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Preface

This monograph is an extremely expanded version of a series of talks that
I gave at Seoul National University in the Fall of 1992, at the invitation of
Professor Chang-Ho Keem. It is based on a course that I have taught at
Notre Dame, and I hope to use it in the next few years when I teach the
course again.

There are really two principal subjects, as indicated in the title: deficiency
modules and Liaison Theory, for subschemes of projective space. Deficiency
modules are in some sense the main subject, though, since our discussion of
Liaison Theory relies heavily on them.

Both deficiency modules and Liaison Theory are used very extensively in
Algebraic Geometry in one form or another. However, there does not seem
to be a good general introduction to either subject in the literature, from the
point of view in which we are interested, so this was one of the motivations
for this monograph. It is not entirely self-contained, but I have tried to
at least state the necessary background results, and I have included a very
extensive list of references (books, research papers and expository papers)
which I hope will help the reader look up any material which he or she would
like to pursue further.

Of course, it is impossible to completely cover such a broad subject. I
have chosen topics which are most interesting to me, and I apologize for any
omissions or oversights. When the proofs are reasonable in length I have tried
to include them, or at least give the reader an idea of how the proof goes.
In some cases I have had to simply state results with no proof. Only a few
of the results and observations given here are new (e.g. Proposition 4.2.15,
Remark 3.3.1, Remark 5.3.13), and I have tried to give careful credit where
it is due.



The set of deficiency modules of a subscheme V of P* is a collection of
graded modules over the polynomial ring. Under reasonable assumptions
these modules have finite length. The number of modules associated to V
is just the dimension of V. One can get a lot of information about V from
these modules, and this monograph is an attempt to describe some of the
techniques used and some of the information that can be obtained from these
modules.

Liaison is an equivalence relation among subschemes of given dimension
in a projective space. Roughly, two schemes are said to be directly linked if
their union is a complete intersection, and this notion generates the equiva-

“lence relation of Liaison. It is not at all obvious, a priori, that there is any
connection between Liaison and deficiency modules; but in fact, there is a
strong one. Especially in the context of Liaison Theory (but also sometimes
more generally), deficiency modules are also sometimes known as Hartshorne-
Rao modules. However, they actually have been important in the literature
even before Rao’s work.

Chapter 1 gives the background needed in the following chapters. It also
defines the deficiency modules, gives important facts about them, and gives
a number of examples.

Chapter 2 gives some applications of deficiency modules, and in particu-
lar of submodules of the deficiency module. The term “deficiency module”
comes because these modules measure the failure of our scheme V to be
arithmetically Cohen-Macaulay. We show that submodules of the (first) de-
ficiency module also measure various types of deficiency. Among the other
applications are a generalization of Dubreil’s theorem, and a discussion of
when the property of being arithmetically Cohen-Macaulay is “lifted” from
the general hyperplane (or hypersurface) section of V up to V.

In studying graded modules over the polynomial ring, it is important to
know something about the module structure. One way of looking at it is to
ask what effect “multiplying” by a general linear form has on the module.
The extreme case is where multiplication by any linear form is zero. One
would naturally expect that such extreme behavior in the deficiency modules
of V would be reflected in many ways in the scheme V. Chapter 3 explores
the case where V is a curve with this property, i.e. a so-called Buchsbaum
curve. In fact, Buchsbaum curves recur often in these notes since they provide
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interesting examples of many things that we will discuss. Chapter 3 also
discusses Liaison Addition, which is an important construction originally
due to Schwartau. It is used to construct Buchsbaum curves, and a special
case (“basic double linkage”) is used in Liaison Theory.

Chapter 4 begins the study of Liaison Theory. Many things can be said
about Liaison Theory for subschemes of projective space in general (arbitrary
codimension), and I have tried to give a good overview of these in this chapter.
For instance, we see why it is often more useful to look at even liaison (i.e.
restricting to an even number of links).

Many of the more powerful results in Liaison Theory are known at the
moment only in codimension two. This is the topic of Chapter 5. We begin
with Rao’s result parameterizing the even liaison classes. Next we turnto the
problem of describing the structure of an even liaison class. Finally, in the
last part of Chapter 5 we give a number of applications of Liaison Theory,
to give an idea of the breadth of possible ways in which it can and has been
used.

There are many mathematicians whom I must acknowledge. I am very
grateful to Joe Harris for introducing me to Liaison Theory and for patiently
guiding me through my first steps in the field; to Phil Schwartau for teaching
me his more algebraic way of looking at it (and for writing such a wonderful
thesis); to Giorgio Bolondi and Tony Geramita for their friendship and for the
many years in which we have collaborated— my most enjoyable moments as
a mathematician have come in working with them, and much of that work is
described in the pages that follow. I would also like to thank Kyung-Hye Cho,
Tony Geramita, Heath Martin, Scott Nollet, Yves Pitteloud, Phil Schwartau
and especially Chris Peterson for their careful reading of the manuscript and
their helpful suggestions. I am grateful to the Mathematics Department and
the Global Analysis Research Center of Seoul National University for their
hospitality and support. Most of all, I would like to thank my friend Chang-
Ho Keem for inviting me to Korea to give these talks, and for his great
kindness and hospitality while I was there. Without the opportunity that he
provided, this monograph would never have been written.

Finally, and most importantly, I must thank my parents and my wife,
Michelle, for their love and encouragement through the various stages of my
career. This monograph is dedicated to them.
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Chapter 1

Background

Throughout this monograph, k¥ = k shall always denote an algebraically
closed field. We will occasionally also require that it have characteristic zero,
but we will always make it clear when we are making this assumption. We
shall denote by S the homogeneous polynomial ring k[Xo,---,X,] and we
let P* = P} = Proj S. Since S is a graded ring, it is the direct sum of its
homogeneous components: S = @;5q54, where S; is the vector space of
homogeneous polynomials of degree d. We denote by m the maximal ideal
m = (Xo,---,Xn)CS.

We assume some knowledge of sheaves and sheaf cohomology. For a sheaf
F of Opn-modules we will sometimes use the notation H:(F) for the graded

S-module .
@ H'(P", F(t)).
teZ

(See also page 6.) As usual, we use lower case for dimension:
ki (F) = dim(H(P", F)).

The main purpose of this chapter is to give some of the necessary back-
ground for the material in the subsequent chapters, and to define the defi-
ciency modules.



1.1 Finitely Generated Graded S-Modules

Let M = @;cz M; be a finitely generated graded S-module. Notice that
M; = 0 for j < jo for some jo. Also, dimy M; < oo for all j. How does one
describe the module structure of M? (It’s not enough to know the dimensions
of all the components, although there are many things that can be said just
from this information- see [10].) In particular, how does “multiplication by
a homogeneous polynomial” work? Given F' € S; we get a homomorphism
¢ir : M; — M;;4 for each i. We need to know all possible ¢; .

Any homogeneous polynomial F' can be written as a sum of products of
linear forms (in fact, a sum of products of variables). Hence, because of the
module structure, it is enough simply to be able to describe the situation
when d = 1; if we know how all n + 1 variables act on M then we know how
any homogeneous polynomial acts on M. In this case (d = 1), for each ¢
there is a homomorphism ¢; : $; — Hom (M;, Mi4,) taking L — ¢; L. The
collection of all ¢; determines the module structure. (Notice that the module
structure also forces some compatibility conditions on the various ¢;.) We
first describe how each of the ¢; can be viewed as a matrix of linear forms
(in the dual variables).

Choose a basis for M; and one for M;,;. In terms of these bases, write
¢:(Xo) = Ao,-..,$i(Xn) = An where the A; are matrices of scalars. Let
L= aXo+ -+ azXn be a linear form (i.e. an element of S;). So ¢;(L) =
aoAo + - -+ + anA,. Hence ¢; may be viewed as a (dim M;;,) x (dim M;)
matrix of linear forms in the variables a;.

Notice that the ¢;’s are not isomorphism invariants of the graded module
(since they depend on the choice of bases), but the degeneracy loci they
determine are. That is, for any r the scheme W;, defined by the vanishing of
the (r + 1) x (r + 1) minors of the matrix ¢; is an isomorphism invariant. In
particular, if m = rk (¢; 1) for the generic L € Sy then { L’ € S1 |tk (é:1/) <
m } is an isomorphism invariant. The projectivization V; of this set is a
subvariety of the dual projective space (P")* = P(S;). If M’ is another
graded S-module with associated subvarieties V! C (P")*, and if M = M’,
then for each 7, V; = V/. Note that W; ,,_; is supported on V;. “Most of the
time,” V; = W; 1.

There is an expected codimension and degree for W ,:



Lemma 1.1.1 Let ¢ be a ¢ x p matriz of linear forms, and let W, be the
subscheme of P* defined by the vanishing of the (r +1) X (r +1) minors of ¢.
Then the ezpected codimension of W, is (p —r)(q —r). If W, is not empty
and has the ezpected codimension then its degree is given by

wone="T{(7) /()

For example, if ¢ is a square matrix then p = . We expect that p =g =
r+1 and W, has codimension (1)(1), and that in fact W, is the hypersurface
given by the vanishing of det ¢, hence of degree []) [(qil) / (:)] = ¢q. Lemma
1.1.1is a special case of Porteous’ formula. See [6] page 86 and [91] Lemma 1.4
for more details.

We will also eventually be interested in the dual module of M. There
are two kinds of dual modules that we could define: MV*¥ = Hom, (M, k)
and MV® = Homg(M,S). (This notation is borrowed from [122].) When
it is clear from context which dual is being used, we will sometimes abuse
notation and write MY for the dual module. (It will often be the case that
our module M has finite length; in this case we leave it as an exercise to
check that MVS = 0.) MV* has the following structure as a graded S-
module: (MY¥); = M?; (= Homy(M_;, k), the dual vector space) for all i,
and ¢Y = ¢_;_;. For a locally free Opn-module F, we denote by FV the
dual sheaf Homoyg. (F, Opn).

Another operation on graded modules which will be important is shifting:
we define the module M(d) to be given by M(d); = My,; (a shift to the left
by d), with the obvious re-indexing of the ¢;.

Another way to view the module structure is the following. For each i we
have a homomorphism p; : M;®S; — M;y1. (This takes m®L — ¢;(L)(m).)
This point of view allows us to define the notion of minimal generators of
M. We will always assume that such generators are homogeneous. Indeed,
in each component M;;; choose a basis for the image of y; and extend it
with vectors my,:--,m; to a basis for M;;;. Note that in the first non-
zero component of M, { my,---,m, } is a basis of the whole component.
(Before this, p; is zero.) The set of all such (homogeneous) elements m; of
M is a minimal generating set of M. The number of elements in degree d
of a minimal generating set is well-defined, and we denote it by vs(M). We
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denote by v(M) the sum of the v4(M), which is the number of elements in a
minimal generating set of M. '

(Equivalently, a minimal generating set is a set of homogeneous elements
of M whose residues in the k-vector space M/mM form a k-basis.)

Extending this idea is the notion of minimal free resolutions. (This brief
discussion will follow [122].) Let {my,--+,m,} be a minimal generating set
for our finitely generated graded module M, and assume that the generators
are in degree i, - - - , @, respectively. Then we obtain a surjective degree zero
homomorphism

& S(—ai)-ﬁ)ﬁM -0
i=1

in the natural way. Note that the map f; is not uniquely determined, but the
free module Fy = @ S(—«;) is. Let K; be the kernel of fo. It can be shown
that K is invariant up to isomorphism. (That is, if we chose a different fi
with corresponding kernel K| then K; & Kj.)

K, is again finitely generated since Fp is Noetherian, so one can do the
same procedure with K; instead of M, and get a free module F surjecting
to K]t
v 51 fo
F T — Fo — M-0

N

K,
7N\
0 0

The kernel K; obtained in the ith step is called the ith syzygy module of
M. K, gives the relations among the minimal generators of M, K, gives the
relations among the relations, etc. One can continue in this manner, and the
Hilbert Syzygy Theorem (cf. for instance [118]) guarantees that after at most
n + 1 steps the kernel K, ;; will be free. (Recall that n + 1 is the dimension
of the ring S. See also the discussion of the Auslander-Buchsbaum theorem
on page 11.) Therefore we have a long exact sequence

0 - Fn+1.—f-'il)Fnﬁ-) e —{I—)FOL)M — 0

which is the minimal free resolution of M. (Note that we stop as soon as the
kernel is free, so some of the F; above may be zero.) The simplest example



is the minimal free resolution of a complete intersection; see Example 1.4.1.
If F; = @p:,;S(—j), the B;; are called the graded Betti numbers of the
resolution. (Some authors use the notation F; = @ S(—j)%.)

An exact sequence of the above form (where all but the rightmost module
M are free) but not necessarily obtained in the given way is called simply
a free resolution of M. In general one may desire to know if a given free
resolution is minimal. A useful criterion is the following: it is minimal if and
only if after choosing bases for the F; and representing the homomorphisms
fi by the corresponding matrices, the matrices f; have no entries which are
non-zero scalars (i.e. the entries all lie in m).

A useful way of producing free resolutions is the so-called mapping cone
procedure (cf. [82] Chapter II, section 4). The basic idea, in our context, is
this: given a short exact sequence of finitely generated graded S-modules

0— Mi-5M,-2M; — 0
and free resolutions
0 — Fﬂﬂth‘,Fn_fA,..._f_‘,Foi,Ml -0

and
In+1 0
0= G ™HG, L G2 M, — 0

then a free resolution for Mj is given by
0= Fp = Fo®dG = 2 FOG, — Fo®dGy — Gy — M; — 0.

(We leave it as an exercise to determine the maps of this free resolution, in
terms of the ones for M; and M;.) Note that this is not necessarily minimal,
even if the resolutions of M; and M, are. For instance the length might
be too long. But even if the length is not an obstacle, it could violate the
criterion for minimality mentioned above. It depends on the map « in the
short exact sequence of modules.

An important construction for us will be the sheafification of a graded
module (see Hartshorne [60]). It associates to any graded S-module M a
quasi-coherent sheaf M. If M is finitely generated then M is in fact coherent.
Here are some useful examples:



Example 1.1.2 (a) If M is a graded module of finite length then M = 0.

(b) If Y is a closed subscheme of P" ‘and I is a homogeneous ideal which
defines Y scheme-theoretically (e.g. the saturated ideal of Y- see below for

the definition) then I= Ty, the ideal sheaf of Y in P™. Also, S/Iy = Oy,
the structure sheaf of Y. O :

Sheafification also preserves exactness. For instance, given a short exact
sequence of graded modules

0= M - M,— M;—-0
we get a short exact sequence of sheaves
0— M — M; — E — 0.

For example, the exact sequence 0 — Iy — S5 — S/Iy — 0 yields the
standard exact sequence of sheaves

0—-Zy = Opn — Oy — 0. (1.1)

Furthermore, if we begin with a minimal free resolution

0 — Fo, =8 F I ELI N R ¥ N
NS N/
K, K,
7N\ 7N\
0 0 0 0

we can sheafify and get a corresponding diagram for the sheaves. If M is the
coordinate ring S/1 of a locally Cohen-Macaulay, equidimensional subscheme
of P of dimension r then Fy = S, K; = I and K; is locally freefori > n —r.
(See the next section.)

In the other direction, one can obtain from a sheaf of Ops-modules F a
graded S-module

H)(F)= @ HO(P", F(d)).
deZ

Note, though, that while HO(F) = F the reverse is not true: HO(M) # M
in general. (It is generally bigger than M.) Furthermore, given a short exact
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sequence of sheaves one of course does not necessarily obtain a short exact
sequence of cohomology modules. One gets a long exact sequence involving
higher cohomology. Specifically, one can obtain graded modules by applying
the higher cohomology functor to F: we define

H(F)= S%H‘(P“,f(d))-

These objects fit into the long exact cohomology sequence arising from the
short exact sequence of sheaves

0= F = F— F3—0,
yielding

0 — HXFR) — HXFR) — HIFH) -
Hy(FR) — HNFR) — H{(F) —--

A special case of the above discussion concerns the relation between ho-
mogeneous ideals in S and closed subschemes of P*. Let I be a homogeneous
ideal in S. Then I determines a closed subscheme Y of P*. However, there
are infinitely many ideals which define Y, and we define “the” ideal of Y
to be the largest such. Indeed, there is a bijective correspondence between
closed subschemes of P* and saturated ideals, defined as follows. Let I be a
homogeneous ideal. Then the saturation of I is

I={Fe€S|Vi(0<i<n)thereisan r such that X-FeT}.

For any ideal I, H(I) = T (compare with above). If I defines a closed
subscheme Y then I = HY(Zy) D I. The Hilbert function of Y is the
function Z — N defined by H(Y,t) = dimy(S/T);. For large values of t, this
function is a polynomial of degree equal to the dimension of the scheme Y.
This polynomial is called the Hilbert polynomial of Y. We refer to [60] for
details.

Example 1.1.3 (a) If I is the ideal in S = k[X,, X;, X3, X3] given by

I= (on, XoXy, Xon,XoXa,Xlz, X1X2, X1X3) = (Xo, X1)2

7



then I = (X, X;) and I defines a line. :

(b) In I3, let V be the four points [0,0,0,1},[0,0,1,0},[0,1,0,0], [1,0,0,0].
The saturated ideal of V has six generators, all in degree 2. In particular,
dim (Iy); = 6. Choose four general elements Ry, F,, F3, Fy of this vector
space, spanning an ideal I. Then Fi, Fy, F3 cut out the eight points of a
complete intersection, four of which are the points of V/, and Fy picks out
these points and avoids the other four. Hence one can see from a geometrical
point of view that I defines the scheme V' but is not saturated. O

An important tool is the notion of Castelnuovo-Mumford reqularity. We

first recall

Definition 1.1.4 Let F be a coherent sheaf on P*. Then F is said to be
m-regular if H'(P*,F(m —i))=0foralli>0. O

Note that by a theorem of Serre ([60] Theorem II1.5.2), F is m-regular for
some m.

Theorem 1.1.5 (Castelnuovo-Mumford [104]) Let F be an m-regular
coherent sheaf on P*. Then

(1) H (P, F(k)) =0 wheneveri >0 and k+1: 2 m.
(2) H°(P",F(k)) is spanned by
HO(P*, F(k-1))@ H'(P*,0(1)) ifk>m

In particular, the S-module HX(F) defined above is generated in degree
<m.

(8) F(k) is generated as an Opn-module by its global sections, for all
k>m.

Note that part (1) says that if F is m-regular then it is (m + 1)-regular.
Hence it makes sense to define the regularity of F, sometimes called the
Castelnuovo-Mumford regularity, by

reg(F) = min{m|F is m-regular}.

8



Remark 1.1.6 It is worth noting that there is a strong connection between
the regularity and minimal free resolutions. Let M = H°(F) and assume
that M is finitely generated as an S-module. Consider the minimal free
resolution

0= — @;5(-a;;) — -+ — @;S(—ap;) = M—0
N S N S /
Ki+1 K;‘ I{l
7N\ 7N /
0 0 0 0

with the corresponding short exact sequences, as described starting on page 4.
Then one can check, by sheafifying and carefully following the cohomology
of these short exact sequences from the resolution, that

reg(F) = rr}z}x{a,-,j —}.

The proof is left as an exercise. It is not trivial, but apart from a careful
study of the indices, the main fact that one needs is that H"(Opn(k)) = 0
fork>—n. 0O

If M is a graded S-module of finite length, we define the diameter of M,
diam M, to be the number of components from the first non-zero one to
the last (inclusive). So, for example, a module which is one-dimensional in
degrees 1 and 5 but zero elsewhere would have diameter 5.

An interesting invariant of a graded S-module of finite length is the least
integer k£ such that all homogeneous polynomials of degree k annihilate M.
This has been called the Buchsbaum indez of the module M [54]. See also
Remark 1.4.8, Remark 2.2.8 and Remark 3.1.4. It was observed in [99], and
is not hard to show, that if £ = 2 then M decomposes as a direct sum of
modules of diameter k = 2. This is not true for k£ > 3.

1.2 The Deficiency Modules (M*)(V)

In this section we introduce the deficiency modules of a subscheme of pro-
jective space, and then in the subsequent sections we give examples and first
results. The deficiency modules have been very important in the literature,
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both in the theory of Liaison and in various papers that have appeared re-
cently. They are the central topic of these notes. We will discuss many of
these applications later. In the context of Liaison, especially for curves in P2,
they are often referred to as the Hartshorne-Rao module(s) (or simply the
Rao module(s)) of the scheme. (See Chapters 4 and 5 for more details about
the role these modules play in Liaison Theory.) However, this is somewhat
inappropriate away from curves in I3, since these modules were also heavily
studied by others around the same time (or even earlier); for instance, Schen- -
zel [120] and Evans and Griffith [46] played an important role in the theory.
In the important paper [80], Lazarsfeld and Rao use the term “deficiency
module” even for curves in P3. We maintain their terminology here.

Given a closed r-dimensional subscheme V of P*, we define the deficiency
modules

(MY)(V) = Hi(Zv) for1<i<r.

The reason for this name is that the collection of these modules measures
the failure of V to be arithmetically Cohen-Macaulay (see below). The first
such module (i.e. taking i = 1) in particular measures the failure of V' to be
projectively normal, i.e. the failure of the restriction map

H°(Opn(d)) — H°(Ov(d))

to be surjective for all d. This would be true even if dim V' =0, although
we have not defined the deficiency module for this case- we have modules
for 1 < i < dim V. We will see some other ways in which this module
(and certain submodules) measures the failure of V' (and its ideal) to satisfy
certain properties. Some of these results will in fact be true also for the case
dim V = 0.

The module (M?)(V) can also be expressed in the following way:

(M) (V) = [Extg"""l(S/Iv, S)(—n — 1)]Vk for1<:<r=dimV.

We leave the details to the reader. A proof for the case n = 3 can be found
on pages 48-50 of [122], and the general case is proved similarly.

A special case of the above is when V is a curve. In this case we simply
write M (V) for the deficiency module.

10



If V has dimension r > 1, we will now describe how the collection of
r deficiency modules measures the failure of V' to be arithmetically Cohen-
Macaulay. First recall the

Definition 1.2.1 Let I be the saturated ideal of a closed subscheme V of
P". Then V is arithmetically Cohen-Macaulay (aCM) if and only if dim S/1
= depth S/I (where “dim” is the Krull dimension). In this case S/I is said
to be a Cohen-Macaulay ring. O

From the point of view of Ext, another equivalent formulation of the aCM
property is that the projective dimension (i.e. the length of a minimal free
resolution of S/T) is equal to the codimension of V. (This fact also holds for
dimension 0.) In general, the projective dimension is greater than or equal
to the codimension, and is related to the codimension, via the depth of S/1I,
by the Auslander-Buchsbaum theorem (special case): pd S/I+depth S/I =
depth S; see for instance [130] Theorem 4.4.15. In the case where S/I is a
Cohen-Macaulay ring (i.e. I defines an aCM scheme), depth S—depth S/I =
n+1—dim S/I is exactly the codimension; in general pd S/I = depth S —
depth S/I is larger than the codimension since dim $/I > depth S/1I.

If dim V = 0, V is automatically aCM. For dim V = r > 1, the property
of being aCM is equivalent to the condition that (M*)(V) =0for1 <i<r.
(This can be shown from the previous paragraph and the connection between
the (M*)(V) and Ext above; it can also be seen directly from Definition 1.2.1,
using the point of view of hyperplane sections described in the next section.)
Hence we may view the (M*)(V) as measuring the failure of V to be arith-
metically Cohen-Macaulay, as indicated above.

If V is aCM then the rank of the last free module in a minimal free
resolution of Iy (or, equivalently of S/Iv) is called the Cohen-Macaulay type
of V. In particular, if the Cohen-Macaulay type is 1 then V is said to be
arithmetically Gorenstein. If V is aCM and has codimension two then the
minimal free resolution for Iy is a short exact sequence:

0 - @1S(=b) 4 @, S(~a) —» S — S/Iy — 0
NS
Iy
/N
0 0
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Here B = (Fy,- -+, F,) where the F; are the minimal generators of Iy, and A
is called the Hilbert-Burch matriz of Iy.

Now suppose that V is locally Cohen-Macaulay and equidimensional of
dimension r. Then a minimal free resolution of S/Iy has the form

0 - F I R 0 AR Jo, 555 5/ -0
N/ N N
Kn—l K2 I
/N /N /7 N\
0 0 0 - 0 0

It then follows from the local version of the Auslander-Buchsbaum theorem
that K; is locally free for 1 > n —r.

A related and important function of the deficiency modules is that they
determine whether the scheme is locally Cohen-Macaulay and equidimen-
sional:

Theorem 1.2.2 Assume that dim V =r > 1. Then V is locally CM and
equidimensional if and only if the modules (M*)(V) have finite length for
1<:<r.

This theorem can be found in [122] Theorem 9 or [64] (37.4). As a very
special case, notice that if a scheme V' is arithmetically Cohen-Macaulay
then it is locally Cohen-Macaulay, but the converse of course does not hold.
Notice also that (M?)(V); = 0 automatically for all j > 0. (This is a
theorem of Serre; see for instance [60] Theorem IIL5.2 (b)). Hence V will
fail to be locally Cohen-Macaulay and equidimensional if and only if one of
its deficiency modules is non-zero for infinitely many components in negative
degree.

These modules are also related to the question of connectedness. For
example, we have

Theorem 1.2.3 Let V be a closed subscheme of P".
(a) If V is reduced and connected then (M*)(V)o = 0.

(b) IfV is reduced then dim (M')(V)o = ( number of connected compo-
nents of V) —1.

12



(c) If dim (M*)(V)o =0 (e.g. if V is arithmetically Cohen-Macaulay)
then V is connected.

Proof:
(a) is Lemma 4.4 of [42]. Now consider the exact sequence

0 — H°(Zy) — H°(Opn) — H°(Oy) = (M*)(V)o — 0.

If V is reduced and connected then from (a) we get that A°(Oy) = 1. So
applying this to each connected component of V and using this exact sequence
again gives (b), and similarly (c) since in any case A°(Oy) > 1. O

We will also prove later that every arithmetically Buchsbaum curve in
IP® is connected, except for two skew lines. (See Definition 1.4.7 and Corol-
lary 3.1.3.) This implies that every Buchsbaum scheme of higher dimension
is connected, since the Buchsbaum property is preserved under hyperplane
sections.

In the case of curves in P, a useful connection between the deficiency (=
Hartshorne-Rao) module M(C) and the ideal of the curve I is the following
theorem of Rao ([113] Theorem 2.5):

Theorem 1.2.4 Let C be a curve in P and let M(C) be its deficiency mod-
ule. Let M(C) have a minimal free resolution

0'—)L4ﬂiL3'—)L2—*L1—)L0—')M(C)'—>O.
Then Ic has a minimal free resolution of the form

(94,0)

0= Ly——L3® @S(—l;) - @S(—e;) —Ic—0
1 1

for some integers e;, l;, T, m.

Under certain circumstances (for instance if C is minimal in its even
liaison class with respect to degree), then it can furthermore be shown that
the direct summand @] S(—!;) does not occur. This is a special case of the
work of Martin-Deschamps and Perrin [87], about which we will say more,
especially in Chapter 5.

13



Finally, it is natural to ask what modules of finite length can be the
deficiency module of a curve? More generally, what collection of r modules of
finite length can be the deficiency modules of a closed subscheme of dimension
r? The answer, due to Evans and Griffith [46], is “all” if you allow for a
sufficiently large rightward shift of the modules (rnaklng the same shift for
each module). Rao [113] also proved this for curves in P? in a different
way, and showed that the curve can be taken to be smooth. Rao’s approach
motivated similar constructions in [87] (again curves in P®) and in [19] (for
surfaces in P*).

The question remains whether, given a collection of graded S-modules of
finite length, it is necessarily the collection of deficiency modules of a scheme
of appropriate dimension (without shifting). The answer is “no.” The point
(which is an important ingredient in the structure theorem for codimension
two even liaison classes, as we will see) is that there is a “leftmost” shift of
the modules for which they form the deficiency modules of some scheme. We
will see in Chapter 3, with Basic Double Linkage, that once the collection
of modules actually is the set of deficiency modules of a scheme then any
rightward shift is also the collection of deficiency modules of some scheme.
This is not true for leftward shifts, thanks to the following

Proposition 1.2.5 ([25]) Given a collection {My,---,M,} of graded S-
modules of finite length (1 < r < n —2), there is a scheme X of dimension
r with the following properties:

(a) There is an integer d such that (M*)(X) = Mi(d) for all1 <i <.

(b) IfY is a scheme of dimension r with (M*)(Y) = M(e) for1<i<r
then d > e. ,

Note that the integers d and e above are the same for all i; that is, the modules
in the collection are all shifted together.

(Recall that M(d) is a shift d places to the left, for d positive.) We will not
prove this proposition here (but see Remark 1.3.3 (c) where we prove it in
the case of curves); however, the main idea for the general case is to reduce
to the case of a curve, by taking hyperplane sections.

In the context of curves, this says that once the module is known (up
to shift) then there is a lower bound on the degree in which it can start.

14



In Remark 1.3.3 (c) we give the details. It is given purely in terms of the
dimensions of the components of the module. Sharp examples can be given
(e.g. a double line in P*; cf. [92]), but it is not sharp for every module.
Martin-Deschamps and Perrin have given a more detailed analysis (87] of the
leftmost shift attained by any given module, for curves in P,

Another interesting problem is to bound the module (in varicus senses)
in terms of the degree and (arithmetic) genus of the curve. For curves in
IP?, some useful results can be found in the paper of Martin-Deschamps and
Perrin [89]. Here they give explicit bounds on the dimensions of the com-
ponents of the deficiency module in terms of the degree d and (arithmetic)
genus g of the curve C' C P3. They do not assume that the curve is reduced
or irreducible. In particular, they give a lower bound r, for the degree in
which the deficiency module may start, and an upper bound r, for the de-
gree in which it may end, and they give a bound for the dimension of any
component. Specifically, they show

(d-2)d-3) _dd-3)
2 ="g 79

re2g+1-

and if C is not a plane curve then

Vn €2, B(Zo(m) < U724 _,
Again, sharp examples exist ([89] gives an example; double lines [92] provide
another), but these bounds are not sharp in general.

In the case of integral curves in P, r, > 1 (cf. [42] and Theorem 1.2.3)
and r, < d —n (cf. [56]). (In fact, in [56] it is shown that r, = d — n if and
only if C' is smooth and rational, and eitherd =n +1 orelse d > n + 1 and
C has a (d + 2 — n)-secant line.)

1.3 Hyperplane and Hypersurface sections

Given a subscheme V' C P" with defining (saturated) ideal I, and given a
general homogeneous polynomial F' of degree d, we would like to define the
subscheme Z = VN F cut out by F. We can view it as a subscheme of P*, or
as a subscheme of F' (thought of as a hypersurface). By abuse of notation,
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we will use the letter F for both the hypersurface and the polynomial. If
d =1 we can also view Z = V N F as ‘a subscheme of P"~*.

Here “define V N F” means to give the saturated ideal, either in S or in
S/(F). The natural “guess” is to form the ideal Iy + (F) C 5, or IV';)F C
S/(F). These aren’t quite right: in general we need to take the saturation
of these ideals. (In Chapter 2 we will discuss “how far” these ideals are
from already being saturated, and show that the failure is measured by a

submodule of the first deficiency module.)
So we define the hypersurface section Z of V by F in P" to be the scheme

with saturated ideal
I; = Iv+(F), (31)

and in the hypersurface F' we have the saturated ideal
Iv + (F)
= | ———= 3.2
e = (57) 2
in the ring S/(F). If d = 1, this is called the hyperplane section of V by F.
How are these related to each other and to Iy? Note that
+(F), I _ Iy
(F) —Ivﬂ(F)—F-IV.
(The isomorphism is standard (cf. [7] p. 19). The equality is by generality
of F: suppose that

IV=an"’nQr

is the primary decomposition of Iy in S. Since Iy is saturated, m is not
an associated prime. Choose F so that it is not in any associated prime P;.
Now, if FG € Iy N (F), it is in each primary ideal @;. But no power of F is
in Q;, so G € Q; for each ¢, hence G € Iy.)

As a result, we get two useful exact sequences of sheaves:

0= Opn(—d) 25 T, 5 Izr -0 (3.3)

(from sheafifying 0 — (F) — Iy + (F) — —I%%ﬂ — 0) and
0= Ty(—d) X5 Iy - Iz — 0 (3.4)

(from sheafifying 0 — Iv(—d) RNy P -;;.—IJI% — 0).
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Remark 1.3.1 (a) Notice that (3.3) implies
Hi(Iz) =2 Hi(IzFp)for1<i<n-—2. (3.5)

We will use this fact several times in this chapter and the next.
(b) From (3.3) we also have the short exact sequence

0— S(—d) —)-(-E) Iz — IZlF — 0.

Hence one can verify that there is a one-to-one correspondence between the
minimal generators of Izjr and those of Iz other than (possibly) F itself.

(c) We now claim that F' is a minimal generator of Iz. Indeed, first let V;
be an irreducible component of V, of degree d;, corresponding to a primary
ideal Q, with associated prime P;. Let Z; C Z be the hypersurface section
of V; cut out by F. By assumption, dim Z; = dim V; — 1 and deg Z, = dd,.
Now suppose that F' = 3~ X;F; where F; € Iz. If F; ¢ P; then F; cuts
Wi in a subscheme Z' of dimension dim Z; and degree (deg F;)(d;) < dd;.
But on the other hand, F; € Iz C Iz so Z, C Z' (exercise). But then deg
Zy < deg Z', contradicting the degree calculations above. Thus F; € P;.
The same is true of all the other components of V. That is, F; vanishes on
the support of each component of V. This holds for all ¢, so F' also vanishes

on the support of each component of V. This contradicts the generality of
F. O

Now that we have the notion of a hyperplane or hypersurface section, it
is natural to ask what properties are passed from a closed subscheme V of
P" to its (general) hyperplane or hypersurface section, and conversely what
properties of the general hyperplane or hypersurface section force a conclusion
about V. In some sense the most interesting aspect of this question is the
case when V' is a curve, and we will discuss this more in Chapter 2. However,

now we give a result for higher dimension. This is also a special case of a
result in [72]. »

Theorem 1.3.2 Let V be a locally Cohen-Macaulay, equidimensional closed
subscheme of P* and let F' be a general homogeneous polynomial of degree d
cutting out on V a scheme Z CV C P*. Assume that &imV > 2. Then V
is arithmetically Cohen-Macaulay if and only if Z is.
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Proof:
Consider the exact sequence in cohomology obtained from (3.4):

oo Hi(Ty(t — d)) 25 Hi(Tv (1)) —» H (Zzr(t))
— HHY(Ty(t — d)) 25 HH Ty (1) — -

where 1 < i < (dim V)—1. Notice that Z has dimension equal to (dim V)—1.
If V is aCM then (M*)(V) = 0 for all 1 < i < dim V so H{(Zzr) = 0 for all
1 <i<dim V — 1. But then by (3.5) Hi‘(l'z) =0forl1 <i:<dim Z,s0 Z
is aCM.

Conversely, if Z is aCM then H'(Zy(t — d)) XE, Hi(Ty(t)) is surjective
for all t and H**+(Ty (t—d)) 25 H*1(Zy(t)) is injective for all ¢. This is im-
possible unless V is aCM, since (M*)(V') has finite length by Theorem 1.2.2.
]

It is interesting to note that Chang has shown in [34] that at least in the
case where V has codimension two and d = 1, this theorem does not hold if
“aCM?” is replaced by “Buchsbaum” (defined in §4 of this chapter). Indeed,
she gives an example of a non-Buchsbaum 3-fold whose general hyperplane
section is Buchsbaum. (This is the only direction in which such an example
is possible— as we will see, the general hyperplane or hypersurface section of
a Buchsbaum scheme is again Buchsbaum.)

Note also that without the assumption that V is locally Cohen-Macaulay
and equidimensional, Theorem 1.3.2 would not be true. For instance, V
could be the union of an aCM surface and a point.

Remark 1.3.3 (a) Notice that if V is aCM then in particular we have
Iy/ [Iv(—d)] = IZ]F = Iz/(F)

The second isomorphism comes from (3.3) and is true regardless of whether
or not V is aCM. The first isomorphism comes from (3.4), and it implies that
the generators of Izr are in bijective (degree preserving) correspondence with
those of Iy, and also that properties such as regular sequences are preserved
(in general). Of course one has to be careful: for instance, if V' is a twisted
cubic in P?, there is a regular sequence of two quadrics ¢, and @)z containing
V, and the complete intersection of these two quadrics is the union of V and

18



a line A. Suppose d = 1. For a general F, the images of Q; and Q; in I Z|F
form a regular sequence in S/(F). However, if F is a plane which contains
A then these images have a common component (namely ) itself) and so do
not form a regular sequence.

(b) Many strong results are known about the general hyperplane section of
an integral curve, especially from the point of view of the Hilbert function or
the resolution of the points of the hyperplane section. The main results say
that the general hyperplane section is a set of points such that two subsets
of these points, of the same cardinality, are indistinguishable numerically—
they have the same Hilbert function (i.e. they have the Uniform Position
Property), and in fact the same graded Betti numbers (i.e. they have the
Uniform Resolution Property). See for instance [41], [51], [57], [58], [59], [84],
[119] among others. See also §5.3.

(c) We will now prove Proposition 1.2.5 for the case of curves (for simplicity).
This was proved in [91] and independently in [122] by a different method.
Specifically, we claim first that for any d < 0, dim M(C)4_; < dim M(C),.
(But see (d) for a stronger statement.)

Let C C P be a locally Cohen-Macaulay equidimensional curve. Let H
be a hyperplane not containing any component of C. Following convention,
we will denote by Zonp the ideal sheaf of the points of the hyperplane section
in the projective space H = P*~1. (Above this was denoted by Izr.) Then
for any d < 0, H°(Zonu(d)) = 0 so we have the exact sequence (from (3.4))

0 — H'(Zo(d — 1)) = H (Ze(d)) — - - -

It follows that h'(Z¢(d—1)) < h*(Zg(d)). On the other hand, M(C) has finite
length so it has a last non-zero component. What the above argument shows
is that this last component cannot be in negative degree. Hence there is a
leftmost possible shift for which M(C) is the deficiency module of some curve.
(Of course C itself may not achieve this bound.) This idea was explored
further in [91] and in [25]. Furthermore, it was shown in [11] (in the generality
of codimension two subschemes of projective space), [87] (for curves in P?)
and [27] (for codimension two subschemes of a smooth Gorenstein variety),
that the schemes for which this bound is achieved are very special from the
point of view of Liaison. They are the so-called minimal schemes of the even
liaison class. We will discuss this much more in Chapter 5.
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(d) In fact, it was shown in [91] that if M (C) has components in negative
degree then we must have dim M(C); < dim M(C)i4y forallz < —1. O

1.4 Examples

In this section we give a number of examples to illustrate the ideas in the
preceding three sections.

Example 1.4.1 Complete intersections

If V is a subscheme of P* of codimension r then the saturated ideal of V
clearly has at least r generators. If the number of generators is equal to the
codimension then V is said to be a complete intersection. From the algebraic
point of view, V is a complete intersection if and only if the saturated ideal
Iy = (B, -+, F,) where (Fy,- -, F,) is a regular sequence. (In fact, it’s not
hard to show that a regular sequence always defines a saturated ideal.)

The minimal free resolution of a complete intersection, known as the
Koszul resolution, is particularly simple. It basically says that the only
relations are the “obvious” ones, F;F; — F;F; = 0, and similarly for the
second and higher syzygies (see page 4). Formally, let d; = deg F;. Then the
minimal free resolution is given by

-2 /2\( D S(-d:) 2> @ S(—d) T Iv =0

1<i<r 1<i<r
where -

¢'2[(f1v"'afr)A(gl)"'agr)] = [¢1(f1)'")fr)](gh"'agr)
- [¢1(glv'")gr)](fl)"'7fr)°

If we use the standard bases for A*(@1<i<-S(—di)) and Br<ci<rS(—di) we
see that ¢, is represented by an r X (; matrix, each of whose entries is
either zero or an F; (up to 1). Similarly, the ith free module occurring in
this resolution (1 < ¢ < r) has rank (:) and the matrices all have entries
which are either zero or an F} (up to +1). Notice that in particular Vis
arithmetically Gorenstein (see page 11).
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In particular, the projective dimension of Iy is equal to the codimension,
r, s0 V is aCM. Hence the deficiency modules of V are zero (unless dim V
= 0, in which case there are no deficiency modules, by definition).

The degree of a complete intersection is simply the product of the degrees
of the defining polynomials (by Bezout’s theorem). In the case of a curve,
the arithmetic genus g is

SILA(Edi— (a4 1) +1.

To see this, one can for instance take the general case first. Take each
hypersurface section to be smooth, and so one can use the adjunction formula
([55] p. 147) to compute 2g — 2, and hence g. But the arithmetic genus
depends only on the Hilbert polynomial, which is determined by the graded
Betti numbers of the resolution. These depend only on the degrees d;, and
not on smoothness. Hence this value of g is correct for any such complete
intersection curve. ‘

A special case of a complete intersection is a hypersurface (assuming that
it is locally Cohen-Macaulay and equidimensional) since in this case the ideal
is principal (hence isomorphic to S(—d;)- this was used in §3 to get (3.3))
and the codimension is 1. ‘

In codimension two, say Iy = (Fy, F3) is a regular sequence (i.e. F; and
F3 have no common component). Then the Koszul resolution for Iy is given
by

: F;
-F [FA F)
0— S(—dl - dg) E— S("'dl) (&) S(-dg) E— IV — 0.

The case of higher codimension proceeds analogously. O
We now pass to the case of curves and compute some deficiency modules.

Example 1.4.2 Let C be a set of two skew lines \; and \; in P*. Consider
the exact sequence

0 — H(Zo(i)) — H(Opn(i)) — H*(Oc(3)) — M(C); — 0.

For i < 0 we get that M(C); = 0 and for i = 0 we get dim M(C), = 1.
On the other hand, for i > 1 we claim that C imposes 2 + 2 independent
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conditions on hypersurfaces of degree i. Indeed, choose i + 1 distinct points
on each of the two lines A; and A;. Clearly a hypersurface of degree ¢ contains
C if and only if it contains all of these 2: + 2 points. But excluding any one
of these points, it is a simple exercise to find a union of ¢ hyperplanes which
contains all of the remaining points. o
Hence h%(Zo(i)) = (") —(2i+2) while of course A%(Opn (1)) = (*t") and
rO(Oc(i)) = 2i + 2. Therefore M(C); = 0 for all ¢ # 0. In particular, M(C)
is non-zero but it is annihilated by the maximal ideal m of S. Because of
this, C is an example of a so-called Buchsbaum curve, which we will discuss

shortly (and in Chapter 3). O

Example 1.4.3 Let C be a smooth rational quartic curve in P3. Consider
again the exact sequence

0 = HO(Zo(i)) = HO(Opn(i)) = HY(Oc(i)) = M(C)i = 0.

By Riemann-Roch, h%(O¢(i)) = 4i + 1 for i > 0. On the other hand,
hO(T(i)) = 0 for i < 1 so this exact sequence gives M(C); = 0 for i <0and
dim M(C), = 1.

Now let H be a general hyperplane and consider the exact sequence

0 = HOTo(i — 1)) = H(Zo(i)) = H*(Zonn (i) = M(C)ier —

— M(C)i » H'(Zean(3)) = H¥(Zo(i—1)) — -+

where Zony is the ideal sheaf of the hyperplane section in the hyperplane H.
(This is the sequence (3.4) of §3 of Chapter 1.) Observe that C N H is a set
of four points in the plane with no three on a line. It is in fact a complete
intersection, so the cohomology of Zgny is not hard to compute (from the
Koszul resolution, which is a short exact sequence since the codimension is
two). In particular, h'(Zcnu(i)) = 0 for ¢ > 2 (which gives us R°(Zonu (i) =
(i;z) — 4 for i > 2). Furthermore, C has degree four and arithmetic genus
0 so it is not a complete intersection— from the formula in Example 1.4.1
we know that the complete intersection of two quadrics in P? would have
arithmetic genus 1. Therefore, since C is smooth, it can lie on only one
quadric and £%(Z¢(2)) = 1. Then setting i = 2 in the above exact sequence
gives M(C); = 0, and proceeding to ¢ = 3,4, - - gives that M(C) is zero in
every degree other than 1, and it is one-dimensional in degree 1.

22



Therefore a rational quartic has the same module as does a set of two
skew lines, but shifted. This will be very relevant when we discuss Liaison
Theory. Notice, incidentally, that there are deeper (but quicker) reasons
why M(C); = 0 for ¢ > 2. One could apply the theory of Liaison, which
we will discuss later. Alternatively, one could use the main theorem of [56]
(which says, in the special case of a reduced, irreducible curve ir P3, that
M(C); = 0 for ¢ > deg C — 2), or the fact [66] that a general rational
curve C in P" of degree d has mazimal rank, i.e. that the restriction map
H°(Opn(1)) — H°(Oc(i)) has maximal rank for all i. (Using the exact
sequence (1.1) and taking cohomology, one sees that this is equivalent to the
condition that A%(Z¢(2)) - R} (Zc(:)) =0 for allz.) D

Example 1.4.4 Let C be the disjoint union in P® of a line A and a plane
curve Y of degree d (so Ic = Iy N Iy). A special case is the disjoint union of
two lines, which we discussed from a geometric point of view above. Now we
show how to derive the deficiency module in a more algebraic way. We have
an exact sequence

O—=Ic—=Iyl,—-Iy+1,—0

and we can sheafify it and take cohomology to obtain

0 - I - Iyl —_ S = MC) - 0

NS
Iy + 1,
/7N

0 0

(Note that H(Iy + I,) = S since Y and X are disjoint— use the Nullstellen-
satz. Also, in particular A and Y are complete intersections so as we have
seen, H}(Zy ®Z,) = 0.) Notice that the ideal Iy + I has three (independent)
generators in degree 1. Hence M(C) = k[z]/(F) where F' € k[z] has degree
d. In particular, ‘

0 otherwise.

Consider for instance the case d = 2. Here the module is one-dimensional
in each of degrees 0 and 1, and zero otherwise. From the point of view of
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§1, what is the module structure? We have a homomorphism ¢o : S; —
Hom(M(C)o, M(C),) which we view as a 1 x 1 matrix whose entry is a
linear form in the dual variables. Either ¢ is the zero homomorphism, or
else the degeneracy locus Vp is a plane in the dual projective space. We.now
check that the latter is in fact the correct conclusion, and we determine from
a geometric point of view the relation between this plane and the curve C.

Let H be a general hyperplane determined by a linear form L, and con-
sider multiplication by L on the deficiency module M(C). Consider the exact
sequence (3.4) from §3 (where now for convenience we denote by Zcnm the
sheaf Zzr): :

0 — H(Ze) = H*(Zc(1)) = H'(Zenn (1)) = M(C)o 2, M@~

As long as H meets the curve in finitely many points, we have that rank
¢o(L) = 0 if and only if A°(Zonr(1)) = 1 if and only if the three points of
intersection of C' with H are collinear, i.e. if and only if H passes through the
point P of intersection of A with the plane of Y. So the degeneracy locus Vp
is the plane in the dual projective space which is dual to the point P. Notice
that initially we only considered planes meeting C properly. However, since
the degeneracy locus is closed we get in this case that any linear form L
vanishing on a component of C' also gives a rank 0 homomorphism on M (C),
simply because it also vanishes at P. See also Examples 4.4.1 and 4.4.2.

One can also check that this plane determines the module structure of
M(C) (although in general the degeneracy loci are not enough). A similar
analysis can be done with the case d > 3 as well, with the same conclusions
about V. O

Example 1.4.5 Suppose, in the last example, that we had let A and ¥ meet.
If they lie in the same plane then C is a plane curve, hence a hypersurface
and so arithmetically Cohen-Macaulay. The only other possibility is that
they do not lie in the same plane and meet in exactly one point P. We claim
that this curve is also aCM.

In this case Hf(ly:IA) = Iy + I, = Ip. One can see this since Iy C Ip
and I, C Ip so Iy + 1, C Ip. But on the other hand, Ip is generated by three
independent linear forms and Iy + I contains three independent linear forms,
so they agree in degree 1 (we already have one inclusion) and so Ip C Iy + 1.
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Therefore we get the exact diagram

0 — I — Iyl — Ip — M(C) - 0

so M(C) =0 and C is aCM as claimed. O

Example 1.4.6 The simplest case in Example 1.4.4 is the disjoint union of
two lines in P3, which we already discussed, and the second simplest is the
disjoint union of a line and a conic. The latter has deficiency module which
has dimension 1 in each of two components, and the module structure is non-
trivial. (The multiplication from the first nonzero component to the second,
induced by a general linear form, is an isomorphism.) For comparison, we
give an example of a curve with the same module dimensions as this one, but
different structure.

Let C be the union of lines in the above picture. It is understood that
lines which do not intersect in the picture in fact do not intersect. One
can verify from geometry that three “horizontal” lines and the five leftmost
“vertical” lines lie on a smooth quadric surface, and that the last two lines do
not lie on this surface. Then one can give elementary but tedious arguments
to show that this curve has deficiency module which is one-dimensional in
degrees 2 and 3, and 0 elsewhere. (This curve was constructed using Liaison
Addition, which we will describe in Chapter 3. These dimensions come for
free as a result of that theorem.) Also, it is not hard to check that the curve
lies on no quadric or cubic surfaces, by geometrical considerations. However,
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the general hyperplane section of this curve does lie on a cubic plane curve.
Then from the exact sequence

0 — H(Zo(2)) — H(Zo(3)) — HTonu(3)) — M(C): B M(C)s > -

we get that the general linear form, and hence arbitrary linear form, induces
the zero homomorphism on the deficiency module. O

The curve in Example 1.4.6 is the simplest non-trivial example of an
arithmetically Buchsbaum curve. Specifically:

Definition 1.4.7 A curve C C P is arithmetically Buchsbaum (or sim-
ply Buchsbaum) if its deficiency module is annihilated by the maximal ideal
(Xo,"',Xn) of S. O

By “simplest non-trivial example” we mean that the curve of Example 1.4.6 is
a curve of least degree which is Buchsbaum and which has a deficiency module
which is non-zero in at least two degrees. (Obviously if the module is non-
zero in at most one degree then the curve must be Buchsbaum for “trivial”
reasons.) The minimality of this curve is not obvious: it is a consequence of
the Lazarsfeld-Rao property which will be described later. See also [22], [23]
and [49]; some relevant facts from these papers will be discussed in Chapter 3.
Of course this curve is not the unique curve with this minimality property,
since there is some flexibility in the lines chosen for the components of the
curve.

Note that if C is Buchsbaum then its deficiency module, as a graded S-
module, is a direct sum of twists of copies of the field k; that is, the module
structure is just that of a k-vector space. So, for example, the resolution of
such a module is the direct sum of twists of copies of the resolution of k, and
so is easy to write down. We will use this fact in the proof of Corollary 2.2.6.

There is also a notion of arithmetically Buchsbaum subschemes of higher
dimension, which is not quite what one would expect. The analogous def-
inition, extending the one just given, is an inductive one: a scheme V of
dimension r > 2 is arithmetically Buchsbaum if all of its deficiency modules
(in the range 1 < i < r = dim V) are annihilated by the maximal ideal, and
if its general hyperplane section is arithmetically Buchsbaum. (See [126] for
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an excellent overview of the theory of Buchsbaum rings, and see [32] and [33]
for a description of the arithmetically Buchsbaum schemes in codimension
two.) A scheme for which the deficiency modules are all annihilated by the
maximal ideal, without the assumption about the general hyperplane section,
is said to be quasi-Buchsbaum. This is not sufficient for the scheme to be
Buchsbaum, since examples exist of schemes whose deficiency modules are
annihilated by the maximal ideal, but for which the deficiency modules of
the general hyperplane section are not annihilated by the maximal ideal (cf.
for instance [103]).

One can check, though, that an r-dimensional scheme V C P* is Buchs-
baum if and only if its deficiency modules are all annihilated by the maximal
ideal, and the same is true for the deficiency modules of the scheme V N A,
obtained by intersecting V' with a general linear space A of any dimension k
satisfyingn —r+1<k<n-1.

In these notes, for the most part the only Buchsbaum schemes that we
will consider are Buchsbaum curves.

Buchsbaum curves can be viewed in many ways as a generalization of
the aCM curves. Certainly from the module point of view it is clear that
an aCM curve is Buchsbaum. There are also some other ways that come
up, especially for curves in P, which we will discuss in Chapter 3 once we
prove a striking result of Amasaki (Corollary 2.2.6) relating the k-dimension
of the deficiency module and the least degree of a surface containing the
curve. We will also discuss a surprising fact about Buchsbaum curves in the
last chapter: every Buchsbaum curve in P? specializes to a stick figure (i.e.
a union of lines with at most double points). This will be an application of
the Lazarsfeld-Rao property and Liaison Addition. (This is a partial answer
to a classical question: does every smooth curve in P® specialize to a stick
figure?)

Remark 1.4.8 As mentioned at the end of §1, it is interesting to study
the Buchsbaum index of a graded module M of finite length, i.e. the least
degree k such that all forms of degree k annihilate M. If M is the deficiency
module of a curve C, we also say that C is k-Buchsbaum. As a special case,
a Buchsbaum curve is 1-Buchsbaum (and an arithmetically Cohen-Macaulay
curve is 0-Buchsbaum). Notice that every curve is k-Buchsbaum for some k.
k-Buchsbaum curves (and generalizations to higher dimensions) have been
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studied extensively. See for instance [8], [9], [29], [43], [54], [67], [68], [69],
[99]. (This is not intended to be a complete list.) O ‘

Example 1.4.9 One can use the computer program “Macaulay” [14] to com-
pute the deficiency module of a subscheme of projective space. For example,
the following script computes (not necessarily in the most efficient way) the
deficiency module of a curve in projective space, using scripts already written
by D. Eisenbud and M. Stillman. The name of the script is def_mod.

incr-set prlevel 1

if #0=2 START

HERE:

incr-set prlevel -1

;33 Usage:

;33 <def_mod I def

- Computes the deficiency module of I.

333 This assumes that I is an ideal that defines a variety
A of dimension one. The script returns the deficiency
33 module in def. The deficiency module is the first

33 cohomology module of the ideal sheaf.

incr-set prlevel 1

jump END

ERONE: .

shout echo The ideal needs to define a one dimensional variety
kill @zz Q@I Q@i Qtt

jump HERE

ERTWO:

shout echo The first entry needs to be an ideal

kill Qzz

jump HERE

;;; Parameters and output values: I is an ideal.

HFH def is a presentation for a module.
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START:

nrows #1 Qzz

if (@zz<1) ERTWO
if (@zz>1) ERTWO
std #1 @I

nvars QI Qi
codim QI Qzz

int Q@tt Qi-Qzz-1
if (@tt>1) ERONE
if (Qtt<1) ERONE

int Qj Qi-1
<ext(-,R) @j @I @C
std @C eCC
<ext(-,R) @i Q@CC @D
std @D QDD

copy @DD #2

std #2 #2

<prune #2 #2

std #2 #2

kill Q@zz QI Qtt Q@i @j @C QCC @D QDD
END:
incr-set prlevel -1

A quick way to read the dimensions of the components of the module is to
use hilb, as illustrated by the following simple Macaulay session (compare
with Example 1.4.4):
% <ring 4 wxyz R

% <ideal line w x

% <ideal plane_quintic y z5
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% intersect line plane_quintic curve
; 0.[126k]1.2..3..4..5..6..
; computation complete after degree 6

% std curve curve
; 23.4.5.6.7.
; computation complete after degree 7

Y% <def_mod curve def

% hilb def

; 1t 0
; -3t 1
; 3t 2
; -1t 3
H -1t 5
; 3t 6
; -3t 7
; 1t 8
; 1t O
; 1t 1
H 1t 2
; 1t 3
5 1t 4
; codimension = 4
; degree =5
; genus =6

Here, 1ine is the ideal of a line, plane_quintic is the ideal of a (nonreduced)
plane quintic disjoint from line, curve is their union and def is the deficiency
module. To read off the dimensions and degrees of the nonzero components
simply look at the part of the printout above codimension: this module is
one-dimensional in each of degrees 0,1,2,3 and 4.
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Many extremely useful scripts have been produced by Eisenbud, Stillman
and others, and are available with the program “Macaulay.” O
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Chapter 2

Submodules of the Deficiency
Module

In this chapter we will define certain submodules of the first deficiency module
of a closed subscheme Z of P*, and see how they give a more refined measure
of the failure of the ideal of Z to have certain nice properties. We then
describe some applications of these submodules, from the literature.

2.1 Measuring Deficiency

Recall that we defined the first deficiency module of a closed subscheme V/
of P* to be H}(Zy). If dim V = 1 then this is unambiguously called the
deficiency module of V. Since this chapter deals only with this particular
module (and submodules thereof), we denote it simply by M (V). In sec-
tion 1.2 we saw one reason for the name “deficiency module”: it measures
the failure of V to be projectively normal. We now define a submodule of
this module, which will be one of the main objects of study in this chapter,
and we will see other reasons for the name. For now we do not require that
V be locally Cohen-Macaulay or equidimensional, and we allow dim V' =0
(although in this case M (V) will not have finite length).

Recall that if M is a graded S-module, A C M a submodule and J C §
an ideal then by definition

[A:yJ]={meM|F-meAforall FeJ }.
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This is a submodule of M. If M = S then A is an ideal and we often write
[A : J] for [A :5 J]. this is called an ideal quotient. Now the submodule
referred to above is given by

Definition 2.1.1 Let F € S; be a homogeneous polynomial of degree d.
Then we define Kr = [0 :pqv) (F)]. O

In the special case where V' is a curve in P" and deg F =1, Ky is a key
component in a formula for the arithmetic genus of V; see page 112.

Proposition 2.1.2 Let F € S; be a general homogeneous polynomial of
degree d. Then

(a) K has finite length.

_ I QI + (F)
) V=55 %~ h

Proof: Let Z be the subscheme cut out on V by F and consider the exact
sequence in cohomology obtained from (3.4) of Chapter 1

I I
then Krp(~d) 2 ZF = 1.

0 = Iy(=d) 25 Iy - Inpp —— MV)(-d) 25 M(©V)

N/
Kp(—d)
7N\

0 0

Since Izr is an ideal, (KF); is zero for ¢ < 0, and it is zero for 7 > 0 since this
is true of M(V); (regardless of whether or not V is locally Cohen-Macaulay
or equidimensional). Hence K has finite length. This proves (a).

The first isomorphism of (b) also follows from the above exact sequence
(see page 16). For the second isomorphism consider the exact sequence

0-IvNF)-Ivd(F)=Iy+(F)—0
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which, after sheafification and taking cohomology, gives
F

F
0o Iy(-d) — Iy®(F) —— Iz —— M(=d) B M
N/ N/ :
Iy + (F) Kp(—d)
7N\ 7N\
0 0 0

where M = M(V) (note that (F) & S(=d) so its higher cohomology van-
ishes) from which (b) follows immediately. O

The last two isomorphisms of this proposition say that the submodule Kr
measures the failure of both “denominators” to be saturated. If V is aCM
(for example) then the “denominators” are automatically saturated. In the
case of a curve V in P* they are saturated if and only if V is aCM. We now
consider a submodule of K, which was introduced in [97].

Definition 2.1.3 Let Fy, F; € S be general homogeneous polynomials. Let
A= (F, F;). Then K4 = [0 :p(v) Al=Kr NKg,. O

It turns out that K, also measures a “deficiency.” For two ideals I and
J it is always true that IJ C I N J. Then it is natural to ask when we have
equality, and furthermore whether there is a natural measure of the failure of
equality to hold. In the special case where A is a codimension two complete
intersection, we have:

Proposition 2.1.4 ([97]) Let deg F; = d; (: = 1,2) and assume that A is
sufficiently general (that is, A is the ideal of a complete intersection meeting
V in codimension two (or disjoint from V)). Let R = S/(F) and J =
Iy /(F: - Iv) as above. Then '

IyvNA

ulJ:RFz] ~
Koz =—7— )= 37—

(d1+dy)

The first part of the proposition is a technical result which will be used in the
next section. The second one gives an answer to the question posed above:
the module K4 measures the failure of Iy - A to be saturated, i.e. to equal
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the intersection. (Recall that the intersection of two saturated ideals is again
saturated.) The proof of this proposition is somewhat technical, but to a
large extent it is a diagram chase using the commutative diagram

xFy r xFy

— (Wntan = (Uza)m4ss, — M, — mtd;
l X F2 l X -F_z l X F2
xF r XF1
— (W)midi+dez, — UziR)midytds — Mmys, — Mmiaiia,

where M = M(V), F; is the image of F; in S/(F}) and r is the restriction
of Iy to the ideal Izr, of the hypersurface section Z in S/(F;). See [97] for
details.

Remark 2.1.5 (a) In [97] a generalization of this result is also given in the
case where dim V' < 1: it is shown that if A is the ideal of a codimension
two aCM subscheme which is disjoint from V then -Ii‘&‘f- is isomorphic to
a naturally defined submodule of a certain direct sum of copies of shifts
of M(V). This is obtained using the minimal free resolution of A and the
homomorphism induced on the direct sum of copies of M(V) (with shifts) by
the Hilbert-Burch matrix of A (see §2 of Chapter 1).

It would be tempting to conjecture that a more general version of Propo-
sition 2.1.4 holds: if A is the ideal of an aCM subscheme which is disjoint
from V and K4 = [0 :aq(v) A] then Ky = -IJ&A (with some shift). Unfortu-
nately this is not true. For example, let A be the ideal of a twisted cubic
curve Y in P? (which is aCM) and let V be a smooth rational quartic curve
in P disjoint from Y. Then from Example 1.4.3 we know that M(V); = 0
for ¢ # 1 and dim M(V); = 1. Therefore K, & k, occurring in degree 1.
On the other hand, we can check that I%%A is at least two dimensional in
degree 4. Indeed, knowing that M(V)s = 0 allows us to use the first exact
sequence in Example 1.4.3 to compute that h°(Zy(4)) = 35— 17 = 18. Then
Y imposes at most (4)(3) + 1 = 13 conditions on this linear system, so dim
(Iv N A)y > 5. But dim (Iy - A)y = (1)(3) = 3 (compute the number of
quadrics in Iy and in A) so dim (%)4 > 2 (in fact = 2) so this cannot be
a submodule of M (V) with any shift.

However, Proposition 2.1.4 has been generalized in a different way in [86].
If A is the ideal of any subscheme of P* which is disjoint from V then 1}%
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fits in a certain long exact sequence, from which many things can be deduced.
In the case where A is aCM of codimension two, we recover the result from.
[97] mentioned above. However, this is a very special case in the context of
(86].

(b) It is natural to ask, for two homogeneous ideals [ and J of S, when is
it true that IJ = I N J? From a theorem of Serre ([123] p. 143) one can
deduce the following. Let I = Iy and J = Iy be the saturated ideals of two
schemes V and W. Assume that V and W are disjoint. Then IJ =INJ if
and only if dim V 4+ dim W = n — 1 and both V and W are arithmetically
Cohen-Macaulay. (A new proof of this result can be found in [86].) However,
one can see from Proposition 2.1.4 that this is not the only case in which
IJ = INJ. For example, if W is a complete intersection surface in P* and
V is a surface with M(V) = 0 but H*(Zy) # 0, and if V and W meet in a
finite number of points, then it is still true that IJ = INJ, even though V
and W are not disjoint and V is not even arithmetically Cohen-Macaulay.
O

2.2 Generalizing Dubreil’s Theorem

The goal of this section is to show how the submodule K4 introduced in the
last section can be used to generalize a classical result of Dubreil. A special
case of this result is due to Amasaki (see below). In order to state Dubreil’s
theorem we first make

Definition 2.2.1 Let I be a homogeneous ideal of S. Then:
(a) o(I)=min {1 €Z | ;#0 }.

(b) v(I) = number of minimal generators of I.

Dubreil’s theorem, in its simplest form, is the following (cf. [38]).

Theorem 2.2.2 (Dubreil) Let R = k[z,y] and let I C R be a homogeneous
ideal. Then v(I) < a(I)+1. 0
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The standard application of Dubreil’s theorem is the

Corollary 2.2.3 Let V C P™ be a codimension two aCM subscheme with
defining saturated ideal Iv. Then v(Iy) < a(ly) + 1.

Proof:

Since V' is aCM, so is its general hyperplane section V N H (as long as
dim V > 1), and hence the intersection of V with a general linear subvariety
(by taking a sequence of hyperplane sections). Suppose first that n > 3.
Let L be a defining linear form for the hyperplane H. Then from the exact
sequence

0 I(=1)25L — Iyag — 0

(where the last ideal is in the ring of the hyperplane S/(L); that is, a poly-
nomial ring in one fewer variable) we see that ¥(Iy) and o(ly) are preserved
under hyperplane sections. So without loss of generality assume that V is a
finite set of points in P?, S = k[Xo, X1, X5] and let L be a general linear form
(hence a non-zerodivisor in S/Iy). Then v(Iy) = v(J) and a(Iy) = a(J)

where

I, I L+()
L Iy~ Iyn(L) (L)
so Dubreil’s theorem applies to J. (The reason that we need a non-zerodivisor

is that this guarantees the first isomorphism above. Otherwise J is not an
ideal in k[z,y] so Dubreil’s theorem does not apply.) O

R

J C k[z,y]

The following generalization of this result can be found implicitly in [1]
and explicitly, with a different proof, in [50]. We remark that for a Buchs-
baum curve C, the dimension N = dimy M(C) is called the Buchsbaum type
of C.

Theorem 2.2.4 (Amasaki) Let C be a Buchsbaum curve in P® (cf. Defi-
nition 1.4.7). Let N = dimgM(C). Then v(I¢) < a(lg)+ 1+ N. O

Note that formally this implies the corollary above, in the case of curves

in P3, since aCM curves are trivially Buchsbaum. In this section we will
prove a generalization from [97] of Theorem 2.2.4.
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From now on, assume that V is a closed subscheme of P2, but of any
codimension > 2 and not necessarily locally Cohen-Macaulay or equidimen-
sional. Assume that A = (L1, Lz) where deg L; = 1 ( = 1,2) and the L; are
chosen generically.

Let J = L,IYIV = I""I"(II)‘Q as above. Let J = %(;Lfl C k[z,y]. As noted
above, at this stage we &xave to be careful. However, what we can say is that
J J

Tand LU L (21)

J

R

Theorem 2.2.5 Let V C P? be a closed ;subscheme of dimension < 1. Let
Li,L, € Sy be generically chosen linear forms and let A = (Ly,L;). Then
V(Iv) <a(ly)+1+ v(Ka).

Proof:
Note that J D Ly« [J : Ly] D LoJ. Then
v(Ilyv) = v(J)
= v(g7)
L2 [J:Lo)

< v (gzm) +v (257
= v()+v (%) (by (21)
= v(J)+ v(Ka) (by Prop. 2.1.4)
< a(Iy) +1+v(Ka) (by Dubreil) O

This generalizes Amasaki’s theorem above. This result has in turn been
generalized in [86] to arbitrary codimension in P™, using Koszul homology,
but the statement requires a good deal of explanation and notation and we
will not give it here. We now show, following [50], how to deduce from
Theorem 2.2.4 Amasaki’s important theorem concerning the least degree of
a surface containing a Buchsbaum curve in P®. (Amasaki’s proof is along
different lines.)

Corollary 2.2.6 (Amasaki) Let C C P® be a Buchsbaum curve and let
N = dimp; M(C) be the Buchsbaum type. Then a(lg) 2 2N.

Proof:
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We first recall a result of [30]. That is, v(I¢) > 3N + 1. Assuming this,
the result follows immediately from Theorem 2.2.4 above: 3N +1 < v(I¢g) <
a(lc)+1+ N. :

To prove that v(I¢) > 3N + 1, the idea of [30] is to use Rao’s result,
Theorem 1.2.4. Indeed, note that as an S-module, k has a minimal free
resolution

0— S(—4) - 45(-3) - 65(-2) 2 45(-1) > S —>k—0

(it is isomorphic to S/(Xo, X1, X3, X3), a complete intersection, so this is just
the Koszul resolution). But since C' is Buchsbaum, M(C) is isomorphic to
a direct sum, with twists, of copies of k. (See page 26.) Hence the minimal
free resolution of M(C) is just a direct sum, with twists, of this resolution.
That is, a minimal free resolution of M(C) has the form

0 Fy>FB->FK—->F—F,—-MC)—0
where rkF,-=N-(‘:).

Now, Theorem 1.2.4 says that a minimal free resolution of I has the
form

0 Fy->Fa@S(-L)— @S(——e;) —Ic—0
1 1

where now m = v(Ig) =tk F3+r—r1k Fy+1 >tk F3—rk F;+1=3N +1.
a

C. Peterson [110] has used Theorem 2.2.5 to study the deficiency module
of powers of certain ideals of curves in P3. In particular he has shown that
the deficiency modules of these curves grow very quickly:

Corollary 2.2.7 (Peterson) Let C be a reduced, locally Cohen-Macaulay
curve in P? which is not a complete intersection, and such that I% is saturated
with no embedded components for n > 0. Let C, be the curve defined by IZ.
Then v(K4(Cr)) > sn? for some s > 0 and alln > 0.

Remark 2.2.8 (a) What can we say about r in the resolution above (with-
out recourse to [87])? Observe that if C lies on a surface of minimal degree
2N then 3N +1 < v(Ilg) L allc)+ 14+ N = 3N +1so v(Ig) = 3N + 1.
Therefore in this case r = 0. This was observed in [50].
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(b) Since Theorem 2.2.5 is much more general than Theorem 2.2.4, and The-
orem 1.2.4 holds for any (locally CM equidimensional) curve in P32, the ap-
proach described above will work, in principal, for any curve in P3. However,
to get a result as “clean” as Corollary 2.2.6 it is necessary for the invariants
in the lower and the upper bounds of »(Ig) to be combined in a nice way.
This was easy for the Buchsbaum case but not so easy in general.

One case in which a reasonably nice answer was obtained (in [97]) is in the
2-Buchsbaum case. In general a curve C is said to be k-Buchsbaum if M (C)
is annihilated by all forms of degree k, but not by all forms of degree k — 1
(see also [43], [99]). In particular, consider k = 2. A simple example of such
a curve is any non-Buchsbaum curve whose deficiency module is non-zero in
exactly two components, in consecutive degrees (i.e. diameter two). Suppose
C is such a curve, and suppose that the non-zero components of the module
have dimensions a and b respectively. By liaison, which we will discuss later,
without loss of generality we may assume that @ < b. Then it can be shown
that a(Ig) > 2b— a. Furthermore, for any choice of a and b, sharp examples
can be constructed. (There is one exception, which we have already seen. If
a = b = 1 then of course 2b — a = 1 cannot be sharp since a plane curve
is always aCM. The disjoint union of a line and a conic is an example of a
curve with these dimensions.)

A complete answer can be given in the 2-Buchsbaum case in general,
similar to but slightly more complicated than the Buchsbaum case. It is based
on this special case of diameter two, and the fact (which is an interesting
exercise) that the module of a 2-Buchsbaum curve decomposes as a direct
sum of modules of diameter < 2. See [97] for details.

(c) Note that Theorem 2.2.5 holds for any curve in P2, not necessarily locally
Cohen-Macaulay or equidimensional. Furthermore, it even holds for a finite
set of points in P, which has codimension three.

(d) A natural question is whether the converse of Dubreil’s theorem holds: if
C is a curve in P? with »(I¢) < a(I¢)+1, then does it follow that C is aCM?
The answer is “no.” A simple example is the following. Let C; and C; each
be the complete intersection of two quadric surfaces in P?, and assume that
C; and C; are disjoint. Let C = C;UC,. Note that C; and C; are each aCM,
but C is not (since it is not connected; cf. Theorem 1.2.3). But it follows
immediately from Proposition 2.1.4 (letting Iy = I¢, and A = Ig,, and
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noting that K4 = 0) that Ic = I, - Ip,; hence v(Ig) =4 < 4+1 = o(Ig) +1.

Many other counterexamples exist, even with smooth irreducible curves.
For instance, one can also check that if C is a smooth curve of degree 7 and
genus 4, not lying on a quadric surface, then I¢ has 4 minimal generators,

and this is a(l¢) + 1. But C is not aCM.

(e) Another natural question is whether this result as stated for subschemes
of P® would also hold for curves in P*. The answer is “no.” For example,
take V' to be a set of two skew lines in P*. Here v(Iy) = 5 but a(ly) = 1
and V(KA) = dlmkM(V) =1. O

2.3 Lifting the Cohen-Macaulay Property

For technical reasons, in this section we will assume that the characteristic
of the base field is zero. (This is mainly used in the proof of a lemma which
leads to Proposition 2.3.2- cf. [124], [72], [78], [98]). We saw in Theorem 1.3.2
that for dimension > 2, V is aCM if and only if any hypersurface section Z
of V, not containing a component of V, is aCM. Of course in general this is
not true for curves, since every finite set of points is aCM while not every
curve is. So one would naturally like to know if there are any conditions on
the hypersurface section Z which force the curve to be aCM. The “cleanest”
result is the following (but 2.3.2 is more general):

Theorem 2.3.1 ([98]) Let V C P" be a non-degenerate, locally Cohen-
Macaulay, equidimensional curve. Let F € Sy be general, cutting out a zero-
scheme Z. Assume that Z is a complete intersection. Then V is a complete
intersection, unless

(a) n=3,d =1,V lies on a quadric and has even degree
(b)) n=3,d=1,deg V =4 and V does not lie on a quadric
(c) n>3,d=1,V is a double line.

It’s clear that (a), (b) and (c) are exceptions; what is quite surprising is that
they are the only exceptions. In particular, as soon as d > 2 then there
are no exceptions. An interesting application of this result can be found in
Proposition 4.2.15.
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[98] is just one of the more recent of a series of papers on this general
subject. A very special case of this theorem was proved in [49], and the more
general question was asked for curves in P? and d = 1. This question was
answered by Strano in [124]. Then Strano’s student Re proved the analogous
result for curves in P* and d = 1 in [116]. This was re-proved in [72], and
some generalizations were proved for Gorenstein curves, but always assuming
d = 1. To our knowledge [98] is the first work in this direction for d > 2.
More recently, some results were obtained in [100] for higher Cohen-Macaulay
type.

[98] is based on a “translation” of the preparatory results of [72] to allow
for higher d, and it follows the same approach. Interestingly, it uses in a
heavy way the module K described in §1.

Theorem 2.3.1 is a consequence of the following result from [98] (analogous
to one in [72]), which gives a nice condition on the hypersurface section that
forces the curve to be aCM. The notation is as follows. Let V' C P be
a non-degenerate, locally Cohen-Macaulay equidimensional curve, and let
F € S; be a general homogeneous polynomial of degree d cutting out on V
a zeroscheme Z. Consider the minimal free resolution of Iz (in P"):

0= F,—---—F—>1;—-0

and write F,, = ?;1 S(—m;). Let Kr be the kernel of the multiplication
map on M(V) induced by F, as in Definition 2.1.1 and let K = Kp(—d)
(K is the kernel of the map induced by F : M(V)(—d) = M(V)). Let b=
min{ j | K; # 0 }. Equivalently, bis the least degree in which Iz|r contains an
element (necessarily a minimal generator) which does not lift to Iy (apply
the cohomology functor to the exact sequence (3.4) of Chapter 1- see for
instance the proof of Proposition 2.1.2). We stress this last interpretation
since it will be used several times in the proof of 2.3.1.

Proposition 2.3.2 Assume that V is not aCM, so that K # 0. Then b+n 2
min{m;} (where m; are defined in the paragraph above). O

The proof of this result is based on the approach of [72]; see [98] for
details. The key technical step is the extension to higher degree d of their
“Socle Lemma,” which we now recall. For any graded S-module N we define
the initial degree

i(N) = inf {t€Z| N, #0}.
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When N is an ideal in S, we sometimes use a(N) for i(NNV); see for instance
§2.2.

Lemma 2.3.3 Let M be a non-zero, finitely generated, graded S-
module. For d > 1 let F € S; be a general homogeneous polynomial of
degree d. Let ’

O—)K—-)M(——d)—LM——)Q:—)O
be exact. If K # 0 then let b=i¢(K) =min{ j | K; # 0 } as above. Then

b > i([0 :c m%]) + d.

We refer the reader to [98] for the proofs of Lemma 2.3.3 and its corollary,
Proposition 2.3.2. See Example 4.4.3 for an illustration of another way in
which Lemma 2.3.3 can be applied.

Proof of 2.3.1:

Say Z is the complete intersection of hypersurfaces (in P") of degrees
ay, - ,a, withay <. < a,. Since Z is a complete intersection, the minimal
free resolution of Iz is the Koszul resolution, and the last free part of this
resolution has rank one and is twisted by ¥ a; (see Example 1.4.1). (So this is
min{m;} in 2.3.2.) Suppose V is not a complete intersection. Then V is not
arithmetically Cohen-Macaulay. (If it were, the Cohen-Macaulay type would
be preserved in passing to Z so Z would not be a complete intersection.)
Hence by Proposition 2.3.2 we have b+n > 3 a;. Notice that one of the q; is
d (by Remark 1.3.1(c)) and one is b (by the discussion preceding 2.3.2, and
Remark 1.3.1(b)). We will denote by Y"° a; the sum a; + -+ + a, — b, so we
have 3% a; <n.

Since Iz has n minimal generators, we have two possibilities: either
Y*a; =n—1or Y*a; = n. In the first case all the a; other than b are
1. But b is the least degree in which Iz has a generator which does not lift
to V, so here b =1 as well since V is non-degenerate, and so deg Z = 1. It
follows that deg V = 1. Impossible (V is non-degenerate).

Now suppose that }* a; = n. Then n —2 of the a; are 1, one is 2 and one
is b. Furthermore, one of these (other than b) is d. If n > 4 then at least two
of the a; are 1. At most one of these corresponds to F' (if d = 1) so at least
one of the generators of Iz|r has degree 1. Hence by definition b = 1 as well,
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and so deg Z = 2. Then the non-degeneracy of V means in particular that
deg V > 1, so this forces d = 1, deg V = 2, V non-reduced (i.e. a double
line).

The last possibility is n = 3. Then Z is the complete intersection of
surfaces of degree 1,2 and b. If b = 1 then the same reasoning as the last
paragraph gives d = 1 and V is a double line. So assume that b > 2. We
claim that the definition of b then forces d = 1. Indeed, d is either 1 or 2; if
it were 2 then Iz has a generator of degree 1, and since b > 2 this means
that this generator must lift to Iy, contradicting the non-degeneracy of V.

So Z is a zero-scheme in P? which is the complete intersection of a conic
(not necessarily reduced) and a plane curve of degree b. If b = 2 then deg Z
= deg V = 4 and V may or may not lie on a quadric. If b > 2 then by the
definition of b, V lies on a quadric and clearly has even degree. O

A similar, but not as complete, analysis can be done for the case where
Z is merely assumed to be arithmetically Gorenstein (i.e. having Cohen-
Macaulay type 1). The following theorem summarizes much of what is known
in this case (beyond Theorem 2.3.1):

Theorem 2.3.4 Let X C P™ be a curve and let Z be its general degree d
hypersurface section. Assume that Z is arithmetically Gorenstein.

(a) ([72]) If d = 1 and X is reduced and connected, not lying on a
quadric hypersurface, then X is arithmetically Gorenstein.

(b) ([181]) If d = 1 and X is integral and non-degenerate, and if X is
not arithmetically Gorenstein, then Z is contained in a rational normal
curve in the hyperplane and deg X =2 (mod n —1). Conversely, given
any integer m > n + 1 such that m = 2 (mod n — 1), there ezists a
smooth irreducible curve X C P* of degree m which is not arithmeti-
cally Gorenstein but whose general hyperplane section is arithmetically
Gorenstein.

(c) ([98]) Assume that X is reduced, not lying on a quadric hypersurface.
Ifn>5 ord> 2 then X is arithmetically Gorenstein.

(d) ([181]) Assume that X is reduced, irreducible and non-degenerate,
and d > 2. Then X is arithmetically Gorenstein.
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The proof is done via Proposition 2.3.2 and an analysis of the minimal
free resolution of an arithmetically Gorenstein ideal.
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Chapter 3

Buchsbaum Curves and
Liaison Addition

One of the goals of these lecture notes is to show how much information
one can get about a scheme from knowledge of its deficiency modules. This
is especially true for curves in P?. (For instance see Rao’s theorem, Theo-
rem 1.2.4.) As an illustration of this connection, in this chapter we consider
the case of Buchsbaum curves. Recall that a Buchsbaum curve is one whose
deficiency module structure is trivial, i.e. it is annihilated by all linear forms.

In this chapter we will first apply some of the results and techniques of
the previous chapters to describe some aspects of the theory of Buchsbaum
curves. In the first section, most of the results in fact hold for Buchsbaum
curves in any projective space. We will then describe in §2 a useful con-
struction known as Liaison Addition. This was introduced by P. Schwartau
in his Ph.D. thesis (Brandeis University, 1982) and generalized in [52]. The
basic goal of this construction is to construct (reducible) schemes from given
ones, so that the various deficiency modules of the new scheme are all direct
sums of the corresponding modules for the component schemes (with twists).
This has been applied in many ways, but for the moment we will focus on
one application in §3: constructing “nice” Buchsbaum curves. An important
observation (which we will use later) will be that the curves we produce with
this construction are “the best possible” from the point of view of the gen-
eral results obtained in §1. A special case of Liaison Addition, Basic Double
Linkage, is very important in Liaison Theory. We will introduce this notion
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in this chapter (Remark 3.2.4), and discuss it more carefully in Chapters 4
and 5.

3.1 Buchsbaum Curves

One of the themes that will emerge in this section is that there are several
ways in which the Buchsbaum property can be viewed as a generalization of
the aCM property. In fact, the definition we are using was not the original
one. The notion of a Buchsbaum ring was first introduced by J. Stiickrad
and W. Vogel after a negative answer by Vogel to a question of D. Buchs-
baum as to whether, for an ideal generated by a system of parameters, there
is a constant value (depending only on the ring and not on the system of pa-
rameters) for the difference between the length and multiplicity of the ideal.
(The answer is “yes” for a CM ring; in fact, the difference is zero.) For a
very complete and useful description of Buchsbaum rings, beginning with
this point of view and developing all the cohomology theory, we refer the
reader to [126]. For a classification of Buchsbaum subschemes of P™ see [32],
[33].
The first result, which is classical for aCM schemes, is the following:

Proposition 3.1.1 ([49]) Let C C P" be a Buchsbaum curve and let H be
any hyperplane which contains no component of C. Then the Hilbert function
of the hyperplane section C N H is independent of the choice of H.

Proof:
Consider the exact sequence

0 = (Ie)ie1 = (Ie)i = (Ienm)i = M(C)iey 25 M(C)..

The dimension of the third term (equivalently, the Hilbert function of CNH)
depends only on the dimension of the. first, second and fourth terms. But
none of these depends on H. (Of course this result holds for Buchsbaum
schemes of higher dimension, and in fact all that is needed is that the first
deficiency module be annihilated by the maximal ideal, so it holds even more
generally.) O

Probing slightly deeper, we have
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Proposition 3.1.2 ([49]) Let C C P" be a Buchsbaum curve. Let H be a
general hyperplane, let C N H be the hyperplane section and let Icnn be its
ideal in the hyperplane H. Let o = a(Ig). Then

(a) a—1< a(lenn) < a.
(b) a—1=a(long) if and only if M(C)a-z # 0. In this case,
hO(ICnH(a - 1)) = dim M(C)a_g.

(c) M(C);=0 foralli <a-—3.
(d) C is locally Cohen-Macaulay and equidimensional.

Proof:

Let L be a linear form defining the hyperplane H and let L' be another
linear form which is not a scalar multiple of L. By abuse of notation we will
also denote by L' the restriction of L' to the hyperplane H. As usual, for
any integer d we denote by @4¢(L) the homomorphism M (C)a = M(Clan
induced by L, which in our situation is always the zero homomorphism.
Consider the commutative diagram

r $a-1(L)
00 (I0)es 25 o)y =% H'(Zonn(d) = M(C)aa —— 0

l xL' | 1 xL' lzﬁd_, (~L')

0o ()s 5 (Io)ayn ™2 B (Toru(d-+1)) = M(Cha 0
The second inequality of (a) is always true, regardless of whether C is Buchs-
baum or not. Then (a), (b) and (c) follow from the following observation. Let
F € H%Zcnu(d)). Then L'F € im rqyq. This follows from commutativity
of the diagram, exactness and the fact that $a—1(L") is the zero homomor-
phism. We leave the remaining details to the reader. As for (d), this is also
immediate since (c) guarantees that M(C); = 0 for ¢ < —1 (for example),
and as we noted in §2 of Chapter 1, M(C); = 0 for ¢ > 0 automatically.
Then apply Theorem 1.2.2 O

This Proposition is already interesting in that it shows that for any Buchs-
baum curve the initial degree of the ideal of the hyperplane section differs by
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at most 1 from that of the ideal of the curve. For an aCM curve this differ-
ence is necessarily zero, while on the other hand for any r > 0 one can find a
curve (of large degree and of course not Buchsbaum) for which this difference
is 7. So this is another sense in which the Buchsbaum property generalizes
the aCM property. In general, it is a very interesting problem to study the
difference between these initial degrees (for the general hyperplane section)
and to relate that to properties of the curve (for instance its degree). Work
along these lines has been done by Laudal [79], Strano [125], Mezzetti [90],
etc. The work in §3 of the last chapter can also be viewed as a contribution
to this problem: in that case the difference was forced to be zero (since the
curve was forced to be aCM).

This Proposition also has some striking consequences, which give infor-
mation about the liaison classes of Buchsbaum curves in P3, but which can
be stated simply in terms of the deficiency module, so we present them here.

Corollary 3.1.3 ([49]) Let C C P" be Buchsbaum and as usual let N =
dim; M (C). Then

(a) If C C P° then M(C); = 0 for i < 2N — 3. That is, the left-most
component of M(C') occurs in degree > 2N — 2.

(b) If C C P® and if C is not the disjoint union of two lines then C is

connected.

(c) If diam M(C) > 3 then C does not have mazimal rank.

Proof:

We remark that (b) and (c) were also proved in [44] in the case of integral
curves in P°. (b) first appeared in [93] but with a complicated proof. The
proof in [49] was very quick but used some results involving liaison. The
proof given here is in the same spirit but uses the ideas of §3 of Chapter 2.

Now, (a) follows easily from part (¢) of Proposition 3.1.2 and from Ama-
saki’s theorem (Corollary 2.2.6). As for (b), suppose C is a disconnected
Buchsbaum curve. Then in particular dim; M(C)o > 1 (see Theorem 1.2.3).
Now let H be a general hyperplane and consider the usual exact sequence

0 — H%(Zg) - H°(Zo(1)) — H°(Zonu(1)) = M(C)o — 0
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(tecall that C is Buchsbaum). Since C' is locally Cohen-Macaulay and equidi-
mensional but not aCM, A°(Z¢(1)) = 0 (otherwise C would be a hypersurface
in P2, hence aCM). We conclude that 2%(Zonm(1)) = dim M(C)o 2 1. By
Proposition 3.1.2(c), @ = 2 so by Amasaki’s theorem N = 1 and M(C)
occurs in degree 0. In particular hA°(Zonr(1)) = 1.

" CNH is a set of points in P? lying on a line; hence it is a hypersurface in
that line, and so it is a complete intersection in H and thus also in P3. Then
use the argument in §3 of Chapter 2: b=1and C N H is a complete intersec-
tion of surfaces of degrees a; =1,a2 =1 and a3 2 2. Proposition 2.3.2 then
says that 1+ 3 > 141+ as, so ag = 2. Therefore deg C' = deg (CNH)=2
and in order for C to be disconnected it must consist of two skew lines.

For (c), recall that for C to have maximal rank means that the restriction
map

H(Op~(d)) — H(Oc(d))

has maximal rank, i.e. is either injective or surjective, for all d. Equivalently,
for each d either h%(Z¢(d)) = 0 or h'(Z¢(d)) = 0 (or both). Then the result
follows from the definition of a and from (c) of Proposition 3.1.2. O

Remark 3.1.4 An analog, for k-Buchsbaum curves, of many of the results
in this section can be found in [99]. O

Remark 3.1.5 (a) Part (c) of this corollary is stated for higher projective
space, while parts (a) and (b) are stated for P only. It is natural to ask
whether they are true in higher projective space. Note that both of them use
Amasaki’s theorem in the proof, so one suspects right away that there will
be problems. And indeed, both are false in higher projective space. For (a),
a counterexample can be found in [52] Proposition 2.7. Here a Buchsbaum
curve C, is constructed in P* using Liaison Addition (see the next section),
where dim;M(C,) = r and the module begins (and in fact is concentrated)
in degree r — 1. As for (b), consider for instance three general skew lines
in P°. The module is 2-dimensional and concentrated in degree 0, hence C
is Buchsbaum. However, using a similar argument it should be possible to
classify the disconnected Buchsbaum curves in P".

(b) One of the main ideas of the structure of an even liaison class of codi-
mension two subschemes of P*, which we will discuss in §2 of Chapter 5,
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is that the schemes whose modules have the leftmost possible shift are very
special. We have already discussed possible shifts in Chapter 1. Notice that
part (a) of Corollary 3.1.3 gives the leftmost possible shift for a Buchsbaum
- curve in IP® (with specified Buchsbaum type N, i.e. with the dimension N of
the deficiency module specified). One of the consequences of the structure
theorem (Theorem 5.2.1) is that any Buchsbaum curves which are extremal
with respect to this bound have the same degree. For example, if the module
has dimension k and is supported in one degree then the leftmost possible
shift would be when the non-zero component occurs in degree 2k — 2. In this
case, the curve necessarily has degree 2k? (cf. [22]). (If k¥ = 1 then two skew
lines give an example of an extremal curve.) O

In Chapter 2 we discussed Dubreil’s theorem bounding the number of
minimal generators of the ideal of an aCM curve in P? (and generalizing this
“result). A related problem is to bound the degrees of the minimal generators
of the ideal of the curve, and a common technique is to relate this to the
generators of the ideal of the general hyperplane section. |

It is already clear that these two cannot be related without some extra
information (for instance something about the module). For example, if C is
a double line (i.e. a non-reduced scheme of degree two supported on a line)
then its general hyperplane section has degree 2 and in fact is a complete
intersection, so its ideal is generated in degrees < 2. However, the ideal of C
can have a minimal generator of arbitrarily large degree (and correspondingly
the deficiency module can get arbitrarily large). See [92] for details.

Now we will prove a result for Buchsbaum curves which generalizes a
standard result for aCM curves. We need the following lemma.

Lemma 3.1.6 Let V be a zeroscheme in P* with saturated ideal Iy. Let
t=min { i €Z | hY(Zv(:)) =0 }. Then Iy is generated in degree <t + 1.

Proof: Let L be a general linear form; in particular, L does not vanish at any
of the points on which V is supported.” Thus the saturation of Iy + (L) is all
of S by the Nullstellensatz, so there is no hyperplane section, and using the
notation of §3 of Chapter 1 we have Tz, = Opn-1. Hence the exact sequence
(3.4) of that section becomes

0— Zy(-1) XL, Zy — Opn-1 — 0.
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Twisting by d > ¢t + 1 and letting R = k[Xo, -, Xn-1), we get
0— (Iv)a— XL (Iv)a 4 R;—0.

Now, let F € (Iy)q where d > t+2. We want to show that F' is not a minimal
generator. But ry(F) € Ry can be written as 3 X;G; where G; € Ry-;.
Since r4_; is surjective (since now d >t +2) we get rg(F) = ¥ Xirg—1(F) =
ra(Z X;F;) for some F; € (Iy)4-1. Then by exactness, F — 3 X;F; = LG for
some G € (Iy)q4-1 so F is not a minimal generator. O

Corollary 3.1.7 ([49]) Let C C P" be a Buchsbaum curve and for a general
hyperplane H let t = min { i | A (Zonu(i)) = 0 }. Then the saturated ideal
Ic of C is generated in degree <t +1.

Proof:

Consider the exact sequence
0 = (Io)i-1 = (Ie): = (TIenm)s = M(C)imy 25 M(C); — 0

(where the last 0 is from the definition of t). This guarantees that M(C); = 0,
and since k' (Zonp (7)) = 0 for all ¢ > ¢, we also have that M(C); = 0 for all
¢ > t. With this information and using the above exact sequence (twisted by
1), the same argument as in Lemma 3.1.6 gives the result. O

Note that Lemma 3.1.6 and Corollary 3.1.7 could also be proved using
Theorem 1.1.5.

3.2 Liaison Addition

Liaison Addition was introduced in the Ph.D. thesis of Philip Schwartau [122]
in 1982. His work was motivated by the following naive question: Let C; and
C, be curves in P® with deficiency modules M; and M, respectively. Does
there exist a curve C with M(C) = M; & M,? The following example shows
that this is too ambitious:

Example 3.2.1 Let C; and C; each be a set of two skew lines in P2, so
as we saw in Example 1.4.2, M; and M, are both one-dimensional k-vector
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spaces, and as graded modules they are non-zero only in degree zero. Hence
M, ® M, = k?, also occurring in degree zero. Now suppose that there were
to exist such a curve C. Let H be a general plane and consider the exact
sequence

0 — H°(Zg) — H°(Z¢(1)) — H(Zgag(1)) = k2 =0

(where Zony is the ideal sheaf of the hyperplane section in the hyperplane H ).
We know from Theorem 1.2.2 that C is locally Cohen-Macaulay and equidi-
mensional. On the other hand, if C lay on a plane it would be a hypersurface
in that plane and hence (as noted in Example 1.4.1) a complete intersection,
which contradicts the fact that C is not aCM. Therefore h°(Z(1)) = 0. Then
exactness above gives that h°(Zgng(1)) = 2. But C N H is a set of points
in the plane, and A°(Zcnr (1)) = 2 implies that C N H consists of exactly
one point. Hence deg C =1, and because C is locally Cohen-Macaulay and
equidimensional this means that it is a line. Again this contradicts the fact
that C is not aCM. O

Example 3.2.2 Schwartau remarks that however the question is phrased,
simply taking the union of the given curves cannot work. Indeed, if C, and C;
are disjoint lines then both are aCM (hence have trivial deficiency module)
while their union is not. 0O

Schwartau discovered the correct way to rephrase the question for curves
in P%, and in fact his theorem is stated in the more general context of “adding”
two codimension two subschemes of projective space. This theorem was
generalized in [52] to allow higher codimension and a greater number of
“added” schemes (rather than only two). Here we will not give this theorem
in its full generality, but rather give a simplified version which will suit our
purposes. We refer the reader to [52] for the stronger version of the theorem.

We will now state the theorem. Note that we use the cohomology nota-
tion H:(Zy) rather than the notation (M*)(V). This is because technically
(M*)(V) is only defined for 1 < i < dim V, while in this theorem for some
V we may need ¢ to be larger.

Theorem 3.2.3 ([52]) Let Vi,---,V, be closed subschemes of P*, with 2 <
r < n. (We allow the possibility that V; = 0, in which case Iy, = S.) Assume
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that codim V: > r for all i. By making general choices (possibly of large

degree), we may choose homogeneous polynomials

F; e n Iy, (1.1)
1<ji<r
J#s
for1 < i < r, such that (Fy,---,F;) forms a regular sequence and hence
gives the saturated ideal of a complete intersection scheme V of codimension
r. (This is possible because of our assumption that codim V; > r for all
i). Let deg F; = d;. Let I = Fily, + -+ F.Iy, and let Z be the closed
subscheme of P" defined by I. We denote by H(Z,t) the Hilbert function of
Z (see page 7). Then

(a) Assets, Z=V,U---UV,UV.

(b) For eachl <j<n-—r= dim V, Hi(Zz) = Hi(ZTy,)(—d1) D - &
Hi(Zv,)(—d:)-

(c) I is saturated (I = Iz).
(d) H(Z,t) = H(V,t)+ HW,t —di) + -+ H(V;,t — d;).

Proof:

If P € V; for some i or if P € V then clearly from the way I is defined,
every F € I vanishes at P. So as sets, Z 2 ViU---UV,UV. Now let P be
any point of P* noton VU --- UV, UV. In particular there is some F; not
vanishing at P (since P ¢ V), and since (for that i) P ¢ V;, we have some
G € Iy, not vanishing at P. So GF; € I does not vanish at P, hence P ¢ Z.
This proves (a).

From Example 1.4.1 we know that the resolution for Iy ends with

B D S(-di—d) B @ S(-d) By -0 (12)

L 1<i<i<r 1<i<r

where ¢, = (F,---,F.) and ¢, is the matrix of relations: it is an r X (;)
matrix of homogeneous polynomials, and each column C} consists of exactly
two non-zero entries (each being one of the F;, up to £1) so that the matrix
product ¢, - C; is of the form FiF; — F;F; = 0. In particular, for 1 <2 < r
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each entry of the ith row of ¢, is an element of Iy, (possibly 0), because of
the assumption (1.1). (What we are saying is that F; never occurs in the ith
row, but all the other generators do.)

The significance of this observation is that the image of ¢, is actually
contained in @;<;<, Iv;(—d;). Therefore we also have a long exact sequence

B @D S(—di-d) B P I(-d) B T—0. (13)
1<i<j<r 1<i<r

If we let K be the cokernel of ¢3, exactness gives that K is also the kernel
of ¢; (in either (1.2) or (1.3)). Therefore we have two short exact sequences

0-K— @ S(-d) Iy -0 (1.4)
1<i<r '
and
0-K— @ Ij(-d) B I-0. (1.5)
1<i<r

Let K be the sheafification of K and sheafify these two exact sequences. Note
that the sheafification of I is Tz. The idea is to use (1.4) to get information
about K, and then apply this to (1.5). Since ¢, is surjective in (1.4) and Iy
is saturated, we get that H}(KX) = 0. Similarly we get that H(K) = K and
that HI(K) =0 for 2 < j <n —r + 1 (using the fact that V has dimension
n —r and is aCM).

Now apply this information to (1.5) (sheafifying and taking cohomology).
(b) follows immediately from the vanishing of the higher cohomology of XK.
As for (c), this follows from the facts that H}(K) = 0, Iy, is saturated for
each ¢, and H2(K) = K. (The point is that when you sheafify the short exact
sequence and then take cohomology, you again get a short exact sequence
and the first two terms have not changed; hence I = H?(T;) = Iz.) O

Remark 3.2.4 (a) As we noted above, this theorem is a special case of a
more general result in [52]. (One can allow V to be much more general than
simply a complete intersection, and one can “add” more than r schemes. But
this version seems to be the simplest to apply in any case.) The thesis of
Schwartau proved this theorem in the special case where r = 2, codim V; = 2
and V; are not trivial. This thesis was not published elsewhere.
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On the other hand, [52] was written with the advantage of hindsight:

knowing the work of [122] made it somewhat natural to guess what ideal
would most likely produce the desired scheme (once one decided in which
direction it should be generalized). As a result, the main theorem in [52] is
not only much more general but the proof is much simpler. The approach of
[122] is more constructive.
(b) As mentioned in the theorem, some of the V; can be trivial. In the case
where V; is non-trivial and all the rest of the V; are trivial, the resulting
scheme Z is called a basic double link of V4. So in this case we have F; € S,
a general homogeneous polynomial of any degree d; > 1, and F3,---, F; €
Iy,, such that (Fy, Fy,---,F,) form a regular sequence and hence define a
complete intersection V.

This was introduced for curves in P® by Lazarsfeld and Rao [80], and
extended to the current generality in [25] without recourse to the above
theorem. The connection to Liaison Addition was made in [52]. Basic double
linkage in codimension two plays a crucial role in the theory of Liaison, and
especially in the structure theorem for an even liaison class (cf. [80], [11],
[87], etc.). This will be discussed later. For now notice three things:

(1) Assets, Z=WV UV.
(2) Iz = FIIV1 +(F21°")Fr)'
(3) (6)(2) = (M)(Va)(~dy).

(c) In the next section we will see one important application of Liaison Ad-
dition: the construction of Buchsbaum curves. This theorem can also be
used to create quick and simple examples of saturated ideals of schemes with
embedded components. For example (from [52]), consider the case of curves
in P® and r = 2. It is fairly easy to show using part (b) of the theorem that
Z is locally Cohen-Macaulay, equidimensional and one-dimensional if and
only if V; and V; are (but allowing V; to possibly be trivial as well). (Use
Theorem 1.2.2.)

A simple example is the following. Let V; be a point, say with ideal
(X1, X3, X3) and let V, be trivial. Form a basic double link taking Fj
and F, to be linear forms in Iy,: say F; = Xi,F, = X,;. The ideal
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Iz = Xi(X1, X2, X3) + (X2) = (X?, X1 X35,X;) is the saturated ideal of a
line Z with an embedded point (at V;). O

3.3 Constructing Buchsbaum Curves in P

In this section we first show how to use Liaison Addition to construct Buchs-
baum curves. We will focus on curves in P? for simplicity (and because this
is the most useful for us) but the same ideas work for curves in P* thanks
to the generality of the construction described in §2. We will follow [26] for
the most part, because we would like to show that the curves we construct
are “nice” from a number of viewpoints used in that paper (and we will use
these properties later when we use Liaison techniques to show that every
Buchsbaum curve in P? specializes to a stick figure, which is one of the main
results of [26]). However, similar ideas for constructing appropriate Buchs-
baum curves in P® via Liaison Addition were used in [122], [22], [23] and [24].
The construction of Buchsbaum curves in P* with some “nice” properties
was done in [52].

Let N = dimyM(C) where C is a Buchsbaum curve. Let Ic be its
saturated ideal. For the curves we construct, the bounds of Theorem 2.2.4,
Corollary 2.2.6 and Corollary 3.1.3 will be sharp. That is, our curves will
satisfy :

(a) v(I¢) = a(I¢) + N + 1 (Theorem 2.2.4).
(b) a(lg) = 2N (Corollary 2.2.6).

(c) The leftmost nonzero component of M(C) occurs in degree 2N — 2
(Corollary 3.1.3).

The curves we construct in this section will also be hyperplanar stick figures
(cf. [26]). This means that each curve we construct is

(d) a reduced union of lines with no three meeting in a point (i.e. a stick
figure) and

(e) contained in a (reduced) union of 2N hyperplanes such that the inter-
section of any three of the hyperplanes is a point and the intersection
of any two of them is not a component of C (i.e. hyperplanar).
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(We will use the fact that our curves are hyperplanar in §5.3.4 when we show
that any Buchsbaum curve in P® specializes to a stick figure.)

The basic idea here is that we will use sets of two skew lines in P? as “build-
ing blocks” to construct Buchsbaum curves with larger deficiency modules.
We can use Liaison Addition to do this. Recall that a set of two skew lines has
deficiency module which is just one-dimensional (in degree zero)- cf. Exam-
ple 1.4.2. But any graded S-module, whose multiplication by linear forms is
trivial, is isomorphic (as an S-module) to a direct sum (with twists) of copies
of this one-dimensional vector space (see page 26), so Liaison Addition lends
itself naturally to this problem. .

Suppose we are trying to construct a Buchsbaum curve C whose deficiency
module has components of dimension n, > 0,ny > 0,-++,n,_q4 2 0,n, >0
(where these are the dimensions of all the components of the module, from
the first non-zero one to the last). The proof works by induction on N =
ny+--++n,. Note that we would like the first component to occur in degree
2N - 2. '

For N = 1, C is the disjoint union of two lines. It is trivial to verify that
all the conditions (a)-(e) are verified. So assume that N > 1. For convenience
we will assume that n; > 1. The case n; = 1 is similar and is left to the
reader. (The main difference is that the choice of F} below will be slightly
different.)

Suppose that C; is a curve whose module components have dimensions
ny — 1,n,,-+,n, and which satisfies all the conditions above (with now N
replaced by N —1). Let F; € Ig, be the union of 2(N —1) planes guaranteed
by (e). The singular locus Sing F; is a union of lines having no component
in common with C;. Let C; be a disjoint union of two lines, also disjoint
from C; and from Sing F.

Note that Sing Cy, (C;NSing F;) and { triple points of F; } are all finite
sets disjoint from C;. Let F; be a union of two planes which contains C;
but avoids these three finite sets, and such that the line Sing Fy avoids Y;,
Sing F, and C, N F;. (Choosing one plane first gives an additional finite
number of points for the second plane to avoid. Notice that the fact that
Sing Fy avoids C; N F; implies that F; avoids C; N Sing Fy, which is the
analogue of the condition that F; avoids Cy N Sing F,; which we required in
the choice of F}.)
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Let C be the result of applying Liaison Addition to C; and C; using
F, € I, and Fy € Ig,, so Ic = Filg, + Fylg,. Clearly a(Ig) = 2N, and
by Liaison Addition M(C) = M(C:)(—2) & M(C2)(—2N + 2). Then by the
inductive hypothesis, one can check that (b) and (c) hold for C, and so by
Remark 2.2.8(a) we also have (a) above.

We now check that C is a stick figure. By the generality of the choices
made, C is a reduced union of lines. (We need the fact that F; contains no
component of C; or of Sing F, and F; contains no component of C; or of
Sing Fy, which follow from the above set-up.) As for the absence of triple
points, it is somewhat tedious to check all the details but it follows from the
fact that both C; and C; are hyperplanar with F, and F; the corresponding
unions of planes, and these are sufficiently general so that they meet well. C
is the union of C}, C, and the complete intersection of F; and F;, and the two
conditions of (e) are exactly what are needed to avoid triple points. (The
first condition avoids triple points lying on a plane and the second avoids
triple points that are not on a plane.) We refer to [26] for details.

To see that C is hyperplanar we need to exhibit a reduced union ¥ of
2N planes containing C' such that the two conditions in (e) hold. One would
be tempted to take for ¥ the union of F; and F;, but since C' contains in
particular the complete intersection of F; and F),, the second condition of
(e) fails. However, by the way things were chosen, F; does almost all of the
job (it contains C; and the complete intersection of F; and F;). One can
check that taking for ¥ the union of F, and a general union of two planes
containing Cj, this will do the trick. Again there are several details to check,
for which we refer the reader to [26].

As mentioned above, the case n; = 1 is very similar. Here, instead of
taking F} to be a union of two planes containing C5, we take it to be a union
of two planes containing C, and an appropriate number of general planes.
(The number is chosen in order to construct the right module with Liaison

Addition.)

Remark 3.3.1 (a) One can also use Liaison Addition to construct Buchs-
baum curves in the other extreme: for any module dimensions ny,---,n, as
above, one can construct a Buchsbaum curve whose deficiency module has
these dimensions, sharp with respect to conditions (a), (b) and (c), but which
is supported on a line. The idea is that rather than using two skew lines as
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the “building blocks” one can use a double line of arithmetic genus -1 (and
at each step use the same double line rather than a general one). Such a
double line has one-dimensional deficiency module, so the same ideas apply.
(b) Similar constructions (for subschemes which are reduced unions of codi-
mension two linear varieties with “good” properties) are possible in higher
dimensions as well. For example, for surfaces in P* some work in this direc-
tion was done in [26].

(c) One can check that the degree of the curve C constructed in this section
(in particular satisfying condition (c) on page 57) is

N2 =N +n,+3ny+---+ (2r — 1)n,.

This can be shown directly using induction, or it can be shown using Corol-
lary 2.18 (b) of [24].
(d) See Example 1.4.6 for the case r =2 and n; =n; =1. O
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Chapter 4

Introduction to Liaison Theory
in Arbitrary Codimension

In this chapter we introduce Liaison Theory. While many of the important
results in the theory are currently known only in codimension two, the def-
initions and first results hold much more generally. In this chapter we will
always assume the context of subschemes of arbitrary codimension in any
projective space. (It should be noted that even this is a restriction— a great
deal of work has been done in a more general algebraic context. We refer the
interested reader to [71], from which he or she can “get a foot in the door”
and branch off to other references. However, more in the spirit of the ideas
in these notes, we refer the reader also to [120] and to [27], and to the recent
paper [62]. In particular, liaison can be studied by looking more generally at
residuals in a Gorenstein scheme, not simply in a complete intersection.)

There do not seem to be many introductory references for Liaison Theory.
One useful source, albeit only for curves in P2, is the lecture notes [115] (in
Italian). In this context, [87] is also a must-read. See also [121] and [126] for
a discussion of Liaison Theory and its connections to Buchsbaum rings. The
paper [62] develops the theory from the point of view of generalized divisors
on a Gorenstein scheme. (See Example 4.1.6 (4.) below.)

Historically, Liaison began in the last century as a tool to study curves
in projective space. The idea was to start with a curve, say in P3, and look
at its residual in a complete intersection. Since complete intersections are in
some sense the simplest curves, it turns out that a lot of information can be
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carried over from a curve to its residual (or vice versa). So it was hoped that
using this process of taking residuals, one could always pass to a “simpler”
curve and so it would be easier to get information about the original curve.

This idea in fact works nicely for aCM curves in P®. This was essentially
shown by Apéry and Gaeta in the 1940’s, and it was proved rigorously with
modern machinery by Peskine and Szpiro [109] in 1974. However, Joe Harris
conjectured that this notion would not work in the non-aCM case even for
curves in P? ([59] p. 80). This was proved by Lazarsfeld and Rao in 1982~
the idea is that the “general smooth curve” is already the simplest curve
in its liaison class, in many senses. This is a special case of (and indeed it
inspired!) the structure theorem for codimension two even liaison classes (cf.
[11], [87] [107]) which we will discuss in the next chapter. Work of Huneke
and Ulrich [71] can also be interpreted as showing that this idea also fails
even for aCM curves in higher codimension.

Liaison has been used very extensively in the literature as a means of
studying curves (or indeed higher dimensional varieties) and of producing
interesting examples. Furthermore, beginning with the paper of Peskine and
Szpiro, Liaison has attracted a great deal of attention as a subject in and of
itself, rather than simply a tool to study projective varieties. We will discuss
several of these results in these chapters. As we will see, the deficiency
modules play an important role also in this field, thanks especially to work
of Rao [113], [114].

4.1 Definitions and First Examples

As we indicated above, liaison involves studying properties that are preserved
when the union of two schemes is a complete intersection. Actually, this point
of view is a bit too naive: when the two schemes have no common component
then there are no problems, but otherwise “union” is too weak and we need
to take a more algebraic approach. In any case we begin with the weaker
notion:

Definition 4.1.1 Let V;,V, be subschemes of P" such that no component
of V; is contained in any component of V; and conversely. Then V; is (geo-
metrically) directly linked to V, by a complete intersection X if iUV, = X.
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From the point of view of the saturated ideals, this says that Iy, N Iy, = I.
V1 is said to be residual to V; in the complete intersection X. 0O

LT X

Figure 4.1: Geometric Link

Notice that deg V; + deg V, = deg X. (See Corollary 4.2.10 for a more
general statement.) The simplest example of two curves that are geometri-
cally directly linked is the union of two lines, given as the intersection of a
pair of planes with another plane (see Figure 4.1). The problem comes when
we try to extend this notion to the case where the curves may have common
components. For example, if the second surface (the plane) contains the line
of intersection of the two planes comprising the first surface, this is still a
perfectly good complete intersection (see Figure 4.2).

Figure 4.2: Algebraic Link

The only natural way to interpret this would be to say that the line of
intersection is linked to itself (since the complete intersection still has degree
two), but using only unions of course we do not have the equality in the
definition. The solution is to use ideal quotients.
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Definition 4.1.2 Let V4, V; be subschemes of P* of codimension r and let
Fy,--+,F, € I,N Iy, define a complete intersection scheme X of codimension
r. Then Vi is (algebraically) directly linked to V; by the complete intersection
X (ViAW,) if and only if [Ix : Iy;] & Iy, and [Ix : Iy,] = Iy;. Vi is residual
to V; in the complete intersection X. O

We can check that this definition makes sense in the example described
above in Figures 4.1 and 4.2:

Example 4.1.3 Let n = 3 and let S = k[Xo, -, X3]. Let Ix = (XoX1, X2)
and Iy, = (Xo,X2). Then Iy, = [Ix : Iv;] = (X1, X2). (So the first case is
ok.)

Now let Ix = (XoX1,Xo + X1) and Iy; = (Xo,X1). Then Iy, = [Ix :
Iv,] = (Xo, X1) = Iy, (so it is “self-linked”). O

Remark 4.1.4 As one would expect from the way we have set things up, one
can show that if V; and V; are geometrically linked then they are algebraically
linked. Indeed, assume that they are geometrically linked. This means that
Iy,NIy, = Ix and that neither Iy; nor Iy, is contained in any associated prime
of the other. We wish to show that [Ix : Iy,] = Iy, (and vice versa). The
inclusion D is left as a quick exercise. For the inclusion C, say F € [Ix : Iy},
so F - Iy, C Ix. Choose G € Iy, such that G is not in any associated prime
of Iy, (i.e. G vanishes on no component of Iy,). Then

FGelx=Q:n---nQ,NQ{N -ﬂQ;

Iv, Vy Iv, v

In particular F'G € Q; for all 7, but no power of G is in Q;. Therefore by the
definition of “primary,” F' € Q; for all 2 so F' € Iy,.

Conversely, if V; and V; have no common components and are alge-
braically directly linked then they are geometrically directly linked. See
Proposition 4.2.2 for the proof.

From now on we will assume that our links are algebraic links, and will

write Vlr)fng without further comment. O

Note that the definition of direct linkage is symmetric but not usually
reflexive (only in the case of “self-linkage”) or transitive. So we need to
extend it in order to get an equivalence relation:
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Definition 4.1.5 Liaison is the equivalence relation generated by direct
linkage. That is, we say that V; is linked to Vi, V; ~ Vj, if there is a
sequence of schemes Wj,---, W) and a sequence of complete intersections
X1,y Xk41 such that

X X. X X
WW=w, =2 Sy ey

The equivalence classes generated by this procedure are called liaison classes
(or linkage classes). If k + 1 is even, we say that V; and V; are evenly
linked. Notice that even linkage also generates an equivalence relation, and

the equivalence classes are called even liaison classes. An even liaison class
will usually be denoted by £. O

Now that we have defined our equivalence classes, there are many natural
questions that arise. We will discuss many of the answers in these lectures.
We will see that by far, the most complete picture is in the case of codimen-
sion two.

Questions

1. Find connections between directly linked schemes (degree, genus, and es-
pecially more subtle connections). Find properties that are preserved. For
example, we'll see that the property of being aCM is preserved, as is the
property of being Buchsbaum. Also the dimension is preserved. As a conse-
quence, find invariants of a liaison class or of an even liaison class.

2. Is this a trivial equivalence relation? From the above, we can already
deduce that the answer is “no.” Indeed, since the property of being aCM
is preserved and the property of being Buchsbaum is preserved, we see that
there have to be at least three classes, since there exist non-aCM Buchsbaum
curves and there exist non-Buchsbaum curves in P*. This was already known
to Gaeta in the 40’s. (In fact, in codimension two the aCM subschemes form
one liaison class. In higher codimension there are infinitely many aCM liaison
classes.)

3. Parameterize the (even) liaison classes— give necessary and sufficient con-
ditions for two subschemes to be in the same (even) liaison class.

4. Describe any one even liaison class. (We will see below that the even
liaison class of a given scheme is the “right” object to study, rather than
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the entire liaison class.) Is there a standard way to describe “distinguished”
elements in that class? What structure does the class have? In particular,
is there a structure common to all even liaison classes? What consequences
does this structure have?

5. Can liaison be studied in greater generality? For instance, can we talk
about linkage of subschemes of something other than projective space? We
will not talk about this much, but the answer is emphatically “Yes!” In this
context important work has been done by Huneke, Kustin, Miller and Ulrich,
among others. (For instance, see [71], where one can find further references.
Also, [27] can be viewed as an attempt to bridge some of these ideas.) On the
other hand, Hartshorne [62] has recently developed a more general theory of
divisors. This approach allows him to give a new definition of linkage, which
is equivalent to that of algebraic linkage (Definition 4.1.2) but more in the
spirit of geometric linkage. See also Example 4.1.6 (4.) below. Another
direction is to ask whether we can perform links using something other than
complete intersections. It turns out, thanks largely to Schenzel [120], that
if we replace “complete intersection” by “arithmetically Gorenstein” then
many of the same results hold. (Again, see also [27].) On the other hand,
Walter [129] has shown that if we replace “arithmetically Gorenstein” with
“aCM” then that is too much- in that case there is only one equivalence class
for any given codimension in projective space. Similar results have recently
been obtained by Martin [85]. And finally, liaison has been generalized to the
notion of residual intersections (where even the dimension is not preserved);
this was introduced by Artin and Nagata [3] and studied for instance by
Huneke and Ulrich in [76].

Example 4.1.6 1. We saw that in P® we can directly link a line to another
line (provided that the lines either meet in one point or coincide). In fact,
if one considers P* as a complete intersection linear subvariety of P™, one
can show that the same holds in P* (but now the codimension is n — 1 so
the number of generators of the complete intersection performing the link is
n — 1 rather than two).

2. Any curve of type (n,n) on a smooth quadric in P® is a complete in-
tersection, so a twisted cubic is directly linked to a line, two skew lines are
directly linked to two skew lines (in the opposite ruling), etc. Furthermore,
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one can directly link two skew lines to a double line (i.e. a scheme of degree 2
supported on a line) in the opposite ruling by the same reasoning.

3. Schwartau [122] gives a simple proof that any two complete intersec-
tions of the same codimension are linked. The proof follows from the fol-
lowing lemma: If Ix, = (F,---,Fs_1,F), Ix, = (F1,--+,F4_1,G) and
Ix = (F1,-+-,F4_1, FG) then X]')‘(-'XQ. So now starting with arbitrary com-
plete intersections ¥; and Y, one can produce a sequence of links from one
to the other in d steps: just apply the lemma to change one generator at a
time.

In particular, any two hypersurfaces are linked. (For example, any two
plane curves are linked. Note that a plane curve is still a complete intersection
even if it is embedded in a higher projective space, so even in this context
any two plane curves are linked.)

As remarked earlier, we will see in Chapter 5 that for codimension two,
being in the linkage class of a complete intersection is equivalent to being
aCM. In higher codimension, this is not true. A great deal of work has been
done on subschemes of projective space that are licci; that is, subschemes
that are in the linkage class of a complete intersection. See for instance [71],

(73], [74], [75], [101], [127], [128].

4. If two curves on a smooth surface F in P are linearly equivalent then they
are evenly linked. Here is an intuitive proof. Say C is linearly equivalent to
C' on F. Then C — C' is the divisor of a rational function %, so there is
some divisor D on F such that G, cuts out C + D (i.e. C is linked to D) and
G cuts out C'+ D (i.e. D is linked to C”). Hence C is evenly linked (in two
steps) to C’. More generally, we may replace F by a complete intersection
subscheme of P* and obtain a similar result for schemes of any dimension
and codimension (cf. [109] Exemple 2.4).

Using his notion of generalized divisors on Gorenstein schemes, Harts-
horne [62] has recently shown that the above idea using linear equivalence is
in a sense the central idea behind liaison, and does not require the hypothesis
of smoothness used above. He derives from this approach all of the basic
theorems of liaison found in the first three sections of this chapter.

5. There are two very useful programs for making computations in Com-
mutative Algebra, which in particular are very nice sources of examples for
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Liaison theory. They are Macaulay [14] and CoCoA [53]. O

Example 4.1.7 We mentioned above that liaison has also been used exten-
sively as a tool for constructing interesting varieties. Here is a very short list
of examples. (They will be described in much better detail in §5.3.) Note
that they are all in the context of codimension two.

1. In [58] Harris gives sharp bounds for the genus of an integral curve lying
on an irreducible surface S of degree k in P? (in terms of k£ and the degree d
of the curve). The curves which achieve his bounds are exactly the integral
curves residual to a plane curve in a complete intersection of S with a surface
of degree [d—gl] + 1.

2. In [84], Maggioni and Ragusa use liaison to produce smooth aCM curves
in IP® for every Hilbert function of “decreasing type.”

3. In [15], Beltrametti, Schneider and Sommese use liaison to construct
smooth aCM threefolds of degree 9 and 10 in P° and to show that they
are the unique examples with the given invariants. In particular, for degree
10 every smooth threefold in P® is aCM. On the other hand, in [102] Miré-
Roig uses liaison to construct smooth non-aCM threefolds in P° of degree
10n,n > 1, completing the work begun by Banica [13] of determining the
degrees of non-aCM smooth threefolds of P°. Beltrametti, Schneider and
Sommese also do a similar analysis of the case of degree 11 in [16]. See also
[40] for an overview of work on this problem and that of surfaces in P*.

4. In [26], the structure of an even liaison class (see Question 4 above) is
used to show that every Buchsbaum curve in P?3 specializes to a stick figure
(see §5.3 for more details). O

4.2 Relations Between Linked Schemes

In this section we will give some answers to the first question raised in the
last section. That is, we will find some connections between linked schemes.
The main goal here is to provide some basic tools, which will be used later.
We shall see in the next section that there are some subtle invariants of a
liaison class, but for now we begin with some more natural observations. We
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will assume some knowledge about primary decomposition and associated
primes-— see for instance [7] for details.

Lemma 4.2.1 Let Iy, be a saturated ideal and Ix C Iy, a complete intersec-
tion of the same dimension. Consider J = [Ix : I;,]. Then J is saturated.

Proof:
This follows from the fact that Ix is saturated; we leave the details as an
exercise. 0

Our next observation is thai the dimension is preserved under liaison. In
fact, a scheme cannot participate in a link unless it is “unmixed” (i.e. its
associated primes all have the same height):

Proposition 4.2.2 Assume that Vlr{Vr Then
(a) As sets, VUV, = X.

(b) Vi and V, are equidimensional of the same dimension, and have no
embedded components.

(c) If Vi and V3 have no common component then they are geometrically

linked.

Proof:

We follow the proof in [122]. Recall that by definition, Ix C Iy, N Iy,,
Ix : Ivj] = I and [Ix : Iy;] = Iy,. For part (a) have to show that the
radicals /Iy, N Iy, = /Tx.

From the above facts it follows that Iy, - Iy, C Ix C Iy, N Iy,. Then (a)
will follow once we prove that in fact \/ Iy, - Iy, = \/IV1 N Iy,. This is left as

an exercise.
~ For (b), we will show that every associated prime of either Iy, or Iy, is an
associated prime of Ix. Then we will be done, since all associated primes of
Ix have the same height: its deficiency modules are zero so it is in particular
locally Cohen-Macaulay and equidimensional, by Theorem 1.2.2, and this
implies that all associated primes have the same height.
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Let P be an associated prime of Iy, so P = [Iy; : z] for some homo-
geneous z € S,z ¢ Iy,. In particular, 2P C Iy,. But Iy, = [Ix : Iy,),
so

zP - Iy, C Ix (4.1)

Now, z ¢ Iy, so zIy, ¢ Ix. Thus there exists y € Iy, with zy ¢ Ix. But by
(4.1), zyP C Ix. Therefore, P C [Ix : zy).

We now claim that in fact P = [Ix : zy]. Once we prove this we will be
done since the associated primes of Ix are exactly the prime ideals among
all ideals of the form [Ix : z] with z € S, 2. ¢ Ix.

To prove the claim consider the set

{ideals [Ix : z] | [Ix : 2] 2 [Ix : zy] }.

Let Q be a maximal element of this set (possibly [Ix : zy] itself). In
particular @ is an associated prime of Ix. Now, P C Q and both are
prime ideals. If they are not equal then height P < height Q; that is,
codim V(P) < codim V(Q) (where for an ideal I, V(I) is the vanishing locus
of I). This says that V; has a component of dimension strictly larger than
any component of X (which all have the same dimension). But X = VUV,
so this is impossible. This proves (b).

To prove (c), we have to show that Ix = Iy; NIy,. The inclusion C is part
of the definition of algebraic linkage, so we have only to prove the reverse
inclusion.

Since Vi, V; and X are all equidimensional of the same dimension by (b),
the associated primes all have the same height, and correspond to compo-
nents of V4, V5 and/or X of maximal dimension. Hence it follows from (a)
(independently of the hypothesis of (c)) that any associated prime of Ix is
an associated prime of either Iy, or Iy,.

We have by hypothesis that [Ix : Iy;] = Iy, and [Ix : Iy,] = Iy;. Let
F € Iy, N Iy,. By choosing polynomials of large degree, we can choose
G4 € Iy, such that no power of G is in any associated prime of Iy, (since Iy,
and Iy, do not share any associated primes). (It helps to think geometrically.)
Similarly we can choose G € Iy, such that no power of G; is in any associated
prime of Iy,.

Let F € Iy, N Iy,. We want to show that F' € Ix. If we write a primary
decomposition Ix = Q; N---N Q;, then we need to show that F € Q; for all
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i. Suppose that for some i, F' ¢ Q;. Let P; be the corresponding associated
prime. We have seen that P; is then an associated prime of either Iy, or Iy,
but not both (by hypothesis). Suppose, without loss of generality, that P;
is an associated prime of Iy,. Then F -G, € Ix by definition of the ideal
quotient (since F' € Iy, and [Ix : Iy;,] = Iy;). So F - G, € Q;. But no power
of Gy isin P;,s0 F € Q;. O

Remark 4.2.3 Our definition of algebraic linkage appears, at first, to not
be quite the same as that used by Peskine and Szpiro [109]; however, the
definitions are equivalent. The main point is that there is a natural isomor-

phism

Iy : I

[—’LIX—"I] = Homs(S/Iv;, S/Ix).
(Similarly reversing the roles of V4 and V;.) The definition of [109] uses
the latter formulation. This equivalence is left to the reader as an exercise.
Notice that another way of saying this is that Iy, is the annihilator of Iy, in

S/Ix. O

A useful application of liaison is to produce new schemes from given
ones. To do this, one typically starts with V; and chooses an arbitrary
complete intersection X containing V; and looks for a residual V; using the
ideal quotient. One needs to know that in fact this construction yields VoAV

Proposition 4.2.4 Let V; be a closed subscheme of P* with saturated ideal
Iy,. Let Ix C Iy, be a complete intersection of the same dimension. Consider
J = [Ix : Iv;] (which is automatically saturated). Let V; be the scheme defined
by J, so J = Iy,. Then

(a) iUV, =X as sets.

(b) V, has no embedded components and is equidimensional of the same
dimension as X.

(c) If Vi has embedded components or is not equidimensional then V; is
not linked to V.

(d) ([109] Proposition 2.1) If Vi has no embedded components and is
equidimensional then Vlﬁvz.
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Proof:

For (a), note that [Ix : Iy;] = Iy, implies in particular that Iy, Iy, C Ix.
It also implies that Ix C Iy, so we have that Ix C Iy; N Iy,. Then the same
proof as in Proposition 4.2.2 (a) works.

For (b), note that in Proposition 4.2.2 (b) what we really proved was
that if Iy, = [Ix : Iy,) and if P is an associated prime of Iy, then P is an
associated prime of Ix. Here we have exactly the same situation but with V;
and V; interchanged. Hence we conclude that every associated prime of Iy,
is an associated prime of Ix so we have (b).

For (c) and (d) we need to consider [Ix : [Ix : Iy]] and check if this
is equal to Iy,. Then the proof of (b) gives that [Ix : [Ix : Iy]] has no
embedded components and is equidimensional, so we immediately get (c).

(d) is somewhat deeper, although notice that it is immediate if V; and
V, have no common component (all components have the same codimension
by (b) and by hypothesis) since then one can show that they are geometri-
cally linked. For the general case, by Remark 4.2.3, we need to show that
Ann(Ann(Iy;)) = I, in S/Ix. Since X is a complete intersection, S/Ix is in
particular a Gorenstein ring. Then (d) follows from some basic facts about
Gorenstein rings. We omit the details (but see the following example). O

Example 4.2.5 We will show that (d) above is not necessarily true if X
is not arithmetically Gorenstein. This example was produced using the
computer program Macaulay [14]. Let S = k[Xo,--+,X3s] and let Ix =
(X0, X1)? = (X2, XoX1,X}?). X has degree 3 and is not arithmetically
Gorenstein. Let Iy, = (X2,XoX1,X?, XoX2 — X1X3). Vi has degree
2. Let J = [Ix : Iy;]. One calculates that J = (Xo,X1) = Iy, which is the
ideal of a line V; (degree 1) supported on the same set as X and V;. But
[Ix : Iy,] = Iy,, so we do not recover Iy;. O

As we have just seen, in a link the only components that matter are
those of maximal dimension. So it is natural to ask what happens if V;
has embedded components or is not equidimensional, X is a complete inter-
section of the same dimension containing Vj, and we twice apply the ideal
quotient with Ix as in Proposition 4.2.4. That is, what can we say about
[Ix : [Ix : Iy;]]? In fact, it can be checked that the components of Iy, of
non-minimal height disappear.
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We now describe a very useful exact sequence from [109], relating the
ideal sheaves Tx,Zy, of X and V; and the dualizing sheaf wy, of V,.

Proposition 4.2.6 Let Vlf)\{aVz where V1,V C P* of codimension r and X is
the complete intersection of hypersurfaces of degree dy,---,d,. Let d =Y d;.
Then
0-Ix - Iy, pwy(n+1—-d)—0 (4.2)
Proof:
From Remark 4.2.3, and sheafifying, we get

IV1/IX = ’Homo,,,.(ovz,(’)x)

We need to show that this last term is isomorphic to wy,(n + 1 — d). This
follows immediately from [65] (5.20) by sheafifying. However, we will give
another proof which is a modification of a proof in [115]. Consider the exact
sequence of sheaves

0—=Ix - 0Opn —» Ox —0.

Applying Hom oy, (Ov,, —) we get

Hom oy (Ov,, Opn) — Homo,.(Ov,,0x) — £xt},,ﬂ(0V,,Ix) —
— gwtbw(OVz,O}pn) — e

But by [60] II1.7.3, £xth,,, (Ov,, Opn) = 0 for 0 < i < r. Hence
Homey. (Oy,, Ox) = £a:t},m(0V,,Ix).

But in fact we can carry this idea even farther. Consider the Koszul
resolution for the complete intersection X (see Example 1.4.1):

0o Opo(—d) > Fooy  — Frg — -
N/ NS
I{r—2 Kr—3
7N\ 7N\
0 0 0
— F2 — @OO0p(-a;) — Opn—0x—0
NS N/ NS
I{z . K]_ / IX
7N 7N 7N
0 0 0 0
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We get that

Iv/Ix = Esto,,(Ov,Ix)
= 5xt'é);3((’)vz,Kr_3)

£zt (Ov,, Kros)

Opn

since the F; are free. What is this last term? We use the left-most short
exact sequence in the diagram above and get an exact sequence

0 — gwt&.l.(OVzaKr—z) - 8wt§,p"((9vz,0pn(—d)) —

5%‘% n(onFr—l) e

P

But we know exactly what « is, since X is a complete intersection- its entries
are the generators of Ix. Hence a annihilates every Ox-module. Therefore
the image of « is zero and we get

Iv, [Ix Extoy (Ov,, Opn(—n — 1)) (n + 1 — d)
Extyy, (Ov,,wpn)(n + 1 —d)
wy(n+1-d)

IR

as desired. O

Remark 4.2.7 The exact sequence in Proposition 4.2.6 gives us that
Iv,/Ix = wy,(n+1—d). But this is the kernel of the natural map Ox — Oy,.
Thus we also have an exact sequence

0 - wy(n+l-—d)— Ox - Oy, —0.
We have a similar exact sequence if we reverse the roles of V; and V,. 0O

Notice that so far, we have not needed to assume that our schemes are
locally Cohen-Macaulay. A useful consequence of Proposition 4.2.6 is that in
the locally Cohen-Macaulay case one can produce a locally free resolution of
the linked scheme from a locally free resolution of the original scheme plus
knowledge of the degrees of the generators of the complete intersection. This
is by way of the Mapping Cone procedure.
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Proposition 4.2.8 ([109]) Let ViAV, where Vi, Vs C P* of codimension r
and X is the complete intersection of hypersurfaces of degree dy,---,d,. Let
d =y d;. Assume that V; is locally Cohen-Macaulay, and suppose that we
are given a locally free resolution for Iy, of the form

0=@GgoF 41— —>F — Opn = Oy, =0

N/
Iy,

7N
0 0

Then there is a locally free resolution for Iy, of the form
0 — FY(=d) = (A(D; Opn(~d)))” (—d) @ FY(—d)
= (N(®; Opn(~di))) " (~d) @ FY (~d) — ---

= (N (®; Opn(~d)))” (=d) ® G¥(~d) — Ty, — 0.

Proof:

Such a locally free resolution for Zy, can be obtained, for example, as
in §2 of Chapter 1. (All that is needed for this construction is that all the
sheaves G and F; be locally free, but in particular we can arrange that the
Fi be free.)

By Proposition 4.2.6 we have an exact sequence
0-Ix =TIy, 2wy(n+1—-d)—0.

The Koszul resolution for Ty (cf. Example 1.4.1) and the locally free resolu-
tion for Iy, combine with this short exact sequence to form a commutative
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diagram

0 0
! l
O]Pn(—-d) - G
! 1
! !
@i Opn(—di) — F

! L

0— Ix - Iy, —wy(n+l-d)—0

! !
0 0

Then the mapping cone of this diagram gives a locally free resolution of wy,
(where we write O for Opn):

05 0(—d) = Ga®;0di—d)— -+ = B;0(-di))d F2 = F1
—wp(n+1l-d)—0.
Now we apply Homo(—,O), and get
0 FY = @, 0d)@F) - — G &®;0d—d) - Od)
— Exthy(wy(n+1 —d),0) — 0.
The Proposition will be proved once we show
(a) this is exact, i.e. Eztly(wyy, O) =0for0<i<r—1;
- (b) Exthy, (wn(n+1—d),0p) = O, (d).
To see this, consider a locally free resolution for Oy,:

0—=G, —-+—G — Opn = Oy, = 0.

Applying Hom(—,©) and using [60] Lemma IIL7.3, we get a locally free
resolution
002G = =G —wy(n+1)—-0.

76



Applying Hom(—, O) again we get
06— =01 — 0 — Extp(wy(n+1),0) — 0.

This is not exact a priori, but we know it is by comparison with the original
resolution. Therefore we get Exth,(wy,,0) = 0 for 0 < i < r —1 and we have
shown (a).

For (b), we again compare the two resolutions. We get that

Etp(wnn(n+1-4d),0) = Extp(wy(n+1),0)(d)
= Ovz(d)

as desired. O

As an immediate corollary (considering the projective dimension and us-
ing the local version of the Auslander-Buchsbaum theorem- see page 11), we
get the important fact that the property of being locally Cohen-Macaulay is
preserved under liaison:

Corollary 4.2.9 Let Vy}\(aVz where V1,V2 C P* and X is a complete in-
tersection. Then Vi is locally Cohen-Macaulay if and only if V, is locally
Cohen-Macaulay.

These results are very useful in general. We will give an important con-
sequence of Proposition 4.2.8, namely the Hartshorne-Schenzel Theorem, in
the next section. For now we give some more elementary consequences of
Proposition 4.2.6. ’

Corollary 4.2.10 If Vl')\(sz, and if one (hence both) of Vi and V; are locally
Cohen-Macaulay, then deg V; + deg Vy = deg X.

Proof:

This is clear in the case of geometric linkage. We will sketch the proof in
the case of algebraic linkage. For convenience say that dim V; = dim V; =
dim X = p.

Note that for ¢ >> 0,

ROy, () = P(W,t) (the Hilbert polynomial of V;)

d
—eg'—Vlt” + (lower terms).
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Hence for t > 0, since h!(Zy,(t)) = 0, we have

RO(Zv, (1)) = (t :n) - [i%‘—/l—tp + (lower terms)] .

Similarly,

RO(Zx (1)) = (t + ") _ [d—"g—)ﬁtr’ + (lower terrns)] .

n

Now, for ¢ 3> 0 use [60] pp. 230, 243 and 244 to deduce that

P(Va,—t) = RK(Ow(-1)) = k' (Oy(=1)) + -+ + (=1)°h*(Ow, (1))
= (-1)Ph*(Oy(-1))
(—1)7h%(ww, (1))-
That is, for t > 0 we have

deg V;
p!

R(ww(t) = (=1) [ (—t)? + (lower terms)]

= [dl'vﬂt” + (lower terms)] .
p!

Finally, use the exact sequence of Proposition 4.2.6, twist by ¢t > 0, take
cohomology, compute dimensions using the above facts, and compare leading
terms. O.

One can also relate the Hilbert polynomials of the linked schemes. (See
for instance [62], Proposition 4.7.) In the case of curves, a nice formula
emerges. Let g; and g; be the arithmetic genera of Cy and C; respectively.

Corollary 4.2.11 If C2AC; then
1
g2— 01 = -2'(d -n - 1)(deg Cz - deg Cl)
Proof:
The proof is similar to that of the last corollary. Notice that for curves, be-

ing locally Cohen-Macaulay is equivalent to having no embedded points, and
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this is guaranteed by the fact that the curves are linked (Proposition 4.2.2).
The only other fact that is needed is that the arithmetic genus of the complete

intersection X is ]
3 (Hd{) (Edi —(n+ 1)) +1

(cf. Example 1.4.1). Then compute cohomology dimensions in the exact
sequence of Proposition 4.2.6 but keep track of the “lower terms.” O

Corollary 4.2.12 Let C; and C; be curves. If C]')\{'Cg, and if deg Cy = deg
C;, then g1 = g,.

It is an amusing exercise to study the converse of Corollary 4.2.12 and see
what it would take to find a counterexample. For instance, suppose n = 3.

Another useful fact is that linkage is preserved under hyperplane or hy-
persurface section (see §3 of Chapter 1). This is intuitively obvious, but there
is something to prove.

Proposition 4.2.13 Let vliivz in P*, where 2 <codim X =r <n. Let F
be a general hypersurface of degree d. Then (Vy N F) xoF (VanF) in P,

Proof:

Notice that X N F is a complete intersection: if Ix = (Fy,---,F;) then
the saturated ideal Ixnr = (F1,---, F;, F) = Ix + (F). By Proposition 4.2.4
we need to show that the saturated ideals of the hypersurface sections satisfy

(a) Ixar C Ivinr N Iy, and
(®) Ixar : Iviar] = Inar.
The proof of (a) is quick:

Ixar = Ix +(F)
C Iy +(F)
C

Iy, + (F)
= Iyr

and similarly for V,.
For (b), notice that both sides of the desired equality represent saturated,
unmixed ideals of schemes of the same codimension. We first show that these
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schemes have the same degree; after that it suffices to show one of the two
inclusions to get equality.

We know that deg V; + deg Vz = deg X. Hence the left-hand side of the
desired equality is the saturated ideal of a scheme of degree (deg X) - d —
(deg V;) - d = (deg V&) - d, which is the same as the degree of the scheme
represented by the right-hand side. ’

Now we just show that [Ixnr : Iv;ar] D Ivynr. We leave it to the reader
to verify the fact that if I and J are ideals with I = I then [ : J] =
[I : J]. Having this fact, we only need to show that [Ix + (F) : Iy, + (F)] D
Iv,nr. But clearly [Ix + (F) : Iy, + (F)] D Iy, + (F), and the left-hand side
is saturated, so we are done. O

We can use this last result to remove the hypothesis of being locally
Cohen-Macaulay from Corollary 4.2.10:

Corollary 4.2.14 If Vy{(ng then deg Vi + deg V3 = deg X.

Proof:

If the schemes are zero-dimensional then Corollary 4.2.10 apphes Oth-
erwise take enough hyperplane sections to reduce to this case, and note that
Proposition 4.2.13 guarantees that linkage is preserved, while Bezout’s theo-
rem guarantees that the degrees are preserved. O

A natural question is whether the converse of Proposition 4.2.13 is true.
The answer is affirmative, at least in the case of geometric hnkage This is
an interesting application of Theorem 2.3.1.

Proposition 4.2.15 Let V; and V; be locally Cohen-Macaulay equidimen-
sional subschemes of P*. Assume that for a general homogeneous polynomial
F of degree d, Vi N F is directly linked to V; N F and that VN F and VoN F
have no common components. Then V; is directly linked to Vz, unless one of

the following holds:
(i) d=1,n =23 and V; UV, lies on a quadric surface;
(it) d=1,n =23 and deg V; + deg V5 = 4.
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Proof:

Since V; N F and V; N F have no common component and are directly
linked, they are geometrically linked (by Proposition 4.2.2). That is, their
union is a complete intersection. But since they have no common component,
we also have that ¥ and V; have no common component (and no component
of one is contained in a component of the other since the components are all of
the same dimension). So the scheme-theoretic union V; UV; has the property
that its general degree d hypersurface section is a complete intersection. Then
by Theorem 2.3.1 (for curves) or Theorem 1.3.2 (for higher dimension), V;UV,
is a complete intersection, so since they have no common component they
are directly linked. O

Something similar should be true for the case of algebraic linkage, al-
though not quite as strong (i.e. the list of exceptions should be slightly big-
ger). This is still an open problem. The following example illustrates some
of the possible considerations and obstacles.

Example 4.2.16 In P2, let V; be a double line (i.e. a scheme of degree 2
supported on a line- cf. [92]) and let V; be a scheme of degree 4 supported
on the same line as V. The general hyperplane section of V; is a complete
intersection. Assume that the general hyperplane section of V; is a complete
intersection, say (2?,y?). By considering links of the form (z2,y? - £) (where
£ is a linear form) one can verify that the general hyperplane section of V, is
directly linked to the general hyperplane section of V;. However, by changing
the linkage class of V; if necessary (cf. [92]) we have that V; is not directly
linked to V,. O

4.3 The Hartshorne-Schenzel Theorem

In this section we give a more subtle relation between linked schemes, in
the form of a necessary condition for two schemes to be linked. That is,
we will show the invariance (up to shifts and duals and re-indexing) of the
deficiency modules. The fact that the dimensions of the components (suitably
re-indexed) is preserved was known already by Gaeta [48], but the invariance
of the module structure of course requires knowledge of schemes.
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Throughout this section we will assume that the schemes we consider
are locally Cohen-Macaulay, so that we obtain a locally free sheaf from the
resolution of the ideal sheaf. This assumption has recently been removed
by Hartshorne in the case of even liaison; he proved Corollary 4.3.3 below
without this hypothesis by using reflexive sheaves and his notion of general-
ized divisors ([62] Proposition 4.5). Notice that Theorem 4.3.1 itself cannot
be extended to the non locally Cohen-Macaulay case since for any such V,
(M#)(V) will then fail to have finite length, but it is always zero in large
degree, so the conclusion of the theorem cannot hold. So in a sense, Corol-
lary 4.3.3 is more basic than Theorem 4.3.1. See also Example 4.1.6 (4.).

The theorem was proved for curves in P* by Hartshorne (cf. [113]), for
curves in P* by Chiarli [36], and for arbitrary dimension by Schenzel [120])
and subsequently by Migliore [94]. A different proof has recently been given
by Hartshorne [62]. We follow the proof given in [94]. We will use the
following notation:

(M (V) = [(M)(V)]" = Homy(M)(V), k)
(see page 3).

Theorem 4.3.1 Let V;,V; C P* have dimension r and assume that Vlr"fan
where Ix = (Fy,-+-,F._,) and deg F; = d;. Let d = S d;. Then

(MY (V) =2 (M)Y(Vi)(n+1—d) for1 <i<r.

Proof:

Consider a locally free resolution for Zy, as in Proposition 4.2.8
05 GCnr = Facpes — v F —  F-oIy—0

NS N/

' gn—r—l _ g2
7N\ 7N
0 0 0 0
(4.3)

where G,_, is locally free and the F; are free. Then by Proposition 4.2.8 we
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have a locally free resolution

0= FY(~d) - @ O(d; = ) & FY(=d) = -
N/
K
7N
0 0
(4.4)
= Gy (—d) ®®; O(—di) — Iy, — 0.
N/
K:n-r—l

7N
0 0

From the short exact sequences obtained from this latter resdlution, be-
ginning from the left, one sees that

0= Hr_r_z(K:2) == Hf(K:n—r—2) = H‘}(K:n—r—l)

0= Hf_z(lcz) == H:+2(Kn—r—2) = H:+1(K:n—r—l)
Therefore we have

(MT=+1)(V2) HI=+(Ty,)

> HIH(GY (~d) (by (44)

& HrHYG._.(d—n-—1))*  (by Serre duality)
= Hy %G, ,1(d—n—1))* (by (4.3)) |
= H(Gy(d—n—1))" (by (4.3))

> Hi(Ty(d—n-1)) (by (4-3))

= (M)'(A)(n+1-d) .

Remark 4.3.2 With this theorem we can now answer some of the questions
raised in §1 of this chapter. First, the equivalence relation of liaison is not
trivial, at least in dimension > 0. Indeed, this theorem says that the defi-
ciency modules are invariant, up to duals and shifts and re-indexing, in a
liaison class. But as we remarked in §2 of Chapter 1, a theorem of Evans and
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Griffith [46] states that any collection of modules can be realized, up to shift,
as the deficiency modules of a scheme of appropriate dimension. (Huneke
and Ulrich have shown that it is not trivial in dimension 0 either, apart from
sets of points in P2. However, this does not follow from Theorem 4.3.1. Their
approach is to study the linkage class of a complete intersection, and show
that not every set of points is in this class. In fact, they study arithmetically
Cohen-Macaulay schemes of any dimension from this point of view.)

This already says that there are at least as many liaison classes (roughly)
as there are collections of graded S-modules. However, the question remains
as to whether to each collection of modules (up to shifts and duals) there is
associated just one liaison class, or many. We will discuss this later. (This
is related to the problem of finding sufficient conditions for two schemes to
be linked.)

Another immediate consequence is that the property of being arithmeti-
cally Cohen-Macaulay is invariant in a liaison class, since this property de-
pends only on the collection of modules being zero.

We can also show that the property of being arithmetically Buchsbaum
is preserved under liaison. For curves it is an immediate consequence of the
definition (Definition 1.4.7) since it depends only the fact that the deficiency
module is annihilated by the maximal ideal m = (Xo, -+, X,), and this does
not change with shifts or duals. For higher dimension, the definition of being
arithmetically Buchsbaum is given after Definition 1.4.7. What is different in
higher dimension is that we require that m should annihilate the deficiency
modules not only of the original scheme V, but also of the general hyperplane
section V' N H,, the general hyperplane section V N Hy N Hy, etc. That is, we
require that the scheme obtained by intersecting V with a general linear space
of dimension > n —dim V + 1 also have its deficiency module(s) annihilated
by m. But then the fact that the Buchsbaum property is preserved under
liaison follows from Proposition 4.2.13.

A useful application of Theorem 4.3.1 is to show that two schemes are
not linked, by showing that their collection of modules are not the same even
after dualizing and shifting. We will apply this idea in a geometric way in
the next section. O

We have been a little careless in saying that Theorem 4.3.1 implies that
the deficiency modules are invariant up to shifts and duals and re-indexing.

84



For curves there is no problem, but for higher dimension one has to be a little
careful. It is very important to realize that the twist n +1—d is the same for
each module. Hence the “positioning” of the modules (M*)(V) with respect
to each other stays the same in even liaison and “flips” in odd liaison. In
particular we have

Corollary 4.3.3 Let V; and V, be evenly linked schemes of dimension r.
Then there is an integer p such that (M*)(V4)(p) & (M*)(V2) for each 1 <
1< r.

The point of this corollary is that the same p is used for each :. That
is, in even liaison the configuration of modules is preserved up to shift. This
will play an important role in the structure theorem in the next chapter. We
will discuss it further below. This is our first indication that even liaison is
considerably simpler than odd liaison, since dual modules do not have to be
considered. It will turn out that an even liaison class has a “nice” structure,
while a liaison class does not (apart from being a union of two even liaison
classes in general).

Remark 4.3.4 One of the questions raised in §1 was whether we could per-
form links using something other than complete intersections and still get a
good linkage theory. We remarked that Schenzel [120] has shown that most
of the theory works if we replace “complete intersection” by “arithmetically
Gorenstein.” (See also [27].) One of the results is that in fact Theorem 4.3.1
continues to hold in that context.

On the other hand, as we mentioned in §1, Walter has shown that if we
replace “complete intersection” by “arithmetically Cohen-Macaulay” then
there is just one equivalence class (for fixed dimension). It is easy to see
that at the very least we cannot expect the module to be invariant in this
case: let V; be a set of two skew lines in P? and let V; be a line meeting both
components of V;. Then V; U V; is arithmetically Cohen-Macaulay, but V;
has a trivial deficiency module while V; has a one-dimensional module (cf.
Example 1.4.2). O

We can now begin to describe the structure of an even liaison class, al-
though the main theorem will come in Chapter 5 (Theorem 5.2.1). The first
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ingredient is the notion of Basic Double Linkage (see Remark 3.2.4), and we
will now see why it is so called. (We will change the notation slightly to be
consistent with that of the current chapter: r shall now denote the dimension
rather than the codimension.)

Recall that we start with a scheme V; # 0 of dimension r and we choose
general homogeneous polynomials F; € S of degree d; and F, -+, F,_, € Iy,
of degree d, - - - , d,—, respectively, such that (Fy, F3,- -+, F,_,;) form a regular
sequence. We then consider the scheme Z with defining (saturated) ideal
IZ=F1IV1+(F2,""Fn—r)- ) )

Recall also that for 1 < ¢ < r we have (M*)(Z) = (M*)(V1)(—d1). The
key observation now is that we in fact have something stronger: Z is linked
to V; in two steps. (This was observed in [80] for codimension two and
in [25] and [52] in general.) The basic idea is to choose a general homoge-
neous polynomial G € Iy, of sufficiently large degree so that (G, Fz,-- -, Fn-;)
forms a regular sequence, and hence so does (GFy, F3,- -+, F,_,). Then one
can check that if one links V; to a scheme W using the complete inter-
section (G, F,---, F,_,), and then links W using the complete intersection
(GF, Fy, - -+, F,_,), the resulting scheme is exactly Z.

Now fix an even liaison class £ of dimension r subschemes of P*. We
have associated to £ a configuration of modules {(M;),:--,(M,)}, unique
up to shift. By Proposition 1.2.5, a sufficiently large leftward shift of this
configuration of modules (i.e. {(M;)(d),(M:)(d),---,(M,)(d)} for d > 0)
is not the configuration of modules of any scheme V € L, and so there is
a leftmost shift (i.e. maximum d) for which there exists some V € £ with

(M*)(V) = M;(d) for some d.

Definition 4.3.5 We will denote by £° the set of schemes V € L whose
configuration of modules coincides with this leftmost one. The elements of
L° are the minimal elements of the even liaison class £ and the corresponding
configuration of modules is said to be in the minimal shift. Let V, € L°. We
will denote by L" the set of schemes V' € £ satisfying M* (V) & M (Vo)(—h)
for 1 <i <r. By Basic Double Linkage, £* # @ for all o > 0. O

As a consequence, we have partitioned £ = £°U L' U £%-.- according
to the shift of the configuration of modules. The key to answering question
4 of §1 (i.e. to describe the structure of an even liaison class) is to study
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the relations between the elements of these subsets. This structure has been
called the Lazarsfeld-Rao Property (cf. [25], [11]). This is known to hold for
codimension two (cf. [11], [87]), and it will be described carefully in Chapter 5.
However, the structure can be phrased in arbitrary codimension, even if it
is unknown to hold in codimension > 3, so we will end this section with a
description of that property.

Definition 4.3.6 [25] Let £ be an even liaison class of dimension r sub-
schemes of P*. We say that £ has the Lazarsfeld-Rao Property if the following
conditions hold:

(a) If Vi, V2 € LO then there is a deformation from one to the other
through subschemes all in £°% (in particular, all subschemes in the
deformation are in the same even liaison class).

(b) Given V5 € L% and V € L* (b > 1), there exists a sequence of
subschemes Vg, V4,---,V; such that for all 7, 1 <2 < t, V; is a basic

double link of V;_; and V is a deformation of V; through subschemes
all in Ch.

This is also sometimes referred to as the LR-Property. O

4.4 Geometric Invariants of a Liaison Class

In the last section we saw that the graded modules (M*)(V) (1 < i < dim V)
are invariant, up to shifts and duals (resp. shifts), in the liaison class (resp.
even liaison class) of V. This implies that the degeneracy loci Vj, described
in §1 of Chapter 1, are invariant (after suitable re-indexing). These loci
essentially parameterize the set of linear forms that have “unusual” rank
when viewed as homomorphisms from a component (M*)(V); to the next
component (M*)(V)z41. .

In this section we will show how this fact can be used to study the liaison
class of V when V is a curve (locally Cohen-Macaulay and equidimensional,
as always), and hence ¢ = 1. Our main references are [91] and [94]. However,
we remark that it would be interesting to understand the connection between
the Vi and V in the case where dim V is larger and especially when ¢ is larger.
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The general philosophy that emerges, which is illustrated in several examples
below, is that the points of V; correspond to those hyperplanes meeting | %4
in “unusual” ways, either by containing a component of the curve or by
having unusual postulation for the hyperplane section. This often yields
useful necessary conditions for curves to be evenly linked, as we will see.

We remark that this general description should still be true for the higher
cohomology modules, but it needs to be made precise. (The meaning of
“unusual” may be entirely different for larger i.)

We will use the letter C to denote our curves rather than V, to avoid
confusion with the degeneracy loci V. 'We now illustrate the ideas with
several examples.

Example 4.4.1 Let C C P® be the disjoint union of a line A and a plane
curve Y of degree d > 1. This situation was analyzed in Example 1.4.4. It
was shown that M(C); is one-dimensional for 0 < ¢ < d—1, and 0 elsewhere.
Furthermore, the degeneracy locus Vo C (P®)* is just the plane dual to the
point P of intersection of A with the plane of Y. Since this is an isomorphism
invariant, we have that any curve evenly linked to C' has the same degeneracy
locus in the first non-trivial module multiplication. Furthermore, by Remark
1.3.3 (d), if we denote by L the even liaison class of C, then C € L°.

We now describe a simple link that can be done with C'. (We will use the
same names for surfaces and for polynomials defining those surfaces.) Let
Fy = Ay U A, be a surface of degree 2 consisting of the plane A; of Y and a
plane A; containing A. Let F; be a surface of degree d + 1 containing C but
not containing any component in common with Fj. (Fj,F3) is a complete
intersection, and hence gives a residual curve C’.

What is C'? Looking first at the intersection of F; with A; we see that
the residual to Y is a line )’ on A; passing through P (since Y avoids P but
both A; and F; contain P). The residual to A in the complete intersection of
F, with A, is a plane curve Y’ of degree d. Hence C' = Y'UX. If Y’ and X'
were to meet, then by Example 1.4.5 C’ would be aCM. But we know that
C is not aCM and that the property of being or not being aCM is preserved
under liaison. Therefore C’ is also the disjoint union of a line and a plane
curve of degree d, with P again the point of intersection of A" and the plane
of Y'.

We now ask when two such curves can be in the same liaison class. The
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following can be shown from the above discussion (the details are left as an
exercise). Let C be the disjoint union of a line A\ and a plane curve Y of
degree d, with P the point of intersection of A with the plane of Y. Let C’,
A, Y’ P’ and d' be similarly defined. Then C and C’ are in the same liaison
class if and only if d = d’ and P = P’.

(To show that the conditions d = d’ and P = P’ imply that C and C’ are
linked, for now one has to proceed by brute force, constructing a sequence of
links in the manner outlined. However, once we have Rao’s theorem in the
next chapter, this will follow from the observation that these two conditions

force M(C) and M(C') to be isomorphic.) O

Example 4.4.2 Let C be a nondegenerate set of d skew lines in P*, with
2d > n + 1. Assume that the general hyperplane section Z = C N H of C
is nondegenerate in the hyperplane H. We first compute that dim M(C), =
d—1 and dim M(C); =2d — (n + 1). (These come from the exact sequence

0—*1-0—)0]11*:—)00—)0,

twisting by either 0 or 1, and taking cohomology.)
Now, for a linear form L defining a hyperplane H which does not contain
any component of C, there is an exact sequence

0 = H(ZTonr(1)) — M(C)e 28 M(C), — ---.

(This is from the exact sequence in cohomology associated to the short exact
sequence (3.4) of §1 of Chapter 1. The first 0 is because C is non-degenerate.)
The hypothesis that the general hyperplane section is a set of points which
is nondegenerate in H guarantees that ¢o(L) is injective for general L. In
particular, we must have that dim M(C)e < dim M(C),, i.e. n < d.

In fact, clearly if L does not vanish on any component of C' then L can
be viewed as a point of Vj if and only if the points of H N C are degenerate
in H. (For example, if C is a curve in P? then L is a point of V; if and only
if H contains a d-secant line of C.)

On the other hand, we still have to consider the linear forms L which do
vanish on a component A of C. Let Y be the remaining set of lines. Then
for any k we have the following two exact sequences of sheaves:

0— Ic(k) — Iy(k) — O,\(k) — 0
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and
0 — Ty (k) 25 Zo(k + 1) = Toau(k +1) — 0.

Here C N H is one-dimensional. Notice that the composition
0 — Zo(k) — Ty (k) 25 To(k +1)

induces the map ¢x(L) on M(C). But now taking k = 0 we get
0 — H°(Oy) = M(C)o— M(Y)o

and

0 = H°(Zoar(1)) = M(Y)o — M(C).

Since h%(0,) = 1, we get that ¢o : M(C)o — M(C), is not injective. Com-
bining this with the fact that the general linear form induces an injection,
we get that L corresponds to a point of Vq.

The conclusion, then, is that L (up to scalar multiples) corresponds to a
point of Vj if and only if either L vanishes on a component of C' or else the
points of H NC are degenerate in H (and for general L this does not occur).
Note that if the points of HNC are degenerate in H, then any linear form L'
vanishing on the span of H N C will also correspond to a point of V5. Hence
in the dual projective space (P")*, V; is a union (possibly infinite) of linear
subvarieties: it contains the codimension two linear subvarieties dual to the
lines of C, as well as the linear spaces dual to the spans of the degenerate sets
HNC. C can often be recovered from Vj; in this way. (See Example 4.4.4.)
0

Example 4.4.3 Suppose that, as in the previous example, we take C to be
a nondegenerate set of d skew lines in P* with 2d > n+1, but now we assume
that the general hyperplane section is degenerate in the hyperplane. We will
show that C must lie on a quadric hypersurface.

We use the “Socle Lemma” of [72] (see Lemma 2.3.3 and take d = 1) and
apply it to M(C). Since h°(Zgnu(1)) # 0 by hypothesis, this means that
b= 1. Hence Lemma 2.3.3 guarantees that ([0 :c m]) < 0. But M(C) begins
in degree 0, and in this degree M(C) = €. Hence [0 :p(c) m] is nonzero in
degree 0.
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In particular, for any two linear forms Ly, Lo, if we let A = (L;, L;) then
there is some element in M(C), annihilated by A. That is, the submodule
K4 (cf. Definition 2.1.3) is nonzero in degree 0. This implies, by Propo-
sition 2.1.4, that Ic N A is non-zero in degree 2. That is, even the union
of C with a general linear subspace of codimension two lies on a quadric
hypersurface. O

Example 4.4.4 Let C now be a set of d skew lines in P3. We give a brief
summary of what happens in this case; see [91] for more details. Since we
know that M(C) = k for d = 2, we will assume that d > 3 so that there is
nontrivial module structure to study. We have seen in Example 4.4.2 that
the degeneracy locus V} identifies the hyperplanes in P? which contain either
a d-secant line or else a component of C.

There are two possibilities (from the point of view of what we want to
discuss): either C lies on a quadric surface or it does not. If C lies on a quadric
surface @) then clearly it must be smooth in order to contain skew lines. One
checks that the hyperplanes tangent to @ are precisely the hyperplanes that
we are looking for. One can thus recover @ from the module, but no more.
And indeed, C is linked via @ and an appropriate union of d hyperplanes
to a set of d skew lines in the other ruling of Q. It follows (since dim
M(C)o = dim M(C")o = d —1) that any set of skew lines in the liaison class
(either even or odd) of C also has d components, and also lies on Q, but
there is no uniqueness— any such set of lines is in the liaison class.

In fact, it can be shown that if C is a set of d > 3 skew lines lying on a
quadric surface @}, and if C" is set of d’ skew lines, then C is evenly linked to
C' if and only if d = d’ and C’ also lies on the same ruling of Q. They are
oddly linked if and only if d = d’ and C’ lies on the other ruling of Q.

On the other hand, if C' does not lie on a quadric surface then by Exam-
ple 4.4.3, the general hyperplane section does not consist of collinear points.
That is, the general hyperplane section gives an injection of M(C), —
M(C);. Now, since C does not lie on a quadric surface, it must consist
of at least four lines. And for the same reason, one can check that it has at
most two d-secants. (If it had three d-secants, Bezout’s theorem would force
C to lie on the quadric surface spanned by the three d-secants.) Then V,
consists of a finite set of lines in (P%)*, and so from the configuration of lines
one can recover C' from M(C). That is, C is the only set of skew lines in its
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even liaison class. (See [80] for another example, more algebraic, of how to
recover a curve from the deficiency module, under certain circumstances.)

However, there may be a set of skew lines (at most one) oddly linked to
C. A simple example is provided by a so-called “double-six” configuration
on a cubic surface (cf. [55]; see also Example 4.4.5), in which a set of six
skew lines is directly linked to another set of six skew lines. See [91] for more
details. O

Example 4.4.5 Let C be a general rational sextic curve in P3. We will
briefly describe the lovely geometry relating the geometry of C' to the geom-
etry of the degeneracy locus V;; for details see [91]. The problem we would
like to solve is to determine which other curves C' of arithmetic genus 0 are
in the liaison class of C.

Because C has maximal rank (cf. [12]), C lies on a unique cubic surface
S. Since C is general, S is smooth. Hence we know all the divisors on S,
and in particular there are 27 lines (cf. [60], [55]). The geometry of S will
play an important role.

One immediate observation, made in Example 4.1.6, is that any curve
which is linearly equivalent to C on S is evenly linked to C. Also, any curve
linked to C by S and a quartic surface has degree 6 as well, and hence also
has arithmetic genus 0 (cf. Corollary 4.2.11). We will see that these are the
only possibilities.

On the other hand, maximal rank (together with the Riemann-Roch the-
orem) also allows us to compute that the deficiency module M(C) is 3-
dimensional in degrees 1 and 2, and zero elsewhere. This shows, in partic-
ular, that if C' is in the liaison class of C' with arithmetic genus 0 then C’
also has degree 6. (One can also use the Lazarsfeld-Rao Property to deduce
this.)

It is not hard to show that the general hyperplane section of C' consists
of 6 points not on a conic. (For example, the general hyperplane section does
not have any collinear points, so if it lay on a conic it would be a smooth
conic rather than a union of two lines. But then it would be a complete
intersection, and so by Strano’s theorem [124] (see Theorem 2.3.1) C would
have to be a complete intersection.) Hence the degeneracy locus V; consists of
those linear forms whose corresponding hyperplanes intersect C' in six points
on a (possibly singular) conic.
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By Porteous’ formula (cf. Lemma 1.1.1) we see that Vj is a cubic hy-
persurface in (P?)*. (This is also clear since it is obtained by taking the
determinant of a 3 X 3 matrix of linear forms, but it is nice to see Porteous’
formula at work.) We would like to identify this cubic surface and to describe
its relationship to the cubic surface S.

We can only give the basic idea of the answer here. There is a special
type of configuration of lines on S called a “double-six” , and there are only
36 such configurations. These configurations consist of two separate sets of
6 skew lines, meeting in a special way. Of these 36, there is exactly one with
the property that each of one of the sets of 6 skew lines is a 4-secant to C,
and each of the other 6 lines is disjoint from C. But then it is clear that
the lines dual to each of these lines all lie on V;. (One has to check that
a plane containing any of these 12 lines meets C in 6 points which lie on a
conic in that plane: in the former case the conics are all unions of lines, and
in the latter case they are generically smooth. We leave the verification as
an exercise, or see [91] for details.)

But these 12 dual lines also form a double-six configuration in (P?)*, and
hence V; is the unique cubic surface containing this configuration. Knowing
that this is V; limits the possible linear systems of curves of degree 6 and
arithmetic genus 0 on cubic surfaces in P (by looking at all the double-sixes
on V; and going back to their duals in P®). The last step is to consider a
certain line bundle on V; and use it to “weed out” the sextic curves which
do not lieon §. O

The examples in this section serve as a useful illustration of the fact that
the curves in an even liaison class which are minimal (cf. Remark 1.3.3 (c))
really do fall into nice families, including the possibility that they are unique.
This will be part of the Lazarsfeld-Rao property described in Chapter 5.
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Chapter 5

Liaison Theory in
Codimension Two

 As we have mentioned before, the strongest results to date on Liaison Theory
are for the case where the schemes have codimension two. Until recently, it
was also necessary to restrict to schemes that are locally Cohen-Macaulay and
equidimensional. In a recent preprint, Nollet [107] has modified the proofs
of these theorems to remove the hypothesis of locally Cohen-Macaulay, now
assuming only that all components have the same dimension. This is an
important contribution, but for simplicity in this chapter we maintain this
hypothesis. The main results which are known in this case, but which are
missing in the case of arbitrary codimension, are a sufficient condition for
two subschemes to be linked (or evenly linked), and a structure theorem
describing an even liaison class. These will be discussed in this chapter.
See also [95] for an expository description of some of the main results in
codimension two.

Liaison Theory (as a subject rather than simply a tool) began with Apéry
and Gaeta in the 1940’s (cf. [4], [5], [47], [48]). In these papers, it was
shown (essentially) that a smooth curve C in P® is in the linkage class of
a complete intersection if and only if it is arithmetically Cohen-Macaulay
(i.e. its deficiency module is zero). This result was extended to arbitrary
codimension two subschemes of projective space by Peskine and Szpiro [109],
and they put the whole theory of Liaison into the framework of modern
scheme theory. Some of their work was described in the last chapter.
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After the landmark paper of Peskine and Szpiro, the next major contri-
bution to the theory of Liaison was by Rao in his two papers [113] and [114].
The latter paper contains the main result of the former as a special case, but
the former can be viewed as the starting point of the burst of activity for
codimension two subschemes that has occurred in Liaison Theory in the last
decade and a half.

Rao’s main result is to give a necessary and sufficient condition for two
codimension two subschemes of projective space to be evenly linked. (He also
observes that his result holds in a more general context.) In the last chapter
we have seen a necessary condition: the Hartshorne-Schenzel theorem. In
the case of curves in P® he notes that this is also sufficient. However, for P"
it is necessary to approach the problem from the point of view of locally free
sheaves, as we will see. The main result is given in terms of stable equivalence
classes of locally free sheaves.

In this chapter we will also give the structure theorem of [11] (in P*) and
[87] (in P?), the so-called Lazarsfeld-Rao Property, which describes an even
liaison class and how the elements of the class are related to each other. This
can also be done for the more general context mentioned by Rao (cf. [27)).
Passing to curves in P?, we have even stronger results from [87] (and, as men-
tioned above, we have Rao’s converse to the Hartshorne-Schenzel theorem).

Finally, in the last section we give some applications of liaison. For exam-
ple, we will describe how it has been used in the classification of surfaces in
P* and threefolds in P°. We will also show how the Lazarsfeld-Rao Property
has been used to prove that every Buchsbaum curve specializes to a stick fig-
ure, proving a special case of the classical question of whether every smooth
curve specializes to a stick figure.

Throughout this chapter, we will assume that all schemes in question are
locally Cohen-Macaulay and equidimensional.

5.1 Rao’s Results

If V C P" has codimension two (and is locally Cohen-Macaulay and equidi-
mensional, as usual), then we have seen that there is a short exact sequence

06— P Op(—a;) = Iy — 0. (5.1)

i=1
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This is obtained, as in §2 of Chapter 1, from a minimal free resolution of
the saturated homogeneous ideal Iy. (The integers a; are the degrees of the
minimal generators of Iy.) It follows that G is locally free of rank m —1, and
that H!(G) = 0. (The latter fact follows because we began with a minimal
free resolution, so the map @™, Op(—a;) — Zv is already surjective on
global sections.) The fact that G is locally free, especially, was important to
prove Proposition 4.2.8. It follows from Proposition 4.2.8 that if V and V’
are evenly linked, and if Zy has the locally free resolution above, then Zy:
has a locally free resolution

0-0G >F 2Ty —0

where F' is free and ¢’ = G(c) ® A, with A free and ¢ € Z. Note that
here the direct summands of F' do not necessarily correspond to a minimal
generating set for Iy:.

For many purposes, for instance Rao’s proof of injectivity and surjectivity
of the correspondence in Theorem 5.1.3 below, and the proof in [11] of the
Lazarsfeld-Rao Property, it is convenient to have a short exact sequence of

the form
0 — (free) = K = Iy — 0 (5.2)

where K is locally free. This is obtained using the above ideas as follows.
Choose any complete intersection X containing V, and let W be the residual.
Suppose that Iy is generated by forms of degrees b; and b, and let b = b, +b,.
If W has a locally free resolution

0—*8—-’@01%(—&;)—)Iw—)0

as above, where & is locally free, then Proposition 4.2.8 gives that V' has a
locally free resolution

0 — € Opn(a; — b) = EY(—b) ® Opn(—b2) ® Opn(—b1) = Iy — 0.
Then simply take K = EV(—b) & Opn(—b2) & Opn(—b).

Remark 5.1.1 As Rao observes, if the generators of Ix are taken from a
minimal generating set of Iy then the summands Opn(—b2) @ Opn(—b1) of K
are redundant and can be canceled. This idea can be used, for example, to
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show that any arithmetically Cohen-Macaulay codimension two subscheme
V of P" is in the linkage class of a complete intersection (i.e. licci). We briefly
describe the idea.

Note first that if V is arithmetically Cohen-Macaulay then G is in fact
free of rank m —1, not just locally free. When we perform a link, the ideal Iy
of the complete intersection X that we choose has two generators, and it can
happen that 0, 1 or both of these generators are part of a minimal generating
set of Iy. (In particular, for any V, arithmetically Cohen-Macaulay or not,
it is always possible to find a complete intersection X satisfying any of these
three possibilities.)

If we link V by a complete intersection X, both of whose generators are
minimal generators of Iy, one can check that the canceling referred to at
the beginning of this remark gives us that the residual to V in the link has
one fewer minimal generator (m — 1) than does V. (Use the fact that G is
free.) So one can proceed by induction. This is essentially the approach of
Gaeta and Peskine-Szpiro. However, this result also follows from Rao’s more
general theorem below. O

Definition 5.1.2 Two locally free sheaves G; and G; on P" are stably equiva-
lent if there exist free sheaves £; and £, and an integer ¢ such that G, ® L, =

Galc)® L,. O
Rao’s main result on liaison in codimension two (cf. [114]) is the following:

Theorem 5.1.3 (Rao) In P*, n > 2, the even liaison classes in codimen-
sion two are in bijective correspondence with the stable equivalence classes of

locally free sheaves G on P* with H'(P*,G(p)) =0 for allp € Z.

The correspondence is given as above: to the locally Cohen-Macaulay,
equidimensional scheme V is associated the locally free sheaf G obtained in
the exact sequence (5.1). The fact that this correspondence is well-defined is
confirmed by the observation above using Proposition 4.2.8, which says that
if V and V' are evenly linked then the locally free sheaves one obtains are
stably equivalent.

We will only give the basic idea of Rao’s proof, and refer the reader
to [114] for the details. To show injectivity, suppose that V; and V; are
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codimension two subschemes of P™ which yield locally free sheaves G; and
Gz, as in (5.1), which are stably equivalent. Rao shows that then V; and V;
are evenly linked. His idea is that we can use the above type of arguments
to obtain two locally free resolutions

0 — @Opn(—aj) —a—) IC(a) —_ IV1 — 0

i=1

T
0= P Opn(=b;) B K(b) = Ty, - 0
j=1
The maps a and f§ have the form (s, -+, s,) and (¢;,- -, t,), where the s; and
t; are global sections of various twists of K. He then shows how, by a specific
‘series of pairs of links, we may begin with the exact sequence involving o and
(essentially) end up with the exact sequence involving 8. That is, he shows
how a prescribed even number of links will take us from V; to V,.

For surjectivity, Rao begins with a locally free sheaf G as in the theorem,
and considers the dual sheaf GY. His goal is to set up an exact sequence of
the form (5.1) with the locally free sheaf G. He will do this by first finding
one of the form (5.2). By considering global sections of GY(p) for p > 0, he
obtains a locally Cohen-Macaulay scheme Y with resolution

0 — (free) = G¥(c) = Iy — 0

for some ¢ € Z. Then any direct link Y ~ V gives a codimension two locally
Cohen-Macaulay equidimensional scheme V' with resolution of the desired
form. This completes our description of Rao’s proof of the bijection.

Remark 5.1.4 This theorem of course implies the Hartshorne-Schenzel the-
orem (Theorem 4.3.1) for codimension two even liaison. In fact, the coho-
mology of the sheaf G gives us back the deficiency modules: Hit'(P", G) =
(M*)(V) for 1 <4 < n —2, and this cohomology is invariant under stable
equivalence (up to shifts).

This theorem also implies that codimension two arithmetically Cohen-
Macaulay subschemes of P comprise an entire liaison class. Indeed, the
arithmetically Cohen-Macaulay codimension two subschemes of P* are ex-
actly those for which the sheaf G in (5.1) is free, and any two free sheaves
are obviously stably equivalent.

As a corollary, among zeroschemes in P? there is just one liaison class. O
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Thanks to the classification, due to Horrocks [70], of stable equivalence
classes of vector bundles G on P" with H!(G) = 0, we have a very nice
restatement of Rao’s result for the case of curves in P3. This result actually
preceded Rao’s main result described above (cf. [113]).

Theorem 5.1.5 (Rao) Let C and C' be curves in P® with deficiency mod-
ules M(C) and M(C'). Then C is evenly linked to C' if and only if M(C)
is isomorphic to some shift of M(C").

That is, in the language of Theorem 5.1.3, the even liaison classes of (locally
Cohen-Macaulay, equidimensional) curves in P3 are in bijective correspon-
dence with the isomorphism classes of graded S-modules of finite length,
after identifying those that differ only by shift. Hence this provides the con-
verse to the Hartshorne-Schenzel theorem for curves in P3.

Of course it then follows immediately from the Hartshorne-Schenzel theo-
rem and its corollary (Theorem 4.3.1, Corollary 4.3.3) that C is oddly linked
to C" if and only if M(C) is isomorphic to some shift of M(C’)V*.

Rao also mentions in [114] that the Horrocks classification also yields
a (somewhat more complicated) classification of the even liaison classes of
surfaces in P* in terms of graded modules:

Corollary 5.1.6 For graded S-modules My, M, of finite length, consider
equivalence classes of triples (My, My, ), where 5 € Exti(MY*, My*) and
(My, My,n) ~ (N1, N3, ¢) iff we have M, 2 Ni(a) and M, % N;(a) isomor-
phisms for some integer a which maps n to (. Then the even liaison classes
of surfaces in P* are in bijective correspondence with the equivalence classes
of such triples.

This shows that the converse to the Hartshorne-Schenzel theorem is false
for surfaces in P*. Indeed, we need not only the preservation of the modules
(M')(V) and (M?)(V) up to shift, but also an element of Ext3(MY*, MY*).
Bolondi [19] has used this classification to give a construction of the min-
imal elements in any even liaison class of surfaces in P*) much as Martin-
Deschamps and Perrin [87] did for curves in P3.

It is also worth noting that under Liaison Addition (cf. §2 of Chapter 3),
the behavior of stable equivalence classes of vector bundles in the case of
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codimension two subschemes of P* works as one would expect (and so we
really do have an “addition” in the context of liaison, even in codimension
two). Specifically, we have

Theorem 5.1.7 ([25]) Let Vi and V; be codimension two subschemes of P,
and choose Fy € Iy, and F; € Iy, of degrees d; and dp respectively, such that
F, and F, form a regular sequence, defining a complete intersection X. Let
7 be the scheme defined by the saturated ideal Fy - Iy, + F - Iv,. Assume that
we have locally free resolutions

0—>g1—)f1—)1v1 —0

0—-»92—->.7"2—->Iv2—->0
where the G; are locally free, the F; are free and H}(G:) = 0 for i = 1,2.
Then

(1) Z has a locally free resolution

0 — Gi(—dy) ® Ga(—d3) ® Opn(—dy — d3) = Fi(—dy1) ® Fo(—d3) — Iz — 0.

(2) The vector bundle corresponding to Z is in the same stable equiv-
alence class of vector bundles as the direct sum of the vector bundles
corresponding to V; and V,, suitably shifted.

(83) There is an ezact sequence

0— O]Pn(—dl et dz) - IVl(—dl) @Ivz(—dz) 4 IZ —0

Proof:

(1) and (3) can be proved easily using the methods of [52] described in §2
of Chapter 3 (and in fact an analogous statement can be obtained in higher
codimension). We omit the details. It was originally proved in [25] in a
different way. (2) follows immediately from (1). O

Rao also remarks that his approach in [114] works in greater generality:
one can replace P* by any complete, connected arithmetically Gorenstein
variety P (cf. page 11) of dimension at least two, with a very ample line
bundle £, and doing linkage using only complete intersections coming from
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powers of £. That is, if we view P as embedded in P", these complete
intersections on P are the restrictions to P of codimension two complete
intersections in P* meeting P in a subsheme of codimension two in P. (So,
for instance, if P is a smooth quadric surface in P° then linking is done only
with divisors of type (a,a). For example, let Z, and Z, each consist of one
point on P. If Z; and Z, are on the same ruling then they are act directly
linked, even though they are the intersection of a divisor of type (0,1) with
one of type (2,0). On the other hand, if Z; and Z; are not on the same
ruling then they are directly linked by a complete intersection of two divisors
of type (1,1). This is because the latter is the intersection of P with a line
not lying on P, while the former is not.)

In higher codimension there is no known analogue to Rao’s converse of
the Hartshorne-Schenzel theorem for curves in P3, or to his restatement of
the problem in terms of stable equivalence classes of locally free sheaves. Any
such result would be a very welcome addition to the theory.

5.2 The Structure of an Even Liaison Class

As we mentioned on page 65, there are several natural questions to answer
about the equivalence relation of Even Liaison. The first two (connections
between linked schemes and whether all schemes are linked) were answered
in Chapter 4. The third and fourth are solved only in codimension two. The
third, to parameterize the even liaison classes, was answered by Rao, and
his work was described in §1 of this chapter. In this section we consider
the fourth question, to describe the structure of an even liaison class. This
structure has been called the Lazarsfeld-Rao Property, and was introduced
in full generality in Definition 4.3.6. In this section we will first recall the
set-up, but in the context of codimension two in projective space. (See the
last part of §3 of Chapter 4 for the set-up in arbitrary codimension.) We will
then outline the proof of the structure theorem from [11], and we will give
full proofs of those parts where the details are not too involved.

Recall, from Definition 4.3.5 and the discussion following it, that any
non-arithmetically Cohen-Macaulay even liaison class £ may be partitioned
L=L°UL'U---UL" .. according to the shift of the deficiency modules
(M*Y),--+,(M™?). At the heart of the Lazarsfeld-Rao Property is the set of
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minimal elements of the even liaison class, i.e. the elements of £°. The rest
of £ will be “built up” from these elements.

The first step is Basic Double Linkage. We now record the definition and
important properties in the case of codimension two (but see Remark 3.2.4
and page 86 for more details about these facts in the general case of arbitrary
codimension). Let V; be a codimension two subscheme of P", and choose
F; € Iy, of degree d;. Let Fy be a form of degree d, such that F; and
F, form a regular sequence, defining a complete intersection X. Then the
ideal F} - Iy, + (F3) is the saturated ideal of a scheme Z, with the following
properties: ’

(1) As sets, Z = V4 U X (in particular codim Z = 2).
(2) Forall1 <i<n—2, (M)(2)=(M)V1)(—dr).
(3) Z is linked to V; in two steps. In particular, if V; € £ then Z € Lhtdr,

(4) If V; has a locally free resolution

06— EPOp(—a;) > Ty, =0

i=1

where H!(G) = 0 (cf. §1), then Tz has a locally free resolution

0= G(—dy) @ Opn(—ds — ds) — ) Opn(—ds — a;) ® Opn(—ds) — Tz — 0.

=1

The only fact which we have not already seen is (4). This can be proved
either by applying the mapping cone procedure (Proposition 4.2.8) twice and
canceling redundant terms (as was done in Remark 5.1.1), or by applying
Theorem 5.1.7 and using the fact that Basic Double Linkage is really an
application of Liaison Addition, taking one of the schemes to be trivial.
Either (1) or (3) of Theorem 5.1.7 can then be used to give a proof. For
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instance, it follows by taking a mapping cone (see page 5) of the diagram

0
!

0 g(-d1) 0

! i !

Opn(—dy — dz) — @ Opn(—dy —a;) @ Opn(—d)
i=1
! !
0 — O]Pn(—dl b dz) — IV1 (—dl) o) O]Pn(—dg) — IZ -0
l !
0 0

We remark that for curves in P3, the fact that Z is evenly linked to ¥}
would follow from (2) by Rao’s theorem (Theorem 5.1.5). But in higher
dimension or codimension we do not have these results, and in any case we
have the further information that the linking can be done in two steps.

Recall from Definition 4.3.6 that an even liaison class £ of codimension-
two subschemes of P has the Lazarsfeld-Rao Property (or simply the LR-
Property) if the following conditions hold:

(a) If V4, Vz € L° then there is a deformation from one to the other through
subschemes all in £%; (in particular, all subschemes in the deformation
are in the same even liaison class).

(b) Given Vo € £° and V € L? (h > 1), there exists a sequence of sub-
schemes Vp, Vi, -+, V; such that for all 7, 1 < ¢ < t, V; is a basic double
link of V;_; and V is a deformation of V; through subschemes all in £

The main theorem which we will describe in this section is the following:
Theorem 5.2.1 ([11]) Every even .liaison class of non-arithmetically
Cohen-Macaulay codimension two subschemes of P* has the Lazarsfeld-Rao

Property.

Remark 5.2.2 In this remark we give the history of work on this problem.
The LR-Property was first proved for special even liaison classes of curves in
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IP® by Lazarsfeld and Rao [80]. Their main theorem was that if C' is a curve
in P® with index of speciality e = e(C) = max{t | h}(Oc(t)) # 0}, and if C
lies on no surface of degree e + 3, then C is minimal in its even liaison class,
and this even liaison class has the property described above. (Furthermore,
if C lies on no surface of degree e + 4 then £° = {C}; that is, C is the only
curve in £°.) This paper inspired the main structure theorem, both in [11]
and in [87].

Lazarsfeld and Rao’s paper was motivated by the conjecture of Harris
mentioned on page 62. That is, the general curve of fixed degree and genus
cannot be “linked down” to another curve of smaller degree and/or genus.
Indeed, they recall that when d > 2g — 1 the family of all smooth irreducible
curves in P of degree d and genus g is irreducible. (Note also that if a smooth
curve X of degree d and genus g satisfies d > 2g — 1 then ¢(X) < 0.) Then
they show that for a fixed integer g > 0 there exists a constant C(g) > 2g—1
such that a sufficiently general curve X of genus g and degree d > C(g) lies
on no surface of degree V/5d or less. Hence their structure theorem applies
to the even liaison class of X.

The next case proved was in [24], where it was shown that the even
liaison class of every arithmetically Buchsbaum curve (see Definition 1.4.7) in
P2 has the LR-Property. If the deficiency module M(C) of an arithmetically
Buchsbaum curve C has diameter one then the minimal curves all fail to lie
on surfaces of degree e(C) + 3 (cf. [22]), so the theorem of [80] applies. In
fact, the LR-Property was important in obtaining the results in [22]. But if
the diameter is greater than one then no curve in the liaison class satisfies
the hypothesis of Lazarsfeld and Rao [23]. Hence [24] gave a large class of
curves not covered by [80].

The proof of the main result of [24] used the paper of Bolondi [20], which
provided the approach to get the desired deformations. (This paper in turn
was based on the original paper of Lazarsfeld and Rao.) It was inspired by
the papers [1], [22], [23], [49] and [50], which provided technical tools as well
as very compelling evidence that the LR-Property should also hold at least
for Buchsbaum curves.

The paper [25] suggested a general approach to the problem and gave sev-
eral useful technical results. It also proved the first case of the LR-Property
in codimension two in any projective space, but it was a very limited case.
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The main structure theorem for codimension two subschemes of P* (The-
orem 5.2.1 above) was proved in [11]. The proof will be described below. A
similar proof was subsequently given in [27] for even liaison classes of codi-
mension two subschemes of an arithmetically Gorenstein variety in P*. (See
also page 100.)

The main structure theorem was given independently for curves in P3
by Martin-Deschamps and Perrin [87]. Although their results hold only for
curves in IP?, they give a much more detailed description of the structure and
the connections between the curves and the deficiency module (such as an
improvement of Theorem 1.2.4 of Rao, and an analysis of the connections
with the locally free sheaves mentioned in §1 of this chapter). They also show
how to construct the minimal elements of the even liaison class. A similar
analysis was subsequently done by Bolondi [19] for surfaces in P*4.

It should also be noted that in a more algebraic context, many results in
this direction have been obtained by Huneke and Ulrich. See especially [71],
Section 6. O

There are two main technical tools used in the proof of Theorem 5.2.1
found in [11]. The first tool is a sufficient condition for the existence of a de-
formation of the desired form. Let £ be an even liaison class of codimension
two subschemes of P". It turns out [25] that if two elements of £ are in the
same shift £* and have the same Hilbert function, then such a deformation
exists. This result (essentially) was known for aCM subschemes of codimen-
sion two in P [45], and proved for curves in P by Bolondi [20], inspired by
the paper [80]. The proof in [25] followed the same idea, and we will now
describe it.

Proposition 5.2.3 ([25]) Let £ be an even liaison class of codimension two
subschemes of P*, and let V1, V; € L. Assume that V; and V; have the same
Hilbert function (i.e. h°(P™, Iy, (t)) = h°(P™,Iv,(t)) for all t). Then

(a) it also holds that k™1 (P", Ty, (t)) = k"1 (P", Iv,(t)) for all t;

(b) there exists an irreducible flat family {V,},es of codimension two
subschemes of P™ to which both Vi and V, belong; and

(c) S can be chosen so that for all s € S, V, € L*, and so that further-
more V, has the same Hilbert function as that of V; and V,.
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Proof:
Consider a locally free resolution

0 G -1 @D Opn(—a;) = Ty, = 0 (5.3)
i=1 .
where H2(G) = 0 (cf. §1). Since V; is evenly linked to V3, a repeated use (an
even number of times!) of the mapping cone procedure (cf. Proposition 4.2.8
and §1 page 96) gives that V; has a locally free resolution

0-Gdad A BTy —0 (5.4)

where A and B are direct sums of line bundles. Since V; and V; are in the
same shift, it follows by taking cohomology that d = 0.

By adding a trivial addendum A to the first two terms in the locally free
resolution (5.3), we get

0560 A @ Op(~a) @ A Ty, — 0. (5.5)

i=1

We rewrite (5.4) and (5.5) as

0— & P Opn(—hi) = Iy, = 0,
i=1

0— &> P Opn(—ki) = Iy, =0,
i=1
where £ = G @ A (and hence H}(€) = 0) and r = rk€ + 1. Because V;
and V; are assumed to have the same Hilbert function, a calculation (taking
cohomology) shows that h; = k; for all <.
Hence we have u,v € Hom (€, @ Opn(—P;)). Now, following [80], we can
produce the desired deformation. Given s € k (the base field), let

w, = su+ (1 — s)v € Hom (S,GBOW(—h.-)) :

For general s € k, the cokernel of w, is the ideal sheaf Zy, of a codimension
two subscheme of P*, and these subschemes fit together in an irreducible flat
family (see also [80] and [77]). By Theorem 5.1.3, V; is in the same even
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liaison class as V; and V,. By taking cohomology one can check that they
are all in the same shift and that they all have the same Hilbert function. O

The second technical tool, in some sense the heart of the proof of Theo-
rem 5.2.1, is the following key lemma.

Lemma 5.2.4 Let € be a rank (r + 1) vector bundle on P* and let
¢: @iy Opn(—ai) = €

Y @, Opn(—=b;) — €,

a3 <a <L a,b by <o < by, be morphisms whose degeneracy loci
have codimension two. Then there exists a morphism

(D Opn(—c) = €

i=1

with ¢; = min{a;, b;} Vi, whose degeneracy locus has codimension two.

The proof is rather involved, and we refer the reader to [11] for details.

With these two tools, there are essentially three steps in the proof of
Theorem 5.2.1:

(1) Take care of the minimal elements (i.e. prove condition (a) of the LR-
Property);

(2) Relate a locally free resolution for a minimal element V, € £° to one
for an arbitrary element V € £*; and

(3) Find the right sequence of basic double links to complete condition (b)
of the LR-Property.

The first step is accomplished by the following:

Proposition 5.2.5 If V4, V, € L° then there is an irreducible flat family
{V;}ses of codimension two subschemes of P* to which both V; and V; belong.
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Proof:
By Proposition 5.2.3 it is enough to show that V; and V; have the same
Hilbert function. Consider a locally free resolution

0-P—-2F—-1Iy,—0 - (5.6)

with P a direct sum of line bundles and F a vector bundle with H}~!(F) =
0 (see (5.2) of §1). Since V, is evenly linked to Vj, by repeatedly using
the mapping cone procedure (Proposition 4.2.8), one obtains a locally free
resolution

0—-P®B—-FDA—-TIy,—0 (5.7

where A and B are direct sums of line bundles.
On the other hand, we can trivially add 4 to sequence (5.6) to get

0-POA-FOA—- Iy, —0. (5.8)

Clearly we will be done if we can show that P & A & P @ B (just take
cohomology on (5.7) and (5.8)).

Suppose we write P & A = @7_; Opn(—a;) and P & B = @i, Opr(—bi).
If a; #b; for some ¢ then by Lemma 5.2.4 there exists a morphism

POpn(—c) > FOA
=1

with ¢; = min{a;, b;} for all ¢, whose degeneracy locus Z has codimension
two. Hence its ideal sheaf has a locally free resolution

0 POp(—c;) > FdA— Iz(8) — 0.
=1

By considering Chern classes, one can check that Y°7_; a; = Y"i_, b;, and that
hence § = YI_;(¢; — a;) < 0. But this means that the deficiency modules
of Z are shifted to the left of those of Vj, contradicting the hypothesis that
Viec£l. D

A similar proof takes care of step (2) of the proof. Specifically, one proves
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Proposition 5.2.6 Let V, € L° have the locally free resolution
0=-P—-=F—-1y,—0
(with P and F as above) and let V € L* have the locally free resolution
0-POB-FPA—-Iy(6) -0

(with A and B direct sums of line bundles). If P & A = @i_, Opn(—a;) and
PoB=@@_,0p(-b) witha; <---<a, and by <--- < b,, then b; > a;
for all 1.

We omit the details of the proof.

It remains only to complete step (3) of the proof. Again we omit the
details, but the proof is similar to that given originally by Lazarsfeld and Rao
in [80] and we will give the basic idea. We consider locally free resolutions
of the type we have been using above. If V; € £L° and V € L* then we have
the two resolutions mentioned in Proposition 5.2.6, with b; > a; for all 2.

We have seen that whenever we get a short exact sequence of this form,
with the first two terms of the sequence the same, it follows that the corre-
sponding schemes are in the same shift (§ = 0) and have the same Hilbert
function, and so there is the desired deformation. So we have to focus on
those ¢ for which a; < b;, and perform basic double links to produce new
schemes for which “fewer” of these degrees are different. The idea of the
proof is to start with the maximum of such ¢ (essentially) and perform a
basic double link starting from Vp, using d; = b; — a; and d, = b;, to produce
a scheme V;. (See the set-up for basic double links on page 102. V; here
plays the role of Z in that set-up.) This is not quite correct, because of a
technicality, but it gives the right idea. One then uses fact (4) in the descrip-
tion of basic double links, on page 102, to produce the appropriate locally
free resolution for V;. One compares this to the locally free resolution of the
scheme V (suitably altered), and finds that “fewer” of the degrees differ. So
after a finite number of steps the degrees are all the same, and we are done.

This completes our description of the proof of Theorem 5.2.1.

Notice that it is possible to construct (with, say, the computer program
Macaulay [14]) a minimal element in the even liaison class of a given scheme
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V. From V one obtains the vector bundle F, and then one finds the “small-

est” set of rk F — 1 sections of F (chosen generally) which drop rank in
" codimension two. As in Lemma 5.2.4 and the discussion after it, this will be

the minimal element. Peterson has implemented this idea for curves in P2.

5.3 Applications

In this section we will describe a number of way in which Liaison Theory has
been applied in the literature. The topics chosen here are by no means close
to being a complete list. Furthermore, because of space limitations we will
obviously not be able to give more than an overview of the techniques and
ideas involved in these topics. We just want to give a flavor of some of the
ways in which Liaison Theory can and has been used.

The first topic deals with trying to find curves in P? having certain nice
properties, related to the Hilbert function of the general hyperplane section.
Liaison is used to find these curves. We will describe work from [58] and [84].

The second topic passes to surfaces in P* and threefolds in P°. We would
like to use Liaison to find smooth examples, working toward a classification
theorem. We describe work of several authors.

The next application involves some simple consequences of the Lazarsfeld-
Rao Property, giving some ways in which properties of the whole even liaison
class (say of a curve in P®) can be given just from knowledge of a minimal
element. In particular, we will show how in principle we can give a complete
list of all possible pairs (d,g) (degrees and genera) of Buchsbaum curves in
P3.

We then show how the Lazarsfeld-Rao Property can give information
about how codimension two subschemes of P* can specialize to “nice” sub-
schemes. In particular, we describe the proof from [26] that every Buchsbaum
curve in P® specializes to a stick figure. This generalizes the corresponding
fact for arithmetically Cohen-Macaulay curves, due to Gaeta. To do this, we
will also have to use some of the results and ideas from Chapter 3.

Finally, we give some connections between low rank vector bundles on "
and subschemes of P defined by a small number of equations. Our discussion
is based on Chapter 3 of [110].
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5.3.1 Smooth Curves in P°

We would first like to describe two problems concerning curves in P®. These
problems both turn out to involve the Hilbert function in a key way, and
they both use Liaison to find the desired curves. Furthermore, in both cases
although the problem is given in general, for the solution it turns out to be
enough to consider arithmetically Cohen-Macaulay curves.

The first problem is to find a bound for the (arithmetic) genus of a
nondegenerate, integral curve lying on an irreducible surface of given degree
k. This was solved in [58]. The second problem is to describe all possible
Hilbert functions for the general hyperplane section of an integral curve.
This was solved in [84]. (See [57] and [119] for similar results, and [51] for a
discussion of the relations between these approaches.)

Let C C P® be an integral curve of degree d and arithmetic genus g.
Let L be a general linear form defining a hyperplane H C P3. Let K
be the submodule of the deficiency module M(C) annihilated by L (see
Definition 2.1.1). Let I' = C N H be the hyperplane section of C by H
(where T is viewed as a finite set of points in P?). Let Ir = (F, Fy,---, F})
be the saturated ideal of I' (see page 7) in the ring R = k[Xo, X1, X3], and
set d; = deg F; < deg Fi41 = d;yy. Let H(T',t) = dimy(R/Ir); be the Hilbert
function of T'. Let AH(T,t) = H(T',t) — H(y,t — 1) be the first difference of
H(T,?).

Here are some important properties of I' and of AH(T,t) (see [60] for
basic facts about Hilbert functions):

(1) ([58]) T has the Uniform Position Property (U.P.P.). That is, any two
subsets of I' with the same cardinality have the same Hilbert function.
Most of the properties described here are a consequence of U.P.P. (In
fact, the general hyperplane section of an integral curve in any projec-
tive space P” is a set of points with U.P.P., provided that the field has
characteristic zero.)

(2) AH(T,t) =0fort < 0; AH(T',0) =1; AH(T',t) = 0 for t > 0 (since T
is a zeroscheme, so eventually the Hilbert function of I' is equal to the
Hilbert polynomial, which is the constant d).

(3) X AH(T',t) =d = deg T’ = deg C (use (2)).
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(4) AH(T,t)=t+1for0<t < dy — 1.
(5) AH(T,¢) =dyfordy —1<t<dp— 1.
' (6) AH(P,dg) < d;.

(7 AH (T,t) is of decreasing type. That is, for t > d; we have either
AH(T,t) < AH(T,t — 1) or AH(T,t) = 0. (This is a consequence of
U.P.P)

(8) Let !> 0. Then g = Yi_;[d—H(T,¢)]—dim K. (This is an elementary
calculation; see for instance [96].) Harris [58] shows that this is equal
to Y _o[(6 — 1)AH(T,i)] + 1 — dim K. (For this fact C can be in any
projective space.)

Remark 5.3.1 The “decreasing type” description of the possible Hilbert
functions for T given in (7) is central to both problems that we will discuss
in this section. Any zeroscheme in P? will have a first difference function
that is non-increasing in the range t > dp; U.P.P. forces it to be strictly
decreasing until it reaches zero. Indeed, it follows from work of Davis [37]
that zeroschemes which are not of decreasing type can be decomposed in
a very nice way, which violates U.P.P. See also [18] for a more geometric
interpretation of this phenomenon, viewed (in any projective space) in the
context of Macaulay’s growth condition [81]. O

Now suppose we are interested in finding an upper bound for the genus of
C, in terms of its degree d and the fact that C lies on an irreducible surface
of degree k. From (8) above,

l
=1
with equality if and only if C is arithmetically Cohen-Macaulay.
Now, we would like to determine the largest possible value for the right-
hand side of the inequality, given the degree d. Clearly the idea is to have
the growth of H(T,1) be as slow as possible, subject to the requirement that
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it have decreasing type. With no condition on the surfaces on which C lies,
this happens when the first difference function is

0, ift <-1;

1, ift=0;
AH(I,t) =12, f1<t<[4] -1

0, 1ft=r]

0, 1ft>f§]

where § = 0 or 1, depending on whether d is odd or even, respectively.
Castelnuovo’s bound ([31] or [60] pp. 351-352) follows from this:

{ (4‘2! - 1)2 R if d is even;

9= fae1) (=3 P

(52) (%2), ifdisodd

and this bound is achieved if and only if C is arithmetically Cohen-Macaula.y
and lies on a quadric surface.

Harris’ idea was that Castelnuovo’s bound above, and the extremal curves
obtained, really come about by liaison. The curves are either the complete
intersection of a quadric and a surface of degree % (if d is even), or else
residual to a line in the complete intersection of a quadric and a surface of
degree = 4+l (if d is odd). In either case this gives both the bound and produces
the sharp examples.

Now we impose the condition that C lie on an irreducible surface of
degree k. Harris analyzed the possible Hilbert functions that could arise, as
above, once he realized that they had to be of decreasing type. He broke the
argument into two cases, depending on whether d > k(k—1) or d < k(k—1).
His conclusion in either case was that the greatest genus of a curve lying on
an irreducible surface S of degree k is that of a curve residual to a plane
curve. However, the particular complete intersection required for the link
depends on whether d > k(k — 1) or d < k(k —1). (Only in the former case
is S necessarily one of the surfaces involved in the complete intersection.)
Furthermore, not only can some extremal curves be obtained in this way by
liaison, but in fact any extremal curve must be residual to a plane curve.

Specifically, Harris proves the following. Let

7(d, l)—d +1d(l—-4)+1—-(l—e—-1+l>
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where 0 < € < 1—1, —e = d(mod ). Then the genus g of an irreducible curve
C lying on an irreducible surface S of degree k satisfies

x(d, k), ifd > k(k = 1);
9= {,,(d, |[42] +1), ifd <k(k-1).

Harris’ work, then, described “extremal” kinds of Hilbert functions of de-
creasing type, showed that they must actually occur as the Hilbert function of
the general hyperplane section of an integral, arithmetically Cohen-Macaulay
curve, and showed that these curves are extremal with respect to his bound
- on the genus. But what about the other Hilbert functions of decreasing type?
In [59], Harris and Eisenbud ask what may be the Hilbert function of a set of
points in P"~! with U.P.P., and whether every such function actually occurs
as the Hilbert function of the general hyperplane section of some integral
curve in P".

In the case r = 3, we describe the answer given in [84]. As mentioned
above, it follows from work of Davis that if a zeroscheme in P? has Hilbert
function which is not of decreasing type, then it cannot have U.P.P. In [84],
Maggioni and Ragusa show that any Hilbert function of decreasing type occurs
as the Hilbert function of the general hyperplane section of some smooth,
arithmetically Cohen-Macaulay curve in P2. Since such a hyperplane section
automatically has U.P.P., it follows immediately that both questions of Harris
and Eisenbud have affirmative answers for r = 3. (In the case r > 4, neither
question has yet been answered, although some progress has been made. See
for instance [58], [105], [117], [18].)

An important fact used by Maggioni and Ragusa is that if Z is a set
of points in P? with U.P.P., then Z lies in a complete intersection of type
(d1,d;) (defined on page 111). This is not true in general if you remove the
condition that Z have U.P.P. A simple counterexample without U.P.P. is a
set of points Z with the following configuration:

(that is, three points on a line and one point off the line). Z clearly does
not have U.P.P. since one subset of three points lies on a line while the other
subsets of three points do not have this property. Here, d; = d; = 2, but
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the points do not lie on a complete intersection of type (2,2). The smallest
complete intersection containing Z is one of type (2, 3).

Notice that the values of d; and d; can be read off directly from the
Hilbert function. (See the properties of Hilbert functions of points in P?
listed above.) For instance, if Z is a zeroscheme in P? with Hilbert function

il--- =1 01 2
AH(Z,i)]--- 0 1 2 3

5 6 7
3 10
then d; = 3 and d; = 6.

Maggioni and Ragusa use a theorem from [39] which says (in our situa-
tion) how the Hilbert function of a set of points in P? behaves under liaison.
Specifically, say Z is a zeroscheme in P? linked to a zeroscheme Z’ by a com-
plete intersection X of type (a;,a;). (Notice that given a; and ay, we know
precisely what the Hilbert function of X is.) Let N = a; + a; — 2. Then

AH(Z')i) = AH(X,N — i) — AH(Z,N —i).

For example, the following configuration of points is a complete intersec-
tion of type (3,4) linking the “open points” Z to the “solid” points Z':

® O O
® O O
® ®© O
® ® o

(Think of the complete intersection X as consisting of three “horizontal”
lines and four “vertical” lines.) The theorem of [39] says that to compute
the Hilbert function of Z’ we subtract that of Z from that of X and then
“read backwards.” In this case, we have that Z lies on a unique conic, so
one quickly computes that AH(Z,?) is given by

0 if: < -1,
1 if:=0;
AH(Z,i)=(2 ifi=1;
2 ifi1=2;
0 if1>3

Then from
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i|---—10123456
AH(X,5)[--- 01 2 3 3 210
—AH(Z,4) |-~ 01 2 2 0000
AH(Z5-9)|- 00013210
we get (by reading backwards) that AH(Z',1) is given by

(0 if:< -1

1 if:=0;

r o )2 ifi=15

AH(Z',9) =93 ;=2

1 ife=3;

(0 if: >4,

Now, the idea of Maggioni and Ragusa goes as follows. Start with a
Hilbert function of decreasing type. We want to produce a smooth arith-
metically Cohen-Macaulay curve C in P whose general hyperplane section
has the given Hilbert function. We reason backwards. If such a smooth curve
C were to exist, its general hyperplane section Z would have U.P.P. Hence d
and d; can be read from the Hilbert function, and a complete intersection of
type (d1,d;) would link Z to another set of points Z’. The Hilbert function
of Z' would be given by the theorem of [39] above. Let us call this new
Hilbert function H' (which formally depends only on the given Hilbert func-
tion). The complete intersection linking Z to Z' would lift to one containing
C, and the residual curve C' would have a general hyperplane section with
Hilbert function H'. (Z' may not be sufficiently “general,” but in any case
the Hilbert function does not vary with the hyperplane for arithmetically
Cohen-Macaulay curves— see for instance Proposition 3.1.1.)

Now, Maggioni and Ragusa produce a stick figure C’, using a simple con-
struction, whose general hyperplane section has Hilbert function H'. They
then show that C’ lies on a smooth surface S of degree d; (where dy still
refers to the Hilbert function of C). Finally, they consider the linear system
d,H — C' on S and show that the general element C of this linear system
is smooth. But C is thus directly linked to C’ by a complete intersection of
type (d,dz), and so we have produced the desired curve.

Remark 5.3.2 As these two a.ppliéations show, it is of interest to have re-
sults which tell us when we can use liaison to produce smooth curves (or
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higher dimensional varieties). A very general result (holding for any dimen-
sion) is the theorem of Peskine and Szpiro mentioned below (Theorem 5.3.3).
For the case of curves in IP? there is a result of Nollet [108] which shows how
one can produce smooth curves starting from “very” non-reduced curves.
Specifically, let Y C P® be a smooth curve with homogeneous ideal Iy, and
let W be the curve whose homogenous ideal is the saturation of I#, for some
integer d > 1. Let n be an integer such that Iy (n) is generated by global
sections. If m > n then for a general pair of surfaces F' and G of degree m
containing W, we have

FNG=wWucC

where W C W, Supp(W) = Y and C is a smooth, irreducible curve. In
other words, W itself is linked to the union of a smooth curve C and a curve
supported on Y, so it is easy to recover the smooth curve C. Nollet also gives
formulas for the degrees and arithmetic genera of C and W. Furthermore,
he shows that if m > 0 then (F,G) is actually the lowest degree complete
intersection containing C. (See also Example 5.3.4.) O

5.3.2 Smooth Surfaces in P* and Threefolds in P°

A (special case of a) conjecture of Hartshorne [61] states that any smooth
codimension two subvariety of P*, for n > 6, must be a complete intersection.
Curves in IP° are rather well known (for instance, it is known what pairs (d, g)
of degrees and genera can occur). Hence it is of interest to study surfaces
in P* and threefolds in P®, to see what smooth varieties exist. An excellent
reference for this subject is the paper [40].

The main problem in this area is to classify surfaces in P4 or threefolds in
PP°, including existence and uniqueness results. According to [17] (page 325),
“Adjunction Theory is a major tool to get maximal lists of all possible cases.
Liaison is the major tool used to get existence results.” The classification is
generally done according to the degree.

The idea, then, is to start with known varieties, and link to get new
(smooth) varieties. The main fact which is used to produce these varieties
is a theorem of Peskine and Szpiro ([109] Proposition 4.1) which gives a
necessary condition for the residual variety to be smooth. (More precisely,
it says that the singular locus of the residual is “small.”) We give a special
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case of this theorem, quoted from [40] (Theorem 2.1), which deals with the
situation in which we are interested: -

Theorem 5.3.3 Let X C P*, n < 5, be a local complete intersection of
codimension two. Let m be a twist such that Ix(m) is globally generated.
Then for every pair dy,d; > m there exist forms F; € H*(Tx(d;)), 1 = 1,2,
such that the corresponding hypersurfaces V; and V, intersect properly and
link X to a variety X'. Furthermore, X' is a local complete intersection with
no component in common with X, and X' is nonsingular outside a set of
positive codimension in Sing X. :

Example 5.3.4 Note that if X is smooth, or if X is a local complete inter-
section with a zero-dimensional singular locus, then X’ is smooth and has
no component in common with X. These conclusions cannot be expected to
hold in general without hypotheses of this sort, even for curves in P3. For
example, consider the ideal (X;,X:)3. This is a saturated ideal defining a
scheme X of degree 6 supported on a line, A (see below). Then we claim
that any complete intersection containing X will link X to a residual X'
which is non-reduced and has a common component with X, namely the
line A. Indeed, any element of Ix vanishes to order three on the line A, so
any complete intersection will vanish to order at least 9 on A, and thus X'
has a component of degree at least 3 supported on A. (By the way, why is
(X1, X2)? a saturated ideal defining a curve of degree 67 One can check that

[(X127X22):(X17X2)] = (XI’X2)2
(X3, X3) : (X1, X2)?] = (X1, X2)%.

Now use the fact that ideal quotients of this sort are saturated (Lemma 4.2.1),
the fact that the sum of the degrees of linked schemes is equal to the degree
of the complete intersection linking them (Corollary 4.2.10), and the fact
that the ideal (X§, X¥) defines a complete intersection of degree k? for all k.
This same argument works to show that for any complete intersection Y in
P3, I} is saturated for all k) D

Example 5.3.5 As an example of Theorem 5.3.3 in action, we mention the
paper [102]. The object of [102] is to complete the list of the degrees for
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which there exist smooth threefolds in P® which are not arithmetically Cohen-
Macaulay. (The Hilbert-Burch matrices, hence the degrees, of smooth arith-
metically Cohen-Macaulay codimension two subvarieties of P* are known-—
for instance cf. [35] and [27].) It was shown by Banica [13] that for any odd
integer d > 7 and any even integer d = 2k > 8 with k = 55+ 1,55+ 2,55+ 3
or 5s + 4 there exist smooth threefolds in P® of degree d which are not arith-
metically Cohen-Macaulay. (In smaller degrees they are all arithmetically
Cohen-Macaulay.)

Hence it remained to consider multiples of 10. It was shown by Beltram-
etti, Schneider and Sommese [15] that any smooth threefold of degree 10 is
arithmetically Cohen-Macaulay. Miré-Roig’s idea was to use Liaison (and
Theorem 5.3.3 in particular) to produce smooth, non-arithmetically Cohen-
Macaulay examples for degrees d = 10n,n > 1.

Her starting point is the smooth non-arithmetically Cohen-Macaulay
threefold Y C P® of degree 12 having a locally free resolution

0—-000(1) - Q3) = Iy(6) - 0

where ( is the cotangent bundle of P* (cf. [13]). By studying the cohomology
of (), and using Theorem 1.1.5, one obtains that Ty (6) is globally generated.
Hence Theorem 5.3.3 gives that a general complete intersection of type (6,7)
yields a residual X which is smooth. Note that X has degree 30, is not
arithmetically Cohen-Macaulay (since the property of being arithmetically
Cohen-Macaulay is preserved under liaison), and one can check that Zx(8)
is globally generated.

From X, Miré-Roig produces her smooth threefolds of degree 10n,n > 5,
by linking with general hypersurfaces of degree 10 and n + 3. For degrees
20 and 40 she uses the same idea, but starts with different Y. We omit the
details. O

The classification of smooth surfaces in P* and threefolds in P® is not
yet complete. A very nice table summarizing the state of affairs to date is
given in §7 of [40]. It covers surfaces in P* up to degree 15 and threefolds
in P’ up to degree 18. That paper, together with the book [17], give most
of the necessary background, as well as a very extensive set of references,
from which the reader can learn more about this fascinating subject, using -
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many different approaches (in addition to Liaison and Adjunction Theory).
Another useful source is the paper [111].

5.3.3 Possible Degrees and Genera in a Codimension
Two Even Liaison Class

In this section and the next, we describe some consequences of the Lazarsfeld-
Rao Property (Theorem 5.2.1). In this section we look at some simple con-
sequences, and in the next section we consider a slightly more surprising
consequence. '

Let £ be an even liaison class of codimension two subschemes of P".
The Lazarsfeld-Rao Property says, in effect, that up to deformation, all of
L is described once you know all possible basic double links that can be
performed. (See the discussion beginning on page 102. We will use the
notation from that discussion without comment.) And essentially, all you
need to know to do this is the Hilbert function of the minimal elements. We
will give some idea of the extent to which this can be done.

As a first observation, notice that all minimal elements of £ (i.e. all
elements of £°) have the same Hilbert function (see the proof of Propo-
sition 5.2.5). In particular, they all have the same degree and arithmetic
genus, and in any given degree the size of the corresponding components of
the saturated ideals is the same (so they lie on the same number of hyper-
surfaces of given degree).

Let us assume we know the Hilbert function of any minimal element V}
of £. Assume that we have performed a basic double link, using F; € Iy,
of degree d; and a general element F; € Sy,, arriving at a scheme Z € L%,
Then from (4) on page 102, we can compute the cohomology of the vector
bundle G, and hence the Hilbert function of Z. In particular we know the
degree of Z (namely deg Z = deg V; + d1d;) and the arithmetic genus of Z.
But we also know all the possible basic double links that can be performed on
Z. So with only the initial information of the Hilbert function of V;, we can
(in principle) describe all the possible sequences of basic double links that
can be performed starting with V;. Hence we can describe all the possible
degrees and arithmetic genera of elements of the even liaison class L.

In practice, it is not so easy to carry out the above process from scratch.
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However, there are several useful facts from [25] §5 which make the job much
easier. Before stating these facts, we introduce the following notation for
basic double links in codimension two (see page 102): Let V; be a codimension
two subscheme of P* and F; € Iy, a form of degree d;. Choose Fj € Sy, such
that Fy and F, form a regular sequence. Let Z be the scheme obtained by
performing the corresponding Basic Double Linkage. Then we write

Vi:(ds,dy) = 2

(by Proposition 5.2.3, up to deformation it is enough to know the degrees d;
and d2)

The first fact, which can be proved fairly quickly using Proposition 5.2.3,
is the following:

Lemma 5.3.6 Let Vi be a codimension two subscheme of P*. Consider the
basic double links
ii(a,b+c)— 2

and

Vi:(a,b) = Y::(a,c) = Z'.

Then Z and Z' are in the same shift of the same even liaison class, and there
is an trreducible flat family of codimension two subschemes of P* to which
both belong.

In particular, the basic double link
Vi:(a,b) = Z
is equivalent (up to deformation) to the sequence of basic double links
ii(a,1) = Zy:(a,1) = -+ = Zp_1 : (a,1) = Z.

Hence any sequence of basic double links is equivalent (up to deformation)
to one (longer, in general) where the polynomials playlng the role of F; all
have degree 1.

The next fact can also be proved using similar methods. (The proof can
be found in the proof of Lemma 5.2 of [25].)
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Lemma 5.3.7 Assume that a > b and that there exists a sequence of basic
double links
Vi:(a,1) =Y :(b1l)— Z

(It is not always the case that such a sequence exists, even if the first basic
double link exists.) Then the sequence

Vit(a-1,1)=Y":(b+1,1) =2

also ezists, Z and Z' are in the same shift of the same even liaison class,
and there is an irreducible flat family of codimension two subschemes of P
to which both belong.

Using these facts, the following very useful theorem is proved in [25]. It
severely restricts the possible sequences of basic double links that one has to
consider in the above program of describing the entire even liaison class. It
will also play a crucial role in the next section.

Theorem 5.3.8 ([25] Corollary 5.3) Let £ be an even liaison class of
codimension two subschemes of P*. Let X € L° and let X' € Lh. Let

X =Xo: (b, fr) = X1 (bay f2) = - = Xpa : (bmfp) - Xp

be a sequence of basic double links, where X, € L" has the same Hilbert
function as X'. Let s = a(lIx) (see Definition 2.2.1). Then there ezists
another sequence of basic double links

X=Y:(s50) =2 V1:(921) = =2 Y (gn) 2 s
where
(1) 5>0,s<g;<g3<-+<grandb+r—1=h;
(2) deg X' =deg X +sb+g2+---+gr;

(8) X, and Y, have the same Hilbert function (as that of X') and are
in L* (hence we have the desired deformation).

Moreover, the sequence (b;gz,- -+, 9r) is uniquely determined by X'.
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Example 5.3.9 We illustrate the ideas above by giving a complete list of
all possible degrees and arithmetic genera of Buchsbaum (non-arithmetically
Cohen-Macaulay) curves in P? of degree < 10. Recall the notation from §3.3:
if C is a Buchsbaum curve, we assume that the module has components of
dimension n; > 0,ng > 0---,n,_; > 0,n, > 0 respectively, and we let
N = dimyM(C) = ny + --- + n,. From Remark 3.3.1 (c), the following are
the only three possibilities for the dimensions of the components of M(C):

(a) » =1,n; =1 (in this case, the minimal curve C; has degree 2 and
arithmetic genus -1);

(b) r = 1,n; = 2 (in this case, the minimal curve C, has degree 8 and
arithmetic genus 5);

(¢) r = 2,n; = 1,n2 =1 (in this case, the minimal curve C3 has de-
gree 10 and arithmetic genus 10).

The genera in the last two cases can be computed using Theorem 3.2.3 (d).
Since basic double links are a special case of Liaison Addition, it is also pos-
sible to use Theorem 3.2.3 (d) to compute the arithmetic genus of the curve
obtained from a given curve by performing a basic double link. (There are
other ways to do this, for instance using the fact that a basic double link really
is a sequence of two links (cf. page 86), and then applying Corollary 4.2.11
twice.) One obtains

Lemma Let C : (a,b) = Y, where C and Y are curves in P?. Let g(C) and
g(Y) denote the genera of C and Y respectively. Then

1
g(Y)=0b-deg C + -2-ab(a +b—4)+g(C).

Now, to know which Buchsbaum curves of degree < 10 exist, it is enough
to know what sequences of basic double links can be performed on the above
three curves and still obtain a resulting curve of degree < 10, keeping in
mind Theorem 5.3.8. Clearly no such basic double link can be done to C; or
Cj3 since their degrees are already too large. (Recall that their homogeneous
ideals start in degree 4, by Corollary 2.2.6, so the result of the smallest basic
double links on C, and C3 would have degrees 12 and 14, respectively.)
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The result is the following list of possibilities. We modify slightly the
notation of Theorem 5.3.8 for basic double links, denoting a typical sequence
by X : (b;g2,--+,9-) (6=>0,8< g2 <::+<g,). For example,

C1:(3;0) < C1:(2,3)>Z
C1:(0;4) <<= C1:(4,1)>Z
C:(3;4,5) < C1:(2,3)=Y1:(4,1)>Y;:(5,1) > 2

So, for instance, C; : (0;4) is the union of a plane curve of degree 4 and two
skew lines, each meeting the plane curve once, while Cj : (3;0) is the union
of a complete intersection of type (2,3) and two skew lines, each meeting the
complete intersection in 3 points. Then Figure 5.1 gives all the possible pairs
(d,g) that can occur, and it gives all the possible sequences of basic double
links (in view of Theorem 5.3.8). Notice that this does not tell us which of
the corresponding families contain integral curves. (See [2], [88] and [106].)
O

As a final illustration of how the whole even liaison class £ can be de-
scribed from knowledge of the minimal elements, we consider curves in P
and the problem of finding maximal rank curves in £. (See page 23 for the
definition. The main idea behind the notion of “maximal rank” is that the
deficiency module must end before the ideal can begin.)

Of course since all the elements of £° have the same Hilbert function and
the same deficiency module, £° contains some maximal rank curves if and
only if every element of £° has maximal rank.

To see whether there exist curves in £ of maximal rank, it is enough
to consider only the minimal curves and any curves obtained from them by
sequences of basic double links (because of the Lazarsfeld-Rao Property).
Now, using the facts about basic double links starting on page 102, it is
not hard to check the following: if we perform the basic double link X :
(a,b) — Z, then in passing from X to Z the deficiency module moves to
the right exactly b places, while the beginning of the ideal moves to the
right at most b places (and exactly b places if a is sufficiently large, namely
a=deg F; > (deg F;) + a(Ix) = b+ a(Ix)).

Hence it follows that £ contains mazimal rank curves in every shift (of
infinitely many degrees in each shift) if and only if the minimal elements of
L have mazimal rank. (This was first observed in [22].)

124



sequence
degree | genus of BDL’s
2 -1 Ch
3 — | (does not exist)
4 0 Cy : (1;0)
5 1 C::(0;3)
6 3 C1:(2;0)
- C1:(0;4)
7 4 ¢k (1;3)
6 Cy: (0;5)
8 5 C,
6 Cl : (1,4)
C1:(0;2,4)
8 C:1:(3;0)
10 Ci : (0;6)
9 8 Cy: (0;3,4)
9 C1:(23)
01 . (1; 5)
15 C1:(0;7)
10 10 Cs
11 Ci:(2;4)
C::(0;3,5)
13 C1 : (1;6)
15 Cy : (4;0)
21 C: : (0;8)

Figure 5.1: Buchsbaum (non-aCM) curves in P® of degree < 10
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5.3.4 Stick Figures

It is a classical problem whether every smooth curve in P specializes to a
stick figure. Recall that a stick figure is a union of lines such that at most
two of the lines meet in any point. See [63] for background on stick figures.
It was shown by Gaeta [48] that every arithmetically Cohen-Macaulay curve
specializes to a stick figure. (See also [28] for an analogous statement in
higher dimension, still codimension two.)

In this section we describe the approach taken in [26] to prove that every
Buchsbaum curve in P® specializes to a stick figure. The idea is to show
how the results on basic double links from the last section can be used, in
conjunction with the results on Buchsbaum curves in Chapter 3 and the
Lazarsfeld-Rao Property, to extend an idea of Bolondi [21].

Bolondi’s idea, briefly, is the following. Let £ be an even liaison class
of curves in P® and assume that £° contains a stick figure Co. Assume
furthermore that in the initial degree of the ideal of this curve (i.e. a(lg,))
there is a polynomial consisting of a product of linear forms; that is, a union
of planes. Hence in any degree d for which (I¢, ), is not zero, there is a union
of d planes containing Co. Then given any curve C in £, we can choose our
sequence of basic double links (guaranteed by the Lazarsfeld-Rao Property)
so that each basic double link C; : (a,b) — C;41 uses polynomials F; and F;
(see page 102) which are unions of planes (by abuse of notation), and F; can
be chosen generally enough so that the intersection of F; and F3 is a reduced
union of lines. Hence C specializes to a reduced union of lines.

The problem is that this union of lines may be forced to have more than
two of the lines meeting in a point. A simple example is to let Co be the
degree 9 curve consisting of four general lines on a plane L, four general lines
on a plane Lj, and the line of intersection of L; and L,. Then L; L, is the only
surface of degree 2 containing Cp, so the basic double link Cp : (2,1) — C
results in a curve C; with a triple point.

The first step in resolving this problem, used already by Bolondi, is to
assume that the minimal element is hyperplanar, i.e. that the reduced union
of planes of minimal degree on which it lies (by assumption) has the further
properties that any three planes meet in a point and no component of C
lies on the intersection of any two of the planes. (See also page 57.) We
saw in §3.3 that for any Buchsbaum even liaison class L we can construct a
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hyperplanar stick figure in £°. (This is needed for Theorem 5.3.11.)
It is slightly more subtle to see why this is not enough. Consider the
following example.

Example 5.3.10 In this example we will use in a heavy way the fact that
a basic double link is the union of a given curve and a certain complete
intersection (see page 102). Let Cj be a set of two skew lines and consider
the sequence of basic double links

Co:(20,1) = Cy: (15,1) — C2: (4,1) — Cis.

C: is the union of Cp and 20 lines on a plane L;. C; is the union of C)
and 15 lines on a plane L,. However, because 15 < 20, the surface F; of
degree 15 (containing C) used in this latter basic double link contains L;
as a component. Hence the line of intersection of Ly and L, is a component
of C,. Next, any surface of degree 4 containing C, contains both L, and L,
as components. Hence C3 contains a triple point (coming from the two facts
written in italics). O

The idea used in [26] is that this type of obstruction can be avoided by
using Theorem 5.3.8, which allows us to assume that the sequence of basic
double links is done in strictly increasing degree. One checks that this is the
only thing that can go wrong, and so we have

Theorem 5.3.11 ([26]) Let £ be an even liaison class of curves in P3 and
assume that there is a hyperplanar stick figure Co € L°. Then every curve in
L specializes to a stick figure.

As a corollary of Theorem 5.3.11 we have the promised result for Buchsbaum
curves (thanks to the construction in §3.3):

Corollary 5.3.12 ([26]) Every Buchsbaum curve in P? specializes to a stick
figure. ‘

In [26] there is a more general theorem, generalizing the notion of a stick
figure to codimension two subschemes of projective space. This result is
applied in a similar way to certain Buchsbaum surfaces in P4, although the
result is not as strong as the one above for curves.
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Remark 5.3.13 Thanks to Remark 3.3.1, we can use the same techniques
to prove a result in the opposite extreme: Every Buchsbaum curve in P®
specializes to a curve supported on a line (even staying in the same liaison
class throughout the deformation). It is not known whether every curve has
this property. 0O

5.3.5 Low Rank Vector Bundles and Schemes Defined
by a Small Number of Equations

In this section we give a very brief description of how Liaison Theory can be
applied to the study of vector bundles of low rank on P*, and to the study
of schemes defined by a small number of equations. We refer to Peterson’s
thesis [110], Chapter 3, for a much fuller discussion of this topic; almost all of
this section is based on that discussion, and is just intended to give a flavor
of what can be done.

How many equations “should” it take to define a scheme? That is, given
a scheme V, what is the ideal with the smallest number of generators whose
saturation is Iy? Consider for instance curves in P? (locally Cohen-Macaulay
and equidimensional, as always). If C' is a complete intersection then of
course its saturated homogeneous ideal is generated by two elements (and
in particular C is defined scheme-theoretically by two elements). It is also
possible that the saturated ideal of C' may be generated by three elements:
for instance, a twisted cubic is such a curve. These are called almost complete
intersections.

On the other hand, a result of Peskine and Szpiro says that as long as
C C P2 is at least a local complete intersection then C is defined scheme-
theoretically by four equations (see below). An intuitive argument for this
is as follows. Choose two general polynomials F and F; € I¢ of sufficiently
large degree, defining a complete intersection X which links C to some curve
C' having no component in common with C. At “most” (but not all) points
of C, F; and F; are enough to cut out C locally. Choose a third general
polynomial F; € Ic. This is enough to cut out C at the remaining points.
However, (Fy, F3, F3) vanishes not only on C but also at the points of inter-
section of F3 with C’; hence we need a fourth polynomial to eliminate those
points.
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The interesting question is to describe those curves in P® which are cut
out scheme-theoretically by three polynomials. Such a curve is called a quasi-
complete intersection. Among these, of course, are the almost complete in-
tersections.

In general, any codimension d subscheme of P* whose saturated homo-
geneous ideal is generated by d + 1 elements is called an almost complete
intersection. If V is defined scheme-theoretically by d + 1 equations (i.e. if
there is an ideal with d + 1 generators whose saturation is Iy) then V is said
to be a quasi-complete intersection. The observation of Peskine and Szpiro
referred to above actually says that if V is a local complete intersection in
P" then V can in any case be defined scheme-theoretically by n+1 equations
([109] pp. 301-302).

A rank r vector bundle £ on P" is said to be of low rank if r < n. Liaison
provides a connection between low rank vector bundles and codimension two
schemes which can be defined by a (not necessarily saturated) ideal with a
small number of generators, namely n or fewer.

In one direction, given a scheme V which is defined scheme-theoretically
by m equations then we have an exact sequence

0—E&— P Opn(—a;) > Iy — 0. (5.9)
i=1
The surjection comes from the fact that V' is defined scheme-theoretically
by m equations. Since we do not assume that these m polynomials define a
saturated ideal, we do not have that H}(€) = 0 (compare with the sequence
(5.1) and the discussion immediately following it). However, since V' is locally
Cohen-Macaulay and equidimensional, € is at least locally free. (We do not
distinguish between locally free sheaves and vector bundles. See [60] Exercise
I15.18) f m <n,thenr=1tkE=m—-1<n.
In the other direction, given a vector bundle £ of rank m — 1, for large d
we have an exact sequence

0— Om—2 — g(d) - IVI(5) -0

where § can be computed from a Chern class calculation, and V' has codi-
mension two. Then link V’ by a complete intersection (Fy, F;), where deg
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F.=a;,i=1,2, and let V be the residual. This gives, after twisting by —¢é
and applying Proposition 4.2.8, the exact sequence

0—EY(6—d—ai—az) = O(—a —a))" 29 O(—a)®0(—a,) - Iy — 0

(where we write O for Opn). Hence V is defined scheme-theoretically by m
equations. A

It is natural to ask if there is any connection between a set of minimal
generators for the saturated ideal of a scheme V' (or the number v(Iy) of such
generators) and a set of polynomials which defines V' scheme-theoretically.
In this regard we have the following useful theorem of Portelli and Spangher:

Theorem 5.3.14 ([112]) Let I be the homogeneous ideal of a scheme V
in P*. Let s = v(Iy). Lett denote the minimum number of elements re-
quired to generate V scheme-theoretically. Then there exists a minimal sys-
tem g1,---,9, of homogeneous generators of I such that g1,---,g; define V
scheme-theoretically.

Peterson uses this result to prove the following theorem:

Theorem 5.3.15 ([110]) Let V be an equidimensional, locally Cohen-
Macaulay codimension two subscheme of P* with homogeneous ideal Iy and
tdeal sheaf Ty. If V is a quasi-complete intersection then

v(Iv) — v (M*?)V(V)) =3.
(See page 82 for notation).

We now show how Peterson uses this theorem to reprove a result from
[30] about quasi-complete intersection Buchsbaum curves in P3; this result
brings together several of the topics which we have seen in these chapters.

Corollary 5.3.16 ([30]) Let C be a Buchsbaum, non-aCM curve in P3. Let

N = dimM(C) . If C is a quasi-complete intersection then v(Ic) = 4 and
N=1.
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Proof:

Notice that since M(C) and MY(C) have trivial module structure, we
have v(MVY(C)) = N. Recall also the result of Bresinsky, Schenzel and Vogel
[30] that v(Ic) > 3N + 1 (see page 39 for the proof). Hence Theorem 5.3.15
gives 3 = v(Ig) — N 2 2N + 1. Since in any case N > 0, we get the desired
result. O

Finally, it is observed in [30] and in [110] that the connection (described
above) between vector bundles of low rank and schemes defined scheme-
theoretically by a small number of equations easily gives the following corol-

lary. Let £ be a rank two vector bundle on P® with N = ¥,z h*(P3,€(n)).

If N > 1 then no section of £ can have a Buchsbaum curve as zero scheme.
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minimal generating set, 3

minimal shift, 86

Porteous’ formula, 2, 93
projective dimension, 11

quadric surface, 91, 101
quasi-Buchsbaum, 27
quasi-complete intersection, 129

rational quartic curve, 22 -
rational sextic curve, 92
regularity
m-regular, 8
connection to minimal free res-
olutions, 9
residual, 63, 64



residual intersections, 66
resolution, free, 5
Riemann-Roch Theorem, 92

saturation, 7
self-linked, 64
sheaf

ideal, 6

structure, 6
sheafification, 5

examples of, 6

perserves exactness, 6
skew lines, 21, 52, 89, 91
Socle Lemma, 42, 43, 90
stably equivalent, 97
stick figure, 27, 57, 59, 68, 95, 116,

126

hyperplanar, 57, 59, 126
surfaces in P4, 99
syzygy module, 4

threefolds in P®, 68

Uniform Position Property, 19, 111
Uniform Resolution Property, 19
unmixed, 69

vector bundle
low rank, 129

zeroscheme, 51
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