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PREFACE

. These notes originate in a series of lectures given at the Tokyo Metropolitan University
and Seoul National University in the Fall of 1993. These lectures have been extended into
a graduate course at the University of Michigan in the Winter of 1994. Almost all of
the material in these notes had been actually covered in my course. The main purpose
of the notes is to provide a digest to Mumford’s book. Their sole novelty is the greater
emphasis on dependence of the quotients on linearization of actions and also including toric
varieties as examples of torus quotients of open subsets of affine space. We also briefly
discuss Nagata’s counter-example to Hilbert’s Fourteenth Problem. Lack of time (and of
interested audience) did not allow me to include such topic as the relationship between
geometric invariant theory quotients and symplectic reductions. Only one application
to moduli problem is included. This is Mumford’s construction of the moduli space of
algebraic curves. The more knowledgeable reader will immediately recognize that the
contents of these notes represent a small portion of material related to geometric invariant
theory. Some compensation for this incompleteness can be found in a bibliography which
directs the reader to additional results.

Only the last lecture assumes some advanced knowledge of algebraic geometry; the
necessary background for all other lectures is the first two chapters of Shafarevich’s book.
Because of arithmetical interests of some of my students, I did not want to assume that
the ground field is algebraically closed, this led me to use more of the functorial approach
to foundations of algebraic geometry.

I am grateful to everyone who attended my lectures in Tokyo, Seoul and Ann Arbor
for their patience and critical remarks. I am especially thankful to Sarah-Marie Belcastro
and Pierre Giguere for useful suggestions and corrections to preliminary version of these
notes. I must also express great gratitude to Professor Uribe for organizing my visit to
Tokyo Metropolitan University, and to my former students Jong Keum and Yonggu Kim
for inviting me to Seoul National University and for their help in publishing these lecture
notes.

Ann Arbor, June 1994 Igor Dolgachev



INTRODUCTION

Geometric invariant theory arises from an attempt to construct the moduli spaces of
various algebraic objects. These spaces are algebraic varieties whose points correspond
naturally to isomorphism classes of the objects we want to classify. In many situations
the construction can be achieved by first finding an algebraic variety X parametrizing
representatives of each isomorphism class in such a way that two points correspond to
the same class if and only if they belong to the same orbit of a certain algebraic group
G acting algebraically on X. In this way the moduli space arises as the orbit space
X/G. The problem with this approach is that the latter space may not be defined as
an algebraic variety. The reasons for this are quite obvious. Since we expect that the
canonical projection X — X/G is a regular map of algebraic varieties, its fibres, which
are the orbits, must be closed subsets of X. However, there is no reason to expect that
all orbits are closed. Even they were all closed, the theorem on dimension of fibres of
regular maps would tell us that the dimension of an orbit can only increase compared to
the dimension of a general one, however the same theorem easily shows that the dimension
of the stabilizer group of an orbit can also only jump. Since the dimension of the orbit
is equal to the difference between the dimensions of the group and the stabilizer we get
a contradiction. A possible solution to this difficulty is leave out some of the objects,
i.e., consider a subset U of X, preferably open in the Zariski topology. This subset must
be preserved under the action of G, and the orbits in U are good enough to be able to
define the quotient. Hopefully, the objects which we have to delete are sufficiently bad
to be ignored without much harm (like algebraic varieties with some bad singularities).
The orbit space U/G then possesses all natural geometric properties which are included
in the definition of a geometric quotient. However, one problem is still left. The quotient
space may be a non-complete algebraic variety, leaving us with unsatisfactory feeling that
certain objects should be after all not left out from consideration since they represent some
natural limits of objects from U. This leads to a compactification of the space X/G which
is constructed as a “categorical quotient” of a larger set U'. This consists of a variety
U'//G together with a regular map U' — U'//G which is universal with respect to maps
of U'" which are constant on orbits.

Geometric invariant theory gives us a recipe for choosing the open sets U and U’ in
order that both the geometric quotient U/G and the categorical quotient U//G exist. This
recipe was proposed by D. Mumford in his epochal book [Mul]. It is based on the follow-
ing idea due to D. Hilbert. Suppose X = A™ is affine space and G = GL(n) is the general
linear group acting on X by linear change of variables. The set of polynomials which are
unchanged under all transformations from G form a finitely generated subalgebra A of the
ring of polynomial functions on X. Choose an affine algebraic variety Y whose ring of reg-
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ular functions is isomorphic to A. Then we have a natural regular map X — Y which turns
out to be the categorical quotient map. In many problems we are interested not in points
of X but in points of the associated projective space P"~! (for example, X is the space of
homogeneous forms of some degree d, and P"! is the space of hypersurfaces of degree d).
Let Z be the closed subspace of P™~! which is the set of common zeroes of all homogeneous
non-constant polynomials from A (in the above example, the corresponding homogeneous
forms of degree d are “nullforms” of Hilbert). Then the open subset U = P*~! C Z admits
the categorical quotient which is isomorphic to the projective variety with the algebra of
projective coordinates isomorphic to A. In the example above, this quotient was taken
by Hilbert and his contemporaries as the right moduli space for projective hypersurfaces
of degree d. The “bad hypersurfaces” that had to be left out from the consideration are
defined by nullforms. The explicit construction of this moduli space is related to finding
generators and relations for the algebra of invariants A. This is the subject of Algebraic
Invariant Theory (nowadays called Classical Invariant Theory) which was a popular area of
mathematics of 19-th century and has been resurrected recently because of its interesting
connections to combinatorics and computer computations (see [Stu]).

Generalizing Hilbert’s idea, Mumford starts from any algebraic variety X and a re-
ductive (e.g. GL(n)) algebraic group G acting algebraically on it. Then he chooses a
G-equivariant embedding of X into a projective space PV and then proceeds as above to
define the categorical quotient for some open subset U of PV. Then he shows that U N X
admits a categorical quotient isomorphic to the image of U N X in U//G. There is a more
general construction which replaces an embedding into a projective space by a choice of
some G-linearized line bundle on X. To obtain a geometric quotient, one should decrease
the set U by leaving only points whose orbits are closed in U N X and of minimal possible
dimension. The points from U N X are called semi-stable, and points satisfying the addi-
tional property are called stable. In applications, when the variety X is a parametrizing
space of some algebraic or geometric objects, the notion of stability often admits a nice al-
gebraic or geometric interpretation (like stable vector bundles or stable degenerate curves).
There is a more general aspect of Geometric Invariant Theory which we are not discussing
in these lectures. It concerns with the study of algebraic properties of the quotients as well
as the properties of the orbits and their closures. We refer the interested reader to [PV]
for a nice survey of this theory.

Now let us briefly comment on the contents of the notes.

Lectures 1 and 2 introduce the basic notions of algebraic groups and algebraic actions.
Although these lectures are self-contained, we want to think that these notions are some-
what familiar to the reader. We use the functorial approach based on the Yoneda Lemma
to avoid difficulties in verifying that our constructions are defined over the ground field.

In Lecture 3 we introduce the notion of a G-linearized line bundle and prove that any
algebraic action can be linearized. We do not assume that the reader is familiar with the
notion of an algebraic vector bundle, and for this reason define everything from scratch.
The emphasis on the choice of a G-linearized line bundle for the construction of a quotient
is a modern trend in application of .the theory to various moduli problems. It turns out
that two quotients corresponding to two different choices of linearizations differ from each
other by some explicit birational transformation. This allows one to study one by means
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of another, presumably of simpler geometric or topological structure.

In Lecture 4 we discuss various notions of quotients of an algebraic variety by a
group action. Here we introduce the notion of a reductive algebraic group and explain its
significance for constructing the quotients.

Lecture 5 is devoted to Hilbert’s Fourteenth Problem which asks whether the sub-
algebra of invariant polynomials under a linear action of an algebraic group is finitely
generated. This problem is related to some deep problem in birational geometry of alge-
braic varieties which we also discuss it here. We prove the Groshans principle here and
deduce from this the Weitzenbéck theorem on the finite generatedness of the algebra of
invariants of the additive group. A counter-example of Nagata to the Hilbert problem is
given in this lecture with some proofs left out.

In Lecture 6 we introduce the notion of stability of action and give Mumford’s con-
struction of geometric and categorical quotients.

In Lecture 7 we present the main technical tool for verifying the property of stability.
It is Hilbert-Mumford’s numerical criterion. It consists of replacing the group by any of
its one-parameter subgroup and checking the stability for the restricted action. The final
form of this criterion can be expressed in terms of some combinatorial data based on the
notion of the state polytope of a point.

In Lecture 8 we give the first concrete example of the analysis of stability. This is
the case of the action of general linear group in the space of homogeneous polynomials. In
some special cases (for example, binary forms or cubic ternary forms) the full description
of stable points can be given.

In Lecture 9 another series of examples is discussed. Here we consider ordered se-
quences of linear subspaces of a fixed projective space and the natural action of the projec-
tive linear group on them. Although much is known about the quotients for sequences of
points, our knowledge of the moduli space of sequences of subspaces of higher dimension
is very limited. We give a tedious analysis of semi-stable orbits in the first non-trivial ex-
ample: four lines in P3. The corresponding categorical quotient in this case is isomorphic
to the projective plane.

In Lecture 10 we introduce toric varieties as examples of categorical quotients of a
subset of affine space by the action of an algebraic torus. This approach to the theory
of toric varieties is relatively new and allows one to interpret many properties of toric
varieties in terms of geometric invariant theory.

Finally we conclude with Lecture 11 on application of geometric invariant theory
to construction of the moduli space of nonsingular projective algebraic curves. As is
mentioned in the preface, the material of this lecture involves more algebra-geometrical
techniques, and can be omitted by a novice. Again we use the opportunity in this lecture
to demonstrate some of the applications of toric geometry; this time to the description
of the normalization of the blow-up of monomial ideals in the polynomial rings. Lack of
time did not allow me to include other applications of geometric invariant theory. We refer
to [New] for other elementary introduction into the subject including application to the
construction of the moduli space of vector bundles.
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Algebraic Groups 1

Lecture 1. ALGEBRAIC GROUPS

1.0 First let us fix some notation. We shall consider algebraic varieties X over a field k (or
algebraic k-varieties). By these we shall mean quasi-projective algebraic k-sets, or, more
generally, reduced separated quasi-projective schemes of finite type over k. The field & is
not necessarily algebraically closed. For all topological properties of X (e.g., irreducibility)
we refer to the variety Xj obtained by viewing X as a variety over the algebraic closure
k. For any field extension K/k (or any k-algebra K) we shall denote by X(K) the set of
K-points of X. Thus if X is affine and O(X) is its algebra of regular functions (coordinate
algebra), we have a natural bijective map a: X(K) — Homy(O(X),K). If we choose a
presentation of O(X) as the quotient algebra k[Z;,...,Z,]/I (or in other words, if we
choose an embedding of X into affine space A™), then

X(K)={(a1,...,an) € K" | F(as,...,an) = 0for any F' € I}.

The homomorphism O(X) — K defined by a point z € X(K) is the evaluation at z:
¢ = P mod I — ¢(z) := P(ai,...,an), where P € k[Z1,...,Z,]. By definition the
image of a function ¢ € O(X) under the homomorphism O(X) — K defined by a point
g € X(K) will be denoted by ¢(z). If ¢: K — K' is a homomorphism of k-algebras we
have a natural map X(K) — X(K'). It is injective if ¢ is injective. If K — K' is the
inclusion homomorphism, we shall identify the set X (K') with a subset of X (K').

We shall often make no difference between K-points of X and the corresponding
homomorphisms O(X) — K. If X is not necessarily affine, then z € X(K) is identified
with a homomorphism O(U) — K, where U is any affine open neighborhood of z. For any
morphism f : X — Y we shall denote by f(K) : X(K) — Y(K) the corresponding map
of the sets of K-points. If X,Y are affine, and the map f is given by a homomorphism
f*: O(Y) —» O(X), then for any z € X(K), f(K)(z) € Y(K) is given by composing z
with f*.

We denote by pty an affine k-variety with O(ptx) = k. It is defined uniquely up to
isomorphism, and pty(K) consists of a single element for any K/k. For any € X (k) there
is a unique regular map

pty — X

such that the image of the unique element of pti(k) is equal to z. If X is affine, this
map is defined by the natural homomorphism z: O(X) — k. We also have the unique
(constant) map X — pt; which is defined by the natural inclusion k¥ — O(X). The
canonical isomorphism of the tensor products of k-algebras O(X) ®x k =2 O(X) defines a
canonical isomorphism pty x X = X.



2 Lecture 1

1.1 Definition. An algebraic group over a field k (or an algebraic k-group) is an algebraic
variety G over k together with a regular map (group law) p: G x G — G satisfying the
usual axioms of a group law:
(i) (associativity) the diagram
GxGxG Y @xa
lid x p lu
GxG@ 5 @

is commutative;
(i1) (the existence of the unit) there exists a point e € G(k) such that the following
diagrams are commutative

ptxG "5 Gx@ Gx {pt} ‘¥ Gx@
pra’\ N4 priN N
G G

(iii) (the existence of the inverse) there exists a morphism # : G — G such that the
following diagrams are commutative:

¢ “P exe ¢ 9 gxa
! v | o
{pt} o G {pt} P G

1.2 If (G, p) is an algebraic group, then for any K/k the map
wK):G(K) x G(K) — G(K)

is a group law on the set G(K) with the unit element e € G(k) C G(K) and the inverse
operation z — z7! := B(K)(z). If K — K' is a homomorphism of extensions, then the
map G(K) — G(K') is a homomorphism of groups. This follows from observing that

(G x G)(K) = G(K) x G(K)

and applying this to the diagrams from (1.1). In fact, the same is true for the sets G(S )
Morvyar/k(S, G) of morphisms from any k-variety S to an algebraic k-group G.
1.3 An algebraic group (G, i) is called affine if the variety G is affine. Since morphisms
of affine varieties are defined by the homomorphisms of their coordinates algebras, an
equivalent definition of an affine algebraic group is obtained by the reversing the arrows in
the diagrams from 1.1: An affine algebraic group is an affine algebraic variety G together
with a homomorphism of k-algebras *u : O(G) — O(G)®O(G) (called coaction) satisfying
the following properties:

(i) (associativity) the diagram

0(6) 8 0(6)80@) ¢ 0G)®0(C)
Tde*n T
O(G) ® O(G) * O(G)
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is commutative;

(ii) (the existence of the unit) there exists a homomorphism of k-algebras e: O(G) — k
such that the following diagrams are commutative:

006 2 ko) O(G)ROG) “% oG ek
N Jleid EMN Jidel
o(G) 0(G)

(iii) (the existence of the inverse) there exists a homomorphism of k-algebras *6 : O(G) —
O(G) such that the following diagrams are commutative:

0G)20G) & 060G 0@ oG £ 0G)eo@)
eut mult | ) ‘ul miult |
O(G) S ko O(G) o) Sk O(G).

All tensor products here are over the field k.

1.4 To get the group law on the sets G(K) from the coaction homomorphism ®u we
follow 1.0: a point ¢ € G(K) is a homomorphism O(G) — K. Two points g,¢' € G(K)
define the map g ® ¢': O(G) ® O(G) — K @i K. Composing it with the multiplication
mult : K @ K — K we get the map O(G) ® O(G) — K. Finally composing it with the
coaction map we get the map: O(G) — K which is our product u(K)(g,¢') := gg'. To
sum up, gg' is the composition

0(G)40(6)© 0(G) 2% K 9 K ™ K.

1.5 Remark. One can generalize the notion of an affine commutative group by considering
any k-algebra A (not even necessarily commutative) equipped with a homomorphism A —
A ® A satisfying properties (i)-(iii), where O(G) is replaced by A. This is called a Hopf
algebra.

1.6 Remark (for category lovers). Let C be any category, C be the category of presheaves
on C (i.e. contravariant functors from C to the category of sets Sets). Let h : C — C be
the Yoneda functor which assigns to an object X € C the presheaf hx S — Mor¢(S, X).
An object G of C is called a group object if the presheaf hg is a presheaf of groups, i.e.,
he : C — Sets factors through the subcategory Groups of groups. In other words, G
is a group object if each hg(S) has a structure of a group such that for any morphism
S — S' in C the natural map hg(S") — hg(S) is a group homomorphism. If C has a final
object {pt} and fibred products X X Y, then this definition can be stated in terms
of commutative diagrams similar to definition 1.1. Here the unit is given by a morphism
e:ptr — G.

An algebraic group is a group object in the category of algebraic varieties over a field
k. The final object in this category is the variety pt; defined in 1.0.

A group S-scheme is a group object in the category of S-schemes.

1.7 Examples. 1. pt; has a unique algebraic group structure. It is called the trivial group
and is denoted by {1}.
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2. Let G be the affine space A} with O(G) = k[Z:,...,Z,]. The group law is given by
the the coaction homomorphism:

k[Zl,...,Zn] — k‘[Zl,...,Zn]®k[Z1,...,Zn],

Zi—- Z;Ql+1®Z;, 1=1,...,n.

The inversion map

“B:k[Zy, ..., Zn] = k[Z1,. .., 2Zn]

is given by
Zi——Z;, 1=1,...,n.

The unit element is e = (0,...,0) € G(k) = k™. The group law on the sets G(K) = K™ is
the usual vector addition. This immediately follows from 1.4 (check it!).

This algebraic group is denoted by G ; and is called the vector group of dimension n
over the field k. If n = 1, this is called the ‘additive group over k. It is denoted by Gg .
3. Let G be the open subvariety of affine space A} whose complement is the closed
subvariety given by the equation Z; -...- Z, = 0. It is isomorphic to the closed subvariety
of A2" given by the equations Z; Zn4;i —1=0,i=1,...,n. Its coordinate algebra is equal
to the algebra of Laurent polynomials k[Z, Z71] := k[Z,, 2] ",..., Zp, Z7}]. We define the
group law via the coaction homomorphism:

k2,27 - k(2,27 © k(2,27

Z2i—2;92Z;,1=1,...,n.

The inversion map

“B:k[Z,Z27Y = k[Z,Z27Y]

is given by
Zim=Z7 i=1,...,n.

The unit element is e = (1,...,1) € G(k) = (k*)". The group law on the sets G(K) =
(K*)™ is coordinatewise multiplication. This algebraic group is denoted by G? , and is
called the algebraic torus of dimension n over the field ¥ . If n = 1, this is called the
maultiplicative group over k and is denoted by G, . ;
We use the name “torus” for two reasons. Assume k = C, the field of complex
numbers. Then G(C) = (C*)". Each copy of C* is the image of C with respect to the
exponential map z — exp(2miz). The kernel of this map is the group of integers. Thus
C* = C/Z. If we replace C by R we obtain a circle. Thus C* is a sort of “complex
circle”, and (C*)™ is a “complex torus”. On the other hand, as an algebraic variety Gm k
is isomorphic to the affine variety defined by the equation X2 + Y? — 1 = 0 (this is true
over any field k of characteristic different from 2 and containing the square root of —1).
Thus G:‘n’ ¢ = (Gm,k)" is isomorphic to the product of n “complex circles”, i.e. it is again
can be viewed as a “complex torus”.
4. Let G be the open subvariety of the affine space A;;2 whose complement is the closed sub-
-variety given by the equation det((Z;;)i1<i j<n) = 0. Here we put the variables Z;,...,Z,2
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into a square matrix and reindex them. It is isomorphic to a closed subvariety of A’,:z"'1
given by the equation: det((Z;;))Z,241 —1 = 0. Its coordinate algebra is isomorphic to
k[Z11,- .., Znn)[det((Zij))"t]. We define the group law via the coaction homomorphism
given by the formula:

Zij EZit@thi ,7=1,...,n.
t=1
It is easy to see that the set of K-points of G is identified with the set GL(n, K) of invertible
n X n-matrices with entries in K. The group law on the sets G(K) = GL(n, K) is the
ordinary matrix multiplication. This algebraic group is denoted by GLk(n) and is called
the general linear group over the field k. Obviously GL(1) = G k-

1.8 Algebraic groups over a field k£ form a category with morphisms taken to be homo-
morphisms of algebraic groups

Definition. A homomorphism f: G — G' of algebraic groups is a morphism of algebraic
varieties such that the diagram

GxG 5L @G
Lfxf LS
G'xG L ¢

is commutative.

We shall denote the category of algebraic groups over k by Gry.

Every algebraic k-group G defines a functor hg from the category of k-algebras to
the category of groups by sending each K to G(K). It is easy to check, by using the
Yoneda Lemma (see the beginning of the last Lecture), that any natural transformation
(or morphism of functors) from hg to hg arises from the unique homomorphism G — G'.
In particular, the map G — G' is an embedding if and only if h¢ — hg is injective
morphism of functors.

The role of subobjects in Gry is played by subgroups:

Definition. A subgroup H of an algebraic group G is an algebraic subvariety of G which is
an algebraic group such that the canonical inclusion morphism H — G is a homomorphism
of algebraic groups. A subgroup is called closed (resp. open) if it is a closed (resp. open)
subvariety.

1.9 Let f: X — Y be a morphism of algebraic varieties over a field k. The

scheme-theoretical image of f is the closed subvariety Z of X such that f factors
through Z, and where Z is minimal with respect to this property. If X is viewed as an
algebraic k-set, then Z is just the closure of f(X (k)). If X is viewed as an algebraic scheme
over k and is reduced then Z is the closure of f(X). The image of f is just a subset of ¥’
with the induced topology; it may not be a subvariety of Y.

Theorem. Let f:G — G' be a homomorphism of algebraic groups. Then
(i) the set-theoretical (or reduced if one uses the language of schemes) fibre of f over
e € G'(k) is a closed subgroup of G (called the kernel of f and denoted by Ker(f)).
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(ii) the image of f exists (denoted by Im(f)), it coincides with the scheme-theoretical
image and is a subgroup of G.

Proof. The first assertion is obvious. Fibres are always closed, and the restriction of
the group law to the fibre is obviously a group law. This easily follows from considering
the diagrams from (1.1). The second assertion is less trivial. First we consider a subset
H = f(G(k)). 1t is a subgroup of G'(k). Let H be the Zariski closure of H. It is a
subgroup of G(k). Indeed, for any z € H, the set zH is the image of the set H under
the bijective algebraic map given by the 1eft translation. So its closure zH is equal to
the image of the closure zH which is H. This gives HH = H. If y € H, then Hy C H
implies Hy = Hy C H. Thus HH C H. Also, H™! := B(H) equals to H‘1 = H because
B : G(k) — G(k) is a homeomorphism. Now we use that H contains a dense open subset
U of H. This follows from the Chevalley theorem which asserts that the image of an
algebraic set is a constructible subset (a finite union of locally closed subsets). For any
z € H, zU™'NU #  since the intersection of two dense open subsets is always non-empty.
This allows us to write z as the product of two elements from H and hence to get H = HH.
Since H is a subgroup, we get H = H.

1.10 A closed subgroup of GLk(n) is called a linear k-group. A homomorphism f:G —
G L (n) is called an n-dimensional linear (rational) representation of G. It is called faithful
if it is an embedding of algebraic varieties. By (1.9) the image of a faithful linear represen-
tation is a linear group. Obviously, a linear group is affine. We shall prove that any affine
algebraic k-group is a linear k-group. The idea is the same as for abstract groups. One
should consider the representation of G on its space of functions induced by left transla-
tions. Suppose G is affine. Then for any g € G(K) the coaction *u: O(G) — O(G) ® O(G)
defines a map

O(G)® K - O(G)® K.
This is obtained by K-linear extension of the map (g ® ¢d) o *u. If we view the homo-
morphism g : O(G) — K as evaluation of a function at the point ¢ € G(K) then for any
z € G(K)
tg(¢)(z) = ¢(g2).
Lemma. For any ¢ € O(G) ® K the submodule of O(G) ® K spanned by the functions
I¢ :=t4(¢),9 € G(K), is finitely generated.

Proof. Let us denote O(G) @ K by O(G)k. Tensoring the map *u with K we have a

homomorphism

“ur 1 O(G)k = O(G)k ® O(G)k-
For any ¢ € (’)(G)A, we can write

“ur($) =) 4:®¢i,
where ¢;,0; € O(G)k. It follows from the definition that

¢ = Z ¢i(9)pi-
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This implies that all the translates 9¢ belong to the subspace of O(G)k spanned by finitely
many elements ;. This proves the assertion.

Theorem. Every affine algebraic k-group is isomorphic to a linear k-group.

Proof. Choose some generators ¢y, ..., ¢y of the k-algebra O(G). Let Vi be the linear
subspace of O(G) spanned (over K') by these generators and their translates 9¢;,9 € G(K).
By the previous lemma this is a finite-dimensional G-invariant subspace of O(G)k. For
any g € G(K) we have a map

1

pr(9): Vi = Vi, ¢ =9 ¢.

It is easy to check that the map g — px(g) is a homomorphism from G(K) to the group
GL(Vk) of linear automorphisms of the linear K-space V. It follows from the proof of
the previous lemma that Vi = V ®; K is obtained from V := V} by extension of scalars.
By choosing a basis of n elements in V, for any K/k, we obtain a homomorphism

pk:G(K) — GL(n,K).

The set of homomorphisms {px} is compatible in the following way. If K — K' is a
homomorphism of k-algebras, we have the commutative diagrams:

G(K) % GL(n,K)
! !

/

G(K') £ GL(n, K.

In fact we may assume here that K is an arbitrary k-algebra. This shows that we have a
homomorphism of algebraic k-groups

p: G — GLg(n).

For any K the homomorphism pg is injective. Indeed, if ¢ € Ker(pk), then the left
translation map

ty: G(K) = G(K),z — gz,

induces the identity map on O(G)g. This implies that ¢, is the identity map of G(K),
hence g = e. Thus the map p is an embedding. We finish the assertion by applying the
Theorem from (1.9).
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Problems.

1. For any abstract finite group G construct an algebraic k-group such that for any field
extension K/k its set of K-points is equal to G.
2*. Show that the scheme-theoretical fibre over e of a homomorphism f: G — G' is a group
scheme over k. Give an example when it is not an algebraic group (i.e. the fibre is not
reduced).
3. Prove that any algebraic group is a nonsingular algebraic variety.
4. Define the product of algebraic groups and verify that Gm'y = (Gm )", Gay =
(Ga k)"
5. Prove that Autg,,(Ga ) = k*.
6. Let SLi(n) be the closed subvariety of GL(n) defined by the equation det((Z,]) =1
Show that SLi(n) is an algebraic group over k (the special linear algebraic group over the
field k), and for any k-algebra K, SLi(n)(K) = SL(n,K) := {A € GL(n,K) : det(A) =
1}.
7. Show that there are no non-trivial homomorphisms from G x to Gg ; and in the other
direction too.
8. Let k'/k be a finite extension of a field k, and let G' be an affine algebraic group
over the field k'. Show that there exists an affine algebraic group G over the field k£ such
that for any k-algebra K, G(K) = G'(k' ® K). Find the coordinate algebra O(G) when

=C,k=R,G'=Gnp .

(See also exercises on p.57 and p.63 of [Hum)]).
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Lecture 2. ALGEBRAIC GROUP ACTIONS

2.1 Let G be an algebraic k-group and X be an algebraic k-variety.

Definition. An algebraic action of G on X is a morphism of algebraic k-varieties
c:GxX—-X

satisfying the following properties:
(i) the diagram _
GxGxX % gxx
lidxo lo

GxX X
is commutative;
(i1) the composition

Xephx X248 exXx -5 X

is the identity morphism.

A pair (X, o), where 0 : G x X — X is an algebraic action is called a G-variety.

It is clear that for any k-algebra K the action morphism o : G x X — X defines the
action of the group G(K) on the set X (K'). We shall denote it by (g,z) — ¢-z. The group
G(k) acts on all sets X (K) in a compatible way, hence the action defines a homomorphism
of (abstract) groups

G(k) g Autvar/k(X).

If G and X are both affine, one can define the action morphism ¢ : G X X — X in
terms of the coaction homomorphism

a*:0(X) — O(G) ® O(X).
Its composition with the homomorphism e ® id: O(G) @ O(X) — k ® O(X) = O(X) must
be the identity.
2.2 For any g € G(K) the image of a function ¢ under the composition

(9®id)oc™: O(X) - K ® O(X)
is denoted by g*(¢). In this way G(K) acts on the K-algebra K ® O(X) by automorphisms
of k-algebras. It is clear that for any g € G(K),z € X(K),
g*(¢)(z) = ¢(g - ).

We have an analog of the Lemma from Lecture 1, 1.10. Its proof is similar and is left to
the reader.
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Lemma. For any ¢ € O(X) the submodule of O(X) ® K spanned by the functions
9*(¢),9 € G(K), is spanned by a finite subset from O(X) (independent of K).

A function ¢ € O(X) is called G-invariant if
o*(¢) =11 ¢.

This of course implies that ¢(g - z) = ¢(z) for any g € G(K),z € X(K). If one views a
regular function as a morphism f : X — A}, then the G-invariance of ¢ can be expressed
by saying that the following diagram is commutative:

GxX 5 X
lpr 1é
X 2 AL

We shall denote the subset of G-invariant functions by O(X)€. It is obviously a subalgebra
of O(X).
2.3 Examples. 1. ¢ : G x X — X is the second projection map. This action is called
trivial. If G, X are affine varieties, then the corresponding coaction map is ¢ — 1 ® ¢.
2. The group law p : G X G — G is an action of G on itself. This is called the left
~ translation action.
3. If p:G — GLg(n) is a linear representation, it defines an action of G on the affine
space A} as follows. For any k-algebra K the map pg : G(K) — GL(n, K) defines the
map ok : G(K) x A}(K) — AZ(K). The set of such maps gives rise to a morphism
of functors hg X h Ar = hx Ar & h AT By the Yoneda lemma this defines a morphism
o:Gx A} — AL

Now we can generate a lot of concrete examples of linear representations. Here is one
which we shall often use.
4. Let G = Gk, and let ¢y,. .., ¢, be some integers. Define the action of G, x(K) = K*
on K™ = A}(K) by the formula:

te(21,...520) = (8 21,..., 10" 2p).

This defines a linear action of G on A}. More generally, we may take G = (Gm )", q;-€
Z",1 =1,...,n and define the action of G on A} by the formula:

t-(z1,...,2n) = (tV2g,...,t92,),
where for any t = (¢1,...,¢,) and q = (¢1,...,¢r) € Z" we set
td =gl

This is called a diagonal action of the torus (G, k)" on the affine space A}.
5. Let G = G act on an affine k-variety X. The coaction is given by a homomorphism:

c*:0(X) - k[Z,Z7'] ® O(X).
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For any ¢ € O(X) we can write:
o*($) = Z'® ¢
i€Z

where ¢; € O(X).
Let pi : O(X) — O(X) be the k-linear map ¢ = ¢;, O(X); := pi(O(X)). We claim
that

In other words, the action of G,k on X defines a Z-grading on the k-algebra O(X). To
check this we use the two axioms of the action. The second axiom tells us that

6 Y Z'Q¢i— Y 1@¢i Y ¢i=¢
This says that O(X) = ), O(X). The associativity axiom gives

Y zeYzene) =370z e
i j i

After comparing the coeficients at each Z*, we find that 0*(¢;) = Z° ® ¢;. This shows

that the linear maps p;’s are projection operators (i.e., p? = p;). This immediately implies

that the sum is direct. Since ¢* is a homomorphism, we get O(X); - O(X); C O(X);4;.
Conversely, given a Z-grading of O(X), we define the coaction map o* by the formula

U*(¢) = Zzz ®¢iv

where ¢ = )", ¢i, ¢i € O(X);. It is easy to see that in this way we get a bijection
{Gm,k-actions on X} «— {Z-grading of O(X)}.
Note that elements of O(X); are characterized by the condition
o*(¢)=Z2'® ¢.

This can be interpreted as follows. Any g € G(K) defines a homomorphism O(G) =
k[Z,Z7'] — K which is determined by the image of Z. Let us denote this image by ¢.
Then ¢ € O(X); if and only if for any K/k and g € G(K)

g*(¢) =t'¢.

Note that the problem of description of all possible gradings on O(X) is very difficult
even in the simplest case when X = A} with O(X) = k[Z] = k[Z1,...,Z,]. We have
described already some actions on this algebra in example 4. In the corresponding grading

k[Z)i = {P(Z): P(t" Z1,...,t" Z,) = t'P(Z4,..., Z,), VK/k,Vt € K*}.
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Polynomials from k[Z]; are called quasi-homogeneous polynomials of degree ¢ and weights
qi,---,qn. When ¢; = ... = ¢, = 1, we obtain the standard grading of the ring of
polynomials, and the standard notion of a homogeneous polynomial. The problem whether
it is true that any grading is obtained from this after applying some automorphism of k[Z]
is still open for n > 3.

6. Let PGL(n) be the algebraic group defined by
PGLi(n)(K) = PGL(n,K) := GL(n,K)/K*.

As an algebraic variety, PGLg(n) is isomorphic to the open subset of the projective space
PZLI whose complement is the determinantal hypersurface

det((Tij)1<i,j<n) = 0-

It is well-known that the complement of a hypersurface in a projective space is an affine
algebraic variety (for the proof use the Veronese mapping).

There is a canonical homomorphism GLk(n) — PGLk(n) whose kernel is equal to
G k- Given a linear representation G — GLk(n), by composing, it defines a homomor-
phism G — PGLj(n). Any such homomorphism is called a projective representation of G.
It defines an action of G on a projective space Pz—l. Recall that for any k-algebra K

P71 (K)=P" !(K) := {direct summands of rank 1 in K™}.

The action of PGL(n, K) on this set is given via the natural action of GL(n,K) on K".
Now if X is any quasi-projective subvariety of P',:_l, G may act on X via its action on
P! provided that X is G-invariant. This means that the subsets X(K) C P"7'(K)
are G(K )-invariant subsets. Such an action is called a projective action. If the projective
representation of G arises from a linear representation (it is not always so), then we say
that the action is linear. Later on we shall learn how to “linearize” any action.

2.4 A morphism between two actions (or between two G-varieties) o : G x X — X and
0':G x X' - X' is a pair (a, f), where « : G — G' is a homomorphism of algebraic
k-groups, f: X — X' is a morphism of algebraic k-varieties such that the diagram

GxX L X
axfl , Lf
GxXx = X

is commutative.

In the case where G = G' and « is the identity, we say that f : X — X' is a G-
equivariant morphism. Furthermore, if the action of G on the target space X' is trivial,
we say that f is a G-invariant morphism. If X is a subvariety of X', and the natural
embedding f : X — X' is G-equivariant, we say that G acts on X via its induced action,
or the action of G on X is obtained by the restriction from the action on X'. Of course
this happens if and only if each X(K) is a G(K)-invariant subset of X'(K). This can be
expressed by saying that X is a G-invariant subvariety of X'.
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2.5 Let 0 : G x X — X be an action. It defines a morphism
U= (o,prz):Gx X - X xX,(g,2) — (9 -z,2).

Let A C X x X be the diagonal, and let S be its pre-image under ¥. The second projection
pre: G x X — X induces a morphism p: § — X. For each point 2z € X(K), we have

px (z) = {(9,2) € G(K) x X(K): gz = z}.

Under the first projection (g, z) + ¢ this is mapped bijectively to the stabilizer subgroup
G(K), of G(K). If z € X (k) then we can define the fibre p™!(z) as a closed subvariety
of G x X which is isomorphic to a closed subvariety of G. Its reduced structure (or the
corresponding algebraic subset of G(k)) is a closed subgroup of G. It is called the stabilizer
subgroup of the point z and is denoted by G,. (The scheme-theoretical isotropy subgroup
is the scheme-theoretical fibre. It is a group subscheme of G).

Definition. An action o : G x X — X is called free (resp.set-theoretically free) if ¥ is a
closed embedding. (resp. all stabilizer subgroups are trivial).

Proposition.

(i) A free action is set-theoretically free.

(i) 0 : G x X — X is set-theoretically free if and only if the action of the group G(k) on
the set X (k) is free (i.e. all stabilizer subgroups are trivial).

Proof. (ii) obvious.

(i) Since ¥ is an embedding, for any = € X (k), its fibre over a point (z,z) is a point. This
implies that G(k), is trivial. By (ii), the action is set-theoretically free.

Example. The following example taken from [Mul] shows that a set-theoretical free
action is not free in general. Let k = C,G = SL(2). Let V,, = k[Z1, Z;]» be the space of
homogeneous polynomials of degree n. The group SL(2, k) acts naturally on this space by
acting linearly on the variables. Using this we can easily define the algebraic action of the
group G on the 7-dimensional affine space X isomorphic to V; x Vj:

(z Z) (F(Zl, Z2), G(Zl, Zz)) = (F(le —bZz, —-CZl +aZ2), G(le —bZQ, "'CZ] +aZ2))

Let Z be a closed subset of G(k) x X (k) which consists of points

0 -t *
((t_1 0 ) J(tZ1 + Z5,Z222)),t € k*.
The image of Z under the map ¥ is the set of points

(tZl — 23, ZfZ%), (tZ1 + Zs, Zerf))

In its closure we find the point ((—Z2, Z222),((%2,2%2Z2)) which does not belong to the
image. This shows that ¥ is not closed. Now let us restrict the action to the subvariety X'
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formed by the pairs (F,G) such that F # 0,G = F}, where F} is a quadratic polynomial
with discriminant 1. Since the stabilizer subgroup of a linear form is conjugate to the
group of unipotent matrices
1 %
(0 1)

and the stabilizer group of F? is conjugate to the group of orthogonal matrices, we easily
see that G acts on X' with trivial stabilizers. Obviously, Z is closed in G x X'. Thus the
action is set-theoretically free but not free.

2.6 For any z € X(K) we have a map 0,(K) : G(K) — X(K),g — ¢ -z. The image of
this map is called the orbit of z and is denoted by G(K)-z or O(z)k. If z € G(k) we have
a map of varieties o, : G — X. Let O(z) be the image of this map (considered as a subset
of the algebraic k-set X (k) or as a subset of the scheme X).

Proposition. O(z) isopen in its closure O(z). In particular, it is an algebraic k-subvariety
of X (or a locally closed subscheme of X ). If G is irreducible, O(z) is an irreducible set of
dimension equal to dimG — dimG,.

Proof. Let O(z) be the scheme-theoretical image of the map o, (considered as a
closed k-subset of X (k) or as a closed reduced subscheme of X). By Chevalley’ theorem
the image O(z) is a constructible subset in O(z) hence contains a dense open subset of the
latter. However, the group G(k) acts transitively on the set O(z). Hence this set is the
union of open subsets of O(z), hence is open in it. This shows that O(z) is a locally closed
subset of X, hence is an algebraic k-set. If G is irreducible, O(z) is irreducible since the
image of an irreducible set is irreducible. The assertion about the dimension follows from
the theorem on dimension of fibres. In fact, all the fibres of the map o, have the same
dimension. In fact if y = gz = 0,(g) € O(z), then 071 (y) = gG.97 = G,.

An orbit O(z) is called closed if it is a closed subset of X. The set of closed orbits is
always non-empty. In fact, if O(z) is not closed we take a point in y € O(z) \ O(z) and
consider its orbit O(y). Its dimension is strictly less than dimO(z) = dimO(z). If O(y) is
not closed, we continue this argument until either we find a closed orbit, or we come to an
orbit of dimension 0; however, any subset of dimension 0 is closed.

2.7 Definition. An action o : GXX — X is called transitive if themap ¥ : GXxX — X xX
is surjective. We say that X is a homogeneous space over G. If furthermore ¥ is an
isomorphism, we say that X is a prinicpal homogeneous space over G (or a G-torsor).

Proposition. A group G is a principal homogeneous space over itself with respect to the
left translations. If X is a principal homogeneous space over G and X (k) # 0, then there
exists a G-equivariant isomorphism G — X.

Proof. The first assertion is obvious. The map § xid: G X G — G X G is the inverse
of the map ¥ = (p,¢d). Assume ¥ : G x X — X x X is a k-isomorphism. Consider
the second projection of the target and the source of the map. Then ¥ commutes with
these projections. Thus for any point z € X (k) it defines an isomorphism of the fibres
as varieties over k. If z € X (k) then these fibres are defined over k¥ and ¥ induces an
isomorphism. But the fibre of pry : G x X — X over such a point z is isomorphic to G,
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and the fibre over z of prz : X x X — X is isomorphic to X. Let a : G — X be this
isomorphism. It is easy to see that it is G-equivariant with respect to the left translation
action of G on itself. Moreover we get a(e) = = and can define the group law p' on X by
setting ' = aopo(a~! x a™!). The unit element is z, and the inverse map is a0 foa~!.
Now a becomes an isomorphism of algebraic groups.

We say that X is a non-trivial principal homogeneous space if it is not isomorphic (as
a G-variety) to G.

Remark. Assume k is perfect. Let k, be the algebraic closure of k. One can show that
there is a bijective correspondence between the set of isomorphism classes of G-torsors and

the set of 1-cohomology H'(Gal(ks/k),G(ks)) (see for example [Ser]).

2.8 An example of a homogeneous space is the orbit O(z) of any point z € X (k) under
an action 0 : G X X — X. Conversely, any homogeneous space is the orbit of any of its
k-points. If € X (k) then X (K) can be identified with the set of right cosets gG,(K) of
G(K) with respect to the subgroup G;(K). This can be expressed by saying that X =
G/G, is the algebraic variety with its functor of K-points equal to K — G(K)/G.(K).
In fact for any closed subgroup H of an affine k-group G one can define a homogeneous
space X and a point z € X (k) such that G, = H. This homogeneous space is denoted by
G/H. Here is its construction.

Let I C O(G) be the ideal of regular functions on G which vanish on H. Let ¢y,...,dn
be its generators. By the Lemma from Lecture 1 (1.10), the k-subspace V spanned by the
#; and its g-translates, g € G(k) is finite-dimensional. Let W = V N I considered as a
k-subspace of V. Let X be the Grassmann variety parametrizing subspaces of dimension
n = dimW in V. Recall that by considering the exterior power A" V we can consider X
as a closed subvariety of the projective space P¢, where d = (dir:: ) — 1. The group G(K)
acts on X by sending a subspace L of Vg = V @ K to g(L). This defines an algebraic
action of G on X. We can view W as a point ¢ € X (k). Let H' C G be its stabilizer
subgroup. We have to show that H' = H. It is enough to show that H'(k) = H(k). If
g € H(k) then for any h € H(k), gh € H(k) and

94(h) = d(gh) = 0.

This shows that g(I) C Iz = I ® k hence g(W;) = Wy, ie. H(k) C H'(k). Conversely, if
g € H'(k), then ¢(W) C Wy, and, in particular, for any ¢; € W,

$i(9) = ?¢i(e) = 0.

This shows that the generators of I vanish at g, and hence g € H(k).
We shall show later that the homogeneous space G/H is a geometric quotient of G
with respect to the left translation action of H on G.
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Problems.

1. Let H be a closed subgroup of an affine algebraic group G. We say that H is normal
if for any ¢ € G(K),gH(K)g™! C H(K). Prove that the homogeneous space G/H for a
normal H is an affine algebraic group. [Hint: Consider some linear representation of GJ.
2. Classify all possible actions of G, x on Aj.

3. Let SOx(n) be the subgroup of SLi(n) defined by SO(n)(K) = {A € SL(n,K) :
‘AA = I,}. Construct a non-trivial torsor over the group SOr(2).

4. Show that any torsor of the group Gag j is trivial if char(k) = 0.

5. An action o : G x X — X is called closed if all orbits are closed. Show that the action
is closed if all stabilizer subgroups are of the same dimension.

6. An action is called properif U is proper. Show that all stabilizer subgroups for a proper
action of an affine group are finite. Show that the converse is not true.

7. A G-variety is called an almost homogeneous if it contains an open orbit whose com-
plement is a finite set of points. Give an example of a projective almost homogeneous
G-variety which is not a homogeneous space.

8. Let f: X — Y be a G-equivariant morphism of homogeneous spaces over an algebraic
group G. Show that f is an open map (i.e. the image of an open set is an open set).
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Lecture 3. LINEARIZATIONS OF ACTIONS

Here we shall show, as has been promised, that any algebraic action can be induced from
a linear action on a projective space. First we need to remind the reader of the general
notions involving line bundles and linear systems.

3.1 A line bundle over an algebraic k-variety X is a data consisting of a morphism of
varieties m : L — X together with an open cover U = {U;}ier of X and a set By of
isomorphisms f;,1 € I, over U;

Bi: W—I(U,') — U; X A}c,

where the product is considered to be over U; by means of its first projection. This data
must satisfy the following properties:

(i) for any 7,5 € I, the automorphism of (U; N U;) x A} defined by the composition
(Bil=~Y(U; NU;) x A}) o (,3]71|(U,- NU;) x A}) is given by an invertible function g;; €
O(U; N U;)* so that for any z € (U; NU;)(K) and any z € 77 ()

zi = gij(2)zj,

where IBi(z) = (IL‘,Z,‘), ﬂ](z) = (wazj)‘

(i1) the functions g;; must satisfy the following conditions:

(a) gii=1forany: €I,

(b) gij = g5;', for any 1,5 € I,

(c¢) gij = gix - gx; for any 1,3,k € I after restriction to U; N U; N Uy.

The functions g;; are called the transition functions of 7 : L — X with respect to the
open cover U. The variety L is called the total space of the line bundle, the variety X is
called the base, and the morphism = is called the projection. The cover U is called the
trivializing cover, and the isomorphisms f; are trivializing isomorphisms.

Formally speaking we have to denote a line bundle by (L, X, 7,U, Bu), however if no
confusion arises we shall denote it by just L.

If W is an open subcover of an open cover Y we can replace (L,X,n,U,By) by
(L, X,m,W, Bw), where By is obtained by the restrictions. The corresponding line bundle
is said to be obtained by restriction of the cover. Its transition functions are obviously
obtained by restrictions.

The subvarieties U; x {0} C U; x A} are glued together to form a closed subvariety
of L which is called the zero section. Under the projection n : L — X it is mapped
isomorphically onto X.
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An isomorphism of line bundles is an isomorphism of their total spaces which com-
mutes with the projections and sends the zero section to the zero section. It is clear that
the fibres of the projection 7 : L — X over any geometric point z € X(K) (i.e when K isa
field) are isomorphic to A},. An isomorphism of line bundles induces a linear isomorphism

of the fibres.

3.2 Proposition. Two line bundles (L, X, 7, U, Bu) and (L', X, =", U’, By are isomorphic
if and only if there exists an open subcover W = {Witier of U and U', and invertible
functions ¢; € O(W;)* such that the transition functions gij and gi; of the bundles L and
L', after restriction to the cover W, satisfy

gij = igi; 87" (¥)

Proof. The condition is sufficient. In fact we define an isomorphism f : L — L' by
the set of isomorphisms f; : L; = n~1(W;) — L. = «'~}(W;) by setting:

fi=BitogiofB

where ¢; is identified with an automorphism of W; x A;. The condition (*) shows that
the maps f; and f; coincide on = ~1(W; N Wj).

Now' let us show that the condition is necessary. Let g;; and g{; be the transition
functions of L and L' with respect to some covers U = {U;}ier and U' = {V;}jes. We can
choose a common subcover W = {W,};es and restrict the transition functions to it, to
assume that 2/ = U'. Then the composition 8 o (f|x~1(U;)) 0 8" is an automorphism of
U; x A} which sends the zero section to the zero section. This immediately implies that
it is given by a function f; € O(U;)*. Comparing these two functions on the intersections
U; NU; we immediately see that condition (*) must be satisfied.

3.3 One can construct a line bundle by starting from any open cover ¢/ and invertible func-
tions g;; on U; NU; satisfying properties (ii) from 3.1. We do it by the gluing construction.
We consider the disjoint union of varieties U; X A} and define an equivalence relation by
making points (z,z) € U; x A} and (¢',2') € Uj x A}, equivalent if and only if z = '
and z = g;;(x)z'. The axioms of an equivalence relation are equivalent to the conditions
(a),(b), and (c) of (ii) in 3.1, so the set of equivalence classes is equal to the set of points of
some algebraic variety L. It comes with its natural projection m to X, and isomorphisms

7~ 1(U;) — U; x A} which satisfy the definition of a line bundle, and has the functions
gi; as its transition functions.

Using the gluing construction one defines the following operations over line bundles.
(1) The tensor product L ® L'. Let (L, X,n,U,Buy),(L', X,n',U, By) be two line bundles
with the same trivializing cover U = {Ui}ier. We define L ® L' by gluing the varieties
U; x A} by using the transition functions g,'jggj.
(ii) The inverse line bundle L™'. Again we use the gluing by means of the transi-
tion functions gigl. One easily checks that this structure makes the set of line bundles
with the same open cover an abelian group. The zero element is the trivial bundle
(X x A}, X,pro,U,{id}). It is easy to see that we can extend these operations to iso-
morphism classes of line bundles. The resulting group is called the Picard group of X and
is denoted by Pic(X).
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(iii) The pull-back or inverse image f*(L). Let f : X — Y be a morphism of varieties
and let (L,Y,7,U,By) be a line bundle over Y. We define f*(L) of L by gluing the
products f~1(U;) x A} by using the transition functions f*(gi;) € O(f~Y(U; N U;)) =
O(f~Y(U;)Nf~1(U,)). The total space of the obtained bundle is equal to the fibred product
X Xy L, and the canonical projection is the first projection of the product. When f is the
identity map of a subvariety X of Y, we say that f*(L) is the restriction of L to X and
denote it by L|X.

Observe that the inverse image operation defines a homomorphism of groups:
f*: Pic(Y) — Pic(X).

3.4 One can naturally generalize the notion of a line bundle as follows. Note that the
transition functions can be thought as morphisms g;; : U NU; —» G x = GLi(1). Let G
be any algebraic k-group and p : G — GLg(n) be its linear representation. Let I/ be an
open cover of X as above and g¢;; : Ui NU; — G be a collection of morphisms satisfying:

gii = d, gij = 9ji, 9ij9jk = Yik-

We use the functions pog;; : UiNU; — GLi(n) to define the gluing of the varieties U; x A}.
The resulting variety E comes with a projection 7 : E — X whose fibres are n-dimensional
affine spaces. Over each open set U; we have an isomorphism 8; : U; x A} — n~1(U;). If

w € n1(U; NUj), and w = Bi((z, z:)) = Bj((=, z;)), then

z; = p(gij(z))z;-

Here the multiplication is the matrix multiplication. The object (E, X, n,U,{B:},G,p) is
called a G-bundle associated to the representation p. If G = GLg(n) and p = id, it is
called a vector bundle of rank n. Thus a line bundle is a vector bundle of rank 1. Instead
of gluing U; x A} by using the transition functions g;; one can glue the varieties U; X G.
For this construction we don’t need a linear representation of G. The resulting object is
called a principal G-bundle. It is clear that we have a bijective correspondence between
principal GL(n)-bundles and vector bundles of rank n over X.

3.5 Remark. For readers familiar with the language of sheaves one can interpret the
previous notions as follows. A set of transition functions defines a Cech 1-cocycle of the
sheaf O% with respect to the chosen open cover. The group of line bundles with the same
cover is the group of 1-cocyles Z' (U, 0% ). Two cocycles define isomorphic line bundles if
and only if they are mapped to the same element in the cohomology group H(X, O%).
Thus

Pic(X) = HY(X,0%).

There are different objects which are classified by the latter cohomology group. These are
isomorphism classes of invertible sheaves on X, and isomorphism classes of Cartier divisors
on X. We refer to [Har] for the corresponding definitions and the relationships. In the
more general situation from the previous Remark, one can introduce the sheaf of groups
Ox(G) and the set H!(X, Ox(G)) which is bijectively equivalent to the set of isomorphism
classes of principal G-bundles over X.
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3.6 A section of a line bundle (L, X, n,U, Bu) is a morphism s : X — L such that mos = ¢d.
Let s; = s|U;; then B; 0s; : U; — U; x A} are the sections of the trivial line bundle over
U;. We can write f3; 0 s;(z) = (2, ¢:i(2)) for some functions ¢; € O(U;). These functions
must satisfy

bi = 9i;9;

when restricted to U;NU;. Conversely, a set of functions ¢; satisfying the previous condition
defines a section.

We denote the set of sections of a line bundle L by I'( X, L). It has a natural structure of
a vector space over the field k. The corresponding operations are obtained from addition
and scalar multiplication of the functions ¢;. The zero-section is defined by the zero
functions ¢;. (One defines the sheaf of sections Ox (L) by setting for any open U C X,
Ox(L)(U) = I'(U, L|U) with obvious restriction maps. It is an invertible sheaf of Ox-
modules).

For any s € I'(X, L) the subset

X,={z € X :s(z)#0}

is an open subset of X. Note that s(z) # 0 means the image of z under s does not belong
to the zero section.

The following result follows from some fundamental results in the theory of coherent
sheaves on algebraic varieties. We state it without proof (see [Har], p.228).

Theorem. Assume X is a projective variety over a field k. Then I'(X,L) is a finite-
dimensional linear space over k.

Example. Let X = P}. We define the line bundle Opr (1) by the transition functions
9i; =T/ T,

where we choose the trivializing cover to be the standard cover (P}); = {T; # 0},: =
0,...,n. It is easy to see that its sections can be identified with the space of linear
homogeneous polynomials k[Tp,...,T,];. The restriction of such a section F(Tp,...,T,)
to (P}); is the inhomogeneous polynomial ¢; = F/T;. We see that ¢; = (Tj/T;)¢; so that
everything agrees. By definition, for any integer m ‘

Opy(m) = Opp(1)®™,

where as in arithmetic the negative m-th tensor power means the (—m)-th tensor power of
the inverse. If m = 0 we get the trivial bundle which is denoted by Opr. One immediately

checks that KT, T.] £
n ~ 0y-+-ydnlm if m > 07
F(Pk,Op? (m)) = { {0} otherwise.

We refer to [Har] for the proof that every line bundle on P} is isomorphic to a bundle
Opr(m). In particular
Pic(Py) = Z.
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One can give the following description of the total space of the line bundle Opr(—1). Let L
be the blow-up of AZ'H at the origin. Recall that this is a closed subvariety of AZ'H x Py
given by the equations Z;T; — Z;T; = 0, where (Z1,..., Zn41) are coordinate functions on
the affine space and (To, ..., T,) are projective coordinates in P}. Let 7 : L — P} be the
second projection. Then

O(x " ((PY):)) = klZ:, To/Ts, ..., Tu/Ti] = O((P):)[ Z4].

This shows that 7= }((P});) =& (P?): x A}. The transition functions are equal to Z;/Z; =
T;/Tj, i.e.,the inverse of the transition functions for Opr(1).

3.7 In algebraic geometry line bundles are used to define mappings of algebraic varieties
to projective space. Recall the construction. Let W be a finite-dimensional subspace

of T'(X,L). Choose a basis sg,...,5n, of W and let X' = O X,;. Let P} be the n-

1=0

dimensional space with its standard affine cover U; = {T; # 0},: = 0,...,n. We define
amap f : X' — P} by gluing together the maps f; : X,; — U; corresponding to the
homomorphism of rings O(U;) — O(X,,) defined by mapping each function T;/T; to
s;/si. Note that for any two sections s,s' of L the ratio s'/s is a rational function on X
defined on each open set U; from the trivializing cover by the ratio ¢}/p;, where ¢; and
¢!, represent s and s' on Uj. If s(z) # 0 this ratio

is regular at z. We leave to the reader to verify that the maps f; are compatible on
the intersections of their domains. Set-theoretically f is described by the formula:

f(z) = (s0(2),...,sn(z)) € PR(K) = K" /K*, Vz e X(K),V field extensions K/k.

Note that although s(z) has no meaning, the right-hand side makes sense since we are
considering (n + 1)-tuples modulo non-zero scalar multiples. If we choose a function ¢; to
represent locally a section s over U;, then ¢;(z) is defined up to a scalar factor equal to
gij(z), which is the same for all sections s. The constructed map is called the map given
by the linear system (W, (so,...,sn)). If W = I'(X,L) we say that the linear system is
complete. It is clear that X' = X if and only if for any point z € X there exists a section
s € W such that s(z) # 0. In this case we say that the linear system is base-point-free.
Any point in X \ X' is a base-point of W. Obviously, this definition does not depend on
the choice of a basis in W.
Since f*(T;/T;) = the restriction of the functions s;/s; = g;; to X', we get

*(Opp (1) = LIX".

Definition. A line bundle L is called very ample if the map defined by some of its linear
system is an embedding. L is called ample if L®™ is very ample for some positive m-th
tensor power of L.

Example. - Obviously (’)p;(l) is very ample on P?. The map defined by its complete
linear system is a linear projective automorphism of P%. If we choose for the basis of
[(Pg,Opy(1)) the set (To,. .. ,Tr), then the map is the identity. The map defined by a
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complete linear system of Opr(d),d > 0, is a Veronese map v, q4 : P} — P )1, This
shows that if f : X — P} is the map defined by L (i.e. by a complete linear system), then
the composition:

x-L pp 2dp (i)
is given by L®9.
3.8 Let 0 : G x X — X be an algebraic action of an algebraic group G on an algebraic
variety X.
Definition. A G-linearization on L is an action ¢ : G x L — L such that

(i) the diagram

GxL 2, I
l1lxm=w |
GxX <, X

is commutative.
(ii) the zero section of L is G-stable.

A G-linearized line bundle (or, for brevity, a line G-bundle) over a G-variety X is
a pair (L,5) consisting of a line bundle L over X and its linearization. A morphism of
G-linearized line bundles is a G-equivariant morphism of line bundles.

It follows from the definition that for any ¢ € G(k),z € X (k) the induced map of the
“fibres:

5(9): Ly = Lg.s

is a linear isomorphism. If k is algebraically closed this condition is equivalent to (ii).

Let 6 : G x L — L be a G-linearization. By definition of the fibred product we have
a unique homomorphism G x L = prj(L) — o*(L). Here pry : G x X — X is the second
projection. For any field extension K/k, the fibre of prj(L) over (g,z) € G(K) x X(K) is
L,. The fibre of 6*(L) over the same point is equal to L.,. Since & is an action we obtain
that the corresponding map of the fibres is an isomorphism. By property (ii), it must be
a linear isomorphism. Thus the map

®:pry(L) — o*(L)

is an isomorphism of vector bundles. One can translate the axioms of action for & into
the following cocycle condition. Let pys : G X G X X — G x X be the projection to the
product of the second and the third factors. Together with u X idx and idg X o we have
three maps from G x G X X to G x X. Note that p; o (4 X idx) = p2 o p23 hence we can
identify the line bundles (p2 0 p23)*(L) and (p2 o (1 X tdx))*(L). Similarly we can identify
[0 0 (p x idx)]*(L) with [0 o (idg X ¢)]*(L) and (o o pa3)*(L) with [p; o (idg x 0)]*(L).
With these identifications the cocycle condition says that the following isomorphisms of
line bundles on G x G x X are equal:

(1 x idx)"(®) s [p2 0 (1 x idx ) (L) = [0 0 (4 X idx)I*(L) = [0 0 (idg x o)]*(L),

(idg % )"(®) 0 p35(®) : (2 0 pas) (L) — (0 0 pas)*(L) =
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= [p2 0 (idg x 0)]*(L) — [0 0 (¢dg X o)]*(L).

Conversely, given an isomorphism of line bundles ® as above, composing it with the
projection ¢*(L) — L we get a map ¢ : G X L — L for which the diagram from (i)
is commutative. The cocycle condition ensures that this map defines an action. Also
condition (ii) holds because @ is an isomorphism of line bundles.

Using the definition of linearization by means of an isomorphism @ it is easy to define
a structure of an abelian group on the set of line G-bundles with the same trivializing cover.
If®:pr3y(L) — o*(L) and & : prj(L') — o*(L') are two line G-bundles, we define their
tensor product as the line bundle L& L' with the G-linearization given by the isomorphism:

®@® :pry(LRL')=pry(L)®@pry(L') = ¢*(L®L) = o*(L) @ o*(L")).
Here we use the obvious property of the inverse image
ffLeL)=f(L)® f (L)

The zero element in this group is the trivial line bundle X x A}l whose linearization is given
by the product o xid : Gx X x A} — X x A}. This is called the trivial linearization . One
checks that this again satisfies the cocycle condition. The structure of the abelian group
which we have just defined induces an abelian group structure on the set of isomorphism
classes of line G-bundles. We denote this group by Pic®(X). It comes with the natural
homomorphism

a: Pic%(X) — Pic(X)

which is defined by forgetting the linearization.

3.9 Let us now describe the kernel of the homomorphism «. Observe first that if f : L — L'
is an isomorphism of line bundles and @ : pr3(L) — o*(L) is a G-linearization on L, then
we can define a G-linearization on L' by setting ®' = o*(f)~'o®opri(f). Thusif a((L,5))
is isomorphic to the trivial bundle, we can replace it by an isomorphic G-bundle to assume
that L is trivial. This shows that Ker(a) consists of isomorphism classes of linearizations
on the trivial line bundle.

Assume that X and G are affine and L = X X A} is the trivial line bundle on X. To
define a G-linearization on L we have to define a homomorphism

5 : O(L) = O(X x A}) = O(X)[Z] — O(G) ® O(X)[Z].
It follows from the definition that under this map
(2) =V 2,
where ¥ € (O(G)® O(X))* = O(G x X)*. It follows from the definition of the action that
(1 ® id)*(¥) = p3s(¥)(id ® 0)*(¥).

This can be translated into the following property of the function ¥:
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Vz € X(K),9,9' € X(K),¥(g'g,z) = ¥(g,2)¥(g', g)-
The map 7* is completely determined by ¥. The action is defined by the formula

6(97(zaz)) = (g * Z, \Il(g,:c)z),

where (z,z) € L(K) is defined by the homomorphism of O(L) which send Z to z and
sends any ¢ € O(X) to ¢(z). We denote by Zilg(G,O(X)*) the group of such functions
on G x X (with respect to multiplication). For any K/k we have the group

Za1y(G, O(X)*)(K) = {¥k : G(K) x X(K) — K" | Uk(g'g,z) = ¥(g,2)¥(g’, g2)}.

Assume that ¥ and ¥’ define isomorphic G-bundles. By definition, there exists an
isomorphism of the k-algebras O(L) = O(X)[Z] — O(L) = O(X)[Z] which sends Z to ¢Z
for some ¢ € O(X)* (we use the condition of linearity). It is immediately checked that
one must have

(HT =T (18 9)

~ This can be interpreted as follows. Under &, a point (z, z) € L is mapped to (g-z, ¥(g, z)2).

“Under the isomorphism of G-bundles it is mapped to (g-z, #(g-2)¥(g, z)z). The same point
is mapped under the isomorphism to (z, ¢(z)z), and then under &' to (g-z,¥'(g, z)d(z)z).
Conversely, if we define ¥’ by the formula:

V' =0"(¢)¥(1@¢7)

we obtain an isomorphic G-bundle. When ¥ = 1, we get the trivial G-linearization. The
group acts by the formula (z,z) — (g - z,2z). The functions ¥ of the form o*(¢)(1 ®
#71) define G-linearizations which are isomorphic to trivial G-linearizations. They form a

subgroup of Z}, (G,O(X)*) denoted by B, (G,O(X)*). The factor group

alg alg

Hg1y(G,O(X)*) := Za1y(G, O(X)*)/ Bayy (G, O(X)")
consists of isomorphism classes of G-linearizations on the trivial line bundle L. Note the
special case when for any integral k-algebra K

(OX)Rr K)*=K*®1.

This happens, for example, when X is affine space, or when X is connected and projective.
Then for any ¢ € O(X)* = k* we have 0*(¢) = 1 ® ¢, hence the group B}, (G,O(X)*)
is trivial, and H,, (G,O0(X)*) = Z,,,(G,0(X)*). Also, if we assume additionally that
G is irreducible, ¥ € (O(G) ® O(X))* = O(G)* ® 1 and hence can be identified with
an element of O(G)*. This element defines a homomorphism k[Z, Z~!] — O(G)*, hence
amap f : G — Gm. The property of ¥ guarantees that this is a homomorphism of

algebraic groups. Any such homomorphism is called a rational character of G. The set
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of such characters is an abelian group denoted by X(G). Thus we obtain a canonical
isomorphism:

H),(G,0(X)*) = X(G).

We have
HY(G, O(X)*)(K) = Hom(G(K),K*).

Suppose now that L is still the trivial line bundle, and that G is affine but X is not.
Then we take any open affine cover {U;}ies of X, and set, for any ¢ € I, V; = o~ }(U;).
The action ¢ : G x X — X can be given by the maps o; : V; — U;. The linearization
0 : G x L — Lis given by the maps 5; : V; x A} — U; x AL, or equivalently, by the
homomorphisms O(U;)[Z] — O(V;)[Z]. As in the affine case this is defined by a function
¥; € O(Vi)*. These functions are glued to form a global function ¥ € O(G x X)*. Now

we can repeat all the formula from above to obtain:

Theorem. Let G' be an affine algebraic group and let X be a G-variety. The set of
linearizations on the trivial line bundle X x A} is equal to the group Z31,(G,0(X)*) of
functions ¥ € O(G x X)* satisfying the condition:

U(g'g,z) = ¥(g,2)¥(g',9z),z € X(K),9,9' € X(K).

The trivial linearizations form a subgroup B}, (G, O(X)*) isomorphic to the group of func-

tions ¥ of the form o*(¢)pr3(¢~') where ¢ € O(X)*. The factor group H), (G,O(X)*) =

alg
ZL (G,0(X)*)/BL,.(G,0(X)*) is isomorphic to the group of isomorphism classes of lin-

alg alg
earizations of the trivial line bundle. In the special case where for any integral finitely

generated k-algebra K,(O(X)® K)* =1Q K*, we have B}, (G,O(X)*) = {1}, and

alg

HY,(G,0(X)") 2 X(G) = Hom(G, Gm 1).

3.10 Remark. According to a theorem of Rosenlicht (see [KKV]) for any two irreducible
algebraic varieties X and Y over an algebraically closed field &, the natural homomorphism

O(X)* @ O(Y)* — O(X x Y)*

is surjective.

3.11 Now let us study the image of the forgetful homomorphism «. This consists of
isomorphism classes of line bundles on X which admit some G-linearization. We start
with the following lemma.

Lemma 1. Let G be an irreducible affine algebraic group, X be an algebraic G-variety.
A line bundle L over X admits a G-linearization if and only if there exists an isomorphism
of line bundles ® : pr3(L) — o*(L).

Proof. We already know that this condition is necessary, so we show that it is sufficient.
Assume that such an isomorphism exists. The problem is that it may not satisfy the cocycle
condition. If @ is given, we restrict it to ex X to obtain an isomorphism ®, : prj(L)lexX —
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0*(L)|ex X. The maps o and pr; coincide on e x X, hence there is a canonical isomorphism
of these restrictions. Observe that any two isomorphisms between line bundles differ by an
automorphism of one of the bundles. Also an automorphism of a line bundle is given by
a global invertible regular function. So by choosing an appropriate function from O(X)*,
and lifting it to G x X, we change ® to assume that ®, is the canonical isomorphism. We
use again that the isomorphism p};(®)(idg x 0)*(®) and (p % idx )*(®) differ by a function
0 € O(G x G x X)*. We have

Q(glg) ’T) = q)(ga IL')@(g’, g- 55)80(9', 9, :II),
where we use for simplicity the argument notation for ®,¢. We have ®(e,z) = 1. Thus
v(e,9,z) = ¢(g',e,z) = 1. We want to show that ¢ = 1. Replacing the field k£ by its
algebraic closure we may assume that k is algebraically closed. By applying Rosenlicht’s

Theorem (see Remark 3.10) we can write ¢(g', g, z) = 1 Q2 Qs for some @1, 9, € O(G)*,
and @3 € O(X)*. Thus

o(g',9,2) = (219" )p2(9)pa(2))(p1(e)p2(e)ps(z)) =
= (p1(e)p2(9)p3(2))(p1(g )p2(e)ps(z)) = 1.

Lemma 2. Assume k is algebraically closed, X is normal (for example, nonsingular) and
G is an affine irreducible algebraic group. Let zo € X(k). For every line bundle L on
G x X we have

‘ L = pj(L|G x 7o) ® p5(Lle x X).

Proof. We only sketch the proof referring to [KK V] for the details. First of all we may
assume that X is nonsingular. In fact, if we replace X by its subset of nonsingular points
X' then, since X is normal, the restriction homomorphism Pic(X) — Pic(X') is injective.
So we may replace X by X' to assume that X is nonsingular. Next we use the following fact
about algebraic groups (which we shall explain later when we state a structure theorem for
algebraic groups). The fact is that, if k is algebraically closed, G contains an open Zariski
subset U isomorphic to the product of varieties A} and A} \{0}. We also use the fact that
the homomorphisms pri : Pic(X) — Pic(AL x X) and pr} : Pic(X) — Pic(A}\ {0} x X)
are isomorphisms (see [Har], Chapter II, Proposition 6.6). These facts together imply
that the line bundle

M =L® (p}(L|G x z0) ® p5(Lle x X))™*

is trivial when restricted to U x X. This shows that its transition functions can be chosen
to be trivial on U x X (after we replace L by an isomorphic line bundle). Using the
relationship between Weil divisors and line bundles one can show that this implies that
M = p¥(M|G x z). Since M|G X =z is trivial , M is trivial proving the lemma.

Define now a homomorphism § : Pic(X) — Pic(G) by

§(L) = (p3(L) ® " (L71))IG x =0,

where z is a chosen point in X (k). Suppose §(L) is trivial. By the previous lemma applied
to M = p3(L) ® o*(L™!) we obtain that M = pj(M|e x X). But the restriction of ¢ and
pe to e x X is equal. This implies that M is trivial, hence there exists an isomorphism
® : p3(L) — 0*(L). By Lemma 1, L admits a G-linearization. This proves
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Theorem. Assume k is algebraically closed. Let G be an irreducible affine algebraic group
and X be a G-variety. Then the following sequence of groups is exact

{1} = Ker(a) - Pic%(X) 3 Pic(X) > Pic(G).

Corollary. Under the assumption of the theorem, the image of PicG(X) in Pic(X) is of
finite index. In particular, for any line bundle L on X there exists a number n such that
L®" admits a G-linearization.

Proof. Use the fact that for any affine algebraic k-group G the Picard group Pic(G)
is finite (see [KKV], p.74).
Remark. For any extension of fields K/k we denote by X the variety obtained from X
by extension of the ground field. If we assume k is perfect and O(X})* = k* (for example
if X is complete and connected), the assertion of the Corollary remains true. To see this,
we have to modify the assertion of Lemma 2 by replacing L by some positive tensor power
L®". We modify the proof as follows. Replacing k by a finite Galois extension k', we
may assume that G contains an open subset isomorphic to the product of an affine space
and an algebraic torus. This follows from the fact that every unipotent algebraic group
over a perfect field is isomorphic to an affine space as an algebraic variety ( see [DG], p.
536). Then we use that the kernel of the homomorphism Pic(X x G) — Pic(X) x G}) is
isomorphic to the Galois cohomology group

HY(Gal(K' [k),0(Xp x G)")) = HY(Gal(K'/k), O(Gw)*)) = Ker(Pic(G) — Pic(Gw)).

Since Pic(G) is finite, R := Ker(Pic(X x G) — Pic(Xy x Gy)) is finite. Thus replacing
k by k', and repeating the argument, we obtain that M is of finite order in Pic(G x X).
So replacing L by some tensor power L®", hence replacing M by M®", we obtain that
M is trivial. In fact, if we assume additionally that O(G)* = k* (this happens if G is
semi-simple), then the kernel R is isomorphic to the group H'(Gal(k'/k),k'*)) which is
trivial by Hilbert’s “Theorem 90”. In this case we don’t need to raise L to a power, so the
assertion of the Theorem is also true.

3.12 Next we shall apply the previous Corollary to prove that any algebraic action can
be linearized. Let L be a G-linearized line bundle and V' = I'(X, L) its space of sections,
and let G be an affine algebraic group. We shall identify V with the subspace of O(L™1)
of regular functions whose restriction to the fibres is linear (see Problem 7). By means of
the inverse linearization on L™! there is a natural homomorphism

O(L™) - 0(G)® O(L™)

which satisfies the axioms of the co-action. By means of this homomorphism G(K) acts
linearly on O(Ly") preserving the subspace Vi = I'(X, L)k. This defines a linear repre-
sentation:

PK - G(K) g GL(VK).

Arguing as in Lecture 1, we can show that any finite-dimensional subspace W of V is
contained in a finite-dimensional subspace W' such that each Wy is an invariant subspace
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with respect to the representation pg. By choosing a basis (sg;...,s,) in W' we obtain a
linear representation

p:G— GLg(n +1).

Now assume that the rational map defined by the linear system W is an embedding. Then
the rational map defined by W’

f: X > PE, 2= (s0(z),...,s.(2)),

is also an embedding. For example, X is projective, L is very ample and W is the complete
linear system. It is obviously G-equivariant. Thus we have linearized our action of G on

X.

Theorem. Assume k is algebraically closed. Let X be a quasi-projective normal algebraic
variety, acted on by an irreducible algebraic group G. Then there exists a G-equivariant
embedding X — P}, where G acts on P} via its linear representation G — GLg(n + 1).

Remark. If O(X;) = k*, using the previous Remark we may assume only that k is
perfect. Of course we can get a stronger result if we impose some conditions on G.
Example. Let G = PGLi(n + 1) act on X = P} in the natural way. Let us see that the
vector bundle Opz (1) is not G-linearizable but Opp(n+1) is. We view G as an open subset
of the projective space PY(N = n? + 2n = dimG) whose complement is the determinant
hypersurface det((T;;)) = 0. The action 0: G x X — X is the restriction to G x X of the
rational map o: P x P} —— — P? given by the formula

U*(Ti) = ZT,']' K T]‘.
J

Note that this map is undefined at a point ((a;;), ag, - - - ,a,) € PY(K)x P?(K) if and only
if 7 aija; = 0,7 =0,...,n. But this is possible only 1f det((aij)) = 0, i.e if this point does
not belong to G(K ) X P % (K). By 3.11, Lemma 1, the line bundle Opr (1) is G-linearizable
if and only if there exists an isomorphism o*(Op»(1))|GxPY = prz(Opn(l))]Gx PY. Itis
easy to see that o*(Opz(1)) = pri(Opn(1)) ®pr2((')pn(1)) Thus (’)pn(l) is G- hneanzable
if and only if pri(Opy)|G x P} = prl(OpN |G) is trivial. Obviously p} : Pic(PY) =

Pic(PY x P?}) is injective. Thus we obtain that Opz(1) is G-linearizable if and only 1f
OPN |G = Og. This is impossible. In fact, it is true that for any hypersurface H of degree

d in a projective space PY, the Picard group of the open subvariety U = PY\Hisa
cyclic group of order d generated by PY|U. Let us show only that PYN|U is not trivial.
This is enough for our purpose. Suppose the contrary is true. If we choose the standard
trivializing cover PY = Uy U...UUy of P} we obtain that 9ij = T;/T; = ¢;/¢: for some
functions ¢; € /(G N U;)*. But O(U; N G) = (k[T1/T;, ..., Tn/T/Ti|[F/T)), where F = 0
is the equation of the hypersurface H. This immediately implies that O(U; N G)* consists
of rational functions of the form ¢;(F/T?)™:, where c; € k* and m; is an integer. Thus we
get Tj/T; = c;(F/T§)™ [c;(F/T)™:. This is possible only if d = 1,mj =m; = 1 ,Cj = Cie
A 51m11ar argument shows that Opn(d)|U is trivial. It remains to observe that in our
situation d = n + 1.
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Problems.

1. Prove the total space of the line bundle Opn(1) is isomorphic to the open subset of

PZ‘H whose complement is one point.

2. Prove that every line bundle on an affine space is isomorphic to the trivial line bundle.
3. Let L be a line bundle over an algebraic group. Show that the complement L* to
the zero section of L has a structure of an algebraic group such that the projection map
7 : L* — G is a homomorphism of groups with kernel isomorphic to Gm k.

4. Assume G is irreducible and k is algebraically closed. Show that Hj, (G,O(X)*) is a
homomorphic image of the group X(G).

5. Use Rosenlicht’s Theorem from Remark 3.10 to show that any invertible regular function
f € O(G)* on an irreducible affine algebraic group G with value 1 at e € G(k) defines a
rational character of G.

6. Let L be a line bundle. Show that a section of a line bundle L®" can be canonically
identified with a regular function on the total space of the inverse line bundle L= whose
restriction to any fibre is a homogeneous polynomial of degree n.

7. Let L be a G-bundle. Using the identification from the previous problem show that the
representation of G(K) on I'(X, L) is given by the formula

p(g)(s)(z)=g-s(g7" - 2),

for any g € G(K),z € X(K).

8. Let Gm,x act on an affine algebraic variety X defining the corresponding grading of
O(X). Let M be a projective module of rank 1 over O(X) and L be the associated
line bundle on X. Show that there is a natural bijective correspondence between G-
linearizations on L and structures of a O(X )-graded module on M.

9. Relate the function ¥ € O(G x X)* from section 3.9 with the isomorphism @ : pr*(L) —
0*(L) defining a G-linearization. Then compare the two cocycle conditions.
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Lecture 4. QUOTIENTS

4.1 Let (X, R) be a set together with an equivalence relation R C X x X. A morphism of
such pairs (X,R) — (Y,R') is amap f : X — Y such that (f, f)(R) C R'. The quotient
set X/R is defined as a morphism p : (X,R) — (Y, Ay) such that for every morphism
g : X — Z with the property (¢,9)(R) C Az there exists a unique morphism f:Y — Z
with fop = ¢g. Here Ax C X x X denotes the diagonal. The quotient Y is defined
uniquely up to a bijection and is denoted by X/R. By construction of X/R we have

R=Xxx/g X =(p,p) ' (Ax/r) ={(z,2') € X x X : p(z) = p(z")}.

This equality expresses the property that the fibres of p are equivalence classes.

More generally, if C is any category with products, we define an equivalence relation
on an object X as a subobject R C X x X (or more generally just a morphism R — X x X)
satisfying the obvious axioms (expressed by means of commutative diagrams). Then we
repeat the preceding definitions word by word to arrive at the definition of a quotient
object X/R and the canonical morphism p : X — X/R. By definition there is a canonical
morphism

R—X xxpX. (¥

There is no reason to expect that in general the morphism (*) will be an isomorphism or
an epimorphism.

Let 0 : G x X — X be an algebraic action, and ¥ : G x X — X x X be the corre-
sponding morphism (o, pry). This morphism should be thought as an equivalence relation
on X defined by the action. A G-equivariant morphism of G-varieties corresponds to a
morphism of sets with an equivalence relation. The definition of a G-invariant morphism
f: X — Y can be rephrased by saying that the map ¥ factors through the natural mor-
phism X xy X — X x X. This corresponds to the property (f, f)(R) C A. This suggests
the following definition:

Definition. A categorical quotient of a G-variety X is a G-invariant morphism p: X — Y
such that for any G-invariant morphism ¢ : X — Z there exists a unique morphism
G:Y — Z satisfying gop = g. A categorical quotient is called a geometric quotient if the
image of the morphism ¥ equals X xy X. We shall denote the categorical quotient (resp.
geometric quotient) by p: X — X//G (resp. p: X — X/G). It is defined uniquely up to
isomorphism. , )

A different approach to defining a geometric quotient is as follows. We know how
to define a geometric quotient as a set. We next discuss topological spaces. We put the
structure of a topological space on X/G so that the canonical projection p: X — X/G is
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continuous. The weakest topology on X/G for which this should be true is the topology
in which a subset U C X/R is open if and only if p~}(U) is open. Then we examine
ringed spaces, whose definition is given in terms of choosing a class of functions on X
(e.g. regular functions, smooth functions, analytic functions). If ¢ € O(U) is a function
on U, then the composition p*(¢) = ¢ o p must be a function on p~!(U). It is obviously a
G-invariant function. Using this remark we can define the structure of a ringed space on
X/R by setting O(U) = O(p~*(U))®. This makes p: X — X/R a categorical quotient in
the category of ringed spaces. Finally, we want that the fibres of p to be orbits. This is
condition (*).
Definition. A good geometric quotient of a G-variety X is a G-invariant morphism
p: X — Y satisfying the following properties:

(i) p is surjective;

(ii) for any open subset U of Y, the pre-image p~!(U) is open if and only if U is open;
(iii) for any open subset U of Y, the natural homomorphism p* : O(U) — O(p~*(U)) is

an isomorphism onto the subring O(p~(U))¢ of G-invariant functions.

(iv) the image of ¥ : G x X — X x X is equal to X xy X.

Proposition 1. A good geometric quotient is a categorical quotient.

Proof. Let g : X — Z be a G-invariant morphism. Pick any open affine cover {V;};er
of Z. For any V; the pre-image ¢~ !(V;) will be an open G-invariant subset of X. Then
we have the obvious inclusion ¢~*(V;) C p~!(U;), where U; = p(¢~(V;)). Comparing the
fibres over points y € Y (k) and using property (iv), we conclude that the equality takes
place. By property (ii), U; is open in Y. Since p is surjective we get an open cover {U,}ier
of Y. The map ¢~ 1(V;) — V; is defined by a homomorphism

a;: O(Vi) = O(¢7'(V3)) = O(p™(Uy)).

Since g is a G-invariant morphism, the image of @; is contained in O(p~(U;))¢ = O(U;).
This defines a unique homomorphism O(V;) — O(U;) hence a unique map ¢; : U; — V;. It
is immediately checked that the maps p; agree on the intersections U; N U; hence define a
unique map ¢ : Y — Z satisfying ¢ =g o p.

Proposition 2. Let p: X — Y be a G-equivariant morphism satisfying the following

properties:

(i) for any open subset U of Y, the natural homomorphism p* : O(U) — O(p~}(U)) is
an isomorphism onto the subring O(p~*(U))% of G-invariant functions.

(ii) if W is a closed G-invariant subset of X then p(W) is a closed subset of Y';

(iii) if W1, W, are closed invariant subsets of X with WyNW, = 0, then p(W1)Np(W>) = 0.
Under these conditions p is a categorical quotient. It is a good geometric quotient if
additionally

(iv) the image of ¥ : G x X — X x X is equal to X xy X.

Proof. This is similar to the previous proof. With its notation, let W; = X \ ¢~ }(V;).
This is a closed G-invariant subset of X, hence, by (ii), U; = Y \ p(W;) is an open
subset of Y. Clearly, p~1(U;) C ¢~ *(V;). Since N;W; = 0, by (iii) we have N;p(W;) = 0,
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hence Y = U;U;. Now composing the homomorphisms a; : O(V;) — O(¢~(V;))¢ with the
restriction homomorphism O(g~Y(V;))¢ — O(p~1(U;))¢ = O(U;) we get a homomorphism
O(V;) — O(U;). This defines a map U; — V; and we finish as before. Now if we assume
additionally (iv), then the only property from Proposition 1 to be verified is that p is
surjective. But this is obvious because of the uniqueness of the categorical quotient.

Corollary. Under the assumptions from the previous Proposition, the map p: X — Y
satisfies the following properties:

(i) two points z,z' € X (k) have the same image in Y if and only if G-z NG -z’ # 0;
(ii) for each y € Y (k) the fibre p~!(y) contains a unique closed orbit.

Proof. In fact, the closures of orbits are closed G-invariant subsets in X. So if
G- znNG -z’ =0, p(G-z)Np(G-z') = 0. But both sets contain the point p(z) = p(z').
Conversely, if G- zNG -z’ # 0 and p(z) # p(z'), we get that G-z and G-z’ lie in different
fibres. Since the fibres are closed subsets, G - £ and G - z' lie in different fibres. Hence they
are disjoint. This contradiction proves (i). To prove (ii) we notice that by (i) two closed
orbits in the same fibre must have non-empty intersection. But this is absurd. Since each
fibre contains at least one closed orbit, we are done.

Definition. A categorical quotient satisfying properties (i), (ii) and (iii) from Proposition
2 is called a good categorical gquotient.

Remarks. 1. Note that condition (ii) in the definition of a good geometric quotient is
satisfied if we require

(i)’ for any closed G-invariant subset Z of X, the image p(Z) is closed.

Also, together with condition (iii) this implies the surjectivity of the factor map p. In
fact, condition (iii) ensures that the map p is dominant, i.e. its scheme-theoretical image
is dense in Y. But by (ii)’, the image of p must be closed.

2. Condition (iv) is equivalent to

(iv)" for any y € Y (k), the fibre p~1(y) is equal to the orbit of any of its points.

3. For any K/k we have a natural map ¥g : G(K) x X(K) = X(K) Xyx) X(K) which
is not surjective in general. For any z € X(K)

Uk (G(K) x {z}) = G(K) - = x {z} C p (px(=)) x {z}.

4. Suppose X is an irreducible G-variety over a field of characteristic 0, and p: X —» Y
a surjective G-invariant morphism such that its fibres over any point y € Y (k) are the
orbits. Then p : X — Y is a geometric quotient. The proof is rather technical and we
omit it (see [Mul], Proposition 0.2).

5. The definition of a categorical and geometric quotients are obviously “local” in the
following sense. If p: X — Y is a G-equivariant morphism, and {U;} is an open cover of Y’
with the property that each p; : p~}(U;) — U, is a categorical (resp. geometric) quotient,
then p is a categorical (resp. geometric) quotient.

6. A good geometric quotient is a good categorical quotient. In fact, we have to verify
only conditions (ii) and (iii) of Proposition 2. Since each closed G invariant subset W of X
must be the union of fibres, (iii) follows immediately. Also X \W = f~(U) for some open
subset U of Y. By definition of a good geometric quotient, U is open, hence p(W) = Y \U
is closed. This checks (ii).
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4.2 Examples. 1. Let G be a finite group considered as an algebraic group over a field
k, for simplicity assumed to be algebraically closed. Then the geometric quotient X/G
always exists. In fact, assume first that X is affine. We shall use some standard properties
of integral extensions of rings (see [Bou], Commutative Algebra, Chapter V, §2). The
inclusion O(X)¢ C O(X) is a finite integral extension of finitely-generated k-algebras.
Let Y be an affine algebraic variety with O(Y) = O(X)€. By theorems on lifting of ideals
in integral extensions, the map p : X — Y = X/G satisfies properties (ii) and (iii) from
Proposition 2. Also, since taking invariants commutes with localizations, property (i) holds
also. Now let us show that p is a geometric quotient. Since all orbits of G are finite subsets
of X, the image of ¥ : Gx X — X x X is closed. It is obviously contained in X xy X which
is closed in X x X. Now the group G acts transitively on the set of irreducible components
of X xy X. In fact we may assume for simplicity that X is irreducible. Then the field of
rational functions K’ of X is a Galois extension of the field of rational functions K = K'C
of Y. The irreducible components of X xy X correspond to minimal prime ideals in the
algebra K' @y K' which is an integral extension of K' with the Galois group isomorphic to
G. Thus G acts transitively on the set of minimal prime ideals (see [Bou], Chapter V,§2).
By comparing the dimension of X xy X and ¥(G x X) we see that ¥ : G x X — X xy X
1s surjective.

Now let X C P} be quasi-projective but not necessarily affine. Let X be the closure
of X. Let O C X be an orbit and let F' be a homogeneous polynomial vanishing on
X \ X but not vanishing at any point of O. Thus O is contained in an affine subset
U = X \ V(F). Recall that the complement to a hypersurface in a projective space is
an open affine subset. This implies that U, being closed in an affine set, is affine. Let
U(O) = Ngeg(g - U). This is an open G-invariant affine subset of X containing O. By
letting O vary, we get an open affine G-invariant covering {U;} of X. We already know
that each quotient p; : U; — U;/G = V; exists. We shall glue the V;’s together to obtain
the geometric quotient p : X — X/G. To do this we observe first that U; NU; is affine and
UiNU;/G is open in V; and V;. This follows from the considering the affine case. Thus we
can glue all V; together along the open subset V;; = U; N U;/G. The resulting algebraic
variety Y is separated. In fact we use that in the affine situation

(X1 X Xz)/(Gl X Gg) = X]/G] X Xz/Gz,

where G X G acts on X; X X3 by the Cartesian product of the actions. Thus the image
of Ax N(U;NU;) in (U; x U;)/(G x G) 2 U;/G x U;/G is closed, and, as is easy to see,
coincides with Ay N (V; x V;). This checks that Ay is closed. It remains to prove that
X/G is quasi-projective. We shall do this later. Note that, if X is not a quasi-projective
algebraic variety, X/G may not exist in the category of algebraic varieties even in the
simplest case when G is of order 2. The first example of such action was constructed
by M. Nagata [Nal] and later a simpler construction was given by H. Hironaka [Hir].
However, if we assume that each orbit is contained in a G-invariant open affine subset, the
previous construcion works and X /G exists.

2. Let G = G act on an affine algebraic variety X, and let A := O(X) = DiczA;
be the corresponding grading. Assume that A; = {0} for ¢ < 0 and Ay = k. Such an
action is called a good G r-action. Let us see that X — pt; is the categorical quotient.
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In fact, the inclusion 49 — A induces an isomorphism Ay 2 A®. Obviously, condition
(ii) of Proposition 2 is satisfied too. Now let zo be the point from X (k) corresponding
to the maximal ideal m = @;50A4;. Obviously z is a closed G-invariant subset (closed
G-invariant subsets correspond to homogeneous ideals). The subset X' = X \ {zo} is an
open G-invariant subset. Let us show that the geometric quotient X' — X'/G exists. We
shall assume first that A is generated by homogeneous elements of degree 1. We choose
homogeneous generators fo, ..., fn € A; of the k-algebra A. The kernel of the canonical
surjection k[Tp,...,T,] — A,T; — fi, is a homogeneous ideal in &[Ty, ..., Ty]. It defines
a projective subvariety of P} which we take for Y = X'/G. The standard open cover of
P} defines an open cover {Up,...,Un} of Y. We have O(Ui) = A(y,) = {f1,a € Aq}.

The open subsets D(f;),s = 1,...,n cover X', and O(D(f;)) = Ay,. The subsets D(f;)
are G-invariant, and the induced grading of Ay, is given by (Af,)m = {—f%,a € Am+d}

In particular we see that O(U;) = O(D(f;))¢. The map p : X' — Y is given by the
maps D(f;) — U; which are defined by the homomorphisms O(U;) — O(D(f;)). Thus
condition (i) of Proposition 2 is satisfied. A closed G-invariant subset of X' is given by
a homogeneous ideal in A. Its image in Y is closed, since its intersection with each U; is
given by the dehomogenization of this ideal with respect to the variable T;. This checks
condition (iii). Finally (A, )¢ = fFA(s) which gives an isomorphism of A(y,)-algebras
Ay, = A5[Z,Z71]. This gives that X xy X is covered by open sets V; = D(f;) xv, D(fi)
with

O(Vt) = A(f-')[Za Z_l] ®A(f,-) Afi = Afi [Z, Z_l]'

It is already clear from this that the fibres of D(f;) — U; over any z € X (k) are isomorphic
to Gm,k. We leave to the reader to see that ¥ induces an isomorphism G x D(f;) —
D(f:) xu; D(fi)-

Now if A is generated by homogeneous elements f;,¢ = 0,...,n, of arbitrary positive
degrees d;, we construct Y by gluing together the affine varieties U; corresponding to the
algebras A(y,). We use that

Aig) = (Ag) gos s = (i) s o

to identify U; NU; with the quotients of D(f;f;) = D(f;) N.D(f;). This gives a categorical
quotient variety denoted by Proj(A). In fact (see [Bou], Chap. III, §1), there exists.a
positive integer e such that the subalgebra

A = @A,

is generated by elements of degree e. If we replace X by the variety X with (’)(2? ) Al
and define the action of Gk on X via the grading of O(X) by setting O(X): = Aie,
we will see that X'/G = X'/G as algebraic varieties. This follows easily by using natural
isomorphisms

AE;)C) = A(y) for any homogeneous element f € A.

Since O(X) is generated by homogeneous elements of degree 1, X'/G is a projective variety.
So X'/G is a projective variety. Also observe that, if we consider the homomorphism of
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groups o : G — Gk given by the homomorphism of k-algebras Z — Z¢, then we
have a commutative diagram

Gm,kXX — X

axep| el.
Gm,kXX —_ X

Here ¢ : X — X is given by the inclusion of the rings A(®) < A. This shows that
(G x X') and X' x x; X' are both mapped onto ¥(G x X') = X' Xx1/G X' under the
map ¢ X ¢. Using the fact that the map ¢ x ¢ is a finite morphism, we obtain (by reducing
to the case when X is irreducible) that this implies that ¥(G x X') = X' x x/c X'. Hence
X' — X'/G is a geometric quotient.

Of course a special case of this example is the case when X = A} and the action of G

is the standard one: ¢ - (21,...,2n) = (tz1,...,t2,). The geometric quotient X'/G is the
projective space P} .
3. Let H be a closed subgroup of an affine algebraic group G and G/H be the homogeneous
space we constructed in Lecture 2. The canonical projection G — G/H is a good geometric
quotient. We omit the proof, referring the reader to [Hum)], IV 12, where all conditions
of the definition are verified.

4.3 Geometric invariant theory suggests a method for constructing quotients. Unfortu-
nately it applies only to a certain special class of algebraic groups. Let us recall some
general facts about the structure of affine algebraic groups (see [Hum]).

We will be transferring the usual terminology of the theory of groups to algebraic
groups. First of all it is time to introduce the notion of an invariant subgroup and the
corresponding factor group. The first notion is easily defined by considering the adjoint
action Adj(g,z) = g-x-g~! of G on itself. This is defined as the composition of the
morphisms

Gx G GG x @S ExEXxG X GG -5 G,

where s switches the second and the third factor. Next we verify that for any invariant
closed subgroup H the homogeneous space G/ H has a structure of an affine algebraic group
such that the map G — G/H is a homomorphism of algebraic groups which is universal
with respect to homomorphisms f : G — G' with H C Ker(f). We skip this construction
but observe that the universal property follows easily from the fact that G — G/H is
a geometric quotient. Our second remark (which should have been made much earlier)
is that the properties of irreducibility and connectedness are equivalent when the variety
is an algebraic group. This is easy to see by observing that any homogeneous space is
a nonsingular variety. We denote the connected component of G containing the unity
e € G(k) by G°. This is a closed invariant subgroup of G. The factor group G/G° is a
finite algebraic group over k (not necessary constant).

An algebraic group T is called a torus if, considered as a k-variety, it is isomorphic
to (G )" A torus is called split if this isomorphism is defined over the ground field
k. Every torus can be split after a finite separable extension of k. An algebraic group is
called solvable if it admits a composition series of closed normal subgroups whose successive
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quotients are abelian groups. An algebraic group is called unipotent if there exists a faithful
linear representation p : G — GL(n) such that the image is contained in the subgroup of
upper-triangular matrices with diagonal entries equal to 1. A unipotent group is solvable,
it contains a composition series with factors isomorphic to Ga; or (if k is not perfect
of char(k) = p > 0) to the constant group (Z/p)x, associated to the group Z/p. It is
isomorphic to the semi-direct product of these groups. Each algebraic group G contains a
maximal connected solvable invariant subgroup. It is called the radical of G and is denoted
by Rad(G). A group G is called reductive if its radical is a torus. A group G is called
semi-simple if its radical is trivial. A maximal solvable subgroup B of a semi-simple group
G is called a Borel subgroup. It has the property that for any subgroup P containing B
the homogeneous space G/ P is projective. Any two Borel subgroups are conjugate to each
other. A Borel subgroup contains a maximal connected abelian subgroup isomorphic to
a torus. It is called a mazimal torus. All maximal tori are conjugate. Their common
dimension is called the rank of G.

Each Borel subgroup is isomorphic to a semi-direct product (defined in the natural
way) of its maximal unipotent subgroup U and a maximal torus contained in B. There
exist two Borel subgroups BT and B~ such that T = B* N B~ is a maximal torus in both
of them. Let UT and U~ be the corresponding maximal unipotent subgroups of Bt and
B~. Then the multiplication map U~ x T x Ut — G is an isomorphism onto an open
Zariski subset (called a big cell). Over a perfect field k any unipotent group is isomorphic

“to an affine space (as an algebraic variety). Thus after some finite extension k'/k, the
group G/ contains an open subset isomorphic to the product of affine lines and a split
torus. This is the fact we have used in Lecture 3.

There is a complete classification of semi-simple groups over an algebraically closed

field k. Examples of simple groups are the classical groups

SLk(n +1)(type An), Ox(2n + 1)(type Bnr), Spr(2n)(type Cr), Or(2n)(type Dy).

There are also some exceptional groups of type Fy, G2, Eg, E7, Es. Every simple algebraic
group is isogenous to one of these groups (i.e. there exists a surjective homomorphism
from one to another with a finite kernel). Here the subscript indicates the rank of the
corresponding group.

4.4 Examples. 1. Let G = GLg(n). Its radical is the subgroup of scalar matrices, and
is isomorphic to Gm . The quotient groups SLi(n) is simple. Any Borel subgroup is
conjugate to the subgroup UTi(n) of upper-triangular matrices. Its maximal unipotent
subgroup is the group of upper-triangular matrices with diagonal entries equal to 1 (upper
unipotent matrices). The maximal torus in this subgroup is the subgroup Di(n) of diagonal
matrices. It is isomorphic to (Gm k)" *. Thus SLi(n) is of rank n — 1. If LTx(n) denote
the subgroup of lower triangular matrices, then UTx(n) N LTx(n) = Di(n). The LU-
decomposition tells us that there exists an open Zariski subset of SLi(n)(k) such that each
matrix A from this set can be written as a product A = LU, where L € LTx(n)(k),U €
UTy(n)(k). This decomposition of A can be easily converted to decomposition into the
product of a lower unipotent matrix, a diagonal matrix and an upper unipotent matrix.

2. Let ko be a field of characteristic p > 0, and k = ko(t) be the field of rational functions
with coefficients from ky. Let G be the subgroup of (Gax)? defined by the equation
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Z{ 4+ Zy = tZ7 in A}. For any K/k we have G(K) = {(a,b) € K? : a? 4+ a = tb?}. It is
immediately verified that this is a subgroup of the vector group K2. Since a subgroup of a
unipotent group is obviously unipotent, G is a one-dimensional connected unipotent group.
The projection to the second factor defines a surjective homomorphism p : G — G & of
algebraic k-groups, with kernel (Z/p)x. However it is not isomorphic (even as a variety!)
to Ga k. In fact one checks easily that the projective curve X : TP + Ty TP ™! — tT7 =0in
P?% has no singular k-points and contains G as an open subset. If G were isomorphic to A}
we could extend this isomorphism to an isomorphism of projective curves X = Pi. But
this is absurd since X has a singular k-point (0, /¢, 1). However if we extend k by adding
a p-th root of ¢, the variety X becomes isomorphic to A}. Note that the restriction of the
homomorphism p to the open subset G,y \ {0} has all fibres isomorphic to Ga, so it is a
group scheme over Gg; \ {0}.

4.5 A reductive group over a field of characteristic 0 satisfies the following property of
linear reducibility:

For every rational linear representation p : G — GLi(n) and a G-invariant linear
subspace V, there exists a G-invariant linear subspace V' such that V N V' = {0} and
AP =V V.

In particular, if v € k™\ {0} is G(k)-invariant, there exists a G-invariant linear function
on k™ which does not vanish at v. To see this we write k» = kv @ V' for some G(k)-
invariant subspace V' and consider the projection map to kv. Unfortunately, this property
does not hold in general if k is of positive characteristic. However if we replace the words
“linear function” with “homogeneous polynomial function” this property holds in any
characteristic. This is a famous theorem of W. Haboush [Hab]. In fact, this is the main
property which we shall need to construct quotients.

Definition. An affine algebraic group G is called geometrically reductive if for any rational
linear representation p : G — GLi(n) and a non-zero vector v € k™ there exists a non-
constant G-invariant homogeneous polynomial function f € O(AZ}) which does not vanish
at v.

So by Haboush’s Theorem any reductive group is geometrically reductive. Conversely,
any geometrically reductive group must be reductive. (see [MN]). Note that in the case
of positive characteristic a group G satisfying the property of linear reducibility has G°
isomorphic to a torus and the order of G/G° is coprime to the characteristic.

4.6 We shall often use the following lemma.

Key Lemma. Let X be an affine G-variety, and let Z, and Z be two closed G-invariant
k-subsets with Z1(k) N Zy(k) = 0. Assume G is geometrically reductive. Then there exists
a G-invariant function ¢ € O(X)Y such that ¢(Z;) = 0, $(Z,) = 1.

Proof. First choose some ¢ € O(X), not necessary G-invariant, such that ¢(Z;) =
0,(Z2) = 1. This is easy. Since the sum of the ideals defining Z; and Z, is the unit
ideal, we can find a function o € I(Z;) and a function 3 € I(Z;) such that 1 = a + S.
Then we take ¢ = a. Applying the Lemma from Lecture 2, 2.2, we can find a G-invariant
finite-dimensional vector k-subspace V' of O(X) such that for each K/k, the space Vi
is spanned by translates ¢*(¢),g € G(K). Let ¢1,...,¢n be its basis. Consider a map
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f: X — A7 defined by these functions. Clearly, f(Z1) = (0,...,0),f(Z2) = (1,...,1).
The group G acts linearly on the affine space defining a linear representation. By definition
of geometrically reductive groups, we can find a non-constant G-invariant homogeneous
polynomial F' € k[Z,...,Z,] such that F(1,...,1) # 0. Then ¢ = f*(F) = F(p1,...,%n)

satisfies the assertion of the lemma.
We shall apply this lemma to prove the main result of this Lecture:

Theorem (M.Nagata). Let G be a geometrically reductive group acting on an affine
variety X. Then the subalgebra O(X)¢ is finitely generated over k, and if Y denotes an
affine algebraic variety with O(Y) = O(X)Y, then the map p : X — Y induced by the
inclusion of the k-algebras is a good categorical quotient.

Proof. We postpone the proof of that O(X)Y is finitely generated until the next
Lecture. To show that p is a categorical quotient, let us apply Proposition 2. First of all,
property (1) easily follows from the fact that taking invariants commutes with localizations.
More precisely, if f € O(X)%, then (O(X))¢ = (O(X)%);. This is easy and we skip the
proof. Let Z be a closed G-invariant subset of X. Suppose p(Z) is not closed. Let
y € p(Z)\ p(Z). Then Wy = Z and W, = p~'(y) are two closed G-invariant subsets
of X with empty intersection. By the Key Lemma, there exists a function ¢ € O(X)¢
such that ¢(Z) = 0,¢(p~'(y)) = 1. Since ¢ = p*(¢p) for some ¢ € O(Y), we obtain
"~ @(p(Z)) = 0,0(y) = 1. But this is absurd since y belongs to the closure of p(Z). This
“verifies condition (ii). Now let Z; and Z; be two disjoint G-invariant closed subsets of X.

As above we find a function ¢ € O(Y) with ¢(p(W;)) = 0,(W2) = 1. This obviously
implies that p(Z1) N p(Z;) # 0. This checks (iii).

4.7 Example. Let G = GLi(N) act on itself by the adjoint action, i.e., g -z = gzg™!.
For each matrix g € GL(n, K) we consider the characteristic polynomial

det(g —tI,) = (=t)* + c1(g)(=t)" 1 + ... + cnlg)-

Define the maps cx : GL(n,K) — K" by the formula cx(g9) = (c1(9),...,¢cn(g)). As is
easy to see these maps define a G-equivariant morphism

¢: GLi(n) — A}.

We claim that this a categorical quotient. To check this it is enough to verify that O(G)¢ =
klei,...,cn)] 2 k[Z1,..., Zy). Obviously klcy,...,ca] C O(G)C. Let ¢ € O(G)C. Let U be
the subset of GL(n, k) which consists of diagonalizable matrices with distinct eigenvalues.
This is an open dense Zariski subset. The restriction of ¢ to U is determined by the
restriction of ¢ to the subset D(n) of diagonal matrices. Each such function is a symmetric
polynomial function in the diagonal elements. By the theorem on elementary symmetric
functions, it is a polynomial in ¢;1|D(n),...,c,|D(n). Thus there exists a polynomial
F(Z,,...,Z,) such that ¢ — F(cq,...,¢,) = 0 when restricted to U. This implies that
¢=F(c1,...,cn).

4.8 The algebra of invariants O(X )¢, where G is a reductive algebraic group, and X is
an affine algebraic variety, inherits many algebraic properties of O(X). We shall not go
into this interesting area of algebraic invariant theory, however we mention the following
simple but important result.
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Proposition. Let G be a reductive algebraic group acting on a normal algebraic variety
X. Then the categorical quotient X//G is a normal algebraic variety.

~ Proof. Let K be the field of rational functions on X. It is clear that the field L
of rational functions on X//G is contained in the subfiled K¢ of G-invariant rational
functions. We have to check that the ring O(X)C is integrally closed in L. Suppose z € L
satisfies a monic equation

"+ az" 4. +ap=0

with coefficients a; from O(X)¢. Since X is normal, z € O(X)N K¢ = O(X)% and the
assertion is verified.

Remark. One should not think that the field of rational functions of X//G is equal to
the field of G-invariant rational functions on X. This is not true in general. However this
is true in the following cases:

(i) G is a finite group;

(i1) O(X) is a unique factorization domain and X(G) = {1};
(i) the connected component of the identity of G is a solvable linear group.
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Problems.

1. Let Ga,x act on A2 by the formula t - (21,29) = (21,29 + tz;). Consider the map
AZ — A}, (21,22) — 2z1. Is it a categorical quotient? If it is, is it a geometric quotient?
2. Let Gm x act on A} by the formula t-(zy,...,2,) = (t?21,...,t9" 2,) for some positive
integers qi,...,¢, coprime to char(k). Show that the geometric quotient A} \ {0}/Gm k
constructed in Example 2 is isomorphic to a quotient of P*~! by a finite group.

3. Let A = @iczA; be a graded finitely generated k-algebra, and Al®) = PiczAei- Show
that, if e is coprime to char(k), A(®) = A, where G is a cyclic group of order e.

4. Show that Gg,k is not geometrically reductive.

5. In the notation of Nagata’s Theorem show that for any open subset U of Y, the
restriction map p~!}(U) — U is a categorical quotient with respect to the induced action
of G.

6. Describe the orbits and the fibres of the categorical quotient from Example 4.7 when
n=2.

7. Let G act on an irreducible affine variety X and let f : X — Y be a G-invariant
morphism to a normal affine variety. Assume that codim(Y \ f(X)) > 2 and there exists
an open subset U of Y such that for all y € U the fibre f~! contains a dense orbit. Show
that Y = X//G.

- 8. Give an example of an irreducible affine G-variety X such that the field of fractions of
~O(X)¢ is not equal to the field of G-invariant rational functions on X.

9. Prove the assertions (i) and (ii) from Remark 4.8.

10. Give an example of a torus which is not split over the ground field.
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Lecture 5. HILBERT’S FOURTEENTH PROBLEM

5.1 Here we shall prove the assertion in Nagata’s Theorem that the ring of invariants of a
geometrically reductive group is finitely generated. We shall also give a counter-example
of Nagata for a group which is not geometrically reductive. These results are all related
to one of the Hilbert’s Fourteenth Problems. The precise statement of this problem is as
follows:

Problem. Let k be a field, k(t1,...,t,) be its purely transcendental extension, and let
K/k be a field extension contained in k(t1,...,t,). Is the k-algebra KNk[ty,...,t,] finitely
generated?

Hilbert himself gave a positive answer to this question in the situation when K is
the field of rational functions invariant with respect to a linear action of G = SL(n)
in k[t1,...,ts]. The subalgebra K N k[ty,...,t,] is of course the subalgebra of invariant
polynomials k[t;,...,t,]¢. A special case of his problem asks whether the same is true for
an arbitrary group G acting linearly in the ring of polynomials. A first counter-example
was given by M. Nagata in 1959 [Na2]. We shall briefly explain it in this lecture. Let us
first give a geometric interpretation of Hilbert’s Problem 14 due to O. Zariski.

For any subfield K C k(ty,...,t,) we can find an irreducible algebraic variety X over
k with the field of rational functions k(X) isomorphic to K. The inclusion of the fields
gives rise to a rational map

f:Pr——> X

Let Z C P} x X be the closure of the graph of the regular map of some open subset of P}
defined by f. Let H be the hyperplane at infinity in P? and D = pro(pry* (H)). This is
a closed subset of X. By blowing up, if necessary, we may assume that D is the union of
codimension 1 irreducible subvarieties D; and pr;(pr;*(D;)) is contained in H. Thus for
any rational function ¢ € k(X), f*(¢) is regular on P} \ H if and only if ¢ has poles only
along the D;’s. But, after identifying k(X) with K (by means of f*) and O(P} \ H) with
k[t1,...,tn], this implies that K N k[t1,...,t,] is isomorphic to the ring R(D) of rational
functions on X with poles only along the D;’s. So the problem is reduced to the problem
of finite-generatedness of the algebras R(D) where D is any positive divisor (union of
codimension 1 irreducible subvarieties) on an algebraic variety X. Assume moreover that
X is nonsingular. Then each positive divisor can be given locally by an equation ¢y = 0,
where ¢y on X is regular on some open subset U of X. These functions must satisfy
¢y = guyov on U NV for some gyy € O(U NV)*. This leads us to a line bundle L(D)
defined by the transition functions gyy. Rational functions R with poles along D must
satisfy ay = R¢}y € O(U) for some n > 0. This implies that the functions ay satisfy
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ay = g&yav; hence they form a section of the line bundle L(D)®™. This shows that the
algebra R(D) is equal to the union of linear subspaces I'(X, L(D)®") of the field k(X).
Let

R*(D) = ®nxol'(X, L(D)®").

Recall that we can view ['(X, L(D)®™") as the space of regular functions on the line bundle
L(D)~! whose restriction to fibres are homogeneous polynomials of degree n. This allows
one to consider the algebra R*(D) as the algebra O(L(D)™1). Let P be the variety obtained
from L(D)™! by adding the point at infinity in each fibre of L. More precisely, let Ox
be the trivial line bundle. Then the variety P can be constructed as the quotient of the
rank 2 vector bundle L(D)™! @ Ox \ {zero section} by the group G i acting diagonally
on fibres. Here the direct sum means that the transition functions of the vector bundle
are chosen to be diagonal matrices
( guv O )
0 1)°

Then we obtain that R*(D) is equal to the ring R(S) where S is the divisor at infinity in
P. This leads to the following:

~ Problem (Zariski). Let X be a nonsingular algebraic variety and D be a positive divisor
on X. Is the algebra R*(D) finitely generated?

We shall see later that Nagata’s counterexample to the Hilbert problem is of the form
R*(D). It turns out that the algebras R*(D) are often non-finitely generated. However
if we impose conditions on D (for example, that the complete linear system defined by
L(D) has no base points) then it is finitely generated. One of the fundamental questions
in algebraic geometry is the question of finite generatedness of the ring R*(D), where D
is the canonical divisor of X. This is closely related to the theory of minimal models of
algebraic varieties (see [Mor}]).

5.2 Let us now turn our attention to the algebras of invariants. First we consider a
simple situation. Let G be a reductive group over a field of characteristic zero acting
linearly in A}?. Let A = O(A}) = k[Zy,...,Z,]. It is clear that G leaves each subspace
Aqg = kl|Z1,...,Z,]q invariant and

AC = eadZOAdG'-

The linear representation of G in the space A4 is completely reducible (here we use that
char(k) = 0). Let rg : Ag — A$ be the G-invariant projection operator. The sum of these
operators defines a projection

r:A— AC.

Using the uniqueness of the operators ry it is easy to see that it is a homomorphism of
A%-modules, i.e., r(ab) = ar(b) for any a € A%,b € A.

Now we consider the ideal I in A generated by homogeneous polynomials of positive
degree from A®. By Hilbert’s Basis Theorem (which he proved exactly for this purpose!),
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I is generated by a finite set of elements fi,..., fn. We may assume that each f; is a
homogeneous polynomial of some degree d; from A®. Let us show that the polynomials f;
generate AC as a k-algebra. For any f € A we can write

N
f= Zaifi, a; € Ag_q;.

=1

After applying r, we get

N N
f=r(f)=Yrlafi) =Y r(a)fi

By induction on the degree of f we may assume that the r(a;) are all polynomials in the
fi’s; hence f is a polynomial in the f; as well.

5.3 To move from k[Zi,...,2,]% to AC. where A is any finitely generated algebra, we
need the following result:

Lemma 1. Let p: G — GLg(n) be a linear representation of a reductive algebraic group
G over a field k of characteristic zero, and let X be a G-invariant closed algebraic subvariety

in A7 defined by an ideal I C O(A}) = k[Z1,...,Zy]. Then
OX)C 2 k[Zy,...,Z)%/(INK[Z0,. .., Za]%).

Before we prove this lemma, we introduce some terminology. We say that an affine
algebraic group G acts rationally on a k-algebra A if there is given a coaction map 0* : A —
O(G)® A in the sense of Lecture 1. When A = O(X) for some affine algebraic variety (e.g.
A is finitely generated k-algebra) this is equivalent to an action of G on X. We say that
an ideal I C A is G-invariant if 0*(I) C O(G) ® I. Again if A is finitely generated this is
the same as saying that the affine subvariety of X defined by I is G-invariant. Clearly the
action of G on A induces an action of G on A/I. So Lemma 1 follows from the following
more general result:

Lemma 1'. Let a geometrically reductive algebraic group G act rationally on a k-algebra
A leaving an ideal I invariant. For any a € (A/I)C there exists d > 0 such that a €
A /(I n A®). If G is reductive and char(k) = O then d can be chosen to be 1, ie,
(A/T)C C A9 /(1N A%).

Here as usual A® = {a € A: 0*(a) = 1®a} is the subalgebra of G-invariant elements

Proof. Let @ be a non-zero element from (A/I)¢, and let a be its representative in A.
Let V be a finite-dimensional G-invariant subspace of A spanned by the translates of a. If

o*(a) = Eai ® a;,
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then V is spanned by the a;’s. We denote by &* the induced co-action map A/I —
O(G)® A/I. We have

&*(a):Zai®ai=1®a.

This shows that W := V N [ is a G-invariant subspace of codimension 1 in V and we can
write any element of V in the form

v=Aa+w
for some A € k and w € W. Let [ : V — k be the linear map v — A. Since
c*(Aa+w)=XAo"(a)—1Qa)+ M1Qa)+c*(w) € AM(1Q®a)+ O(G) W

the map [ is G-invariant. Consider it as an element of the dual space V*, where the group G
acts on V* naturally and [ is a G-invariant element. Choose a basis (vy,...,v,) of V with
v; = a, and v; € W for 1 > 2. Then we can identify V* with A}, by using the dual basis
so that [ = (1,0,...,0). By definition of geometric reductivity, we can find a G-invariant
homogeneous polynomial F(Zy,...,Z,) of degree d such that F(1,0,...,0) # 0. We may
assume that F = Z¢ 4+ .... Now we can identify v; with Z;, hence F(vy,...,v,) —a? €
 (vg,...,vn) C IN AC. Since F(vy,...,v,) € A%, we are done.

5.4 Thus we have proved that O(X)? is finitely generated in the case that G is a reductive
group over a field of characteristic 0. Let us now treat the general case of a geometrically
reductive group.

Theorem (Nagata). Let A be a finitely generated k-algebra and let G be a geometrically
reductive group acting rationally on A. Then the subalgebra AC is finitely generated.

Proof. We would like to assume that A = S/I, where S is a polynomial algebra
on which G acts linearly, inducing the action of G on A. To do so, we choose a set of
generators for A, and then consider the linear action of G on the vector space V spanned
by the translates of the generators. If (fi,..., fn) is a basis of V, then we consider the
surjection S = k[Z1,...,2Z,) — A, Z; — f;,. Since V contains the set of generators of A,
this is a surjective G-equivariant homomorphism.

We will use Lemma 1’ again; it implies that the algebra (A/I)¢ is integral over
AC /(I N A%). Here we consider the first algebra as an algebra over the second one by
means of the canonical injective homomorphism A% /(I N A®) — (A4/I)C induced by the
projection A — A/I. In particular, we obtain

)G

(A/I)® s finitely generated = A%/(IN A%) is finitely generated.

The converse is true if (4/I)¢ is a domain and its field of fractions is finitely generated
over the field of fractions of A9 /(I N A%).

Assume AC = (S/I)€ is not finitely generated. Let N be the set of all ideals < in
S with the property that (S/<) is not finitely generated. This set is nonempty, so we
can find a maximal element (). We get a contradiction if we show that (S/Q)€ is finitely



Hilbert’s Fourteenth Problem 45

generated. Thus we may assume that our ideal I = @ and hence satisfies the property
that for any ideal J' in S strictly containing I, the algebra (S/J')¢ is finitely generated.
Equivalently, for any nonzero ideal J in A = S/I,(A/J)C is finitely generated.

Suppose for a moment that I is a homogeneous ideal. Then A inherits the standard
grading of S, and since G preserves the grading of S, S¢ and A€ are graded k-algebras.
Let J be a non-zero ideal of A. Since (4/J) is finitely generated, by above, A% /(J N A%)
is finitely generated. If the ideal J N A is finitely generated, we add its set of generators
to the set of representatives in A® of generators of the algebra A%/J N AS to obtain that
the ideal (A%)} = ©g4>0(A)q is finitely generated. By using the same inductive argument
as in 5.2, we obtain that A® is finitely generated k-algebra. So we find the contradiction
as soon as we find such J. If A/I has no zero divisors this is really easy. One can take
J to be the principal ideal fA, where f € (A%),. Then fAN A® = fAC since, for any
z € A, g*(fz) — fz = f(g*(z) —z) = 0 for all g € G(K) implies z € AC.

So we may assume that any f € (A%)4 is a zero divisor. Then the annulator ideal
R := {a € A: fa = 0} is non-zero. The algebras AS/(fAN A%) and A9/(R N A)
are finitely generated (because (A/fA)¢ and (A/R)% are). Let B be the subring of A®
generated by representatives of generators of both algebras. It is mapped surjectively to
both the algebras A®/(fANA®) and A®/(RN A®). Let ¢y, ...,c, be representatives in A
of generators of (4/R)% as a B/(RN B)-module. Since g*(c;) — ¢; € R for all g € G(K),
we get f(g*(ci)—c;) =0, ie., fc; € A9. Let us show that A® = B[fcy,..., fca]. Then we
will be done (in the homogeneous case). If a € A, we can find b € B such that a—b € fA
(since B is mapped surjectively to A9/fAN A%). Then a — b = fr is G-invariant implies
that r is G-invariant modulo I. Thus there is an element ¢ € ¥;Bc¢; such that r —c € I.
This implies a = b+ fr = b+ fc € B[fey,..., fca] as we wanted.

Let us no longer assume that I is a homogeneous ideal. Again we choose @) as above
(not necessarily homogeneous). If A® = (S/Q)% contains a zero-divisor f we apply the
previous argument to get a contradiction. Otherwise, A® is a domain integral over S¢/(QN
S%). By the previous case S is finitely generated (as G acts linearly on it); hence,
SE/(Q N S%) is finitely generated. Now A€ is finitely generated provided we verify that
its field of fractions is finitely generated over k. If A were a domain this is obvious (a
subfield of a finitely generated field is finitely generated). In the general case we use the
total ring of fractions of A, the localization Ag with respect to the set S of non-zero-
divisors. For any maximal ideal m of Ag we have m N A% = 0 since A% is a domain. This
shows that the field of fractions of A€ is a subfield of Ag/m. But the latter is a finitely
generated field equal to the field of fractions of A/m N A. The proof is now complete.

5.5 Let us discuss the case of not necessarily geometrically reductive groups. We shall give
later an example of Nagata which shows that A€ is not finitely generated for a particular
non-reductive group G. Notice that according to a result of Vladimir Popov [Pop], if A
is finitely generated for any finitely generated algebra A, then G must be geometrically
reductive.

This shows that for any non-reductive G there exists a finitely generated k-algebra
on which G acts rationally such that A® is not finitely generated. Unfortunately Popov’s
proof does not give any explicit example of such A.

Since any affine algebraic group H is a closed subgroup of a reductive group G, we
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may ask how the rings A% and A¥ are related.

Lemma (Groshans Principle). Let an algebraic group G act rationally on a finitely

generated k-algebra A. Then
AT = (0(G)" @ A)°.

Proof. Let X be an affine variety with O(X) = A. Consider the action of G x H on
G x X, defined by the formula (g, ) - (¢',z) = (99'h™1, gz). Then

O(G x X)) = (0()F @ O(X))C.

On the other hand, the projection G X X — X is a morphism of the G x H-variety G x X
to the H-variety X with respect to the projection homomorphism G x H — H. This
defines a morphism of categorical quotients

(GxX)//Gx H— X//H.
Its inverse is defined by the natural inclusion map X — G x X,z +— (e, z). Thus

O(X) = O(X//H) = O(G x XJ/(G x H)) = O(G x X)®*H = (0(&)¥ @ O(X))°.

Corollary. Assume O(G)¥ = O(G/H) is finitely generated. Then A¥ is finitely gener-
ated

Example. Let H be a Borel subgroup of a connected reductive group G. Then G/H is
projective and hence O(G/H) = k is finitely generated. Hence A is finitely generated.

Of course to apply the Groshans Principle we have to verify first that the action of
H is obtained by restriction of an action of a reductive group G containing H as a closed
subgroup. Let us give an application of this principle by proving the following classical
result:

Weitzenbock’s Theorem. Let p : Gap — GLg(n) be a linear representation of the
additive group. Then O(A})G=.¢ is finitely generated.

Proof. We assume char(k) = 0, referring for the general case to [Fau]. Using a Lie
algebra argument one can show that the image of G, j is contained in a maximal unipotent
subgroup of GLk(n) (see [Bor], Chapter 1,§4). Using the Jordan decomposition it easily
implies that p can be extended to a linear representaion p' : SLi(2) — GLg(n), where
G i is considered as the subgroup U of upper-triangular unipotent matrices in SLg(2).
Applying Groshans’s principle to the pair (G, H) = (SL(2), Ga i) acting on A}, we see
that it is enough to check that O(SLx(2)/U) is finitely generated. Since, for any K/k,
SL(2,K) acts transitively on K? \ {0} with stabilizer of (1,0) isomorphic to U(K), we
obtain that SL; /U is naturally isomorphic to A% \ {0}. Hence O(SL(2)/U) = O(A2) is
finitely generated.

5.6 Now we are ready to present Nagata’s counter-example to the 14th Hilbert Problem.
The group G here is isomorphic to the product of n — 3 copies of the additive group and
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the torus T = (Gm,)"!. We shall specify the number n later. Our group G will act
linearly on the space A}" as follows. Let G’ be the subgroup of SL(2n) with G'(K) equal
to the set of matrices of the form:

{cl a 0 0\
0 ¢ 0 ... 0
0 0 ¢ a O 0
0 0 0 ¢ O 0
0 0 ... ... ... 0 ¢ ayp

\O 0 ... ... ... 0 0 en

Here a; € K,¢; € K*,c1...c, = 1. The group G' acts on A2" via the natural action of
SL(2n) on A2™. If we separate the variables to denote any vector (z1,...,z2,) € K*" by
(z1,Y1,---,Zn,Yn), then g € G'(K) is given by the matrix as above acts by the formula:

(21,915, Tn,Yn) — (€121 + @1Y1,C1Y1, - - -, Caln + AnYn, CaYn)-
We realize G as the subgroup of G’ of matrices where the non-diagonal elements (ay, ..., an)
belong to the linear subspace defined by a system of linear equations

n

za,-ja:j = 0,2 = 1,2,3.

j=1

So the assertion is that the ring of invariants k[Xi,...,X,,Y1,...,Y,]¢ is not finitely
generated under some assumption on n and on k£ which we shall explain later.

Lemma 1. Assume k is infinite and a;; are algebraically independent over the prime field
contained in k. Then

kE(Xy,...,XnY1,..., Y8 = k(T, 2y, Z,, Zs3),

where
. X,T
T=Yi...Ya, Zi= )Y ai %
J

J=1

)i =1,2,3.
Proof. Under the action of g, defined by the matrix from above, we have
e Xy X ey
g (Y—])_ Y—] +aJ7 ) (T)_T

and, since Y a;ja; = 0, we obtain that ¢*(Z;) = Z;,7 = 1,2,3. This checks that the right-
i=1

hand-side is contained in the left-hand-side. Since a;; are algebraically independent over

the prime field, we can express X;T/Y;,7 = 1,2, 3, linearly through Z;, Z,, Z; to obtain

(X1, Xn,Y1,...,Yo) =k(Z21,25, 23, Xy, ..., Xn, Y1,...,Y,) =
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= k(T, Zl,Zz,Z3,X4,. .. ,Xn,n, oo ,Yn—l)-
Let H be the subgroup of G given by the equations s = ... =z, =0,¢; = 1,1 =1,...,n.
Obviously it is isomorphic to Ga ;. We see that
(X1, Xn, Y, Y0)9 C KT, 21, Z9, Z3, Xay ..., X, Ve, .. Yo =

= k(t, 21, 22, Z3, X5, ..., Xn, Y1, .., Yat).

Continuing in this way, we eliminate X5, ..., X,, to obtain
k(X17' .. 7Xn7Y'17' . '1Yn)G C k(T7Z17227Z37},1')‘ .- aYn—1)~

Now we throw in the torus part T' which acts on Y; by multiplying them by ¢;. It is
clear that any T-invariant rational function in Y7, ...,Y,_; with coefficients from the field
k(T,Zy,Z;3,Z3) must be a constant. This proves the lemma.

Consider now the polynomial ring k[Z;, Z3, Z3] and view any column (a1j, asj,as;) of
the matrix (a;;) as the homogeneous coordinates of a point P; in the projective plane P3.
Let R(m) be the ideal in k[Z;, Z,, Z3] generated by homogeneous polynomials F' such that
each P; is a point of multiplicity > m on the curve F = 0.

. Lemma 2.

E[X1,Y1, o, Xn, Yal€ = K(T, 2y, Z2, Z5) N k[ X1, V1, .., X, V] =

={>_ F(21,2,,2;)T™™ : F € R(m)}.
meZ

Proof. We only sketch the proof referring for the details to the original paper of
Nagata [Na2]. Let V; = X;T/Y;,: = 1,...,n. Since a;; are algebraically independent over
k, we have

kVi,..., Vol = k[Z21,22,23,Vy, ..., Vy]
This implies that
k[Z1, 22,23, X4, ..., X0, Y, Y E = R[Xy, ..., X0, VL, L VL.
The intersection of the first ring with k(Z;, Z;, Z3,Y1,...,Ys) is equal to
k[Z1, 2, 25, YEY, ... Y.

The intersection of the latter ring with k(T, Z1, Z,, Z3) is equal to k[T, T, Z;, Z, Z3].
Consider the difference

li
2i = a3iZy — a1;Z3 =,2z; = a3iZy — Qi Z3.

As is easily seen they are both divisible by Y; in the polynomial ring

k[X,Y] =k[Xy,...,Xn,Y1,...,Y]. Since z; and 2| generate (after dehomogenization) the
maximal ideal of the point P;, we see that for any polynomial F' € R(m), FT™™ € k[X,Y].
We skip the proof of the converse.
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Lemma 3. For any homogeneous ideal I C k[Z1,Z,,7Z3] let deg(I) denote the smallest
positive integer d such that I N k[Z;,Z,,7Z3)3 # {0}. Assume that n is chosen to be such
that deg(R(m)) > m+/n for all m > 0. Then for any natural number m there exists a
natural number N such that R(m)N # R(mn).

Proof. Let R(m)q4 = k[Z1, Z3, Z3]aN R(m) be the space of homogeneous polynomials of
degree d from R(m). The expected dimension of this space is (d+2)(d+1)/2—n(m+1)m/2.
We use the fact the condition that P; is a point of multiplicity > m is expressed by
vanishing of all derivatives of the dehomogenized polynomial up to the order m — 1. Thus
we see we see that limp, . deg(R(m))/m < y/n. In view of our assumption we must have
lim, o0 deg(R(m))/m = /n. Since again by assumption deg(R(m))/m > \/n we see
that for sufficiently large N, degR(mN) < degR(m)N = Ndeg(R(m)). This implies that
R(mN) is strictly larger than R(m)N.

Lemma 4. The assumptions of the previous lemma are satisfied when n = s where s > 4
and the coordinates of points P; generate a field of sufficiently high transcendence degree -
over k.

Proof. We omit the proof of this Lemma.

Let us show now that these four lemmas imply the assertion. Assume the algebra
k[X,Y]% is generated by finitely many polynomials P;(X,Y). We can write them in the
form P; =3  F; mT™™ as in Lemma 2. Let r = maz; »,{degF; ,n}. By lemma 3, we can
find F € R(rN) for suffiently large N such that F ¢ R(r)"N. Obviously P = FT~™V can

not be expressed as a polynomial in F}’s. This contradiction proves the assertion.
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Problems.

1. Show that the algebra k[X,Y]¢ from the counter-example of Nagata is isomorphic to
the algebra R*(D) where D is the exceptional divisor on the surface S obtained by blowing
up a finite set of points in P%.

2. Prove that the algebra R*(D) is finitely generated if the the line bundle L(D) is ample.
3. Give an example of a homogeneous space G/H such that O(G/H) is not finitely
generated.

4. Let H be a closed reductive subgroup of an affine algebraic group G which acts on G
by left translations. Show that the homogeneous space G/H is affine.
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Lecture 6. STABILITY

JFrom now on we will assume that G is a reductive algebraic group acting on an
irreducible algebraic variety X. In this lecture we shall explain a general construction of
geometric and categorical quotients suggested by D. Mumford. The idea is to cover X
by open affine G-invariant sets U; and then to construct the categorical quotient X//G by
gluing together the quotients U;//G. The latter quotients are defined by Nagata’s theorem.
Unfortunately, such a cover does not exist in general. However we find such a cover for
some open subset of X, so we can define only a “partial” quotient U//G. The construction
of U depends on a parameter, a choice of a G-linearized line bundle L.

6.1 Definition. Let L be a G-linearized line bundle on X. We set

(i) X**(L) = {z € X(k): 3s € T(X,L®")C for some n > 0, such that the set X, := {y €
X : s(y) # 0} is affine and contains z}. A point from this set is called semi-stable
with respect to L.

(i) X*(L) = {z € X (k) : 3s € (X, L®")C for some n > 0, such that the set X, is affine,
contains = and the action of G in X is closed }. A point from this set is called stable
with respect to L.

(iii) X*(L)o) = {z € X*(L) : G, is a finite group }. A point from this set is called properly
stable.

(iv) X***(L)) = X**(L)\ X°(L). A point from this set is called strictly semi-stable with
respect to L.

(v) X**(L) =X \ X**(L). A point of this set is called unstable with respect to L.

Remarks. 1. Obviously the subsets X**(L) and X°(L) are open and G-invariant (but
could be empty).

2. If L is ample and X is projective, the sets X, are always affine, so this condition in
the definition of semi-stable points can be dropped. In fact, for any n > 0, X;» = X, so
we may assume that L is very ample. Let f : X — P¥ be a closed embedding defined
by some complete linear system associated to L. Then X, is equal to the pre-image of
an affine open subset in PY which is the complement of a hyperplane. Because a closed
subset of an affine set is affine, we obtain the assertion.

3. The restriction of L to X**(L) is ample. This follows from the following criterion of
ampleness: L is ample on a variety X if and only if there exists an affine open cover of X
formed by the sets X,, where s is a global section of some tensor power of L. We refer for
the proof to [Har], p.155.

4. The definition of the sets X**(L), X*(L), and so on does not change if we replace L by
L®™ (as a G-linearized line bundle). '
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5. Assume L is ample. If z € X*°(L) and the orbit G - z is closed in X**(L) and G is
finite, then = € X°(L)(g). In fact let € X, be semi-stable. Then the set Z = {y € X :
dimG, > 0} is closed in X, and does not contain G - z. As G is reductive, there exists
a function ¢ € O(X,)% such that ¢(z) # 0,¢(Z) = 0. One can show that there exists
some number 7 > 0 such that ¢s®” extends to a section s' of some tensor power of L (see
[Har], Chapter II, 5.14). Since X is irreducible, this section must be G-invariant. Thus
z € Xy C X, and each point in X, has a 0-dimensional stabilizer. This implies that the
orbits of all points in X, are closed in X, . This checks that z is stable. In fact, it is
properly stable.

6* Let i :Y — X be a closed G-invariant embedding, and Ly = i*(L) where L is a
an ample G-linearized line bundle on X. Assume that X is projective and G is linearly
reductive, e.g. with char(k) = 0. Then for any y € Y (k)

y € V*(%(1)) & i(y) € X**(L),

y €Y*(*(D)  i(y) € X*(L),
y € V(¥ (D))o) & iy) € X*(L)(0)-

| _ First we use that the canonical map

L(*) : T(X, L8NG - I(Y,i*(L)®N)C

is surjective for sufficiently large N. To see this we consider the invertible sheaf £ of
sections of L and the exact sequence

0— Ty @ LEN - LON L *(L)®N S0,

where Ty is the sheaf of ideals of Y. Applying the exact sequence of cohomology and using
the fact that H'(X,Zy ® L®V) = 0 for sufficiently large N since L is ample (see [Har],
p. 229), we get the exact sequence

0 — (X, Ty ® LEV) - T(X, LBY) - I(Y,i*(£)®N) — 0.
Since G is linearly reductive, we obtain an exact sequence
0 — I(X, Ty @ LOV)G - (X, LEN)S - (Y, *(L)®V)C > 0.
;From this, our result follows quickly. For any s € I'(X,L®N)% s(i(y)) # 0 implies
T(*)(s)(y) # 0. Conversely if s' € T(X,:*(L)®N)¢ with s'(y) # 0, then we find some

s € I(X,L®N)Y with T'(s*)(s) = s'. Obviously s(i(y)) # 0. This proves the assertion for
the sets of semi-stable points. The remaining assertions are now obvious.
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6.2 Theorem. There exists a good categorical quotient 7 : X**(L) — X**(L)//G. There
is an open subset U in X//G such that X*(L) = n~'(U) and 7|X*(L) : X*(L) - U is
a geometric quotient of X°(L) by G. Moreover there exists an ample line bundle M on
X*$(L)//G such that n*(M) = L®", restricted to X**(L), for some n > 0. In particular,
X**(L)//G is a quasi-projective variety.

Proof. As any open subset of X is quasi-compact in the Zariski topology we can find
a finite set {s1,...,s,} of invariant sections of some tensor power of L such that X**(L)
is covered by the sets X,;. Obviously we may assume that all s; belong to I'(X, L®N)¢
for some sufficiently large N. Let U; = X,,,: = 1,...,r. For every U;, we consider
the ring O(U;)¢ of G-invariant regular functions and let 7; : U; — Y; := U;//G with
O(Yi) = O(U;)C as constructed in Nagata’s theorem. For each 1,j we can consider s;/s;
as a regular G-invariant function on U;. Let ¢;; € O(Y;) be the corresponding regular
function on the quotient. Consider the principal open subset D(¢;;) C Y;. Obviously

7 (D(¢ij)) = ;7 1(D($5:)) = Ui N Uj.

This easily implies that the both sets D(¢;;) and D(¢;;) are categorical quotients of U;NU;.
By the uniqueness of categorical quotient there is an isomorphism a;; : D(¢;;) — D(¢;s).
It is easy to see that the set of isomorphisms {a;;} satisfies the conditions of gluing, so we
can patch together the quotients Y; and the maps 7; to obtain a morphism 7 : X**(L) —» Y,
where Y = X*%//G. To show that Y is separated it is enough to observe that it admits an
affine open cover by the sets Y; which satisfies the following properties: ¥;NY; = U;nU;//G
are affine and O(Y; NY;) is generated by restrictions of functions from O(Y;) and O(Y;).
The latter property follows from the fact that O(U; N U;) is generated by restrictions of
functions from O(U;) and O(U;).

In fact, the separatedness also follows from the assertion that Y is quasi-projective.
So let us concentrate on proving the latter. Note that the cover {U;}i=1, . , of X**(L)
is a trivializing cover for the line bundle L' obtained by restriction of L to X*°(L). In
fact, by Remark 3, L' is ample hence we may assume that some tensor power L®* is
very ample. This implies that L'®*V is equal to the line bundle f*(Opr(1)) for some
embedding f : X**(L) — P}. The section s®* of L'®'N is equal to the section f*(h)
where h is a section of Opr(1). Thus the open subset U; is equal to f~!(V;) where V; is
an open subset of P} isomorphic to affine space. This shows that L' restricted to U; is
equal to (f|U;)*(Opr(1)|V;). However, Opr(1)|V is isomorphic to the trivial line bundle
since any line bundle over affine space is isomorphic to the trivial bundle. By fixing some
of the trivializing isomorphisms we can identify the functions (s;/s;)|U; N U; with the
transition functions g;; of L'. As we have shown before, s;/s; = 7*(¢;;) for some functions
$i; € O(Y;). We use transition functions h;; = ¢;;|¥; NY; to define a line bundle M on
Y. Obviously n*(M) = L'. Let us show that M is ample. First we define its sections t;
by setting t;|Y; = ¢;; for a fixed j and variable 7. As for any 11,1,

Biri = BiyjPisiy,

t;|Y:, NY;, differ by the transition function of M; hence t; is in fact a section of M.
Clearly 7*(t;) = s; and Y;; =Y. Again as above since all Y; are affine, we obtain that M
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is ample. Since 7 : X*°(L) — Y is obtained by gluing together good categorical quotients,
the morphism 7 is a good categorical quotient.

It remains to show that the restriction of 7 to X°(L) is a geometric quotient. By
definition X *(L) is covered by affine open G-invariant sets where G acts with closed orbits.
Since 7 is a good categorical quotient, for any = € X°(L) the fibre 7~!(7(z)) consists of
one orbit. Thus 7|X*(L) is a good geometric quotient.

In the case when L is ample and X is projective, the following construction of the
categorical quotient X**(L)//G is equivalent to the previous one.

Proposition. Assume X is projective and L is ample. Let

R=Pr(x,L°").

n>0

Then
X**(L)//G = Proj(R%).

In particular, the quotient X**(L)//G is a projective variety.

Proof. First of all, we observe that by Nagata’s theorem, the algebra RC is finitely-

- generated. It has also the natural grading induced by the grading of R. The reader should

- go back to Lecture 4 to recall the definition of Proj(A) for any finitely generated graded k-
algebra A. Replacing L by L®¢, we may assume that R® is generated by elements sy, . . ., s,
of degree 1. Let Y = Proj(R®) be the projective subvariety of P} corresponding to the
homogeneous ideal I equal to the kernel of some homogeneous surjection k[T, ..., T,] —
RC.T; — s;. The elements s; generate the ideal m = R$ generated by homogeneous
elements of positive degree. Thus the affine open sets U; = X, cover X*°(L). On the
other hand the open sets Y; = Y N {T; # 0} form an open cover of ¥ with the property
that O(Y;) = O(U;)®. The maps U; — Y; define a morphism X**(L) — Y which coincides
with the categorical quotient defined in the proof of the previous Theorem.
Remark. Note that the morphism X**(L) — X**(L)//G is affine, i.e., the pre-image of an
affine open set is affine. There is also the following converse of the previous theorem. Let
U be a G-invariant open subset of X such that the geometric quotient 7 : U — U/G exists
and is an affine map. Assume U/G is quasi-projective. Then there exists a G-linearized

line bundle L such that U C X*(L). We refer for the proof to [Mul], p. 41.

6.3 Examples. 1. Let X be the affine space A} and G the multiplicative group Gm .
Let it act on X by the formula

t-(z1,...,20) =(t-2z1,...,t  2n),t € G k(K),zi € K.

Let L = X x A} be the trivial bundle on X. By Lecture 3, its G-linearization is defined
by the formula:

t:(2,0) = (t- 2, 6w),

where t +— ¢; is a homomorphisrh X ¢ Gmpi — Gmp. It is easy to see that any such
homomorphism is given by a formula: ¢ — ¢* for some integer . In fact x* : k[T, T71] —
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k[T, T—'] is defined by the image of T, and the condition that this map is a homomorphism
implies that the image is a power of T'. So let L, denote the G-linearized line bundle which
is trivial (as a line bundle) and the linearization is given by the formula:

t-(z,v) =(t-2,t%).
A section s : X — L, of L, is given by the formula

s(2) = (2, F(z))

for some polynomial F(Z) € k[Z] = O(A}). The group G acts on the space of sections by
the formula s + s, where

ts(2) = (2,t* - F(t71 - 2)).
Thus s € I'(X, LE7)Y if and only if

F(t-z)=t"*-F(z) forallze K™t K*.

A polynomial which satisfies this property must be homogeneous of degree ra. Since there
are no non-zero homogeneous polynomials of negative degree, we get X**(L,) = 0 if a < 0.
In this case X**(L)//G = 0. If a = 0, F must be a constant, hence, since X is affine,
X%%(Ly) = X . Since O(X)C =k, we get X**(Ly)//G = pt.

If >0,
@F(Xa Lgr)G = @ k[Z]ra = k[Z](a)a

r>0 r>0

where k[Z] is equipped with the standard grading. Since all monomials Z* belong to this
ring, X**(Ly) = {0}, hence X**(L) = A} \ {0}. Since all orbits of G in this set are
closed, and G acts with trivial stabilizers, we obtain X**(Ly) = X*(Lqa)(0). To see what
the quotient is, we may assume that a = 1 (see Remark 4 in 6.1). Then, in the notation of
the proof of the Theorem, we may take Z; to be the section s;. Then the sets X, coincide
with the sets U; = D(Z;) = A? \ V(Z;). The ring O(U;)¢ is equal to the homogeneous
localization k[Z](z,) so that each Y; is isomorphic to the affine space A}7'. In this way
we easily see that

X**(L1)//G=X*(L)|G =P}
Now if X is any closed subvariety of A} given by a homogeneous ideal I, then the

action of G,  on A} induces an action on X. Let L, be the restriction of the G-linearized
bundle L; to X. Then by Remark 6 from 6.1, X**(L;) = X' = X \ {0}. We leave it to the
reader to verify that the construction of X**(L;)//Gm i coincides with the one described
in Example 2 of Lecture 4.

2. Let G be again Gp, x and X = A} with the action given by the formula:

t- (Z1,22,2’3,24) = (tzl,tzg,t_lz3,t"lz4).

As in in the previous example, each G-linearized line bundle is isomorphic to the trivial
line bundle with the G-linearization defined by an integer a. We have

(X, LE")% = k[ Z]a.
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However this time the grading in k[Z1,..., Z,] is weighted with weights (1,1, -1, —1).
Assume o = 0. Then for any r > 0,1 € T'(X, LE")¢ = I'(X, Lo)®. Hence X = X**(L),
and

O(X)C = k[Z)o = k2123, 2124, Z2Z3, Z2Z4) C k[Z].

We have a canonical surjection
k[T, T2, Ts, Ts] = O(X)¢, Ty = 2123, Ta = Z1Z4, Ts > Z2Z3, Ty > Z324.

This shows that
O(X)C = k[Ty, Ty, Ts, o) /(Ty Ty — T2 Ts).

Thus X **(L)//Gm,k is isomorphic to the closed subvariety Yy of A% given by the equation
T\'T, — T, T3 = 0.

This is a quadric cone. It has one singular point at the origin.
Assume a > 0. Again, without loss of generality we may take & = 1. It is easy to see
that
@ k[Z), = k[Z]50 = Z1k[Z] >0 + Z2k[Z] 0.
r>0
" Thus
X*(Ly) = A} \V(Z41, Z,).

This set is covered by the open subsets Uy = D(Z;) and U, = D(Z;). We have
OU1)% = k[Z)(z,) = k[2)0[22/Z1), O(U2)® = k[Z)(z,) = k[Zo[Z1/Zs].

We claim that X **(L;)/G is isomorphic to a closed subvariety Y’ of A} x P} given by the
equations
T1Z2 - T3Z1 = 0, T2Z2 - T4Z1 == 0, T1T4 - T2T3 =0.

Here we use (Z1, Z,) for homogeneous coordinates in P}. In fact, this variety is covered
by two affine open sets Y given by Z; # 0,i = 1,2. It is easy to see that O(Y}') = O(U;)°.
We also verify that these two sets are glued together as they should be according to our
construction of the categorical quotient. Thus we obtain an isomorphism Y' = Y, :=
X**(L1)//Gm,k- In fact, we have X**(L;) = X°(L;) so that Y is a geometric quotient.
Note that we have a canonical morphism

f+: Y1 oY

which is given by the inclusion of the rings k[Z]o C O(U;)¢. Geometrically it is induced
by the projection A% x P1 — A%. Over the open subset ¥, \ {0} this morphism is an
isomorphism. In fact, Y; \ {0} is covered by the open subsets U; = Yo N D(T;),: = 1,...,4.
The pre-image U; = f_:l(U 1) is contained in the open subset where Z; # 0. Since Z,/Z; =
T3 /Ty, we see that fy induces an isomorphism O(U;) — O(U;). We treat the other pieces
U; similarly. Over the origin, the fibre of f is isomorphic to P}. Also, we can immediately
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check that Yy is a nonsingular variety. Thus fy : Y} — Y is a resolution of singularities
of Yp. It is called small because the exceptional set is of codimension > 1. The reader,
familiar with the notion of the blowing up, will recognize Y, as the variety obtained by
blowing up along the closed subvariety of Yy defined by the equations T} = T3 = 0.

Assume o < 0. Similar arguments show that Y_ = X*(L_;)/Gm  is isomorphic to
the closed subvariety of A} x P} given by the equation

T1Z4 - T2Z3 = 0, T3Z4 - T4Z3 = 0,T1T4 - T2T3 =0.

We have a morphism

f- Y=Y

which is an isomorphism over Yp \ {0} and the fibre over {0} is isomorphic to P}. The
diagram
Yy Y_
f+\ 7 f-
Yo

represents a type of birational transformations between algebraic varieties which is called
nowadays a “flip”. Note that Y} is not isomorphic to Y_; they are isomorphic outside the
fibres f1'(0) = Pi.
3. Let p: G — GLg(n + 1) be a linear representation of a reductive algebraic group G.
Consider the corresponding action of G in P}. We know from Lecture 3 that the line
bundle L = Opy(n + 1) admits a canonical GL(n + 1)-linearization. This defines a G-
linearization on L. For any z € P}(k) let z* = (ao, . .., an) be a vector in AP+ (k) = k"+?
lying over z (i.e., its coordinates are homogeneous coordinates of z). We claim

(i) z € X*°(L) & the closure G - z* of its orbit does not contain 0;

(i) « € X*(L)() ¢ the orbit G- z* is closed in A}*! and G,- is finite;
(i) z € X**(L) < the closure G - z* of its orbit contains 0.

Let us check (i). Assume 0 ¢ G - z*. The sets {0} and G - z* are two disjoint closed
G-invariant subsets in A}. Since G is reductive, we can find a G-invariant polynomial
F such that F(z*) = 1,F(0) = 0. Write F' as a sum of homogeneous polynomials F' =
Fy+F, +...+ F,. We get that F; = 0, and that one of the F/s does not vanish at
z*. But then F"*! defines a section s € I'(X, L®")C with s(z) # 0. This shows that
¢ € X*5(L). Conversely if s € I'(X,L®)% with s(z) # 0 and F is the corresponding
G-invariant homogeneous polynomial of degree i(n + 1), then F(z*) # 0. For any point
v€E G z*,F(v) = F(z*) #0. Hence 0 ¢ G - z*.

Let us check (ii). Let z € X°(L)« and = € X, be as in the definition of stable
points. Then s corresponds to a homogeneous polynomial F' of positive degree d and
F(z*)=a#0. Ifv € G- z*, then F(v) = a; hence, G - z* C {F = a}. Under the canonical
projection m : ART1\ {0} — X = P} the image of the set Z, = {F = a} is equal to X, and
the restriction of 7 to Z, defines a finite map Z, — X of degree d. In fact, we can view this
map as the linear projection map of the hypersurface F(Zo, ..., Zn, Znt1)—aZl,, C PZ'H.
We have

7(G-2*)=7n(G-z*) =G -z.
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If G- z* is not closed, the image of a closed orbit G - y* contained in G-z* \ G - z* is a
closed non-empty G-invariant subset of G - z. Hence it must be equal to G - z. But then
dim Gy« > 0 implies dim G, > 0 contradicting the assumption. Thus G - z* is closed.
Obviously the condition that G is finite implies G4« is finite. Conversely if G-z* is closed,
and by a similar argument we find that its image in X, is equal to G - z and is closed.
Again, G, is finite implies that G, is finite. Lastly, statement (iii) follows from (i).
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Problems.

1. Let X be a homogeneous space with respect to an action of an affine algebraic group
G. Assume X is not affine. Show that for any L € Pic®(X) the set X**(L) is empty.

2. A G-linearized line bundle is called G-effective if X*°(L) # 0. Show that L ® L' is
G-effective if both L and L' are G-effective.

3*. Let G x act on an affine algebraic variety X and O(X) = .., O(X); be the cor-
responding gradlng Define Ay = O(X)o,A30 = Di>00(X)i, A<o = Pi<0O(X)i, Aso =
Bi>00(X)i, Aco = PicoO(X);. Let L € chG(X), which is trivial as a line bundle. Show
that there are only three possibilities (up to isomorphism): X°**(L) = X, X \ V(I[}), X \
V(I ), where I, (resp. I_) is the ideal in O(X) generated by Ay (resp. A ). Show that
in the first case X**(L)//Gm i is isomorphic to Spec(Ag), in the second (resp. the third)
case X **(L)//Gm,k is isomorphic to Proj(Axo) (resp. Proj(A<o).

4. In Example 2 from 6.3 show that the fibred product Y=Y, Xy, Y_ is a nonsingular
variety. Its projection to Yp is an isomorphism outside the origin, and the pre-image E of
the origin is isomorphic to P} x P}. Show that the restrictions of the projections from Y
to Yy to E coincide with the two prOJectlon maps P} x P} — P}.

5. Let G be a finite group acting algebraically on X Show that for any L € Pic® (X),
X**(L) = X*(L). Also X°(L) = X if L is ample. Show that the assumption of ampleness
is essential (even for the trivial group!).

6. Let G = SLi(n) act on the affine space of (n x n)-matrices M(n, k) by conjugation.
Consider the corresponding action of G in the projective space X = P(M(n, k)). Find the
sets X*°(L), X*(L), X*(L)(0), where L € Pic%(X). Recall that Pic(X) & Z.
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Lecture 7. NUMERICAL CRITERION OF STABILITY

In this lecture we prove a numerical criterion of stability due to David Hilbert and
David Mumford. It is stated in terms of the restriction of the action to one-parameter
subgroups of G.

7.1 Definition. A one-parameter subgroup of G is a homomorphism of algebraic groups
A:Gmi — G

The set of one parameter subgroups of G is denoted by X.(G).

Examples. 1. Let G = Gp, ; be a n-dimensional torus. A one-parameter subgroup
A: G,k — G is given by the homomorphism \* : O(G) = k[TF!, ..., TF] - O(Gm,x) =
k[T, T-1]. This homomorphism is determined by its values on Ty, ..., T, which as easily

seen must be powers of T. Thus A is determined by n integers (my,...,m,) such that
A*(T;) = T™:. Since G is commutative, the set X,(G) has a natural structure of an abelian
group. The map A — (my,...,my) defines a natural isomorphism

X.(Gr ) = Zm,
Note that we also have a natural isomorphism

(L) =2,
where X(G) = Hom(G, G, k) is the group of characters of G. The composition map:

Xe(Gin k) X (G p) = X(Gm k), (A, x) = x 0 A,
corresponds to the natural dot-product bilinear pairing:
Z" x 71" - Z.

We shall denote the value of this pairing by (A, x).
2. Let A € X(GLg(n)). Consider the natural linear action of GLi(n) on A} and let

G,k X A} — A} be the action of Gy, x obtained by the composition of this action with
the map (A X id) : G X A} — GLi(n) x A}. Let

| Z,‘—)iz,’j®Zj

j=1
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be the coaction for GLi(n) and
Zi =) M(Zi)®Z;
j=1

be the corresponding coaction map for Gm . As always a G k-action defines (and is
defined by) a grading of the algebra of functions on the variety. In our case we have a
grading of k[Z,, ..., Z,]. The above formula shows that the subspace of linear polynomials
V is invariant with respect to this grading. Furthermore, we can write

V= é‘/zy
i=1

where

Vi={deV:¢(\t) -z)=t'¢(z) forallte K* zec K"}.
Let (¢1,...,¢n) be a basis in V' such that each function ¢; belongs to some subspace Vin,.
Let ¢ € GL(n,k) = GLk(n)(k) send each coordinate function Z; to ¢;. In these new
coordinates, we have for any z = (z1,...,2,) € Ax(K) = K,
At) (21, vy Tn) = (™1, .., T Ty).
In other words, the one-parameter subgroup

goXrog ! Gpr — GLg(n),t — gA(t)g™*

is defined by the formula

tm™ o ... ... ... 0

o ™ 0 ... ... O
t—

0 B | I A

What we have proved here is that any linear representation of G, x is diagonalizable.
Using the same idea one can prove that any linear representation p : Gy, , — GL;} is
diagonalizable, i.e., there exists g € GL(n, k) such that

t?r 0 ... ... ... O
0 tm o0 ... ... O

gpl(toostdg™ = | T
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where we use the vector notation

tm =g

for any (t1,...,tr) € (K*)",(m1,...,m,;) € Z". This fact is used in proving that all
maximal tori in a reductive algebraic group are conjugate.

7.2 The idea of the stability criterion is as follows. Suppose G acts on a projective variety
X C P} via its linear representation p : G — GLy(n + 1). This can be achieved by taking
a very ample G-linearized line bundle L on X. As in Example 3 from 6.3, we denote by
z* a representative of a point z € X(k) € k"*!. By this example £ € X**(L) if and only
if 0 ¢ G- z. By 7.1 we may choose coordinates in the affine space A7t such that for any
z* = (2o,...,2n) € AFT(K),

A(t) - z* = (t™°zg,...,t""xy,).

Suppose, for z; # 0, that the m; are strictly positive. Then the map:
Aer AL\ {0} — AZ'H,t — A(t) - z*

can be extended to a regular map AL — A}*! by sending the origin of A} to the origin of

APt 1t is clear that the latter belongs to the closure of the orbit of z*, hence our point
-z is unstable (Example 3 from Lecture 6). Similarly, if all m; are negative, we change A

to A™! defined by the formula A~!(¢) = A(¢7!) to reach the same conclusion. Let us set

w(z, ) = miin{mi z; # 0}

So we can restate the previous remark by saying that if there exists A € X,(G) such that
p(z,A) > 0 or p(z, A7) > 0, then z is unstable. In other words, we have a necessary
condition for semi-stability:

if x € X*°(L), then for all A € X.(G), u(z, ) <0.

Assume the previous condition is satisfied and p(z,A) = 0 for some . Let us show that
z is not properly stable. Assume the contrary. In the previous notation, let I = {i : z; #
0,m; > 0}, and let y = (yo,...,Yn), where y; = z; if 1 # I, and y; = 0 if s € I. Obviously,
y belongs to the closure of the orbit of z under the action of the subgroup A(Gm ). By
definition of stability, y must be in the orbit. However, obviously \(Gnm k) fixes y, so that
y cannot be properly stable. Thus we obtain a necessary condition for properly stable
points:
if € X*(L) (o), then for any A € Xu(G), u(z, ) <O0.

We have to show first that the numbers p(z, \) are independent of a choice of coordinates
in APt and, more importantly, that the previous condition is sufficient for semi-stability.
Let us prove first the independence. -Let z* be as above. For any ¢ € k* the corresponding
point A(t) - z is equal to the point

(tmi’wo, ... ,tm/"a:n),
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where m; = m; — u(z,)) if z; # 0 and anything otherwise. Thus when we let ¢ go to
0, we obtain a point in X with coordinates y = (yo,...,Yn), where y; # 0 if and only if

z; # 0 and m; = p(z, A). The precise meaning of “let t go to 0” is the following. For any
one-parameter subgroup A : Gy x — G and a point ¢ € X (k) we have a map

et AR\ {0} = Xt = A(t) -z

Since X is projective this map can be extended to a unique regular map

A, : P — X.
We set
lim; o A(t) - = := A.(0),
lim; oo A(2) - 1= Ag(00).
Obviously

lim oo A(t) - 7 = lim; o A71(2) - z.

So our point y is equal to lim;_,oA(¢) - z. Now it is clear that for any t € k

At) -y =y,

that is, y is a fixed point for the subgroup A(Gm) of G. Also the definition of y is
independent of any coordinates. Furthermore, for any vector y* over y,

A(t) - y* = tHENy* (4)

This can be interpreted as follows. Restrict the action of G on X to the action of G, &
defined by A. Then L has a natural Gy, ;-linearization and, since y is a fixed point, G &
acts on its fibre L, defining a linear representation

py i Gmi — GLi(1) = G k.

iFrom Lecture 3 we know the geometric interpretation of the total space of the line bundle
Opr(—1). It follows from this that the fibre of the canonical projection AP\ {0} - P?
over a point € X can be identified with Opz(~1), \ {0}. Thus from (*) we get that
G,k acts on the fibre L;l by the character t — t#(#)) hence it acts on the fibre L, by
the character t — t~#(#:2) This gives us a coordinate-free definition of u(z,)). In fact,
this allows one to define the number p%(z, \) for any G-linearized line bundle L as follows.
Let y = lim¢—oA(t) - z. Then A(Gm,) C Gy and, as above, there is a representation of
Gm i in the fibre L. It is given by an integer which is taken to be —uZ(z, ).

7.3 Now we are ready to state the main result of this Lecture.
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Theorem. Let G be a reductive group acting on a projective algebraic variety X. Let L
be an ample G-linearized line bundle on X and z € X(k). Then

z€X*(L) & ph(z,)) <0 forall A € X%(G),

z € X°(L)oy & p¥(z,X) <0 for all X € Xi(G).

First of all, replacing L by sufficiently high tensor power, we can place ourselves in the
following situation. G acts in a projective space P} by means of a linear representation
p: G — GLg(n), X is G-invariant closed subvariety of P}. We have to prove the following;:

Let £ € X and z ¢ X*(L)o. Then there exists A € X.(G) such that uZ(z,\) > 0.
Moreover, if € X**(L) then there exists A € X,(G) such that uZ(z,)) > 0.

To simplify the notation we drop L in u”(z, A) remembering that L = i*(Opr(1)®"*1).

We shall need the following fact:

Lemma (Cartan-Iwahori-Matsumoto). Let R = k[[T]] be the ring of formal power
series with coefficients in k, and let K = k((T)) be its fraction field. For any reductive
algebraic group G, any element of the set of double cosets G(R)\G(K)/G(R) can be rep-
resented by a one-parameter subgroup A : Gm x — G in the following sense. One considers

X as a k(T)-point of G and identifies k(T') with the subfield of k((T')) by considering the

- Laurent expansion of rational functions at the origin of A}.

Proof. We shall do it only for the case G = SLi(n) or GLg(n), referring to the
original paper of Iwahori and Matsumoto for the general case (see [IM]).

A K-point of G is a matrix A with entries in K. We can write it as a matrix T" A,
where A € GL(n, R). As R is a PID, we can reduce the matrix A to the diagonal form to
be able to write

A=C1DC,,
where C; € G(R), and D is a diagonal matrix diag[T™,...,T™]. Now we can define a
one-parameter subgroup of G by

A(t) = diag[t™, ..., ™).

Then A represents the double coset of the point A € G(K) as asserted.

Proof of the Theorem. Suppose z is not stable (a fortiori, not properly stable). Then
themapa: G-V = AZ’H,g — ¢ -z*, is not proper. In fact, otherwise the orbit g - z*
is closed, and hence z is semi-stable. By the Valuative Criterion of properness ([Har],
p. 101), there exists a R-point of V such that, viewed as a K-point of V, it has a pre-
image under ax : G(K) — V(K) but it does not arise from any R-point of G. In other
words, there exists an element ¢ € G(K) \ G(R) such that g - z* € V(R) = R™*!. By the
previous Lemma we can write ¢ = g1[\]g2, where ¢1,92 € G(R), and [A\] € G(K) which
arise from a one-parameter subgroup A € X,(G). Let g, be the image of g under the

“reduction” homomorphism G(R) - G(k) correspondmg to the natural homomorphism
R—k,>;a;T* — ao. We can write:

959179 = (35 ' [Ng2)37 ' 92
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The expression in the bracket is a K-point of G defined by a one-parameter subgroup
X' = g;'Ag, of G. Choose a basis (e, ..., e,) in k"1 such that the action of X'(Gpp ¢) is
diagonalized. That is, we may assume that

N(t)-ei=t"e;,i=0,...,n.
This is equivalent to
[)\I] € = Trie,',i = 0,...,n.

Thus, if we write z* = z§eg + ... + z},en, We obtain
(92919 2")i = (N1 (292~ 2*))i = T™(35 '92 - ™).
Since g - z* € R™*!, this tells us that
(95'92-2)i =T (g5 97 'g-2")i € T™"R. ()

This implies that r; > 0 if z} # 0. In fact the element g, ‘g, is reduced to the identity
modulo (7T'), hence (g5 g5 - £*); modulo (T) is a constant equal to z}. On the other hand
it is equal to T~ "a; modulo (T') for some a; € R. This of course implies that r; > 0 if

z; #0.

Recalling our definition of u(z, ') we see that u(z,A’) > 0. If z is unstable, we can
additionally observe that the point g-z* € R™*! is reduced to the zero modulo (7') because
0 € G - z*. This implies that the right-hand-side of (*) belongs to T~ "*! R and hence we
get r; > 0 if ¥ # 0. This proves the theorem.

7.4 Assume G = Gy, ; is a torus acting linearly on X C P}. By 7.1 we know that we

can find a basis (Xo...,Xp)in V = (’)(AZ'H)l such that the linear action of G in AZ'H
is given by the coaction formula:

ot (X)) = T™ @ X,

where T™ = T/™* . . T{"" € O(G). For any t = (t1,...,t,) € G(K) = (K*)" and any
v € AT (K) we have
X,'(t . 'U) - tmiX,'('U).

The map t — t™ is a character of G. Let us identify the group X(G) with the group of
monomial functions in O(G), and also with the group Z* of monomial exponents. For any
character x € X(G) let

Ve={$eV:a"(d)=x®d} = {$€V: 4t )
= x(t)é(z), VK/k, ¥t € G(K),Vz € A} (K)}.
Then we obtain that X; € Vi, and

V= P %

XEX(G)
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The latter decomposition is coordinate-free. For any v € AFT!(K), let v; = X;(v). In
other words, if we use the X;’s to identify AP™!(K) with K™*!, then v = (vo,...,v,). It
follows from above the group G acts on a vector v by the formula

t-v=(tMv,...,t""v,).

Let W, be the linear subspace of AZ"H defined by the ideal generated by the functions
from V,s, x' # x. Then, for any v € W, (K),

t-v=x(t)v, Vt € G(K).

Considering W; as a linear subspace of P}, we see that it consists of fixed points of G.
The vector space A}T!(K) decomposes into the direct sum of the subspaces Wy, and if
we write v = ) vy € A}T(K), where vy € Wy (K), we obtain for any t € G(k)

t-v= E X(t)vy.

This gives a coordinate-free description of the action of G in AZ‘H.

Now for any A € X.(G)
Alt)-v = Z tAxy, .
x

We define for any z € P}(k), the state set of x:
st(x) = [x € X(G) : 2% £0)
and the state polytope of «
st(z) = convex hull of st(z) in X(G) ® R = R™.

It follows from 7.2 that
,uL(:c, A) = mianst(z)()\, X)-

This can be restated in the following way:

Theorem. Let G be a torus and L be an ample G-linearized line bundle over a projective

G-variety X. Then
z € X*(L) & 0 € st(z),
z € X°(L)o & 0 € interior{st(z)}.
Proof. We use a well-known fact (the supporting hyperplane lemma) from the theory
of convex sets. Let A be a closed convex subset of R". For any point a € R™ \ interior(A)

(resp. a € R™\ A there exists an affine function ¢ : R®™ — R such that ¢(a) < 0 (resp.
#(a) < 0), and ¢(A) C Ry>o. Moreover, the proof of this fact shows that one can choose ¢
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with integral coefficients if A is a convex hull of the set of points with integral coordinates.
We refer for the proofs to any text-book on convex sets (see for example [Brg]). The result
follows.

7.5 Now let G be any reductive group acting linearly on a projective variety X C P}, L
be some positive tensor power of Opz(1). We know that any one-parameter subgroup of
G has its image in a maximal torus T of G, hence can be considered as a one-parameter
subgroup of T. Thus if we restrict the action of G to T, we obtain from the numerical
criterion that any £ € X*°(L) must belong to the subset X$*(Lt), where the subscript T'
indicates the restriction of the action (and the linearization) to T. Now, applying Theorem
7.3, we obtain

x*(L)y= (] X#Lr)
TEMT(G)

X'(Lo= [ Xi#(lr),
TEMT(G)

where MT(G) is the set of maximal tori in G. Let us fix one maximal torus T'. Then for
any other maximal torus 7", we can find ¢ € G(k) such that ¢7"¢g~! = T. By Example 2
from the previous lecture z is semi-stable (resp. properly stable) with respect to A(Gm,x)
if and only if 0 ¢ A(Gm,k) - z* (resp. A(Gm,i) - z* is closed and the stabilizer of z* in
A(Gm,k) is finite). From this it immediately follows that this property is satisfied if and
only if g - = is semi-stable (resp. properly stable) with respect to gAg™(Gm,x). This
implies
ze€ X7/(Lp) e g-ze XP(Lr),

and similar assertion for properly stable points. Putting this together we obtain

Theorem. Let T be a maximal torus in G. Then
z € X*(L) & Vg € G(k),g-z € XP(L7),

z € X°(L)o & Vg € G(k),g-z € X7(Lt)o.

Together with the Theorem from the previous section we get an explicit criterion for
checking stability. We shall demonstrate how it works in the next lecture.
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Problems.

1. An algebraic group G is called diagonalizable if O(G) is generated as k-algebra by the

characters ¢ : G — Gm i considered as regular functions on G. Prove that a torus is a

diagonalizable group and every connected diagonalizable group is isomorphic to a torus.

Give examples of non-connected diagonalizable groups.

2. Check the following properties of the function u’(z, \):

(1) u(g-z,X) = u(z,97 " Ag) for any g € G(k), ) € Xu(G);

(i) forany z € X, A € Xi(G), the map PicC(X) — Z defined by the formula L — p(z, ))
is a homomorphism of groups;

(iii) if f : X — Y is a G-equivariant morphism of G-varieties, and L € Pic®(Y), then
pI Bz, X) = ph(f(2), M);

(v) pf(z, ) = pP(lim_oA(t) - 2, A).

3. Prove that G acts properly on X°(L) ) (i.e., the map ¥ : G x X*(L)o) — X°(L)) X

X*(L)(o) is proper).

4. Let T be an r-dimensional torus acting linearly in a projective space P}. Show that

PicT(P}) = Z™! and the set of L € PicT(P}) such that (P?)**(L) # 0 is a finitely

generated semigroup of Z"t1.

5. In the notation of Problem 6 from Lecture 6, using the numerical criterion of stability,

- find the sets X**(L) and X**(L)(o).
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Lecture 8. EXAMPLE: PROJECTIVE HYPERSURFACES

Let G = SLi(n + 1) act linearly in A}*! in the natural way (as a subgroup of
GL(n+1)). This action defines an action of G in the subspace k[Zy, ..., Z,]a C O(A})
of homogeneous polynomials of degree d > 0. We view the latter as the space of k-points
of the affine space ALY, where N = (";d). The k-points of the associated projective space
P,IcV ~1 can be interpreted as hypersurfaces of degree d in P%. For this reason we shall
denote this projective space by Hyp,(d). ,

In this lecture we shall try to describe the sets of semi-stable and stable points for

this action. Note that since Pic(Py ') 2 Z and X(G) = {1} there is no choice for a
non-trivial linearization; we take L = (’)Piv-l(l). We shall assume that k is algebraically
closed.
8.1 We begin with the simplest non-trivial case where n = 1. The elements of the space
k[Zo, Z1]q are binary forms of degree d. The corresponding hypersurfaces can be viewed as
finite subsets of points in P} taken with some multiplicities (or, equivalently, as effective
divisors on P} or closed subschemes of P}). If

d
F = ZaiZO_iZ{ € K[Zo,Zl]d,
1=0
and

g= <‘i 2) € SL(2,K)

then the action of G on k[Zy, Z1]q is defined by the formula:

d
Fs (g7)(F) =) ai(dZo — b21)* " (—cZo + aZr)'.
1=0
Let T be the maximal torus of G which consists of diagonal matrices and equal to the
image of the one-parameter group
t 0
vo=(4 %),

Let us first investigate the stability with respect to T. For this we shall follow the last
section of the previous Lecture. We have to compute the state set of the point H € Hyp,(d).

‘We have J

K(Z,2:)a = P K 2§~ 2

=0
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and

N (247 28) = gz,

Let
S={-d,—d+2,...,d—-2,d} CZ=X(T).

For any point H € Hyp,(d) given by the equation F' = 0, its state set st(H) (with respect
to the action of T') is a subset of S. Let amin (resp. amaz) be the smallest (resp. largest)
element of this set.

By the theorem from 7.4 of Lecture 7, we know that H is semi-stable (resp. properly
stable) with respect to T if and only if

Omin < 0 < amaz (reSP- Umin <0< amaz)- (*)

Obviously, amin = —d+2i, where 7 is the maximum power of Z; which divides F'. Similarly,
Qmaz = d — 2i, where 7 is the maximum power of Z; which divides F. This can be
interpreted as follows:

H is semi-stable (resp. properly stable) with respect to T if and only if the points
(0,1) and (1,0) are zeroes of H of multiplicity < d/2 (resp. < d/2).

;From this we easily deduce

Theorem. Hyp,(d)** (resp. Hyp,(d)}) is equal to the set of hypersurfaces with no roots
of multiplicity > d/2 (resp. > d/2).

Proof. Suppose H is semi-stable and has a root (zo, 21) € P}(k) of multiplicity > d/2.
Let g € G(k) take this point to the point (1,0). Then H' = g - H has the point (1,0) as
a root of multiplicity > d/2. This shows that H' is unstable with respect to T. Hence H
is unstable with respect to G contradicting the assumption. Conversely, assume H has no
roots of multiplicity > d/2 and is unstable. Then there exists a maximal torus 7" with
respect to which H is unstable. Let g7"¢g~! = T for some g € G(k). Then g- H is unstable
with respect to 7. But then it has one of the points (1,0) or (0,1) as a root of multiplicity
> d/2. Thus H has ¢~! - (1,0) or g7* - (0,1) as a root of multiplicity < d/2.

A similar argument proves the assertion about proper stability.

Corollary. Assume d is odd. Then
Hyp,(d)** = Hyp,(d)o-

Assume d is even and let H € Hyp,(d)** \ Hyp,(d)j. This means that H has a root
of multiplicity d/2 but no roots of multiplicity greater than d/2. Consider the fibre of
the projection Hyp,(d)** — Hyp,(d)**//G containing H. Since our categorical quotient
is good, the fibre contains a unique closed orbit. H belongs to this orbit if and only if
its stabilizer is of positive dimension. Any group element stabilizing H stabilizes its set
of roots. It is easy to see that any subset of P} (k) consisting of more than 2 points has
a finite stabilizer. Thus, H must have only two roots. Since one of these roots is of
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multiplicity d/2, the other one is also of multiplicity d/2. Since any two-point sets on
Pj (k) are projectively equivalent, this tells us that

Hyp,(d)** \ Hyp,(d)y G - Ho,

where Hy is given by the equation (Z¢Z;)%? = 0. In particular, Hyp,(d)**//G is obtained
from Hyp,(d)§/G by adding one point.

The variety C¢ := Hyp,(d)**//G is an irreducible normal projective variety of dimen-
sion d — 3. A much deeper result is that it is a rational variety. This was proven only very
recently by F. Bogomolov and P. Katsylo (see [Bog]).

8.2 Let us consider some cases with small d.
If d = 1 we have Hyp,(1)* = 0. If d = 2 we have Hyp,(2)§ = 0 and

Hyp,(2)** = Hyp,(2)*

consists of subsets of two distinct points in P}. There is only one orbit of such subsets.

The set Hyp,(3)*® consists of three distinct points in P}. By a projective transfor-
mation they can be reduced to the points {0,1,00}. So the variety Cf is again the point
variety ptg.

The set Hyp, (4)§ consists of subsets of four distinct points in P} and the set Hyp, (4)*°
consists of closed subsets V(F) where F' has at most double roots. Since Hyp,(4) is an
open Zariski subset of the projective space P%, and the fibres of the projection Hyp,(4); —
Hyp, (4)3/G are of dimension 3(= dimSLk(2)), we obtain that C} is a normal, hence
nonsingular, curve. Since it is obviously unirational, it must be isomorphic to P;. The
image of the set of semi-stable but not properly stable points is one point. If we consider
the map

7+ Hyp, (4 — Cf 2 P}

as a rational function on Hyp,(4)§ then we can find its explicit expression as a rational
function R(ag,...,a4) in the coordinates of a binary form. Unfortunately, this is not easy
to explain and is the subject of the Classical Invariant Theory, which we have no intention
of discussing here (for a good introduction to this theory we can refer the reader to [Stu]).
We only give the answer (see [Sal], p.189)

A3
R(ao,...,a4) = 1A% — B2’
where

A= ag — 3aia3 + 12apa4, B = 27a§a4 + 27a0a§ + Zag — T2apaga4 — 9aya2as.
Here the denominator is equal to the discriminant of the form so it vanishes when the form

has a multiple root. In particular, the function R maps the semi-stable but not properly
stable orbits to the point oco.
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Consider the special case when F' = To(T? + aT¢T) + bT¢). If chark # 3 then each
orbit contains a representative of such form. Then

(13

T 4a® 42168

The denominator is the discriminant of the cubic polynomial z® + az + b. The reader
familiar with the theory of elliptic curves will immediately recognize this function. It is
the j-invariant of elliptic curves given in the Weierstrass form:

y? =2z +az+0

This coincidence is not accidental. The equation above describes an elliptic curve as a
double cover of P} branched over four points (which are the infinity point and the three
roots of the equation z3+az+b = 0). In other words, they are the zeroes of the binary form
To(TE + aTETy + bTE). Two elliptic curves are isomorphic if and only if the corresponding
sets of four points on P} are in the same orbit with respect to our action of SLi(2).

8.3 Let n be arbitrary. Recall that a hypersurface V/(F') € Hyp,,(d) is a nonsingular variety
if the equations
F=0,0F/0T;=0,1=0,...,n

“have no common zeroes. If char(k) does not divide d, we can write

dF = }5 T,0F/9T;

=0

so that the first equation can be eliminated. Let D be the resultant of the polynomials
OF/0T;. It is a homogeneous polynomial of degree (n + 1)(d — 1)* in the coefficients of
the form F'. It is called the discriminant of F. Its value at F' is equal to zero if and only if
V(F) is singular. Since the latter property is independent of a choice of coordinates, the
hypersurface V(D) C Hyp,(d) is invariant with respect to the action of G = SLg(n + 1).
This means that for any g € G(K) we have g*(D) = ¢(g)D for some ¢(g) € K*. One
immediately verifies that the function g — ¢(g) is a character of SLi(n + 1). Since the
latter is a simple group, it group of characters is trivial. This implies that ¢(¢g) =1 for all
g, hence D is an invariant polynomial. Since it is not identically zero, we obtain:

Theorem. Assume char(k) is prime to d. Any nonsingular hypersurface is a semi-stable
point of Hyp,,(d).

If d > n+ 1, one can replace “semi-stable” with “properly stable”. This follows
from the fact, that under these assumptions, the group of automorphisms of a nonsingular
hypersurface is finite.

Assume d = 2 and char(k) # 2. Then Hyp, (2) is the space of quadrics. The space
k[Ty,...,Tn]2 is the space of quadratic forms F = z a;; T;T};, or, equivalently, the
space of symmetrlc matrices

1,7=0

B = (bij)i j=0,..,n, bii = 2aii, bij = bji = aij,1 # J.
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A quadric V(F) is nonsingular if and only if the rank of the corresponding matrix is equal
to n + 1. The determinant function on k[T, ..., Ty,], is the resultant R from above. Thus
all nonsingular quadrics are semi-stable. We know that by a linear change of variables every
quadratic form can be reduced to the sum of squares XZ + ...+ X2, where the number r
is equal to the rank of the matrix B as above. In our situation we are allowed to use only
linear transformations with determinant 1 but since we are considering homogeneous forms
only up to a multiplicative factor, the result is the same. So we have exactly n orbits for the
action of SLi(n+1) on Hyp,,(2). Only one of them is open, and its complement is equal to
the set of zeroes of the discriminant. By Hilbert’s Nullstellensatz, any invariant polynomial
must be a power of the discriminant. Thus only non-degenerate quadrics are semi-stable
points. The stabilizer of the quadratic form T§* + ... + T2 is the special orthogonal group
SOk(n + 1). Since it is of positive dimension (if n > 0), there are no properly stable
points. Since the orbit of non-degenerate forms is closed in the set of semi-stable point,
all semi-stable points are stable.

8.4 Let n = 2 and d = 3. Every homogeneous form of degree 3 in three variables (a ternary
cubic) can be written in the form:

F = asong + a2]0T02T1 + (1201T02T2 + a120T0T12 +ainToTh T+

+a102T0T3 + a030T? + aoa1 TE T2 + ao12 Ty T2 + agos Ty .
Let T be the diagonal maximal torus in SLz(3). Its group of K-points consists of diagonal
matrices diag[t:, t2,t; 't; '] '
For any degree 3 monomial T¢ T} TF we have

At) - TeTITE = ti*ed~*FriTiTk.

Thus the set of characters which can enter in the state set of some F' is the set of following
10 lattice points in the real plane, with coordinates (z — k,j — k):

Fig.1
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Suppose V(F) is unstable with respect to T. Then the origin lies outside of the
state polytope of F' with respect to T' which is equal to the convex hull of the points
corresponding to the monomials entering in the equation of F' with non-zero coefficients.
After permuting the coordinates we may assume that

F = a300Ty + a210Ty Tt + a201 To Tz + a120ToTY + aoso Ty
Computing the partial derivatives we find

OF /8Ty = 3az00Ty + 2a210ToTh + a120T¢ + 2a901 To T,
OF /3Ty = az10TE + 2a120To Ty + 3a030TY,
BF/BTZ = a201T02.

This tells us that the point (0,0,1) is a singular point of V(F'). In the inhomogeneous
coordinates X = Ty /T2,Y = T /T the equation of V(F') is

F=aynX?+ a300X > + 0210 X %Y + @120 XY? + ag30Y>.

jFrom this we see that the singular point is not an ordinary double point.
If azo; = 0, the curve is reducible. It is the union of three lines passing through the
"point (0,0,1). Some of these lines may coincide if F' (considered as a binary cubic form)
has multiple roots.
Assume ay; # 0. Replacing T, by a;oll(Tg — az00T0 — a21071), we may assume that
agp1 = 170300 = a210 = 0 so that

F=X?+4a120XY? + ag30Y>.

If agso = 0, the curve is reducible. If ay9¢9 # 0, it is the union of a line Ty = 0 and
the conic Ty + T2 = 0. They are tangent at the point (0,0,1). If ajp0 = 0 the curve is the
union of two lines Ty = 0 and T3 = 0, the first one is taken with multiplicity 2.

If ap30 # 0, the curve is irreducible. By scaling we may assume that agzo = 1. If
char(k) # 3, we replace Y by Y + %alzoX to kill ay59, and then change T, again to kill
the coefficients appearing at X?Y and X3. Thus we reduce our equation to the standard
equation of a cuspidal cubic:

F=X*4+Y3=0

or in projective coordinates:

F=TT,+ T} =0.

If char(k) = 3 we cannot get rid of the term XY?2. By scaling the coordinates we
reduce the equation to the form:

F=T!T + LT +T¢ =0,

where € = 0 or 1. Observe that the curve with e = 1 differs from the curve with e = 0 by
the property that it has no inflection tangent at any nonsingular point.
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Now let us find semi-stable but not properly stable points. This corresponds to 0 being
on the boundary of the state polytope. Again the picture shows that, up to permutation
of coordinates, the equation of the curve can be taken in the form:

F= asong + a210T3T1 + 0201T02T2 + alZOT0T12 +ainTohTh + a030T13 + 0021T12T2~
Computing the partials we find

OF/[0Ty = 3€1300T02 + 2a210 10Ty + 20901 To T2 + a120T12 + a1 Y13,
OF /0Ty = ag10T¢ + 2a120To Ty + 3a030T?E + 2a021 Th T + a111 To T,
OF/0T, = (1201To2 + 0021T12 +anToTh.

We see that the point (0,0, 1) is singular. In affine coordinates X = Ty /75,y =T /T, we
can write

F=a01X? + @111 XY + a021Y? + a300X> + 0210 XY + @120 XY? + ag30Y>.

We claim that the binary quadratic form a0; X% + a11: XY + agy:Y? is non-degenerate.
In fact, if it is degenerate, a linear transformations of the variables Ty and T; allows
one to replace the equation to assume that az01X? + @111 XY + ap21Y? = X2. Then
aj;; = agy; = 0 and we are in the previous case (i.e., V(F') is unstable with respect to
some torus conjugate to the diagonal torus by means of the transformation we have just
used).

Note that we can do everything in arbitrary characteristic. In fact, if we view a
quadratic binary form as a set of two points on P} we can always reduce them, by a linear
change of variables, to 0 and oo or to the double 0. This corresponds to the reduction of
the quadratic form to either XY or X2

Now we can apply a linear change of the unknowns Ty and 7} to assume that

F =XY 4 a300X? + 210X %Y + a120XY? + agzeY>.
Replacing Ty by Tp — az10Ty — a12071 we may assume that az19 = aj20 = 0 so that
F = XY + a300X?® + ags0Y®.
If one (but not both) of the coefficients ag3p and asgp vanishes, the curve is the union of a
line and a conic. They intersect each other at 2 distinct points.

If agzg = azgp = 0, we get the union of three non-concurrent lines T,T7 T, = 0.
Assume now that agzg and asge are not zero. Applying the linear transformation

1 1 -1 _1
(To, Ty, T) — (ag30To, az00 T, @o35 @300 12)
we reduce the equation to the form:

XY+Xx3+v3=0.
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If char(k) # 3 it can be reduced to the familiar equation of a nodal cubic:
Y2+ X2+ X% =0.

We leave this as an exercise for the reader.

Now we can finish the analysis of stability. Assume V(F') is unstable. Then it is
unstable with respect to some maximal torus. By changing the coordinates we may assume
that it is the diagonal torus. Then we deduce from above that V(F') must be isomorphic
to one of the following curves

(usl) irreducible cuspidal curve;

(us2) the union of an irreducible conic and its tangent line;
(us3) the union of three concurrent lines;

(us4) the union of two lines, one of them is double;

(us5) one triple line.

Assume V(F) is semi-stable but not properly stable. Then V(F') must be isomorphic

to one of the following curves:
(sssl) irreducible nodal curve;
(sss2) the union of an irreducible conic and a line intersecting it at two distinct points;
(sss3) the union of three non-concurrent lines.

As all the above curves are singular, all non-singular curves must be properly stable.
In particular, their group of projective automorphisms is finite. Since we listed all possible
singular curves there are no more properly stable points. Let us show that curves of types
(sss) are not stable. Consider the quotient map

™ : Hypy(3)** — Hyp,(3)**//SLi(3).

The dimension of those fibres containing properly stable curves is equal to dimSL(3) = 8.
Note that in the process of the previous analysis, we have found that curves of type (sssi),
i =1,2,3, each form a single orbit represented by the curves

T To+ T+ T =0, ToT' Ty + T2 = 0, T,Th T, = 0,

respectively. Moreover the curves of type (sss2) and (sss3) have stabilizer of positive
dimension. In fact the torus A(Gm k), where A(t) = (¢,1,¢t™1) stabilizes the second curve,
and the maximal diagonal torus stabilizes the third curve. This shows that the orbits of
curves of type (sss2) and (sss3) are of dimension < 7. Thus they lie in the closure of some
orbit of dimension 8. It cannot be a properly stable orbit, hence the only possible case is
that it is the orbit of curves of type (sssl). Hence this orbit is nether closed nor stable.

Since Hyp,(3) is of dimension 9, we obtain dimHyp,(3)**//SLk(3) = 1. It is a normal
projective unirational curve, hence we find that

Hyp,(3)**//SLi(3) = Pj;.

Since there is only one closed semi-stable but not stable orbit, namely the set of three
non-concurrent lines, we obtain

Hyp,(3)"/SLi(3) = Hyp,(3);//SLk(3) = Aj.
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Thus projective isomorphism classes of nonsingular plane cubics are parametrized by the
affine line. It is easy to see that the orbit of the curve TyT3 T, = 0 is of dimension 6. In
the same fibre we find two other orbits: nodal irreducible cubics (of dimension 8) and of
curves of type (sss2) (of dimension 7). The second orbit lies in the closure of the first one,
and the closed orbit lies in the closure of the second one.

If char(k) # 3, we have 5 unstable orbits: irreducible cuspidal cubics (of dimension
8), curves of type (us 2) (of dimension 7), of type (us3) (of dimension 5), of type (us4) (of
dimension 4), and of type (us5) (of dimension 2). It is easy to see that the orbit of type
(usz) lies in the closure of the orbit of type (us: — 1).

If char(k) = 3 we have two unstable orbits of type (usl), and four other unstable
orbits lying in the closure of the previous two orbits.

Again as in 8.2, one may ask for the explicit formula for the quotient map. It can be
given by the following rational function J in the coefficients a;;x (see [Sa2], pp.189-192 or
[Stu], pp.167-173) :

S8
S —
T? 4 6453

where
S = abem — (beagas + cabybs + abeycy) — m(abscy + beras + cazby )—

—m* +2m?(bic; + caaz + azbs)+
+(abyc + acy b} + bayc? + begal + chza? + cazh?) — 3m(azbse; + aszbicy)—

—(bfcf + c%a% + a§b§) + (c2a2a3b3 + asbsbicy + bicicaaz),

T = a®b%c* — 6abc(abscs + beras + cazby) — 20abem® + 12abem(byci + caaz + ashs )+

+6abc(azbycy + azbycy)+
+4(a®bc3 + a®cbl + a’ebl + bPcad + bPact + cFabd + c*bad)+
+36m2(bca2a3 + caby by + abeica)—
—24m(beby a2 + beeyal + cacyb? + caaz b + abazc + abbzcl) — 3(a?blal + b c2a2 + c2alb?)—
—12(bccza3a§ + bcb3a2a§ + cacy b3b§ + caaszb; bg + abb1c2cf)—
—12m3(abscy + beyas + cazby )+
+12m?(abyci + ac1 b3 + bayc? + beyal + cbzal + cazb?)—
—60m(abybscicz + beyczazas + cagasbibs)+
+12m(aazbsci + aazcybl + bbzcyal + bbyaze? + ceiag b2 + ceabral)+
+6(abscy + beyag + cazby)(azbsey + azbye)+

+24(abi bic? + acicib? + beactal + bazalcs + cazaibl + chybal)—
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—12(aagbl~cg + aaze b3 + bbscaal + bbyaged + cerazh’ + cepbzad) — 6bicicoazazbs—
—8m® + 24m*(bycy + cpag + azbz) — 36m®(azbsc; + a3blczj - 27(Va"’b3c2 + aZbicl)+
+36m(azbscy + agbica)(bicy + cpaz + azbs) + 8(b3ct + csa3 + a3b3)—
—12(b%c2cgag + b2clashy + chadasbs + c3asbicr + ajbibicy + a3b3)—
—12m2(bycicoas + c2agasbs + asbsbicy) — 24m?2(bc} + c3al + a2b?)+
+18(bebiciazas + caczazbsby + abasbszeics).

Here we use the following dictionary between our notation of coefficients and Salmon’s:
(@300, @210, @201, @120, G111, G102, 4030, %021, 4012, agos) = (a, az,as, 3b1,6m, 3c1, b, 3bs, 3ca, ¢).

The denominator D = T? + 6452 is the discriminant of the cubic, which is the resultant
polynomial R we used in 8.3. It vanishes on the closed subset of singular cubics. In
particular, the function J sends semi-stable but not properly stable orbits to the point
0o. It is known that each plane nonsingular cubic over an algebraically closed field of
characteristic different from 2 and 3 can be reduced to the Weierstrass equation

T2Ty — T} — aT, TP — bT2 = 0.

In this special case the value of the function J is equal to

a3

J= .
4a® + 27b2

This is the j-invariant of the elliptic curve. Note that we came to the same function by
studying the orbits of binary quartics.

8.5 The following are the other values of (d,n), where the analysis of stability has been
worked out:

(d,n) = (2,4),(2,5),(3,3) [Mul], (2,6) [Sh1], (3,4) [Sh2].

8.6 Let us cite the following description of the algorithm for finding unstable plane curves
(“nullforms”) given by David Hilbert in his 1897 course on invariant theory. (see [Hil],
Lecture XLV, July 27, 1897 ):

“Draw an arbitrary straight line through the center M, and then determine all those
vertices which lie on this line or on the side of A off the line. The coefficients an,nyn; 11
the ternary form of order n, corresponding to the vertices ny,na,ng3, are to be set equal to
zero, while the other coefficients are left arbitrary.

Here, A is an arbitrary but fixed vertex.”
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Problems.

1. Let (a;,b;),2 = 1,2,3,4, be four distinct roots of a binary quartic F. Let [ij] denote

Zf ZJ . The expression r = [12][34]/[13][24] is called

i 05
the cross-ratio of the four points. Prove that two binary quartics define the same orbit
in Hyp,(4) if and only if the corresponding cross-ratio coincide after some permutation of

the roots.
2. Let H be the subgroup of G = SL(2) generated by the matrix (

the determinant of the matrix

i ‘01) Show that
the homogeneous space G/H is isomorphic to the complement of the quartic V(D) in P3,
where D is the discriminant of binary cubic forms.

3. Show that there are exactly two orbits in Hyp,(4)® with non-trivial stabilizer. Show
that the closures of these orbits in Hyp,(4) are given by the equations A = 0 and B = 0,
where A, B are the polynomials of degree 2 and 3 defined in 8.3.

4. Show that Hyp,(4)** is isomorphic to a surface of degree 6 in P%. Its singular set is
isomorphic to a Veronese curve of degree 4.

5. Find all projective automorphisms of a nonsingular cubic curve (may assume that
char(k) # 2, 3).

6. Find all projective automorphisms of an irreducible cuspidal cubic.

7. Make the analysis of stability in the case (d,n) = (3,3) and compare the result with
the answer in [Mul].

8. Prove that nonsingular quadrics are semi-stable in all characteristics.
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Lecture 9. EXAMPLE: CONFIGURATIONS OF LINEAR SUBSPACES

Let G(r+1,n+1) denote the Grassmann variety of (r+1)-dimensional linear subspaces
in the affine space A;:'H (or, equivalently, of r-dimensional linear projective subspaces in
P7). The group G = SLi(n+1) acts naturally on G(r+1,n+1) via its linear representation
in AZH. In this lecture we shall investigate the stability of the diagonal action of G on
the variety

X=G(r+1,n+1)"
of ordered m-tuples of linear r-dimensional subspaces in P}.

9.1 First we have to describe possible linearizations of this action. Recall that a K-point
of the variety G(r+1,k+1) is a direct summand projective submodule W of K™ of rank
r+ 1. If K is a field, W is given in K™t by a system of homogeneous linear equations
" which we can take for the definition of the corresponding linear projective subspace W
of P%.. We assign to W its exterior power A"t (W) to obtain a point of PY(K). This
defines a closed embedding of G(r 4 1,n 4 1) into the projective space PY, N = (':Ii) -1,
called the Plicker embedding. When W is free and has the ordered set (vy,...,v,) for its

basis, \"T' (W) is free of rank 1 with basis

voAN...\Nvp = Z Dio,...in€ig N - .. €4,
0<io<..<ir<n
where g, ..., e, is the standard basis of K™*!. The coefficients p;,,. i can be taken as
projective coordinates of the point W € G(r +1,n+ 1)(K) in the Pliicker embedding (the
Plicker coordinates).
It will be convenient to represent a free W by a matrix of size (r + 1) X (n + 1) with

entries in K and rows equal to the basis vectors vy, ..., v,
Qggp Q4Apy +-+ ... Qon

A=
aQrg Ary ... ... Qpp

In this way the Pliicker coordinates pjg,... i, are the maximal minors A;,,... ;. of this matrix
formed by the columns A;,,...,A; . Note that two different matrices A, A’ correspond
to the same subspace if and only if there exists an invertible matrix C € GL(r + 1, K)
such that A' = CA. Also note that the matrix A is of maximal rank since its rows are
linearly independent. Thus we can view K-points of G(r + 1,n 4 1)(K) corresponding to
free K-modules as orbits of GL(r + 1, K) in the open subset of Mat,41,n+1(K) consisting
of matrices of rank r + 1. To make G(r +1,n+1) a quotient variety we consider the trivial

line bundle L on the space ASCTH)("'H) and GLg(r + 1)-linearize it by the formula
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C-(A,t) = (CA,det(C)t),

where C € GL(r +1,K),4 € AUV (K) = Mat, 1 n1(K),t € AL(K) = K. Then
the functions P;;  ; : A — Aj, ..., are invariant sections of this bundle. This shows
that matrices A € M at(,+1)(n+1)(z:) of maximal rank are semi-stable points with respect
to L. In fact they are properly stable points since the group GL(n + 1, k) acts freely on
the open subset {F;,, . ;, # 0}. Thus ve can view G(r + 1,n + 1) as an open subvariety of
the geometric quotient (A2r+l)(n+1))’ (L)/GLg(r +1). Since we know that the Grassmann
variety is a projective variety we obtain that it is equal to the whole quotient:

G(r+1,n+1) = (AT (1) /GL(r + 1).

Another way to see G(r + 1,n + 1) as a geometric quotient is to use that it is a
homogeneous space with respect to the action of GLg(n + 1). The stabilizer group of the
subspace spanned by the first r + 1 unit vectors ey,...,e, is the subgroup P of block-

matrices of the form:
Art1r41 Bryin—r
0n—r,r+1 Cn—r,n—r ’

where the subscripts indicate the sizes of the blocks.

Let Og(r+1,n+1)(1) denote the line bundle over G(r+1,n+1) obtained as the pull-back
of the bundle OPkN(l) with respect to the Pliicker embedding. It is easy to see that this
bundle is isomorphic to the line bundle obtained from the GLg(r + 1)-linearized bundle
L on AECTH)("H) by the construction described in the proof of Theorem 6.2 from Lecture
6. Since the Pliicker embedding is obviously SLi(n + 1)-equivariant, we get a canonical
SLi(n+1)-linearization on Og(r+1,n+1)(1). It can be proven that Og(,41,441)(1) generates
Pic(G(r +1,n + 1)) (this follows from computation of the Picard groups of homogeneous
spaces). Since SLi(n + 1) is simple, and hence has no non-trivial characters, we obtain

PicSH D (GQr+ 1,n+1)) 2 Z

and Og(r4+1,n+1)(1) can be taken as a generator. Note that Og(r+1,n+1)(1) is obviously
ample, and its complete linear system defines a Pliicker embedding. We shall use the nota-
tion Z;, . ; to denote the projective coordinates in Pfcv (we order them lexicographically).
The value of these coordinates at any free module L € G(r + 1,n + 1)(K) is equal to the
Pliicker coordinates p;,,....i, of L. Since G(r+1,n+1) is not contained in a linear subspace
of PV, the restriction map

PPy, Opy(1)) = T(G(r + L,n + 1), Og(r41,n41)(1))

is injective. One can also show that it is surjective.
Let X = G(r 4+ 1,n 4+ 1)™. For any vector k = (kq,...,kn) € Z™ we set

Ly = ®z?;1p:(OG(r+l,n+l)(1)®ki)
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where p; : X — G(r+1,n+1) is the i-th projection. One can prove that every line bundle
over X is isomorphic to Ly for some k. Since each projection is a SLi(n + 1)-equivariant
morphism, each Ly admits a canonical SLi(n + 1)-linearization. Thus

PicSt(nt)(x) = Zm,

Also, Ly is ample if and only if all k; are positive. In fact, if some tensor power of Ly defines
a closed embedding X — P¥ then the restriction of Ly to any factor G(r +1,n+1) is an
ample line bundle. It is obvious that this restriction is isomorphic to Og(r+1’n+1)(1)®ki,
which is ample if and only if k; > 0. Conversely, any Ly with positive k is very ample. It
defines a projective embedding of X which is equal to the composition

m N4kiy_ m (N+ki\_
.X'_>(P,’X)’"—>1'[P§c N
=1

where the first map is the product of the Pliicker embeddings, the second map is the
product of the Veronese embeddings, and the last map is the Segre map.

9.2 Now we are ready to describe semi-stable and stable sequences W = (Wi,...,Wpn) of
’ k-points of X. We shall replace k with k to assume that k is algebraically closed.

Theorem. Let k = (ky,...,km) € Z™, with all k; > 0. Then W € X*°(Ly) (resp.
€ X¢(Ly)) if and only if for any proper subspace W of P}

(n+1) i k;[dim(W; A W) +1] < (r + 1)(dmW +1) zm: k;

1=1 7=1

(resp. there is strict inequality).

Proof. Let T be the maximal diagonal torus in SLi(n + 1). Each one-parameter
subgroup of T is defined by A\(t) = diag[t?°,...,tI"], where ¢o+...+ ¢, = 0. By permuting
coordinates we may assume that

g >q1>...24qn (¥)

Suppose W is semi-stable. Let E;,s = 0,...n be the linear space spanned by the unit
vectors eg, . . ., e, and E, the corresponding projective subspace. For any W € G(r+1,n+
1)(k) and any integer j,0 < j < r, there is a unique integer v; for which

dim(WNE,,)=jdm(WnNE,,_1)=j—-1
To see this we list the numbers a, = dim(W N E;),s = 0,...,n, and observe that 0 <

as —as—1 <1and a, =r, as each E,_1 is a hyperplane in E; and E, = P}. Then we see
that each j occurs among these numbers and define v; to be the first s when a, = ;.
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With this notation we obtain that W can be representable by a matrix A of the form

apgp ... Qoyg 0 oo ... 0
ag ... a1y, 0 ... ... 0
Arg  vvov e O ¢ o |

where a;,, # 0 for all j. It is clear from viewing the maximal minors of this matrix that
DPio,....i, (W) = 0 if ¢; > v; for any value of j and p,,..,, (W) # 0.

Now we notice that the projective coordinates of W = (W1, ..., Wy,) in the embedding
defined by the line bundle Ly are equal to the product of m monomials of degree k; in
Pliicker coordinates of W;. Since for each A as in (*) we have

Pioy.in(A(t) - W) = 0Tt din g, 4 (W),
we easily find that

pEW ) =D k(Y a,0)-
=1 7=0

Using that dim(W; N E;) — dim(W; N E;_1) = 0if j # V;i), we can rewrite the previous
sum as follows

pbe W, ) = ki [Z g;(dim(W; N E;) — dim(W; N E,._l))] =

= 3 kil 4 an + Y (@m(W: 0 B) + 1)(a5 — 454)] =

= [é k,-] (r+1)gn + n};: [2:; ki(dim(W; N E;) + 1)(g; — qj+1)]-

Consider the following special one-parameter subgroups A, given by
o=...=¢=n—8¢gt1=...=¢n=—(5+1),0<s<n-1
Plugging in these values of ¢;, we find

m m
uBe W, A) = = k)(r +1)(s + 1) + (n+ 1)(Q_ ki(dim(Wi N E,) + 1) (+%)

i=1 i=1
If W is semi-stable (resp. properly stable) this number must be non-positive (resp. nega-
tive). Since any s-dimensional linear subspace of P} is projectively equivalent to E,, we
obtain the necessary condition for semi-stability or proper stability from the Theorem. It
is also sufficient. In fact, if it were satisfied but W were not semi-stable, we could find some
A € X.(SLg(n + 1)) such that pZ*(W, ) > 0. By choosing an appropriate coordinates,
we may assume that A € X.(T') and satisfies (). Then we use the easy fact that each A
satisfying (*) can be written as a positive linear combination of A,. From this we deduce
that uLx(W,\,) > 0 for some s. Then the above computations show that (+*) does not
hold for some s contradicting our assumption.
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Corollary. Assume the numbers Y k; and n + 1 are coprime. Then
=1

X*(Ly) = X§(Ly).

9.3 Let us consider a special (but important) case when r =0, ie., G(r +1,n +1) =
so that all W; are points. In this case X = (P})™, Ly = Q™ p! ((9pn (ki)). We get

Theorem. Let P = (pi1,...,pm) € (P}(k))™. Then
P e (PE)™)**(Li)( resp. € ((PE)™)5(Lx))
if and only if for every proper linear subspace W of P}
dlmW + 1
Y ki< (Zk)
i,pi EW i

(resp. <).

In particular, if all k; = 1, this condition can be rewritten in the form

#{1:pie W} < Ei—llztj_f—:-lm (resp. < ).
Corollary.
(PE)™)*(Lk) # 0 & (n + Vmaxi{k;} < Y k.
i=1
(PO™5(Lk) # 0 & (n+ Dmaxi{ki} < ) ki
i=1
Proof. Let

(PE)™)" := {P = (p1,-..,Pm) : each subset of n + 1 points p; spans P7}.

This is obviously an open non-empty subset of (P})™. We know that ((P?)™)**(Ly) is
an open subset. So if it is not empty it has non-empty intersection with ((Pg)™)sen. If
we take a point P = (pl, .,Pm) in the intersection, we obtain, since no two points p;

coincide, (n + 1)k; < Z k; for each 1 = 1,...,m. Conversely, if this condition is satisfied

then each point P € ((P")"‘)-"e" is semi-stable with respect to Li. In fact, each subspace
W of dimension s contains at most s+ 1 points p;. Hence

Z k; < (dlmW + 1)max;{k;} < d1mW i l(z k:).
1,pi EW
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This proves the assertion about semi-stability. Similarly we prove the assertion about
proper stability.

Remark. Let

An,mz{l':(ﬂ?l,.-.,l'm)ERmIZ$i=n+1,OS.’IZiS1,i=1,...,m}.

i=1

This is called a (m—1)-dimensional hypersimplez of type n. Note that the ordinary simplex
corresponds to the case when n = 0. One can restate the previous corollary in the following
form. Consider the cone over A, , in R™*1

CAn,m = {(1:, )\) € R™ x R+ 1T e AAn,m}

We have the injective map
PicSLk(n-l-l)((P;cl)m) - Rm+17Lk = (kla sy km7 (Tl + 1)—1 Z ki)a
i=1

which allows us to identify PicSts((P7)™) with a subset of R™*!. We have
PicSU D (PE)™) 1 O = { L€ PicSBH0(B)™) - (P])™)**(L) 0},

In fact if the first m coordinates of a point z € R™*! from the left-hand-side are all
positive, this follows immediately from the previous Corollary. Suppose some of the first
coordinates of z are equal to zero, say the first ¢ coordinates. Then Ly = p*(L} ), where
p: (PR)™ — (PR)™ " is the projection to the last m — ¢ factors, and k' = (kyyq, ... v km).
By applying the Corollary to Ly, we obtain that ((P})™~%)**(L}) # 0. It is easy to see

that
(PE)™)* (Li) = p~ (PR)™ ) (L)),
and we have a commutative diagram
((PE)™)** (Lac) = ((Pi‘)'"_lt)”(lli()

l )
(PR)™)**(Li)//SLk(n+1) == ((PR)™")**(L})//SLx(n +1)

where the vertical arrows are quotient maps and the map p is an isomorphism.
Observe that P € ((P})™)**(Lk) \ (P?)™)3(Ly) if and only if there exists a subspace
W of dimension d,0 < d < n — 1 such that

(n+1) Y ki=(dmW+1)> ki
1L,pi €W i=1

This is equivalent to the condition that Ly belongs to the hyperplane

Hpa:={(z1,-.-,2m,A) ER™: ¥ z; = Ad},
i€]
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where I is a non-empty subset of {1,...,m}. Let C be a connected component of
CAnm \Ur 4 Hr,a ( called a chamber). Then for any Lx € C we have (PR)™)*s(Ly) =
(PR)™)o(Lx)- AR

One can show that any two line bundles from the same chamber have the same set of
semi-stable points. We refer the reader to [DH] for more general and precise results on
this subject.

9.4 Examples. 1. Let ustaker = 0,n =1,k =(1,...,1), i.e., consider ordered sequences
of m points in P;. The condition of semi-stability tells us that

P =(p1,---,Pm) € (P})™)**(Lx) < each p; is repeated in p at most m/2 times.

Note that this condition is similar to one we obtained in the previous lecture for binary
homogeneous forms. This is not accidental. The permutation group X, acts naturally on
(PL)™ by permuting the factors. The geometric quotient (P})™ /%, consists of unordered
m-tuples of points and can be easily identified with the space Hyp,(m). It is easy to see
that the notion of semi-stability for ordered and unordered point sets (with respect to
L,...1)) coincide.

Let us set

Prr(k) := (PE)™)**(Lx)//SLx(n +1).
- Ifk=(1,...,1) we denote it by P*. It follows from the construction of the quotient that

P (k) = Proj(@axol(PF)™, LE!)®™) = Proj(@axeS*(V (k1) ® ... @ V(km))>™),

where we denote by V(7) the space I'(P}, Opr () = k[Z, ..., Za);, and S4(V) is the d-th
symmetric power of a linear space V. The classical theory of invariants teaches us how to
compute the graded algebra

R™(K) == ®axoSUV (k1) @ ... ® V(km))5*.
Let P = (p1,...,pm) € (P})™ and
A(P)=1pl,-..,pPml

be the matrix of size (n 4+ 1) x m whose columns are the vectors of projective coordinates
of the points p;. Let M;, ., be the maximal minor of this matrix composed of columns
Pl Pig- Since M, ... in4, is a multi-linear function in the vectors p}, we can view it
as a section of Ly _; over (P?)"*!. Denote this section by [i1,...,n41]. Now suppose we
have w increasing sequences (71, . .. ,%n+1), (J1,---,Jn+1)s--->(q1, - -, qn+1) of n+1 integers
between 1 and m such that each number s € {1,...,m} occurs exactly dks times. This of
course implies that

dlki + ...+ km) = (n+ w.

Then, by lifting sections [t1,...,%n+1],--+,[q1,-- -, qnt+1] of L1, 1 to sections of its inverse
image with respect to the projection (P})™ — (P})"*! and then tensoring them, we can
consider the product :

[i1,-.-,in+1][j1,--~,jn+1]-'-[Q1,~--,Qn+1]
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as a homogeneous element of degree d of the algebra R]}'(k).

The First Fundamental Theorem of Invariant Theory asserts that these functions
generate the whole algebra RI'(k). Also the straightening algorithm (see [Stu], p. 82)
allows one to express each function as a linear combination of functions satisfying the
condition that iq < jo < ... < gq for all @« = 1,...,n + 1. Consider for example the
simplest case when n = 1,m = 4,k = (1,1,1,1). Then the piece of degree 1 of (R}) is
spanned by two functions [12][34] and [13][24]. The value of the ratio r = [12][34]/[13][24]
on 4 ordered points (p1,p2,p3, pa) With the coordinate matrix

. ap bo Co do
A= (al by o dl)

is equal to

(bla() — (llbo)(Codl - Cldo)
(aocl - alco)(bodl - bldO) )
This is called the cross-ratio of the four points in the projective line. If we choose coor-

dinates in the form (1,z;),¢ = 1,...,4, assuming that none of the points is the infinity
point, we obtain

T(P1,P27P3,P4) =

_ (162 - 351)(304 - 553)
(w3 —z1)(z4 — 22)
This is the familiar expression for the cross-ratio of four ordered points in the complex
plane (see [Alf]).
Ifp=(0,1,00,2) =((1,0),(1,1),(0,1),(1,z) we get

r(pl7p27p3ap4)

r(0,1,00,2) =1 —z.

This implies that two distinct ordered quadruples of points in P} are projectively equivalent
if and only if their cross-ratios coincide.

Note that the cross-ratio of four distinct points never takes the values 0,1,00. The
quadruples (p1,p2,Ps,ps) go to 0 if p1 = ps or p3 = ps. The only closed orbit in the fibre
over 0 consists of configurations with p; = p2,ps = ps.

We refer the reader for more details about the computations of the algebras R} and
the geometry of the spaces P* to [DO].

2. Let us take n and r the same as before but change k such that k1 + ... + km—1 < km.
Then the sequence (p1,...,P1,Pm) is semi-stable.
3. Let us take r =0,n =2,k =(1,...,1).

(p1,--->,Pm) € (P3)™)**(Lk) & < m/3 repetitions, < 2m/3 points on a line.

Semi-stability coincides with proper stability when 3 does not divide m.

4. Let us take r = 1,n = 3,k = (1,...,1). Then we are dealing with sequences (l1,...,lm)
of lines in P3. Let us apply the criterion of semi-stability, first taking W to be a point,
then a line, and finally a plane. In the first case we obtain

#{i: W e W;} <m/2,



88 Lecture 9

that is, no more than m/2 lines intersect at one point.
Taking W to be a line, we obtain

(i W =W} + #{i : Wi # W,WNW; #0} <m,

in particular, no more than m/2 lines coincide and no more than m — 2t lines W; intersect
a line W; which is repeated ¢ times.
Finally, taking W to be a plane, we get

2#{i W, C W)+ #{i: Wi ¢ W,WNW; # 0} < 3m/2,

that is, no more than m/2 lines are coplanar.

For example, there are no semi-stable points if m = 1. If m = 2, a pair of lines is
semi-stable if and only if it is a pair of skew lines. It easy to see that by a projective
transformation a pair of skew lines is reduced to the two lines given by the equations
g =23 = 0 and 73 = z3 = 0. Thus we have one orbit (stable but not properly stable).
Similarly, if m = 3 we get one stable orbit represented by the lines zy = z; = 0,2, = z3 =
0,and zg + 1 =29 + 23 = 0.

9.5 Let us concentrate on the case m = 4. First there are no properly stable quadruples
of lines. This follows from the fact that there is always a line intersecting 4 lines in P}
(called a transversal line). To see this, we argue as follows: The assertion is obvious if two
lines lie in a plane 7. We take the line in 7 which joins the intersection points of 7 with
the other lines. Assume now that the lines are skew. Choose 3 points on each of the first 3
lines Iy, 12, 13. Then there exists a quadric passing through these points (since the space of
quadrics in P is of dimension 9). By Bezout’s Theorem this quadric @ contains the lines
l1,12,13. Since these lines are skew, the quadric is nonsingular and the three lines belong
to the same ruling. The fourth line /; intersects @ at two points. Let [ be the line on Q
from another ruling which passes through one of these two points (which may coincide).
Then it intersects all the lines /;. Note that one of the following three possible cases may
occur: there are either exactly two transversals, one transversal, or infinitely many. For
example when the lines are skew, we have two transversals if one of the lines intersects
the quadric through the remaining lines at two distinct points (resp. at one point, resp. is
contained in the quadric). .

Using Example 4 in 9.4 we can easily list all possible “topological” types of semi-stable

quadruples of lines. These types are described by the following incidence graphs:

(¥) (¢2) (112) () | (v) |
L 2e ° 20 °
(vi) | | (vii) (viir) | (iz) 2e 2e

Here a dot indicates a line, two dots are connected by an edge if the two lines intersect.
The number 2 indicates that the line is repeated in the sequence.
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Recall that I'( X, L(lyl,l,l))sr‘k(‘*) contains the subspace spanned by tensor products

z{!)

111

®2:), ® Z0), ® Z(),. (x+)
We know that each line W is given by a decomposable 2-vector v; A v,. For any pair
of lines W,, W, among 4 lines Wy,..., W, let W, A W}, denote the wedge product of the
corresponding tensors. If we fix a basis in the space we can identify this with a number. In
the matrix representation of lines this is just the determinant of the 4 x 4-matrix which is
obtained by putting the first matrix in the first two rows, and putting the second matrix in
the last two rows. If (a,b) and (¢, d) are complementary subsets of {1,2,3,4}, the product
(Wo A W) (W, A Wy) is a linear combination of monomials

(1) (2 _(3)  (4)
Pii 51 Pi352PiggaPiggas

where p(»a)- are the Pliicker coordinates of the line W;. Let [ab][cd] € T'(X, L1 1,1,1))5™+®

ts]s
denote the same linear combination but with each pg;l pgzzz pg;s p$24 replaced with the

monomial (* % x). We shall continue to denote a quadruple of lines (W, W,, W3, W,) by
W. We have
[ad][ed](W) = (W, A Wp)(We A Wy).

Observe that this expression does not depend (up to a multiplicative factor) on the choice
of a basis in each subspace as soon as we employ the same basis in the whole space. Thus
we have three different sections: [12][34], [13][24] and [14][23]. They form a base-point-free
linear system which defines the SLi(4)-equivariant map

f X — Pi, W g ((Wl A Wg)(W3 A W4), (Wl A Wg)(Wz A W4), (W] A W4)(W2 A Wg))

To see that there are no base-points we observe that [ab](W) = 0 if and only if the lines W,
and W) intersect. It is easy to see that [12][34],[13][24] and [14][23] vanish simultaneously
on W if and only if one line intersects the remaining lines or three lines are coplanar. Both
of these conditions are excluded by semi-stability. Since the map f is equivariant, it factors
through a map

f: X//SLi(4) — P2.

We shall show that this map is an isomorphism by describing the fibres of the map f.
This will also give us the classification of all semi-stable orbits.

Let us start with values of f at orbits of type (7). Let @ be the quadric containing the
first three lines. Since all nonsingular quadrics are projectively isomorphic we can assume
that @ is given by the equation

ZOZ2 - Z1Z3 =0.
It contains two line rulings defined by the equations

)\Zo - /.tZg = /\Z1 - #Zz = 0;
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/\IZ() - ,u'Z1 = )\’Zg, - ,u'Zz =0.

The two rulings define an isomorphism P} x P} = @ which can be given by the formula

(O 1), (X5 1) = (! X g AN M),

The fibres of the first projection P} x P} — P} are the lines from the first ruling and the
fibres of the second projections are the lines from the second ruling. Using this isomorphism
it is easy to see that the group of projective automorphisms of the quadric @ is generated
by Aut(P}) x Aut(P}) and the involution which interchanges the factors. Explicitly, the
automorphisms of the first factor (A, u) — (aX + by, cA + dp) act on @ by the formulas

(Zo, Zl, Z2, Z3) = (CZ3 + dZQ,CZ2 + le,aZ2 + bZl, aZ;; + bZo),
and similarly for the second factor
(Zo, Z1,23, Z3) — (CZ] +dZy,aZy + bZy,aZy + bZ3,cZy + dZ3)

Without loss of generality we may assume that the first three lines Wy, W, W3 belong to
. the first ruling. So applying an automorphism of the first factor we can assume that these
. lines are the pre-images of the points 0,1 and oo. Their wedge representations are

Wi =¢egNey, Wy =(60+€3)/\(61 -|-62),W3 =eg Aes.

Now consider the intersection points of the fourth line W, with ). These two points lie on
two lines from the first ruling (which may coincide) and hence, applying automorphisms
of the second factor we can reduce the equation of Wy to the form

Wy = (aeo + e3) A (ber + ez + aep).

Here a,b # 0,1. Also a # b,a = 0 if W, intersects @) at two different points, a = b, =1
if Wy is tangent to @, and a = b, = 0, if W, coincides with a line of the first ruling.
We find

([12)[34], [13][24], [14][23])(W) = (—ab, —1 — ab+ a + b, —1).

By a linear change of the coordinates in P? we may assume that the image is equal to
the point ((1 — a)(1 —b),a+ b —2,1). If we identify P} with Hyp,(2), by assigning to a
point (ao, a1, az) the zeroes of the binary form agt? + aytoty + azt?, we see that our image
corresponds to the binary form with two roots equal to 1 —a and 1 — b. ;From Example
1 in 9.4 we infer that the value f(W) is equal to the unordered pair of two cross-ratios of
four ordered points Wi N1, ... Wy NI, where [ is a transversal line. Note that we have two
transversals if Wy intersects ) at two points, one if it is tangent to () and infinitely many
(lines from the second ruling) if Wy is contained in Q. In the latter case the cross-ratio is
independent of the choice of a transversal line.
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Let X9 denote the set of quadruples W of skew lines with two common transversals.
Since each orbit in X" is completely determined by its image under f, we obtain that
all orbits in X" are stable. Also since every fibre of f : X9 — P? consists of one orbit,
we obtain that the map f defines an isomorphism

X9 /SLy(4) —» U™ C P2,

where UT®9 consists of binary quadrics agt3+a;tet; +azt? with no roots equal to (1,0),(1,1),
(0,1) and no double roots. Thus the closed set P% \ U™ is equal to the union C U T,
where C' is the conic

af —4agay =0

and T is the union of its three tangent lines
lig:ag=0,l13:a9+a;+a2=0,l14:a; =0.
Note that we have
(a0, a1,az) = (—[13][24], [13][24] — [12][34] + [14][23], —[14][23]).

This we take for the new formulas for our map f. The stabilizer of any quadruple W
from X 79 is isomorphic to Gm k. It consists of all automorphisms of the second factor of
Q = Pi x P} which leave the set W4 N Q invariant. This confirms our earlier observation
that there are no properly stable points in X. If W has one transversal or infinitely many,
then

fOW)eC but fW)¢T.

Here we use the obvious observation that the pre-image of any point from T has at least
one pair of intersecting lines. The fibre of f over each point of C'\ (C N T') consists of two
orbits, of dimensions 14 and 12. The closed orbit consists of quadruples with infinitely
many transversals. Its stabilizer is isomorphic to SL(2).

Now let us find the fibres over points from 7. We shall examine, case by case, all
other possible topological types (i) — (¢z) of semi-stable quadruples.

Assume W is of type (i7) or (iv) or (viz). In all of these cases we have three skew
lines. By choosing a quadric through these lines, we may assume, as in the previous case
that

Wi=eNey, Wy = (60 -|-63)/\ (61 +€2),W3 =-eq Aes.

Now Wy intersects Q at two lines from the first ruling, and one or two of them are from W.
Without loss of generality we may assume that W intersects W3. Applying automorphisms
of the second factor of P} x P}, we may assume that W, N W3 = e3 and the second point
of intersection of W, with @ is e + ae; + beg. Here

(1) a=b=0ifW4:W3,

(i1) a =0,b =1 if Wy is tangent to @,
(ii) a = 1,b = 0 if W, intersects W5, and
(iv) @ #0,1,b =0 if W, intersects @ transversally and intersects only one Wj.
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We find
f(W) = (1 —a,a— 2,1) € 113.

If @ # 0,1, the image does not liein CUlj; Uly. fa=1, fW)=0U3Nhs. fa=0,
f(W) = 113N C. None of these orbits is closed. For example, if a =b =0, i.e.,

Wi=eoNey,Wy =(eo +e3)A(e1+e2), Ws =Wy =e3 Aes,
we can apply the one-parameter subgroup A\(t) = diag(1,¢71,¢71,¢?) to get

}E’% /\(t) W = (Wl,eo A (61 + 62),W3,W3).

This is a quadruple of topological type (viii).

Now let us consider the remaining types (i¢2),(v), (vt), (viiz) and (iz). Without loss
of generality we may assume that W; intersects Wy and W3 intersects Wy. Assume first
that the plane containing W; and W, does not contain the point W3 N W,. After applying
a linear transformation we can write

Wi=eoNe1,Wy =egAea, Ws = e3 A (azez + are1 +aoeo), Wa = e3 A (baez + bier + boeg).

Here ay, b, cannot be both zero, as otherwise we have three coplanar lines. So we may
assume that a; = 1. Replacing e; by e + apeg, we may further assume that ag = 0. We
find that

FOW) = (b1, —by — baay, byay) € L.

Suppose first that be,b; # 0. By scaling, we may further assume that b, = b, = 1, and
by = 0 or 1. This gives us

Wi=eAey,Wy=€egAey, W3 =e3 A (62 +(1€1),W4 =e3 /\(82 + e -|-b60).

If a # 0,1, the image of W is not in the union of the conic C and the two other lines
li2,114. If additionally b = 0 the planes (W;, W) and (W;, W,) intersect along the line [
spanned by e; and e;. Furthermore the parameter a is determined by the cross-ratio of
the four points (W1 NI, Wy, NI, W3 NI, Wy N1). These orbits are closed and of dimension
13. If by # 0, the line (W7, W2) N (W3, W,) moves with the parameter a. We leave to the
reader to check that these orbits are not closed and of dimension 14.

If a =b=1, we have

fW) e CnNlys.

In this case the planes (W7, W) and (W3, Wy) intersect along the line spanned by e; + e,
and eg. This line passes through the point W3 N W,. This orbit is not closed and of
dimension 13. - .
Assume that b; = 0. The case a; = 0 is reduced to this by reordering the lines. We
get
fW)=(0,-1,1) € lis Nl
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and
Wi=eAei,Wy =¢egNez, W5 =e3 A (62 + alel),W4 =e3 A (62 +b060).

Here a; # 0 as otherwise W intersects the remaining lines. So we may assume a; = 1.
Observe that W, intersects now Wy so that W is of type (v). If further by = 0, W
intersects W3 so that W is of type (vi). The latter orbit is closed and is of dimension 13;
it lies in the closure of the former orbit.

Finally we consider the case when the intersection point of the lines W3 and Wj lies
in the plane (W7, W;). We can write

Wi =eo Ae1,Wa =eg A ez, Ws = e3 A (azez + arer + ageq),
Wy = (azez2 + a1e1 + ageq) A (baea + breg + boeo).

Here a3, a1, by # 0 as otherwise either one of the lines Wy, W, intersects the remaining lines
or Wy, Wy, Wy lie in the same plane. Thus replacing azes +ageg by e2 we may assume that
as = a; = by = 1,a9 = 0. Furthermore, replacing e3 by e3 + b2(eg + e1) we may assume
that b, = 0. So

Wl =60/\6],W2 =€0/\62,W3 =63/\(62+61),W4 =(62 +61)/\(83 +b€1 +a60).

We find that
f(W) = (17_27 1) € Cﬂ 113.

Assume b # 0. Applying the transformation
(eo,e1,e2,e3) — (b%eq, b e1 — abeg, b~ ey + abeg, e3),

we eliminate the coefficient b. If a = 0, W3 = Wy and W is of type (viti). By changing e;
to e; + e, and then applying the one-parameter subgroup diag(1,t,1,t7!) we find

1.1_1}?% )\(t) W= (WlaW17W37W3)'

If a # 0, we have the orbit representing W with the peculiar property that the line
(W1, W) N Wy, W,) contains the points Wy N W, and W3 N Wy. The closure of this orbit
contains the orbits with a = 0.

This finishes the computations. We obtain from the previous analysis that the fibre
of f over each point of P% contains a unique closed orbit. Hence it is the quotient map
and we obtain

X*//SLy(4) = P3.

It is convenient to collect all the information about semi-stable orbits in the following
table. We shall use the following notations:

Co =C\(CﬂT);P={1120113,112ﬂlzg,lwﬂlz;;}; T° =T\(CﬂT)\P,

as well as the following abbreviations:
s = stable; nsc= non-stable, closed; nsnc = non-stable, non-closed;
t = the number of transversal lines to W.
dim = dimension of the orbit.
The last column gives the equations of a representative of the orbit.
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Type dim
[ ] [ 14
[ ] [ ]
* 14
[ ]
12
14
[ ] [ ]
14
9
13
*r—0
- * 14
[ ] [ ]
13
*r—0
12
*— o
20 °
12
[ ]
20 .
| 12
°

2e 2e 11

*—=0
| 14
*—e
*——=e
| 13

£(W)
e Ures

eC°

ecCe

eT"

eTe

eT”

eTnC

eTncC

eTnC

eTnC

eETNC

eTrncC

eEP

eEP

Lecture 9

stability

S

nsnc

nsc

nsnc

nsnc

nsc

nsnc

nsnc

nsnc

nsnc

nsnc

nsc

nsnc

nsc

canonical form

eo Ner,(e1 +e2)A(eg +e3), ez Aes,
(aeo +e3) A (bey + e2),a # b,a,b# 0,1
eo Nep,(e1 +ex)A(eo +e3),e2 Aes,
(aeg +e3) A (ae1 + ez +€9),a # 0,1
eo Aer,(e1 +e2) A (eo + €3), ez Aes,
(aeo +e3) A (aeg + €2),a # 0,1

eo Ae1,(e1 +e2) A(eo + e3),

ez Aes,e3 A(ae; +e2)(a#0,1)

eo Aer,eg Aeg,(ez + aeq) Aes,

e3 A (e1 + ez +e9)(a#0,1)

eo Nei,eg Aeg,es A(er + e2)

(e2 + ae1) ANes,(a#0,1)

eo Aei,(e1 +ez2) A (eo + es3),

ez Neg,ez A(eg + €2)

eo ANer,eg Aeg,ez A(er +ez),

ez A (ez +e1 + €p)

eo Nei,eq Aeg ez A(er + e2),

(e1 +e2) A (eo + e3)

eo Aex,(eo + e3) A (e; +e2),ea Nes,ea Nes

eg Nej,eq A (61 -+ 62),62 Nes, ez Neg

eoNej,eg ANej,ea Aeg,ea Aeg
eo Aei,eg Aeg,(ea+e1)Aes,(eo+e2)Aes

eo Nei,ep /\62,(62 +61)/\ e3, ez Aes
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9.6 As far as I know, nothing is known about the quotient spaces for sequences of more
than four lines in P}. For example, we do not know whether the quotients are rational.
As the following theorem shows the spaces PJ* of configurations of points are rational
varieties.

Theorem. Assume ((P})™(Lk))*® # 0. Then P*(k) is a rational variety of dimension
n(m —n — 2).

Proof. Consider the subset U of ordered point sets in which any subset of n + 1
. points spans P%. Let Z be its closed subset consisting of point sets P = (py,...,pm) with

pi =(L,...,0),p; =(0,1,0,...,0),...,p5 11 =(0,...,0,1),p% , = (1,...,1).

We have the map
c:GXxZ-U"

defined by the action of G on X. For any P € U™ the projective coordinates of the
first n + 1 points are linearly independent. So we can find an element g € SLi(n + 1)
which transforms these points to the unit vectors ey, ..., ez4+1. Now the coordinates of the
point pn42 are non-zero since otherwise we find n 4+ 1 points among pi,...,pn+2 lying in
a hyperplane. Since the action of the diagonal matrices does not change the projective
coordinates of the first n 4+ 1 points, we can use them to normalize the coordinates of
the point p,42. This shows that the map o is surjective. It is also injective. In fact, if
g-P =g P weget g"lg-P = P'. But the latter implies that ¢'~'g fixes the vectors
€1,-+>€nt1,€1 + ... + €ny1 up to multiplicative factors. This gives that ¢'~1g = 1, i.e.,
g' = g and hence P = P'. Note that o is obviously G-invariant when we consider the left
translation of G on the left factor and the trivial action on the right factor. Passing to the
quotients we obtain

U™ /G =(GxZ)/G=Z=(PyHm "2

Here we mean the quotient with respect to any Ll; for which ((P%)™(Lk))** # 0. It follows
easily from the proof of Corollary 9.3 that U9 is an open subset of ((P})™)5(Lk). Thus
U9 /G is an open subset of P/*(k) and we are done.
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Problems.

1. Prove that the orbit of P = (p1,...,pm) in ((P})™)**(Lk) is closed but not properly

stable if and only if there exists a partition of {1,...,m} into subsets Js,s = 1,. r, such
that for any s one can find a proper subspace Ws of P} with ), ki = —%_‘V—Yff—( E ki).
i€ Je sPi GW =1

2. Show that the projection P}* — P;C"_l induces the map P™ — P™~1, Describe the
fibres of the map P} — P} and show that P} is isomorphic to the blow-up of 4 points in
P2,

3. Draw a picture of the hypersimplex A 4 and describe the chambers of the cone CA; 4.
4. Consider the action of the permutation group 4 on P and show that the kernel of
this action is isomorphic to the group (Z/2Z)%. Find the orbits whose stabilizers are of
order strictly larger than 4. Compute the corresponding cross-ratios.

5. Prove that the algebra R} of bracket polynomials is isomorphic to the algebra of
polynomials in two variables (w1thout using the fact that P = P1}).

6. Find the equatlon (in terms of functions [¢5]) of the closure of the locus of quadruples
of lines in P} which have only one transversal line.

7. For each semi-stable orbit of quadruples of lines in P3 find the semi-stable orbits lymg
in its closure.

8. Prove that P™(Ly) is isomorphic to a categorical quotient of some open subset of the
Grassmannian G(n + 1,m) with respect to the action of the torus G ; via its standard
action in A}’

9. Prove that the closure of the locus of those (Wy,...,Ws) € G(2,4)° which admit a
common transversal line is of codimension 1. Find its equation in terms of the functions
i)

10. Study the stability of ordered point sets on a nonsingular quadric in P} with respect
to the action of its automorphism group. Construct the categorical quotient space in the
case of four points.
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Lecture 10. TORIC VARIETIES

In this lecture we shall consider an interesting class of algebraic varieties which arise
as categorical quotients of some open subsets of the affine space. These varieties are
generalizations of the projective spaces and admit a very explicit description in terms
of some combinatorial data of convex geometry. In algebraic geometry they are often
used as natural ambient spaces for imbedding of algebraic varieties and for compactifying
moduli spaces. They have served as a powerful tool for proving some of the fundamental
conjectures in the combinatorics of convex polyhedra.

10.1 Let T = Gy, ; act linearly on AY by the formula
(t1ystr) - (21505 2N8) = (%1 2q,. ., 12" 2y),
where
a; = (alj, e ,a,j) €z, tY = t;”j RO el
The vectors a; can be viewed as characters of T under the identification of the group &X'(T')
with Z". Since Pic(AY) is trivial and O(AL)* = k* we have a natural isomorphism (see
Lecture 4)
Pic(AN) = X(T)=Z".

Let us fix a = (ay,...,a,) € Z" and denote by L, the corresponding linearized line bundle.
It is the trivial line bundle AY x Al with the linearization defined by the formula

t-(z,w) = (t-z,t%).
We identify its sections with polynomials F' € k[Z;,...,ZN]. A polynomial F defines an
invariant section of some non-negative tensor power L®¢ if

F(t*Zy,...,t*" ZN) = t®F(Z,,...,ZN).

This is equivalent to F' being a linear combination of monomials Z™, where the vector of
exponents m is a solution of the system of linear equations

ay; aiz ... ... Q1N my dal
a1 Q292 ... ... Q2N mo .
. . . . L4 . = :
da,
Ary QGr2 ... ... Qrp my

We write it in the matrix form
Aem =da.

Let S’ be the set of non-negative integral solutions of the equivalent system

(A|—a)e (’;‘) =0,
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where the matrix of coefficients is obtained from A by augmenting it with one more column
formed by the vector —a. Note that the set of all real non-negative solutions of this system
is a convex cone spanned by a finite set of vectors with rational coordinates (a rational
convez polyhedral cone). It is obtained by intersecting the positive octant in R™*! with
the linear subspace given by the nullspace of the matrix (A| — a). The set S’ is the set of
integral points inside of this cone.

Lemma (P.Gordan). Let C be a rational polyhedral convex cone in R®. Then C N Z"
is a finitely generated submonoid of Z".

Proof. Let C be spanned by vectors vy, ...,v; which we may assume to be integral.
The set
K={Zmivi€R":0§zi§1}
7

is compact and hence its intersection with Z" is finite. Let {wq,...,wn} be this intersec-
tion. This obviously includes the vectors v;. We claim that this set generates the monoid
M =CNZ". Infact we can write each m € M in the form m = }_,(z; + m;)vi, where m;
is a non-negative integer and 0 < z; < 1. Thus m = (Zz z;vi) + (Ez m;v;) is the sum of
some vector w; and a positive linear combination of vectors v;. This proves the assertion.
For any commutative monoid M we denote by k[M] the monoid algebra. It is a
- free abelian group generated by elements of M with the multiplication law given on the
generators by the monoid multiplication. If M = Z"™ we can identify k[M] with the
algebra of Laurent polynomials k[ZE',..., ZZ'] by assigning to each m = (my,...,my)
the monomial Z™. If M is a submonoid of Z™ we identify k[M] with the subalgebra of
k[Zlﬂ, ..., Z*1] which is generated by monomials Z™, m € M.
Now we can easily make the natural isomorphism

EBdZOP(,Ai:Va Li?d)T = k[S],

where S is the projection of S’ to Z"V,(m,d) — m. Obviously S is isomorphic to S', and
hence, by Gordan’s Lemma, k[S] is a finitely-generated algebra.

Let A be the ideal @4>0k[S]4. This is a monomial ideal, i.e., it can be generated by
monormnials.

Let Z™1,...Z™s be a minimal set of monomial generators of the ideal 4. For each
m; = (myj,...,mnj), let I; := {t : m;; # 0}. For each subset I of {1,...,N}, let
Z1 = [l;e; Zi- Obviously, the open sets D(Z™i) = A} \ {Z™ = 0} and D(Zy;) =
AN\ {Z;; =0} coincide. By definition of semi-stability

(AY)*(L) = AF\ {21, = ... 21, =0} = | ] D(2y,).

i=1
Forany j =1,...,s, let
F(Z

R, = O(D(Z1,)" = {52 592 0.F(2) € (25 DM}
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where
M={mecZ": Aem=0}.
Obviously, the algebra k[M] is the subalgebra of T-invariant Laurent polynomials in
Zi,...,2ZN.
We know that the categorical quotient is obtained by gluing together the affine alge-

braic varieties X; defined by O(X;) & R;. We shall now describe these rings and their
gluing in terms of certain combinatorial structures.

10.2 Let ZY — Z7 be the map given by the matrix A. Its kernel is the group M. By
restricting linear functions on Z~ to M, we obtain the homomorphism of the dual abelian
groups

(ZN)* — N := M*.

Let e},...,e% be the dual basis of the standard basis of ZVN, and let e},...,e% be the
images of these vectors in M*. For each I; let o; be the convex cone in the linear space

Nr:=N@R=R"

spanned by the vectors €},: ¢ I;. For any convex cone o in a real vector space V the
subset
g={z€V*:(z,y) 20, Vy€o}.

is a rational polyhedral convex cone in the dual space.
Lemma 1. R; = k[o; N M].
Proof. Obviously R; is isomorphic to k[M], where
M={meM: m+pZe,~ € Zgofor some p > 0} =
i€l
={m=(my,...,mn):m; 20,Vi & I;}.
Here, as usual, we denote by e; the unit vectors in RY. For each i ¢ I,
em+p) e)=el(m)=m;>0&meM.
i€l;
On the other hand
mes; & e (m)>0,Ve ¢ I;.
Lemma 2. Let & be the set of convex cones 0j,j =1,...,s. For any 0,0' € 5,0 Nc' is

a face in both o and ¢'.

Proof. Let I = I,,J = I,. We want to show that o, N 0} is a common face of o,
and 0p. Recall that a face of a convex set ¢ is the intersection of o with a hyperplane
such that o lies in one of the two halfspaces defined by the hyperplane. We know that
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O(D(Z1Z5))T is equal to the localization O(D(Zr))%., where ¢ = (cy,...,cn) € M and
c;i=0for ¢ ¢ ITU J. Considering c as a linear function on M* we have

c(éf)=ej(c)=0 fori g ITUJ.

This shows that c is identically zero on o, Noy. On the other hand, it follows from Lemma
1 that c is non-negative on o, and on ;. This proves the assertion.

Definition. A finite collection ¥ = {o;}ies of rational convex polyhedral cones in R™
such that o; N o} is a common face of o; and o; is called a fan.

In a coordinate-free approach one replaces the space R™ by any finite-dimensional real
linear space V, then chooses a lattice N in V, i.e. a finitely generated abelian subgroup
of the additive group of V with N @ R = V, and considers N-rational convex polyhedral
cones, l1.e., cones spanned by a finite subset of N. Then a N-fan X is a finite collection
of N-rational polyhedral cones in V satisfying the property from the above definition. A
version of this definition includes in the fan all faces of all cones o € T.

Let M = N* be the dual lattice in the dual space V*, by Gordan’s Lemma for each
o € ¥ the algebra A, = k[ N M] is finitely generated. Let X, = Spec(A,) be the affine
variety with O(X,) isomorphic to k[5 N M]. Since for any o,0' € £,0 N o' is a face in
both cones, we obtain that k[(c N o')N M] is a localization of each algebra A, and A!.
- This shows that Spec(k[(o N o'y N M]) is isomorphic to an open subset of X, and X!.

~ This allows us to glue together the varieties X, to obtain a separated (abstract) algebraic
variety. It is denoted by Xy and is called the toric variety associated to the fan ¥. It is
not always a quasi-projective algebraic variety.

By definition Xy has a cover by open affine subsets U, isomorphic to X,. Since
each algebra A, is a subalgebra of k[M] = k[Zlil, ..., ZF] we obtain a morphism T =
(Gm,k)" = Xx. It is easy to see that this morphism is T-equivariant if one considers the
action of T on itself by left translations and on X5 by means of Z"-gradings of each algebra
A,. If each cone ¢ € ¥ does not contain a linear subspace, the morphism T — Xy, is an
isomorphism onto an open orbit. In general Xy, always contains an open orbit isomorphic
to a factor group of T'. All toric varieties Xy, are normal and, of course, rational.

Keeping our old notations we obtain

Theorem. Let (ZV)* — M* be the transpose of the identity map M — ZYN and let N
be its image. Let ¥ be the N-fan formed by the cones ¢j,j =1,...,s. Then

(AY)**(La)//T = X.

10.3 Recall that a cone in a linear space V is called simplicial if it is spanned by a part of a
basis of V. A fan is called simplicial if each o € X is simplicial. The geometric significance
of this property is given by the following result, the proof of which can be found in any
book on toric varieties (for example in [Fu2]).

Lemma. A fan ¥ is simplicial if and only if each affine open subset U,,0 € ¥, is iso-
morphic to the product of a torus and the quotient of an affine space by a finite abelian

group.

In our situation, we have
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Proposition. Let X5 be the toric variety (AY)**(La)//T. Then ¥ is simplicial if and
only if
(AY)*(La) = (AY)*(La)-

Proof. Assume some o € ¥ is not simplicial. We have to show that there exists a
semi-stable but not stable point. Let &},7 ¢ I, be the spanning vectors of . Since ¢ is not
simplicial, Eie rni€; = 0 for some integers n; not all of which are zero. This implies that
>_igr nie] belongs to the annihilator M=+ of M in (ZN)*. If we identify (ZV)* with ZV,
then M+ is isomorphic to the submodule spanned by the rows A; of the matrix A. Thus
we can write

Zn,-ei = blfil +...+ b,-Ar
igl
for some b = (b1,...,b,) € Z". This implies that b ea; = 0 for j € I, where a; are the
columns of the matrix A.
Let us consider a one-parameter subgroup Ao € X,(T') defined by

Xo(t) = (2%, tb).
For any t € K* and z € AY(K) we have
Ao(t) -z = (tP*21 2, ... L P3N 2 0). (%)

Take a point p = (z1,...,2n), where z; = 1 if j € I and 0 otherwise. Since Z;(p) # 0,
we see that p € (AY)*(La). On the other hand, for all t € k, A\o(t) - p = p. This shows
that the stabilizer subgroup T, of the point z contains the group A(Gm k). Obviously we
may assume that the set (Al)*(L,) is not empty. Because it is an open subset of the
affine space we can find a stable point 2z’ with all non-zero coordinates. It follows from
formula (*) that A(Gm,k) C G for some A € X,(T) = Z" if and only if A - a; = 0 for
all j = 1,...,N. It is easy to see that each connected subgroup of a torus is a torus,
and hence it is generated by one-parameter subgroups. Thus the connected component
of the stabilizer of each point z € A} contains the subtorus 7' generated by A(Gm ;)
where A- A = 0. For stable points the connected component of the stabilizer is exactly 7".
However we have found that G, contains a subgroup ¢ for which X\ - A # 0.It is not in
the left kernel of A. Hence dimG, > dimG’,, and hence p cannot be stable point.
Conversely, assume that there exists a semi-stable but not stable point. Arguing as
above, we find a one-parameter subgroup A such that Ao - A # 0 but A - a; = 0 for all
J € I where oy € £. Then (b1,...,bn) = Ao - A has not all coordinates b; zero for j ¢ I
and b; = 0 for all j € I. This gives Ejy bje; =0, hence o7 is not simplicial.
10.4 Since every line bundle on an affine variety is ample, we obtain that the toric varieties
Xz = (AY)**(La)//T are always quasi-projective. Let us find out when they are projective.

Definition. A fan ¥ in a linear space V is called complete if

V=U0’.

oEX

For the proof of the following basic result we refer to [Fu2].
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Lemma. A fan ¥ is complete if and only if the toric variety Xy is complete.

Theorem. Assume that Lq is not a trivial linearized bundle (i.e., a # 0) and (A})**(La)
is not empty. The toric variety (ALY )**(La)//T is projective if and only if 0 is not contained
in the convex hull of the character vectors aj,j =1,...,N.

Proof. Suppose 0 is not in the convex hull of the vectors a;. This is equivalent to the
existence of a vector A € Z" such that Aea; > 0 for all j =1,..., N. This is a well-known
fact from the theory of convex sets. Formula (*) from above shows that this is equivalent
to the existence of a one-parameter subgroup A of T' which acts on AY by the formula:

At) - z=(t"2,...,t%zN),

where all ¢; are positive integers. So suppose such a A exists. Let 7' = A(Gm,k)- Note
that ALY \ {0} is the set of semi-stable points with respect to La for the action of T' on
AV, Then Y := (A} \ {0})//T" is a projective variety (see Lecture 4, Examples 4.2). The
line bundle L, descends to an ample line bundle L' on Y (equal to Oy () e a)). Since T is
commutative, it acts on Y via the quotient torus T'/T" and the linearization of L, descends
to a linearization of T on L'. We have

r(y,L'®)T =AY, L34)T.

This easily implies that
(AY)*(La)//T = Y**(L")/IT.

Now by the Main Theorem of Lecture 6 the latter quotient is projective.

Conversely, assume that Xs is projective. Then by the previous lemma, the fan ¥ is
complete. In particular this implies that the convex hull of the vectors &} is equal to the
whole space N ® R. Thus we can write 0 = 3, b;&} where b; > 0 but not all are zero. This
is equivalent to 3, bie} € M. This implies that there is a linear combination of the rows
of the matrix A which is a non-negative non-zero vector. This of course is equivalent to
the existence of a non-zero vector A € Z" with Aea; >0 for j =1,...,N. The theorem
is proven.

10.5 Examples. 1. Let G ¢ act on AZ’H by the formula:

t-(20y...,2n) = (tzo,...,t2n),

We have
A=(1 ... 1),
n
M = {(mq,...,mn) € Z"T' 1 Y m; =0}.
=1
It is easy to see that the basis of M consists of vectors v; = e; — ei+1,t = 1,...,n. If we
choose the dual basis (v],...,v}).of N = M*, the vectors & are equal to

=% __ * =% __ * * =% __ * * =% — *
€] =V],8p = —V] +Vg,..., €6 = —Vp_y +Unp, €041 = —VUp.
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We can take for a new basis of M* the vectors €},: =2,...,n + 1, because
é; = _(é; + PR + é:l‘l‘l)'

Let us linearize the action by taking the line bundle L,, where a = 1. Then we have an
isomorphism of graded rings

Qa>o (AR, LO)Cmk = k[Z,, ..., Z,].

Obviously the minimal generators of the ideal A are the unknowns Z;. Thus the cones of
our fan ¥ are

_ - p— p— _* .
oj =span{el,..., & 1,541, s€np1},J =1,...,m+ 1.

Fig.1
This is the fan defining the projective space P} (see [Fu2]). Let us see the corre-
sponding gluing. We can take for a basis of M the dual basis of (&3,...,€54,) which is
the set of vectors

€2 —€1,-..,€n41 —€1.
We easily find
- _ Zl Zn -~ . Zo Zn—l
k[U]ﬂM]—k[ZO,...,ZO], ceey k[a’n+1ﬂM]—k[Zn,..., A ]

These are the coordinate rings of the standard open subsets of P}. The gluing is achieved

by identifying all the coordinate rings with subrings of the ring if the Laurent polynomials
k[ZE,...,ZF).

2. Consider the action of Gm,x on A’,‘c by the formula

t-(z1,22,23,24) = (tz1,tz9,t 23, t 7 2y),

We have
A=(1 1 -1 -1),

M={(m1,m2,m3,m4) € Z4:m1 + mg — m3 —my :0}



104 Lecture 10

Let us choose the following basis of M

vy = —ey +e2,v2 = €1 +€3,V3 = €1 + e4.
We can express the vectors €} in terms of the dual basis (v],...,v%) of N = M* as follows
% * * P U I e
€1 =~V T vy t V3,6 = V1,83 = Vp,& = V3.

Choose L = L;, then the monoid of solutions of the equation
mi;+mg—m3—my—d=0,m; >0,d>0,

is spanned by the vectors (1,0,0,0,1),(0,1,0,0,1). This means that the unknowns Z;, Z
are the minimal generators of the ideal A. Thus the fan ¥ consists of two cones

01 = Spa'n{é;a 6;762}7 02 = span{éf, €3, EZ}

The dual cones are
§1 = span{—e; + e3,€e1 + e3,€1 + €4}, G = span{—ez + e1,e3 + €3,€2 + €4}.

The quotient Xy is obtained by gluing together two nonsingular algebraic varieties with
" the coordinate algebras

Z Z
ko N M) & k[Z, Zs, zmuéfl, ko N M) = k[Z,Zs, Z2Z4][Z_: :

Similarly if we take L = L_; we get that the fan ¥ consists of two cones
o1 = span{é}, €3,€, }, oo = span{é}, €3, €3}

The quotient Xy is obtained by gluing together two nonsingular algebraic varieties with
the coordinate algebras

Z Z
k(61 O M) = k[Z1 25, Z2Z5)[==], k[62 N M) = k[Z1Z4, Z2Z4)[22].
Z3 Z4

If we now change the linearization by taking L = Ly we get L = Lgbd = Ly for all
d > 0, hence A is generated by 1. Then we have only one cone spanned by the four vectors
e7. The toric quotient is isomorphic to the affine variety with the coordinate algebra

k[6 N M) = k[Z1 23, 2, Z4, 22 23, 22 Z4) = E[Ty, Ty, Ty, Ta) /(Ti Ty — ToTs).

One should compare this with our previous comiputation of this quotient in' Lecture
6. We see here a general phenomena: two toric varieties Xy and Xy, whose fans have the
same set of one-dimensional edges of its cones (called the 1-skeleton of a fan) differ by a
special birational modification. We refer the interested reader for more details to [Rei].

10.6 One can go in the oppdsite direction by identifying any toric variety Xy with a
categorical quotient of some open subset of an affine space. We state without proof the
following result of D. Cox [Cox]:



Toric Varieties 105

Theorem. Let X5, be a toric variety determined by a Z™-fan ©. To each one-dimensional
edge of the 1-skeleton of ¥ assign a variable Z; and consider the polynomial algebra
k[Zy,...,ZyN] generated by these variables. For each cone o € ¥ let Zi(o) € k[Z1,...,2ZN]
where I(c) C {1,...,N} is the complementary set of the l-skeleton of . Let U =
AY\V({Z1s)}sex). Let & be the primitive vectors of the lattice Z™ which span one-
dimensional edges of the cones from . Let B be the (n x N)-matrix whose columns are
the vectors €}, and let A be a (r x N)-matrix whose rows form a basis of the group of
integral solutions of the equation B -z = 0. Then
(i)
Xz =U//T,

with the action of T = (Gm,k)" given by the formula
t-(z1,...,2n) = (t*21,...,t*N 2N),

where a; are the columns of A.

(ii) Xy is simplicial if and only if U//T = U/T.

Remark. Note that applying this construction to the toric varieties X5 obtained as the
quotients (AY)**(La)//T we get U = (AY)**(La) and the action is isomorphic to the one
we started with. However, in general, U # (AY)**(L,) for any a € Z". One reason for
this is that our quotients are always quas-projective and there are examples of non-quasi-
projective toric varieties. Another reason is simpler. The fans we are getting from our
quotient constructions are “full” in the following sense. One cannot extend it to a larger
fan with the same 1-skeleton.

The torus T which acts on U has a very nice interpretation. Its character group X'(7')
is naturally isomorphic to the group Cl(Xx) of classes of Weil divisors on Xs.

Example. Let ¥ consists of the following four cones in R?

o1 = span{ey, ez },09 = span{e;, —ez},03 = span{—e;, —ey},04 = span{—ey, ez }.

€2
04 g1
e
*
€ 5 14
3 2

*
—62

Fig.2
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We have .
U=AI\{Z:24 = 212, = 2,25 = Z1Z, = 0},

1010
A‘(0101)"

hence the action is given by
(t1,t2) - (21,22, 23,24) = (t121,t029,t123,t224).

The variety X is obtained by gluing four affine planes with coordinate rings
k[Zy,22), k(2,25 1), k(27 271, k2T, Z).

It is easy to see that Xy is isomorphic to the product P} x Pi. This also is seen from
observing that

U/T = (A} \{Z1 = 23 = 0})/Gm i X (Af\ {Z2 = Z4 = 0})/Gm,x = P} x P}
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Problems.

1. Consider the action t - (z1, 29, 23) = (tz1,t 7 29,t23) and take L = L;. Show that the
quotient Xy is isomorphic to the blowing-up of A% at the origin. Draw the corresponding
fan.

2. Let T = (Gm,x)* act on A§ by the formula

t-z = (titatsty 21, tatat] 20, t1 23, ta2q, t32s, ta26).

Take L = L,, where a = (1,1,1,1,1,1). Show that the quotient is isomorphic to the
blowing-up of the projective plane at three points. Draw the picture of the fan.

3. Take a fan ¥ in R? formed by three two-dimensional cones spanned by the unit vectors
e1,eq,¢3. Using Cox’s theorem represent the toric variety X5 as a geometric quotient.

4. A toric variety Xy is nonsingular if and only if each o € ¥ is spanned by a part of a
basis of the lattice N. Show that U/T = Xy is nonsingular if and only if stabilizer of each
point of U is equal to the same subgroup of T

5. Let ¥ be a N-fan and ¥' be a N'-fan. Show that the cones 0 x ¢',0 € ¥,0' € ¥/, form
a (N @ N')-fan. Denoting this fan by ¥ x X', show that Xgxs = X5 x Xy.

6. Let Gm i act on A} by the formula t-(z1,...,2n) = (% 21,...,t9"2,), where q1,...,¢n
are positive integers. Show that the geometric quotient A} \{0}/Gm,k exists (it is denoted
by P(q1,- .., ¢n) and is called the weighted projective space). Show that it is a toric variety
and find the corresponding fan.

7. Let ¥ be a N-fan, X5 be the associated toric variety. Identify the lattice NV with the
group of one-parameter subgroups of the torus T' acting on Xsx. Let T' be the dense orbit
of T in Xyx. Show for any A € N,z € T, lim;_,o A(t) - z exists in Xy, if and only if A € ¢
for some o € Xy.
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Lecture 11. MODULI SPACE OF CURVES

In this last lecture we shall discuss how the methods of geometric invariant theory
are used to construct the moduli space of nonsingular projective curves. Similar methods
are used to construct other moduli spaces arising in algebraic geometry. We will use the
language of schemes, and, in particular, some facts about cohomology of schemes. All the
necessary background can be found in the first four chapters of [Har].

11.1 Roughly speaking, a moduli space is an algebraic variety whose points are in a one-
to-one correspondence with the set of isomorphism classes of algebra-geometric objects
(certain classes of algebraic varieties, vector bundles on a fixed variety, and so on). This
correspondence must be in some sense canonical, or natural. The formalization of these
ideas leads to the concept of a representable functor.
Let C be a category with its set of objects Ob(C) and sets of morphisms Mor¢(S, S').
* For any X € Ob(C) one defines the (covariant) functor

hx :C — Sets,
by setting
hx(S) = Mor¢(S,X), VS € Ob(C),
hx(p): hx(S) — hx(S"), ¢ — oy, Yo € More(5', S).

Recall that C denotes the dual category, which has the same set of objects as C but the
morphisms are defined by reversing the arrows (i.e., Mor¢(S, S") = Mors(5',5)). With this
trick one can consider only covariant functors, the contravariant functors become covariant
functors on the dual category.

By assigning to each object X € Ob(C) the functor hx, and to each morphism ¢ :

X — Y the morphism of functors A(p) : hx — hy defined by composing any ¢ € hx(S)
with ¢ on the right, we obtain a functor

h : C — Funct(C, Sets)

from the category C to the category of contravariant functors from C to Sets (where
morphisms are morphisms of functors, also called natural transformations of functors).
The next fundamental lemma says that this functor allows one to consider C as a full
subcategory of Funct(C, Sets).

Lemma (Yoneda). For any X,Y € Ob(C), the map
hx,y : More(X,Y) — Morpypeq(¢ sets) (b hy), @ = h(yp),
is bijective. : '

Proof. Let us construct the inverse of the map hx,y. Suppose we are given a morphism
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of functors o : hx — hy. Taking S = X, we obtain a morphism
¢ = a(idx) € hy(X) = Mor¢(X,Y).

Let us show that hxy(¢) = a. By definition, for any S € Ob(C), hx,y(¢)(S) is the
map hx(S) — hy(S) which is defined by composing morphisms S — X with ¢. Let

(S Lx ) € hx(S). By definition of morphisms of functors we have a commutative diagram

hx(X) "9 hy(s)
a(X) | LofS).
r(X) " hy(s)

If we write f = f oidx, we obtain that hx(f)(idx) = f, hence

a(S)(f) = hy (F)«(X)(idx)) = hy (f)(4) = ¢ o f.

This verifies that the map a +— ¢ is the left inverse of hx y. We leave it to the reader to
verify that it is also the right inverse.

Definition. A contravariant functor F' : C — Sets is called representable if there is
an isomorphism of functors F' = hx for some X € Ob(C). The object X is defined
uniquely (up to isomorphism) by this property. It is called the representing object of F.
The element up € F(X) corresponding to the identity morphism in hx(X) is called the
universal element of F.

Let F' be a representable functor, and let X be its representing object. It follows from
the proof of the Yoneda Lemma that for any S € Ob(C) and any a € F(S), there exists a
unique morphism ¢ : S — X such that

a = F(p)(up).

Examples. 1. Let C = (Sets). Consider the functor F' : C — Sets whose value at any
set S is equal to its n-th Cartesian power S™. Then this functor is representable by the
set [1,n] = {1,...,n}. The universal element is the element (1,2,...,n) € [1,n]".

2. Let I be an ideal in the polynomial ring k[Z;, ..., Z,], and let C be the dual category of
the category of commutative k-algebras. Consider the functor F' : C — Sets which assigns
to an algebra A the set

Sol(I,A) ={(a1,...,an) € A" : F(a1,...,a,) = 0,VF € I}.

This functor is representable by the factor-algebra k[Z,, ..., Z,]/I.

3. Let C = Sch be the category of schemes (over Z). For any scheme S let F(S) be the set
whose elements are isomorphism classes of locally free sheaves £ of rank r together with
a surjection ¢ : 0% — & with fixed n. If f: S’ — S is a morphism of schemes, we define
the map F(S) — F(S') by using the operations of the inverse transform f* of a sheaf and
of a homomorphism of sheaves. This functor is representable by the Grassmann variety
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G(n — r,n). Recall that for any commutative ring A, the set G(n — r,n)(A) consists of
submodules M of A™ which are projective modules of rank n —r and are direct summands
of A™. Replacing M by the factor module A"/M, we obtain an equivalent description of
the set G(n —r,n)(A) as the set of surjections A® — N, where N is a projective A-module
of rank r. Thus for any affine scheme S = Spec(A) any element ¢ : O% — & of F(S5)
defines a point from G(n — r,n)(S). If S is not affine, we choose an open affine covering
of S and construct a morphism S — G(n — r,n) whose restriction to each affine subset
U = Spec(A) is the point of G(n —r,n)(A) defined by the restriction of ¢ : O — & to U.
The universal object for this functor is a locally free sheaf Q over G(n —r, n) together with
a surjection Og,_,. ,) = Q. It is called the universal quotient bundle. For any morphism
f 8§ — G(n —r,n) the inverse transform f*(Og,_, ) = O5 — f*(Q) is an element
of the set F(S), and any element from this set is obtained in this way from a unique
morphism f: S — G(n —r,n).

Note the special case when r = 1. The Grassmannian becomes the projective space
P"~! and the universal quotient bundle becomes the invertible sheaf Opn-1(1). The
surjection Op,-, — Opr-1(1) is given by a choice of homogeneous coordinates Ty, .. ., Tn-1
which can be considered as a basis in the space of global sections of Opn-1(1). We obtain
the standard description of a morphism f : § — P"~!. It is given by an invertible sheaf L

on S together with its n global sections so,. .., sp—1 which generate L at each point s € S.

11.2 Let us now consider the category Sch/k of schemes over a field k. In this case a
representing object of a representable functor F' is called a fine moduli scheme of F.
For example, consider the functor

M,(S) = {families of curves of genus g over S}/modulo isomorphism over S.

Here a family of curves of genus g over a scheme S is defined as a proper smooth morphism
of relative dimension 1 with connected geometric fibres f : X — S. By definition, its fibre
over each point s € S is a geometrically connected smooth complete curve of genus g over
the residue field k(s) of S. If ¢ : S’ — S is a morphism of k-schemes, we define the map
M,y(S) — My(S") by using the operation of the base change:

My(¢)(X - S)=Xx55 - 5"
Suppose this functor is representable by a scheme M, over k. Then we have a universal
family = : X; — M, with the following property: for any family of curves f : X — S there
exists a unique morphism g : S — M, such that (X — §) = (X, xm, S — S). By taking
S = Spec(k) we obtain a bijection

{isomorphism classes of curves of genus g over k} — M, (k).

Also, it follows from the definition of functors that the unique map S — M, defined
by a family f: X — S is given by ,

s — isomorphism class of the fibre X.
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Thus we have found a natural parametrization of the former set by the points of an algebraic
variety (or a scheme).

Unfortunately, life is not that easy and the functor M, is not representable for any
g. The reason is simple. For example, if k is not algebraically closed we observe that
for any extension of fields k'/k we have an obvious injection My(k) — My(k'). On the
other hand, M,(Spec(k)) — M,(Spec(k')) may not inject, as there could be curves not
isomorphic over k but isomorphic over the extension k'. Over any algebraically closed field
one can give an example of a family f : X — S of algebraic curves where all geometric
fibres are isomorphic to the same curve C, but the family is not isomorphic to the trivial
family C x S — S. Both families must define the same map to My and hence must be
isomorphic. The easiest case of this example can be given in the case ¢ = 0. This is a
ruled surface not isomorphic to the quadric P x P;. For example, let X be the blow-up
of one point z in the projective plane P2. It is easy to see that the linear projection
p: P2\ {z} — P} extends to a morphism f : X — P} with all fibres isomorphic to Pj}.
This surface is not isomorphic to the quadric. See details in [Har].

Thus, our functor does not have the fine moduli scheme. A weaker notion is the
following;:

Definition. A coarse moduli scheme of a functor F' : (Sch) — Sets is a scheme X such
that there is a morphism of functors

®:F - hx

satisfying the properties
(i) for any scheme Y and a morphism of functors ®' : F — hy there exists a unique
morphism ¢ : X — Y such that h(¢) o & = &';
(ii) for any algebraically closed extension 2/k, the map

#(Q) : F(Spec()) — X ()

is bijective.
Using geometric invariant theory we shall show that the coarse moduli scheme for the
functor M, exists and is an algebraic variety.

11.3 The idea for constructing a coarse moduli scheme for curves (and some other objects)
is the following. First we embed all curves into a projective space in such a way that
two curves are isomorphic if and only if they are projectively isomorphic. Then we find
a variety X which parametrizes all projective curves arising in this way and show that
there is a functor hx — M, satisfying the following property: there exists an action of
the projective linear group G on X such that for any algebraically closed extension Q/k,
X () — M,(Spec()) is the quotient map X(Q2) — X(2)/G(£2). There is a distinguished
element (7 : X — X) € My(X). For any morphism of functors M; — hy the image
of 7 defines a G-invariant morphism X — N. This allows one to construct a morphism
My — hx/c and prove that X /G is the coarse moduli scheme. The variety X which we
will be looking for is a subvariety of the Hilbert scheme of curves of genus g.

Roughly speaking, a Hilbert scheme is an algebraic variety parametrizing subvarieties
of a projective space of given degree and dimension. In the case when the varieties are
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hypersurfaces of some degree d in a projective space P}, the Hilbert scheme is just the
projective space Hypy(n) of dimension ("j’d). In the general case, this problem has no
obvious solution. Making it even harder, let us consider the more general problem of
classifying all closed subchemes of a given projective algebraic variety X over k.

Let us introduce the following functor on the category of k-schemes with values in the
category of sets:

H:lbxi(S) = {closed subschemes Z of X xj S which are flat over S}.

Recall that a morphism Z — S is called flat if for any point s € S and any point z € Z
over s the local ring Oz, is a flat Og s-module. The reason for this condition will be clear
later. Choose an ample invertible sheaf £ on X. For any coherent sheaf F on X we set
F(n) = F ®ox LB™. The following result can be found in [Har], Chapter III, Theorem
9.9.

Lemma. Let F be a coherent sheaf over X.
(i) There exists a polynomial PE(t) € Q[t] such that for all n > 0

dim X
PE(n) = x(X,F(n)) = Y (=1)'dim; H'(X, F(n)).

1=0

(ii) If n is large enough,
PE(n) = dim (X, F(n)).

(iii) If f : X — S is a flat morphism, then for any fibre X, over a closed point s € S,
Péx, (t) is independent of s.

Definition. The polynomial PX(t) is called the Hilbert polynomial of F with respect to
L. If F = Oz, where Z is a closed subscheme of X (where we consider Oz as a coherent
sheaf on X with support on Z), the Hilbert polynomial is denoted by PZ(t) and is called
the Hilbert polynomaial of Z with respect to L.

Using property (iii) of the previous lemma, we may split the values Hilb x /k(S) of the

functor Hilbx/ into the disjoint subsets Hilb;}/k(S ), where for any P € Q]

Hilb%/(S) = {Z € Hilby(S) : for any closed s € S, PE (t) = P}.

Theorem. (A. Grothendieck). Let X be a projective variety with a fixed ample line
bundle L on it. The functor Hilb§ /k 18 representable by a projective algebraic variety. It

is denoted by Hilb;’}/k and is called the Hilbert scheme of X (with respect to P).

Proof. We only sketch the main idea of the proof referring the reader for the details to
[Gro]. Applying Theorem 8.8 from [Har], Chapter III, one shows that for any Z ¢ X x
from Hilbi/k(S), there exists a number N such that for all n > N the sheaf (pr2)«(0z ®

pri(Ox(n))) is locally free on S of rank equal to P(n) and the natural homomorphism
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(pr2)«(pri(Ox(n))) — (pr2)«(Oz(n)) is surjective. This defines a surjective map of linear
spaces

I'(X,0x(n)) = I(Z,0z(n)), n>N.

The hard part of the proof consists of proving that N can be chosen independently of S
and is determined only by the Hilbert polynomial (in the case X = P} one can find the
proof in Lecture 14 of [Mu2]). This allows one to define a map of sets

Hilb§/k(5) — Morge /i (S, G(c — p,c)),
where ¢ = dim;['(X,Ox(N)),p = P(N). By varying S, we obtain a morphism of functors

Hilb% ), — ho(c

—p,C)’

Finally one proves that this morphism can be represented by a closed immersion of schemes
Hilb§/k — G(c—p,c).

11.4 We shall use Hilbert schemes only in the case when X is a projective space P%. In
this case there is another construction for parametrizing closed subvarieties Z of P%. It
is based on the notion of the Cayley form of Z. We shall assume for simplicity that the
ground field k is algebraically closed.

Let Z be a closed subvariety of P? of dimension r and degree d. Let P} denote the
dual projective space parametrizing hyperplanes H in P} (which can be considered as the
Grassmann variety G(n,n + 1)). Consider the closed subvariety T of P? x (P?)™*! with

r<+1
T(k) = {(SE,HI,...,HT+1) T € m Hz}
=1

We leave it to the reader to write T' as the zero set of a r + 1-multilinear form in projective
coordinates in P} and P}. Let p; : T — P¥ and p; : T — (P})™t! be the projections.
For any reduced subvariety Z of dimension r and degree d in P} we set

cay(Z) = pa(py (2)NT).
This is a closed subvariety of (P?)"+! with
cay(Z)(k) = {(H], ce ,Hr+1) 1 ZN Hl .ooN H,-+1 ;é 0}

Let us see that cay(Z) is a hypersurface in (P?)™*! of multi-degree (d,...,d). For this it
suffices to show that the intersection of cay(Z) with the general fibre of each projection
(PZ)”’I — (P?)" is a hypersurface of degree d. Without loss of generality we may assume
that the projection is onto the product of the first r factors. Fix r “general” hyperplanes
H,,...,H,; then the intersection Z N Hy; N...N H, consists of d points. Hence

{HePik): (ZNHN...NH;)NH # 0} = the union of d hyperplanes.
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This proves the claim.
Let Div{®9((Pr)r+1) denote the projective space (of dimension ("jd) T 1) of
hypersurfaces of multi-degree (d, ...,d) in (P})"*!. We have constructed a map

cay : {closed subvarieties of P} of dimension 7 and degree d} — Div{%d((P2)"+1),

The value of this map on any Z is called the Cayley form of Z.
A closely related notion is the Chow form of Z. Consider the natural rational map

P ———>G(n—r,n+1), (Hy,...,Hy1) > HiN...NHpy.

It is defined on the open subset U which consists of hyperplanes (Hy,...,H,4+1) which
intersect along a subspace of dimension n —r — 1. Then the image of cay(Z) N U consists
of all codimension r + 1 linear subspaces of P} which intersect Z. This is a hypersurface
in G(n — r,n + 1) which is called the Chow form of Z and denoted by chow(Z). If
OG(n-r,n+1)(1) is the line bundle defining the Pliicker embedding of G(n — r,n + 1), then
chow(Z) is given by a global section of Og(n—r,nt1)(d)-
Examples. 1. Let Z be a hypersurface of degree d in P}. Then it coincides with its
Chow form.
2. Let L be a linear subspace in P? of dimension r. We shall identify P?(k) with the
projective space P(E) associated to a linear space E. Then P? %(k) can be identified with
the projective space P(E*) associated to the dual space E*. Let v1,...,Ur4+1 be a basis
of the linear subspace L defining L. For any ¢ € E* we denote by V(¢) the hyperplane
defined by the equation ¢ = 0. Then, using some standard facts from multi-linear algebra,
we obtain

LﬂV(¢1)ﬂ...V(¢T+1)7é@®(v1/\.../\vr+1,¢1/\.../\¢r+1):0.

Here we denote by (,) the canonical pairing between the spaces A" (V) and A" (V*).
If we choose a basis eg,...,e, of V and its dual basis €, ..., ek in V*, then the previous
condition can be written in the form

) (r+1) _
E Diryoyirgr @iy o2 G =0,
0<i1<...<i,+1<n

where p;, . i, are the Plicker coordinates of L, and ¢; = (]) er,j =1,...,r+ 1.
This expression is an (r + 1)-multilinear linear form defining the equatlon of the Cayley

form of L in (P?)"™*!. If we view a( )...asr+11) as the Pliicker coordinates of the linear
subspace of V* which is orthogonal to the subspace ¢; = ... = ¢,41 = 0 of V, then
the above expression is the equation of the image of the Chow form of L under the map

Gn—r,n+1)— G(r+1,n+1) given by W —» W+

Now we want to define a morphism

@ : Hilbg, — Div(®9(Pp)r+!
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such that its value at a closed subvariety of degree d and dimension r with Hilbert poly-
nomial P is equal to cay(Z). The problem here is that we do not know the values of this
map on non-reduced closed subschemes. For any closed subscheme Z we define the cycle
of Z as a formal linear combination

cye(Z2) = ZmiZi,

where Z; is an irreducible component of Z and m; is equal to the length of the local ring
Oz, n: of Z; at its generic point 7;. One extends the notion of the Cayley form to any cycle
of irreducible reduced varieties by setting

ca,y(z: m;Z;) = E m;cay(Z;)

where the latter sum is considered as a divisor in (P})™+1. It is shown in [Mul], Chapter
5, 4.6, that there is a morphism & : Hilb{;: — Div{®-9(P2)r+1 with the property

8(2) = cay(cye(2)

for any Z € Hilbgz(k). Note that the degree d and the dimension r of Z can be read off
the Hilbert polynomial P as P(t) = (d/r!)t"+ terms of lower order. Also it is known that

d=deg(Z):= Zmideg(Z,-).

11.5 Recall from [Har], p.180, that for any smooth variety X of dimension n there is
an invertible sheaf wx whose global sections are regular differential n-forms on X. The
inverse sheaf w}lis equal to the maximal exterior power of the tangent bundle Tx of X.
If X is a projective connected curve of genus g, the degree of wx is equal to 29 — 2. Thus,
if ¢ > 1, the v-canonical complete linear system |w$”|,» > 3, defines a closed embedding

X — Pg“_l)(y_l)-l (see [Har], p.308). This fact allows one to embed all nonsingular
curves of genus g > 2 into the same projective space, say P:y "6, as curves of degree 6(g—1).
Since any isomorphism f : X — X' of curves defines an isomorphism wx = f*(wY), we
obtain that X = X' if and only if their images in Pzg ~® are projectively equivalent. This
suggests a construction of a coarse moduli scheme of curves of genus g > 2 as a geometric
quotient of some subset of the Hilbert scheme Hilbgiv where

N=5g9g—6, P(t)=dt+1—g, d=6g —6.
Let us fulfill this program.

First let us define the appropriate subset of the Hilbert scheme. We assume that g > 2
leaving the case g = 1 to the reader (see Problem 2).
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Lemma. There is a unique subscheme Hy of the Hilbert scheme Hilbl};iz such that any
morphism f: 5 — Hilbgiv factors though Hy if and only if

(i) the S-subscheme Z C S x PY defined by f is a family of curves of genus g;

(ii) the embedding Z, — P¥ is given by the 3-canonical linear system;
(iii) the restriction of the morphism & : Hilb;iv — Div®D(PY)?) to H, is a closed
embedding.

Proof. Let Z — Hilbgiv x PY be the universal object for the functor Hilbgiv and

p : Z — HilbLy be the first projection. Since the set of points s € S over which a
Pk

morphism X — S is smooth is an open subset of S, we can find a maximal open subset
U of Hilbgiv over which the morphism p is smooth. Since the number of connected
components of a geometric fibre Z; of p is determined by the dimension of the space
dimiI'(Z,, Oz,), and the latter is an upper semi-continuous function for a flat morphism
([Har], p. 288), we obtain that there exists an open subset U’ of U such that all geometric
fibres over U' are connected nonsingular curves. Their genus is determined by the Hilbert
polynomial. :
To achieve the second property we have to use a more powerful technique. It is based
on the notion of the relative Picard scheme (see [Mu2]). For each morphism f: X — S
- of schemes we consider the functor Picx/s on the category of S-schemes which assigns to
‘any S’ — S the Picard group Pic(X x5 S") of isomorphism classes of invertible sheaves on
the fibred product X x g S’. For any morphism ¢ : §"” — S’ of S-schemes, the operation of
the inverse image of a coherent sheaves defines a homomorphism of groups Picx;s(S") —
Picx/s(S"). In the case where f is a family of curves this functor is representable by the
S-scheme Picx/s. It contains a closed subscheme Pic% /s which represents the subfunctor
Pic% /s whose value on S’ is the subgroup of Pic(X xsS') which consists of isomorphism
classes of invertible sheafs whose restriction to each fibre of the map X x5 S’ — S’ is of
degree zero. The scheme Pic% /s 1s a proper group scheme over S (an abelian scheme), its
geometric fibres are abelian varieties, the jacobian varieties of the geometric fibres of f.
Let us take for f the restriction Z' - U' of p: Z — Hilbgiv over U'. Let wz//yr be the
relative canonical sheaf of f. Its restriction to each fibre is the canonical sheaf of the fibre.
Consider the invertible sheaf £ on Z' equal to the tensor product w%; 1 ® q*(OPLV("'].)),

where ¢ : Z' — PI is induced by the second projection Z' C HilbgkN x PN — Piv .
Since both w?j,s/U, and ¢*(Opn(1)) restrict to an invertible sheaf of degree d on each

fibre of f (which is a curve of degree d in PY'), we see that £ belongs to the group
Picoz,/U,(U’) C Pic(Z2' xy U') = Pic(Z2'"). Hence it defines a morphism

p:U — Pic%,/U,‘

If s is a closed point of U’ and 7 : s < U’ is the closed embedding, we can consider s
as a U'-scheme. Then Pic, () is equal to the group Pic®(2' xy: s) = Pic®(Z}) of
isomorphism classes of invertible sheaves of degree 0 on the curve p~i(s) = Z! c P¥
represented by the point s of the Hilbert scheme. By definition of representable functors,
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the map ¢ sends the point s to the isomorphism class of the sheaf £L® O z:. Let 0 be the

zero section of the group scheme Pic%, Jur- 1ts closed points correspond to the isomorphism
classes of the structure sheaves on the fibres of Z' — U’. Thus if we set

Hg = ‘P_l (0))

we obtain the needed subset of HilbgkN. The last property from (iii) follows from the fact
that the Cayley form determines uniquely any nonsingular curve.

Theorem. The geometric quotient My = Hy/PGL(n + 1) is a coarse moduli scheme of
M.

Proof. Let p: Hy — M, be a geometric quotient Hy/PGL(n+1). Let us construct a
morphism of functors My — ha,. Let S be a scheme over the field £ and f : X — S be a
family of curves of genus g. By [Har], Chapter III, Corollary 12.9, the sheaf £ = f*(w?g s)
is a locally free sheaf on S of rank N 4+ 1 = 59 — 5. For any closed point s € S we have

€ Qos, k(s) = HO(Xs,wg?f).

Let {U;}ier be a trivializing affine open cover for €. If we choose a basis 0y, ...,on of the
free Os(U;)-module M = O5(U;) HO(Xs,wggf’), we will be able to define a morphism:

¢i: X;:=f(U;) > Ui x PY

by sending a point £ € X, to the point (s, (oo(s)(z),...,on(s)(z))). This morphism is a
closed embedding and its image Z; C U; x PY satisfies properties (i) and (ii) from the
previous Lemma. Let Z;, — H, be the restriction to Hy of the universal family over the
Hilbert scheme. Applying the Lemma, we obtain a unique morphism U; — H, such that
the Z, xg, U; = X;. Now we use that the restriction of the maps ¢; and ¢; to f~1(U;NU;)
differ by a projective automorphism of P defined by the transition function g; j of £ This
shows that the compositions

d—):U,-—»Hg—-)Mg

agree on U;NU;. Thus, starting from an element of M (.S), we have constructed a morphism
S — M. It remains to verify the two properties from the definition of a coarse moduli
scheme.

Let us start with the property of universality. Suppose we have a morphism of functors
M, — hy. By taking S = H,, and taking Z; — H, as an element from M(.S), we obtain
an element of hn(S) which is a morphism H; — N. The group PGLy(N +1) acts on H,
via projective transformations of PY which transform the universal family Z, - Hy toan
isomorphic family of curves, i.e., it defines the same element of M,(.S). Hence it defines
the same image in hy, and hence the map Hy; — N factors through a unique morphism
My — N, making the commutative diagram

Mg e hN
N\ a

hm,
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This checks the universality. Now if we take S = Spec(2), where § is any algebraically
closed extension of k, we get a map My(2) — H,y(Q2) which sends a nonsingular projective
connected curve I' of genus g over Q to the projective isomorphism class of the curve
¢(T') C PY. But we have explained already that I' = I'" if and only if their images in Py
under the map defined by the tri-canonical linear system are projectively isomorphic. This
shows that our map My(2) = Hy(Q2)/PGLx(N +1) is leeCthe This ver1ﬁes the second

property of a coarse moduli scheme

11.6 It remains to prove that a geometric quotient Hy/PGL(n + 1) exists.
Let us consider the closed embedding

$:H, — D, := DivlD((PY)?)

defined in Lemma 11.5. It is obviously G-equivariant, where the action of G on D, is
induced by the diagonal action of G on (P{)? via its dual projective representation. It is
enough to show that the image of H, in the projective space Dy is contained in the set
of properly stable points with respect to Op,(1) and the action of SLx(N + 1). We will
now show this. Recall that geometric points of ®(H,) are the Cayley forms of nonsingular
connected projective curves I' in P¥ of genus ¢ and degree d = 6(g — 1), embedded by the
~ tri-canonical linear system. For any g € SL(N + 1,k), g - I is the image of I under the
projective transformation defined by g. To check that I' is properly stable we apply the
‘numerical criterion of stability. We use the following

Lemma. Let G act on a projective variety X, and let L be a G-linearized ample line
bundle. For any A € X,(G), and z € X(k),

pl(z,\) = pL(}ir% A(t) -z, A).

Proof. Linearizing the action we may assume that z = (zo,...,2,) € P} and A(?)
acts on z by the formula A(t) -z = (t"°zg,...,t™z,). We know that

pf(z,\) = min{r; : z; # 0}.
Without loss of generality we may assume that this minimum is equal to ro. Then
At) -z = (z0,t™ "zq,..., 17" z,)

and
lim A(t) -z =y := (20,0121, ..,0nTx),

t—0
where a; = 1 if r; = ro and 0 otherwise. Now A(t) acts on y by the formula

A(t) -y = (t"°z0,t @121, . .., 1 " AnZTn),

and the assertion follows immediately.
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We need to find the limit
7(A) = hm A(#) - cay ().

We have already observed that it is enough to verify that u”(z,\) < 0 for all one-parameter
subgroups A which are given by the diagonal matrices diag(t™,...,t™~), where

rozrlz...er,Zrizﬂ

[

We can write such a one-parameter subgroup as a non-negative rational linear combination
of the subgroups As,s =0,...,N — 1, with

r(()s)z;"._:‘rgs):N—-S,rg?l :,,,,T‘(]\';)Z—S-—l.
If we write
N-1
)\ = Z as)‘sy
s=0

we easily get
ri—rit1 =a;(N+1),:=0,...,N -1

In particular, the sequence rg > ry > ... > ry is strictly decreasing if and only if all a;
are nonzero. Let x1,...,Xr be the characters of the maximal torus T which correspond to
non-zero coordinates of z (see Lecture 7). Let S(A) = {s : a, # 0}. Then

N-1 N-1
(e, A) = min{(3, xi)} < min mae {0, x:)}(Y as) < minmax{ (A, x) Y a0)-

This shows that it is enough to verify that p(z, ) < 0 for one-parameter subgroups with
S(\) ={0,...,N}, ie. , satisfying

r0>r1>...>rN,zr,-=0.

1

In fact we can forget about any subset of A’s such that the differences r; — r;4; satisfy
some linear equations.

11.7 Let z = (2o,...,zn) be a point of PY with zy # 0. We have
At) -z =(t"2,...,t"Ven)=({t""Nag,..., "V TNy _y,2N).
When t goes to 0 we obtain

}iII(l))\(t)-:I)=(0,...,0,1).
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This shows that all points of I' not lying in the hyperplane zny = 0 “specialize” to the
point Py = (0,...,0,1). Let us see that the whole curve I specializes to a cycle of lines
taken with some multiplicities. Consider the map

f:Gmi xT - PV
which is obtained as the composition of A X idp : G X I' = SLi(N + 1) x Piv and the
action morphism o : SLy(N+1)xPY — P¥. Let Q4,...,Q, be the set of points of ' with
the last coordinate equal to 0. Choose a local parameter n; of I' at the point Q;,i = 1,...,v

Let Xq,...,Xn be projective coordinates in PY. Suppose some Xi(Q;) # 0. Then
Xi/Xx € Or g, for each ¢ and hence we can write

Xi =} z=0,...,N,

where e(] ) is an invertible element in the local ring Or q; and s(J ) are non- negative integers,
one of them equal to 0. Now the morphism f: Gy xI' — PN defines a rational map

f : Ak X F _——— Pk
given near the point 0 x @; by the formula

X; = (’)n,‘ T",i=0,...,N,

- where A} = Speck[T].
Suppose we find a normal algebraic surface V together with two morphisms 7 : V —
Al xT and f': V — PY satisfying the following properties
(i) mis a proper birational morphism which is an isomorphism outside the points Q;,j =
1,...,v;
(i1) the diagram of rational maps

|4
"/ NS
f
AlxI - - PV
is commutative.
Let p; : AL xI' = A} be the first projection. Then the composition

' =piom:V — A}
is a proper map. For any t # 0

" (a) = A(t) - T T
On the other hand, over the origin the fibre is equal to the divisor D of zeroes of the
function 7n"*(T'). Set-theoretically this fibre is equal to the union IV U E, where I" is the
proper transform of 0 x I' and E is the union of the pre-images of the points @Q;. The

map f' blows down I' to the point Py and maps E onto some curve in PN Let E,
be an irreducible component of E, and let mq be its multiplicity in the d1v1sor D. Let

= f'(E4) and let ng be the degree [R(E,) : R(E,)] of the extension of the fields of
ratlonal functions defined by the map E, — E,. Here we set no = 0 if f' blows down E,
to a point.
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Proposition.

}'i_{% A(t) - cay(T) = Z manacay(Eq).
Proof. Since the map ® : Hy — D, is SLg(N + 1)-equivariant, we have
cay(A(t) - T') = A(2) - cay(T).

Let Z,(X) denote the group of algebraic r-cycles on an algebraic variety. This is a
free abelian group generated by irreducible r-dimensional closed reduced subvarieties of
X. For every proper morphism ¢ : X — Y the image of a closed subset is closed. Let C
be an r-dimensional closed subvariety of X. Define

f(C) = deg(C/F(C))F(C),

where deg(C/f(C)) is equal to R(C) : R(f(C)) if f(C) is r-dimensional and zero otherwise.

This extends by linearity to a homomorphism
fo 1 Z(X)— Z.(Y)

which is called the push-forward homomorphism of cycles.

Two algebraic r-cycles C and C' are called rationally equivalent if there are a finite
number of r + 1-dimensional reduced subvarieties Z; of X and rational functions r; € R(Z;)
on their normalizations Z; such that C — C' = 3, (m;)«(div(r;)), where 7; : Z; — X is the
composition of the normalization map and the inclusion map Z; — X. In particular, two
linearly equivalent divisors on a normal variety X of dimension n are rationally equivalent
(n — 1)-cycles on X. One can prove that the push-forward of rationally equivalent cycles
are rationally equivalent ([Ful], p.11). Returning to our situation we observe that the
map (f',7') : V — P¥ x Al is proper. In fact, the composition of this map with the
proper projection map PY x Al — Al equals the composition of the two proper maps
7 :V — Al x I and the projection A} x I' — A}. So the properness of (f',n") follows
from Corollary 4.8 of Chapter 2 of [Har]. We have

3" mania(Ea x {0}) = fi(div(x*(T))), A#)-T x {t} = fi(div(x*(T - 1))).

Thus the cycles Y mana(Eq % {0}) and A(t)-T'x {t} are rationally equivalent in P} x Aj.
If we identify both cycles with cycles in PY, then we get an algebraic family of rationally
equivalent 1-cycles in PY parametrized by A} (see [Ful], Chapter 10). All members of
this family have the same degree, and we have a regular map 3 : A} — D, such that

B(0) = cay() _ mana(Eq)), B(t) = cay(A(t) -T),¢ # 0.

Now the assertion follows from the definition of lim; .o A(t) - cay(T").
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11.8 Let us construct the surface V which “resolves” the rational map f : A} xI'— — P¥.
This surface is obtained by blowing up the ideals Z;,j = 1, ..., v, generated by the functions

N .
egj)n;" T":, where r; = r; — ry. To see what happens over each point @, it is enough

to consider the local situation, when A} x I' is replaced by a regular local ring with local
parameters z,y and the ideal Z; is replaced by the ideal generated by the monomials
x’iysgn ,0=0,...,N. We arrive at the same situation if we consider the blowing-up of the
ideal in the ring of polynomials k[X,Y] generated by the monomials X v ,0=0,...,N.
This is a “torical situation”. We need some more constructions from toric geometry.

Let N = Z" be a lattice, M = N* be the dual lattice, ¥ be a N-fan in the linear
space Nr, and Xy be the toric variety associated to . Let T = Spec(k[M]) be the torus
acting on Xy. We assume for simplicity that no cones in ¥ contains a linear subspace.
This means that X5 contains an open orbit isomorphic to T' so we may identify the field K
of rational functions on Xy with the field of rational functions on T. Let F be a coherent
subsheaf of the constant sheaf K (a sheaf of fractional ideals) which is T-invariant (for
example the ideal sheaf of a T-invariant closed subset of Xy). Its restriction to each affine
piece X,,0 € X, is a M-graded finitely generated k[5 N M]-submodule of K. We can take
for its generators a set of monomials Z™, m € G(F). Define the function

ordr : |X]:= U c—R
oEX

by setting for all z € |Z]
ords(z) = mIEnGl?f)<m’ z).

This function depends only on F and satisfies the following properties
(i) ordz(cz) = cordx(z),Ve € Rsg;
(ii) ords is continuous, piecewise linear;
(iil) ordx(N N |Z]) C Z;
(iv) ordr is convex on each o € X.

Conversely, given a function f : |2| — R satisfying the previous four conditions, one
can construct a unique 7y with f = ords, as follows. The restriction of F to each affine
piece X, is the k[¢ N M]-submodule of K

(Fro= @ kz™

m:(m—f,o)>0

For example, the identically zero function corresponds to the structure sheaf Ox,. If we
want F to be an invertible sheaf we have to require additionally
(v) ords is linear on each o € .

In fact, if this property is satisfied, then for each o € ¥ there exists m, € M such
that f(z) = (—m,,z) for any z € o. This implies that

(F5)o = | @ kz™ =vZ—mvk[6nM]

m:(m+m,,o)>0
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is a free module generated by Z™-,

The sheaves Fy are coherent sheaves of T-invariant complete fractional ideals, i.e.,
each k[¢ N M]- module I'(X,, F(X,)) C K is integrally closed in K. In general, Foq, is
not equal to F. However it is equal to the normal closure of F.

The operation ' — ordr, f — Fjy allows one to construct the normalization of
the blow-up of F. Recall from [Har], p.163, that for any coherent sheaf of ideals Z on a
noetherian scheme X, one defines the blowing-up scheme Bz which comes with a projective
morphism 7 : By — X satisfying the following properties:

(i) 7' - Op, is an invertible sheaf on Br;
(ii) 7 is an isomorphism outside the closed subscheme defined by Z;
(iii) 7 is universal with respect to the previous properties.

To describe the blowing-up of the sheaf F; we have to explain the functorial property of
the construction & — Xy. Let ¢ : N' — N be a homomorphism of lattices, or : N — Nr
be the corresponding linear map, ¥’ be a N'-fan, and ¥ be a N-fan. Assume that

Vo' €X', ¢r(c') Co for some o € I.

Then we can define the morphism f(¢) : Xy» — Xy of the toric varieties by gluing
together the morphisms of the affine varieties X,» — X, corresponding to the natural
homomorphism of the rings k[¢ N M] — k[&' N M'] induced by the transpose map *¢ :
M = N* - M' = N"™*. We have

f(¢) 1is a proper morphism if and only if ¢(|Z'|) = |Z|.

Now we can state the following result, for the proof of which we refer the reader to

[KSM].

Proposition. Let T be a coherent sheaf of T-invariant ideals on Xx. Let &' be obtained
from ¥ by subdividing each o € ¥ into the largest rational convex subcones o; such that
ordr is linear on each o;. Then the morphism X5+ — Xy is the composition of the
blowing-up Bz and the normalization map Xs» — Brz.

To see better the geometry of the map f(¢) and, in particular, of the map 7 : X5 —
Xs, we use the following description of the orbital decomposition of a toric variety Xy.
First let £ be obtained from ¥ by adding to it all faces of all cones o € . For each 7 € &
we define the T-orbit O7 as follows. Let 7 be a face of some o € ¥. Then 7 is spanned
by & and the linear function m € M = N* such that m vanishes on 7. This shows that
k[# N M] is equal to the localization k[¢ N M]zm. Therefore Spec(k[# N M]) is an open
affine subset of Spec(k[é N M]). Denote by 71 the linear subspace of Mg of functions
which vanish on 7. Then 7+ C 7 and the subspace of k[ N M] spanned by monomials
Z™ with m ¢ 71 is an ideal with the quotient ring isomorphic to k[r+ N M] = k[Z9),
where d = dim7+ = r — dim7. This defines a closed subset of X, isomorphic to the torus
(Gm k)¢ which is a T-orbit. In this way we obtain a one-to-one correspondence 7 < O7
between the set & and the set of T-orbits. It satisfies the properties

(i) dimOT = codimr;
(ii) 7 is a face in 7' if and only if O is contained in the closure of O7.
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If » maps a cone o' € &' into a cone o € &, then
fle)(07)co.

Codimension 1 orbits correspond to 1-dimensional cones from ¥. The set of such
cones is denoted by ©(1) and is called the I-skeleton of ¥. We have already used this set
in Lecture 10. For every 7 € £(!) the closure of the orbit 07 is a T-invariant Weil divisor
on Xy. We shall denote it by D,. Let n, be the primitive lattice vector spanning 7. For
any m € M the monomial Z™ is a T-invariant rational function on Xy. Its divisor must
be a linear combination of the divisors D,. The explicit formula is

div(Zz™) = Z (m,n;)D,. (%)

rex()

11.9 We shall apply the previous construction to the special case when ¥ consists of a
single cone o equal to the first quadrant of R2. We consider N to be the standard lattice
Z? so that the dual lattice is M = Z? and the pairing between the lattices is the usual
dot-product. In this case & is equal to o (but drawn in the “dual” picture). Thus

Xs = A% = Spec(k[s N Z%]) = Spec(k[X,Y]),

where X = Z(19 Y = Z(©®D_ Let I be a monomial ideal in k[X,Y]. Because we are in
the affine case, this corresponds to a sheaf of T-invariant ideals I on X5. Let {Z™ }mea(r)
be the set of monomial generators of I. Suppose m = m' + a, where a € Z%,. Then for
any r € o,
m-z<m'-z.
This shows that the function ords is determined only by the minimal elements of the set
G(I) with respect to the order m > m' & m — m' € Z2 . To find this minimal set, we

plot the set m € G(I) in R2, then the set of minimal points will lie on the Newton polygon
of G(I). This is defined as the union of finite edges of the convex hull of the set

U (m+2%)

meG(I)
Let m,,...,m, be the points from G(I) lying on the Newton polygon. Set
ogi={z€o:ordr(z)=m,; -z,i=1,...,n}.

It is clear that ordr is linear on each ¢;, and the set ¥/ = {04, ...,0,} satisfies the property
from the previous Proposition. We have

U,'ﬂO’j={.’L"EO’:'mi'.’IJ:mj'$Smk'x’ k#za]}

This shows that ¥’ is obtained by.subdividing o by inserting 1-dimensional rays which are
perpendicular to the edges of the Newton polygon. If a point from G(I) lies on an edge,
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and differs from a vertex, we may delete it without changing ¥'. Also, observe that for
any m € M, the blowing-up schemes of I and Z™I are isomorphic. This allows one to
translate the Newton polygon by any lattice points without changing the blowing-up. In
particular we may always assume that I contains some powers of the variables.

It follows from the previous section that for any 1-dimensional cone 7 € ¥'\ T, the
divisor D, is mapped to the origin of A%. Each such divisor D, is equal to the closure of
a one-dimensional torus orbit, and the points in the closure correspond to 2-dimensional
cones ¢ and ¢’ such that 7 = 0 N¢'. This easily implies that D, = P}. The number of
such divisors is equal to the number of edges of the Newton polygon.

M N
g1
02
. 03
Fig. 1
Examples. 1. Let I = (X,Y).
M o1 N
¢\ . . . 0y -
Fig. 2

The variety Xy is obtained by gluing together two affine varieties with the coordinate
rings k[g; N M] = k[X7'Y,X] and k[g; N M] = k[Y!X,Y]. It is isomorphic to the
subvariety of A% x P} defined by the equation

T X -TyY =0.

The open set X, is equal to the set where Ty # 0, and the second set X, is equal to the
set where T7 # 0. It is the usual description of the variety obtained by blowing up the
maximal ideal of the origin of the affine plane. The T-orbits of A% are the origin, the two
coordinate axes with the origin deleted, and the rest. Now Xy has two zero-dimensional
orbits which are blown down to the origin. It has three one-dimensional orbits, the orbit
0791792 is blown-down to the origin, and the other two are mapped isomorphically onto
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the one-dimensional orbits of AZ. The blowing-up map 7 : Xy — A% is an isomorphism
over the open torus orbit. .

s \\ E \\ LN ; A2

Fig. 3
The curve E = P} which is the closure of the orbit 071792 is the exceptional curve
of the blowing-up. It is equal to the pre-image 7~1(0) of the origin.

2. Let T = (X3, XY,Y?).

o1
(]

03

Fig. 4
This time X5 consists of three affine pieces

X,, = Speck[X %Y, X], X,, = Speck[X'Y2 Y, X, X*Y '], X,, = Speck[Y "2X,Y].

The first and the third piece are isomorphic to the affine plane since the cones o7 and o3
are spanned by a basis of the lattice V. The second piece is isomorphic to the affine cone
over the Veronese curve of degree 3 in P2 since

XYY, X, XY 2 k(To, Ty, T, T3)/(ToTs — ThTa, ToTo — T2, Ty Ts — T3).

Thus Xy is singular at the 0-dimensional orbit 0?2. The exceptional curve is equal to the
union of the closures of the orbits 091192, 092M7s,

T
— AZ

Fig. 5 ‘
11.10. Let us return to the situation of section 11.7. Applying the results of the previous
sections we obtain the following description of the fibres of the morphism 7 : V — A}l x T
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over the points Qj,7 = 1,...,v. For each @ = @, we consider the monomial ideal I
generated by the monomials
X"Y®% i=0,...,N,

where r; =r; —rny,0=1,...,N,s; = ng). Let Newt be the Newton polygon for this set
of monomials. Let 3 be the largest ¢ such that s; = 0. Since rly = 0, the Newton polygon
Newt starts at the point (0,sy) and ends at (rj,0). Let

B=e(l)<...<e(6)=N
be the sequence of numbers such that the points

(T;(l)a 0), (7':3(2), Se2))s++5>(0,8N)

are the consecutive vertices of Newt. Let (p;,¢i),¢ = 1,...,6, be the primitive lattice
vectors such that

(Teqiy = Te(i+1))Pi + (Se(i) = Se(i+1))gi = 0.

These vectors span the one-dimensional cones which subdivide the positive quadrant in
the torical blowing-up of the ideal I.
Thus we deduce from the previous section that, set-theoretically,

7 1(Q)=EyU...UE;s,

where the curves E; are all isomorphic to P}, and each E; intersects only E;_; and E;y4,
transversally at one point.
Moreover, the divisor of the function 7*(T') on V is equal to

6
div(e*(T)) = =1 ({0} x T') + Z miE;,

=1

where 771({0} x T') denote the proper transform of {0} x I, and m; is equal to the order
of the zero of the function 7n*(T) at the curve E;. The latter can be defined by using the
toric geometry. By formula (*) from 11.8, we get

m; = (1,0) - (pi, ¢:) = pi-
Similarly, we have
6
div(r*(n)) = 7 (Ak x Q) + ) niEi,
i=1

where
ni =(0,1) - (pi, &) = ¢i-

This shows that the rational function 7*(n?¢ /T'%) has order 0 at the curve E;. Moreover,
it is easy to see that this function generates the field of rational functions on E; (use that
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the vector (gi, —p;) spans 7+ N M, where 7 = R(p;i,q;)). Now recall that in an affine
neighborhood of the point @, the rational map A} x I' —— — P¥ can be given by the
formulas

Xi=enTm,i=0,...,N.

We may assume that no other point (r!, s;) lies on Newt. This follows from the remark
made at the end of section 11.6. Thus the order of the zero of f"*(X)/X;) at the curve E;
is equal to

(sk = sOpi + (rk —r)gi > 0 if {k,1} ¢ {e(d),e(i + 1)}

and zero otherwise. This implies that the curve E; is mapped by the map f': V — P¥ to
the line L,(;) e(i+1) 8iven by the equations X; = 0,7 # e(4), e(¢ + 1). Since

P (Xuiiy [ Xugirn) = 7°(0 40T TT 0 oe0) =

« i . Se(i) " %e(i+1
= (e Ty T,

we obtain that s s

deg(E;i/ f'(E;)) = e—('tl;f‘ﬂ-
Since E; enters into div(7*(T")) with multiplicity p;, we get from Proposition 11.7 that the
" push-forward under the map f' of the cycle div(7*(T)) on V is equal to

n
Z(Se(m) — Se(i)) Le(i) e(i+1)-

=1
Collecting together all the points Q;,7 =1,...,v,, we get

Theorem. Let I' C PV be a curve represented by a point of H,, and let Q;,...,Q, be
its points lying in the hyperplane X = 0. For each point Q;, let the inclusion T' — P¥
be given in an affine neighborhood of Q; by the formula

50)

Xi=eni i=0,...,N,
where egj) is an invertible function at Q; and n; is a local parameter at ;. Let \(t) =
diag(t™,...,t™) be a one-parameter subgroup of SLi(N + 1) satisfying conditions

(i) rTo >T1>...>TN,

(ii) for each j = 1,...,v, the Newton polygon Newt; of the set B(j) of vectors o) =

i

ri—TN, s ,t =0,..., N, has no lattice points except its vertices.
k2

For each j, let B; = ej(1) < ... < ej(6;) = N be the sequence of the indices i such

(€)]

that the vectors v;"’ are the vertices of Newt;. Then

v. prbi—1 -
: _ (7) (7
}g% A(t)cay(T) = E : [ E :(sei(i+l) - sei(i))caY(Lej(i),ej(iH)) J

Jj=1"% =1
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where L, (i) ¢; (i+1) 1S the line given by the equations
Xi = 0,i # (i), (i + 1).
Note that for each j, the lines L ;) ¢;(i+1) form a chain of §; lines joining the point

Py =(0,...,0,1) with the point Ps, = (0,...,0, 1 ,0,...,0)

ﬂ;"poaition

Example.

o
=

3
N

~N

TSN e e 2 e
1 | | I TR T | T
3,333 ~

A(t) = diag(t4,3,¢2,1,172,173,17%)

Fig. 6

This gives us, assuming that we have only one point @;, the limit cycle

Ly3+2L34+6L4g.

L
Lygs 2,3 P

Fig. 7
11.11 Now it is easy to compute u(}, cay(I")). where A satisfies properties (i) and (ii) from
the previous Theorem. ;From Example 2 in 11.4, we know the equation of the Cayley

form of a linear subspace. Applying this to the lines Lf:f )(i),ej(i 41y e find

(4) .4 4(@) —
€@y (Lg 3),e; (i+1)) * Ae; (iyAe; (i+1) = 05
where we use (A(()a), - ,Ag_\(;)),a = 1,2, to denote the homogeneous coordinates in each
copy of the space PY. Since A(t) acts on the coordinate Al by multiplying it by t™, we
Py k ) g
obtain from Lemma 11.6
6;—1

pOear (@) = 3 | X (rn) = 0000 +resinn)|-

j=1*%* =1
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Now let us observe that the sum corresponding to each j is equal to the twice of the area
under the Newton polygon N ewt; plus 2r Ns(’ ). If we take any other polygon whose edges

join consecutive pairs of points (7, s ,] )) which start at (0, 4 )) and end at (7! B> 0), we get
a larger area. ;jFrom this we infer that

v

6—-1
— E : § : ) (J)
M()\,caY(P)) B =1 Bi=11 ??.%is:N [k=1(Sik+l )(T“‘"'l + rlk)

Let

v
oo e () _2: !
‘Sk,] —H;lilsi , € = Sk,j‘

T N
= ]=1

This has the following interpretation. The first number is the multiplicity of the base point
Q; of the linear system Aj of divisors on I' cut out by the linear system of hyperplanes in
PY spanned by the hyperplanes {X; = 0},i = k,..., N. The second number is the degree
of the divisor of the base points of Ay.

Now we can rewrite pu(A,cay(T")) in the form

H(A, cay () = Zo—z1< <ig=N [Z( Sivgani ™ Siai) Tings +rik)] =

v

, . —
= 0=4;<.. <zs—N Z [Zslkﬂ,l Zsik,j] (r”‘+1 +ry) =

k=1 "j=1 Jj=1

= =N Z(elk+1 Cig )(r1k+1 +7i )

0—11( <¥5
Next we need the following combinatorial lemma.

Lemma. Suppose the integers eg < ... < ey satisfy
(i) eo=0,ex =N +g;
(ii) e, <ifori=0,...,N —g;
(iii) e, <t+gfori=N—-g+1,...,N.

Then

5-1
0=i, <n.g?r<lio=1v kz_:l(eikﬂ = € (Tieyr +1i) <O

Proof. Suppose the minimum is achieved for some sequence i; < ... < i5. If i < N—g¢

and e;,,, < 1k41 we can add 1 to both e;,,e;,,, with the difference in sum equal to

(Tik + Tik-1) - (Tik«q-z + Tik+1) = (rik - rik+2) + (Tik—l - rik+1) 2 0.
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Similarly we consider the case when iy > N — g + 1. This shows that the minimum only
increases if we replace e; by its upper bound ¢ or g + ¢. Consider the following g + 1
sequences ¢ < ... < ig:

0,1,...,N),(0,1,...,N—g—1,N—g+2,...,N),(0,1,...,N—g—2,N—g+3,...,N),...

...,(0,1,...,N — 2 +1,N), (0, N).

Let ¥;,2=0,...,g, be the corresponding partial sums. We find
Yo=—(ro+rn)+9(rN—g+1 +7N-g);
Iy =—(ro+7n) + (9 +2)(rN-g+2 + TN—g-1) = 2(TN—g+1 + TNg);
i = —(ro+rn)+ (g4 20)(rN—g+it1 + *N—g—i) — 2(TN—g—it1 + ... + TN—g4i);T =
2,...,9—1 '
2, = (N + g)(ro +rn):

After we multiply 3; by (g+2i)(;+2i+2) = gllgi - 9+12/i2+2,i =0,...,9—1,and X, by

3—977\71‘4-—97’ and add up, we get

1
'3;(7'N—2_q+1 +rN—zg42t .. FrNo1HTN) (k%)

As N=5(g—1)>2g,rg>...2rN,T0 +...+7n =0, we obtain

2g(ro + ... +rN_2g) < _29(7‘N—2g+1 +...4+7N)
N-2+1 = N-2911

(rN—2g+1+ ...+ 7N) < 29rN—24 <

This shows that (*x) must be strictly negative. Thus for at least one sequence from above
the sum is negative, and hence the assertion of the lemma is verified.

11.12 Now we are ready to prove the main theorem.

Theorem. Let I' C PY be a curve represented by a point of Hy. Then it is properly
stable with respect to the natural action of SLg(N) and the linearization defined by the
embedding cay : Hy — Div(®?(PN)2), Here g > 2,N = 59 — 6,d = 6(g — 1).

Proof. As we have explained earlier, it is enough to verify that the numbers e; (defined
as the degrees of the base locus of the linear system A; cut out on I' by hyperplanes
a;X; + ...+ any Xy = 0) satisfy the assumption of the previous Lemma. Let L = Or(H)
be the line bundle corresponding to a hyperplane section H of I'. The linear system A;
corresponds to a subspace of the projective space associated to the linear space

HO(FaOF(H - Dl))) C HO(F’L),

where

v
— l .
Di-—- E Si,jQ]
i=1
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is the divisor of the base points. Since dimA; = N — i, applying the Riemann-Roch
theorem, we obtain :

N—-i14+1< dimkHO(P,Or(H — D,)) =N-—-e+1+ dimkHl(I‘, Or(H — D,))

By Serre duality, H'(T,Or(H — D;)) = H(T,Op(Kr — (H — D;))) where Kr is the
canonical divisor. As H — D; is linearly equivalent to a positive divisor,

dimxH' (T, Or(H — D;)) < dim; H(T, Or(Kr))) = g.

This gives e; <1+ g for all 3.

Moreover, if i < N — g,dimA; > g, hence dim; H*(T',Or(H — D;)) > g + 1, and
Hl(F, Or(H - D;)) =0.

This gives e; < ¢ for ¢ < N — g. This verifies the conditions of the Lemma and proves the
Theorem.

So we have proved the existence of the coarse moduli scheme for nonsingular projective
curves of genus g > 2.

11.13. Finally let us comment on the properties of the coarse moduli scheme M, of curves
of genus g > 2. Again, for lack of appropriate techniques we are not able to give complete
proofs.

Theorem. dim H, = (59 — 5)® +3(¢g — 1) — 1.

Proof. First we use the description of the Zariski tangent space T(Hilbx )z of the
Hilbert scheme Hilbx/; at the k-point represented by a subscheme Z C X. We assume
that X and Z are smooth. Let © 7 be the tangent sheaf of Z and © x be the tangent sheaf
of X. The quotient sheaf Nz/x = (0x ® 0z)/O7 is called the normal sheaf of Z in X.
We have (see [Mu2], Lecture 22):

T(Hilbx/k)z = HO(Z, NZ/X)-
Also, it is known that Hilbx ; is smooth at Z if
Hl(Z,NZ/X) =0.

In our case we can compute everything very easily because Z is a nonsingular curve. The
tangent sheaf of the projective space PY is determined by the exact sequence

0— Opy — Ogi{,vﬂ — @Pﬁ — 0.
Applying the Riemann-Roch Theorem, we obtain

X(Z,Nz/pn) = dimkHO(Z,Nzlin)—dimkHl(Z,Nz/Pi‘l) =x(2,0py®02)-x(Z,0z) =
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= (N + l)X(Za OZ(]')) - X(Z)OZ) - X(ZaGZ) =
=(N+1)(d+1-9)—(1-9)—((2—-29) +1~9g) = (59 —5)* +4g — 4.

The degree of NZ/PQ’ is equal to deg(Opy ® Oz) — deg(0z) = d(N + 1) —(2—2g). By
Serre duality,
HI(Z,Nz/pLV) = HO(Z, Hom(Nz/in,OZ) ® UJZ).

The degree of the sheaf Hom(N’Z/Pi‘J ,0z)Quwz is equal to (N —1)(2g—2)—d(N +1)+2—-2g.
Since d = 6(g — 1) and N = 5(g — 1), this number is negative, and hence

H'(2,2,Nzpy) = 0,dimp H(Z, Ny pw) = x(Z,Ngppy) = (59 — 5)* + 49 — 4.

Thus we get that Hilbpy is smooth of dimension (5¢ — 5)% + 4g — 4 at any point of
H,. It follows from the construction of H, that it is obtained as the intersection of two
sectlons in the Picard scheme Pic%, Jur- Slnce the fibres of Pic%,,y are Jacobian varieties
of nonsingular curves of genus g, their dimension is equal to g. Thus the codimension of
the zero section is equal to g. This shows that

dimH, = dimHilekN —g=(5g—5)%+3g—4.

Corollary (Riemann). Let M, be the coarse moduli scheme of curves of genus g > 2.
Then
dimM, =39 -3

Proof. We know that
M, = Hy/PGLi(N + 1),

and all points of H, are properly stable. This implies that all orbits are of dimension equal
to imPGLy(N +1) = (N +1)? —1 = (5g — 5)2 — 1. Together with the previous Theorem
this gives the dimension of M,.

As a geometric invariant theory quotient of a normal irreducible variety is normal and
irreducible, we obtain the remaining assertions.

Remarks. 1. Using more of the deformation theory one can show that Hj is smooth.
Using the proof of the previous theorem, this fact implies that the two sections of the
relative Picard scheme intersect transversally. Also one can show that Hg is irreducible
and hence M, is irreducible. There is a transcendental proof over the field of complex
numbers which uses the Teichmiiller theory. There is also an algebraic proof, going back
to Riemann, which uses representation of curves as ramified covers of the projective line
with ordinary ramification points. Unfortunately, it works only if characteristic is zero or
sufficiently large. The first purely geometric proof applied to any characteristic was given
by P. Deligne and D. Mumford (see [DM]).

2. Since H, is smooth and PGL(N + 1) acts with finite stabilizers, the singularities of
M, are rather mild. They are locally isomorphic to the quotients of the affine space Asg -3
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by a linear action of a finite group. This follows from Luna’s Slice Theorem (see [Lun]).
Unfortunately, for lack of time, we could not discuss this important result of geometric
invariant theory .

3. Since the constructions of the Hilbert scheme and its subvariety H, do not use any
particular ground field and can be done over Z, the moduli space M, also can be defined
as a scheme over Z.

4. The variety M, is known to be rational for ¢ < 6, unirational for ¢ < 15, and not
unirational for g > 19.

5. One can construct a natural compactification M, of M, by allowing the inclusion
of certain singular curves. This can be done using essentially the same methods but
with substantially more technical difficulties. Instead of nonsingular curves of genus g
one considers stable curves C with dimiH'(C,O¢) = g. A stable curve is defined as a
connected algebraic curve whose singularities are at most ordinary double points, and each
smooth irreducible component of genus 0 intersects at least three other components (this
ensures that the group of automorphisms of the curve is finite). Let P(t) = 2v(g — 1)t +
1—g,N = P(1), and let U, be set of semi-stable points of Hilbgg) with respect to the

action of G = PGLy(N + 1) and the linearized line bundle coming from the embedding
of the Hilbert scheme into the Grassmannian. It is proved that, for sufficiently large v,
the closed subscheme H, of U, corresponding to the curves embedded by the v-canonical

linear system parametrizes stable curves of genus g. This shows that the quotient H, /G is
a closed subvariety of a projective variety U, //G. Since G acts on H, with finite stabilizers,
all points of H, are properly stable, and the quotient H, //G is in fact a geometric quotient.
This is a coarse moduli scheme for the functor of families of stable curves. We refer for
the details and for further references to [Gie].
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Problems.

1. Prove that the group of automorphisms of a nonsingular projective curve of genus g > 2
is finite.

2. Consider the functor E : Sch/k — Sets by setting E(S) = {family of curves of genus
1 with a section}/modulo isomorphism. Show that the functor E admits a coarse moduli
scheme isomorphic to the affine line.

3. Show that the Hilbert scheme of 0-dimensional closed subschemes of a nonsingular curve
X is isomorphic to the disjoint sum of symmetric products X(™ := X"/§,,.

4. Compute the Chow and the Cayley forms of a Veronese curve of degree 3 (the image of
the Veronese map vz : P} — P3).

5. Find the relationship between the equation of the Cayley form of a closed reduced
subvariety Z of dimension r in P} and the equation of the hypersurface in P;’H obtained
by projection of Z from a general point in P}.

6. Using toric geometry describe the normalization of the blowing-up of the ideal in
k[Zy, 23, Z3) generated by the monomials Z3,Z, 7,73, 22, Z3.
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