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0.1 INTRODUCTION

The science of disperse systems is the study of solid or liquid particles
suspended in a medium (usually in a gas). Such systems are created during
various natural processes, such as smoke particles from forest fires, sand and
dust storms, blowing snow, condensation of water vapor ‘n the atmosphere,
volcanic dust, spores and seeds from plant life, and meteoritic dust. Several
industrial operations produce aerosols either as an intentional part of the op-
eration or as an undesirable byproduct. Some of the delibe-ate aerosols are
fluidized catalysts, emulsions of various sorts, the spray drying of viscous lig-
uids, and the atomization of liquid fuels and so on. The military is also very
concerned with the science of aerosols in order that the propagation of ra-
dioactive clouds from atomic explosions and the production and propagation
of smoke screens can be better understood.

Once a disperse system is produced it is usually unstable because it will
change with time. The most important process corresponding to the evolu-
tion of disperse systems, is the process of coagulation (merging) of particles
in a disperse system. The theory of coagulation of aerosols deals with the
process of adhesion or coalescence of aerosol particles when they come in
contact with one another. The aim of this theory is the description of the
particle size distribution as a function of time and space as the disperse
system undergoes changes due to various physical influences.

The major part of the current study will deal with the coagulation pro-
cesses as it affects particle size distribution. Since condensation, evaporation,
fragmentation, precipitation, and coagulation are all an integral part of the
evolution of the particle size spectrum, these other processes will also be
considered in some of the mathematical models discussed in this notes.

We suppose that the number of particles per unit volume is sufficiently
small so that the probability of triple, quadruple, or more frequent encounters
is negligible; thus binary collisions are assumed to occur simultaneously with
the chance splitting of single particles in two. Using this basic assumption,
Smoluchowski [63] obtained the following infinite set of nonlinear differential
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equations:

8c1§t) ; Z Ki—jjci—j(t)cj(t) — ci(t) Z Ki jc(t) (0.1)

Jj=1

with the initial conditions
ci(0) = > 0. (0.2)

Applications of (0.1) can be found in many problems including chemistry
(e.g. reacting polymers), physics (aggregation of colloidal particles, growth
of gas bubbles in solids), engineering (behaviour of a fuel mixture in engines),
astrophysics (formation of stars and planets), meteorology (coagulation of
drops in atmospheric clouds).

The constant coeflicients K; ; are to be non-negative and symmetric, i.e.
K;; >0and K;; = K;; forall 7,57 > 1. The complexity of the system
(0.1), (0.2) is determined by the form of Kj; ;’s as functions of the indices
i,7. The function Kj; ; is called a coagulation kernel; it describes intensity of
interaction between particles of mass ¢ and j and is supposed to be known.
The unknown non-negative function ¢;(t) is the concentration of particles

with mass ¢, 2 > 1.

Miiller [56] rewrote equation (0.1) in terms of an integrodifferential equa-
tion for the time evolution of the particle mass density function. Let ¢(z,t)dz
be the average number of particles per unit volume at time ¢t whose masses
lie between z and z + dz. All other averages are referred to a unit volume,
too. The function K(z,y) (coagulation kernel) is introduced by assuming
that the average number of coalescences between particles of mass z to
z + dr and those of mass y to y+dy, is c(z,t)c(y,t)K(z,y)dzdydt
during the time interval (t,t+ dt). The quantity ¢(z,t) is the particle mass
density function. Then the model (0.1), (0.2) converts into

Oc(z,t) _l_/z _ _ —
——at = 3 | K(x y,y)C(CL” yat)c(yat)dy

—c(:r,t)/ K(z,y)c(y,t)dy, z,t>0, (0.3)
0
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c(z,0) = co(z) >0, z>0. (0.4)

The first integral in (0.3) expresses the fact that a particle of mass z can only
come into existence if two particles with masses z —y and y collide. The
second integral says that each particle of mass z disappears from the interval
¢ to z + dr after colliding with a particle of mass y . The coagulation
kernel K(z,y) , or the collision frequency factor, is dependent upon the
physics of collisions. It can be both bounded or unbounded function. For
instance, when coagulation is controlled by Brownian diffusion, then

K(z,y) = const - (:cl/?’ + y1/3)(w_1/3 + y_1/3).

If we consider the gravitational coalescence , which refers to the fusion of
particles of different sizes colliding due to the difference in their rates of fall
in a gravity field, then the coagulation kernel can be presented as

K(z,y) = const - (z!/® + y1 /32|23 — 23,
Golovin [41] considered the simplified kernel
K(z,y) = const - (z + y).
Martynov and Bakanov [48] considered
K(z,y) = 1 + B2(z +y) + Bszy  where §; = const.

Other kernels and more extensive discussion can be found in Drake’s review

[18] or in Voloschuk [77].

Melzak [54] extended the model concerned for the case when particles
undergo breakdown. He proposed the following equation:

200 = 2 [ K- vty etw thdy—c(a,t) [ Kz, v)etw,ay+
0 0

+ / N U(y, z)c(y, t)dy — E%—Q /0 ’ y¥(z,y)dy. (0.5)
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The particle-mass distribution varies as a result of two processes, coagulation
and fragmentation. The breakdown function ¥(z,y) > 0 enters through
the assumption that c(z,t)¥(z,y)dzdydt is the average number of particles
of mass y to y+ dy created from the breakdown of particles of mass z

to z + dr, during the time interval (¢,t + dt). Therefore ¥(z,y) =0

if z < y. The third integral in (0.5) describes production of particles z

in the process of breakdown of particles y (z < y < o) ; the fourth one
reflects disappearance of particles z due to their breakdown into particles
y(0<y<z).

Friedlander [31] considered the case of fragmentation which allows splitting
of particles into two other particles. This way gives us the coagulation-
fragmentation equation

Jc(x,t) 1

ek 5/ K(:c—y,y)c(:c—y,t)c(y,t)dy—c(:c,t)/o K(z,y)c(y,t)dy+
0

+ /000 F(z,y)c(z + y,t)dy — %c(x, t) /02 F(z — y,y)dy. (0.6)

Equation (0.6) can be obtained from Melzak’s model (0.5). Really, if it
is assumed that each particle can only be split into two sub-particles then
U(z,y) = U(z,z —y) and equation (0.5) may be rewritten in the form (0.6)
where the fragmentation kernel F becomes F(z —y,y) = ¥(z,y) . The
physical motivation of introducing the fragmentation kernel F similar to
the coagulation kernel K. It is important to note that the fragmentation
kernel is symmetric function unlike the breakdown function ¥(z,y). All the
functions concerned are non-negative.

The discrete case for (0.6) is

dczgt) 5 Z Ki_jjci—j(t)cj(t) — ci(t) Z K; jci(t)+

7=1

oo i—1
1
+> Fijeiri(t) — 5¢i(?) > Fijj;. (0.7)
Jj=1 Jj=1



10 P. B. DUBOVSKII

If we suppose that the particles can coagulate to form large particles or
fragment to form smaller ones by addition or loss the smallest particle with
mass 1 respectively, then we come to the Becker-Déring cluster equations

dc;gt) = Ji_1(c) = Ji(c),2 < i < 00 (0.8)

dc:igt) = Ji(c) - ; Ji(e), (0.9)

where
J,'(c) = a;c1¢; — bit1Cit1, (0.10)

The equations (0.8)-(0.10) can be obtained if in (0.7) we put
a;, =1, 1>2
K; ;=< 2ai, i=j3=1
0, t>2 and j > 2
bit1, J=1, 122
F;j =4 2b, i=3=1
0, 1>2 and j > 2.
The original model was proposed by Becker and Déring [9] but it is the
modified form given by Penrose and Lebowitz [59] which will be studied

here.

The spatially inhomogeneous model of coagulation was presented by Berry
[10] and Levin and Sedunov [45]:

dc(z, z,t) + 9
ot Oz

(r(z,z,t)c(z,2,t)) + div.(v(z, z,t)c(z, 2, 1)) =
1 [
=5 [ K@= v.v)ela =260l 2,0ty
0

ez, 2,1) / K (2,y)e(y, z,t)dy. (0.11)
0

In (0.11) the space variable z € R? , the known vector-function v(z,z,t) €
R3® is the velocity of space motion of particles with mass z . The scalar
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function r(z,z,t) € R! is equal to rate of growth of particles due to conden-
sation or evaporation processes (e.g. condensation of vapour on water drops
in atmospheric clouds). In evaporation processes the function r(z,z,t) is
negative. In physically real situations we often have r ~ z%, a > 0, 0<
zo < £ < T where ¢ is a critical mass of a particle which splits regions of
its stable and unstable state; T is a conventional boundary of satiation, after
which the function r(z) may be considered as bounded. The physical mean-
ings of functions v(z,z,t) and r(z,z,t) are confirmed by mathematical
reasonings. Namely, the characteristic equations to (0.11) yield

iai = r(z, z, 1), (-jf- = v(z, z,1).

dt dt

So, the second term on the left-hand side of (0.11) represents grows by con-
densation or decay by evaporation. The third one represents the change in
¢ due to motion in the physical space. Hence, if there is only motion in the
direction of the gravity field, then the third term accounts for the effect of
settling or sedimentation. We could add to the right-hand side of (0.11) a
source term for new particles. This source term may account for droplet for-
mation due to water vapor condensing on atmospheric condensation nuclei.
Also, we could consider fragmentation and efflux terms in (0.11). The last
one is mathematically expressed by adding a(z, z,t)c(z,2,t), a > 0 to the
left-hand side of (0.11) and describes absorbtion phenomena (see, e.g., [32,
33, 66, 79]).

In this notes we treat the general coagulation models from mathematical
point of view. Usually the results and methods being discussed hold both
for discrete and continuous models and we shall not usually specify this fact.
We shall emphasize if results for discrete case cannot be transformed for

continuous one or vice versa.

0.2 MAIN PROPERTIES OF THE COAGULATION EQUATION

The main observation is that the equations (0.3), (0.5) and (0.6) possess
the mass conservation law. Actually, from definition of the distribution func-
tion ¢ we conclude that the total mass of particles per unit of volume is
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expressed by the first moment of ¢(z,1):

Ni(t) = /0 ” (e, t)dz. (0.12)

We multiply the equations by ¢ and assume that all integrals in (0.3), (0.5)

and (0.6) exist. Then after integration we obtain the mass conservation law

dN,(2)
dt

=0. (0.13)

To derive (0.13) we have used the change of variables z' =z —y, y' =y
in the first integral convolution-like term in the right-hand side of equations.
The Jacobian of such transform is equal to 1. In this place we have employed
the symmetry property of a coagulation kernel, too. From physical point
of view the mass conservation law is very natural. The solutions to the
coagulation equation for whih the equality (0.13) holds for all ¢ > 0, we call
mass conserving solutions.

For pure coag'ulation equation (without fragmentation and other pro-
cesses) the coagulation must lead to dissipation of total amount of particles

which is expressed by the zero moment of solution:

No(t) = /0 ” (e, t)da. (0.14)

The mathematical treatment of equation (0.3) confirms that the dissipation

law 1s valid:

dNo (%)
dt

The same results hold for corresponding discrete equations.

<0. (0.15)

We should pay attention that for unbounded coagulation kernels the values
of the right-hand side of equation (0.1) may belong to another functional
space than its domain. This brings us the main difficulties in studying the
coagulation equation with unbounded kernels.

It is worth pointing out that the coagulation equation is similar to Boltz-
mann equation of gas kinetics, but unlike the Boltzmann equation, the co-

agulation one considers nonelastic collisions of particles. Therefore for the
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coagulation equation we do not possess the conservation of the second mo-
ment of solutions which physically expresses the energy conservation law.
The Boltzmann equation conserves zero, first and second moments of solu-
tions. As we have seen, the coagulation—fragmentation one conserves only
the first moment.

Another important observation is that the initial value problem being
considered possesses the property of immediate spreading of perturbations.
In fact, let us restrict ourselves to the simplest case of equation (0.1) with
the constant coagulation kernel I(; ; =1 and the initial data

ci(0) = (1,0,0,...). (0.16)

We introduce the generating function

oo

G(z,t) = Z ziei(t).

=1
Then we obtain the ordinary differential equation

G 1, 1
o =3¢ —1+t/2G’

whence

@2yt
G(z,t) = Z (1+t/2)z+1

Consequently,

(/2

ci(t) = W >0 forall t>0,:2>1. (0.17)

This example demonstrates the property of immediate "scooping out” of the
initial distribution (0.16) and immediate spreading of perturbations. This
property demonstrates common properties of coagulation equation and par-
abolic equations. Another conclusion from this example is that there is no
sense to restrict initial data to, e.g., compactly supported ones. The mi-
nor natural initial data which should be considered to study the coagulation
equation, are of exponential type N

ci(0) < e ™. (0.18)
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Really, for small ¢ > 0 we obtain from (0.17) that
C,'(t) ~ ti—-l - (eln t)i"l )

Other results connected with estimates of area of solutions’ positivity, are

discussed in next chapters.

In chapter 1 we demonstrate the problems which can arise in the coagula-
tion equation and cause the surprising breakdown of the mass conservation
law. This justifies the next chapters where general theory for the coagulation—
fragmentation equation is constructed. In chapter 2 we prove existence of
solutions for approximated (truncated) problems. In chapter 3 we pass to
limit in the sequence of approximated solutions to demonstrate the existence
for the problem with unbounded kernels. In chapter 4 we discuss unique-
ness of solutions. Chapter 5 is devoted to some properties of solutions: their
boundedness, positivity and asymptotics for large z. In chapters 6-9 we
study asymptotic properties of solutions for large ¢ and their convergence
to equilibria. Chapters 10 and 11 are devoted to the space inhomogeneous
case, which, as we shall see, brings in many difficulties.
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Chapter 1. COAGULATION EQUATION
WITH MULTIPLICATIVE KERNELS AND
INFRINGEMENT OF MASS CONSERVATION LAW

In this chapter we are concerned with the pure coagulation equation (0.3)
which reflects main properties of different coagulation models. It turns out
that there are coagulation kernels such that the mass conservation law (0.13)
undergoes the breakdown in a finite time even if initial data are very ”good”
(e.g., smooth and have a compact support). To demonstrate why such situ-
ation can happen, we multiply (0.3) by z and integrate over [0,m]. Then
we obtain

4 / ze(z, t)dz = / / (& + 9K (2, y)e(z, )ely, )dydz—

- / / zK(z,y)c(z, t)e(y, t)dydz =
0 0

= — /(;m /°i zK(z,y)c(z,t)c(y, t)dyde < 0. (1.1)

Passing to limit m — oo yields
oo

4 ze(z,t)dr < 0. (1.2)
dt Jy

If the integral
/ / zK(z,y)c(z,t)c(y, t)dyde (1.3)
o Jo

is bounded then passing to limit in (1.1) gives us zero and we obtain the

mass conservation law. Otherwise
d oo
— zc(z,t)de <0 (1.4)
dt Jo

and the breakdown of the mass conservation law can happen. In this chapter
we demonstrate that there may be cases when (1.4) is valid yielding the
paradoxical infringement of the mass conservation law.

In the first section we explicitely derive the solution for discrete case of
coagulation. Then we discuss some developments for continuous case.
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1.1 DISCRETE COAGULATION EQUATION WITH K,; = 13

In the case concerned the coagulation equation (0.3) takes the following

form

dott) _ 12 Z(z = Dici-s()ei(t) — ieilt) Zm(t) (19)

We consider the 81mplest initial conditions
¢i(0) =(1,0,0,...). (1.6)

For the total number of particles expressed by the zero moment N, we
obtain from (1.5)

dNo(t) 1,
—r=—3N0. (1.7)

Hence, if the mass conservation law holds for all ¢ >0 (i.e. N;(t) =const)
then after the finite time equal to 2Ny(0) (N; =1) the solution to (1.7)
become negative and we come to the dilemma: either there exists no non-
‘negative solution to (1.5) or the mass conservation law fails. Let us analyse
why the mass conservation law can fail. With this aim we multiply (1.5) by
¢ and summarize from 1 to n:

n i—1
dt ch, ) ZZ’(Z J)ch—]CJ Zz C; ZJCJ
i=1 j=1 i=1

-1 n—1t n oo
% Z Z(’ J+ij)eic; — Z i’c; chj- (1.8)
i=1 j=1 =1 j=1

Consequently, the right-hand side of (1.8) tends to zero as n — oo (yield-
ing the mass conservation law) if the second moment of solution N,(t)
bounded. If it becomes unbounded then passing to limit in the right-hand
side of (1.8) brings us indeterminancy oo — oo and, generally speaking, the
mass conservation law fails. Really, if mass is indeed conserved, N;(t) =1,
one may solve (1.5) by solving the simpler system

1

(i = 7)jei=j(t)e;(t) —ici(t), (1.9)

i

dci(t) _
dt

l\?ln—l

J
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recursively. This yields the formula

g
ci(t) = %—t'_l exp(—it), ¢>1.
!

17

(1.10)

However, the desired conservation of mass of (1.10) breaks down for ¢ > 1,

and, hence, (1.10) is no longer a valid solution past the critical ”gelation”

time ¢t = 1.

Therefore we consider the time-dependent first moment

Ni(t) =D iei(t)

=1

so that (1.5) becomes

dei(t)

or, alternatively, with

i) =exp (i [ Ni9as) et

we see

() %Z i — )i dimi(t)85(2)

with (1.6) implying

$1(0)=1,  ¢i(0)=0, 2<i<oo.

Now solve (1.12), (1.13) recursively to obtain

i—3

¢()_( 1)'ti—l;

cilt) = ’(z I le\:p< / Nl(s)ds)

hence,

- % Z_:(z — )jci-j(t)e;(t) — Na(t)ici(t)

(1.115

(1.12)
(1.13)

(1.14)

(1.15)
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But, by definition, Ni(t) = Y .o, tci(t) so that Nj(t) must satisfy the

equation
1 —241—1
Ni(t) = Z t [ exXP ( / Nl(s)ds)

or, equivalently,

oo i1 (texp (— N Nl(s)ds>)i

tN1(t) =) g (1.16)
=1
Next note the relevant identity
if:%gﬂizw, 0<z <1 (1.17)
i=1 ’
For the moment assume
texp (— /Ot Nl(.s)d.s) <e™, forall ¢>0, (1.18)

and let z(¢) be that value z, 0 < 2(t) <1, which satisfies the equation

2(£)e=*® = texp (— /O t Nl(s)cls) . (1.19)

As the graph of ze™® is monotone increasing for 0 <z <1 and monotone
decreasing for z > 1 with a maximum e™! at z =1, (1.18) will imply
a solution of (1.19) and z(¢) can always be uniquely found. Thus (1.16),
(1.17) imply

tN1(t) = z(t). (1.20)

Equations (1.19), (1.20) provide two equations in the two unknowns z(t),
Ni(t) for all ¢ > 0. Now substitute the z(t) = tNi(t) from (1.20) into
(1.19) to obtain

Ny (t) exp (=t Ny (£)) = exp (_ /0 t Nl(s)ds) L t>0, (1.21)
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and, hence,

In N](t) - tNl(t) = — /t Nl(s)ds. (122)

At points of differentiability of N;(t), differentiate (1.22) to see that N;(t)

satisfies
1 dN4(t) _
() 200 g am

where recall of the initial data is given by
N1(0) = 1. (1.24)

For 0 <t < 1, the solution of (1.23), (1.24) is Ny(t) =1 and (1.18) is
satisfied. For ¢t > 1, a choice must be made between a function satisfying
L Ni(t) = 0 (which, for continuous Ni(t), would mean Ni(t) = 1) and
Ni(t) = 1/t. If Ny(t) = 1 is chosen, then (1.20) becomes t = z(t),

ie., z(t) > 1 which contradicts the definition of z(t). This necessitates
the choice Nj(t) = 1/t which yields z(t) = 1 and also satisfies (1.18).
Enforcing continuity at ¢t =1 yields

1, 0<t<1,
Ni(t) = 1.25
1(t) 1/t, t>1, (1.25)

as the solution of (1.21). Fiinally, substitute (1.25) into (1.20). This yields
the solution

1173 L exp(—it) /(i — 1)1, 0<t<1,
ci(t) = i>1.  (1.26)

) } 1
i PeT (i — 1)!;, t>1,

We should note in conclusion that actually the problem concerned became
one of looking for a fixed point of the nonlinear equation (1.16). Of course,
the ability to solve (1.16) in explicit form is, to some extent, luck. Similar
explicit result does not hold in the continuous coagulation model.
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1.2 COAGULATION KERNEL K(z,y) = zy

In this section we are concerned with continuous coagulation equation

ciz.t) = 5 [ (@t — v, 0clo )y~ kac(art) [ velvst)dy. (127)

We will discuss the case of general continuous initial mass spectra c(z,t).
Here some properties of the solution differ strongly from those in the discrete
case, in particular long time properties. Note that we may set k = N;(0) =
N3(0) =1 without loss of generality by choosing proper units for z,¢ and
c(z,t) :  N2(0)/N1(0), 1/kN2(0), and N;(0)3/N2(0)%, respectively. For
the kernel zy we make a preliminary investigation of the moment equations
(1.27):

where N, are moments of the solution:

N, (t) = /0‘00 z"c(z,t)dz. | (1.29)

These can be derived from the coagulation equation if one assumes that
orders of integration can be freely interchanged.

For r =1 it follows that the total mass N;(t) provided that Nj(t) < oo.
This condition is necessary to give a well-defined meaning to (1.28), as the
right-hand side equals N;(N; — N2). When ¢(z,t) is such that N, =
the determination of moments requires more care, as discussed below.

For r =0 one finds N, )

d—t" = 3N (1.30)

As long as Ni(t) =1, the general solution of (1.30) is
No(t) = No(0) —t/2. (1.31)

Note the unphysical prediction by (1.31) that Ny(¢t) becomes negative for
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For r =2 one finds EdzNg = N2, provided N3(t) < co. This yields

Na(t) = T-l_—t (1.32)

where N,(t) approaches infty within a finite time ¢, = 1/N2(0) = 1.
(Recall that units are chosen such that N;(0) = No(0) = 1. ) For r =3
one finds

N3(t) = N3(0)(1 — )7, (1.33)

provided Ny(t) < oo.

In order to find N;(t) we consider the Laplace transform of the mass
distribution zc(z,t), defined as

f(p,t) = / ze PPe(z,t)dz. (1.34)
0
After multiplying (1.27) by z and taking the Laplace transform we obtain

fot fp - (f = Ni(8)) = 0. (1.35)

The equation (1.35) is to be solved subject to the initial condition:

f(,0) = fo(p),  (fo(0) = —f5(0) = 1). (1.36)
The characteristic equation to (1.35) is
dp
gl f = Ni(2). (1.37)
Since the right-hand side of (1.35) is equal to zero then along characteristic

curves f =const and f(p,t) = fo(po) where po is the starting point of the
characteristics passing through (p,t). Then from (1.37) we conclude

f=f(p-st+ t Ni(5)ds) = o, (1.38)
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The solution (1.38) still contains the unknown mass of particles, Ni(t) =
f(0,t), which may be determined self-consistently by putting p = 0 to yield
the functional equation

Ny =fo ( /0 *Ny()ds - tN1> . (1.39)

It can be solved by differentiating (1.39) with respect to time:

dN;  dNy , ¢
o = —t o - fo (/0 Ny(s)ds —tNy | . (1.40)

We assume that the function fj has no singularities in the complex half-
plane Re p > 0, i.e. the initial function ¢o(z) has the bounded first
moment. Then from (1.40) we have a constant solution

N = N0 =1, (1.41)
and a time-dependent solution, parametrically given by

NP = fo(€),  t7h=—f3(6), €2=0. (1.42)

In fact, to obtain (1.42) we denote in (1.40)

éZA N](S)ds —tNl

and use (1.39). Since the function N;(¢) cannot increase (see (1.2)), then
€ > 0. In this important place we have the similarity with (1.23). Both
functions fo and —fj are positive, monotonically decreasing, equal to 1 at
€ =0, and tend to zero as £ — co. Therefore the monotonically decreasing
solution Nl(z)(t) appears at t = 1 (not earlier: ¢ > 0!) and replaces
the constant solution (1.41). The replacement takes place because, as we
have seen, the constant solution (1.41) cannot be valid for all ¢ > 0. The
replacement cannot occur after ¢ = 1 since the function Nj(¢) must be
continuous but the moment ¢ =1 is the only moment when Nl(z) =N 1(1) =
1. Therefore we obtain the expression which generalizes (1.25):

1, t<1,
Mit) = NO@®), t>1. (1.43)
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There occurs a phase transition (gelation) at the gel point t. = 1. In the
sol phase (¢ < 1) Ni(t) is constant; in the gel phase (¢ > 1) N;(¢)

decreases to zero as time progresses. The loss of mass, starting at t = 1,

is associated with the formation of an infinite cluster (gel, superparticle). It
is a loss to infinity due to the cascading growth of larger and larger particles
(clusters), where the process accelerates, as the clusters grow larger, since
the rate is given by K(z,y) = wy. The mass deficit, 1 — Ny(t), is called
the gel fraction, which is only nonvanishing past the gel point t, = 1.

We need only to show that there exists a solution to (1.27) with the first
moment expressed by (1.43). With this aim we rewrite (1.27) in the form

di(z,t) = %m /: d(z —y,t)d(y,t)dy — zd(z,t) N1 (t) (1.44)

where Nj(t) is defined in (1.43) and d(z,t) = 2¢(z,t). So,
d(z,0) = zeo(z). (1.45)

Let D(p,t) be the Laplace transform to d(z,t). Then we obtain similarly
to (1.38):

D — D, (p —-Dt+ /0 t Nl(s)ds> =0. (1.46)

If we denote the left-hand side of (1.46) as F(D,p) then F, =1+tDj >0
in a vicinity of p = 0 for sufficiently small ¢ > 0. The implicit function
theorem ([80], p. 149) yields the existence of a local in time solution to
(1.46). Since Dy is a Laplace transform of dy then there exists the inverse
Laplace transform of D and, consequently, the initial value problem (1.44),
(1.45) has a local in time solution d(z,t) with bounded zero moment (which
corresponds to D(0,t) ). Its nonnegativity and continuity easily follow from
(1.44). Let D(0,t) = Ny(t). Then (1.46) yields

i‘l-Nl(t) = (N () — Ny (¢) — t—d-Nl ()} ( / Ni(s)ds — tNl(t)) (1.47)
From (1.47) and the above reasonings, following after (1.40), we conclude
that Ny(t) = Ni(t) indeed. Therefore we can extend the local in time
solution of (1.44), (1.45) globally in time provided that zco(x) has a bounded
first moment. The uniqueness follows from section 4.3. Consequently, the
following theorem has been proved.
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Theorem 1.1. Let the initial function co(z) be continuous, monnegative
and have bounded first moment. Then there exists unique nonnegative con-
tinuous solution of the equation (1.27) and a critical time moment t. > 0
such that the first moment of the solution is expressed by (1.43).

Let us consider as an example the monodisperse initial conditions co(z) =
8(z — 1) where § is the Dirac delta-functional. Then fy(p) = exp(—p).
From (1.42) and (1.43) we deduce for the mass N;(t) the expression (1.25).

1.3 REMARKS

In the section 1.1 we repeat reasonings of Slemrod [62]. The identity (1.17)
may be found in the collection of Jolley ([44], p .24, Series 130). The interval
of convergence 0 < z < 1 is not noted by Jolley but is easily obtained by
ratio test for 0 < z < 1 and Stirling’s formula at 2z = 1. In fact, this is
proven in the paper of McLeod [52]. Detailed derivation of (1.10) and (1.14)
may be found in [52], too.

In 1962 McLeod [52] proved the local existence and uniqueness theorem
for the problem (1.5), (1.6). He noted also, that the desired conservation of
density breaks down. His result is the first one connected with the treatment
of unbounded coagulation kernels. For continuous case he succeeded to prove
similar existence and uniqueness theorem in [53].

Almost in 20 years after McLeod’s result Leyvraz and Tschudi [46] suc-
ceeded to prolong McLeod’s solution globally in time. They solved (1.5),
(1.6) by setting '

6i(t) = ici(t) exp (z /0 t Nl(s)cls> and  G(z,t) = gqﬁi(t)zi.

A straightforward computation shows that the generating function G sat-
isfies the quasilinear partial differential equation

t>0, (1.48)

with initial data
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Equation (1.48) may be integrated via the method of characteristics to obtain
G(z,t) from which one may recover ¢;(t), ¢ > 1, and finally ¢;(¢). This
way was used by Leyvraz and Tschudi to obtain the solution (1.26).

The approach, similar to Leyvraz and Tschudi’s one, with replacing the
generating function onto Laplace transform, was employed for continuous
case by Ernst, Ziff and Hendriks [28] and Galkin [36]. Ernst et al [28] showed
that the equation (1.36) can be solved by introducing the inverse function,
p(F,t). Infact, using f, = (pf)~' and fi = —p¢/ps weseethat p satisfies
pe = f — Ni(t), with the initial condition p(f,0) = f5*(f), the solution of
which is given by

p=17 )+ fr = [ MaGs)ds

From the last equality we immediately obtain (1.38). In section 1.2 we follow
mainly to Ernst, Ziff and Hendriks [28].

Using the characteristic method Galkin [36] studied (1.35) with Ny(t) =
f(0,t). He showed that the critical time t. corresponds to the first inter-
section of characteristic curves. He proved that

No(t) = C(x(t)) — FOAr(),  Na(t) = ~Ci(n(1),

where the function C(p) is the Laplace transform of c¢o(z) and the nonneg-
ative function =(t) is the starting point of the characteristic curve which at
the time ¢ intersects with the straight line p = 0. That function is defined
by

m(t)=0, 0<t<t.=C, N 0),

Cop(n(t)) = 1/t, t>te.

It is possible to observe that these results coinside with ones presented in

section 1.2.
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Chapter 2. EXISTENCE FOR KERNELS
WITH COMPACT SUPPORT

In this chapter we are concerned with the following general spatially ho-

mogeneous coagulation-fragmentation equation

t 1 [*
D) 4 afe el ) — alest) = 3 [ Ko = yurthele =y, ey, )y
0

—c(w,t)/ K(x,y,t)c(y,t)dy+/ F(z,y,t)c(z 4 y,t)dy—
0 0

~ze(@,1) / F(z —y,y,)dy. 2.1)
0

As was pointed out in introduction, the non-negative function a describes
efflux terms. The function ¢ describes, in turn, sources of particles. The
equation (2.1) must be equipped with the initial condition

c(z,0) = co(z), z2>0. (2.2)

2.1 FUNCTIONAL SPACES

We introduce some functional spaces. Firstly, we fix T, 0 < T < co. Let
II7 be the strip

Or = {(z,t): z€[0,00),0<t < T}
and II7(X) be the rectangle
Or(X)={(z,t): 0<2<X,0<¢t<T}.

We denote by Q(T) and Qo,~(T') the spaces of continuous functions ¢ with

bounded norms
oo
D) = sup exp(Az)|c(z,t)|dz, A >0
A
0<t<T Jo

and ~
|7 = sup 1+ 2")|c(z,t)|dz, r>1.
o,r
0<t<T Jo
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Let
AT) = | (D).
A>0
It should be noted that the following inclusions take place

QodéfQo,o D Qo D"'DQO,TD"’DQAI Dy, 0<A <A<
and
QO,rDQ, T'ZO.

The space Q(T') may be equipped with the topology of the inductive limit
of topologies in Qx(T') , i.e. a set is open in Q(T) if its intersection with
QA(T) is open in the topological space Qx(T) for all A > 0. We denote
C and BC the spaces of continuous and bounded continuous functions
correspondingly. Cones of nonnegative functions in the above spaces are
denoted using the superscript +, e.g. Q;,f,,(T ), QF(T).

2.2 LOCAL EXISTENCE

Theorem 2.1. Let the functions K(z,y,t) and F(z,y,t) be continuous,
nonnegative, symmetric and have a compact support for each moment 0 <
t<T. Let

1° :
co € Qg’)r(O), qeQf (T), ac Ct(r), r>1; (2.3)
or
20
co €Q(0) qeQI(T), aeCH(Iy). (2.4)

Then there exists T >0 such that the initial value problem (2.1), (2.2) has

at least one solution
cE Q;f,,,(f) or ce Qf(r) (2.5)

correspondingly.
If, in addition, funciions co and q are bounded in IlT, then, in addition
to (2.5),
¢ € BC(Il7). (2.6)
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Proof. Let us note first that there exists a constant A such that the functions
K and F have a compact support in [0, A] x [0, A]. Hence, the solution
to (2.1), (2.2) for = > 2A takes the values

o(2,t) = exp (— /0 t a(;,s)ds) {co(m) + /0 "exp < /0 3a(:c,31)d31) q(:z:,.s)ds} |

(2.7)
We pick up the modified initial and sources functions

5 co(z), z <24,
éol=) = {min{cO(ZA), co(z)}, = >2A4A.

and
g(z,t), = <24,
i(z,t) = , (%) t>0.
min{q(24,1), ¢(z,t)}, = >24

The spaces Q= Q. (BC and Qo,r = Qo,r()BC become Banach spaces
if we introduce the following norms

|||c|||(T) sup |c(z,t)| + sup / exp(\z)|c(z,t)|dz, A >0
0<t<T,z>0 0<t<T Jo

T2

and

x

D = _sup fe(e,l+ sup [ (@+aelmlds, 21
0<t<T,z>0 0<t<T Jo

Our plan is to prove existence in Banach spaces Qx or Qo,r with initial

and sources functions &, ¢, then we use (2.7) to obtain the solution of the

original problem with ¢y and ¢. Those reasonings are caused by continuous

functions which are unbounded on z € [0, ).

To prove Theorem 2.1 we rewrite the problem (2.1), (2.2) in the following

integral form

o(2,1) = exp (_ /0 t a(a:,s)d.s) {co(:v) + /0 (8002, 5) + (2, 5))-
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. exp ( /0 | a(a:,sl)ds'l) ds} Ly (o), t). (2.8)

where the collision operator S(c) is expressed by the right-hand side of the
equation (2.1). Since the coagulation and fragmentation kernels K, F have
a compact support, the efflux function a(z,t) is non-negative and functions
co, q satisfy (2.3) or (2.4), then the integral operator Y, defined in (2.8),
maps the Banach spaces o (1), Qa(t) into itself:

Y: Qor(t) = Qor(t), Y: Q) Qa(t) forall 0<t<T.
We prove Theorem 2.1 using the contraction mapping theorem. Let us es-
tablish first that for small 7 > 0 there exists'in §o,,(7) a closed ball which
is invariant relatively to the mapping Y. Really, let ||c[|§,’3 < z. Then (2.8)
yields '
YUY < M- (1+72+722), (2.9)
where a constant M depends on c¢o, ¢,/ and F, Hence,
(ol < =
if M.(1+4 72+ 72%) <=z. The last inequality holds if 7 <1/M and
1—Mr—/(1—-Mr)?—4M?1 . 1—MT+\/(1—-M7')2—-4M27’.
2MT - - 2MT

(2.10)
Secondly, we need to check whether the mapping Y is contractive. From
(2.8) we obtain for a positive constant M; that

1Y (c) = Y()|§7) < My(2 + D)r]lc - d||{7) (2.11)
provided that
lell§) <z IS < =

Hence, the mapping Y is contractive in Qg (1) for 7 < [Mi(z +1)]7 .
Using this result together with the inequalities (2.10) we conclude that for
sufficiently small 7 > 0 there exists an invariant ball of radius z. In that
ball the mapping Y is a contraction. Consequently, that ball contains a
fixed point of Y. Existence of a fixed point of the mapping Y in Q A(T)
in the case 2° follows analogiously.

We need else to show that the solution to (2.8) obtained is nonnegative.
With this aim we prove the following simple lemma.
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Lemma 2.1. Let a mapping Y be contractive and maps a Banach space X
into itself and have there an invariant ball. Let o, a <1 be the contraction
constant of Y and let x be its fized point. Suppose that the operator Y
is the limit of a sequence of operators Y, i.e. for any M >0

lim sup ||Y(z)—Y.(2)|| =0. (2.12)
T zll<M

Let in addition there exist bounded sequence {x,} of fized points of operators
|znl| < M, n>1.

Then

|zrn — z|| = 0, n — oo.

Proof. From the inequalities
[2n — 2|l = [[Ya(zn) = Y(2)|| < [[Ya(zn) = Y(zn)|| + Y (zn) — Y(2)|| <

< ¥a(zn) = Y(za)|l + allza — 2|

we obtain

(1 —a)llen —z|| < sup [[Ya(z) - Y(2)|| =0, n— oo.
llzll<M

This proves the assertion of Lemma 2.1. O

Lemma 2.2. Let conditions of Theorem 2.1 hold. Then any continuous
solution to the initial value problem (2.1), (2.2) is nonnegative.

Proof. Let initial data ¢o and the function of sources ¢ be strictly positive.
Suppose that there exist a point (z¢,%9) such that c(x¢,t9) = 0 and the
point (zg,tg) is "the first” point with that property, i.e.

c(z,t) >0  forall 0<z <max{z,A}, te€]0,t). (2.13)

Since the solution is continuous and satisfies (2.8), it must be continuously
differentiable in ¢ . Hence, from (2.1) we obtain

Oc(zo,t0) 1

Zo
/ K (20 — ,5, to)e(zo — v, to)e(y, to)dy+
ot 5/,
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A
+ ] F(20,4)c(20 + ¥, t0)dy + a(z0,0) > 0.
0

The positivity of the time derivative proves that there exist points (z,%),
z < zo where the function c(z,t) is negative. This contradicts to our
assumption that the point (zg,%9) is ”the first”. Consequently, the solution
is positive provided that initial data and sources are positive.

If initial data and/or sources are not strictly positive then we construct
sequences of positive functions {cf}, {¢"} which satisfy the conditions of
Theorem 2.1 and converge in $2o,.(7) to ¢, ¢ correspondingly uniformly
with respect to t € [0,7]. As we have already proved, those two sequences
generate the sequence {c"} of positive continuous solutions to the prob-
lem (2.1), (2.2) (generally speaking, those solutions may be unbounded in
C[0,00) ). We introduce the family of operators

Ya: Qor(r) o Qon(r)
) et = (- [ otorons)
-{cg(w)+ /0 exp ( /0 sa(m,sl)dsl) (S(c)(w,s)+q"(m,s))ds}. (2.14)

We note that

sup [[¥a(e) = YIS) < [+ 20leh (@) — cale)lde+
lellgT) <M 0

+7 sup / (1+2")|g(z,s) — ¢"(z,s)|dz2 — 0, n — oo. (2.15)
o<t<r Jo

Since the mapping Y is contractive in o ,(7) (it follows from the proof
of contraction in € (7)), we can apply Lemma 2.1 and conclude

le™ = ¢ll§r) = 0, n — oo

This proves Lemma 2.2 and Theorem 2.1. O
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2.3 GLOBAL EXISTENCE
The aim of this section is to prove the following theorem.

Theorem 2.2. Let the conditions of Theorem 2.1 hold. Then in the strip
M7 exists the solution to the initial value problem (2.1), (2.2) such that

1° ceQf (T) or 20 c e Qf(T)

correspondingly. This solution is unique in Qo (T) or QA(T) respectively.
If a=q=0 then the solution s mass conserving.

First, we observe the boundness of all moments
Ni(t) = / cfe(z,t)dz, 0<Ek<r (2.16)
0

Really, the integration (2.1) yields
dN"(t) / / K(z,y,t)e(z, t)c(y, t)dyda+
+%/ / F(m—y,y,t)c(m,t)dyda:+/ [¢(z,t) — a(z,t)c(z, t)] dz. (2.17)
o Jo 0

All the integrals exist due to compactly supported kernels K and F. Hence,

t 1_ o
No(t) < No(0) +/ {§FN1(3) -I—/ q(:c,s)d:c} ds. (2.18)
0 0
Here
K=sup K, F=sup F.

Integrating (2.1) with the weight z gives us boundness of the total mass of
particles in the system concerned which, as was mentioned, is expressed by

the first moment of solution:

Ni(t) < N:+(0) + /Ot /:o zq(z,s)dz. (2.19)
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Substituting (2.19) into (2.18) yields boundness of the zero moment Nj.
For the k-th moment, k£ > 2 we obtain
dN(t
c;t( ) < K/ / [(z+y)* —2F -y ]c(z t)c(y,t)dxdy+/ ¥ q(z,t)dz.
0

(2.20)
Hence, boundness of the k-th moment, % > 2 is based on boundness of
previous ones. Thus, step by step, we obtain boundness of all moments till
N,(t). We are in position now to demonstrate boundness of ¢(z,t). With
this aim we note that

c(z,t) < co(m)+/ot {%F /Of c(z —y,s)c(y,s)dy + F/:o c(y,s)dy + q(=, s)} ds.

(2.21)
We introduce
é(t) = sup c(z,t). (2.22)
0<z<
Substituting (2.18), (2.22) into (2.21) yields
i 1— _
&) < &(0) + / {EI{é(s)No(s) + FNo(s) + q(, 3)} ds. (2.23)
0
Finally, we arrive to the Gronwall’s inequality [Har]
¢
&(t) S Mo -+ M1 / 6(3)d3
0
which proves boundness of é(t), 0 <t <T:
&(t) < Myexp(MiT), 0<t<T. (2.24)

As usually, My, M, are positive constants.

We can observe now that for large values z the right-hand side of (2.1) is
less than T'sup ¢(z,t). For small values = we have the majorant estimate
(2.24). Therefore the solution to (2.1), (2.2) is bounded in the norm ||ch’l;)
Taking into account non-negativity of local solution we prolong it to all 0 <
t < T. This proves existence.



34 P. B. DUBOVSKII

The mass conservation follows trivially from integration of (2.1) with
weight z. Existence of all integrals holds due to compactly supported kernels
K, F.

To prove uniqueness in Qg (T) we assume that there are two solutions
¢ and d with the same initial function cg. We consider their difference

ez, ) — d(z, )] < / {g / Kz —1,9,9)le(e — ,8) — d(z — v, )|
ey, s) + d(y, )| + le(z, 5) — d(z, ) / " K(z,y,9)ely, s)dy+
td(z,s) / " K (e, ey, )=y, Ny [ Fly2,2,9)lelw,s)=dly, )ld-+

+ Sle(a,s) = d(z, o) | Pz -y, y,s)dy} ds. (2.25)

Integration of (2.25) from 0 to oo yields
3=
e, 1) = d( DIl < / {ghnc(.,s)—d(.,s)||3"’ (e 9)ll6” +

G + Al ) — d. s)n“”} (2.26),

The interchange of the order of integration is justified by Fubini’s theorem
[26], and other steps follow from the conditions on coagulation and fragmen-
tation kernels. Since ¢,d € Qo then the value

eI = [ " le(z, )ds

is bounded uniformly with respect to t, 0 < t < T. Then (2.26) and
Gronwall’s inequality [42] imply that

lle(.,t) — d(, IS = forall 0<t<T.

From the continuity of c(z,t) and d(z,t) it follows that c(z,t) = d(z,1t)
for (z,t) € II7. The proof for case 2° is the same. This completes the proof
of Theorem 2.2. O
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Chapter 3. EXISTENCE FOR
UNBOUNDED COAGULATION KERNELS

In this chapter we prove existence theorem for the general coagulation-
fragmentation equation which can be written as

0 1 /°
oo =5 [ Ko = w)ete — v etw 1y

~<(a) | " Ko y)ely, )y — 3e(a,) / " Flo —y,y)dy+

c(z,0) = co(z) > 0. (3.2)

Theorem 3.1. Let the functions K(z,y) and F(z,y) be nonnegative and
symmetric. Suppose also that

K(z,y) <k(l4+z+y), k>0 (3.3)

and there exist positive constants m, my and b such that
/ Flz —y,0)dy <b(1+2™), Flz—y,y) <bl+z™),  (3.4)
0

0<y<y' <z, z€l0,00).

Let the initial data function satisfy esther:
1° ¢ € Qf (0), r > maz {m,1}, andr>mi;
or
20 ¢y € Q7(0).
Then the problem (8.1), (3.2) has, respectively, either:
1° at least one solution in QF (T), 0 < T < oo;
or
20 a solution in QT (T), 0< T < oo.
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3.1 UNIFORM BOUNDNESS OF SEQUENCE OF APPROXIMATED SOLUTIONS

When K and F belong to class (3.3), we construct a sequence of continuous
kernels {K,, Fr}52, from the class (3.3) with a compact support for each
n > 1, such that

Kp(z,y) = K(z,y),0 <z,y <n,n>1, (3.5)
Fn(z,y) = F(z,y),0 < z,y <n,n>1, (3.6)
Ky(z,y) < K(z,y),0 <2,y <oo,n > 1, (3.7)
Fo(z,y) < F(z,y),0 < z,y < oo,n > 1. (3.8)

In accordance with Theorem 2.2, the sequence {K,, F;,}52; generates on Il
a sequence {c, }32; of nonnegative continuous solutions to the problem (3.1),
(3.2) with the kernels K, F,,. These solutions belong to Q(',"’,.(T) or QH(T)
respectively.

Let us denote the r-th moment of the functions ¢, as

oo
Nya(t) = / z"cp(z,t)dz,r > 0,n > 1.
0

By direct integration of (3.1) with the weight z , we obtain the mass conser-

vation law
Nin(t) =Ny =const,n >1,0<t<T (3.9)

All the integrals exist due to the compact support of the kernels. Integrating
(3.1) with the weight z2 and using (3.3), we also obtain

dN3 »(t)
dt
Hence, N3 ,(t) is bounded on t € [0,T) :

< kN12 + szlNz,n(t).

Nopn(t) < N2y0<t<T, n>1 (3.10)

Similarly, step by step, we obtain the uniform boundedness of N, ,(t) with
respect ton > 1, 0 <t < T. The uniform boundedness of the zero moment
No,n follows via (3.4) from the inequalities

dNon _ 1

oo xz 1
< —/ cn(:c,t)/ F(z —y,y)dydz < =b(No,n + Ny n)
dt 2 Jo 0 2
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and the condition m; < r. Consequently,
Nin(t) K Ny =constift € [0,T), n>1, 0<k <. (3.11)

We are now in a position to formulate the following Lemma:

Lemma 3.1. The sequence {cp}S2, 18 uniformly bounded on each rectangle

HT(X), T < oo.

Proof. Since solutions c, of (3.1),(3.2) with kernels K,, F,, are nonnegative
then by virtue of (3.3),(3.6),(3.8), (3.11), we obtain for (z,t) € II7(X):

en(2,t) < G + / t (%k(l + X)on % cn(®, ) + b(No + N,)) ds.  (3.12)
0

Here ¢y = supg<,<x co(z) and f * g is the convolution,

fro@) = [ " f@ - y)e(w)dy.

We define the "upper” function for the integral inequality (3.12) to be

set) =0+ [ (%k(l + X)g *g(as) + g(w,s>) ds, (3.13)

0<t<T,0<z< 00,

where go = max{co, b(No + N,)} = const. Taking the Laplace transform of
this relation with respect to z, we obtain

g(z,t) = goexp (%gokm(l + X)(e' 1)+ t) ,0<t<T,0<z<o00. (3.14)
Our next purpose is to prove that the inequality
cn(z,t) < g(z,t) for (z,t) € Or(X)

holds for each integer n > 1.
We introduce the auxiliary function

gelet) = go e+ | (éku T M)g. *g.(z, 5) +gs(x,s)) ds,  (3.15)
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(z,t) € IIT,e > 0.
Clearly cn(z,0) < ge(z,0) for 0 < z < X. We assume that, for some n > 1,
there is a set D of points (z,t) € II7(X) on which ¢,(z,t) = ge(z,t). Since
D does not contain points on the coordinate axes, we choose (zg,%9) € D so
that the rectangle @ = [0,z¢) X [0,%¢) contains no points of D. Since g. and
cn are continuous, we have cp(z,t) < g.(z,t) for (z,t) € (. The values of ¢,

and g. coincide at the point (z¢,%9). Hence

to 1
en(To,t0) = ge(@o,t0) > go+€+/ <§k(1 + X)en * en(zo,s) + Cn(:l:o,s)> ds.
. 0
(3.16)
This is proved by using the fact that the values of the arguments of g. in
the integrand (3.15) are in ). Combining (3.12) and (3.16) we arrive at the
contradiction c,p(zo,%0) > cn(zo,t0), which proves that D is empty and

cn(z,t) < ge(z,t), (z,t) € Op(X), n > 1.

Using (3.14) we have the continuity of ¢g. as a function of €. Letting ¢ tend
to zero we find that actually

cn(z,t) < g(z,t) for (z,t) € Ip(X),n >1,

and hence the sequence {c,}32, is bounded uniformly on II7(X):
0 < cn(z,t) < goexp (-;-gokX(l +X)eT -1+ T) = M, = const. (3.17)
This proves Lemma 3.1. O

3.2 COMPACTNESS OF APPROXIMATED SEQUENCE

Lemma 3.2. The sequence {c,}52, 18 relatively compact in the uniform-
convergence topology of continuous functions on each rectangle Ilp(X), T <

Q.

Proof. Step 1. We show the equicontinuity of {¢,}32, with respect to t.
From (3.1) we note that for 0 <t <t' < T,0 <z < X,n > 1 the following

inequality takes place

t 1 x
len(z,t") — cn(, )] < / {5 /0 Kn(z —y,y)en(z — v, 8)en(y, s)dy +
t
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o< oo
+en(z, 8) / Kn(z,y)en(y, s)dy + ] Fo(z,y)en(z + vy, 8)dy+
0 0

+ %cn(m,s)/ Fo(z — y,y)dy} ds. (3.18)
: 0

It follows from (3.7),(3.8) and (3.17) that the first and the fourth terms of the
integrand in (3.18) are uniformly bounded. The second and the third terms
in (3.18) are uniformly bounded by virtue of the uniform boundedness of the
sequence {c,}32; on II7(X), equations (3.5)—(3.8) and the inequalities

/ Kn(z,9)en(y, $)dy < k(1 + X)No + kN1, (3.19)
0

o

/000 Fo(z,y)en(z+y, s)dy =/ ey, 8)F(y—z,z)dy < b(No+N;) (3.20)

with 0 < s < T, n > 1. Applying (3.19),(3.20) to (3.18), we finally obtain

sup |en(z,t") — cu(z,t)| S Majt' —t|,0<t <t <T,n > 1. (3.21)
0<z<X

The constant M; is independent of n; hence {c,}32, is equicontinuous with
respect to the variable t on II7(X).

Step 2. We next establish that {c,}52; is equicontinuous with respect to z.
Let 0 < 2z < 2’ < X then for each n > 1 we have

lea(2',t) — ca(2,t)] < leo(z") — co()]
t 1 z’
+/ 5/ Ka(z' —y,y)en(z’ =y, s)c(y, s)dy +
0 z

1 T
43 [ 1Rala’ = 1) = Koo = wi)len(s’ = v, s)en(y, )+
0

1

+3 / Kn(z —y,y) - lea(a’ —y,8) — calz — y, 8)|en(y, s)dy+
0

+len(2', 8) — cn(m,s)l/ Kn(z',y)en(y, s)dy+ (3.22)
0
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o0
ten(z, ) / Kn(2',y) = Kn(z,y)len(y, s)dy+ (3.23)
0
n / en(y, )| Fa(z,y — @) — Fa(z,y — 2)|dy+ (3.24)
+ / en(y, $)|Fale'y — 2') — Fa(z,y — o')|dy+ (3.25)

1 @
+3len@'s9) = eales)] [ Fula’ = w0y
0

1 I, xr
+§cn(w,s)/ F.(a' —y,y)dy+/ cn(y,s)

1 T
Fu(e,y—2z)dy++5cn(2, ) / |Fa(z' —y,y) — Fa(z - y,y)ldy} ds. (3.26)
0

It follows from (3.5),(3.6) that the kernel sequence {K,, F,}52, we have
constructed is equicontinuous on each rectangle [0, X] x [0, 2],z > 0.

Let us remark that if ¢(z) is nonnegative and measurable and ¥(z) is

positive and nondecreasing for > 0, then

o0 1 o0
/z Hayde < oo /0 $(2)(z)dz, 2> 0, (3.27)

if the integrals exist and are finite.

Our aim now is to show that if the difference |2’ — z| is small enough, then
the left-hand side of (3.26) is small also. Fix an arbitrary ¢ > 0 and choose
8(¢),0 < é(¢) < €, such that

sup |eo(z') — co(2)| < €, (3.28)
|z!—z|<6

l Isurl><5(lKn(w',y) — Kn(z, )| + |Fa(a’,y) — Fa(z,y)]) <&, (3.29)

sup |Fn(z,y —2')— Fu(z,y — )| <e. (3.30)
|z!—z|<6
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The inequalities (3.29) and (3.30) hold uniformly with respect to n > 1 and
0 < y < z. The rule for choosing the constant z = z(¢) is given below in
expressions (3.34), (3.36). Introduce the modulus of continuity

wa(t) = sup |ea(2',t) —cn(z,t)], 0 < z,2" < X.
|z!—z|<6

Using (3.3),(3.7),(3.8),(3.17), we can easily demonstrate the smallness of
terms in (3.26) whose integrals are over finite intervals. To show the small-

ness of the term at (3.22) we have to use the uniform boundedness of the
integral which follows from (3.3),(3.9),(3.11):

en@'s9) = en(es8)| [ Kala' w)envr )y <
0

< kwa(s)(1+X)No +N1), n>1, 0<z,z <X.

The summands in the terms (3.23)-(3.25) are more complicated. Let us
consider (3.23). Using the partitioning [~ = [; + [, we obtain with
( 3.3), (3.11),(3.29), that

/ Kn(e',y) = Kn(z,y)lea(y, s)dy <
0

o

< eNo +2k(1+ X)/ en(y, $)dy + 2k/ yen(y,s)dy. (3.31)

Let us use (3.27) with ¢(z) = cn(z), ¥(z) = z or ¢(z) = zca(z), P(z) =
z""1 in the second and third terms of (3.31) respectively. Also, recall equa-

tion (3.10). Then we arrive at the expressions

e 1

/ en(y,s)dy < ;Nl, (3.32)

[ 1
/ yen(y,8)dy < g N.,. (3.33)

If we choose z such that
1 =

-1—N1 <e¢ and —N,<c¢ (3.34)
z z



42 P. B. DUBOVSKII
then from (3.31)
/ | Kn(z',y) — Ku(z,y)|en(y, s)dy < const - €. (3.35)
0

The same reasoning should be used to estimate the terms (3.24) and (3.25).
For (3.24) we obtain

/ en(y, s)|Fa(y —2',2) — Fu(y — z,2)|dy <
T

i

< Mo+ / ea(y, ) Faly — o', 2)dy + / cn(y,8)Faly — 2, 2)dy <

- e - N N,
<eNo+ 2b/ en(y,8)(1 +y™)dy < eNo + 26—;-1- + szr__m.
If (3.34) holds and ~
zf\f —<e (3.36)
then
[e ]
/ en(y, 8)|Fu(z,y —2') — Fp(z,y — z)|dy < const - €. (3.37)

Finally, using (3.17),(3.28),(3.29),(3.30),(3.35) and (3.37) we obtain from
the whole inequality (3.26):

t
wa(t) < M3 -+ M4/ wp(s)ds, 0<t<T.
0

Here the positive constants M3 and M, are independent of n and . Hence
by Gronwall’s inequality

wn(t) < Maeexp(M,T) & M; - e. (3.38)
We conclude from (3.21) and (3.38) that

sup len(2',t') = cu(z, t)| < (Mz + Ms)e, (3.39)
|e!—z|<8,|t' —t|<6

0<z,z' <X, 0<tt <T.

The assertion of Lemma Im3.2 is then a consequence of (3.17),(3.39) and
Arzela’s theorem [26]. Lemma 3.2 has now been proved. O
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3.3 PROOF OF THEOREM 3.1: CASE 1°

To prove Theorem 3.1 we employ the standard diagonal method. We select
a subsequence {c¢;}$2; from {c,}32, converging uniformly on each compact
set in Il to a continuous nonnegative function ¢. Let us consider an integral
foz z¥e(z,t)dz, 0 <k <r. Since for all ¢ > 0 there exists 7 > 1 such that

/ z¥e(z,t)dz < / z¥ei(z,t)de +¢ < Ny +¢, (3.40)
0 0

then -~
/ t¥e(z,t)de < Ny, 0<k<r (3.41)
0

because in (3.40) both z and ¢ are arbitrary. Similarly we obtain
/ zc(z,t)dz < N;. (3.42)
0

The inequality (3.42) can be transformed into an equality giving the mass
conservation law: this will be proved below. We should show now that the
function ¢(z,t) is a solution to the initial value problem (3.1),(3.2). To prove
this assertion we write the equations (3.1), (3.2) in the integral form for ¢,
with K,, F, and change ¢p, Kp, Fy tocp, —c+c¢, Kn— K+ K, F, -F+ F
respectively. Then we obtain

(ci — c)(z,t) + ¢(z,t) = co(z)+
+ /0 t {% /0 x(K,- — K)(z — y,y)ci(z — y, 8)ci(y, s)dy +
+% /Oz K(z —y,y)(ci(z —y,8) — ez —y, 8))ci(y, s)dy+
+% / K(z —y,y)(ci(y, 8) = c(y,9))e(e -y, 8)dy+
+3 [ K- Y,y ) v, )~

—aa.s) [ " K = K@, y)e(y, s)dy—
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~(ei- e [ " Ko, y)eily, s)dy—

~@,9) | " K@) - s s)dy - clz.) [ " K(z,y)e(y, s)dy+

+ /OOO(F,' — F)(z,y)ci(z + y,s)dy + /0~°° F(z,y)(ci — ¢)(z + y, s)dy+

+ /Ooo F(z,y)c(z +y,s)dy — %Ci(l’as) /:(Fi - F)(z —y,y)dy—

3= 0e,s) [ Fle=vu)di-

—%c(m,s) /0 " Pz — y,y)dy} ds.

(3.43)

Passing to the limit as 7 — oo in (3.43) we can see that the terms with

integrals over [0, 00) tend to zero due to the estimations of their "tails”, which
may be obtained with (3.27), (3.41), (3.42) taken into account similarly to

(3.35),(3.37):

e 2k 2k
[ = K)e et syl € S0+ )N+ = o),

oo 2k 2k

[ K@ - Ol < T+ 2N + ),
o 2b 2b

[ R = Peweta + v, < TN+ o2
o0 2b 26

I/ F(z,y)(ci — ¢)(z +y,s)dy| < ?N1 + m N;.

(3.44)

(3.45)

(3.46)

(3.47)

Other difference terms in (3.43) can be easily shown to tend to zero. Finally,

we find that the function c is a solution of the problem (3.1), (3.2) written

in integral form:

c(z,t) = co(z) + /Ot {%/OI K(z —y,y)e(z — y, s)c(y, s)dy—
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oo
—(as) [ Klay)ely, s)dy+
0

+ " F(e,y)els +v,5)dy ~3e(zs) / " Fle - y,y>dy} ds.  (3.48)

It follows from (3.44)—(3.47) and the continuity of ¢(z,t) that the right-hand
side in (3.1), evaluated at c, is a continuous function on IIr. Differentiation
of (3.38) with respect to t establishes that ¢ is a solution of (3.1),(3.2).

3.4 PROOF OF THEOREM 3.1: CASE 20.

To prove the second case of Theorem 3.1 it suffices to prove that, similarly
to (3.11), the functions ¢, belong to Q*(T') uniformly, that is there exists
A > 0 such that for alln > 1, t € [0,T]

/ exp(Az)cn(z,t)dz < const. (3.49)
0

Actually, in this case the uniform convergence on each compact set to ¢(z,t)
implies that ¢ € Q1 (T) with the same A. Denote

ou(\ 1) = /0 " (exp(Az) = D)en(a, t)da.

Multiplying (3.1) by exp(Az) — 1 and taking into account the positivity of
cn(z,t) , we obtain

agt < k(%ai + anaa—)\an — o), (3.50)

on(2,0) = /0 ~ (exp(A2) — 1)eo(2)dz. (3.51)

Let us consider the “upper” function o()\,t) which satisfies the following
equation:

%—‘;’ - k(-;-cﬂ + a% —oNy), (3.52)

a(X,0) ¥ 5(A) > 0n(2,0), A > 0; 00(0) = 00 (0,0) = 0. (3.53)
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If the problem (3.52),(3.53) has a smooth enough solution then
an(Nt) < a(At) (3.54)

for0< A< X A>0, 0<t<T for some A. To show this fact we use the
substitution
on = exp(—kNit)a,, o = exp(—kNit)a.

Then from (3.50) and (3.52) we have

d 1

—_— < =k kN 2 .
7on < 2kexp( kNit)ay, (3.55)
4 ~ Lhex kN1t)a? 3.56
dta_§ exp(—kNit)a®, (3.56)

where < in (3.55),(3.56) means differentiation along characteristics of (3.50),
(3.52) respectively. Let (),7) be the first point where o,(),t) = o(\, 1), i.e.
(A1) <o(At)for0 <X < A, 0<t<? Dueto (3.53) we have f > 0. Also,

the functions o, increase in A. Then we obtain the following contradiction:
i
a(\, ) = a(A(t),t) + %k/ exp(—kNys)a?(\(s),s)ds
t

> an(An(t),1) +é_k/t exp(—kN;s)a (An(s), s)ds = an(}, D). (357

The first and second integrations in (3.57) are along characteristics of the
equations (3.52) and (3.50) respectively. We have used the fact that A(s) >
An(8). The inequality (3.54) has now been proved.

Our next aim is to show that there exists a solution to (3.52),(3.53), which
is bounded in a neighborhood of zero for all 0 < ¢t < T. Firstly, we formulate
without proof the following well-known lemma which is fundamental to the

characteristics method.
Lemma 3.3. Let functions a(z,t,u) and f(t,u) be continuous in R™ x R x
R! and RY x R' respectively and u(z,t) be a solution to the problem
ui(z,t) + a(z,t,u)u.(z,t) = f(t,u) (3.58)
u(z,0) = ug(z), z€R", teR].
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Let the function v be a solution to the simplified problem

ve(t,v0) = f(t,v) (3.59)

v(0,v9) = vo = const.

Let z9(z,t) be the beginning of the characteristics for the problem (3.58) which
pass through the point (z,t). Then

u(z,t) = v(t,uo(20(2,1))). (3.60)

To study (3.52),(3.53) we consider the following problem:

0o 0o
e k(—a + o g(A)o) + ¢, (3.61)
o(X,0) = go(X), A>0,t>0. (3.62)

Lemma 3.4. Let 0o(A) >0 1f XA >0, 09(0) =0; g(A)=G-60), G=
const > 0; 8(A) — 0 as A — 0 and 04(0) < G. Let oo(\) be a holomorphic
function in a neighborhood of A = 0. Let us fir T > 0. Then there ezist
MT) > 0 and &(T) > 0 such that the initial value problem (8.61),(5.62) has
for t € [0,T) a unique solution for 0 <A < X,0 <e <é.

Proof. Firstly, let §(\) = 0. We consider the auxiluary problem
L, o
Ve = §k‘v — kGuv +¢, ’l)]t=0 = 2y

with the solution

v — v 1 -1
v(t,vo) = vy + (v1 — v3) [1 + ( 2 1) exp(=kt(vy — vz))] :
Vo — V2 2
Here v; and v, are roots of the trinomial $kv? — kGv +¢. Choosing ¢ small
enough, we have v; >> vy > 0. Using Lemma 3.3, we have

-1
V1 — V2

0= e [1+ (i

_ 1) exp(-;—kt(vl - vz))]
(3.63)
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We investigate the quantity Ao. Let A(¢) be a solution of the characteristic
equation of the problem (3.61), (3.62):

d\/dt = —ko(A, ).
Using (3.63), we obtain
¢
A(t) = )\0 - k/ {’02 +(’U1 - vg)
0
v — v 1 -1
. [1 + (—1—2— - 1) exp(§ks(v1 - vz))] }ds,

0'0(/\0) — V2
whence
_ o = v L ton
A=A — kvt + 2log (1 + (00()\0) _— 1) exp(zkt(vl vz))>

V1 — Vg
—21 —_—.
o8 (00(/\0) —vz)

By substituting (3.63) into the last expression, we obtain the equality:

g — Vg

/\0=)\+kv1t+210g( +

V1 — V2

(1 _gz-w ) exp(—-;-kt(vl - vz))) . (3.64)

V1 — V9
Using (3.63), we introduce for consideration the function
S(O’, )\,t) =0 — Uy — (vl e ’02)(0'0(/\0) - ’02)

. [00()\0) — g+ (v — oo(Ao))exp(%kt(vl - vg))] o

From (3.64) we can see that for small o, v, and ), the value \q is small for
all t, 0 <t < T. Consequently, the function S is analytic in the polycircle

{()\,a,t) M < X o] <6, It < T}
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for small A and &, because oo()) is holomorphic in a neighborhood of A = 0
and 0¢(0) = 0. For the derivative we obtain

95(0,0,t)
oo

(1~ exp(—kt(vr — v2))or exp(— 5 kt(vr — v2) — v2]

1
=1-2(vy — v2)206()\g)exp(§kt(v1 —v2))

[eoo(28) = 00301 — exp(kt(on = ) + (01 = o) exp(3kt(os - vz)>L_
(3.65)

where

1
A= Ao|r=0,0=0 = kv1t + 2log ( (exp(-—--2—kt(v1 —v2)) — 1) + 1)

V1 — V2

85(0,0,t)
do

and 0 < [t| < T. By analysing this expression for with the conditions

of the lemma taken into account, we conlude that

985(0,0,1)
do #0

for all |¢| < T. This last assertion is especially descriptive when € = 0: in
this case we have vo = 0 and v; = 2G. Then

05(0,0,1)
do

if all the conditions of Lemma 3.4 hold.
Using the implicit function theorem, we establish the existence of a solution

=1—-0,(0)G7 (1 — exp(—=Gkt)) # 0

to (3.61),(3.62) which is unique and analytic in the polycircle
{()\,t): A< X, |t < T}

for A small enough.
If §(\) # 0 then we can easily show (similar to obtaining the inequality
(3.54) ) that o < 6 where

1
5'15 =k (55’2 +&5’,\ —G15') +€,



50 P. B. DUBOVSKII
Go(A) > 00(A), A >0, 60(0)=0

with
Gi1 =G — sup 6(A).

0<A<LA

Then, by repeating the above arguments, Lemma 3.4 can similarly be proved.

Applying Lemma 3.4 to the problem (3.52),(3.53) with ¢ = 0, § = 0,
G = Ny, we obtain that for all ¢, € [0,7] and X € [0, }):

(A, t) < const. (3.66)

From (3.54), (3.66) we establish the correlation
v/ooo(exp()\a':) — 1Den(z,t)dz < const,0 <A< X, 0<t<T, n>1. (3.67)
Consequently, (3.49) follows from (3.67) and (3.11). Hence, c € QT (T):
/000 exp(Az)c(z,t)dz <const, 0 <A<}, 0<t<T. (3.68)

The proof of Theorem 3.1 is now complete. O

Remark 3.1. It is worth pointing out that the solution does not belong to
QA(T) even if co € Qa(0). Actually, for the constant kernels K =1, F =0

we obtain from (8.1):
do

” = So(t)?

DN =

where

o(t) = /Ooo(exp()\w) — 1De(z, t)dz.

Hence, o(t) — o0 as t — 2/0(0) < oo. Consequently, the right “tails”
of solutions (i.e. for large values of x) increase in time. This growth is fast
enough for the solution to leave QA(T') within a finite time but it is sufficiently
slow to remain inside QT for all T > 0.
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3.5 MASS CONSERVATION

Theorem 3.2. Let the conditions of Theorem 8.1 hold. Let, in addition,
r > 2 and / yF(z —y,y)dy < const- (1 4+ z") (3.69)
0 .

then the mass conservation law holds.

Proof. We are ready now to improve the inequality (3.42) and demonstrate
that for all ¢ > 0 the function c(z,t) yields, similarly to (3.9), the mass
conservation law

N, = / zc(z,t)dr = const.
0

This equality holds due to the boundedness of the upper moments of c¢(z,t)
for all ¢t > 0 (see (3.41)). Actually, by integrating (3.1) with weight z, we
obtain

dJ\;lt(t) __ ng%o /0" sz(mlx’(w, y)e(z, t)e(y,t) — zF(z,y)e(z + y,t))dydz.

Passing to the limit we obtain zero if the integrals

/ / zK(z,y)c(z,t)c(y,t)dzdy and / / zF(z,y)c(z + y,t)dzdy
o Jo o Jo

are bounded. The first integral with the coagulation kernel is bounded due
to (3.3) and boundedness of the second moment N;. For the integral with
the fragmentation kernel we appeal to (3.69),(3.27) and (3.41) to see that

/ / xF(m,y)c(x+y,t)dyd$=/ c(:c,t)/ yF(z—y,y)dydz < const(No+N,).
o Jo 0 0

This proves Theorem 3.2 O

Remark 3.2. If at a critical time t, < oo the second moment Ny(t) had
become infinite then the formal integration of (3.1) over [0, 00) with weight x
would give us in the coagulation part the indeterminance oo —oo  which
could lead to the infringement of the mass conservation law (see chapter 1).
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3.6 REMARKS

In chapter 3 we follow Dubovskii and Stewart [24] and Galkin [34]. The
first global existence and uniqueness result was proved in 1957 by Melzak

[54]. His Theorem treats bounded kernels and claims:

Theorem 3.3. Let co be a continuous, nonnegative, bounded and integrable

function. Let kernels K(z,y), ¥(z,y) be continuous and
0 < K(z,y) = K(y,z) < const < o0,
0 < ¥(z,y) < const < oo,

/ y¥(z,y)dy < z, / U(z,y)dy < const < 0.
0 0

Then the equation (0.5) possesses a unique solution c(z,t), which is con-
tinuous, bounded, nonnegative, integrable in = for each t, and analytic in

t for each .

Boundness of coagulation kernels I{ ensures continuity of the collision
operator, expressed by the right-hand side of (3.1) and its invariant prop-
erty, i.e. the operator reflects the space of integrable functions into itself.
Unbounded coagulation kernels do not possess such property and it is the
main obstacle them to be analysed. Existence for unbounded coagulation
kernels from class (3.3) was proved by Galkin [34] and White[78]. They did
not take fragmentation into account. Burobin and Galkin [13] considered
kernels which belong (3.3) for large arguments and have singular behaviour
for z,y — 0. Then Galkin and Dubovskil [39] and Spouge [65,66] proved
existence for kernels K(z,y) = o(z)o(y) with several variations. The exis-
tence theorem in large for unbounded coagulation kernels with fragmentation
ones taken into account, was proved by Ball and Carr [5] and Stewart [69].
In all above references the rate of growth of coagulation kernels is not more

than one (i.e. K(z,y) ~y, y — oo, for fixed z ).
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Chapter 4. UNIQUENESS THEOREMS

In the first section of this chapter we prove uniqueness result which nat-
urally links with the existence theorem from previous chapter if initial data
belong to the class ©(0). Then we demonstrate two other uniqueness re-
sults which are valid for solutions from the less restrictive class $,1(T) of
functions with bounded first moment (i.e. bounded total mass of particles).

4.1 UNIQUENESS THEOREM IN Q(T)

Theorem 4.1. Let the case 2° of the Theorem 8.1 hold and my < 1.
Then the solution to the initial value problem (3.1), (8.2) is unique in the
class Q(T).

To prove Theorem 4.1 we use the following lemma.

Lemma 4.1. Let v(\,t) be a real continuous function having continuous
partial derivatives vy and vyx on

D={0<A<X, 0<t<T)

Assume that a(X),B(At),v(A,t) and 6(A,t) are real and continuous on
D , having continuous partial derivatives there in A and that the functions

v,vx, 3,7 are nonnegative. Suppose that the following inequalities hold on
D:

(1) < a(M) + / (B0 s (008) 70, 000,0) 60 N,

va( A1) S ax(A) + / -%(ﬂ()\, s)a(A, 8) + (A, 8)v(A, s) + 6(A, s))ds.
0 (4.2)

Let mo = supg<a<a, @ M1 = supp B, mqy =suppy, mz =supp §. Then
v(A,t) < mg exp(mat) + (ma/ma)(exp(mat) — 1)
wn any region R C D:

R={(/\,t):OStStl<T,; Al—_mltS/\S)\o——mlt, 0< X\ <)\0}.
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where T' = min {A\;/m1),T}.

Proof. Let us denote the right-hand side of the inequality (4.1) by w(A,1).
By differentiating in ¢, A, we obtain from (4.1),(4.2):

wy < pwr +yw + 0 < mywy +yw + 6.

Hence for the derivative along the characteristic %% = —iny we have
dw
— < 6. 4.3
T STw+ (4.3)

Let us denote u(t) = My exp(mat)+(Ms/m2)(exp(mat)—1) with My > my,
Mz > mg. Obviously, u(0) > w(},0) for all A € [0, Ao]. Let (},7) be the
first point on a characteristic straight line, where w = u. Then at the point
(A,9)
d(u —w) <0
a -

and consequently
' ' w — Crwy > uy. (4.4)

From u; = mou + M3 we can easily see that at the point (:\,f) the equality
us = mow + M3 holds. Recalling (4.4), we obtain a contradiction with (4.3):

d
_c_i_lf_._:wt_mlwAZm2w+M3>m2w+m327w+9'

This proves Lemma 4.1 O

Proof of Theorem 4.1. We shall prove the uniqueness of solution ¢ € Q1 (7))
in Q(T) by contradiction. Suppose that there are two distinct solutions c
and ¢ of the initial value problem (3.1),(3.2) in Q(T). Using the notation
u = |c—g|, ¥ =|c+ g| and conditions (3.3), we find that

t 1 x
wa) < [ {5H0+0) [ ulo - vt v+
+3hu(e, ) / (142 + 9y, 9)dy + k(2. ) / (142 + y)uly, s)dy

+ [T FG - sty + Jutes) [ Fa vy e
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Since ¢,g € Q(T), we have u,y € QT), and u,% > 0 on 7. Let A > 0 be
chosen such that

o0
/ exp(Az)u(z,t)dz < const < oo,
0

oo
/ exp(Az)i(z,t)dz < const < 0o (4.6)
0
uniformly with respect to ¢, 0 < ¢ < T, and let
0< A< (4.7)

Integration of inequality (4.5) with the weight exp(Az) yields
[e <} t (e 2] o<} 1
et iz < [{ [T [7 ety remp0a) tepin)
0 o o Jo

(14 2+ y)u(z, s)Y(y, s)dzdy + /000 exp(Az)u(z, s)-

T 1 T
: (/ exp(Ay — Az)F(z — y,y)dy + 5/ F(z - y,y)dy) dw} ds.
0 0

Here we have changed the order of integration in the integral, using Fubini’s
theorem [26]. We strengthen this inequality with (3.4) and m; < 1 taken

into account:
oo 3 t co co
/ exp(Az)u(z,t)dz < -/ {/ / kexp(Az + A\y)
0 2Jo Lo Jo

(14 2+ y)u(z, s)y(y, s)dzdy +b/ooo(1 + z) exp(Az)u(z, s)d:c} ds.(4 .

The following inequality can be proved similarly:

/Oooa:exp()\m)u(x,t)d:c < g/ot {/000 /000 kexp(Az + Ay)(z +y)

{(1+ 2z + y)u(z, s)yY(y, s)dzdy +b£°° z(1 + z)exp(Az)u(z, s)dw} d.s(.4 0



56 P. B. DUBOVSKII

Let
U\ ) = /:0 exp(Az)u(z,t)dz; T(At) = /000 exp(Az)y(z,t)dz.

The functions U and ¥ are analytic in the half-plane Re(\) < A for any fixed
t, 0<t<T.Let \be on the real axis and satisfy

0<A< Ao <A (4.10)

The inequalities (4.6) then ensure that, for any integer ¢ > 1,

o 0 }
su U\t), ==Y\t 4.11
ogth,olz,\gxo {OA’ (A1) O\ (A1) (4.11)
Moreover, since u(z,t) and ¥(z, t) are continuous on II7 and inequalities (4.6)
are satisfied, for a given & > 0 there are corresponding numbers §(¢) > 0 and

6;(¢) > 0 such that, if 0 < ¢,¢' < T, and ¢ > 1,

sup {|UN ) —=UD|, [T ) =T\ )|} <e, [t =t <4,
0<A<LAo

sup { 36/\1U(’\ t)— > U()\ t)' ’ \If()\ t)— o \Il()\ t)l} < g,
0<A< A0 (4.12)
|t —t] < 6.

In fact, to show (4.12) it is enough to split the integrals in (4.6) and use
the uniform smallness of the ”tails” [, which holds due to (4.7), (4.10)
and the inequality (3.27) with, for example, ¥(z) = exp(%(j\ — Ao)z).
follows from (4.11),(4.12) that U and ¥ are continuous together with all
their partial derivatives with respect to A\in D ={0 <A< A, 0 <t < T}.
The inequalities (4.8),(4.9) imply that

U(\8) < -2- / T 5)+ B)UA 8)+ (B, )+ kAN, )+ BU(A, )} ds,

t
U\ 1) < % %{(k\p + YU + (kT + kT + BTN, 5)}ds,
0
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and U and ¥ are nonnegative in D together with their partial derivatives
with respect to A. We can thus apply Lemma Ilm4.1 in D. Let

3
c1=z(ksup¥ +b), c; = §/c sup(¥ + U,) + §b.
2 D 2 D 2

Then U(M,t) = 0 in the region R defined in Lemma 2.5. Since u(z,t) is
continuous, u(z,t) =0for 0 <t < t', 0 < & < oo; hence U(A,t) = 0 not only
in R, but for all 0 < X < X\, 0 <t <t. Applying the same reasoning to the
interval [t', 2t'], we conclude that u(z,t) =0for 0 <t < 2¢', 0 <z < oo and,
continuing this process, we establish that u(z,t) = 0 on II, that is, ¢ = g on
II7. This completes the proof of Theorem 4.1 O

4.2 UNIQUENESS THEOREM IN € 1(T)

Let the coagulation kernels be symmetric and satisfy the following condi-
tion. Suppose that for all z > 0 there exists X (z) > 1 such that

K(z,y) = a(z)y + b(z,y) if y>X(z) (4.13)
and there exist positive constants A, G such that

sup K(z,y)+ sup b(z,y)+a(z)X(z) < Gexp(Az), =z >0. (4.14)
0<y<X(2) y2X(2)

Functions a and b have to be nonnegative.

We shall consider fragmentation kernels which are nonnegative, symmetric

and satisfy for positive constants u and A the following condition:

/ F(z —y,y)exp(—py)dy < A, = 2>0. (4.15)
0

This class includes bounded and all above-mentioned fragmentation kernels

(e.g. F(z,y)=(z+y)7)
The aim of this section is to prove the following theorem.
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Theorem 4.2. The initial value problem (3.1),(3.2) with a coagulation ker-
nel from the class (4.13) and a fragmentation kernel from (4.15) has at most
one nonnegative continuous solution among all continuous functions with the

same first moment:

[e e} [o o}
/ zc(z,t)dz = / zd(z,t)dz < 0o, t>0. (4.16)
0 0o

We formulate the following lemma which can be proved similarly to Lemma 4.1.

Lemma 4.2. Let v(q,t) be a real continuous function having continuous
partial derivatives vg and vgg on

D={0<g<¢g<q, 0<t<T}

Assume that a(q),B(g,t),7(g,t) and 6(q,t) are real continuous functions on
D and their first partial derivatives in q are continuous. Let v,vqq, 5,7 be
nonnegative and vq, oy, Bq,7q,0q be nonpositive functions on D. Suppose
also, that the following inequalities hold on D:

v(,t) < alg) + /0 (=B(q, $)g(a,9) + 7(g, s)o(g, ) + e(q,s»céi;m

o
w(0,0) 2 ay(@) + [ 5o (=00 9)0a(a,9) + 7(0,50(0,5) +6(0,9) -

Let co = supg <4<q, @ €1 =Ssupp 8, ¢2 =suppy, €3 = supp 0. Then
v(g,t) < coexp(cat) + (c3/c2)(exp(eat) — 1)
i any region R C D:
R={(¢,t):0<t<T go+tat<g<q—e+at, 0<e<a—q,},
T' = min{T,e/c; }.

Proof of Theorem 4.2. We shall prove by contradiction. Suppose that there

are two distinct continuous solutions ¢ and d of the initial value problem
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(3.1),(3.2) with the same initial data and first moment. Let us denote u =
¢ — d. Then we obtain from (3.1):

0ug;,t) _ %/0” K(z —y,y)u(z — y,t)(c + d)(y, t)dy—

~u(z,) | " K(e,y)ely, )dy — d(z, ) / " Kz, yyuly, t)dy—

1 T (o ]
_§u(a:,t)/ F(z —y,y)dy + / F(z,y)u(z + y,t)dy.
0 0 (4.19)

Let us write (4.19) in the following integral form

u(z,t) = /Ot exp (— /st {/Ooo K(z,y)e(y, 7)dy + -;—/Oz F(z — yay)dy} dT) :

(5 [ K - vute = ves)e + s )=

~d(e,t) [ Koy + [ Pt s)dy(2 i

Utilizing (4.16), we consider the second summand in (4.20) separately:
oo X(z) oo
| K@ na = [ kG @it [ (@@, vd =
0 0 z

X(z)

X(z) oo
= /0 K(z,y)u(y)dy + /X - b(z,y)u(y,t)dy — a(z) /0 yu(y, t)dy.

Whence,

s K(x,y)u(y,wdy] <

S{ sup K(z,y)+ sup b(z, y)+a(m)X(w)] /oo lu(y, t)|dy.
0<y<X(2) y>X () 0 (4.21)

Using (4.21) and (4.14), we obtain from (4.20):
t 1 T
w0l < [ {3 [5G - vlute =091 le + dw v+
0 0

+GepO)ld(z, )] [ " lu(y, 9)ldy + / " Fle,p)lue +, s)ldy} e
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Let -
U(g,t) = / exp(—gz)|u(z,t)|dz,
0

¢ = max{le+d},|cl, [d]}, ¥(q,t) = / exp(—gz)b(z, t)dz.

Let ¢ be on the real axis. Functions U and ¥ decrease in ¢, ¢ > 0. Boundness
of the values U(0,t), ¥(0,t) ensures that all partial derivatives in q of U, ¥
are bounded on ¢ > 0. In addition, the functions U and ¥ are continuous
with all their derivatives in ¢ for any fixed ¢, 0 < ¢ < T. Since u(z,t) and
(z,t) are continuous, then U ans ¥ are continuous together with all their
partial derivatives with respect to ¢ for ¢ >0, 0<t < T.

If we choose qo > max{), 1} and utilize (4.15), thenfor 0 < ¢o < ¢ < g1 < o0
the following inequality takes place

/0°° /0°° F(z,y)exp(—qz)|u(z +y,t)|dy =

-/ " (e, 1) / " Flz — y,y) exp(=qy)dyds < AU(0,2).
0 0 (4.23)

By integrating (4.22) with weight exp(—gz) and taking into account (4.23),
(4.14), we obtain

U(qvt) < /0 {GU(Qa s)lIl(q - /\’ 3) - GUq(q’ 3)\Il(q - Av 3)+
+G¥(g — A, s)U(0,s) + AU(0, s)}ds.
| (4.24)

Our next step is to estimate U(0,s). Let g2 be the solution to the algebraic

equation

U(0,t) = U(gz,t) — g2Uq(q1,1). (4.25)

Due to the decreasing of the function U(g,t) with ¢, the equation (4.25) has
the only root g2 > ¢q;. Hence, for 0 < ¢ < ¢;, 0 <t < T we obtain

U(Ovt) S U(qat) - QUq(q’t)a (426)
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where @ = supg<i<7 ¢2(t). By substituting (4.26) into (4.23) we come to the
following inequality

U(q,t) < / {V(q’S)U(q,S) - W(‘]as)Uq(q’S)} ds, 0< go <¢qg< q(l )
0 4.27

where functions V' and W are positive, continuous and have negative first
derivative in ¢. Similarly, by integrating (4.22) with weight z exp(—gz), we
obtain

tH
Uygt) < — / 52 V(0.5)0(0,9) = W(a,s)Uy(,9)} ds, -

if 0 < g0 < q < ¢q1. We choose the value of ¢; sufficiently large to take
€ > Tc; and to obtain 7' = T. Applying Lemma 4.2 to (4.27),(4.28) we
obtain U(g,t) = 0 in the region R defined in Lemma 4.2. Since |u(z,t)| is
continuous, u(z,t)=0 for 0 <t < T, 0 < z < oo. Consequently, ¢ = d. This
completes the proof of the Theorem 4.2 [

4.3 UNIQUENESS THEOREM FOR
ANOTHER CLASS OF UNBOUNDED KERNELS

In this section we prove the following theorem.

Theorem 4.3. If (H1)

K(z,y) < ¢(z)¢(y), 2,y20 (4.29)

where ¢(z) < kv/I+ =z for some constant k , and; (H2): for all z >0
there is a constant m such that

/ V1+yF(z —y,y)dy <mvV1+z, (4.30)
0

then solutions to (3.1), (3.2) are unique in o 1(T).

Proof. For A € R! define sgn(\) to equal 1,0,-1 whenever A > 0,A =0
or A <0 respectively. Let ¢ and d be two solutions to (3.1) on [0, T],
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where ¢(0) = d(0), and set as in section 4.2 u=c¢—d. For n>1 define
w™(t) = / V1 + z|u(z,t)|de.
0

We write (4.19) in the integral form

'u(fv,t) = /Ot {% /Oz K(z —y,y)u(z — y,s)(c + d)(y, s)dy—

—d(z,s) AwK(x,y)u(y,s)dy —u(z,s) /000 K(z,y)c(y, s)dy+

o0 T
+ / F(z,y)u(z +y,s)dy — -;-U(w,S)/ F(z - y,y)dy} ds.  (4.31)
0 0

Multiplying |u| by +/1+=z and applying Fubini’s theorem to (4.31) we
obtain for each n and t € [0,T]

wiy= [ [ ViFsntate.o |5 [ (G - vute =y 0e+ o o)-

—F(z —y,y)u(z,s))dy—

= [ e ) o)l ) = Flewyyule + 9,90y | s

(4.32)

Using the substitution z' = z —y, y' = y in the first integral on the
right-hand side of (4.32) we find that

wn(t) = / / / [ 1+z+ysgn(u(z+y,8)—Vite sgn(u(m,s))] :

(K (z,y){d(z, s)u(y, s) + u(z,s)e(y, 5)} — F(z,y)u(z +y,s)] dydrds—

_/O /0" /io V1+ z sgn(u(z,s)[K(z,y){d(z, s)u(y,s) + u(z,s)c(y, s)} —

—F(z,y)u(z +y, s)|dydzds. (4.33)
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We note that by interchanging the order of integration (and interchanging
the roles of ¢ and y ) the symmetry of kernels K, F yields the identity

/On /On-z T+ z sgn(u(z, s)) [K(z,y)c(z, s)c(y, s) — F(z,y)c(z + y,8)] dydz =

= [ VAT sen(uts, ) K@, v)e(e, ely, ) ~ Playv)e(e + v,)) dyde
o Jo
(4.34)
(4.34) similarly holds for solution d. For z,y >0 and t € [0,T] define f
by

f(z,y,t) = /1 + ¢+ ysgn(u(z+y,t))—V1 + z sgn(u(z,t))—/1 + y sgn(u(y, t)).

Using (4.34) show that (4.33) can be rewritten as

t n n—x
=5 [ [ [ fen K uty, dydzds+

+% /0 t /0 i /0 " F@u 9K (2, y)d(y, s)u(e, s)dydeds—
_% /0 t /0 " /0 "y, )Pz, y)ulz + y,s)dydeds—
/ t | [ VI smntute, )i, v, uty, o) + e, )ew, )~

—F(z,y)u(z + y, s)|dydeds = / Z S™(s)ds, (4.35)

where ST

m i=1,...,4, arethe corresponding integrands in the preceding

line.
We now consider each S} 1nd1vxdually Noting that for all ), v € R?
we have sgn(M)sgn(y) =sgn(Ay) and |A| = Asgn(A), we find that

flz,y,8)u(y,s) < [\f +r+y+vVitz— \/1 +y] lu(y, s)| < 2v1+ z|u(y,s)|
(4.36)
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The very important place in these reasonings is the negative sign before
V1+y in (4.36) unlike the positive one before /14 z. Thus by Holder’s
inequality, hypothesis (H1) and (4.36),

t t
/S{‘(s)dsSLl/ w"(s)ds, (4.37)
0 0

where

Ly =k* sup |le(.,8)llo,1-
s€[o0,t]

Similarly, there is a constant L, such that

/0 " $n(s)ds < Iy /0 " wn(s)ds. (4.38)

To consider S7 we first observe that

—f(z,y,s)u(z +y,s) < [\/1 +z++/1+y—+/1l+z +y] lu(z + y, )|
(4.39)
By (4.39), Fubini’s theorem, hypothesis (H2) and the symmetry of F

t
/ S3(s)ds <
0

<3 t [ [ Vi VIR - VT ] Fa)lu(ety, o)l dydads

-;—/Ot/on/: [\/1+m+\/1+y~w—\/m} F(z,y — z)|u(y, s)|dydzds

1

= [ [ [ [ViFe=v+ viFy - VIFa] Flo - vnlu(e, o)dydads

1 t n T t
= '2'/ / / V1+yF(z —y,y)lu(z, s)|dydeds < L3/ w"(s)ds (4.40)
o Jo Jo o
where L3 = m/2. Let x denote the characteristic function, i.e. for any set

E we have x,(z)=1 if 2 € E and zero otherwise. Define

(2:5) = X (@)1 +2)clz5) [ VITY el )iy
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and

In(s) =/ gn(z, s)dz.
0
Clearly, for each s € [0,1]
|9n(2,8)| < (1 + z)e(,5)]le(., 5)llo.1

forall n and gn(z,s) - 0 as n — oo. Thus by the dominated convergence
theorem [,(s) - 0 as n — 0. Moreover,

lln(s)l < sup [le(,9)Il5,15
s€[0,t]

and therefore a further application of the dominated convergence theorem

leads to

t
/ [n(s)ds — 0 as n — oo. (4.41)
0

Using the symmetry of F, Fubini’s theorem and hypothesis (H2) we have
for each s € [0,1]

/ / VIF 2F (2, y)c(z+y, s)dydz = / / VIFaF (e, y—)cly, s)dyda
0 n—zx 0 n »

= / / V31+yF(z—y,y)e(z,s)dydz < / / V14 yF(z—y,y)c(z,s)dydz
n 0 n 0

< m/ V1+zc(z,s)de — 0 as n— oo. (4.42)

The right-hand side of (4.42) is always bounded by the constant

m sup ”C(-, 5)”0,1
SE[Oat]

and therefore

t n oo
/ / / V1+ zF(z,y)c(z + y,s)dydzds — 0 as n — oco. (4.43)
0 0 n—g )
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(4.41) and (4.43) are similarly true for the solution d and consequently
t
/ Si(s)ds = 0 as n — oo. (4.44)
0

We now set L = Ly + Lo + L3. Applying (4.37), (4.38), (4.40) and (4.44)

to equation (4.35) and taking limits as n — oo gives

oo t
/ V1+ z|u(z,t)|de = lim w"(t) < lim L/ w™(s)ds+ lim / Si(s)ds

t
0
t poo
=L/ / V1 + zfu(z, s)|drds. (4.45)
o Jo

An application of Gronwall’s inequality to (4.45) shows that

/ V1+ zlu(z,t)|dz =0
0

for all ¢t € [0,T] and therefore c(z,t) = d(z,t) which completes the proof
of Theorem 4.3 0O

4.4 REMARKS

The first uniqueness theorem for the problem concerned was proved by
Melzak [54] for bounded coagulation and fragmentation kernels with the ad-
ditional condition .

F(z —y,y)dy < const.
0

Aizenman and Bak [1] demonstrated uniqueness for constant coagulation and

fragmentation kernels K = F =const.

It was shown by Galkin and Dubovskii [39] that for kernels K(z,y) <
k(1 + 2%y®), @ < 1, F = 0 the problem concerned can have at most one
solution in class of functions, integrable with weight exp(Az®), A > 0.

The results of section 4.1 generalize Galkin’s ones (see [34]) where the
uniqueness in Q(7') is proved for pure coagulation equation (without frag-
mentation and other processes). A variant of Lemma 4.1 was formulated
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without proof in [34]. The proof of Lemma 4.1 is based on the proof of
Haar’s lemma [42].

The condition (4.16) takes place, e.g., for coagulation kernels with linear
growth on infinity and bounded fragmentation ones. In this case the equal-
ity (4.16) means the mass conservation law. If the kernel K grows faster
than linear function then the mass conservation law can be infringed. This
phenomenon is discussed in chapter chapl. It takes place for the important
multiplicative case K = zy . For this case the behaviour of the total mass
(which is expressed by the first moment of solution) is well-known. Conse-
quently, the condition (4.16) takes place for the multiplicative coagulation
kernel as well as for mass conserving kernels.

The class (4.13) includes many physically reasonable coagulation kernels.
Particularly, this class has large intersection with coagulation kernels sat-
isfying (3.3) or (4.28). Also, the class (4.13) includes bounded coagulation
kernels considered by Melzak [54], linear kernels [34] and multiplicative ones
(K = (Az + B)(Ay + B)) which are concerned in many papers (see below).
In addition, the class (4.13) includes the following kernels:

K(z,y) = a(z,y) + By)z + B(z)y +v(z,y)
where
g1(z)z + g2(2)y + g3(2)2y, y =2
1) { 91(¥)y + 92(y)z + g3(y)zy, y < .
Functions a, 3 and g;, = 1,2,3 are to be nonnegative and bounded.
Theorem 4.2 is true for the discrete form of the problem (3.1),(3.2) and
for case including sources and efflux terms with a(z,t) < const- (14 z).
Existence theorems for pure coagulation equation were proved (see Chap-
ter 3) if the coagulation kernels satisfy the condition K(z,y) < k(1 +z +y)
and solutions have bounded p-th moment, p > 1. Theorem 4.2 proves
uniqueness and completes the study of correctness for the important case

g1(z)z + go(z)y, y >z

K(z,y) = a(z,y) + Ba)y + Ay)z + { 91(¥)y + g2(y)z, y<a

with bounded functions «, 3, g1, 9g2. -
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Theorem 4.2 includes as well the important part of the Spouge’s conditions
ensuring existence [65,66]. Namely, his conditions on fragmentation, sources
and efflux satisfy Theorem 4.2.

In addition, we have the large intersection with Galkin and Dubovskii’s
[39] conditions on the coagulation kernels ensuring existence. These kernels
include many unbounded kernels modelling fast interaction of particles with
approximately equal masses (z =~ y). The following function K(z,y) €
(4.13) can serve as an example:

exp(v(2y —z)), y< =

K(z,y) = a(z,y) + , 0<v<A
(o) =aloy) {exp(u(zx-y», y2

The function « is bounded.

For the coagulation kernel I = zy without fragmentation Ernst, Ziff and
Hendriks [28] and Galkin [36] found exact behaviour of the first moment of
solution (see chapter 1). Consequently, this case conforms to the condition
(4.16) of Theorem 4.2, and we have global uniqueness of solution. Uniqueness
theorem for such coagulation model was proved by McLeod [53] for short time
interval when the mass conservation law takes place (before gel creating). For
the Flory-Stockmayer discrete model of polymerization with I;; = (A +
2)(Aj + 2) Ziff and Stell [83] found the value of the first moment of solution
for all t > 0. Consequently, in this case we obtain uniqueness of solution,
too.

Recently Bruno, Friedman and Reitich [11] considered a special coagu-
lation model. They succeded to prove uniqueness for bounded coagulation
kernels only, though their existence theorem allows to concern unbounded
ones. Approach of section 4.2 supplements their results and enables to prove
uniqueness of solution for kernels from the class (4.13). We have also ap-
plication of discrete versions of uniqueness Theorems 4.1 and 4.2 for the
Becker-Doring equations (chapter 9).

In section 4.3 we follow results of Ball and Carr [5] and Stewart [70].
As we aware, this uniqueness theorem was the first one which treated the
coagulation equation for unbounded kernels with a initial function from the

class 9,1.
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Chapter 5. SOME PROPERTIES OF SOLUTIONS

In this chapter we find some estimates for asymptotic behaviour of solu-
tions to (3.1), (3.2). Existence and uniqueness of solutions are established in
chapters 3 and 4.

5.1 MAXIMUM PRINCIPLE

Let G be an open set in a metric space B whose closure G is a compact
subset. We denote OG the boundary of G and let

C(T) = Gx(0,T}; T(T)=Gx[0,T]; oC(T) = (G x {0} J(8G x (0, T)).

So, C(T) is the parabolic boundary of the cylinder C(T).

Theorem 5.1. Let a continuous real functions v(z,t), ¢(t) and a(t) be
defined in the cylinder C(T) Let v have in C(T) a continuous time
derivative v;. Let for each fized t € (0,T] the points T € G be the point
of mazimum, i.e.

v(T,t) = maxv(z,t).
: z€G

Suppose
v(T,t) < ¢(t) —a(t)v(T,t), 0<t<T, z€G. (5.1)

Then

maxv(z,t) = max v(z,t).
C(T) aC(T)

Remark 5.1. If, in addition, the derivative v, 18 continuous in t in
G x (0,T] and the inequality (5.1) holds for T € G (not only for T€ G ),
then

maxo(z,t) = exp <— /0 t a(s)ds) maxo(z,0)+ /0 "exp (— / t a(sl)d.sl) q(s)ds.
(5.2)

Proof. Suppose that a = ¢ =0. Then (5.1) can be rewritten as

w(Z,4) <0, 0<t<T, z€G. (5.3)
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Let us replace the correlation (5.3) onto more strong condition
v¢(ZT,t) < 0. (5.4)

Let us assume that the maximum value of function v is achieved in a point
(z0,t0) € C(T). Then from (5.4) we immediately obtain that there exists a
point t; € (0,%9) such that

’l)(:l)o,tl))'v(l‘o,to), 0 < t; <ty.

This contradiction proves that actually (zg,t0) & C(T).

The final proof is based on the consideration the sequence of functions
1
vn(z,t) =v(z,t) + ;(T —-t), n>1

and passing to limit n — oco.

If ¢#0 or a# 0 then we introduce the auxuliary function

#(2,t) = exp ( /0 t a(s)ds) o(z,t) — /0 Cexp ( /0 (s )dsl) o(s)ds,

which satisfies (5.3), and iterate the above arguments. This proves Theorem
5.1. O

Let us consider a useful generalization of Theorem 5.1 which can be proved

similarly.
Theorem 5.3. Suppose the derivative v; is continuous in t in G x (0,7
and for T E€ G the following inequality holds

ve(Z,1) <0 of v(Z,t) > maxv(z,0).
z€G

Then

max v(z,t) = maxv(z,0).
C(T) z€G
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5.2 APPLICATION THE MAXIMUM PRINCIPLE
TO THE COAGULATION EQUATION

In this section we are concerned with the coagulation equation with ef-
fluxes and sources

80(8? 2 - % /OI K(z—y,y)e(z —y,t)e(y, t)dy — c(z,1) /0 ) K(z,y)c(y, t)dy—

—a(z,t) + g(z,1) (5.5)

which is equipped the initial condition
c(z,0) = co(x). (5.6)
We say that a continuous coagulation kernel satisfies the condition (M) if
0 < K(z,y) = K(y,z) and

1
K(z-y,y) < K(zy), 0sysgz, 0<z<oo

We should point out that the sufficient condition for validity of (M) is the
increasing of the function K(z,y) on z if z € [y,00) for each fixed y > 0.
The following coagulation kernels are of interest for describing real physial

and chemical processes and can serve as examples of functions which satisfy
the conditions (M):

1) 1; 2) z+y; 3) le—yl; 4) (@P4y/*)2 2P =y 3|, B) (212 +yt/3)3,

z \1/3 y 1/373
> 0.
M+(y+a) +(x+a> ] , a>0, M>0

Theorem 5.2. Let the kernel K satisfy the condition (M). Then the solu-
tion of the initial value problem (5.5), (5.6) satisfies the mazimum principle:
1) on each interval 0 <z <b

6)

¢
< - i d
orgf%cb c(z,t) < exp ( i Orsnggb a(z,s) s) 021?%% co(z)+
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t ¢
- i > 0: .
+/0 exp < /; ogl;gb a(m,sl)dsl> Oréla?gxb q(z,ss, t>0; (5.7)

2) if SUPg<ycoo 0(T) <00 and sUPg<rcoo 9(2,t) <00 for all 120 then

t
sup c(z,t) < exp (—-/ inf a(z, s)ds) sup co(z)+

0<z <0 0 0Sz<oo 0<z<o0

¢ t
+/ exp (—/ inf a(z, sl)dsl) sup gq(z,sMs, t>0. (5.8)
0 g 0%z<o0 0<z<oo

Proof. We fix arbitrary ¢ > 0. Let at the point Z € [0,b] the following
equality hold
o(T,t) = Orélf%b c(z,t).

Then

9c(%, )

z/2 :
ot /0 [K(Z — y,y)c(@ — y,t) — K(F,y)c(Z,t)] c(y, t)dy—

o0
@) [ K@)y - oz t) +a3.)
/2
Due to non-negativity ¢, and the condition (M) we obtain
= 4 < DN s T,
ct(T,t) < Dax, q(z,1) Oglégba(m,t) c(Z,t)
Using Remark 5.1 we come to (5.7). Since

sup c(z,t —hm max c(z,t
0<z£oo( ) —000<z<b ( )

then the assertion 2) follows from 1) as b — co. This proves Theorem 5.2 [

Let us apply Theorem 5.2 to estimate solutions for sufficiently large =z
for pure coagulation equation (a = ¢ = 0). The estimates do not change in
~ time. Let, as before, ¢ be the solution to the problem (5.1), (5.2) and f(z)

be a real function on [0,00) which is positive on = > 0. The transform
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¢ +— d where d(z,t) = f(z)c(z,t), yields the following initial value problem
for the function d:

3d(@? t) _ () {%/Ox Ki(z — y,y)d(z — y,t)d(y, t)dy—

~ d(at) [ m(m,y)d(y,t)dy,} (5.9)
0
d(z,0) = do(z), (5.10)
where do(z) = f(z)co(z), and the modified coagulation kernel K; is

K(z,y)
Ki(z,y) = ———, z,y > 0.
R T N
If the kernel K satisfies the condition (M) and supy<,<oo do(z) = M < o0,
then repeating the reasonings of Theorem th5.2 yields

sup d(z,t) <M, t>0.
0<z <o

Consequently, we obtain the following estimate for solutions of the Cauchy
problem (5.1), (5.2)

o(z,1) < O<z<oo, t>0. (5.11)

M
f(=)’
Let us demonstrate how to obtain estimates of the type (5.11) for the in-
teresting and important coagulation kernel K(z,y) = |z —y|. We put
f(z) = z* (a > 0). Let us look for the maximum value of the parameter o

when the kernel
Ki(z,y) =27 %z —yly™® (5.12)

is an increasing function with respect to z on 0 <y <z < oo (ie.
when the kernel K;j(z,y) satisfies the condition (M) ). That condition is
equivalent to the inequality

da-y

d:va:ayazo if 0<y<z<oo.
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Hence, the inequality (1—a)z+ay > 0 must be trueforall 0 <y <z < oo.
Thus, we should pick up amax = 1. Consequently, the kernel (5.12) satisfies
the condition (M) on 0 < @ <1 (for a > 1 it is wrong). If the initial
condition of the problem (5.1), (5.2) is such that

sup z%(z) =M < o0 (5.13)
0<z<0

for a al € [0,1], then the solution of the coagulation equation with the
kernel K(z,y) = |z —y| obeys the inequality

o(z,1) < i‘% 0<o<oo, ¢t>0. (5.14)

Analogiously we can show that the estimate (5.14) is valid for solutions of
the initial value problem (5.1), (5.2) with the following coagulation kernels:

1
a) T+y if 0<a< X
1
b) (213 4 y1/3)3 if 0<a< X
c) (m1/3 +y1/3)2lm1/3—y1/3| if 0<a< _2_;_
For the case c) the upper bound for the parameter a can be more precise:
it belongs to the interval g— < Qmax < 1.

In conclusion we should emphasize that the estimates (5.11) are uniform
with respect to the time variable ¢ and enable to make the judgement about

decreasing of solutions as = — oo.

Let us consider more complicated coagulation-fragmentation equation (0.6).

Iterating reasonings of Theorem 5.2 yields

0c(T,t) _

z/2
- A K@ — 4, 9)e(®@ — v, t) — K(T, y)e(T, 1)) e(y, t)dy—

—ﬁfm@wMaﬂ—Fw—amwmo@—
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~(@t) [ / K(z9)e(w, Oy = e(@.1) | "z —y,y)dv.

Let there exists a positive constant m such that the functions K and F
obey the following condition (M ):

mK(z,y) > F(y —z,z) forall y>uz.

Also, we suppose that condutions (M) hold. If there exists a time moment
t such that ¢(7,t) > m then we obtain

0c(z,t)
ot

Applying Theorem 5.3 yields the following result

<0.

Theorem 5.4. Let the kernels K,F satisfy the conditions (M) and (M, ).
Then the solution of the equation (0.6) satisfies the foolowing estimates:
1) on each interval 0 <z <b

< < > 0;
Orél:?%cb c(z,t) < max{m,orgia%cb co(z)}, t=>0;

2) if supPy<z<oo Co(T) < 00, then

sup c(z,t) < max{m, sup co(z)}, t=>0.
0<z<0 0<zr <0

5.3 POSITIVITY OF SOLUTIONS

In this section we discuss some results connected with positivity of solu-
tions. A domain where a solution is stricktly positive, we call the positivity
set of the solution. The totality of the positivity sets gives valuable infor-
mation about the behaviour of ¢(z,t), especially for small ¢. Hence this
information will be valuable for numerical work in which the pure coalescence
terms are evaluated, where each evaluation is for a small time step.

Let P={z: c¢o(z)>0} and Z ={z: co(z) =0}, and define the
n-th positivity set of the solution c(z,t) as :

9"co(x)

8% co(z)
n _ . _— = <k<n-1: > 1.
Z {a: 5ek 0, 0<k<n-1 i >0}, n>1
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We also need to define the following operation between sets. If P and @
are arbitrary sets of non-negative real numbers, then their sum is defined as

P+Q={r: r=p+q¢ peP qeQ}.

Thus the following notation is meaningful: Py =P, P, =P+ P,... ,P, =
P,_1 + P. We are in position to formulate the following theorem.

Theorem 5.5. Let us suppose that there exists a unique non-negative con-
tinuous solution c(x,t) to (0.3), (0.4) which is analytic in t for each
z. Let K(z,y) be strictly positive. Then the positivity sets of the solution
c(z,t) are given by

Z" = Z(\(Png1 — UL, P).

The proof of Theorem 5.5 is based on finding the form of nth derivative
of ¢(z,t) with respect to t. This derivative exists due to analyticity of the

solution.

Corollary 5.1. ¢(z,t) >0 for t > 0 and for all z if and only if

Example. Suppose that c¢o(z) is defined as

( 1
07 0S$S§,
g(w'—%)a %ngly
@) =193 3 3
55—1'), lses<y,
3
\ 0, $_>_-2-

Hence, we have
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Thus, P, =(1,3), Ps=(3,3), Pi=(2,6)... and UX,P = (1,00).
Therefore Z ¢ UR2,P; and by Corollary 5.1 there are z,t > 0 such that
¢(z,t) = 0. From Theorem 5.3 we have

3 9 9
1|2 2_ |3 2 3 |2
Z = [2,3>, Z [3,2>, Z [2,6)

and so on. Due to analyticity we can expand c(z,t) in a series

> 3ic0(m) ﬁ

o(z,t) = CO(‘T) + Z ot

il

Hence the significance of the Z™’s is that coefficients of the above series are
positive over Z* but equal to zero in outer points. There we see that posi-
tivity sets contribute information about the evolution of ¢(z,t), especially
for small t.

Let us discuss the problem concerned for the coagulation equation with
fragmentation. We consider the discrete equation (0.7). Suppose that both
coagulation and fragmentation kernels satisfy the positivity condition

I{I,i > 0, Fl,i > 0, 1> 1. (515)
Then either the solution to (0.7) is trivial (zero for all arguments) or strictly
positive for all ¢ > 0. Namely, the following theorem holds.

Theorem 5.6. Let (5.15) hold and ¢ be a nonnegative continuous solution
of (0.7) on [0,T]. Suppose that there exists k > 1 such that ci(0) > 0.
Then ci(t) >0 for all t€(0,T] and all ¢ >1.

Proof. Suppose for contradiction that ¢;(r) = 0 for some : and some
7 €(0,T]. If ¢ >1 then since

de; (t)
dt

= Ji(t) — ci(t)6i(?),
where

i—1 oo
1 -
dit) = 5 > Ki-jjci-jej+ ) Fijciti,
j:l . j:l
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i—1

oo
. 1
0i(t) = > Kijcj+ 5 > Firjj,
j=1 ~ =1

we have that

0 = ci(r) exp ( /0 ’ 0(s)d3) = ci(0) + /0 " exp ( /0 t o('s)ds) i(t)dt.

Hence
1 t—1
3 D Kiojjeimj(t)e;(t) =0
Jj=1

for all t € [0,7], and thus either ¢;—1(7) = 0 or ci(r) = 0 for all
J, 1<j<i—1. Weobtain ¢;—1(7) =0 if ¢i1(7) # 0. We repeat similar
arguments and obtain c¢;—2(7) = 0 if ¢;(r) # 0 and so on. Finally, we
establish ¢1(7) = 0.

For ¢; we have

d_ccllg = —a(t)¢(t) + h(1), te€(0,T]. (5.16)

where

é(t) = ZI{i’jcj(t)’ h(t) = sz_l,lcj(t). (5.17)
j=1 j=2

It follows easily from (5.16) that

e1(r) exp ( /0 ' ¢(3)ds> — o (0)+ /; " exp ( /0 t ¢(s)ds> h(t)dt.

Hence ¢1(0) = 0 and h(t) = 0 for all ¢ € (0,7). Since each ¢; is
continuous, we obtain from (5.16) ¢; =0 for all ¢ > 2, and thus ¢(0) =0,

a contradiction. Theorem 5.6 has now been proved 0O

It is interesting to point out that we have essentially used positivity of
fragmentation kernel. If, e.g., we consider pure coagulation, then h(¢) =0
and we do not obtain the result. Theorem 5.5 claims that the assertion of
Theorem 5.6 is not valid for pure coagulation.
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5.4 REMARKS

In Theorems 5.1, 5.2 we follow Galkin and Tupchiev [40] who proved
them for pure coagulation case a = ¢ = 0. Theorem 5.5 is due to Melzak
[55], Theorem 5.6 generalizes the similar result of Ball, Carr and Penrose [6]
which they established for Becker-Déring equations. The proof of Theorem
5.6 iterates verbatim [6]. A number of other results closely connected with
the contents of sections 5.1, 5.2 can be found in [35].
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Chapter 6. TREND TO EQUILIBRIUM FOR CONSTANT
COAGULATION AND FRAGMENTATION KERNELS

In this chapter we examine the convergence to equilibrium of the coagulation—

fragmentation equation

a 1 T (o ]
E{c(ma t) = 5 A I{(:l} =Y, y)C(IB -Y, t)C(y, t)dy —/(; I((‘T’ y)C(:II, t)C(y, t)dy_

_% /: F(z —y,y)e(z,t)dy + /:o F(z,y)e(z + y,t)dy, (6.1)
co(z) = ¢(z,0) >0 (6.2)

for constant (not equal) coagulation and fragmentation kernels. The plan of
the charter is as follows. Section 6.1 introduces the notation, definitions and
compactness results we shall require. In section 6.2 the invariance principle
for lower semicontinuous Lyapunov functionals introduced by Dafermos is
extended to the weak L' topology. In Section sec6.3 we prove that if the
kernels are constants then the equilibrium solution is unique for given initial
data. Solutions are shown to be weakly relatively compact in L(0,00) in
section 6.4, via the Dunford-Pettis compactness theorem. This then allows
us to apply the extension of the invariance principle derived in section 6.2 to
a suitable semicontinuous Lyapunov functional and conclude that solutions
tend weakly in L'(0,00) to a unique equilibrium solution whose form is re-
lated to the initial data and the relative magnitudes of the kernels K and
F.

6.1 PRELIMINARIES

In order to study solutions to (6.1) we introduce the usual Banach space
L' and recall (see chapter 2)

F,(0) = {f € C[L}(0,00) : [|ll6} <0 and f20}  (6.3)

where || f Hf)‘,’} = [7(1+z)|f(z)| dz. We will further often omit zero indexes
and use just ||fllo,1, €& ;. The concept of gauge spaces will be used because
the weak convergence required cannot be described by a metric.
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Definition 6.1. For any set Y a map 1s called a guage (or semimetric) on
Y whenever

(i) d(z,y) >0 for all z and y

(i) if © =y then d(z,y) =0

(1) d(z,y) = d(y,z) for all z and y

(v) d(z,z) < d(z,y) + d(y,2) for all z, y and z.
A gauge has all the properties of a metric except that d(z,y) can be zero for
z # y. A family of gauges on Y, say T = {d, : @ € A} for some index set
A, is called separating if for each pair of points = # y there is a dy € T such
that do(z,y) # 0. The topological space arising from such a family YT is

called a Hausdorff gauge space (see Ash [3]). It is known that f, — f weakly
in L'(0, 00) if and only if for each ¢ € L>(0,c0)

/000 &(z) fn(z)dz — /000 é(z)f(z)dz as n — oo (6.4)

(see Dunford and Schwartz [25], page 289). Defining

ds(f,9) = l | @@ - st (6.5)

for ¢ € L*=(0,00) and f,g € L*(0,00) it can easily be shown that weak
convergence in L' is equivalent to convergence in the Hausdorff gauge space
T ={dg: ¢ € L*(0,00)}, the gauges dy being defined by (6.5).

The following compactness result, known as the Dunford-Pettis theorem
[26], will be used in section 6.4 below:

. Theorem 6.1. Let R be the set of real numbers. For a subset P of func-
tions contained in L'(R) to be weakly relatively compact it is necessary and
sufficient that the following three conditions be fulfilled:

(i)
sup{/leldp:feP}<oo (6.6)

(i) given € > 0 there ezists a compact set K such that

sup{/ |f|d,u:f€P}§e (6.7)
R\K
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(i41) given € > 0 there ezists a number § > 0 such that

sup{/Alfldu:feP}Se (6.3)

whenever u(A) < 8, where u(-) denotes Lebesgue measure.

6.2 THE INVARIANCE PRINCIPLE

Let YT be the gauge space on L' introduced in section 6.1 above with
the gauges being defined by equation (6.5). Let ¢ be a solution to (6.1) with
initial data ¢y and, for emphasis, denote this solution in L by &(co,t). We
introduce the following definitions:

Definition 6.2.

(i) The motion through co is the time map &(co,t) : [0,00) — QF ;.

(ii) The positive orbit Ot (¢) of the motion through co is the range of the map
in part (1) for t > 0.

(i) the w-limit set of the motion through co is defined by

w(co) = {f € L' : &(co,tn) — f weakly in Lt

for some sequence of times t, — co}.

Theorem 6.2. If the positive orbit OF (&) through co is weakly relatively
compact in L'(0,00) then

(i) w(co) 18 nonempty,

(1) é(co,t) — w(co) weakly in L'(0,00) as t — oo,

(11i) w(co) 1s positively invariant, i.e. for each y € w(co), &(y,t) € w(co)
for

any t > 0.

Proof. (i) Let {t,} be a sequence in [0, 00) with ¢, — co. Then {&(co,tn)} is
a sequence contained in OF(cg). Since O (&) is relatively compact there is a
subsequence {t,,} such that {&(co,tn,)} converges weakly to some function
y € L'. By Definition 6.1 (iii) y € w(co) and therefore w(cop) # 0.
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(ii) Suppose there is a sequence {t,,} with ¢, — oo such that for some dy € Q

d¢(6(00,tn),w(60)) # 0. (6'9)

As in part (i), since O1(é) is weakly relatively compact, there is a sub-
sequence and a function y € L' such that é&(co,tn,) — y weakly, that is,
dy(é(co,tny),w(co)) — 0 for all dg € T. This contradicts (6.9) since any sub-
sequence of a weakly convergent sequence must converge to the same limit.
Hence dg(é(co,t),w(co)) — 0 as t — oo for all dg € T and é converges
weakly in L! to w(co).

(iii) Let y € w(cg). Then é&(co,tn) — y weakly for some sequence {t,}. Fix
t > 0. From continuity in time ¢t we have

&(coytn +1) = &(&(co, tn),t) — &(y,1) (6.10)

weakly as t, — co. Thus by definition é(y,t) € w(co) O

Definition 6.3. A map V : Qg',l — [0,00) is called a lower semicontinuous
Lyapunov functional for the solution c if

(1)
V(&(co,t)) < V(co) for all co € Qf ; and t >0 (6.11)

(ii) for any weakly convergent sequence c, — c in L!

V(e) < liminf V(cp). (6.12)

Theorem 6.3. (Invariance Principle) Let V be a lower semicontinuous
functional for the solution c. Suppose that w(co) # O for some ¢o € Q(;l
and let y € w(co). Then for all z € w(co)

V(z) = V(y). (6.13)
In particular, for any y € w(cy) and t >0

V(e(y, 1) = V(y)- (6.14)
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Proof. Let y,z € w(cg). By Definition 6.2 (iii) there are sequences {t,},
{sm} with t,, = 00, s — oo such that as n,m — oo
é&(coytn) =y weaklyin L! (6.15)
é&(co,8m) — z weakly in L. (6.16)
Consider a subsequence {s,,,} of {s;} with s, > t, + n and set ¢, =
Sm, — tn. Let &(y,t) be a solution to (6.1) with initial data y € QE,"’I. As
solutions are continuous in ¢ we have that

é(co, Sm,, ) = €(co,qn + tn) = é(é(co,tn), gn)- (6.17)

From the triangle inequality for gauges in Definition def6.1(iv) it follows from
(6.15) that for each dg € Q2

dg(&(y,qn),2) < dg(&(y, qn), &(&(c0,sn), qn)) + d(&(co, $m, ), 7). (6.18)
Since (6.15) holds
d¢(6(y, Qn), é(é(COatn), Qn)) — 0. (6.19)

In the gauge space T subsequences of convergent sequences converge to the
same limit as the original sequence and hence by (6.16) as n — oo

ds(é(co,Sm, ),2) — 0. (6.20)
Thus by (6.18), (6.19) and (6.20) as n — oo
de(&(y,qn),2) = 0 (6.21)

and so by the arbitrariness of ¢ € L™
&(y,qn) — 2z weaklyin L' as n — oo. (6.22)
It now follows from (6.22) and Definition 6.3 that
V(z) < liminf V(&(y, ¢n)) < V(y)- (6.23)

Interchanging the roles of y and z in the above argument shows V(y) < V(z)
and hence V(y) = V(z2).

Now fix t > 0. By Theorem th6.2 w(cp) is positively invariant and therefore
é(y,t) € w(eo) if y € w(eg). Setting z = &(y,t) in equation (6.13) yields
(6.12) O
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6.3 UNIQUENESS OF EQUILIBRIUM

Before examining equilibrium solutions to (6.1) and (6.2) we make some
general comments on the time dependent solutions. Multiplying (6.1) by zt,
i = 0,1, and integrating over [0,0), gives the moment equations for N;(t)
defined for constant kernels K and F' by

gt—Ni(t) = %/000 z'e(z,t)dx
= /0 " /0 Kl ey, 1) — Fe(z +y,1)]

X [(m +y) -zt — yi] dzdy (6.24)

provided N2(0) < oco. This last condition, which we shall always assume,

ensures boundness of the second moment Ny(t) for all t > 0 (see chapter 3).
For constant kernels the mass of the system, N;i(t), must remain constant:

Ni(t) = /;00 zco(z)dz, t2>0. (6.25)

Observing that

/O h /o " c(aty, t)dyde = /O ” / ” (y, t)dydz = /0 B (c(y,t) /0 ’ cl:r) dy = Ny,
(6.26)

the differential equation for No(t) (which corresponds to the number of par-
ticles in the system) is, by (6.24) and (6.25),

—(iNo(t)——— SKN2(t) + = FNl (6.27)

with No(0) = [;° co(z)dz. Solving (6.27) shows that for any initial data
co € XT we must have

o0FNT | N .
" No(VE +VFN; 'll No(OVE + VEN: | e (¢ I‘F]\(?zg)

It follows that if we set A = F//I{ then

No(t) — \//\Nl as t — 0o. (629)
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Equation (6.28) further shows that if the initial data satisfies No(0) = /ANy
then No(t) = No(0) for all ¢ > 0. Although weak convergence to equilibrium
will be proved in section 6.4 below, we remark that if it is assumed ¢(-) — ¢(-)
weakly in L'(0,00) as ¢ — oo for some equilibrium solution ¢ € L!(0, c0),
then we necessarily have, from the definition of weak convergence,

No(t) = /0 " e, )z — /0 ~ e()dz. (6.30)

Hence, by (6.29), any equilibrium solution € for (6.1) to whizh solutions may
converge must satisfy the following relationship, which involves the initial

/ " a2)dz = /AN, (6.31)

In order to prove that equilibrium solutions are unique for a given initial data

data in terms of IV;

we require the following lemma, which is a special case of that mentioned by
Tricomi [74], page 12:

Lemma 6.1. Let A(y) € L'(0,m) for some m > 0 with A(y) > 0 a.e. and
define forn =1,2,3,...

Row =1, Fi = [ 4wy, Faw) = [ AWF),..

Fa(u) = / A(y)Fars (y)dr.
0
Then 1
Fo(u) = -7-1-;F1"(u) (6.32)
Proof. The result is clear for n = 1. Assume true for all integers up to n—1.
Then, since dF; /dy = A(y) we see that

Faw) = [ APty = o= [T awrr iy = 3 [ Sy = S

and the result follows by induction O

We are now in a position to prove that the equilibrium solution for (6.1)

is unique.
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Theorem 6.4. Suppose that the kernels I and F' are positive constants and
set \ = F/K. Then equilibrium solutions to (6.1) are unique in L'(0,00) for
each co € XT. The unique equilibrium is given by

t(z) = Aexp (—w\/}_\ﬁ\f—l) (6.33)

where Ny 1s given in terms of the initial data by (6.25).

Proof. The equilibrium equation is, after rearranging terms and using the
condition (6.31),

MWAN 1 oz —y)
VANT + z)/2 + VANT + z)/2 / &) ( ’\> dy. (6.34)

Note that € = 0 cannot be an equilibrium solution unless N; = 0. Let f and

t(z) =

g be two equilibrium solutions for non-zero initial data and choose m > 0.
From equation (6.34) we have, by adding and subtracting g(y)f(z — y) to
the integrand and using the properties of convolutions,

/0'" Ifa) = gla)] de = x/WlerA/z /Om f(y) (f(w y) ,\) -

N OlG 3 dy]de < 5 [ [ 20100) - sl +
+ () — g f(z =)+ |f(z —y) — 9(z — y)| |lg(y)| dydz <

<5 [ [ 1) - sl @+ 15— vl +lgte ~ ) dyde. (635)

Making the change of variables u = # — y, y = v and changing the order of

the integrations, inequality (6.35) becomes

/;n |f(z) — g(z)| dz < 2\/1\_.771 /Om A(u)/om_u A(v)dvdu

1 m
= 5w ), A(u)Fi(m — u)du (6.36)

where

A(u) =22 + | f(u)| + |g(u)| > 0 (6.37)
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and we have introduced Fy(u) as defined in Lemma 6.1. Employing (6.37)
we can re-insert the inequality (6.36) to show that

/0 "If(2) - g(2)| dz < 5 \/i_m /0 ") /(; "a) Om_u_y| £(2) = g(2)| dzdydu

1

1 m m—-—u m-—u m
< W/(; A(u)/0 A(y)/o A(z)dzdydu = 2\/m/(; A(u)(Z'Q?E;);-—u)du.

In conjunction with Lemma 6.1, repeated insertions of (6.36) demonstrate
that forn =1,2,3, ...

m 1 m
| 1@~ ate)de < 5 [ AP - w)a

2\/}\—-7_\7—1 7117 /0 ) Alw) ( /O o A(y)dy> "
. W}\_J—\_ff% ( /Om A(y)dy> " . 630

Clearly, the right hand side of (6.39) tends to zero as n — oo for any A(y) €
L'(0,m). Hence by the arbitrariness of m we must have f(z) = g(z) a.e., that
is, equilibria are unique. Since (6.31) holds, the unique equilibrium solution

is found by inspection to be given by (6.33), as can be verified directly O

6.4 WEAK CONVERGENCE TO EQUILIBRIUM

This section begins by showing that all solutions ¢(z,t) to (6.1) are weakly
compact with respect to time ¢ in L. This information will then enable us to
apply the Invariance Principle to a suitable Lyapunov functional and hence

prove that solutions converge weakly to the equilibrium solution (6.31).

Theorem 6.5. Let c(z,t) be any solution to (6.1) having initial data ¢y €
Q(T,1 and bounded second moment No(0). Then the positive orbit OF(c) de-

fined by _
0*(c) = J { /O c(m,t)dac} (6.40)

>0
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is weakly relatively compact in L'(0, 00).

Proof. We show that the three conditions of Theorem 6.1 (Dunford-Pettis)
are satisfied.

(i) By equation (6.29) fooo c(z,t)dr converges as t — oo and therefore there
is a constant L > 0 such that

supd [ e(e,t):t> 0\ < L < ool (6.41)
U }

(ii) Choose € > 0. Then there exists m > 0 such that N; /m < e and therefore

/00 c(z,t)dz = /00 z-c(:v,t)d:c

m m

1 oo
< =
< m/m zc(z,t)dz

1
< =N <e (6.42)

m

This inequality is uniformly true for all ¢ > 0 and hence for the compact set

[0,m]
sup {/ c(z,t)dz : t > O} <e (6.43)
[0,00)\[0,m]

(iii) For any set A C R define the characteristic function on A by

‘ lxe A
xa(z) = { 0z ¢ A (6.44)
and introduce the function u as
w(z,t) = / xa(@ + 2)e(z, t)de, (6.45)
u(z,0) = / xa(z + 2)co(2)da. (6.46)

For convenience we define ¢(z,t) to be zero whenever z < 0, which ensures
that the integrals in (6.45) and (6.46) are defined on (—o00,00). Since c¢p is
integrable it follows by absolute continuity that for

u(z,0) < e whenever u(A) < & (6.47)
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uniformly in z for some 8; > 0 where u(-) denotes Lebesque measure. Using
the substitutions X = z — y, ¥ = y and the non-negativity of solutions we
have, upon reverting to the z and y notation,

5150 < [[ (e +y+ Do nv)eta, O, dyds
+/XA($ + z)/ c(y,t)dydz — /XA(:U + z)c(a:,t)/(; c(y,t)dy
< -;—/Ooo c(y,t)dy ogsllgoo /XA(CU + z)c(z, t)dz

) [ ety — () [ ety

= S No(t) s u(e, )+ (ANo(H) = No(t)u(z, 1)
0<z<00 (6.48)
and hence
g_t (u(z,t) exp (/Ot No(s)d3)> < NO( )exp (/ No(s)ds) ogszlfoo u(z,t)
+exp ( /0 t No(s)ds) No(t)u(A). (6.49)

Integrating (6.49) results in the inequality

u(z, ) exp ( /0 t No(s)ds) < /0 t ﬁ%ﬁexp ( /0 sNo(r)dr>

X { sup u(z,s) + Qu(A)} ds + u(z,0).

0<2<00
(6.50)
Taking supremums over z on both sides of (6.50) and setting
t
v(t) = sup u(z,t)exp (/ No(s)ds) - (6.51)
0<z<00 0

w(t) = /Ot No(s)p(A) exp (/08 Ng(T)dT) ds+ sup u(z,0) (6.52)

0<2<0
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inequality (6.50) becomes

ot) < /0 ]—Vﬂgﬂv(s)derw(t). (6.53)

Applying Gronwall’s Inequality to (6.53) gives

v(t) < w(0) exp (/ Nols) ) /dg(s)exp (/ Nolr) ) s
([ B0

+ /OtNo(sm(A) exp (/:N‘)(")"”) o (f N_(z')'d_d> ds&’em)

Multiplying the above inequality (6.54) by exp (— fot No(s)ds> and using the
uniform bound L on solutions from equation (6.41) we arrive at the inequality
' N
sup u(z,t) < w(0)+ ;L(A)L/ exp (-—/ #dr) ds. (6.55)
0<z2<00 s
Since No(t) converges to v/AN; by equation (6.29), No(t) is bounded. Fur-
ther, No(t) # 0 for any t > 0 by (6.28).
Hence there exists K > 0 such that

No(t) =2 K (6.56)

uniformly in t. From (6.47) w(0) < € whenever pu(A) < é; and it therefore
follows from (6.55) and (6.56) that there is a 63 > 0 such that

t I7(+
sup u(z,t) < e+ u(A)L exp (—- M) ds
0<2<00 2

for some constant @ > 0 whenever p#(A) < min{é1,62}. Hence there is a
§ > 0 such that

Lc(w,t)d:v =/XA($)c(w,t)dw

< sup /XA(:I:-}-z)c(:v,t)dw

0<2z<0

= sup u(z,t)<e (6.58)
0<z<00
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uniformly in ¢t whenever u(A4) < 4.

From equations (6.41), (6.43) and (6.58) the three conditions of the Dun-
ford - Pettis theorem hold and therefore the positive orbit O%(c) is weakly
relatively compact in L*(0, 00) , that is, for any sequence of times {t,} there
is a subsequence {t,, } such that c(:,,,) converges in L!(0, 00). This proves
Theorem 6.5 0O

With some additional assumptions imposed on solutions ¢ we can intro-
duce a Lyapunov functional.

Theorem 6.6. Let A = F/K, ¢ >0 and suppose that for a given solution
c

(a) c(Inc—1) € L*(0,00) for allt >0,
(b) for each t > 0 there ezists some A € L1(0,00) and § > 0 such that
le(z,t + h)(Inc(z,t + h) — 1) — ¢(z,t)(Inc(z, t) — 1)| < |h| A(z)

whenever |h| < 6.
Then the functional

Vie) = /0 Te (1n § - 1) do (6.59)

18 a weakly lower semicontinuous Lyapunov functional on Q(',"’l, that is,
(i) for any solution c to (6.1) satisfying the initial condition (6.2)

V(e(-,1)) < V(co(+)) for all t >0, (6.60)

and
(1) if cn — ¢ weakly in L'(0,00) then

V(e) < liminf V(ep). (6.61)
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Remark 6.2. Conditions of Theorem 6.6 looks very naturally. In fact, If
co(z) < Az™", r > 1, then (see chapter 8) for allt >0 c € Qo,r and we
can expect that there exists a positive constant Ay such that c(z,t) < Ajz™".
Combining this fact with positivity of c(z,t) and taking into account that

limelne =0,

c—0

the function clnc increases for 0 < c < e~!, we obtain for discrete case
of equation (6.1) the condition (a) of Theorem 6.6. For continuous one we
need suppose its validity. The condition (b) follows from Lipshitz continuity
of e(z,t) in t, which is proved in Lemma Im3.3.

Proof the Theorem 6.6. From the positivity of ¢y we easily obtain ¢(z,t) >
0 (cf. chapter 5 and Lemma 2.2) and, hence, conclude that Inc(z,t) exists
for all =z >0 a.e.

(1) From the right hand side of (6.1) we can assume Jc/0t exists for ¢ > 0
a.e.. Hence by hypothesis (a)

%?—lnc = -g—t-c(ln c—1)i exists for £ >0 a.e. and c(lnc—1) € L*. (6.62)

Employing standard results, hypothesis (b) in conjunction with (6.62) then
gaurantees that Zc(lnc—1) € L! and that we can evaluate dV/dt by differ-
entiating under the integral sign. Straightforward calculations show that

%V(c(.,t)) = -—-12-— /000/000 In(Kc(z,t)e(y,t)) — In(Fe(z + y,t))]
x [Ke(z,t)e(y,t) — Fe(z + y,t)] dedy

<0,
(6.63)

this last inequality arising from the fact that (Inz —Iny)(z — y) > 0 for all
z,y > 0. Integrating (6.63) between zero and ¢ yields

V(e(-,1)) < V(e(+,0) = V(co(-))- (6.64)

(ii) V can be written as

Vie)= A‘” c(lnc—1)dz —In(}) /0°° c(z)dz. (6.65)
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The first integral in (6.65) is known to be strongly lower semicontinuous
in Qf, by Lemma 3.4 in [1]; this integral is also convex and therefore by
standard results in convex analysis (see Ekeland and Temam [27], page 11)
it must be weakly lower semicontinuous in Q(')",l. Since ¢, — ¢ weakly in L1,
Js endz — [ cdz. The right hand side of (6.65) is therefore weakly lower
semicontinuous. This proves Theorem 6.6 [

We are now in a position to prove the main result of Caapter 6.

Theorem 6.7. Let K and F be constant kernels with A = F/K. Let ¢ > 0
be a solution to (6.1) having its initial second moment No(0) bounded and
satisfying c(z,0) = ¢o(z) € Q?,',l. Suppose hypotheses (a) and (b) in Theorem

6.6 also hold. Then
c—T= \exp (—m\//\/Nl) (6.66)

weakly in L'(0,00) as t — oo where T is the unique equilibrium solution to
(6.1).

Proof. By Theorem 6.5 the positive orbit Ot (c) is weakly relatively compact
in L'(0,0), that is, to each sequence {t,} there exist a subsequence {t,,}
and a function f € L! such that

(s tn,) = f(+) as tn, — 00 (6.67)
weakly in L1(0,00). By Theorem 6.2 the w-limit set w(cp) is nonempty and
c(+,t) = w(cp) as t — oo (6.68)

weakly in L'. From Theorem 6.6 V/(c) is a semicontinuous Lyapunov func-
tional for c. Hence by Theorem 6.3 V(f) is constant for all f € w(cp). From
(6.63) V(f) is constant implies that K f(z)f(y) = Ff(z + y) which in turn
implies from (6.1) that all the elements f € w(co) are equilibria. From The-
orem 6.4 the equilibrium solution is unique and so w(cg) = {¢€} where, by
(6.31), f = € = Aexp(—z+/A/N1). It now follows from (6.68) that ¢ — €
weakly in L!(0,00) as t — co O
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6.5 REMARKS

In this chapter we follow Stewart and Dubovskii [SD] and extend to ar-
bitrary constant kernels the work on convergence to equilibrium via a Lya-
punov functional begun by Aizenman and Bak [1] who examined the case
K = F = 2. Here, we weaken the convergence and prove that for constant
kernels K and F' (not necessarily equal) any solution to (6.1) with initial
condition (6.2) must converge weakly to a unique equilibrium solution which
is stated explicitely.

Global existence and uniqueness for solutions to (6.1) with (6.2) when
K = F = 2 have been proved by Aizenman and Bak [1]. As mentioned in
[1], it is possible to normalise the equation when the kernels are constants
so that only equal kernels need be considered; but in this chapter we do not
use such approach since we show directly the influence of the kernels upon
the Lyapunov functional or other properties of solutions and we therefore
examine (6.1) with independent kernels K and F. Much of the motivation
for this chapter comes from the use of the invariance principle in Ball, Carr
and Penrose [6] (see chapter 9) for Becker—Déring system of discrete equations
we build upon some results from Aizenman and Bak and extend ( to the weak
topology) a version of the invariance principle proved by Dafermos [16, 17]
for lower semicontinuous Lyapunov functionals. Weak convergence methods
have previously been used in the study of (6.1) by Stewart [69].

The concept of gauge spaces was used in Stewart [69]. The Definitions
6.2, 6.3, Theorems 6.2, 6.3 extend the results by Dafermos [16, 17] to the
gauge space Y.
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Chapter 7. EXISTENCE AND CONVERGENCE TO
EQUILIBRIUM FOR LINEAR COAGULATION
AND CONSTANT FRAGMENTATION KERNELS

7.1 EXISTENCE AND UNIQUENESS OF AN EQUILIBRIUM SOLUTION

We are concerned with kernels of the form
K(z,y)=a+k(z+y)+gzy, F=0b (7.1)

with nonnegative constants a, b, k, g. An equilibrium solution &z) to (3.1)
has to satisfy the following equation

5 K= vee — vty - o) [ Klav)etudy

1 z oo
~39e) [ Fe—wudy+ [ P+ vy =0
0 0

(7.2)
Let -~ -
Ny = / &(z)dz,N, = / zé(z)dz.
0 0
Then, integrating (7.2) and taking into account (7.1), we obtain
N,
SNE -+ ENoNy + (9Ny = D)5 = 0. (7.3)

Therefore

1 kN,
No = =+/(k2 — 2 BN, — —2.
0 a\/( ag)N{ + abNy "

From (7.3) we conclude that nonzero nonnegative equilibrium solutions can-
not exist if Ny > b/g. If a = k = 0 then N; = b/g. If ¢ = 0 then an
equilibrium solution may be exists for any N; > 0. Using (7.1) we may
rewrite (7.2) in the form

&(z) = (gé *¢(z) + -12225 * ¢(z) + %(xé) % (z¢)(z) + bNy — ¢ * b(:c))
1
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Our aim is to show that ¢ as a solution to (7.4) is an equilibrium solution
to (3.1). This will be proved at the end of section sec7.3. If we denote the
right-hand side of (7.4) as A(¢) , we obtain

1
aNo -+ kN]

kx

_ _ a, _ _ _ _ _ _ _ _
|Ac, — Aez| < (-§|c1 — & * |1 + E2| + —é—lcl — | * |e1 + &2

+%|x61 — 2Ca| * |2€1 + 2| + |&1 — C2| * D).
Let us consider the operator A as a mapping of the Banach space C|0, a]
onto itself. Then we obtain

1
= (a+ak+a’g) e + || + b .

o
Az1 — Az < ||&1 — G| ——2——
|Ac; — Ac;|| < |la1 — & pran sl b

Hence, the operator A is contractive if

alNo + kNy — ab get
ala + ak +a%g)

llell <

e 2

To use the contraction mapping theorem [funkan] we have to check if the ball
B(R,) is invariant. We obtain

1
cll <
142l < S Ne £ 78

[(aa + ok + a®g)lle||* + 25N, + 2ab||e]]] -

By solving the inequality || A¢|| < ||¢]| we may see that the ball B(R,) remains

invariant if

aNo + kNy — ab+ y/(aNg + kN1 — ab)? — 2abNo(a + ak + a?g)
a(a+ ak + a?g)

lell <

whence we obtain that the square root expression should be nonnegative.
This condition with Ro > 0 allows us to find a suitable value of a. Now we

are in a position to prove the following lemma:

Lemma 7.1. Let b satisfy the above-mentioned conditions. Then there ez-

ists @ unique solution to (7.4) on the interval [0, a] which is continuous and

belongs to the ball B(Rq).

Proof. Existence and uniqueness of a continuous solution ¢ in the ball B(R,)
follows from the contraction mapping theorem. We now prove global unique-
ness only. Suppose that there exists another solution € to (7.4). Its continuity
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follows from its integrability and remark that the operator A maps any inte-
grable function to a continuous one. Let us consider the restriction of € to an
interval [0,¢],e < b. Choosing ¢ small enough we obtain that the ball B(R,)
contents two solutions ¢ and €. (Actually, R. tends to infinity ase — 0.) This
result contradicts the uniqueness in this ball. This proves Lemma 7.1 O

Our next step is to extend the solution obtained to the interval [0, o).

Lemma 7.2. There ezists a unique continuous solution to (7.4) for all z >
0. "

Proof. Let us consider the operator A as a mapping A : Ca,2a] — Cla,24q]
and denote by d(m) a solution of (7.4) on [a,2a]. The function d(z) obeys
the equality

1

A = N T F N+ 2002 T Ny T JNy)

@+ o) [ dtwete - vy +

+2 gkw /x :{ c(z —y)e(y)dy +9 /a " y(o — 9)dw)ele - y)dy+

+g— / : y(z—y)e(z—y)e(y)dy +b (No = /0 ) &(z)dz — /; ’ d(y)dy)] - (7.5)

Here the function ¢ is the solution to (7.4) on [0, «]. Its existence and unique-
ness were proved in Lemma 7.1. By standard results on integral equations,
the linear Volterra equation (7.5) has a unique continuous solution d(z) on
the interval [a,2a]. Put ¢(z) = d(z) if @ < z < 2a. Obviously, ¢ satis-
fies (7.4) for all = € [0,2a]. Its continuity follows from the proof of Lemma
7.1. Now we can analogously extend the solution obtained to [2«, 4] and so
on. From uniqueness on [a,2a] it follows also that the solution constructed
has no branch points, otherwise we can choose b on a branch point. This
completes the proof of Lemma 7.2 O

Remark 7.1. It follows from the proof of Lemma 7.1 that the function € is
infinitely many times differentiable.
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Remark 7.2. The integrability and positivity of ¢ are not proved yet. These
properties will be discussed later. It is worth pointing out the importance
of the non-zero term bN in the numerator of the right-hand side (7.4). If
we had replaced DN with b [° &(z)dz then the contractions A would tend
to the trivial zero steady solution and we would not obtain the nontrivial
solution by this approach. If b = 0 then by our uniqueness result only the
zero continuous equilibrium solution is possible. It is also worth pointing
out that the continuity condition is essential, because there are ezamples of
nonzero discontinuous steady solutions for the pure coagulation equation [23].

7.2 STRONG LINEAR STABILITY

Equilibrium solutions to (7.4) are denoted by &(z). Let us assume that
g = 0, that is we consider further the kernels

K(z,y)=a+k(z+y), F=b (7.6)

In this case there is no prohibition for equilibria for any M > 0, as is pointed
out in section sec7.1. In accordance with Theorem th3.1 the initial value
problem (3.1),(3.2) has a mass conserving nonnegative solution c(z,t) if the
initial function ¢y is continuous and has bounded moments. Therefore c(z, )

can converge as t — oo to the equilibrium with the same total mass Ny:

/0 "~ veo(z)dz = /0 "~ ee(e)dz = N, (7.7)

This reason forces us to consider the case ¢ = 0, otherwise we cannot warrant
the mass conservation law. Let us show that

No(t) = Ng as t— oo. (7.8)

Here and further No(¢) denotes the moment of the time-dependent solution
unlike No. The integration (3.1) yields

b
dl\;ot(t) _ _gNg(t) — kN1No(#) + 3. (7.9)
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By using (7.3) and solving (7.9) we obtain
1
[No(t) = z1] - [No(t) — 22| = [No(0) = 21 - [No(0) — 22| exp(~5 at)
where the constants z;, z; are the roots of the quadratic equation

1 1
50,22 + kNyz — -2‘b.Nl = 0.

Hence, we obtain (7.8). We have obtained also that if Ny(0) satisfies (7.3)
then No(t) = Ny for all ¢ > 0. The value of Ny in (7.3) is defined by the
initial distribution ¢ in (7.7).

To examine the general convergence of the solution ¢(z,t) to &(z) where ¢
is the solution of (7.4), the function f = ¢—¢ is introduced. The substitution
of f(z,t) into (3.1) using (7.4),(7.6),(7.7) gives us

Y o (atka)gf e f 4 f e FNo(t)
_kfNy — %bfx — b f+(b—at— kzB)(No(t) = No)  (7.10)

with f(z,0) = fo(z) = co(z) — &(z). Our main aim now is to show that
f(z,t) — 0 as t — oo. If we consider u(z,t) to be a linear perturbation of
f(z,t) then (7.10) can be linearised giving

ur = (a + kz)u * ¢ — aulNy(t) — kxuNg — kulNy — %b:cu —bx*u,
(7.11)
u(z,0) = ug(2).

Taking the Laplace transform of (7.11) we come to the partial differential
equation for the Laplace transform U(p,t) of u(z,t):

— 1 - = b
Us+ (kC — kN — §b)U,, = (aC — kC)p — ; —alNy(t) — kNy)U.  (7.12)
By the substitution

U= exp(—a/ot No(s)ds — kN t)W (7.13)
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we obtain from (7.12)
— 1 - = b
Wt + (kC - kNo - §b)W = (aC - k‘Cp bt ;)W (714)

The characteristic equation for (7.14) is of the form

_ dp B dw
kC(p) — kNo—b/2 ~ (aC(p) — kC(p) — b/p)W

By solving (7.15) and denoting for a fixed py > 0

dt

(7.15)

_ [ dg
Ip) = /,, kC(q) — kNo — b/2

we obtain, with (7.13) taken into account,
¢
U(p,t) = exp(—-a/ No(s)ds — kN1t)Uo(i(p, 1))
0

i) 4C(q) — kCp(q) — b/q
o (/,, "No T 52 — KO(a) dq) o

where
i(p,t) = I (I(p) +1).

Here I™! is the inverse function of I. The existence of I~! is warranted
by the increasing monotonicity of the function I. For any fixed t > 0 the
integral fpi(p ™ (7.16) decreases in p for all p > py due to the decreasing
of C and —C,. Increasing of both functions I and I~! means that the
decreasing of Uyp(i(p,t)) in p is not less than the decreasing of Up(p) because
i(p,t) > p. Therefore there exists an inverse Laplace transform u(z,?) of the
right-hand side in (7.16) which is the solution of (7.11) and we have for a
positive constant G the following estimate:

t
lu(., t)|lc < Gexp (——a/ No(s)ds — kNlt) llwollc (7.17)
0

where norms are from the space C[0, B] for any fixed 0 < B < oo. The con-
stant G’ depends on B but does not depend on t. Hence u(z,t) — 0 strongly
in C[0,B] as t — oo, that is, the equilibrium solution ¢ is (exponentially)
strongly asymptotically stable in C[0, B].
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Remark 7.3. We need to consider B < co because we do not know at this
point whether the function € belongs to the space L'[0,00) or L°°[0,00). We
prove these important properties of ¢ in the next section.

Example. For the simple case k = 0, a = b = 1 with C(p) = (p+ \)~* we
find

I(p)=2(p—-po), i(p,t) =p-|-t/2

and (7.16) is replaced by

p’(p+1/24 2)?
p+1/22(p+ )2

U(p,t) =Us(p+1/2) eXP(—t/A)(
The inverse Laplace transform gives us
1 1
u(z,t) = exp(—gwt —t/Nug(z) — At exp(—izt —t/A)

x |uo(z) * (A(t) + zB(t)) exp(—Az) + uo(z) * (B(t) — A(t)) exp(—%wt)

where
A(t) = (¢/2 = N~ + %At(t/Z ~ N,

B(t) = ——%)\t()\ —t/2)7?
provided ¢ # 2. If ¢ = 2 then we obtain
u(z,2)) = exp(—Az) [uo(z) — 2X2ug(z) * (zexp(—Az))
+ -:—i)\‘iuo(x) * (2% exp(—Az))| .
For this example the estimate (7.17) is more descriptive.

7.3 NONLINEAR ESTIMATES FOR SOLUTIONS AND CONVERGENCE

We are now ready to exlpoit the estimate (7.17). Let us denote u(z,t) =
Tyuo(z) where u(z,t) is the solution of equation (7.11) and Ty is the resulting
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semigroup operator. From the inequality (7.11) we obtain for the usual
semigroup norm

¢
IT¢)| = sup ||Tiwollc < Gexp(—-a/ No(s)ds — kNqt) < G exp(—vt),
wollc <1 0 (7.18)

t
O0<v<EkN: + atin(f)' t~1 / No(s)ds = kNy + amin{Ny(0), No }.
> 0 - (7.19)

The nonlinear initial value problem (7.10) can now be written in integral
form (similar to the case in [D90-2]) as

He,) =T+ [ Tees [3lat R)f 2 ()
+(b — ac — kze — ka f(.,3))(No(s) — No)] ds. (7.20)

We now introduce the norm

£l = sup exp(vt)|| F(-,?)lle- (7.21)

If the right-hand side of the equation (7.20) is denoted by D(f(.,t)) then
clearly for any fixed t > 0 D maps C[0, B] into itself. Expressions (7.18)
and (7.20) yield

IDUC Do < Gexp(—vi)lolo + [ explvo)3a+ B)BIF I
+ sup |b—ac— kze|-|No(s) — No| + kz||f(., 8)|lc|No(s) — Nol|)ds).
z€[0,B] (7.22)

Multiplying (7.22) by exp(vt) we establish the correlation

GB
ID(HIly < Glfollo + 5—(a+kB)ISIL + Gar + as |l

(7.23)

where

a; = sup |b—ac— kmé]/ exp(vs)|No(s) — Nolds
z€[0,B] -Jo
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and

ags = GkB/ IN()(S) - Nolds.
0

From (7.22) it is possible to reveal that if

v(1—as)?
< .
| folle + a1 < 5G2B(a + kB) (7.24)
and
as <1 (725)

then the mapping D has an invariant ball in C[0, B] with radius n satisfying
m < n < ny where 1 and 7, are the real positive roots of the quadratic
equation

%—;Bi(a +kB)2* — (1 —a3)z + G(|| follc + a1) = 0. (7.26)

In fact, if || f||s < n for some n € [n1, 2], then from (7.23) we obtain

GB
ID(H)l. < Gllfollc + 'Q—V'(Of +6B)n* + Gay + an < (7.27)

which follows from the facts that n; < 72 and the conditions (7.23)—(7.25)
hold. We now try to find conditions for D to be a contraction in C|0, B].
For any fi and f; it follows from (7.18) and (7.20) that

ID(f) — D(f)lle <
5G(a+EB) [ exp(—vlt = )I(fi = £)+ (i + Fllods

+HGB [ exp(—v(t = s)INo(s) = Mol -1 = folods

BG
< 5, (a+kB)exp(=vt)|lfr = Lollu (I f1lly + I f2llv)

+az exp(—vt)|f1 — fallo-
(7.28)

If the functions f; and f; belong to a ball with radius i, that is, || f1]|, <7
and || f2||» < 7, then from (7.27) we obtain

BGn
v

ID(f) - D(f2)ls < ( (a+kB)+az) A=l (7.29)
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Thus the mapping D is a contraction mapping in the ball with radius

(1—a2)v et

"< BGa+kB)

From equation (7.26) n; and 1, are given by

_ ([ =av 2G2B(a + 6B)(ll follc + a1)
’71’2—%(7:@'(1*\/1— T ar) )

and hence the bound of contraction belongs to the closed interval [n;,n].
From standard arguments using (7.26), (7.28) and the contraction mapping
theorem ([80]) we see that there exists a solution of the initial value problem
(7.10) which is unique in the ball of radius || f||, < 7o and belongs to the ball
of radius ||f]l, £ m < mo. Moreover, this solution tends to zero not slower
than exp(—vt).

From the nonnegativity of ¢(z,t) as a solution to (3.1),(3.2) and its trend
to ¢(z) we can easily see that the function ¢ is nonnegative. Using the mass
conservation law and the nonnegativity of functions ¢ and ¢(z,t) we now see
that ¢ is integrable with weight z on all [0,00) and, in addition,

/ 22(z)dz < N;. (7.30)
0
By integrating (7.4) directly, we find that
/ &(z)dz = Ny
0

otherwise the right-hand side of (7.4) cannot be integrated. Taking (7.3) into

account we also obtain that

/ zé(z)dz = Ny.
0

Therefore the function ¢ is indeed the solution to (7.2) with the kernels (7.6).
Using Lemma 7.2 we can now prove the following theorem:
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Theorem 7.1. Let the conditions of Theorem 3.1 hold and kernels K, F
satisfy (7.6). Then

(1) there ezists a unique nonnegative continuous equilibritum solution to (3.1)
with the first moment bounded;

(2) the time-dependent solution tends to this equilibrium in C|0, B] for any
0 < B < o and in L'[0,00) as t — oo if the estimates (7.24) and (7.25)
hold. The rate of the convergence is proportional to exp(—vt) where v is

defined in (7.19).
Remark 7.4. The estimates (7.24) and (7.25) mean smallness of difference

between the initial function and the equilibrium.

Proof of Theorem 7.1. Case (1) and convergence in C[0, B] were proved
above. To prove convergence in L' [0, c0) it suffices to note that ”tails” of the
integral of ¢(z,t) are bounded uniformly in t thanks to (3.42). By increasing
the constant B we obtain the desired result, which completes the proof of
Theorem 7.1 O

7.4 REMARKS

In this chapter we follow Dubovskii and Stewart [24]. Using approach
of Ball, Carr and Penrose [6] (see chapter 9), Carr [14] studied the discrete
coagulation-fragmentation equation and proved convergence to equilibrium.
He assumed that K;; < k(i®* 4+ j*) where a <+ and the constant ~ is

defined by the fragmentation kernel via the inequality

i/2
S TFij; 2 CrymtT, i > 3,7 > 0.
Jj=1
C(r) is a constant. For F =const we have v = 1 and, hence, the

coagulation kernel has less than linear growth (in chapter 7 it is linear).
Also, there must exist a sequence @; such that

K;;jQiQ; = FijQitj, 4,521 (7.31)

The condition (7.31) immediately gives us an equilibrium solution ¢; = Q;c}
so that each pair K; jcicj — Fj jcit; yields zero. In chapter 7 kernels do not
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satisfy (7.31) and therefore the proof of existence of an equilibrium is more
difficult. It is worth noting that for constant coagulation and fragmentation
kernels (which we treat in chapter 6) such sequence Q; exists.
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Chapter 8. CONVERGENCE TO EQUILIBRIUM
FOR COAGULATION EQUATION WITH SOURCES

In this chapter we are concerned with the coagulation equation with

sources Bela.t 1 e
ode.t) -/ K(z —y,y)c(z — y, H)e(y, t)dy—
ot 2 Jo
-—c(m,t)/ K(z,y)c(y,t)dy + ¢(z), = >0,t>0, (8.1)
0
c(z,0) = co(z) > 0, z|geqO. (8.2)

Solvability and uniqueness of the time-dependent problem (8.1), (8.2) for
coagulation kernels (3.3) was proved in chapters 3 and 4. Our aim is to
reveal some properties of the equilibrium solution and prove convergence of

the time-dependent solution to the stationary one.

8.1 PROPERTIES OF THE STATIONARY SOLUTIONS
The stationary form of the equation (8.1) is

3 [ Ke—vwea-pewdy—d) / " Ko, y)ey)dy+a(z) =0, z>0.
0 0

2
(8.3)
Let &(z) be its nonnegative measurable solution for which the integrals
in (8.3) are bounded for anu z > 0. Obviously, for the coagulation kernel
K(z,y)v(z)v(y) the solution of (8.3) is &(z)/v(z) for any function v(z) = 0.
Integrating (8.3) with the weight z yields

/Ooo /0 B e K (z,y)e(z)e(y)dzdy = oco. (8.4)

In fact, otherwise the first and the second summands in (8.3) which become
equal to (8.4), yield zero, and we come to the contradiction with the positivity

of -
/ zq(z)dz.
0

From (8.4) we conclude that if K(z,y) < M = const then the first moment
of the function &) is unbounded. From physical point of view this simple



MATHEMATICAL THEORY OF COAGULATION 109

result is very natural: long-time influx of particles in the disperse system
brings up the infinite total mass. Nevertheless, the total amount of particles
expressed by the zero moment of &(z), may be bounded. For instance,
the boundedness of the zero moment takes place for a constant coagulation
kernel (see below). For the kernels which describe weak coagulation (e.g.
K(z,y) = exp(—z — y) ), the zero moment can be infinite similarly to the
first one. We define the moments of the solution as

Na=/ z%¢(z)dz.
0

If we restrict ourselves with solutions &) with bounded zero and un-
bounded first moments, then the natural question arises: ”When the a-th
moment of the equilibrium solution becomes unbounded?” The following the-
orem gives the answer to this question.

Theorem 8.1. Let symmetric nonnegative continuous coagulation kernel be
bounded in L°°(R?+) and nonzero nonnegative function of sources q have
bounded first moment. Let there exist at least one nonnegative measurable
solution € of (8.3). Then on «a > 1/2 the moments N, are equal to
infinity.

Remark 8.1. The hypothesis of solvability of the equation (8.3) is essential.
Actually, if K(z,y)=0 on z>1 or y>1 and the sources function ¢
is not equal to zero on x > 2, then the equation (8.3) is unsolvable.

Proof of Theorem 8.1. Multiplying (8.3) by z® and integrating yields

_;_ /Ooo /0°° [(z +y)* — 2% —y®]| K(z,y)e(z)e(y)dedy = —Qo  (8.5)

where

Qo = /(; z%q(z)dz > 0. (8.6)

The following inequality holds for all z,y > 0:

(z+y)* -2 —y* 2 (27 =222, i 0<a<l a2 (87)
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To prove (8.7) it suffices to note that the minimum of the function

(z+y)* —2% —y°
ma/2ya/2

is achieved at z = Y.
We substitute (8.7) into (8.5) and obtain

2Qa < (2-2%)MN2);, 0<a<l. (8.8)

Here

M= sip Ky
0<z,y<co

If to assume N;/; < oo thenat o =1 we obtain from (8.8) the contradiction
Q1 < 0. This proves the Theorem 8.1 O

Further we consider the constant case IK(z,y) =1. The case K = const
can be transformed onto K =1 by change of variables 7 = Kt. We put for
convenience Q = Qo where Qo is defined in (8.6). It is easily to observe
that No = /2Q. We substitute this correlation into (8.3):

%a* &(z) — /20%(z) + q(z) = 0. (8.9)

In (8.9) ¢*¢ means the convolution:

exea) = [ "o — y)e(w)dy.

We avail ourselves of the Laplace transform and obtain from (8.9)

> i — 3\Wgld(2
o) = v2Q Y (22')',.‘12.!( ), (8.10)

where

(2—3)1=1.3.5....-(2i—=3), (=1N=1,

¢! =gxgx...%q (the convolution is used 7 —1 times).
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By definition ¢l = 1, ¢l!] = gq. The expression (8.10) testifies the non-
negativity and uniqueness of the solution to (8.9) and allows explicitely find
¢(z) for simple source functions. For example, if ¢(z) = exp(—az) then

0= S E I s oy () (1 (%) -1 ()

=1
(8.11)
where Iy, I; are modified Bessel functions. Also, the equality (8.10) allows
to conclude that Ny < oo for all 0 < a < 1/2 provided that

q(z) < My exp(—az), My = const. (8.12)
Really, in this case Q < Mj/a and from (8.10) we conclude
(28 -3 (az)'"t _,,
< e .
o) < /oM E (i = 1), (813)

By integrating (8.13) with weight 2%, 0 < a <1 we obtain

\/_a (at1/2) I'(e —1/2)I(: + @)
E (4 1I'(%)

where T'(7) is Euler’s gamma—functmn. We have utilized that
(i +1/2) = 274 /m(2i — 1)L,

Applying the Raabe’s test of summation of series ([29], p.273), we find N, <
oo provided that a < 1/2. Consequently, in this case the estimate a =1/2

Ny =

of Theorem 8.1 is exact, and we come to the following lemma.

Lemma 8.1. Let the conditions of Theorem 8.1 and (8.12) hold. Then
Ny < oo provided that o < 1/2.

If we consider the discrete stationary coagulation equation
5 zc,_Jc] C,ZCj +¢ =0, 2>1
i=1

with sources ¢ = (Q, 0,0,. ..), then
NN

— \/——(2221 ) , . Z 1.

In this case we also have Ny < oo on a <1/2.
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8.2 CONVERGENCE TO EQUILIBRIUM

Theorem 8.2. Let conditions of Theorem 8.1 hold, the coagulation kernel
K be a constant and the sources function ¢ be continuous. Then the
solution of the problem (8.1), (8.2) converges to equilibrium as t — oo in
Qo and in Cla,b] for all 0 < a < b < co. The rate of convergence is

proportional to exp (—m t) .
Proof. As we have already mentioned, we can transform any constant coag-

ulation kernel to the unit one. Hence, let K = 1. We denote f(z,t) =
¢(z,t) — ¢(z). Then for the function f we obtain from (8.1)—(8.3):

Aot Sre ety =it [ St + ex fle)-
—&(z) /0 N fly,t)dy — f(z,1) /0 N &(y)dy, (8.14)
F(z,0) = folz) & eo(z) — &(x). (8.15)

We denote F(t) = [;° f(z,t)dz. Integrating the equation (8.1) yields

2v2Q
F(t) = (8.16)
(1+3GF) exp(vEQ ) -1

Hence,

F()—>0 as t— oo. (8.17)

Obviously, F(t) = 0 provided that F(0) = 0. If F(0) > 0 then from
(8.16) we obtain
0 < F(t) < F(0)exp(—+/2¢ t). (8.18)

For —/2Q < F(0) <0 we have —2Q < F(t) <0 and, in addition,
|F(t)| < 2|F(0)|exp(—v/2Q t) < 21/2Q exp(—+/2¢ t). (8.19)
Also, we observe

/ Fo)lds < = (O?F (gi/ﬁ <2 (8.20)
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provided that F(0) < 0.

With the aim to show that f(z,¢) — 0 as t — co we consider the
linearised equation (8.14):

ui(z,t) = —F(t)u(z,t)+exu(z, t)—F(t)e(z)—/2Q u(z,t), u(z,0) = uo(x).
(8.21)
Employing the Laplace transform gives the solution to (8.21):

u(z,t) = exp (—\/5@_ t— /Ot F(s)ds) {uo(w) +uo(a) * Z “](a:)tz

— /Ot F(S)expl (\/2_Q s+ /08 F(Sl)d31> i é[iH](mi)!(t —2 ds} - (822)

1=0

Therefore we use the method of variation of constants to look for solution of
(8.14), (8.15) in the form

eil(z)t?
ety = exp (~v/20 1 [ Flops) {g(w 0+ 9(a,t) Z o)
i+t 2)(t — s)?
/ b(S)Z it )(t Ly } (8.23)

b(t) = F(t)exp (\/56 t+ /0 t F(s)ds) :

From (8.18), (8.19) we conclude

where

b(t) < F(0)exp(F(0)/v/2Q) if F(0)>0; (8.24)
b(t)| < 2|F(0)] if F(0) < 0. (8.25)

Substituting (8.23) into (8.14) yields

o il 1 t
et oun . G = e (V@ - [ Fes).

=1
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Z°° et S—‘°° clilt?

oo il i+ (4 _ g)i
_2g*(z Z!t> /bs)ZAt__)_ds

i=1 1=0

¢ % it1](s _ )i
——2g*/(; b(s)zf———%’——s—)d&k

1=0

e % Hit1](s _ g)i 2]
+ ( / b(s)_Z—i—%——’ds) } 9(2,0) = fo(z).  (8.26)

With the aim of the Laplace transform we conclude from (8.26) that the

function ¢ satisfies the equation

c['] t’

gt__exp( \/—t_/tF(S)ds),{ [2]+g[2l*z g

=1

o ilyi 2l
+ (5[2] + 2 & Z c[i]!t ) (/ b(s)ds + Z =9 c) / b(s)s'ds) -

ali+1l _31
20 [ S = } o@,0) = fol).  (827)

i=0

We write (8.27) in the integral form, then estimate g and —g with (8.20),
(8.24) and (8.25) taken into account, and finally establish the inequality

1 f144
lgle < —eXP(2 V2Q ){l9|[2]+lglm*zc” +

=1
N ] [2] ..
> glilgi \ " > elilg >, elilgi
i=1 ’ i=1 ' i=1 :

In (8.28) the constant A is equal to one of the upper estimate of |b(¢)| in
dependence on the sign of F(0).
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Let us fix m > 0. For any € > 0 we can find constants M and M;
such that

oo

alil i

> = Sv)t <Me®, 0<z<m, t>0; (8.29)

i=1 :

1.0\ (3 2o\ (2]
0 i) 41 00 _fi] i

ctlit clut ot
1*((2 i!) +<E i!) )SMI@, 0<z<m, t>0.

i=1 =1

(8.30)
Hence, |g| < h on 0 <z <m, t >0, where the function h satisfies the
equation

hi(z,t) = %—exp(2 — (V2Q —)t) - (hm R M 4+ AZM; + 2AM h) ,
(8.31)

h(z,0) = hg = const > Osug | fo(z)l. (8.32)

Let us note that h(z,t) increasesin « for all t > 0. Actually, since
ho = const then from (8.31) hy(z,t) > hy(z1,t) for x>z, t>0.
Hence, h!2 increasesin =z, too, and, consequently,

M+ W (a,t) < MmhP(z,1), M % h(z,1) < Mrmh(z,1)

for 0 <z <m, t>0. We substitute these expressions into (8.31) and
establish that h(z,t) < H(z,t) for 0<2z<m, t >0, if

Hy(z,t) = %exp(Q—-(m—e)t)- (HPI (z,t)(1 + Mm) + H(z,t)(1 + 2AMm)) ,

H(z,0) = Hy = const > max{ho, A°M}.

We solve this equation and obtain

(8.33)

H(z,t) = HoE(t)exp (Hox(E(t) -1) 1+ Mm )

1+2AMm

where

e?(1 + 2AMm)) <

E(t) = exp ((1 - e><1°(‘(\/.§a —e)t) 2(1/2Q —¢)
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e?(1+24AMm)
< = Ey.
_exp< 2(v2Q —¢) ) ’
Finally, from (8.33) we obtain boundedness of ¢(z,1t) :

1 +Ml‘o
14+24AMm

lg(z,t)| < HoEyexp (Hom(Eo -1) ) =G, 0<z<m, t>0.

(8.34)
Now we substitute (8.20), (8.29), (8.30) and (8.34) into (8.23) and conclude
that ¢(z,t) tendsto &z) as t — oo uniformly with respect to = € [0,m]:

le(z,t) — &(z)| < exp(2 — /2Q t) (G + GMme®" + AMe®") < Mype™ (V2=
(8.35)
0<z<m, t>0.

We should emphasize that the constants G and M depend on m and e.
This proves convergence in the space Cla,b] for any 0 <a < b < co.

To prove convergence in the space {9 we note that

/0°° le(z,t) — e(z)|dz = /Om le(z,t) — &(z)|dz + /oo le(z, 1) — &(z)|dz <

< Myme~(VZ@—o)t 4 / c(z,t)dz + / e(z)dz. (8.36)

Let us fix € >0 and pick up m > Ny/e. Then
/ d(a)dz < e (8.37)

Really, to obtain (8.37) we employ Lemma 8.1 and the inequality (3.27).
Since F(t) -0 t — oo (see (8.17) ) and (8.35) is valid, then there exists
to such that for all ¢t > ¢

/ c(z,t)dz = / c(z,t)dz —/ c(z,t)dz = / ¢(z)dz +6(t) (8.38)
m 0 0 m
where 6(t) <€ for all t>t;. Inserting (8.37) and (8.38) into (8.36) yields
/ le(2, 1) — &(z)|de < Myme~(VI=9 4 3¢ (8.39)

0

(8.35) and (8.39) prove Theorem 8.2 0O
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8.3 REMARKS

As we aware, the existence of a stationary solution for the coagulation
equation with sources and convergence to it, was studied by Gajewski [32],
where he was concerned with the equation with efluxes which essentially help
to construct the results. Without efflux terms both existence of equilibrium
and convergence to it were not proved.
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Chapter 9. TREND TO EQUILIBRIUM IN THE
BECKER-DORING CLUSTER EQUATIONS

In this chapter we study the Becker-Déring coagulation—fragmentation
model (0.8)-(0.10).
As in chapter 2 we fix T, 0 < T < oo and introduce the space Q; (T)

of continuous functions ¢ with bounded norm
o0
el = sup S irlet)], r>0,
0<t<T {7

and the space QA(T) C Q4,(T) with the bounded norm for A > 1:
(T i
c = su Ae;i(t)].
llelly 0P ,~§=1: lei(?)]

To simplify notations we write just €, instead of Q; ,(0) and X instead
of €©41(0). In this case the space X 1is the Banach sequence space with
norm |[c|| = Y02, ¢lcil.

Definition 9.1. We say a sequence {c)} of elements of X converges
weak* to ¢ € X (symbolically ¢ 5 ¢ ) if

() sup ] < oo;
j21

(30) cgj) —c¢; as j— oo for each 12>1.

To justify the terminology, note that (cf. [25], p. 354) X can be identified
with the dual of the space Y of sequences y = y; satisfying lim; .o 1y; =
0 with norm ||y|| = max:~!|y;| and that weak* convergence as defined above
is exactly weak* convergence in X = Y™,

For p>0 let B,={y€ X: |yl <p}. Wemake BF into a metric
space by giving it the metric

(e o)
dy,2) =) lyi — zl.
i=1
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Clearly a sequence {c/)} C B} converges weak* to y € X+t if and only if
Yy € B;" and B;}' is compact when endowed with the metric d; equivalently,
any bounded subsequence in X has a weak* convergent subsequence. To
avoid confusion B:’ endowed with the d metric will be written as B;,H’.

Let EC X. A function §: E — R is sequentially weak * continuous
if 6(y)) = 6(y) whenever y, y € E with yD Ay as j — co. For
example, the function 2:’_:1 g9:iyi is well defined for all y € X if |g;| = O(2),
but is sequentially weak * continuous if and only if |g;| = o().

We will use the following simple lemma.

Lemma 9.1. If y) Xy i X and Iy @) = llyll, then y@ — y in
X.

Proof. Define zgj) = ]y,(j)l + |yl — Iy,gj) —yi| 2 0. Then zz(j) — 2|y;| as
J — oo for each i. Since for any m

w . m -
DR )
=1 =1
it follows that
o0 . o0
lim inf Y iz{ > 2 ifysl.
e i3 i=1
Hence

o
lim sup ||y — yll = 2|ly|| — lim ianiz?) <0,
j—o0 e

which proves the assertion [

9.1 EXISTENCE, UNIQUENESS AND MASS CONSERVATION

Combining Theorems 3.1 and 3.2 we obtain the following result for the
Becker-Déring equations.

Theorem 9.1. Assume that a; = O(i) and there exists a positive constant
m such that

b; < const-1™.
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Suppose co € Qf .(0), r > max{m, 1}. Then there exists at least one
solution to the problem (0.8)-(0.10) c € Qf (T), 0 <T < oco. If r>2

and b; < const-1" then the solution is mass conserving.

If we suppose co € QT(0) then there exists a solution ¢ € QT (T) for all
T < .

From the uniqueness Theorems 4.1 and 4.2 we obtain

Theorem 9.2. (i) Let a; = O(i) and b; = O(). If co € QjO(O) then
there ezists 1 < XA < Ao (A = MNT)) such that the initial value problem
(0.8)-(0.10) has at most one solution in Q\(T), T < oo;

(i1) Let k,H are nonnegative constants and
a;=ki+h; >0, >I(), and h;<H,12>1

and the fragmentation coefficients b; are bounded uniformly with respect to
i. Then the solution to the problem (0.8)-(0.10) is unique in Q1(T).

9.2 EQUILIBRIA AND LYAPUNOV FUNCTIONS

There are three classes of kinetic coefficients to consider when studying
the evolution of (0.8), (0.9). The first class is pure fragmentation in which we
assume a; =0, b; >0 for all i, in this case the equilibria satisfy ¢; =0 for
; > 2 and are given by ¢ =(¢1,0,0,...). The second class of coeflicients to
consider is pure coagulation which we assume a; > 0, b; = 0 for all <. In this
case the equilibria are obtained by solving the equations @;¢1¢; =0, ¢ > 1
and thus the equilibrium states are given by ¢ € Qi’:l with ¢; = 0. Note
there are infinitely many equilibria with fixed mass p = Y =, 1¢; for each
p (it is more convenient for us to write in this chapter p instead of usual
Ny )

We consider the most interesting case in which we assume

a; >0,b; >0 forall 2. (9.1)

In this case the equilibria satisfy

Cit+1 a; _ .
= —— >1 .
Ci bit1 b t= (9:2)
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and therefore we have the form
G=Qic, i>1 (9.3)
where the @; are defined by
Qiv1 _ a; .
=1 —_— = > 1. .

9 =1 Qi b1’ 21 (9-4)
In order for ¢ given by (9.3) to be an equilibrium state, & must be chosen
so that ¢ € Xt. For z >0 define

o

F(z) =) iQiz". (9.5)
=1

The radius of convergence z, of this series is given by

27! = lim sup Q:/i. (9.6)
We shall always assume that
lim sup Qi/i < 00 (9.7)

so that 0 < z, < oco. Note that F 1is smooth and strictly increasing
0 < z < zs. Define

ps = sup F(z). (9.8)
0<2<z2,
If 2z, = 0o, then p; = c0. If 0 < 2z, < 0o, and in the case when 0 < p; < o0,
we have ps = F(z,). We thus obtain the following characterization of
equilibria.

Lemma 9.2. Let (9.1) hold.
(i) Let p < o0, 0 < p < ps. Then there is exactly one equilibrium state ¢
with mass p, and it i3 given by

& = Qiz(p)', i>1, (9.9)
where 2(p) 1s the unique root of F(z) = p.
(i) If ps < p < oo, there is no equilibrium state with mass p.

Next we need some properties of the function V(c) defined by

V(e) = f:c,- <1n (-5—) - 1) ,  cext (9.10)

i=1

where the summand is defined to be zero when ¢; = 0.
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Lemma 9.3. The function

o

G(c) = Zci(ln ci—1) (9.11)

=1
is finite and sequentially weak * continuous on X7.

Proof Let 0 <e < 1. If ce Xt and 1 <m < n, then by Hélder’s

inequality

ic}-sg (i zc> ) (iil*l/e) : (9.12)

i=m t=m
In particular, setting m =1 and using the inequality

z|ln z| < const(z'** +2'7¢), z >0, (9.13)

it is easily seen that the series defining G is absolutely convergent. To prove
the sequential weak* continuity, let D e Xt for j>1 with ¢ 5S¢ as

j — oo. Then

m—1 oo
G(c(j)) — (Z + E) cgj)(ln cgj) ~1),
=1 i=m

and by (9.12) the second sum is bounded in absolute value by

. . €
HC(J)”H-E ||c(’)|| () 1— = 1—1/e
const ( — T + ||| e Z i ,

i=m

()
i
each 7 we obtain lim;_ G(c(9) = G(c) as required. This proves Lemma

9.3 O

and therefore tends to zero as m — oo uniformly in j. Since ¢;”/ — ¢; for

Note that it follows either directly from the proof of the Lemma 9.3 or
from the sequential weak* continuity that G is bounded above and below
on Bj for each p > 0.

We note that by (9.10), (9.11),

V(e) = G(c) = Y ic;n(Qi"). (9.14)

1=1
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It thus follows from (9.7) that V' is bounded below on Bf for every p > 0.
In general V may take the value +o0o, but if

lim inf Ql/' > 0, (9.15)

i—00

then V is bounded above on B;," for every p > 0.
For 0 < z < oo we define

Vi(e) = V(c) — lnziici = ic,- (ln ( ch> - 1) . (9.16)

=1 i=1

Lemma 9.4. Let p< oo, 0 < p < ps. Then

V(2" = /0 (z(s)) | 9.17)

Vi(e?) = pln (z(”)) - gcz,-z(p)’}

Proof. Since

we have that

Ve =1 (28] 4 ((,))) Fe s = (*2), 0<o<n

The result follows since z(p) ~ p as p — 0+ . This proves Lemma 9.4 O

By (9.14), (9.16) and Lemma 9.3 V,(.) is sequentially weak * continuous
on X1 if and only if the functional

cr Z ¢iln(Qiz)
=1

is, that is, if and only if In(Q;z') = o(i). Since i™!In(Q;z*) = ln(Q:/iz)
then we have proved

Lemma 9.5. V,(.) is sequentially weak* continuous on Xt if and only
o /i .
if Im;oo Q;" exists and z = z,.

We are in position now to prove the important equality related to V.
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Theorem 9.3. Suppose that (9.1), (9.7), (9.15) hold and that a; = O(i/1n1),b; =
O(i/Ini). Let ¢ be a solution of (0.8), (0.9) on some interval [0,T] with
¢r(0) >0 for some r. Then

V(c(t)) +/0 D(c(s))ds = V(c(0)) for all t€10,T], (9.18)
where
D(e) €' > (aierei — biprcirr)(In(aicres) — In(bisrcisr))- (9.19)

=1

Proof. For n=2,3,... define

VI (c) = Zn: ¢ (ln (-5-) - 1) :

i=1

n

Dy(c) def Z(aiclci — bit1ci+1)(In(aicici) — In(biy1cit1))-

=1
By Theorem 5.6 we see that ¢;(t) > 0 for all ¢t € (0,T), ¢« > 1. For a.e.
t € (0,T) we find

d_ i | > i
GV ) = =Dua(@) = (e Y = Juln () =

i=n

= —Dy(c) - (lnc;) i Ji— Jnln ( Cnt1 ) . (9.20)

i=n+1 Qnt1

For sufficiently large n we have that Inc, <0 on (0,7T), and hence
—Jplne, < —@nCiCn Inc,, —Jnlncngr 2 bngicnprlnenyr. (9.21)

Since the solution ¢ is mass conserving then nc, — 0 as n — oo uniformly
on (0,T), so that by our hypotheses on a;,b; the right-hand side of (9.21)
also tend to zero uniformly. Furthemore, by Theorem 5.6 and the definition

of a solution,

n—oo

t o
lim / (lncl)z Jids=0, 0<7<t<T, (9.22)
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and by (9.7), (9.15) and the correlation
rt
n/ Jn(e(s))ds -0, n — oo,
we obtain

n—o0

Combining (9.20)-(9.24) we deduce that as n — oo,

/0 Dp—1(c(8))ds + o(1) < V™ (e(r)) = VI (c(t)) <

< /tDn(C(S))cls +0o(1),0<T<t<T.

Since
(z—y)(lnz—Iny) >0 for =z,y>0, z#y,

we deduce from (9.25) and the monotone convergence theorem that

V(e(t)) -I-/ D(c(s))ds = V(c(1)).

t ¢
lim JolnQpds = lim / JolnQpi1ds =0, 0<7<t<T.

125

(9.23)

(9.24)

(9.25)

(9.26)

Since c¢: [0,T) — X is continuous, since, by Lemma 9.1, (9.7) and (9.15),
V: Xt R! is continuous, the result follows from letting 7 — 0+ . This

proves Theorem 9.3 O

The following theorem is less restrictive than Theorem 9.3 but then the

equality (9.18) is not proved, and it should be replaced by the inequality.

Theorem 9.4. Let a; = O(3), co € Qi’:r(O) and the conditions of Theorem
9.1 hold. Let (9.1) and (9.7) hold, and suppose further that co # 0, V(co) <
oo. Then there ezists a solution c € Q;,':r(T) of (0.8), (0.9) with ¢(0) = cg

satisfying the energy inequality

V(e(t)) + /Ot D(c(s))ds < V(.co) for all t€]0,T).

(9.27)
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Proof. For n sufficiently large the approximation solutions ¢" defined in
the proof of Theorem 3.1 satisfy, by the same argument as in Theorem 5.6,
Lemma 2.2 ¢?(t) >0 forall ¢>0, 1 <:<mn, and hence

V(c(2)) + /0 Door(c"(s))ds = V(co), t€[0,T).  (9.28)

Since Dj—1(c™) > Dp(c™) for n > m, we have

t t
lim inf/ Dy_1(c™(s))ds > / D(c(s))ds.
n—eo 0 0

Finally, by (9.7), Lemma 9.1, and the fact that (see proof of Theorem 3.1)
c™(t) = c(t) in Q. (T),

Tim inf V("(£)) 2 V(c(?)).

The inequality (9.27) follows by passing to the limit in (9.28). This proves
Theorem 9.4 O

In the above proof we did not specify that the approximating sequence
c™ is actually the proper subsequence of the set of solutions of approximated

problems.

9.3 ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

In order to learn the asymptotic behaviour of solutions we use some defi-

nitions and facts.

Definition 9.2. (cf. Definition 6.2). A generalized flow G on a metric
space Y is a family of continuous mappings ¢ : [0,00) — Y with the
properties

(i)if ¢ € G and 7>0, then ¢, € G, where ¢(t) def ot + 1),
t € [0, 00).

(i) if y €Y, there exists at least one ¢ € G with ¢(0) =y, and

(111) if ¢; € G with ¢;(0) convergentin Y as j — oo, then there exist
a subsequence ¢, of ¢; and an element ¢ € G such that ¢;, (t) — #(t)
in Y uniformly for t in compact intervals of [0,00).
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A generalized flow G with the property that for each y € Y there
is a unique ¢ € G with ¢(0) = y is called a semigroup; we then write
T(t)y = #(t), so that the mappings T(t): Y — Y, ¢>0, satisfy

(i) T(0) = identity,

(il) T(s+1t) =T(s)T(t) for all s,t >0,

(iii) the mapping (¢,y) — T(t)y is continuous from [0,00) XY — Y.

Given a generalized flow on a metric space Y and some ¢ € G we
denote by O%1(¢) = Ui>0d(t) the positive orbit of ¢ and by w(¢) = {y €
Y : ¢(t;) = y for some sequence t; — oo} the w-limitset of ¢. A subset
E CY is said to be quasi-invariant if given any y € E and t > 0 there
exists ¥ € G with ¥%(t) =y and O%(y) C E. The following result is
classic.

Theorem 9.5. Let G be a generalized flow on Y, let ¢ € G and
suppose that O%(¢) is relatively compact. Then w(@) is nonempty and
quasi-invariant, and dist(¢(t),w(¢)) = 0 as t — oo.

Proof. We prove the quasi-invariance, the other assertions being obvious.
Let y € w(¢), so that ¢(¢t;) — y for some sequence t; — oo. Let
t > 0 and consider the sequence @(t; —t). Since OT(¢) is relatively
compact there is a subsequence tj such that ¢(tj, —1) = ¢, —+(0) is
convergent. By property (iii) in the definition of a generalized flow there
exist a further subsequence, again denoted t;,, and an element % € G
such that ¢ —¢(s) = 8(tj, —t+s) — ¢(s) as k — oo uniformly for
s in compact intervals of [0,00). Clearly O%(¥) C w(é) and ¥(t) =y.
Theorem 9.5 has been proved O

A function V : Y — R is called a Lyapunov function if ¢t — V(¢(t))
is nonincreasing on [0,00) for each ¢ € G. For generalized flows the
simplest form of the ”invariance principle” consists of the following immediate
consequence of Theorem 9.5. If V is a continuous Lyapunov function and if
Ot (¢) is relatively compact, then w(¢) consists of complete orbits along
which V has the constant value V*° = lim_.o, V(¢(t)). This information
may determine w(¢).
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Theorem 9.6. Let conditions of Theorem 9.1 hold. Let G denote the set
of all solutions c of (0.8), (0.9) on [0,00). Then G 1is a generalized flow
on XT.

Proof. Continuity of solutions is proved in Theorem 9.1. Property (i) in the
definition of a generalized flow is obvious from (0.8), (0.9), while property (ii)
follows from Theorem 9.1. It thus remains to prove the upper semicontinuity
property (iii). Let ¢(¥) be a sequence of solutions of (0.8), (0.9) on [0, c0)
satisfying ¢((0) — ¢ in £0,(0) as j — co. Repeating the proof of
Theorem 3.1 with ¢) playing the role of the approximating solutions, and
using the mass conservation and estimates of ”tails” obtained with (3.27)
taken into account, we obtain a subsequence cU*) and a solution ¢ such
that cgj")(t) — ¢i(t) uniformly on [0,7] for every T >0 and 7 > L
Also,

i icM () = i ic¥ (0) — i‘ ic;i(0) = i ici(t)
=1 =1 =1 =1

as k — oo, for every t > 0. Property (iii) follows by Lemma 9.1 0O

Theorem 9.7. Assume a; = o(1), b; = o(¢). For p>0 let G, denote
the set of all solutions ¢ on [0,00) with co € BT, Then G, is a
generalized flow on Bﬁ"".

Proof. We must check property (iii) in the definition of a generalized flow.
Let ¢ be a sequence of solution with ¢(0) = ¢ as j — oo. It
follows from mass conservation and proof of Theorem 9.1 that the derivative
dcgj )(t)/ dt exists for each 7 > 1 and is absolutely bounded independently
of j and t > 0. Hence by the Arzela-Ascoli theorem there exist a diagonal
subsequence ¢*) of ¢(9 and a function ¢ : [0,00) — X* such that
cgjk )(t) — ¢;(t) uniformly for t in compact subsets of [0,00) for each .
This implies also that d(cU*¥)(t),¢(t)) — 0 uniformly on compact subsets.
Clearly ¢ satisfies (0.8), the equation for ¢ > 2. To pass to the limit in
the ¢; equation (0.9) (written as usual in the integral form), we use the

sequential weak * continuity of the functions

oo oo
z aiYi, Z biy;
i=1 =1
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and the bounded convergence theorem. Thus c¢ is a solution. This proves
Theorem 9.7 O

We prove now the final results of this chapter. First, we consider a case
in which z; = o0.

Theorem 9.8. Assume a; >0, b; >0 for all i, a; = O(2) and

lim QY = 0. (9.29)
Let ¢ be any solution of (0.8), (0.9) on [0,00) satisfying co # 0, V(co) <
oo, and the energy inequality (9.27). Let po = 3 o, 1¢i(0). Then c(t) — cPo
strongly in X as t — oo, 'where"cg 18 the unique equilibrium state with
mass po (given by (9.9) ).

Proof. By Theorem 9.6 the set G of all solutions of (0.8), (0.9) on [0, c0)
is a generalized flow on X*. By (9.27) V(c(t)) < V(c(0)) for all ¢ > 0,
and by (9.14), Lemma 9.3 it follows that

oo
~ Y i) In(Q”) < M <0, t>0. (9.30)
=1
As is easily shown, (9.29) and (9.30) imply that O%(c) is relatively compact
in X*. Since V isnot continuouson X we cannot apply the invariance
principle directly to determine w(c). Instead we note by (9.27) that for any
n, any T >0 and any sequence t; — oo,

T t;+T

Jim [ Du(etts + 9)ds = tim /t Da(e(s))ds = 0. (9.31)

Let é € w(c), so that ¢(t;) - ¢ in X for some sequence t; — 0. By

the proof of Theorem 9.5 there is a subsequence, again denoted t;, and

a solution d on [0,00), such that d(0) = ¢é and c(t; +:) — d(-) in

C([0,T]; X). Since Y. ;o,tdi(t) = po > 0, we have by Theorem 5.4 that
di(t) >0 forall ¢ andall ¢t>0. Thus by (9.31) and Fatou’s lemma,

T .
/ Do(d(s))ds = 0. (9.32)
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Since n is arbitrary, it follows from (9.32), (9.26) and the continuity of each
d; that
di(s) = Qidi(s), i>1, se€0,T).

In particular, ¢é; = Qiéi for 7 > 1, and since Zf_‘;l 1¢; = po, this implies
that ¢ = c¢?°. Hence w(c) = {¢”*} and the result follows from Theorem
9.5 O

We now discuss the case 0 < z, < co. This is more difficult because
if po = Y 2, tci(0) > ps, then the positive orbit of ¢ is never relatively
compact in X.

Theorem 9.9. Assume a; > 0, b; > 0 for all i, a; = O(i/In1),b; =
O(i/1ni), and that lim;_ Q:/i = 1/z, exzists with 0 < 2z, < co. Let
mass conservation conditions of Theorem 9.1 hold and c¢ be a solution on
[0,00) with mass po. Then c(t) = c? as t — oo for some p with

0 < p < min{po, ps}.

Proof. The case py =0 Dbeing trivial, we suppose pg > 0. By Theorem 9.7
G,, is a generalized flow on Bg;". By Lemma 9.5 V,, is continuous on

B4+, and by mass conservation and Theorem 9.3

V.. (e() + /0 D(c(s))ds = Vi, (c(0)), > 0.  (9.33)

Since the first moment of ¢ is bounded, O7*(c) is relatively compact in
B;’O. By the invariance principle w(c) is nonempty and consists of solutions
¢(-) along which V., has the constant value V° = limy_.oo V,(c(t)).

Applying (9.33) to a nonzero such solution é(-) we see that necessarily
&(t) = Qiéi(t), 1 > 1, and by mass conservation it follows that & is an
equilibrium. Hence w(c) consists of equilibria ¢? with 0 < p < min{po, ps}
and V, (c?) =V,,(c0). But by Lemma 9.4 V, (c?) is stricktly decreasing in
p, and thus w(c) = {¢?} for a unique p. The result follows from Theorem
9.5 O

9.4 REMARKS

The concept of generalized flow was introduced by Ball [7] to give a nat-
ural abstraction for the (not necessarily unique) solution of an autonomous
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evolution equation. In this chapter we follow to Ball, Carr and Penrose [6].
The existence result in Theorem 9.1 follows from general coagulation equa-
tion and, hence, can be improved for more simple Becker-Doring equations
(see [6]).

Using the relaxed invariance principle, Slemrod [60] improved results of
Theorem 9.9 by replacing the conditions a; = O(i/1n¢), b; = O(i/Ilni) onto
a; = 0(2), b,‘ = O(Z)
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Chapter 10. SPATIALLY INHOMOGENEOUS
COAGULATION EQUATION

We are concerned with the following equation

dci(z,t)

g + div,(vi(z,t)ci(z,t)) + ai(z,t)ci(z,t) =

i—1 [e <)
1
3 Y Kimjjcij(z,t)ei(2,1) —ci(z,8) Y Kijej(z,t) + ai(z,8)  (10.1)

with initial data
ei(z,0) = V(2) > 0. (10.2)

Its physical interpretation is described in Introduction (section 0.1, equation
(0.11) ). We consider the kernels

Kij < kij (10.3)

and prove the local existence, uniqueness and stability theorem for space
inhomogeneous problem (10.1), (10.2) with kernels (10.3). We succeed to
extend the local existence theorem for all ¢ > 0 for sufficiently small initial
data and sources. From Chapter 1 we know that for kernels (10.3) the mass
conservation law may be broken. We prove here that the mass conservation
holds at least locally in time.

Finally, we show that for kernels I{; ; = 7j the sequence of solutions of reg-
ularized equations does not converge to the solution of the original problem
and, consequently, we cannot construct this solution via the approximated
solutions and simulate it numerically without special tools. This example
demonstrates also that our results cannot be improved via the approach of
approximated solutions.

10.1 LocAL EXISTENCE

First, we fix T > 0 and write (10.1), (10.2) in the following integral form

ci(z,t) = exp (— /Ot(ai + div,vi)(zi(s), S)ds) CEO)(ZLO)"'
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+ /ot S(c)i(zi(s), s) exp (— / i+ dinvi)(zi(3)>3)d8> ds.  (104)

Here S(c); is the collision operator expressed by the right hand side of (10.1);
z;(s) is the characteristic curve passing through the point (z,t) € R* xRL. It
satisfies the characteristics equation dz;/dt = v; with z; o = 2;(0), 2z;(t) = =.
Under solution of the initial value problem (10.1), (10.2) we will understand
the solution to (10.4). We consider the regularized equations to (10.1) which
can be obtain by its truncation:

Oci(z,1) .
5 + div,(vi(z,t)ci(z, 1)) + ai(z, t)ci(z,t) =
5 EI nciei(zt)ei(zt) — ci(z,1) 3 KPiei(z,1) + ¢i(z,1).  (10.5)

J=1
The truncated kemels can be defined as (cf. chapter 3)
K}i(z,t) = K j(2,t), 1+]j<nm, (10.6)
Kli(2,t)=0, i+j>n, 1<n<oo. (10.7)
We impose the following conditions on space transfer and effluxes:
a; € C, v; € CY°, a; + div,v; > —b=const, 0 <t < T, zeR} i>1
(10.8)
and for all i > 1 and each point (2,t) € R® x R} there exists a characteristic
curve z;(s) passing through (z,t) on s =t.

We introduce the space 3 (T), r > 0 of continuous functions c;(z,1),
¢ > 1 with the bounded norm

T
el = sup_ Zy sup le(@ 0+ sup - les(z0)
0<t< J 1 2z€R3,0<t<LT,iEN
and the space Qx(T) C ©1,0(T), A > 1 with the bounded norm
(o o]
. |
el = sup 3" N sup lej(z )+ sup  ei(z,t)].
0<t<T zERS z€R3,0<t<T,iEN

If A>1 then QA(T) C Q1,-(T), r > 0. As before, the cones of nonnegative
functions in the above spaces we denote via the superscript ”+”. We are now

in position to formulate the auxiliary lemma.
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Lemma 10.1. Let the conditions (10.3), (10.8) hold, the functions K; ;(z,t)
be continuous (1,j > 1 ), and
IqeQf (T), @ef (0), r>1

or

IT ¢ € Q5 (T), <@ € Qf(0), A> 1.

Then for any n < oo the equation (10.5) written in the integral form (10.4)
with the initial function c(® has the unique solution

Ice Qi‘:r(T); or

II c € QI (T) correspondingly. In both cases the solution has a continuous

derivative along characteristics.

The proof is similar to the proof of Theorem 2.1. We consider the inte-
gral equation ¢ = R(c) where the operator R, expressed by the right hand
side of (10.4), maps spaces §;, and € into itself. We utilize the con-
traction mapping theorem to demonstrate local existence of a continuous
solution. Thanks to its continuity we obtain from (10.4) its differentiability
along characteristics and then prove its nonnegativity similarly to Lemma
2.2. To extend the solution for all 0 < t < T we take into account that
from (10.4)

ci(z,t) < ebtcgo)(zi,o)-l»

+/0 EK " ici—i(zi(s), 8)ej(zi(s), 8) + gizi(s), 8) t=9ds. (10.9)

We use the ”upper” function h which satisfies the differential equation

dhi(t)

il =§?§;j iR+ (Q + () (10.10)

and the initial conditions

hi(0) > supc(o). (10.11)

In (10.10) K = sup; ; K7*; and the constant ) we choose such that Qh;(0) >
sup, ; ¢i(2,t) for 1 < § n. Using the generating function we solve (10.10),
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(10.11) explicitly and obtain differentiability and uniform boundedness h;(t)
foralll1<:<n, 0<t<T.

Let the point (z,t) be the first where ¢;(z,t) = hi(t), i.e.
hj(s) > cj(zj(s),s), 1<3<i, 0<s<t.

Then we obtain from (10.9), (10.10)

N =

t i—1
ci(z,t) < e"h;i(0) +/ E-IThi_j(s)hj(s) + Qhi(s) p 79 ds = hy(t).
0 iz

Hence, we come to the contradiction ¢;(z,t) < h;(t) which demonstrates that
the function h really is a majorant for c:

hi(t) > ci(z,t), 1<i<n, z€ R®,0<t < T. (10.12)

This estimate of boundedness enables us to extend the local solution for all
0 < t < T since values c; for 7 > N are controlled easily from (10.5). Actu-
ally, they don’t undergo influence of nonlinear terms. The global uniqueness
follows from the local one thanks to the estimate (10.12), too. This proves
Lemma 10.1.

Remark 10.1. If we impose the additional condition
vi(z,1) € C¥°, gi,ai, K;; € OV, D et i,j>1 (10.13)

then the solution ¢ of (10.4) is continuously differentiable in z. Taking into
account its differentiability along characteristics we obtain that it has a con-
tinuous derivative in t, too. Hence, 1t satisfies (10.5). To demonstrate this
fact we introduce the space Q (T') with the norm

Bciz,t)

llelll = llelli}) + sup -

2€R3,0<t<T,iEN

and then repeat the above arguments.
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Lemma 10.2. Let the conditions (10.8), (10.8) hold,

sup ¢ € Qf ,(0), < eqf ,(0), Ao >1
0<t<T
and the functions K; j(z,t), 1,7 > 1 be continuous. Let 1 < X < Xo. Then
there exists T > 0 such that

Ie?)|$? < M = const, 1< A< (10.14)

Proof. In accordance with Lemma 10.1 c" € Q')fo (T). We make the substitu-
tion d = ic! and similarly to Lemma 10.1 construct the majorant function
hi(t) > d?(z,t), z € R®, i > 1 which satisfies the equation

dhit) _ 1. =

@~ 3t '—f(t)hi (t) +(Q + Dhi(t),i 2 1 (10.15)

with the initial condition

hEO) > max{icgo), isupqi(z,1)}, h® € Q1 (0), 1< X < Xo. (10.16)
z,t
We introduce the generating function
w .
u(f,t) =Y Ehi(t)
=1
and obtain from (10.15), (10.16):

1 2.
ue = ShEuug + (1+b)u, u(€,0) = 3 enl. (10.17)
=1
The initial value problem (10.17) satisfies the conditions of Cauchy-Kovalevskaya
theorem [30] and, consequently, has an analytic solution u(§,t) in a neigh-
bourhood of the point £ = X > 1, ¢t = 0. This proves existence of h(t), 0 <
t <7, 7 > 0. Its nonnegativity follows directly from (10.15), (10.16). As far

as the sum
o0

su hi(t
OStEr; z()

is bounded then h; are bounded uniformly with respect to z > 1. Conse-

quently, the norm ||h||( ™ is bounded. This proves Lemma 10.2 O
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Lemma 10.3. Let the conditions of Lemma 10.2 hold. Then for each fized
i > 1 the sequence {c'}52, i3 a compact subset of the space of continuous
functions on each compacta in R® x [0, 7].

Proof. We consider a box
O(I,Z,7)={(i,2,t): 1 <i< I, |2|<Z, 0<t <7}
From (10.4) we obtain

| (2, 8) = cF(z,1)] < €

P(2h0) — ¥ (z10)| +

exp ([ (e + civan Gl 0005 ) -

e (- i+ div.n)(si(9),9)ds )| e o)+

+ [ 18U, — SENEE. 9
- exp (— /:(a;-k div,vi)(zg(sl),sl)dﬁ) ds+

+ /0 t 1S(c™)i(zi(s), s)| |exp (— / t(a,- +div,vi)(z£(sl),sl)dsl) -

_ exp <- / (s +divzvi)(zi(51),31)dsl) ds. (10.18)

For any € > 0 we can pick up § > 0 such that if |2/ — 2| < §, |Z|,|2| £ Z
then in II(I, Z, 7) the following correlations hold

exp (— /0 t(a,- + divzv,-)(z;(s),s)ds) -

— exp <— /0 ar+ divzvi)(zi(s),s)ds> <e (10.19)

1692 0) = 82 (zi0)| < €, 1ai(2i(s), 8) — qilzi(s),8)| <, (10.20)
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K j(2i(s), 8) — Ki,j(2i(s), s)| <e. (10.21)

The inequality (10.21) must hold on # < I and j < J. The value J will be
define a bit later in (10.23). We note that from (10.1), (10.3)

SN 3) — S(Ei(ai(a), ) < FAE S [l (06), o) = ey(ai(6), )
e} (#4(5),8) + € (zis), )| + ef(#i(5), ) = e (2i(s), o)
D KI(2(s), )7 (21(5),9)+

+ei'(2i(s), 8) Z |K75(2i(s), 8) — K7(2i(s), 9)l e (2(s), )+

CIODD P OB CODEACONIE

+lai(zi(s), 8) — qi(2i(s), 5)|. (10.22)

We split the infinite series in (10.22) in the following fashion

Jj=1 J

J o) N\ J+1
+ Y, where J>I, A*'>J+1, and (A/A) <e
=1 j=J+1 ‘
(10.23)
for some A, 1 < A < X. Hence, from (10.3), (10.14), (10.21) and (10.23) we

obtain
o) J

> K7(zi(s), 8)e} (21(s),8) < MJZC;?(Z;(S), s)+

J=1

+kI S jel(el(s),s) < RIT[MY + kIflc”||{” = const;  (10.24)
j=J+1

oo _ J
Z |K7(2i(s),8) — K7(2i(s), 8)lef (2i(s),8) < € Z cf(zi(s),8)+
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oo i m A J+1 ()
+2kI S Mc(2l(s),s) < eM +2kI (A/A) e™l$” < eM(1 + 2kI).
j=J+1
(10.25)

Similarly we estimate another infinite series in (10.22):
Z Ki(zi(s),8)|c} (2i(s), ) — cj(2i(s),8)| < kIJ?6™(s) + 2keIM. (10.26)
j=1

We introduce the moduli of continuity

N = sup le?(z,t') — c(z,t)], 1<i<I, n>1, (10.27)
[2|<Z,|t' —t|<6
6" (t) = sup le?(2',t) —cM(z,t)], 0<t<7, n>1 (10.28)

|z—2"|<6,1<i<T

and obtain from (10.18) with (10.19), (10.20), (10.24)—(10.26) taken into

account:

¢
6"(t) < const - € + const/ 0" (s)ds, n > 1.
0

Consequently,
6"(t) < Mye, 0 <t <1, M; = const. (10.29)

Similarly we choose |[t' —t| < §, 0 < ¢/, < 7 and obtain
t
n; < const- ¢ + const/ 0™(s)ds < Mpe, 1<:< T (10.30)
0

From (10.23),(10.27), (10.28), (10.29), (10.30) we obtain

sup le?(2',t") — i (2,t)| < const - ¢, (10.31)
| —t|<6,|z' —z| <6

1<i<I,0<t t<r, |2],]2| <2, n>1.

Applying the Arzela’s theorem to (10.14), (10.31) we conclude the proof of
Lemma 10.3 0O

We are now in position to formulate the local existence theorem.
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Theorem 10.1. Let conditions of Lemma 10.2 held. Then for some 7 > 0
and any X\, 1 < X\ < Ao there ezists a solution to (10.4) which is unique in
Q5(7) and has continuous dependence on initial data and sources.

Proof. We construct the sequence of truncated kernels K™ which converges
to the original kernel K. In accordance with Lemma 10.1 this sequence gen-
erates the sequence {c"}$2; of continuous solutions of (1C.4). Using Lemma
10.3 we pick up for z = 1 from {c"} a subsequence which converges uniformly
in II(1, Z, 7) to a continuous nonnegative function ¢;(2,t). Then we pick up
a subsubsequence which converges uniformly in II(2,2Z, 7) to ¢1(z, ), c2(z, )
and so on. Finally, we obtain a sequence of solutions to (10.4) with truncated
kernels which converges to a continuous for each 7 > 1 function

{ci(z’t)};ﬁl, (z,t) € R® x [O)T]‘

To demonstrate that the function obtained actually satisfies (10.4) with the
original kernel K, we should note that as far as c” € Q;(T) uniformly with

respect to n > 1 then also
cE Q;"(T)

Moreover, from (10.14) we can see
lel$? < M, 1<A<i (10.32)

Passing to limit n — oo in (10.4) is possible due to estimates of series ”tails”
(10.24)—(10.26). This proves existence in Theorem 10.1.

To prove uniqueness we consider solutions ¢ and d to (10.4) with initial
data ¢(®, d(© and sources ¢!, ¢2 respectively. We denote u; = sup, |¢; — d;]
and obtain from (10.4) with (10.3) taken into account:

t 1—1 %)
wlt) €@ + [ 8 Sk S = i) + biuils) 3 v+
=1 i=1

+kipi(s) D juj(s) +ris) p P ds. (10.33)

Jj=1
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In (10.33) we put
$i(t) = sup ci(z,t) + di(z,1)|,ri(t) = sup g (2,t) — &} (2, 1)].
z z€

Summation of (10.33) with the weight ¥, 1 < A < X yields

t
U\ t)e™ < U(X,0) + / {%—A?UA\P A+ R} e b%ds (10.34)
0

where
UNt) =D Mui(t), T(At) =D Ney(t).
i=1 =1

Similarly, using the correlations

(e ) o)
> idu; =AU, YA u = NUsa + AUy,

=1 =1
we obtain

t A
Us(A, t)e™" < Ua(X,0) + / % {%vmqf,\ + R} e ds. (10.35)
0

Applying Lemmas 4.1, 4.2 to (10.34), (10.35) and using (10.32) we con-
clude that in the domain R defined in Lemma 4.1 with ¢; = 5kA2M the
following correlation holds

Z Aui(t) < coeb? + cote® (10.36)
i=1
where
0 T
co = [[c@ —dO, e =" = I,
Therefore

lle — d||P < coe®® + cate (10.37)

in the domain R. Since the functions ¢,d € Qx(7) and the constant ci,
which define the domain R, does not change, then we pick up T < 7 as
the initial moment, repeat the above reasonings N times unless NT' > 7.
Finally, (10.37) yields the continuous dependence of solution on initial data
and sources on 0 < t < 7. The uniqueness of the solution is a simple corollary.
This proves Theorem 10.1 O
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Remark 10.2. Utilizing Remark 10.1 and the Arzela theorem for the space
1 of continuously differentiable functions, we obtain ezistence and unique-

ness of the continuously differentiable solution to the original problem (10.1),
(10.2).

Let us stop on the problem of mass conservation for the basic space ho-

mogeneous problem with
v=¢g=a=0. (10.38)

Summation (10.1) with the weight ¢ yields

%Z tei(t) = — lm, Z > i edt)es(t)+ Z nKnjen(t)e;(t)

=1 =1 j=n—1t
(10.39)
Deriving (10.39) we have used the symmetry of the coagulation kernel K; ; =
K; ;. Hence, the limit is equal to zero (yielding the mass conservation law)
if the double sum

Z Z 1K jei(t)e;(t) (10.40)

i=1 j=1

is bounded. Boundedness (10.40) for 0 < ¢ < 7 follows from (10.3) and
(10.14). Thus, we have proved the following corollary.

Cofollary 10.1. Let for space homogeneous problem the conditions of The-
orem 10.1 hold and (10.38) is true. Then the solution obtained is mass

conserving.
10.2 GLOBAL EXISTENCE FOR SMALL DATA AND SOURCES
Lemma 10.4. Let the conditions of Lemma 10.2 hold and, in addition,
ai(z,t) + divvi(2,t) 26 >0, i >1, 2€ R}, 0<t<T <oo, (10.41)

e Qf (0), q€Qf (D) (10.42)

Then there exist 1 < A < Ag and A > 0 such that any continuous nonnegative
solution to (10.1), (10.2) obeys the inequality

ci(z,t) AT A Pexp(—6t), 1>1, ze R} 0<t<T (10.43)
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provided that the initial data ¢©) and sources q are sufficiently small (defined
below).

Proof. We use the substitution
ci(z,t) = di(z,7)e™ ™Y, r=1-¢7% 7€]0,1), i>1. (10.44)

Similarly to Lemma 10.1 we obtain that

di(z,7) < hi(r), i>1, z€R®, 0<7<1 (10.45)
where -
dhi 1, .C
L=z imjh; 0 10.4
6— 2kz;h ihji +Qh (10.46)
(0) = 1 : (0)  A-1; . .
hi(0) = h;’ > max{ic; ’, Q@ isupqi(z,t)}, ¢>1. (10.47)
z,t

Due to (10.42) we can pick up A1, 1 < A1 < Ag such that h(0) € QL (0). We

introduce the generating function

H(, ) =) &hi(r) (10.48)
=1
and obtain from (10.46), (10.47):
%—f =¢k6T'HH; + Q671 H, (10.49)
H(E,0) = Ho(é). (10.50)
Inserting
H =exp(Q6~ir)H (10.51)

in (10.49), (10.50) yields
H, = k6 Yexp(Qs  7)HH:, H(E,0) = Hy(6).
It is easy to show that

H(E,T) <G 7), E< X (10.52)
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where

Gr = Mk6 1exp(Q61T)GGe, G(£,0) = Ho(€). (10.53)
In fact, we can use the characteristics approach and obtain

G(e,7) = Ho(&7), H(&,m)=Ho(&™), &7 > &

Taking into account the monotonic increasing property of Hop, we establish
(10.52).
We solve (10.53) and obtain

G(€,7) = Hy (g + MEQTIG(E, T) (le/*S _ 1)) .

Utilizing the implicit function theorem we establish existence of an analytic
solution of the problem (10.53)

G(¢,7) < G = const (10.54)

on the intervals 0 < 7 < 1, 1 < € < A; provided that the initial data are

sufficiently small:

) Q
Hy < 35T (10.55)

Inserting (10.47), (10.48), (10.50) into (10.55) we can see that to satisfy
(10.55) it suffices to pick up 1 < A < A; such that

=y i—17(0) Q
> axiTh < WICTCIEENS (10.56)

1=1

If (see (10.47) )

1 )

Q supqi(z,t) > 9> 1, (10.57)
z,t

then (10.56) transforms into

oo 2
2 yi-1 Q = ‘
E AT < wE (exp(Q/5 = 1)) where g¢; s:tp gi(z,1). (10.58)

=1
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Since the function f(z) = z?/(e® —1) has its maximum at the point
£ € (1,2) and f(Z) > 0.6 then to obtain less restrictions on the initial data
we should choose = Z6 in accordance with (10.58). Thus, we obtain the
condition on sources:

N oy 0.662
'2/\1—1 ; .
Z 1 g < Mk
=1
In general, when (10.57) does not hold, the expression (10.56) yields us the
condition on initial data and sources via (10.44), (10.47). From (10.44),
(10.45), (10.47), (10.51), (10.52), (10.54) we obtain

o0

Z iXei(z,t) < Gexp (Q/6 — 6t).

=1
Hence, we come to (10.43) with A = Ge®?/%. This proves Lemma 10.4 0O

We are now in position to formulate the following Theorem.

Theorem 10.2. Let the conditions of Lemma 10.4 hold. Then there ezists a
global solution to (10.5) which is unique in Qx(T), has continuous dependence
on initial data and sources and asymptotically tends to zero with exponential
rate as t — oo.

If we add the conditions (10.18) then the solution obtained has continuous
derivatives and satisfies (10.1), (10.2).

Proof of Theorem 10.2 is based on estimate (10.43) and iterating the
proof of Theorem 10.1 with 7 replaced by T, 0 < T < oo. Continuous
differentiability follows from Remarks 10.1 and 10.2. This proves Theorem
10.2 0O

Now we demonstrate that for the basic space homogeneous case with the
kernel K; ; = ij the solutions of truncated problems do not converge to the
solution of the original problem, whose existence is proved in chapter 1. Let,
as before, c" be solutions of truncated problems with kernels (10.6), (10.7).
We consider the residual

alt) = () =
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= [ 3= g )N+ €)() — ieilils) 4 icH ()N (0) .
0 =1

(10.59)
In (10.59) N;(¢) is the total mass of particles at time ¢ which is equal to the
first moment of the solution. We have used the mass conservation property
of the regularized solutions ¢™ (chapter 2). From Lemma 10.3 and uniqueness
we have the uniform convergence ¢ — ¢ on each compact subset. Conse-

quently,

ci(t) = ci(t) n— oo

till the mass conservation law holds only. After the critical time which, as well
known, is equal to [N2(0)]~! (chapter 1), the convergence to the solution of
the original problem fails, since in (10.59) we obtain the nonzero summand
tc;(M(s) — M(0)) . Therefore to prove the global existence theorem for
general kernels (10.3) for any initial data, we must use completely different
approach.

10.3 REMARKS

In [39,66] the existence theorem was established for kernels K; ; < o(¢)o(5),
t,7 — oo. Existence of a solution to the pure (without sources, efluxes and
space transfer) coagulation equation with the important kernel K;; = ij
was proved in [52] (local existence) and in [46] (global existence). Therefore
there exists the gap in study of the above problem, which is the absence of
an existence theorem for the space homogeneous coagulation equation with

kernels
o(i)o(j) < K; j(2,t) < kij, k=const, z € R, t>0. (10.60)

The key reason of this gap is absence of the uniform estimate of the first
moment of solutions of the regularized problems (usually with truncated
kernels). The above estimate allows to pass to limit in the infinite series in
(10.1). In [46, 62 ] the equation with K;; = ¢j is solved directly and this
method cannot be used for more general kernels (10.60).
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The space inhomogeneous coagulation equation with unbounded coagu-
lation kernels was studied by Burobin [12] for coagulation kernels with lin-
ear growth, and Galkin [38] for kernels of a special type. Galkin [37] and
Dubovskii [20] succeeded to prove existence and uniqueness theorems for
bounded coagulation kernels. In [20] the convergent iteration method is con-
structed. The unique solvability of the problem with coagulation kernels of
linear growth and particle fractionation taken into account was demonstrated
by Dubovskii [19].
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Chapter 11. EXISTENCE AND UNIQUENESS
FOR SPATTIALLY INHOMOGENEOUS
COAGULATION-ONDENSATION
EQUATION WITH UNBOUNDED KERNELS

We are concerned with the space-inhomogeneous Smoluchowski equation

with condensation processes taken into account.
2c(a: z,t) + i(7’(:1:)0(36 z,t)) + div,(v(z, z)c(z, 2, 1)) =
0t tRadh] 6$ » z ’ ) 9 ’ -
= %/ I{(.’l) - Y y)C(IIJ -Y z,t)c(y, z7t)dy_
0

~de.5t) [ K@ welv,z iy ot € By =[0,00), =€ R
0 (11.1)

The equation (11.1) must be supplemented by an initial distribution
c(z,2,0) = co1(z,2) >0, (11.2)
and a distribution function of condensation germs
(0, z,t) = co2(z,1). (11.3)

The results in the spatially inhomogeneous case are much more poor than in
the homogeneous one, it may be explained by the following reasons. The for-
mal integration of (11.1) with weight z yields (the condensation r is assumed
to be equal to zero)

+ oo o)
/ / zc(z, z,t)dedz = const. (11.4)
—o0 JO
In the space homogeneous case we obtain more valuable equality
oo
/ zc(z,t)dz = const. (11.5)
0

The correlations (11.4) and (11.5) express the mass conservation law. The
large difference between the conservation laws (11.4) and (11.5) can be seen
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from the integral form of the problem (11.1),(11.2) (to simplify the exposition
we take r = 0 and v = v(z) ):

c(z,z,t) = co(z, 2z — v(z)t)+

+/0 {_;_ /x K(z —y,y)c(z —y,z — v(z)(t — 8),t)c(y, 2 — v(z)(t — s),t)dy

0

—c(z,z —v(z)(t —s),1) /000 K(z,y)c(y,z —v(z)(t —s), s)dy(}lil%.)

To prove existence of solution to (11.6) we usually build a sequence of so-
lutions cn(z,z2,t) of a regularized (more simple) problem. Such sequence
should converge to a function c. As we have seen in chapters 3, 10, the main
problem is to prove that the function constructed c(z, 2,t) is a solution to the
original equation (11.6). Namely, we must demonstrate possibility to pass to
the limit as n — oo in the equation (11.6) with c replaced by c,. The most
difficult stage is to show the admission to pass to the limit under sign of the
integral over the infinite domain

/0~°° K(z,y)en(y,z — v(z)(t — s),s)dy.

Let the coagulation kernel K(z,y) be bounded. Then we ought to demon-

strate the uniform smallness of the integral ”tails”

/ " ey, 2 — (@)t — ), 8)dy

m

for all n > 1. The value of m is taken sufficiently large. As long as we have
the estimation like (11.5) then the problem can be solved by the following
well-known trick (see (3.27 ):

/00 cn(y,z —v(z)(t — s),8)dy <

m

const

— 0, m — oco.

<2 [T venlwnz = w(ot = o) )i <

The correlation (11.4) does not give us such convergence and we ought to

seek other approaches. It is worth to note that if the space velocity v does
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not depend on z, then a variant of the strong mass conservation law (11.5)
holds and we obtain the desired trend. Namely this fact was used by Burobin
in [12] where he considered the case v(z) =const for £ > zo which reduces

the problem to the space uniform situation with the strong conservation law

(11.5).

In this chapter we prove existence and uniqueness theorem for sufficiently
small initial data with coagulation kernels admitting linear growth on infinity.
These kernels include the considerable class of physically real ones.

11.1 MAIN RESULT

Fix T > 0 and denote Q(T) the space of continuous functions in RL x
R? x [0,T] with the norm
llellx = sup / exp(Az) sup |c(z, z,t)|dz.
0<t<T Jo z€R3
We define Q(T) = [J,50 QA(T). Let QF(T), Q+(T) be nonnegative cones in

corresponding spaces.

Theorem 11.1. Let the coagulation kernel K be continuous, monnegative

and symmetric function, i.e. K(z,y) = K(y,z) > 0. Let also
K(z,y) < k(z + y) where k =const .

Let the function r(z) be nonnegative, bounded with its derivative and have
continuous second derivative. Let the following inequality hold

div,v(z,z) +r'(z) > 6 > 0. (11.7)

Suppose that functions v, co1, coz are continuous and, in addition, co; and coo
are nonnegative. We impose the following conditions ensuring smallnes of
the initial data:

co1(z,z) < Aexp(—az), a>0; (11.8)
sup exp(6t)coz(z,t) < A. (11.9)
0<t<T
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Let r(z) > 0 and

)
R = max { supr(z),sup|r'(z)| p < ——, (11.10)
RY Ry l+a

iA kA (0)
Ne—RI+e 26 _ROta) " (11.11)

c01(0, 2) = c2(2,0), z € R,

Let also

Then there ezists a continuous, differentiable along characteristics of the
equation (11.1) nonnegative solution ¢ € QY (T). This solution is unique
in Q(T) the additional condition provided

dibzv(w,z) +r'(z) < M(1+z), M=const, z€RL, z€R

First, we formulate an auxiliary result.

Lemma 11.1. Let conditions of the Theorem 11.1 hold and the coagulation
kernel K have a compact support. Then there exists a unique solution c €
QF(T) to the problem (11.1)-(11.3).

The proof of Lemma 11.1 is based upon replacement of the integral with
infinite upper limit in the main equation (11.1) to the integral over a compact
domain. Due to this replacement the collision operator, which is expressed
by the right-hand side of the equation (11.1), maps Q,(7") into itself (see
Theorems 2.1, 2.2).

We approximate the original unbounded kernel by a sequence {K,}52 ; of
kernels with compact supports. Each kernel from this sequence must satisfy
the conditions of Theorem 11.1. Recalling Lemma 11.1 we get a sequence
{en}22, solutions of the problem (11.1)-(11.3) with kernels K,, and the same
initial data cp; and cgs.

11.2 A PRIORI INTEGRAL ESTIMATE

We make the change of variables

en(z,2,t) = (1 = 7)én(z,2,7), T=1—exp(=6t),n >1.
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Then the problem (11.1)-(11.3) takes the following form:
0, -1 R
6'6_7,0"(1"7277-) +(1_T) (v(w,z),vzcn(:c,z,v'))+
+(1 - T)_lr(x)%én(:c, 2,T) =
1 [* R A
= 5/(; Kn(z —y,y)én(z — y,2,7)én(y, 2,7 )dy—

_an(x, Z,T)/ I{n(xay)én(y’z>7)dy_
0

—[div,v(z, 2) + r'(z) = 8])(1 = 7) " én(a, 2, 7)
(11.12)

with the initial and boundary conditions
én(z,2,0) = co1(z,2), &(0,2,7) = (1 —7) " co2(2,1). (11.13)

Lemma 11.2. Let the conditions of Theorem 11.1 hold and the continuous

function g be a solution of the equation

r(z 1 z
691’(37, T) + i—(_)gz($77) = '._kz/ g(w - yaT)g(y’T)dya
-7 2 0

(11.14)
g(SIJ,O) = Aexp(—a:c), g(O,T) = A.
(11.15)
Then
én(z,2,7) < g(z,7), z€RL, z€ R 7€[0,1), n>1 (11.16)

Proof. Let a point (zo, 2z0,70) be the first point where the functions ¢, and
g are equal:

én(z0,20,70) = 9(z0,70), éun(z,2,7) < g(z,7), (11.17)
0<7<m, 0<z<a(r), z=2(7).

In (11.17) z(7), 2(7) mean the values on the characteristic passing through
the point (2o, 20, 70) With z(79) = 0, 2(70) = 2. Such point (z, 20, 70) exists
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thanks the continuity of é,, ¢, positivity of » and due to the expressions

(11.8), (11.9) and (11.15). We integrate (11.12), (11.14) along characteristics
and obtain

1 To To
énl20,20,7) < 567 [ [ Knle(6) =1, 0)en(0(6)-0, 2(5), )en(y, (), )dyds
0 0

< %6‘1k / /0 " /0 " 0(@(s) — v, 8)g(v, $)dyds = g(z0,7).  (11.18)
The inequality (11.18) yields the contradiction
én(Z0,20,70) < g(20,70)
which proves Lemma 11.2 O

Remark 11.1. Lemma 11.2 demonstrates the nmontrivial influence which
bring in the condensation term. We are able to replace the problem (11.14),
(11.15) by essentially simpler problem

1 z
§gr(z,7) = §kw/0 g(z —y,m)9(y,7)dy,9(z,0) = A, ¢(0,7) = A,

but in this case the majorant function g 18 not integrable. If g¢(z,0) =
Aexp(—az), then we cannot omit the condensation summand in (11.14)

since the characteristic curves in (11.12) increase.

By integrating (11.14) with the weight exp(Az), we obtain
§H, (A, 7)— (1 =71)"'r(0)g(0,7) — (1 — 7')"1/\/ exp(Az)r(z)g(z, T)dz—
. 0

—(1-7)"1 /000 exp(Az)r'(z)g(z,7)dz = kH(A, 7)HA(A, 7), (11.19)
A

a—\

In (11.19), (11.20) we have used the notation
H(\1)= /00 exp(Az)g(z, 7)dz.

Taking (11.10) into account, we o(;otain from (11.19):
SH, — kHHy < Ar(0) + 1+a

~—1-7 1—7

To find an estimate for the function H(A,7) we need the following lemma.

H(A,0) = A€ 0,a), T€]0,1). (11.20)

RH. (11.21)
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Lemma 11.3. A solution of the differential inequality (11.21) with the ini-
tial condition (11.20) obeys for some 0 < X\ < a the following correlation

H(\ 7)< F(\,7), 7€[0,1), 0<A<],

where the function F' 1s defined as a solution to the majorant equation

Ar(O) + l1+a

SF.(\, 1) — kF(\, 7YFs(\,7) = HlpEO, (1122)
F(),0) = %, re[0,5], re,1l, (11.23)
D> A. (11.24)

Proof. We shall prove by contradiction. Consider the family of characteristics
of the problem (11.22), (11.23). Define

Q(Xo,70)={(\,7):0<7 <7, 0<SA<A(T)},

where A(7) is a value of A on the charateristic curve I'(Ao, 7o) which goes
through the point (Ao, 7o). In addition, we suppose 0 < A\(0) < a. We choose
a point (Ao, 7o) such that

F(Xo,70) = H(Xo,70), but HA, 7)< F(A,7) if (A7) € Q(Xo,70).

We point out that 79 > 0 because (11.24) holds. Let us consider the char-
acteristic curve I''(\g, 7o) of the problem (11.21), (11.20) with the inclusion
(Ao, 70) € Q(Ao, 7o) taken into account. Then

Ho,t0) < HOZ,0)+ [ {R(”“)H(A( ) + 222 (Oj}dm

I'(Ao,me) U 1=
< H(A},,0)+/F(A ) )dr{—li(ilj_—a)H(/\( ), 7) + Ar(oT)} <
< F(\L,0) + /m . ar { B p(pr) 7y + T2} = Fdo, )

In the last expression A} and A2 are beginnings of the characteristic curves

T'(Xo, 7o) and IV(Xo, 7o), and Aj > AZ. We have used as well that A < a and
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the function H increases in A. Finally, H(\o,70) < F(X\o, 7). This contra-
diction with the hypotesis F'(Ao, 7o) = H()\o, 7o) proves Lemma 11.3 O

Let us consider properties of the function F(A,7). We make in (11.22),
(11.23) change of variables

FO,7)=(1—1)""L(\,7), Ael0,i],reo,1).

(11.25)
Hence,
Ly (N, 7)— k(1 = 7)""L(A\, 7)LA(N, 7) = Ar(0)(1 — 7)1,
(11.26)
D ~
L(A,0) = — A€0,)], 7€]0,1).
a= (11.27)

In the expression (11.25) the notation n = R(1 4 a)§~! is introduced. The
characteristic equation of the problem (11.26), (11.27) has the form

dA

e —k67H1 — 1)L, 7). (11.28)
As fa;“ as on each characteristic
L\ T1) = % + /(;r Ar(0)6"1(1 — 7)1 dr,
then from (11.28) we obtain
D

fl—;\- = k611 —7)7" ( o Ar(0)6 I (1= 7)" - 1]) :

a_

k(1= (1—=7)") [Ar(0) D
— 5 [ o + — /\0} . (11.29)

Let us ascertain whether the characteristics (11.29) with starting points A}

)\(T)ZW-F)\O

and A2 can intersect. If they intersect then

2kD A )2
1 _y2 _ _ _\1-7 0 0
SR - some el GO ¥ o W ICES IR




156 P. B. DUBOVSKII

whence

1-(1=7)'"""=6k"'D 1 (a = 2\})(a— A1 —n).

Consequently, the characteristic curves of the problem (11.26), (11.27) have

2
D< 5% (1 _ Rl “; “) (11.30)

and the initial conditions are sufficiently small:

/ kD

The inequality (11.30) brings us the correlation

no intersection, if

6

R< 14+a

(11.32)

We should reveal now when the problem (11.26),(11.27) has smooth solution
for small A > 0 for all 7 € [0,1). This condition holds if characteristics have
no intersection and A(1) > 0. On 7 = 1 we obtain from (11.29)

B kAr(0) B kD
R R Ry P Y Ry
Hence,
kAr(0) a kAr(0) a

—252(1—77)+-2-_C<)\0<__——252(1—77) '2'+C, (11.33)

where
B kAr(0)  a\* k& o (0)5-1
C= \/(_———262(1 — ) + 2) 51 =1 (Aar(0)6—1 + D). (11.34)

To obtain suitable Ao > 0 we ought to have the concordance between (11.31)
and (11.33). Hence, the following correlation have to take place

kAr(0) a | kA
m+§—c<a— m (11.35)
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We have changed D in (11.31) onto A thanks (11.24). Hence, (11.35) holds

provided that
kA kAr(0) :
a>?2 + 11.36
V6@ —n) "~ &2 (1-n) (11.36)

It is easy to see that the subradicand expression in (11.34) is positive if the

more strong inequality than (11.36) is true:

kA kAr(0)
a>2 +262(1_n).

6(1—n)
The inequality (11.37) ensures the correctness of (11.31) and (11.35) and
holds thanks the condition (11.11) of the Theorem 11.1. Consequently, for
0 < 7 < 1 and small enough X > 0 there exists a continuous function F(A, T)

(11.37)

and the supremum sup,<,<; F(A,7) covers the integrals

[o o]
sup / exp(A\z) sup cu(z,z,t)de
t€[0,00) JO zER3

uniformly with respect to n > 1 for suffiiently small A > 0. Hence, we have
proved the following lemma.

Lemma 11.4 (main). Let the conditions of Theorem 11.1 hold. Then there

ezist positive constants X and E such that

sup |lenllx S E <00, n2>1.
0<A<LA

11.3 PROOF OF EXISTENCE

Lemma 11.5. Let the conditions of Theorem 11.1 hold. Then the sequence
{ca}22, is uniformly bounded and equicontinuous on each compact in R} x
R?® x [0,T].

The proof is similar to the proof of Lemma 10.3 U
By standard diagonal process we choose from the sequence {cn}5Z; a

subsequence {cn'}_;, which converges on each compact to a continuous
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function ¢ > 0. Such subsequence exists due to Lemma 11.5. As the corollary
of the Lemma 11.4 we have as well

sup ||c||]x £ E.
0<ALA

Lemma 11.4 allows us to pass to limit in the equation (11.1) written in the
integral form. Actually, this lemma ensures that ”tails” of integrals f:: tend
to zero uniformly with respect to n as m — oo. Consequently, the function
c satisfies the integral equation .

c(z, z,t) = co1(x(0), 2(0))+

z(s)
+ /F(w,t) {—;—/0 K(z(s) —y,y)e(z(s) — y, 2(s), s)c(y, z(s), s)dy—

(2 (s)) + divav(a(s), 2(s)] e(z(s), 2(s), s)—
~e(a(s)#(),9) [ " K(2(s),y)el, z(s),s>dy} ds, (11.38)

where I'(z, z,t) is the part s < t of the characteristic going through the point
(z,2,t). In (11.38) we assume that the characteristic begins at the coordinate
axis t = 0. As long as the characteristic begins at the coordinate axis z =0
then the expression (11.38) will be unsufficiently changed. Direct differen-
tiation (11.38) persuades us that the function ¢ has continuous derivatives
along characteristics. Existence of a solution ¢ € Q% (T') has been proved.

11.4 PROOF OF UNIQUENESS

We prove uniqueness by contradiction. Suppose that there are two solu-
tions to the problem (11.1)-(11.3) ¢1,co € Q(T). We make the substitution

ci=(14z)di(z), i=1,2
and denote

’U,(:I),t) = sup Idl(x,z$t)_d2(‘r’z7t)|’ ’l,[)(:l),t) = sup Idl(waz7t)+d2(xaz7t)l'
zERS 2€R3
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From the equation (11.1) written in the integral form, we obtain

1 z(s)
w(zo,t0) < / RCL / (14 2(0, 0, 8))u(z(z0, o, 5) — v, )8 (y, 8)dy+
T .’Bo,to 0

+E(1 + z(20, %0, 5))u(z(20, 0, 5), 5) /000 Py, s)dy+

o]
+k(1 + w(.’l,'o,tg, 3))'¢($(.’1)0,t0, S)a 3)/ u(y, S)dy+
0
+M(1 + z)u(z(zo,to, s), ) }ds, (11.39)
20 €ERY, 0<t <T.

Here I'(zo, o) is an ortogonal projection of the curve I'(z¢, 2, o) on the plane
(z,t); z(z0,t0,s) is a current value of the variable  on the curve I'(zo, o)
which depends on the parameter s < ty. We should point out that I'(z,t) is
an integral curve of the equation

d

d_: = r(z). (11.40)
Lemma 11.6. Let a nonnegative function u(z,t) be a solution to the integral
inequality (11.89). Then there exists such continuous differentiable by both

arguments function f(z,t) that

u(z,t) < f(z,t), t€RL, 0<t<T, (11.41)
f(z,0) = f(0,t) =0 (11.42)

and the function f satisfies the following diﬁefcntial inequality
2 1) 4 7(@) e f(a,) < 3H1+2) [ Flo = w00, 0y+
ot T, T O =5 o Y, y,t)ay
(14 )f(@) [ byt
0

T+ 2)(a, ) / "y, Ody + M+ et
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Proof. Let us denote the right-hand side of the inequality (11.39) as f(zo,%0)
and the contents of the braces {.} under the main integral in (11.39) as
w(z(s),s). Then for derivatives of the function f we obtain

to
af(g;,tO) = w(wo,to)-l'/ wi(z(z0,t0, 8), 8)Ty, (To, b0, 8)ds,  (11.44)
0 0
to
af(wo,to) =/ w;(x(«’co,to,s),s)m;o(xo,to,s)ds_ (11.45)
61130 0

Our nearest goal is to estimate the derivative x} (zo,%0,s). Integration of
the equation (11.40) yields

to — s = Qz0) — Qa(zo, t0,5),

where Q(z) is the primitive function to [r(z)]~!. Hence,

ac(wo,to,s) = Q_I(Q(:Eo) —to + S). (1146) |

Here the function Q! is the inverse function to Q. Utilizing the rule for dif-
ferentiating of the inverse function and taking into account Q'(z) = [r(z)] %,

we obtain
4, (z0,t0,8) = —r(z(z0, o, 5))- (11.47)

Similarly from (11.46) we conclude

/ _ r(2(20,%0,9))
a:zo(wo,to,s) = ’I’(:I?o) . (1148)

By substituting the expressions (11.47) and (11.48) into (11.44), (11.45) and
utilizing the inequality (11.39) and definition of function f, we establish
(11.41). This proves Lemma 11.6 O

Proof of Theorem 11.1. Let us integrate (11.43) in z with weight exp(Az)
and zexp(Az), 0< A< \. Then for

oo

G(A,t)=/0°oexp(/\:1:)f(x,t)dm, \I/(/\,t)z/o exp(Az)(z,t)dx
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we obtain the following correlations with (11.42) taken into account

Gi(\8) < (gk\ll()\, £ + M) G\ 6+ [gk(w + U\ + R+ X+ M} GO\ ),

600 < 55 (SO0 4 20) Gr0 0+

+ Sk )+ RO+ + 0] 600

Thanks (11.42) and Lemma 4.1 we obtain

/000 exp(Az)f(z,t) =0 (11.49)

in the region R defined in Lemma 4.1. Since f(z,t) is continuous, f(z,t) =0
for 0 <t <t, 0<z < oo. Consequently, the integral (11.49) is equal
to zero not only in R but for all 0 < A < X, 0<t <t Applying
the same reasonings to the interval [t',2t'] we conclude that f(z,t) = 0 for
0<t<2t 0<z < oo,and, continuing this process, we establish that
f(z,t) = 0. Utilizing (11.41) completes the proof of the Theorem 11.1 [

Remark 11.2. The above proof of uniqueness in the class Q(T) is valid for
more general coagulation kernels K(z,y) < k(1+z)(1+y).

11.5 REMARKS

In Chapters 10, 11 we follow Dubovskii [21] and Chae and Dubovskii [15].
Influence of the condensation processes on the evolution of a coagulating
system was studied for the space homogeneous case by Srivastava and Pas-
sarelli [67], Gajewski and Zaharias [32,33] and by Dubovskii in [22] (where
the generalized solutions in terms of Borel measures were constructed).

In chapters 10, 11 we use ideas of Arsen’ev [2], Maslova et al [49, 50,
51], Nishida and Imai [57], Ukai and Asano [75, 76] where it was proved for
Boltzmann equation of the kinetic theory of gases, that the problem has a
solution in a sufficiently small neighbourhood of an equilibrium state (with
a Maxwell distribution function). An important feature of the proof is the
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establishment of the exponential contraction of the semigroup generated by
the linearized Boltzmann equation (Arsen’ev, [2] ). Since Smoluchowski’s
equation has the trivial solution = 0 as an equilibrium state, so that the
global results of chapters 10, 11 are obtained for sufficiently small initial data.
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