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PREFACE

The central theme of this monograph involves two related concepts —
antipodal points and fixed points — which lie on the borderline of topology
and functional analysis. The articles themselves provide a survey of the
far-reaching consequences of three classical results.

A celebrated 1912 theorem of L. E. J. Brouwer asserts that every contin-
uous mapping of the unit ball B™ of R" into itself has a fixed point. (This
fact was known to P. Bohl and perhaps to others even earlier, but Brouwer’s
explicit statement is the one widely recognized.) A second fundamental re-
sult is the contraction mapping principle due to S. Banach, which asserts
that each mapping f of a complete metric space M into itself having Lip-
schitz constant strictly less than 1 has a unique fixed point z, and moreover
lim, e f*(z) = T for each z € M. (This fact was known to others as well,
but Banach’s explicit 1922 statement is the one widely recognized.) Finally,
in 1933, K. Borsuk proved that every continuous map of S™ — S™ (the unit
sphere in R") satisfying f(—z) = —f(z) is essential. An important conse-
quence of this is the fact that if f : B® — R™ is continuous and satisfies
—f(z) = f(—z) for z € S™, then f has a fixed point. Borsuk also proved
that if f : S™ — R" is continuous, then f sends at least one pair of antipodal
points into the same point. This result, widely known as the Borsuk-Ulam
theorem, was earlier conjectured by S. Ulam. A third result in Borsuk’s 1933
paper is an important application to Lusternik-Schneirelmann category.

The first paper in this volume consists of a survey of the Borsuk-Ulam
theorem and its various extensions, showing, among other things, how it can
be extended to compact Lie groups, Stiefel manifolds, and to multi-valued
maps. The advanced techniques of algebraic topology play a fundamental
role in this development.

Fixed point theory has always played a central role in the problems of
functional analysis, and topology has been involved deeply in both the study
of fixed point theory and more directly to problems in analysis in a wide
variety of ways. The remaining papers in the volume deal explicitly with two



different approaches to fixed point theory. The first of these deals largely
with the class of nonexpansive mappings, a limiting case of the class of strict
contractions in which the Lipschitz constant k is assumed to be equal to
1. This approach can be thought of as an extensive outgrowth of Banach’s
theorem. The existence of fixed points for nonexpansive mappings is assured
under hypotheses involving both topological and geometric assumptions on
the underlying Banach space. The final paper in the volume surveys the
large amount of fixed point theory which finds its original inspiration in the
profound theorem of Brouwer.

The material presented here includes the texts of some of the main lectures
delivered at the First and Second International Miniconferences on Topology
and Nonlinear Analysis, which were held at the GARC-RIM-SNU in Seoul,
Korea.

The first paper, by Professor Jan Jaworowski, was presented at the First
Conference on May 29, 1992.

The second paper, by Professor W. A. Kirk, was delivered at the Second
Conference on June 21, 1994.

The third paper, by Professor Sehie Park, originated with the memorial
lecture on the occasion of the opening of the GARC on March 21, 1991, and
expanded versions of the lecture given as invited talks at the First Miniconfer-
ence in 1992, Korea University in 1992, Memorial University of Newfoundland
in 1992, Busan National University of Technology in 1993, and the Institute
of Mathematics, Academia Sinica, Taipei, in 1994. Moreover, while he was
visiting Taiwan in February 1995, it was delivered at the colloquium talks in
National Changhua University of Education, National Tsinghua University,
and Tamkang University. Finally, it was also given at Kyungpook National
University, Taegu, in April 1995 by invitation of the TGRC.
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BORSUK-ULAM TYPE THEOREMS
FOR ORTHOGONAL GROUPS

JAN JAWOROWSKI

0. INTRODUCTION

One of the most fruitful classical results in topology is the Borsuk-Ulam
theorem. It was conjectured by Ulam and proved by Borsuk in 1932 [2]. Two
of its classical versions are as follows :

Theorem I. Let f : S® — R* be a map and let Ay = {z € S| f(z) =
f(—z)}. Then, ifk <n, Af #0.

Theorem II. Let f : S™ — S™ be a map such that f(z) # f(—=z) for each
z € X. Then f is surjective.

These two versions of the Borsuk-Ulam theorem are closely ralated. They
have proved to be a source of a very wide range of ideas and generalizations.
We refer the reader to an article by H. Steinlein [26] which lists 457 publi-
cations concerned with the Borsuk-Ulam theorem. In this paper we will be
mainly concerned with the version given by Theorem I. Generally speaking,
Theorem I says that the set Ay, which may be called “degeneracy set” of f
with respect to the antipodal map on S™, is non-empty. The antipodal map
is a Zy-symmetry on S™. We will show, in particular, how Theorem I can be
extended to more general situations, to maps of spaces other than spheres
and to symmetries or group actions of groups more general than Z,. We will
also describe “continuous”, or “parametrized”, versions of the Borsuk-Ulam
theorem, for bundles of spaces over a base space. At the end of this paper,
we outline recent results of the author on maps of bundles whose fibres are
Stiefel manifolds. We show how the size of a set corresponding to Ay can

be described by certain polynomials on the Stiefel-Whitney classes of the
bundle.
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1. NOTATION

We will assume that all the spaces in this paper are paracompact. In
what follows we will be using the Alexander-Cech-Spanier cohomology (“ACS
cohomology”). The reason for using the ACS cohomology theory is that it
has a continuity property which, roughly speaking, can be stated as follows :
If a cohomology class of a space X vanishes on a closed subset A of X, then
it also vanishes on a neighborhood of A. Throughout of this paper, unless
otherwise stated, we will be using the group Z, for the coefficient group.

If a group G acts on a space X, the orbit space of the action will be
denoted by X/G or by X.

2. THE INDEX

The classical Borsuk-Ulam theorem is about maps of a sphere with the
antipodal action. In 1954, C. T. Yang [27] defined a tool which can be
used to estimate the “size” of a space with a free Zy-action in terms of an
integer; this is what is now known as the (cohomology) index of the space.
Suppose X is a paracompact space with a free Z,-action, i.e., with a free
involution T': X — X. Associated with the action is its characteristic class,
i.e., the first Stiefel-Whitney class u(T) = w; of the free involution. The
characteristic class w; belongs to the 1-dimensional cohomology group of the
orbit space H'(X/Z,) of the action. The Yang index of a space with a free
Zz-action is Ind(X, T) := Sup{n|u™(T) # 0}. The index carries information
about the size of X in the sense that if Ind(X, T) > n, then H"(X/Z,) # 0,
and thus the covering dimension of X/Z, (and hence also of X) is at least n.

In the standard example of an n-sphere S™ with the antipodal involution,
the orbit space S™/Z, is the real projective n-space P™. The classifying space
for G = Z; is BZ,, the infinite real projective space P*®. The cohomology
ring of P is a polynomial ring Z;[u] on one generator u € H'(P*®) ; the
cohomology ring of P™ is obtained from H!(P>) by introducing the relation
u™ = 0 ; and thus Ind(S™,T) = n. Yang’s theorem gives the following
estimate for the size of Ay :

Theorem (Yang). Let X be a space with a free involution T : X — X and
let f: X — RF. Then the index of A; = {r € X|fz = f(Tz)} is at least
n—k.

This implies, as before, that the covering dimension of X is at least n — k.
The concept of index as an integer associated to a group action on a space
can be extended to free actions of other compact Lie groups, like G = $? and
G = S3, in an analogous way, due to the fact that the cohomology structure
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of the classifying spaces for these groups is similar to that of BZ,. This was
done in [17] and [18]. However, in order to obtain results corresponding to
Yang’s theorem, one has to give an appropriate definition of the coincidence
set Ay. We will discuss such a definition in the next section.

Various extensions of the concept of index were defined and used by Fadell
and Husseini ([7], [8]). In [9] and [10] Fadell and Husseini defined a general
concept of index for an arbitrary compact Lie group acting on a space. This
author defined the concept of index independently in [19] and [20]. In [23]
Neza Mramor-Kosta studied the concept of index in this and other settings,
such as for actions of cyclic groups and for infinite dimensional representa-
tions and bundles of Banach spaces.

The concept of index can be described as follows: Suppose that G is a
compact Lie group on a (paracompact) space X. The Borel G-cohomology
HEX of X (with coefficients in Zy, of ACS type) is defined as follows. Let
EG be the universal space for X and X¢g := (EG x X)/G, where G acts on
EG x X by g(e,z) = (ge,gz). Then HEX = H*(Xg). If (+) is a one-point
space, then H{(-) can be identified with H*(BG), the ordinary cohomology
of the classifying space of G. If G acts freely on X then (EG x X)/G is
the bundle with fibre X associatd to the principal bundle EG — X/G and
X6 = X/G@, the orbit space of X.

Definiton 2.1. The G-indez, Ind® X, of X is defined to be the kernel of the
G-cohomology map c* : H5(-) = H*(BG) — H}X induced by the constant
map ¢ : X — () of X into a one-point space.

If G acts freely on X, the G-cohomology HEX of X can be identified with
H*(X/G), the cohomology of the orbit space X/G and the constant map
c: X — (-) can be replaced by a classifying map X/G — BG. In particular,
in the classical case when G = Z, is acting freely on X, the generator of
Zy represents a free involution on X. In this case, BG = P® H: X =
H*(P*) = Zs[u] is a polynomial algebra on one generator u € H(P*) ;
its image under ¢* : HE(:) = H*(BG) — HEX is the characteristic class of
the involution ; and the index can be identified with an integer, as described
above.

The following proposition follows immediately from the definition of the
index. It expresses its naturality property :

Proposition 2.2. Let X and Y be G-spaces and let f : X — Y be an
equivariant map. Then Ind®Y < Ind®X.
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3. THE AVERAGE OF A MAP AND THE BORSUK-ULAM
THEOREM FOR A COMPACT LIE GROUP

In theorems of the Borsuk-Ulam type for a general compact Lie group G
we usually consider a map f : X — W of X to a representation space W
for G, just as it was done for G = Z,; and we try to estimate the size of
the set Ay, where the G-symmetry becomes degenerate under f. In order
to be able to state a right generalization of theorems of Borsuk, Ulam and
Yang, we need an appropriate analog of Af. The set Ay may be defined in
various ways depending on the context. By using an invariant measure on
G, we can average the map f to obtain an equivariant map Avf : X - W
and define A; to be the set of zeros of f, Ay = (Avf)~!(0). More genrally,
for any invariant subspace Wy of W, we can set As(Wy) := (Avf)~1(Wy)
(compare [19], [20]). If G = Z, acts on W = RF through the antipodal
map and f : X — RF, then (Avf)~1(0) corresponds to the set A; defined
in Theorem I. The classical Borsuk-Ulam theorem asserts that for any map
f: S™ — R¥ there is a point in S™ where the average of f (with respect to
the antipodal action on the source space and on the target space) is zero.

. The following theorem is a general principle of which the theorems of
Borsuk, Ulam and Yang are special cases. We refer the reader to [9], [10],
[19] and [20]. It is worth noting that the proof we give is analogous to those
used in [15, p.113], [16, p.160], [17, p.161] and [18, p.148].

Theorem 3.1 (The Index Theorem). Let X be a G-space, let W be a rep-
resentation space for G and let f : X — W be a map. Then

Ind%(A;(Wy)) - (Ind®(W — Wy)) € Ind9X.

Proof. As before, given a space Y, let c=cy : Y — (-) be the constant map
of Y into a one-point space. Let a € Ind®(A;(Wy)) ; that is, Y (a) = 0.
Consider c%(a) € H;X. Thus (¢ (a))|Af = 0. By the continuity of HE,
there exists a neighborhood N of Ay such that (ck(a))|[N = 0. By the
exactness of the G-cohomology sequence of the pair (X, N), ¢k (a) = j*(d'),
where @' € H5(X,N)and j : X — (X, N)is theinclusion. Let b € Ind%(W —
Wo). Since the restriction of Avf defines an equivariant map X — Ay — W —
Wy, we have by Proposition 2.2 that Ind®(W — W) C Ind®(X — A;). Hence
cx(b) € Ind%(X — Ay) ; that is, (c%(8))|(X — Af) = 0. By the exactness
of the G-cohomology sequence of the pair (X, X — Ay), c%(b) = k*b’, where
b e HE(X,X — Af) and k: X — (X, X — Ay) is the inclusion. It follows
that c%(ab) = ck(a)ck(b) = (j*a')(k*b') = 0. Therefore ab € Ind®X.
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The inclusion of ideals in Theorem 3.1 puts a lower bound on the size of
the degeneracy set Af(Wy). In the classical case of G = Z; (as also in the
case when G = S* or S® and if the action is free), the inclusion reduces to
an inequality for integers, just as in Yang’s theorem.

4. STIEFEL MANIFOLDS AND FREE ACTIONS OF O(m)

A generalization of the Borsuk-Ulam theorem to maps of Stiefel manifolds
was proved by the author in [19] and [20]. It may be viewed as extending
the Borsuk-Ulam theorem from G = Z,(= O(1)) to G = O(m). Before we
state it (in section 6) we will recall a construction of Stiefel manifolds and
Grassmann manifolds. An excellent account of Grassmann manifolds can be
found in the lecture notes of Milnor and Stasheff “Characteristic Classes” [22]
which will serve as a principal source of reference here.

As usual, R™ denotes the euclidean n-space and R* is the infinite union
R>* = R°UR! U... with the inductive topology induced by the inclusions
R® Cc R! C .... The set of orthonormal m-frames of vectors in R™*" is
the Stiefel manifold V,,(R™*"); it has a natural topology as a subset of
R(m+m)m 1t is easy to see that Vi, (R™*™") is a compact manifold. A point
v of Vi (R™*") can be thought of as an (m + n) x n matrix.

The orthogonal group O(m + n) acts on Vi, (R™*™) on the right through
its action on R™*" : if v € V,,(R™*") and A € O(m + n) then v - A is
just the product of matrices. Two m-frames, v and w are in one orbit of
this action if and only if they span the same m-plane. Thus the orbit space
Vi (R™*7)/O(m + n) of this action can be identified with the the space of
m-planes in R". This space, denoted by G,,(R™*"), with the identification
topology defined by the orbit map, is the Grassmann manifold of m-planes
in R™.

In the special case of m = 1, Vi(R'*") & S and G;(R'*") is the (real)
projective space P™".

These constructions can be extended to the case when n = co. We will
write Vi, 1= Vj,(R*), and G, := Gp(R*®). V,, and G,, are Hausdorff
spaces. The identification topology in these spaces coincides with the topol-
ogy given by the inclusions V, C V; C ... and Gy C G; C ..., respectively.
In other words, V,,, = l_iLan(Rm‘*") and G, = @Gm(Rm+“). The orbit

map V,, — G,, can alsno be described as the m;p which assigns to each
m-frame v € V;;, the m-plane in R* spanned by v.

The following argument (used in [22]) shows that G,,(R™*") is an mn-
dimensional manifold. Let A € Gn(R™*™) be a fixed m-plane in R™*",
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let AL be the orthogonal complement of A in R™*" and let U := {X €
Gm(R™™)| XNA = 0}. Then an m-plane X € U can be viewed as the graph
of a linear homomorphism A — AL. This shows that U = Hom(A4, A1) =
R™".

5. THE COHOMOLOGY OF GRASSMANNIANS

In this section we are going to discuss some results on the topology of
Grassmann manifolds. We will recall some facts given in [22], but we will
also discuss new results about the mod 2 cohomology of finite dimensional
Grassmann manifolds.

There is an important m-dimensional vector space bundle is over G,: it
is the canonical bundle n™. Its total space is a subset of G, Xx R*® consisting
of pairs (Y,v) where Y € G,, and v is a vector in Y. The bundle projec-
tion sends (Y, v) to it second coordinate, v. By restricting this bundle to
G (R™*™) we obtain the canonical m-plane bundle over G,,,(R™*"). The
canonical m-plane bundle ™ is a universal bundle for all R™-bundles over
paracompact spaces.

Every R™ -bundle over a paracompact base space B has its Stiefel-Whitney
classes. They are homogeneous elements of the cohomology ring H*B with
coeflicients in Z;. Throughout of this paper the coefficient group Z, for the
cohomology will be suppressed from the notation.

The Stiefel-Whitney classes for the canonical bundle n™ over G,, are uni-
versal for all R™- bundles. They will be denoted by wy = 1,wy,...,wn.
Thus w; € H'Gm,i=0...,m.

Definiton 5.1. We define the height of a monomial wi?...wl™ to be the
sum of its exponents, height(wi® ... wim) :=ry +rg + ... + Ty

There are at lest two descriptions of the cohomology ring H*G, of Grass-
mannians. By using a spectral sequence construction, Borel [1] showed that
H*G ., is isomorphic to the polynomial algebra Z;[w,, ..., w,,] on the univer-
sal Stiefel-Whitney classes wi,...,w,. On the other hand, Ehresmann [5]
constructed an explicit and, in a sense, minimal cell decomposition of the
Grassmannians using ideas dating back to Schubert [25].

The cell decomposition of Grassmann manifolds due to Ehresmann (and
extended to G,) can be described as follows (see [22]). Given an m-plane
Y € Gn, let us consider the sequence of the dimensions of the intersections
of Y with the subspaces R® C R®: 0 < dim(Y NR%) < dim(Y NR!) < ....
It can be seen that the terms of this sequence can increase by at most 1 ; and
that the number of such increases must be m. Let ¢;(Y),7 = 1,...,m, denote
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the indices where such increases occur. That is: dim(Y NR%(Y) —1) =i —1,
and dim(Y NR%(¥)) = i. Rather than with ¢;(Y) it is more convenient to
work with the integers s;(Y") := 0i(Y") — 1. The integers s;(Y),7 = 1,...,m,
satisfy the inequalities 0 < s;(Y) < --- < s, (Y).

A Schubert symbol of length m is a sequence s = (sq,..., s,,) of integers
such that s; < ...,< s,,. It can be shown (see [22], p.76) that for each
Schubert symbol s = (s1,...,5m) the set e(s) = {Y € G |5:(Y) = 54,0 =
1,...,m} C Gn, is topologically an open cell of dimension dim e(s) = s; +
-+ 4+ $m. These cells form a CW-decomposition of G,,. It follows that the
number of d-dimensional cells in G, is equal to the number of partitions of d
into m non-negative numbers, d = s; +- - -+ 8,,. We will denote this number
by pm(d). By restricting the Grassmannian to a finite dimensional space
R™*™ we see that the number of d-dimensional cells in G, (R™1™) is equal to
the number of partitions of d into m non-negative numbers, d = s; +- - -+ s,
such that s; < n for s = 1,..., m. This number will be denoted by pZ (d).

A counting argument shows that p,,(d) is equal to the number of mono-
mials wi' ... wlm of a total degree d = ry + 2ry + -+ - + mr,,. Similarly, the
number of monomials wi* ... wl™ of a total degree d = r; +2ry + -+ -+ mrp,
and height h =ry +r; + -+ 4 rp, is equal to p? (d) . In fact, a bijection the
monomials and the partitions

A : monomials < Schubert symbols

is given by wi' ... wi™ > (Tym, T + Tm—1y- oy Tm + Tney + - -+ +71).

Under this bijection the monomials of height < n correspond to Schubert
symbols s = (s1,...,8m) such that s,, <n which in turn correspond to cells
of Gp(R™F7),

It is shown in [22], p.83-84, that the universal Stiefel-Whitney classes
wy, ..., W, are algebraically independent. This fact can be used to determine
the rank of the cohomology group H%G,, in each dimension d:

pm(d) < RankHG,, = RankH,;G,, < RankZ;G,, < RankCyG ., = pm(d).

Here Z; and C, are the cycle groups and the boundary groups, respectively;
and the last equality follows from the fact that CyG,, has the d-cells of G,,
as its basis.

Thus RankH?G,, = pm(d). This argument also shows that each d-cell of
Gm is at the same time a cycle and a homology class (mod Z3). Thus in each
dimension d the monomials wi* ... w]" of a total degree d form an additive

basis for H¢G,,. Since, under the bijection ), the monomials of height <n
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correspond to the cells of G,,(R™t") it follows that Rank H¢G,,(R™*") =
p™(d). In the Borel description the cohomology ring H*Gm(R™*") is iso-
morphic to the quotient ring of H*G,,,(R™") & Zy[wy, ..., wm] by the ideal
generated by the relations (1 4+ w; + -+ + wm)(1 + W1 + -+ + W) = 1,

where Wi,..., W, are the dual Stiefel-Whitney classes. These facts, how-
ever, do not yet imply that the monomials wi*...wi™ of a total degree d

and height < n form an additive basis for H 4G m(R™t™). For instance, since
Gm(R™*") is a closed manifold of dimension mn , its cohomology group
in dimension mn is generated by one element. In the Ehresmann cell de-
composition, G, (R™*™) has one cell in the top dimension mn, given by the
Schubert symbol (n,...,n). This cell corresponds to the monomial wy, un-
der the bijection A. This, however, does not imply that w}, is necessarily a
generator of H™"G,,(R™*™). The fact that the bijection A indeed furnish a
basis for H¢G,,(R™*") is true. It was proved by the author in [21]:

Theorem 5.2. The set of monomials wi' ... wi of a total degree d =

ry +2ry ++--+mr,, and height h =1y +719 + -+ 71, < n forms an additive
basis for H¢Gp,,(R™*") .

Theorem 5.2 will play an important role in sections 8 and 9.

6. BORSUK-ULAM THEOREM FOR STIEFEL MANIFOLDS

In this section we will discuss a generalization of the Borsuk-Ulam theorem
for G = Z; = O(m) given by the author in [19] and [20]. It proceeds as
follows. Let V,,(R™*™) be the Stielel manifold of orthonormal m-frames
in R™*" and let f : X = V,(R™") - R™™+%) = W be a map. In
other words, f assigns to every m-frame in V,,,(R™*™) an m-tuple of vectors
in R™**, Let W, be the subspace of W consisting of the m-tuples which
are not linearly independent; in other words, of the m-tuples which, when
represented by m(m + k) matrices, are of rank less than m. The orthogonal
group O(m) acts freely on V,,(R™+") and on R™™+¥) in a standard way, by
the right multiplication : if A € O(m) and w € Vi, (R™*"), or w € R™(m+F)
is represented by a matrix, then A-w = wAT (where AT is the transpose
of A). Then W — W, is exactly the subset of W where the action is free. If
m =1, Vi(R*") = S™ and the map V,(R™+7) — R™(m+F) j5 gn —, RF+1)
as in the Borsuk-Ulam theorem (Theorem I). Moreover the set (Avf)™!(W))
corresponds to Ay. We will write A5 = (Avf)~1(Wp).

The size of the set A in this case, given by the Index Theorem 3.1, can
be described more specifically by using the Stiefel-Whitney classes. Since
the action of O(m) on V,,(R™*") and on W — W, is free, instead of the
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O(m)-cohomology we can use the ordinary cohomology of the orbit spaces.
The orbit space of the standard action of O(m) on V,,,(R™*") is the (real)
Grassmann manifold G,;(R™*") of m-dimensional subspaces of R™*". The
Gramm-Schmidt orthogonalization process provides a homotopy equivalence
W — Wy & Viu(R™*"). Thus Ind®(™ X = Ind%™ V,,(R™*") = J(m,n),
Ind°™(W — Wy) = Ind®(™V,,,(R™**) = J(m, k) and the Index Theorem
3.1 says that
(Ind®Ay) - (Ind(W — W,)) C Ind®X.

This last inclusion of ideals contains information about the size of the set
Ay and Ay: it says that those sets cannot be to small (recall that X = X/G
denotes also the orbit space of a G-action on a space X). In particular, in
some special cases, a more specific information can be obtained, in a way
analogous to the Yang results described in Section 3. Thus, for instance, in
the case m = 2, we obtain the following result (see [20, Corollary 5.3]) :

Theorem 6.1. If k < n and f : Va(R"*?) — R**+2) js a map then the
covering dimension of Ay is at least 2n — k — 2. Furthermore, since the

orbit map Ay — Ay is a bundle with fibre O(2), the covering dimension
dimAf>2n—k—1.

- Ifn=2°-1 (and m = 2), this result can be improved (see [20, Corollary
6.2]) :

Theorem 6.2. If n =2° -1, k <7 and f : Va(R"*?) — R**+2) js 2 map
then dim Ay > n and hence dim Ay > n + 1.

7. PARAMETRIZED RESULTS FOR G = Z,

In 1981 the author initiated his research on the question of finding “con-
tinuous” or “parametrized” versions of the Borsuk-Ulam theorem. The goal
was to extend some of the existing results from single spaces to bundles of
spaces over a base space. The reader is referred to [15], [16] and [18].

Suppose that X is a space over a base space B, that is, a space with a
map p : X — B, and suppose that T : X — X is a fibre preserving free
involution, that is, a free involution such that pT = p. As in Section 3, let
u(T) be the characteristic class of T on X. Then, for any ¢ and r, we can
define a map ¢;(T) : H'B — H™"'X by b — (p*b)Uu*(T) for b € H*B. Thus
e;(T) : H*B — H*X is a homomorphism of degree i. The homomorphism
e;(T) was introduced in [16] and [18].

Suppose that ¢ : W — B is another space over Band T' : W — W is a
free fibre-preserving involution on W'. Suppose further that f : X — W is
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a fibre preserving map. In this case, we define the “degeneracy set” of f to
be A = {z € X|fTz = T'fz}. If f is an equivariant map, then Ay is the
set of zeros of f. In general, for an arbitrary f, the averaging construction
of section 3 can be applied; and then Ay is the set of zeros of Avf. The
set Ay is also a space over B. Again, we are interested in the size of Ay.
The following theorem was proved by the author in [15] and [16] with some
additional assumptions and improved by Nakaoka in [24].

Theorem 7.1. Let p : S — B be an n-sphere bundle with the antipodal
fibre-preserving involution T : X — X. Let ¢ : W — B be a vector space
bundle with fibre R* and let f : X — W be a fibre-preserving map. Then
the map e,—(T): H'B — Hr'*‘"_kA_f is injective.

Just as in the results described in Section 6, this theorem can be used to
obtain estimates on the covering dimension of Af. Thus, for instance, we
have the following corollary.

Corollary 7.2. If, in Theorem 7.1, B is a closed manifold then dim Ay >
dimB +n — k. '

In [4] Dold showed that the size of Ay can be described by a polynomial
whose coefficients are the Stiefel-Whitney classes of the bundle p : § — B.
In the next section we will show how Dold’s construction can be extended to
maps of bundles of Stiefel manifolds.

8. BUNDLES OF STIEFEL MANIFOLDS

Let £ — B be a (real) vector space bundle of a fibre dimension m + n ;
and let p : V,,,(E) — B be the associated Stiefel manifold bundle. The fibre
of Vin(E) is the space of orthonormal m-frames in a fibre of E — B (which
is R™*"), As in Section 4, the orthogonal group O(m) acts freely on Vi (E)
by the right multiplication : if A € O(m) and w € V,,(E) is represented by
a matrix, then A-w = wAT (where AT is the transpose of A).

The orbit space V,,(E) of the O(m)-action on V;,(E) is the total space
of the orbit bundle p: V,,(E) — B. The fibre of p is a Grassmann manifold
Gm(R"‘"'") whose cohomology structure was described in Section 5.

Let wy, -+ ,wm be the universal Stiefel-Whitney classes, w; € H: BO(m) =
H'(Gp,) (as in Section 5, G, is the infinite Grassmannian). If X is any free
O(m)-space with the orbit space X, we will denote by w;|X the Stiefel-
Whitney classes of X — X. Thus w;|X € H{(X).

Let v; := w;|Vin(E) € HV,(E). By Theorem 5.2, the monomials
vit ---vlm of height < n, when restricted to each fibre, form a basis for
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the cohomology of the fibre. H*V ,,(E) is an (H* B)-module with the action
b-y:=(p*b)Uy for b € H*B and y € V,,(E). We can now apply the
Leray-Hirsch theorem to the fibre bundle p : V,,,(E) — B and obtain the
following theorem.

Theorem 8.1. The monomials vi* - -- v of height < n form an H* B-basis
for H*V ,(E).

Note that the number of monomials of a fixed height n is equal to the
number of ordered sequences ry,--- ,r,, such that ry +--- 4+ r,, = n.

9. THE STIEFEL-WHITNEY IDEAL

Definition 9.1. Consider the polynomial algebra H*B[zy,--- ,Z,). Let
e : H*Bzy, + ,am] — H*V,(E) be the evaluation map defined by the
substitution z; — wv;, ¢ = 1,--- ,m (compare [4, (1.13)]). By Theorem
8.1, for each polynomial p(zy, - ,zm) € H*Blzy, -+ ,Zm] of height n + 1,
e(p(z1, - ,*m)) = p(v1, -+ ,v,) can be written uniquely as a linear com-
bination of monomials of height < n with coefficients in H*B. Suppose
then that p(vi, -+ ,vm) = brei(vi, - yvm) + -+ + bses(v1, - ,vm). Then
the p01yn0mia‘l p(wl’ to 733m) + blcl($la e awm) +-t bscs(:cl, e axm) in
H*Blzy,- -+ ,zn] will be called the Stiefel- Whitney polynomial (correspond-
ing to p(z1, -+ ,&m)). Theideal in H*B[z1, - - ,2.,] generated by the Stiefel-
Whitney polynomials will be called the Stiefel- Whitney ideal of the bundle E
and it will be denoted by W(E).

The following theorem will be proved in a forthcoming paper ; its proof is
purely algebraic.

Theorem 9.2. The evaluation map e : H*Blz1, -+ ,am] — H*V ,(E) is
surjective and its kernel is the Stiefel-Whitney ideal W(E) of the bundle E.

Remark 9.3. The construction of the Stiefel-Whitney ideal can be carried
out in the “universal” case. Let EO(m + n) — BO(m + n) be a universal
bundle for G = O(m 4 n) and let ¢ : B — BO(m + n) be a classifying
map for E — B. The naturality of the Stiefel-Whitney ideal implies that
the induced map H*BO(m + n)[z1, - ,om] —» H*B[zy, - ,zm] maps the
Stiefel-Whitney ideal W(EO(m + n)) into the Stiefel-Whitney ideal W(E).

Remark 9.4. Suppose that X is a free O(m)-space and X — B is an
O(m)-locally trivial bundle such that there is a fibre-preserving equivari-
ant homotopy equivalence X ~ V,,(E) over B. Then we can define the
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Stiefel-Whitney ideal W(X) of X to be the kernel of the composite map
H*Blzy, -, om] = H*Vm(E) = H*X.

We can now state and prove a theorem on fibre preserving maps of bundles
of Stiefel manifolds corresponding to the Borsuk-Ulam theorem (Theorem
I), to the Yang theorem and to Theorems 3.1, 6.1, 6.2 and 7.1. It is also
analogous to the results of Fadell and Husseini [8] and [9]. It describes
the index of the “degeneracy set” As in terms of the Stiefel-Whintey ideal.
A study of the “degeneracy” set A; for bundles of the Stiefel manifolds in
terms of index (and a more general setting of G = U(m) and G = Sp(m))
was carried out by N. Mramor-Kosta in [23].

We will use the following notation analogous to that of Section 4. As
before, let E — B be a vector space bundle of a fibre dimension m + n
and let p : Vio(E) — B be the associated Stiefel manifold bundle with the
standard action of O(m). Let E' — B be a vector space bundle of a fibre
dimension m(m + k) and also with the standard action of O(m). Suppose
f : Vi(E) — E' is a fibre preserving map. Let E| be the subspace of E’
consisting of those elements of E' which (when represented by m(m + k)
matrices), are of rank less than m ; i.e., E' — Ej is exactly the part of E'
where the action is free. Let Ay = (Avf)~!(Ej). We will write es for the
composite map

e : H*Bz1,  ,z2m] — H*'Vn(E) — H*A;,
where the second map is induced by the restriction Ay — V,(E).
Theorem 9.5. (Ker ef) - W(E' — Ej) C W(E).

Note that E' — Ej equivariantly deformation retracts to V,(E) (by a
Gramm-Schmidt orthogonalization process, as in Section 6) and thus W(E' —
E}) is defined as in Remark 9.4. The proof of Theorem 9.5 is analogous to
that of Theorem 3.1.

Theorem 9.5 imposes a lower bound on the size of A5 in a way analogous to
Theorem 7.1 and Corollary 7.2. Each polynomial in H*B|[zy,- - - , z,,] defines,
through the evaluation map, a homomorphism H*B — Vm(E); and, by a
restriction, a homomorphism H*B — V,(4;). A consequence of the inclu-
sion in Theorem 9.5 is that the kernel of e; cannot be “too small”. This im-
plies that for “many” polynomials, the homomorphism H*B — H *Vm(Xf)
is injective, and thus, in the corresonding dimensions, the ACS cohomol-
ogy is non-trivial. As in Section 7, this implies lower bound estimates on
dimAy. But the fibres of the orbit map Ay — Aj are O(m) and thus
dimAf = dim Ay + dimO(m) = dim 45 + (1/2)(m — 1)(m — 2).
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10. PARAMETRIZED BORSUK-ULAM THEOREMS FOR MULTI-VALUED MAPS

In this section we will outline some of the results obtained in a recent
joint paper of this author with M. Izydorek [13] on multi-valued acyclic maps
of sphere bundles into vector space bundles. We return to the case of free
actions of G = Z,. By combining methods used by Dold in [4] with techniques
applicable to multi-valued maps we show that some of Dold’s results can be
extended to such maps. Methods for extending single-valued map results to
acyclic multi-valued maps were invented by Eilenberg and Montgomery [6]
who applied them to multi-valued fixed point theorems. Such methods are
based on the Vietoris mapping theorem. This author used them in [14] to
prove a multi-valued version of the Borsuk-Ulam theorem. Subsequently they
were extended and refined in various ways by Gérniewicz [11] and others.
We will show how they can be used to extend parametrized Borsuk-Ulam
theorems of Dold [4] which we mentioned here at the end of section 7. We
will also indicate how our results can be proved in the relative case, for pairs
of spaces rather than for single space only. This allows us to obtain positive
results for bundles over manifolds with boundary; for instance, over a closed
interval.

Definition 10.1. Let X and Y be spaces and let f be a multi-valued map
from X to Y, i.e., a function which assigns to each ¢ € X a non-empty subset
f(z) of Y. We say that f is upper semicontinous if each f(z) is compact and
if the following condition hols : For every open subset V of Y containing
f(z) there exists an open subset U of X containing z such that for each
' el f(a')cCV.

For instance, if X and Y are compact then f is upper semicontinuous iff
its graph is closed in X x Y.

Definition 10.2. A multi-valued map f from X to Y is said to be Z,-
admissible (briefly, admissible) if there exists a space I and two single valued
continuous maps @ : I' = X and #: ' = Y such that :

(i) «isa Vietoris map, i.e., it is surjective, proper and each set a~!(z)
1s Zy-acyclic.
(ii) For each z € X the set 8(a™!(z)) is contained in f(z).

We will say that the pair («, 8) is a “selected pair” for f.

For instance, if each f(z) is acyclic (and if f is upper semicontinuous)
then f is admissible.

As before, we assume that the spaces considered here are paracompact
and we use the Cech cohomology theory H* with coefficients mod 2 (the
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coefficient group Z, will be suppressed from the notation).

Let p: E — B, p' : E' — B be vector bundles over the same space B.
Let SE C E be the sphere bundle of E and let f : SE — E' be an acyclic
fibre preserving map (p' o f = p, i.e., for each ¢ € SE, f(z) is contained in
the fibre p' ~'(pz)). Let A; = {z € SE|f(z) N f(—z) # 0}.

By identifying antipodal points in SE we obtain the projective bundle
p: SE — B of E and 2-sheeted coverings SE — SE and A; — Ay s let
u € H'SE and us € H'A; be their characteristic classes. Let (H*B)[z]
be the polynomial ring over H*B in one indeterminate z. Let m,n be the
fibre dimensions of E and E’, respectively. We use Stiefel-Whitney classes
w;E, w;E' € H'B and Stiefel-Whitney polynomials Z;.nzo(ij)xm_j and
Y iro(w;ENe™ 7. Since H*(SE) and H*(Ay) are (H*B)-algebras (via p* :
H*B — H*(SE)), we can substitute u and uj for the indeterminate = and
obtain a homomorphism of (H*B)-algebras

e: (H*B)[z]) » H*(SE) — H*(4f), z — u.
Theorem 10.3. Ifq¢(z) € (H*B)[z] is such that g(uys) # 0 then ¢(z)w'(z) =
w(z)q'(z) for some polynomial ¢'(z) € (H*B)|z].
Corollary 10.4. If m,n are the fibre dimensions of E, E', respectively, then

g(uy) = 0 for all polynomials q(xz) whose degree with respect to t is smaller
than m — n. In other words, the H* B-homomorphism

m-—n-—1 . —_ . .
: _6_90 (H*B)z' — H*(Ay), ' — u}

is monomorphic. In particular, if m > n then cohom.dim.(4;) > cohom.dim.
(B) 4+ m —n — 1, where cohom.dim. denotes the cohomological dimension.

As a special case of 10.4 we obtain the following theorem which was proved
in [16] for singule-valued maps.

Corollary 10.5. Let p: S — B be an n-sphere bundle with the antipodal
involution, let p' : E' — B be an R¥-bundle and let f be an admissible
multi-valued fibre preserving map from S to E' over B. Then there is an
injective map

Hi(B) — HI*tn=F(4 ),

In particular, if k = n, this is a map induced by the projection Xf — B ;
lLe., . o
(plAf)" : H'B — H’(Af)
is injective for all 7 > 0.
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Corollary 10.6. If B is a closed manifold and f is an admissible multi-
valued fibre preserving map of an n-sphere bundle p : S — B with the
antipodal involution to an R*-bundle p' : E' — B then dim A; > dimB +
n — k, where dim denotes the covering dimension.

To prove Theorem 10.3, we will first prove a lemma which is a version of
Theorem 1.3 from [4] adapted to our situation. We show that Dold’s theorem
is valid not just for maps f : SE — E', but also in the following, more general
setting.

Suppose that X is any space with a free involution @ : X — X and
v: X — SE is an equivariant Vietoris map. Let g : X — E’' be a single-
valued map which makes the diagram

x 2 L F

L

SE —— B

commutative, p'g = pv. Set
X, = {z € X | gz = g(az)}.

Just as H*(SE) and H*(A;) were (H*B)-algebras via p* : (H*B) —
H*(SE), H*(X) and H*(X,) are (H*B)-algebras via the homomorphism
o* 0 p* : H*B — H*X. Thus the characteristic class u, € Hq(X,) of the
involution a|X, : X; — X, can be substituted for ¢ to any polynomial
¢(z) € (H*B)|[z].

Theorem (1.3) of [4] corresponds to the following lemma in our setting,.

Lemma 10.7. If ¢(z) € (H*B)|[x] vanishes on X4, q(u,) = 0, then there is
a polynomial ¢'(x) € (H*B)[z] such that

g(z)w'(2) = w(z)q'(x).

Proof. It is well known (and easily seen) that if X and Y are free Z;-spaces
and X — Y is an equivariant Vietoris map then the induced map X — Y of
the orbit spaces is also a Vietoris map. Thus, in our case, 7 : X — SE is a
Vietoris map.

We will not repeat Dold’s argument step by step ; we will only note that his
proof can be adapted to our setting due to the fact that the homomorphism
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7* induced by the Vietoris map v is an isomorphism. Thus, as far as the
cohomology is concerned, the arrows SE «— X — E' work just as well as a
single arrow SE — E'.

Proof of Theorem 10.3. Given an admissible multi-valued map f from SE to
E', choose a space ' and (single-valued) maps a and 8 such that (a, ) is a
“selected pair” for f (see Definition 10.2). Let X = {(v,7') €T xT'|a(y) =
—a(4')}. Consider the following commutative diagram

B

r —— F

"

SE —— B
P

Here 7 is the first projection, (y,7') — v, and v = aom. Then v is a
Vietoris map since for each z € SE, v~ (z) = a™}(z) x &~ (—z) and o™ (z)
and a~!(—z) are acyclic.

The space X admits a free involution (v,7') — (7',y) and v : X — SE
becomes then an equivariant map. Let ¢ = Bom : X — E'. Notice that if
h(¥',7) for some (v,7') € X then f(a(7))N f(a(7")) # 0. Thus v(X,) C Af
and by the naturality of characteristic classes with respect to equivariant
maps,

(01X )*(ug) = ug € H'X,.

Thus ¢(u) = ¢((oX,)*(u)) = (5%,)*(glug)) = 0.

Sometimes it is useful to have relative versions of the results discussed
above. Thus (continuing with the notation used in Section 1) suppose that
B, is a closed subset of B, S(Eg) = n~1(By) and Aoy = Ay N S(Ep). We
work with the polynomial ring (H*B)[t]. Then substitution of u € H*(SE)
for z yields a homomorphism of H*(B, By)-algebras

e:(H*B)[z] - H*(SE) — H* (Ay, Aoy) .

The results of [4], §1, remain valid in this relative case. Consequently, we
obtain relative versions of Theorem 10.3 also :

Theorem 10.8. Ifq(z) € H*(B, By)[z] is such that g(us) = 0 then ¢(z)w'(x)
= w(z)q'(z) for some polynomial ¢'(z) € H*(B, By)|z].
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Corollary 10.9. If m,n are fibre dimensions of E, E', respectively, then
q(uy) = 0 for all polynomials ¢(x) whose degree with respect to z is smaller
than m — n. In other words, the H*(B, By)-homomorphism

"8 HY(B, Bo)e' — H*(A; Ayy), 7 -

i-e_—ao (B, 0)z" — ( fs Of)’ T — Uy

is monomorphic. In particular, if m > n then dim(A4yf) > dim(B)+m—n—1,
where dim denotes the covering dimension.

Corollary 10.10. Let p : (S,Sy) — (B, By) be an n-sphere bundle over
(B, Bo) with the antipodal involution, let p' : (E', Ej) — (B, By) be an R*-
bundle and let f be an admissible multi-valued fibre preserving map from S
to E' over (B, By). Then there is an injective map

H'(B,By) — HI*" %4 A4,;).

In particular, if k = n, this is map induced ‘by the projection Zf — B;
ie.,
(PI(As, Aog))* : H'(B,Bo) — H(Ay, Aoy)

is injective for all 7 > 0.

Corollary 10.11. If B is a closed manifold with boundary By and f is
an admissible multi-valued fibre preserving map of an n-sphere bundle p :
(S,S0) = (B, By) then dim A; > dim B 4+ n — k. '

IfBis an interval 0 < s < 1, then this implies that there exists a continuum
C C Ay joining m~1(0) with #=1(1).

Remark 10.12. When using the Eilenberg-Montgomery technique for multi-
valued mappings, some multi-valued mapping theorems may be reducible to
the corresponding single-valued cases. Generally speaking, this is the case
when the multi-valued map in question has a single-valued cross-section (or
a “selector”). To have an example showing the significance of a general-
ization to multi-valued maps, one has to construct a map with acyclic (for
instance, convex) values which would not be “reducible” to a single-valued
map, such as of a multi-valued map without a single valued cross-section (or
“selector”). Examples of this kind can easily be given ; in fact, they exist
already in the classical case of the Borsuk-Ulam theorem, for single spaces
over a point (rather than for bundles of spaces).

One sees easily that f is defined in a consistent way and is upper-semiconti-
nuous (its graph is closed). The map is admissible ; its values are acyclic
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(even convex) : they are all single points except of one value which is a
closed interval. In this case the conclusion of the (multi-valued) Brsuk-Ulam
theorem is, of course, valid ; but that conclusion cannot be obtained directly
from Dold’s results because the map has no single-valued corss-section.
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HISTORY AND METHODS OF
METRIC FIXED POINT THEORY

W. A. KIRK

1. INTRODUCTION

Metric fixed point theory is a branch of fixed point theory which finds
its primary applications in functional analysis. It is a sub-branch of the
functional analytic theory in which geometric conditions on the mappings
and/or underlying spaces play a crucial role. Although it has a purely metric
facet, it is also a major branch of nonlinear functional analysis with close ties
to Banach space geometry.

For convenience we take an admittedly narrow view of the subject here.
We discuss only single-valued mappings, and primarily only the nonexpan-
sive mappings. In particular we shall not touch upon results which bridge the
topological and metric theories, such as the study of condensing mappings,
nor upon the degree-theoretic techniques which are often useful in applica-
tions. Also, this survey is not intended to be completely self-contained. We
include some proofs, either because they might not be readily available else-
where or to illustrate the methods involved. Many of the details are found
in the books by Aksoy and Khamsi [1] or Goebel and Kirk [43], but for other
details one will need to look to the original sources. Several of the results we
discuss have emerged subsequent to the publication [1], [43].

For a chronological and methodological perspective, we list below (by
name) a few of the more well-known fixed point theorems of functional anal-
ysis.

(a) The Zermelo-Bourbaki-Kneser Theorem (1908-1955)
(b) The Brouwer Theorem (1912)

(c) Banach’s Contraction Mapping Principle (1922)

(d) The Schauder Theorem (1930)

(e) The Leray-Schauder Theorem (1934)

(f) The Schauder-Tychonoff Theorem (1935)

21
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(g) The Markov-Kakutani Theorem (1936)
(h) Tarski’s Theorem (1955)
(i) The Browder-Gohde-Kirk Theorem (1965)
(j) The Ryll-Nardzewski Theorem (1966)
(k) Sadovskii’s Theorem (1967)
(1) Caristi’'s Theorem (1976)
(m) Maurey’s Theorems (1981)

Most of these theorems are well-known to specialists in fixed point theory.
One might roughly characterize them as follows: (a) and (h) are set-theoretic;
(b), (d), (e), and (f) are more topological in nature; the linear structure of
the space plays a large role in (g) and (j); (c), (i), (1), and (m) are primarily
metric in nature; and (k) provides an example of a result which bridges the
metric and topological theories. In our consideration of the metric theory,
since (c) is well understood, we shall concentrate on the theory as it pertains
to (i), (1), and (m), the rather surprising connections (i) and (1) have with (a),
and on a number of more recent developments. We refer to Zeidler [88] for
a thorough discussion of the remaining theorems listed as well as numerous
other fixed point theorems.

The methods of metric fixed point theory are typical of those of functional
analysis in general. However we shall make sharper distinctions than usual
in the underlying foundational aspects of the theory. Specifically, we shall
use (ZF) to refer to the basic (six) axioms of Zermelo and Fraenkel; (ZFDC)
adds the so-called Axiom of Dependent Choices (the principle of inductive
definition of sequences); and (ZFC) adds the full Axiom of Choice. In Section
2 we are not concerned with the methods involved, but in Sections 3 and 4
we concentrate respectively on that part of the theory which can be devel-
oped within (ZF) and within (ZFDC). We note in particular that some of the
fundamental existence theorems (theorems of Caristi, Kirk, Soardi) can be
proved wholly within (ZF). At the same time much of the remaining theory,
at least in the separable case, can be proved within (ZFDC), a fact which
many concerned with foundations find quite acceptable. However many re-
sults, such as the deep theorems of Maurey, seem to require (ZFC). Most
mathematicians do not see a problem with these methods either, although
some suggest that more awareness might be advisable. The techniques of
(ZFC) include standard applications of the full Axiom of Choice via Zorn’s
Lemma, Tychonoft’s Theorem, and transfinite induction, as well as nonstan-
dard methods including Banach space ultrapowers, Banach Limits, ultranets,
etc. These methods have led to some of the most interesting results in the
theory. An excellent discussion of the use of nonstandard methods in metric
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fixed point theory (including the results of Maurey) is found in Aksoy and
Khamsi [1].

2. NONEXPANSIVE MAPPINGS: BASIC THEORY

The central questions of metric fixed point theory, especially as related to
nonexpansive mappings, usually involve the study of the following topics.

(I) Conditions which imply existence of fixed points.
(II) The structure of the fixed point sets.
(III) Asymptotic regularity.
(IV) The approximation of fixed points.
(V) Applications.
Here we take up, in order, some of the central results in each of the above
categories.

2.1. Existence of fixed points. We begin with the study of nonexpansive
mappings in a Banach space setting. If X is a Banach space and D C X,
then a mapping T : D — X is said to be nonezpansive if for each z,y € D,

IT(z) = T(W)|| < |lz —y]-

The study of the existence of fixed points for nonexpansive mappings has
generally fallen into three categories. We shall say that a Banach space has
FPP if each of its nonempty bounded closed convex subsets has the fixed
point property for nonexpansive self-mappings (which we denote f.p.p.); we-
FPP if each of its weakly compact convex subsets has f.p.p.; and B- FPP
if its unit ball (hence any 'ball) has f.p.p. This latter category is primarily
relevant to dual spaces where the unit ball is always compact in its weak*
topology relative to any predual. The classical nonreflexive space ! provides
an example of a space which has B-FPP but not FPP (Karlovitz [51], Lim
[64]). Also ¢ provides an example of a space which has we-FPP but neither
FPP nor B-FPP (Maurey [68]).

Clearly one of the central goals of the theory should be to characterize
those Banach spaces which have FPP. It is known that essentially all classical
reflexive spaces, and in particular all uniformly convex spaces, have FPP,
hence wc-FPP, via a geometric property they share called normal structure.
As our point of departure, we shall state and prove the original 1965 fixed
point theorem of Kirk [58]. It is an examination of the proof of this theorem
which provides the basis of much that follows in the next section of this
report.
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Definition 1. A Banach space X is said to have normal structure if any
bounded convex subset K of X which contains more than one point contains
a point z¢ such that

sup{lleo — o : = € K} < diam(K) = sup{l|e ~ y]| : 2,y € K}.

Such a point z; is called a nondiametral point of K.

In what follows we shall use the symbol B(z;r) to denote the closed ball
centered at ¢ € K with radius r > 0. Thus:

B(z;r)={ye K : |z —y| <r}.
Also we need some additional notation.

diam(K) = sup{|lu — v|| : v,v € K};
r:(K) =sup{|lz —v||: v € K}, (z € K);
r(K) =inf{r,(K):z € K}.

If X is reflexive and if K is a bounded closed and convex subset of X then
it readily follows from the weak compactness of K that the set

C(K):={z € K :r,(K)=r(K)},

called the Chebyshev center of K, is a nonempty closed and convex subset
of K.

Theorem 1. Let X be a reflexive Banach space which has normal structure.
Then X has FPP.

Proof. Let K be a nonempty bounded closed and convex subset of X, and
suppose T : K — K is nonexpansive. Suppose & denotes the collection of
all nonempty closed convex T-invariant subsets of K. Then if & is ordered
by set inclusion, it follows from the weak compactness of the members of K
(X is reflexive) that every descending chain in & has a lower bound—namely
the intersection of its members. Thus by Zorn’s Lemma, & has a minimal
element, say K.

Obviously @onvI'(Kj) is nonempty, closed, convex, and T-invariant; thus
by minimality it cannot be a proper subset of Ky, so

Ko = convI'(Ko).
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Let u € C(Ky); thus r,(Ko) = r(Kp). Since |]T(u)——T(v)|| < Ju—v| £
r(Ky) for all v € Ky, it follows that T(K,) C B(T(u);r(Kj)). Consequently,

Ko = @avT(Ko) C B(T(u); r(Ko))

showing that rp,)(Ko) = r(Ky); thus T(u) € C(K,). We conclude that
C(Koy) is T-invariant. The minimality of K, implies that Ky = C(K,) and
in view of normal structure this in turn implies that K, consists of a single
point which is fixed under T.

Complications in the general study of FPP were noted early. A major
obstacle is the obvious fact that fixed point properties for nonexpansive map-
pings are not invariant under renormings. There are other hindrances as well.
It has been known virtually from the outset that FPP for a Banach space
depends strongly on ‘nice’ geometrical properties of the space. On the other
hand, two closed convex subsets K;, K, C X may have f.p.p. yet K; N K,
may fail to have f.p.p.! Indeed, even much more can be said. Goebel and
Kuczumow [44] have shown how to construct a descending sequence {K,} of
nonempty bounded closed convex subsets of 1 which has the property that
n is odd, K, has f.p.p., if n is even K, fails to have f.p.p., and in fact the
sequence {K,} may be constructed so that () K, falls into either category.
The space ¢! provides the setting for another interesting example. It is pos-
sible to construct a family {K.} (¢ > 0) of bounded closed convex sets in
2 each of which has f.p.p., but which converges as € — 0 in the Hausdorff
metric to a nonempty bounded closed convex K, which fails to have f.p.p.

The above examples illustrate why the problem of classifying Banach
spaces which have FPP or sets which have f.p.p. might be extremely dif-
ficult. However, Theorem 1 raises the obvious question of precisely how are
reflexivity, normal structure, and FPP related.

Karlovitz ([50], [51]) first noted that even in reflexive spaces normal struc-
ture is not essential for FPP. An example is provided by the James’s spaces

X3, B > 0, defined by:

Xp={z €£*: |zl 5 = max{|lzllpz , B l|z]| 0 }}-

R. C. James observed that while X4 is reflexive (since it is isomorphic to £2),
it fails to have normal structure if 8 = /2. In fact, X s has normal structure

& B < /2. Even more is known. The concept of asymptotic normal structure
was introduced by Baillon and Schoneberg in 1981 [5]. A Banach space X has
asymptotic normal structure if each nonempty bounded closed and convex
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subset K of X which contains more than one point has the property: If
{z,} C K satisfies ||z, — Tp41]| — O then there exists z € K such that

lim inf ||z, — z| < diam(K).

In [5] Baillon and Schoneberg observe that Xz has asymptotic normal
“structure < 8 < 2, and they prove the following:

Theorem 2. In a reflexive Banach space, asymptotic normal structure =

FPP.

In the same paper Baillon and Schoneberg went on to show that even X,
has FPP, thus showing that asymptotic normal structure is not a necessary
condition for FPP. (Surprisingly, P. K. Lin proved in 1985 ([65]) that X has
FPP for all > 0.)

It is actually shown in [5] that in an arbitrary Banach space asymptotic
normal structure implies we-FPP. There has been an interesting further de-
velopment regarding wc-FPP. In [47] A. Jiménez-Melado and E. Lloréns
Fuster introduced a generalization of uniform convexity called orthogonal
convexity and proved that weakly compact convex subsets of orthogonally
convex spaces have the fixed point property for nonexpansive mappings. (See
also [48].)

Orthogonal convexity is defined as follows: For points z,y of a Banach
space X and )\ > 0, let

Maa,y) = {= € X smaxllz =l ll: = vI} < 50+ Ve o1}

If A is a bounded subset of X, let |A| = sup{||z|| : z € A}, and for a bounded
sequence {z,} in X and A > 0, let

D({zn}) = lim sup (lim sup [|z; — z;||);
1—00 Jj—o0

Ax({zn}) = lim sup ( im sup |Mx(z;,z;)|).
i—00 j—oo

A Banach space is said to be orthogonally convez if for each sequence {z,} in
X which converges weakly to 0 and for which D({z,}) > 0, there exists A > 0
such that Ax({z»}) < D({zn}). It is shown in [47] that every uniformly
convex space is orthogonally convex. Other examples given in [47] include
Banach spaces with the Schur property (hence £!), ¢y, ¢, and James’s space

J.
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In 1971 it was observed by Day-James-Swaminathan [25] that every sep-
arable space has an equivalent norm which has normal structure (also see
van Dulst [28]). Thus every separable reflezive space has an equivalent norm
which has FPP. (It appears to be an open question whether every reflexive
Banach space has an equivalent norm which has normal structure.)

The question of whether reflexivity is essential for FPP remains open, but
there is some recent evidence that it might be. First, it is known that the
classical nonreflexive spaces ¢y and (as noted above) in £! fail to have FPP.
Also, Bessaga and Pelczynski have shown that if X is any Banach space with
an unconditional basis, then X is non-reflexive <& X contains a subspace
isomorphic to ¢o or 1. Thus all classical nonreflezive can be renormed so
that they fail to have FPP.

This raises an obvious question: Can ¢g or ¢! be renormed so that they
have FPP? Recall ([46]) that any renorming of £* contains almost isometric
copies of £ suggesting, at least for £, that the answer should be no. If indeed
the answer is no, then by the Bessaga-Pelczynski result, in any space with
an unconditional basis, FPP= reflexivity.

The space L! : As we have noted ¢! (hence L) fails to have FPP. How-
ever, in 1981, Alspach (2] proved much more, namely that L! fails to have
wc-FPP. At the same time, Maurey [68] proved that all reflexive subspaces
of L' do have FPP (hence wc-FPP). There has been another recent develop-
ment. Dowling and Lennard [26] have shown that nonreflexive subspaces of
L? fail to have FPP. Thus: A subspace of L' has FPP < is reflezive.

But the question remains:

Does FPP = reflexivity?

Of course the reverse implication remains unknown as well. In fact the
following question also remains open:

Does superreflexivity = FPP?

Recall that a superreflexive space is one which has the property that every
space which is finitely representable in it must itself be reflexive. Superreflex-
ive spaces are also characterized by that fact that they all have equivalent
uniformly convex norms (Enflo [33]). The fact that Maurey [68] proved (also
in 1981) that superreflexive spaces have FPP for isometries suggests that the
answer to the above might be yes.

2.2. Structure of the fixed point set. The structure of the fixed point
sets of nonexpansive mappings in Banach spaces with FPP is well understood.

Theorem 3 (Bruck [15]). Let X be a reflexive space, or a separable space,
which has FPP, and let K C X be nonempty bounded closed and convex.
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Then the set of common fixed points of any commutative family of nonex-
pansive self-mappings of K is a nonempty nonexpansive retract of K.

This raises the obvious question of whether FPP implies the conclusion
of Bruck’s theorem in general (as it does in the separable case). Of course a
positive answer to “FPP = reflexive”would settle this affirmatively as well.

Remark. Under the assumptions of Bruck’s theorem, the collection of subsets
of K which have f.p.p. includes all the nonexpansive retracts of K.

Proof. Suppose R : K — F C K is a nonexpansive retraction, and let
G : F — F be nonexpansive. Then Go R : K — F is nonexpansive, so by
FPP there exists z € K such that G o R(z) = z. But this implies z € F' and
G(z) = z. Therefore, R(z) = « is a fixed point of G.

Bruck’s proof of the above theorem in the single-mapping case is somewhat
involved, relying on a clever use of Tychonoff’s Theorem, and the general case
is quite difficult. However:

Corollary 1. Bruck’s theorem for finite commutative families follows easily
from its validity for a single mapping.

Proof. Suppose X and K are as in Theorem 3, and suppose T and G are
commutative nonexpansive mappings of K — K. Let Fix(T') (etc.) denote
the fixed point set of T in K. Then since T o G = G o T, it follows that
G : Fix(T) — Fix(T). Since Fix(T) is by assumption a nonexpansive retract
of K, by the above Remark Fix(T') N Fix(G) # @. Let R be a nonexpansive
retraction of K onto Fix(T'). Then

Fix(T) N Fix(G) = Fix(G o R),

and the latter set is also a nonexpansive retract of K. This shows that the
common fixed point set of two commuting mappings of K — K is a non-
expansive retract of K. The general case for a finite family of commuting
nonexpansive mappings follows by induction.

We look at the structure of the fixed point sets in a more abstract metric
space setting in the next section.

2.3. Asymptotic regularity and approximate fixed points. At the
outset we call attention to the survey of Bruck [16].

If K is a subset of a Banach space X, then f : K — K is said to be
asymptotically regular (at z € K) if Hf"(:v) - f"'“(:c)“ — 0.



HISTORY AND METHODS OF METRIC FIXED POINT THEORY 29

In 1976 Ishikawa [45] obtained a surprising result, a special case of which
may be stated as follows: Let K be an arbitrary bounded closed convex
subset of a Banach space X, T : K — K nonexpansive, and A € (0,1). Set
Tx = (1 = A)I + AT. Then for each z € K :

1T (2) = T (@) = 0.

Thus by iterating the ‘averaged’ mapping T one can always reach points
which are approximately fixed (but on the other hand, these points may not
be near fixed points—indeed, it need not be the case that T" even have a fixed
point).

In 1978, Edelstein and O’Brien [30] proved that {T2(z) — Tx+'(z)} con-
verges to 0 uniformly for z € K and, in 1983, Goebel and Kirk [42] proved
that this convergence is even uniform for T' € , where & denotes the collec-
tion of all nonexpansive self-mappings of K. Thus:

Theorem 4. Suppose K is a bounded closed convex subset of a Banach
space. Then for each € > 0 there exists a positive integer N such that if
t€KandTe¥n>N =

| T (z) = T3 ()] < e

Concerning the rate of convergence of {T{(z)}, Baillon and Bruck [4] have
observed that the estimates of [42] or the method of Bruck [16] can be used
to establish:

73 - @) = 0 (1)

and they have conjectured (and supported with compelling computational
evidence):
1
|73 (2) - T7H ()| = O (_ﬁ) .

As they note, this would be somewhat surprising if true, since it happens
that the above is the exact estimate for linear T

It is interesting to note that the uniform version of Ishikawa’s result can
be used to say something about the structure of the set of points of a non-
expansive mapping which are ‘approximately’ fixed. Let K be a bounded
closed convex set, and suppose T : K — K is nonexpansive. For ¢ > 0 set

F(T)={zeK:|z—-T(z)| < ¢}
A standard argument shows that these sets are all nonempty. Fix z € K,
let ¢t € (0,1), and consider the contraction mappings T; : K — K defined
by Ty(z) = (1 — t)z + tT(z). If z, is the (unique) fixed point of Ty, then
limt_.,l- ||xt - T(a:t)H =0.
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Theorem 5 (Bruck [17]). Suppose K is a bounded closed convex subset of
a Banach space X and suppose T : K — K is nonexpansive. Then F.(T) is
pathwise connected.

Proof. Let f = %(I + T). Then by Theorem 4 there exists N such that if
n > N, then for each z € K, ||f"(z) — f"*!(z)|| < e. Fix u,v € F.(T), and
let S = seg[u,v]. Then the path fV(S) lies in F,(T). Also, for 0 <i < N,

seg[f*(u), fH!(u)] and seg[f'(v), Ff*(v)] both lie in F.(T).

and the union of these segments form a path joining u and v, respectively,

to f¥(u) and fN(v).

There are other interesting results related to approximate fixed points.
A convex subset K of a Banach space is said to be linearly bounded if the
intersection of K with any line in X is bounded. We shall say that a Ba-
nach space has the approzimate fized point property (AFPP) if any linearly
bounded closed convex subset K of X has the a.f.p.p., i.e., if every nonex-
pansive T': K — K satisfies inf{||z — T(z)|| : z € K} = 0.

Theorem 6 (Reich [78], Shafrir [81]). X has the AFPP & X is reflexive.

In order to characterize those convex subsets of a Banach space which
have the a.f.p.p., Shafrir introduced the concept of a directionally bounded
set. A directional curve in a Banach space X is a curve 7 : [0,00) — X for
which there exists b > 0 such that

t—s=b<|y(s) (@I <t -

A convex subset K of X is said to be directionally bounded if it contains no
directional curve. Note that a line is a directional curve with b = 0. Thus
if K is directionally bounded, then K is linearly bounded. Shafrir proves in
[81] that the two concepts are equivalent in X if and only if X is reflexive.
The following is also proved in [81] (where it is actually formulated in the
more abstract setting of a hyperbolic metric space).

Theorem 7. A convex subset K of a Banach space has the a.f.p.p. if and
only if K is directionally bounded.

The following analog of the Remark following Theorem 3 also holds for
the above theorem.

Remark. If a subset K of a Banach space has the a.f.p.p., then every nonex-
pansive retract of K has the a.f.p.p.
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Proof. Suppose R : K — F C K is a nonexpansive retraction, and let
G : F — F be nonexpansive. Then by assumption there exists {z,} C K
such that ||z, — G o R(z,)|| — 0. But

I1R(zn) = G o R(z,)|| = [|R(zn) — Ro G o R(z,)|| < |len — G o R(z,)|| — 0,

so inf{|lu — G(u)||: v € F} = 0.

2.4. Approximation of fixed points. It has been known for some time
(see [37]) that even in a uniformly convex setting the iterates of the averaged
mapping f = %(I + T) of the previous section need not actually converge to
a fixed point of T. However in 1971, Kaniel [49] obtained a rather compli-
cated discrete convergence procedure for approximating fixed points of non-
expansive mappings in such spaces. Quite recently, Moloney [69] obtained a
refinement of Kaniel’s method for constructing such a sequence, a method
which in fact applies to asymptotically nonexpansive mappings. We briefly
descsibe this result, beginning with the relevant definitions.

The modulus of convezity of a Banach space X is the function §x : [0,2] —
[0,1] defined as follows:

T4y
e R RN NS

bx(€) = inf{l -

It is known that the function 6x is nondecreasing, and continuous on [0, 2).
A Banach space is said to be uniformly convez if §x > 0 whenever € > 0.

We assume that X is a uniformly convex Banach space and K C X is a
given bounded closed and convex subset of X. A mapping T : K — K is said
to be asymptotically nonezpansive if there exists a sequence {k,} of positive
real numbers for which lim,_,o kn = 1 and ||T%(z) — T™(y)|| < kn ||z — ||
for all z,y € K. In [41], Goebel and Kirk show that such a mapping T always
has a fixed point. (There is an extensive literature on asymptotically nonex-
pansive and related classes of mappings which we do not take up here.) In
[69], using some technical lemmas, Moloney constructs an auxiliary mapping
S : K — K which has the properties:

(a) T(p)=p < S(p) =p;
(®) llp = S@)I < llp—=l|;
(¢) Iflim, ooz, = z and lim, o0 ||S(2,) — 2,|| = 0, then S(z)=z =
T(z).
Using the mapping S he then constructs a sequence {y,} which always
converges strongly to a fixed point of T. However, as in the case of Kaniel’s
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construction, it is not possible to determine how close to the fixed point one
is at any step.

The only other (strong) convergence result of note (not requiring some
form of strong compactness) seems to be the following:

Theorem 8 (Reich [77]). Let X be a uniformly smooth Banach space, K
a bounded closed convex subset of X, and T : K — K nonexpansive. For
fixedy € K, let t € (0,1) and let y; denote the unique fixed point of the
contraction mapping

T,() = (1 -ty +¢7().

Then

lim y; exists and is a fixed point of T.
t—1-

The existence of a fixed point of 7' in the setting of the above theorem was
first proved by Baillon [3]. Later Turett [86] proved that uniformly smooth
Banach spaces are actually superreflexive and have normal structure.

A mapping f defined on a subset D of a Banach space X (and taking
values in X) is said to be demiclosed if it is closed from the weak topology

on D to the norm topology on X. Thus, f is demiclosed if for any sequence
{u;} in D,

weak — lim uj = u and lim ||f(u;) —w||=0=>u € D and f(u) = w.
n—oo n—oo

The following theorem has been fundamentally important in the theory of

nonexpansive mappings. As with the Kaniel-Moloney constructions discussed

above, uniform convexity seems to be the smoothness condition essential to

its validity.

Theorem 9. Let X be a uniformly convex Banach space, let K be a closed
and convex subset of X, and suppose T : K — X is nonexpansive. Then the
mapping f = I — T is demiclosed on K.

2.5. Applications. One of the principal applications of the theory of non-
expansive mappings in a functional analytic context has been to the study
of monotone and accretive operators.

Accretive operators arise as a very natural generalization of monotone
operators. Note that a real-valued function ¢ of a real variable is monotone
increasing provided

(s = t)((s) - ¢(£)) 2 0.

This concept extends to Banach spaces as follows. Assume X is a Banach
space with dual space X*, and let D C X.
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Definition 2. A mapping T : D — X* is said to be monotone if for each
u,v € D,
(u—v,T(u) = T(v)) >0.
(We use the pairing (z, ) to denote £(z), z € X, € € X*.)

Now let X be a (real) Banach space and define the normalized duality
mapping J : X — 2X" by setting for z € X,

J(z)={j € X*:(z,j) = ||z||* and |j|| = |||]}-

Definition 3. A mapping T : D — X is said to be accretive if for each
u,v € D there exists 7 € J(u — v) such that

(T(w) — T(v),4) 2 0.

Note that if X is a Hilbert space then X = X* and the class of monotone
and accretive operators coincide.

A complete characterization of accretive operators was given by Kato in
1967 [53].

Lemma 1. Let X be a Banach space, D C X, and T : D — X. Then T is
accretive if and only if for every z,y € D and A > 0,

lz —yll < lle —y + MT(z) = T())Il -

Thus a mapping T is accretive if and only if for each A > 0 the mapping
Jx = (I+AT)™! is nonezpansive on its domain. Using this fact it is possible
to extend the definition of accretive mappings to multivalued mappings in a
natural way. For a given subset B of X, let

|B| = inf{||z|| : = € B}.
A mapping A : D — 2% is said to be accretive if for each z,y € D and A > 0,
lz —yll <z —y+ MT(z) - T(y))|

Again, the mapping Jx = (I + AT)™! is single-valued and nonexpansive
on its domain. If it is the case that the domain of J) is all of X for A > 0,
then A is said to be m-accretive.

We now state three results which illustrate the fundamental way in which
the theory of nonexpansive and accretive mappings are intertwined. They
show respectively the way in which the FPP, B-FPP, and the common fixed
point property for commuting families of nonexpansive mappings are each
related to basic questions about accretive mappings. The first is a very simple

observation about closedness of m-accretive operators which seems to be due
to Reich [76] (also see Reich and Torrején [79]).
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Theorem 10. Let X be a Banach space which has FPP, let D C X and let
A : D — X be m-accretive. Then if {z,} C D is bounded and if y, € Az,
satisfies y, — vy, it follows that y is in the range of A.

Theorem 11 (Kirk-Schoneberg [62]). Let X be a Banach space which has
the B-FPP, let D C X and let A: D — X be m-accretive. Suppose

lim |Az| =

llzl| —oo

Then the range of A is all of X.
Our final result is essentially due to R. H. Martin.

Theorem 12. Suppose K is a bounded closed convex subset of a Banach
space X, and suppose K has the common fixed point property for commuting
families of nonexpansive mappings. Suppose A : K — X is continuous,
bounded and accretive, and suppose A satisfies the boundary condition

lim A~!dist(z — hA(z), K) = 0.

h—0+

Then 0 is in the range of A.

Proof. By a theorem of R. H. Martin [67] (see also [12, Section 9]), for every
z € K the Cauchy problem

2'(t) = =T (z(t)); 2(0) ==

has a unique solution on [0,00). Put S(t)z = z(t) so that {S(t)}:>0 is a
family of functions of K — K. Then
1) S(t +s) = S(t) o S(s) for s,t > 0; thus the family {S(¢)}¢>0 is

commutative.
2) S(t) is nonexpansive for t > 0, i.e., ||S(t)z — S(t)y|| < ||z — y]| for
each z,y € K.

By the common fixed point property, there exists zo € K such that zo =
S(t)zo for each t > 0. Thus

d ,
—=5(t)z0 = 0= z4(t) = —A(S(t)z0) = —A(g0),

proving 0 € A(K).
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3. ABSTRACT THEORY: A SET-THEORETIC APPROACH

There is a set-theoretic basis for much of metric fixed point theory. In
this section we discuss Caristi’s Theorem, an analog of Theorem 1, a fixed
point theorem due to Soardi, and the structure of the fixed point sets of
nonexpansive mappings, all in an abstract setting,.

3.1. Caristi’s Theorem. We begin with two ‘equivalent’ facts. The first
is a special case of Ekeland’s celebrated variational principle ([31], [32]), and
the second is a well-known theorem due to J. Caristi [23].

(E) (Ekeland, 1974) Let (M, d) be a complete metric space and ¢ : M —
R* ls.c. Define:

T <y&dz,y) <ep(z)-e(y), z,y € M.

Then (M <) has a mazimal element.

(C) (Caristi, 1976) Let M and ¢ be as above. Suppose f : M — M
satisfies:

d(z, f(z)) < ¢(z) — o(f(2)), € M.
Then f has a fized point.
Proof (E) = (C). With M, ¢ as above, and f as in Theorem (C), define
T <y & dz,y) < e(r)—e(y), z,y € M. By (E) there exists £ € M such

that Z is maximal in (M, <). But, d(Z, f(Z)) < ¢(Z) — ¢(f(2)) = f(Z) > z.
Hence by maximality, z = f(7).

Proof (C) = (E) Assume (E) is false. Then Vz € M 3 f(z) € M such that
r < f(zx). It follows that

d(z, f(2)) < p(z) — p(f(z)), = € M.

By (C) f must have a fixed point Z. But by assumption, z < f(Z)—a con-
tradiction.

Thus it is easy to see that (E) < (C). However the implication (C) =
(E) requires at least (ZFDC), an observation due to N. Brunner [18]. On the
other hand, Manka [66] has recently shown that (C) holds within (ZF).

Some of the very early proofs of (C) include:
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Author Method Axioms
Caristi (1976) Transfinite induction ~ (ZFC)
C. S. Wong (1976) Transfinite induction (ZFC)
Kirk (1976) Zorn’s Lemma (ZFC)
Browder (1976) (ZFDC)
Brezis-Browder (1976) ‘ (ZFDC)
Penot (1976) (ZFDC)
Siegel (1977) (ZFDC)
Pasicki (1978) (ZFC)
Brgndsted (1979) (ZFC)

Since the appearance of (C) and (E) there have been numerous papers de-
voted to various proofs of these results and to equivalent formulations (e.g.,
by S. Kasahara [52], S. Park [71], W. Takahashi [85], etc.). We call partic-
ular attention the 1986 survey by S. Park [70] on equivalent formulations of
Ekeland’s variational principle. Many of these proofs require only (ZFDC)
(see Section 4).

An extension of a theorem attributed variously to Zermelo, Bourbaki, and
Kneser provides the basis for Manka’s proof that Caristi’s theorem holds in
(ZF). In the sequel we shall simply refer to this as Zermelo’s Theorem. It
should not, however, be confused with his celebrated well-ordering theorem,
although apparently the idea is implicit in the proof of that theorem given
in [89]. As opposed to that theorem, the following theorem can be proved
wholly within (ZF). For a proof, see, e.g., Dunford and Schwartz [29, p.9] or
Zeidler [88, p.504].

Theorem 13 (Zermelo [89]). Let (E,<) be a partially ordered set and let
f: E — E satisfy f(z) > z Vz € E. Suppose

every chain in E has a Lu.b.

Then f has a fixed point in E. In fact, given x € E one can construct T € E
such that £ > = and f(z) = z.

In order to prove (C) in (ZF), Manka generalized the above by weakening
the chain condition to:
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“Ya € E, every well ordered subset of E with first element a is bounded
above, and given such a well ordered set C' 3 a function o which selects an
element from the set of all upper bounds of C.”

3.2. Nonexpansive mappings—normal structure. We now use Zer-
melo’s Theorem to give another proof of Theorem 1. We restate Theorem 1
in slightly more general form.

Theorem 14. Suppose K is a nonempty weakly compact convex subset of
a Banach space X and suppose K has normal structure. Let T : K — K be
nonexpansive. Then T has a fixed point.

Note that in saying K has normal structure we mean (cf., Definition 1),
r(H) < diam(H) for every convex subset H of K for which diam(H) > 0.
The Chebyshev center, C(H), of H is the collection of points of H which
serve as centers of balls of minimal radius containing H.

Proof of the Theorem. Closed balls will play a fundamental role in the ar-
gument, and we shall restrict ourselves to balls relative to the underlying
domain K. As before, we use the symbol B(z;r) to denote the closed ball
centered at * € K with radius r > 0. Thus:

B(z;r)={ye K:|lz—y| <r}.
Ball intersections will also play a fundamental role. Let
Y= {D : D= ﬂB(a:,-;r,—) where z; € K, r; > 0} .
el
Note that since K is bounded, K € X. As we shall see, it is only elements of

Y} that are relevant to our proof.

For A C K, let
cov(A) =({D:D €T and D D A}.
Two facts are pertinent.

1. cov(A) € T for each A C K;;
2. The members of ¥ are all compact in the weak topology.
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Step 1. Let
M={DeS:D#w: T:D — D}.

Define f; : M — .M by setting
fi(D) = cov(T(D)).

Order (M,<) by Dy < D; & D, C D;. Then f;(D) > D VD € M. Also,
every chain in M has an l.u.b.—namely, the intersection of all its members.
By Zermelo’s Theorem, given D € M. there exists D* € M such that

H(D*) =D~

Thus. D* = cov(T(D*)).
Step 2. For D € £, D # @, define

R(D)z{-rZO:Dﬂ(ﬂ B(u;r)) #@}

u€D

Note that R(D) # @ since diam(D) = sup{||z —y|| : z,y € D} € R(D).
Thus r(D) = g.1.b.R(D) is well defined. Now set

C(D) = {z €D:ze€ m B(u; r(D))} :
u€D
Assertion. C(D) € ¥ and C(D) # @.
Proof. C(D) € ¥ by definition. Also, by definition, if r > R(D) then

C.(D) := {z €D:ze () B(u;r(D))} +0.

u€D

We show that C(D) = (1,5 (p) Cr(D) from which the conclusion will follow
by weak compactness of the members of X.
Obviously, C(D) C C(D) for each r > r(D) since

C(D)=Dn ( ﬂ B(u;r(D))) cDhn ( n B(u;r)) = C,(D).

uw€D u€D
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Thus C(D) € (5 ,(py Cr(D). Now suppose there exists z € Nr>r(py Cr(D)
such that z ¢ C(D). Then there exists u € D such that ||z —u|| > r(D);
hence there exists r' satisfying ||z —ul| > r' > r(D). But ||z —u| > r'
implies z ¢ C,s(D)—a contradiction.

Notice that by normal structure, diam(D) > 0 = C(D) is a proper subset
of D.

Now define f,(D) = C(D*) where C(D*) denotes the Chebyshev center of
D*. Repeating the argument of Step 1, we conclude that f; also has a fixed
point which, by normal structure, must be a singleton, hence a fixed point

of T.

Remarks. Several remarks about the above proof are in order. First, the
linear structure of the space does not enter in, so that a much more abstract
approach is possible. To describe this approach we introduce the concept of
a “convexity structure” (see [72]). A family ¥ of subsets of a given set S is
called a convezity structure if

(i) o €5

(ii) Sex;

(iii) X is closed under arbitrary intersections.

Note that according to this definition the family ¥ defined in the proof of
Theorem 14 is a convexity structure which, in fact, contains the closed balls
of the underlying space.

Now let (M, d) be a bounded metric space and let ¥ be a convexity struc-
ture in M. We fix the following notation: For D € X, set

diam(D) = sup{d(u, v):u,v € D};
re(D) = sup{d(z,v) : v € D}, (2 € M);
r(D) = inf{r,(D) : z € D}.

The convexity structure X is said to be normal if 7(D) > 0 for each
D € ¥ for which diam(D) > 0. Also, ¥ is said to be compact if every
family of subsets of ¥ which has the finite intersection property has nonempty
intersection.

By following precisely the proof just given for Theorem 14, we can obtain
the following (see [74], [61], [20]).

Theorem 15. If(M,d) is a nonempty bounded metric space which possesses
a convexity structure which is compact, normal, and contains the closed balls
of M, then every nonexpansive mapping T : M — M has a fixed point.
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The advantage to this abstract formulation is that even in a Banach space
setting it frees the underlying topology. The sets in the convexity structure
only need consist of sets which are convex and 7-compact or, as we shall
see, even T-countably compact in some topology 7 for which the norm closed
balls are 7-closed. For example 7 could be the weak* topology as in the case
of £1 = (¢o)*, (Lim [64]) and the Hardy space H'(A) (Besbes et al. [6]), or 7
could be the topology of local convergence in measure in L' (Lennard [63]).

3.3. Nonexpansive mappings—uniform relative normal structure.

We now briefly turn to an abstract version of a theorem due to Soardi
[84].

A convexity structure ¥ in a bounded metric space M is said to be uni-
formly relatively normal if there exists ¢ € (0,1) such for each D € X there
exists zp € M such that:

(a) D C B(zp;cdiam(D));
(b) if D C B(y;cdiam(D)) for y € M, then d(zp,y) < cdiam(D).

Soardi has observed that if X is the complexification of an order complete
AM-space with unit, then the order intervals in X form a uniformly relatively
normal convexity structure (where ¢ = 2-3). The same is true if X is an
order complete AM-space with unit (where ¢ = %) Zermelo’s theorem may
also be used to give a ZF proof of the following abstract version of Soardi’s
theorem [84]. (For details of the proof, we refer to Biiber-Kirk [22]; also
Biiber [19].)

Theorem 16. Let M be a nonempty bounded metric space which possesses
a convexity structure which is compact, uniformly relatively normal, and

contains the closed balls of M. Then every nonexpansive mapping T : M —
M has a fixed point.

3.4. The structure of the fixed point set of nonexpansive mappings
in metric spaces. The fundamental ideas and results of this section are
due to Khamsi [55], [57]. This approach will, among other things, show that
Theorem 15 extends within (ZF) to finite commutative families of nonex-
pansive mappings. This theorem also extends to infinite families, but this
extension seems to require at least (ZFDC) in the separable case ([21]) and
(ZFC) in general.

Again, let (M,d) be a bounded metric space, and let ¥ be a compact
convexity structure on M. A subset A of M is said to be admussible if A =
cov(A), where here we take

cov(4) = ﬂ{B : B is a closed ball containing A}.
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We shall let (M) denote the set of all admissible subsets of M. Then, since
Y contains the closed balls of M it follows that ¢(M) is itself a compact
convexity structure on M, and in fact it turns out that this smaller structure
is sufficient for almost all the existence theory for nonexpansive mappings.
As before, we say that ¢(M) is normal if r(A) < diam(A) for each A € (M)
with diam(A) > 0. (r(A) is defined in the previous section.)

The following is the key to the structure of the fixed point sets of nonex-
- pansive mappings (and to the existence of nonempty common fixed point sets
of commuting families of nonexpansive mappings) in a metric space setting.
A subset A of M is said to be a 1-local retract of M if for each family {Bi}ier
of closed balls centered in A for which

n B, #+#0o

134
it is the case that AN ([N;c; Bi) # @. It is easy to check that every nonex-
pansive retract of M is a 1-local retract of M.

We now describe several fundamental properties of 1-local retracts. The
proof of the first is routine and the second is immediate.

Proposition 1. If M is a metric space for which p(M) is compact, then M
is complete.

Proposition 2. If M is a metric space for which ¢(M) is compact, and if
{A.} is a descending sequence of sets in (M) for which lim,_.., diam(4,) =
0, then A, = {z}.

The following technical proposition collects several additional properties
needed in this study.

Proposition 3. Let M be a metric space and let A be a nonempty subset
of M. Then:

(1) cov(4) = {B(z;rs(4)): x € M};
(2) r5(A) =r,(cov(A)) for every x € M,
(3) r{cov(4)) < r(A);

(4) diam(cov(A)) = diam(A).

Proof.

(1) This is immediate since B(z;7,(A)) is the smallest ball centered at
z which contains A.
(2) Since A C cov(A) it follows from the definition of r, that

rz(A) < ry(cov(4)).
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On the other hand, (1) implies r,(cov(4)) < r (A4).

(3) This is immediate from the definition of r and (2).

(4) It obviously suffices to show that diam(cov(A)) < diam(A). Let
z € cov(A). Then z € B(z;r;(A)) for each z € M. In particular,
d(z,z) <r (A) < diam(A) for each = € A; thus A C B(z;diam(A)).
Hence

cov(A) C B(z;diam(A4)).
It follows that
diam(cov(A)) < diam(A4).

The following proposition, which shows that in the case of 1-local retracts
normality is a hereditary property, is fundamental.

Proposition 4. Let M be a metric space and suppose (M) is compact
and normal. Suppose N is a given subset of M which is a 1-local retract of
M. Then ¢(N) is compact and normal.

The key to the proof of the above is the following lemma.

Lemma 2. Under the assumptions of Proposition 4, r(cov(A)) = r(A) for
each A € p(N).

Proof. Clearly we may suppose diam(A) > 0. Since Proposition 3 implies
r(cov(A)) < r(A)

we only need show the reverse inequality. By assumption A € p(N), so A is

of the form
A=Nn (ﬂ{B(wi;ri) tx; € N}) .

Also
cov(A) C ﬂ{B(wi;ri) rz; € N}

Choose z € cov(A) and let r = r,. Then
z€ S8 := (ﬂ B(x;r)) n (ﬂ{B(:z,-;ri) 1z € N}) .
T€EA

S is a nonempty set belonging to ¢(M). Since N is a 1-local retract of M
and S is the intersection of balls centered in N, SN N # @. Let w € SN N.

Then
w € (m{B(xi;r,-) 1 x; € N}) ﬂ‘N,
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i.e., w € A. On the other hand, w € {B(z;7): z € A}, so ry < r. It follows
that

r(A) <r < r,(cov(4)).
Since z was an arbitrary element of cov(A) the proof is complete.

Proof of Proposition 4. The definition of a 1-local retract assures that o(N)
is compact. To see that (V) is normal, let A € (N ) and recall that
diam(cov(4)) = diam(A) by Proposition 2. By Lemma 2, r(cov(A4)) = r(4).
Since (M) is normal, r(cov(A4)) < r(diam(4)), i.e., r(4) < diam(A).

Remark. In Propositions 1-4, one may replace compactness of ¢(N) with
countable compactness.

We now have the fc;llowing structure theorem.

Theorem 17. Let M be a bounded metric space for which ¢(M) is compact
and normal, and let T : M — M be nonexpansive. Then the fixed point set
Fr of T is a nonempty nonexpansive retract of M , and moreover, (Fr) is
compact and normal.

Proof. The fact that Fr # @ is immediate from Theorem 15. To see that
Fr is a 1-local retract of M let {B;} be a family of closed balls centered in
Fr for which

S:=()Bi # .

Then since T is nonexpansive, T : § — S. Also, since S is admissible, ©(S)
is compact and normal. Therefore, again by Theorem 15, T has a fixed
point in S, i.e.,, Fr N S # @. The final assertion of the theorem follows from
Proposition 4.

It is even possible to extend Theorem 17 to finite commutative families.

Theorem 18. Let M be a bounded metric space for which ©(M) is compact
and normal. Then every finite family ® of commuting self- mappings of M

has a nonempty common fixed point set Fp. Moreover, Fg is a 1-local retract
of M.

Proof. 1t suffices to show that Fg # @. The fact that Fp is a 1-local retract
of M can be proved as above. Suppose ® = {T1,...,T,}. By the previous
theorem, if Fr; denotes the fixed point set of Ti, ¢ = 1,...,n, then each
of the sets p(Fr,) is compact and normal. Since T} and Tj commute, it is
immediate that T, : Fr, — Fp,. Thus P, N Fr, # &. The conclusion follows
by repeating the argument step by step n times.
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4. ABSTRACT THEORY: CONSEQUENCES OF (DC)

We continue here in a constructive vein, but less so than in the previous
section. Specifically, we obtain results which may not be possible within (ZF)
but which seem to require no more than (ZFDC) (ZF in conjunction with
the Axiom of Dependent Choices). Specifically, by (ZFDC) we mean (ZF)
with the additional axiom:

(DC). f A# @ and if R: A — 24, then 3 f : w — A such that Vn € w,
f(n+1) € R(f(n)).

The above is equivalent to (see [18]):

(M1): If (M, <) is a partially ordered set in which each chain is finite,
then X has a maximal element.

We remark that (ZFDC) seems to be sufficient (and essential) for the
development of the foundations of functional analysis in the separable case.
See, for example, [36]; also the discussions in [35] and [80]. Regarding the
severity of this assumption, A. C. M. van Rooij states in [80]:

It is a deplorably wide-spread attitude with mathematicians in
general and with functional analysts in particular blindly to accept
the Axiom of Choice without thinking of its costs. The Axiom
enables one to claim the existence of certain objects but only if
one manages not to think about what “existence” means. It is a
magic key to open a door that is closed to constructivists, but the
door leads to a phantom world of things that one cannot touch.

Let me hasten to add that the Countable Axiom of Choice is
quite a different matter. It can be understood, it can be made
constructive and, best of all, it seems to be everything one needs,
at least in Functional Analysis, over R and C. For instance, it
implies the Hahn-Banach Theorem for separable normed spaces.
Admittedly it does not yield the Hahn-Banach Theorem for £°°,
but does anyone ever use that?

4.1. Convexity structures. We proceed with the more abstract approach
introduced in the previous chapter. Once again we recall that a convexity
structure in a set S is a family ¥ of subsets of S satisfying (i) @ € I; (ii)
S € T; (iii) X is closed under arbitrary intersections.

Examples of Convexity Structures.

1. Take ¥ to be the family of all closed and convex subsets of a given
closed convex subset of a Banach space. (This is of course the pro-

totype.)
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2. Let B be the unit ball in a Banach space X, and take ¥ to be the
family of all ball intersections in B :

Y= {(ﬂB(.’E,‘;r,’)) NB:z; €B, T‘,’ZO}.

el
3. Let (M,d) be a bounded metric space and take £ to be all ball
intersections in M (the admissible sets of Section 3.2).

Remark. A convexity structure is always a subbase for a topology on the
underlying set S. By Alexander’s subbase theorem (see, e.g., [54, p.139]), S
is compact in this topology if the convexity structure is compact. (This fact
requires the Axiom of Choice, and it doesn’t seem to carry over for countable
compactness.)

Definition 4. A convexity structure X is said to be [countably] compact if
whenever U is any [countable] subfamily of £ which has the finite intersection

property, (U # @.
Examples of Compact Convexity Structures.

4. The same as Example 1, but with K weakly compact.

5. The same as Example 2, but with B the unit ball in a dual Banach
space.

6. The same as Example 3, but with M a hyperconvex metric space.

(Recall that a metric space M is said to be hyperconvez if any fam-
ily {B(za;ra)} of closed balls in M satisfying d(za,2s) < ro + 3 has a
nonempty intersection.)

7. Let B be the unit ball in L([0,1],R) and let ¥ be the collection of
all closed and convex subsets of B which are compact in the topology
of local convergence in measure. (See [63] for the definition.)

For our next example, we consider a non-Archimedean Banach space
X. Thus the triangle inequality is replaced with the stronger inequality:
lz + yl| < max{||z|,|lyll}, z,y € X. A non-Archimedean space X is said
to be spherically complete if every shrinking collection of balls in X has
nonempty intersection. (Note that in such a space, if two balls intersect then
one must contain the other.)

8. Let X be a non-Archimedean spherically complete Banach space,
and let ¥ be the family of all balls in X.

It is interesting to note that in such a setting one has the following ‘alter-
native’ theorem. This observation is due to Petalas and Vidalis [75].



46 W. A. KirK

Theorem 19. Suppose X is a spherically complete non-Archimedean
normed space and T : X — X is a nonexpansive map. Then either T has at
least one fixed point, or there exists a ball B in X of radius r > 0 such that
T:B — B and ||z — T(z)|| = r for each z € B.

9. This example is also unusual. In establishing his theorem on com-
mutative families of nonexpansive mappings (Theorem 3 of Section
2.2), Bruck actually proved that if X is reflexive or separable and has
the FPP, then the family ¥ of all nonexpansive retracts of a bounded
closed convex subset K of X is a compact convexity structure.

Remark. An interesting question arises in connection with Example 9. Are
nonexpansive self-mappings of K continuous relative to the topology ¥ gen-
erates as a subbase?

4.2. Nonexpansive mappings and countable compactness. We next
show that Theorem 14 holds within (ZFDC) if the convexity structure is only
assumed to be countably compact. We need the following lemma, which is
of interest in itself since it requires no compactness assumption.

Lemma 3. Let M be a nonempty bounded metric space which possesses a
convexity structure ¥ containing the closed balls of M. Suppose T : M — M
is nonexpansive and let § = {D € £ : D # @ and T : D — D}. Then
for each D € & one can construct a set D* € < such that D* C D and
diam(D*) < (diam(D) + r(D)).

We state and prove the theorem; the proof of the lemma follows that of
Lemma 4.2 of [43]; also see [38].

Theorem 20 ([60, 61]). Let M be a nonempty bounded metric space which
possesses a convexity structure ¥ which is normal and countably compact.
Then every nonexpansive T : M — M has at least one fixed point.

Proof. Let
S={DeX:D#@, T:D — D},

and define 6§ : & — R by
6(D) = inf{diam(F): F € &, F C D}.

Set Dy = S, and with Dy,... , D, given, select D,,;; € S sothat D, ; C D,

and

diam(Dpy1) < 6(Dn) + =
n
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Let

Then C € I, and by countable compactness, C # @. Since T : C — C,
C € Q. Also, for each n € N

diam(C) ~ ~ < diam(Dpi) — -71; < 6(Dn) < 6(C*) < %(diam(C) +1(C)).

Letting n — oo we conclude diam(C) = r(C). By normality of ¥ this implies
C consists of a single point which is fixed under T.

If the normality assumption is sufficiently strengthened in the above, then
no explicit compactness assumption on the convexity structure £ is needed.
A convexity structure ¥ is said to be uniformly normal if there exists ¢ €
(0,1) such that r(D) < cdiam(D) for each D € T for which diam(D) > 0.

In a Banach space framework this concept is due to Gillespie and Williams
[38] (as is the proof of Lemma 3). It turns out that in a complete metric space
a uniformly normal convexity structure is always countably compact. For a
proof of this fact see Khamsi [56]. (The proof of Theorem 4.4 of [43] can also
be modified to show this.) Thus the following is an immediate consequence of
Theorem 20. However, as we show, it also follows immediately from Lemma

3.

Theorem 21. Let M be a nonempty bounded complete metric space which
possesses a convexity structure ¥ which is uniformly normal and contains
the closed balls of M. Then every nonexpansive T : M — M has at least
one fixed point.

Proof. Let ¢ be the constant associated with the definition of uniform nor-
mality of ¥ and let = 3(1+4c¢). Let D; = M and for each n let D4, = D*
where D}, € Sis the subset of D,, assured by Lemma 3 for which diam(D}) <
pdiam(D,). Then diam(Dy,4) < pdiam(D,) < p™ diam(D;). Since M is
complete and lim,_, o, diam(D,) = 0, it follows that (>>, D, = {z} for some
z € M. Since each of the sets Dy, is T-invariant, T'(z) = z.

4.3. The Goebel-Karlovitz Lemma. There are many situations in the
study of metric fixed point theory where the existence of minimal sets seems
to be essential. The general problem we take up now is how to prove the
existence of a minimal set without using (ZFC) via Zorn’s Lemma. Recall
that in the initial proof of Theorem 1 we used Zorn’s Lemma to obtain a
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minimal nonempty closed convex T-invariant set Ky. We then observed in
Section 3 that the existence of such a minimal set was not essential to the
proof; a set K for which K, = conv(T(Kp)) would have done just as well.
However the following result, which requires the existence of a minimal set,
is fundamental to much of the theory.

Lemma 4 ([40], [51]). Let X be a Banach space, let K C X, and suppose
K is a minimal nonempty weakly compact convex T-invariant set for a non-
expansive mapping T. Then the assumptions {z,} C K and lim, o ||zn —
T(z,)|| = 0 imply lim, . ||y — 2, || = diam(K) for each y € K.

In Section 2.1 we alluded to a fixed point theorem of Baillon and Schéneberg
for nonexpansive mappings in spaces having asymptotic normal structure and
to three results of Maurey. The proofs of these results are among many which
use Goebel-Karlovitz Lemma. Indeed, passing to a minimal set has become
a standard approach in the theory (see, e.g., the discussion in Sims [83]).

Minimization. Next we summarize the results of [21]. Basic to those results
is the following minimization principle. This result is perhaps known, but it
is important for our purposes to note that it can be proved wholly within

(ZFDC).

Lemma 5. Let S be a set, I' a family of nonempty subsets of S, B a count-
able family of subsets of S, and suppose each member of T is the intersection
_ of some subfamily of B. Then I' has a minimal element if each descending
sequence in T' is bounded below (by a member of T').

Proof. Suppose B = {B;,B,,...}, and let Dy € T". Let n; be the smallest
integer for which B, contains an element D; of I" which is a proper subset
of Dy. Of course if no such integer exists, then Dy is already minimal in T'.
Having chosen D,,...,Dy and ny,...,ng, let ngy; be the smallest integer
strictly larger than n; for which B,, , contains a member D4 which is a
proper subset of Dy. Either the process terminates upon reaching a minimal
element of I or there exists D € I" such that D C ﬂ:‘;l D;.. However in the
latter case, since B generates the sets in I', D = ();c; Bi. Also, if 1 € I and
if i # ny, then ¢ > n,. Similarly, if ¢ # ny, then ¢ > n3. By continuing, we
see that for some k it must be the case that 7 = nj for some k. On the other
hand, Dy C B,,, k=1,2,.... Consequently,

o

Bar C()Bi=DC () D € ] B
el k=1

k=1 k=1
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Thus equality must hold and D = ()32, Dy is minimal in T,

Obviously the lemma implies (and in fact is implicitly equivalent to) the
following:

Corollary 2. Let X be a topological space which is second countable (i.e.,
which has a countable basis), let T' be a family of nonempty closed subsets
of X, and suppose every descending sequence in T' is bounded below (by a
member of I'). Then T" has a minimal element.

Remark. The corollary is of course known since it is an immediate conse-
quence of the well-known fact that every transfinite descending sequence in a
second countable space must be countable. However, this approach requires
transfinite induction.

We now assume that (M, d) is a bounded metric space which possesses a
countably compact convexity structure £, and suppose ¥ contains the closed
balls of M. Let D € ¥ and p € M. Then if D # @, the set

{z € D :d(p,z) = inf{d(p,z) : z € D}}

is nonempty (and in ¥). Such a set is called a proximinal set in  (relative
to p). An application of Lemma 5 yields:

Theorem 22. Suppose (M, d) is a bounded metric space which possesses
a countably compact convexity structure ¥ which contains the closed balls
of M, and suppose the proximinal sets in ¥ relative to some point p € M
are separable. Let I" be any family of nonempty subsets of ¥ which is closed
under countable intersections. Then I' has a minimal element.

In [21] the above theorem is used to show how one may circumvent an
application of Zorn’s Lemma (in the separable case) in proving the general
version of Khamsi’s common fixed point theorem for commuting families of
nonexpansive mappings ([55], [56]). (Theorem 18 is the finite version of this
theorem.) However, there is another application which appears to be new
and might be of independent interest.

Theorem 23. Suppose (M, d) is a bounded metric space which possesses a
countably compact convexity structure ¥ which contains the closed balls of
M, and suppose the proximinal sets of ¥ relative to some point p € M are
separable. Then ¥ (and the topology it generates as a subbase) is compact.

We should remark that our proof of the above result does require the
Axiom of Choice.
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We conclude with an application in Banach spaces. The ball topology

bx on a Banach space X is the coarsest topology relative to which every
norm closed ball B(z;r) is bx-closed. Thus a point z € X has as a base of
bx-neighborhoods sets of the form

V =X\ U B(zi;r;)

where z;,... ,z, € X and ||z — ;|| > r;. This topology was introduced by
Corson and Lindenstrauss in 1966, and it is studied in depth by Godefroy
and Kalton in [39].

Theorem 24. Suppose the convex subsets of the unit sphere of a Banach
space X are separable. Then the following are equivalent.

2.

10.

(i) The unit ball B in X is bx-compact.

(i) For every countable collection {B,a € I} of closed balls in X such
that ﬂael B, = @, there is a finite set F' C I such that naeF B, =
.
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EIGHTY YEARS OF THE BROUWER
FIXED POINT THEOREM

SEHIE PARK

0. INTRODUCTION

The Brouwer fixed point theorem is one of the most well-known and use-
ful theorems in topology. Since the theorem and its many extensions are
powerful tools in showing the existence of solutions of many problems in
pure and applied mathematics, many scholars have been studying its further
extensions and applications. The purpose of this article is to survey the de-
velopments of the more than eighty years old theorem and related fields in
mathematics.

Generalizations of the Brouwer theorem have appeared with related to the-
ory of topological vector spaces in mathematical analysis. The compactness,
convexity, single-valuedness, continuity, self-mapness, and finite dimension-
ality related to the Brouwer theorem are all extended and, moreover, for the
case of infinite dimension, it is known that the domain and range of the map
may have different topologies. This is why the Brouwer theorem has so many
generalizations.

Other directions of its generalizations in topology are studies of spaces
having the fixed point property, various degree or index theories, the Lef-
schetz fixed point theory, the Nielsen fixed point theory, and the fixed point
theorems in the Atiyah-Singer index theory which generalizes the Lefschetz
theory. However, we will not follow these lines of study.

In closing our introduction, we quote an excellent expression on the current
status of fixed point theory as follows:

“Fixed points and fixed point theorems have always been
a major theoretical tool in fields as widely apart as differen-
tial equations, topology, economics, game theory, dynamics,
optimal control, and functional analysis. Moreover, more
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or less recently, the usefulness of the concept for applica-
tions increased enormously by the development of accurate
and efficient techniques for computing fixed points, making
fixed point methods a major weapon in the arsenal of the
applied mathematician.”

— M. Hazewinkel, Editor’s Preface to the book of Istratescu
[1981].

1. THE BROUWER FIXED POINT THEOREM
In 1910, the Brouwer theorem appeared.

Theorem [Brouwer, 1912]. A continuous map from an n-simplex to itself
has a fixed point.

It is clear that, in this theorem, the n-simplex can be replaced by the unit
ball B” or any compact convex subset of R™. This theorem appeared as
Satz 4 of [1912]. At the end of this paper, it is noted that “Amsterdam, Juli
1910” by Brouwer himself.

Some authors confused that the theorem appeared in Brouwer [1910]. Ac-
cording to Bing [1969], “even before Brouwer’s paper [1912] appeared, refer-
ence had been made to the Brouwer Fixed Point Theorem. (See Hadamard’s
reference on page 472 of Tannery [1910].).” In fact, Hadamard gave a proof of
the Brouwer theorem using the Kronecker indices in the appendix of Tannery
[1910].

According to Freudenthal (the editor of L.E.J. Brouwer—-Collected Works
II, North Holland, Amsterdam, 1976; where the paper [1912] is listed as
“1911D”.), Hadamard knew the Brouwer theorem (without proof) from a
letter of Brouwer (data 4-1-1910).

According to Bing again, Brouwer [1912] himself proved the theorem by
showing that homotopic maps of an (n — 1)-sphere onto itself had the same
degree (or rotation of vector fields); hence, there is no retraction of an n-cell
onto its boundary; hence each map of an n-cell into itself is not fixed point
free.

Alexander [1922] proved a theorem of Brouwer [1910] using the index of a
map and applied it to obtain the Brouwer fixed point theorem. Birkhoff and
Kellogg [1922] also gave a proof of the theorem of Brouwer [1910] by using
classical methods in calculus and determinant theory. The same line of proof
of the Brouwer theorem can be found in Dunford and Schwartz [1958].

Knaster, Kuratowski, and Mazurkiewicz [1929] gave a proof of the Brouwer
theorem using combinatorial techniques. They used the Sperner lemma
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[1928] and showed that the non-retraction theorem holds.

Later there have appeared proofs using algebraic topology, various degree
theory, or differential forms. Hirsh [1963] gave a proof of the non-retraction
theorem using the method of geometric topology, and Milnor [1978] gave an
analytic proof. There are also many other proofs of the Brouwer theorem,
and a simple proof using advanced calculus was given by Rogers [1980] and
others.

The Brouwer theorem itself gives no information about the location of
fixed points. However, there have been developed effective ways to calculate
or approximate the fixed points. Such techniques are important in vari-
ous applications including calculation of economic equilibria. The first such
algorithm was the simplicial algorithm proposed by Scarf [1967] and later
developed in the so-called homotopy or continuation methods for calculating
zeros of function. For details of this topic, see Karmardian [1977], Forster
[1980], Zangwill and Garcia [1981], and others.

In the remainder of this section, we discuss certain stories on the fore-
runners of the Brouwer theorem. The first one is Poincaré [Sur les courbes
définies par les équations différentielles, Ch. XVIII. Distribution des points
singuliers, Oeuvres, t.1, 191-196]. There he used the Kronecker indices to
obtain the following consequence:

The interior of a surface “sans contact de genre 0 7 has always
at least a singular point.

This seems to be an important fact in connection with the Brouwer theo-
rem.

Kaniel [1965] is the first one mentioned that Poincaré is a forerunner of
the Brouwer theorem:

Theorem (Kaniel [1965, Theorem 1]). Let A be a continuous operator de-
fined on a finite dimensional Banach space. If for some R and every A > 0

(1.1) A(w)+ I u#0, ue S,

where Sg is the sphere of radius R around the origin, then there exists a
solution to the equation A(v) = 0,v € Br, where Bp is the ball of radius R
around the origin.

Kaniel wrote: “M. Schiffer pointed out that Theorem 1 is not new. It was
established by H. Poincaré in 1886 [16] and was rediscovered by P. Bohl in
1904 [1).” Here

[1] Bohl, P., Uber die Bewegung eines mechanischen Systems in der
Nahe einer Gleichgewichtslage. Journal fir Math. 127 (1904).
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[16] Poincaré, H., Sur les Courbes Définies par les Equations Différentielles,
Journal de Math., Vol. II (1886).

For more accurate references, see Bohl [1904] and Poincaré [1886] in the end
of this article.

Kaniel’s claim was quoted by Reich [1974], which was followed by Bryszewski
and Gérniewicz [1976]. Istratescu [1981] wrote that Poincaré proved Kaniel’s
Theorem 1 (in an incorrect form), and this was quoted in Editorial comments,
the American translation of a Russian Encyclopedia of Mathematics.

However, after throughly reading Poincaré [1986], the present author could
not find any fact similar to Kaniel’s Theorem 1.

Note that, in Kaniel’s Theorem 1, we can see the so-called Leray-Schauder
boundary condition, which is not directly related to Leray and Schauder
[1934] as we will see in Section 4 of the present article.

Bohl [1904, p.185] proved the following:

Let a domain (G) —a; < z; < a; (1 =1,2,--- ,n) be given. In
this domain let fi, fa,--- , fn be continuous functions of x which
do not have a common zero. Then there is a point uy,ug, -+ , Uy
wn the boundary of G such that

fi(ulau2""aun)=N'uia N <. (z=1’277n)

The following theorem can be regarded as contained in this
theorem:

There do not exist n continuous functions Fy, Fy,--- | F,, de-
fined on the domain (G) —a; < z; < a; (1 = 1,2,--- ,n), which
have no common zero and fulfill for the points of the boundary of
(G)

Fi=z; (1=1,2,---,n).

Hence, Bohl proved for the first time that the boundary of a cube is not
a retract of the solid cube, which is equivalent to the Brouwer theorem.

For Bohl’s work, R.H. Bing [1969] wrote : “The result is frequently called
the Brouwer Fixed Point Theorem although the work of Brouwer [1912] was
probably preceded by that of Bohl [1904]. ... In proving the theorem, Bohl
considered differentiable maps and used Green’s Theorem to show that equiv-
alent integrals did not match if the n-cell had a fixed point free map into
itself.”

The following is called the non-retraction theorem:
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Theorem. Forn >1,S™"! is not a retract of B™.

Smart [1974] wrote: “Bohl [1904] proved a result equivalent to the non-
retraction theorem but apparently did not go on to obtain the Brouwer the-
orem.”

On the other hand, Dugundji and Granas [1982, Theorem II (7.2)] claimed
that the non-retraction theorem was due to Borsuk and the following to Bohl:

Theorem. Every continuous F : B*t1 — R™1! has at least one of the
following properties:

(a) F has a fixed point,
(b) there is an z € S™ such that = = AFz for some 0 < \ < 1.

This follows from Bohl’s first theorem: If f = I — F is continuous and
fails to have a fixed point, then Bohl’s conclusion implies (b).

Note that the concept of retraction is due to Borsuk [1931] and that the
negation of condition (b) is the so-called Leray-Schauder boundary condition.
The above theorem is usually called the Leray-Schauder fixed point theorem.

2. SPERNER’S COMBINATORIAL LEMMA—FROM 1928

Sperner [1928] gave the following combinational lemma and its applica-
tions:

Lemma [Sperner, 1928]. Let K be a simplicial subdivision of an n-simplex
Vov1 - - - Un. To each vertex of K, let an integer be assigned in such a way that
whenever a vertex u of K lies on a face ViV, 05, (0<k<n,0<4<4 <
-+ < 1x < n), the number assigned to u is one of the integers 19,71, - , k.
Then the total number of those n-simplexes of K, whose vertices receive all
n + 1 mtegers 0,1,--- ,n, is odd. In particular, there is at least one such
n-simplex.

For example, consider a 2-simplex with vertices vg, v1, v2, add a new vertex
u as in the figure. Since u lies on vov,v2, we may assign to u one of 0, 1 and

2.
v, 1

Yo v, 0 2

If u is assigned 1, then there exists exactly one 2-simplex of the subdivision,
whose vertices receive all three integers 0, 1, 2.
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Fifty years after the birth of this lemma, at a conference at Southampton,
England in 1979, Sperner himself listed early applications of his lemma as
follows:

1) Invariance of dimension (Sperner [1928]).

2) Invariance of region (Sperner [1928]).

3) Theorem of verification (Rechtfertigungssatz) in Menger’s theory of
dimensions (Menger [1928]).

4) Brouwer’s fixed point theorem (Knaster, Kuratowski, Mazurkiewicz
[1929)).

5) Matrices with elements > 0 (Ky Fan [1958]), theorems of Perron,
Frobenius and others.

There have appeared a number of generalizations of the lemma, which was
applied to the following:

6) Antipodal theorems (Tucker [1945]; Fan [1952b]): Those are the
Lusternik-Schneirelmann theorem on a cover of the n-sphere S™ con-
sisting of n + 1 closed subsets and the Borsuk-Ulam theorem on a
continuous map f : S* — R".

7) Derivation of the Sperner lemma from the Brouwer fixed point the-
orem (Yoseloff [1974]).

8) Constructive proof of the Fundamental Theorem of Algebra (Kuhn,
1974)).

9) Approximation algorithm to approximate Brouwer fixed point (Scarf
[1967]; Kuhn [1969]; Allgower and Keller [1971]; and many others).

In the later years, Sperner unified his own lemma and its extensions due
to Tucker and Fan. For the details, see Sperner’s articles in Forster [1980].

3. THE KKM THEOREM—FROM 1929

Knaster, Kuratowski, and Mazurkiewicz [1929] obtained the following so-
called KKM theorem from the Sperner lemma [1928], and initiated the KKM
theory.

Theorem [KKM, 1929]. Let F;(0 < ¢ < n) be n + 1 closed subsets of an
n-simplex vgv; - - - v,. If the inclusion relation

VigUs; ** * Vi, CF,'OUF,‘IU'--UF,'
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holds for all faces v;,v;, -+ v;, (0<k<n, 0<ig<t; <+ <) < n), then

ﬂ?:o Fi # 0

A special case or dual form of the KKM theorem is already given in Sperner
[1922]. The KKM theorem follows from the Sperner lemma and is used to
obtain one of the most direct proof of the Brouwer theorem. Therefore, it
was conjectured that those three theorems are mutually equivalent. This was
clarified by Yoseloff [1974]. In fact, those three theorems are regarded as a
sort of mathematical trinity. All are extremely important and have many
applications.

Brouwer
1974 / N\ 1929
Sperner —_— KKM
1929

Moreover, many important results in nonlinear functional analysis and
other fields are known to be equivalent to those three theorems. Only less
than a dozen of those results are shown in text-books such as Aubin [1979,
1982], Aubin and Ekeland [1984], and Zeidler [1986-90] and in surveys such
as Gwinner [1981] and others. Further usefulness of those three theorems
can also be seen in Nikaido [1970], Zangwill and Garcia [1981], Hildenbrand
and Kirman [1976], Ichiishi [1983], and others.

 From the KKM theorem, we can deduce the concept of KKM maps as
follows: Let E be a vector space and D C E. A set-valued function (multi-
function or map) G : D — FE is called a KKM map if

coN C G(N)

holds for each nonempty finite subset N of D.
Granas [1981] gave some examples of KKM maps as follows:
(i) Variational problems. Let C be a convex subset of a vector space E

and ¢ : C — R a convex function. Then G : C — C defined by
Go={yeC:d(y) < 9(z)} forzeC
is a KKM map.

(ii) Best approzimation. Let C be a convex subset of a vector space E, p
a seminorm on E, and f : C' — E a function. Then G : C — C defined by

Gr={yeC:p(fy—y)<p(fy—=z)} forzeC
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is a KKM map.
(iii) Variational inequalities. Let (H,(-,-)) be an inner product space, C
a convex subset of H, and f : C — H a function. Then G : C —o C defined
by
Gx={yeC:(fy,y—=z)<0} forzeC

1s a KKM map.

The study of properties of such KKM maps and their applications is ad-
equately called the KKM theory. See Park [1992c, 1994d]. In the frame of
this theory, various fixed point theorems and many other consequences are
obtained. See Section 6 of the present article. As the development of this
theory, there have appeared many result equivalent to the Brouwer theorem,
especially, in nonlinear functional analysis and mathematical economics. For
the classical results, see Granas [1981].

Relatively early equivalent forms of the Brouwer theorem are as follows:

1904 Bohl’s non-retraction theorem.

1912 Brouwer’s fixed point theorem.

1928 Sperner’s combinatorial lemma.

1929 The Knaster-Kuratowski-Mazurkiewicz theorem.

1930 Schauder’s fixed point theorem.

1934 The Leray-Schauder fixed point theorem.

1935 Tychonoff’s fixed point theorem.

1937 von Neumann’s intersection theorem.

1941 Intermediate value theorem of Bolzano-Poincaré-Miranda.

1941 Kakutani’s fixed point theorem.

1950 Bohnenblust-Karlin’s fixed point theorem.

1952 Fan-Glicksberg’s fixed point theorem.

1955 Main theorem of mathematical economics on Warlas equilibria of
Gale [1955], Nikaido [1956], and Debreu [1959].

1960 Kuhn’s cubic Sperner lemma.

1961 Fan’s KKM theorem.

1961 Fan’s geometric or section property of convex sets.

1966 Fan’s theorem on sets with convex sections.

1966 Hartman-Stampacchia’s variational inequality.

1967 Browder’s variational inequality.

1968 Fan-Browder’s fixed point theorem.

1969 Fan’s best approximation theorems.

1972 Fan’s minimax inequality.

1984 Fan’s matching theorems.
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Many generalizations of those theorems are also known to be equivalent
to the Brouwer theorem.

4. EARLY EXTENSIONS OF THE BROUWER
THEOREM—TWENTIES AND THIRTIES

The Brouwer theorem was extended to continuous selfmaps of compact
convex subsets of

(1) certain function spaces, e.g. L2[0,1] and C"[0,1], by Birkhoff and
Kellogg [1922];

(2) Banach spaces, by Schauder [1927, 1930]; and

(3) locally convex topological vector spaces, by Tychonoff [1935].

All those results are included in Lefschetz type fixed point theorems, which
1s in turn contained in the Leray-Schauder theory as extended by Browder
and others. For the literature, see van der Walt [1963].

Note that Birkhoff-Kellogg [1922], Schauder [1927], and Tychonoff [1935]
applied their results to the existence of solutions of certain differential and
integral equations. :

There have also appeared extensions for maps which were not selfmaps of
compact convex subsets, as follows.

Theorem [Knaster, Kuratowski und Mazurkiewicz, 1929, p.205]. If f : B®
— R" is a continuous map such that f maps S®~! = BdB" back into B™,
then f has a fixed point.

This is the origin of the so-called Rothe boundary condition.

Theorem [Schauder, 1930]. If C is a closed convex subset of a Banach space
then every compact continuous map f : C — C has a fixed point.

This is a more general version of (2) and especially convenient in appli-
cations. Note that this follows from (2) by using Mazur’ result [1930] that
the convex closure of a compact set in a Banach space is compact. It is later
recognized that the closedness of C' and the completeness of the space are
not necessary.

Theorem [Schauder, 1930]. If C is a weakly compact convex subset of a
separable Banach space, then every weakly continuous map f : C — C has
a fixed point.

This also follows from (2) by considering the weak topology.
This was also generalized as follows:
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Theorem [Krein and Smulian, 1940]. Let H be a closed convex subset of
a Banach space. If f : H — H is weakly continuous such that f(H) is
separable and the weak closure of f(H) is weaklt compact, then f has a
fixed point.

The KKM fixed point theorem is extended to the following:

Theorem [Rothe, 1938]. Let V be a closed ball of a Banach space E and
f:V — E a compact continuous map such that f(BdV) C V. Then f has
a fixed point.

~ Altmann [1955] showed that the Rothe condition f(Bd V) C V can be
replaced by the following:

llfe — || > ||f||®> = ||z||* for all z € BAV.

Note that those conditions are all particular to the Leray-Schauder condition.
Applications of theorems of Brouwer, Schauder, Tychonoff, and Rothe
appear in many text-books. We list some of them:

Proof of the fundamental theorem of algebra.

Existence of solutions of ordinary differential equations satisfying
Lipschitz condition.

Peano’s theorem on the existence of solutions of ordinary differential
equations.

Alternating current circuits (Periodic solutions of systems of ordi-
nary differential equations).

Solutions of elliptic partial differential equations.

One of the interesting applications of the Brouwer theorem is due to Zee-
man [1962], who described a model of brain.

Lomonosov [1963] gave a proof of the existence of invariant subspaces in
operator theory; that is, for any continuous linear map f from a Banach space
X into itself, there exists a closed subspace X satisfying f(Xo) C X, and
{0} & Xo & X. He was then a high school boy in Russia and gave a simple
proof of this twenty year old problem in a general form using Schauder’s
theorem. , ’

On the other hand, Kakutani [1943] showed the existence of a fixed-point-
free continuous selfmap (even for a homeomorphism) of the unit ball in an
infinite dimensional space. Therefore, the compactness in the above theorems
on finite dimensional case can not be replaced by bounded closedness or by
weak compactness. Moreover, Dugundji [1950] showed that a normed vector
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space is finite dimensional if and only if every continuous selfmap of its unit
ball has a fixed point.

Tychonff’s theorem was applied to obtain the following by Markov:

Theorem [Markov, 1936], [Kakutani, 1938]. Let K be a compact convex
subset of a topological vector space E. Let F be a commuting family of

continuous affine maps from K into itself. Then F has a common fixed point
p € K; that is, fp = p for each f € F.

Later Kakutani gave a direct proof and several applications.

The Markov-Kakutani theorem was generalized to larger classes of maps
by Day [1961] and others.

More early, Schauder raised, as Problem 54 of The Scottish Book [Mauldin,
ed., 1981}, whether a continuous selfmap of a compact convex subset of any
topological vector space has a fixed point. If the space is Hausdorff lo-
cally convex or if the space has sufficiently many linear functionals, then
Schauder’s conjecture holds. For some particular spaces, it also holds. How-
ever, the problem is not resolved yet for its full generality. For this problem,
see Idzik [1988] and his references.

In the mid-thirties, the Leray-Schauder theory [1934] appeared. It assigns
a degree to certain maps and establishes properties of the degree which lead
to fixed point and domain invariance theorems. This was first done for Ba-
nach spaces, and later developed by Leray [1950], Nagumo [1951], Altman
[1958a,b] and others for locally convex spaces. When the space is Banach,
Granas [1959] obtained a homotopy extension theorem, which yields many
of the useful conclusions of the theory while avoiding the more complicated
notions of the degree. Moreover, Klee [1960] established the theory without
local convexity.

On the other hand, Schaefer [1955a] showed that the problem of solvability
of an equation z = f, for a completely continuous map f on a locally convex
space E, reduces to finding a priori bounds on all possible solutions for the
fanily of equations ¢ = Afz, A € (0,1). This fact is called the Leray-Schauder
alternative by Granas [1993] and its various extensions and modifications
have played a basic role in various applications to nonlinear problems. See
also Park [1994e].

It is often said that the Leray-Schauder theorem in Section 1 can be
obtained in the frame of Leray and Schauder [1934], which seems to be
not directly related to the so-called Leray-Schauder boundary condition.
This condition seems to be originated from Schaefer [1955b] (see B. Fishel,
MR 504#8177) and have been frequently appeared from mid-sixties. It is,
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the present author guesses, first called the Leray-Schauder condition by
Petryshyn [1971]. For the literature on the theory without using degree
theory, see forthcoming works of Park [1995].

Independently to the generalizations of the Brouwer theorem, Nikodym
[1931] and Mazur and Schauder [1936] initiated the abstract approach to
problems in calculus of variations.

Theorem [Mazur-Schauder, 1936]. Let E be a reflexive Banach space and C
a closed convex set in E. Let ¢ be a lower semicontinuous convex and coercive
(that is, |¢(z)| — oo as ||z|| — o0) real function on C. If ¢ is bounded from
below, then at some ¢ € C the function ¢ attains its minimum.

This is a very useful generalization of the classical Bolzano-Weierstrass
theorem and was applied to a number of concrete problems in calculus of
variations by Mazur and Schauder. However, these results were never pub-
lished. See Granas [1981]. Later this theorem is generalized to the variational
inequality problems in the frame of KKM theory. See Park [1991a,d].

Also independently to the above progress, J. von Neumann [1928] obtained
the following minimax theorem, which is one of the fundamental theorems
in the theory of games developed by himself:

Theorem [von Neumann, 1928]. Let f(z,y) be a continuous real-valued
function defind for * € K and y € L, where K and L are arbitrary bounded
closed convex sets in two Euclidean spaces R™ and R". If for every ©o € K
and for every real number a, the set of all y € L such that f(zo,y) < a is
convex, and if for every yy € L and for every real number (3, the set of all
z € K such that f(z,yo) > B is convex, then we have

max min f(z,y) = minmax f(z,y).

This is later extended by himself [1937] to the following intersection the-
orem:

Lemma [von Neumann, 1937]. Let K and L be two compact convex sets
in the Euclidean spaces R™ and R" respectively, and let us consider their
Cartesian product K x L in R™*". Let U and V be two closed subsets of
K x L such that for any z¢ € K the set U,,, of y € L such that (zo,y) € U,
is nonempty, closed and convex and such that for any yo € L the set Vy,,
of all € K such that (z,yo) € V, is nonempty, closed and convex. Under
these assumptions, U and V have a common point.

von Neumann proved this by using a notion of integral in Euclidean spaces
and applied this to the problems of mathematical economics.
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According to Debreu (A commentary on the Kakutani fixed point theorem,
in Collected Works of Kakutani),

“Ironically that Lemma, which, through Kakutani’s Corollary,
had a major influence in particular on economic theory and on
the theory of games, was not required to obtain either one of
the results that von Neumann wanted to establish. The Minimax
theorem, as well as his theorem on optimal balanced growth paths,
can be proved elementary means.”

5. EXTENSIONS TO MULTIFUNCTIONS AND
APPLICATIONS—FORTIES AND FIFTIES

In order to give simple proofs of von Neumann’s Lemma, Kakutani ob-
tained the following generalization of the Brouwer theorem to multifunctions
(set-valued functions):

Theorem [Kakutani, 1941]. If z — ®(z) is an upper semicontinuous point-
to-set mapping of an r-dimensional closed simplex S into the family of closed
convex subset of S, then there exists an zo € S such tha zo € ®(x,).

Equivalently,

Corollary [Kakutani, 1941]. Theorem is also valid even if S is an arbitary
bounded closed convex set in a Euclidean space.

As Kakutani noted, Corollary readily implies von Neumann’s Lemma.
And later Nakaido [1968] noted that those two results are directly equivalent.
According to Debreu (op. cit.) again :

“However the formulation given by Kakutani is far more con-
venient to use, and his proof is distinctly more appealing.

One of the earliest, and most important, applications of the
theorem of Kakutani was made by Nash [1950] in his proof of
the existence of an equilibrium for a finite game. It was followed
by several hundred applications in the theory of games and in
economic theory. In the latter Kakutani’s theorem has been more
than three decades the main tool for proving the existence of an
economic equilibrium (a recent survey by Debreu [1982] quotes
some three hundred fifty instances). Other areas of applications
were Mathematical Programming, Control Theory and the theory
of Differential Equations.”
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Note that the upper semicontinuity of a multifunction in Kakutani’s the-
orem was also extended. Recall that a multifunction F' : X — Y, where X
and Y are topological spaces, is upper semicontinuous (u.s.c.) whenever, for
any z € X and any neighborhood U of Fz, there exists a neighborhood V'
of = satisfying F(V) C U.

In the 1950’s, Kakutani’s theorem was extended to Banach spaces by
Bohnenblust and Karlin [1950] and to locally convex Hausdorff topological
vector spaces by Fan [1952] and Glicksberg [1952]. These extensions were
mainly used to extend von Neumann’s works in the above. Moreover, these
extensions are included in the extensions, due to Eilenberg and Montgomery
[1946] and Begle [1950], of Lefschetz’s theorem to u.s.c. maps of a compact
lc-space into the family of its nonempty compact acyclic subsets.

The first remarkble one of generalizations of the von Neumann theorems

was Nash’s theorem [1951] on equilibrium points of non-cooperative games.
The following is formulated by Ky Fan [1966, Theorem 4] :

Theorem [Nash, 1951]. Let X;,X5,---,Xn be n (> 2) nonempty com-
pact convex sets each in a real Hausdorff topological vector space. Let
fi, f2, -+, fn be n real-valued continuous functions defined on II7_; X;. If
for eacht =1,2,--- ,n and for any fixed point (x1,** ,Ti—1,Ti41, " ,ZTn) €
;2 X;, fi(z1, -+ ,®i=1, %4, Tit1, * ,Tn) IS a quasi-concave function on X;,
then there exists a point (1,2, - ,Tn) € I, X; such that

fi(ila£27"' ’:’En) = %aj%( fi(’x\la"' afii*l’yiaii-i-l)"' ’fn) (1 SZS n)

Further, von Neumann’s minimax theorem was extended for arbitrary
topological vector spaces as follows:

Theorem [Sion, 1958]. Let X,Y be a compact convex set in a topological
vector space. Let f be a real-valued function defined on X x Y. If

(1) for each fixed z € X, f(z,y) is a lower semicontinuous, quasi-convex
function on Y, and
(2) for each fixed y € Y, f(z,y) is an upper semicontinuous, quasi-
concave function on X,

then we have
Min Maxf(z,y) = Max lg/g}f(x, y).
Here, f is lower semicontinuous whenever the set {y € Y : f(z,y) > p} is
open, and quasi-concave whenever {z € X : f(z,y) > p} is convex for each
p € R. Moreover, f is upper semicontinuous whenever {z € X : f(z,y) < p}
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is open, and quasi-conver whenever {y € Y : f(z,y) < p} is convex for each
p€R.

Sion’s proof [1958] was based on the KKM theorem and this seems to be
the first application of the theorem after KKM [1929].

As for the Brouwer theorem, in the mid-sixties, there had been developed
algorithms on constructive processes approximating effectively to the values
of the Kakutani fixed points. For the literature see Section 1.

In closing this section, we quote two stories on the Brouwer and Kakutani
theorems.

In the paper entitled “An intuitionist correction of the fixed-point the-
orem”, Brouwer [1952] denied the existence of a fixed point in his earlier
theorem [1910], and claimed that there can be only e-fixed points for each
€ > 0. Because the Bolzano-Weierstrass theorem is invalid in the intuitionis-
tic mathematics. Note that his theorem in [1910] implies the Brouwer fixed
point theorem as Alexander [1922] showed. Here, we see Brouwer’s fate of
denying one of his great accomplishments of young days because of his own
philosophy.

Comparing the Brouwer and Kakutani theorems, Franklin [1983] quoted
a private survey:

“...96% of all mathematicians can state the Brouwer fixed
point theorem, but only 5% can prove it. Among mathemati-
cal economists, 95% can state it, but only 2% can prove it (and
these are all ex-topologists). --- while 96% of mathematicians
can state the Brouwer fixed-point theorem, only 7% can state the
Kakutani theorem.”

6. ESTABLISHMENT OF THE KKM THEORY
— FROM SIXTIES TO EIGHTIES

A milestone of the history of the KKM theory was erected by Ky Fan
[1961]. He extended the KKM theorem to infinite dimensional spaces and
applied it to coincidence theorems generalizing the Tychonoff fixed point
theorem and a result concerning two continuous maps from a compact convex
set into a uniform space.

Lemma [Fan, 1961]. Let X be an arbitrary set in a topological vector space
Y. Toeachz € X, let a closed set F(z) inY be given such that the following
two conditions are satisfied:

(i) The convex hull of any finite subset {z1,z3, - ,z,} of X is con-
tained in J_, F(z;).
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(i1) F(z) is compact for at least one z € X.

Then (,cx F(z) # 0.

This is usually known as the KKMF theorem.
Fan also obtained the following geometric or section property of convex
sets, which is equivalent to the preceding Lemma.

Lemma [Fan, 1961]. Let X be a compact convex set in a topological vector
space. Let A be a closed subset of X x X with the following properties:

(i) (z,z) € A for every z € X.
(i1) For any fixed y € X, the set {x € X : (z,y) ¢ A} is convex (or
empty).
Then there exists a point yo € X such that X x {yo} C A.

Fan applied this Lemma to give a simple proof of the Tychonoff theorem.
Moreover, Fan [1964] obtained “a theorem concerning sets with convex
sections” and applied it to prove the following results in Fan [1966]:

An intersection theorem (which generalizes the Lemma of von Neu-
mann [1937]).

An analytic formulation (which generalizes the equilibrium theorem
of Nash [1951] and the minimax theorem of Sion [1958]).

A theorem on systems of convex inequalities of Fan [1957].

Extremum problems for matrices.

A theorem of Hardy-Littlewood-Pdlya concerning doubly stochastic
matrices.

A fixed point theorem generalizing Tychonoff [1935] and Iohvidov
[1964].

Extensions of monotone sets.

Invariant vector subspaces.

An analogue of Helly’s intersection theorem for convex sets.

In the same year, Hartman and Stampacchia [1966] introduced the follow-
ing variational inequality:

Lemma [Hartman-Stampacchia, 1966]. Let K be a compact convex subset
in R"® and f : K — R" a cotinuous map. Then there exists ug € K such
that

(f(uo),v —ug) >0 for v € K,
where (-,-) denotes the scalar product in R™.

Using this result, the authors obtained existence and uniqueness theorems
for (weak) uniformly Lipschitz continuous solutions of Dirichlet boundary
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value problems associated with certain nonlinear elliptic differential func-
tional equation.

Later the preceding lemma is known to be equivalent to the Brouwer
theorem. :

The above lemma was extended by Browder [1967] while he was working
to extend the theorems of Schauder and Tychonoff motivated by Halpern’s
work [1965] on fixed point theorems for outward maps:

Theorem [Browder, 1967]. Let E be a locally convex topological vector
space, K a compact convex subset of E, T a continuous mapping of K into
E*. Then there exists an element ug of K such that

(T(uo),u —ug) >0
for allu in K.

Here, E* is the topological dual of E and (,) denotes the pairing between
elements of E* and elements of E. This theorem is later extended and
improved by Park [1988b] and many others by pointing out that the local
convexity is superfluous.

On the other hand, Browder [1968] restated Fan’s geometric lemma [1961]
in the convenient form of a fixed point theorem by means of the Brouwer
theorem and the partition of unity argument. Since then the following is
known as the Fan-Browder fixed point theorem:

Theorem [Browder, 1968]. Let K be a nonempty compact convex subset
of a topological vector space. Let T be a map of K into 2%, where for each
x € K,T(z) is a nonempty convex subset of K. Suppose further that for
eachy in K,T™'(y) = {z € K : y € T(z)} is open in K. Then there exists
xo in K such that xo € T(zo).

Later this is also known to be equivalent to the Brouwer theorem. Browder
[1968] applied his theorem to obtain his variational inequality and new fixed
point theorems. For further developments on generalizations and applications
of the Fan-Browder theorem, we refer to Park [1989a, 1994d)].

Motivated by Browder’s works [1967, 1968] on fixed point theorems, Fan
[1969] deduced the following from his geometric lemma:

Theorem [Fan, 1969]. Let X be a non-empty compact convex set in a
normed vector space E. For any continuous map f : X — E, there ex-
ists a point yo € X such that

lvo = F(uo)ll = Miglle — F(wo).
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(In particular, if f(X) C X, then y, is a fixed point of f.)

Fan also obtained a generalization of this theorem to locally convex Haus-
dorff topological vector spaces. Those are known as best approximation theo-
rems and applied to obtain generalizations of the Brouwer theorem and some
nonseparation theorems on upper demicontinuous (u.d.c.) multifunctions in
Fan [1969].

Moreover, Fan [1972] established a minimax inequality from the KKMF
theorem:

Theorem [Fan, 1972]. Let X be a compact convex set in a Hausdorff topo-
logical vector space. Let f be a real function defined on X x X such that:
(a) For each fixed z € X, f(z,y) is a lower semicontinuous function of y
on X.
(b) For each fixed y € X, f(z,y) is a quasi-concave function of  on X.
Then the minimax inequality

minsup f(z, ) < sup f(z,2)
Y€XzeXx v z€X

holds.
Fan gave applications of his inequality as follows:

A variational inequality (extending Hartman-Stampacchia [1966]
and Browder [1967]).

A geometric formulation of the inequality (equivalent to the Fan-
Browder theorem).

Separation properties of upper demicontinuous multifunctions, co-
incidence and fixed point theorems.

Properties of sets with convex sections (Fan [1966]).

A fundamental existence theorem in potential theory.

Furthermore, Fan [1979, 1984] introduced a KKM theorem with a coer-
civity (or compactness) condition for noncompact convex sets and, from this,
extended many of known results to noncompact cases. We list some main
results as follows:

Generalizations of the KKM theorem for noncompact cases.

Geometric formulations.

Fixed point and coincidence theorems.

Generalized minimax inequality (extending Allen’s variational in-
equality [1977]).
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A matching theorem for open (closed) covers of convex sets.
The 1978 model of the Sperner lemma.

Another matching theorem for closed covers of convex sets.

A generalization of Shapley’s KKM theorem (Shapley [1973]).
Results on sets with convex sections.

A new proof of the Brouwer theorem.

While closing a sequence of lectures delivered at the NATO-ASI at Mon-
treal in 1983, Fan listed various fields in mathematics which have applications
of KKM maps, as follows:

1) Potential theory.

2) Pontrjagin spaces or Bochner spaces in inner product spaces.
3) Operator ideals.

4) Weak compactness of subsets of locally convex topological vector

spaces.

5) Function algebras.

6) Harmonic analysis.

7) Variational inequalities.

8) Free boundary value problems.

9) Convex analysis.

10) Mathematical economics.
11) Game theory.
12) Mathematical statistics.

We may add the following fields to this list: nonlinear functional analy-
sis, approximation theory, optimization theory, fixed point theory, and some
others.

7. GENERALIZED FIXED POINT THEOREMS ON TOPOLOGICAL
VECTOR SPACES—FROM SIXTIES TO NINETIES

From Sixties there have appeared many fixed point theorems generalizing
the Brouwer or Kakutani theorems for single-valued or multi-valued maps
defined on convex subsets of Hausdorff topological vector spaces.

For single-valued continuous maps, Fan [1964] showed that Schauder’s
conjecture is valid for a topological vector space E on which E* separates
points. Halpern [1965] considered new boundary conditions called outward-
ness and, later, inwardness; and obtained fixed point theorems for maps
satisfying those conditions. For a topological vector space E, a compact
convex subset K of E, and a continuous map f : K — E satisfying certain
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inwardness or outwardness, generalizations of the Brouwer theorem were due
to Halpern [1965], Fan [1969], Reich [1972], Sehgal and Singh [1983], and
others whenever E is locally convex; and to Halpern and Bergman [1968],
Kaczynski [1983], Roux and Singh [1989], Sehgal, Singh, and Whitfield [1990]
whenever E* separates points of E. In the sequel, a t.v.s. means a Hausdorff
topological vector space.

Kakutani’s convex-valued u.s.c. multimaps are further extended as fol-
lows: For a subset X of a t.v.s. E, amap F: X — E is called

(i) upper demicontinuous (u.d.c.) if for each £ € X and open half-space
H in E containing F'z, there exists an open neighborhood N of z in X such
that f(N) C H. See Fan [1969].

(i1) upper hemicontinous (u.h.c.) if for each h € E* and for any real «,
the set {z € X : supRe h(Fz) < a} is open in X. See Cornet [1975], Lasry
and Robert [1975], and Park [1993d].

(ii1) generalized u.h.c. if for each p € {Re h : h € E*}, the set {z €
X :supp(Fz) > p(z)} is compactly closed in X. See Glebov [1969], Cellina
[1970], Simons [1986a,b], and Park [1992a,1993d].

For those maps with compact convex domains, the Kakutani theorem was
extended by Browder [1968], Fan {1969, 1972], Glebov [1969], Halpern [1970],
Cellina [1970], Reich [1972, 1978], Cornet [1975], Lasry and Robert [1975],
and Simons [1986a,b] for a locally convex t.v.s. E, and by Granas and Liu
[1986], Park [1988b, 1992a, 1993d] and others for a t.v.s. E on which E*
separates points.

In order to assure the existence of a fixed point of maps f : X — FE or
F: X — E, we need the following;:

(i) Certain continuity of the map like as the generalized u.h.c.

(i1) Certain compactness on X — if X is not compact, then certain com-
pactness or coercivity condition suffices for the existence of fixed points.

(iii) Certain boundary conditions. Until mid-sixties, we had only a few
of such conditions, for example, Rothe [1937], Altman [1955], or the Leray-
Schauder condition.

Halpern [1965] first introduced the outward and, later, inward sets:

Let E be a t.v.s. and X C E. The inward and outward sets of X at
z € E,Ix(z) and Ox(z), are defined as follows:

Ix(z)=z+ Ur(X—:v), Ox(z) =z + Ur(X —z).

>0 r<0
Forpe {Reh:h€ E*} and U,V C E, let

dpy(U, V) =inf{|p(u —v)|:u e U, veV}.
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A map F: X —o F is said to be

(i) tnwardif Fx N Ix(z) # 0 for each z € Bd X.
outward if Fz N Ox(z) # 0 for each z € Bd X.

(i) weakly inward if Fz N Ix(z) #  for each z € Bd X.
weakly outward if Fz N Ox(z) # § for each z € Bd X.

Later Jiang [1988] introduced more general conditions as in Theorem 7.1
below.

For the case the domain X is not compact, for maps F : X — E having
certain continuity, boundary conditions, and certain compactness conditions,
generalizations of the Kakutani theorem were obtained by Fan [1984], Shih
and Tan [1987, 1988], Jiang [1988], Ding and Tan [1992], Park [1992a, 1993d],
and others.

All of the generalizations of the Brouwer and Kakutani theorems men-
tioned above are unified by Park [1992a, 1993d] as follows:

A convez space X is a nonempty convex set with any topology that induces
the Euclidean topology on the convex hulls of its finite subsets. A nonempty
subset L of a convex space X is called a c-compact set if for each finite set
S C X there is a compact convex set Lg C X such that LU S C Ls. Let
[z, L] denote the closed convex hull of {} U L in X, where z € X. See
Lassonde [1983].

Let cc(E) denote the set of nonempty closed convex subsets of a t.v.s. E
and kc(E) the set of nonempty compact convex subsets of E.

The following is given in Park [1992a, 1993d].

Theorem 7.1. Let X be a convex space, L a c-compact subset of X , K a
nonempty compact subset of X, E a t.v.s. containing X as a subset, and F
a map satisfying either

(A) E* separates points of E and F : X — kc(E), or

(B) E is locally convex and F : X — cc(E).

(I) Suppose that for each p € {Re h : h € E*},

(0) plx is continuous on X;
(1) Xp ={z € X :inf p(Fz) < p(z)} is compactly closed in X ;
(2) dp(Fz,Ix(z)) =0 for every z € K NBd X; and
(8) dp(Fz,Ip(z)) =0 forevery z € X \ K.
Then there exists an z € X such that = € Fz.
(IT) Suppose that for each p € {Re h: h € E*},

(0) p|x is continuous on X;
(1) Xp ={z € X : supp(Fz) > p(z)} is compactly closed in X ;
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(2)" dp(Fz,0x(z)) =0 for every € K NBd X; and

(3)" dp(Fz,0L(z)) =0 forevery z € X \ K.

Then there exists an * € X such that x € Fz. Further, if F' is u.h.c., then
F(X)D> X.

The major particular forms of Theorem 7.1 can be adequately summa-
rized by the following enlarged version of the diagrams given in Park [1988b,
1992a). :

In the diagram, the class I stands for that of Euclidean spaces, II for
normed vector spaces, III for locally convex Hausdorff topological vector
spaces, and IV for topological vector spaces having sufficiently many linear
functionals. Moreover, f stands for single-valued maps and F for set-valued
maps; and K stands for a nonempty compact convex subset of a space E, and
X for a nonempty convex subset of E satisfying certain coercivity conditions
with respect to F : X — F with certain boundary conditions.

In fact, Theorem 7.1 contains all of the fixed point theorems in the dia-
gram.

For non-convex-valued multimaps, recently, the author established the
fixed point theory for “admissible” maps in very general classes of multifunc-
tions as follows:

A map F: X — Y is compact provided F(X) is relatively compact in a
topological space Y.

In a t.v.s. E, any convex hulls of its finite subsets will be called polytopes.

Given a class X of maps, X(X,Y) denotes the set of maps F : X — Y
belonging to X, and X, the set of finite composites of maps in X.

A class 2 of maps is defined by the following properties:

(i) 2 contains the class C of (sngle-valued) continuous functions;
(ii) each F' € 2, is u.s.c. and compact-valued; and

(iii) for any polytope P, F' € A (P, P) has a fixed point.

Examples of 2 are C, the Kakutani maps K (with convex values), the
Aronszajn maps M (with R;s values), the acyclic maps V (with acyclic values),
the O’Neill maps N (with values consisting of one or m acyclic components,
where m is fixed), the approachable maps A in a t.v.s., admissible maps in
the sense of Gérniewicz, permissible maps of Dzedzej, and many others.

We indroduce two more classes:

F € 2A7(X,Y) <= for any o-compact subset K of X, there is an
F € A.(K,Y) such that Fz C Fz for each z € K.

F € A5(X,Y) <= for any compact subset K of X, there is an F e
A (K,Y) such that Fz C Fz for each z € K.
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E f:K— K F:K —2K
I Brouwer 1912 Kakutani 1941
Il Schauder 1927, 1930 | Bohnenblust
and Karlin 1950
I1I] Tychonoff 1935 Fan 1952
Glicksberg 1952
IV| Fan 1964 Granas and Liu 1986
f:K— FE F:K —2F
Il Knaster, Kuratowski
and Mazurkiewicz 1929
Il Rothe 1937
Halpern 1965 Browder 1968
Fan 1969 Fan 1969, 1972
Reich 1972 Glebov 1969
Sehgal and Singh 1983 Halpern 1970
I11 Cellina 1970
Reich 1972, 1978
Cornet 1975
Lasry and Robert 1975
Simons 1986
Halpern and Bergman 1968 Granas and Liu 1986
IVl Kaczynski 1983 Park 1988, 1991
Roux and Singh 1989
Sehgal, Singh,
and Whitfield 1990
F: X —2F
IT Ding and Tan 1992
Fan 1984
11 Shih and Tan 1987, 1988
Jiang 1988
V| Park 1992 1993
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Note that A C A, C A7 C AX. Any class belonging to Y is called
admissible. Those classes are all due to the author in his earlier works.
Examples of A7 are K7 due to Lassonde [1991] and VI due to Park, Singh,
and Watson [1994]. Note that K7 contains classes K, the Fan-Browder type
maps, T in Lassonde [1991], and many others. For details, see Park [1993d,
1994d] and Park and Kim [1993g].

Moreover, the approximable maps recently due to Ben-El-Mechaiekh and
Idzik [1994] belong to A%. It was known that any compact-valued closed map
defined on a convex subset of a locally convex t.v.s. is approximable when-
ver its values are all convex, contractible, decomposable, or co-proximally
connected.

Theorem 7.2. Let X be a convex subset of a locally convex t.v.s. E. If
T € A(X, X) is compact, then T has a fixed point.

This is recently due to the author [1993e, 1994d] and has a large number of
particular forms due to Schauder [1930], Mazur [1938], Bohnenblust and Kar-
lin {1950], Hukuhara [1950], Singbal [1962], Powers [1970], Rhee [1972], Him-
melberg [1972], Ben-El-Mechaiekh, Deguire, and Granas [1982a,b,c], Las-
sonde [1983, 1990], Ben-El-Mechaiekh et al. [1990, 1991], Park [1992b], and
Park, Singh, and Watson [1994f].

For non-selfmaps, we have the following in Park [1993d]:

Theorem 7.3. Let X be a compact convex subset of a t.v.s. E on which E*
separates points. If ' € A%(X, E) satisfies Fx C I x(z) for each = € Bd X,
then F has a fixed point.

This also has a large number of particular forms.
~ There have been another way of extending compact maps in certain situa-
tions using (generalizations of ) the Kuratowski measure of noncompactness.
In this direction we have also a very general theorem.

Let E be a t.v.s. and C a lattice with a minimal element, which is denoted
by 0. A function ® : 2F — C is called a measure of noncompactness on E
provided that the following conditions hold for any X,Y € 2F:

(1) ®(X) = 0 if and only if X is relatively compact;
(2) ®(c6 X) = &(X), where €6 denotes the convex closure of X; and
(3) (X UY)=max{®(X),®(Y)}.
The above notion is a generalization of the set-measure v and the ball-
measure X of noncompactness defined either in terms of a family of seminorms
or a norm. For details, see Petryshyn and Fitzpatrick [1974a,b].
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If ® is a measure of noncompactneson E,D C E;and T : D — E, then T
is called ®-condensing provided that if X C D and &(X) < &(T(X)), then
X is relatively compact; that is, ®(X) = 0.

Every compact map is ®-condensing.

The following is recently due to Park [1995]:

Theorem 7.4. Let D be a closed convex subset of a t.v.s. E on which E*
separates points, and ® a measure of noncompactness on E. If T € %(D, D)
is ®-condensing, then T has a fixed point.

This theorem extends earlier results of Darbo [1955], Sadovskii [1967],
LifSic and Sadovskii [1968], Himmelberg, Porter, and Van Vleck [1969], Danes
[1970], Furi and Vignoli [1970], Nussbaum [1971], Reinermann [1971], Reich
(1971, 1972, 1973], Petryshyn and Fitzpatrick [1974a,b], Tarafdar and Vyborny
[1975], Su and Sehgal [1975], and Ewert [1987].

Let C,D be subsets of a t.v.s. E, T € A,(C, D), and M be the class of
nonempty compact subsets of D consisting of the functional values of maps
in /. We say that T satisfies the Schoneberg condition if

(S6) tM € M for t € [0,1] and M € M
holds. See Schoneberg [1978]. For example, M can be the class of convex
sets for & = K, acyclic sets for A =V, Rs sets {X =NX; : X1 C X, X; €
AR compact,i € N} for A = M, and many others.

For U C D, let ClpU denote the closure of U in D and BdpU the bound-
ary of U in D. On the other hand, = and Bd will denote the closure and
boundary in the whole space E.

Now we give some new fixed point theorems due to Park [1995] for maps
satisfying the so-called Leray-Schauder condition:

Theorem 7.5. Let D be a convex subset of a locally convex t.v.s., 0 €
D,U C D a neighborhood of D (inD), and F € A.(ClpU, D) a compact
map satisfying (S6). If

(LS) FyNn{ry:r >1} =0 for ally € Bd U, -
then the set of fixed points of F in ClpU is nonempty and compact.

This improves, unifies, and extends results of Brouwer [1912], Knaster, Ku-
ratowski, and Mazurkiewicz [1929], Leray and Schauder [1934], Rothe [1937],
Eilenberg and Montgomery [1946], Krasnoselskii [1953], Altman [1955], Ya-
mamuro [1963], Shinbrot [1964], Kaniel [1965], Powers [1970], Ma [1972],
Potter [1972], Martelli [1973], Furi and Martelli [1974], Su and Sehgal [1975],
Fitzpatrick and Petryshyn [1975], Hahn [1976], Reich [1972, 1976, 1979],
Goérniewicz, Granas, and Kryszewski [1988], Kaczynski and Wu [1992], and
Granas [1959, 1976, 1993].
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For ®-condensing maps, we have the following in Park [1995]:

Theorem 7.6. Let D be a closed convex subset of a t.v.s. E on which
E* separates points, 0 € D,U C D a neighborhood of 0 (in D), and F €
A:(ClpU, D) a ®-condensing map satisfying (S6). If the condition (LS) holds,
then the set of fixed points of F in ClpU is nonempty and compact.

This includes Petryshyn [1971], Reich [1971, 1976, 1979], Gatica and Kirk
[1974a,b], Petryshyn and Fitzpatrick [1974a,b, 1975], Su and Sehgal [1975],
Martelli {1973, 1975], Lin [1988], and many others.

Those Leray-Schauder type theorems due to Park [1995] are applied to

(i) the so-called Leray-Schauder principles of Schoneberg [1978], Fitz-
patrick and Petryshyn [1974], Potter [1972], Browder [1966], and Leray and
Schauder [1934];

(ii) the Schaefer type theorems due to Schaefer [1955a,b], Reich [1971,
1972], Seda [1989], Martelli and Vignoli [1972], Martelli [1975], Gérniewicz,
Granas, and Kryszewski [1988], and Granas [1993]; and ’

(iii) the Birkhoff-Kellogg type theorems due to Birkhoff and Kellogg [1922],
Yamamuro [1963], Martelli [1975], and Fournier and Martelli [1993].

In the last decade, there have been advancements in the KKM theory
also. Recently, Park [1994d] obtained far-reaching generalizations of the
KKM theorem, the Fan-Browder theorem, a matching theorem, an analytic
alternative, the Ky Fan minimax inequalities, section properties of convex
spaces, and other fundamental theorems in the theory from coincidence the-
orems on composites of admissible maps. These new results extend, improve,
and unify main theorems in more than one hundred published works.

On the other hand, the concept of convex sets in a t.v.s. was extended
to convex spaces by Lassonde [1983], and further to H-spaces by Horvath
[1983, 1984, 1987, 1990, 1991]. A number of other authors also extended the
concept of convexity for various purposes. Recently, Park and Kim [1993g,
1995a] unified those concepts and introduced generalized convex spaces or
G-convex spaces. For those spaces, the foundations of the KKM theory with
respect to admissible maps were established by Park and Kim [1995b], and
some general fixed point theorems were obtained by Kim [1995].
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