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Preface

These are informal lecture notes distributed as supplementary materials
for a series of lectures given at Seoul National University on Dec. 26-29, 1994.
Some sections are directly based on material published or to be published by
the author, others are original exposition of well-known material. Through-
out, the emphasis is on ideas and sketches of proofs, rather than detailed
arguments.

The first two chapters are a brief review of some standard algebraic
topology, selected for its importance in 3-dimensional topology. The third
chapter contains a summary of some of the manifold theory that is heavily
used in working with low-dimensional manifolds, such as the isotopy exten-
sion theorem, regular and tubular neighborhoods, transversality, and general
position.

The next two chapters concern the topological theory of 3-manifolds.
The fourth chapter discusses the fundamental theorems — the Kneser-Milnor
Factorization Theorem, the Loop Theorem and Sphere Theorem of Papakyr-
iakopoulos — and Waldhausen’s theory of mappings of sufficiently large 3-
manifolds. The fifth chapter is an exposition of Johannson’s version of the
Jaco-Shalen-Johannson characteristic decomposition theory of Haken mani-
folds.

The next three chapters treat recent research in the mappings of com-
pact 3-manifolds. The unifying theme is the study of the mapping class
group H(M) — the group of isotopy classes of (piecewise-linear or differen-
tiable) homeomorphisms of a 3-manifold M — by using the natural homo-
morphism H(M) — Out(m1(M)) which takes a mapping class to its induced
outer automorphism on the fundamental group. Chapter six deals first with
the theory of compression bodies and the associated characteristic decom-
position theory, due to Bonahon and McCullough-Miller, and then studies
H(V) — Out(m;(V)) where V is a compression body. Chapter seven focuses
on the kernel of H(M) — Out(m(M)), giving the Generalized Luft theorem
which describes generators for the kernel, and the author’s results on infinite
generation of the kernel. Chapter eight begins with a general conjectural pic-
ture of 3-manifold mapping class groups, and some discussion of the current
status of these conjectures. This is followed by a presentation of the author’s
work on mapping class groups of sufficiently large 3-manifolds.

The ninth chapter describes current research on the finite-index realiza-
tion problem, which asks when the image of H(M) — Out(7;(M)) has finite
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index in Out(m1(M)). After some illustrative examples, the finite-index re-
alization theorem is presented. It answers the problem for a large class of
3-manifolds. The final section describes the application of these topological
results to obtain information about the deformations of hyperbolic structures
on 3-manifolds.

In the tenth and final chapter, we give a list of problems for students.
Rather few such lists seem to be available. While ours is not tied directly to
the material contained in these notes, we hope that may be of value both to
students and lecturers of low-dimensional topology.

The author thanks Seoul National University and GARC for their gen-

‘erous support and hospitality, and especially Sungbok Hong and Hyuk Kim
for their personal efforts.
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Chapter I. Some algebraic topology used in 3-manifold theory

1. Homology of spaces

Let R be a commutative ring with an identity element. Sometimes R
will required to be a principal ideal domain.

By a homology theory we mean a functor from the category of pairs
of spaces and continuous maps to the category of graded R-modules and
graded homomorphisms. That is, for each pair (X, A), where A is a sub-
space of X, there is an R-module H.(X, 4; R) = ®52,H,(X, A; R), and for
each continuous map of pairs f:(X, A) — (Y, B) there are homomorphisms
fo: Hy(X,A; R) — Hy(Y,B; R) for every ¢, so that (f o g)x = f« 0 g.. We
abbreviate Hy (X, A; R) to Hy(X,A), and Hy(X,0) to Hy(X). Also, if no
ring R is explicitly mentioned, then R is assumed to be Z. For every pair
(X, A) and every ¢ there is a homomorphism 0: Hy(X,A) — H,_;(A), and
the following FEilenberg-Steenrod axioms must hold:

1. (Homotopy invariance) If f, g: (X, A) — (Y, B) are homotopic, then f, =

Gx-

2. (Long exact sequence) There is a long exact sequence

o Hy(A)5H (X)L H (X, )2 H, i (A)—

where i: (A4,0) — (X, 0) and j: (X,0) — (X, A) are the inclusion maps.
3. (Excision axiom) If U is an open subset of X whose closure is contained
in the interior of A, then the inclusion map j: (X —U,A-U) — (X, A)
induces isomorphisms j,: Hy(X —U,A —U) — Hy (X, A).
4. (Coeflicient module) If P is a one point space, then Hyo(P) = R and
Hy(P)=0 for ¢ > 1.
The module in axiom 4 is called the coefficients for the homology theory.
There are many ways to define homology groups. (Strictly speaking, one
should say homology “modules”, but for the common cases R = Z and
R =7L/n, the homology modules are abelian groups, so we often speak of
homology groups.) For a fixed coefficient ring R, all the standard definitions
produce the same results when X 1is a simplicial complex and A is a subcom-
plex, but in more general situations two different homology theories with the
same coefficients can assign different homology modules to the same space.
The axioms imply a more general version of the long exact sequence:
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THEOREM: Suppose B C A C X. Then there are homomorphisms
0:Hy(X,A) — Hy_1(A, B)
fitting into a long exact sequence

.. —H (A, B)“5H (X, B)25Hy(X, )
H,_1(A, B)-5H, (X, A)— ...

where i: (A, B) — (X, B) and j: (X,B) — (X, A) are the inclusion maps.

The axioms also imply the following exact sequence, which is very pow-
erful for computation of homology. It applies in quite general situations, but
we will just state it for simplicial complexes.

MAYER-VIETORIS SEQUENCE: Suppose A and B are subcomplexes of a
simplicial complex X, with AU B = X. Then there are homomorphisms
0: Hy(X) — Hy—1(AN B) fitting into a long exact sequence

. H(An BT H,(4) & Hy(B)" Hy(X)-2H,1(ANB)— ...

where : ANB — A, :ANB — B, [:A — X, and J:B — X are the

inclusion maps.

Here are some other consequences of the axioms and the Mayer-Vietoris
sequence. Assume that K is a simplicial complex and L is a subcomplex,
possibly empty.

1. If K is n-dimensional, or more generally if every simplex of K — L has

dimension < n, then H (K, L)=0 for all ¢ > n.

2. Hy(K) = ®R with one summand for each connected component of K.
3. Hy(S™)=Rif ¢=0 or ¢g=n, and H,(S™)=0 for all other g.

2. Cellular homology

The most concrete way to construct homology groups, and the most
useful for computation in low-dimensional topology, is cellular homology. It
requires that X have a structure as a CW-complez. That is, X =UgZ,X (9)
where the 0-skeleton X (¥ is a countable (possibly finite) discrete set of points,
and each (g + 1)-skeleton X (¢+1) is obtained from the g-skeleton X(9) by
attaching (¢ + 1)-cells. Explicitly, for each ¢ there is a collection {e; | j €
Jg+1} where



1. Each e is a subset of X(a+1) such that if e;=e;N X then e; — e} is
disjoint from ex — e} if j, k € Jg41 with 5 # k.
2. For each j € J,41, there is an attaching map g;:(Dt!,0D9!) —
X(a+1) such that g; is a quotient map from Dt to e;, and g; maps
D(e+D) — 9p(@+1) homeomorphically onto e — e}
3. A subset of X is closed if and only if its intersection with each e; is
closed.
Each e —¢/; is called a (g+1)-cell. When all attaching maps are imbeddings,
the CW-complex is called regular.

Now for each ¢ let C;(X; R) be the free R-module with basis the g-cells.
We will define the boundary homomorphism 0: Cq11(X; R) — Co(X; R). To
define 8(cy+1), where cgyqq is a fixed (g + 1)-cell, fix an orientation for Dt
thus determining an orientation for the g-sphere 0Dt and look at how
the attaching map ¢ carries Dt! into X (9. For each g-cell e in X,
fix a point zj in e; — e}. One can use transversality to show that g is
homotopic to a map such that for each k, the preimage of zj is a finite
set of points pk,1, Pk,2,- -, Pk,n;, and moreover g takes a neighborhood of
each px,; homeomorphically to a neighborhood of z. (By compactness, the
preimage of z; is empty for all but finitely many k). For each j with 1 <
j < nx, let e j=+£1 according to whether g restricted to the neighborhood
of px ; preserves or reverses orientation. Let e = Z;’;l €k,j. Then Ocgy1 =

> 4o, exex where almost all k=0. One can prove

1. 9, is independent of the homotopy of g used to define it. What happens
is that preimage points of zr appear in £1 canceling pairs when f s
changed by homotopy.

2. 0,0,+1=0. The reason is that algebraically, the g-sphere DIt acts as
though it were a regular CW-complex with one g-cell corresponding to
each preimage point of a zx. Since 0Dt is a manifold, the boundaries of
these g-cells form a collection of (g—1)-cells, each appearing a part of the
boundary of two g-cells, but with opposite orientations. Consequently,
the algebraic sum of the boundaries of these g-cells is 0. Applying 9, to
Oy+1(cq+1) simply adds up the images of the boundaries of those g-cells,
in C,—1(X; R), and the pairs with opposite signs all cancel out, giving 0.

An element of Cy(X;R) is a formal sum ) ;_, rrck, where each ck is a ¢-
cell; such a sum is called a g-chain. Now form a sequence of groups and
homomorphisms

e C i (X BB Cy (X R)2C 1 (X; R)—
- —Cy(X; R)2HCo(X; R)—0 .
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This is called a chain complez, since 0,0;41 =0 for all q. This means the
image of O, is contained in the kernel of 9, for each ¢. If the image of 9,4,
were equal to the kernel of 9, for each ¢, the sequence would be exact. To
measure its deviation from exactness, we define

H,(X; R)=kernel(0,)/image(0y+1) -

Elements of kernel(d,) are called cycles, and elements of image(0Jq+1) are
called boundaries. An element of H,(X; R) is a coset zg + 9,41(Cy+1(X; R)),
where 0,2, =0, but is usually written as [2,]. Note that [z,]=[z}] if and only
if z;=2g + Og41(cq41) for some (g + 1)-chain cg4;.

To define f,, where f:X — Y, we first define Cy(f):Cy(X;R) —
C,(Y; R). By the Cellular Approximation Theorem (a consequence of trans-
versality), f may be changed by homotopy so that f(X(9) C Y@ for all 4.
Define Cy(f)(c,) similarly to the way that Oc, was defined. Then f.([c,])
is defined to be [Cy(f)(cq)]. It is not easy to prove that this is well-defined
and satisfies all the Eilenberg-Steenrod axioms, but it can be done. In par-
ticular, H.«(X; R) does not depend on the cell structure chosen for X (since
the identity map induces an isomorphism on the homologies defined using
two different CW-complex structures on X), and f, depends only on the
homotopy class of f. v

When A is a subcomplex of X, define the relative homology groups
H,(X, A; R) by putting Cy(X, A; R) = Cy(X; R)/Cy(A; R) and noting that
0, induces 0,:Cy(X,A;R) — Cy_1(X,A;R). Then, Hy(X,A) is defined
by the chain complex C.(X, A; R). The long exact sequence of the second
axiom is then a purely algebraic consequence of the existence of short exact
sequences 0 — C (A; R) — Cy(X;R) — C4(X,A; R) — 0. Note that every
element of H,(X, A; R) is represented by a g-chain whose boundary lies in A.

An important special case of cellular homology is simplicial homology,
where X is a simplicial complex and each g¢-simplex is regarded as a g-cell.
Because of the large number of simplices needed to triangulate even a fairly
simple space, simplicial homology is not very useful for explicit computation,
but because all the attaching maps are imbeddings, it is much easier to use
in proofs. For example, the definition of J; is much more transparent.

Singular homology is an abstraction of simplicial homology where the
simplices are replaced by singular simplices. A singular simplex is a map
o: Ay — X where A, is a fixed standard ¢-simplex. They form a basis for
the R-module of singular chains Cy(X; R), which is uncountably generated
for most spaces X. This is a computational disadvantage, but note that the
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singular homology is defined for any space X; the rather nice structure of a
CW-complex need not be present.

3. Cohomology of spaces

Once homology is defined, cohomology can be defined algebraically. This
is based on the following fact. If A and B are R-modules, and ¢: 4 — B
is an R-module homomorphism, then there is an R-module homomorphism
¢*:Hom(B, R) — Hom(4, R) defined by ¢*(a) = o0 ¢. Clearly (¢ o ¢)* =
P* 0 ¢*, so if we define the coboundary by 6, = =0y, then 8418, = 0,0F =
(040441)* =0*=0. Therefore, abbreviating Hom(C' (X),R) to Cq(X R) we
have a cochain complez

0— C*(X; R)-L0Y(X; R)—> . —CT7Y(X; R) 2,
CY(X; R)HOM (X R)—s - -

whose deviation from exactness is measured by the cohomology groups
HY(X; R)=kernel(64+1)/image(d,) .

A map f: X — Y induces f*: H4(Y; R) — HY(X; R) so that (fog)*=g*o f*,
and there are corresponding versions of the Eilenberg-Steenrod axioms and
the Mayer-Vietoris sequence for cohomology.

An important case is when R is a field, say R = F. Then, it can be
proved that H(X; F) = Hom(H,(X;F), F), the dual space of H,(X; F).
Consequently, H(X; F) and H,(X; F) are vector spaces of the same rank,
although there is no natural isomorphism between them.

4. The relation between homology and homotopy

Throughout this section, the coefficient ring is R=7Z. Let o:(S™,s0) —
(X,z0) be a map representing an element (o) of m,(X,zo). Let v, be a
fixed generator of H,(S™; Z). The Hurewicz homomorphism p: 7, (X, zo) —
H,(X) is defined by p({c)) =04(7n). One can show that this homomorphism
is natural, that is, if f: X — Y is a continuous map, the diagram

Tr(X) Z#, Tn(Y)

Hn(X)—"*—>Hn<;)

)



commutes. The basic relationship between homotopy groups and homology
groups is given by the following theorem, in which the coefficient ring is
understood to be 7.

Hurewicz THEOREM: Let X be a path-connected space. Then

(1) p:m1(X,z0) — H1(X) is given by abelianization and is surjective.

(2) If n > 2 and mg(X) =0 for ¢ < n, then p:mn(X,z0) — Hn(X) is an
isomorphism.

The Hurewicz Theorem has many refinements. There is a relative version
relating 7,(X, A) and H,(X, A), and it implies the following.

THEOREM: Let f:X — Y be a continuous map between path connected
spaces. If fy:my(X) — my(Y) is an isomorphism for ¢ < n and is surjective
for ¢ = n, then fo: Hy(X) — Hy(Y) is an isomorphism for ¢ < n and is
surjective for g=n. The converse holds if X and Y are simply-connected.

Note that if f induces isomorphisms on all homotopy groups, then it induces
isomorphisms on all homology groups, and conversely for simply-connected

spaces. When X and Y are CW-complexes (which will be defined in the next
section) this condition forces them to be homotopy equivalent:

WHITEHEAD THEOREM: Let X and Y be connected CW-complexes. If
f: X — Y induces isomorphisms on all homotopy groups, then f is a homo-
‘topy equivalence.

A important special case occurs when X is a connected CW-complex
and m,(X) =0 for all ¢ > 1. Taking Y to be a single point, the White-
head Theorem shows that X is homotopy equivalent to ¥ and hence X is
contractible.

5. Poincaré Duality

The most fundamental algebraic result about manifolds is Poincaré Du-
ality. In its crudest form, it can be stated as follows.

POINCARE DUALITY: Let M be a closed n-dimensional manifold which is
oriented over the coefficient ring R. Then for each q, HY(M; R) is isomorphic

to H,_4(M; R).

The way that an (n — ¢)-dimensional homology class determines a homomor-
phism from H,(M;R) to R can be described explicitly and geometrically.
Among numerous generalizations of Poincaré Duality, a particularly useful
one in low-dimensional topology is



LEFSCHETZ DUALITY: Let M be a compact n-dimensional manifold with
boundary which is oriented over the coeflicient ring R. Then for each g,
HY(M; R) is isomorphic to Hyp_q(M,0M; R) and HY(M,0M; R) is isomor-
phic to H,—q(M; R).

These are special cases of much more general duality theorems. The
following is a special case of Theorem VI.2.17 on p. 296 of [Sp].

GENERAL DUALITY THEOREM: Let M be an n-dimensional manifold which
is oriented over the coefficient ring R. Let A and B be compact tame subsets

(e. g. finite subcomplexes of some triangulation of M) such that B C A.
Then for each q, HY(M — B, M — A; R) is isomorphic to H,_¢(A, B; R).

Poincaré Duality is the case when M is compact, A= M, and B is empty.
The first case of Lefschetz Duality follows when one takes A=M, B=0M,
and notes that M — dM is homotopy equivalent to M so H,_,(M,0M; R) =
HY(M — 0M;R) = H1(M;R). The second case follows by taking A=M —
(M) x [0,1), where dM x [0,1) is an open collar neighborhood of OM in
M, and B=0. For another application of the General Duality Theorem, if
K be a tame knot in S3, then H(S® — K;R) = H;_,(S3,K). Using long
exact sequences this is calculated to be R when ¢=0,1 and 0 otherwise.

The duality theorems have strong “naturality” properties in relation to
the induced homomorphisms in homology and cohomology. For example,
when 7:0M — M and j:(M,0) — (M,0M) are the inclusion maps, the
following diagram is commutative

RN HI~Y(M) =, govoMm) -

1= e

. — Hpoga(M,0M) 25 H,_((0M) 5
HI(M,0M) 25  HY(M) —— -
1= e

Hp (M) 25 Hooo(M,0M) — -

where the vertical isomorphisms are given by Poincaré or Lefschetz Duality.



Chapter II. Aspherical complexes

In this chapter, we review asphericity as it is often used in 3-manifold
theory.

DEFINITION: A connected space X is called aspherical if 7g(X) =0 for all
g # 1. When its fundamental group is G, an aspherical space is called a
K(G,1)-space, and a K(G,1)-complez when it is also a CW-complex.

Note that a connected complex is aspherical if and only if its universal
cover is contractible, since then the universal cover is a CW-complex all of
whose homotopy groups vanish.

Aspherical complexes arise frequently in low-dimensional topology. Ev-
ery connected 2-manifold other than the 2-sphere or the projective plane has
universal cover whose interior is homeomorphic to IR?, so is aspherical. As
we will see in section IV.2, every irreducible orientable 3-manifold with in-
finite fundamental group is aspherical. However, it is unknown whether the
universal cover of such a manifold must always be R2.

1. Existence of K(G,1)-complexes

PROPOSITION 1.1: Let G be any group. Then there exists a connected
2-dimensional CW-complex K¢ such that m(Kg) & G. If G is finitely
presented, then K can be selected to be a finite complex.

PrOOF: Let (9o, o € A|rg, B € B) be a presentation for G. Let K(©
consist of a single vertex, and obtain K(!) by attaching one 1-cell for each
9o This gives a one-point union of circles, whose fundamental group is the
free group on the generating set {g, | a € A}. If a 2-cell is attached so that
its boundary represents an element r, then van Kampen’s theorem shows that
the effect on the fundamental group is to quotient out by the normal closure
of r. Attaching one 2-cell for each rg yields a 2-complex with fundamental
group G. If the presentation was finite, then only finitely many cells are
needed for the construction.

PROPOSITION 1.2: Let G be a group. Then there exists a K(G, 1)-complex.

ProOOF: Let K be a 2-complex K¢ as constructed in Proposition 1.1.
For each nontrivial element of my(K(®) (actually, it is enough to take a
set of generators) attach a 3-cell using that element as the attaching map.
Inductively, construct K(+1) from K (™ by attaching an (n+1)-cell for each
nontrivial element of m,(K(™), and let K be the union of all K(® (Usually
some of the K(™)’s are infinite, and K is infinite-dimensional. In fact, we will
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see below that whenever G contains torsion elements, K must be infinite-
dimensional.) To show that 7,(K)=0 for ¢ > 2, consider a map f: 5?7 — K.
Since K has the weak topology, the image of f is contained in a finite union
of cells of K. Suppose some of these cells have dimension greater than ¢q. Let
D be one of these cells, of maximal dimension n. It is the image of a map
(D™,8D™) — (K™ K(=1) which is an imbedding on the interior of D™.
Let p be the image of 0; using transversality locally near p we may assume
that on the preimage of the interior of D, f is transverse to p. Since n > ¢,
this means that the image of f is disjoint from p. Therefore f is homotopic to
a map that misses the interior of D altogether (compose f with a deformation
retraction that pulls D — {p} onto D N K(*~1). Inductively, we can change
f by homotopy so that it maps into K(@. It is homotopic to an attaching
map for a (g + 1)-cell, so can be contracted to a constant map by moving
through that cell.

2. Mappings into K(G,1)-complexes

Since K (G, 1)-complexes have no higher homotopy, mappings into them
are completely controlled by their effect on fundamental groups. As a first
step toward making this precise, we have

LEMMA 2.1: Let X be a connected CW-complex and K a K(G,1)-complex.
Let zy and ko be their respective basepoints. If ¢:m(X,zq) — 71 (K, ko)
is any homomorphism, then there exists a map f:(X,zo) — (K, ko) with
fy=¢

PROOF: Let T be a maximal tree in X", and make f(T)=ko. Each 1-cell a
not in T represents an element o in m1(X,T) & 7(X, z¢). Its endpoints lie
in T so are already mapped to ko; extend f to a by mapping around a loop
representing ¢(a). For each 2-cell b, the boundary (i. e. the restriction of the
attaching map to dD?) represents an element 3 in m; (XM, z¢) (well-defined
only up to conjugacy since it might not contain the basepoint o). Since j
is homotopic to a constant map, by moving through b, ¢(8) =1 so f must
carry A to a null homotopic loop in K. Therefore f extends to b. Inductively,
for n > 3, assume that f has been extended to X(®~1). The restriction of
f to the boundary of any n-cell e represents an element of m,_1(K). Since
this group is 0, f extends to a map on e. Therefore f can be inductively
extended to all of X.

To describe the general situation, let [(X,Y"), (K, L)] denote the set of
homotopy classes of maps from X to K that carry Y into L (during all homo-
topies, as well). This is the set of path components of Maps((X,Y), (K, L)).
When Y is empty, we can abbreviate [(X,0), (K, L)] to [X, K].

9



THEOREM 2.2: Let X be a connected CW-complex and K a K(G,1)-

complex. Let zo and ko be their respective basepoints. Then

(a) Sending the homotopy class (f) to the induced automorphism f defines
a bijection from [(X, ), (K, ko)] to Hom(71(X, zo), 71 (K, ko))

(b) Let OHom(m; (X, zo),m1(K, ko)) be the set of equivalence classes of ho-
momorphisms from 7 (X, zo) to 1 (K, ko), where ¢1 ~ ¢ where there
is an inner automorphism p of w1 (K, ko) such that p¢, = ¢,. Then send-

ing the homotopy class (f) to the induced automorphism fy defines a
bijection from [X, K] to OHom(m1(X, zo), 1 (K, ko)).

PROOF: By Lemma 2.1, the correspondence is surjective. To prove part (a),
it remains to show that if f; and f; are maps from (X, z¢) — (K, ko) inducing
the same homomorphism on fundamental groups, then f, is homotopic to fi
preserving zo. Define H: X x {0,1} — K by H(z,0)= fo(z) and H(z,1)=
f1(z). Since fo(zo) = ko = f1(zo), H extends to zg X I by H(zo,t) = ko-
Let T be a maximal tree in the 1-skeleton of X. Since T is contractible,
any two maps of T into a path-connected space are homotopic, so H can
be extended to T x I. Each l-simplex s not in T represents an element o
of m1(X, zo). Since (fo)#(o)=(f1)#(c), H can be extended over s. (There
are a few details to worry about here. One way to see it is to note that fo
and f are homotopic keeping zo fixed to maps f; and f] which both carry
T to ko; then, the restrictions of f} and f] to o are actually loops based at
ko which are homotopic relative to their endpoints, since they represent the
same element of 71 (K, ko). A homotopy relative to their endpoints would
then define H on s x I.) Once H is defined on X x {0,1} U XMW x I, it
is defined on every 2-cell of X x I, and then it extends inductively over all
higher-dimensional cells since 74(K)=0 for ¢ > 2.

For part (b), any element of OHom(71(X, o), 71 (K, ko)) is represented
by a homomorphism so, by part (a), is induced by a map. To see that
this map is unique up to homotopy, first note that every map f: X — K is
homotopic to a map taking zo to ko; apply the homotopy extension property
to extend a map from X x {0} U {z¢} x I to K defined to be f on X X
{0} and defined on zo x I by using a path from f(zo) to ko. Similarly,
by the homotopy extension property, there is a homotopy starting at the
identity map of K which moves the basepoint ko around any specified loop
X. The ending map fx induces conjugation by A on m1(K, ko). Therefore
any f with f(zo) = ko is homotopic to ff, which induces p(X)fy from
m1(X,20) to m1(K, ko). Therefore if f and g induces the same element of
OHom(7 (X, z9), m1(K, ko)), they are homotopic to maps which take z¢ to
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ko and induce the same homomorphism from 71 (X, o) to m1 (K, ko). By part
(a), these are homotopic.

3. Homotopy equivalences of K(G,1)-complexes

Notice that [(X,Y),(X,Y)] becomes a groupoid under composition (the
homotopy class of the identity is the identity element) and its invertible
elements form a group £(X,Y) called the group of homotopy equivalences
of (X,Y). In particular, £(X, zo) is called the group of basepoint-preserving
homotopy equivalences of X and £(X) is the group of homotopy equivalences
of X. This group has been studied by various authors. Some notable facts
are:

1. If X is a simply-connected finite complex, then £(X) is finitely presented
[Sull].

2. £(S* Vv S? V $?) is not finitely generated [F-K].

3. There exist finite 2-complexes with £(X) not finitely generated, and
compact (nonirreducible) 3-manifolds with £(M) not finitely generated
[McCT].

When X is a K(G,1)-complex Theorem 2.2 will describe its homotopy equiv-
alences. First we observe

LEMMA 3.1: Let f: X, — X, be a map between connected aspherical
complexes. If f induces an isomorphism on fundamental groups, then f is a
homotopy equivalence.

PROOF: By Theorem 2.2, there exists a map g: X; — X, that induces the
inverse isomorphism f 1 Then, gf and fg induce the identity (outer) auto-
morphisms of 7;(X;) and 71(X3). Again by Theorem 2.2, this implies that
they are homotopic to the identity maps of X; and X, respectively.

Lemma 3.1 and Theorem 2.2 now yield our description of £(X).

COROLLARY 3.2: Let X be a connected aspherical CW-complex with base-

point zo. Then sending the homotopy class (f) to the induced automorphism
f4 defines isomorphisms from £(X, o) to Aut(m (X,z0)) and from £(X) to
Out(m (X, z0)), the group of outer automorphisms of m (X, zo).

Another important consequence of Lemma 3.1 and Theorem 2.2 1s

COROLLARY 3.3: Two connected aspherical CW-complexes are homotopy
equivalent if and only if their fundamental groups are isomorphic.
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4. Homology and cohomology of groups

One can define the homology and cohomology of a group G by letting
H.(G;R) = H,(K;R) and H*(G;R) = H*(K; R), where K is any K(G,1)-
complex. This is well-defined by Corollary 3.3, which shows that the ho-
mology and cohomology of any two K(G,1)-complexes are the same. This
definition agrees with the standard group-theoretic definition. To see this,
consider the cellular chains of the universal cover K of K.

pp— Cn(f{',R) —+-~——>C’1(IA&;,R) —>C'0(IA{',R)——->0.

Since K is contractible, this chain complex has the homology of a point; that
is, Hy is R and all H, are 0 for ¢ > 0. Therefore one has an exact sequence

- = Cp(K,R)— --- > Cy(K,R) = Co(K,R) > R— 0

which is a resolution of the trivial RG-module R. The RG-modules C, (K, R)
are free RG-modules. To see this, let C,, denote the set of n-cells of K and for
each e € C,, choose a single lift of e to an n-cell € in K. This selects exactly
one n-cell in each 71 (K )-orbit on the set of n-cells of K. Then, each of the
other n-cells in the orbit is identified as ¢-é€ for a uni%uely determined g, so an
n-chain can be uniquely written as a sum ) c€C, Y i1 Te,ige,i€, where almost
all . ; =0, and this shows the isomorphism from C’n(fx; ,R) to @eec, RG.

According to the group theoretic definition, one can calculate H.(G; R)
as follows: (1) form any free resolution of the trivial RG-module R (2) tensor
it over RG with R (3) take the homology of the resulting chain complex. In
our context, we can carry this out as follows. Form the chain complex

-+ — Cn(K,R)®rg R — -+ — C1(K,R) ®rc R — Co(K,R) ®rg R — 0 .

Now, identify C,(K,R) ® rg R with C,(K, R). This is accomplished by the
homomorphism induced by the bilinear map (gé,r) — re. It is surjective
since (€,7) — e and injective since géR@r=€Qr in C’n(I?, R)®ra R (because
the RG-action on R is trivial). So the chain complex is actually

-+ = Ch(K,R)— --- - C1(K,R) — Co(K,R) = 0.

After checking that the homomorphisms are still the usual boundary maps,
we conclude that the group theoretic homology of G is the same as the cellular
homology of K. The proof for cohomology is similar.
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This can be extended to the homology and cohomology with coefficients
in nontrivial RG-modules, but then one must use the homology and coho-
mology groups of K with twisted coefficients, which are difficult to calculate
except in special situations.

As applications of these facts, we have

PROPOSITION 4.1: If G contains torsion, then any K(G,1)-complex is
infinite-dimensional.

PROOF: Let K be any K(G,1)-complex. Suppose g is a torsion element of
G, of order n, and let G; be the subgroup of G generated by g. Let K,
be the covering space of K corresponding to the subgroup G;. Then K; is
also aspherical so H,(K1;7Z) = Hy(Z/n;Z) for all n. Now H,(Z/n;Z) =
Z/n for all odd ¢q. This can be calculated fairly easily from the algebraic
definition (and can also be calculated topologically by constructing an explicit
K(ZL/n,1) which is the quotient of a free action of Z/n on the contractible
complex S = U S*¥). Since the homology is nonvanishing in arbitrarily
large dimensions, K; and therefore K cannot be finite-dimensional.
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Chapter III. Isotopy and general position

In this chapter we review some of the general topology of manifolds that
is useful in low-dimensional manifolds.

1. Gugenheim’s Theorems
The following theorem was proven by V. K. A. M. Gugenheim [Gu].

THEOREM: Suppose M is piecewise-linearly homeomorphic to D™ or S™.
Then any orientation-preserving piecewise-linear homeomorphism from M to
itself is piecewise-linear isotopic to the identity.

An immediate consequence is

COROLLARY: Suppose M is piecewise-linearly homeomorphic to D™ or S™.
Then any two orientation-reversing piecewise-linear homeomorphisms from
M to itself are piecewise-linearly isotopic.

PROOF: Suppose f and g are orientation-reversing homeomorphisms from
M to M. Then fg~! is orientation-preserving, so is isotopic to the identity,
and therefore f is isotopic to g (for if h; is an isotopy with ho = fg~! and
hy =1, then h;g is an isotopy from f to g.)

Another consequence is

COROLLARY: Suppose M is piecewise-linearly homeomorphic to D™. If h
is a homeomorphism of M such that h|spr is the identity, then h is isotopic
to the identity relative to OM.

PROOF: (We will just verify that h is continuously isotopic to the identity.)
h must be orientation-preserving so by Gugenheim’s Theorem it is isotopic
to 157. We need to find an isotopy from h to 1js that is relative to OM. The
idea is to extend what this isotopy is doing on the boundary to an isotopy
on all of D™ by “coning,” then correct the original isotopy by composing
with the extended one. First assume M is actually equal to D*. Give D"
radial coordinates (#,t) where § € S" ! and 0 < ¢t < 1. If f:0D™ —
dD™ is a homeomorphism, define C(f): D™ — D™ by C(f)(6,t) = (f(6),t).
Note that C(lspn) = 1pn. If hy is the isotopy from h to 1pn», then h¢ o
C((ht|6D")—1) is an isotopy from h to 1pn» relative to dD™. Now, assume M
is just homeomorphic to D™. Let k: M — D™ be a homeomorphism. Since
k~'hk is a homeomorphism of D™ that is the identity on the boundary,
there is an isotopy (k~1hk); from k~'hk to 1pn~ relative to OD™. Then
k(k~'hk);k~! is an isotopy from h to 1 relative to M.

Another theorem from [Gu] is the following.
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THEOREM: Let M be a piecewise-linear n-manifold, and let C; and C;
be n-cells imbedded in the interior of M. Let X be a closed subset of M
such that Cy and Cy are contained in the same component of M — X. Then
there is a piecewise-linear isotopy j; of M such that jo =1y, ji|x =1x for
0 S t S 1, and j](Cl)ZCZ.

COROLLARY: Let M be an orientable piecewise-linear n-manifold, and let
i9 and i, be two imbeddings from D™ into the interior of M. Let X be a
closed subset of M such that io(D) and i1(D) are contained in the same
component of M — X. Then iy and v, are isotopic if and only if they are
both orientation-preserving or both orientation-reversing.

PRroOOF: We will need to use the fact that an orientation of M determines a
generator of H,(M, M—{z}; Z) for every € M, and some properties of this.
Suppose they are both orientation-preserving or both orientation-reversing.
If they are both orientation-reversing, reverse the orientation of M so that we
‘may assume they are both orientation-preserving. By Gugenheim’s Theorem,
there is an isotopy j; with jo equal to the identity so that j1(¢1(D"))=10(D").
Letting v be the generator of H,(D", D™ —{0}) determined by the orientation
of D™, the composite
n An (i1)x G0y
Hyp(D™, D™ = {0})— Ha(M, M -{i(0)})—

Hn(M, M — {10(0)}) ) B (D", D" - {0})

carries v to v, since i1, j1, and 79 are both orientation-preserving. Therefore
the composite ig'jii; is orientation-preserving. By Gugenhelm s first The-
orem, there is an isotopy k; of D™ with ko = 1p» and ky =14 144. Then
(j1)Yioky is an isotopy from ¢g to ;.

Now suppose 4 is orientation-preserving and ¢ is orientation-reversing,
and that i, and i; are isotopic. By the Isotopy Extension Theorem (see
section 2 below), there is an isotopy j: of M such that jo =1 and j121 =1o.
Let 2o =140(0) and 1 =17 (0). Letting vy be the generator of H,(D", D™ —{0})
determined by the orientation of D", the composite

(’1)* (.71)*

Hn(D", D" = {0})=5 Ha(M, M = {i2(0)}) =5
H, (M, M~ {io(0))) > Ho(D", D"~ {0})

sends v to —y. But this composite is the induced homomorphism of ¢y litin=
1pn, a contradiction.
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For nonorientable manifolds, an isotopy of an oriented n-cell that moves
it around an orientation-reversing loop reverses the orientation of the n-cell.
Using this fact, the previous corollary implies

COROLLARY: Let M be a piecewise-linear n-manifold, and let 1o and t; be
two imbeddings from D™ into the interior of M. Let X be a closed subset of
M such that 11(D) and i5(D) are contained a nonorientable component of
M — X. Then 1y and 1, are isotopic.

Some of these results are proven in the smooth category in [Pal].

2. Isotopy extension

In low-dimensional topology, one frequently alters (“moves”) submani-
folds of M so that they are somehow improved. The tool that allows one to
do this is the powerful Palais Fibering Theorem, from [Pa2].

Recall that a map p: E — B is a fibration if it has the homotopy lLifting

property. This means that if f: K x I — B and g: K x {0} — E are maps
such that pg(z,0)= f(z,0), then there exists a map F: K x I — E such that
pF=f.
PALAIS FIBERING THEOREM: Let U be an open subset of a manifold M,
and let V' be a compact submanifold (possibly with boundary) of M. Let
Diff y y(M) be the space of diffeomorphisms of M which carry V into U,
and let Imb(V,U) be the space of imbeddings of V in U. Then the map
Diff yy(M) — Imb(V,U) defined by restricting diffeomorphisms of M to
imbeddings of V is a fibration.

Note that in the special case when U = M, Diff (M) = Diff(M). The
Palais Fibering Theorem implies the next useful result.

IsoToPY EXTENSION THEOREM: Let V be a compact submanifold of M,
and let j; be an isotopy of imbeddings of V in M such that j, is the inclusion.
If U is any neighborhood of j(V x I), then there exists an isotopy J; of M
such that for each t, J; | ,=J:, and Ji|p—v is the identity map of M — U.

PROOF: Let Ny be a regular neighborhood of j(V x I) in U, let N; be a
regular neighborhood of Ny in U, and let N be the closure of N; — Ny. Then
N is a compact submanifold of M. Define an isotopy of imbeddings f; of
V UN into M by letting fi=j; on V and the inclusion on N. Regard f; as a
map from I into Imb(V U N,U). Define g: {0} — Diff y ,(M) by g(0)=1u.
By the Palais Fibering Theorem, there exists F:I — Diffy, ;(M) so that
the restriction of F; to V U N equals f;. Define J; to be Fy on N; and the
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identity on M — Ny. Then J; also restricts to f;, and hence restricts to j; on
V', and J; is the identity outside of Ny and hence outside of U.

In low-dimensional topology, the Isotopy Extension Theorem is often
applied in the following kind of situation. One has a diffeomorphism A of
M, and a submanifold V. One examines h(V), and describes a way to
“move” it to a simpler position; that is, one specifies an isotopy j; of h(V)
starting at the inclusion and ending at a simpler submanifold W. The Isotopy
Extension Theorem tells us that h=137 o A can be changed by isotopy to a
new diffeomorphism A'=J; o h with h'(V)=W. If K is a closed subset of
M such j(V) is disjoint from K for all ¢, then we may assume that each J;
fixes K and hence that h|x=h'|k.

3. Regular neighborhoods

Regular neighborhoods were invented by J. H. C. Whitehead [Whi]. To
define them, we first introduce the idea of a simplicial collapse. Let K be a
simplicial complex. Suppose o is an open simplex of K and 7 is a face of ¢ -
that is not a face of any other simplex in K. The subcomplex K; =K —{o, 7}
is said to be obtained from K by an elementary collapse. Note that |K| is
a deformation retract of |K|. If there is a sequence of elementary collapses
starting at K and ending with L, we say that K collapses to L and write
K \, L. Then, |L| is a deformation retract of |K|.

Let M be a triangulated manifold, and let X C M be a polyhedron
which is a subcomplex in some subdivision of M (for example, when X is
the image of a PL imbedding into M). A regular neighborhood of X is a PL
n-submanifold N of M so that for some subcomplexes L C K of a subdivision
of the triangulation of M, (|K|,|L|)=(N,X), and K \, L. This definition
does not require that X lie in the topological interior of N, but in practice
this 1s often the case.

Examples (with X contained in the topological interior of N):

1. A regular neighborhood of a point in an n-manifold is an n-ball.

2. If N is a regular neighborhood of M, then (N, M) is homeomorphic to
(OM x [0,1], M x {0}).

3. If F is a 2-manifold properly imbedded in a 3-manifold M (properly
means that FNOM =0F) then N is homeomorphic to an I-bundle over
N.

Regular neighborhoods always exist. In fact, there is a simple description of
one:
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THEOREM (EXISTENCE OF REGULAR NEIGHBORHOODS): Let X =|L| where
L is a subcomplex of a triangulation T' of M. Let K be the collection of all
‘the closed simplices in the second barycentric subdivision T" of T' that have
a face in L. Then |K| is a regular neighborhood of X.

Note that if X lies in the manifold interior of M, then it lies in the
topological interior of |K|, while if X intersects OM, |K|N OM is a regular
neighborhood of X N oM.

Regular neighborhoods are unique in the following sense:

THEOREM (UNIQUENESS OF REGULAR NEIGHBORHOODS): Let M be a PL
n-manifold, X a compact polyhedron PL imbedded in M, and let N; and
N, be two regular neighborhoods of X. Then:
1. There is a PL homeomorphism h: Ny — Nj. _
2. If X is contained in the topological interiors of Ny and N,, then one can
choose h so that h|x=1x.
3. If N;NOM is a regular neighborhood of X N OM for i=1,2, then there
is a PL isotopy j: M x I — M such that jo=1j; and j;(N1)=DNs.
4. If X lies in the topological interior of N; for 1=1,2, then the isotopy j
in 3. can be chosen so that js|x =1x for 0 <t < 1.

An interesting fact is

THEOREM: Let N be a regular neighborhood of X in M, such that X lies
in the topological interior of N, and let W be the frontier of N in M. Then
there is a PL homeomorphism from (N — X, W) to (W x [0,1), W x {0}).

4. Tubular neighborhoods

In the smooth category, the analogous structure to a regular neighbor-
hood is a tubular neighborhood. Let W be a k-dimensional smooth subman-
ifold of a smooth n-manifold M, k < n, with W N oM =0W. A (closed)
tubular neighborhood of W is a closed neighborhood N of W so that (N, W)
is diffeomorphic to (E, Z) where E is a bundle over W with fiber an (n — k)-
dimensional disc, and Z is the zero section consisting of zero in each fiber.
The existence (and uniqueness, up to isotopy in M) of tubular neighborhoods
is proven in any differential topology book. Here are some useful observa-
tions:

1. The boundary of N is a bundle over W with fiber an (n — k — 1)-

dimensional sphere. N — W is diffeomorphic to ON x [0,1).

2. When k =n — 1, the fiber of N is a 1-disc, which is an interval. The
mapping taking the topological boundary Bd(N) to W by taking the
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two endpoints of the fiber to the point of W that meets that fiber is a
2-fold covering. If BA(N) is not connected, then N =W x [~1,1] with
W corresponding to W x {0}, so N is a product neighborhood and W
is 2-sided in M. If it is connected, then N — W = Bd(N) x [0,1) is
connected so W is one-sided in M.

3. In particular, if £k =n — 1 and W is simply-connected, then W has
no connected 2-fold coverings, so the tubular neighborhood is always
a product. That is, a simply-connected codimension-1 submanifold is
always 2-sided. ’

5. Transversality

If two paths a, 8:[0,1] — IR? cross at right angles, then any two paths
o' and (' sufficiently close to o and B must also cross. The situation is
quite different when a,8:[0,1] — IR}, In this case, we may change a to
a' by a homotopy that move points less than €, so that a'([0,1]) does not
meet 3([0,1]). Roughly speaking, given two maps a: X; —» M™ and §: Xy — -
M™, where X; is a p-dimensional polyhedron and X, is a ¢-dimensional
polyhedron, it seems intuitively obvious that a and f should be e-close to
maps whose images intersect in a polyhedron of dimension p+q¢—n. However,
it is not easy to pin down these phenomena precisely. Two concepts involved
are transversality and general position.

In the smooth category, when one is dealing with submanifolds, transver-
sality is relatively easy to describe. Let M and N be a smooth manifolds of
dimensions m and n respectively, and let L be k-dimensional submanifold of
N. A smooth map f: M — N is said to be transverse to L if for any point
p € M with f(p) € N, the subspaces Ty, L and f,(T, M) span the tangent
space T'y(pyM. This captures the idea that f(M) and L cut across each other
as much as possible.

1. If m 4+ k < n, then f is transverse to L only when f(M)N L is empty.

2. The implicit function theorem implies that if f is transverse to L, then
f~Y(L) is a smooth submanifold of M, of codimension k (that is, the
dimension of f~!(L) is m — k. In particular, if M is compact, then
f~Y(L) is a compact submanifold of M.

3. (for those familiar with bundle theory) If f is transverse to L, then the
normal bundle of f~1(L) in M is the pullback of the normal bundle of
Lin N. Thus, for example, if L is a point the normal bundle of f~1(L)
must be a product bundle.

Here is a transversality theorem proven by R. Thom (see for example [B-J]).
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TRANSVERSALITY THEOREM: Let f: M — N be a differentiable map, and
let L be a differentiable submanifold of N. Then f can be arbitrarily closely
approximated by maps g: M — N transverse to L. If A is a closed subset of
M, one can choose g so that g|a=f|a.-

Every continuous maps can be approximated by transverse maps, by
combining the transversality theorem with the following theorem.

SMOOTH APPROXIMATION THEOREM: Let f: M — N be a continuous map
which is differentiable on an open neighborhood U of the closed set A. Then,
arbitrarily close to f, there exists a differentiable map g with g|a= f|a.

These theorems are very powerful and can be used to prove many facts usually
proven by algebraic methods. Here is one example.

BROUWER NO RETRACTION THEOREM: There is no retraction from D™
to S™71,

PROOF: Suppose there exists a retraction r: D™ — S™~1. Let S™! x [0,1]
be a smooth closed collar of S™~1. Regarding D™ — S x [0,1) as a smaller
D™, we can use r to retract D™ to S™~! x [0, 1] and follow this by projection
to S™~! x {0}, to obtain a retraction r’ which is differentiable on U = S™~1 x
[0,1). By the smooth approximation theorem, this can be approximated
(keeping it the identity on S™~!) by a smooth map. Let z € S™"!. By
the transversality theorem, r’' can be approximated by a smooth retraction
transverse to . The preimage of this retraction is a compact 1-submanifold
in D™, which consists of arcs and circles. In particular, there must be an
even number of endpoints. But z is the only endpoint, a contradiction.

6. General position

Smooth transversality captures the idea that f(M) and L cross as much
as possible, but suffers from some shortcomings.

1. It is limited to submanifolds and does not adapt easily to the case when
M or L are just polyhedra.

2. Even when M and L are manifolds, transverse maps still allow “non-
generic” things to happen. For example, when N = R?, L = R (the
z-axis), and M =R, f(M) could have many lines cutting through origin
at different angles. Thus f could be transverse to L, but not “in general
position” because by slight changes of f we could have only two lines
crossing locally at each intersection point of f(M) and L.

3. It does not clarify what a “self-transverse” map f: M — N should mean.
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Unfortunately, general position is rather difficult to define, even when re-
stricted to manifolds of dimension at most 3 (see pp. 8-13 of [He]). Hempel’s
approach is to consider a map f: X — Y and define the singular set

S(f) = closure of {z € X | #(f~1(f(z)) > 1},

where #(f~(f(z)) denotes the number of points in f L(f(z)). S(f) is the
dlsJomt union of sets S;(f) defined by

Si(f) ={z € X | #(f7(f(2))=1} .

For example, let f: D> — D? by f(z)=2? (complex multiplication). Then
S(f)=D?, Si(f)={0} and S5(f) = D* — {0}. Now let Z;(f) = f(S:(f)).
Points of X1(f) are called branch points, points of ¥3(f) are called double
points, and points of ¥3(f) are called triple points.

Hempel defines general position roughly as follows (see p. 10 of his book -
for the full definition). Let f:|K| — M be a map from a k-dimensional
polyhedron |K| into an n-dimensional manifold M, where k¥ < n < 3. (For
two maps f:V — M and g:W — M, use VUW as |K| and fUg as
f.) Then f is in general position when dim(S;(f)) < n — 3 and for : > 2,
dim(S;(f)) <tk — (i — 1)n (hence Si(f)=0 for ¢ > n), and on |K|— S1(f) f
is an immersion. (There are several additional technical conditions.)

Hempel’s main theorem asserts that any map is e-close to a map in
general position and this can be achieved with control:

GENERAL POSITION THEOREM: Suppose K is a finite complex of dimension
k<n <3, A B, and C are subcomplexes of K with K =AU B UC, and
ANC=0. Given an n-manifold M, a PL map g:|K| — M with g||p| in
general position (and g(B) C int(M)) and € > 0 there exists a PL map
f:|K| — M such that

(a) d(f(z),g9(z)) < € for all z € |K|.

(b) fl]AuB] = ghAuB|'

(c) fliBucy is in general position with respect to some subdivision of BUC.
(d) If L is a subcomplex of K such that g|1| is an imbedding, then f|1 is

an imbedding.

Note that (d) implies that if ¢ is an immersion, then so is f.

We remark that when |K| is compact, given g there is an e such that
any map e-close to ¢g is homotopic to g, so one can assume that the map f
obtained in the General Position Theorem is homotopic to g.
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(1)

(2)

3)

(4)

Here are some special cases of importance.

|K| is a 1l-complex, and M is a 3-manifold (k = 1, n = 3). Then,
dim(S2(f)) < 2 -3 = -1, so S2(f) and S5(f) are empty. Therefore
S(f) is also empty so a general position map is an imbedding.

|K| is a 1-complex, and M is a 2-manifold (k=1, n=2). In this case,
S1(f) is empty, S2(f) consists of pairs of double points, and S3(f) is
empty.

|K| is a 2-manifold (or 2-complex), and M is a 3-manifold. k = 2,
n = 3. First, dim(S3(f)) < 3-2 —2-3 =0 so there can be isolated
triple points. dim(S3(f)) < 1 and consists of lines of double points.
dim(.S1(f)) < 0 and branch points occur at the end pairs of double lines
which are identified in the image. For example, when the map D? — D?
sending z to z? is regarded as a map from D? to R? and put in general
position, there will be a branch point and two lines of double points from
0D? to the branch point. Their image is an arc ending at the branch
point. Note that f cannot be an immersion at a point of S1(f).

g: Fy UF, — M, where F; and Fy are 2-manifolds, M is a 3-manifold,
and g|p, is an imbedding for each :. Then f|r, will be imbeddings as
well, so S3(f) =0 and, since f is an immersion, S;(f) =0. The only
singularities are arcs and circles of double points.
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Chapter IV. The fundamental theorems of 3-manifold theory

In the remainder of these notes, all maps and in pai*ticular all imbeddings
will be piecewise-linear or smooth. Allowing wild imbeddings would take us
into a different subject.

1. The Kneser-Milnor Factorization Theorem

Recall that the connected sum M™#N™ of two n-dimensional manifolds
is obtained by removing the interior of two imbedded n-balls from the interi-
ors of M and N and identifying the resulting punctured manifolds along the
(n — 1)-sphere boundary components created when the balls were removed.
Note that M#S™ is always homeomorphic to M, and M# D™ is the manifold
that results from removing the interior of an n-cell from M. The connected
sum depends upon the choice of imbeddings, but isotopic imbeddings give
homeomorphic sums. In particular, in a connected manifold there are at most
two isotopy classes of imbedded n-balls (see section III.1) and at most two
different homeomorphism types can result as the connected sum of M and
N. Similarly a boundary connected sum of two manifolds with nonempty
boundary is obtained by identifying two (n — 1)-cells in their boundaries. A
manifold M is called prime if M is homeomorphic to M;#M; only when
exactly one of M,# M, is the n-sphere. Also, the operation of connected
sum is commutative and associative.

A fundamental structure theorem in 3-manifold theory is the following.

KNESER-MILNOR FACTORIZATION: Let M be a compact 3-manifold. Then
M = S3#M# - M, #Ry -+ - #Rs#B1# - - - #By, where r,s,t > 0, and

1. each M; is prime and is not one of the two S%-bundles over S?,

2. each R; is one of the two S2-bundles over S', and

3. each By is a 3-ball.
The numbers r, s, and t are uniquely determined, and the M; are determined
up to homeomorphism and the order in which they appear.

Note that ¢ is exactly the number of 2-sphere boundary components of M.
A more precise statement about the unique determination of the R; can be
made, but we will not concern ourselves with that here.

The proof of the Kneser-Milnor theorem is difficult. A nice exposition is
given in [He]. The key step is showing that the process of factoring M into
summands must terminate. The idea of the argument is to take a collection of
disjoint imbedded nonparallel 2-spheres which separates M into summands,
and to analyze how it meets the skelta of a triangulation of M (thus, the
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Kneser-Milnor theorem rests on the theorem that all 3-manifolds can be
triangulated, also a difficult result). By moving the collection around by
isotopy into a simple position relative to the simplices in the triangulation,
one can obtain an upper bound for the number of spheres in a collection.
That is, in any larger collection two of the spheres must be parallel, so they
correspond to a trivial connected summand of S3.

One of the most fundamental concepts in 3-manifold theory is that of
irreducibility. A 3-manifold is called srreducible if whenever S is an imbedded
2-sphere in M, then there is a 3-ball B imbedded in M whose boundary is
S. In particular, every imbedded 2-sphere in M must separate M, so an
S%-bundle over S! is not irreducible. However, it is not very difficult to
show that a prime manifold must be either irreducible or an S?-bundle over
S!. Thus, the manifolds M; in the Kneser-Milnor factorization of M are
irreducible.

2. The Loop Theorem and the Sphere Theorem

The following theorem enables homotopy theoretic information about M
to be translated into topological information (and ultimately, into geometric
information). Here is a fairly general version (but not the most general).

Loor THEOREM: Let M be a 3-manifold and F' a connected 2-manifold
contained in OM. If N is a normal subgroup of m(F') which does not contain
the kernel of the homomorphism my(F') — m (M) induced by inclusion, then
there is an imbedding g: (D?*,0D*) — (M, F) such that the element of m; (F)
represented by the restriction of ¢ to 8D? is not an element of N.

An important special case is when N = {1}. Then, using the fact that an
imbedded loop in a 2-manifold is contractible only when it bounds a 2-disc in
the 2-manifold, we have the following geometric version of the Loop Theorem.

Loopr THEOREM: Let M be a 3-manifold and F' a connected 2-manifold con-
tained in OM . Suppose the kernel of the homomorphism 71 (F) — w1 (M) in-
duced by inclusion is nontrivial. Then there is an imbedded disc (D?,0D?) C
(M, F) such that 8D? does not bound a disc in F.

The Loop Theorem is a generalization of a lemma which Max Dehn tried to
prove in 1910. Dehn was an outstanding mathematician, but neither he nor
anyone else could prove the lemma until 1957, when C. D. Papakyriakopou-
los published a proof. The statement above is due to John Stallings, who
published a beautiful proof of it in 1960 [St]. Papakyriakopoulos also proved
another very important result:
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SPHERE THEOREM: Let M be an orientable 3-manifold and let N be a
proper subgroup of my(M) which is invariant under the action of m1(M) on

wo(M). Then there exists an imbedding g: S* — M which represents an
element of mo(M) — N.

Taking N to be the trivial subgroup, we get a simpler geometric statement:

SPHERE THEOREM: Let M be an orientable 3-manifold with (M) # 0.
Then there exists an imbedded 2-sphere S C M which is not contractible to
a point in M.

Again, we obtain a very strong topological conclusion from minimal homo-
topy theoretic information. The above statements are false for nonorientable
manifolds, as the example IRIP? x S shows, but the following version of the
Sphere Theorem due to D. Epstein shows what happens:

SPHERE THEOREM: Let M be a 3-manifold and let N be a proper subgroup

of o (M) which is invariant under the action of w1(M) on mo(M). Then there

exists a map ¢: S — M which represents an element of m,(M)— N, satisfying -

one of the following:

(a) g is an imbedding, or

(b) g is a two-fold covering from S? to g(S?), which is a projective plane
two-sidedly imbedded in M.

We will now derive some well-known and important consequences of the
Sphere Theorem. The first lemma is an interesting fact in its own right, and
is also a nice illustration of how the basic theorems of algebraic topology can
be applied effectively in 3-manifold topology.

LEMMA 1: Let ¥ be a closed simply-connected 3-manifold. Then ¥ is
homotopy equivalent to the 3-sphere S*.

PROOF: Since m(X)=0, H;(X)=0 by the Hurewicz Theorem. Since ¥ is
simply-connected, it is orientable. By Poincaré Duality, Ho(X) & H(Z) =
Hom(H(X),Z) = 0, and H3(Z) & H*(X) 2 Z. For ¢ > 4, Hy(T) =0 since
Y is 3-dimensional. By the Hurewicz Theorem, the Hurewicz homomorphism
p:m3(X) — H3(X) is an isomorphism. Let v: S — ¥ represent a generator of
73(Z) & Z, and note that p({1ss)) is a generator of H3(S?). Using properties
of the Hurewicz homomorphism, we have

7+P((1s3)) = pr4((1s3)) = p((7 0 1s3)) = p({7)) -

Since (7y) is a generator of 73(X) and p is an isomorphism, this shows that v,
is an isomorphism on homology. So 7: $® — ¥ induces an isomorphism on
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all homology groups. Since S and ¥ are simply-connected, the Whitehead
Theorem shows that + induces isomorphisms on all homotopy groups, and
hence is a homotopy equivalence.

We remark that the famous Poincaré Conjecture asserts that a 3-man-
ifold which is homotopy equivalent to S must actually be homeomorphic
to S3. This has resisted the efforts of many outstanding mathematicians,
although it has been proven to be true in all other dimensions! That is, for
all ¢ # 3 it is known that a closed manifold which is homotopy equivalent to
59 must be homeomorphic to $9. This was long known for ¢ < 2, and was
proven for ¢ > 5 by S. Smale in the 1960’s and for n=4 by M. Freedman in
the 1980’s.

LEMMA 2: Let M be an irreducible orientable 3-manifold. Then my(M)=0.

PROOF: Suppose ma(M) # 0. By the Sphere Theorem, there exists an
imbedded 2-sphere in M which is not contractible. In particular, S cannot
bound a 3-ball in M, so M is not irreducible.

THEOREM: Let M be a compact orientable irreducible 3-manifold.

(a) If my(M) is finite, then either M = D® or the universal cover of M is
homotopy equivalent to S3.

(b) If m1(M) is infinite, then the universal cover of M is contractible. Con-
sequently mq(M)=0 for all ¢ > 0.

PROOF: Let M denote the universal cover of M. For (a), we have H {(M)=0
so by duality theorems H 1(8M )=0 and therefore &M consists of 2-spheres.

So OM consists of 2-spheres (there cannot be projective planes since M is
orientable, and no other 2-manifolds are covered by the 2-sphere). If OM is
nonempty, then M must be the 3-ball by irreducibility. If M is empty, then
M is closed and simply-connected, so by lemma 1 it is homotopy equivalent
to S%. For (b), we again have H; (M)=0. By Lemma 2, we have my (M) 2 0
and hence H. 2(M ) = 7r2(M ) 20, using the Hurewicz Theorem. Finally, since
m1 (M) is infinite, M is noncompact so H 3(M )=0. Since M is 3-dimensional,

q(M )=0 for all ¢ > 4. Thus M has the homology of a point and is simply-
connected, so it is contractible.

As an immediate corollary, we obtain some important information about

w1 (M).

COROLLARY: Let M be an irreducible orientable 3-manifold. If m(M) is
infinite, then it is torsionfree.
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ProOF: By Theorem 1(b), such an M is aspherical. By Proposition 1.4.1,
w1 (M) must be torsionfree.

If M is nonorientable, this is false, as shown by the irreducible 3-manifold
RRIP? x S'. But if M is irreducible, contains no two-sided projective planes,
and has infinite fundamental group, then M is aspherical and m; (M) is tor-
sionfree.

Theorem 1 shows that irreducible 3-manifolds with infinite fundamental
group are aspherical, and as a consequence their fundamental groups have
a profound effect on their topological structure. As we will see in the next
section, in many cases the fundamental group determines the manifold up
to homeomorphism. Moreover, the structure of the fundamental group is
strongly reflected in the topological structure of M, as is clarified by the
Jaco-Shalen-Johannson characteristic submanifold theory (chapter V), and
the characteristic compression body (chapter VI). Finally, Thurston’s cele-
brated theory shows that under suitable hypotheses M admits a hyperbolic
geometric structure whenever the fundamental group of M does not prohibit -
the existence of such a structure.

3. Waldhausen’s theorem and the finite-index realization problem

One of the most significant milestones in the theory of 3-manifolds was
Waldhausen’s paper [Wa]. To state his main result, we need a definition. A
3-manifold M is called sufficiently large when it contains a 2-sided imbedded
surface F, not a 2-sphere or projective plane, such that the homomorphism
71 (F) — m (M) is injective.

WALDHAUSEN’S THEOREM: Let M and N be compact orientable irreducible
3-manifolds, with N sufficiently large. If f:(M,0M) — (N,0N)-is a map
such that

1. The restriction of f to OM is a homeomorphism onto ON.

2. fg:m (M) — w1 (N) is an isomorphism.
Then f is homotopic, without changing f on OM, to a homeomorphism.

(In the absence of assumption 1, much can still be said. See [K-M1] and
[K-M2)).

Consider the case when M and N are closed, and N is sufficiently large.
By the Theorem in section IV.2 above, the hypotheses imply that M and
N are aspherical, so any isomorphism from 71(M) to 7 (IN) is induced by
a homotopy equivalence. Then, Waldhausen’s theorem guarantees that f
is homotopic to a homeomorphism. So one consequence of Waldhausen’s
theorem is the following statement.
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WALDHAUSEN’S THEOREM: Let M and N be closed orientable irreducible
3-manifolds, with N sufficiently large. If m1(M) = my(N), then M is home-
omorphic to N.

That is, a closed orientable irreducible sufficiently large 3-manifold is deter-
mined up to homeomorphism by its fundamental group. But Waldhausen
showed even more: if two homeomorphisms from M to N induce the same
isomorphism from 7, (M) to 7;(N), then by asphericity they are homotopic,
and Waldhausen showed that they are actually isotopic. We can combine
these results using homotopy equivalences. Since M must be aspherical the
natural homomorphism from the group £(M) of homotopy classes of ho-
motopy equivalences from M to M to Out(m;(M)) is an isomorphism (see
section II.3). Thus we have a sequence

H(M) — E(M) — Out(m (M)

in which the second arrow is an isomorphism, and Waldhausen’s results say
that the first arrow is also an isomorphism. That is, every homotopy equiv-
alence is homotopic to a homeomorphism, and if two homeomorphisms are
homotopic, then they are isotopic. (Far reaching generalizations of this for
parameterized families of homeomorphisms were proved by Hatcher [Hat2].)
When M has boundary, complications start to appear. The correct ana-
logue of Waldhausen’s Theorem involves the group £(M,8M) of homotopy
classes of homotopy equivalences of pairs from (M,d0M) to (M,8M). Since
irreducible 3-manifolds with boundary components other than 2-spheres must
be sufficiently large (see [He, p. 63]), we can state this version as follows.

WALDHAUSEN’S THEOREM FOR MANIFOLDS WITH BOUNDARY: Let M be a
compact orientable irreducible 3-manifold with nonempty boundary. Then
the natural homomorphism H(M) — E(M,0M) is an isomorphism.

This was proven in [Wa] under the assumption that M is incompressible.
When OM is compressible, it was proven to be surjective by Evans [Ev] and
injective by Laudenbach [Lau].

In the setup above, we have a sequence

H(M) — E(M,0M) — E(M) — Out(m(M)) ,
where now the last arrow is an isomorphism by asphericity and Waldhausen’s
Theorem says the first arrow is an isomorphism. Thus H(M) — OQut(m; (M)
is essentially the same as E(M,0M) — E(M).
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Notice, then, that the deviation of H(M) — Out(w1(M)) from an iso-
~ morphism is entirely related to phenomena involving M and homotopy
equivalences of M. The kernel corresponds to homotopies between boundary
preserving homotopy equivalences that do not preserve the boundary dur-
ing the homotopy. Elements of Out(m1(M)) that are not in the image of
H(M) — Out(n1(M)) correspond to homotopy equivalences which are not
homotopic to maps which preserve 0M.

When 0M is incompressible, an argument of Waldhausen [Wa, pp. 82-
83] shows that £(M,0M) — E(M) is injective, unless M is an I-bundle, in
which case the kernel is the subgroup of order 2 generated by reflection in
the I-fibers. When the boundary is compressible, we will see in chapters VI
and VII that the kernel can be large and complicated.

Even when the boundary is incompressible, £(M,0M) — E(M) typi-
cally fails to be surjective. Examples 2 and 3 in section IX.1 show some of
the ways this can happen, and example 1 there shows another phenomenon
that prevents surjectivity when there is compressible boundary. To examine
this lack of surjectivity more closely, in chapter IX we will study the following
question:

FINITE-INDEX REALIZATION PROBLEM: For which compact orientable ir-
reducible 3-manifolds M does the image of the homomorphism H(M) —
Out(m1(M)) have finite indez?

As we will see in section IX.3, when M is a hyperbolic 3-manifold the answer
to the finite-index realization problem gives information about the deforma-
tion spaces of hyperbolic structures on M.
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Chapter V. Characteristic decomposition of Haken manifolds

When a compact, orientable, irreducible, sufficiently large 3-manifold
has incompressible boundary (possibly empty boundary) it is said to be
Haoken. A remarkable structure theory for Haken manifolds was developed
independently by W. Jaco and P. Shalen [J-S] and K. Johannson [Joh]. Jo-
hannson’s formulation of the theory is designed for applications to the study
of mappings between Haken 3-manifolds. In this chapter, we will give an
exposition of his theory.

In section 1, we give an introduction to the concepts of boundary pat-
terns and admissible maps, which provide the notation and technical un-
derpinning for his formulation of the characteristic submanifold. Fibered
3-manifolds— I-bundles and Seifert fibered spaces— play a key role, and in
section 2, we collect results about them. In section 3, we discuss the charac-
teristic submanifold and list many of its properties. Some other useful results
are collected in section 4.

In this chapter, we assume that the reader has a basic understanding of
Seifert-fibered 3-manifolds and 3-manifolds that are I-bundles.

1. Boundary patterns and admissible maps

The following definitions are due to Johannson. A boundary patiern m
for a compact n-manifold M is a finite set of compact, connected (n — 1)-
manifolds in &M, such that the intersection of any i of them is empty or
consists of (n — i)-manifolds. Thus when n = 3, the components of the
intersections of pairs of elements of the boundary pattern are arcs or circles,
and if three elements meet, their intersection consists of a finite collection of
points at which three intersection arcs meet.

On a 2-manifold, a boundary pattern is simply a collection of arcs and
circles in the boundary, which are disjoint except that two arcs may meet
in an endpoint, or in both endpoints. In particular, an :-faced disc is a 2-
disc whose boundary pattern has 7 elements, such that every point in the
boundary lies in some element of the boundary pattern. A 4-faced disc is
called a square. The i-faced discs with ¢ < 4 play an important role in
Johannson’s theory.

The symbol |m| will mean the set of points of OM that lie in some
element of m. It is important in arguments to distinguish between elements
of m, which are surfaces in OM, and the points of M which lie in these
surfaces, and we will always be precise in this distinction. The elements of m
are called bound sides, and the closures of the components of OM — |m| are
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called free sides. When OM =|m|, m is said to be complete. The completion
of m is the complete boundary pattern m which is the union of m and the
collection of free sides. o

Boundary patterns on 3-manifolds arise naturally in various ways. Here
are some examples.

Example 1: trivial (but important) examples

For any manifold M, one has the empty boundary pattern §. Its com-
pletion ) is the set of boundary components of M.

Example 2: proper boundary patterns

Let M be a compact 3-manifold and let F; be a 2-sided properly imbed-
ded 2-manifold in M. Cut M along Fj to produce a 3-manifold M; with two
disjoint copies of F] in its boundary. If we want to remember the points that
came from points in F}, we form a boundary pattern m, consisting of these
two surfaces. Now consider a 2-sided properly imbedded 2-manifold F; in
M;; by an arbitrarily small isotopy we may position F, so that it meets the -
elements of m, in circles and properly imbedded arcs. Cutting M; along F3
yields a manifold M;, containing two copies of F; in its boundary, together
with the surfaces obtained from the elements of m, by cutting them along
their intersections with F,. These 2-manifolds in M, meet pairwise along
circles and arcs, and any three are disjoint, so they form a boundary pattern
m, for M,. A 2-sided properly imbedded 2-manifold F3 in M, may be moved
by an arbitrarily small isotopy so that it meets the elements in m, in circles
and arcs, and when M, is cut open to obtain Ms, the resulting boundary
pattern m, may now have three elements meeting at a single point, where a
portion of OF3 cuts across an intersection arc or circle of two elements of m,,.
Now any Fj in M3 may be positioned, by an arbitrarily small isotopy, to avoid
the points that are intersections of three elements of m,. Then, the resulting
collection of surfaces in dMy (and all collections for manifolds resulting from
further iterations of this process) will have at most three elements meeting
at a point, and consequently will be a boundary pattern.

In general, suppose (M, m) is a 3-manifold with boundary pattern, and F
is a 2-sided surface properly imbedded in M, so that OF meets the boundaries
of the elements of m transversely, and meets the intersection of each pair of
elements transversely, if at all. Let M' be the 3-manifold obtained from M
by removing the interior of a small product neighborhood F. The proper
boundary pattern on M' is the boundary pattern consisting of the two copies
of F'in OM, together with the components of the intersections of the elements
of m with M.
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Example 3: fibered manifolds

There are many nonisotopic I-bundle structures on a 3-dimensional ori-
entable handlebody V. If B is any compact connected 2-manifold whose
Euler characteristic equals that of V, then V is the total space of an I-
bundle over B, which is twisted if and only if B is nonorientable. These can
be distinguished in a natural way using boundary patterns. Assume that V
carries a fixed structure as an I-bundle. Each component of the associated
OI-bundle is a 2-manifold in 0V, called a lid of the I-bundle. There are two
lids when the bundle is a product, and one when it is twisted. Let b be a
boundary pattern on B. The preimages of the elements of b form a collection
of squares and annuli in 0V, called the sides of the I-bundle. The lid or lids,
together with the sides, if any, form a boundary pattern v on V. When V
carries this boundary pattern, the fibering is called an admissible I-fibering
of V as an I-bundle over (B, ).

A Seifert fibering on a 3-manifold (V, v) with boundary pattern is called
an admussible Seifert fibering when the elements of v are the preimages of the
components of a boundary pattern of the orbit surface. Consequently the
elements of v must be tori or fibered annuli.

Example 4: product boundary patterns

If (M,m) is a manifold with boundary pattern, and N is a manifold,
then the product boundary pattern on (M, m) x N is

{FxN|Fem}U{M xW |W is a component of ON} .

More generally, if p: E — (M, m) is a locally trivial N-bundle, then there is
a boundary pattern

{p~'(F) | F € m} U {components of the associated dN-bundle} .

When (M,m) is a 2-manifold and N =I or N = S, these agree with the
boundary patterns described in example 3.

Example 5: the dual cell construction

Let M be a compact 3-manifold and let F' be a compact 2-manifold in
OM. Fix a triangulation T of F. Take the first barycentric subdivision T'()
of T, and let m consist of the discs which are the closed stars of the vertices

of T in T,
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Example 6: pared 3-manifolds

When the interior of a Haken 3-manifold M admits a hyperbolic struc-
ture, there is a boundary pattern for M called a pared structure, so that every
parabolic element is homotopic into an element of the boundary pattern. For
pared manifolds, the characteristic submanifold has a very restricted struc-

ture (see [C-M]).

Maps which respect boundary pattern structures are called admissible.
Precisely, a map f from (M, m) to (N,n) is called admissible when m is the
disjoint union

m = ]_[ { components of f71(G)}.
Gen

Notice that the requirement that the union be disjoint implies that for each
element F' of m, there is exactly one element of n that contains the entire
image of F. Thus two neighboring bound sides F; and F, must be mapped
to neighboring bound sides G; and G, in such a way that F} N F, consists -
of some components of the preimage of G; N G5 in F} U F}.

An admissible map f: (M, m) — (N, n) is called an admissible homotopy
equivalence if there is an admissible map g:(N,n) — (M, m) such that gf
and fg are admissibly homotopic to the identity maps. When the elements
of m and n are pairwise disjoint, this simply says that f: (M, |m|) — (N, |n|)
is a homotopy equivalence of pairs.

Suppose (X, z) is an admissibly-imbedded codimension-zero submani-
fold of (M, m), which is admissibly imbedded in (M,m). The latter assump-
tion guarantees that X N OM =|z|, and that an element of z which does not
meet any other element of £ must be imbedded in the manifold interior of an
element of m. Let z" denote the collection of components of the frontier of
X in M. To split M along X means to construct the manifold with bound-
ary pattern (M — X, m U z"), where the elements of i are the closures of
the components of F (XN F)for F em. m. The boundary pattern m U z"
is called the proper boundary pattern on M — V. In particular, if X is a
small product neighborhood of a 2-sided surface (F, f ) admissibly imbedded

in (M, m), then the proper boundary pattern on M — X is the one described
in example 2 above.

Recall that an ¢-faced disc is a 2-disc whose boundary pattern is complete
and has 1 components. Observe that each element of m is incompressible if
and only if whenever D is an admissibly imbedded 1-faced disc in (M, m), the
boundary of D bounds a disc in |m| which is contained in a single element
of m. For most of Johannson’s theory, a somewhat stronger condition is
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needed. The boundary pattern m is called useful when the boundary of
every admissibly imbedded :-faced disc in (M, m) with 2 < 3 bounds a disc
D in OM such that DN (UpemOF) is the cone on DN (UremOF). Notice

that 0 is a useful boundary pattern on M if and only M is incompressible.
For another example, the product of a 4-faced disc with S! yields a useful
boundary pattern on the solid torus, but the product of a 3-faced disc with
S1 does not.

Some confirmation that usefulness is the natural generalization of in-
compressibility in the context of 3-manifolds with boundary patterns comes
from the following generalization of the Loop Theorem of Papakyriakopoulos.
It is given as proposition 2.1 in [Joh]. In its statement, J denotes UrpemOF.

Loop THEOREM: Let (M, m) be a 3-manifold with boundary pattern. The
following are equivalent.
(1) The boundary of any i-faced disc, 1 <1 < 3, admissibly 1mbedded in
(M,m), bounds a disc Dy in OM so that Do N J is the cone on 0DgN J.
(2) For any admissible map f:(D,d) — (M, m), where (D,d) is an i-faced
disc, there exists a map g: D — OM so that
(i) 9(D) C OM and glsp = flop, and
(i) g7(J) is the cone on g~*(J) N dD.

Usually, a map of a closed 2-manifold into a 3-manifold is considered to
be essential when it is injective on fundamental groups. In the context of
" manifolds with boundary patterns, this concept becomes the following. An
admissible map h: (K,k) — (X,z), where K is an arc or a circle and (X, z)
is a 2- or 3-manifold is called inessential if it is admissibly homotopic to a
constant map (the constant map might not be admissible, but all the other
maps in the homotopy must be admissible), otherwise it is called essential.
A map f:(X,z) — (Y,y) between 2- or 3-manifolds (not necessarily of the
same dimension) is called essentialif for any essential path or loop h: (K, k) —
(X,z), the composition fh: (K, k) — (Y,y) is essential. Notice that when g
is empty, this simply says that f is injective on fundamental groups.

The Loop Theorem of Papakyriakopoulos is often used in processes
where the preimage of a surface under a map between 3-manifolds is be-
ing simplified. To carry out these processes in 3-manifolds with boundary
patterns, the following formulation is needed. It is given as lemma 4.2 of

[Joh]:

COMPRESSION LEMMA: Let (M, m) be a 3-manifold with boundary pattern,
and let (F, f) be an admissibly imbedded surface in M with F'N OM =0F.

34



Assume that m is useful and no component of F' is an admissible i-faced disc
with 1 < ¢ < 3. Then (F, f) is inessential in (M, m) if and only if there is
an admissibly imbedded disc (D, d) in (M, m) such that (D, d) is an i-faced
disc,1 <1< 3, and DNF is a side of(D,__E_) which is an essential curve in F.

The Compression Lemma is used in the proof in [C-M] of the following
result.

HoMoOTOPY INVARIANCE OF USEFULNESS: Let (M, m) and (N,n) be com-
pact orientable irreducible 3-manifolds with boundary pattern, which are
admissibly homotopy equivalent.

(a) Ifm is useful, then so is n.

(b) Ifm is useful, then so is .

2. Fibered 3-manifolds

In example 3 of section 1 above, we defined admissible fiberings of I-
bundles and Seifert-fibered manifolds. In this subsection, we will present -
some results on fibered manifolds.

Assume that (M, m) has a fixed structure as an I-bundle or Seifert-
fibered space, with projection map p: M — F. The following definition is
from 5.3 of [Joh]. Let G be a manifold. A map g:G — M is called vertical
if its image is a union of nonexceptional fibers. It is called horizontal if
¢~1(0M)=0G and py is a branched covering map. Branch points occur only
if (M, m) is Seifert-fibered, and then they lie over the exceptional points of
the orbit surface.

The following definition is from 5.1 of [Joh].

Exceptional Fibered Manifolds: An irreducible 3-manifold (M, m) with
an admissible fibering as an I-bundle or Seifert fibered space is called an
exceptional fibered manifold if it is one of the following.
(EF1) The I-bundle over an ¢-faced disc, 1 <1 < 3.
(EF2) The S*-bundle over an i-faced disc, 7 = 2,3, or a Seifert fibered
space over a 1-faced disc with at most one exceptional fiber.
(EF3) The I-bundle over the 2-sphere or projective plane.
(EF4) A Seifert fibered space with the 2-sphere as orbit surface and at
most three exceptional fibers.
(EF5) A Seifert fibered space with the projective plane as orbit surface
and at most one exceptional fiber.
Certain other manifolds are frequently exceptional cases because they admit
a horizontal square, annulus, or torus. These are:
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(EIB) A manifold with boundary pattern which can be admissibly fibered
as an I-bundle over the square, annulus, Mdbius band, torus, or
Klein bottle.
(ESF) A closed 3-manifold which can be obtained by gluing two I-bundles
over the torus or Klein bottle together along their boundaries.
Other than in some of the exceptional cases, an essential imbedded an-
nulus or torus is isotopic to one which is vertical. The precise statement is
proposition 5.7 of [Joh]:

ESSENTIAL ANNULUS AND TORUS THEOREM: Let (M, m) be an I-bundle
or Seifert fibered space with a fixed admissible fibration, but not one of the
exceptional fibered manifolds (EF1)-(EF5). Suppose that T is an essential
square or annulus imbedded in (M, m). Then either

(1) there exists an admissible isotopy which makes T vertical, or

(i) (M,m) is one of the exceptions (EIB) and has an admissible I-fibering

which makes T vertical.

Suppose T is an essential torus imbedded in (M, m). Then either
(iii) there exists an admissible isotopy which makes T vertical, or
(iv) (M, m) is the I-bundle over the torus or Klein bottle, or

(v) M is one of the exceptions (ESF).

For annuli which are not imbedded, proposition 5.10 of [Joh] gives a verti-
calization result:

ESSENTIAL SINGULAR ANNULUS THEOREM: Let (M,m) be an I-bundle
or Seifert fibered space with a fixed admissible fibration, but not one of the
exceptional fibered manifolds (EF1)-(EF2). Let f:T — M be an essential
singular square or annulus in (M, m). Then either

(i) there exists an admissible homotopy which makes f vertical, or
(ii) (M, m) is one of the exceptions (EIB). Moreover, if k is any side of T
which is mapped by f into a lid of (M, m), then f is admissibly homotopic
to a vertical map by a homotopy which is constant on k.

In most cases, the fibering of a fibered manifold is unique up to isotopy.
The exceptions are determined in corollary 5.9 of [Joh]:

UNIQUE FIBERING THEOREM: Suppose each of (My,m,) and (M3, m,) is
an I-bundle or Seifert fibered space with a fixed admissible fibration, but
neither is a solid torus with m, = {OM;}, or one of the exceptional fibered
manifolds (EF3)-(EF5), (EIB), or (ESF). Then every admissible homeomor-
phism h:(My,m,) — (M;,m,) is admissibly isotopic to a fiber-preserving
homeomorphism. Moreover,
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(a) The conclusion holds if M is one of the exceptions (EIB) and h and h™1
map lids to lids.

(b) If M; is an I-bundle and h: My — M, is the identity on one lid, then

the isotopy may be chosen to be constant on this lid.

A more difficult issue is when a map between two different fibered manifolds
is homotopic to a fiber-preserving one. This is determined in proposition
28.4 of [Joh]:

FIBER-PRESERVING MAP THEOREM: Suppose that each of (M, m;) and
(M2, m3) is an I-bundle or Seifert fibered space with a fixed admissible fi-
bration, but neither is one of the exceptional manifolds (EF1)-(EF5), (EIB),
or (ESF). If (M3, m3) is an I-bundle, assume that M; is neither a ball or a
solid torus. Then every essential map f: (My,my) — (Ma, m3) is admissibly
homotopic to a fiber-preserving map. o o

In [C-M], the exceptional cases (EIB) arise frequently, and an interesting
variant of the Fiber-preserving Map Theorem is needed. Its proof is a fairly
straightforward modification of the proof of proposition 28.4 of [Joh].

FIBER-PRESERVING SELF-MAP THEOREM: Let (V,v) be an I-bundle or
Seifert fibered space with a fixed admissible fibration, such that v is useful.
Let f:(V,uv) — (V,v) be an essential map. Assume that N

(i) (V,u) is not one of the exceptional fibered manifolds (EF1)-(EF5), and
(if) (V,v) is not one of the exceptions (ESF), and
(iil) if (V,v) is an I-bundle, then f takes lids to lids, and
(iv) if V is St x S x I or the I-bundle over the Klein bottle and all elements

of v are boundary components, then (V,v) is I-fibered.
Then f is admissibly homotopic to a fiber-preserving map.

3. The characteristic submanifold

According to sections 8 and 9 of [Joh], an irreducible 3-manifold (M, m)
with useful boundary pattern contains an admissibly and essentially imbed-
ded fibered 3-manifold (V,v), also admissibly imbedded in (M,m), called
a characteristic submanifold of (M, m). By definition 8.2 of [Joh], V is full,
which means that the union of V' with any of the complementary components
of M is not an essential fibered manifold. By corollary 10.9 of [Joh], (V,v)
is unique up to admissible isotopy.

Corollary 10.10 of [Joh] gives two geometric characterizations of the
characteristic submanifold, one of which is the following.
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ENGULFING THEOREM: Let (M, m) be a Haken 3-manifold with useful
boundary pattern, and let V' be a full essential fibered submanifold of (M, m).
Then V is a characteristic submanifold of M if and only if every I-bundle
or Seifert-fibered space essentially imbedded in (M, m) is admissibly isotopic
into V.

Notice that this implies that every essential imbedded square, annulus, or
torus imbedded in M is admissibly isotopic into V, since such a surface can
be thickened to a fibered manifold.

One of the strongest properties of the characteristic submanifold is the-
orem 12.5 of [Joh]:

ENCLOSING THEOREM: Let (M,m) be a Haken 3-manifold with useful
boundary pattern, and let V be its characteristic submanifold. Then every
essential singular square, annulus, or torus in (M, m) is admissibly homotopic
mto V.

A more general version of enclosing is given in proposition 13.1 of [Joh]:

EXTENDED ENCLOSING THEOREM: Let (M,m) be a Haken 3-manifold
with useful boundary pattern, and let V be its characteristic submanifold.
Let (X,z) be an I-bundle or Seifert fiber space whose complete boundary
pattern is useful. Suppose that (X,z) is not one of the exceptional cases
(EF1)-(EF5). Then every essential map f:(X,z) — (M,m) is admissibly
homotopic into V.

A Haken 3-manifold (M, m) whose completed boundary pattern m is
useful is called simple if every component of the characteristic submanifold
of (M, m) is a regular neighborhood of a side of (M, ). Suppose that (M, m)
is a Haken 3-manifold and m is useful. Let (M',m') be the 3-manifold ob-
tained from (M, m) by splitting at the characterlstlc submanifold of (M, m).
According to remark 3 on p. 159 of [Joh], (M',m') is simple. The manifold
(M',m') is involved in one of the main results of [Joh], given as theorem 24.2:

CLASSIFICATION THEOREM: Let (My,m,) and (Mz,m,) be compact ir-
reducible 3-manifolds with boundary patterns whose comp]etjons are useful
and nonempty. Let V; and V, denote the characteristic submanifolds of
(My,m,) and (M,,m,) respectively. Let Let v,, v,, w,, and w and w, denote the
proper boundary patterns of Vi, Vo, My — V4, and M — V, respect1ve1y
Then every admissible homotopy equivalence f:(My,m,) — (M2, m. ,) can
be changed by admissible homotopy so that f|v,:(V1,v,) = (V2,2,) is an ad-
missible homotopy equivalence and flg—p :(My = Va,w,) = (M; — Va,w 5)
is an admissible homeomorphism.
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The following result is essentially corollary 18.2 of [Joh] and the re-
mark following it. There, only the conclusion that (H;)™1(X) =3 is given.
However, this conclusion implies that H; carries the frontier ¥ N M — %
to itself. Since the frontier is bicollared, one may alter H to ensure that
(H)™'(XNM —-X)=%NM —%, and then one has the conclusion we give
here.

HOMOTOPY SPLITTING THEOREM: Let (M, m) be an irreducible 3-manifold
whose completed boundary pattern T is useful and nonempty, and let ¥ be
the characteristic submanifold of (M,m). Suppose H:(M x I.m x1I)—
(M,m) is an admissible homotopy such that Hy '($) = £ and H{ (%) =
Y. Then H is admissibly homotopic, relative to M x 8I, to H' such that
(H) ™Y (Z)=X and (H)™ (M —X)=M — X for allt € I.

4. Some additional results

In this section we give a few other results from [Joh] which do not fit
conveniently under the previous sections.

Two fundamental results in the theory of mappings of low-dimensional
manifolds are Baer’s Theorem, and its generalization to dimension 3 due
to Waldhausen. These extend to the context of manifolds with boundary
patterns. Baer’s Theorem becomes proposition 3.3 of [Joh]:

BAER’S THEOREM: Let (F, f) and (G, g) be connected surfaces with com-
plete boundary patterns. Suppose that—(F, f) is not a 1-sided disc or the
2-sphere, and that G is not the projective plane. Then any essential map
f:(F, f) — (G,g) is admissibly homotopic to a covering map. If the restric-
tion of f to OF is a local homeomorphism, then the homotopy may be chosen
to be constant on OF.

In some statements of the classical Baer’s theorem, the case when F is an
annulus and f is map carrying OF into a single boundary circle of G is allowed
as a possibility in the conclusion. In the version of Baer’s theorem that we
have stated here, such a map would be inessential, since it carries an arc
connecting the boundary circles of the annulus to a path which is admissibly
homotopic into G, and therefore is excluded by the hypothesis.
Waldhausen’s Theorem (see section IV.3) extends to manifolds with
complete and useful boundary patterns, as given in proposition 3.4 of [Joh]:

WALDHAUSEN’S THEOREM: Let (M,m) and (N,n) be connected 3-man-
ifolds with complete and useful boundary patterns. Suppose that M has
nonempty boundary and (M, m) is not a 3-ball with one or two sides. Then
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any essential map f:(M,m) — (N,n) is admissibly homotopic to a covering
map. If the restriction of f to OM is a local homeomorphism, then the
homotopy may be chosen to be constant on OM.

One of the important technical tools in the proof of Waldhausen’s Theo-
rem is that homotopic imbedded incompressible surfaces in Haken manifolds
are isotopic. In the context of manifolds with boundary patterns, this be-
comes the following:

PARALLEL SURFACES THEOREM: Let M be an irreducible 3-manifold with
complete boundary pattern, and let (F, f) and (G,g) be connected essential
surfaces in (M, m), with FNOM =F and GNOM =0G. Assume that (G, g)
is admissibly homotopic into (F, f). Then (G,g) is admissibly isotopic into
(F, f). Moreover, if F' and G are disjoint, then (G, g) is admissibly parallel
to (F, f).

Recall that a Haken 3-manifold (M, m) whose completed boundary pat-
tern m is useful is called simple if every component of the characteristic
submanifold of (M, ) is a regular neighborhood of a side of (M, m). Propo-
sition 27.1 of [Joh] gives important information about the mapping class
group in this case:

FINITE MAPPING CLASS GROUP THEOREM: Let (M, m) be a simple 3-
manifold with complete and useful boundary pattern. Then H(M,m) is
finite.
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Chapter VI. The characteristic compression body

1. Existence and uniqueness

Compression bodies were defined by Bonahon [Bo] and McCullough and
Miller [M-M]. For simplicity we will work only with orientable manifolds, but
the theory we will discuss adapts easily to the nonorientable case. A theory
of relative compression bodies adapted to Johannson’s theory of boundary
patterns has been developed in [C-M].

For us, a compression body means either a handlebody or a connected
irreducible 3-manifold which can be constructed as follows. Start with a
collection {F; | 1 < ¢ < m} of closed connected 2-manifolds, none of which is
simply-connected. Form a connected irreducible manifold V from U2, F; x I
by attaching k£ 1-handles to U~, F; x {1}. We denote F; x {0} by F;. The
fundamental group of V is a free product my(Fy )*- - %7y (F,,)* H where H is
a free group of rank £+ 1 —m. One component of OV is a connected surface
F which consists of the intersection of 0V with U~ F; x {1} together with its -
intersection with the 1-handles. The induced homomorphism 7y (F) — 71 (V)
is surjective.

In the proof of Theorem 1 below, we will use the following result, which
is Theorem 10.5 in [He] simplified to the irreducible orientable case.

FINITE INDEX THEOREM: Let M be a compact orientable irreducible 3-
manifold, and F (# D?* or §?) a compact, connected, incompressible surface
in OM. If the index of 1 (F) in m1(M) is finite, then either
(i) m(M) =7, F is an annulus, and M is a solid torus, or
(ii) m(F)=m (M) and M=F x I with F=F x {0}, or
(ii1) my(F) has index 2 in 7;(M) and M is a twisted I-bundle over a compact
surface N with F' as the associated 0-sphere bundle.

Our first result is the Existence and Uniqueness Theorem for compres-
sion body neighborhoods of compressible boundary components.

THEOREM 1: Let M be a compact orientable irreducible 3-manifold. Let F
be a compressible boundary component of M. Then F has a neighborhood
V', with incompressible frontier, satisfying the following.

(i) V is a compression body.

(i1) Each F; is either a component of OM or is contained in the interior of

M

(iii) If My is any component of M —V such that My NV is connected, then
m1(Mo NV) — m1(My) is not surjective.
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The neighborhood V' is unique up to admissible ambient isotopy.

A compression body neighborhood of F which satisfies the conditions in
Proposition 1 is called a normally imbedded compression body neighborhood
of F.

PROOF OF THEOREM 1: By inductive application of the Loop Theorem there
exists a sequence Dy,..., Dy of disjoint compressing discs with boundary in
F so that the frontier of a small regular neighborhood N of F U (UX_ | D;) is
incompressible in M — N. If any component of the frontier is a 2-sphere, then
it bounds a 3-ball in M — N; adding the union of such balls to NV results in a
manifold V' with incompressible frontier in M. Therefore V is a compression
body satisfying conditions (i) and (ii).

Let My be a component of M — V such that My NV is connected, and
suppose 71 (MoNV) — m1(Moy) is surjective. Since My NV is incompressible,
the Finite Index Theorem shows that My is homeomorphic to (Mg NV) x I
with Mo NV =(MoNV) x {1}. Therefore we may add M, to V, obtaining
a compression body. Repeating this for all such My will make V satisfy
condition (iii), while retaining the other conditions.

For the uniqueness, suppose V; and V, are two normally imbedded com-
pression body neighborhoods of F. Each of the discs called D; in the con-
struction of V7 can be deformed isotopically into V5, since the frontier of V5
is incompressible, and then the rest of V; can be deformed into V5, so we
may assume that V; lies in the topological interior of V,. But if G is any
component of the frontier of V;, contained in a component W of V;, — V;, the
condition that 7 (F) — 71(V;) is surjective implies that m (G) — 7y (W) is
surjective. Since G is incompressible, the Finite Index Theorem implies that
W is a product. Therefore there is an isotopy that expands V; onto V5.

(From the Existence and Uniqueness Theorem, we can easily deduce the
following characterization of compression bodies.

COROLLARY 2: Let W be a compact orientable irreducible 3-manifold. Then
W is a compression body if and only there exists a compressible boundary
component F' of W such that m(F) — m(W) is surjective.

PROOF: If W is a handlebody, then it is a compression body. Otherwise, let
F be a compressible boundary component and let V' be a normally imbedded
compression body neighborhood of F. Let Vj,..., V, be the components of
W —V. Since m(F) — m1(W) is surjective, V; cannot meet V in more
than one component of the frontier of V. By condition (iii) in Proposition 1,
(Vi N V) — 71 (V1) cannot be surjective. But then, m1(F) — (W) could
not have been surjective. We conclude that W — V is empty, so V=W.
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2. The kernel of H(V') — Out(m1(V))

We now begin our examination of the homeomorphisms of compression
bodies. As is common in dimensions 2 and 3, we compare the topological
automorphisms to the algebraic automorphisms of the fundamental group
by examining the natural homomorphism H(V') — Out(71(V)) which takes
a mapping class (f) to its induced outer automorphism fz on m1(V). For
compression bodies, Out(m(V')) is understandable because (V) is a free
product

7T1(V) = 71'1(F1) ) ooee % 71'1(Fm) * H

where H is a free group of rank £ + 1 — m. Many years ago, D. I. Fuks-
Rabinovitch [F-R1], [F-R2], following earlier work of J. Nielsen, obtained a
presentation for the automorphism group of a free product G * - - - G, * Hy %
---* Hp, where the factors are indecomposable, each H; is infinite cyclic,
and each G; is not infinite cyclic. Gilbert [Gil] has given a modern proof
of the Fuks-Rabinovitch presentation using methods due to J. McCool. The
Fuks-Rabinovitch presentation has six kinds of generators and 48 kinds of re-
lations. A complete list, correcting some typographical errors in the original
Fuks-Rabinovitch paper, is given in [M-M]. Also in [M-M], homeomorphisms
realizing the generators are constructed. (Actually not all generators can
be realized, but the realizable subgroup has finite index in Out(m;(V)), as
we show in the next section.) To illustrate the most important construction
used in realizing the generators, we will discuss one type of generator and
its realizing homeomorphism. For studying H(V), it is convenient to regard
V' as constructed by attaching the F; x I to a 3-ball B, and each of the m
1-handles to that same ball. The center of B is the basepoint zy. See Fig. 1.
One of the Fuks-Rabinovitch generators is p; (7). Here, 7 is an element
of m1(F;) = G; and j indicates the j** infinite cyclic group H ; generated by
;. The automorphism p; ;(7) is defined by p; ;(7)(a;) =ve; and p; ;(7)(z)=
z for z € G; or x € Hy with k # j. There is a corresponding homeomorphism
R; j(+y) which induces p; ;(y), illustrated in Fig. 1. It is constructed as follows.
Cut V apart along the right (rather than the left) attaching disc D for the 7t*
1-handle. Take an isotopy on the cut open manifold which moves the copy of
D on the 3-ball around a loop which represents y~1, then reattach the copies
of D. Notice that a loop representing a; is moved to a loop representing
a;v. These loops should be visualized as being in the interior of V.
(Actually, there are many nonisotopic choices for R; (), since different
choices of the “sliding path” around which the copy of D moves will yield
nonisotopic homeomorphisms. These are all homotopic, since V is aspherical
and the homeomorphisms all induce the same automorphism on (V). All
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of these homeomorphisms differ by products of “twist homeomorphisms,”
discussed below. Here is the idea. Let ¥ =0B — attaching discs. A change in
sliding path has the effect of composing with a homeomorphism which only
moves points on B. Since Dehn twists generate the group of orientation-
preserving mapping classes of ¥, and each simple closed curve in ¥ bounds
a disc in B, the twists about these discs generated the mapping class group
of B relative to the attaching discs.)

There are some other kinds of generating automorphisms, such as per-
forming an automorphism of some G;. For purposes of understanding the
general idea of the program for studying homeomorphisms of V', we need not
worry about those. The rigorous development of the theory given in [M-M]
requires careful attention to all the Fuks-Rabinovitch generators.

A very important kind of homeomorphism is the “twist homeomor-
phism.” Let D be a properly imbedded 2-disc in a 3-manifold M and let
D x I be a product region with D =D x {0}, such that D x INOM =0D x I.
Regarding D as the unit disc in the complex plane, we define tp: M — M
by tp(z) =z if z ¢ D x I and tp(rexp(:6),s) = (rexp(i(0 + 27s)), s).
On OM, this is a Dehn twist about dD. Notice that tp induces the iden-
tity outer automorphism and is homotopic to the identity. This is because
(M — (D x I))U ({0} x I) is a deformation retract of M and tp restricts to
the identity map on this subspace.

The following theorem was proven by Shin’ichi Suzuki [Suz| for the case
when V is a handlebody, and for compression bodies in [M-M].

THEOREM 3: The homeomorphisms realizing the Fuks-Rabinovitch gener-
ators, together with the twist homeomorphisms, generate H(V).

Theorem 3 is proven by the following approach. Take a homeomorphism
h of V. Examine the images of the attaching discs (i. e. the discs B N
(V — B) in Figure 1) under h. The generators given in Theorem 3 can be
applied to simplify these images until one obtains a product g of generators
so that gh fixes all the attaching discs. Applying homeomorphisms in each
F; x I (these are among the Fuks-Rabinovitch homeomorphisms) and twist
homeomorphisms in the 3-ball B, one obtains another product of generators
g1 so that gqgh is isotopic to the identity. So h is isotopic to g~1g; .

We are now set up to understand the kernel of H(V') — Out(m(V)). The
following theorem was proven by E. Luft [Lu] in 1978 for handlebodies, and in
[M-M] for compression bodies. Let H4 (M) denote the group of orientation-
preserving mapping classes of M, a subgroup of index at most 2 in H(M).
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THEOREM 4: Let V be a compression body. The kernel of H4(V) —
Out(m1(V')) is the subgroup generated by twist homeomorphisms.

Here is the idea of the proof. Let 7(V') be the subgroup of H(V) gen-
erated by twist homeomorphisms. Note that for any homeomorphism h, one
has htph™! = t(p). Consequently, 7(V) is a normal subgroup of H(V).
Let K(V') be the kernel of H(V) — Out(71(V)). Since T(V) C K(V), there
is a natural homomorphism ®: H(V)/7T (V) — H(V)/K(V). By Theorem 5
(proved below independently of Theorem 4), H(V)/K(V) is a subgroup of
finite index in Out(m1(V)), and for purposes of explaining the idea we will
pretend that it is the entire group Out(m(V)). (In [M-M], the concept of
“uniform homeomorphisms” on a certain family of compression bodies must
be defined to overcome the fact that H(V)/K(V) is not all of Out(m;(V)).)
To define $7, send each Fuks-Rabinovitch generator to the coset of the “ob-
vious” isotopy class of homeomorphism that induces it; for example, send
pi,j(7) to R; j(7). As noted above, R; j(7) is not unique up to isotopy, but
since it is well-defined up to twist homeomorphisms, its coset in H(V')/T (V) .
is well-defined. Once we show that ®~?! is well-defined, Theorem 3 will show
that it is surjective, and by construction it is the inverse of ®. To prove that
&1 is well-defined, we must show that any product of Fuks-Rabinovitch
generators that equals the identity outer automorphism is sent by ®~1 to a
product of twist homeomorphisms. It suffices to check this for each of the 48
kinds of relations given in [F-R2] (and listed in [M-M]). The details of these
checks are given in [M-M]. A simple type of example is a relation such as
number 28, which says that pi j(7)pk,e(6)=pk.e(6)pi j(v) when ¢, j, k, and £
are distinct. One can construct R; j(v) and Rk ¢(6) so that they have disjoint
support, and consequently they actually commute as homeomorphisms, ver-
ifying that ®~1(R; ;(7)Rk,e(6)Ri j(7) ' Rk ,¢(6)! is in T(V). More difficult
are cases such as relation 30, which says that

pii(@)pr,i(2) = pr,i(2)pij(ai)pr,i(z ™) -

The required check that R; ;j(a;)Rk,i(z)Rk j(z)R;j(a;) 'R i(z)™! is iso-
topic to a product of twist homeomorphisms requires more complicated ge-
ometric arguments.

3. The image of H(V) — Out(m1(V))

The next result is also from [M-M]. Here, we sketch a simplified argu-
ment. It requires some knowledge of [M-M], but avoids some of the technical-
ities of [M-M] (specifically, the concept of uniform homeomorphisms needed
to give precise calculations of the index of the image of H(V') in Out(7;(V))).
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THEOREM 5: Let V be an orientable compression body. Then the image of
H(V) in Out(m1(V)) has finite index.

PROOF: Since V is aspherical, any ¢ in Out(m;(V)) may be induced by
a homotopy equivalence f. We will first show that Out(m1(V)) contains a
subgroup Out;(m;(V)) of finite index such that if ¢ lies in Outy(m(V)), then
f is homotopic to a homotopy equivalence that preserves each Fj.

Let T; be the union of the attaching discs for the 1-handles of V' that lie
in F, i X {1}

For each Fj, the fundamental group is indecomposable and not infinite
cyclic, so by the Kurosh subgroup theorem 1 (F;) is conjugate to some 1 (Fj)
where Fj is also closed. Using asphericity, f may be deformed relative to A so
that it takes F; to Fj. By passing to a subgroup Out;(71(V)) of finite index
in Out(m1(V)), we may assume that f preserves each F;. Since the restriction
fi of f to F; induces an injection on fundamental groups, and restricts to
a homeomorphism on the boundary of F;, Baer’s theorem implies that f; is
properly homotopic to a homeomorphism. From now on, we will assume that
each f; is a homeomorphism. Passing to a subgroup Outy(71(V)) of finite
index in Outy(71(V')), we may assume that each f; is orientation-preserving.

To complete the proof of Theorem 5, consider ¢ € Outy(w1(V)) realized
by a map f as above. Then ¢ must carry each 7;(F;) to a conjugate of itself.
The arguments of Fuks-Rabinovitch [F-R1], [F-R2]| show that ¢ can be ex-
pressed as a product of certain kinds of generating automorphisms. (Those
papers actually deal with a free product in which each factor is indecom-
posable, but this is used only to know that the automorphism takes each
free factor to a conjugate of itself, a condition which we have ensured by our
construction of f.)

As discussed in section 2 above, using the “slide homeomorphism” con-
struction of [M-M] one can realize many of these generators by homeomor-
phisms of V that fix OV — F. Specifically, the generators called p; ;j(z),
Ai j(2), pij(z), oi, and w;j in [M-M] can be realized by such homeomor-
phisms. Using the relations that hold between the generators (as given in
[M-M], [F-R2], or [Gil]), we can write ¢ as ¢;¢,, where ¢, is a product of
the generators listed above and ¢ = [\, ¢; is a product of “factor au-
tomorphisms,” that is, automorphisms of m;(V') that arise by applying an
automorphism ; of 71(F;) to each element of 71 (F;) appearing in any word
of m1(V), while fixing the elements of 7, (F}) for j # ¢. Choose a homeomor-
phism g of V, which is the identity on 8V — F and induces ¢;. Then g~ f
induces ¢,. Since g is the identity on 0V — F', each ¢; must be induced by f;.
Since f; is orientation-preserving, it can be extended to a homeomorphism
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h; of w1 (V') which is the identity on A and on all Fj for j # i, and induces ¢;
on 71(V'). (To construct h;, extend f; to a homeomorphism of F; x I which is
the identity on the T, and extend using the identity on the rest of V. When
71 (F}) is nonabelian, the extension of f; to F; x I must be chosen to preserve
arcs connecting a basepoint in F; with the basepoint of V, to ensure that A;
induces ;). Let h be the composition [];-, h;; then A~1g~! f is the identity
on OV — F (so gh is admissible) and induces the identity automorphism on
m1(V) (so gh realizes ¢). This completes the proof of Theorem 5.

47



Chapter VII. The twist group

1. The Generalized Luft Theorem

Recall that the Sphere Theorem shows that if an orientable 3-manifold
M is irreducible and has infinite fundamental group, then it is aspherical
(see section IV.2). Therefore any map from M to M that induces the
identity automorphism is homotopic to the identity map (see section II.2).
Said differently, this means that the kernel of the natural homomorphism
H(M) — Out(m1(M)) consists of the mapping classes whose representatwes
are homotopic to the identity.

Recall that in chapter V we defined twist homeomorphisms. For a 3-
manifold M let 7(M) be the subgroup of H(M) generated by twist homeo-
morphisms. Since for any homeomorphism h, one has htph™! =twnny, T (M)
is a normal subgroup of H(M). Also, twist homeomorphisms lie in the kernel
of H(M) — Out(m;(M)). When the boundary of D is not contractible in
OM, tp cannot be isotopic to the identity. For an isotopy to the identity
would restrict on M to an isotopy from the Dehn twist about 0D to the
identity. But this Dehn twist induces a nontrivial outer automorphism on
T (3M)

There is another obvious example of a homeomorphism which is ho-
motopic but not isotopic to the identity. Suppose M happens to be an
I-bundle over a 2-manifold. Then the homeomorphism which is reflection
across the midpoint of each I-fiber is homotopic to the identity (just move
points within each I-fiber) but not isotopic to the identity, because it is
orientation-reversing. (For nonorientable manifolds, this reflection is some-
times isotopic to the identity. When M is a nonorientable I-bundle over the
torus, the isotopy looks like an S'-action on the 0-section. M is the mapping
cylinder of an involution which is isotopic to the identity.)

For irreducible orientable 3-manifolds with boundary, these are the only
two phenomena. The following result is from [M-M].

GENERALIZED LUFT THEOREM: Let M be a compact orientable irreducible

3-manifold with nonempty boundary, and basepoint x¢ in the interior of M.

Suppose h:(M,z,) — (M,z,) is a homeomorphism with hy equal to the

identity automorphism on m (M, zg).

(a) Ifhis orientation-preserving, then h is isotopic relative to xo to a product
of twist homeomorphisms.

(b) If h is orientation-reversing, then M is an I-bundle over a compact 2-

manifold. In particular, if M has a compressible boundary component,
then M is a handlebody.
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We will sketch part (a). The hard part is the case of a compression body,
which we already discussed in chapter V. For part (a), we assume that A is
orientation-preserving. One inducts on the number of compressible bound-
ary components. If this number is 0, so that M is incompressible, then A is
homotopic to the identity. Since M has incompressible boundary, an argu-
ment of Waldhausen [Wa, pp. 82-83] shows that the homotopy can be made
to preserve M. Then, a theorem of Laudenbach [Lau, p. 46] shows that
the homotopy can be deformed to an isotopy. When there are compressible
boundary components, take a normally imbedded compression body neigh-
borhood of one, say V that is a neighborhood of F. One can show that-
h(F)=F and since V is unique up to isotopy, one may change % by isotopy
so that A(V)=V. Since 7;(V) is a subgroup of h, h induces the identity outer
automorphism so on V, h is isotopic to a product of twist homeomorphism,
and by induction it is isotopic to a product of twist homeomorphisms on the
rest of M.

(There is actually a significant complication when one carries out the
details of this proof. When one goes to fit the isotopies on V and M — V
together, the conclusion is only that A is isotopic to a product of twist home-
omorphisms and Dehn twists about torus components of the frontier of V.
A fundamental group argument is needed to show that these Dehn twists
are trivial. This is not so easy, because a component W of M — V may be
Seifert-fibered and the trace of the Dehn twist on a torus component of WNV
may be central in 7y (W). In this case, the central element is the trace of
an S'-action on W and one can use this action to produce an isotopy that
makes the Dehn twists in the tori of W NV trivial.)

Letting H. (M) denote the subgroup of H(M) consisting of orientation-
preserving classes, we get an immediate corollary of the Generalized Luft
Theorem.

COROLLARY: Let M be a compact orientable irreducible 3-manifold with
nonempty boundary. Then T (M) is the kernel of Hy. (M) — Out(m(M)).

For 3-manifolds which are not irreducible, one can give generators for
the kernel of Hy (M) — Out(m(M)). This is done in [McC5].

2. Infinite generation of the twist group

Because of the Generalized Luft Theorem, one would like to know more
about the twist group. Little is known about its actual structure, but some
information is obtained in [McC2]. Say that OM is almost incompressible if
in each component F' of M, there is at most one simple closed curve (up to
isotopy) that bounds a disc in M but does not bound a disc or Mdbius band
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in F'. For example, the solid torus has almost incompressible boundary, but
the genus 2 handlebody does not.

THEOREM: Let M be a compact 3-manifold. Then 7 (M) is finitely gener-
ated if and only if OM is incompressible.

To show the key ideas in the proof, we will prove that 7 (V) is not
finitely generated when V is the genus 2 orientable handlebody. Let a and
b be free generators of m;(V'). Think of them as the core circles of the two
1-handles of V. Define 71(V) — Z by sending a to 0 and b to 1. The kernel
of this homomorphism is the normal closure of @, and the covering space of
V corresponding to the kernel is an infinite genus handlebody V as shown in
Figure 2. In Figure 2, we examine the effect of a tp where D is a certain disc
in V. Clearly, the lift tp of tp to V is given by simultaneous twists about
the preimage discs of D. Let a be the circle in OV shown in Figure 2. The
effect of tp on « is shown in Figure 2. Notice that in homology H,(V;Z)
we have

tp.(@) = a + loops that bound in V .

We say that the length of this particular ¢p is 3, because the image of « has
elements in a portion of V that is 3 handles long. The length of any element
of 7(V') is the number of handles over which the lift spreads o (this is easy
to define algebraically).

Here is the key point: Any tg, where E is a disc in V, fixes all elements
of H 1(V ZZ) that bound in V, because they must have zero homological
intersection with the boundary of every preimage disc of E in V. This is
immediate from the general homological formula for Dehn twists (tc).(z) =
z + (z - C)C, where C is a circle in dV and C is any circle in 9V.

Denoting length by L, the key point shows that if D and E are any two
discs in V, then L(t5't3!) < max{L(tp), L(tg)}. That is, the product of
the lifts of two twists of V can spread « out no more that either of the two
lifts does already. Explicitly,

g*%*(a) = {B*(a + bounding loops from Zg*(a))
= & + bounding loops from ¢p,(a)

+ bounding loops from tz,(a)

Therefore, if 7 were finitely generated, the length of any element of 7 (V)
would be at most the maximum length of a generator. To show that there
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is no bound, we use the discs D, shown in Figure 3, which illustrates that
L(tp,)=2n+ 1. This completes the proof.

In [McC2], this idea is developed (using compression bodies) for general
3-manifolds. When the manifolds are not irreducible, the compression body
neighborhoods are no longer unique up to isotopy, but this is irrelevant for
examining the twist group.

Also in [McC2], the almost incompressible cases are analyzed. Basically,
each boundary component which is almost incompressible but not incom-
pressible contributes one generator to 7 (M), and these commute. But there
is a certain phenomenon which occurs in the nonorientable case when there
are solid Klein bottle irreducible summands, which allows for order 4 ele-
ments in 7 (M). Here is the general result.

THEOREM: Let M be a compact connected 3-manifold with almost incom-
pressible boundary.

(a) If M is a solid Klein bottle, then T (M) = 7Z/2.

(b) If M is P?-irreducible and not a solid Klein bottle, then T (M) = Z* -

for some k, and any such group is the twist group of some compact
IP2-irreducible 3-manifold.

(¢) If M is irreducible, or more generally no proper summand of M is a
solid Klein bottle, then T(M) = Z* x (7Z/2)* for some k and £, and any
such group is the twist group of some compact irreducible 3-manifold.

(d) T(M) = Z*F x (Z/2)¢ x (Z/4)™ for some k, £, and m, and any such
group is the twist group of some compact 3-manifold.
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Chapter VIII. Mapping class groups of 3-manifolds

1. A conjectural picture of 3-manifold mapping class groups

Generalizing the construction of twist homeomorphisms, we define a
Dehn homeomorphism as follows. Let (F™"™! x I,0F™ ! x I) C (M™,0M™),
where F' is a connected codimension-1 submanifold, and Fx INOM =0F x I.
Let (¢¢) be an element of m1(Homeo(F),1r). That is, for 0 < ¢t < 1 there
is a continuous family of homeomorphisms of F' such that ¢g=¢; =1, the
identity map of F. Define h € Homeo(M) by

b {h(ac,t) = (¢¢(z),t) i (z,t)e FxI
L A(m)=m fmeg¢F xI

We note that when 7 (Homeo(F)) is trivial, a Dehn homeomorphism must
be isotopic to the identity.

Define D(M) to be the subgroup of H(M) generated by Dehn home-
omorphisms. Note that when M is orientable, D(M) C Hy(M). We call
D(M) the Dehn subgroup of H(M). When M is compact and 2-dimensional,
a Dehn homeomorphism with F' an arc is isotopic to the identity, and a Dehn
homeomorphism with F' a circle is usually called a Dehn twist. Dehn and
Lickorish proved that when M is an orientable 2-manifold, D(M)="H(M).

(From now on, we assume that M is compact and 3-dimensional. Also,
for technical simplicity, we will often make three more assumptions:

1. M is orientable.

2. M does not have any 2-sphere boundary components (i. e. no prime
summand of M is a 3-ball).

3. M does not contain any fake 3-cell. (A fake 3-cell is a manifold homotopy
equivalent to D? but no homeomorphic to D?. The Poincaré Conjecture
is equivalent to the assertion that fake 3-cells do not exist.)

The following table lists m1( Homeo(F")) for connected 2-manifolds, and the
names of the corresponding Dehn homeomorphisms of 3-manifolds.

F 71 (Homeo(F)) Dehn homeomorphism
St x St Z x 7 Dehn twist about a torus
St x T /4 Dehn twist about an annulus
D? y// twist
S? Z/2 rotation about a sphere
RRIP? Z/2 rotation about a projective plane
Klein bottle /4 Dehn twist about a Klein bottle
Mobius band 7Z Dehn twist about a Mobius band
x(F) <0 0
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This brings us to our first conjecture about 3-manifold mapping class groups.

DEHN SUBGROUP CONJECTURE: Let M be a compact 3-manifold. Then
D(M) has finite index in H(M).

The following theorem from [McC1] reduces the Dehn Subgroup Conjecture
to the case of irreducible manifolds, as long as M is orientable.

THEOREM: Let M be an orientable 3-manifold. Let M; be the irreducible
prime summands of M, 1 < i < n. If D(M;) has finite index in H(M;) for
each irreducible prime summand of M, then D(M) has finite index in H(M).

For Haken manifolds, Johannson proved the Dehn Subgroup Conjecture
(Corollary 27.6 in [Joh]), and this was extended to all compact orientable
irreducible sufficiently large 3-manifolds in [M-M].

Denote by Dso(M) the subgroup of D(M) generated by Dehn homeo-
morphisms using D%, $?, and RIP?. The subscript indicates that the surfaces
F in the definition of Dehn homeomorphism have positive Euler character-
istic.

By an argument similar to the proof of Lemma 1.1 of [McC3]), one can
prove the following extension of the Generalized Luft Theorem.

THEOREM: Let M be a compact 3-manifold.
1. If DM is incompressible, then D~q(M) is a finite abelian group.
2. If 8M is almost incompressible, then Dso(M) is a finitely generated
abelian group.
3. If M is not almost incompressible, then D~q(M) is infinitely generated
and nonabelian.

We have a companion conjecture to the Dehn Subgroup Conjecture.

KERNEL CONJECTURE: Dso(M) has finite index in the kernel of H(M) —
Out(m (M)).

In general, Dso(M) need not equal the kernel, as shown by the example
of reflection in the fibers of an I-bundle. The conjecture is verified in many
cases, such as those covered by the Generalized Luft Theorem in chapter VII.
The following theorem from [McC5] reduces the Kernel Conjecture to the
case of irreducible manifolds, as long as M is orientable, does not have 2-
sphere boundary components, and does not contain counterexamples to the
Poincaré Conjecture.

THEOREM: Suppose M is an orientable 3-manifold with no 2-sphere bound-
ary components and containing no fake 3-cell. Let M; be the irreducible
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prime summands of M, 1 < ¢« < n. Then the kernel of the Hy(M) —
Out(m(M)) is generated by Dehn homeomorphisms about the connected
sum 2-spheres, and homeomorphisms supported on one of the M; which in-
duce the identity automorphism on my(M;).

This shows that under these hypotheses, if the Kernel Conjecture holds for
each Mj, then it holds for M. The main case in which the Kernel Conjec-
ture is unknown is that of irreducible aspherical 3-manifolds which are not
sufficiently large. However, even for these the conjecture is known in many
cases by recent work of Gabai [Gal], [Ga2].

Let Outy(m1(M)) be the subgroup of Out(m1(M)) consisting of the auto-
morphisms ¢ such that for every boundary component F of M, there exists
a boundary component G so that ¢(ix(71(F))) is conjugate in 71 (M) to
J#(m1(G)), where i: F — M and j:G — M are the inclusions. This sub-
group must contain the image of H(M) — Out(m(M)).

IMAGE CONJECTURE: The homomorphism H(M) — Outgp(m1(M)) has
image of finite index.

In general, the image is not all of Outgp(m1(M)). The following result from
[McC5] reduces the Image Conjecture to the case of irreducible manifolds.

THEOREM: Let M be a compact 3-manifold with irreducible prime sum-
mands M;, 1 <1 < n. If the image of H(M;) — Out(r1(M;)) has finite
index for each t, then the image of H(M) — Out(r1(M)) has image of finite

index.

We can combine the Kernel Conjecture and the Image Conjecture into a
single statement as follows. Call a sequence of groups1 = 4 - B - C — 1
almost ezact if A has finite index in the kernel of B — C, and the image of
B has finite index in C.

ALMOST EXACTNESS CONJECTURE: Let M be a compact 3-manifold. Then
the sequence

1 = Dso(M) = H(M) — Outs(m(M)) — 1

1s almost exact.

Now assume that M is compact, orientable, and irreducible, and let S°
be the standard unit sphere in IR*. From section IV.2 we know that if 71 (M)
-is finite, then either M is the 3-ball or the universal cover of M is homotopy
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equivalent to S3. The following conjecture is a special case of Thurston’s
Geometrization Conjecture.

PoOSITIVE CURVATURE CONJECTURE: Let M be a closed orientable irre-
ducible 3-manifold with finite fundamental group. Then M is homeomorphic
to S3/G, where G is a group of isometries.

That is, the universal cover of M can be identified with S® in such a way
that the covering transformations of M act as isometries. This is equivalent
to the assertion that M admits a Riemannian metric of constant positive
curvature. When M is of the form $3/G, there is a conjectural description
of the entire homeomorphism group. Let M have the metric of constant
curvature 1 induced from S3.

GENERALIZED SMALE CONJECTURE: Let M = S®/G, where G is a finite
group of isometries. Then the homeomorphism group of M deformation
retracts to the group of isometries Isom(M).

Consequently the group of path components if Homeo(M) is the same as the
group of path components of Isom(M), and is easily computed. This shows
that H(M) is finite, and verifies the Almost Exactness Conjecture for M. The
Smale Conjecture, proven by Hatcher [Hat1], is the case when M =S3. The
Generalized Smale Conjecture has been proven for almost all the 3-manifolds
with finite fundamental group which contain a one-sided Klein bottle [Iv1],
[Iv2], [M-R].

Even when (M) is infinite, we expect finite mapping class group when
M is not sufficiently large.

FINITENESS CONJECTURE: Let M be a closed orientable irreducible 3-man-
ifold which is not sufficiently large. Then H(M) is finite.

This has been proven by Gabai for many aspherical but not sufficiently large
manifolds [Gal], [Ga2]. Notice that it is implied by the Dehn Subgroup
Conjecture.

Our final conjecture is known for many classes of 3-manifolds, and by a
result in [H-M] is reduced to the irreducible case.

FINITE PRESENTATION CONJECTURE: Let M be a compact 3-manifold.
Then H(M) is finitely presented.

In the next section we will discuss work that proves the Finite Presenta-
tion Conjecture, and much stronger group-theoretic finiteness properties, for
Haken manifolds.
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2. Mapping class groups of Haken 3-manifolds

In this section, we discuss results from [McC4]. See [McC3] for another
summary of [McC4].

When M is Haken, the analysis of H(M) starts from Johannson’s char-
acteristic submanifold theory. As we saw in section V.2, M has a charac-
teristic decomposition consisting of Seifert-fibered and I-bundle components
¥1,...,3, and simple components Si,...,Ss. Let KHomeo(M) denote the
space of homeomorphisms h of M such that A(UZ;)=UZX;. Combining var-
ious results of Johannson, Laudenbach, and Hatcher, we have the following
result.

THEOREM: If M is not a torus bundle over S! such that the trace of
the monodromy homeomorphism is at least 3, then mo(KHomeo(M)) —
no(Homeo(M)) is bijective.

The surjectivity is the uniqueness of the characteristic submanifold up to
isotopy. The injectivity uses a theorem of Laudenbach, later generalized
by Hatcher, which shows that isotopic homeomorphisms that preserve an
incompressible surface are usually isotopic through homeomorphisms that
preserve the incompressible surface.

(When M is a torus bundle over S* such that the trace of the monodromy
homeomorphism is at least 3, mo(KHomeo(M)) — mo(Homeo(M)) need not
be injective. For these manifolds, it is shown in [McC4] that H(M) is finite.
For the remainder of this section, we will assume that M is not one of these
manifolds.) '

Let K(M) denote the subgroup of finite index in mo(K Homeo(M)) con-
sisting of the classes that take each 3; to ¥;, and each Sj to Si. From the
above theorem, we know that (M) — H(M) is injective and has image of
finite index.

By definition, the restriction of an element of X(M) to each Sk is well-
defined up to isotopy. For Sy that are not the product of an torus with an
interval, the Finite Mapping Class Group Theorem of Johannson shows that
H(Sk) is finite. For Sy that are the product of a torus with an interval, it is
proven in [McC4] that the image of (M) in H(Sk) is still finite. Therefore
the subgroup Ko(M) consisting of elements whose restriction to each Sj is
isotopic to the identity has finite index in K(M).

The kernel of the homomorphism Ko(M) — [[H(Z;) induced by re-
striction is the abelian subgroup F(M) of K(M) generated by Dehn home-
omorphisms determined by the annuli and tori that are the components of
the frontier of the characteristic submanifold of M. The image is exactly the
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classes G(¥;) that are isotopic to the identity on the frontier of ¥;, and pre-
serve certain boundary patterns which we suppress from our notation here.
Thus we have our fundamental ezact sequence

1= F(M) - Ko(M)—-T[G(Z;) — 1.

Consider a Seifert-fibered component ¥;, with orbit surface Fj. Apart
from a few exceptional cases which can be handled explicitly, the orientation-
preserving mapping class group H(X;) is isomorphic to the group of orienta-
tion-preserving fiber-preserving mapping classes ’Hi(Ei). From Propositions
25.2 and 25.3 of [Joh], excepting some more cases, there is an exact sequence

1— Hy(F;,0F) — HL(Z:) — HY(F) —1

in which H*(F;) is a subgroup of finite index in H(F}), where F is the result

of removing from F; the points which correspond to exceptional orbits of

¥i. The kernel Hy(F;, 0F;) is isomorphic to the group of “vertical” mapping
classes that map each fiber to itself. Since H*(F;) is finitely presented, so is

'H_’;_(Zi). With a more careful analysis, one can prove that the groups G(%;)

are finitely presented.

When 3; is an I-bundle component, H(X;) is essentially the same as
the mapping class group of its base surface, and enjoys the same group-
theoretic finiteness properties. In particular it is finitely presented. So from
the fundamental exact sequence, H(M) is finitely presented.

In [McC4], stronger group-theoretic finiteness properties of H(M) are
proven. In particular, there are two “finiteness” properties that a group T
may enjoy:

(1) T'is of type FL; that is, there is a finite resolution of the trivial -module
Z by finitely generated free ZI'-modules.

(2) T is a duality group (over Z); that is, there is a (right) ZI-module C
such that for some nonegative integer n there are natural isomorphisms
H*(T;A) 2 Hoi(T; C @ A) for all k and all ZI'-modules A.

In (2), n is called the dimension of the duality group. A good reference for

(1) and for (2) see [B-E] or [Bi]).

When TI' is finitely presented, properties (1) and (2) have topological
interpretations. For example, (1) is equivalent to the assertion that there
exists a finite K(G,1)-complex. Both properties easily imply that the co-
homological dimension of I' is finite. For duality groups the cohomological
dimension is equal to the dimension as a duality group.
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We say that I' is of type VFL (respectively, a virtual duality group) if
there is a subgroup of finite index in I' which is of type FL (respectively,
which is a duality group).

It has long been known that the mapping class groups of 2-manifolds
(of finite type) are finitely presented; this was first proved by McCool [McC].
Work of other authors, notably Harvey [Har3|, [Har4] later showed that they
are of type VFL, and Harer [Harl] (see also [Har2]) proved that they are
virtual duality groups. One of the main results of [McC4] is the following
analogue of those results.

THEOREM: Let M be a Haken 3-manifold. Then the mapping class group
H(M) a virtual duality group.

This implies that H(M) is of type VFL. To show the main ideas, we
will just sketch the proof that H(M) is of type VFL when M is a Haken 3-
manifold. First consider a Seifert-fibered manifold ¥, fibered over F. Work
of Harer [Harl] (extended in [McC4] to nonorientable 2-manifolds) shows
that H*(F) is of type VFL. In [McC4], it is proven that H(X) contains
a torsionfree subgroup of finite index, and the intersection of the vertical
mapping classes H;(F,0F) with this subgroup is a finitely generated free
abelian group. So there is a subgroup of finite index in H(X;) which is an
extension of a finitely generated free abelian group by an FL group. Such an
extension must be FL. This proves the Theorem for the Seifert fibered case.
For I-bundles, the Theorem follows from the 2-dimensional version.

For the general case of incompressible boundary, we use the fundamental
exact sequence

1 - F(M)— Ko(M)—-J[6(%:) - 1.

Somewhat surprisingly, F(M) can contain torsion, and some effort is required
to find a subgroup of finite index in H(M) that avoids this torsion. Then we
have an subgroup of finite index in Ko(M) which is an extension of a finitely
generated free abelian group by an FL group, so Ko(M) and hence H(M)
are VFL groups.

3. Mapping class groups of sufficiently large 3-manifolds

The paper [McC4] also contains some results on manifolds with com-
pressible boundary. For a product-with-handles V| there is a simplicial com-
plex L in which the vertices are the isotopy classes of essential compressing
discs in V, and a collection of vertices spans a simplex if and only if the
isotopy classes can be represented by a collection of discs in V' which are
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pairwise disjoint. It is proved in [McC4] that L is a finite-dimensional con-
tractible complex admitting a simplicial action of H(V') with finite quotient.
The result of cutting a product-with-handles along a set of compressing discs
is a collection of products-with-handles of lower complexity; this enables the
stabilizers of simplices in L to be analyzed inductively, obtaining enough in-
formation to establish that H(V') is finitely-presented and virtually of type
FL. The compression body case can be applied to extend the theorem above
to manifolds with compressible boundary, with a weaker conclusion:

THEOREM: Let M be a compact orientable irreducible 3-manifold with
nonempty boundary. Then M is a finitely presented group of type VFL.

The proof is based on induction on the number of compressible boundary
components, with the induction starting from the Haken case.

For the cases when the boundary of M is compressible it is unknown in
general whether H(M) is a virtual duality group. However, in [McC4] some
very special facts about the genus 2 orientable handlebody V; are used to
prove that H(V;) is a virtual duality group of dimension 3.
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Chapter IX. The finite-index realization problem

In chapter IV, we stated the following problem:

FINITE-INDEX REALIZATION PROBLEM: For which compact orientable ir-
reducible 3-manifolds M does the image of the homomorphism H(M) —
Out(m1(M)) have finite index?

In this chapter we will discuss the solution of this problem given in [C-
M]. In section 3, we will show that when M is a hyperbolic 3-manifold the
answer to the finite-index realization problem gives information about the
deformation spaces of hyperbolic structures on M.

We will denote the image of H(M) — Out(m1(M)) by R(M).

1. Motivating examples

Before stating the Finite-index Realization Theorem, we motivate it by
showing some examples. They illustrate phenomena which affect whether
R(M) has infinite index in Out(mw;(M)). We are particularly interested in
examples related to hyperbolic 3-manifolds. A compact, orientable, irre-
ducible 3-manifold is called hyperbolizable when its interior admits a complete
hyperbolic structure.

The first two examples illustrate the two basic types of phenomena which
cause R(M) to have infinite index in Out(m1(M)) when M is hyperbolizable.
The first can occur only when M has a compressible boundary component,
and the second only when M has a torus boundary component.

Example 1: When M has a compressible boundary component but is not a
compression body the following construction often yields an infinite collection
of distinct cosets of R(M) in Out(r1(M)). Let C be a simple closed curve in
M with its basepoint in a 1-handle of M, but which does not pass over the
1-handle. A homotopy equivalence of M can be constructed by taking a map
which is the identity off of the 1-handle and wraps the 1-handle around C
(and then over the original 1-handle). Below, we describe a specific example
and give the resulting automorphism explicitly.

Let S be a surface of genus two and let L be the 3-manifold obtained by
taking the boundary connected sum of two copies of Sx I. Form M; by gluing
two copies of L together along an incompressible boundary component. Then
(M) = 71(S) * 71(S) * 71(S) and has a presentation

(al,bl,a27b2acls dl,cz,dz, 6’1,f1,62,f2 | [a1,b1] = [az,b'z],

[e1,d1] = [e2,da], [e1, f1] = [e2, f2])
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where {a1,b1,az,b2} and {ei, f1, ez, f2} generate the fundamental groups of
the two incompressible boundary components of M and {c;,d1, ¢z, d2 } gener-
ates the fundamental group of the surface we glued along to form M;. Define
an automorphism ¢ which fixes ay, b1, as, b, c1,d1, co, and dy and acts on the
remaining generators by

-1 -1 -1 -1
€1 F aje;a, fi— alflal , €2 > G1€20, yfam a1f2a1 .

Then no nonzero power ¢* of ¢ is realizable by a homeomorphism of Mj, since
$* takes the peripheral element c¢;e; to the nonperipheral element c¢; akejay k|
This automorphism is induced by a homotopy equivalence which is the iden-
tity off of the 1-handle in the second copy of L (the copy whose fundamen-
tal group is generated by {ci1,d1,c2,d2, €1, f1,€2, f2}), and which sends this
handle around a loop representing a;. Using Klein combination, one can
construct a (convex cocompact) hyperbolic structure on Mj.

Example 2: The following example illustrates the phenomenon called dou-
bly accidental parabolics. Again we will first describe the general strategy
and then give a specific example (due to Thurston). Begin with a submani-
fold V homeomorphic to 72 x I which intersects M in a torus (T2 x {0})
and two annuli in T2 x {1} which are not isotopic in M. The homo-
topy equivalence is the identity off of a regular neighborhood of one com-
ponent A of (T? x {1}) — OM,, and wraps a collar neighborhood of A once
around T2 x {1}. Arcs in M which cross one of the annuli in 72 x {1} are
carried to arcs in M which travel around T? x {0}, and loops which cross
these annuli in an essential way can be carried to nonperipheral loops.

Let S be a surface of genus two and a a separating curve on S. Let
K be the 2-complex (embedded in 3-space) formed by attaching a torus T
to S along the curve a (where « is glued to the longitude of T.) Let M,
be the manifold obtained by taking a regular neighborhood (in IR?) of K.
Notice that M, is homeomorphic to S x I with a tubular neighborhood of
a x {1} removed. Let ¢ be an automorphism of 7, (K) constructed by fixing
T and every point on S except an annulus with one boundary component
being «. Then take this annulus and wrap it around the meridian of T. A
presentation for my(M3) is

{a1,b1,a2,b2,¢| [a1,b1] = [az, b2], [[a1, b1], c] = 1) .
In this presentation the automorphism takes the form
a; — a1, by > by, e cap cazc™t by > chyct .
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Notice that no nonzero power ¢* of ¢ is realizable by a homeomorphism,
since it takes the peripheral element aja; to the non-peripheral element
aycfFazc™®. The characteristic submanifold of M, has three components.
Two of the components are product I-bundles over the punctured tori which
are the components of the complement in S of a regular neighborhood of a.
The other component is topologically T? x I. One of its boundary tori is
the boundary torus of Mj, and the other meets each of the other two bound-
ary components of M, in an annulus whose center circle is isotopic to a.
A geometrically finite hyperbolic 3-manifold whose conformal extension is
homeomorphic to M; — P is explicitly constructed in Kerckhoff-Thurston
[K-T]. The copies of a in the two nontoral boundary components of M, cor-
respond to an accidental parabolic element which appears in a toral cusp and
also as two nonhomotopic loops in the conformal boundary of the hyperbolic
manifold.

The next two examples illustrate phenomena related to the presence
of more complicated Seifert fibered spaces in the characteristic submanifold,
which can occur only in nonhyperbolizable examples. Roughly speaking, if 3
has Seifert-fibered components which are complicated and meet the boundary
of M, then R(M) will have infinite index in Out(m(M)), while if all Seifert-
fibered components that meet the boundary are uncomplicated, such as the
solid torus, the index can be finite. However, in the borderline cases the
way in which the components meet the boundary can affect the index, as
illustrated in examples 3 and 4. In both examples, ¥ is the product of a disc
with two holes and the circle, but in example 3 the index is infinite and in
example 4 it is finite.

Example 3: Let F be the disk minus two holes, with boundary circles C},
C,, and C3, and let © = F x S1. Let S be a compact hyperbolizable 3-
manifold whose boundary is a single torus, and form Mj by identifying the
torus boundary component of S with the boundary torus C; x S of &. A
homotopy equivalence of Mj is constructed as follows. Start with a properly
imbedded arc v in F' whose endpoints lie in C2 and C5. Let v x [—1,1] be
a product neighborhood of y=+v x {0} with v X [-1,1]N0F =0y x I. Let
a be a loop in F, based at a point zq x {—1/2} € v x {—1/2}, disjoint from
v % (=1/2,1/2), and freely homotopic to Cy. Define a homotopy equivalence
ho of F as follows. It will fix all points outside v x [—1,1] (in particular, it
is the identity on C;). Map each v x {t} to v x {t} in such a way that for
—1/2 <t <1/2,yx{t} collapses to zo x {t}, then map the arc zo x[-1/2,1/2]
around the path product of @ and zo x [—1/2,1/2]. Define a homotopy
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equivalence h of M3 by taking the product of hy and the identity on the
S1-factor on X, and by taking the identity on S. The peripheral loop in M;
represented by C, is carried by k¥ to the element represented by C;C¥ in
m(F) X ZZ = 71(X) C m(Mj3). For nonzero k, this loop is not homotopic
into M3 so h* is not homotopic to a homeomorphism. Therefore R(M3)
has infinite index in Out(m1(M3)).

Example 4: Form M, from the manifold M3 in example 3 by attaching
another copy of S along Cy x S1. We will show that R(My)= Out(m(My)).
Any outer automorphism of 7;(My) can be induced by a homotopy equiva-
lence. By Johannson’s Classification Theorem (stated in section V.2), such
a homotopy equivalence is homotopic to a map f which carries S to S by
a homeomorphism and carries ¥ to ¥. Any homotopy equivalence of ¥
which is an orientation-preserving or orientation-reversing homeomorphism
on (Cy UC3) x S* is homotopic to a homeomorphism by a homotopy which
is constant on (Cy U C3) x S*. (This is not too hard to prove, using the fact
that any map of the disc with two holes which is an orientation-preserving or
orientation-reversing homeomorphism on two boundary circles is homotopic
to a homeomorphism.) Therefore this homotopy equivalence is homotopic to
a homeomorphism.

2. The finite-index realization theorem

To state the finite-index realization theorem, we must define a kind of
3-manifold which is in some sense close to being a compression body. We
call a 3-manifold M small when it satisfies one of the following;:

(i) M is obtained from a product I-bundle over a closed surface by gluing
a 1-handle to one boundary component and a twisted I-bundle (with
boundary homeomorphic to the closed surface) to the other, or

(i1) M is obtained from the boundary connected sum of two product I-
bundles over closed surfaces by gluing a twisted I-bundle to one or both
of the incompressible boundary components, or

(iii) M is obtained from the boundary connected sum of two product I-
bundles over homeomorphic closed surfaces by gluing the two incom-
pressible boundary components.

FINITE-INDEX REALIZATION THEOREM:: Let M be a compact, orientable,
irreducible 3-manifold with non-empty boundary.
1. If M is compressible, then R(M) has finite index in Out(m,(M)) if and

only if M is either small or a compression body.
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2.

If OM is incompressible, then R(M) has finite index in M if and only

if every Seifert fibered component V of the characteristic submanifold

that intersects OM satisfies one of the following:

(i) V is a solid torus, or

(i) V is an S*-bundle over the Mébius band or annulus and no compo-
nent of VN OM is an annulus, or

(iii) V is fibered over the annulus with one exceptional fiber, and no
component of V. N OM is an annulus, or ‘

(iv) V is fibered over the disc with two holes with no exceptional fibers,
and V N OM is one of the boundary tori of V, or

(v) V = M, and either V is fibered over the disc with two exceptional
fibers, or V is fibered over the Mébius band with one exceptional
fiber, or V is fibered over the punctured torus with no exceptional

fibers.

The proof of the finite-index realization theorem is technically involved.

First we discuss the case when M has incompressible boundary. The cited
theorems of Johannson are stated in section V.2. Start with a homotopy
equivalence f inducing an automorphism in Out(m(M)).

(1)
(2)

3)

(4)

Using Johannson’s Classification Theorem, deform f so that it preserves
the characteristic submanifold X.

Using Johannson’s Homotopy Splitting Theorem, show that the restric-
tions of f to the components of ¥ and the components of M — X are
well-defined (by passing to a subgroup of finite index in Out(m (M)),
one may assume that f preserves each such component).

By Johannson’s Finite Mapping Class Group Theorem, there are up to
isotopy only finitely many restrictions possible on the components of
M — %, so that by passing to another subgroup of finite index, one may
assume f is the identity on M — X.

Study the restrictions of f to the components of ¥ and characterize topo-
logically the possible components for which the subgroup of their groups
of homotopy equivalences consisting of the homotopy classes realizable
by homeomorphisms has finite index.

In each step, one must use Johannson’s theory of boundary patterns to re-
tain exact control on the boundary. Step (4) breaks into two major cases
according to whether the component of ¥ is Seifert-fibered or is an I-bundle.
For the borderline cases, a lengthy case-by-case analysis must be carried out.

Let

Now we will discuss the case when a component of M is compressible.
F be a boundary component which is compressible in M. Let V be a
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normally imbedded compression body neighborhood of F'. From section VI.1,

such a neighborhood exists and is unique up to admissible isotopy. From

section VL.3, R(M) has finite index in Out(m(M)) when M is a compression

body. The two remaining steps are

(1) Show that when M is small, R(M) has finite index in Qut(m;(M)), and

(2) Show that when M is not a compression body and not small, R(M) has
in finite index in Out(mw;(M)).

We sketch the argument for item (1) for the case of a small manifold of
Type I. Let M be obtained from F x I by attaching a 1-handle D x I to Fy x
{1}. Let D denote D x {1/2} and let F; denote F} x {0}. We will show that
R(M) = Out(m1(M)) by showing that any homotopy equivalence f from M
to M is homotopic to a homeomorphism. Since F} is incompressible, one can
change f by admissible homotopy so that the image of F} is disjoint from D,
and hence so that the image of F} lies in F; x I C M. By a further homotopy,
we may assume f maps Fy to Fy. Since fy is injective on fundamental groups,
Baer’s Theorem (see proposition 3.3 of [Joh]) shows that the restriction of
f to Fy is homotopic to a covering map. By an algebraic argument, fx
must carry 71(F)) onto m(Fi), so we may assume that f restricts to a
homeomorphism on F;. Composing f with a homeomorphism which restricts
to f~! on Fy (note that if h o f is homotopic to a homeomorphism %, then
f is homotopic to the homeomorphism h~lk, so we may freely change f by
homeomorphisms), we may assume that f is the identity on F, and hence
on Fy x I. Now m(M) = m1(Fy) * Z; letting w be the generator of Z, we
now have that fu(z)=z for z € 7 (F1) and fg(w) = zjw*lz,. Since fy is
surjective, algebraic considerations show that zq,2z; € m(F1). But for any
automorphism of this form, there is a known homeomorphism from [M-M]
that induces such an automorphism (a “spin” of the 1-handle carries w to
w1, and “slides” of the ends of the 1-handle around loops in Fy x I add 21
and z,. Since M is aspherical, f is homotopic to this homeomorphism.

For other types of small manifolds, R(M) need not equal Out(wy(M)).

For step (2), one uses the construction of Example 1 to show the index
is infinite. There are several cases, according to the nature of M — V, and
in the more difficult cases one must carefully analyze the effects on 71 (M).

3. Deformations of hyperbolic structures

Recall that we say a compact, orientable, irreducible 3-manifold M is
hyperbolizable when its interior admits a (complete) hyperbolic structure.
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Thurston has shown that if M has nonempty boundary, then M is hy-
perbolizable if and if and only if every incompressible torus in M is ho-
motopic into M. To understand the different hyperbolic structures on
M and manifolds homotopy equivalent to M, one may consider the space
D(m (M), I30m+(]H3)) of discrete faithful representations of 7; (M) into the
group Isomy(H?) of orlentatlon-preservmg isometries of hyperbolic 3-space
H®. Each element of D(m;(M),Isom,(IH?)) gives rise to a hyperbolic 3-
manifold N(p) = H?/p(7;(M)) which is homotopy equivalent to M. More-
over, the identification of 71 (M) with the fundamental group p(m;(M)) gives
rise to a homotopy equivalence f,: M — N(p) which is well-defined up to ho-
motopy. This homotopy equivalence is sometimes called a marking of N(p).

Since two conjugate representations into Isom(IH®) give rise to iso-
metric hyperbolic 3-manifolds with the same marking, it is also natural to
consider the space AH(m(M)) = D(7r1(M), Isom (H?))/Isom 4 (H*) where
Isom(H®) acts by conjugation. This is the space AH(m,(M)) of marked
hyperbolic 3-manifolds homotopy equivalent to M. An obvious question is
the following.

QUESTION: For which compact, orientable, irreducible $-manifolds M does
AH(m1(M)) have finitely many components?

The Ahlfors-Bers quasiconformal deformation theory of Kleinian groups,
together with work of Marden, Maskit and Kra, allows one to describe an
explicit parameterization of the space of geometrically finite hyperbolic struc-
tures on a compact 3-manifold M with a fixed parabolic locus. For simplicity
here (although not in [C-M]) we will assume that the parabolic locus is empty.

Let M be a compact, orientable, hyperbolizable (hence irreducible) 3-
manifold and let p € AH(w1(M)). Denote by Q(p) the maximal open
subset of € on which p(m1(M)) acts discontinuously, and let N = (IH3
Q(p))/p(m1(M)). We call N the conformal eztension of N. When N is
compact, N is said to be conver cocompact.

By AH(M) we mean the subset of AH(71(M)) consisting of marked
hyperbolic 3-manifolds which are actually homeomorphic, not just homotopy
equivalent, to in#(M). Let CC(M) C AH(M) denote the space of marked
convex cocompact hyperbolic 3-manifolds homeomorphic to int(M).

An element p; € CC(M) is said to be quasiconformally conjugate to p if
there exists a quasiconformal map ¢: € — C such that pop(y)og™! = pi(7)
for all vy € m1(M). If p € CC(M), then Bers [Be] (along with Maskit [Mas]
and Kra [Kra]) showed how to use the Ahlfors-Bers measurable Riemann
mapping theorem ([A-B]) to provide a parameterization of the set QC(p)
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of Kleinian groups which are quasiconformally conjugate to p. Let 7(0M)
denote the Teichmiiller space of all (marked) hyperbolic structures on M
and let Modo(M) denote the set of isotopy classes of homeomorphisms of
OM which extend to homeomorphisms of M which are homotopic to the
identity. We recall that 7(0M) is diffeomorphic to a finite-dimensional Eu-
clidean space and that Modo(M) acts properly discontinuously and freely
on 7(OM). The work of Bers, Maskit and Kra can be summarized in the
following theorem.

QUASICONFORMAL PARAMETERIZATION THEOREM: (Ahlfors, Bers, Kra,
Maskit) Let M be a compact 3-manifold with boundary and p € CC(M).
Then QC(p) may be identified with T(0M)/Mody(M).

Although we will not use this in the remainder, we note that the results
presented in chapter VII show that Modo(M) is finitely generated if and
only if the boundary of M is almost incompressible.

Marden’s isomorphism theorem [Mar] provides a completely topological
characterization of when two convex cocompact hyperbolic 3-manifolds are
quasiconformally conjugate.

MARDEN’S ISOMORPHISM THEOREM: Let p and p' be elements of CC(M).
Then p' € QC(p) if and only if there exists a homeomorphism H: N(p) —
N(p') such that H, = p' o p™1.

Another result of Marden’s, later referred to as Marden’s Stability The-
orem, asserts that QC(p) is an open subset of AH(w1(M)) when p is convex
cocompact.

In [C-M], these results are combined to give a complete parameterization
of CC(M). For the convex cocompact case, this specializes to the following
statement.

PARAMETERIZATION THEOREM: If M is a hyperbolizable compact 3-
manifold with no toroidal boundary components, then CC(M) is homeo-
morphic to

(T(0M)[Mody(M)) x (Out(m(M))/R(M))

Hence the number of components of CC(M) is precisely the index of R(M)
in Out(m1(M)). The finite-index realization theorem of section IX.2 answers
this, at least in terms of the characteristic submanifold of M. In [C-M],
the characteristic submanifolds of hyperbolizable manifolds are studied. In
the convex-cocompact case, the characteristic submanifold consists entirely
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of I-bundles and solid tori. Hence the finite-index realization theorem im-
mediately some information related to the Question stated above:

THEOREM: Let M be a hyperbolizable, compact 3-manifold with no toroidal
boundary components.
1. If M has compressible boundary, then CC(M) has finitely many com-
ponents if and only if M is either small or a compression body.
2. If M has incompressible boundary, then CC(M) has finitely many com-
ponents.

The analogue of part 2 is no longer true when the parabolic locus is
nonempty. The corresponding deformation space has infinitely many com-
ponents precisely when the characteristic submanifold of M (with a bound-
ary pattern determined by the parabolic locus) contains a certain type of
structure, illustrated in Example 2 above. Geometrically, it corresponds to
the presence of an accidental parabolic element of m1(M) which is homo-
topic into a toral cusp and homotopic to at least two loops in OM which are
nonhomotopic in M. These are called doubly accidental parabolics.

It is also natural to consider the space CC(m(M)) C AH(m1(M)) con-
sisting of all convex cocompact elements of AH(m(M)). If we let A(M)
denote the set of all compact, irreducible 3-manifolds homotopy equivalent
to M, then

CC(m1(M)) = Unieany CC(M;).

It is a theorem of Swarup [Sw] and Johannson [Johl] that A(M) is always
finite. Using this, together with an analysis of the homotopy types of com-
pression bodies and small manifolds, one obtains

COROLLARY: Let M be a hyperbolizable, compact 3-manifold with no
toroidal boundary components.

1. If M has compressible boundary then CC(m(M)) has finitely many
components if and only if m1(M) is either a free group or a free product
of two groups one of which is the fundamental group of a closed surface
(orientable or non-orientable) and the other is either infinite cyclic or
the fundamental group of a closed surface.

2. If M has incompressible boundary, then CC(n1(M)) has finitely many
components.

The algebraic condition in part 1 says that m; (M) is the fundamental group
of either a handlebody or a small manifold.
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Chapter X. Elementary and intermediate problem list

These problems are not particularly related to the previous material,
but since there are not very many collections of problems in low-dimensional
topology, we hope that this list will be useful to students and instructors.

The problems are graded into three levels of difficulty. The “A” problems
are relatively short and easy, the “B” problems are of moderate to challenging
difficulty, and the “C” problems are even more difficult.

1. “A” Problems

A1l. Let X be a space. Prove that every point in X has a neighborhood
homeomorphic to IR" if and only if every point has a neighborhood
homeomorphic to some open subset of IR".

A2. Write explicitly the stereographic projection homeomorphism from
$3 to R® U {o0}.

A3. Let F be the 2-sphere with n crosscaps. Describe explicitly the ori-
entable double covering of F. Do the same for the surface of genus g
with n crosscaps.

A4. Prove that m (M) = (M — OM).

A5. Let M and N be compact n-manifolds. Prove that M#N is orientable
if and only if both M and N are orientable.

A6. Let X be a CW-complex. Prove that if all homotopy groups of X are
zero, then X is contractible.

AT7. Explain why M#S™ =M and M#D™=M — {open disc}.

A8. Let M be obtained by removing an open 3-ball from RIP®. Show that
the universal cover of M is S? x I.

A9. Let M be a manifold of dimension at least 3. Let D be an n-ball
imbedded in M, so that 8D has a product neighborhood, and let p be
point in the interior of D. Prove that the inclusions M — {p} — M —
int(D) and M — int(D) — M induce isomorphisms on fundamental
groups.

A10. Let X be the 1-point union of two circles. Describe (with pictures)
the universal cover of X.

A11. Let p: (E,e0) — (X,z0) be a covering map between path-connected
spaces with good local structure (assume they are manifolds, if you
like). Let Y be a path-connected space and y, a point in Y. Suppose
that fi, f2:Y — E are continuous maps with pfi =pf; and fi(y0)=
f2(yo). Prove that fi=f,.
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Al12. Let D be a closed n-ball imbedded in an n-manifold M (as a sub-
complex in some simplicial structure), where n > 3. Show that
nl(M—intD") & 7!'1(M). )

A13. Use van Kampen’s theorem to obtain a presentation for the funda-
mental group of the closed nonorientable surface with n-crosscaps.

A14. Use van Kampen’s theorem to calculate the fundamental group of the
lens space L(p, q).

A15. Construct an infinite-sheeted covering space E — B whose group of
covering transformations is Z/2.

A16. Recall that a space X is said to be contractible if the identity map
of X is homotopic to a constant map. Prove that X is contractible if
and only if it is homotopy equivalent to a 1-point space.

A17. Draw an explicit CW-complex structure on the punctured torus T'=
S x S' —int(D?), and use it to calculate H,(T; R) and H,(T,0T; R).

A18. Prove that H°(X, A; R) & Hom(Hy(X, 4; R), R) if R is commutative.

A19. Let ¢: V — W be a homomorphism of finite-dimensional vector spaces
over a field K and let ¢*: Hom(W, K) — Hom(V, K) be the induced
map on the dual spaces. Prove that the images of ¢ and ¢* have the
same dimension.

A20. Let M be an n-manifold, let F' be a component of M, and let D,
and D, be two (n — 1)-cells imbedded in F'. Prove there is an isotopy
Jt of M so that jo is the identity, j; is the identity outside a collar
neighborhood of F', and j;(D;)=Ds,.

A21. Let Dy, Eq, Dy, Es, ..., D, Ex be PL imbedded n-cells in the interior
of an n-manifold M. Assume that D; N D; and E; N E; are empty
for ¢ # j. Prove there is an isotopy j: of M so that jo is the identity
and 7;(D;)=E; for 1 <i < k.

A22. Prove that RIP? x S is irreducible.

2. “B” Problems

Bl. Let A C X and B C Y, and let A — B and H:Y — Y be
homeomorphisms. Let M(h)=(X UY)/z ~ h(z) for ¢ € A. Prove
that M(h)=M(Hh).

B2. Show that the quotient space obtained from the 2-sphere by identify-
ing antipodal points is the projective plane.

B3. Let F be a manifold and let f and ¢ be homeomorphisms from F
to F. Define M(f) to be F' x I/(z,0) ~ (f(z),1) and M(f,g) to be
(Fx[0,1]UF x[2,3)/(f(z),1) ~ (,2),(g9(z),3) ~ (,0). Show
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B4.

B5.

B6.

B7.

B8.

B9.

B10.
B11.

B12.

B13.

B14.

B15.

(a) M(gfg")=M(f).

(b) If f is isotopic to g, then M(f)=M(g).

(¢) M(f,9)=M(fg). Generalize. ’

(d) If f™ is isotopic to the identity map 1p, then F x S! is an

n-fold covering space of M(f).

Let M and N be closed n-manifolds. Describe the universal cover of
M#N.
Let M be a closed 3-manifold. Assume Specker’s Theorem: my(M)
is free abelian. Prove that the universal cover of M is homotopy
equivalent to either S°, R®, or a 1-point union of a collection of 2-
spheres.
Let M be a closed 3-manifold. Prove that there exist four 3-cells By,
B,;, B3, and B4 imbedded in M with pairwise disjoint interiors so
that M=U;~1=1B,'.
Let M be a homology 3-sphere (that is, a 3-manifold such that H,(M)
=~ H,(S5?)), and let C be a tamely imbedded circle in M. Prove that
H.(M - C) = H,(SY).
Let M be a compact 3-manifold with M = S* x S'. Prove that M
cannot be simply connected.
Let n > 1. Prove that H,(IR",IR" — {0}; R) & R. More gener-
ally, prove that if M is an n-manifold and = € M, then H, (M, M —
{z};R)=Z Rif ¢g=nand 0 if ¢ # n.
Show that the universal cover of RIP*#IRIP? is $2 x IR.
Let X be the 1-point union of two circles and k 2-spheres. Describe
m2(X) as a m1(X)-module.
Let M be the manifold obtained from S? x I by identifying (z,0)
with (a(z),1), where a is the antipodal map. Describe m3(M) as a
71(M)-module.
Let X be the cell complex obtained by attaching a 2-cell D? to S?
using a degree n map from dD? to S. Describe mo(X) as a m;(X)-
module.
Let p: (E,eq) — (X, z¢) be a covering map between path-connected
spaces with good local structure (assume they are manifolds, if you
like). Let eg,e; € p~!(zg). Let ¥ be a path in E from e to e; and let
v be the loop py. Prove that pu(m1(E, e1))=[y]" px(m1(E,e0))[v]-
Let p: (E,ep) — (X, z0) be a covering map between path-connected
spaces with good local structure (assume they are manifolds, if you
like). Let v; and 72 be loops in X based at zo and let 47 and 73
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B16.

B17.

B18.

B19.

B20.

B21.

B22.

B23.

B24.

B25.

be their lifts starting at eg. Prove that 41(1) = 42(1) if and only
if the cosets pu(m1(E,e0))[11) and px(m1(E, eo))[y2] are equal. De-
duce that lifting defines a bijection between p~!(z¢) and the cosets
of py(m1(E,e0)) in m (X, o).

Let F be a manifold and let f and g be homeomorphisms from F' to F.
Define M(f) to be F x I/(z,0) ~ (f(z),1). Show that (M (f)) =
(m1(F) « Z)/(y = tfu(y)t™!), where ¢t generates the infinite cyclic
free factor. Define a homomorphism from 71 (M(f)) to Z by sending
t to 1 and v to O for all v € m;(F). Describe the covering space
corresponding to the kernel of this homomorphism.

Let F' be a connected 2-manifold in the boundary of a 3-manifold
M. Prove that the kernel of 71 (F) — (M) contains no orientation-
reversing elements.

Let E — F be an odd-sheeted covering, where F' is a nonorientable
surface. Prove that E is nonorientable.

Let X be a CW-complex. Prove that X is contractible if and only if
every map from a finite complex into X is homotopic to a constant
map.

For n > 1let K, =S x [n —1,n]. Let p:S' — S! be a 2-fold
covering map, and form X from U2, K, by identifying (z,n) in K,
with (p(z),n) in K, for all n > 1. Calculate m;(X).

Regard D? as {(z,y) | =2 + y* < 1}. Let ¢: D? — D? be rotation
about the origin through an angle of 27 /n. Let E be a small disc
centered at (1/2,0), small enough so that E, ¢(E),..., ¢""}(E) are
disjoint. Let D, be the disc with n holes D — U?¢*(int(E)), and
let X, = D, x I/(z,0) ~ (¢(z),1). Calculate m(X), and find a
2-generator presentation for this group.

For the manifold X, defined in the previous problem, find the free
abelian subgroups corresponding to the boundary tori. Find an iden-
tification of the boundary tori so that the resulting closed 3-manifold
has nontrivial center.

For the manifold X,, used in the previous two problems, prove these
is a homeomorphism from X, to X,, which interchanges its boundary
components.

Prove that Hy(X; R) &£ @R with one summand for each path com-
ponent of X. What about Hy(X, 4; R)?

Prove that the reduced homology group I:TO(X ; R) is isomorphic to
@R with one fewer summand than the number of component of X.
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B26.

B27.

B28.

B29.

B30.

B31.

B32.

B33.

B34.

B35.

B36.

Prove that H'(X,A; R) = Hom(H:(X, A; R),R) if R is a principal
ideal domain.

Let M be a compact simply-connected 3-manifold with nonempty
connected boundary. Assuming the fact that H,(M;Z)=0 when M
is a connected nonclosed n-manifold, prove that M = S? and M is
contractible.

Let ¥ be a closed 3-manifold, let D be a 3-ball in ¥, and let ¥ =
Y — int(D). Assuming the fact that H,(M;Z) =0 when M is a
connected nonclosed n-manifold, prove that ¥ ~ S% if and only if
20 >~ DS_

Let W = D3#D3#D3. Let S;, S3, and S; be the components of
OW. Let h:S; — S; be a homeomorphism, and define M(h) to be
the quotient space of W obtained by identifying = with h(z) for all
z € S1. Up to homeomorphism, find all manifolds of the form M(h).
Let M be a compact orientable irreducible 3-manifold with nontrivial
free fundamental group. Prove that M has nonempty boundary

Let M be a compact orientable irreducible 3-manifold with nontriv-
ial free fundamental group. Prove that M is a handlebody. (Note:
From the previous problem, M has nonempty boundary. If F'is a
component of M that is not a 2-sphere, then 71 (F) is not free, since
F is closed. Since subgroups of free groups are free, 71 (F) — m1(M)
cannot be injective.)

Let X be a finite connected 1-dimensional CW-complex. Prove that
m1(X) is free of rank 1 — x(X).

Suppose F' is free of rank r and F} is a subgroup of index k. Prove
that F) is free of rank k(r — 1) + 1.

Suppose M? is a 3-manifold and F is a connected surface properly
imbedded in M (that is, FNOM =0F'). Suppose that F' is two-sided
(that is, there is an imbedding F' x [—1, 1] — M such that the image
of F' x {0} is F'). Prove that if F' does not separate M, then Hi(M)
is infinite.

Let M, and M, be two connected n-manifolds with nonempty bound-
aries, and let D; C dM; and D, C OM; be (n — 1)-cells. Define the
boundary-connected sum MM, to be the manifold resulting from
M, U M, by identifying D; and D, by a homeomorphism. Investigate
how well-defined M;§M; is.

Let F be the disc with two holes and denote its boundary circles by
C1, Ca, and Cs. Suppose f: F x S' — F x S1 is a map which restricts
to an orientation-preserving or orientation-reversing homeomorphism
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B37.

B38.

B39.

.B40.

B41.

B42.

B43.

B44.

B45.

B46.

B47.

on (C; UCy) x S*. Prove that f is homotopic, without changing it
on (C; UC,) x S*, to a homeomorphism of F' x St

Let X,, denote an m-times punctured 3-cell (that is, the connected
sum of m + 1 3-cells). Let X_; denote S®. Show that X§X, =
Xk+e, Xk #Xe=Xk+s+41, and any manifold obtained from X U X, by
identifying a boundary component of X; and a boundary component
of X, is homeomorphic to Xy4¢—1. :

Let F be a closed 2-manifold imbedded in S%. Use the Transversality
Theorem to prove that F' is 2-sided.

Suppose Misa covering space of a 3-manifold M. Prove that if Mis
irreducible, then M is irreducible. (Remark: The following converse
is also true, but is very difficult to prove: If M is irreducible and
contains no 2-sided projective planes, then every covering space of M
is irreducible.)

Let M be a compact 3-manifold with free fundamental group. Prove
that M = H# - H#H #M# - #FMp#Z# - - #Xp where each H;
is a handlebody, each M; is a 2-sphere bundle over the circle, and
each X; is an irreducible homotopy 3-sphere.

Without using the Loop Theorem, prove that no loop in the bound-
ary of a 3-manifold that reverses the local orientation in OM can be
contracted in M.

Let M be a compact simply-connected 3-manifold with nonempty
boundary. Prove there is a homotopy equivalence of pairs (M,0M)
~ (N,ON) where N is a connected sum of 3-balls.

Suppose M is a compact 3-manifold with incompressible boundary,
and m(M)=A; * A;. Show that M = M;#M, where 71(M;) = A;
Give an example of a closed orientable irreducible 3-manifold M such
that 71 (M) =2 A*c B, with C # A and C # B, with C not isomorphic
to the fundamental group of a 2-manifold.

Let F' be a closed orientable 2-manifold of genus ¢g. Find all n such
that 71 (F) contains a subgroup isomorphic to the fundamental group
of a closed orientable 2-manifold of genus n.

Let F be a closed 2-manifold, not a 2-sphere. Using the cohomology
of groups, prove that 7;(F’) is not free.

Let F be a closed 2-manifold, not a 2-sphere. Using only elementary
homology and covering space theory, prove that m;(F') is not free.

3. “C” Problems
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Cl1.

C2.

C3.

C4.

Cs.

C6.

Cr.

Cs.

Co.

C10.
C11.

C12.

C1s.

Draw pictures showing that IRIP® is homeomorphic to the lens space
L(2,1).

Let F be a connected manifold and let f be a homeomorphism from
F to F. Define M(f) to be F x I/(z,0) ~ (f(z),1). Suppose that
F x S' is an n-fold covering space. Prove that f™ must be isotopic to
the identity of F'if M (f) is 2-dimensional. Prove or give a counterex-
ample when M (f) has dimension 3. Prove or give a counterexample
when M (f) has dimension at least 4.

Let M and N be nonsimply connected closed n-manifolds each of
whose universal covers is either S™ or IR". Prove that the universal
cover of M#N is homeomorphic to S™ — C, where C is either a set
consisting of two points or C' is a Cantor set.

Let M be a closed 3-manifold. Prove that the universal cover of M is
homotopy equivalent to either $%, R®, S x R, or S® — C, where C
is a Cantor set. Deduce Specker’s Theorem: m3(M) is free abelian.
Let M be a closed 3-manifold with fundamental group Z/2. Prove
that M is homotopy equivalent to IRIP®.

Let G be a finite group, and let n > 2. Prove that there exists a
closed n-manifold on which G acts effectively.

Let p: dD* — S be a 3-fold covering map, and let X be the quotient
space formed from D?U S? by identifying z with p(z) for all z € OD?.
Describe 7m2(X) as a Z-module and as a (X )-module.

Let G be a finite group. Find an infinite-sheeted covering space £ —
B whose group of covering transformations is G.

Forn > 1let K, =S x[n—1,n]. Let p:S! — S be a 2-fold
covering map, and form X from U2, K, by identifying (z,n) in K,
with (p(z),n) in Kp41 for all n > 1. Describe the universal cover of
X and the action of m;(X) as covering transformations.

Construct a 3-manifold with fundamental group the rational numbers.
Let M be a compact orientable irreducible 3-manifold with (M) =
Axc, or with m (M) & A*c B with C # A and C # B. Prove that
M contains a 2-sided incompressible surface F' # S2.

Prove or give a counterexample: if f: X — Y is a map between con-
nected CW-complexes, and f induces isomorphisms on fundamental
groups and on all integral homology groups, then f is a homotopy
equivalence.

Let M be a compact 3-manifold orientable over the field F'. Let
i:0M — M be the inclusion, and let i,: H1(OM; F) — Hy(M;F)
be the induced map on homology. Prove that the kernel of i, and

75



C14.

C15.

C16.

C17.

C18.

C19.

C20.

the image of ¢, have the same dimension. Deduce that there is no
compact 3-manifold M with OM =IRIP.

Use the Lefschetz fixed point formula to prove that there is no com-
pact 3-manifold M with OM =IRIP2.

Determine the homeomorphism classes of compact 3-manifolds ob-
tained from D?® by identifying finitely many pairs of disjoint discs in
its boundary. Determine the homeomorphism classes obtained from
D?3 by identifying finitely many pairs of disjoint surfaces in its bound-
ary. : .

Consider compact orientable irreducible 3-manifolds M which have
a boundary component F # S2?. Take as known the fact that if
71(F) — 7 (M) is an isomorphism, then M =F x I. Determine the
homeomorphism classes of compact orientable irreducible 3-manifolds
M having a boundary component F' # S? such that 7,(F) — 7y (M)
is surjective.

Let M be a closed irreducible 3-manifold such that m; (M) contains
an infinite abelian group of finite index. Prove that M has a covering
space which is homeomorphic to S* x S x SI.

Let M be a compact 3-manifold and suppose that 71(M) contains an
element of order 2. Prove that either M = M;#M,, where m1(M;) is
finite, or M contains a 2-sided projective plane.

Let N be a compact orientable 3-manifold. Prove that if some nonzero
element of Hy(N;7Z/2) is fixed by the action of infinitely many ele-
ments of 71(N), then N is homotopy equivalent to either $? x S? or
RIP3#RIP?.

For what compact 3-manifolds N is m3(N) finitely generated as an
abelian group?
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