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Preface

These notes are based on a series of talks given at Seoul National Univer-
sity in July 1995. The talks (and these notes) were meant to be an introduc-
tion to the mix of classical and rational homotopy ideas and techniques which
surround the evaluation map. In particular, the Gottlieb groups are intro-
duced and used to obtain information about spaces in terms of the fibrations
for which they are fibres. Also, the beautiful relationship between rational
Gottlieb groups and rational Lusternik-Schnirelmann category is discussed as
well as applications of rational methods to transformation groups and fixed
point theory.

It is my pleasure to thank Seoul National University for its support during
my stay in Korea. It is an even greater pleasure to thank my host and friend
Doobeum Lee for his generous hospitality during my stay.
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§1 INTRODUCTION

There are many connections among the subjects of the title: Gottlieb groups,
group actions, rational homotopy theory and fixed point theory. As we shall see
below, one of the main theorems about Gottlieb groups follows from Nielsen-Wecken
fixed point theory. Conversely, much of what may be computed about the Nielsen
number in fixed point theory follows from the Jiang condition — a condition on the
Gottlieb group. Also, the advent of rational homotopy theory in the 1970’s allowed
for new interpretations and calculations of Gottlieb groups as well as applications to
fixed point theory. In this paper, I shall attempt to describe some of the connections
alluded to above. This is very much my personal slant on things, so I will sometimes

write in the first person to avoid imbuing my own views with the authority of ‘we’.

The main goal of fibration theory is to understand the extent to which a given
fibration differs from the product (or trivial) fibration. The first information which
is apparent is that obtained by noting that a fibration FF — E — B has associated

to it a long exact sequence of homotopy groups
8 8
. = Tip1(B) = mi(F) = mi(E) - m(B) — ... .

Furthermore, because m;(X xY") 2 7;(X)xm;(Y), it is observed that the connecting
homomorphism O provides a simple measure of the non-triviality of the fibration.

Some questions which arise are then:

(1) Must the connecting homomorphism for each fibration be studied separately
or is it possible to codify connecting homomorphisms in terms of — what?
— the fibre perhaps?

(2) What hypotheses on the connecting map itself lead to strong conclusions
about the structure of associated fibrations?

(3) Is the connecting homomorphism related in some way to other homotopical

or geometric structures or invariants?

As an example of the type of structure results I'm referring to, let me give a
theorem which appeared in a paper having to do with symplectic geometry [GLSW].
The authors wanted to analyze situations where a symplectic form on the (compact)
fibre of a bundle would extend to the total space. The following criterion was used

to rule out certain cases.

Theorem 1.1. Let F' — E — B be a fibration of simply connected spaces. If
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H*(E;Q) — H%*(F;Q) is not surjective, then H?*(F;Q) # 0 for all k¥ > 1 and,

therefore, F' is not compact.

Proof. The proof given in [GLSW] is similar in spirit to Gottlieb’s proof of [G4
Theorem 1], which itself makes use of Weingram’s theorem [W]. Gottlieb’s result is
more general than the result here, however, so there is a simpler proof. First, localize
the spaces to make homotopy and homology rational. Denote the localization of a

space X by X,. Consider the commutative diagram induced by Hurewicz maps

7T2(QBO) — 71'2(F0) — 7('2(E0) - 7T2(B0)

l = = I
Hy(2B;Q) — Hy(F;Q) — Hi(E;Q) — Ha(B;Q)

where 72(Q2By) is identified with n3(Bp) and the isomorphisms follow from the
Hurewicz theorem and the assumption of simple connectivity. By duality, the
non-surjectivity of H?(E;Q) — HZ%(F;Q) translates into an assumption of non-
injectivity of Hy(F;Q) — Ho(E;Q). That is, there exists a € Hy(F;Q) which
maps to zero in Hy(E;Q). But then, by the commutativity of the diagram,
there exists @ € my(Fp) which has Hurewicz image h(@) = « and which maps
to zero in m2(Eyp). The exactness of the homotopy sequence of the fibration then
gives a B € m2(QBy) which maps to @. Therefore, the commutativity of the left
square shows that H,(2B;Q) — H,(F;Q) is non-trivial. Duality then says that
H?*(F;Q) — H?*(QB;Q) is non-trivial as well. Hopf’s theorem on H-spaces (see
[Wh] for example) implies that the rational cohomology algebra of B is a (graded)
polynomial algebra on even dimensional generators tensor an (graded) exterior al-
gebra on odd dimensional generators, so the image of H?(F;Q) in H?(QB;Q)
generates a sub-polynomial algebra over Q. This then means, of course, that no

power of an image element can vanish and, hence, no power of any preimage can
either. O

I have belabored the proof of this result because it contains many of the ingredi-
ents I shall use below. In particular, I want to point out the interplay between the
Hurewicz map h and the connecting homomorphism 0. In fact, such an affiliation
was used to gi‘eat effect by H. Cartan [C] many years before to analyze the real
cohomology of homogeneous spaces. For a modern minimal model approach to this
subject, see [HT).



Now, a hypothesis on the connecting homomorphism which is particularly pow-

erful is that of surjectivity. In fact, we have

Theorem 1.2. Suppose F — E — B is a fibration of rational spaces. If the
connecting homomorphism is surjective in each degree, then F has the homotopy

type of a product of K(Q,n)’s.

Proof. Recall that a rational space is of the homotopy type of a simply connected
CW complex whose integral homology in each degree is a finite dimensional rational
vector space. Such spaces result from localization at 0 for example. Under the
‘rational’ assumption (using Hopf’s theorem on H-spaces), the loop space QB has
the homotopy type of a product [] K(Q,n;). Because 9: m(QB) — m\(F) is a
surjection of rational (graded) vector spaces, there is a splitting and a subspace
V C 7 (QB) such that J|v is an isomorphism. But, since QB is a product, V
may be realized by a subproduct K C QB with 7.(K) 2 V and, consequently,
8: m(K) S 7,(F). The Whitehead theorem then shows that F has the homotopy
tjpe of K. O

This result seems to be rediscovered every so often. Israel Berstein knew it in
the 1960’s and H. Haslam [Ha] and Steve Halperin [H1], proved it, in completely
different ways, in the 1970’s. Examples where the hypothesis of the theorem is
satisfied include:

(1) Stiefel-Grassmann fibrations for k£ < n/2,

U(k) g Vk,n(C) - Gk,n(C),

since the inclusion of the fibre is nullhomotopic.
(2) Compact fibrations F' — £X — B, since the inclusion of the fibre is rationally
nullhomotopic (see [G3] and [02]).

Now, in order to understand better the influence of the connecting homomor-
phism on the structure of fibrations, as well as on fixed point theory and invariants
of rational homotopy, I must recall the definitions and notation which serve to

codify information about the connecting homomorphism.

§2 GOTTLIEB GROUPS REMEMBERED

Throughout this paper, I will always take spaces to be of the homotopy type of

CW complexes for which the function space exponential law holds.



Definition 2.1 [G2]. The n't Gottlieb group of a space X, denoted Gn(X), is
the subgroup of m,(X) consisting of elements a € 7,(X) which have associated
maps A: S™ x X — X making the following diagram homotopy commutative.

SPx X A X
(1) i1 J aVly
Snv X

Note that the conventions I have assumed about spaces allow us to take the diagram
to be strictly commutative when convenient. The relation between this definition

and the connecting homomorphism is enunciated by

Theorem 2.2 [G5]. G,(X) is equal to

(1)  Image(eva: mo(X%,1x) — mn(X)), where ev: XX — X is evaluation
ev(f) = f(z¢) at a specified basepoint z, € X .

(2)  UImage(Og: mn(Q2B) — m,(X)), where the union is taken over all fibra-
tions X - E — B.

Proof Sketch. (i) The exponential law shows that elements of 7,(X*,1x), repre-
sented by maps S™ — XX correspond to associated maps S® x X — X as in T
above. Furthermore, evaluation ev on m,(X*,1x) likewise corresponds to restric-
tion to S™ of the associated map S™ x X — X.

(ii) The second part follows from the existence of a classifying space for fibrations
with fibre X, Baut X . Here, aut X denotes the monoid of self equivalences of X,

so
(1) mity1(Baut X) & m;(aut X) %rm(XX, 1x).

EVery fibration X — E — B is a pullback of a universal fibration X — Baut, X —
Baut X via a classifying map B — Baut X. The pullback gives a ladder of exact

homotopy sequences which, in particular, provides a commutative square (using 1)

(XX, 1x) — m(X)
1 e
mi(B) S m(X).



Therefore, any connecting homomorphism 8 factors through the universal one —

and the universal connecting homomorphism is precisely the evaluation map. O

A basic property of Gottlieb groups is that they are annihilators under White-
head product. Recall that the Whitehead product of elements a € m(X) and
B € m(X) is the element [a,B] € Tr1¢—1(X) represented by a map S¥H¢—1 — X

determined by taking a composition with the loop commutator map
-1, -1
Sh1x g1 22X ox xox B2 Y, 0X

and noting that, since the restriction to S¥~1 Vv §¢~1! is trivial, the mapping factors

through the smash product
Sk—l x Sl—l/sk—l vV Sl—l — Sk+€—2-

Finally, the isomorphism 7g4s—2(QX) & mg4e—1(X) provides the element [a, §].
A standard result about Whitehead products (see [Wh] for example) asserts that
[@, 8] = 0 if and only if there exists a map f: S* x S — X such that f|% = o and
fl& = B. Elements of Gottlieb groups then have the following remarkable property.

Proposition 2.3. If a € G,(X), then [a,8] =0 for all B € m;(X) for all 1.

Proof. Choose a fibration X — E — B with 0(&) = «a for some & € m,(2B).
Recall that every fibration has associated to it a holonomy c¢: 2B x X — X which
globalizes the action of the fundamental group of the base on the homology of
the fibre. The holonomy obeys the relations: clop = 0 and ¢|x = 1x. The
composition
kx5t 2P apxx 5 X

then gives co (& X B)|sx = (&) = a and co (& x f)|st = B, so the Whitehead
product [a, 3] vanishes. O

Remark 2.4. 1have chosen to emphasize the connecting homomorphism in the proof
above because this viewpoint fits well with what follows. It is easy also, however,

to apply the definition of the Gottlieb group directly to prove the result.

With Proposition 2.3 in mind, define P,(X) C 7,(X) to be the subgroup of
mo(X) consisting of elements whose Whitehead products with all other elements

vanish. Then, clearly,

Gn(X) C Pa(X)
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for all n. In particular, it is well-known that, for a, 8 € m(X), the Whitehead
product is the commutator, [a, 8] = afa™'B71, so that « € G1(X) must commute
with every # € m;(X). In other words, a € Zm(X) (i.e. the center of m;(X)).
More generally, the Whitehead product of a fundamental group element measures
the deviation of the action of that element on higher homotopy from the identity.
Therefore, P(X) = P;(X) consists of elements of the fundamental group which act
trivially on all higher homotopy groups. This holds specifically for G(X) = G4(X).
Later I will discuss Gottlieb’s question [G1] whether G(X) and P(X) are identical.

A space X is called a G-space if 7,(X) = Gn(X) for all n. As we have seen,
this requires that all Whitehead products vanish in 7,(X). Of course, H -spaces
have this property, so it is natural to ask about their Gottlieb groups. In fact, for

an H-space (Y, p), given a € m,(Y'), there exists an associated map
S"xY X yxvy Ay

defined using the multiplication p. Therefore, since any homotopy element has an
associated map as in t, an H -space is a G-space. Rationally, the converse is true

by Theorem 1.2, but integrally there is

Example 2.5. J. Siegel [S] has given a simple example of a G -space which is not
an H-space. Embed S! into SO(3) x S! by a map j(e'%) = (26,¢e'3?). Take the

homogeneous Space

det SO(3) x S*
(s
The usual homogeneous space fibration may be extended to classifying spaces to

produce a fibration sequence
St - S0(3)x S* - T — BS' —» BSO(3) x BS*.

The connecting homomorphism 0 then may be identified with the quotient map
SO(3)xS' — T and, since BS* = K(Z,2), the only possible degree where 8 might
not be surjective is 2. Identifying m3(BS*) = m1(S?) and 72(BSO(3) x BS!) =
m1(SO(3)) x m1(S*), the relevant part of the exact homotopy sequence becomes

2 13(T) = mi(S) = Z 2% 11(SO(3)) x m(SY).

But j is a ‘product map’ which induces an a.nalogous homomorphism on funda-
mental groups. Because 71(SO(3)) = Z/2 and the first factor is multiplied by 2,
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clearly j4 is trivial when projected to m1(SO(3)). On the second factor, ju has
degree 3, so it must be the case that jx(1) = (0,3) and this is an injection. The
exactness of the homotopy sequence then says that my(T) — 7;(S?) is trivial and,
hence, 0 is surjective. Thus, T is a G-space.

To show that T is not an H -space, it is sufficient to show that T'’s cohomology
with some coefficients does not support a Hopf algebra structure. The discussion
above showed that 7,(T) = Z/2 @ Z/3 so that, in particular, H(T;Z/3) = Z/3

with generator z. Now, = has odd degree, so its square is zero. However,
H*(T;Z/3) = Ext(H:(T),Z/3) ® Hom(Hy(T), Z/3)

and Ext(H.(T),Z/3) = Ext(Z/2 ® Z/3,Z/3) = Z/3, so there is another inde-
composable generator 8. Now, 2 = 0 because 32 has degree 4 and T is a three
dimensional manifold. But, if T' were an H -space with multiplication u: TxT — T

inducing a Hopf algebra structure on cohomology, then

wi(8) = (1 (8))?
=(1®8+PQ1+¢((a®a))?
=2(®B)+...

#0

since the other terms denoted by ... and S®f are linearly independent. This con-
tradiction then shows that a Hopf algebra structure is not possible and, therefore,

T cannot be an H -space.

Before I leave this section, I want to concentrate a bit on what is thought to
be the most important of the Gottlieb groups, G(X) = G1(X). Although this
evaluation is still reasonable, as we shall see later, the higher groups are playing
an ever more important role in topology. I showed above that G(X) C Zm(X)
for any X . In case X is a K(w,1), more is true. Let @ € Z7 and note that,
since « is in the center of 7, a homomorphism ¢: Z x 7 — 7 is defined by
(n,z) — a™z. Any homomorphism of groups is realized by a unique homotopy
class of maps on the corresponding Eilenberg-Mac Lane spaces. Hence, the map
$: S x K(r,1) —» K(m,1) exists and, clearly, is an associated map (as in 1) for
a. Thus, a isin G(X) and G(X) = Zr.

Gottlieb was able to characterize G(X) in a very beautiful way by identifying

71(X) with the group of covering transformations of the universal cover X .
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Theorem 2.6 [G1]. G(X) may be identified with the subgroup of covering trans-

formations whose elements are equivariantly homotopic to the identity 15 .

For a proof, see [G1]. Also, recall that an equivariant homotopy, with respect to
the covering transformation action, is simply a homotopy which commutes with
the action. The main application of Theorem 2.6 is to connect G(X) with another

fundamental invariant, the Euler characteristic.

Theorem 2.7 [Gl]. For a space X of the homotopy type of a finite complex, if
x(X) # 0, then G(X) = {1}.

Proof Sketch. Gottlieb uses Nielsen-Wecken fixed point theory to prove this result.
He first identifies fixed point classes associated to a fixed map f: X — X with
equivalence classes of lifts f: XX (i.e. fi ~ f5 if there is a covering transfor-
mation v with fo = 7! flfy) such that lifts with no fixed points correspond to the
empty fixed point class. Moreover, he shows that this correspondence is preserved
under homotopy. This identification allows the transference of fixed point index
theory to the equivalence classes of lifts. In particular, the index of a lift 2( f ) is
zero if f has no fixed points and the sum of indices over all lifts (i.e. all fixed
point classes) is equal to the Lefschetz number. If f = 1x, then every index is zero
except for the one associated to the lift 15 since no other lift has fixed points. The
Lefschetz number in this case is the Euler characteristic x(X), which is non-zero
by assumption, so the sum of indices is non-zero as well.

Now, here is where Theorem 2.6 comes in. If & € G(X) is non-trivial, then there
is an equivariant homotopy H : XxI— X with Hy =1 % and H; = a (considered
as a covering transformation). The equivalence relation on lifts then says that the
fixed point classes correspond and, hence, the sum of indices should be the same
for 1 and a. But, as we saw above, the total index for 15 is x(X) # 0, while
the total index for @ must be zero because, as a covering transformation, a has no
fixed points. This contradiction shows that @ =1 € 7;(X) and G(X) = {1}. For
the details of fixed point index theory as well as another formulation of this proof,
see [Br]. O

Corollary 2.8. If X = K(=,1) is afinite complex with x(X) # 0, then Zm = {1}.

Remark 2.9. The Corollary is known as Gottlieb’s Theorem. Soon after Gottlieb
proved his result, Stallings [St] gave a completely algebraic proof in which, among
other things, he introduced what is now called the Hattori-Stallings rank. In
1984, Rosset [R] generalized Corollary 2.8 to the following: For a finite complez
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X = K(m,1), of x(X) # 0, then m(X) contains no non-trivial normal abelian
subgroup. The proof of Rosset’s result is algebraic and analytic (even involving
rings of operators). In a similar vein, Eckmann tried to apply Rosset’s techniques
to the non-aspherical case, essentially trying to algebratize Theorem 2.7. He could
prove [E]: For a finite complez X , if x(X) # 0, then m1(X) contains no non-trivial
torsionfree normal abelian subgroups which act nilpotently on the homology of the
universal cover. Of course, Theorem 2.6 says that G(X) acts trivially on the ho-
mology of X, so if we know that G(X) is torsionfree, then Theorem 2.7 is reproved.
However, in any other case, Eckmann’s result is still weaker than Theorem 2.8. In
§7 I shall mention yet another recent proof of Theorem 2.7 which is motivated by
fixed point theory and the work of Stallings. This brings up the question of whether

a purely homotopical proof of Theorem 2.7 is possible?

§3 SPLITTINGS

In Theorems 1.1 and 1.2, the relationship between the connecting homomorphism
and the Hurewicz map manifests itself in constraining the structure of fibrations.
This relationship, which was known and exploited by Gottlieb (see [G2], [G4] for
example), is most easily seen when things are viewed with rational eyes, as in
Theorems 1.1 and 1.2. These results may be generalized by the following rational

fibre decomposition theorem

Theorem 3.1 [O1], [O2]. Let F — E — B be a fibration of rational spaces.
Then there is a subproduct K C QB such that F ~ F x K and H*(K) &
Image(0*: H*(F) — H*(QB)).

Proof Sketch. Because B is a rational space, B is a product of K(Q,n)’s. For

the composition

1.(QB) 25 1 (F) 2 HL(F),

where h is Hurewicz, let K denote the largest subproduct of 2B upon which
hO is an isomorphism onto its image. The vector space dual of the image is con-
tained in the vector space dual of H,(F), H*(F). Maps F — K are classified by
H*(F) since K is a product of K(Q,m)’s. Hence, choosing a basis for the dual
of Image(h0) allows us to construct a map F — K with a homotopy splitting
given by the restriction of the Barratt-Puppe extension (which I also denote by)
0: QB — F to K. Then, considering the fibration (up to homotopy) F — F — K
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with section 0, we see that
Tn(F) = mp(F) @ mp(K)

and the holonomy of the original fibration may be composed with the product of

appropriate inclusions to yield a map
FxK—FxQBSF

which is seen to induce an isomorphism on homotopy groups. Hence, F >~ F x K.
To see that H*(K) gives the image of 0* in cohomology, it is necessary to use the

structure of minimal models in rational homotopy theory. See [O1] for details. O

Remark 3.2.

(1) The space K is called the Samelson space of the fibration FF — E — B be-
cause it generalizes work of Samelson on the structure of Lie groups. Furthermore,
extending these structure results to a compact transformation group G acting on

a manifold M produces a splitting of the above type,
H*(M;R) = AQ A(P)

where A(P) denotes the image of H*(M;R) under the orbit map w: G — M,
g — gz for fixed z € M. Of course the orbit map w may be considered to be the
‘connecting homomorphism’ of the Borel fibration M — MG — BG associated to
the action. For this result see [GHV].

(2) Theorem 3.1 provides an immediate proof for Theorem 1.1 by noting that the
hypothesis of Theorem 1.1 entails a rational splitting F' ~ F x K(Q,2).

Say that F is quasifinite if dim H*(F;Q) < oco. If F is quasifinite, then K,
as a product of K(Q,m)’s cannot have any m even. This follows since K(Q,2k)
has cohomology a polynomial algebra on one generator. Hence, if F' is quasifinite,
then K has the rational homotopy type of a product of odd spheres. In particular

then, x(K) = 0. Because Euler characteristic respects products, we have

Proposition 3.3. If F is rational and quasifinite with x(F) # 0, then G.(F) C
Ker(h).

Proof. Let a € Gi(F) C mx(F) and choose a preimage & of a under the evaluation
map 7k(FF,1F) — Gp(F) C mx(F). By t, we may consider & € mg41(Baut(F))

10



with representative $¥*! — Baut(F). Pull back the universal fibration over this
map to get a fibration
F— E — gkt

with O(tg41) = «, where 44, denotes the generator of m¢(Q2S**1). Now the
rational fibre decomposition theorem may be applied. If A(a) # 0, then F ~ Fx S&
where k is odd (since F is quasifinite). But then, x(F) = x(F) - x(S*¥) = 0 and

this contradicts the hypothesis that the Euler characteristic is non-zero. O

Remark 3.4. Gottlieb proved this and similar results in [G2]. He also knew about
certain types of algebraic (i.e. module) splittings of homology and cohomology (with
varying coefficients) under certain hypotheses [G4]. The proofs above for results
less general than Gottlieb’s exemplify the fact that rational homotopy theory often
serves as an oasis in homotopy theory where theorems and proofs achieve their
cleanest form. In some sense, rational homotopy provides the heuristic reason why
an integral homotopical fact is true, but in the translation from the rational world
to the integral one, much of the simpler rational structure may be lost. In fact,
although Gottlieb actually showed that Gi(F) C Ker(h,) for all primes p as well
as hg, to the best of my knowledge, the question remains open as to whether
Gr(X) C Ker(h) over the integers.

Just as in the remark above, it is possible to give a rational explanation for

results like the Transgression Theorem of [CG] in terms of the Samelson space.

Rational Transgression Theorem 3.5 [02]. Let F — E — B be a fibration of
rational spaces with F' quasifinite and suppose that f: E — E is a fibre preserving
map which induces the identity on B and g: F' — F'. If the Lefschetz number of

g, A(g) is non-zero, then

0=0*: H*(F) — H*(QB).

Proof Sketch. The structure of the rational holonomy QB x F' — F (see [FT]) and
the rational fibre decomposition theorem imply that, for non-trivial Samelson space
K,

A(g) = x(K) - A(9)
where g: F i, p 9, p PO, £ Bu then, if K is non-trivial, then x(K) =0
since F is quasifinite and this contradicts the hypothesis that A(g) # 0. O
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The rational fibre decomposition theorem has an integral analogue in degree 1
which is a homotopical version of a splitting obtained by Conner and Raymond in

their work on circle actions. In particular, they showed [CR1]

Conner-Raymond Splitting Theorem 3.6. If S acts on X so that the or-
bit map w: S' — X induces an injection w,: Hi(S';Z) — Hy(X;Z) onto a Z-
summand, then

X Zhomeo (X/Sl) X Sl
and the action is on the second factor by translations.

The crucial ingredient necessary to generalize this result is the fact that the orbit

map w fits into a homotopy commutative diagram

oBs! 2% x

1 /S w
5'1

where S! ~ QBS! and 0 arises from the Barratt-Puppe extension of the Borel

fibration associated to the action
.= 0BS' % x - xS - BS!.

The homotopical version of a circle action is simply a map A: S x X — X as-
sociated to a Gottlieb group element A|s1 = o € G(X). The Conner-Raymond

theorem then has the analogue
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Theorem 3.7 [O3]. Let X be a space with Hy(X;Z) finitely generated. If there
exists a € G(X) with Hurewicz image h(a) of infinite order, then there exists a

finite cyclic cover of X, X, with
XY xSt

for some Y .

Proof. 1 shall only give the proof when, as in the Conner-Raymond theorem, h(a)
generates a Z-summand, for in this case, X itself splits. So, suppose h(a) generates
the Z-summand in Hy(X;Z) = Z ® A and take the element § € HY(X;Z) =
Hom(H:(X;Z),Z) determined by

B(ha))=1€Z and P(A)=0.

Then S corresponds to a mapping X — K(Z,1) = S! by the classification of
integral cohomology. This map X — S! has a splitting a and, if the homotopy fibre

is denoted Y, the same holonomy argument as in Theorem 3.1 gives X ~Y x S'.
O

In fact, this result, as well as generalizations and applications may be found in
[G6] as well as [03]. (Also, it appears Thurston knew of this type of theorem years
before. See [Mc].) Theorem 3.7 is not only a homotopical version of the Conner-

Raymond theorem, but may be used to prove the Conner-Raymond theorem itself.

Proof of Conner-Raymond. The orbit of the circle action is S!/Isotropy, so the
only way that w, could map H;(S';Z) onto a Z-summand is for the isotropy to
be trivial at each point. That is, S must act freely with consequent principal
bundle

St X — X/St.

Now, the hypothesis on w = 0 translates into saying that h0 is non-trivial; indeed,
is onto a Z-summand. Theorem 3.7 then says that X ~ Y x S with S* modeling
the Z-summand. But then X homotopy retracts onto the fibre S! in the principal

bundle and, consequently,
Tu(X) & mu(X/S") x mu(SY)

compatible with the splitting of homotopy induced by X =~ ¥ x S1. Hence, the

composition ¥ — X — X/S' induces homotopy isomorphisms and, therefore,
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Y ~ X/S'. But then, using the inverse of the displayed homotopy equivalence,
there is a homotopy section of the principal bundle X/S' — X which may be
made a true section by applying the homotopy lifting property. This implies that
the principal bundle is trivial. That is, X = (X/S!) x S*. O

Theorem 3.7 may be generalized to toral splittings. In fact, since Hy(X;Z) is
assumed to be finitely generated, hG(X) is a finitely generated abelian group with
a well-defined rank. Define the rank of h(G(X) to be the h-rank of X. (The h-
rank differs from the Hurewicz rank defined in [G6] by not requiring the Z-factors
in A(G(X)) to be free summands of Hy(X;Z). In particular, h-rank is greater
than or equal to Hurewicz rank and, over Q, they are identical. We then have

([Gé], [03]),

Theorem 3.8. Let X be a space with H,(X;Z) finitely generated. If the h-rank
of X is s, then there is a finite abelian cover X of X with X ~ Y x T*®, where T*

is an s-torus.

Remark 3.9. Eckmann-Hilton duality provides wedge splittings for cofibres analo-
gous to the product splittings for fibres above. See [01], [O4] and, for a very general
approach, [DGJ.

I now want to apply the homotopical Conner-Raymond theorem to answer Got-
tlieb’s question of whether G(X) and P(X) are identical. (In fact, Ganea [Gal]
gave an infinite dimensional example X with G(X) # P(X) years ago, but the
finite dimensional case appeared much harder See §5 for an analysis of Ganea’s

example.)

Example 3.10. Let S® — X — T* be the principal $®-bundle induced from the
Hopf bundle S% — S — S* by a degree 1 one map k: T* — S*. It is easy to see
that X is a compact 7-dimensional manifold which is also a simple space. That is,
71(X) acts trivially on higher homotopy, so P(X) = m(X).

Now let’s look at G(X). Suppose G(X) is non-trivial and let a € G(X) be a
non-zero element. Then Theorem 3.7 implies that there is a finite cyclic cover X
with X ~ Y x S'. Now, it is plain that X is a simple space and that X and
X have the same rational homotopy type. Thus, rationally, X, ~ Y, X S5 . The

Postnikov tower for Y} is then
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Yo —» PK(Q4)

! !
s — K(Q4)

and, since H*(T?;Q) =0, Yy ~ T x S3. Consequently, Xy ~ Tif x S3. This could
only happen if the map k were rationally trivial and this contradicts the fact that
k has degree 1. Hence, G(X) is trivial and not equal to P(X).

Remark 8.11. The construction in Example 3.10 may be generalized to certain
types of principal bundles G — X — T**! for G a simply connected compact
Lie group [OP]. An answer to Gottlieb’s question, however, might have been found
years earlier by adapting a construction of George Cooke [Co]. Here’s how. ‘

Let a map 6 be defined on the space ¥ = (S™ x S™) V $2" in the following

manner:

B|snvsnysin = lgnysnysen
Bl2n—cen Wraps with nontrivial degree around S$%”.

As Cooke shows, 6 induces the identity on homotopy groups, but not on homology
groups. Indeed, for the obvious homology basis in degree 2n, 6.(0,1) = (0,1) and
6,(1,0) = (1,1) (for a wrapping of degree 1). Therefore, 62" # idy, for all n.
We have just defined a homotopy action of Z on Y. The main point of Cooke’s
work was to describe conditions under which homotopy actions could be replaced
by topological actions having the same homotopical effects. For a homotopy action
of Z the conditions are simple — any such homotopy action may be replaced by
a homotopically equivalent topological action. The construction is easy: Let M

denote the infinite mapping cylinder of 6,

_ YXIXZ
~ {(y,1,n) ~ (8(y),0,n + 1)}’

The inclusion ¥ » M is a homotopy equivalence and the shift map T: M — M,

M

T(y,t,n) = (y,t,n — 1), provides a free, properly discontinuous action of Z on M
which has the same effects on homotopy and homology as 6.

Denote the quotient M/Z by N and the universal covering by p: M — N.
Then N has the homotopy type of a finite complez with P(X) = m(X) = Z
and G(X) = {1}. To see this, first note that N is a simple space because its
fundamental group Z acts on higher homotopy via 6. Also, no element of the

fundamental group (thought of as a covering transformation) is homotopic to the
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identity on M since the map induced on H,(M) is 6.. By Theorem 2.6, G(N) is
trivial.

‘Therefore, all we must do is show that N is a finite complex. Take the fibration
MAN- S

and apply Lal’s theorem [Lal] to compute the (unreduced) Wall finiteness obstruc-
tion,

w(N) = pu(w(M)) - X(S") =0.

The vanishing of the obstruction implies that N has the homotopy type of a finite
complex. I want to put forward a problem I've often given in relation to this
construction of Cooke’s. Namely, find other examples of maps which induce the
identity on homotopy groups, but not on homology groups. In the fashion above,

these maps will provide counterexamples to G(X) = P(X).

Simple spaces with trivial G(X) have interesting self-maps from the point of
view of fixed point theory. In [P], Pak showed that, for aspherical manifolds with
trivial G(X), the representation

Y: mo(H(X,z),1x) = Aut m (X, z)

is faithful (i.e. injective). Here, H(X,z) denotes the group of basepoint preserving
self-homeomorphisms of X . This result is saying that based isotopy classes are de-
tectable by their induced homomorphisms on the fundamental group. The question
became whether this type of result could be proved for non-aspherical manifolds.
The answer turned out to be no as I shall show below. Although I shall use the
X constructed in Example 3.10, more general results may be found in [OP] for the
principal G-bundles over tori mentioned above.

Let H (X) and H(X, z) denote the spaces of self-homeomorphisms and basepoint-
preserving self-homeomorphisms of X respectively. Let aut(X) and aut(X,z) de-
note the spaces of self-homotopy equivalences and basepoint-preserving self equiv-

alences respectively. There is a diagram of evaluation fibrations
HX,z) - HX) - X
l ! -
aut(X,z) — aut(X) —» X
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which induces a mapping of long exact homotopy sequences,

EVy

m(H(X),1lx) — m((X,z) — m(H(X,2),1x) — m(H(X),1x)
(%) ! I ! !
mauwt(X),1x) —5 m(X,z) — E(X,z) — E(X)

where we use the notation for the discrete groups of self-homotopy equivalences,
E(X,z) = mo(aut(X,z),1x) and E(X) = mo(aut(X),1x). There is a representa-
tion

P E(X,z) = Aut (X, z)

given by taking induced maps on homotopy. By pre-composing with mo(H(X,z),1x) —

E(X,z), we obtain a representation
Y:mo(H(X,2),1x) = Aut (X, z)

which is analogous to Pak’s representation above. (See [CR2] for a discussion of this
representation in the context of aspherical manifolds.) By [McC], the composition
of ¢ and the connecting map of (), 0: m(X,z) — m(H(X,z),1x) is precisely
the automorphism of homotopy given by the standard action of the fundamental

group. We obtain

Lemma 3.12. . If X is a simple space, then
Image(0: m(X,z) — mo(H(X,z),1x)) C Kery.

Therefore, to obtain homeomorphisms inducing the identity on homotopy groups,
it is sufficient to show that the connecting map image above is nontrivial. To do
this, it is sufficient to show that evy is not surjective. But if we take the X of
Example 3.10, then G(X) = {1}, so evg: m(aut(X),1x) — = (X, z) is trivial
Hence,

evy: m(H(X),1x) = m (X, z)

is trivial as well and 71 (X, z) — mo(H(X,z),1x) is injective. Since m(X,z) = Z*,
then rank(Ker) > 4. Therefore,

17



Theorem 3.13. For the space X of Example 3.10, there exist basepoint preserving
homeomorphisms which induce the identity on homotopy, but which are not based
isotopic to the identity map. Indeed, for the representation v: mo(H(X,z),1x) —
Aut 7. (X, z), rank(Kerv) > 4.

This result makes clear that Pak’s faithfulness result cannot be generalized to

even the simplest non-aspherical manifolds.

84 SOME RATIONAL HOMOTOPY

Localization methods in topology arose in the late 1960’s and provided a way
to isolate homotopical phenomena according to number theoretic considerations.
In particular, as had been apparent in practice for years, the first and simplest
step to understanding the homotopical structure of a space is to understand it over
the rationals. In 1969 Quillen [Q] made this part of the problem completely al-
gebraic by showing that the rational homotopy category is equivalent to certain
algebraic categories. In the 1970’s Sullivan [Su| put forth the idea of computing
rational homotopy in a fashion akin to computing de Rham cohomology; that is,
from forms. Sullivan showed that certain types of forms could be defined on, not
just manifolds, but the usual spaces of topology and that these forms carry all the
rational information about the space. Moreover, to glean the relevant rational ho-
motopy information, he devised a minimal differential graded algebra model which
also contained all rational invariants of the space, but whose algebraic structure

was particularly simple.

In this section, I want to describe the rudiments of rational homotopy theory
and the connection of rational homotopy with Gottlieb groups. Later I will use the
minimal model in discussing fixed points, so I'll introduce that here as well. First,
recall that to every (nilpotent) space there is associated a homotopically unique
rationalization e: X — X, with the property that, for any rational space Z. there

is a bijection of sets of homotopy classes
[XO, Z] 'i) [Xa Z]

For details of localization theory in a general context, see [HMR]. The first question
which comes to mind is whether or not the Gottlieb group rationalizes. Consider

the following diagram associated to a@ = A|sn € Gp(X):
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i 5 shxx A X
7l lexe le
S"x Xy 2L Shx X, 2% X,

Then we can compute

Apo(ex1)oj=eo0Aos
=60A|Sn

= ex(a)

where ex: [S™,X] — [S™, Xo] is given by f — eo f. The mapping Ag o (e x 1)
therefore restricts to ‘localization’ of a as it should. Also, if we restrict to X in

the righthand square, because A|x = 1x, we have
e=¢eo0A|lx = Ao|x, 0 e = e*(4o|x,)-

Now, e*: [Xo,Xo] — [X,Xo] is a bijection and, clearly, e*(1x,) = e. Hence,
comparing the two results, Ag|x, = 1x,. Therefore, Ay o (e x 1) is an associated

map for ex4(a) and, consequently, ex(a) € Gn(Xo). Hence,
Theorem 4.1. G,(X)® Q C G.(Xo).

For more on localization and Gottlieb groups, see [L1]. The rational Gottlieb
groups are related, somewhat surprisingly I think, to another old invariant of topol-
ogy, the Lusternik-Schnirelmann (LS) category. Recall that a space X is said to
have category n if there exist n + 1 open sets U; C X such that

n+1
X = U U, and each U, is contractible in X

=1

and n is the least integer for which this is true. The second condition means that
there is a homotopy H: U; x I — X such that Hj is the inclusion and H; is the
constant map. One thing that we can say right away is that category is related to
cuplength. Recall that the cuplength of X, denoted cup(X), is the largest integer
k so that there exist z; € H™(X; R), for : = 1,--- , k and a nontrivial cup product
0 # z125---zr. Here R is a ring of coeflicients. The following result is well-known

and is the basis of many calculations of category.
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Proposition 4.2. cup(X) < cat(X).

Proof. Suppose cat(X) = k, choose any k + 1 elements z; € H™(X; R), 1 =
1...k+1 with deg(z;) = j; and form the cup product z;z3--- zx4+;. Now, because
the inclusion U; — X is nullhomotopic, the exact cohomology sequence of the pair
gives

o= HE(X,U) - H¥(X) D HA(U) > ...,

which guarantees that each z; has a preima,gé Z; € H%(X,U;) and, therefore,
T1Z3 - Tr41 has a preimage T1Z3 - Zg41. The properties of relative cup products

then give (for N =3 j;)
Z1Zg - T € HN(X, UM U) = HV(X, X) =0.

Since T1Ty-::Zp41 maps to Tyz2---Tgy1, the latter is zero as well. Hence, any

cup product of length greater than k is trivial and cup(X) < cat(X). O

Other important properties of category are given by the following:
(1) Category is an invariant of homotopy type.
(2) f Cf =Y Uy CX is a mapping cone, then cat(Cy) < cat(¥) + 1.
(3) If X is a CW -complex, then, by induction on skeleta and property (2), cat(X) <
dim(X).
(4) In fact, (3) may be generalized: If X is (r — 1)-connected, then cat(X) <
dim(X)/r.
The proofs of these properties may be found in [Wh] and the excellent survey [J]

for example.

Example 4.3.

1. cat(X) =0 if and only if X is contractible.

cat(S™) = 1.

More generally, cat(X) =1 if and only if X is a nontrivial co- H space.
cat(T™) = n (this follows from the proposition and property (3) above).

Al

If (M?",w) is a simply connected compact symplectic manifold, then cat(M) =
n = —;— dim(M). First, observe that the volume form is not exact since it rep-
resents a nontrivial fundamental class of M. Because w™ /n! = vol, the non-
degenerate closed 2-form w cannot be exact either. Hence, w™ represents a
nontrivial cup product of length n in R-cohomology. By property (4) above,
cat(M) < (dim(M))/2 = n. Hence, n < cup(M) < cat(M) < %dim(M) =n
and the result follows. '
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Now let’s see what category has to do with fibrations. The first connection of
category with the rational homotopy theory of fibrations appeared in [FH]. Sub-
sequent to this, various simplifications arose allowing minimal model theory to be

obviated in the following discussion. In this I shall basically follow [FL].
Lemma 4.4. Let F > E % B be a fibration with i nullhomotopic. Then
cat(E) < cat(B).

Proof. Let cat(B) = n and take an open cover {U;}, i = 1...n + 1 realizing the

category. Consider the commuative diagram obtained from the homotopy lifting

property,

plUNxI A B

px1] Ip
vixI &L B
where H is a homotopy contracting U; in B and H is the lift of the composition Ho
(px1) with l?I(x, 0) = z. Because H(u,1) = by, the basepoint of B, commutativity
implies that fI(w, 1) € F =p~ (k). Now let L: F x I — E be the nullhomotopy
connecting ¢ to the constant map at eg. Thatis, L(z,0) = z € F and L(z,1) = ey,
the basepoint of E. Define a homotopy J: p~!(U;) x I — E by

H(z,2t) for 0<t< 3
J(z,t) = ~
L(H(z,1),2t—1) for1<t<1
Then J(z,0) = z € p~!(U;) and J(z,1) = e, so p~*(U;) is contractible in E.
Since U {p~1(U:)} = E, then cat(E) < n = cat(B). O

Now, how does category behave under localization? The answer here is, it be-
haves well if the space is simply connected and pretty badly otherwise. If X is
simply connected, then the Whitehead definition (see [Wh]) of category localizes
properly and shows that

cat(Xp) < cat(X).
On the other hand, even for a simple space such as the circle, things are bad. Ganea
[Ga2] first noticed that, since S§ ~ K(Q,1) and Q is not a free group, then S}
is not a co-H space, so, by Example 4.3.3, cat(S3) > 1 (in fact, it is 2) while
cat(S!) = 1. For this reason, we must be careful when we talk about the category

of localized spaces.
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Theorem 4.5 : The Mapping Theorem [FH], [FL]. If f: X — Y is a map of
simply connected spaces such fu: m(X)® Q — 7,(Y) ® Q is an injection, then

cat(Xy) < cat(Yp).

Proof. Turn f: X — Y into a fibration with homotopy fibre F' included into X by
i: F > X . After rationalizing the spaces (which preserves the fibration), extend

the fibration to a Barratt-Puppe sequence
2] i f
o= QY = Fy — Xo = Y.

Here the maps are rationalized as well, but the subscript is suppressed for notational
convenience. Now, because fg is injective, exactness implies that 7z = 0 and,
therefore, 0% is surjective. But this is precisely the situation of Theorem 1.2, so
there is a subproduct K C QY such that the restriction 0|: K — Fj is a homotopy
equivalence. Let 0: F — K be the homotopy inverse of 9| (i.e. 0oo ~1f,) and
note that we then have

i~i0olp, ~10000 %

since ¢ 0 8 ~ * by the homotopy exactness of the sequence. Therefore, ¢ is nullho-

motopic and we are in the situation of Lemma 4.4. Namely,
cat(Xp) < cat(Yp)

which is what we wanted to prove. O

The proof of the mapping theorem exposes several other facts which lead to the

link between LS category and the Gottlieb groups. First, for any fibration
.-0BLFLELB

if 4 # 0, then, since 0By ~ [[ K(Q,n;), there exists a subproduct

K =[] K(Q,mi) c B,

=1

that models Image(dx). That, is O : m.(K) »> m.(Fp) is injective onto Image(Oy ).
The mapping theorem then says that

(*x) cat(K) < cat(Fp).
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Now, Proposition 4.2 says that cup(K) < cat(K), so we have two cases:

oo if any m; is even

cat(K) = { _

s if all m; are odd
where s is the number of factors in the product K which, of course, also is
dim(Image(d4)). Now, if F has finite category (i.e. cat(F) < oo), then (k)
and the estimate of cat(K) above imply that all the m; must be odd. Hence,
G2;j(Fo) = 0 for all j. Integrally, this means that even degree Gottlieb groups
of finite complexes, say, must be torsion groups. Furthermore, because cat(K) =
dim(Image(d4 )) for any fibration of simply connected spaces with fibre F', we may
create such an entity to model Gogqa(F). Namely, pick linearly independent ele-
ments o4, ... ,a, in odd degrees ny,... ,n, respectively which span Goad(Fp) and
form the pullback fibration

aut(Fyp) — F, — Baut,(F;) — Baut(Fp)

T I T T ViBa;

Qvismt)y S R - E o vpSmtt

where Ba; is the delooping of chosen preimages of the o; in 7rn,.(F0F °1p,) &
Tn;+1(Baut(Fp)). For this fibration,

dim(Goaa(Fp)) = dim(Image(9y4)) = cat(K) < cat(Fop).
To summarize all this, we can write

Theorem 4.6. If F, has finite LS category, then the Gottlieb groups of F' obey
Geven(F O) =0

dim(Godd(Fo)) < cat(Fp)

So we see that there is this intimate connection between Gottlieb groups and LS
category. Perhaps, in light of the simple Lemma 4.4, this isn’t so surprising after
all — or is it? I shall talk more about Gottlieb groups and rational homotopy when
I introduce the minimal model. In particular, at that time I will state a tantalizing

conjecture of Felix which the reader may ponder.
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85 GROUP ACTIONS

As the range for connecting homomorphisms, the Gottlieb groups play an in-
teresting role in the subject of group actions. We already have seen the example
of the Conner-Raymond splitting theorem, but there is more. The relationship is

made apparent by the following diagram of §3 (generalized to G).

Q0BG 2 x
(k%) ~1 Jw
G

In other words, the orbit map w is homotopically modeled by the connecting ho-
momorphism 0. Therefore, for example, if the action has a fixed point, then 0 = 0.
The group G(X) is especially important because S!-actions form the fundamental
atoms of compact transformation group theory and, since ;(S') = 0 = H;(S?)
for = > 1, the only possible homotopical consequence of the orbit map must re-
side in G(X). In particular, recently Greg Lupton and I were able to show that
the image of the orbit map in G(X) was of infinite order for a circle action on a
symplectic manifold X obeying the condition that the symplectic class annihilates
the image of Hurewicz [LO1]. Thus, knowing something about the center Zm;(X)
allows some knowledge of the action. For instance, if Zn(X) is finite for such a
manifold, then no non-trivial circle actions are possible. I want to be clear about

these interactions, so let me remind you of the connection between the orbit map
and 0.

First, if a compact Lie group, say, acts on a space X , then we would hope to learn
about various qualities of the action, and therefore various symmetry properties of
X, by studying the orbit space X/G. If G acts freely, then, indeed, this is a good
way of initially approaching things, for the quotient map X — X/G is, in fact, a
principal G-bundle. If the action is not free, then X /G may have a quite intricate
structure which is not easily amenable to study. In the 1950’s, Borel invented a
substitute for the orbit space which is amenable to homotopical study, the so-called

Borel fibration. To every G there is associated a universal principal G-bundle

G — EG — BG,
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where EG is contactible with free G-action (so BG = EG/G), which classifies
principal G-bundles over a space X in terms of the homotopy classes of pullback
inducing maps X — BG. Given an action G x X — X, (g,z) — gz, we can form

the orbit space
EGx X

G
where G acts diagonally EG and X . Because G acts freely on EG, it acts freely

XG =

on EG x X, so this orbit space is not bad. There are two maps from XG which
tell us something about it. First, since elements of XG are equivalence classes
[e,z], we can ‘project’ onto the equivalence class [z] € X/G. It is not hard to
show that this map XG — X/G is a homotopy equivalence when the action 1s
free. In fact, although it is harder to show (since it involves the Leray spectral
sequence), it is true that, if at each point z the isotropy group of the action defined
by G, = {g € Glgz = z} is finite, then XG — X/G is a rational homotopy
equivalence. Therefore, the Borel space X G at least reduces homotopically to the
right object under a free or almost free (i.e. finite isotropy) action. Secondly, we
can project [e,z] to the equivalence class [e] € BG to produce what is shown to
be a fibration

X - XG - BG

called the Borel fibration. A good general reference for the cohomology theory and

(rational) homotopy theory of compact group actions is [AP1]. Now we can show
Lemma 5.1. The diagram (* % %) is homotopy commutative.

Proof. The Borel fibration and the action G x X A X may be embedded in the

following commutative diagram:

G — GxX — X
! ! !
EG —- EGxX - XG
! ! 1

BG -2Bs, BG 125, BG.

The composition of the maps in the top row is the orbit map w. These fibrations
may be extended to Barratt-Puppe sequences which give a homotopy commutative

diagram
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QBG 1225, QBG 19225, QBG
~] ! 10
G — GxX = X.

Since the bottom row is the orbit map and the top row is the identity, then, up to

the equivalence QBG ~ G, we see that w and 0 are the same. d

Now orbit maps may be studied as connecting homomorphisms of the associated
Borel fibrations. For example, the Transgression Theorem of [CG] immediately
says that, if the Euler characteristic of X is non-zero, then the orbit map is trivial
on cohomology. Various other such results may be found in [G7] and its references.

More is even true once we put the fibration theory to work.

Example 5.2. Take the case of a circle action S! x X — X on a manifold. If
x(X) # 0, then the S'-action on X has a fixed point. There are many ways
to see this. In fact, it is true that the Euler characteristic of the fixed set and
the space must be the same, so that the fixed set cannot be empty. From the
fibration viewpoint though, we take the Borel fibration associated to the action
X — XS* 2 BS! and consider the Becker-Gottlieb Euler characteristic transfer
for fibrations

H*(XS') = H*(BS")
p*

where 7(p*(a)) = x(X) -« for « € H*(BS'). Since x(X) # 0, then, for rational

* is injective. But by the fundamental fixed point theorem of

coeflicients say, p
Borel (see [Hsi] or [AP1]), this is precisely the condition necessary to ensure a fixed
point. Of course, the existence of a fixed point is stronger than simply saying that
the orbit map is zero on homology — namely, the orbit map is homotopic to a

constant at all points.

Now let’s look at some elementary rational homotopy theoretic considerations
concerning group actions. We still don’t need the minimal model (at least to state
the theorems), but we’re getting close. The first thing to note is that, according
to rational homotopy theorists, there are two types of simply connected spaces of
finite LS category: elliptic and hyperbolic spaces. An elliptic space X is one for
which both '

dim H,(X;Q) < oo and dim(m(X)® Q) < oo.
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A hyperbolic space is one with finite dimensional rational homology, but infinite

dimensional rational homotopy. In fact, if X is hyperbolic, the sequence
pi= ) dim(m;(X) 8 Q)
j<i
has exponential growth. See [F] for the full story on this dichotomy.

Example 5.3. Spheres, complex projective spaces, Lie groups and, more generally,

homogeneous spaces G/H are elliptic spaces.
Definition 5.4. Let X be an elliptic space. The homotopy Euler characteristic of
X 1is defined to be

X=(X) = (~1)'dim(mi(X) ® Q).

>0
The exact homotopy sequence of a fibration immediately gives

Proposition 5.5. If FF — E — B is a fibration, then

Xn(E) = Xx(B) + Xx(F).

The fundamental theorem about elliptic spaces and their homotopy Euler charac-
teristics is due to S. Halperin [H2].

Theorem 5.6. If X is an elliptic space, then x(X) <0 and x(X) > 0. More-
over, the following are equivalent:
i x=(X)=0,
i x(X)>0,
i H*(X;Q) is a polynomial algebra modulo an ideal generated by a regular

sequence.

Recall that a compact Lie group G has rational cohomology an exterior algebra

on a finite set of odd degree generators,
H*(G;Q) = Azy,... ,z5).
Because cohomology classifies maps G — K(Q, ), we can define a map

=1
which is an isomorphism on rational cohomology. Hence, it is a rational equivalence.
The number of factors s in the product is called the rank of G. Notice that this is
precisely dim((7«(G) ® Q). This leads to
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Theorem 5.7 [AH]. If a compact Lie group acts almost freely on a finite elliptic
complex X , then
rank(G) < —x(X).

Proof. Recall that G acts almost freely if every isotropy group is finite and, in this
case, XG has the same rational homotopy type as X/G. In particular, this implies
that dim H*(XG;Q) < co. Now, X is elliptic and dim(7,(BG) @ Q) < oo as well
(since 7i4+1(BG) = mi(G)), so the exact homotopy sequence associated to the Borel
fibration X — XG — BG shows that dim(7.(XG) ® Q) < co. Combining this
with the finite dimensionality of X G’s rational cohomology demonstrates that XG
is elliptic.
By Halperin’s theorem, x.(XG) < 0. Also, by Proposition 5.5,

Xr(XG) = xx(BG) + xx(X).

Now, we have the following computation for x.(BG).

x=(BG) =) (-1)'dim(m:(BG) ® Q)
1>1
=Y (-1)dim(mi-1(G) ® Q)
>0
= dim(7.(G) ® Q)
= rank(G).

Then, rearranging the equation above and substituting for x.(BG) gives
rank(G) + x(X) = x»(XG) <0,

or, rather, rank(G) < —x(X). O

Example 5.8. Let X = H/K , a homogeneous space. The formula of Proposition
5.5 applied to the fibration H/K — BK — BH shows that x.(H/K) = rank(K)—
rank(H). The theorem above then says that any compact Lie group acting almost
freely on H/K must have

rank(G) < rank(H) — rank(K).

In fact, if rank(H) = ry and rank(K) = rg, then for T"# a maximal torus of

H, there is a subtorus 7" which is a maximal torus for K. The complementary
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subtorus T7# ~"K acts almost freely on H/K and this is the largest rank possible

by the inequality. Hence, the largest rank of a torus which can act almost freely on
H/K is rank(H) — rank(K).

‘The toral rank of a space X is the dimension of the largest torus which can act
almost freely on the space. Halperin conjectured that, if the toral rank of a (finite)
space X is r, then

dim H*(X;Q) > 2".

This conjecture is known for various spaces including spaces which, in some way,
resemble Kahler manifolds (see [LO1], [A], [AP2]). We also have,

Example 5.9. Let a torus T" act almost freely on a homogeneous space H/K
with r = rank(H ) —rank(K). Then Halperin’s conjecture is true in this case. That
1s,

dim H*(H/K;Q) > 2.

To see this, just consider the fibration K — H — H/K and note that the Serre
spectral sequence ensures that, for any fibration F — E — B, dim H*(E;Q) <
dim H*(B;Q) - dim H*(F; Q). Hence,

dim H*(H;Q) < dim H*(K;Q) - dim H*(H/K;Q)

and, dividing by dim H*(K;Q), we obtain

27 dim H*(H;Q)
orx  dim H*(K; Q)

21" — 21‘H-—1‘K —

< dim H*(H/K; Q).

Remark 5.10. The same types of arguments may be applied to the Samelson space
K associated to a fibration [02]. For example, if F' is elliptic, then for any fibration
with fibre F,

rank(K) < —x«(F).

Consequently, if F' is elliptic and x.(F') = 0, then the Samelson space is trivial for
every fibration in which F' is the fibre.

Now let’s mix in the Gottlieb group by making a small modification in the proof
of [H3 Theorem 1.1]. We shall only consider nice spaces which, in particular, have
finite cohomological dimension cdg < oo and for which the rationalized Gottlieb
group G(X) ® Q is finite dimensional.
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Theorem 5.11 [H3]. Let X be a connected finite dimensional CW complex with
i(X)® Q=0 for : > m. Then

toral rank(X) < dim(G(X) ® Q) — ¥ _(—1)'dim(m:(X) ® Q).

=2

Proof Sketch. Let T" act almost freely on X and consider the homomorphism
induced by the orbit map on fundamental groups, wg: 7 (T") — m(X). We
know of course that Image(wg) C G(X), so Image(ws) = ®{_,Z - a; @ torsion, -
where ay,...,as are linearly independent elements in G(X) ® Q. Hence, s <
dim(G(X)® Q).

There exists a subtorus T'* C T" which realizes Image(wy) and a complementary
subtorus T7~* C T" whose fundamental group image is finite. Therefore, the image
for this torus can be killed off by taking a finite cover of T"7® — a cover which
is also a torus T7~*, but one which has trivial 7;-image. General facts about
transformation groups then say that the action of this torus may be lifted to an
almost free action on the universal cover of X, X . But then the Allday-Halperin

inequality (Theorem 5.7) holds and we get

r—s< -3 (-1)'dim(mi(X) ® Q)
=2
since the homotopy of X and X agree. Then moving s to the right and bounding
it above by s < dim(G(X) ® Q) gives

m

toral rank(X) < dim(G(X) ® Q) — Y (—1)'dim(m:(X) ® Q).

=2
O
Of course we can consider finite group actions as well as connected group actions.
In particular, one problem which arose over the years was to determine the Gottlieb
group of the orbit space of a finite group acting freely on a (necessarily odd) sphere.

In [05] I developed an obstruction theory for this problem based on a lifting theorem

of Gottlieb which we now consider.

Let a € G(X) and denote by A: S* x X — X an associated map with A|s1 = a
and A|x = 1x. The induced map on cohomology gives,

A*(z)=1®r+2A®za
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where z € H™(X) and ) is a chosen generator of H'(S'). Note that z4 €
H" !(X) and, although z4 depends on A, we do not denote this. Recall that a
fibration p : E — B is a principal K(m,r)fibration if it is a pullback of the path
fibration K(m,r) —» PK(m,r+1) % K(m,r +1) by amap k: B — K(m,r+1). If
v € H™Y (K (m,r41);7) is the characteristic class, then let k*(¢) = p € H™!(B; )
and recall that a map f: Y — B has a lifting f: Y — E if and only if f*(p) =0.

Theorem 5.12 [G2]. Let p: E — B be a principal K(=,r) fibration and let
A: S'x B — B beamap with A|gp = 1p. Then, there exists a map A: S'xE —E

with A|g = 1g and a commutative diagram

S'x E A E
1s1 xpl lp
S1x B A B

if and only if pg =0 € H"(B;).

Remark 5.13. This type of lifting result has been generalized several times over the
years to include extensions of the notion of Gottlieb group to Gottlieb sets defined
by cyclic maps. For example, see [HV] or [Hoo]

The obstruction theory of [O5] essentially just proceeds up the Postnikov tower
— when a Postnikov tower exists. Also, it is shown in [O5] that, to ensure the
existence of a Gottlieb group element in G(X), it is sufficient to check that all
obstructions vanish up to X(n) in the tower, where n is the dimension of X.
The obstruction theory allows an analysis of Ganea’s infinite dimensional example
of a space with G(X) = {1}, but P(X) = n1(X). Compare this with the finite

dimensional example in Example 3.10.

Example 5.14 [Gal]. Construct the Ganea space X as a principal K(Z/2,2)
fibration over RP(o0) = K(Z/2,1) induced by the nontrivial element of

H*(RP();Z/2) & Z/2 = [RP(c0), K(Z/2,3)].

As the pullback of the fibration K(Z/2.2) — PK(Z/2,3) — K(Z/2,3), X is
a simple space. Hence, P(X) = m(X) = Z/2. Now, the cohomology element
inducing the pullback is the cube * of the polynomial algebra generator ¢ in

degree 1. Let a be the nontrivial element of m X = Z/2.
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We have A: S x K(Z/2,1) — K(Z/2,1) with A|S! the generator o € Z/2 as
in the discussion following Example 2.5 and, by Theorem 5.12, we know the ob-

struction to the existence of a lift A is 3, € H*(K(Z/2,1);Z/2). We can compute
3
% by,

A*(P) = (A*())°
=(1®t+A®1)?
=1 2 +A@ L

3

Hence, ¢3 =2 # 0. Therefore a lift of A does not exist and G(X) = {1}.

Theorem 5.15 [OT], [05], [B]. If H is a finite group which acts freely on an odd
dimensional sphere, then the Gottlieb group of the orbit space of the action is equal
to the center of H.

My proof of this result in [O5] relies on constructing a Moore-Postnikov tower for
the orbit space S?"~1/H after the first stage. Then the obstruction theory I have
referred to takes over and only one obstruction exists to any element of the center
of H being in G(X). That obstruction, by the general lifting result Theorem 5.12
above, lies in H?""1(H;Z). But it is a general fact that, if a finite group H acts
freely on a sphere, then all odd dimensional cohomology vanishes (see [O5] for a
proof). Hence, H2"~1(H;Z) = 0, the obstruction is trivial and all elements of ZH
are in G(S?""!/H). Combined with the fact that, generally, G(X) C Zm;, we
see that G(S?"~1/H) = ZH . I should mention that after all this was done, I was
sent the paper [OT] which computes this result in a very different way. It might
be interesting to compare these approaches. I have been rather vague about the
obstruction theory because I want to present some other results about finite groups

which will allow a slick proof of Theorem 5.15 in the case of linear actions.

In [L2], George Lang studied the orbit spaces of Lie groups by finite subgroups.
I'm going to change his notation a bit to keep in line with the notation of this
paper, so let G be a simply connected (compact) Lie group and 7 C G a finite
subgroup. Of course 7 acts freely on G by left translations, so we have an orbit

space G/m which has universal cover G.

Theorem 5.16 [L2]. With the notation above

7N ZG C G(G/).
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Proof. Let a € TN ZG thought of as a covering transformation via left translation.
By Theorem 2.6, if o is equivariantly homotopic to 1, then a € G(G/~7). Take
a path £: I — G with £(0) = a and £(1) = e (where e is the identity of G).
Then it is straightforward to show (using the fact that a € ZG) that the required

equivariant homotopy is obtained as
H:GxI—-G H(g,t) =g £&(t).

O

Theorem 5.17 [L2]. If Zr lies in a path component of the centralizer of 7 in G,
Zgm, then
G(G/n) = Zm(G/7) = Z=.

Proof. Let o € Z7 and note that the hypothesis provides the existence of a path
£:1 - Zgr C G with £(0) = a and £(1) = e. Then an equivariant homotopy

from a to lg is given by
H:GxI—-G  H(g,t)=¢(t)g.

This uses the fact that the entire path is contained in 7’s centralizer in G. Hence,
any element of Z7 is in G(G/r). O

Remark 5.18. In [L2], Lang also makes some interesting calculations of Gottlieb
groups for complex projective space and Stiefel manifolds.

Now, how does S. A. Broughton [B] use Lang’s results to study G(S**~'/H)?
Consider the case where H is a subgroup of the unitary group U(n) acting on C"
linearly. Decompose C™ into irreducibles C" = @le V;. Let @« € ZH and note
that, by Schur’s lemma, because a commutes with every element of H, a acts
on each V; as multiplication by a scalar ;. Also note that |\;] =1 since a is of
finite order. Now observe that the k-torus Tk = §1 x...x S! acts on C" unitarily
with each element of the j* circle acting by scalar multiplication on V; (and thus
commuting with H ). Therefore, the connected torus T* is in the centralizer of H

in U(n). Hence we have,
ZHCS ' x...xS'C ZymH

and by Theorem 5.17, G(S?""'/H) = ZH.
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Before I leave this section, I can’t resist presenting an example which is not
connected with the Gottlieb group, but which is instructive in understanding the
Euler characteristic. This type of example must have been known in the 1950’s

when the Serre spectral sequence proof of the Euler characteristic formula for a

fibration F - E — B
X(E) = x(B) - x(F)

was given, but I know of no reference to it, so here it is.

Example 5.19. Let 7 # {1} be a finite group which acts freely on a finite 7-CW
complex Y with x(Y) # 0. Therefore, ¥ & X = Y/r is a covering map and the

following formula holds:
X(Y) = || x(X).

Hence, x(X) # 0 as well. The fibrations Exr x 7 — Er xY =22 X and 7 x Y —

Er xY 2% Br induce fibrations on quotients

F - Yr - X
F - Ym — Bn.
The fibres are the m-quotients of the fibres of the inducing fibrations:
F=(Erxn)/n=En F=(rxY)/r=Y.

First, since F' = E7 is contractible, Y7 ~ X, so x(Y7) = x(X). But, secondly, if

the Euler characteristic formula holds in general, then

Xx(Ym)=x(F)-x(Br)=x(Y)-1=x(Y)

since, for a finite group, all rational homology vanishes above degree zero and

H,(Br;Q) = H,.(m;Q). But then

X(X) = x(Yr)=x(Y) = |7| x(X)

which is absurd since we have neither x(X) = 0 nor |r| = 1. Hence, for this infinite

dimensional example, the Euler charactersitic formula for fibrations cannot hold.
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§6 MINIMAL MODELS

A DG algebra is a pair (A,d4), where A is a graded commutative, associative
algebra and d4 is a degree +1 differential of A. Any DG algebra (A,d4) that
we consider here satisfies H°(A,d4) = Q and H"(A,d4) is a finite dimensional
vector space for each n. We denote the ideal of positive degree elements in an
algebra A by At. If V is a vector space, then AV denotes the free graded
commutative algebra generated by V. If {v1,v2,...} is a basis for V, then we
write V' = (v1,vs,...) and AV = A(vy,vs,...). A DG algebra is minimal if (1)
A = AV, as an algebra, for some V' and (2) there is a basis V = (vy,vs,...)
such that, for each j, dv; € (A(v1,...,vj-1)) (A(v1,... ,vj—1))T. In particular,
differentials of generators are decomposable in a minimal DG algebra. We will write
a minimal DG algebra as (AV,d), or A(vy,vs,...;d) if V = (v1,vs,...). Any DG
algebra (A,da) has a minimal model (i.e. a minimal DG algebra (AV,d) with a
DG homomorphism p : (AV,d) — (A,d4) such that the induced homomorphism

on cohomology p* is an isomorphism).

To any space X, with finite-type rational homology, is associated a minimal
model (AV,d), where V is a positively graded vector space and AV is a freely
generated differential graded (commutative) algebra (DGA) which is polynomial
on even degree generators, exterior on odd degree generators and which has a
decomposable differential d. For a nilpotent space (e.g. an H -space or a simply
connected space), the minimal model (AV,d) ‘models’ X in the sense that there
are natural isomorphisms H*(X;Q) = H*((AV,d)) and Hom(7x4(X),Q) = V. A
basic theorem of rational homotopy theory asserts that each nilpotent space X has
a minimal model, which contains all the rational homotopy information about the

space.

The minimal model of X is constructed from a (non-free) differential graded
commutative algebra of rational polynomial forms A*(X), akin to de Rham forms
on a smooth manifold. The construction results in a homomorphism p: (AV,d) —
A*(X) which induces an isomorphism of cohomology. This map p enjoys the
following lifting property: Given a DGA homomorphism ¢: B — A*(X) which
induces a cohomology isomorphism, there is a lift j: (AV,d) — B with ¢ o ~ p.
Here, ‘~’ denotes DGA-homotopy. This lifting property, together with the fact that
a cohomology isomorphism between minimal models is in fact an isomorphism, is
sufficient to establish the uniqueness of the minimal model up to isomorphism.

Furthermore, a map of spaces f: Y — Z induces (in the usual fashion) a map of
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forms f*: A*(Z) — A*(Y). From the lifting property again, we obtain a map of
minimal models (AVz,dz) — (AVy,dy), unique up to DGA-homotopy.

A minimal DG algebra A(V;d) is elliptic if the graded vector space V' and the
cohomology H*(A(V;d)) are finite dimensional. In this case, the homotopy Euler

characteristic is defined as
Xx(A) = dim V" — dim yodd

and this, in light of the isomorphism V = 7,(X) ® Q, is the same as our previous
definition.

The fact that a space’s minimal model contains within it all rational information
about the space is precisely what is meant by saying that rational homotopy 1s
algebraic. Indeed, all of rational homotopy may be considered from the algebraic
point of view. This includes the study of fibrations. The fundamental result about

fibrations and minimal models is the

Grivel-Halperin-Thomas Theorem 6.1. Let F S E L B be a fibration with
m(B) = {1} (say) and F, E and B of finite type. Let (AV,d) 2, A*(B) be a

minimal model for B. Then the following diagram is commutative
Ax3B) =5 A*(E) I ANE)
1 Y1 61
(AV,d) % (AV®AW,D) — (AW,D)

and ¢, v and 0 induce isomorphisms on cohomology. Hence, §: (AW, D) — A*(F)

is a minimal model for the fibre F'.

Remark 6.2.

1. The middle DGA (AV ® AW, D) may not be minimal, but it obeys the rule that,
for some well-ordered basis (w;) of W, D(w;) € AV ® AW,;. The bottom row
is then called a Koszul-Sullivan (or K. S.) eztension.

2. The results listed above are found in many sources, including [Su], [GM] and
[H4]. The last, in particular, contains a proof of Theorem 6.1.

3. There is a converse to Theorem 6.1 in the sense that any K. S. extension may
be realized by a fibration of spaces up to homotopy. This generalizes Sullivan’s

spatial realization of a DGA.

Example 6.3. Consider an even sphere $2" . To create the minimal model, we

need a cocycle in degree 2n which maps to the cocycle in A*(SZ") representing
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the fundamental class of S2". Call this generator z and take the c.d.g.a. freely
generated by it, (A(z2,),d = 0). Now (A(z2,),d = 0) itself maps to A*(S2")
because z freely generates it. We do not yet have a model for 5*" since all higher
powers of z represent nontrivial cohomology classes in A(z). Thus these must be
killed by the addition of a generator y in degree 4n-1 with dy = 2%. It is easy to
see that defining d on y in this way kills all extra cohomology. Moreover, we can

map y to A*(S?") by taking it to zero. The minimal model of S?” is then
(A(wzn, y4n—1), dz = 0,dy = $2)-

Note that the definition of d on y is precisely the definition of the corresponding
k-invariant in the rational Postnikov tower for $2" and that the existence of gen-
erators only in degrees 2n and 4n — 1 reflects Serre’s theorem that even spheres
have finite homotopy groups except in those degrees. Similarly, an odd dimensional
sphere $?"~! has a minimal model (A(z2,-1),d = 0).

Example 6.4. Consider the extension (where subscripts denote degrees)
(A(e2),d = 0) — (A(e2,z4,Y7,29), D) — (A(z4,y7,2), D)

where

D(e)=0 D(z)=0 D(y)=2z>+ae* D(z)=¢".

Here, a € Q and, for concreteness we take a = 1 and @ = 2. Note that the
middle DGA is minimal in this case. There are several interesting things about the
minimal DGA (A(ez, 24, Y7, 29), D). First, it is elliptic. To see this, note that it

also arises as the middle of an extension
(A(eg,29),dz = 65) — (A(ez,24,Y7,29), D) = (A(z4,y7),dy = xz)

which models the fibration S; — E — CP®. Because both base and fibre have finite
dimensional rational cohomology, so does E by a Serre spectral sequence argument.
Secondly, since A = (A(ez, z4,y7, 29), D) is elliptic, a result of Halperin [H2] tells us
that it satisfies Poincaré duality with top dimension 12. General results of Sullivan
[Su] and [Ba] then say that there is a 12-dimensional smooth manifold with the
rational homotopy type of A (for either a = 1 or a = 2). Now denote the a =1
DGA by A; with corresponding manifold M; and the a = 2 DGA by A, with
corresponding manifold M, and define a DGA homomorphism 6: AQR — A, ® R
by
1

O(e)=e 0O(z)= ﬁx 0(y) = -;-y 0(z) = z.
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It is not hard to check that § commutes with the differential and, therefore is a DGA
homomorphism. Indeed, 6 is a DGA 1somorphism since it induces an isomorphism
of V to V and the DGA’s are freely generated by V. This means that the real
homotopy types of My and M, are the same. These are the homotopy types which
- might be expected to arise from smooth de Rham forms.

We can try to define an isomorphism 6 over Q by
6(e) =Xe O(z)=oz+pe® O(y)=ey 6(z)=r1z+ pey

where the definition is the most general possible given the degrees of the basis
elements. Then, imposing the condition that § must commute with the differentials

gives either € = 0, in which case §(y) =0 and 6 is not an isomorphism or

2= (A_z)z
o
But A and o are in Q, so this a contradiction and no such 6 exists over Q. Thus
M; and M, have different rational homotopy types. This is a descent phenomenon
in homotopy theory analogous to that found in algebra — as might be expected
from a completely algebraic version of topology.

Finally, the original extension models the Borel fibration associated to a circle
action. To see this, spatially realize A by a space Z and use either a Postnikov
tower or a homology rdecomposition to get a space Y of finite type over Z with
Y — Z a rational equivalence. Hence, e € H%(Z; Q) = H%(Y;Q), so some integral
multiple Ne € H%(Y;Z). Then use Ne to classify a principal bundle

X — ES§?
| pull l
y N Bst

so that X inherits a free circle action. Now, denoting the spatial realization of

(A(z,y,2), D) by F, we can get a mapping of fibrations

X, » Y, 25 BS!

1 1~ ~| &
f - Zo ' i) BS%
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which induces a homotopy equivalence of fibres Xy, — F. Therefore, the fibration

X — Y — BS? realizes the original K. S. extension and, since X is a principal
S -bundle over YV, then ¥ = X/S* = XS! and we obtain the Borel fibration.

A K. S. extension has its own long exact sequence of ‘generators’ corresponding to
the long exact homotopy sequence. This sequence is defined in terms of the twisted
differential D and, it turns out that the connecting homomorphism is given by the
linear part of D and, thus, measures the deviation of the middle DGA from being
minimal.

Example 6.5. Consider the K. S. extension which models the Hopf fibration S! —
§8 5 52
A*(S?) - A
¢/ T4 16
(A($2,y3),d’y:$2) - (A(w2ay3azl),D) - (A(zl)adz 0)

where ¢(z) = 0 = (), é(y) = —v = ¢(y) (v a volume form on S$?), ¥(2) =0
and
D(z)=0 D(y)=2z* D(z)=z.

Because D(z) = z is linear, and not decomposable, the middle DGA is not mini-
mal and the DGA connecting homomorphism takes z to z, the dual of the Hopf

fibration connecting homomorphism m,(S?) & 7,(S?).

Now that we have seen how the connecting homomorphism of a fibration is
modeled, let’s look at the rational Gottlieb groups themselves [FH], [F]. For a
space X with minimal model A = (AV,d), let

G¥(X)={f: V™ — Q| f is linear and extends to a —n-derivation 6 of
A with 6d—(-1)"d8 = 0}.
Proposition 6.6. G¥(X) = G,(X,).

Proof. The fact that f extends to a derivation is equivalent to having a DGA

homomorphism

A: A - H*(S";Q) ® A

and this may be realized at the space level by a map associated to a Gottlieb

element. O
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Example 6.7. As a somewhat trivial example, recall that, except for the cases
n = 1,3,7 where G,(S™) = Z, odd dimensional spheres have Gan41(S*"*!) =
27Z. Over Q this means that G2n+1(5'g"+1) = Q. We can see this in (at least)
two ways. First, the minimal model of S$2"*! is A = A(22n41),d = 0) and the
proposition bids us look for linear maps f: V2"*! — Q which extend to derivations
of the appropriate sort. But this is immediately satisfied by defining f(z) =1 and
extending to (1) = 0. Therefore, G¥(52"+1) = Q generated by f. Secondly,
consider the path fibration

K(Q,2n+1) - PK - K(Q,2n +2)

and model it by a K. S. extension. Because the middle DGA must have trivial
cohomology in positive degrees (since PK is contractible), the extension must

have the form

(A(z2n+42),d = 0) = (A(22n+2, Y2n41), D) = (A(y2n41),d = 0)

where D(z) = 0 and D(y) = z. Since the latter has a linear part z, the connecting

homomorphism of the K. S. extension takes y to z, dual to the isomorphism

Byt Tant2(K(Q,2n +2)) = man1 (K(Q,2n + 1)).

There is a conjecture about rational Gottlieb groups due to Felix which everyone
working in the area should keep in mind. The conjecture is an analogue of the
following fact: if X is an elliptic space (which we know satisfies Poincaré duality)
with top cohomology class in degree n, then there can be no generators of the

minimal model of X in degrees greater than 2n — 1.

Conjecture 6.8 [F|. If X is a finite simply connected CW complex of dimension
n, then, for « > 2n — 1,

Gi(X)®Q=0.
While the Gottlieb group has always played a role in fixed point theory through
the Jiang condition, rational homotopy theory can make its presence felt as well. In

[H5], Halperin showed that the Lefschetz number of a self-map of an elliptic space

is determined by the induced homotopy homomorphism.
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Theorem 6.9. Let X be an elliptic space with minimal model A = (A(V) ®
A(W),d) where V = (y1,...,yr) with |y;| = 2a; even and W = (z1,... ,z4) with
|z;| = 2b; — 1 odd. For a self-map f: X — X with minimal model F': A — A, let
a1,...,as and By,...,B: be the eigenvalues of V. and W respectively which are

not equal to one. Then the Lefschetz number of f is given by

H;(l - ﬁz) ) H‘tl-{-] b;
[[7(1 - ai)- H§+1 a;

if g—t=r—s and L(f) =0 otherwise. (Note that a; and f; are the eigenvalues

L(f) =

of rational homotopy groups.)

Recently, Greg Lupton and I [LO2] have used Halperin’s idea to give a new and
much simpler proof (and generalization) of a result of Duan [Du]. In the case we
look at in [LO2], we can simplify Halperin’s probf greatly. Here I shall just use
Halperin’s formula. A finite H -space plainly is elliptic and has oddly generated
minimal model. Furthermore, in the minimal model of an H -space, the differential
d is zero. This follows from Hopf’s theorem on H -spaces: The cohomology algebra
of a connected finite H -space is an exterior algebra on odd generators [Sp, p.269).
Indeed, the exterior cohomology algebra H*(X;Q) may be mapped cohomologi-
cally isomorphically into A*(X) by taking generators to representing cocycles and
then extending freely. The lifting theorem mentioned in the general discussion
of minimal models above then provides a map (AV,d) - H*(X;Q) which must
also be a cohomology isomorphism and, hence, an isomorphism of DGA’s. Duan
considered the following situation.

Suppose that (X,u) is a connected H-space with homotopy unit and that
fi, f2: X — X are self-maps. Their product is defined as the composition

XS5 xxx 2 x x4 x.
Using this product, form inductively the k™™ power of a self-map f, denoted fF,
by taking fi = f and f, = f¥~!. Duan proved '

Theorem 6.10. Let f: X — X be a self-map of a finite, connected H -space. For
each k > 2, the k** power of f has a fixed point.

Halperin Formula Proof. Because V¢'*" = 0, Halperin’s formula reduces to its
numerator alone. But then, L(f) # 0 if and only if no eigenvalue is equal to

1. So this is what we must show. Denote the identity map of X by ¢. We
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can write f¥ = /¥ o f. On homotopy, (\F)g = xk: my(X) — 7%(X). Hence
(f¥)g = kfy: m4(X) - 74(X) and it follows that, if we denote the eigenvalues of
f# by {B;}, then the eigenvalues of (f*)4 ® 1 are {kB;}. The only way such an
eigenvalue kf; can equal 1isif 3; = 715 This is impossible however, because the
defining matrix of fx may be taken to be integral with characteristic polynomial
having integral coefficients. The rational root test says that, in such a case, any
rational root would in fact be integral, so that fx ® 1 has no non-integral, rational
eigenvalues. Therefore, for k¥ > 2, (f*)4 ® 1 does not have 1 as an eigenvalue and
the result follows. ' O

§7 THE HIGHER EULER CHARACTERISTIC

In recent years, classical fixed point theory has been extended to include, for
instance, the interesting case of flows ®: M x R — M. This is the so-called one
parameter fized point theory [GN1], [GN2] and its applications include providing
homological invariants for the detection of periodic orbits. It is classical by now
that the Gottlieb group enters into fixed point theory in the following way [Br
Corollary VIILE.3, p 142].

Theorem 7.1. Suppose that X is nice (i.e. a manifold say) and f: X — X is a
self-map. Then

(1) there exists a self-map g: X — X homotopic to f such that g has exactly
N(f) fixed points, where N(f) is the Nielsen number of f;

(2) if the Jiang condition, G(X) = m1(X), holds, then N(f) =0 if L(f) =0,
so the vanishing of the Lefschetz number is sufficient to ensure that g has

no fixed points.

The second part of the theorem shows that the fixed point theoretic proof of The-
orem 2.7 may not be so surprising. There is another recent proof of Theorem 2.7
which also is motivated by fixed point theory. This is due to Geoghegan and Nicas
[GN3] and involves their higher Euler characteristic x1(X;R). Besides this ap-
proach to Gottlieb’s Theorem, they show that their higher Euler characteristic also
has something to say about the structure of groups whose associated topology is

nice.
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Theorem 7.2 [GN3]. Let X = K(m,1) be a finite complex (and suppose =
obeys an extra technical hypothesis which for a linear group is satisfied). Then, if
x1(X;Q) # 0, it follows that Zr is infinite cyclic.

From Gottlieb’s Theorem Corollary 2.8, we immediately see

Corollary 7.3 [GN3]. With the hypotheses above, if x1(X;Q) # 0, then x(X) =
0.

The higher Euler characteristic x;(X;R) is most generally defined in terms
of Hochschild homology. Here I will use a more straightforward computational
definition which Geoghegan and Nicas show is equivalent to the original over Q.
While I concentrate on x;(X;Q) here, I should also point out that there is much
more interplay between evaluation maps and one-parameter fixed point theory and
this is explicated in [GNO)].

Recall that, by the exponential law, there is a map & : S™ — MM | 4(s)(z) =
A(s,z) such that evaluation ev(f) = f(p) of a function at a basepoint m € M
entails ev 0o @ = a. Hence, evy(d) = a where evy : m,(MM 1)) — m,(M). Of
course, as we have mentioned, a group action A4 : S* x M — M provides a Gottlieb
element a ~ A|s1 which may be identified with the homotopy class of the orbit
map a: S* — M. Also note that it is possible for & € G,(M) to be nullhomotopic,
but & to be essential. Therefore, our focus is on elements & € m,(MM 13r) and
not on their G,(M)-images.

Following [G8], the associated map A or, equivalently, the element & € m,(MM 1)
may be considered as a clutching map [Sp, p.455] along the equator of S™t! which
constructs a fibration

M4 E - st

with o = 94(1) € Im(8y : Tp41S™! — m,M). Such a fibration has a Wang

sequence associated to it,
.. = HYE) S HY(M) 23 HI™"(M) > HTYY(E) - ...

The map A4 is a derivation on H*(M), i.e., satisfies Mg (uv) = Ag(u)v+(=1)"1"luds(v),
and is called the Wang derivation. Another way to think of this is as follows. The

element & € m,(M™M, 1)) corresponds to an element in 7,41 Baut(M) represented
by a map S™! — Baut(M). The fibration M — E — S™*! above is simply the
pullback of the classifying fibration over Baut(M).
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There is a beautiful connection between the Wang sequence and the clutching
map A. Namely, for any u € HI(M),

A*(u) =1 xu+0a x Aa(u),

where & € H™(S™) is a generator, o = ev4(a) and X is the external product.
In case u € H*(M), we have o*(u) = Aa(u)5, with Aa(u) € H*(M), and the

expression above may be re-written

A*(u)=1xu+ 7 x Ag(u)
=1lxut+a*(u)x1.

We have a basic result, which follows immediately from the exactness of the Wang

sequence:

Proposition 7.4. For w € HI(M), Aa(w) = 0 if and only if there exists @ €
HY(E) with i*0 = w.

Recall that a fibration F' — E — B is totally non-cohomologous to zero (or TNCZ)

over a field F if any of the following three conditions holds:

1. The Serre spectral sequence associated to the fibration collapses to the E;-term.

2. H*(E;F) —» H*(F;F) is surjective (or, equivalently, H.(F;F) — H.(E;F) is
injective).

3. H*(E;F) = H*(F;F)® H*(B;F) as H*(B;F)-modules.

Therefore we see from Proposition 7.4 that
Corollary 7.5. A\s = 0 if and only if the Wang fibration associated to & is TNCZ.

Now, recall one of the definitions of the n't order higher Euler characteristic
of [GN3]. Note that we specialize to coefficients over a field F which we generally
take to be Z, for p a prime or co. Given & € m,(M™, 1)) with Gottlieb image
a € Gp(M), define a homomorphism x,(M;F) : m,(MM 13) — H,(M;F) by

Xn(M;F)(@) =Y (-1 550 Au(o x b)
k>0 7r
where {b%,... ,b;?k} is an F-basis for Hy(M;F), {b%,... ,Efk} is the Kronecker
dual F-basis for H*(M;F) and o is a generator for H,(S™; F).
There is an intimate connection between the higher Euler characteristic x,(M;F)
and the \g-invariant. Let x(M) and A denote the ordinary Euler characteristic
and the Hurewicz map mod F of M respectively. Then
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Theorem 7.6.

Xn(M; F)(&) = —x(M) h(e) + (=1)" ) (- 1)’““2,\(,(1;’“)01/c

k>0

Proof. For a basis element b with dual b and o, & the respective generators of
H,(S™ F) and H"(S™;F), we compute,

BN Au(o x b) = A,(A*(B)N (0 x b))
= A.((1 x b+ 7 x As(8)) N (o x b))
= A (1N o) x (5N b) + (=1)IZDBI=R®D(5 1 5) x (A4(B) N b))
= A.(0 x 1+ (=1)™7,0) x (\a(5) N b))
= h(a) + (~1)"Aa(B) N b

since A«(0 X 1) = ax(0) = h(a). If we perform this calculation on each b ,

obtain

xa(M;F)(&) = 3 (- 1>’°+1Zh<a)+< 1)"Aa(5) N bt

k>0

- (- |t EH ) h(a) + (-1)" Y (- 1)k+12/\a(bk)nbk
k>0 k>0

= —x(M) - h(a) + (-1)" 3 (- 1)k+IZAa<b’“>nb'°

k>0

a

Let p denote a prime or co (where Zo,, = Q). Denote by h, the composi-
tion of the Hurewicz map m,(M) — H,(M) with reduction mod p, H,(M) —
H,(M;Z,). Then Gottlieb [G2] proved that, if (M) # 0 and n is odd, then
Gn(M) C Kerh,. Also, if n is even, then Gn,(M) C Kerh. Therefore, the term
—x(M) h(a) must vanish over any field of coefficients F. Hence, the formula for
Xn becomes

Corollary 7.7.

Xn(M;F)(&) = (=1)" 3 (- 1)"+lzx\a(b’°)nb’°

k>0
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Example 7.8: Spheres. ‘

1. The Gottlieb groups of spheres are: G2,(5?") = 0 and G2n41(S*" 1) = 27 ex-
cept for the cases G1(S?) = Z, G5(S3) =Z, G(S") =Z. If & € 7 (S™5 ,15m)
and b€ H™(S™;F) is a generator, then (as shown in [LO1)),

Xa(B) = (5, h(a)).

Thus, since a = 0 for all even spheres, x2,(S%"; F) = 0. For odd spheres (2n +

1 #1,3,7), Xans1(S*1;F)(&) = —2b, where o generates Gan41(S2"1!) =
2Z, b generates Hapnt1(S?"t1;F) and h(a) = 2b. If 2n + 1 = 1,3,7, then
X2nt+1(S*" 1 F)(&) = —b.

2. Xm(S™xS™;F)(&) =0, where m is odd, # 1,3,7 and & represents a generator
of one of the 2Z factors in Gm(S™ X S™) 2 Gpm(S™) x Gm(S™) = 27 x 27Z.
To see this, let {57*,57, 57 U bI'} be the obvious additive basis for cohomology
with dual homology basis {b*,b7*,b7*b3"}. As above, Aa(b7*) = (b7, h(e)) since
h(a) and b7 are both in degree m. Therefore, since we take h(a) = 2b7", we

have
(M) =2 AR =0 A UB) = Aa(B) UT = 255
Taking cap products gives
Aa(BT)NBT = 26T, Aa(bF)Nb =0,  Aa(b"UBS)NBT by = 255 NbT by = 2b7".
Plugging these calculations into the formula for x,, gives
xm(S™ x S™; F)(&) = —[2b]" + 0 — 2b7"] = 0.

As a special case, note that x;(S! x S*;F) = 0 identically. This follows from the
same calculation as above and the fact that G(S* x S!) = Z x Z = m; (5" x S1).
Similar results apply to S® x $® and S7 x S7.

The cohomological formula for x, allows us to extend the higher Euler charac-
teristic to a homomorphism with domain the group of (—n)-degree derivations on

cohomology;

xn(M;F): Der_,(H*(M;F)) —» H,(M;F)
is defined, for 6 € Der_,(H*(M;F)), by

xa(M;F)(8) = (~1)" S (=1)+1 3" 0(8h) n ok,

k>0 Tk
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Theorem 7.9. Suppose H*(M;F) = H*(X;F)® H*(Y;F) as vector spaces. Let
8 € Der_,(H*(X;TF)) and extend 0 to e Der_,(H*(M;TF)) by taking é'H*(y;]F) =
0. Then

Xn(M;F)(6) = xa(X;F)(6) - X(Y).

Proof. A basis for H*(M) may be taken to consist of elements B;- X 7}“_'", where
the b’s form a basis for H*(X) and the v’s form a basis for H*(Y). Then, by the
extended definition of 6, 9(5; x 75T = 6(b%) X =T and
B(B7 x F7) N (8] x 4 TT) = (6(85) x 3T N (B x A7)
= (—2)*=r=GoD(HE) N 8) x (3 N )
= 6(b}) N 7.
Since this calculation holds for all f?f ~", we see that
S E < AN x AT =Y > 6(55) NbY - dim HE(Y).
Ik (M) 720 j,(X)

Then we have

Xa(M;F)(8) = (=1)" Y (-1 )" 6(85) n b - dim H*"(Y)

k>0 720 j.(X)

= (=1)" S (=0T ST 9B N b - dim HF(Y)
k>0 r>0 jr (X)

= (=1 Y (=)™ Y 6@ NE; -y (-1 Tdim HE(Y)
r>0 ir(X) k>r

= (=" Y (=) Y ) NE; - Y (—1)Fdim HAT(Y)
r>0 ir(X) k—r>0

=(-1)" Y (=)™ Y 6@E) Ny (-1)idim H(Y)
720 3r(X) 120

= Xa(X;F)(0) - x(Y).
O
Example 7.10. Let M = X xY and let § = A4, where & € m,(X%X,1x).

The extended derivation corresponds to extending the map associated to &, A :

S"xX - X,toamap B:S" XX xY — X xY defined by B= A x 1y. This
map is associated to an element 8 € m(MM, 1)) and we have x.(M;F)(8) =

Xn(X;F) (@) - x(Y).
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Example 7.11. Let M = S™ x Y, where n is an odd number. If n # 1,3,7,
then xn(M;F)(@) = —x(Y)-h(a) = =2 x(Y) - b, where « generates G,(S™) = 27Z
and b generates H,(S"). If n =1,3,7, then x,(M;F)(&) = —x(Y) - b, where o
generates G,(S") = Z.

The description of xn(M;F)(&) in terms of A4 allows us to calculate the former

in cases where the latter is known. In particular,

Theorem 7.12. Let & € m,(MM,1y). If the associated Wang fibration M —
E — S™*1 is totally noncohomologous to zero (TNCZ), then x,(M;F)(a) = 0.

We may apply this observation to group actions as follows: suppose G x M — M
is an action of a compact Lie group on M. Let S™ — G represent a nontrivial
element of 7,(G) and form the composition S® — G — (MM 1j/). Denote the
class of this map by & € m,(M™M,157). Now, T,(G) & 7y 1(BG), so we obtain a
pullback of the Borel fibration M 4, MG — BG associated to the action,

M % MG - BG
14 )
M 5 E — gntl

The fibration M 5 E — S™+! ig precisely that associated to &, so the associated
Wang derivation is A4. By the commutativity of the diagram, if the Borel fibration
is TNCZ, then so is the Wang fibration. From Theorem 3.1 we then get

Corollary 7.13. If the Borel fibration of the action is TNCZ, then x,(M;F)(&) =
0.

A particularly important case where a group action has a TNCZ Borel fibration
(over Q) is when M is a closed symplectic manifold with a hamiltonian circle
action (see [K] for example). Recall that M?2™ is symplectic if there is a closed
2-form w on M with the property that the wedge product w™ is a volume form
for M. An S'-action on M is hamiltonian if the 1-form ixw is exact, where X

is the fundamental vector field associated to the action. Thus,

Corollary 7.14. If M is a closed symplectic manifold and & € m,(M™M 1)
corresponds to a hamiltonian S*-action, then x1(M;Q)(&) = 0.

So, from these results, we see that the higher Euler' characteristics may be thought

of as obstructions to homotopy properties such as the TNCZ condition, as well as
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geometric properties such as hamiltonianness of a circle action. Finally, we want

to give a different approach to a result of [GN3 Theorem 4.2]. Let
s*3M5BS BS!

be a principal circle bundle classified by e : B — BS!. Note that a = evu (&)
where evy : m (MM, 1)) — m (M) is the homomorphism induced by evaluation
and & € 7 (MM, 1) is associated to the action.

Theorem 7.15 ([GN3 Theorem 4.2]).
1. If ey € H*(B;F) is zero, then x1(M;F)(&) = —x(B) - h(a).
2. If ey € H?*(B;F) is nonzero, then x1(M;F)(&) = 0.

Proof. As usual, we let 0 € Hy(S') and & € H'(S') be dual generators. All
homology and cohomology coefficients are in the field F. Note that a.(c) = h(a).
In the Serre spectral sequence, d() = ey, so ey = 0 implies & survives to infinity
and produces a nontrivial element in H*(M) which then maps to & via o*. Hence,
a* is surjective, the fibration is TNCZ and H*(M) = H*(S') @ H*(B) as vector
spaces. Now )4 is a (-1)-degree derivation on H*(M) which extends the obvious
one on H*(S'). To see this, note that, because the circle action on M is free, the
orbit space B is homotopy equivalent to M S?, the total space of the Borel fibration

associated to the principal circle action. Therefore, we have a commutative diagram

M %5 B - B$!
B | )
M 5 E - &2

relating the principal bundle to the & Wang fibration. From the Wang sequence,

we obtain a commutative diagram

H(E) 5 Hy M) % He'(M)

Neét Tp*
H(B)

Then Agop* = Ag02*0¢* = 0 since Ag0:* = 0 by exactness of the Wang sequence.
Hence, A4 is zero on Im(p*) = H*(B) in H*(M). Of course, the derivation § on
H*(S') defined by & — 1 gives x1(S*;F)(§) = —o (see Example 7.8) while the

inclusion a, identifies —o with —h(a). Thus Theorem 7.9 gives
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x1(M;F)(&) = =x(B) - h(a).

If, on the other hand, ey # 0, then consider the Serre sequence associated to the
Borel fibration above (with M S! ~ B),

H'(B) 5 HY(M) 3 HA(BS') & HY(B)

where e*(¢) = ep and ¢ is a generator of H%(BS") corresponding to & € H'(S!).
Now, ey # 0 and H?(BS') 1-dimensional imply that & = 0. Hence i* must be
surjective. The identification of B with M S' then shows that the Borel fibration
associated to the principal circle action is TNCZ. Therefore Corollary 7.13 implies

x1(M;F)(é&) = 0.

§8 FINAL WORDS

The Gottlieb groﬁps and evaluation map methods continue to find places of ap-
plication in topology. Besides the work listed above, there is a great deal of interest
in other aépects of Gottlieb theory (if I may be so bold) as well. In particular,
there is an effort to understand general cyclic maps which has been going on for
some time and, more recently, there has been much progress in relativizing Got-
tlieb groups and understanding the relations between the ordinary and relativized
groups [LW], [WL1] [WL2] and [LPW]. I think it would be interesting to see if any
of these new invariants have applications akin to the classical Gottlieb groups in

fixed point theory, homotopy theory and especially rational homotopy theory?
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