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Preface

In phisics, especially in classical mechanics, the time evolution of a phisical
system is often described by an autonomous ordinary differential equation. If
the degree of freedom of the system is finite, a state of the system is indicated
by a point in a finite dimensional manifold M; its time evolution is described
by a flow ¢ = {¢'} on M. If a state at given time is indicated by a point z,
then ¢'(z) indicates the state after the time ¢. For example a state of a point
mass moving in R? is indicated by (position, velocity), i. e. a point in R® and
the flow is given by the Newton equation.

Dynamical system is a branch of mathematics which studies the long time
behaviour of an orbit of the flow. For example, we are interested in the limit
of ¢*(z) as ¢ tends to the infinity; We aim to decide how many periodic orbits
the flow has and what is their natures, etc., etc., - - -

Instead of considering continuous time, sometimes we are lead to deal with
discrete time. For example, in celestial mechanics if we assume that the sun is
always fixed and that the earth is rotating in an ellipsoidal orbit around the
sun periodically, of period tg, then the equation which describes the motion of
the moon is a time dependent ordinary differential equation, periodic of period
to. Then it is natural to consider the state at discrete time 0, to, 2tq, 3tg, 4tg, - - -

In this case dynamics are described not by a flow but by a diffeomorphism,
say f. Again a point z of a manifold N indicates a ‘state’ of a system, and
the state after the unit time is indicated by f(z). Here we are assuming that
the state is decided only by the previous state. It may seem that this is a
rather strong hypothesis and is only applicable to a limited situation. But for
example if the succesive states zo , z; and z, determine the next state zs,
then instead of the manifold N, consider N x N x N. Then the time change
(zo,21.22) — (z1.22,23) is given by a diffeomorphism of N x N x N. In this
way by studying diffeomorphisms of higher dimensional manifolds we can deal
with fairly wide range of dynamics.

For the most part flows and diffeomerphisms are studied in a parallel way.
But always some complications are needed for the case of flows. So we deal
with diffeomorphisms first and then come to the flow case.

A diffeomorphism f on a compact manifold IV is called Anosov if the tan-
gent budle T'N splits into the direct sum of two continuous subbundles E*
and F° both invariant by the derivative Df of f in such a way that Df is
expanding in the direction of E* and is contracting along E°. There is also
a concept of Anosov flows. A nonsingular flow on a compact manifold M is
called Anosov if the normal bundle of the flow has a similar splitting.



Being an Anosov system is a rather strong condition. Therefore it displays
striking properties. On the other hand, examples of Anosov flows are rather
abundant. Especially in dimension three we have many interesting examples.

The purpose of this text is to expose first of all important properties of
Anosov systems. For the introductory nature of this preface, let us confine
ourself to the case of diffeomorphisms. .

The first important result about an Anosov diffeomorphism is that the
subbundle E* and E°® are integrable. A complete proof of this fact needs
involvement in a wider range of mathematics, and the proof itself is lengthy,
though not uninteresting. So we only give a short geometric proof which
assumes that E* is a C'' subbundle. The foliations W* and W?* defined by E“
and E° are respectively called unstable and stable foliations.

A diffeomorphism f is called structurally stable if any small perturbation
of f (in the C! topology) has the same topological structure as f. In Section
1, among other things we show the following theorem due to Anosov [1].

Theorem 0.1 An Anosov diffeomorphism is structurally stable.

The proof of this theorem is rather simple, once we know the existence of the
foliations W* and W*. The structural stability theorem also holds for Anosov
flows. This is shown in Section 2.

As Anosov diffeomorphism f is said to be transitive if f admits a dense
orbit. We shall prove a theorem in Section 1 which include the following.

Theorem 0.2 An Anosov diffeomorphism is transitive if and only if one of
the foliation W* and W* has the property that all the leaves are dense.

So far no example of nontransitive Anosov diffeomorphisms are known.

We have a similar theorem for flows. Examples of nontransitive Anosov
flows are known, e. g. on 3-manifolds.

An Anosov diffeomorphism is said to be of codimension one if either one
of the foliations W* or W? is of codimension one. There are parallel notions
for flows. The later sections are concentrated (except Section 4) to the study
of codimension one Anosov flows.

In Section 3, we prove the following theorem, originally due to A. Verjovsky
[49].

Theorem 0.3 A codimension one Anosov flow on a manifold of dimension
> 4 s transitive.

i1



The proof use some elementary aspect of theory of codimension one foliations,
which has been very well developed.

The purpose of later sections is to give a complete proof of the following
theorem, formerly known as the Verjovsky conjecture.

Theorem 0.4 A codimension one Anosov flow on a manifold with solvable
fundamental group is topologically conjugate to the suspension of a hyperbolic
automorphism of the torus.

It was already known by S. Newhouse [34] that any codimension one Anosov
diffeomorphism is topologically conjugate to a hyperbolic automorphism of the
torus. Thus the proof of the Verjovsky conjecture is complete once we show
that the flow has a (global) cross section.

A homological condition for a flow to admit a cross section is known by
Schwartzman [43]. Section 4 is devoted to the proof of his criterion. '

Now in order to show the Verjovsky conjecture, the key step is the study
of codimension one foliations. We establish the following theorem in Section

5.

Theorem 0.5 Any codimension one foliation F on a manifold with solvable
fundamental group is topologically conjugate to a transversely affine foliation,
provided all the leaves are dense and any leaf holonomy is either trivial or has
an tsolated fized point.

Using this theorem, we establish the Verjovsky conjecture in Section 6. A
Markov partition for an Anosov flow plays an essential role there. This is
prepared in Sections 1 and 2.

These notes are based upon the lectures that the author gave at Global
Analysis Research Center, Seoul National University during the period Octo-
ber 31 ~ November 4, 1994. The author wants to express his gratitude to
GARC for the invitation. Thanks are also due to professors there, especially
to Hyuk Kim for their warm hospitality. The author had pleasant time in
giving lectures, because of keen interest of the students. He thanks them.

Shigenori Matsumoto
Department of Mathematics, College of Science and Technology,
Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo, Japan
E-mail matsumo@cst.nihon-u.ac.jp
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Anosov diffeomorphisms

In 1.1, we study the local behaviour of a diffeomorphism f of a
manifold N, around a fixed point z. We consider the case where the
derivative D f, is hyperbolic i. e. has no eigenvalues of mudulus one.
In this case the tangent space T, N splits into the direct sum of two
subspaces E} and E?, both invariant by Df,. Df, is expanding
along I} and contracting along E?. This strong dynamics forces f
itself to behave like the derivative Df, in a small neighbourhood
of z. Especially there exists a one-to-one immersed copy of RY,
denoted by W, which is invariant by f and tangent to E¥ at z.
W} is also characterized as

We={yeN|f(y)—z(n—o0)}

W is called the unstable manifold of z. Likewise the stable man-
ifold is defined.

Next in 1.2 we consider a diffeomorphism f which is Ayperbolic
on the whole manifold, i. e. admits a splitting of the tangent bundle
into the direct sum of the two subbundles E* and E*, both invariant
by Df, and Df is expanding along E* and contracting along E*.
Such a diffeomorphism is called an Anosov diffeomorphism.

The main purpose of this section is to study the properties of
Anosov diffeomorphisms. We shall expose in 1.3 that the subbun-
dles E* and E° is integrable and give birth to a foliation W* and
W?. They are called the unstable and stable foliation of f. The
leaf W3 of W* through a point z is characterized as

W ={y [ d(f™(2), f"(y)) — 0}.

In 1.4 we shall show that an Anosov diffeomorohism f is topo-
logically stable, i. e. any nearby diffeomorphism in the C* topology
is topologically the same as f.

f is called transitive if it admits a dense orbit. We shall raise
in 1.5 several conditions which are equivalent to the transitiveness.
For example, f is transitive if and only if all the leaves of W* are
dense. This fact will play an important role in a later section.

Finally in 1.6 we expose a Markov partition, which associate
Anosov diffeomorphisms to symbolic dynamics.



1.1 Local theory of diffeomorphisms

Let N be a smooth manifold of dimension n and let f be a C" diffeomorphism
of N (r > 1). For a positive integer n we denote by f™ the n-ple iterate of f,
1. e.,
ff=fofo--0of.

Also , f° stands for the identity and for —n we let f=™ = (f~1)".

A point z of N is called a periodic point of period p > 0 if fP(z) = z, and
a fized point if p = 1. The derivative at =, Df? is a linear transformation of
the tangent space T, N which approximates f? around z. But for example if
D f? = Id, then the dynamics of D fj and f? are quite different in general. We
shall consider an opposite extremal case.

Definition 1.1 A periodic point z of f : N — N is called hyperbolic if the
modulus of any eigenvalue of D f? is not 1.

Let = be a hyperbolic fixed point, for simplicity. Let U be a neighbourhood
of z and let A : U — U C R" be a coordinate chart around z such that
h(z) = 0. Choose a neighbourhood V of z such that f(V) C U. Then instead
of the map f : V — U, we focus our attention on the map f = Afh~'. fis a
diffeomorphism from V = (V) into R".

Of course 0 is a hyperbolic fixed point of f. Let E¥ (resp. E?) be the sum
of the eigenspaces associated to eigenvalues of moduli greater (resp. less) than

e!. Then R" is the direct sum of E¥ and Ej, and the both subspaces are
invariant by Df,. In what follows we consider the case where 0 < u < n.
For [ > 0, denote by EJ(I) (¢ = u,s) the closed metric ball in EJ of radius .
Passing to a subset if necessary, one may assume that V = E¥(1) x E3(I), that
7' is also defined on V.

Let Wg(1) (resp. W§(I)) be the set of points v such that 7_k(v) € V (resp.
7k(v) € V) for any k > 0. The following lemma is immediate from the
definition.

Lemma 1.2 F ' (resp. [) maps WE(I) (resp. Wg(1)) into itself.

Now we have the following theorem.

1The letters u and s stand for ‘unstable’ and ‘stable’, but at the same time they indicate
the dimensions.



Theorem 1.3 If [ is small enough, Wg(l) (0 = u,s) is a C" submanifold of
V, tangent to E§ at 0.

Let us give a sketch of the proof. Notice that if / is small enough, the
dynamics of f is similar to that of Df,. Df, streches along E§ direction and
contracts along Ef directin.

We only consider Wy'. It should be the graph of some C™ map from E¥(1) to
E3(1) whose derivative is very small everywhere. So we will consider a suitable
space of maps from Eg(I) to E§(l), and construct some transformation on it,
in such a way that its fixed point is associated to W¥(I). We shall use a fixed
point theorem. Thus the space should be complete.

Precisely let £ be the space of Lipschitz maps w from Eg(I) to E3(I) with
Lipschitz constant < 1 such that w(0) = 0, endowed with the supremum norm.
L is a compact space. For w € £, let G(w) C V be its graph.

Now define a transformation

I':£-L

by B
G(L(w)) = f(Gw))NV.

If f is sufficiently near to its derivative Df,, then one can show that I' is a
contraction®. Now for any w € L, the sequence w, I'(w),'?(w), - - - is a Cauchy
sequence. Hence it has a limit, say wo. By the continuity of I, wq is a fixed
point of I'. Clearly it is unique. It is not difficult to prove that the graph of
wq coincides with Wg'(1). This shows that W¥(() is a Lipschitz submanifold.

In order to show that Wg({) is a C''-submanifold, we consider the unit ball
B of the Banach space of the bounded continuous maps from E¥(1) to the space
of s by u matrices. We construct a suitable transformation of £ x B from f
and its derivative, and seek for a fixed point of the transformation.

Finally the proof that W (/) is a C” submanifold needs more complicated
argument. See [27] or [29] for details. But since f strechs W¥(l), it is rather
natural to expect that W§(!) is sufficiently smooth.

Now let us return to the hyperbolic fixed point z € N of f.

Definition 1.4 The unstable manifold W* of z is the set of point y such that
f~™(y) — x as n — oo. Replacing —n by n, we also define the stable manifold

2I. e. a Lipschitz map of Lipschitz constant < 1.



Corollary 1.5 (Unstable Manifold Theorem) W* is a one to one im-
mersed copy of R", passing through = and tangent to E* = Dh'(EY).

Exercise 1.6 Give a proof of the above corollary by showing that W*(z) coin-
cides with the union of the increasing sequence { f*(W2(1)) }nyo, where W2(I) =
R=Y(WE(D).

The set W} (resp. W;) is called the unstable (resp. stable) manifold of z.

1.2 Definitions and fundamental properties

Let N be a closed smooth manifold of arbitrary dimension with a fixed Rie-
mannian metric, and let f be a C* diffeomorphism of N.

Definition 1.7 f is called an Anosov diffeomorphism if there exists a contin-
uous splitting of the tangent bundle TN = E* @ E* such that

1. Both E* and E° are invariant by the derivative D f,

2. There exist constants C > 0 and 0 < A < 1 such that

D) < CA™lol| v e B n>0 1)
IDf(@)|| < CA"jo]| ve€ E* n>0 (2)

Of course (1) means that the vectors in E* shrinks exponentially fast in the
positive time direction (to the future), and (2) indicates the expontial decay
of vectors in E* to the past.

Notice that the above definition is independent of the choice of the Rie-
mannian metric. ‘

Clearly we have 0 < u,s < n. For if, i. g. v = 0, then f™ for sufficiently
large n > 0 is a contraction, and cannot be a diffeomorphism of a compact
manifold.

At first sight, Definition 1.7 looks very strong, for it postulates a D f-
invariant decomposition of the tangent bundle. However this is not the case.
There is an equivalent definition in which decomposition of the tangent bundle
is not used. In order to expose it, we start with the following easy facts.

If we replace v by Df"v in (1), we get the following equation which is
equivalent to (1).

IDf™(v)|| = C7'A"|jv|| veE ES n>0. (3)



Likewise (2) is equivalent to the following equation.
IDf*)|| > CT'A™"|]v|| ve€ E* n>0. (4)

Equation (3) indicates the exponential growth of vectors in E* to the past.
Frequent use will be made of the following convenient lemma.

Lemma 1.8 Let f be an Anosov diffeomorphism. Then there exists a Rie-
mannian metric for which we have

IDFI < loll for veE? (5)
IDF@I > ol for ve E (6)

Proof Start with any Riemannian metric, and choose n > 0 so that || D f(v)]|
< ||lv|| for any v € E*. Define a new metric ||| - ||| on E* by

Il = lloll + 1D F @) + - - + 1 DF (w)lI.

Do the same thing for E* and take the orthogonal sum of the both. Clearly
this new metric suffices for our purpose. O

In fact it is possible to use the condition of Lemma 1.8 for the definition of
Anosov diffeomorphisms. However most authors prefer Definition 1.7, which
1s invariant of the choice of the Riemannian metric.

For a while we use the metric of Lemma 1.8. Let us consider a small cone
neighbourhood C? of E? in TN (0 = u, s). Precisely, C° is the set of vectors
which form angles less than some small number with E7. Then clearly the
vectors v € C* satisfy also the conditon (4), paying the cost of changing the
constants C' and A. Notice that they never satisfy (2). Likewise vectors in C*
satisfy the condition (3). Also notice that C* are mapped into itself by D f,
since we have chosen the metric of Lemma 1.8. The following proposition says
that this situation is enough for f to be an Anosov diffeomorphism.

Proposition 1.9 A diffeomorphism f is Anosov if and only if the following
condition is satisfied; There exist a continuous splitting TN = E* @ E°® and a
cone neighbourhood C° of E° (0 = u,s) meeting at zero vectors such that

1. Df maps the closure of C* into C*, and Df~' maps the closure of C*
into C°.

2. We have



IDf"()|| > C'A™|lv]] velC* n>0, (7)
|Df*(v)]| > C'A ]| velC* n>0. - (8)

Notice that in the above proposition, the condition of the invariance of the
subbundles E° is repaced by a priori weeker condition of the invariance in one
direction of the cone neighbourhoods.

Exercise 1.10 Give a proof of Proposition 1.9.

An important corollary of Proposition 1.9 is the openness of Anosov dif-
feomorphisms. Let us denote by Diff' (V) the space of C! diffeomorphisms,
equipped with the C?* topology.

Corollary 1.11 The set of Anosov diffeomorphisms A is an open subset of
Diff'(N).

Of course, it is not true that A is nonempty for any manifold N. On the
contrary, the manifolds which admit Anosov diffeomorphisms are rather rare.
But they exist! Let us give examples.

Example 1.12 Denote by SL(n,Z) the group of unimodular® integral matri-
ces. A € SL(n,Z) is called hyperbolic if its arbitrary eigenvalue has modulus
different from 1.

Denote by E¢ (resp. Eg) the sum of the generalized eigenspace correspond-
ing to the eigenvalues of moduli greater (resp. less) than one. Then clearly
ES (0 = u,s) is invariant by A, R = E§ ® £, and there exist C' > 0 and
0 < A < 1 such that

1A ()| < CA\jv|l, Vo€ ES, ¥Yn>0 (9)
AT ()] < CX*|lo]|, Vve Eg, Yn>0. (10)

Thus A : R* — R" is an Anosov diffeomorphism, but it is not so much
interesting, since R™ is an open manifold.

However since A is unimodular and integral, A defines a diffeomorphism,
also called A, of the n- torus 7" = R"/Z". The above spliting R" = Ej @ £
gives rise to a splitting of the tangent bundle of 7™, and it is easy to show that
A is an Anosov diffeomorphism.

The simplest example of hyperbolic toral automorphisms is A = [ ? 1 ]

3The determinant is 1.



1.3 Stable Foliation

Anosov diffeomorphisms are always accompanied with two foliations, called
stable and unstable foliations. The study of these foliations is very important
for the understanding of Anosov diffeomorphisms.

We start this section with the definition of foliations. For general theory of
foliations, see [9], [26] and [47]. Let N be a closed manifold of dimension n. As
usual the letter r which indicates the regularity class may be 0 (continuous),
any positive integer, oo, or w (real analytic).

Definition 1.13 A C” (r > 0) codimension g (dimension p) foliation F of N
is a decomposition of N into one-to-one immersed submanifolds of dimension
p =n — q, called leaves with the following properties.

1. There exists an open covering {U;} and for each i a C" submersion f; :
U; — R7 such that the inverse image of each point is contained in some

leaf.

2. For any U; and U; which intersect, there exists a C” diffeomorphism
Gij - fj(Ui n UJ) — fZ(U, n Uj) such that f; = gijfj on U;N Uj.

Precisely, F denotes the family of leaves. Thus F' € F means that F is a
leaf of F.

Let us raise some examples of foliations.

Example 1.14 Let ¢ be a nonsingular* flow ¢ on N. Then the decomposition
of N into orbits of ¢ is a dimension 1 foliation. (We just think of the orbits,
and forget about the time parametrization.)

Example 1.15 Let f : N — M be a locally trivial bundle map. Then the
decomposition of N into the fibers of f is a foliation. Such a foliation is called
a bundle foliation.

Example 1.16 Consider the n-torus T™. A system of linear equations

(1121 + @12Z2 + -+ - + a1,T, = const.
a1 + axery + - + ag,x, = const.
q1T1 + Ag2T2 + +++ + AgnT, = const.

4“Nonsingular” means that no orbit is a point



defines a codimension ¢ foliations on R™ by parallel affine subspaces, provided
the coefficient vectors are linearly independent. An affine translation maps a
leaf onto a leaf. Therefore this system yields a foliation on 7™, called a linear
foliation.

Exercise 1.17 For n = 2 and q = 1, all the leaves are circles if a1 and aqy
are rationally dependent. Also all the leaves are dense in T? if ay; and ay5 are
rationally independent.

Exercise 1.18 Let V be the subspace of R™ defined by

a1171 + a2 + -+ appz, = 0
a1+ aze+ -+ agz, = 0
aq121 + Aq2T2 +--+ AgnTn = 0.

Let r be the rank of the abelian group V NZ". Then all the leaves are diffeo-
morphic to T™ x R*™".

Exercise 1.19 Let W be the linear subspace of R™ generated by vectors
((111, a1z, - ,aln), (021, QAg22," - ,G2n), R (aql, Qg2 " 7aqn)-

Let s be the rank of W NZ™. Then the closure of an arbitrary leaf is diffeo-
morphic to T °.

Example 1.20 Consider D? x R. Denote the polar coordinates of D? by
(r,0), and the coordinates of R by z. Then the equation ~

defines a foliation on the interior of D? x R. Letting the boundary to be a leaf,
this gives birth to a foliation on D? x R. A translation along R maps a leaf
onto a leaf. Therefore, it defines a foliation of the solid torus D? x S, called
the Reeb component. Now since 3-sphere is obtained by glueing two solid tori
along their boundaries, we obtain a codimension one foliation on S3. This is

called the Reeb foliation.

Now for a diffeomorphism, there is a construction to define a flow from it,
called suspension. This is generalized to foliations as follows.



Example 1.21 Let M be a closed manifold with fundamental group I'. T acts
on the universal covering space M as the deck transformations. Independently,
suppose that the group I' acts on a closed manifold P. Consider the diagonal
action of I' on the product manifold M x P. This action is free, properly
discontinuous, and preserves the trivial foliation G = {M x {*}}. Therefore
one obtains a foliation F on the quotient manifold N = M xr P. Now the
canonical projection of M x P onto M is of course equivariant with the actions
of I, and therefore induces a submersion f: N — M. This is a locally trivial
bundle map with fiber diffeomorphic to P. Now the foliation F is transverse
to the fibers.

A bundle structure is called a foliated bundle if it is equipped with a foliation
tranverse to the fibers and of complementary dimension. It is known that
conversely any foliated bundle is constructed in the above way.

When M is S*, thus I is infinitely cyclic, and the action on P is generated
by a diffeomorphism ¢g : P — P, the 1-dimensional foliation thus obtained is
the so called suspension of g.

Another typical example is the following. Let I' be a Fuchsian group such
that the quotient of the upper half plane H? by I is a Riemann surface ¥ of
genus g > 1. Consider the action of I' on the circle at infinity S!.. Then the
manifold N = H? xp S is the unit tangent bundle of ¥ and the foliation is
the so called stable foliation of the geodesic flow. This will be explained in
more detail in Section 2.

Consider a C" dimension p foliation F. At each point z € N, the tangent
space of the leaf through z is a subspace of the tangent space T,N. They
define a C” subbundle of T'N of fiber dimension p, called the tangent bundle
of F and denoted by T'F.

Conversely it is not always true that a subbundle F of T'N is the tangent
bundle of a foliation. We call E integrable if it is the tangent bundle of a
foliation. Recall the following well-known fact.

Proposition 1.22 (Frobenius) A C' subbundle E is integrable if and only
if for any vector fields X and Y tangent to E, the Lie bracket [X,Y] is also
tangent to K.

Now we have finished preparations in foliation theory. As before, let f be
an Anosov diffeomorphism of a compact manifold N, with a splitting of the
tangent bundle TN = E*@ E°. Let us state an important theorem associating
foliations to Anosov diffeomorphisms.

Theorem 1.23 E° is integrable.



All the complete proofs of this theorem, as far as the author knows, are
rather lengthy and need involvements in fields of mathematics wider than
intended for this textbook.

The outline of the proof found in [27] is as follows. Consider the Banach
manifold A of all the maps® from N into N, and a transformation f, of N/
defined by ‘

fui(h)=fohof™ VheN.

Then the identity : € AN is a hyperbolic fixed point of f.. Now apply the
Banach space version of the unstable manifold theorem (Corollary 1.5) to this
situation. Then we get that the unstable manifold W} of the inclusion is a
one-to-one immersed C” Banach submanifold. For any z € N define the subset
W2 of N to be the set of y such that y = v(z) for some v € W}*. Then W}
(Vz € N) defines a foliation whose tangent bundle is £*.

The proof in [1] is less formal, but is lengthy. This is rather flustrating
since the integrability of £ seems to be a natural phenomenum caused by the
streching-contracting property of Anosov diffeomorphisms.

Let us give a shorter proof based upon geometric observations, under the
extra condition that the splitting TN = E*@® E* is C*. Let us denote by T'(E?)
the space of C! cross sections of E7, that is, a vector field tangent to E?. For
any vector field X of N, denote the decomposition of X by

X =X"4+X°  where X° € FE°.

Also denote by || X|| the supremum norm of X. Now let us try to show that
E* is integrable. Take arbitrary two vector fields X and Y tangent to E™.
Clearly we have f.[X,Y] = [f.X, f.Y] and (f.X)* = fu(X)®. Therefore for

large n > 0, we have
(X, Y] = A X LY.

Now fo™ shrinks the vectors in E*. Therefore the vector fields f;"X and
fo™Y are very small in norm, and also fI shrinks the vector [f "X, f7"Y]*
which is tangent to E°.

It seems that this observation yields a simple proof. But taking a bracket
is a kind of differentiation, and it is not true in general that the bracket of two
small vector fields is small. So we need a second effort.

Let Xi,---,X, be a set of vetor fields tangent to E* such that at any

point x € N, the vectors Xy, - -, X, generate E*. Using a partition of unity,

Snot necessarily continuous
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one can easily find such vector fields. Also one can show that any vector field
tangent to £* can be represented as a linear combination of X;’s, with function
coefficients. However we need a bit more. Denote by C*(N) the space of C*
functions of N. The supremum norm is denoted by |¢| for ¢ € C*(N). The
following easy observation will be useful.

There exists a constant a > 0 such that for any Y € T(E"), we
have ‘

Y = E¢iXi7 where ¢; € C'(N) and Z!¢Z| <aq|Y].

Now for any Y, Z € T'(E¥), let us show that [Y,Z]* = 0. Choose n > 0
arbitrarily. Then by the above observation we have the following representa-
tions.

J7Y =Y ¢iXi, where ¢ € CY(N) and 3|4 < all SV < aCN'[Y ],
f777 = X, where ;€ CHN) and X 1| < allf772)] < aCX"| 2.
J J
That is,
Y = > ¢iflXi, where ¢ =¢;of",
7z = Z;{)_jffXj, where ;= 1, 0 f™.
J

Now we have

Y, 2]

Z%ffxi(%)fij — i fr X;(6:) f1 X
+ Zgﬂj[fin, e X;).

Therefore L
¥, 21 = Y 6, 71X X
1]

Now choose a constant b > 0 such that ||[X;, X;]°|| < b for any 7 and j. Then

| F2 10X, X507 < bCA™.

11



We also have
SIBIE] = Xl < 202X Y12
zYJ ZY.]
Finally we get (
1Y, ZP°|| < ba®CoN|[Y]|[| Z]).
Since n > 0 is arbitrary and the constants ¢ and b are independent of n, we

get that [X,Y]* = 0, that is, [V, Z] € T'(E").

Definition 1.24 The foliation W* (resp. W*) tangent to E* (resp. E®) is
called the unstable (resp. stable) foliation of the Anosov diffeomorphism f.
The leaf through a point z of the foliation W7 is denoted by W7.

The D f-invariance of the bundle E and the uniqueness of the foliation
tangent to E? implies the following proposition.

Proposition 1.25 The foliation W7 is f-invariant, i. e. f maps a leaf of W°
onto a leaf. Precisely we have f(WZ) = W{,.

Let us state a theorem about the smoothness of the foliation W?. See [A]
or [H] for the proof. Notice that even if a foliation consists of smooth leaves,
it does not imply that the foliation is smooth. Recall Difinition 1.13. The
smoothability of the foliation depends on the local transverse projection.

Theorem 1.26 The foliation W? is a continuous foliation by C" leaves. The
leaf W2 depends continuously on x in C” topology.

From now on, we will use the Riemannian metric in Lemma 1.8. By the
compactness of N, we have

IDfH )| < Alvl| for v € B
[1Df@)I| < Allol| for ve £?

for some 0 < A < 1. We also assume that £* and E*® is orthogonal.
Denote by d? the distance in a leaf of W’ induced by the restricted Rie-
mannian metric. We have the following obvious lemma.
Lemma 1.27 For any point y € W}, we have
d*(f7 e, f7hy) < Md¥(z,y).
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For any point y € W2, we have

d*(fz, fy) < Ad*(z,y).

For ¢ > 0, denote
Wi () ={y e W] | d°(y,2) < e}.
Then we have
FHWE() € Wins(Xe),  f(WE(e)) C Wi (Ae). (11)

The stable and unstable foliation are orthogonal to each other and of com-
plementary dimensions. Therefore they give a local product structure of the
manifold. Namely, we have the following obvious lemma.

Lemma 1.28 There exists a number ¢ such that for any 0 < ¢ < ¢ and
for any points z and y of distance less than ¢, the sets W2(2¢) and W} (2e)
intersect exactly at one point. O

Choose 2¢ < €. Let z be an arbitrary point of N. Then for any point y in
W2(e) and z in W} (e), we have that d(y,z) < 2¢, and hence from the above
lemma that W;(4¢) and W}(4¢) intersects at one point, say, I(y, z).

Definition 1.29 The set
Ro(e) = {I(y,2) | y € Wi(e), 2 € W;(e)}
is called the rectangle at x of radius ¢

The concept of rectangle will be generalized in a later subsection. The
restriction of the foliation W? to the rectangle R, (¢) is a trivial foliation. All
the leaves are diffeomorphic to W7 (¢). Ry(€) is homeomorphic to WX(e) x
WE(e). For any point y € R,(€), the leaf through y of the restriction of W? is
denoted by R;(€)7.
We have the following obvious lemma.

13



Lemma 1.30 There exists a number ¢ > 0 such that for any 0 < € < €,
z€N,ye W) and z € WE(e), we have

WA(AY?€) C Ry(e)t C W“(/\ 12¢),
W2 (M%) C Ry(e)® € W2 (M™Y.

O

From now on in this section we always choose € such that € < min{ey/2, € }.
Let us compare f(R.(€)) with Ry.(e).

By the relation (11) and by the previous lemma, we have the following
lemma.

Proposition 1.31 For any point y € R.(€) N f~ (R;.(€)), we have
Rez(€), C [(Ra(e)y), (12)
Ra(e)y C fH(Rpale)yy)- (13)
Proof Notice that in order to show (12), it is enough to consider the case

where y € W2(¢). But then a combination of the relation (11) and the previous
lemma shows it. .

Now consider the following decreasing sequence of subsets.

Ra(€) C Ra(e) N f(Ry-14(€) C Rel€) N f(Ry-15(€) N f*(Ry=2z(€)) C -+

Then the width along W?*-direction becomes thinner and thinner, and at
last the limit becomes nothing but W¥(e). Also we consider the following
decreasing sequence.

Ry(€) C Ro(€) N 7 (Rya(€)) € Ral€) N 7 (Rya(€) N [T (Rpza(€)) C -+
Let us summerize the result in the following proposition.

Proposition 1.32 We have

F_ﬁof"mf—%(e)) - W0, (14)
07" (Rl = Wee) (15
N F(Rpale) = {a} (16)
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Proposition 1.33 The foliation W* is characterized by the dynamics of f as
follows.

Wy ={yeN|d(f"z,f"y) =0 (n— o0)}.
Likewise
W;={yeN|d(f'z,f"y) =0 (n— oo)}.

Proof Let us treat only the case of W*. Suppose y € W*. Then by Lemma
1.27, we have that

d“(f"z, f"y) =0 as n — oo.
Since d*(f~ "z, f~"y) > d(f "z, f"y), we have

d(f"z,f"y) = 0 as n — oo. (17)

On the other hand, suppose y € N satisfy (17) and let us show that y
belongs to W. There exists a number ng such that if n > ng, then f™"y
belongs to R.(e) Notice that by the f-invarinace of the foliation W* (Propo-
sition 1.25), y belongs to W if and only if f~"°y belongs to Wiy So let us
rename f~™z (resp. f~™y) by z (resp. y) for simplicity. Then we have

v € () F(Ryra(0)

n=0

Therefore it follows from Proposition 1.32 that y € W O

1.4 Structural stability

An Anosov diffeomorphism satisfies remarkable properties. Among others it is
structurally stable, i. e. any small perturbation of f has the same topological
structure as f. Precisely

Theorem 1.34 (Structural Stability Theorem) Let f be a C' Anosov
diffeomorphism of a closed manifold N. For any € > 0, there exists a meigh-
bourhood calN of f in Diff'(N) with the following property; for any g € N,

there exists a homeomorhism h of N, e-near to the identity in the C°-topology,
such that g =h"to foh.

The purpose of this subsection is to give a proof of the above theorem. The
following two concepts, pseudo orbit tracing property and expansiveness, are
very useful. For a while let f be a homeomorphism of a metric space X, and
e and 6 positive numbers.
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Definition 1.35 A bi-infinite sequence {z,}22 ___ of points of X is called a
6-pseudo orbit of f if we have d(f(z,),znt1) < 6 for any n.

—oo 18 said to be e-traced by a

Definition 1.36 A bi-infinite sequence {z,}32
point y if we have d(f"y, z,) < € for any n.

Definition 1.37 f is said to have pseudo orbit tracing property ( POTP for
short) if for any € > 0 there exists 6 > 0 such that any é-pseudo orbit is
e-traced by some point.

Imagin that we are calculating an orbit of a given diffeomorphism f using
a computer. Given a data of the initial point z, we compute fr and f~'z,
but with a small error. Next based upon these results, we compute f%z and
f~2z again with a small error. And then we compute f3z and f~3z with an
error, and so forth ---. What we get this way is not a true orbit, but exactly a
pseudo orbit. Usually if we do this, the accumulation of small errors becomes
inneglegible when n becomes big, and there is no guarantee that this sequence
is very near to an actual orbit. For example just think of the case where f is
the identity.

POTP is a property which says that calculation like this is admissible,
however great the number n is. In other words, we are allowed to do small
mistakes a million times. Wonderful!

We need another concept, expansiveness, which says that any two distinct
orbits must be fairly apart from each other at some time.

Definition 1.38 f is said to be ezpansive (or e-expansive for precision) if
there exists a number e > 0 such that for any distinct points  and y in X,
there exists an integer n such that d(f"z, f*y) > e. The number e is called an
erpansive constant.

- For example if f is 2e-expansive, then the point which e-traces a pseudo
orbit is unique. In this subsection, we first establish POTP and expansiveness
for Anosov diffeomorphisms, and then use them to prove the structural stability
theorem.

From now on, f is to be an Anosov diffeomorphism of a closed manifold
N.

Lemma 1.39 f satisfies the POTP.
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Proof Given ¢ > 0, we shall find out § > 0 such that any é-pseudo orbit is
e-traced. First of all, notice that we may consider only the case where the
given ¢ is sufficiently small. Therefore assume that € is chosen to satisfy the
hypothesis of the previous subsection. Especially Proposition 1.31 holds. This
proposition treat with two point z and fz. But clearly if we change fz with
a point z; very near to fz, then the relation of f(R,(e)) and R, (¢) is not
so much different with that of f(R.(¢)) and Ry.(e). Precisely, we have the
following. (The point z is denoted by z.)

Sublemma 1.40 Given ¢ small, there exists a § > 0 with the following prop-
erty; If d(fzo,z1) < 6, then for any point y € Ry (€) N f~Y(R,, (€)), we have

R.(6)7, C f(Rau(e)y), (18)
Rzo(e); C f_l(Rm(f);y)- (19)
[

Now let {z,}2>_. be a é-pseudo orbit. Then for any n, the relation of
f(R;,_,(€)) and R, (€) is as in the sublemma. The contracting property of
Anosov diffeomorphism clearly shows the following generalization of Proposi-
tion 1.32.

NP (Renald) = Rl 30" € Run(o), (20)
()" Rnl) = Ballfe B € Ra(0) 1)
N IRl = () e Rafo) (22)

Relation (22) shows that the point y é-traces the pseudo orbit {z,}. O

Lemma 1.41 There ezists a C* neighbourhood N of f and a constant ¢ > 0
such that any diffeomorphism in N is e-expansive.

Proof It is clear by (16) of Proposition 1.32 that f itself is expansive, with
expansive constant equal to the size of the rectangls. In order to show the local
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uiformity of the expansive constant, just notice that the size of the rectangles
can be chosen lower semi-continuously upon the diffeomorphism in the C!-
topology. (Recall that the set of Anosov diffeomorphisms form an open set by
Corollary 1.11.) O

Proof of Theorem 1.34 Given ¢ > 0, let us define a C'-neighbourhood N so
that any diffeomorphism g in A can be conjugated to f by a homeomorphism
h, e-near to the identity. Let A be a neighbourhood of f such that any
diffeomorphism ¢ in N is 2e-expansive. Now since the diffeomorphism f has
the POTP, there exists § > 0 such that any é-pseudo orbit is e-traced. Let N
be a C%neighbourhood of f consisting of those diffeomorphism ¢ such that
d(fz,gz) < 6 for any z € N.

Let us show that A" = N N N, satisfies the condition of the theorem. Let
g be an arbitrary diffeomorphism in N. Then for any point z € N, the bi-
infinite sequence {g"z} is a §-pseudo orbit for f. Therefore it is e-traced by a
point, say h(z). Notice that such a point is unique since f is 2¢-expansive. The
uniqueness also shows the equality foh = hog. Clearly the map h: N — N
is e-near to the identity.

Let us show the continuity of A. (The diffeomorphism g is already fixed.)
Suppose y is very near to z. Then for some large N > 0, g"y and ¢g"z are mutu-
ally near for —N < n < N. Now h(z) belongs to NX__x f~"(Ryns(€)) and h(y)
to NN__nf~"(Ryny(€)). We also have that the diameter of NJ__x ™" (Rgna(e))

n=

U N _yf " (Riy(e)) is very small.

n=

Finally we must show that A is injective. Suppose h(z) = h(y). That is,
two sequence {g"z} and {¢g"y} are e-traced by the same point. Thus we have
d(g"z,g™y) < 2e. Since g is also 2e-expansive, we have z = y. O

1.5 Transitiveness
For a while let f be a homeomorphism of a compact metric space X.

Definition 1.42 A point z € X is called a nonwandering point of f if for any
neighbourhood U of z, there exists a nonzero integer n such that UNf"™(U) # 0.
The set of all the nonwandering points is denoted by Q(f) and is called the
nonwandering set.

For example a periodic point is a wandering point.

Proposition 1.43 The nonwandering set ) f) is a nonempty closed set, in-

variant by f, i. e. f(Qf)) = Q(f).
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Proof The f-invariance and the closednedd is obvious. Let us prove that
Q(f) is nonempty. Choose any point z € X and consider the set

wiz)={y |y = kli_)rg f**(z) for some nj — oo}

w(z) is a closed f-invariant set, and is nonempty since X is compact. w(z) is
called an w-limit set. It is easy to show that w(z) C Q(f). O

The dynamics of f outside Q(f) is rather simple. Any point cannot come
back very near to itself. On the other hand the dynamics inside Q(f) can be
extremely complicated.

Now let f be an Anosov diffeomorphism of a closed manifold N. The
following lemma yields an example of nonwandering points.

Lemma 1.44 Let p be a periodic point and let x be a point of the intersection
of Wt and W. Then x is a nonwandering point.

Proof Just for simplicity, let us assume that p is a fixed point. For arbitrarily
small € > 0, consider the rectangle R,(€¢). By the iterates f* (n > 0), The
unstable leaf W (€) will be streched to be a large ball in unstable leaves. On
the other hand, we have f"z — p as n — oo, because z lies in W;. This
shows that f"(W(¢)) approaches W. In particular, for any large n the set
fm(W2(e)) intersects the rectangle R,(e€), showing that z is a nonwandering

point. O

The point z in the lemma is called a homoclinic point. Notice that the
orbit of a homoclinic point does not come back near to itself, although it is a
nonwandering point.

Theorem 1.45 Q(f) coincides with the closure of the set of all the periodic
points.

Proof All that needs proof is that the periodic points are dense in Q(f). Take
an arbitrary point z € Q(f) and a small positive number €. Let us show that
there exists a periodic point in the rectangle R;(€). Choose ¢ as in the previous
section (to satisfy Sublemma 1.40). Then there is a point y, é-near to z, such
that f™y is also é-near to y. Then clearly we have for z € R.(€) N f~"(R.(¢)),

Re()fn, C ["(Rs(€)7),
Ro(e); C [T (Ba(€)in,)-
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The quotient @ of R,(¢) by the unstable foliation is homeomorphic to an open
ball in R® and by the above property, we get a map from @) into itself. This
map is a contraction and have a fixed point. Let us denote by L the leaf in
R (€) of the unstable foliation which corresponds to this fixed point. Then we
have that f~" is a contraction of L. Therefore it has a fixed point. .

Since the nonwandering set is nonempty (Proposition 1.43), we get the
following corollary of Theorem 1.45.

Corollary 1.46 An anosov diffeomorphism admits periodic points.

The rest of this subsection is devoted to the proof of the following theorem.
Theorem 1.47 The following five conditions are equivalent.

1. The nonwandering set Q(f) coincides with the total manifold N.

2. The periodic points are dense in N.

3. There exists a point éuch that its orbit {f"z} is dense in N.

4. All the leaves of the unstable foliation W* are dense in N.

5. All the leaves of the stable foliation W* are dense in N.
Definition 1.48 We call f transitive if it satisfies one of the above conditions.

Before proving Theorem 1.47, let us prepare a lemma.

Lemma 1.49 Suppose that the periodic points are dense in N. Let X be a
subset of N which satisfies the following conditions;

1. X is a nonempty and closed subset,
2. X is a union of leaves of the foliation W7,
3. X is invariant by f* for some n > 0.

Then we have X = N.
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Proof Let us treat only the case of o = u. It is sufficient to show that X is
open. Take a point € X and consider a rectangle R,(e) for a given small .
Since the periodic points are dense, we need only to show that any periodic
point p in R;(€) belongs to X. Consider a point

y € Ro(€) N Ry(e)s C X W2,

Let m be a common multiplier of n in the lemma and the period of p. Then
both X and W} are invariant by f™. Now since y € Wy, the sequence { ™y}
approaches p, as 1 tends to the infinity. Since /"™y belongs to X, the point p
is contained in the closed set X. O

Proof of Theorem 1.47 That conditions 1 and 2 are equivalent is immediate
from the previous theorem.

Let us show that condition 2 implies 4. That is, assuming that the periodic
points are dense in IV ,we shall show that for any point =, W* is dense in N. Let
Y = Cl(W2). Clearly Y is a union of unstable leaves. Let n be an arbitrary
positive integer and let

Z, = CI(| FY).

i>0

Clearly one has

F™(Z) = U £77Y) C Z.

i>1

Therefore we have a decreasing sequence
- C [T Z,) C [T 2,) C fTM(2,) C Z.

Thus the intersection

Xn = ﬂ f_m(Zn)

i>0
is a nonempty closed subset which is a union of unstable leaves and is invariant
by f". Therefore by Lemma 1.49, we have that X, = N.
Let p be an arbitrary periodic point of period, say n. Then since the set
X, constructed above coincides with N, we have that

X, VW2 (e) = We(e).

p

In particular we have

FrY)NW(e) # 0
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for some i > 0. But since f"(W3(€)) C W;(e), we have that Y N W;(e) # 0.
Since € can be arbitrarily small, this shows that p is contained in the closed
set Y. Since p is an arbitrary periodic point and since we are assuming that
the periodic points are dense in N, we have that Y = N, as is desired.

Next let us show that condition 4 implies 1. By Corollary 1.46, there
exists a periodic point p. Assume for simplicity that p is a fixed point. We
need only show that the stable leaf W is dense in N. For then, since we are
assuming that the unstable leaf W* is also dense, the points of intersection of
W2 and W are dense in V. But we have already shown that these points are
nonwandering (Lemma 1.44). Therefore we will get that the nonwandering set
coincides with V.

Now assume for contradiction that R = CI(W}) is not the whole manifold
N. Clearly R is a union of stable leaves. Since p is a fixed point, R is invariant
by f. For a small positive number € define

U= ] Wie).

z€R

If € is sufficiently small U is a proper subset of N. We have for n > 0

)y J we(e,

z€R

where 0 < X < 1 is the constant in the previous subsection. Now we get the
following properties of U.

.C fHU) c fFHU) CU. (23)
Nfw) = R (24)

Consider the complement U® of U and define

A=) fHue).

n>0

Then A is a closed f-invarinat set. Clearly A and R do not intersect. Especially
there exists a constant dy such that d(z,y) > do for any z € A and y € R.
We shall show that A is a union of unstable leaves. Assume z € A and
let us prove that W* C A. Choose z € W*. That is, d(f™"z, f™"2) — 0 as
n — oco. Assume for contradiction that z is not contained in A. Then clearly
we have f~"z tends to R as n — oo, but f™"z € A. A contradiction. This
shows that z is also contained in A, that is, A is a union of unstable leaves.
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Since A is closed, this contradicts condition 4. The proof that 4 implies 1 is
done.

So far we have shown that conditions 1, 2 and 4 are equivalent. By a similar
argument one can add condition 5 in the group. Also condition 3 implies 1,
since the point z of 3 is a nonwandering point and the nonwandering set is
closed.

What is left is to deduce 3 using all the other conditions. We are going to
show that for any open set U and V, there is an integer n, such that U and
f™(V) intersect. In other words, that there exists an orbit which meets both U
and V. This is a sufficient condition for the existence of dense orbits. (See the
exercise below.) Choose any periodic point p in U and ¢ in V' (condition 2).
Let k be a common multiplier of their periods. Since W' and W are dense
(4 and 5), there is a point of intersection z. Then f*"z tends to g as n — oo,
and f~*"z tends to p as n — oco. That is, the orbit of z intersects both U and
V. , O

Exercise 1.50 Let f be a homeomorphism of a compact metric space X. Sup-
pose that for any open subsets U and V of X there exists an integer n such
that U and f™(V) intersects. Then there exists a dense orbit of f.

The following is an open problem.
Problem 1.51 Does there exist a nontransitive Anosov diffeomorphism?

It is known that if either of unstable or stable foliation has codimension
one, then the Anosov diffeomorphism is transitive. Thus the simplest unknown
case is when u = s = 2.

1.6 Markov partitions

A Markov partition is a partition of a manifold, by means of which an Anosov
diffeomorphism is (almost) reduced to symbolic dynamics.

Let us explain first what symbolic dynamics is. Let ¥ be the set of all the
bifinite sequence i = {7, }2 __,, where each term ¢, is either one of 1,2,---,r.
¥ is equipped with the product topology; Namely the subsets consisting of the
sequences which mutually coincide at some fixed finite set of n’s form an open
basis. A homeomorphism o, called shift map is defined by shifting a sequence
in ¥ one step to the left, 1. e. by

O'(i)n = in—l'
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A pair (X, 0) is called a full shift. Its dynamics is easy and well understood.
For example,

Exercise 1.52 Show that there exist dense orbits, and that the union of the
periodic points is dense.

Also easy to study is a slight generalization of the full shift, called a subshift
of finite type. Let A = {a,;} be an r by r matrix whose entries are either 0 or 1.
Then A defines a directed graph as follows. The vertices are 1,2,---,r. There
exists a directed edge from the vertex ¢ to j if and only if a;; = 1. Consider a
bifinite path in this graph, always moving in the direction of edges. It defines
a bifinite sequence of the vertices visited in this order. The totality of these
sequences form a subset of X, denoted by X 4.

To put it in another word,

Yig= {i € X I Qiping = 1, VTI,}

Now clearly ¥ 4 is kept invariant by the shift map o. The pair (X4, o) is called
a subshift of finite type.

Exercise 1.53 Show tha ¥4 is a closed subset of 3.

A subshift of finite type, or a matrix A, is called reduced if in the corre-
sponding directed graph, given any two points ¢ and j, there exists a directed
path starting at ¢+ and ending at j.

Exercise 1.54 Show that A is reduced if and only if some power of A 1is pos-
itive (all the entries are positive).

Exercise 1.55 For a reduced subshift of finite type, show that there exist dense
orbits, and that the union of the periodic points is dense.

Of course one can consider closed o-invariant subsets of ¥ of non-finite
type. The analysis of such subshifts is hard and gathers interest of an active
school of dynamical systems.

Now let us expose Markov partitions, gadgets which associate subshifts of
finite type to Anosov systems. Let f: N — N be an Anosov diffeomorphism.
Fix a point z of N. First we need to generalize the concept of rectangles.

Let Q7 be a closed set in W7 such that IntQ)? is connected, contains = and
that Cl(IntQ”) = Q7. Assume the diameter of @7 is less than ¢ mentioned
just after Lemma 1.30.
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Definition 1.56 A rectangle is a subset R = Q° x Q“ of N consisting of the
points of intersection of W;(2¢) and W}*(2¢), for any y € Q* and z € Q°.

For any point y € R, denote by R?(y) the connected component at y of
RN W7 (2€). Thus the set R = Q° x Q* has a product structure defined by
the two product foliations {R*(y)} and {R*(y)}.

Definition 1.57 A finite family of rectangles R = {R; = Q¢ x Q¥}’_, is called
a Markov partition if the following conditions are satisfied.

1. R is a covering of M and the interiors are mutually disjoint.
2. For any ¢ and j, IntR; N f~!(IntR;) is connected if it is nonempty.
3. For any point z in IntR; N f~'(IntR;), R{(z) is mapped by f into

(3

R:(f(z)), and also R¥(f(z)) is mapped by f~! into R¥(z).

The condition 3 is in fact stronger than it appears. For example, it implies that
an unstable leaf R*(z) of R; is mapped by f exactly onto a union of unstable
leaves of some rectangles. This shows that a stable boundary component of R;
is mapped by f into a stable boundary component of some other rectangle.

When the dimension of N is® 2, the construction of Markov partition is
not so difficult. Choose a fixed point a. Consider long intervals I* and I®
(containing a in its interior) in the unstable and stable leaves through a. They
have four endpoints. By adjusting these points, we got a partition of IV into
rectangles. Since a is a fixed point, 19 satisfies

fU“)y o1, f(r)cr.

This property implies that the partition is Markov.
But in general the existence of Markov partition is not so easy. We raise
the following theorem due to R. Bowen [6] without proof. See also [40].

Theorem 1.58 Any Anosov diffeomorphism on a closed manifold admits a
Markov partition of arbitrarily small size. O

Now given a Markov partition R = {R;}_,, define a square matrix A =
{ai;} of size r by setting a;; = 1 if IntR; N f~}(IntR;) # 0, and otherwise
0. A is called the transition matriz. Call a sequece i = {i,} admissible if it
belongs to X 4. Notice that an admissible sequence yields a 2¢-pseudo orbit.
(The size of the rectangles is smaller than 2¢.) The following theorem gives us
the connection between Anosov systems and symbolic dynamics.

6Then f is known to be topoigically conjugate to a hyperbolic automorphism of T°2.
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Theorem 1.59 1. For any admissible sequence 1 = {i,}, there ezists a
unique point x € N such that f"(z) € R;, for any n.

2. Conversely given any point ¢ € N, there exists a bounded number of
admissible sequence i = {i,} such that f*(z) € R;, for any n.

Proof Leti= {¢,} be an admissible sequence. Think of the following desreas-
ing sequence

Ry, D Ry N fHRy,) DRy N Y (Ry)Nf(R;y) D -

They are closed subsets of R;;, consisting of stable leaves in E;, They become
thiner and thiner. By the hyperbolicity of f, we have that Nn>of™"(R;,) is a -
single stable leaf. Likewise Np<of™"(R;,) is a single unstable leaf. Therefore
N,z f " (Ri,) is a single point. This shows (1).

(2) is immediate if the point z lies in J = N \ U; ,f "0R;. Notice that in
this case the admissible sequence realizing z is unique because of 1 in Definition
1.57.

If not, approximate z by points z; in J in an appropriate way. Then the
admissible sequences of z; converges to an admissible sequence i = {i,} w.
r. t. the topology of ¥. Then one can show that f"(z) € R;, for any n.
The details, especially the estimate of the number of the admissible sequences
corresponding to z, is left to the reader. O

Exercise 1.60 Give a complete proof of the part (2). (One can very well
assume that x itself lies in OR;,. First consider the case where x lies in 0Q° X
IntQ*. Approrimate x by the sequences in the stable leaf. Then consider the
the opposite case, and finally the case where z lies in 0Q° x 0Q".

Remark 1.61 In 1, if the sequence i is cyclic, then the corresponding point
is a periodic point. This follows directly from the uniqueness

To sumerize the above theorem, we obtain the following corollary.

Corollary 1.62 Let R be a Markov partition and let A be the corresponding
transition matriz. Then there is a continuous surjection h : ¥4 — N such that
hoo = foh. The inverse image of any point of N has bounded cardinality.

Proof What is left is to show the continuity of A, which is left to the reader.
™

26



Proposition 1.63 The subshift (4,0) associated to an Anosov diffeomor-
phism f is reduced if and only if f is transitive.

Proof Suppose f is transitive. Then there exists a dense orbit. This shows
that for any ¢ and j, we have IntR; N f~"(IntR;) # 0, showing that the
transition matrix is reduced.

On the contrary, if (¥4,0) is reduced, it admits a dense orbit (Exercise
1.55). Thus the diffeomnorphism f admits a dense orbit, and therefore it is
transitive. O

27



2 Anosov flows

Here is a concept of Anosov system also for flows. It postulates
the expansion-contraction decomposition of the normal bundle of
the nonsingular vector field. In 2.1, we give the definition and show
that the set of Anosov flows form an open set in C' topology. In
2.2, we study the elementary properties of (global) cross sections
of the flow.

2.3 is devoted to the construction of examples of Anosov flows.
First the suspension of an Anosov diffeomorphism is an Anosov
flow. Another important example is the geodesic flow of a nega-
tively curved manifold. Especially we study in detail the dynamics
of the geodesic flow of surfaces with constant negative curvature.
They are intimately connected with the Lie group PSL(2,R).

An Anosov flow admits two types of foliations. One is the
strong (un)stable foliation and the other the weak (un)stable fo-
liation. Their fundamental properties are exposed in 2.4. In 2.5,
the structural stability of Anosov flow is proved. The argument is
more or less the same as in the case of diffeomophisms. But the
POTP and the expansiveness becomes a bit complicated concept.
In 2.6, we study the transitivity of Anosov flows. Finally in 2.7,
a Markov partition of an Anosov flow is treated. It will play an
important role in the last section in which we prove the Verjovsky
conjecture.

2.1 Definition of Anosov flows

In this paragraph, we will give definitions and fundamental properties of Anosov
flows. Let M be a closed smooth manifold, endowed with some Riemannian
metric, and X a C" vector field on it. The flow induced by X is denoted
by ¢ = {#'}. ¢ is called nonsingular if X is nonvanishing. In this case, we
denote by T'X the one dimensional subbundle of the tangent bundle TM of
M, spanned by X. As a matter of fact, the derivative D¢* preserves T'X.

Definition 2.1 A nonsingular flow ¢ is called an Anosov flow if there exists
a continuous splitting TM = TX @ E* @ E° such that

1. Both E* and E® are invariant by D¢’ for any t,
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2. There exist constants C > 0 and 0 < A < 1 such that

D& (v)[| < CN|lv]l, Yve E°, Vt>0
D¢~ (v)|l < CA'[lo]l, Vv e E¥, Vt>0.

As before u and s denote the dimension of the subbundles.

Apparently the above definition is stronger than that of the diffeomorphism
case, because we postulate the existence of flow-invariant subbundles E°. For
example, if we change the vector field by multiplying by a positive function,
then the time parametrization of the flow is changed, although the 1 dimen-
sional foliation it defines is the same. Notice that E? is no longer invariant
by the new flow. Thus it is not clear directly from the definition that the new
flow is also an Anosov flow.

First of all let us show that the definition above is in fact a condition only
for the transverse direction of the flow. The map D¢': TM — TM induces a
bundle map of the quotient budle TM/T X. By some abuse, we denote it also
by D¢'. Also the metric induced on TM/TX is denoted by || - ||.

Proposition 2.2 A flow ¢ is an Anosov flow if and only if there ezists a
continuous splitting TM/TX = E* @ E* with the following properties.

1. Both E* and E* are invariant by D@ for any t.

2. There exist constants C > 0 and 0 < X\ < 1 such that

[Dg4(v)|| < CXH|Jv||, Vo€ E*, Wt>0,
IDé~ (v)|| < CA|lv|, Vo€ E¥ Vt>o0.

Proof Let us denote the canonical projection by p: TM — TM/TX. Assume
first that ¢ is an Anosov flow, with the splitting TM = TX @ E* @ E*.
Define the splitting of TM/TX by E° = p(E7). Then the conditions of the
proposition are obviously satisfied.
Next assume that ¢ satisfies the conditions of the proposition. Then
~1(E") is invariant by D¢'. Let us denote the restriction of D¢t by

D*¢*: p7H(E*) — p7!(B),

Our purpose is to find a D¢'-invariant subbundle E* of p‘l(E“) of dimension u
and transverse to T'X. Denote by F'* the orthogonal complement of TX in the

bundle p~!(£*). Consider the homomorphism bundle Homo(F*,TX). Denote
by T'(Homo(F™,TX)) the Banach space of the continuous cross sections of
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Homo(F*,TX). Given v € I'(Homo(F*,TX)), v(z) is a homomorphism from
F* — TX, for any point z € M. Thus its graph is a u-dimensional subspace
of p~}(E™),, transverse to TX. In this way v € I'(Homo(F*, T X)) defines a
subbundle of p~!(E*), denoted by G(7). Now define a map

¢t : T'(Homo(F*,TX)) — T'(Homo(F*, TX))
by
G(I¢'(y)) = D*¢"(G(7))

Then by the conditions of the propositions, one can show that I'¢” is a con-
traction for large 7 > 0. (The details are left to the readers.) Therefore it has
a unique fixed point vo. The commutativity of ['*¢” and I'“¢?, as well as the
uniqueness of 4, shows that v, is invariant by I'*¢* for any t. Now E* = G(7)
is the desired subbundle. Likewise one can construct the subbundle E?, show-
ing the proposition. O

As a result of the previous proposition, if we change the time parametriza-
tion of an Anosov flow, the new flow is also Anosov. We also get the following
proposition by the same argument as in Proposition 1.9. Denote by X*(M)
the space of the C* vector fields on M, equipped with the C* topology.

Proposition 2.3 The set of Anosov flows is an open subset of X*(M).

Before giving examples of Anosov flows, we prepare some fundamental
concepts for flows in the next subsection.

2.2 Cross sections and suspensions

In this section, we consider a general nonsingular C” (r > 1) flow ¢ on a closed

manifold M.

Definition 2.4 A codimension one closed submanifold N of M is called a
cross section if

1. the flow ¢ is transverse to N and

2. any orbit intersects N.

Proposition 2.5 Suppose N is a cross section for ¢. Then there exists T' > 0
such that for any point x € M, the point ¢'z lies in N for some 0 <t < T.
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To show this, let us generalize the concept of w-limit set for flows. For
z € M, the w-limit set w(z) is the set of points y with the following property;
there exists a sequence of positive numbers ¢, — oo such that ¢'»(z) — y.
The following properties of w(z) are easy to establish.

Proposition 2.6 w(z) is a nonempty closed subset of M, invariant by the

flow ¢. -

Proof of Proposition 2.5. First let us show that the forward orbit of any
point z intersects the cross section N. Choose an arbitrary point y’ from w(z).
By the definition of cross section, there exists a point y in the orbit of y’ which
lies in N. By Propositon 2.6, y is a point of w(z). That is, there exists a
sequence of positive numbers ¢, such that ¢’z converges to y. Considering
a flow box at y, one can show that a small orbit through 4™~z intersects N.
Thus the forward orbit of z intersects V.

Now for any point z € M, define 7(z) to be the smallest positive number
such that ¢"®z lies in N. Then the transversality of N w. r. t. the flow
implies that for any € > 0, there exists a neighbourhood V of z such that
7(2) < 7(z) + € for any point z € V. That is, 7 : M — Ry is upper semi-
continuous and therefore it has a maximal value. This shows the proposition.

O

The following proposition follows from the transversality of N w. r. t. the
flow. The proof is omitted.

Proposition 2.7 The restriction of the function 7 to N, also denoted by 7 :
N — Rsg is a C" map. O

Definition 2.8 The map 7 : N — Ry is called the return time, and the map
r: N — N defined by r(z) = ¢"®z is called the first return map of the flow

é.

Clearly r is a C" diffeomorphism.

Conversely suppose that we are given a C" map 7 : N — Ry and a C"
diffeomorphism 7 : N — N. Then we can construct a flow ¢ as follows. First
consider a subset P’ of N x R defined by

P'={(z,1)]0<t<r(z)}.
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Define an equivalence relation ~ by

(z,7(z)) ~ (r(=),0).

" Define a flow ¢ on the quotient manifold P = P’/ ~ by the vector field
0/0t. This flow is called the suspension of r w, r. t. 7.
Now we state the following proposition without a proof.

Proposition 2.9 Let N be a cross section for a flow ¢ on a closed manifold
M, with the return time T and the first return map r. Let ¢ (on P) be the
suspension of r w. r. t. 7. Then the two flows ¢ and b are conjugate, i. e.
there exists a diffeomorphism h : M — P such that

h(dtz) = $th(z).

2.3 Examples of Anosov flows

In this section, we will give classical examples of Anosov flows. There are two
types, as shown in what follows.

Example 2.10 Let f : N — N be an Anosov diffeomorphism. Then the
suspension of f w. r. t. any return time is an Anosov flow.

The proof will be obvious by Proposition 2.2.

Let V be an arbitrary closed Riemannian manifold and M = T,V be its
unit tangent bundle. A point of M is denoted by (z,v) where = is a point
of the manifold V and v is a unit tangent vector at . Let us define a flow
¥ = {¥'} on M, called the geodesic flow of V. For any (z,v), let v,, be the
geodesic curve such that v, ,(0) = z and v, ,(0) = v. Now define ¢ by

P (2,0) = (Yo(t), Ven(t))-

The following fact is well known.

Example 2.11 (AnosoV) If a closed Riemannian manifold is negatively curved,
then the corresponding geodesic flow is Anosov.
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For the proof, see [1]. The simplest examples of negatively curved manifolds
are surfaces of curvature —1. Instead of dealing with general manifolds, we
shall expose this particular case in details. Let us consider the upper half plane

H={z=z+4+iye C|y>0},
equipped with a metric gp, defined by

dz? + dy?
gp = ————".
Yy

H is called the Poincaré plane.

Exercise 2.12 Show that the Gaussian curvature of gp is constantly equal to
—1.

Exercise 2.13 Show that the imaginary azis is a geodesic and that the dis-
tance of two points ai and bi (0 < a < b) is equal to log(b/a).

Now let us study the group of isometries of H. Let SL(2,R) be the Lie
group of the 2 by 2 real matrices with determinants 1. Then SL(2,R) acts on

H by
a b _az+b
c d z—c2+d'

Exercise 2.14 Show that this defines an action on H by isometries.

This action has the kernel {/}. The quotient group of SL(2,R) by {£I}
is denoted by PSL(2,R). (An element of PSL(2,R) will be denoted by a
matrix of SL(2,R) which represent it.)

Exercise 2.15 1. Show that the isotropy subgroup’ at i is isomorphic to
SO(2), by the map defined by taking the derivative at 1.

2. Show that for any two points z; and z, of H, there exists an element of
PSL(2,R) which carries z; to i and z; to a point on the imaginary azis.

Now PSL(2,C) = SL(2,C)/{+I} acts on the Riemann sphere C = C U

{oo} by
a b _az+b
c d z_cz+d'

“the subgroup of PSL(2, R) consisting of the elements which keep i fixed
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By Liouville’s theorem, PSL(2,C) coincides with the group of holomorphic
automorphisms of C. Thus the action is conformal, i. e. the derivative preserves
the angle.

In the next exercise, by circles in C we mean not only usual metric circles
in C, but also straight lines in C plus co.

Exercise 2.16 Show that an element of PSL(2,C) carries a circle to a circle.

PSL(2,R) is precisely the subgroup of PSL(2,C) which keeps H invariant.

We usually consider H to be a subset of the Riemann sphere C. Thus the
boundary of H is isomorphic to a circle R U {co}. We denote it by SL and
call it the circle at infinity.

Also there exists an element P of PSL(2,C) which maps H onto the unit
disc D = {|z| < 1}. The action of PSL(2,R) on H is identified with the
action of P- PSL(2,R)- P~! on D. In what follows we rather think of H as
a unit disc (especially when we consider a picture).

Proposition 2.17 A complete geodesic of H is the intersection with H of a
circle meeting S*. perpendicularly.

Proof Given arbitrary two points z; and z, of H, there exists an element A
of PSL(2,R) which maps them to points w; and w, on the imaginary axis
(Exercise 2.15).

It suffices to show the proposition for w; and w,, because first of all A™*
maps a geodesic to a geodesic, secondly it maps a circle to a circle, and finally
as a transformation of C it is conformal.

- But the geodesic joining w; and ws, is the imaginary axis by Exercise 2.13.
This finishes the proof. O

Thus any complete geodesic in H has two endpoints in SL.

Proposition 2.18 The group PSL(2,R) coincides with the group Isom(H)
of isometries of H.

Proof We have already established in Exercise 2.14 that PSL(2,R) is con-
tained in Isom(H). Let us show the converse. Let h be an arbitrary isometry.
By 2 of Exercise 2.15, there exists A € PSL(2,R) such that A(1) = h(z).
Then A~! o h keeps ¢ fixed. By 1 of Exercise 2.15, there exists an element
B € PSL(2,R) keeping ¢ fixed such that the derivative at : coincides with
that of A= o h. Now B! o A7! o h keeps 7 fixed and the derivative there is
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the identity. Since B~' 0 A7 o h is an isometry, it must be the identity. Thus
h = AB belongs to PSL(2,R). O

The following theorem is well known. The proof is omitted.

Theorem 2.19 Any simply connected complete Riemannian 2-manifold of
curvature constantly equal to -1 is isometric to the Poincaré plane.

As a consequence, the univeral covering of any closed surface ¥ of curvature
-1 is isometric to H. Therefore ¥ is isometric to a quotient of H by the action of
some subgroup I' of PSL(2,R). Of course I' is isomorphic to the fundamental
group of X.

Now let us study the action of a single element of PSL(2,R) on H U SL..

Definition 2.20 A nontrivial element A of PS’L(Z,R) is called hyperbolic,
parabolic, or elliptic if |Tr(A)| is® greater than, equal to, or smaller than 1.

e’ 0

0 e—t/2
for some t > 0. Now the latter has two fixed points 0 and oo in S% and no
others in H U S.. The geodesic joining 0 and oo (the imaginary axis) is
kept invariant and on it we obtain the translation by the distance ¢. Thus any
hyperbolic element has the same behaviour, i. e. it has one repelling fixed point
and one attracting fixed point on S! , and is the translation on the geodesic
joining them.

It is easy to show that any hyperbolic element is conjugate to

Any parabolic element is conjugate to (1) :tll . Of course the action of
the latter is the horizontal translation, keeping the horizontal lines invariant.
It has only one fixed point oco.

A circle in H tangent to S at a point p is called a horocycle at p. (A
horocycle for p = oo is a horizontal line.) A horocycle bounds a disc, called
horodisc. The usual anti-clockwise orientation of H yields an orientation of a
horodisc. Then a prescribed orientation is obtained for each horocycle from
the horodisc it bounds.

Now any parabolic element has a unique fixed point p in the circle at
infinity, and is a translation along horocycles at p. The translation length
! }, then the

varies depending on the horocycles. If it is conjugate to [ (1) 1

8The absolute value of the trace is well defined for an element of PSL(2, R).
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translation is positive w. r. t. the orientation that we described above. If it is

conjugate to [ (1) —il ] , then the translation is negative.

Apy elliptic element is conjugate to :);((gg)) —C(S)lsl(léig) for some 6.
The latter has a unique fixed point ¢ and the derivative at ¢ is the rotation
by the angle §. Thus any elliptic element A has a unique fixed point z, with
the derivative at = the rotation by 6, and keeps invariant the equi-distance
circles at z. As we mentioned earlier, there exists an element P of PSL(2,C)
which maps H to the unit disc D. One can choose P so that z is mapped
to the origin. The conjugation of A by P is a rigid rotation. Therefore if the
angle 0 is rational, some iterate of A is the identity, and if it is irrational, then
any orbit is dense in an equi-distance circle. We call A a rational or irrational
rotation accordingly. Now we have finished the study of the action of a single
element of PSL(2,R). Next we shall investigate the action of a subgroup.

Definition 2.21 A subgroup I' of PSL(2,R) is said to act on H properly
discontinuously if for any compact subset K of H, there exist at most finite
number of elements vy of I' such that v(K) N K # 0.

We have the following proposition.

Proposition 2.22 A subgroup I' of PSL(2,R) acts on H properly discontin-
uously if and only if ' is a discrete subgroup of PSL(2,R).
Proof It is obvious that if I' is not discrete, it cannot act on H properly
discontinuously. To show the converse, notice that the map

p: PSL(2,R) - H

defined by p(A) = A - ¢ is a bundle map with fiber SO(2). Thus if K is a
compact subset of H, then p~!(K) is compact, and therefore if T is discrete,
it has the property that v(p~'(K)) N p~'(K) # 0 for but finitely many v € I
Then v(K) N K # @ for but finite 4’s, showing that the action is properly
discontinuos. 1

Definition 2.23 A discrete subgroup of PSL(2,R) is called a Fuchsian group.

A Fuchsian group I' is called cocompact if the quotient space I'\ H is compact.’
10

9The quotient may not be a smooth manifold. It can be a so called orbifold.
%In fact, a Fuchsian group is cocompact if and only if the quotient T\ PSL(2,R) is
compact.
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Proposition 2.24 1. A Fuchsian group acts on H freely if and only of H
is torsion free.

2. A cocompact Fuchsian group cannot contain a parabolic element.

Proof 1. A Fuchsian group I' cannot contain an irrational rotation, since then
I' would not be discrete. Therefore elements of I' which have fixed points in
H must be rational rotations. But they are precisely elements of finite orfers.
1 follows from this.
2. For simplicity, let us consider only the case where the quotient I'\ H is a
manifold. Then there exists a positive number € such that any point of I' \ H
has an embedded e-disk neighbourhood.!® Consequently any homotopically
nontrivial loop in I' \ H must have arc length greater than 2.

Suppose that I' contains a parabolic element 4. One may very well assume

that 4 coincides with (1) ill Then on the horocycle Im(z) = C, the
translation length is 1/C. This would yield a loop of arbitrarily small length
which is homotopically nontrivial. A contradiction. -

Definition 2.25 A cocompact Fuchsian group without torsion is called a sur-
face group.

Notice that a surface group I' is purely hyperbolic, i. e. consisting solely
of hyperbolic elements and the identity. Also the action of ' on H is free
and properly discontinuous, and therefore the quotient space I'\ H is a closed
surface. The canonical projection p : H — I'\ H is the universal covering map.

Let us expose a typical way of producing examples of surface groups. Con-
sider a regular octagon in H whose edges are geodesics of the same length.
If the octagon is small enough, then it looks like an octagon in the Euclidian
plane, and the angle of each vertice is near 37/5. On the other hand, if it
is large enough, then the angle is extremely small. Therefore there exists a
regular octagon P whose angle is just 7 /4.

Choose such an octagon P and name the edges, in cyclic order, a}, b;, a1,
by, ajy, by, az and by,

One can show that there exists a unique transformation o; of PSL(2,R)
which sends the edge a; to a! and the interior of P outside P. Likewise we
have a transformation §; sending b; to b; and the interior of P outside.

11Such number ¢ is called an injectivity radius.
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Choose the vertex v between the edge a} and b,. Consider the image of
v by aj!. It is a vertex between the edges a; and b;. Notice that Byt is the
unique transformation which sends aj'(v) to a vertex of P without returnig
to v. Next consider B;'ay(v). It is between b; and a;, and «; is the only
transformation mapping it to a new vertex of P. Consider oy 87 "oy (v). -+ - -+

This way v travels around the vertices of P, and returns to v after visiting
all the vertices of P. One can assure that

BBy oy Braa Byt oy (v) = [Ba, aa][Brs cu](v) = v.

In a dual way, one can consider the images of P around the fized vertex
v. First of all, B2(P) is adjacent to P, with common edge b,. Now what is
the other edge of B3(P) which has v as an endpoint? The answer is B;(a3).
Consider a},. What image of P is on the opposite side of a3? ay(P) is. This
shows that Bya;(P) has v as a vertex and is next to B5(P). This way one can
show that

P, ﬂ2(P), ﬁz%(P), ﬂ2a2ﬂz_1(P)> """ aﬂ2a2ﬂ{1a2_1:310‘1ﬂ1~1(13)

gather around v in this order. Finally since the total sum of the angles of P
is 27, we have [B,, @3][f1, a1](P) = P. That is,

[B2, 03[ Br, 1] = 1d. (25)

Let T be the subgroup of PSL(2,R) gererated by o; and §;. Poincaré
Polygon Theorem asserts that all the relations of I'‘are consequences of (25),
and P is the fundamental domain for I'.

The outline of the proof is as follows. Consider an abstract group

[ =<, B | (B2, @a)[B1, ] = 1d>

and T x P. ~
Define an equivalence relation ~ on I' x P by setting

(v,z) ~ (v,2") if v7 =af', B and 4(z) =+'(z").

Let
H=TxP/~.
(H is a model space of H constructed by the tesselation by {yP | v € I'}, with
4 % P corresponding to yP in H.)
We leave to the reader the verification of an important fact that His a
complete surface.
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Now the group I acts on H by v(7',z) = (v7',z) and we have the following
equivariant pair of maps

(¢,Q) : (T, H) — (I, H),

where ¢ : I — T is the canonical map and Q(v,z) = vz. Now clearly Q is a
submersion. Furthermore since H is complete and @ is a local isometry, @ is
a proper map'?, and thus a covering map. Since H is simply connected, @ is
a homeomorphism. From this follows that ¢ is an isomorphism. This finishes
the proof of the theorem.

The theorem implies that the group I' is properly discontinuous and it is
easy to show that the quotient I' \ H is the closed oriented surface of genus 2.

Careful reader may notice that there is no need to start with a regular
octagon. In fact, by considering an octagon, with the corresponding edges the
same length and the total angle of vertices 27, we get the same conclusion.

In the same way we can construct a surface group realizing a surface of
higher genus.

By taking the derivative of the isometric action of PSL(2,R) on H, we
obtain an action of PSL(2,R) on the unit tangent bundle 73 H. What we
have shown in Exercise 2.15 is rephrased as follows.

Proposition 2.26 PSL(2,R) acts on Ty H freely and transitively, i. e. for any
points (z,v) and (2',v') of TyH, there exists a unique element of PSL(2,R)
sending (z,v) to (2',v').

Now let us consider the geodesic flow ¢ on T3 H. Choose a base point
(1,v0) € T1H, where vo is the unit tangent vector at ¢ tending toward oo
(upward, parallel to the imaginary axis).

By Exercise 2.13 we have 1(z, v, ) = (€%, vs). Computation shows

t/2
Fom)= | | o)

Clearly the geodesic flow must commute with the action of PSL(2,R),
which is the group of isometries. That is, we have for A € PSL(2,R),

G =a] G S | o)

12The inverse image of a compact is compact.
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Define a map

a:PSL(2,R) - T'H

by a(A) = A(7,vs). By Proposition 2.26, « is a diffeomorphism. The group
PSL(2,R) acts on itself as the left translations and on T}H as mentioned
above. The diffeomorphism « is equivariant w. r. t. these actions.

Let us identify 71 H with PSL(2,R) by the diffeomorphism «. Then the
flow 1, viewed to be on PSL(2,R), is described as

t/2
d)t(A) =A [ 60 e—Ot/Z :l )

et’2 0
0 e t/2 |
The space of left invariant vector fields of PSL(2,R) forms a Lie algebra
sl(2,R) of the 2 by 2 traceless matrices. Let us set

1. e. given by the right translation by [

12 0
X =10 —1/2]’
[0 0
v = _10]%
[0 1

- [0

They form a basis of s{(2,R), and satisfy
(X,U]=-U, [X.S5]=S, [U,S]=-2X. (26)

Recall that a left invariant vector field induces a flow by the right translation

by some element.
t/2
Now X induces a flow by the right translation by l 60 6_2/2 ], 1. e. the

geodesic flow 1. U induces a flow v = {v°} by the right translation by [ i (1) J )

and S a flow 0 = {¢*} by [(1) i]
From equations (26) follows the following;
¢t ov® = Uset o 1/)t (27)
¢t 00’ = Use“t o ,(/)t (28)
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Of course one can deduce these relations directly from computation in PSL(2, R).
The equation (27) implies that 1! preserves a foliation of v and stretchs it et
times if ¢ > 0. Likewise t* shrinks o. (Notice that [X,U] = —U implies that
the flow of X streches the flow of U.)!

Therefore if we consider the left invariant metric on PSL(2,R) for which
the three tangent vectors X4, Uy and S4 form an orthonormal basis of the
tangent space at A € PSL(2,R), then the flow 4 is an Anosov flow of an open
manifold PSL(2,R) w. r. t. this metric.

Now assume I' is a cocompact Fuchsian group. Notice that the flows 1,
v and o, being given by the right translations, commute with the left action
by I'. Thus they can be pushed down to flows of the quotient I' \ PSL(2,R),
which we also denote by the same letters. (Notice also the left invariant metric
of PSL(2,R) can be pushed down.) Thus 1 is an Anosov flow on a closed
manifold I' \ PSL(2,R), with v and o giving unstable and stable directions.

Suppose further that I' is a surface group. (Recall then the quotient ¥ =
I'\ H is a closed surface.) The identification o : PSL(2,R) — T} H induces
the following diffeomorphism;

a:T'\ PSL(2,R) - T1%.

Clearly by this identification the geodesic flow of ¥ coincides with the flow .

When the group I is a cocompact Fuchsian group, but with a torsion, the
quotient I' \ H is no longer a manifold, but the quotient I' \ PSL(2,R) is
still a manifold. The push down % is an Anosov flow on it. This is a slight
generalization of the geodesic flow of a closed surface.

The plane field spanned by X and S is integrable and defines a foliation
V?. Let us study about this foliation. (The foliation V* defined by X and U
can be dealt with in the same way. So we shall concentrate on V*.)

et’2 0 1 s
The elements 0 et/ and 01 generate a subgroup
eZ
Aff={| jlxlxx,yeR}.

Clearly the leaf of V* through an element A of PSL(2,R) is A - Aff.

Exercise 2.27 Show that the subgroup Afl is isomorphic to the group of ori-
entation preserving affine transformations on the real line.

13Recall the definition of Lie derivative.
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Also notice the following easy facts.

Proposition 2.28 1. Aff is precisely the subgroup which keeps oo fized.

2. For any two points z and z' of H, there erists a uﬁique element of Aff
which sends z to Z'. O

Corollary 2.29 Given a leaf V of the weak stable foliation V° of T1H, there
exists a point a of SL, such that V is the set of points (z,v) with the property
that a is the terminal point of the geodesic tangent to (z,v).

Proof We only need to consider the case where the leaf V passes through the
point (i,vs). (The general case follows from the fact that any other leaf is
the image of V by the action of an element of PSL(2,R).) V is exactly the
orbit through (4, vs,) of the action of Aff on Ty H. (This is true only for the
base vector (4,vs).) Notice that the terminal point of the geodesic tangent
to (i,ve) is 00. Therefore it follows from the previous proposition that V' 1s
the set of points (z,v) such that the terminal point of the geodesic tangent to
(z,v) is oco.

O

By this corollary, we get a one to one correspondence between the leaves
of V* and the points of S .

Suppose I' is a cocompact Fuchsian group. Then the foliation V* gives
birth to a foliation on the quotient space I' \ PSL(2,R). denoted by the same
letter. This is the so called weak stable foliation associated to the Anosov flow
1, which we will study in the next subsection.

Let us describe a useful way of studying the dynamics of the foliation V°.
First of all define the mapping

B:PSL(2,R) — S. x H

by B(A) = (A- 00, A-1i). The Fuchsian group I' acts on S) x H diagonally,
and on PSL(2,R) from the left. Clearly 3 is a I'-equivariant diffeomorphism.
Now recall that a leaf of V* in PSL(2,R) is an orbit of the right action of
the subgroup Aff, that is, of the form B - Aff for some B € PSL(2,R). The
subgroup Aff keeps oo fixed. Therefore 8 maps the leaf B- Aff to {B-oo} x H.
That is, the foliation V? is transformed by 3 to a trivial foliation Fo = {y x H |
€ St}
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Again let I' be a cocompact Fuchsian group. f induces a diffeomporphism
B:T\PSL(2,R) = T\ (SL x H).

The foliation V* on T'\ PSL(2,R) is identified with the quotient of the trivial
foliation Fy of SL, x H by the diagonal action of I'. (If the group T' is a surface
group, this gives an example of foliated S* bundles of Example 1.21.)

The transverse dynamics of the foliation V* on I'\ PSL(2,R) is just the
reflexion of the dynamics of the action of the Fuchsian group I' on SL.

For example, as is well known, a surface group I' has the property that all
the T-orbits are dense in S% . This immediately implies that all the leaves of
V?® are dense.

Now let us study a bit more on a picture of the flows % and o on the
Poincaré plane H.

We say that (z,v) € TyH is positively asymptotic to a horocycle Cifzis
on C and v is perpendicular to C pointing inwards. A unit vector (z,v) is
positively asymtotic to a unique horocycle. If (z,v) and (y,w) is positively
asymtotic to the same horocycle, then

d(¢'(z,v), ¥ (y,w)) = 0 (¢t = o).

Especially the two geodesics tangent to (z,v) and (y.w) have the same terminal
point.

Proposition 2.30 The flow o° sends a vector (z,v) to a vector (y,w) posi-
tively asymptotic to the same horocycle, with the arc length'* of the segment
of the horocycle from x to y equal to |s|, and with the direction from x to y
positive (resp. negative) if s is positive (resp. negative).

Proof Recall that on PSL(2,R), the flow o is given by the right translation

of the matrix [ (1) i }, and the identification o : PSL(2,R) — T1 H by

a(A) = A, Voo ).
Thus on Ty H, the flow o is given by

o*(z,0) = P [(1) i}-(i,vw),

4w . t. the metric gp
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for a matrix P such that P(z,v.) = (z,v).
Since the flow o commutes with the action of PSL(2.R), it suffices to show

the lemma for a single prescribed vector (z,v). So let us take (z,v) = (4, v).

Then

0% (3, vas) = [ ) ] (5, v00) = (i + 5,v50).

The arc length of the segment from ¢ to i + s, of the horocycle {Im(z) = 1}
is |s| and the direction from 7 to ¢ + s is just as claimed in the proposition.
This completes the proof. O

The flow o (and also v) is classically called the horocycle flow. The picture
of the flow v is similar. We need a concept negatively asymptotic. Details are
left to the reader.

2.4 Foliations associated with Anosov flows

In this paragraph, ¢ is to be a C” (r > 1) Anosov flow on a closed manifold
M. The ¢-orbit through a point 2 € M, {¢*(z) | t € R} is denoted by O(z).
First of all we expose the integrability result, without proof.

Theorem 2.31 The bundle E° is integrable. The induced foliation is a con-
tinuous foliation by C" leaves. The leaves are diffeomorphic to R”.
For o = u, two points x and y belong to the same leaf if and only if

d(¢7'z,¢7'y) = 0 as t — oo.
Likewise for o = s, x and y belong to the same leaf if and only if

d(¢'z,d'y) = 0 as t — oo.

O

Definition 2.32 Denote by W the foliation given by E°, and call it the
strong unstable foliation or strong stable foliation of ¢ according as ¢ = u or
o=Ss.

The leaf of W’ through a point z € M is denoted by W7 .
The following property is immediate from the ¢'-invariance of the splitting
TM =TX @ E*® E°.
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Proposition 2.33 Fort € R, the diffeomorphism ¢! sends a leaf of W to
another leaf. O

In particular, if U is an small open ball in a leaf of W’ and if € > 0 is small,
then the set
{$'(z) |z €U, —e<t<e}

is a " submanifold in M of dimension o + 1. Thus we have;

Corollary 2.34 The bundle TX @ E° is integrable. The foliation is a contin-
uous foliation by C"-leaves. .

Definition 2.35 Denote by V’ the foliation associated with TX @ E°, dnd
call it the weak unstable foliation or weak stable foliation of ¢ respectively.

The leaf of V7 through a point z € M is denoted by V.

Notice that the subbundle £’ depends on the time parametrization of the
flow. Therefore the strong foliation W° also depends. But as we have shown
in the beginning of this sectin, the subbundle TX & E° does not depend on
the time parametrizaton. Therefore the weak foliation does not depend.

A leaf V' of V7 is foliated both by W |y, and by the flow ¢.

Lemma 2.36 Let V be a leaf of V?. Given any two points x and y of V, the
¢-orbit O(z) and the W?-leaf W) intersect.

Proof An arcin V joining z and y can be approximated by a composite

alﬂza2,32 """ ar/BTa

where o; is an arc in a ¢-orbit, 8; in a W7-leaf. Let p; (resp. ¢;) be the initial
(resp. terminal) point of ;. (We have p; = z.)

The proof is by induction on r. If r = 1, then the proposition is trivial. So
assume r > 1. By the induction hypothesis, there exists a point of intersection
z of O(p;) and Wy . Since p, and z lies on the same orbit, we have z = ¢*(p;)
for some t. Now ¢’ sends Wy, to W7 . By the definition the point ¢; lies both
on O(z) and on W;,. Therefore the point ¢*(¢;) lies both on O(z) and WY o

Proposition 2.37 Let V be a leaf of V°.
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1. If V does not contain a periodic orbit, then any ¢—orbit and W -leaf in
V intersect at ezactly one point. The flow ¢ and the foliation W7 |v gives
a product structure of V. Especially V is diffeomorphic to Rt

2. If V contains a periodic orbit O(p), then for any point x € V, W] meets
O(p) ezactly at one point, say g(z). The mapping g : V — O(p) is a
bundle map with fiber diffeomorphic to R°. Especially V is diffeomorphic
to S' x R’.

Proof We shall prove the proposition only for o = s.

1. All that needs proof is that any ¢-orbit and V*-leaf, say W, in V intersect
at a unique point.

Let z and 2z’ be distinct points of intersection. Since they lie on the same
$-orbit, 2/ = ¢(z) for some t. Then ¢* sends W onto itself. By the definition
of Anosov flows, ¢™ |w: W — W is a contraction for some large integer m.
(We are considering a distance function on W given by the Riemannian metric
induced from M.) Therefore ¢™* |w has a fixed point. This gives birth to a
periodic orbit of ¢ in V, contradicting the assumption.

2. Again we only need to show that any W?-leaf W has a unique point of
intersection with O(p). Suppose there exist two, say p and q. Let T' be the
period of p (and of course of ¢). Then by Theorem 2.31, we have

d(p,q) = d(¢" (p), " (q)) = 0 (n — o0).

Thus we have p = q. |

2.5 Structural Stability

Let X'(M) be the space of C' vextor fields on M, equipped with the ct
topology.

Theorem 2.38 An Anosov vector field X is structurally stable, 1. e. for any
€ > 0, there exists a neighbourhood U of X in X*(M) such that for any Y in
U, there exists a homeomorphism of M to itself, e-near to the identity, sending
an orbit of Y to an orbit of X.

The proof of this theorem is considerably complicated, but certainly parallel

with the case of diffeomorphisms. Below we simply mention those points which
need modifications. Again ¢ is to be an Anosov flow on M.
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Definition 2.39 Let § and T be positive numbers. Let {t;} be a bi-infinite
sequence of numbers greater than T'. A bi-infinite sequence {z;} of points of
M is called a (6, T)-pseudo orbit with time sequence {t;} if d(¢%(z;),ziy1) < &
for any 1.

Definition 2.40 A bifinite sequence {z;} with the time sequence {t;} is said
to be e-traced by z, if there exists an orientation preserving homeomorphism
g of R onto itself such that g(0) = 0 and that d(¢9*+T)(z), 4*(z;)) < € for any
1 and 0 <t <t; where

oty if i>0,
T.={ 0 if =0,

Definition 2.41 The flow ¢ is said to satisfy Pseudo Orbit Tracing Property
(POTP) if for any € > 0 and T > 0, there exists é > 0 such that any (é,7)-
pseudo orbit is e-traced by some point.

Lemma 2.42 An Anosov flow satisfies POTP.

Proof Given € and T of Definition 2.41, our purpose is to find out §. Of
course we may assume € is as small as we want. First of all given small ¢,
we shall construct a field of rectangles of size €, just as we have done for
diffeomorphisms. But for flows, the rectangles are of codimension one and
transverse to the flow.

Let R(€) be the rectangle in R* x R®, centered at the origin and of size e.
Choose a submersion 7 : N x R(e) — M with the following properties.

1. 7(z,0) = z.
2. The image R;(€e) = n(z X R(€)) is transverse to the flow and of size e.

3. The restriction of the foliation V* (resp. V*) to R,(¢€) gives the horizontal
(resp. vertical) foliation.

If € is sufficiently small, then one can construct such a submersion =. We
do not assume that the horizontal or vertical lines in the rectangles lie in a leaf
of the strong (un)stable foliation. (This is impossible in general.)

For 0 < ¢ < ¢, denote by R;(€') a subrectangle of R;(¢) centered at z and of
size €/. Choose a small number € > 0 with the following property; if y € R,(¢),
then there exists a strictly increasing continuous function b : [0,27] — R such
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that 5(0) = 0 and ¢*®)(y) lies on Rye(z)(€) for 0 < ¢ < 2T. Below we consider
a field of rectangles of size €.

Now choose § > 0 such that if the center of some rectangle R,(€') is mapped
by ¢* for some ¢t with T' < |t| < 2T, into a point in R,(€') which is é-near to y,
then the transition map along the orbit has a continuous extension from a part
of R,(¢') onto a part of R,(¢') with the analogous property as in Sublemma
1.40. ‘

Let {z;} be an arbitrary (6,T)-pseudo orbit with the time sequence {¢;}.
One may assume that 7' < t; < 27 for any ¢. (If some ¢; is too large, then pick
up some points from the orbit segment {¢*(z;) | 0 < ¢ < ¢;}, and add them to
the sequence {z;}.)

Just as in the diffeomorphism case, one can find a point z in R,,(€’) such
that the orbit O(z) visit every rectangle R, (€¢') in a right way, at a point, say
zi. By the choice of €, if 0 < t < ¢;, then ¢*()(z;) lies on Rye(s,)(¢) for some
continuous fuction b; : [0,¢;] — R. The function g of Definition 2.40 can be
defined using the functions b;’s in an obvious way. The lemma is proved. The
details are left to the reader. O

Definition 2.43 A flow ¢ is said to be ezpansive if there exists a positive
constant e, called the ezpansive constant, with the following property; given
two points z and y, if there exists an orientation preserving homeomorphism
g of R onto itself such that g(0) = 0 and that d(¢*(z),#*®(y)) < e, then
and y lie on the same orbit and the length of the segment of the orbit joining
them is smaller than 2e.

The proof of the following lemma is analogous to the case of diffeomor-
phisms and is omitted.

Lemma 2.44 For any sufficiently small e > 0, there exists a C! neighbour-
hood U of ¢ such that any flow in U is expansive with expansive constant e.

O

Outline of the proof of Structural Stability Theorem A purturbed flow
1 yields a pseudo orbit of the original flow ¢. Precisely, given a point z € M,
a sequence {¥'(z) |+ € Z} is a (6,1/2)-pseudo orbit of 4. Therefore by Lemma
2.42, there are a set S(z) of points which e-traces {'(z)}. Now by Lemma
2.44, the set S(z) is contained in a segment. of the orbit of ¢ of length smaller
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than 2e. The expansive constant e can be chosen arbitrarily small. Thus in
an appropriate flow box B of ¢ centered at z, the segment S(z) is contained
in a single orbit H(z) of ¢|p. Choosing the point h(z) in H(z) nearest to z,
we get a homeomorphism h from M to itself sending a -orbit to a ¢-orbit.

2.6 Transitiveness

Definition 2.45 A point z € M is called a nonwandering point of the flow
é, if for any neighbourhood U of z and for any T' > 0, there exists ¢t > T such
that ¢/ (U)NU # 0.

The set of nonwandering points is called a nonwandering set and is denoted

by Q(¢).

The nonwandering set is a nonempty closed set, invariant by the flow. For
example, a periodic point is a nonwandering point.

For an Anosov flow ¢, we have the following facts. The proofs are more
or less the same as in the case of diffeomorphisms and are left to the readers.
(The proof of Theorem 2.48 becomes simpler than the corresponding theorem
for diffeomorphisms.) Recall that V7 denotes the leaf of the weak (un)stable
foliation V° passing through z.

Proposition 2.46 Let p be a periodic point. Then V) NV} is contained in
the nonwandering set Q(¢). o

Theorem 2.47 The periodic points are dense in the nonwandering set Q(¢).
O

Theorem 2.48 The following five conditions are equivalent.

1. The nonwandering set (@) coincides with the total manifold M.

2. The periodic points are dense itn M.

o

There exists a point & such that its orbit O(z) is dense in M.

~!~\

All the leaves of the weak unstable foliation are dense in M.

S

All the leaves of the weak stable foliation are dense in M.
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Definition 2.49 We call the flow ¢ transitive if it satisfies the above condi-
tions.

As stated before, no example has been found so far of nontransitive Anosov
diffeomorphisms. But for flows, there do exist examples of nontransitive Anosov
, provided either the dimension of M is 3 or s > 2 and u > 2. See Franks-
Williams [14] for the construction, which is based upon the examples in [50].

On the contrary if the dimension of M is > 4, and if u = 1 or s = 1, then
a theorem of Verjovsky states that any Anosov flow is transitive. The next
section is devoted to the proof of this fact.

2.7 Markov partitions

Let us study a Markov partition associated with an Anosov flow ¢ on a closed
manifold M. Fix a point £ € M. Choose a codimension one disk D"~! centered
at z and transverse to the flow ¢. Let D? be the leaf through z of the weak
foliation V7, restricted to D™ !. Choose a closed subset Q7 in D such that
Int@7 is connected, contains z and that Cl(IntQ?) = Q°. Assume that the
size of @7 is smaller than a sufficiently small number € > 0.

Definition 2.50 The set B = Q“ x Q°® in D™ ! of the points of intersection
of the leaf of V*|pn-1 through a point of @° and the leaf of V*|pn-1 through a
point of Q* is called a rectangle.

Denote by IntR the interior of R in D" . For any point z € R, denote by
R?(z) the leaf of V?|g through z. Also denote by IntR’(z) = R’(z) N IntR.
Let R = {R;}!_; be a finite disjoint family of rectangles. Denote

IR| = U R;.
Suppose further that any forward-orbit intersects |R|. For any point z €
|R|, let 7(z) be the smallest positive time such that 7(z) € |[R|. The map
T:|R|—= R
is called the return time map and the map
IR = IR|

defined by f(z) = ¢7)(z) is called the first return map. In general 7 and f
are not continuous, but f is a bijection.
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Definition 2.51 The disjoint family R is called a Markov partition for ¢ if
the following conditions are satisfied.

1. There exists a positive number 7; with the following property; for any z €
M, there exists t € [0, 1] such that ¢'(z) € |R|.

3. For any 7 and j, the set IntR; N f~!(IntR;) is connected if it is nonempty,
and 7 (hence also f)is continuous on R; N f~!(R;).

4. If z € IntR; N f~'(IntR;), then f maps IntR}(z) into IntR:(f(z)) and f*
maps IntR¥(f(z)) into IntR¥(z).

If the flow ¢ is the suspension of an Anosov diffeomorphism f: N — N.
Then a Markov partition for f (on N) gives birth to a Markov partition for
the suspended flow.

Now we have the following theorem due to R. Bowen [6].

Theorem 2.52 Any Anosov flow admits a Markov partition of arbitrarily
small size. O

Associated with a Markov partition R = {R;}"_,, define an r by r matrix
A = {a,;} by setting a;; = 1 if IntR; N f~'(IntR;) # 0 and 0 otherwise. A is
called a transition matriz.

A sequence i = {1, }22__ of letters 1,2,---,r is called admissible if for any
N, @pnt1 = 1. Let

7o = inf{r(z) | z € |R|}.

The following theorem is a refinement of the pseudo orbit tracing property
and the expansiveness of the flow ¢. The proof is analogous and is omitted.

Theorem 2.53 1. For any admissible sequence i = {i,} there exists a
unique point x € |R| with the following property; there exists a time
sequence {t,}52 _. such that to = 0 and 19 < t,4y —t, < 1y for any n
and that ¢**(z) € R;,,.

2. Conversely given a point © € |R|, there ezists a bounded number of
admissible sequence with the same property as above. O

Remark 2.54 In 1 above, if the sequence i is cyclic, then the point x must be
a pertodic point. This follows from the uniqueness of x.
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3 The Verjovsky theorem

We call an Anosov diffeomorphism (resp. flow) codimension one
if the stable or unstable (resp. weak stable or weak unstable) fo-
liation is of codimension one. Such systems are considered to be
easier to analyse, since foliations of codimension one are simpler.
In fact, it is known that any codimension one Anosov diffemor-
phism is topologically conjugate to a hyperbolic automorphism of
the torus ([34]). :

However flows are more flexible than diffeomorphisms, and it
seems difficult to obtain a similar classification result. The first
milestone to the study of codimension one Anosov flows is the fol-
lowing theorem of A. Verjovsky. Any codimension one Anosov flow
on a closed manifold of dimension > 4 is transitive. In [49], the
theorem is stated without a condition about the dimension of the
manifold. But a counter example in dimension 3 is constructed by
Franks-Williams [14].

Also in [49], a stronger result is claimed that the quotient space
of the universal covering space by the lift of the (codimension one)
weak stable foliation is homeomorphic to the real line. However
the proof contains a serious gap, and this statement is still an open
problem. It is open even for transitive Anosov flows on 3-manifolds.

The purpose of this section is to provide a proof of the Verjovsky
theorem cited above. After necassary preliminaries are given in
the first subsection, the theorem is proved in the next. Another
complete proof is found in T. Barbot [4].

3.1 Preparations in foliation theory

Let F be a transversely oriented!® codimension one C? foliation with C” (r > 1)
leaves on a closed manifold M. One can construct a 1-dimensional subbundle
of the tangent bundle of M which is complementary to the tangent bundle T'F
of the foliation. We call it a normal bundle of F. It defines an oriented 1-
dimensional foliation which is transverse to F. Choosing a nonsingular vector
field tangent to the normal bundle of F, one can construct a flow § = {6}
transverse to F.

Given a loop 7 in a leaf of F and a positive number «a, define a mapping

15 e. the qotient bundle TM/TF is oriented.
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I':[0,1] X [-a,a] = M by

[(s,t) = 0'(v(s))-

Since the flow 6 is transverse to F, the mapping I is also transverse to
F, and therefore the induced foliation'® I'*F is a nonsingular foliation on
[0,1] x [~a,a], transverse to the vertical foliation {{s} x [~a,d] | s € [0,1]}.

Since v is a loop in a leaf of F, [0, 1]x{0} is a leaf of I'*F. Therefore for some
small b > 0, if [t| < b, the leaf through (0,t) reaches a point in {1} x [—a, ],
which we denote by (1,¢(t)). That is, we obtained an orientation preserving
homeomorphism ¢ from (—b,b) into (—a,a) which keeps 0 fixed. The germ of
this homeomorphism, denoted by Hol,, is called a leaf holonomy along . It is
well known and easy to show that if the leaf loop v is homotopic (in the leaf)
to another loop %', keeping the base point fixed, then their leaf holonomies
coincide. In particular, if 4 is homotopically trivial, then the leaf holonomy is
trivial.

Definition 3.1 A subset is called saturated if it is a union of leaves.

Definition 3.2 A subset is called a minimal set, if it is nonempty, closed and
saturated, and is minimal w. r. t. the inclusion among those subsets

The following proposition is a consequence of Zorn’s lemma.
Proposition 3.3 Any foliation on a compact manifold has a minimal set.

A closed leaf is a typical example of minimal set. If all the leaves of F are
dense in M, then the total manifold is a minimal set.

Definition 3.4 A minimal set is called ezceptional if it is neither a single leaf
nor the total manifold.

An example of foliation with an exceptional minimal set is produced as
follows. Consider the action of PSL(2,R) on S%. Let I; and J; (+ = 1,2) be
open intervals in S% such that their closures are mutually disjoint. Choose
a hyperbolic element 7; of PSL(2,R) which sends the exterior of I; to the
interior of J;. Then it is well known that the group I' generated by v; and ~,
is free. The set

A= ﬂ ’Y(Sio—(llLJJlUIzUJg))

~ver

16 A leaf of I'*F is a component of the inverse image of a leaf of F.
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is nonempty closed and invariant by the action of I'. Moreover A is known to
be the unique minimal subset with this property. This implies e. g, that all
the I'-orbits in A are dense in A, and that A is homeomorphic to the Cantor
set.

Let ¥ be an oriented closed surface of genus > 2 and let g : m(X) — T
be an arbitrary epimorphism. Then 7;(X) acts on S& via g. Consider the
products  x S. and the trivial foliation Fo = {X x {t}} on it. Then Fo yields
a foliation F on the quotient of & x SL by the diagonal action of m1(X). F
admits an exceptional minimal set corresponding to A.

As the final preparation, let us study the structure of an open saturated
subset E. Fix once and for all a Riemannian metric of M. It induces a
Riemannian metric on E. Denote by dg the corresponding distance function
on E. (Notice that dg is different from the restriction of the distance function
on M.) The metric completion of E w. 1. t. d is called the Dippolito completion
and is denoted by E. (To get an idea of Dippolito completion, just think of
the case where E is the complement of a single closed leaf F'. Then two points
in E near to each other in M may not be near w. r. t. dg, if they lie on the
opposite side of F'. Thus in the completion E, two leaves diffeomorphic to F
are added.)

The Dippolito completion Eisa manifold with boudary 6 F, usually non-
compact. The canonical projection p : E — CI(E) is defined in an obvious
way.

The Dippolito completion admits a foliation F induced from F. A bound-
ary component is a leaf of F. The vector field § on M transverse to F also
yields a vector field § on E. Denote by §*E (resp. 6~ E) the set of points of
the boudary §F at which the flow 6 is pointing outward (resp. inward). Of
course we have §E = §TE U ¢~ E and 6T F is a union of leaves. The following
useful lemma is a truncated version of a structure theorem of Dippolito [10].

Lemma 3.5 Let E be the Dippolito completion of an open saturated subset E

and let V™~ be a leaf in 67 E. Then there exists a compact subset A~ of V~

and a number T > 0 such that if x € V~ — A™, then 0 (z) € 6T E for some
€ (0,7).

Proof Let {B; x I;} be a finite family of subsets of M whose interiors form a
covering of M such that B; x {t} is a closed ball in a leaf of 7 and {z} x I; is
a closed arc in a 6-orbit. Choose a base point b; from B; and identify {b;} x I;
with I,

Consider the intersection E N I; for each 7. Then except for finite numbers,
all the connected components of the intersection are open intervals in I; which
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do not meet the boundary points of the interval.

Let ¢; be the terminal point of I; (in the orientation of #). If ¢; is contained
in F, define a;, if any, to be the point of I; N OF next to ¢;. (If ¢; is not
contained in F or if I; is completely contained in F, then a; is not defined.)
Set A’ = U;B; X {a;}. Then the lemma holds for the intersection A~ of V=
and the pull back of A" by the canonical projection p. O

3.2 The proof of the theorem

Again let ¢ be an Anosov flow on M. ¢ is called codimension one if either of
the weak stable or unstable foliation is of codimension one.

Theorem 3.6 A codimension one Anosov flow is transitive if the dimension
n of the manifold is > 4.

As we have mentioned in the prev1ous section, the assumptlons of the
theorem are all actually necessary.!”

The rest of this section is devoted to the proof of this theorem. In order
to fix the idea, we assume that the stable foliation V* is of codimension one.
Passing to a double cover if necessary, one may assume that V? is transversely
oriented!®.

Then the strong unstable foliation W* is 1-dimensional and oriented. Hence
there exists a nonsigular flow 6 tangent to W*. We consider the leaf holonomy
of V? according to this flow 6.

The leaves of V* are homeomorphic either to R*™! or to S* x R*™%. (n
is the dimension of the manifold M.) If it is homeomorphic to R, then
of course any leaf holonomy is trivial. If it is homeomorphic to S* x R"™2,
then it contains a periodic orbit. The homotopy class of the periodic orbit is a
generator of the fundamental group of the leaf. The leaf holonomy along it is
an expansion, and 0 is an isolated fixed point. This follows of course from the
expanding properties of the Anosov flow along the strong unstable foliation
W,

The proof is by contradiction. Assume that the flow is not transitive. Then
by Theorem 2.48, the stable foliation V* is not all-leaves-dense. Of course V*
does not have a compact leaf. Therefore by Proposition 3.3 V* must admit an
exceptional minimal set.

171, e. there are counter-examples if one of them is dropped.
180ne is free to pass to a double cover since the transitiveness of the lifted flow implies
that of the original flow.
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Let E be a connected component of the complement of the minimal set.
Then E is an open saturated set. Consider the Dippolito completion E. The
foliation V*, and the flows ¢ and 6 have lifts to E denoted by Ve, ng and 0.

Let V~ be a leaf in 67 E. We divide the argument into two cases.

Case 1 V=~ is homeomorphic to R"™.

Choose a compact subset A~ of V™ in Lemma 3.5. One may assume that A~
is homeomorphic to the closed disk D*~. Let U~ be the subset of the leaf

V'~ consisting of those points z such that gt(:c) lies on 61 E for some positive
t = 7(z). Lemma 3.5 asserts that V™ — A~ is contained in U~. The function

7:U” >R
defined in this way is continuous. Also define a map
h:U —6E

(@)
by A(z) =0 ""(z).
Since V'~ and 6t E are kept invariant by the flow qS and an orbit of 8 is

mapped by gb to another orbit of 8, we get the followings.
1. The subset U~ is invariant by the flow $
2. We have (4 (z)) = & (h(z)).

Since there is no QAS—orbit which is completely contained in the compact set
A~, the ¢-invariance of U~ implies that U~ is the total of V. Again by
Lemma 3.5, the function 7 is bounded from above. But this contradicts the
fact that qS must expand the §-orbit.

Case 2 The leaf V= is homeomorphic to S* x R" 2.

V= contains a unique periodic orbit O(p) of <$ By some abuse, denote a
tubular neighbourhood of O(p) in V=~ by S* x D"=%. O(p) is identified with
S x {0}. The orientation of S* is to be the same as the one given by the flow.
One may assume

1. The flow (5 is transverse to the boundary S! x S™~3, pointing inward.

2. Each fiber {t} x D"~? lies on a strong stable leaf, and in particular is
transverse to ¢.

3. The set A~ of Lemma 3.5 is contained in S x D"~2.
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By the definition of Anosov flow the only ¢-orbit completely contained in
S' x D™? is O(p). Now define the subset U~ the maps 7 and h as in Case
1. Then we have V- — O(p) is cotained in U‘. Of course if U~ is the total
of V=, then we are done by the same argument as in Case 1. So assume that
U-=V-0(p).

Sincen > 4, U~ is connected, and therefore the image h(U~) is contained in
one leaf, say V*, of 6T E. (This is the only point where we use the assumption
that n > 4.) By the argument which reverses the sign of 8, one may assume
that V* is also homeomorphic to S* x R*™* and h(U~) = V+ O(q), where
O(q) is the unique periodic orbit in V*. Clearly & is a homeomorphism from
U~ onto A(U™). :

Take a base point 2= = (a,b) i in S' x $™3 and consider a loop + corre-
sponding to S x {b}. Let I be the f-orbit from z~ to &+ = h(z~). Then the
leaf holonomy Hol, along « is defined on the whole I onto itself.

As we have seen before Hol, must have isolated fixed points and the point
2~ is an expanding fixed point of it. For a while let us assume that Hol, has no
fixed point in the interior of I. (We shall consider the general case afterward.)
Choose an arbitrary point y in the interior of /. Then we have

Hol"(y) =z~ as n— oo

Hol’(y) = z¥ as n— oo
Let V be the V* leaf passing through y. Let
U={z€V|z=0(z) 3t>0, ccU).

For any point z of U, the point z in U~ such that z = ?(w) is unique. Define
amap 7 : U — U~ by setting £ = m(z). Then since all the forward orbits of
7 starting at points in U~ arrive at points in V*, 7 is a covering map. Also
preserves the flow ¢

Denote by R x S™"~2 the inverse image of S* x 5"~3 of 7. The complement
of R x 5"7% in V has two connected component. One is the inverse image of
V™ — 8 x D"2, which we call the exterior of R x $"=3. The other is called
the interior. Smce d) is preserved by p, the flow ¢ is transverse to R x §7"73,
pointing toward the interior.

Let R

W={zeV]|z=0(z) 3t>0, ceV-).

Of course we have U C W C V. The map 7 can be extended to = W —=V.
(This may not be a covering map.) Denote by J the forward orbit of 8 starting
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at the point p = (a,0). (p is a point in the periodic orbit O(p), which we
identified with S* x {0}.)

Since V' N I has a point Hol " (y) arbitrarily close to 2= € V=, V' N J also
admits a point p’ of V N J sufficiently close to p. Then there exists a subset
B_ in V which contains p’ and is mapped by 7 homeomorphically onto the
fiber {a} x D"? passing through p. B_ separates the interior of R x 5"~ into
two parts. One part is near the leaf V= and is mapped by 7 onto St x D2,
Denote by C_ the closure of the other part. Since the flow ¢ is transverse to
the fiber {a} x D"?, it is transverse to B_. Since p’ lies on the strong unstable
leaf J through p, the ¢-orbit through p’ lies on the weak unstable leaf through
O(p). That is, the orbit (in the positive time direction) runs away from O(p).
Therefore the flow ¢ is pointing toward C_ at B_.

Do the same argument for the other boundary leaf V*. Then one can
define the (n — 2)-dimensional disk B, , and the part C which is not near to
V.. The flow 8 is transverse to By pointing toward Cy.

Now consider the intersection C' = C_ N C,. It is easy to see that its
boundary is homeomorphic to the (n — 2)-dimensional sphere and the comple-
ment of C is noncompact. A well known theorem of Schonflies implies'® that
C is homeomorphic to (n — 1)-dimensional disc. But on its boundary the flow
¢ is pointing inwards, contradicting the dynamics of the Anosov flow on the
stable leaf which we established in Proposition 2.37.

Last of all if Hol, has a fixed point in the interior of I, replace £ by a
smaller portion and the boundary leaf V* by the leaf corresponding to the
fixed point, nearest ot z~ and then do the same argument.

This completes the proof of Theorem 3.6.

19Tf V is homeomorphic to S* x R"~2, consider the universal covering.
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4 Asymptotic cycles

In this section, we consider a flow of general type. In [43],
Schwartzman introduced the concept of asymptotic cycles. He con-
sidered a sequence of arcs s, lying in orbits of the flow such that
length(s,) — co as n — oco. By joining the endpoints of s, by arcs
of bounded length in the manifold, we obtain a sequence of closed
curves which represents 1st homology classes C,,. A homology class
C' is called an Asymptotic cycle if it is the limit of such sequences
Ch.

Here we generalize the concept, and asign a homology class, also
called asymptotic cycle, to any flow-invariant probability measure.
The totality of the asymptotic cycles forms a compact convex sub-
set in the 1st homology group.

This has an application for getting a criterion for the flow to
admit a global cross section. We shall prove a theorem of Schwartz-
man [43] that if the set of the asymptotic cycles lies in the comple-
ment of a codimension one subspace, then the flow admits a cross
section. See also [17] and [15].

4.1 Definition and some examples

Let ¢ = {¢'} bea C"-flow (r > 0)on a compact manifold M without boundary.
We use the following notations.

Notation 4.1 Denote by C(M) the space of R-valued continuous functions
on M.

Notation 4.2 Denote by P = P(M) the space of probability measures on M.
An element p of P is considered to be a linear functional
p:C(M)— R,
such that
p(f) > 0 for f>0 and

wl) = 1,

where 1 € C (M) denotes the function constantly equal to one.

As is well known, the space P is compact by the weak-* topology, that
is, the topology of the convergence on each element of C(M). Moreover P is
convex with respect to its natural affine structure.
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Notation 4.3 Let P, = P4(M) be the space of ¢-invariant probability mea-
sures p, that is, ¢t (u) = p for any t.

Of course P, is a compact and convex subset of P.
The pupose of fhis section is to define the following mapping
A:Py, — Hi(M,R).
The image A, of u € Py is the so called asymptotic cycle of p.

Notation 4.4 Denote by [M, S?] the set of the homotopy classes of the con-
tinuous mappings from M to S*.

Here we consider S* to be the quotient group R/Z. The additive group
structure of S* yields an additive group structure on [M, S]. Let us denote by
Cs: the fundamental cohomology class of S*. Then a mapping o : [M, S1] —
H'(M;R) is defined by o([g]) = ¢*(Cs1). The following proposition is well
known.

Proposition 4.5 « is an isomorphism of [M,S*] onto H'(M,Z).

Therefore we get that H;(M,R) is isomorphic to Hom([M, S*],R). Thus
in order to define A: P, — H;(M,R), we need to define a mapping (denoted
again by A)

A:Pyx[M,S']— R.

So choose an arbitrary ;1 € Py and [g] € [M, S'], and let us define a number
A,([g]). Let g : M — S* be a representative of the class [g] and let z be an
arbitrary point of M. Let us consider the mapping

R >t g(¢'z) € S
Let h, : R — R be any of its lift. For ¢t € R, define
Ag(z,t) = hy(t) — h(0).

Ag(z,t) measures the increase of the argument -of g : M — S along the
orbit starting at = and ending at ¢'x.
The proof of the following lemma is immediate.

Proposition 4.6 1. Ag(z,t) is independent of the choice of the lift and is
continuous in x and t.
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2. We have
Ag(z,s+1) = Ag(a,s) + Ag(¢°s,2).

Definition 4.7 The class A, € H;(M,R) defined by

Aulla) =7 [ dgle,)d(z)
for any g € [M, S' and t # 0 is called the asymptotic cycle of p.

Roughly speaking, A,([g]) measures the y-average growth of the argument
of g along the flow in unit time.

Proposition 4.8 A,([g]) is a well defined homomorphism, independent of the
choice of g in the class and t # 0.

Proof First of all, let [g] = [¢/]. This means ¢'—g : M — S is homotopically
trivial, that is, has a lift A : M — R. Thus we have

Ag'(z,t) — Ag(z,t) = h(¢'z) — h(z).

By the ¢'-invariance of p, we get A,([g]) = A.([¢'])-

Also it is immediate from the definition that A, : [M, S'] — R is a homo-
morphism.

Next, to show the independence of the choice of ¢, let us denote for a while

= | Ag(z,t)du(z).
/. Ag(a, ()
Then we have
Bt = / Ag(z,s + t)du(z / Ag(z,s)du(z +/ Ag(d°z,t)du(z)

—_ — S t
= /MAg z,s)du(z +/M Ag(z,t)du(z) = B® + B".

The independence of the choice of t follows from this additivity property and
the continuity of B* on t. O

Remark 4.9 The mapping A : My — H,(M;R) is continuous and linear.
Therefore its image is compact and convex.
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Proposition 4.10 If u, € P converges to an invariant probability p € Py,
then we have

A(lg]) = lim > [ Ag(e, )du(z).

n—oo- f

Proof This is straightforward by the definition of the convergence in weak-x*
topology. Recall that Ag(z,t) is continuous in z.

O

Definition 4.11 For p € M and T € R, define a probability u(p,T) € P by

(o T)0) = o [ h(¢'pd
for any h € C(M).

Coro‘llary 4.12 Assume for some sequence p, and T, — 0o, u(p,,T,) con-
verges to . Then p is an invariant probability, and we have

A = Jim 7-B9(pn,T2)

n—oo

Proof That u is an invariant probability is obvious. To show the last part,
we have

Aa) = Jim > [ Ag(z,0du(pa, T)()

n—oo ¢

1

= Jlim ~(u(pn,Tn), Ag(-,1))
Tn

= lim =— | Ag(¢°pn,t)ds
0

T,
= lim - | (Ag(pn,s+1t) — Ag(pn,s))ds

11, [Tntt

t
= Jim 25 ([ 7 Ag(pes)ds — [ Ag(pn,5)ds)

Here notice that the function Ag(z,t) converges to Ag(z,0) =0, ast — 0
uniformly in 2. That is, for any € > 0, there exists § > 0 such that |[Ag(z,1)| <
e if |t| < &. This, together with the equality

Ag(z,s) — Ag(z,t) = Ag(¢'z, s — 1),
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implies the following; for any € > 0, there exists § > 0 (independent of z, s
and t) such that |Ag(z,s) — Ag(z,t)| < eif |s — t| < 6.
Therefore if |t| < é, then the term

1 [Tatt

t
U Ag(pn,s)ds—/o Ag(pn, s)ds)

is 2e-near to Ag(py,Ty). Therefore we get

Adle) = Jim ([ Ag(pur9)ds — [ Ag(pa, )ds)

.1
= T}}ggoT—nAg(pn,Tn).

O

Example 4.13 Consider the n-torus T" = R"/Z". Denote the coordinates
by (21,2, ,2n). Given (oq,as, -+, a,) € R, define a linear vector field

X = i _I_ o i + e + « i
-1 8.’151 2 8372 n@wn '
The flow ¢ induced by X preserves the standard volume p. Clearly we have

AN = (al’a2,. .. ,an) € R" ~ H](TH,R)

Example 4.14 Let O(p) be the periodic orbit through a point p € M of (the
least) period T'. Then of course p(p,T') is an invariant probability. Now it is
easy to check that A1) = (1/T)[O(p)] € Hi(M;R).

4.2 Cross sections

In this subsection, we assume that the flow ¢ is nonsingular. We will give a
condition in terms of asymptotic cycles for a flow to admit a cross section.
Recall that a cross section is a closed codimension one submanifold transverse
to the flow which intersects any orbit of the flow. First we need preparation.
Let ¢ : M — S be a continuous map.

Definition 4.15 If the limit ¢'(p) = lim;_o(1/¢)Ag(p, t) exists for any p € M
and forms a continuous map ¢’ : M — R, we say that g is C! along the orbit.

Lemma 4.16 Suppose that g is C! along the orbit and that ¢' is everywhere
positive. Then the inverse image N by g of the point 0 € S is a cross section.
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Proof Clearly N is transverse to the flow. Since the function g’ is bounded
from below, say, by € > 0, we have that for any point p € M, there exists
0 <t < 1/esuch that ¢*(p) € N. O

The following theorem will play an important role in the last section.

Theorem 4.17 Let ¢ be a nonsingular flow on M. Suppose that there ezists
numbers T > 0 and € > 0 such that

-;—,Ag(p, TY>e¢ (VYpeM).

Then the flow ¢ admits a cross section.

Proof An element of R and an element of S = R/Z can be added in a
natural way, the sum being an element of S' = R/Z. Using this, define a
function g : M — S by

g(p) = g9(p) + 51: /0 ! Ag(p, s)ds.

The proof will be complete once we show that g is C* along the orbit and that
g > 0. Now

1 T T
Ag(p,t) = Ag(p,t)+§,:( /0 Ag(¢'p, s)ds — /0 Ag(p,s)ds)
1 T T T
= Ag(pt)+ ([ Ag(ps+0)ds— [ Aglp,t)ds — [ Aglp,s)ds)
1 T4t t
= —T-(/T Ag(p,s)ds—-/o Ag(p,s)ds)

Therefore we have ) )
lim ~Ag(p.t) = 7A5(p, T) > ¢,

as is required. |

Corollary 4.18 (Schwartzman) Let ¢ be a nonéingular flow on M. Sup-
pose there erists a class C € H(M;R) such that for any p € My we have
(A,,C) > 0. Then there exists a cross section N of the flow ¢.
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Proof First consider the case when C is an integral point of H'(M;R). Let
g : M — S represent the class C € H'(M;R). We shall show that the
hypothesis of the previous theorem is satisfied. If not, there would exist a
sequence p, € M and T,, — oo such that

1

T Ag(pn,T,) — b,

for some b < 0. Passing to a subsequence, consider an invariant probability

n—00
n

1
=1 T naTn .
po= lim o p(pn, Tr)

Then we would have A,([g]) = b. A contradiction.

Next let us consider the general case. If a class C satisfies the assumption
of the theorem, then all the nearby classes must also satisfies the condition.
This is because the set {A, | u € My} is compact. Now just choose a rational
class and multiply it to obtain an integral class. O

The following proposition will be useful in the last section.

Proposition 4.19 Let ¢ be a nonsingular flow on M and let 7 : M- M
be a finite covering. Denote by ¢ the lift of  to M. Then ¢ admits a cross
section if and only if ¢ does.

Proof Suppose that ¢ admits a cross section. Then it gives birth to an S!
bundle structure g : M — S'. Thus g is C' along the orbit and that §’ is
everywhere positive.

Define a map g : M — S* by g(z) = g(z1) +- - +3(z,), where {zy,---,z,}
is the inverse image of z by 7. Then clearly g is again C* along the orbit and
g’ is everywhere positive. Therefore by Lemma 4.16, the flow ¢ admits a cross
section.

The converse is clear. -
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Codimension one foliations on solvable man-
ifolds

In this section we study an aspect of the interplays between the
structure of a foliation and the topology of the underlying manifold.
Let F be a codimension one foliation on a manifold M. We consider
the following problem; if the manifold M is simple, then is the
structure of the foliation F also simple? In general the answer is no.
For example, S° admits a foliation with nonvanishing Godbillon-
Vey class. Such a foliation should be sufficiently complicated.

In fact if we allow a foliation to admit compact leaves, then
starting from any foliation, we can construct another foliatin as
complicated as we want i. g. by a modification along any disjoint
system of closed embedded loops transverse to the foliation. There
is no hope of the classification of such a foliation.

Therefore we need to put the condition that the foliation is
without compact leaf. Under this condition, classification results
can be found for closed 3-manifolds.

The first result is by S. P. Novikov, who showd that a closed
3-manifold with finite fundamental group does not admits a c°
foliation without closed leaves ([35], [45]).

There is a classification theorem of C" (r > 2) foliations on
closed 3-manifolds with solvable fundamental group due to E. Ghys
and V. Sergiescu ([22]), and independently to J. Plante ([36]).

Also if the manifold is the unit tangent bundle of a closed ori-
ented surface of genus > 2, then such C” (r > 2) foliations are
known to be unique up to topological conjugacy ([32]). Quite re-
cently E. Ghys ([21]) obtained a remarkable classification result up
to C" conjugacy.

However if the dimension of the manifold is > 4, then such
a classification as in dimension 3 is impossible. For example, P.
Schweitzer showed that any closed manifold of dimension > 4 with
Euler number 0 admits a C* foliation without compact leaves. This
settled down a problem asking the validity of Novikov type theo-
rem in higher dimension. (But P. Schwitzer’s example is only C*.
The existence of such smooth foliations still remains open.) But it
strongly suggests that if we want to construct a qualitative theory
of codimension one foliations in higher dimension, then we need an
extra condition.
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Here we assume that the foliation F on a manifold M is all-
leaves-dense and any leaf holonomy is either trivial or has isolated
fixed point. We shall show in the last subsection that F is topo-
logically conjugate to a transversely affine foliation, provided the
fundamental group of M is solvable.

Since transversely affine foliations has nice properties, this re-
sult will be applied in the next section to the classification of codi-
mension one Anosov foliations on such manifolds.

5.1 Transversely affine foliations

Here we give definitions and fundamental properties of transversely affine fo-
liations. ‘ ,

Recall that a codimension one foliation F on a manifold M is defined by a
family of local submersions f; : U; — R such that U; is an open covering of M
and that fi!(z) is contained in a leaf of F for any ¢ and z € R, and a family
of local homeomorphisms, called transition functions,

gi; + £i(Ui N U;) — fUiN Uj)
such that fi = gijfj on U2 N Uj.

Definition 5.1 A codimension one foliation is called C” transversely affine
if the local submersions f; are C” and the transition functions g;; are the
restrictions of affine transformatins of R.

In the sequal we only consider transversely oriented foliations. Denote by
Aff, (R) the group of orientation preserving affine transformations of the real
line.

Let F be the lift of a transversely affine foliation F to the universal covering
space T : M — M. Assume that the domains U; of all the local submersions
are evenly covered by the covering map 7. Then one can consider all the lifts

fi" :fi°7r|U¢” . UZ-U —)R

of the local submersions f;, where U are arbitrary lifts of U;. They give Fa
structure of a transversly affine foliations.

Suppose that U? and U} intersect. Then instead of the local submersion
f#: U¥ — R, one can take

gijof; Ui =R
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as the local submersion. (This is possible because g;; is defined on the whole
of R.) Then the two local submersions f! and g;; o f} coincides on U} N UY.
Therefore the domain of definition of the submersion f} is extended from UY
to Uy UUY.

In this way we can extend the domain of f} one by one, just as if we are
doing an analytic continuation. Since M is simply connected, this yields a well
defined submersion from the whole M, denoted by

D:M—R.
Of course D depends upon the choice of the base submersion f?, which we fix
once and for all.

Now the fundamental group (M) acts on M as the group of deck trans-
formations. Choose one element v € w;(M) and consider the submersion

Do7:]\7—+R.

It is easy to show that this is also a submersion obtained in the same way
as above, but starting from a different choice of the base submersion (exactly
from f? oy : 4 }(U?) — R instead of f¥).

Therefore there exists a unique element, say g of Aff, (R), such that goD =
D o ~. This way, we get a mapping

h:m(M)— Aff (R),

by setting h(y) = g.

The equality h(y) o D = D o v implies that h is a homomorphism.

Definition 5.2 The submersion D is called the developing map of F and the

homomorphism h is called the holonomy homomorphism. The image I' =
h(m(M)) C Aff,(R) is called the holonomy group.

Thus we associate to a transversely affine foliation an equivariant pair
(h, D) : (y’fl(M),M) — (Af . (R),R).
Conversely we have the following proposition. The easy proof is omitted.
Proposition 5.3 Given any equivariant pair
(h, D) : (my(M), M) - (Aff,(R), R).

of a homomorphism and a submersion, there exists a transversely affine foli-
ation F on M such that h and D are the holonomy homomorphism and the
developing map of F. O
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The above proposition is useful for constructing transversely affine folia-
tions. Below, the group Affy(R) is identified with the Lie group of real matrices

of the form
e
0 1|°

Example 5.4 Consider the simply connected 3-dimesional solvable Lie group
S3 which consists of the real matrices of the form

e 0 =z
0 et y
0 0 1

Define a homomorphism H : S3 — Aff,(R) by

t

e 0 =z ot
HOe‘ty=[ :fl

0 eqt in the definition of S3 by A?,

where A is a unimodal integral hyperbolic matix, then we obtain a Lie group
which is isomorphic to Ss;. From this, one can easily show that the Lie group
S3 admits a cocompact lattice. Let ¢ : A — S3 be the inclusion map of a
cocompact lattice, and define p : Affy(R) — R by

Notice that if we replace the part

Then the equivariant pair
(HoupoH):(A,Ss) — (Aff.(R),R)
defines a transversely affine foliation on the quotient manifold A \ Ss.

In fact, the above foliation is nothing but the (un)stable foliation of the
suspension flow of a hyperbolic automorphism of T2

5.2 The Haefliger theorem

Throughout this subsection, F is to be a codimension one transversely oriented
continuous foliation on a manifold M. Unlike other sections, we do not assume
that the manifold is compact. As is mentioned in the beginning of this section,
we need an extra condition on the foliation in order to do qualitative study in
higher dimension. Here is a nice assumption which enables us to work.
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Assumption 5.5 (IFP) Any leaf holonomy is either trivial or has an isolated
fixed point. :

As a matter of fact, real analytic foliations satisfy IFP. Another example of
foliation with IFP which is important to us is the stable foliation of an Anosov
flow (when it is of codimension one).

Here is a theorem due to A. Haefliger, which plays a crucial role in what
follows.

Theorem 5.6 A continuous foliation F with IFP does not admit a null trans-
versal, i. e. a closed curve transverse to F which is null homotopic. O

On the other hand, we have the following fact.

Proposition 5.7 Any foliation F admits a transversal, i. e. a closed curve
transverse to it, provided the manifold M is compact.

Proof Suppose for a while that there exists a noncompact leaf F'. Since F'is
not closed, there exists a point z in CI(F') — F. Then near z, one can find two
points y and z of F' which can be joined by a path a which is transverse to F.
Let 3 be a leaf path joining y and z. Then the composite of « and S can be
modified slightly to become a transversal.

If all the leaves are compact, then by the Reeb stability theorem ([41],
[26]), F yields a bundle structure of M over S*. In this case it is easy to find
a transverse. .

Now notice that if the fundamental group of M is finite, then any foliation
on it admits a null transversal. This shows the following corollary of Theorem

5.6.

Corollary 5.8 Suppose M is a compact manifold with finite fundamental group.
Then M does not admit a foliation with IFP. FEspecially it does not admit a
real analytic foliation. O

Let us provide an outline of Theorem 5.6. we shall give an outline. Suppose
that F is a foliation with IFP and admits a null transversal ¢’ : S — M.
Then ¢’ extends to a map ¢g : D* — M. Passing to a small perturbation if
necessary, one may assume that g is in general position w. r. t. 7. Then the
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induced foliation g*F on D? has finitely many singularities of the following
two types. One is a so called center. Around it ¢*F is a foliation by circles.
The other is a saddle. Near by, g*F is topologically conjugate to the foliation
by {z* —y* = ¢}.

Now since g|g: is transverse to F, g*F must be transverse to S'. By the
Poincaré-Hopf theorem, the number of centers minus the number of saddles
must be one. In particular, there always exits a center. Any leaf near the
center do not intersect S* Let C' be the union of leaves which do not intersect
S*. Then C is a closed set. Furthermore one can show that C is connected.
The boundary 0C is a union of finite leaves, possibly including singularities.
Let b: S* — OC be a surjective submersion, moving anti-clockwise on 8C. b
gives a leaf curve of F, also denoted by b. By some abuse denote by (—1,1) a
curve through the base point of b which is transverse to F. (0 corresponds to
the base point.) Suppose the side (—1,0] corresponds to the part C. Then the
holonomy of b must be the identity on this side. This can be shown by looking
at the figure of g*F inside C. On the other hand outside C, any leaf must
reach S'. This implies that there are no fixed point in (0,1), contradicting
IFP. This finishes the outlined proof of Theorem 5.6.

The general position argument for continuous map and continuous foliation
is well developed. One can deal with them as if working in the smooth category.
See e. g. [45].

From now on let F be a foliation with IFP. Let F be the lift of F to the
universal covering space M. Consider the leaf space X = M/ F.

Lemma 5.9 The leaf space X is a I-connected (possibly non-Hausdorff) 1-
manifold.

Proof Let F be aleaf of F and let I be a transverse open arc passing through
F. Then any leaf F' of F intersects I at at most one point. For, if it intersects
at two points, then a curve in I and a curve in F” joining the two points form
a loop. This loop can be modified to be transverse to F. Since M is simply
connected, we get a null transversal, contradicting Theorem 5.6.

That is, I can be considered to be an open neighbourhood of F' € X.
Thus any point of X has a neighbourhood homeomorphic to an open interval.
This shows that X' is a 1-manifold. That X" is 1-connected follows from the
corresponding properties of M. O

Fundamental properties about 1-connected 1-manifolds induced from foli-
ations are found in [30]. See also [4].

71



Definition 5.10 A pair of points z; and z, in X is called a nonseparating
pair if any neighbourhood of z, intersects any neighbourhood of z,. The point
z; is called a nonseparating point.

The following lemma follows more or less obviously from the 1-connectedness
of X. For a detailed proof, see [30].

Lemma 5.11 Let z, and z2 form a nonseparating pair. Then there exist
embeddings f; : (—e,€) — X such that fi(0) = z; (1 = 1,2) with the following

properties.
1. fi((=€0)) = fa((=¢,0)).
2. f1([0,¢€)) and f5([0,¢€)) do not intersect.
Fix once and for all an orientation of X'.

Definition 5.12 The pair z; is called a right nonseparating pair if the embed-
dings f; are orientation preserving. Otherwise it is called a left nonseparating
pair.

Definition 5.13 The 1-manifold & is called of type W if it admits both right
and left separating pairs, of type [ if it admits none, and of type V otherwise.

Now since the fundamental group 71 (M) acts on Mina way to preserve
the foliation F, there is an induced action of m,(M) on X. Since the foliation
F is oriented, the action is orientation preserving.

Given a leaf F' of F, consider its inverse image in M. This corresponds to
a m1(M)-orbit O in X. Properties of F' can be translated into properties of O.
For example F is closed if and only if O is; F' is dense if and only if O is.

Also the property IFP is interpreted as a condition of the action. Let b be
a closed leaf curve of F based at a point zy and let a be a path in M joining
the base point of the manifold M to zo. Then the point zo together with the
path a designates a point in M and hence a point, say z, in X'. Now let v be
an element of m1(M) which is given by the composite loop aba™!. Then the
action of v keeps z fixed. The germ at z of the action coincides with the leaf
holonomy along b. Conversely the germ at any fixed point of any element of
m1(M) corresponds to the leaf holonomy of some leaf curve.

Denote by Fix(y) the fixed point set of the action of v € 71(M) on X.
Then IFP implies that if z € Fix(y) and if J is a sufficiently small interval
neighbourhood of z, then either J is contained in Fix(y) or Fix(y)NJ = {z}.

Notice that Fix(7y) is not closed in general. (Imagin the exchange of branch-
es.) Let us summerize the property IFP in terms of the action on X.
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Definition 5.14 Let S be a subset of X. A point = of S is called isolated in
S if = admits a neighbourhood J such that SN J = {z}.

Lemma 5.15 Suppose the foliation F satisfies IFP and let vy be an arbitrary
element of 71 (M). Then any componet of Fix(7y) is either an open set or a
point which is isolated in Fix(y). O

5.3 The developing theorem

Again F is to be an oritented continuous foliation on a manifold M. Through-
out this subsection, we will work under the following;

Assumption 5.16 (IFP) Any leaf holonomy is either trivial or has an iso-
lated fized point.

(ALD) All the leaves of F are dense in M.
(SOL) The fundamental group of M is solvable.

The purpose of this section is to show the following theorem

Theorem 5.17 (Developing theorem) Suppose the foliation F satisfies
IFP, ALD and SOL. Then there exist a homomorphism h from m(M) into
the group of orientation preserving homeomorphisms of R and a h-equivariant
continuous submersion D : M — R such that the pull back of the point folia-
tion of R by D coincides with the lift of F.

In fact the condition ALD can be replaced by a weaker condition that F
does not admit a closed leaf. (See [33].) The rest of this subsection is devoted
to the proof of Theorem 5.17.

We consider the orientation preserving action of m(M) on the 1-manifold
X. By ALD all the orbits are dense in X.

If X is of type I, that is, homeomorphic to R, then the canonical projection
from M onto X serves as the submersion D and there are noting to prove. So
we assume that X is either type V or W.

First we shall show that type W case is impossible. A key fact is the
following lemma.
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Lemma 5.18 Let X' be of type W. Suppose there exists a connected open set
P of X such that the boundary of P consists of exactly 4-points, a, b, ¢ and
d. Assume there exist elements f and g of m1 (M) which satisfy f(a) = b and
g(c) = d and send P outside P. Then f and g generate a free subgroup of
7T1(M).

Proof The proofis similar to the Poincaré polygon theorem exposed in section
2. Let T' be the subgroup of 7;(M) generated by f and g. We shall construct
a model of the action of I' on X. For this let T' be the abstract free group
generated by f and g. There is a canonical epimorphism p : R

Now as in the proof of the Poincaré polygon theorem, consider the direct
product T x Cl(P) and introduce an equivalence relation ~ in T x 0P by

(v,z) ~ (y,2") if 7' = fE, ¢*' and 4(z) =+(2).

Then the quotient P = T’ x CI(P)/ ~ becomes a 1-manifold. Furthermore one
can define in a canonical way a ['-action on P and a p-equivariant immersion
q: P — P. Finally one can show that ¢ is an injection. But this implies that
p is an isomorphism, as is desired. A full proof will be found in [30]. -

Lemma 5.19 X cannot be of type W.

Proof Suppose X is of type W. Choose orientation preserving embeddings
u,v : [0,3] — X such that u((1,2)) = v((1,2)) and that u([0,1]), u([2,3]),
v([0,1]) and v([2,3]) are mutually disjoint. (By ALD right nonseparating
points and left nonseparating points are both dense in X. Thus we can find
such embeddings.) By ALD there are four points in the same orbit, a in
u([0,1/2]), b in u([5/2,3], ¢ in v([0,1/2]), d in v([5/2,3]. Now let P be the
open regeon surrounded by the four points. Since the four points are in the
same orbit, one can find elements f and g which satisfy the condition of Lemma
5.18. Thus by Lemma 5.18, there exists a free subgroup on two generators in
m1(M). But this is against the hypothesis SOL. The claim is now proved. —

From now on, we assume that X is of type V. To fix the idea, we assume
that all the nonseparating pairs are right nonseparating, that is, there is only
one end in the —oo-direction, and there are infinitely many ends in the oo-
direction. Denote z ~ y if z and y form a nonseparating pair. Since X is of
type V, this is an equivalence relation.

74



Notation 5.20 Denote z < y if there exists an orientation preserving embed-
ding f : [0,1] — X such that f(0) = z and f(1) = y. Denote z < y if either
T<yorx=y.

We shall summerize easy properties of the relation < in the following
lemma.

Lemma 5.21 1. The relation < is a partial order.
2. For any point y and z, there exists a point z such that z <y and z < z.

3. Ifx <z and y < z, then we have either z <y, x =y ory < . O

Notation 5.22 1. Forz € X, denote (—oo0,z]={y € X |y X z}.
2. If ¢ <y, denote [z,y] ={z |z 2z X y}.

As a matter of fact they are homeomorphic to closed intervals in R.

Let T' be the quotient of =;(M) by the normal subgroup formed by the
elements which act on X trivially. Thus I acts on X effectively. Of course I'
is also a solvable group.

For any v € I, denote

Fix™(vy) = {z € X [ v(z) ~ z}.

Clearly Fix™ () is a union of ~ equivalence classes, and contains Fix(v).
Also we make the following definition.

Definition 5.23 A subset F' of X is called discrete, if the intersection of F'
with any compact interval in X’ is a finite set.

Lemma 5.24 Suppose Fix™(y) = 0 for some v € T'. Then v admits a unique
v-invariant properly®® embedded copy of the real line Axis(v), called the azis

of 7.

Proof Given any point z, there exists a point z such that z < z and z < vz.
Then vz < vz and z < yz hold. Therefore we have either vz < z or z < vz.
(vz = z cannot occur since Fix™(v) = 0.)

20Proper means that the inverse image of a compact set is compact.
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Suppose, to fix the idea, that vz < 2. Then

Axis(y) = | 7 (lvz, 2])
Y/

is an embedded copy of the real line, invariant by v. Since Fix™(y) = 0, the
orbit {7’z | ¢ € Z} is a discrete set. From this follows that Axis(y) is properly

embedded.
The proof of the uniqueness is left to the reader. O

Now let
> >0y >0 >T, =0Q>{e}

be the descending sequence of the solvable group I'. As is well known, each
I; is a normal subgroup. We are interested in the action of the last abelian
subgroup {2 on X'. We shall show that any element of {2 has a nonempty fixed
point set of special feature. This implies that the quotient X'/ is again a
1-connected 1-manifold on which the quotient group I'/Q acts.

The first step is to show that any element of 2 admits a fixed point. This
will be done in two steps.

Lemma 5.25 For any w € Q, Fix™(w) # 0.

Proof Suppose that Fix™(w) = 0 for some w € Q. Then it admits Axis(w).
For any 7 € T', the conjugate yw~v~! also has an axis, and we have

Axis(ywy™!) = yAxis(w).

On the other hand since ywy~! belongs to 2, ywy~! commutes with w.
This implies easily that their axes coincide. That is,

yAxis(w) = Axis(w).
Since v is an arbitrary element of I', this means that Axis(w) is invariant by

I'. But this is absurd, since by the assumption ALD, all the I'-orbits must be
dense in X. -

Lemma 5.26 For any w € Q, Fix(w) # 0.
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Proof Suppose Fix(w) = @ for some w. By the previous lemma, we have
Fix™(w) # 0. Let C be a ~ class contained in Fix™~(w). Let us show that

Fix™(w) = C.

Choose a point = from X — C. First of all if the point = satisfies ¢ < z for
some ¢ in C. Then we < wz, and wc also belongs to C. But we have wc # ¢,
since we are assuming that Fix(w) = . Now this shows that z # wz.

Secondly consider the case z < ¢ for some (and any) element ¢ of C. Then
we have either wz < = or z < wz. In any case z £ wz.

In the remaining case, z lies on a half line (toward co direction) starting at
a point z’ such that 2’ < ¢. Then the above observation about z’ also shows
that = & wz.

Now we have shown that Fix™(w) is a single ~ class C. An argument
similar to the proof of the previous lemma shows that C is invariant by the
action of I'. A contradiction. O

The next step is to show that there exists an )-invariant discrete subset of
X. First we need some preparation.

Notation 5.27 For a subset F' of X, let
F={z|y=<z=z dy,z € F}.
The proof of the following lemma is left to the readers.

Lemma 5.28 For any subset F' of X, the boundary OF is discrete.

Lemma 5.29 For any nontrivial element v of I', either Fix(y) is discrete, or
Fix(y) # X.

Proof Assume that Fix(y) is not discrete. That is, there exists a sequence
{z,} in Fix(7y) such that z, — zo. Presumably z, may not belong to Fix(y),
but it belongs to Fix™ (7). Suppose for contradiction that Fix(y) = X. Then
there exists y € Fix(y) such that zo < y. This shows z, € Fix(y). By Lemma
5.15, IFP implies that v is the identity near z. '

Consider the interval (—oo, zo]. This is invariant by 5 since zg is a fixed
point. Since 7 is the identity near zo, IFP implies that + is the identity on the
whole of (—o0, zo).

Now choose any point + € X. Then there exist points z; and z, such
that © € [z1,25), z1 € (—00,%0) and 2z, € Fix(y). (This follows from the
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assumption FB(('y) = X.) Of course the interval [z1,z;] is invariant by ~.
Notice that [z, 23] intersects (—o0, o) in an open interval. Then by IFP we
have z € Fix(y). Since z is arbitrary, we get that the action of v on X is
trivial. Since I' acts on X effectively, ¥ must be the identity. A contradiction.

O

Lemma 5.30 There exists a nonempty discrete subset S of X which is invari-
ant by ().

Proof Choose an arbitrary nontrivial element w in . Consider the case
where Fix(w) is discrete. Then it is invariant by ) since (2 is abelian. On the
contrary if Fix(w) is nondiscrete, then by Lemmas 5.28, 5.29, the set Bﬁ((w)
is a nonempty discrete subset. It is also invariant by (2. O

Let S be a discrete subset invariant by 2. Then for any 7 in I' and for any
w in 2, we have
7 lwyS = S.

That 1s,
w(yS) =~S.

Thus the set 4.5 is invariant by 2. Let
I' = {717 O TRREREE }

and for a positive integer z let

Si = U ")’jS.

This yields an increasing sequence of discrete subsets invariant by ). By ALD,
we have U,S; is dense in X.
Using this, we show in the next lemma a special feature of Fix(w).

Lemma 5.31 Let w € Q. If z € Fix(w) and if y < z, then y € Fix(w).

Proof Let z € Fix(w). The interval (—oo, z] is invariant by w. For any large
i, consider a point y in S; N (—oo0,z). Then wy = y. For if not, we have either
wy <y or y < wy. Accordingly either lim,_,_., w™y or lim,_,., w"y is a point
in (—oo,z]. This contradicts that S; is discrete.
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Thus we have
Si N (—o0,z] C Fix(w).

Since U;S; is dense in X', we have (—o0,z] C Fix(w), as is desired. .

The proof of the following corollary is left to the readers.

Corollary 5.32 The quotient X /) is a 1-connected 1-manifold on which the
group I'/Q acts with the same properties as the action of ' on X. O

Proof of Theorem 5.17 If X/ is of type I, then we are done. If not, we
repeat the same argument to the action of '/ on X'/Q). But this time the
step of the solvable group I'/Q is smaller than that of I We continue the
same argument. Then at some stage we obtain a 1-manifold of type I as the
quotient of X'. For if not, we would get a 1-manifold on which the trivial group
acts in such a way that all the orbits are dense. -

5.4  Solvable group acting on the line

Here we shall show a theorem, due to J. Plante, which asserts that a certain
action of a solvable group on the real line R is conjugate to an action by affine
transformations. :
As a corollary, we show in Theorem 5.39 that if a codimension one foliation
F satisfies IFP, ALD and SOL, then F is topologically an affine foliation.
Let G be a countable solvable group acting on R orientation preservingly.
Throughout this subsection we will work under the following;

Assumption 5.33 For any nontrivial element g € G, the fized point set
Fix(g) = {z € R [ g(z) = 2}
is discrete.

By the word measure on R, we always mean a measure which is finite on
any compact subset of R.

Definition 5.34 A measure p on R is called G-quasi-invariant if there exists
a homomorphism a from G into the multiplicative group R such that g, u =
a(g)p for any g € G.
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The following is the main theorem of this subsection which we shall estab-
lish later.

Theorem 5.35 (Plante) Under Assumption 5.33, there exists a G-quasi-
invariqnt measure.

Corollary 5.36 Assume further that all the G-orbits are dense. Then there
exists a homeomorphism k : R — R and a homomorphism ¢ from G to

AffL (R) such that
k(gz) = ¢(9)k(z) (Vg€ G, Vz €R). (29)
Before giving the proof, we make some conventions.
Notation 5.37 For any a,b € R, a ¢ b denotes a signed interval as follows.
[a,b) if a<b
aob= { 0 if a=b
—[b,a) if a>b.
Also for a measure p, p(a ¢ b) means an obvious signed value.
This convention is natural and useful, as we see in the next obvious lemma.
Lemma 5.38 For any a, b, c € R and a measure y, we have

plaoc) = p(aob)+ u(boc).

Proof of 5.36 Choose any (G-quasi-invariant measure p. Fix a base point
zo € R and define a map k by

k(z) = p(zo o z).

Since all the orbits of the G-action are dense in R, there is no atom in .
Therefore k is a homeomorphism into R.
Next define a map b: G — R by

b(g) = u(zo o g(20))-
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Finally define ¢ by
#(9)(z) = a(g)z + b(g).

Here a is, of course, a multiplicative homomorphism associated to the G-quasi-
invariant measure g as in 5.34. Now it is a routine work to establish equation
(29) using Lemma 5.38.

Finally let us show that k can be taken to be a surjective homeomorphism.
If not the image k(R) is an open interval invariant by the subgroup #(G) C
Affy (R). First of all notice that k(R) must be an infinite interval. For if not,
the action of ¢(G) on k(R) is trivial, contradicting the assumption that all the
G-orbits are dense.

For simplicity, let k(R) = (0,00). The action of ¢(G) is by multiplica-
tions. Now replace k by logok. Then the multiplications are replaced by the
translations. |

Theorem 5.39 Suppose a codimension one transversely oriented C° foliation
F on a manifold M satisfies IFP, ALD and SOL. Then F is a C° affine

foliation.

Proof By Theorem 5.17, we have an equivalent pair
(h,D) : (m(M), M) — (Homeo™ (R), R).

By IFP the action of the group G = h(m(M)) satisfies Assumption 5.33.
Also by ALD all the G-orbits are dense in R. Thus the theorem follows from
Corollary 5.36. O

Before giving the proof of Theorem 5.35, we prepare some lemmas.

Lemma 5.40 Suppose that a countable abelian group H acts on a compact
metric space X. Then there is a H-invariant probability measure on X.

Proof We only treat the case where H is infinitely generated. Let g1, gs, - -
be generators of H and let x4 be an arbitrary probability measure of X. Then,
since the space of probabilities is compact, the sequence

1 Nzt

¥ 2 (01w

1=0
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has an accumulation point p;. Clearly u; is invariant by g¢;. Likewise an
accumulation point p, of the sequence

T

N (92)x1

N 1=0
is invariant by both g; and g,. This way, we get a sequence pq, yg, - - -. Clearly
an accumulation point of this sequence is a H-invariant probability. O

Suppose a group H acts on R with an invariant measure p. As preparations
for the proof of Theorem 5.35, We study properties of such actions.

Definition 5.41 For g € H, the translation number b,(g) € R is defined by

bu(9) = p(z o g()),
where z is any point of R.

We already defined a homomorphism b in the proof of 5.36. There the
measure y was quasi-invariant, and therefore we need to fix a base point zg.
In contrast, the above definition is made under the hypothesis that u is H-
invariant. This yields much stronger properties of the mapping b,. We shall
state two lemmas and leave their proofs to the readers.

Lemma 5.42 The definition of b,(g) is independent of the choice of the point
z, and the mapping b, : H — R is a homomorphism. O

Lemma 5.43 b,(g) =0 if and only if g has a fized point. O

We want to establish a group version of the last lemma. For this, denote
by Fix(H) the set of points in R which is fixed by all the elements of H.

Lemma 5.44 1. The homomorphism b, is identically zero if and only if
Fix(H) ts nonempty.

2. K = Ker(b,) is the mazimal subgroup of H for which Fix(K) is nonempty.

Proof The if part of (1) is immediate. Conversely assume that b, is identically
zero. It suffices to show that Supp(y) is contained in Fix(H). Let € Supp(p)
and assume that there exists an element ¢ € H which does not fix z. Assume,
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to fix the idea, that z < g(z). Then the interval [g7!(z),g(z)) is a neigh-
bourhood of z and still we have u([g~*(z), g(z))) = b.(¢9%) = 2b,(g9) = 0. A
contradiction.

(2) follows immediately from (1). O

Lemma 5.45 Let p and v be arbitrary two H-invariant measures.

1. The homomorphisms b, and b, are parallel, that is, b, = \b, for some

A>0.
2. Ifb, =b, and b,(H) is dense in R, then we have p = v.

Proof First notice that the characterization of Ker(b,) in the above lemma
implies that K = Ker(b,) = Ker(b,). The quotient group H/K is an abelian
group injected into R in two ways, by b, and by b,. Clearly there is a well
defined action of H/K on the set Fix(K). Since this action is free, the order
of Fix(K) yields, in an obvious way, a total order on H/K, invariant by the
left mutipications (an Archimedian order). Then both homomorphisms b,
and b, are order preserving. It is well known, easy to show, that the two
homomorphisms are parallel. This shows (1).

To show (2), let us show first that Supp(u) is contained in the closure C of
an arbitrary orbit in R. For if not, there would be an interval (a,b) such that
#((a,b)) > 0 and that C' does not intersect (a,b). Then using any point in C
as a base point to define b,, one would get that the image b,(H) is not dense
in R.

Of course, the same property holds for Supp(v), and in particular we have
S = Supp(p) = Supp(v) is the unique minimal set of the action. Consider an
arbitrary orbit in S (dense in S). Comparing the two measures y and v on
a ¢ b for any two points a and b in the orbit, one clearly gets that p =v.

Proof of Theorem 5.35 Denote by
G=Go>G >Gy> - > G, > {0}

the descending sequence of the solvable group G.

Case 1 The action of G, is not free.

Let K be the set of nontrivial element k¥ € G, such that Fix(k) # . By
Asumption 5.33, the set F' = Fix(k) is a discrete set. Also notice that any
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orbit of k other than a fixed point is nondiscrete. For any other element &’
of K, Fix(k') is k-invariant since G, is an abelian group. Since it is discrete,
Fix(k') must be contained in F. Symmetry shows that Fix(k') = F. Now
the conjagation by any element of G keeps the subset K of G,, invariant, and
therefore the set F' is invariant by the action of G. The union of point mass
supported on F is a G-invariant measure. This proves the theorem.

Case 2 (G, acts on R freely.

Choose any nontrivial element h of G,,. Then since G, is abelian, there is a
well-defined action of the quotient group G,/ < h > on the circle R/ < A >.
By Lemma 5.40, we have an invariant probability. It gives birth to a measure
on R, invariant by G,,.

- Suppose that G; be the largest subgroup in the descending sequence which
has an invariant measure y. Assume that i > 0, for otherwise there is nothing
to prove. Since G; is a normal subgroup of @, the induced measure g,p is
again a Gy-invariant measure for any element g € G. Using (1) of Lemma 5.45
define a homomorphism a : G — Ry by

by = a(g)bu.
We have
bu(97" hg) = a(g)bu(h) (Vg€ G, Vh€Gy), (30)
because

bu(97 hg) = p(zog 'hgz) = pu(g 'y o g hy)
= gupu(y o hy) = by, (k)
= a(g)b“(h).

Also it follows from equation (30) that K = Ker(b,) is a normal subgroup of
G.

Claim a s nontrivial.

Suppose on the contrary that a is trivial. First consider the case where
b.(G;) is isomorphic to Z. Let F = Fix(K). Then the normality of K implies
that F' is invariant by G. Also by equation (30), we have b,(g~*hg) = b,(h)
for g € G and h € G;. That is, g7'hg = h mod K.

Now the action of G on F' is through the quotient G/K and it commutes
with the action of G;/K ~ Z. Therefore it induces an action of G/G; on the
quotient space F'//G;. If we restrict this action to G;_;/G;, then it admits an
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invariant probability, since the group is abelian. This way, we get an invariant
measure for G;_1, contrary to the assumption that G is the largest group with
this property. '

Next suppose that b,(G;) is dense in R. Then since a is trivial, we have
gxit = p by Lemma 5.45 (2). That is, there exists a G-invariant measure,
contrary to the hypothesis. This shows Claim.

Let us finish the proof. We already know that the homomorphism a is
nontrivial. This implies by equation (30) that g,(G;) is dense in R. Thus we
have g,y = a(g)p. That is, u is a G-quasi-invariant measure. O
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6 Codimension one Anosov flows on solvable
manifolds

An Anosov diffeomorphism is said to be codimension one if either the stable
or the unstable foliation is of codimension one. The structure of codimension
one Anosov diffeomorphisms is well understood. We have the following result
due to S. Newhouse [34].

Let f; be a diffeomorphism on a manifold N; (z = 1,2). f; and f; are said
to be topologically (resp. C") conjugate if there exists a homeomorphism (resp.
C" diffeomorphism) h : Ny — N; such that f0oh = ho f;.

Theorem 6.1 A codimension one Anosov diffeomorphism on a closed mani-
fold is topologically conjugate to a hyperbolic automorphism on the torus.

The conclusion topologically conjugate is the best possible. We cannot hope
C' conjugacy. To see this, just choose any hyperbolic automorphism f of 7™
and consider a small perturbation f’ of f which has eigenvalues different from
those of f at the fixed point. If the perturbation is small, then f’is an Anosov
diffeomorphism. By the structural stability theorem, f’ is topologically con-
jugate to f, but not C'' conjugate because of the difference of the eigenvalues.
Moreover since any hyperbolic automorphisms which are not mutually conju-
gate by an algebraic automorphism are not topologically conjugate®, f’is not
C' conjugate to any hyperbolic automorphism.

Thus Theorem 6.1 is the final theorem for codimension one Anosov diffeo-
morphisms. We want to establish the same kind of theorems for codimension
one Anosov flows. However the flow has more flexibility than the diffeomor--
phism. This forces us to add an extra condition about the manifold. We
assume that the fundamental group of the underlying manifold is solvable.
Then we get the following theorem, as conjectured by A. Verjovsky.

Let ¢; be a flow on a manifold M; (¢ = 1,2). ¢, and ¢, are said to be
topologically conjugate if there exists a homeomorphism from N; to N, which
sends an orbit of ¢; to an orbit of ¢, in a sense preserving way.

Theorem 6.2 Any codimension one Anosov flow on a closed manifold with
solvable fundamental group is topologically conjugate to the suspension of a
hyperbolic automorphism of the torus.

A They give different outer automorphism of the fundamental group
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In dimension three, examples of nonclassical Anosov flows are abundant
([14], [25], [23] [16]). But in higher dimension examples of codimension one
Anosov flows are rather rare.

It is quite recent that A. El Kacimi constructed an example of nonsolvable
Lie group which admits a codimension one Anosov flow and a cocompact dis-
crete subgroup. This brings forth a codimension one Anosov flow on a compact
manifold which is not the suspension of a hyperbolic toral automorphism, thus
showing that the condition solvable is necessary even in higher dimension.

The purpose of this section is to give a proof of Theorem 6.2, following the
arguments of D. Fried [15] and J. Plante [37, 36]. Let ¢ be an Anosov flow on
a closed manifold M which satisfies the conditions of Theorem 6.2.

By Theorem 6.1, we only need to show the following.

Claim The flow ¢ admits a cross section.

But by Proposition 4.19, the flow ¢ admits a cross section if and only if its
lift to a finite covering does. Therefore we may pass to a double covering and
assume that the codimension one weak stable foliation is transversely oriented.

When the dimension of the manifold is 3, Theorem 6.2 is already established
by [2]. In this lecture notes, we only treat the case when the dimension of the
manifolds > 4. Then by the Verjovsky theorem (Theorem 3.6), the weak stable
foliation V* has the property that all the leaves are dense. On the other hand,
V? satisfies the condition IFP of Section 5 (any leaf holonomy is either trivial
or has an isolated fixed point).

Therefore by Theorem 5.39, the foliation V* is topologically conjugate to a
transversely affine foliaton. That is, we obtain an equivariant pair of maps

(h, D) : (m(M), M) — (Aff(R),R),

where D is a topological submersion. Since the foliation V* is transversely
oriented, the image of h is contained in Aff;(R), the group of orientation
preserving affine transformations.

For any ¢ € (M), h(6) is an affine transformation of the form:;

R>zw— a(b)z+ b(6) € R,
where a(6) is positive. Define a homomorphism
logh': m(M) — R

by log h'(6) = loga(é).
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As is well known in algebraic topology, we have the following identification.
Homo(my(M),Z) ~ [M,S'| ~ H' (M, Z).

We also have

Homo(m;(M),R) ~ H'(M,R).

Thus the homomorphism log A’ defines a class in H!(M, R), denoted by C.
Our first trial is to show that the class C' satisfies the condition of Corollary
4.18, i. e. that (A,,C) is positive for any ¢-invariant probability measure .
But we only get the following partial result.

Lemma 6.3 Let v be a periodic orbit of ¢, with the corresponding ¢-invariant
probability measure p(7y). Then we have (A,,),C) > 0.

Proof The homology class A,(,) is nothing but [v]/s, where s is the period of
v. But ([7],C) = log h'(70), where 7, is an element of m;(M) freely homotopic
to v. Therefore ([7],C) is exactly the logarithm of the linear part of the leaf
holonomy?? of the foliation V* along the periodic orbit 4. Now the strong
unstable foliation W* is one dimensional and transverse to V*. Therefore the
expanding property of the flow ¢ along W* shows that ([v], C) is positive.

The above mentioned expanding property of the flow ¢ along W* strongly
suggests that (A,,C) is positive for any ¢-invariant measure u. However it is
rather difficult to show it in a direct manner. So we need to make use of a
Markov partition, and consider an approximation of C' by a rational class in

HY(M,Q).

Let R = {R;}]_, be a Markov partition for ¢. As before we denote |R| =
U; Ri, and by f : |R| — |R| the first return map, with the return time map
7 : |R| = R. There exist positive numbers 7y and 7; such that 7o < 7(z) <7
for any z € |R|. '

An admissible sequence i = {i,} is called cyclic if there exists a positive
integer ¢ such that ¢,,, = 1, for any n. Then we denote

1= ((t0, 21,  ig-1))-

A cyclic sequence ((%g, 1, - ,%,-1)) is called minimal if all the indices 7, are
distinct. The following easy fact will play an important role.

There are but finite number of minimal cyclic admissible sequences.

*2considered to be a transverse affine foliation by the topological conjugacy
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Recall that an admissible sequence corresponds to a ¢-orbit; and especially a
cyclic admissible sequence to a periodic orbit. Let

F={n|1<k<m}

be the family of all the periodic orbits associated with the minimal cyclic
admissible sequences. Let s; be the period of ;.

By Lemma 6.3, we have (A,(,,),C) > 0 for any 1 < k < m. Let ¢’ €
H'(M,Q) be an approximation of C such that (Au),C") > 0 for any 1 <
k < m. Then muntiplying C’ by an appropriate integer, one obtains an integral
class.

Let g : M — S' be a mapping which represents this integral class. Then
we have

(A o) >0, 1<VE<m, >0, (31)

Our purpose is to show that ¢ satisfies the condition of Theorem 4.17. In
fact, we will show the following stronger result.

Claim For any sufficiently large T > 0, there exists € > 0 such that

%—Ag(m,T) >¢, VreM.
Now it is clear that we only need to show the claim for z € |R|. Let T,
be a large number to be decided later. For a point z € |R|, let {i,} be an
admissible sequence associated to it. That is, there exists a time sequence {t.}
with
to=0, 70 <tpy1—t, <7, z,=4¢"(z)€

We are interested in the sequences {z,}"_, and {t IV with tN > Tp. Clearly
it suffices to show the claim only for T = ty.

Now changing the function g : M — S in its homotopy class, one may
assume that g is constant on each rectangle R;. For any 0 < n < N, the return
time map 7 and the first return map f is continuous on R; Nf~1(R;, 1 ) There-
fore the number Ang = Ag(z,7(z)) is constant for any z € R;, N f~( R;...).
Clearly we have |A,g| < L for some constant L determined only by R and g.
We have

(z,tn) = Z Apng. (32)

Now from the sequence i = {ig,7;,%5-+---- in }, one can choose a number n,
and ¢; > 0 such that ¢,, =i, 4, and that i,,, Iny41s" " bny+qi—1 are all distinct.
Let j1 = ((%n;5° " tny+q1—1)) be the corresponding minimal cyclic admissible
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sequence. Then j; corresponds to a periodic orbit -k, (of period s, ) in the
family I'. Then we have

ni+q1—1
Z Aug = ([7k1]’ [g]) (33)
v=n
To < bt =ty < n (34)
T Sky To
Now let
i'= {iO"' ’ ainl—l’in1+q17"'ai1\’}'

i’ is also admissible. Again choose numbers n, and ¢, and construct a minimal
cyclic admissible sequence j; from i’, which corresponds to a periodic orbit ~y,
of period sg,. Proceed in this way, until we cannot do any more. Then we get
periodic orbits y,, - - -, V,, and what is left is an admissible sequence of length
less than r. (r is the number of rectangles in the Markov partition R.)

Thus by (32) and (33), we get

l
(z,tw) = 3 (lw, ), [9]) + En,
Jj=1
where |F;| < rL.

We also have by (34)

To tN — E T
— < ] : < 'la (35)
T1 Ej=1 Sk, To

where 0 < Ey < rry.
Notice that A,(y,) = [vk]/sx. Thus by (31), we have

!
Ag(z,ty) > nZsk + E;. (36)

=1

By (35) and (36), we get

!
18k, — |E
—Ag(.’lf tN) n Z]_l : k; l ll
in (11/70) j=1 8k, + B2
Now it is easy to deduce
—Ag(z,ty) > Tom _ g_’
T in



where C = C(L,r,7,7) does not depend on the choice of = or tx. Therefore

if we choose T, such that
27’10

To7

To >

then we get

1 Ton
—A t > —
tN g(:r, N) - 27'1

if t;y > To. The proof is now complete.
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