spatial Clifford-Klein
forms were unknown a long time [42, p.269-270].

Answering in the affirmative the question on the existence of spatial Clifford-
Klein forms on constant negative curvature, F. Lobell in 1931 [45] constructed
the first example of a closed orientable three-dimensional hyperbolic manifold.
This example was obtained by gluing of eight copies of the right-angled 14-
hedron with hexagonal top and bottom and with twelve pentagons on the lateral
surface similar to the dodecahedron.

In this chapter we will carry over Lébell’s construction to algebraic language
and will obtain an infinite series of closed three-dimensional manifolds, both
orientable and non-orientable, that generalize Lobell’s example. We will discuss
their volumes and isometries.

4.1 Construction of manifolds

In this section we will consider a construction of hyperbolic 3-manifolds from
bounded right-angled polyhedra according to [78].

43
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Let R be a bounded right-angled polyhedron in the Lobachevsky space HI®.
We recall, that according to Theorem 1.2, each planar trivalent graph without
triangles and quadrilaterals can be realized as the 1-skeleton of a bounded
right-angled polyhedron in HI°. Let G be the group generated by reflections in
faces of R. We remark that the stabilizer in G of each vertex of R is isomorphic
to the eight-element abelian group Z, @ Zy @ Z, = Z3. In order to show how
to obtain the manifold from eight copies of R, we consider an epimorphism
@ : G = Z3. We note that the group Z3 can be regarded as a vector space
over the field GF(2). Arguments close to those used in [4] for the right-angled
dodecahedron, enable us to establish the following assertion.

Lemma 4.1 ([78]) Let G be the group generated by reflections in faces of a
right-angled polyhedron in HI°. The kernel Ker ¢ of an epimorphism ¢ : G —
Z3 does not contain elements of finite order if and only if the images of the
reflections in each three faces of R that are incident to a common vertex are
linearly independent in the group Z3 regarded as the vector space.

Proof. Indeed, if g € G is a non-trivial element with non-empty fixed point
set, then for some h € G, hgh™' € Stab ¢(v) for some vertex v € R. Since the
image of G under ¢ is abelian, we have ¢(g) = ¢(hgh™) # 1; for if it were,
there will be a dependence between ¢(g;), ¥(g;) and ¢(gx), where g;, g; and g
are generators of G which are reflections in faces of R incident to v. Then g
does not belong to Ker . O

We remark, that if we regard Z3 as a vector space, there are four elements
such that each three of them are linearly independent. Let us denote them
a=(1,0,0), 8=(0,1,0), y=(0,0,1) and 6 =a + B+ v = (1,1,1).

Lemma 4.2 ([78]) Let G be the group generated by reflections in faces of a
right-angled polyhedron in HI®. If an epimorphism ¢ : G — Z3 takes the gener-
ators of G into four elements of Z3 each three of which are linearly independent
in Z3 regarded as the vector space, then Ker ¢ does not contain elements that
change the orientation.

Proof. Without loss of generality we can suppose that the four elements of Z3
are a, (#, v and ¢ as above. Since G is generated by reflections, orientation-
reversing elements in it are words of odd length in the generators of G. Con-
sequently, the image of such element under the epimorphism ¢ is a word of odd
length in «, B, v and 4, and using that § = a + § + v, we will get a word of
odd length in o, 8 and v. But ¢, # and « are linearly independent. Thus the
orientation-reversing elements are not in Ker ¢. O
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As we see, if an epimorphism ¢ satisfies to conditions of Lemma 4.1 and
Lemma 4.2, then M = HI®/Ker ¢ is a closed orientable hyperbolic 3-manifold.
Let us correspond to a face of the polyhedron R the element of Z3 which is
the image under ¢ of the reflection in the face. Then the “coloring” of faces
determined by an epimorphism satisfying to Lemma 4.1 and Lemma 4.2, is
a four-coloring in “colors” a, 8, v and §, such that colors of adjacent faces
are different. Thus it is a classical graph-theoretical four-coloring of a map.
Otherwise, each four-coloring of faces of a bounded right-angled polyhedron
R in HP determines a closed orientable hyperbolic 3-manifold obtained from
eight copies of R.

We remark that the Lobell manifold [45] can be obtained in this way, and
we consider it as a manifold from the following family.

Let ABCA'B'C’ be a combinatorial triangle prism, and we will draw the
edge DE with vertices D and E lying on edges BB’ and C'C’, respectively (see
Figure 4.1).

A C’

10 14
. SO
DI
B 7
Figure 4.1. The piece P(n). Figure 4.2. The polyhedron R(6).

By Theorem 1.2, for any integer n > 5 there is a convex hexahedron
ABCA'B'C'DE in the Lobachevsky space HI°, whose dihedral angles at edges
AA', B'D and EC are equal to 7/n, 7/4 and m/4, respectively, and all others
angles are right. We denote this hexahedron by P(n).

Let us consider the group A(n) generated by reflections in faces of P(n).
Elements of the group which leave the edge AA’ fixed form the dihedral group
ID,, of order 2n. Under the ID, action from 2n copies of P(n) we will get a
(2n + 2)-hedron R(n) with all angles right, whose top and bottom are regular
n-gons and lateral surface consists of two cycles of n pentagons. In particular,
R(5) is the regular right-angled dodecahedron, and R(6) is the right-angled
14-hedron, pictured in Figure 4.2, used by F. Lobell [45].
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Let G(n) be the group generated by reflections in faces of R(n). Let us
numerate faces of B(n) according to Figure 4.2 such that the top is (2n + 1)-
face, the bottom is (2n+2)-face, pentagons of the first lateral level have numbers
from 1 to n, and pentagons of the second lateral level have numbers from (n+1)
to 2n. Then the group G(n) has the following representation:

generators:
g1, ,92n42;
relations:
g?:l, 1 =1,....2n+2;
92nt19i = GiGon+1s  Yent20n+i = GntiGont2, 1 = 1,...,m;

gigi+l = gi+1gi, Z = 1,,271—].,
9ign+i = Gn+iGi,s 1= ]-’ ceey 1Y
9ign+1+i = Gn+1+:9iy 1= 13 ceey— 19

919n = Gng1y, Gn+192n = G2ndn+1-

Definition 4.1 Let ¢, : G(n) — Z5 be an epimorphism which kernel Ker ¢,
is torsion-free. The hyperbolic 3-manifold L(n) = H*/Ker ¢, is called a man-
ifold of Lobell type. If, in addition, images of reflections in the top and the
bottom coincides, then L(n) is called a standard manifold of Lobell type.

We remark, that L(n) depends of an epimorphism ¢, and not determined
uniquely by n. In this terminology, the Lobell manifold constructed in [45] is
a standard manifold for n = 6. The first example of a closed non-orientable
hyperbolic 3-manifold constructed in 1980 by N. K. Al-Jubouri [4] is a manifold
of Lobell type for n = 5.

As we remarked above, the existence of orientable manifolds of Lobell type
is closely connected with the existence of corresponding four-colorings of faces
of polyhedra.

Theorem 4.1 ([78]) For any integer n > 5 there is an orientable manifold
of Lobell type L(n).

Proof. For any n > 5 we specify an epimorphism ¢, : G(n) — Z3 that we
need in the definition of a manifold of Lobell type. Suppose that «, 3, v are
linearly independent in Z5 and § = a + 8 + 7.

If n =2k, k>3, is even, then for : = 1,...,k we define

vn(92n+1) = %(gn+2i—1) = a, Son(g%—l) = B,
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©n(gont2) = @n(92i) =¥, ©n(gns2i) = 6.

The coloring of faces of R(6) corresponding to ¢ is shown in Figure 4.3.
Ifn=2k+1,k>2 isodd, then for i = 1,..., k we define

n(g2n+1) = Pn(Gns2i-1) = @, @ulG2ic1) = @nlgan) = B,

Pnlgont2) = @n(G2i) =7,  @n(Gnt2i) = Pnlgn) = 6.

The coloring of faces of R(5) corresponding to ¢s is shown in Figure 4.4.

Figure 4.3. Figure 4.4.

It is obvious that conditions of Lemma 4.1 and Lemma 4.2 are satisfied.
Therefore Ker ¢, does not contain elements of finite order and consists of
orientation-preserving elements. Thus for n > 5 the manifold HI*/Ker ¢, is an
orientable manifold of Lobell type. O

For obtain non-orientable manifolds we need “colorings” in more then four
colors (which are also elements of Z3), satisfying to Lemma 4.1. Such colorings
are possible also.

Theorem 4.2 ([78]) For any integer n > 5 there is a non-orientable manifold
of Lobell type L(n).

Proof. To obtain the necessary manifold we require that the kernel Ker Y, of
the epimorphism t, : G(n) — Z3 should have no elements of finite order, but
should contain orientation-reversing elements. Let us define:

Un(Gons1) = Un(Gany2) = o,

Yu(gi) = en(95)s  ¥nlgnes) = @alg;) + oo j=1,...,n,

where ¢, is the epimorphism described in Theorem 4.1. From the explicit form
of the epimorphism it is obvious that the condition of Lemma 4.1 is satisfied.
Also, elements of the form h; = gani19;nt;, where 1 < j < n, which are
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orientation-reversing as a product of the odd number of reflections, lie in the
kernel Ker ,. Thus for n > 5 the manifold HI®/Ker 1, is a non-orientable
manifold of Lobell type. O

Remark. The theorem we have proved confirms the assertion of F. Lobell
[45], that from eight copies of R(6) one can obtain by a suitable gluing both
an orientable and a non-orientable manifold.

The following figures present coloring corresponding to the Lobell manifold
constructed in [45] (see Figure 4.5) and to the Al-Jubouri manifold constructed
in [4] (see Figure 4.6).

v v

Figure 4.5. Figure 4.6.

where o, 3, 7, § are as above and e=a+ 3, T=8+7y, v =a+7.
As we see, the Lobell manifold is a standard manifold in the sense of Defin-

ition 4.1. The following proposition devoted to the existence of standard man-
ifolds of Lobell type.

Proposition 4.1 ([78]) A standard orientable manifold of Lobell type L(n)
erists if and only if n = 3k, k > 2. It is unique for every k.

Proof. To obtain the required manifold we need to impose on the epimorphism
¢n: G(n) = Z3 the following conditions : (1) ¢n(g2n+1) = Pn(g2n+2) 5 (2) the
images of the reflections in any three faces of R(n) that have a common ver-
tex are linearly independent; (3) Ker ¢, does not contain orientation-reversing
elements.

Let o, 8 and ~ be linearly independent in Z5. Without loss of generality
we may assume that

¢n(92n+l) = ¢(g2n+2) = q, an(gl) = /87 ¢n(92) = 7.
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Then from (2) and (3) it follows that ¢,(gnt+2) = § = e+ 8 + . Similarly,
if ¢n(g2) = v, d(Gn42) = 9, then ¢(gnys) = B. By induction we obtain for

1=1,...,n:

#n(9i) = Onl(gntit2) = B, ¢ = 1(mod 3),

¢n(9:) = Pn(Gnti-1) = 7, i = 2(mod 3),
¢n(gi) = Gn(gnti-1) =6, i = 0(mod 3).

Since to satisfy (2) reflections in adjacent faces must be mapped into differ-
ent elements, n must be a multiple of 3. If n = 3k, k > 2, then the epimorphism

¢n(g2n+1) = ¢n(g2n+2) = Q, ¢n(93i—2) = ¢n(gn+3i) = /Ba

¢n(93i—1) = ¢n(gn+3i-2) =7 ¢n(93i) = ¢n(gn+3i—1) = 5,

where : = 1,..., k, specifies a standard orientable manifold of Lobell type. The
coloring of faces of R(6) corresponding to ¢g is shown in Figure 4.5. Since for
each step of the construction of ¢, the image of the reflection in the next face is
determined uniquely, for every k > 2 the standard orientable manifold of Lobell
type L(3k) is unique up to a change of basis in Z} regarded as the vector space
over GF(2), that is up to an automorphism of the group. O

4.2 Naturally maximal groups

In this section we discuss naturally maximal groups in the sense of [49] and
isometries of some manifolds of Lobell type.

We start from studying pairwise dispositions of fixed axes of elements of
finite order in a discrete group.

Lemma 4.3 ([49]) Let g and h be élliptic elements of ordersn and m, n < m,
respectively, which generate a discrete group. Suppose that the azes of the
transformations g and h intersect in a point belonging to HI>. Then one of the
following cases takes place:
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Moreover, the following magnitude of the angle between the azes takes its values
in the set I(n,m), where

(1) I1(2,2) = {kT",l <k <,k and l are coprime integer},
1(273) = {77%_§7§’§—"7,%3%‘}'7’77_6’%""67”_7}7
1(2,4) = {&,k=1,2,3},

1(2?5) = {B)% —:ngv%+ﬂ>7r_ﬁ}
1(2,m) = {3},m > 6;

(“’) 1(373) = {2777T - 2§a 26777 - 27};

(Z“) 1(334) = {é.vﬂ'_f};

() I(3,5) = {o,a + 27,0+ 26,7~ a};

(v) I(4,4) = {n/2};

(vi) I(5,5) = {28, — 28}

-

Here elements of the set I(n,m) are written down in increasing order, and the
numbers o, B, v and £ are defined by conditions tana = 3 — /5, tan 8 =

(V5 —1)/2, tany = (3 —/5)/2, and tan £ = /2.

Proof. Let O be the point which is the intersection of the axes of the trans-
formations g and h. Denote by P the plane which contains these axes, and let
r be the reflection in the plane P. A transformation w = gr is an orientation-
reversing isometry which leaves the axe of g invariant. Hence w is a reflection
and w? = grgr = 1, whence r~1gr = g7!. Analogously for the transformation
h we have r~*hr = h~1. Then the group

G = (g,h,r} = (g,h)x\(f‘)

is a semi-direct product of the group (g, h) which is discrete by the hypothesis
and of the cyclic group of order two. Therefore G is also discrete. Moreover
the group G has a fixed point O. According to the classification of finite
subgroups of SO(3) and its two-sheeted covering (see [94, p. 88] ), the group
G is a subgroup of one of the following group: cyclic, binary dihedral, binary
tetrahedral, binary octahedral or binary icosahedral. A pairwise disposition
of axes on reflection planes in binary polyhedral groups is well-known ([94,
section 2.6]) and pictured in Figures 4.7-4.10.
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3
2
3
¢
¢ 2
3
2 5 2 5
3 ele 3 3 a\??/ 0 3
2¢ 2¢ 2 9
3 £l¢ 5 3 a 35\ @ 3
2 5 2 5
Figure 4.9. Figure 4.10.
Tetrahedral case. Icosahedral case.

Angles between axes founded using formulas from spherical trigonometry (see,

for example [3, p. 65]). Therefore in Figures 4.7-4.10 we have v = Ty tané =

V2, (+€ = Zitana = 3—5, tanf = —‘[5’2'—1, tany = §__2_\/g and a+(8+v = 7
Looking over Figures 4.7-4.10, we will get cases (i) — (vi) of the statement of
the lemma. O

Let us consider a compact convex Coxeter polyhedron P in the Lobachevsky
space H®, i.e. its all dihedral angles are submultiplies of 7. We denote by
A = A(P) the group generated by reflections in faces of P, and by ¥ = E(P)

the symmetry group of the polyhedron P, consisting of all isometries of HI®
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which leave P invariant. It is well known [87, p. 199] that the group A is
discrete and has P as its fundamental set in HI®.

According to [49] we call the group A* = (A, X), generated by A and X, the
natural extension of the group A. The group A* can be decomposed into the
semidirect product A* = AXY ( see [87, p. 200]), where elements of ¥ act on
elements of A by conjugations. Therefore A~ is discrete, as a finite extension
of the discrete group A.

Definition 4.2 We shall say that the group A is naturally mazimal if A* =
A )Y is a maximal discrete group, i.e. it is not contained as a proper subgroup
in any discrete group of isometries of HI°.

Let A(n) as above be the group generated by reflections in the faces of
the hexahedron P(n) (see Figure 4.1). It is obvious from Figure 4.1 that the
symmetry group £(n) of the hexahedron P(n) is generated by the rotation 7 of
order two around the line which passes throught midpoints of edges AA’ and
DE. Then A*(n) = A(n) A(7).

Lemma 4.4 ([49]) For n > 6 the group A(n) is naturally mazimal.

Proof. We will give a sketch of the proof of this statement which is essentially
" based on Lemma 4.3 and results of L. Greenberg [22] on the maximallity of
triangle groups. Let g be an isometry of HI® such that a group (A*(n),g) is
discrete, and denote by [ the axe of order n > 6 which passes throught the edge
AA’ of P(n) (see Figure 4.1). Without loss of generality we can assume that
the intersection d(/) N P(n) contains at least two points. Firstly we show that
g(l) = 1. Tt holds because according to the case I(2,n) of Lemma 4.3, g(l) is
orthogonal to a pair of faces of P(n). Therefore it is orthogonal to a triangle
face, and we turn to an extension of the triangle group with the signature
(2,4,n) studied in [22]. Secondly, by direct calculations of lengths and angles
of P(n), and using Lemma 4.3, we see that only case g € A*(n) can be realized
by virtue of the assumption that the group (A*(n), g) is discrete. O

As well as above, we consider the (2n + 2)-hedron R(n) obtained by the
action of the dihedral group ID, < A(n) from 2n copies of P(n). Let G(n) be
the group generated by reflections in faces of R(n) and S(n) be the group of
symmetries of R(n). Then

S(n) = IDn A ZQ,

where the dihedral group ID,, of order 2n is generated by reflections p and o in
faces ABDB'A’ and ACEC'A’ of P(n), and Z; = (7), where 7 is the rotation
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of order two as above. Therefore
A%(n) = (A(n),7) = (G(n),p,0,7) = (G(n),S(n)) = G(n) AS(n)

is the semidirect product of the group generated by reflections and of the group
of symmetries of its fundamental polyhedron. Thus we get

Corollary 4.1 Forn > 6 the group G(n) is naturally mazimal.

The following statement gives the motivation why we consider a subclass of
standard manifolds of Lobell type.

Lemma 4.5 Let L(n) = HI°/T, where I' = Ker ¢,, be a standard orientable
manifold of Lobell type. Then I' is a normal subgroup in (G(n), S(n)).

Proof. Let p, o and 7 be generators of the group S(n) as above. We recall,
that according to Proposition 4.1, a standard orientable manifold L(n) exist
only for n = 3k, k > 2, and is determined by the epimorphism ¢, from the
proof of Proposition 4.1. Let us firstly consider the case n = 6. The coloring
of faces of R(6) corresponding to the ¢ is shown in Figure 4.11.

Figure 4.11.

Planes of reflections p and o are correspond to dotted lines and the axe of the
rotation 7 corresponds to the dot. As we see, the group S(6) = (p, o, 7) can be
regarded as a group of substitutions on the set of colors {a, 3,7, } according
to the following rules:

pZ a— Q . 04—« T:. 00—«
B—=p B = B—é
¥ =4 y—=0 Y=
J—y ) 6— B

and this induces the action of S(6) on

Z; = (0,8,7 | 2 =B =+ =1, aff = fa, ay = ya, By = 15)
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as a group of automorphisms and we consider a group (6) = (Z3, S(6)) which
is the extension of the group by its automorphisms and can be decomposed in
the semidirect product [8, p. 133] : Q(6) = Z; X S(6).

Let us consider an epimorphism
¢+ A*(6) = G(6)AS(6) — Q(6) = Z; ) S(6)

defined by the rule
¢s(z) = d6lg) - s,

where z € A*(6) = G(6) A S(6) and so has a unique representation z = g - s,
where g € G(6) and s € S(6). One can check directly, that the epimorphism
&% is defined correctly and that Ker ¢5 = Ker ¢6. Hence, I' = Ker ¢s = Ker ¢g
is a normal subgroup of G(6) A 5(6).

For arbitrary n = 3k, k > 2, using periodicity of the coloring corresponding
to the epimorphism @,, the proof follows by the same arguments. O

Theorem 4.3 ([51]) The isometry group of a standard orientable manifold
L(n) of Lébell type is isomorphic to

(Zy & Zy @ Zy) X (ID, My).

Proof. We recall [77], that the group of isometries of a hyperbolic 3-manifold

is isomorphic to the group of outer automorphisms of its fundamental group.
So, for L(n) = HI*/T,, where I';, = Ker ¢,, we have:

Isom(L(n)) = N(Ty, Isom(HP)) /Ty,

where N(T',,, Isom(H?)) is the normalizer of I', in the group of all isometries
of the Lobachevsky space HI°.
Because the manifold L(n) is orientable standard, from Lemma 4.5 we have:

G(n)AS(n) < N(T,, Isom(HP)).

But according to Lemma 4.4, the group G(n) A S(n) = A*(n) is maximal dis-
crete group. Therefore,

G(n) A S(n) = N(Ty, [som(HP)),

and

Isom(L(n)) = G(n)AS(n)/T,.



4.2. NATURALLY MAXIMAL GROUPS 55

Similar to the proof of Lemma 4.5 we can consider the epimorphism
¢n : G(n)AS(n) = Z2AS(n)

defined by ¢ (z) = ¢u(g) - s, for z = g-s, g € G(n), s € S(n). By the same
arguments we get I' = Ker ¢¢ = Ker ¢5. Therefore, using that S(n) = ID, A Z,
we have

Isom(L(n)) = (Z; ® Zy & Z;) ) (D, M\Z,)

and theorem is proved. O
Because the Lobell manifold constructed in [45] is standard orientable for
n = 6, we have the following statement.

Corollary 4.2 ([49]) The isometry group of the Lobell manifold constructed
in [45] is isomorphic to

(Zy ® Zy & Z,) ) (IDg AZs).

The following statement is connected with arithmeticity of the group G(n)
(see [31], [61], [87] for nice discussions of arithmetic groups acting in the Lob-
achevsky space).

Lemma 4.6 Ifn #5,6,7,8,10,12,18, then the group G(n) is non-arithmetic.

Proof. Because groups G(n) and A(n) are commensurable, they are arithmetic
or non-arithmetic simultaneously. The Coxeter scheme of the group A(n) is
shown in Figure 4.12.

.. ..... ..
4\ /4
n
Figure 4.12.

According to [85], any Lanner subscheme of an arithmetic Coxeter scheme
must be arithmetic too. The scheme of the group A(n) contains the scheme of
a triangle group with signature (2,4,n). We recall, that all arithmetic triangle
groups were listed in [74] and the group with signature (2,4, n) is arithmetic if
and only if n = 5,6,7,8,10,12,18. Therefore, for other n the group A(n) and
so the group G(n) are non-arithmetic. O
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We remark, that the Lobell manifold constructed in [45] is arithmetic. In-
deed, its fundamental group is commensurable with the group A(6). Using the
criterion of Vinberg for arithmeticity of groups generated by reflections (87,
p.226], one can check by direct calculations that the group A(6) is arithmetic
with the invariant trace field Q.

Theorem 4.4 If L(n) = HP/T, T = Ker Lp,. is a non-arithmetic manifold of
Lébell type, then its isometry group is isomorphic to

Z, L, D2 \K,

where K < S(n) = D, AZ, consists of symmetries of the polyhedron R(n)
which act as substitutions on the coloring of faces of R(n) corresponding to the
epimorphism .

Proof. By Borel-Margulis theorem [14], all groups commensurable with a non-
arithmetic group I' are contained in a unique maximal one, which by Corol-
lary 4.1 coincides with the group G(n) A S(n). Therefore

Isom(L(n)) = N(I',G(n)AS(n))/T.

If s € S(n) is such symmetry of R(n) that does not act correctly as a substitu-
tion on the set of colors and hence does not extended up to an automorphism
of the group Z3, then coset G(n)/I' are not invariant under the conjugation
s71G(n)s and s71T's # I'. If K is the subgroup of all symmetries of R(n) which
act correctly on the coloring, then as well as above in the proof of Lemma 4.5,
we can consider an epimorphism

o : GM)AK — Z3)\K,

such that p*(z) = ¢(g) - sforz = g-s, g € G(n), s € K. And by the same
arguments we will get [' = Ker ¢ = Ker ¢*. Therefore

[som(L(n)) = Z, ® Z, & Z, A K,

and theorem is proved. O

4.3 Volumes of Lobell manifolds

Lemma 4.7 ([79]) Let G the non-arithmetic naturally mazimal group gener-
ated by reflections in faces of a right-angled polyhedron R and S be its group
of symmetries. Suppose I'; and 'y be the kernels of epimorphisms ¢, and @,
satisfying the hypotheses of Lemma 4.1 and Lemma 4.2. Groups 'y and Iy are
isomorphic if and only if there exists an element s € S such that I'y = s7'T'ys.
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Proof. By virtue of Lemma 4.1 and Lemma 4.2, ['; and I'; are fundamental
groups of closed orientable hyperbolic manifolds, so by the Mostow rigidity the-
orem they are isomorphic if and only if there exists an element h € Isom(HP)
such that I'; = A™![';h. We consider the commensurate of the group G,

Comm (G) = {y € Isom(H?) : y"'Gy is commensurable with G}.

Since I'; and I'; are normal subgroups in G of index 8, and because I'; = h~1T,h
is a normal subgroup in A~'Gh, then h € Comm (G). By hypothesis G is non-
arithmetic, so by Borel-Margulis theorem [14] Comm (G) is discrete and all
groups commensurable with G are contained in a unique maximal one. But
G* = (G, S) is a maximal discrete group by Corollary 4.1 and G* C Comm (G),
so G* = Comm (G). Consequently h = gs, where g € G, s € S. Because [
and I'; are normal subgroups of G, we get I'; = s7!['ys. O

Theorem 4.5 ([79]) For any integer N there exist at least N pairwise non-
homeomorphic manifolds of Lobell type with the same volume.

Proof. We will show that for any n = 6k, k > 4, there exist at least _kai pairwise
non-homeomorphic orientable manifolds of Lobell type L(n). This estimate is
very quick, but enough for proving the theorem. Let us consider epimorphisms
~fo, f1 : G(6) — Z3, defined according to colorings in Figures 4.13 and 4.14,
respectively.

Figure 4.13. fo-coloring. Figure 4.14. f-coloring.

It is obvious, that epimorphisms f, and f; satisfy conditions of Lemma 4.1 and
Lemma 4.2. For any k > 4 we consider a set I, that is a set of (k+1) collections
of k-tuples (71,...,4) of numbers 0 and 1 arranged in nondecreasing order and
define the epimorphism

Pitynix - G(Gk) — Zg
by the following rules. If j =6(p— 1)+ q,1 < ¢<6,1 < p <k, then

‘Pilym,ik(gj) = fip(gq)’ Pi1yens ik(gn+j) = fip(g6+q)’
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and
Pityes ik(g2n+l) = Q, P, ik(92n+2) = p.

By other words, the epimorphism ¢;, .. ;, is such that the coloring of lateral faces
of R(n) is obtained from k fragments pictured in Figures 4.13-4.14, which we
take in correspondence with 7, = 0 or 1, = 1 for p = 1,...,k. It is obvious,
that for any k-tuple (i1, . . ., %) the epimorphism ¢;, . ;, satisfies to conditions of
of Lébell type which can be obtained from eight copies of the polyhedron R(n).
Therefore all manifolds L;,, . ;, have the same volume.

As we consider n = 6k, k > 4, according to Corollary 4.1, the group G(n)
is naturally maximal and by Lemma 4.6 G(n) is non-arithmetic. By virtue
of Lemma 4.7 two manifolds L;, . ; and Lj, . ; are homeomorphic if and
only if there exists a symmetry s € S(n) of the polyhedron R(n) such that
s7'Ker ¢;,...i.s = Ker ¢j,, ;.. We note that if the kernels Ker ¢;  .;, and
Ker ;, ..., are conjugated by a symmetry s, then elements of the group G(n)
lying in one coset with respect to Ker ¢;, . ;,, lie in one coset with respect
to Ker ;... . also. So faces of R(n) colored in the same color under the
epimorphism ¢;, . ;, are also colored in the same color under the epimorphism
©iy...;in- Therefore, if two colorings of R(n) are not equivalent by the group S(n)
(and by renaming of colors), then two corresponding manifolds of Lobell type
are non-homeomorphic. We recall, that the group S(n) can be decomposed in
the semi-direct product S(n) = ID,, AZ,, where elements of ID,, leaves top and
bottom of R(n) invariant, and the involution 7 change top and bottom. Let
(i1,...,1%) be an element of the set I; and consider the upper level of the lateral
faces. The color § appeared k+1; + - - - + 4 times and the color v appeared 2k
times. Therefore any two colorings corresponding to different elements of I
cannot be equivalent under the dihedral group ID,, action. Hence there exist at
least —k—%l pairwise non-homeomorphic manifolds of Lobell type with the same
volume. O

Corollary 4.3 ([79]) For any integer N there exists a right-angled polyhedron
in HI® which is fundamental for at least N non-homeomorphic closed orientable
manifolds.

Proof. Let I'y,..., F%_x be subgroups of G(n), n = 6k, of index 8, which are
fundamental groups of different manifolds of Lobell type constructed in the
theorem. It is clear from the construction (see Figure 4.13-4.14), that for any

I;,i=1,..., k—‘;’, elements of the set

Y = {1, gont1, 91, 92, G2n4101, G2nt192, 9192, G2ns19192 }
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where gan11, g1, g2 are generators of G(n) as well as in Section 4.1, belong to
different cosets G(n)/T';. Therefore for any I'; we can take the polyhedron

Qn) = U h(R(n))

hex

as its fundamental polyhedron, and Q(n) is right-angled by construction. O

We recall, that according to the Thurston-Jgrgensen theorem on volumes of
hyperbolic manifolds, the number of 3-dimensional hyperbolic manifolds with
the same volume is finite. As we can see from Theorem 4.5, these finite numbers
are not bounded. Other series of examples which demonstrate this property,
based on different interesting considerations were given by B.Apanasov and
L.Gutsul [7], B.Zimmermann [100] in the case of compact manifolds, and by
N.Wielenberg [92] in the case of non-compact manifolds.

The following theorem gives the exact formula for the volume of manifolds
of Lobell type.

Theorem 4.6 Let L(n), n > 5, be a manifold of Lobell type. Then

vol(L(n)) = 4n (zA(a) +A (0 + %) + A (a - %) — A (20 - g-)) L (41)

where 0 = % — arccos (msfﬂ_/n))

Proof. Let L(n), n > 5, be a manifold of Lobell type, then according to the
construction (see Section 4.1),

vol(L(n)) = 8-wol(R(n)) = 8- 2n-vol(P(n)), (4.2)

where P(n) is the hexahedron ABC A'B'C'DE (see Figure 4.1). We remark,
that P(n) can be regarded as an orthoscheme of degree 2 in the terminology of
Section 2.6. Indeed, if we consider the model of the Lobachevsky space HI® in
the ball, then we can regard the triangle ABC as a result of cutting off an ideal
vertex, which is the intersection of lines A’A, DB and EC and lies outside
the ball. Analogously, the triangle A’B’C’ is the result of cutting off an ideal
vertex, which is the intersection of lines AA’, DB’ and EC’ outside the ball.
Because for our “ideal” tetrahedron with two vertices outside and two finite
vertices D and E only three dihedral angles at lines AA’, BD and C'FE are
non-right, it is an orthoscheme of degree 2 in the terminology of Section 2.6,
and its volume can be calculated due to Theorem 2.8.
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For the hexahedron P(n) we have a = v = n/4 and 8 = m/n, whence
according to formula (2.27) we have:

vol(P(n)) = i (28 (5 +9) 2 (2 -9) +A(g+%—5)

+A<————5) +2A(§—5))
=i<2A< >+2A<6——) ( +——5)
(_-——5)) +2A (——6)) (4.3)

were we used that the function A(z) is odd. We recall, that according to
Proposition 2.2, item (7),

A2z) = 2A(z) + 2A (a: + g-) .

Applying this formula for z = § — %, from (4.3) we will get, that:

vol(P(n)) = %(2/\(25—?2-) +A(2+I-9)
+A(%——E—5) +2A (——5)) (4.4)

Let us denote § = 5 — 4, then from (4.4) we have:

vol(P(n)) = % (2400) + A (0+ -Z-) +a(0- o) - a (20— g)) . (4.5)

n

Now we will find §. Because o = v = n/4 and 8 = 7/n, from (2.28) we

have
6 = arctan \/4cos2 (E) -1,
n

and using trigonometry formulae, we get

1
6 = arccos (W) .

Hence,

T 1
0 = 5 — arccos (W) (4.6)

Therefore, from (4.2), (4.5) and (4.6), we get (4.1). O
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Corollary 4.4 The hyperbolic volume of the Lébell manifold L from [{5] is
given by

vol(£) = 24 (2A(0) + A(o+3) + A(e-3) - A(20—g)),

us

where § = 7 — arccos % And we have vol(L) = 48.184368. ...

From Theorem 4.5 we can find the asymptotic for the volume function of
manifolds of Lobell type L(n) for n — co. As we see from (4.6), if n — oo,
then § — 7/6 and because A(z) is a continuous function, we get

Corollary 4.5 If L(n) is a manifold of Lobell type, then we have the following
asymptotic:
vol(L(n)) ~ 10V;"*n, n — oo. (4.7)

We recall that the value V3"** = 2A(7/6) = 1.014. .. is the maximal volume
of a hyperbolic 3-simplex, that is the volume of the regular ideal tetrahedron
in H.

In the context of discussion of orbifolds of small volume, it is interesting to
consider a value

vol(M)
| Isom(M) |’

where vol(M) is the volume of a hyperbolic manifold M and | Isom(M) | is
order of its isometry group.

According to Theorem 4.3 and Theorem 4.5, we get

Corollary 4.6 If L(n) is a standard orientable manifold of Lobell type, then
we have the following asymptotic:

vol(L(n)) 5

| Isom(L(n)) | 16

Ve, no— oo, (4.8)

where V3" = 2A(7w/6) = 1.014... is the mazimal volume of a hyperbolic
3-simplex.






Chapter 5

Fibonacci manifolds

This chapter is devoted to three-dimensional compact orientable hyperbolic
manifolds which are correspond to the Fibonacci groups. The Fibonacci groups

F(2,m) = (z1,22,...,Tm | TiTiy1 = Tito, ¢ mod m)

were introduced by J. Conway [17]. The first natural question connected
with these groups is the question whether they finite or not [17]. It is known
from [18], [27], [28], [75], that the group F'(2,m) is finite if and only if m =
1,2,3,4,5,7. Some algebraic generalizations of the groups F(2,m) were con-
sidered in [37], [46] and [76]. A new stage in the investigation of the Fibonacci
groups began with [28], where it was shown that the group F(2,2n), n > 4, is
isomorphic to a discrete co-compact subgroup of the full group of orientation-
preserving isometries of the Lobachevsky space HI°.

5.1 Construction of manifolds

We recall, that one of regular bounded polyhedra in the Lobachevsky space
HI® is the icosahedron with dihedral angles equal 27 /3 (see Table 2.1). In [9]
L. A. Best constructed 3 closed orientable hyperbolic 3-manifolds whose fun-
damental set is the 27 /3 -icosahedron. In [68] J. Richardson and J. Rubinstein
corrected the list of examples from [9] and proved that there are exactly six
pairwise non-homeomorphic orientable 3-manifolds which can be obtained from
the 27 /3 -icosahedron. Some their properties were studied in [64]. One of these
manifolds was generalized by H. Helling, A. Kim and J. Mennicke in [28], were
they constructed an infinite series of closed orientable hyperbolic manifolds,
called Fibonacci manifolds.

63
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Let us consider a polyhedron Y,, n > 4, which consists of a central band of
n-antiprism with triangle faces bounded above and below by n-pyramids. In
particular, Y; is an icosahedron. The polyhedron Y, has (2n + 2) vertices, 6n
edges and 4n triangle faces. Let us denote its vertices by @, R, Pi,..., P,
and its faces by Fy,...,F, and Fy,..., F; similar to Figure 5.1, were the

polyhedron Y, is shown.

Figure 5.1.

Let us consider the following pairwise identifications of faces of Y,:
s+ Fy — FT
defined for 7 = 1,...2n by the following rules. If 7 is odd, then
Si t QPiy1Piys — Py PiyaPiyy, (5.1)
and if 7 is even, then
si @ RPiy1Piys — PipaPiysPiyy. (5.2)

Therefore we will get following cycles of equivalent edges. If 7 is odd, then

=1 -1

QPiy1 = PiyaPiys == PiPyy °33 QPiyy, (5.3)
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and if ¢ is even, then

RPiys = PiysPis 285 PiyyPiys -3 RPiy,. (5.4)
From cycles (5.3) and (5.4) we have ‘
8iSiy1 = Siy2 (5.5)

for any 1 = 1,...,2n, were all indices are by module 2n.

Because we want to construct a hyperbolic manifold uniformized by the
Fibonacci group with the polyhedron Y, as its fundamental polyhedron, we
will require that Y, be a hyperbolic polyhedron whose boundary is 4n equal
equilateral triangles and such that sums of dihedral angles corresponding to
cycles of edges (5.3) and (5.4) are equal to 2. Moreover we will require that
the polyhedron Y, has a cyclic symmetry of order n with the axe Q) R, similar
to the icosahedron.

Let use the following notations for dihedral angles of Y,,:

a=LQPy; = [RPy_,, 1=1,...,n,
B = LP;Pya, 1=1,...,2n,
v = LPPy,, 1=1,...,2n,
and denote by z the cosh of the length of an edge of Y,,.

Proposition 5.1 ([28]) For n > 4 the polyhedron Y, can be realized in the
Lobachevsky space HI® with the following parameters:

x=ﬁ(4+2§—4§2+(3-2§) 2+2§), (5.6)
 2mE 42641
cosa = —— =, (5.7)

1 2 — (T
03 = T (Veat(1+6) - o(e+1)y/1+¢

—Jzt (1 — 36 +2€2) + 23 (1 — 8¢ + 8€2) + a2 (—1 — 6 + 1262) + z (—1 + 862)
FE 426 4+ 2(a? — 226 +a — 226 — £) (2 + 2)4/2 + 25), (5.8)

z—(z+1)/2(1 + ¢

Cosy = o7 n 1 ;

(5.9)
where £ = cos(2m/n), and in this case

a+ B +1q=2m (5.10)
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Proof. See [28], were formulae (5.6)—(5.9) obtained by a decomposition of the
polyhedron Y, in tetrahedra, and the formula (5.10) is proved. O

By Poincare theorem [87, p.164], using (5.3)—(5.5) and (5.10), we get that
the polyhedron Y, is fundamental for the group

F(2,2n) = ($1,82,- -, 520 | SiSiy1 = Siy2, i mod 2n).
Therefore we get

Theorem 5.1 ([28]) The Fibonacci group F(2,2n), n > 4, is a discrete
group of isometries of the Lobachevsky space HI° acting without fived points,
and the polyhedron'Y, with parameters given by (5.6)-(5.9) is its fundamental
set.

Definition 5.1 We will say the quotient space M,, = HI*/F(2,2n), n > 4, to
be a hyperbolic Fibonacct manifold.

By the construction, the Fibonacci manifold M,, n > 4, is a closed orient-
able hyperbolic 3-dimensional manifold. We remark, that the group F(2,4) is
isomorphic to Zs and acts on the 3-sphere S* such that M, = S®/F(2,4) is a
lens space L(5,2). The group F(2,6) is isomorphic to a 3-dimensional affine
group and the manifold M3 = IE*/F(2,6) is the Hantzche-Wendt manifold,
studied in [98]. We will be call manifolds M; and M3 Fibonacci manifolds too.

5.2 Fibonacci manifolds and the figure-eight knot

The closed connection between Fibonacci manifolds and the figure-eight knot
was remarked by H. Hilden, M. Lozano and J. Montesinos [31]. By the other
hand, the manifolds which can be obtained as coverings of the 3-sphere S3
branched over the figure-eight knot were studied by J. Hempel [29].

By the construction, the polyhedron Y;, has the cyclic symmetry of order n
with the axe QR. Let us denote this symmetry by p. Then for ¢ = 1,...,2n
we have

p:E_>Fi+27 p:lrz'*—)Fi’:-za

where indices by module 2n. The symmetry p induces an automorphism of the
group F'(2,2n) such that

-1
P S —> Si42 = p Sip.

Let us consider the group I';, = (F(2,2n), p). The fundamental polyhedron for
I, is the %—piece of Y,, pictured in Figure 5.2.
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Q

Figure 5.2.

Let us continue our considerations for fixed odd i. Edges of this piece are
divided in cycles of equivalent under the group I', action according to (5.1)
and (5.2). The first cycle is

-1

si ps; s -t
QPiy1 — PiyaPiys —% PPy — QPiys “ QP (5.11)
Hence
sipspisi p =1,
and
plsip = sisiy1 = Sipa. (5.12)

The second cycle is

. -1 . -2 s,—l
Si41p PSi42p P i+ P
RPZ'+4 — -P'i+1 B+3 e PH.] Pi'l'? e P,'+3P,‘+4 4 R.P»i+2 — R.PH_4.

(5.13)
Hence
Si1 Siv2p S p = 1,
and
PTlSis1 P = Sip18iSip1 = Sig1Sip2 = Siya. (5.14)
The third cycle is

QR % QR, (5.15)
whence '

p" = 1. (5.16)
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According to the Poincare theorem [87, p.164], the group I', has the follow-
ing representation:

-1 -1 _
Tp=(pysiysipr | P =1, p7 sip = 8iSip1, p7' Siy1 P = Siy1 Si Sig1).

(5.17)
Let us express the generator s;. From (5.17)
-1 -1
P Sit1P = Si1p  Sip,
hence
-1 -1
8i = PSP Sitl
Then we will get
s P siip = psi p7 siv1 Siv
Consider b such that s;+; = bp, then
pl b p bp = b7 p T bpd.
Therefore the group I',, has the following representation:
Tn=(p,b|p" =0b"=1,p"[bp] =10 b), (5.18)

where [b,p] = b™1p~1bp is the commutator of elements b and p. By the other
hand, the group

(zy |y [z, 9] = [z, 9] @) (5.19)

is the group of the figure-eight knot, where generators z and y correspond to
Figure 5.3.

z )
Figure 5.3.
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Therefore the group I';, with the representation (5.18) is the group of the
orbifold with the 3-sphere S as underlying space and the figure-eight knot with
branch index n as singular set. Let us denote this orbifold by O(n). So we get

Theorem 5.2 ([31]) A Fibonacci manifold M, n > 2, is the n-fold regular
covering of the orbifold O(n).

We remark, that another proof of this statement based on the spine repres-
entation and surgery description of manifolds M,, was given by A. Cavicchioli
and F. Spaggiari [16].

5.3 Volumes of Fibonacci manifolds

In this section we will calculate the volume of hyperbolic Fibonacci manifolds
M, , n > 4. By virtue of Theorem 5.2,

vol (M,)) = nvol (O(n)), (5.20)

where O(n) is the orbifold with the singular set the figure-eight knot.

Theorem 5.3 ([81]) For n > 4 the hyperbolic volume of the orbifold O(n)
is equal to

vol (O(n)) = 2(A(B+6)+A(B —5)), (5.21)

where 6 = I, (=1 arccos (cos(25) - %)

Proof. . Consider the orbifold as the result of (n,0)-generalized surgery on
the complement of the figure-eight knot according to Thurston’s approach [77]
(see also [62], [65]). We recall that the figure-eight knot complement can be
obtained from two regular ideal tetrahedra. Let us consider a polyhedron P
in HI® consisting of two ideal tetrahedra 7, = ABCD and T,, = ABCE in
Figure 5.4.
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Figure 5.4.

Let us consider following transformations which identify pairs of faces of P:

a: BCD — BEA,
B : ADB — ACE,
~: CDA— ECB.

According to [77] and [62], if the tetrahedra T, and T, is taken to be reg-
ular ideal tetrahedra in the Lobachevsky space, then one obtains the complete
finite volume hyperbolic structure on the figure-eight-knot complement. By
deforming the tetrahedra to differently shaped ideal hyperbolic tetrahedra, one
obtains incomplete hyperbolic structures, whose metric completions are hyper-
bolic Dehn surgeries and generalized Dehn surgeries on the figure-eight knot
(see also [65, ch.10]).

Without loss of generality we can assume that dihedral angles of the ideal
tetrahedra are following (see Figure 5.4):

LAB = (CD =arg z, LAC = [BD = arg 2/, /BC = LAD = arg 2" (5.22)
for the tetrahedron T, and
LAB = (CFE =arg w, LAC = [BE = arg w', /BC = LAE = arg w" (5.23)

for the tetrahedron T, where we denote

and (" = L (5.24)

¢ =1- —
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By the action of transformations «, 8, v we will get two cycles of equivalent

edges of P:

BA £ EA =5 0D 2 EC P25 BD =% BA, (5.25)
that implies
BatyBla =1; ‘ (5.26)
and B »
AD £ ACc 2 BE 2% Be 25 ap, (5.27)
that implies
Byatyt =1, (5.28)

If both tetrahedra T}, and T, are ideal regular, then all their dihedral angles
are equal to 7/3 and sums of dihedral angles corresponding to cycles (5.25) and
(5.27) are equal 2. By Poincare theorem [87, p.164] the group G of isometries
of HI? generated by «, 8 and 7 has the following representation:

G= (B |Ba v a=1,Bya"" v =1). (5.29)
Eliminating v from the first relation in (5.28), we will get the representation
G = (a8 |8 [a, 8] =[a, 8] ™)) (5.30)

that coincides with the representation (5.19) of the group of the figure-eight
knot, and isometries o and 3 correspond to loops z~! and y in Figure 5.3.
In general case, from cycles (5.25) and (5.27) we get following equations for
complex parameters of tetrahedra:

zw'zwz'w =1,
that by (5.24) is equivalent to
z(z—-1Dw(w-1) = 1, (5.31)

and analogously
Z, Z/ wl/ w// Z” wl Z” — 1
that by (5.24) also is equivalent to (5.30).
Because all vertices A, B, C, D, E are equivalent in respect to the group
G action, considering their links we will get the picture shown in F igure 5.5,
where triangles and quadrilaterals A, B, C, D, E correspond to the same
named vertices of the tetrahedra.

Y
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Figure 5.5.

Labels on arrows show the isometry which identifies edges of adjacent poly-
gons. We recall that the figure-eight knot is pictured in Figure 5.3 and let us
take the generator y as its meridian, and

| = zyztyty ety
as its longitude (see [13, p.37] about their properties). We recall, that groups
(5.19) and (5.29) are isomorphic for z = a™!, y = 3. Therefore, the image of
the longitude in the group G is equal to

I = o pap g aga,
and if we recall, that from (5.28) v = a8~ *a™'8, we can rewrite
" =a'Baptyt. (5.32)

The image of the meridian corresponds to the translation from the quad-
rilateral with the label A to the neighborhood quadrilateral with the label A
according to the direction 3. So we can express this translation in complex

parameters:
1
i =2 (1 —w). (5.33)
The image of the longitude corresponds to the translation from the quad-

rilateral A at the right lower corner to the quadrilateral A at the left upper
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corner according to arrows which give the expression for I* in (5.31). So we
can express this transformation in complex parameters:

1 1
w/;wﬂgw/zww”z/w” .
= 2(rm1) = 2(zo1)?
w(w—1) ’

where we used (5.24) and (5.30).

Because we consider the (n,0)-generalized Dehn surgery, according to [77,
p.4.18], [65, §10.5] from (5.30) and (5.32) we get that the orbifold O(n) can be
obtained by completion of the incomplete hyperbolic structure on the union of
two ideal tetrahedra T, and T\, whose complex parameters z and w satisfy the
system:

z(z-1DNw(w-1) = 1,

nlog(z (1 —w)) = 21, 34
Imz >0, (5:34)
Imw > 0.

From this we obtain the following equation for w:

2me

2
w? + <2isin—7r — 1) w+e » =0
n
which has the solutions

1 .. /2 . 2r 1\2
w—E—zsm(?)iz\/l—(cos(7{>—§>.

If we denote ¢ = £ n > 4, then we get

n

1
-1 < cosc,o—§ <1,
and we choose 9, 0 < 1 <, such that cos¥ = cosp — % Hence

1
w = 5+i(isind)—singo),

and as we need Im z > 0, we choose the solution with the sign “ + ” :

1
w=3 + i(siny — siny), (5.35)
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and hence b
cosp + tsing
= . 5.36
‘ 3 — i(sinyp — sinep) (5.36)

We remark that for n > 5 expressions (5.35) and (5.36) satisfy (5.34), but for
n = 4 we get Imw < 0 and the corresponding tetrahedron Ty, is the “negative”.
It means that the volume of the orbifold is equal to the difference of volumes
of T, and T,,.

For finding the hyperbolic volume of the ideal tetrahedron T, with complex
parameter w we should know the values of the arguments of the following
complex numbers:

w—1 1
arg w, arg , arg
w

1—w
Lemma 5.1 With notation as above we have:

_ 1 r—9p—9 w—1
argw = arg T = 5 , arg

—_-L’Q-'—'d),

Proof. From (5.35) by direct computations we have:

siny) —singp  siny —sing

t = -
an (arg w) _;_ cos Y — cos @
= cot 3{)—;—% = tan D;—:i

Similarly, for the second complex parameter we see that

I 1 _ 3 +1 (sing —sing)
l—w % — 1 (siny —sinp) B % + (sind) —singp)2 ’
and i _
tan (arg ) = %—S—lj—l—f = tanw.
—w 2 2
Therefore

_ 1 _ﬂ'—go—z/)
argw—argl_w—- 5 .

For the third complex number we remark, that

w—1 1
+ arg = .
w 1—w

argw + arg
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Hence
w—1

arg =r—(T—p—¢) = p+1,

and this complete the proof of Lemma 5.1. O

From Lemma 5.1 and using the item (7) of the Proposition 2.2, we conclude
that:

vol (To) = A(p+4) + 2A (1%“”) =2 ("2‘2*—'/’) (5.37)

Now we consider the tetrahedron 7, with the complex parameter w.

Lemma 5.2 With notation as above we have:

1 - -1
argz:argl_zzﬂ- 7’;+L’9, argzz =P — .

Proof. Using the Lemma 5.1 from (5.36) we obtain:

B e’ T—p—¢ m—9%+¢p
argz—arglmw_cpﬂ— 5 = 5 .
Similarly,
z—l»1 1__1 %—i(singb—singo)_cosap—%+isinz/)
z z cosp+ising  cosp+ising
_ cosy +z:s%n1/) )
COS®@ + t sy
and |
Z—
arg—— =Y — .
Hence
ar ! =T — argz — ar it
81—, = g g
T—Y+e T—Y+e
—n - TR (g =TTV

2

and the proof of the Lemma is complete.O
From Lemma 5.2 we obtain

2 I

vol (T.) = A — o) + 2A (ﬁ%ﬂ) = 2A (K;_“’) (5.38)
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Thus the volume of the orbifold O(n) is given by the formula:

vol (O(n)) = vol (T) + vol (T,) = 2 (A (‘/’—‘zt-f) +A (%ﬁ» .
8=

In order to get the statement of Theorem 5.3, we denote § = £ and
then § = T and 8 = § arccos (cos(%) - %) Therefore,

vol (O(n)) =2 (A(B+6) + A(B—-19)),

and the proof of Theorem 5.3 is complete. O

¥
2

According to (5.20), from Theorem 5.3 we obtain

Corollary 5.1 For n > 4 the hyperbolic volume of the Fibonacci manifold
M, is equal to
vol (M) =2n (A(B+6) + A(B - 9)), (5.39)

where § = X, 8 = 1 arccos (cos(20) — 3).

For some n the arguments of the Lobachevsky function from Theorem 5.3
have the simple expressions, and using properties of the Lobachevsky function
given in Proposition 2.2 we get

Corollary 5.2 Forn =4 we obtain

vol (O(4)) = A(%) _ pmaz

Corollary 5.3 For n =6 we obtain

vol (O(6)) = g A (%)

Corollary 5.4 Forn =10 we obtain

vol (O(10)) = 2 (A (%) +A (1—7;))

We remark the following interesting property of the figure-eight knot K.
This is well-known that the volume of the hyperbolic manifold S3\ K is equal
to the doubled volume of the ideal regular tetrahedra. If we denote the orbifold
O(n) by K(n), then from Corollary 5.2 we get

4vol(K(4)) = vol(S®\ K).
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Let in general case K be a hyperbolic knot and K (n) be the hyperbolic orbifold
with the 3-sphere as underlying space and the knot K with branch index n as
singular set. Are there exist others such K and n that

nvol(K(n)) = vol(S*\ K) ?

If we redraw the figure-eight knot similar to Figure 5.6,

Figure 5.6.

then it is obvious that the orbifold O(n) has the rotation symmetry p of order
two such that the axe of p and the singular set of O(n) are disjoint. The quotient
space O(n)/p is the orbifold with the 3-sphere as underlying space and the 2-
component link pictured in Figure 5.7 as singular set, whose components have

branch indices 2 and n.

SN
a j "

Figure 5.7.

2

The one component of this link can be regarded as the closure of the 3-string
braid 005", It was remarked in [77, p.6.48], that it is the 2-component link 62
in notations of [70], pictured in standard form in Figure 5.8.
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SR
3
e

Figure 5.8.

Let us denote by 6%2(m,n), with m,n € N U {oo}, the orbifold with the
3-sphere as underlying space and the link 62 as singular set, whose components
have branch indices m and n corresponding to (m,0) and (n,0)-generalized
Dehn surgeries. By the index co we denote a removed component and in this
case the orbifold is non-compact.

According to this notation, we have 63(2,n) = O(n)/p. So by Theorem 5.3
we get

Corollary 5.5 Forn > 4 the orbifold 63(2,n) is hyperbolic and
vol 62(2,n) = (A(B+6) + A(B-9)), (5.40)

where § = Z, 8 = 1 arccos (cos(28) — 3).

5.4 Volumes of Turk’s head links

In this section we consider the series of non-compact manifolds connected with
the link 62. Denote by Thy,, n > 2, the closed 3-strings braid (alafl)n. We
note that members of the family T'h, are well-known. In particular, T'h, is
the figure-eight knot, Ths are the Borromean rings, T'hy is the Turk’s head
knot 8,5 and Ths is the knot 10,93 according to the notation of [70]. It was
shown in [77, p.6.48] that the manifold S®\ Th,, n > 2 is hyperbolic and has
a representation as an n—fold cyclic covering over the orbifold 63(n,00). In
particular, for hyperbolic volumes we have:

vol (§%\ Th,) = nvol (63(n, o)) (5.41)

The computation of the volume of a manifold S*\ Th,, will be based on the
following theorem:.
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Theorem 5.4 For n > 2 the orbifold 63(n, o) is hyperbolic and
vol (63(n,0)) = 4 (Ala+7) + Ala—7)), (5.42)

T, a = 3 arccos (cos(2y) —

2n

1

where v = 2)-

Proof. Let us consider the link 62 pictured in Figure 5.7, where & and 7 denote
corresponding elements of the fundamental group 7 (5®\ 62). By the Wirtinger
algorithm [20] we obtain the following representation for m;(S® \ 62) :

-1
(&,7 | (Ta"17a7‘1a7'1> (Tza‘lrar“la'r‘z) (Ta'lrar‘la'r‘l) = &).

Choosing new generators u and r such that & = v~!r~! and ¥ = r~! from
(5.43) we will get

(S \ 62) = (u,r | (u rt u“2) (r‘l ur ty™? r) (u r1 u'2)_1 = u~tr7h)
and hence
m(S%\ 62) = (u,r | r7! (u2ru"1 ru2)_1 r (u2ru'1 ru2) =1). (5.44)

Let us construct the fundamental domain for this group. Consider an ideal

polyhedron P = ABCDE Foo pictured in Figure 5.9

|
|
b2 3 2
| |
| |
7 7 A
| |
2 ' 3 ' 2
F 1 'El D
(N N ) A
- —
1/ 4 »/4 -
_ o 4 1
A 1 B 1 C

Figure 5.9.
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which consists of four ideal tetrahedra
Tl = AFEOO, T2 = AEBOO, T3 = DBEOO, T4 = DCBoo.

We recall that an ideal tetrahedron in HI® is uniquely (up to transformations
(5.24)) determined by a complex parameter, and denote complex parameters
corresponding to Ty, Ty, T5 and Ty by 21, 22, 23 and z4, respectively, and will
be write T,,, T,,, T», and T,. So we can suppose that for the tetrahedron T7,:

LAco = LFE = argz, [Foo = LAE = argz;, LEco = LAF = argzy;
(5.45)
for the tetrahedron T,:

LAco = [(BE = argz;, LEco = LAB = argz), [Boo = LAE = argz;
(5.46)
for the tetrahedron T,:

(Doo = [BE = argzs, LBoo = (DE = argz;, LEco = [BD = argz3;
' (5.47)
and for the tetrahedron T.,:

LDoo = [BC = argz, LCoo = LBD = argz), LBoo = LCD = argzj,
(5.48)
where as well as above we use notations (5.24).

Let us consider isometries u, v, ¢, r of the Lobachevsky space HI® which
identify the following pairs of faces of P:

u: ABE — E D B,
v: AEF — B D C,
t: AFoo — C D oo,
T ABCoo — F E Dco.

Then we will get following cycles of equivalent edges, which are denoted by 1,
2, 3 and 4 in Figure 5.9.

For the cycle “2” we have:

Aco - Coo 5 Doo 5 Foo 25 Ao, (5.49)

whence
tri7trt = 1, (5.50)
and
21202524232 = 1,
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that by (5.24) is equivalent to

(71 —1)2z223(24— 1) = 1. (5.51)
For the cycle “3” we have:
Boo -5 Eco 5 Boo, (5.52)
whence
rr =1, (5.53)
and

0o n_1o_no__
2y 2324 2] 2523 = 1,

that by (5.24) also is equivalent to (5.51).
For the cycle “1” we have:

AB =% ED "= BC 55 AF -5 CD “5y FE 5 AB,  (5.54)
whence
ur o ltoTlrl = 1, (5.55)

and

't "o_m _
29232421 2421 = 1,

that by (5.24) is equivalent to
21 (29 — 1) (23 — 1) 24
(21— 1) z223(24 — 1)

and because the dominator is equal to 1 by (5.51), we get

=1,

z1(z2—1) (23— 1) 24 = L. (5.56)

For the cycle “4” we have:

AE - EB - BD " AE, (5.57)

whence
wrotl =1, (5.58)
and
2125 22325 25 = 1,
that by (5.24) and (5.51) is equivalent to (5.56).

Vertices of P found two cycles of equivalent: {co} and {A, B,C, D, E, F}.
For the first cusp we get the Figure 5.10,
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Figure 5.10.

where labels of triangles correspond to names of tetrahedra, and the isometry r
identifies the side o with o/, and the side 3 with §’; and the isometry ¢ identifies
the side 4 with 4’. For the second cusp we have Figure 5.11,

Figure 5.11.

where labels of triangles correspond to ideal vertices of the polyhedron P.
Now we are interested in the volume of the orbifold 62(n,c0) which can be
obtained by (n,0)-generalized Dehn surgery on one of cusps of the hyperbolic
manifold S3 \ 62, and the second cusp is complete at the same time. Let us
consider the cusp corresponding to the component of the links 62 with the
meridian 7~! = r. Because the translation r takes the side a to the side o’
and the side (3 to the side 3’ in Figure 5.10, we can express this translation in

terms of complex parameters:

1
zZ9 - = Z2 (]. - 21). (559)
1
As we consider (n,0)-generalized Dehn surgery, we will get the structure of the
cusp pictured in Figure 5.12,
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Figure 5.12.

and for complex parameters we will get

n log(z2 (1 — 2z1)) = 2mi. (5.60)

For the second cusp we have meridian & = u™'r~!, so according to Fig-
ure 5.11, we get for complex parameters:

11

" _

22772’3 = 23(1 —_ 21),
1 <2

and because this cusp remains complete, we will get the equation
log(z3 (1 — z1)) = 2mi. (5.61)

Thus we get that the orbifold 62(n,o0) can be obtained by completing of the
incomplete hyperbolic structure on the union of the four tetrahedra whose

complex parameters satisfy conditions (5.51), (5.56), (5.60) and (5.61), that is
equivalent to the following system:

(21— 1)z223(24 — 1) = 1,
21(22—1)(23—1)24 =1

nlog(zy (1 — 21)) = 21, (5.62)
log(2z3 (1 — 21)) = 2m1.
If we denote ( = 1=, then from (5.62) we get:
-1 mi 1
21 = g_a Z22 = 627 Ca z3 = Ca zg = 1 — ) (563)

¢ 6271”(
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and the system (5.62) is reduced to the equation:

2

(6%‘4 N e%{g_ (em+6_m)) .

where v = Z. Let we choose 6§ such that e ¢ = €% Then

(2 cosf — 2 cosv)® = 1,

hence
1
cosf = cosv + 3

W,

Since cos § < 1, we choose the sign

1
0 = -
COS CcCos Vv 2

Substituting ¢ = €'(®=*) in (5.63) we obtain:
1

21=1—;‘;(—9‘_7), zy =

ei(9+u)’ 23 = ei(ﬁ—u)’ 24 =
By direct computation we get the following result.

Lemma 5.3 With notation as above we have

zl—l_7r—0+1/ 1

(2) argz; = arg ” 5 , arg T— o 0 — v;
y -1 1 —6—
(72) argzy, = 6+ v, arg i = arg =T V;.
Z9 1— 2 2

(i)  argzs = 0—v,  arg 2 ! m—0+v
= §— g = ar = ;
g 3 ’ g z3 g1—23 2 ’

. -1 -0 -
(iv) argz4 = arg i =T V, arg Lo 6+ v

24 2 1—24

As the tetrahedron in HI® is uniquely defined by its dihedral angles, we see that
T, =T, and T,, = T,,. Therefore we conclude: .

vol (6% (n,oo)) =

=2 (A(0+u) +A(0-v) +2A(”“—§'—5) +2A(%0+”)) -
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(0 (5) 2 (57)),

Remark that for n = 2 we again have the situation of “negative” tetrahedra.
In this case the volume of the orbifold is equal to the difference of volumes of
tetrahedra.

To finish the proof of the theorem, we denote v = £, o = £. Then vy = 7

and o = 1 arccos (cos(?*y) - %) Therefore

vol (63 (n,00)) = 4 (Ala+7) + Ala—1)),
that is (5.42) and theorem is proven.O

Corollary 5.6 Form > 2 the hyperbolic volume of the non-compact manifold
S3\ Th,, is equal to

vol (S*\ Thy) = 4m (Ala+7) + Ala —7)), (5.64)

, @ = 1 arccos (cos(2y) — 1).

=
where v = 5 5

2m

Comparing formula (5.64) with (2.12) and Corollary 2.5, one can see, that
the volume of S\ T'h,, is equal to the doubled value of ideal regular m-antiprism
maximal volume.

5.5 Equality of volumes

Comparing formulae (5.39) and (5.64), we see that they are the same if n = 2m.
Therefore, we get the following theorem.

Theorem 5.5 ([81]) For m > 2 volumes of the compact Fibonacci manifold
My, and the non-compact manifold the Turk’s head link complement S*\ Th,,
are equal:

vol (Mam) = vol (S*\ Thy) . (5.65)

Therefore volumes of the compact Fibonacci manifolds correspond to limit or-
dinals in the Thurston—-Jgrgensen theorem on volumes of hyperbolic 3-manifolds.
In particular, the following assertions hold.

Corollary 5.7 The volume of the manifold My is equal to the volume of the

complement of the figure-eight knot and corresponds to the first limit ordinal
in Thurston-Jgrgensen theorem.
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Corollary 5.8 The volume of the manifold Mg is equal to the volume of the
complement of the Borromean rings.

We recall, that many properties of hyperbolic manifolds are defined by
arithmeticity or non-arithmeticity of their fundamental group (see [14], [61],
[87] ). As it was proved in [28] and [31], the manifold M, is arithmetic for n =
4, 5, 6, 8, 12 and non-arithmetic otherwise. It is well-known [66] that Th,, the
figure-eight knot, is the only arithmetic knot. It is shown in [77] that Ths, the
Borromean rings, is also arithmetic. Using these results, from Theorem 5.5 for
small values of m we will get:

Corollary 5.9 There is the following table of arithmetic and non-arithmetic
manifolds with equal volumes:

m M,,, S3\ Th,

2 arithmetic arithmetic

3 arithmetic arithmetic

4 arithmetic non-arithmetic
5 | non-arithmetic | non-arithmetic

Therefore there exist an arithmetic compact manifold Mg and a non-arithmetic
non-compact manifold S3\ 8,3 which have the same volume.

5.6 Fibonacci manifolds as two-fold coverings

The following theorem gives one more relation between the Fibonacci manifolds
M,, and the Turk’s head links Th,,.

Theorem 5.6 For any n > 2 the Fibonacci manifold M, is a two-fold cover-
ing of the three-dimensional sphere S® branched over the link Th,,.

Proof. Let as well as above O(n) be an orbifold whose underlying space is
the 3-sphere and singular set is the figure-eight knot with the branch index n
(see Figure 5.6). As it was remarked above, the orbifold O(n) is the two-fold
covering of the orbifold 62(2,n), whose singular set was pictured in Figure 5.7.
Therefore, by Theorem 5.2 we get the following diagram of coverings:

M, = O(n) = 62(2,n). (5.66)

We remark that the space X,,, where X; = $%, X3 = [E® and X,, = HI® for n >
4, is the universal covering for the Fibonacci manifold M,,, the orbifold O(n) and
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the orbifold 63(2,n). Let F(2,2n), ', and , be the fundamental groups of the
manifold M,, the orbifold O(n) and the orbifold 62(2, n) respectively. Therefore
groups F'(2,2n), I',, and Q, are discrete subgroups of the full isometry group of
Xn. Moreover there are canonical isomorphisms M, = X,, / F(2,2n), O(n) =
X, /Tn and 63(2,n) = X, /Q,. Hence the diagram (5.66) implies embeddings

of subgroups

F(2,2n) « T, < Q,, (5.67)

where | Q,: [, |[=2 and | [, : F(2,2n) |=n.
For describing the group (2, we use the representation (5.44) for the funda-
mental group m (5% \ 63) :

(.7 | (Fa~'7artar™t) (Patrarar?) (e v ar!) T = &),
‘ (5.68)
In this representation generators & and 7 canonical correspond to arcs with the
same labels on the link diagram of 62 in Figure 5.7.

According to [26] it follows from (5.68) that the group €, of the orbifold
62(2,n) has the following representation:

-1
(a,T I (7‘0[ ITCYT 10!7' 1) (Tza 1Ta’T lClT 2) (TO[ 17'(17' 1017' 1) = «,

" = 1% = 1)5.69)
where generators o and 7 of (), correspond to generators & and 7 of the group

771(83 \ 6%)

Let us consider a group
2,82 = (ala" =1 (t|?=1)
and an epimorphism
0:Q, —2,9Z,
defined by conditions
(o) = a, O(r) = t. (5.70)

By the construction of the two-fold cover O(n) — 62(2,n) the loop 7 from
the group Q, lifts to a trivial loop in the group I',. By the same reasons the
loop a from the group , lifts to a loop, which generates a cyclic subgroup of
the order n in the group I',,. Therefore,

T, =0Y(Z,) = 67" ({a | a" = 1)). (5.71)
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For the 2n-fold covering M,, — 62(2,n) both loops a and 7 from the group
Q, lift to trivial loops in the group F(2,2n). Therefore

F(2,2n) = 07'(1) = Keré. (5.72)
Let T, be a subgroup of {2, defined by the following condition:
T, = 074(Zz) = 071 ((t | 2 = 1)). (5.73)
Then we have a sequence of normal subgroups:
F(2,2n) « T, a Q,, (5.74)

where | Q, : T, |=nand | T, : F(2,2n) |= 2.

The group T, is a subgroup of §,. Hence it acts by isometries on the
universal covering X, and uniformize an orbifold X, / T,. From (5.74) we get
the following diagram of covers for orbifolds:

M, =X,/ F(2,2n) 2 X, /T, = 62(2,n) = X, / Q.. (5.75)

Our next step is to describe the orbifold X, / T,. First of all we will prove
that the cover

pi Xo/Tn 2 62(2,n) = X,/ Qn (5.76)

is cyclic. We will use the following elementary lemma, for it.

Lemma 5.4 Let G, K, L be groups and 6 : G — K & L be an epimorphism.
IfH=0"YK) then HaG and G/H = L.

We will apply this lemma to the epimorphism 0 : Q, — Z,, & Z, which
was defined by (5.70). Since T, = 67'(Z,), then T, «Q, and Q, /T, = Z,.
It means that p is the regular n-fold cyclic cover. Moreover by (5.73) the cover
p is branched over the component with the branch index n of the singular set
of the orbifold 62(2,n).

It is known [71], that there is an involution in the symmetry group of 62
which changes two components (it is evident from Figure 5.8). Therefore the
singular set of the orbifold 62(2,n) is equivalent to the link diagram in Fig-
ure 5.13.
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T
oV,

"

-

Figure 5.13.

In Figure 5.13 one can see that the component with the index n is unknotted.
Therefore p is a standard cyclic cover of the 3-sphere which is the underlying
space of the orbifold 63(2,n), branched over an unknotted circle. Hence the
underlying space of the orbifold X, /T, is the 3-sphere too. Moreover the
component with the index 2 of the singular set of 63(2,n) is the closed 3-string
braid o10;'. Therefore this component will lift to the closed 3-string braid
(o167 ")™ on the n-fold cyclic covering X, / T,. It is the link Th,, according to
our notation.

Summarizing we see that the orbifold X,, / T, has the 3-sphere as its under-
lying space and the link Th,, with the branch index 2 as its singular set. For
this orbifold we will be use notation Th,(2) = X, / T,.

Comparing diagrams (5.61) and (5.75) we conclude that the following dia-
gram for covers holds (see Figure 5.14):

/\
\/

63(2,n)

Th,

Figure 5.14.

From this diagram we see that the Fibonacci manifold M, is the 2-fold covering
of the orbifold T'h,(2), and the theorem is proved. O
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We recall that according to [13] a w-orbifold is an orbifold with the 3-sphere
as its underlying space and a link with branch indices equal to 2 as its singular
set.

Since for n > 4 the Fibonacci manifold M, is hyperbolic, from Theorem 5.6
and Corollary 5.1 we get the following

Corollary 5.10 Forn > 4 the w-orbifold Th,(2) is hyperbolic and its volume
is equal to

vol (Tha(2)) = n (A(B+6) + A(B - ),

where § = Z, 3 = 1 arccos (cos(26) — 3).

5.7 Heegaard genus of Fibonacci manifolds

Following [96] we recall some well-known facts from the theory of 3-manifolds.

Let M? be a closed orientable 3-manifold. A pair (H,, H;) of handlebodies
of genus g is called a Heegaard splitting of genus g of M®if M®> = H, UH; and
HyNH ; =0H, = 6H; is a closed orientable surface of genus g. The minimal
genus among the genera of all Heegaard splittings of M? is called the Heegaard
genus of M? and is denoted by h(M?). The three-dimensional sphere S is the
alone orientable manifold which Heegaard genus is equal to 0. The Heegaard
genus is equal to 1 only for lens spaces and for manifold S? x S!. In particular,
if a manifold M?® admits Euclidean or hyperbolic structure, then h(M3) > 2.

The minimal number of elements needed to generate the fundamental group
m1(M?) of a closed 3-manifold M? is called the rank of m(M?3). For a 3-
manifold M? we denote the rank of m,(M?) by r(M?). The following inequality
is valued : r(M3) < h(M?) in obvious way [30]. In particular the Poincaré
conjecture can be formulated in the following way : r(M?>) = 0 if and only if
h(M?3) = 0. M. Boileau and H. Zieschang [12] have constructed a Seifert fiber
space M3 with the strictly inequality :

2 = r(M®) < h(M®) = 3.

It is obvious that the fundamental groups of a hyperbolic or Euclidean
Fibonacci manifold is two-generated. We will show that for these manifolds
Heegaard genus is equal two.

Proposition 5.2 ([83]) For any n > 3 the Heegaard genus h(M,) of the
Fibonacci manifold M, is two.
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Proof. By Theorem 5.6 for any n > 2 the Fibonacci manifold M, is the
two-fold covering of S® branched over the Turk’s head link Th,,. The link Th,,
is a closed 3-string braid (0107")" and therefore has a 3-bridge presentation.
Hence by Viro’s theorem [88] (see also Section 6.3), h(M,,) < 2. But for n > 4
in virtue of Theorem 5.1 the manifold M, is hyperbolic. The manifold M;
coincides with the Hantzche-Wendt manifold [100] and admits an Euclidean
structure. Therefore h(M3) = 2 forn > 3. O

We remark that the same statement was proven in [16] starting from a spine
representation of manifolds M,,.

Because the Fibonacci manifold M, is the two-fold covering of S branched
over the figure-eight knot and coincides with the lens space L(5,2), we get
h(Mg) = 1.

Let us make some remarks on above result.

First remark is connected with the classical 84(g — 1)-Hurwitz theorem. By
this theorem the automorphism group of a compact Riemann surface of genus
g > 1 is finite and bounded above by 84(g — 1).

By Mostow rigidity theorem the isometry group of the compact hyperbolic
3-manifold is finite always. Moreover a priori it may be isomorphic to an
arbitrary finite group [43].

In analogy to Hurwitz theorem for 2-dimensional case one can try to es-
timate the order of the isometry group of the hyperbolic 3-manifold in terms of
Heegaard genus. But the following proposition show that it is impossible.

Proposition 5.3 There are hyperbolic 3-manifolds of Heegaard genus 2 with
an arbitrary large group of isometries.

Proof. The Fibonacci hyperbolic manifold M, n > 4, has an orientation-pre-
serving isometry of order n. This isometry is induced by the automorphism
Si — Sit2 with indices by mod 2n, if we consider the standard representation
for the fundamental group m1(M,) = F(2,2n) (see section 5.1). As it was
shown in Section 5.2, the quotient space of M,, by this isometry is the orbifold
O(n) with the underlying space S® and the figure-eight knot as the singular
set. Therefore by one hand the isometry group contains the cyclic group of
the order n and so can be arbitrary large as n — oco. By the other hand,
h(M,) = 2forn>4. 0

The second remark devoted to the relationship between Heegaard genus and
volume of a hyperbolic 3-manifold.

Proposition 5.4 There are hyperbolic 3-manifolds of Heegaard genus 2 with
an arbitrary large volume.
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Proof. We recall, that according to Corollary 5.1, the volume of the hyperbolic
Fibonacci manifold M, is given by the formula

vol(M,) = 2n (A(B + 8) + A(B — 9)),

where § = Z and 8 = %arccos(cos(?c?) — 7). Because the Lobachevsky function

is continuous (see Proposition 2.2), we will get
A+ 6) + A(B — §) — 2A<%), n - oo.

We recall that Vi"® = 2A(%) = 1.014... is the volume of the ideal regular
tetrahedron that is maximal volume of a simplex in HI°. Therefore we have:

vol(M,) ~ 2n V™", n — oo.

Thus the volume vol(M,) of the hyperbolic Fibonacci manifold M, is an ar-
bitrary large as n — oco. By the other hand, in virtue of Proposition 5.1 the
Heegaard genus h(M,) is equal two forn > 4. O

The third remark is connected with the genus of an invariant surface in the
manifold M,,.

Proposition 5.5 Ifn > 10 then each Heegaard surface of genus 2 in the
Fibonacci manifold M, is not invariant under the isometry group.

Proof. Let (Hy, H)) be a genus two Heegaard decomposition of a Fibonacci
manifold M,,, n > 10. Denote by S = H,NH, = 0H, = OH, the corresponding
Heegaard surface. Suppose that S is invariant under the isometry group of M,.
As in the proof of Proposition 5.2, we recall that for arbitrary n the manifold
M,, has the orientation-preserving isometry f : M, — M, of order n, induced
by the automorphism s; — s;42 of the fundamental group F(2,2n) of the
manifold M,. The restriction f|g : S — S gives a topological automorphism of
the surface S. From [41] there exists a suitable conformal structure on S which
is invariant under f|s. By Wiman theorem [93] the order of an automorphism
of a Riemann surface S of genus g is bounded above by 4 - g + 2, that is equal
ten in our case. Hence n < 10, that gives a contradiction. O

We recall, that in [99] B.Zimmermann defined an equivariant Heegaard
genus for 3-manifolds. Let M be a closed orientable 3-manifold, and G be a
finite group of its orientation-preserving homeomorphisms. As the equivariant
Heegaard genus g(M,G) of such G-action we define the minimal genus g > 1
of a Heegaard decomposition M = Hy U H, of M invariant under G, i.e. G
maps both handlebodies Hy and H, of the decomposition to itself.
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Proposition 5.6 There is a group G, of order 4n consisting of orientation-
preserving homeomorphisms of a Fibonacci manifold M,,, n > 3, such that the
equivariant Heegaard genus of M, in respect to G, is g(M,,Gn) = n — 1.

Proof. We recall, that the fundamental group of a Fibonacci manifold M, is
the Fibonacci group

F(2,2n) = (s1,...,82n | SiSit1 = Sit2, imod 2n). (5.77)
Let as well as above, p be such symmetry of order n, that
-1 _
pTlsip = Siya

for : = 1,...,2n, where indices are by module 2n. Hence p induces an auto-
morphism of the group F(2,2n) and we consider a group

Do = (F(2,2n),p) = F(2,20) ) (p),

which can be decomposed in a semi-direct product as an extension of a group
by an automorphism. Here (p) is a cyclic group of order n generated by p. The
presentation of the group I', was given in (5.17) and (5.18) :

To=(pb| p" =" =1, p7'[b,p] = [b,0] by, (5.78)
where p and b are connected with generators s1, . .., $3, from (5.77) by following
equalities:

sg = bp, (5.79)
s1=ps; ptsy = b7 pT bp = [byp], (5.80)

and
plsip = sita (5.81)

for2=1,...,2n. Hence

ssiv2 = p' (bp) P (5.82)

and
szip1 = p~* [bp] o' (5.83)
for 1 =0,...,n — 1. In this case p and b correspond to loops in the group of

the figure-eight knot pictured in Figure 5.15.
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b p
+,
Figure 5.15.

So, the group I',, is the group of the orbifold O(n) whose underlying space
is the 3-sphere S® and singular set is the figure-eight knot with branch index n.
Let us consider an involution 7 of S whose axe is correspond to the dotted line
in Figure 5.15 and intersects the figure-eight knot in two points. It is obvious,
that 7 is an involution of the orbifold O(n) and induces an automorphism of
the group I' by the equalities:

T pT = b, ™ b7 = p. (5.84)

Lemma 5.5 The involution T induces an automorphism of the group F(2,2n).
Proof. According to formulae (5.82) and (5.83), from (5.84) we get:

T sipa T = b7t (pb) b : (5.85)

and
’l'-1 S+1 T = b [pb] b (586)
We remark, that by (5.79) and (5.80):

pb = (bp) p™' b7 pb = sys7"

and

[o,8] = [b,p]" = s7".
Because the group F(2,2n) is a normal subgroup in the group I',,, the right
sides of (5.85) and (5.86) also are elements from F'(2,2n). Moreover

(T'l S; T) (7"1 Sit1 7') = 77! Siy2 T
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foralli =1,...,2n. Whence 7 induces an automorphism of the group F(2,2n)
defined by (5.85) and (5.86). O

Therefore a group (p,7) generated by the symmetry p of order n and by
the involution 7 is a group of automorphisms of the group F(2,2n). Let us
consider a group

An = (F(2,2n),p,7) = F(2,2n) X (p, ),
which can be decomposed on the semi-direct product. In this case

A, = <p,b,T | p* = b" = Tt = 1, p—l [b,p] = [b,P] b, T—IPT = b>
(5.87)
The quotient space O(n)/T of the orbifold O(n) by the involution 7 is an
orbifold whose underlying space is the 3-sphere S® and whose singular set is
a spatial graph, pictured in Figure 5.16, which can be described as the torus
knot 5; with a bridge AB. Points A and B are images of the intersection points
of the singular set of O(n) with the axe of the involution 7. Two arcs of this
graph, which are images of the axe of 7, have branch index 2, and the third,
which is the image of the singular set of O(n), has the branch index n.

Figure 5.16.

The group A, is the group of the orbifold O(n)/7, whose generators p, b
and 7 are pictured in Figure 5.16. Indeed, the relation

p~" [b,p] = [b,p] b
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is a consequence of the fact that the loop around the bridge AB is the element
of the order two in the group of the orbifold, and others relations from (5.87)
hold by Wirtinger algorithm.

From Figure 5.16 we see, that the orbifold O(n)/7 has an involution o which
acts on elements p and b by following rules:

o lbo = b! (5.88)

and
o lpo =bp bl (5.89)

Lemma 5.6 The involution o induces an automorphism of the group F(2,2n).

Proof. According to formulae (5.82) and (5.83), from (5.88) and (5.89) we get:
o saira0 = (bp767) T (5707 07 (b7 )

= (bp7 67" st (bp7 b7 (5.90)

and
o saimo = (bpm 67) T (bbpb b7 bp7 b7 (bp7 57’
= (6o 57) " b (8p) (5797 bp) (bp) M 67 (p7 07

_ [b" (bp™ z)—l)"]_1 sy 57" [b-l (bp-lb-l)’] (5.91)

Because the group F(2,2n) is a normal subgroup in the group I',, the right
sides of (5.90) and (5.91) are elements of the group F(2,2n). Moreover

(a"lsia) (a"l 5,4_10) = ¢! Sit20

forallz =1,...,2n. Whence o induces an automorphism of the group F(2,2n)
defined by (5.90) and (5.91). O

Therefore the group (p,7,0) generated by the symmetry p of order n and
by involutions 7 and o is a group of automorphisms of the group F(2,2n). Let
us consider a group

I, = (F(2,2n),p,7,0) = F(2,2n) X (p,70) (5.92)
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From (5.87), (5.88) and (5.89) we get the following representation of the group
II, = <p,b,7’,a | p» =0 =12 =0 =1, p7" [b,p] = [b,p] b,

ot =b o7 be =bY o7 po = bp“lb_1>. (5.93)

The quotient space of the orbifold O(n)/7 with the singular set in Fig-
ure 5.16 by the involution o is the orbifold (O(n)/7) /o whose underlying space
is the 3-sphere and whose singular set is pictured in Figure 5.17.

E F
Figure 5.17.

Points C', E and F' are images of the intersection of the singular set of the
orbifold O(n)/T with the axe of involution ¢, and the point D is the image of the
point B from Figure 5.16. The singular set is a spatial graph with four vertices
and six edges and combinatorial isomorphic to the 1-skeleton of a tetrahedron.
So it is a spatial tetrahedron. By the other hand, if we delete edges C D and
EF, we will get the figure-eight knot. So we can regard this singular set as a
figure-eight knot with two bridges.

Next we will use results of D. McCullough, A. Miller and B. Zimmermann
from [48], where the theory of group actions on handlebodies was developed.

Let us consider a decomposition of the orbifold (O(n)/7) ¢ according to the
dotted line in Figure 5.17 :

(O(n)/7) /o =V U W,

where orbifolds V] and V; have the 3-ball as underlying space and their singular
sets contain points C', D and E, F', respectively. Let us consider preimages

Vi = G;1 (Vi)
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where G, = (p,7,0), of the orbifolds V;f: = 1,2, in the Fibonacci manifold
M,,. Therefore we get the decomposition M,, = V; U V;, and G is a group of
orientation-preserving homeomorphisms of Vi and Vi.

By the construction, the stabilizers of points C' and F are dihedral groups
ID; of order 4, and the stabilizers of points D and F' are dihedral groups ID,, of
order 2n. According to [48], to each of orbifolds V;, i = 1,2, which is a handle-
body orbifold, we correspond a “handlebody-orbifold” graph I'(G,,,n,G,,) in
Figure 5.18.

Figure 5.18.

Where G, and G,, are stabilizers of vertices of the singular set of V; and Z,
is the stabilizer of points of the common edge. In our case n = 2, G,, = DD,
and G, = ID,,. We recall [48], that if ['(G) is a graph corresponding to a finite
group, its Fuler characteristic is defined to be

1 1
rG)) = - 1
x(H(G)) ,,e;(r)lavl Z)|Ge|

e€E(T

(5.94)

where G, and G. are groups corresponding to vertices and edgers of the graph
['(G). From (5.94) for the graph I'(ID,,2,1D,) corresponding to the group of
handlebody orbifold V;, ¢ = 1,2, we get:
1 1 1 2—-n
I'(D,,2,D,)) = -4+ — — = = : .

According to the main theorem from [48], the Euler characteristic x(I') of
the graph corresponding to the handlebody orbifold V; = Vi/G., the order of
the group G, and the genus ¢ > 1 of the handlebody V; are satisfy to the
equality

(1 —g) =[Gn| x(I). (5.96)
Because | G, |= 4n and x(I') = (2 — n)/4n from (5.95), we get that the genus
of V; is equal ¢ = n — 1. Therefore a Fibonacci manifold M,, n > 3, has
a Heegaard decomposition M, = ‘71 U \72 of genus (n — 1) such that both
handlebodies V; and Vj are invariant by the group G, = (p,;0) action. Hence
equivariant Heegaard genus g(M,,, G,) = n—1, and the proof of the Proposition
is complete.O
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5.8 Fibonacci manifolds obtained by Dehn sur-
gery

In this section we will give also one description of Fibonacci manifolds M,,. We
recall the following fundamental Lickorish’s theorem.

Theorem 5.7 ([44]) FEvery closed, orientable, connected 3-manifold may be
obtained by surgery on a link in S®. Moreover, one may always find such
a surgery presentation in which the surgery coefficients are all £1 and the
individual components of the link are unknotted.

Proof. See [44] or [70, §91]. O

For find such representation for Fibonacci manifolds, we use the approach
of J.Montesinos [59]. We recall, that in virtue of Theorem 5.6, the Fibonacci
manifold M, n > 2, can be obtained as the two-fold covering of the 3-sphere S3
branched over the Turk’s head link T'h,,, that is the closure of the 3-strings braid
(0105")". Let us consider the projection of the Turk’s head knot Thy = 85,
pictured in Figure 5.19.

Bl B3 Bs B7

Figure 5.19.

Let us consider neighborhoods By, ..., Bg of double-points of the diagram
of Thy, which are 3-balls with two arcs inside. As we see from Figure 5.19,
each B; is a (+1)-tangle if ¢ is odd, and an (—1)-tangle if ¢ is even.
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B, B, Bg Bs

Figure 5.20.

If we replace each tangle B; on a trivial tangle, we will get an unknotted
closed curve C in S (see Figure 5.20).

Using the approach from [59], we will redraw the curve C as a horizontal
line. Because the two-fold coverings of B; branched over B;NThy or B;NC are
solid tori, we see, similar to [59], that the two-fold covering of S® branched over
Thy4 can be obtained by surgeries with parameters +1 on the links Ly, ..., Ls
in Figure 5.21.

Figure 5.21.

Therefore the Fibonacci manifold My can be obtained by Dehn surgery on
the chain of circles L; U ... U Lg, by doing (+1) surgery on circles with odd
numbers, and by doing (—1) surgery on circles with even numbers. By the
same arguments, for arbitrary n we will get

Proposition 5.7 A Fibonacci manifold M,, n > 2, can be obtained by Dehn
surgery on the chain of circles Ly U...U Ly, by doing (+1) surgery on circles
with odd numbers, and by doing (—1) surgery on circles with even numbers.
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By other considerations, this statement was proved by A. Cavicchioli and
F. Spaggiari [16] using results of M. Takahashi [73]. Let us consider twists
about unknotted components for circles with odd numbers. Then, as it was
remarked in [16], according to the Kirby-Rolfsen calculus on framed links
(see [70, Chapter 9]), we will get the alternating link which is a chain of four
unknotted circles with all surgery coefficients equal to (—3) (see Figure 5.22).

-3

-3
Figure 5.22.

By the same arguments one can get the same result for an arbitrary n. Let
us denote the alternating link consisting of n linked unknotted circles similar
to Figure 5.18 by L£,,. Then from above considerations we have

Proposition 5.8 A Fibonacci manifold M,, n > 2, can be obtained by (—3)
surgeries on components of the link L, .

We remark, that for n = 2 this property was discussed in [70, p.299]. &






Chapter 6

Manifolds of small volume

We recall, that it follows from the Thurston-Jgrgensen theorem that hyperbolic
3-manifolds can be ordered by their volumes, and there exists the smallest man-
ifold. In [47] S. V. Matveev and A. T. Fomenko firstly conjectured the structure
of the initial part of the set of volumes. The conjecture was based on numer-
ous calculations of volumes, using computer programs. In [36] C. Hodgson and
J. Weeks refined the ten smallest known manifolds and their volumes, using
famous computer program SnapPea [91].

The smallest known manifold M; in the list from [36], whose volume is
equal to 0.94..., was constructed by J. Weeks [90] and by S. V. Matveev
and A. T. Fomenko [47]. The manifold M; can be described in the form
My = W(5,-2;5,—1), where W(m,n;p, q) denotes the manifold obtained by
(m,n) and (p,q) Dehn surgeries on components of the Whitehead link W. We
remark, that the isometries of M, were investigated by E. Molnar [58].

The second manifold M, whose volume is equal to 0.98 . . ., was constructed
by W. Thurston [77] using (5, —1) Dehn surgery on the figure-eight knot. We
recall, that one can get the figure-eight knot by (1,1) Dehn surgery on one
component of W. So we can write M, = W(1,1;5,-1) .

The third manifold M3 = W(3,—2;6,—1) was described by R. Meyerhoff
and W. Neumann [56]. It was proven in [80], that the volume of M3 is exactly
equal to the volume of the regular ideal tetrahedron in the Lobachevsky space
and it is equal to 1.01.. ..

The ten smallest manifolds M, ..., My were obtained in [36] by using
Dehn surgeries on different links in 5 what was stipulared by the investigation
of their length spectra. We remark, that all these manifolds can be obtained by
surgeries on components of the Whitehead link and corresponding parameters
are given in Table 6.1.

103
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In this chapter we consider a family of compact 3-manifolds W(m,n;p,q)
which can be obtained by (m,n) and (p,q) Dehn surgeries on components
of the Whitehead link W. According to the Montesinos theorem [59], any
closed 3-manifold obtained by Dehn surgeries on a strongly invertible link can
be presented as a 2-fold covering of the 3-sphere, branched over some link.
In section 6.1 we apply the Montesinos algorithm for describing manifolds
W (m,n; p, q) as 2-fold branched coverings and for finding corresponding branch
links (see Theorem 6.2). In section 6.2 we describe branch sets for the ten
smallest hyperbolic 3-manifolds M, ..., Mo (see Table 6.1). In section 6.3
we discuss the Heegaard genus of above manifolds. More exactly, using results
of section 6.2, by the Viro theorem [88], we get that the Heegaard genus of above
hyperbolic manifolds equals two (see Proposition 6.2). In section 6.4 we apply
the criterion of B. Zimmermann [101] to the smallest known Weeks-Matveev-
Fomenko manifold M; to show that this manifold is maximally symmetric.
In section 6.5 we will discuss the Meyerhoff-Neumann manifold whose volume
corresponds to the third value.

6.1 Dehn surgeries on the Whitehead link

This section is devoted to describing of compact 3-manifolds W (m,n; p, ¢) ob-
tained by Dehn surgeries on the Whitehead link W (see Figure 6.1) as two-folds
branched coverings of the 3-sphere. We remark, that non-compact 3-manifolds
obtained by Dehn surgery on one component of W and their invariants were
investigated by C. Hodgson, R. Meyerhoff and J. Weeks [33], the consistency
relations and equations for surgery parameters were obtained by W. Nuemann
and A. Reid [61].

Figure 6.1. The Whitehead link.

We recall [60], that a link £ C S® is called strongly invertible if there
is an orientation-preserving involution of S® which induces on each compon-
ent of £ an involution with two fixed points. Above mentioned involution is
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called a strongly invertible involution of the link. The following theorem of
J. Montesinos [59] gives connection between two approaches for description of
a manifold.

Theorem 6.1 ([59]) Let M be a closed orientable 3-manifold that is obtained
by doing surgeries on a strongly-invertible link L of n components. Then M
is a 2-fold covering of S® branched over a link of at most n + 1 components.
Conversely, every 2-fold cyclic branched covering of S* can be obtained in this
fashion.

The proof of the theorem given in [59] is constructive and in particular it
gives an algorithm for describing of the branch set of above 2-fold covering (see
also examples of using this algorithm in [60]).

It is well-known that the Whitehead link W is strongly invertible, and a
strongly invertible involution p of W' is shown in Figure 6.2.

(f i \w b

Figure 6.2.

Therefore we can apply the Montesinos algorithm to the Whitehead link W.
Let us denote by W(m,n;p, q) the compact 3-manifold which can be obtained

by —7;% and % Dehn surgeries on components of W. By Theorem 6.1 the manifold

W (m,n;p,q) is a 2-fold covering of S® branched over a link with at most three
components. It follows from [59] that this covering is uniquely determined by
the choose of a strongly invertible involution. Let us describe the branch set
L(m,n;p,q) of the 2-fold covering W(m,n;p,q) of S® corresponding to the
involution p pictured in Figure 6.2.
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Let s1,...,ss be Wirtinger generators of the fundamental group m(S5%\ W)
as in Figure 6.1. We choose meridians m;, m, and longitudes [y, [; accord-
ing to Figure 6.2 and such that longitudes represent elements of the second
commutator group of m1(S5%\ W) (see 15, p.37]). So we have :

-1
m; = Ss, L = 8381 7,

-1, -1
my = Sy, ly = s5 8485 8.

Let V be a regular tubular neighborhood of the link W in S3. Without loss
of generality one can choose V, meridians m;, m, and longitudes {;, I, on the
boundary of V' to be invariant under the involution p. The quotient space of
S? under p action is shown in Figure 6.3.

-

(

Figure 6.3. The quotient (S%\ V)/p.

The image of the tubular neighborhood V under the canonical projection p :
53 — S$3/p consists of two 3-balls B; and B,. Denote by Fiz(p) the axis of the
involution p in S°. For each ball B; the intersection B; N p(F 1x(p)) consists of
two arcs. By the isotopy of B; along the image p(/;) of the longitude [; (i = 1, 2)
we get the following Figure 6.4:
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B,

©
)

-

Figure 6.4.

The ball B; with arcs B; N p(Fiz(p)) is a trivial tangle in terminology of [19]
and [60]. By the Montesinos algorithm, for describing the link £(m,n;p, ¢) we

need to replace these trivial tangles B, and B, by % and g rational tangles,
respectively (see Figure 6.5).

—
-
Ol L |

UL 00

Figure 6.5. The link £(m,n;p,q).

313
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-

In Figurés 6.6-6.8, using Reidemeister’s moves, we redraw the link £(m, n; p, q)
in the more convenient form.
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\
313

—

el o >
UoT

N\ )

Figure 6.6. The link £(m,n;p,q).

ot 2 )

t +37_/\/J&j y

Figure 6.7. The link £(m,n;p, q).

23




6.1. DEHN SURGERIES ON THE WHITEHEAD LINK 109

T, 0%

Figure 6.8. The link £(m,n;p, q).

As a consequence of above considerations we get the following theorem.

Theorem 6.2 ([52]) Let M = W(m,n;p,q) be a manifold obtained by (m,n)
and (p,q) Dehn surgeries on the Whitehead link W. Then M is the two-fold
covering of S* branched over the link L(m,n;p,q), pictured in Figure 6.8.

We remark, that the basic polyhedron (in the sense of [19]) for the link
L(m,n;p,q) is an octahedron. It means that the link £(m,n;p,q) can be
obtained by replacing vertices of the octahedron by following rational tangles:
(p/q + 4)-tangle, (m/n + 2)-tangle, 2-tangle, 1-tangle, 2-tangle and 1-tangle.

It is well-known, that components of the Whitehead link are symmetric.
But unfortunately the presentation on the link £(m,n;p,¢) in Figure 6.8 is
not symmetric in respect to parameters of surgeries on components. So in
Figure 6.9 we give a symmetric presentation of the link £(m,n;p, q), which is
obtained from Figure 6.8 by Reidemeister’s moves.

XXX

E+3 24+3

| A |
/

|
Figure 6.9. The link L(m,n;p, q).




110 CHAPTER 6. MANIFOLDS OF SMALL VOLUME

6.2 The ten smallest manifolds M,..., M,

In this section we will apply Theorem 6.2 to the ten smallest known compact
orientable hyperbolic 3-manifolds My,..., Mo from [36]. We remark, that
all of them can be described in the form W(m,n;p,q). The corresponding
parameters of surgeries are given in the first column of Table 6.1. Therefore
manifolds My,..., M;o are 2-fold branched coverings of S3. Let us denote
corresponding branch sets by £y,..., L.

For each + = 1,...,10 we can consider an orbifold £;(2) whose underlying
space is S3, the singular set is the link £;, and branch indices equal 2. The
orbifold £;(2) is a m-orbifold in the sense of [13]. Thus manifolds My,..., M,
are two-fold coverings of m-orbifolds £1(2), ..., £10(2), whose volumes are given
in the third column of Table 6.1.

Complements S® \ £;, 1 = 1,...,10, are hyperbolic manifolds and their
volumes can be found using the SnapPea program of J. Weeks [2], [90], [91] (see
the fourth column in Table 6.1). In the last column there are given notations
of links £; according to tables from [15] and [70] which contain knots and links
of small order. They are recognized using polynomial invariants of knots and
Reidemeister’s moves.

Table 6.1.
vol(M;) | vol(Li(2)) | vol(S®\ L;) | L;
My = W(5,-2;5,—1) | 0.9427... | 0.4713... 9.4270... | 949
M, = W(I,1:5,—1) | 0.9813...] 0.4906... | 5.6387... ] 10,01
Ms = W(3,-26,—1)] 1.0140. .. | 05074... | 8.1195...] 10%,
My = W(5,-1;5,—-1) | 1.2637... | 0.6318... 9.2505... | 10455
Ms = W(1,1;6,-1) 1.2844... | 0.6422... 5.8430... | 113
M = W(1,1;1,-2) | 1.3985...] 0.6992... | 58296...] 14y
M; = W(I,-%6,-1) | 1.4140... ] 0.7070... | 5.9782...] 112
Ms = W(2,1,5,—1) | 1.4140...] 0.7070... | 7.7948...] 112
Mg = W(7,-3;5,—1) | 1.4236... | 0.7118... | 10.6933... | 10162
My = W(1,1;3,-2) | 1.4406... | 0.7203... 7.1180... 1 139

In particular, as a consequence of Theorem 6.2 we get the following descrip-
tion of the ten smallest manifolds.

Corollary 6.1 The ten smallest known closed orientable hyperbolic 3-manifolds
My, ..., My are the two-fold coverings of S* branched over the links L1, . .., Lo
, pictured in Figures 6.10-6.19.
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==

Figure 6.10. The knot £, = £(5,—-2;5,—1) = 949.

N /
s

Figure 6.11. The knot £, = £(1,1;5,—1) = 104¢;.

Figure 6.12. The link £5 = £(3,-2;6,—1) = 10%,,.

s

Figure 6.13. The knot £4 = £(5,—1;5,—1) = 10;55.
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Figure 6.14. The link £5 = £(1,1;6,—1) = 112.

— )
i%%\f(;\%\@/ |

Figure 6.15. The knot L5 = £(1,1;1,—-2) = 14,.

N /
O3 XX
ppaaaal

Figure 6.16. The link £ = £(1,-2;6,—1) = 113.

RS

Figure 6.17. The link £3 = £(2,1;5,—-1) = 113.

]
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el
Figure 6.18. The knot Lo = £(7,—3;5, —1) = 10;62.

&N\T/\c\/ o /Q X
1

Figure 6.19. The knot L0 = £(1,1;3,-2) = 13-.

6.3 The Heegaard genus of W(m,n;p,q)

Let £ be a link in S3. According to [96], a link £ is said to have a 3-bridge
presentation if there is a genus 0 Heegaard splitting (Bj, B;) of S® such that
the link £ intersects the 3-ball B; (i = 1,2) in three unlinked arcs. That is
there are three mutually disjoint discs in B; each of which is bounded by one
of the arcs considered and an arc on the boundary of B;.

The following theorem of O. Viro [88] admits to estimate Heegaard genus
h(M) of a manifold M described as a two-fold covering of S°.

Theorem 6.3 ([88]) A closed orientable 3-manifold M?> admits a Heegaard
decomposition of genus 2 if and only if M? is a two-fold covering of S* branched
over a link with a 3-bridge presentation.

By Theorem 6.1 the manifold M = W (m,n;p,q) is a two-fold covering of
53 branched over the link £(m,n;p, q) (see Figure 6.20).

Let us consider the genus 0 Heegaard splitting (B;, By) of S*, where bound-
aries 0B; and 0B, correspond to the dotted line in Figure 6.20. Then for each
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¢ = 1,2 the intersection £(m,n;p,q) N B; consists of three arcs, which can be
isotopic to unlinked. Therefore £(m,n;p,q) admits a 3-bridge presentation.
So as a consequence of Theorem 6.3 we have the following statement.

Proposition 6.1 ([83]) Let M = W(m,n;p,q) be a manifold obtained by
(m,n) and (p,q) Dehn surgeries on the Whitehead link W. Then h(M) < 2.

33

— .
L) \/
SRS

1
|
Figure 6.20. The link £(m,n;p, q).

We recall that A(M) = 0 or 1 if and only if M is the 3-sphere, the lens
space or S? x S [96]. In each of these cases M does not admit a hyperbolic
structure [72]. This gives the following refinement of above proposition.

Proposition 6.2 ([83]) Let M = W(m,n;p,q) be a hyperbolic manifold ob-
tained by (m,n) and (p,q) Dehn surgeries on the Whitehead link W. Then
h(M) = 2. '

We recall, that a manifold W(1,1;p,q) can be obtained by (p,q) Dehn
surgery on the figure-eight knot. For this subset of manifolds the Heegaard
genus was considered in [60] and [77].

In particular, from Proposition 6.2 we get the Heegaard genus of the ten
smallest known hyperbolic 3-manifolds.

Corollary 6.2 For manifolds My, ..., Mo the Heegaard genus equals two.

As the Heegaard genus of a manifold gives an estimate for the rank of its
fundamental groups, we have

Corollary 6.3 For manifolds My, ..., Mg the rank of m,(M;) equals two.
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6.4 M, is a maximally symmetric manifold

We recall, that the maximal possible order of a finite group G of orientation-
preserving homeomorphisms of the orientable 3-dimensional handlebody V, of
genus g > 1 is 12(g — 1) [97], analogous to the classical 84(¢g — 1)-bound for
closed Riemann surfaces of genus g > 1.

Let M be a closed orientable 3-manifold. We will give the following defini-
tion according to B.Zimmermann [101].

Definition 6.1 A closed orientable 3-manifold M is called mazimally sym-
metric if M has a Heegaard splitting of genus g > 1 and a finite group G of
orientation-preserving homeomorphisms of maximal possible order 12(g — 1)
which preserves both handlebodies of the Heegaards splitting (but does not
leave invariant a Heegaard splitting of genus 0 or 1).

It was shown in [99], that several of best-known 3-manifolds are maxim-
ally symmetric, for example, the 3-sphere, the projective 3-space, the 3-torus,
the Poincaré homology 3-sphere, the Seifert-Weber hyperbolic dodecahedral
space; also it is proven that an irreducible maximally symmetric 3-manifold
are hyperbolic or are Seifert fibred.

In this section we will show that the smallest known hyperbolic 3-manifold
M, is also maximally symmetric. Really this result is expected, because ac-
cording to Corollary 6.3 the manifold M, is of Heegaard genus two, and ac-
cording to [58] and [36], the isometry group of M, is of order 12.

We will demonstrate this property of M, using the following nice criterion
from [101].

n

Figure 6.21. The singular set of (o, m,n).

Let us consider an orbifold with underlying space S° whose singular set is
isomorphic to the spatial graph with four vertices pictured in Figure 6.21, where
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o denotes a 3-strings braid and 3, m, n are branch indices of corresponding
edges with m,n € {2,3,4,5} and indices of other edges are equal 2. Following
[101], we denote this orbifold by 6(o,m,n).

Theorem 6.4 ([101]) The mazimally symmetric 3-manifolds (M, G) are ez-
actly the finite regular coverings of the orbifolds 6(o, m,n).

We will apply this criterion to the manifold M;. As it was shown in Corol-
lary 6.1, the manifold M; can be obtained as the 2-fold covering of the 3-sphere
branched over the knot 949 pictured in Figure 6.10. According to the orbifold
theory terminology [77], we say that M; covers the m-orbifold 949(2) with the
3-sphere as underlying space and the knot 949 with branch index 2 as its sin-
gular set. We will redraw the knot 9,49 using its presentation in [15, p.265], in
the following form pictured in Figure 6.22.

2

( S S <5 )
(\/_// /ﬁ
C
- J
Figure 6.22. The singular set of 949(2).

, (N
g <S> )
N\
7
C u

\ J

Figure 6.23. The singular set of 7%(2,3).

So it is obvious that the orbifold 949(2) has the symmetry of order 3 and
the quotient space under this symmetry action is the orbifold 72(2,3) whose
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singular set is the 2-component link 77 with branch indices 2 and 3, pictured
in Figure 6.23.

Using Reidemeister’s moves one can redraw the link 7} in more symmetric
form pictured in Figure 6.24 (see also [70, p.416)).

| 2
| 3 3
| B \_\
a
|
I
/_T\) w
=, 1
Figure 6.24. Figure 6.25.

As we see, the singular set of 72(2, 3) has an invertable involution 7 of order
2 whose fixed axe intersects it in four points. The singular set of the quotient
space 72(2,3)/7 is shown in Figure 6.25. The singular set of 72(2,3)/7 is a
spatial graph with four vertices, that one edge has branch index 3 and branch
indices of other edges are equal 2. So, using Reidemeister’s moves we can
redraw the singular set as in Figure 6.26 and we see that 73(2,3)/7 is the
orbifold 6(c,2,2),

5o

Figure 6.26.

where ¢ = o307 0 in standard generators of a braid group. Thus we get
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Proposition 6.3 The smallest known compact hyperbolic manifold M, is a
regular covering of the orbifold §(c307'04,2,2).

We remark, that the singular set of the orbifold §(o307 02,2,2) is so-called
spatial tetrahedron, i.e. a spatial graph isomorphic to the 1-skeleton of the
tetrahedron, and can be described as the knot 5, Whlch is a closure of the
braid o3o; 102, with two bridges.

According to Theorem 6.4 we have

Corollary 6.4 The manifold M, is mazimally symmetric.

Because the link 7% is a 2-bridge link [70], its components are symmetric,
and we can exchange indices 2 and 3 in Figure 6.23 and consider 2-fold covering
of the orbifold 73(2,3). One can check that in this case we will get the orbifold
52(3) with the knot 5, as singular set and with branch index 3. By the Wirtinger
algorithm we see, that the group m(7%(2,3)) of the orbifold 72(2,3) has the
representation

m(7%(2,3) = (o, | B =p*=1 a= waw™),

where
w=fBafaf oo f aBag,

and generators o and 3 correspond to Figure 6.24. Therefore we can consider
an epimorphism

o (TH2,3) = Zs®Zy = (a|a® = 1)@ (b |6 =1)

defined by equalities

Thus similar to arguments from the proof of Theorem 5.2, we will get the
following diagram of coverings:
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949(2)

\/

71(2,3)

E
0(od07t0,2,2)

Figure 6.27.

The complete diagram of coverings corresponding to isometries of M is
presented in [53].

6.5 The Meyerhoff—-Neumann manifold M

This section is devoted to an interesting connection between the Fibonacci
manifold My and the third smallest known manifold Ms.

We recall that R. Meyerhoff and W. Neumann [56] have obtained the hy-
perbolic manifold M3 = W(3,-2;6,—1) by means of Dehn surgery on the
Whitehead link W. It was calculated in [56], that vol(M3) approximately up to
107°° equals to the volume of the regular ideal tetrahedron in the Lobachevsky
space. They asked if these volumes are strictly equal and if the manifold M3

is arithmetic over the field Q(1/—3). In this section we will give affirmative
answers on these questions.

Theorem 6.5 ([82]) The Fibonacci manifold My is a two-fold unbranched
covering of the Meyerhoff-Neumann manifold Ms.

Proof. Let us consider the hyperbolic m-orbifold Th4(2) whose underlying
space is the 3-sphere S® and singular set is the Turk’s head knot Thy = 83
(see Figure 6.28). According to Corollary 5.10 this orbifold is hyperbolic,
and following to notations in the proof of Theorem 5.2 we denote by T, its
fundamental group: Thy(2) = HI® / T,.
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Figure 6.28. The Turk’s head knot T'hy.

As we see from Figure 6.28, the orbifold T'h4(2) has the rotation symmetry
p of the order four such that the singular set remains invariant under p action.
Let us consider the involution p?. The quotient space Thq(2) / p? is a m-orbifold
D(2,2). The singular set of the orbifold D(2,2) is the two-component link in
Figure 6.29.
/

N\ J

Figure 6.29. The singular set of the orbifold D(2,2).

Using Wirtinger algorithm and results from [26] for the fundamental group
of an orbifold, we can find the fundamental group A of the orbifold D(2,2):

A = (a,p,7 | (tarB)’ a(Brar)’ = 77, (Ba)’ 767 (af)? = Tar,
o = =7 =1). (6.1)

In this representation generators o, 3, 7 canonical correspond to arcs with the
same labels on the link diagram in Figure 6.29.

By rigidity theorem the involution p? is isotopic to an isometry of the hy-
perbolic orbifold T'hy(2). Therefore the group A can be realized as a discrete
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subgroup of the isometry group of the Lobachevsky space HI°. In this case 7
is a lifting of the involution p? on the universal covering. According to The-
orem 5.2, the Fibonacci manifold My = HI® / F(2,8) is the two-fold covering of
the m-orbifold The(2) = HI* / T4. Since for My, The(2) and D(2,2) = H® / A

we have the covering diagram
My 25 The(2) =5 D(2,2), (6.2)
which implies an embeddings for subgroups:
F(2,8) « Ty a A, (6.3)

where | A: Ty |=2and | Ty : F(2,8) |= 2.
Let us consider an epimorphism

0:A—Z, 6L =(a|ldd=1)a(t|*=1)
defined by correspondences:
b(c) = 0(B) = a, O(r) = t. (6.4)

By the construction of the two-fold cover Thy(2) — D(2,2), the loop 7 from
the fundamental group A of the orbifold D(2,2) lifts to a trivial loop in the
fundamental group T, of the orbifold Thy(2). By the same, loops a and S lift
to loops which generate cyclic subgroups of order 2 in the group T4. Therefore

Ts=07"(Z) = 67 ({a | & = 1)). (6.5)

Let us consider the 4-fold cover My — D(2,2). In this case loops «, § and T
lift to trivial loops in the group F'(2,8). Hence

F(2,8) = 07'(1) = Kerd. (6.6)
The group
Z,d Z, = <a|a2=1>6}<t|t2=1>

contains a cyclic subgroup of order two generated by d = a +t. Let us define
an epimorphism

/\IZgEBZz——')ZQ,

by the correspondence

Ma) = At) = d. (6.7)
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Then for an epimorphism ¢ = A 0 8 such that
i1 A—Z, = (d|d=1). (6.8)
we have
pla) = ¢(B) = ¢(r) = d. (6.9)
Denote ® = Ker ¢ and consider the orbifold U = HI* /®. By the construc-
tion of the epimorphism ¢, the orbifold cover

U=H®/9 2 D(2,2) =HP /A (6.10)

is branched over both components of the singular set of the orbifold D(2,2).
In this case loops a, # and 7 lift to trivial loops in the group ®. Therefore
U is a hyperbolic orbifold and the singular set of U is empty. Hence U is a
hyperbolic manifold.

Our next step is to prove that U = Mj. By Theorem 6.2 the manifold
Mz = W(3,-2;6,—1) can be obtained as the 2-fold covering of S branched
over the 2-component link £3 = £(3,—2;6,—1) = 10,5 (see Corollary 6.1),
pictured in Figure 6.12. By using the Reidemeister’s moves one can see
that two-component links in Figure 6.29 and in Figure 6.12 are equivalent.
Therefore manifolds U and M3 are obtained as 2-fold coverings of the three-
sphere branched over the same link. Hence, manifolds U and M3 are homeo-
morphic and moreover, by Mostow rigidity theorem, they are isometric. Thus
Mz =H®/®. Since ¢ = X 0§ we get the inclusion for fundamental groups

® = Kerp > F(2,8) = Kerd, (6.11)
and the covering diagram for manifolds
My = HP/ F(2,8) = N = HP/ &. (6.12)

Comparing covering diagrams (6.2), (6.10) and (6.12) we get the following
diagram in Figure 6.30 :

/\

Tha(2)

\/

D(2,2)

Figure 6.30.
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Groups F(2,8) and ® are fundamental groups of hyperbolic manifolds M,
and M3 respectively. Hence these groups are torsion-free. Therefore we can
conclude that the cover (6.12) induced by (6.11) is unbranched, and the theorem
is proved. O

From Corollary 5.7 and the covering diagram for manifolds My and M3,
we have affirmative answers on above questions.

Theorem 6.6 ([80], [82]) The Meyerhoff-Neumann hyperbolic manifold M3
=W(3,—2;6,—1) is arithmetic over the field Q(/—3) and its volume is exactly
equal to the volume of the regular ideal tetrahedron in HI.

Proof. 1t was shown in Corollary 5.7, that the volume of the hyperbolic Fibon-
acci manifold My is strictly equal to the double volume of the regular ideal
tetrahedron in HI®. Thus by Theorem 6.5 we get vol(M3) = fvol(M;) = the
volume of the regular ideal tetrahedron = 2A(7/6) = 1.0149... . Moreover, by
(6.11) fundamental groups ® and F(2,8) of manifolds M3 and M, are com-
mensurable. It was proved in [28] that the Fibonacci manifold My is arithmetic
over the field Q(y/—3). Therefore the same is true for the manifold M. O

We remark that Theorem 6.6 was proven by A. Reid in [67] by arithmetic
methods, using theory of quaternion algebras. Moreover, manifolds M3 and
M, arise in [67] as first examples of non-Haken hyperbolic 3-manifolds which
are covered by a manifold that fibers over the circle.






Bibliography

[1] Adams C., The noncompact hyperbolic 3-manifold of minimal volume,
Proc. AMS, 100 (1987), 601-606.

[2] Adams C., Hildebrand M., Weeks J., Hyperbolic invariants of knots and
links, Trans. Amer. Math. Soc., 326 (1991), 1-56.

[3] Alekseevskij D.V., Vinberg E.B., Solodovnikov A.S., Geometry of space of
constant curvature, in: Encycl. Math. Sc., Geometry II, Springer, Berlin
Heidelberg New-York, 1993, 1-138.

[4] Al-Jubouri N.K., On nonorientable hyperbolic 3-manifolds, Quart. J.
Math., 31 (1980), 9-18.

[5] Andreev E.M., On convex polyhedra in Lobachevsky space, Math. USSR
Sb., 10 (1970), 413-440.

[6] Andreev E.M., On convex polyhedra of finite volume in Lobachevsky
spaces, Math. USSR Sb., 12 (1971), 255-259.

[7] Apanasov B.N., Gutsul 1.S., Greatly symmetric totally geodesic surfaces
and closed hyperbolic 3-manifolds which share a fundamental polyhedron,
in: Topology’90, eds. B. Apanasov, W. Neumann, A. Ried, L. Siebenmann,
de Gruyter, Berlin, 1992, 37-53.

[8] Armstrong M.A., Groups and symmetries, (Undergraduate texts in math-
ematics), Springer, 1988.

[9] Best L.A., On torsion-free discrete subgroups of PSL (2, C) with compact
orbit space, Canad. J. Math., 23 (1971), 451-460.

[10] Benedetti R., Petronio C., Lectures on Hyperbolic Geometry, Universitext,
Springer, 1992.

125



126 BIBLIOGRAPHY
(11] Birman J.S., Braids, Links and Mapping Class Groups, Annals of Math.
Studies, 84, Princeton University Press, Princeton, N.J.,1975.

[12] Boileau M., Zieschang H., Heegaard genus of closed orientable Seifert 3-
manifolds, Invent. Math., 76 (1984), 455-468.

[13] Boileau M., Zimmermann B., The m—orbifold group of a link, Math. Z.,
200 (1989), 187-208.

[14] Borel A., Commensurability classes and hyperbolic volumes, Annali Sci.
Norm. Pisa, 8 (1991), 1-33.

[15] Burde G., Zieschang H., Knots, de Gruyter Studies in Mathematics, 5,
Berlin-New York, 1985.

[16] Cavicchioli A., Spaggiari F., The classification of 3-manifolds with spines
related to Fibonacci groups, in: Algebraic topology, homotopy and group
cohomology, Proceedings, Barselona, 1990, Lect. Notes in Math., 1509
(1992), 50-78.

(17] Conway J., Advanced problem 5327, Amer. Math. Monthly, 72 (1965),
915.

[18] Conway J. et al., Solution to Advanced problem 5327, Amer. Math.
Monthly, 74 (1967), 91-93.

[19] Conway J.H., An enumeration of knots and links, in: Computational prob-
lems in abstract algebra, ed. Leech, Pergamon Press, 1969, 329-358.

[20] Crowell R.H., Fox R.H., Introduction to Knot Theory, 1963, 182p.
[21] Davis M., A hyperbolic {-manifold, Proc. AMS, 93 (1985), 325-328.

[22] Greenberg L., Finitness theorem for Fuchsian and Kleinian groups, in:
Discrete groups and automorphic functions, Acad. Precc, 1977, 199-257.

[23] Fenchel W., Elementary geometry in hyperbolic space, de Gruyter Stadies
in Mathematics, 11, Berlin—-New York, 1989.

[24] Gromov M., Hyperbolic manifolds according to Thurston and Jorgensen,
Lect. Notes Math., 842 (1981), 40-53.

[25] Haagerup U., Munkholm H., Simplices of mazimal volume in hyperbolic
n-space, Acta Math., 147 (1981), 1-11.



BIBLIOGRAPHY 127

[26] Haefliger A., Quach N.D., Une presentation de groupe fundamental d’une
orbifold, Asterisque, 116 (1984), P.98-107.

[27] Havas G., Computer aided determination of a Fibonacci group, Bull. Aus-
tral. Math. Soc., 15 (1976), 297-305.

[28] Helling, H., Kim A.C., Mennicke, J., A geometric study of Fibonacci
groups, SFB-343 Bielefeld, Diskrete Strukturen in der Mathematik, Pre-
print (1990).

[29] Hempel J., The lattice of branched covers over the figure - eight knot,
Topology and its Appl., 34 (1990), 183-201.

[30] Hempel J., 3-manifolds, Ann. of Math. Studies, 86, Princeton University
Press, Princeton, N.J., 1976.

[31] Hilden H.M., Lozano M.T., Montesinos J.M., The arithmeticity of the
figure-eight knot orbifolds, in: Topology’90, eds. B. Apanasov, W. Neu-
mann, A. Ried, L. Siebenmann, de Gruyter, Berlin, 1992, 169-183.

[32] Hodgson C.D., Deduction of Andreev’s theorem from Rivin’s characteriz-
ation of convex hyperbolic polyhedra, in : Topology’90, eds. B. Apanasov,
W. Neumann, A. Ried, L. Siebenmann, de Gruyter, Berlin, 1992, 184-193.

[33] Hodgson C.D., Meyerhoff R.G., Weeks J.R., Surgeries on the White-
head link yield geometrically similar manifolds, in: Topology’90, eds.

B. Apanasov , W. Neumann, A. Ried, L. Siebenmann, de Gruyter, Berlin,
1992, 195-206.

[34] Hodgson C., Rivin L., A characterization of compact convez polyhedra in
hyperbolic 3-space, Invent. Math., 111 (1993), 77-111.

[35] Hodgson C., Rivin I., Smith W., A characterization of hyperbolic polyhedra

and of comvex polyhedra inscribed in the sphere, Bull. Amer. Math. Soc.,
27 (1992), 246-251.

[36] Hodgson C.D., Weeks J.R., Symmetries, isometries and length spectra of
closed hyperbolic three-manifolds, Experimental Mathematics, 3 (1994),
101-113.

[37] Johnson D.L., Wamsley J.W., Wright D., The Fibonacci groups, Proc.
London Math.Soc., 29 (1974), 577-592.



128 BIBLIOGRAPHY

[38] Kellerhals R., On the volume of hyperbolic polyhedra, Math. Ann., 285
(1989), 541-569.

[39] Kellerhals R., On Schlifli’s reduction formula, Math. Z., 206 (1991), 193-
201.

[40] Kellerhals R., Shape and Size Through Hyperbolic Eyes, The Math. Intel-
ligencer, 17 (1995), 2, 21-30.

[41] Kerekjarto B., Vorlesungen uber Topologie, Berlin., Springer, 1923.

[42] Klein F., Vorlesungen uber Nicht-Euklidische Geometrie, Chelsea Pub-
lishing Company, New York.

[43] Kojima S., Isometry transformations of hyperbolic 3-manifolds, Topology
Appl., 29 (1988), 297-307.

[44] Lickorish W.B.R., A representation of orientable combinatorial 3-
manifolds, Ann. of Math., 76 (1962), 531-538.

[45] Lobell F., Beispiele geschlossene dreidimensionaler Clifford-Kleinischer
Raume negative Krimmung, Ber. Verh. Sachs. Akad. Lpz., Math.-Phys.
KI. 83 (1931), 168-174.

[46] Maclachlan C., Generalisations of Fibonacci numbers, groups and mani-
folds, in: Combinatorial and Geometric Group Theory, Edinburgh 1993,
edited by J. Duncan, N.D. Gilbert, J. Howie, London Mathematical Soci-
ety Lecture Notes Series 204, 233-238.

[47] Matveev S.V., Fomenko A.T., Constant energy surfaces of Hamiltonian
systems, enumeration of three-dimensional manifolds in increasing order
of complexity, and computation of volumes of closed hyperbolic manifolds,
Russian Math. Surveys, 43 (1988), 1, 3-24.

[48] McCullough D., Miller A., Zimmermann B., Group action on handlebod-
ies, Proc. London Math. Soc., 59 (1989), 373-416.

[49] Mednykh A.D., Automorphism groups of three-dimensional hyperbolic
manifolds, Sov. Math. Dokl., 32 (1985), 633-636.

[50] Mednykh A.D., Isometry group of the hyperbolic space of the Siefert-Weber
dodecahedron, Siberian Math. J., 28 (1987), 798-806.



BIBLIOGRAPHY 129

[51] Mednykh A.D., Vesnin A.Yu. On three-dimensional hyperbolic manifolds
of Lébell type, in: Complex Analysis and Applications’85, Sofia, 1986,
440-446.

[52] Mednykh A., Vesnin A., The ten smallest hyperbolic mani’folds as branched
coverings, to appear in: Proc. of 95’ INHA Symposium on Basic Science,
Inchon, Korea.

[53] Mednykh A., Vesnin A., The mazimally symmetric small hyperbolic man-
ifolds, (in preperation).

[54] Mennicke J.L., On Fibonacci groups and some other groups, Proceedings
of “Groups - Korea 1988”, Lect. Notes in Math. 1062, 117-123.

[55] Meyerhoff R., A lower bound for the volume of hyperbolic 2-orbifolds, Duke
Math. J., 57 (1988), 185-203.

[56] Meyerhoff R.G., Neumann W.D., An asymptotic formula for the eta in-
variants of hyperbolic 3-manifolds, Comment. Math. Helv., 67 (1992),
28-46.

[57] Milnor J., Hyperbolic geometry: the first 150 years, Bull. Amer. Math.
Soc. 6 (1982), 9-24.

[58] Molnar E., On isometries of space forms, in: Differential Geometry and
its Applications (Eger, 1989), North-Holland, Amsterdam, 1992. 509-534.

[59] Montesinos J.M., Surgery on links and double branched covers of S?, in:

Knots, Groups, and 3-Manifolds, Princeton University Press, Princeton,
1975, 227-259.

[60] Montesinos J.M., Whitten W., Constructions of two-fold branched cover-
ing spaces, Pacific J. Math., 125 (1986), 415-446.

[61] Neumann W.D., Reid A.W., Arithmetic of hyperbolic manifolds, in: To-

pology’90, , eds. B. Apanasov, W. Neumann, A. Ried, L. Siebenmann, de
Gruyter, Berlin, 1992, 274-310.

[62] Neumann W.D., Zagier D., Volumes of hyperbolic 3-manifolds, Topology,
24 (1985), 307-322.

[63] Newman M.F., Proving a group infinite, Arch. Math., 54 (1990), 209-211.



130 BIBLIOGRAPHY

[64] Nicas A.J., Stark C.W., Whitehead groups of certain hyperbolic manifolds
II, in: Combinatorial group theory and topology, eds. S.M.Gersten and
J.R.Stallings, Ann. of Math. Studies, 111, Princeton University Press,
Princeton, N.J., 1987, 415-432.

[65] Ratcliffe J.G., Foundations of hyperbolic manifolds, Graduate texts in
mathematics, 1994, Springer, 1994.

[66] Reid A., Arithmeticity of knot complements, Journal London Math. Soc.,
43 (1991), 171-184.

[67] Reid A., A non-Haken hyperbolic 3-manifolds covered by a surface bundle,
Pacific J. of Math., 167 (1995), 163-182.

[68] Richardson J.S., Rubinstein J.H., Hyperbolic manifolds from a regular
polyhedra, preprint, University of Melburne, 1982.

[69] Riley R., An elliptic path from parabolic representation to hyperbolic struc-
tures, Lecture Notes in Math., 722, Springer-Verlag, 1979, 99-133.

[70] Rolfsen D., Knots and links, Publish of Perish Inc., Berkely Ca., 1976.

[71] Sakuma M., Weeks J., Ezamples of canonical decompositions of hyperbolic
link complements, Preprint, 1993.

[72] Scott P., The geometries of 3-manifolds, Bull. London Math. Soc. 15
(1986), 401-487.

[73] Takahashi M., On the presentation of the fundamental groups of 3-
manifolds, Tsukuba J. Math, 13 (1989), 175-189.

[74] Takeuchi K., Arithmetic triangle groups, J. Math. Soc. Japan, 29 (1979),
91-106.

[75] Thomas R.M., The Fibonacci groups F(2,2m), Bull. London Math. Soc.,
21 (1989), 463-465.

[76] Thomas R.M., The Fibonacci groups revised, in: Groups St. Andrews
1989, edited by D.Johnson, London Math. Soc. Lecture Notes Series 160,
445-456. ’

[77] Thurston W.P., The geometry and topology of 3-manifolds, Lecture Notes,
Princeton University 1980.



BIBLIOGRAPHY 131

[78] Vesnin A.Yu., Three-dimensional manifolds of Lobell type, Siberian
Math. J., 28 (1987), 731-734.

[79] Vesnin A.Yu., Three-dimensional hyperbolic manifolds with general fun-
damental polyhedron, Math. Notes 49 (1991), 575-577.

[80] Vesnin A.Yu., Mednykh A.D., On limit ordinals in the Thurston-
Jorgensen theorem on the volumes of three-dimensional hyperbolic mani-
folds, Russian Acad. Sci. Dokl. Math., 49 (1994), 435-439.

[81] Vesnin A.Yu., Mednykh A.D., Hyperbolic volumes of Fibonacci manifolds,
Siberian Math. J., 36 (1995), 235-245.

[82] Vesnin A.Yu., Mednykh A.D., Fibonacci manifolds as two-fold cover-

ings of the 3-sphere and the Meyerhoff-Nuemann conjecture, to appear
in Siberian Math. J., 1996.

[83] Vesnin A.Yu., Mednykh A.D., On Heegaard genus of three-dimensional

hyperbolic manifolds of small volume, to appear in Siberian Math. J.,
1996.

[84] Vinberg E.B., Hyperbolic reflection groups, Russ. Math. Surv., 40 (1985),
31-75.

[85] Vinberg E.B., The absence of crystallographic groups of reflections in Lob-
achevsky spaces of large dimension, Trans. Mosc. Math. Soc., 1985, 75—
112.

[86] Vinberg E.B., The volume of the polyhedra on a sphere and in Lobachevsky
space, Amer. Math. Soc. Transl.(2), 148 (1991), 15-27.

[87] Vinberg E. B., Shvartsman O. V., Discrete groups of motions of spaces of
constant curvature, in: Encycl. Math. Sc., Geometry II, Springer, Berlin
Heidelberg New-York, 1993, 139-248.

[88] Viro O.Ja., Linkings, 2-sheeted branched coverings and braids, Math.
USSR Sbornik, 16 (1972), 223-236.

[89] Wang H.C., Topics in totally discontinuous groups, in: Symmetric spaces,
Courses pres. at Washington Univ., Pure Appl. Math., 8, 1072, 459-487.

[90] Weeks J., Hyperbolic structures on 3-manifolds, Princeton Univ. Ph. D.
Thesis, 1985.



132 BIBLIOGRAPHY

[91] Weeks J., SnapPea, Version 5/18/92, A program for the Macintosh to

compute hyperbolic structures on 3-manifolds.

[92] Wielenberg N., Hyperbolic 3-manifolds which share a fundamental poly-
hedron, in: Riemann surfaces and related topics, Proceedings 1978 Stony
Brook Conference, eds. I.Kra and B.Maskit, Ann. of Math. Studies, 97,
Princeton Univ. Press, 1981, 505-513.

[93] Wiman A., Uber die hyperelliptischen Curven und diejenigen vom
Geschlechte p=3 welche eindenregen Transformationen in sich zulassen,
Bihang Till. Kongl. Svenska Veienskaps-Akademiens Handlingar, 21
(1895-96), 1-23.

[94] Wolf J., Spaces of constant curvature, Publish of Perish Inc., Berkley,
1977.

[95] Zagier D., Hyperbolic manifolds and special values of Dedekind zeta-
functions, Invent Math., 83 (1986), 285-301. ‘

[96] Zieschang H., On Heegaard diagrams of 3-manifolds, Asterisque, 163—164
(1988), 247-280.

[97] Zimmermann B., Uber Abbildungsklassen von Henkelkérpern, Arch. Math.,
33 (1979), 379-382.

[98] Zimmermann B., On the Hantzche-Wendt manifold, Monatsh. Math. 110
(1990), 321-327.

[99] Zimmermann B., Finite group actions on handlebodies and equivariant
Heegaard genus for 3-manifolds, Topology and its Appl., 43 (1992), 263-
274.

[100] Zimmermann B., A note on hyperbolic 3-manifolds of the same volume,
Monatsh. Math. 117 (1994), 139-143.

[101] Zimmermann B., Hurwitz groups and finite actions on the hyperbolic 3-
manifolds, J. London Math. Soc. (2), 52 (1995), 199-208.



S

©® N

11.
12.
13.

14.
15.
16.
17.

18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.

Lecture Notes Series

M.-H. Kim (ed.), Topics in algebra, algebraic geometry and number theory, 1992

J. Tomiyama, The interplay between topological dynamics and theory of Cx-algebras, 1992 ; 2nd
Printing, 1994 ‘

S. K. Kim, S. G. Lee and D. P. Chi (ed.), Proceedings of the Ist GARC Symposium on pure and
applied mathematics, Part I, 1993

H. Kim, C. Kang and C. S. Bae (ed.), Proceedings of the Ist GARC Symposium on pure and applied
mathematics, Part II, 1993

T. P. Branson, The functional determinant, 1993

S. S.-T. Yau, Complex hyperface singulariteé with application in complex geometry, algebraic
geometry and Lie algebra, 1993

P. Li, Lecture notes on geometric analysis, 1993

S.-H. Kye, Notes on operator algebras, 1993

K. Shiohama, An introduction to the geometry of Alexandrov spaces, 1993

J. M. Kim (ed.), Topics in algebra, algebraic geometry and number theory II, 1993

0. K. Yoon and H.-J. Kim, Introduction to differentiable maniolds, 1993

P. J. McKenna, Topological methods for asymmetric boundary value problems, 1993

P. B. Gilkey, Applications of spectral geometry to geometry and topology, 1993

K.-T. Kim, Geometry of bounded domains and the scaling techniques in several complex variables,
1993

L. Volevich, The Cauchy problem for convolution equations, 1994

L. Elden and H. S. Park, Numerical linear algebra algorithms on vector and parallel computers, 1993
H. J. Choe, Degenerate elliptic and parabolic equations and variational inequalities, 1993

S. K. Kim and H. J. Choe (ed.), Proceedings of the second GARC Symposium on pure and applied
mathematics, Part I, The first Korea-Japan conference of partial differential equations, 1993

J. S. Bae and S. G. Lee (ed.), Proceedings of the second GARC Symposium on pure and applied
mathematics, Part II, 1993

D. P. Chi, H. Kim and C.-H. Kang (ed.), Proceedings of the second GARC Symposium on pure and
applied mathematics, Part III, 1993

H.-J. Kim (ed.), Proceedings of GARC Workshop on geometry and topology ' 93, 1993

S. Wassermann, Exat C+-algebras and related topics, 1994

S.-H. Kye, Notes on abstract harmonic analysis, 1994

K. T. Hahn, Bloch-Besov spaces and the boundary behavior of their functions, 1994

H. C. Myung, Non-unital composition algebras, 1994

P. B. Dubovskii, Mathematical theory of coagulation, 1994

J. C. Migliore, An introduction to deficiency modules and Liaison theory for subschemes of projective
space, 1994

1. V. Dolgachev, Introduction to geometric invariant theory, 1994

D. McCullough, 3-Manifolds and their mappings, 1995

S. Matsumoto, Codimension one Anosov flows, 1995

J. Jaworowski, W. A. Kirk and S. Park, Antipodal points and fixed points, 1995

J. Oprea, Gottlieb groups, group actions, fixed points and rational homotopy, 1995

A. Vesnin, On volumes of some hyperbolic 3-manifolds, 1996












