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PREFACE

This lecture note is an outcome of a series of lectures given by the author
at Seoul National University in September, 1993, as part of the research
developement program of the Global Analysis Research Center.

It is intended to introduce to the readers some of the recent results of vari-
ous spaces of holomorphic functions and Mobius invariant harmonic functions
of several complex variables With special emphasis on the Bloch-Besov func-
tions in the unit ball B. There has been considerable research activity on
this area in the past decade. The main purpose of this lecture note is to
provide to the readers a cohesive treatment of the subject. It is hoped that
this lecture note will not only provide a useful source of information on the
subject, but also motivate the readers for further research of this important
field.

In the first chapter we introduce some basic notation and preliminary re-
sults which will be used throughout this lecture note. In the second chapter
we review standard properties of the reproducing kernel under a rather gen-
eral setting, and consider an important special case of weighted Bergman
kernel and Bergman spaces on the unit ball.

In the third chapter we discuss the basic properties of the Bergman metric
and related Bergman geometry in the view point of analysis. In construct-
ing the Bergman metric we take a non-standard approach by embedding
a domain into an infinite dimensional projective space by a holomorphic
mapping. We also give an inequality between the Bergman metric and the
Carathéodory metric.

The notions of Bloch and Besov spaces of M-harmonic (Mobius invariant

harmonic) functions are being introduced in Chapter 4. In the first section of



Chapter 5, several characterizations of Besov p-spaces with weights are given,
and more interesting properties of such spaces are studied in Section 2. In
section 3, it is demonstrated that there are three values of weights of Besov
spaces for which the corresponding spaces are most interesting. Certain
characteristic properties of such spaces are briefly discussed in Chapter 6.

In Chapter 7, the boundary behavior of M-harmonic fuctions and M-
subharmonic functions are discussed. It is shown that an M-harmonic func-
tion in a Besov p-spaces of weight n has admissible boundary limits almost
everywhere on the boundary of the unit ball when p > 2n. A similar result
is not true when the weight is larger than n. In fact, there is a function in
such a space which has no radial limits on a set of positive measure. On the
other hand, it is shown that the M-harmonic Besov functions with weights
less than n/7, where 7 > 1 is the order of tangencyvof the approach region
with the boundary of the unit ball, have tangential limits of order 7 almost
everywhere on the boundary, and are Lipschitz continuous on the closure of
the ball if the weighs are negative.

Finally, the author would like to thank the faculty members of the Depart-
ment of Mathematics at Seoul National University for their warm hospitality
during his stay. He is particularly indebted to Professors Sang Moon Kim,
Chung-Hyuk Kang, Dong-Pyo Chi, and Jongsik Kim for their effort in invit-
ing him to the GARC.

The a.ﬁthor is deeply saddend to learn the passing of Professor Jongsik
Kim, the Director of Global Analysis Research Center at Seoul National
University. It is a great loss to all of us who knew him personally and a loss

to mathematics in general.



CHAPTER I INTRODUCTION
In this section we introduce some basic notation and preliminary results
which will be used throughout this lecture notes. The notation of this notes
follows closely those in [44], many of the proofs of the preliminary facts can
be found there.
1. Notation.

Throughout these lecture notes, C will denote the set of complex numbers

and C" the cartesian product of n copies of C. For z = (z1,--+,2,) and
w = (wq, - ,wy,) in C*, the inner product is defined by
oo
<z,w>= Z ZjW;
=1

and the norm by |z| = / < 2,2z >. The standard orthonormal basis in C" are
denoted by e;,--- ,en, where e; = (0,---,1,---,0) with 1 at the jth place
for y=1,--- ,n. For a eC™,r > 0, let

B(a,r) = {2¢C"; |z — a] < r}.

For the sake of simplicity, the unit ball B(0,1) will be denoted by either B
or B,. The boundary 0B of B is the unit sphere S = {z : |z] = 1}. When
n = 1, the unit disc in C will be denoted by U = B; and the boundary by
T. For n > 1, the cartesian product U™ of n copies of the disc U is called
the unit polydisc in C®. The torus T" = {z : |z;| = 1,5 = 1,--- ,n} is
called the distinguished boundary of U™, which is a proper subset of the
topological boundary dU™. The polydisc of radii r = (ry,--- ,r,) with the
center a = (a1, -+ ,an) is the set

UM(a,r) ={2eC" : |z; —aj| <rj, j=1,---,n}

Since our discussion of functions of several complex variables requires
multi-index notation, we introduce the following standard conventions. Let
N ={1,2,---} denote the set of natural numbers. A multi-index « is an or-
dered n-tuple : o = (ay,--- ,a,) with ajeN, j=1,---,n. For a multi-index
a and zeC™, set

ol = a1+ + n,
al=ay!- - ay!,

e

2% =7t zim

n
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As in the case of n = 1, for z = (21, -+ ,2,), we write z; = z; +1y;,j =
1,--+,n, and define the differential operators :

0 1/ 0 ; 0 and 0 1/ 0 +i 0

— = | ——i— nd —==|=—+i—].

0z; 2\ Oz;j Oy; 0z; 2 \Oz; Oy;
If no confusion arises we will use the notation 8; = a%j and §; = ai‘,-'

Moreover, for all multi-indices a, we will write

C aa |
g OF ___OFlf

B P P N P

2. Definition and Preliminary Results.

Let 2 be an open set in C", keN, we denote by C¥(§) the space of real or
complex valued functions on  which have continuous derivatives of order a
for al multi-indices o with |a| £ k. C¥(£2) denotes those functions in C*(Q)
with compact suport. Similarly, we define C*°(Q2) and C°(Q).

Definition 2.1. Let © be an open set of C*. A function f :  — C is said
to be holomorphic if f is holomorphic in each variable separately i.e., for
each a €2 and each 7 = 1,--- ,n, the function

A= f(a+ /\e,-)

is holomorphic in an open neighborhood of 0 in C. The set of holomorphic
functions on Q will be denoted by H(Q).

The space H(2) is an algebra with respect to pointwise addition and prod-
uct, and also a Frechet space with the topology of uniform convergence on
Q.

It is a classical result, due to Hartogs [28], that if f is holomorphic in each
variable separately as defined above, then f is continuous in .

As a result, we obtain the following Cauchy integral formula [38].

Theorem 2.1 (The Cauchy Integral Formula for Polydiscs). If f is
a holomorphic function in an open set Q C C", for each a €2 and n-tuple r

of positive numbers with U(a,r) C Q, we have
(2.1)

- f(w) wy -
f(Z) - /|w1-al =r /[wn—an|="n (wl —_ 21). . ‘(wn - zn)d 1 dwn.
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for all zeU™(a,r).

Among many consequences of the Cauchy integral formula, we list several
properties that are pertinent here :

(i) If f e H (), where Q is an open set in C*, for every a €S} f has a power
series expansion

(2.2a) f(z)= Z aq(z —a)®

which converges absolutely and uniformly in every polydisc centered at a and
whose closure is contained in S, where the sum runs over all multi-indices a,
and ay is given by

(2.2b) gL O 0°f(a)

a9z 9z, T Al

(ii) The identity theorem holds : Let 2 be a domain (connected open set)
and f e H(Q). If f(z) = 0 in some non-empty open subset of 1, then f = 0
on (2.

(iii) The maximum modulus principle holds : If f € H(2),  is connected
and |f| has a local maximum in Q, then f is constant.

(iv) For each compact subset K of Q, there exists a constant C which
depends only on K, a such that for all f e H(2)

(2.3) sup [0%f(z)| = C'sup | f(2)].
zeK ze K

Consequently, if f,e H(Q) and f, — f uniformly on compact subsets of {2,
then 0% f, — 0% f uniformly on compact subsets of ) for all multiindices a.
(v) Suppose f eC*(). Then f e H(Q) if and only if f satisfies the Cauchy-
Riemann equations : 5Jf =0forj=1,---,n.
(vi) If f eC*(2), then the (real) gradient of f in complex form is given by

0 of 0 0 A

If f is holomorphic in Q, it reduces to

(2.40) VI =0f() = (g o).
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For a function feC*°(B) and m = 1,2,---, we define

(2.4¢) _
o f(2) = (0 f(2jaj=m> 0™ F(2) = (3°£(2)) ajem

d"f(z) = (3"5ﬁf(z))|a;+|ﬂ|=m ’

where 0% f(z) = w, 0°f(z) = %z—), and « and 3 are multiindicies.

Further we deﬁnaeza o
(2.44d)
m _ alelf(z) Am _ dlelf(2)
|0 f(z)|—loﬁ§mlw , o f(z)|—|(§=:m oz, |’
m _ o™ f(z)
Id f(Z)| - Z azaagﬂ N
la|+|8|=m

(vii) If w = ¢(z) = (p1(2), -+ ,0k(z)) is a C' mapping of a domain
Q; C C" into a domain Q, C C*, and f € C*(Qy), then for g(z) = f(p(2)),
the following complex forms of the chain rule hold :

89 <~ [ Of dw; Of aw,-)
(2.52) Bz ; <3w,~ 3z; | Bw; oz

k _
(2.5) 99 (af dwi | of 3w,-).
=1

0z;  — \Ow; 9z; ' 0Ow; 9z;
Definition 2.2. Let Q be an open set in C*. A mapping

¢ =(p1,""" 7‘Pk):Q_’Ck

is called holomorphic if each component function w; = ¢;(z) (i = 1,--- , k)
is holomorphic in Q. Namely, the mapping ¢eC'(f) is holomorphic if and
only if it satisfies :

Op;

ek =1, kii=1.+-.1n).
82—] O (z ? 9 ’] ) 7n)

The following theorem is an immediate consequence of the chain rules

(2.5a) and (2.5b).
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Theorem 2.2. Let Q C C" and D C C* be open sets. The mapping
e=(p1," k) : Q=D
is holomorphic if and only if for every f eH(D), f o peH(). Moreover,
V(foe)(z) =¢'(2)  V£(2),

where ¢'(z) = %‘f(z) = (0pi/0z;) (i = 1,---k;j = 1,---,n) denotes the
k x n (holomorphic) Jacobian matrix of .

Definition 2.3. The mapping ¢ : 2 — D is said to be non-singular at 2°¢Q
if the rank of ¢' is maximal at 2°, that is,

ranky’(2°) = min(n, k).
In the case where n = k, the (holomorphic) Jacobian determinant of ¢ will

be denoted by
(J,)(2) = det(2).

The set of all holomorphic mappings ¢ : @ — D will be denoted by
Hol(Q, D).

Theorem 2.3. Let Q C C" and D C C* be open sets. If pe Hol (Q, D) and
e Hol (D,C*), then v o e Hol (Q,C%) and

(¥ op)(2) =¥ (w) - ¢'(2), w=yp(2)
Ifn=k=4¥, then
J(% 0 ¢)(2) = (J¥)(w)(Jp)(2).
That e Hol (2, D) is bijective is enough to guarantee that the inverse

mapping ¢! is also holomorphic and that J,(z) # 0.

3. Automorphism Groups

Definition 3.1. Let Q and D be domains in C*. A mapping
p:Q—>D

is said to be biholomorphic if it is bijective, and both ¢ and ¢~! are holo-
morphic.
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Definition 3.2. Let Q be a domain in C". The group of all biholomorphic
mappings of () onto itself under composition is called the (holomorphic)
automorphism group of © and denoted by Aut (Q).

A domain ) is homogeneous if the group Aut () is transitive, i.e., any
two points in {2 can be mapped each other by a member of Aut(Q).

Theorem 3.1 (Cartan’s’ Theorem I) [38]. Let  be a bounded domain
in C" and let z2°eQ). If pe Hol (2,Q) such that

©(z°) =2° and ¢'(2°) = I = identity map,

then ¢(z) = z for all zeQ).
This theorem is often called Cartan’s uniqueness theorem which is useful
in computing automorphism groups of various circular domains.

Definition 3.3. A domain @ C C" is called circular about 0 e if e*®zeQ
whenever ze) and feR, complete circular if AzeQ whenever A\eC, [A| < 1,
and Reinhardt circular if (e'%z;,--- €' 2,)eQ whenever zeQ) and 6;eR for
i=1,--,n

Theorem 3.2 (Cartan’s Theorem II) [38]. Let Q and D be bounded
circular domains in C" that contains the origin 0. Every biholomorphic
mapping ¢ : 8 — D such that ¢(0) = 0 reduces to a linear map in C".

In the case of the unit disc U C C, the group Aut (U) is well-known. It
consists of the maps
ig A — 2

a = ’ U,
wa(z) =e€ T A€
where a €U and 0eR. These mappings are known as the Moebius transfor-
mations of U. It is easily cheked that the mapping ¢, satisfies :

©a(0) = a, ‘Pa(a) =0, and 99;1 = Ya-

We now describe the group Aut B whenn > 1. Let a € B and let P, be
the orthogonal projection of C* onto the subspace generated by a, which is
given by

_<za>

(3.1a) P,z =
<a,a>

a, ifa#0, and Pp,=0, ifa=0.
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Let Qo = I — P,. Define ¢, on B by

_ 4= Puz—1—1af’Quz
(3.1b) a(2) = T~ .

Notice that ¢o(z) = —z. It is not hard to see that ¢, is actually an auto-
morphism of B, i.e., p,e Aut B.

The automorphisms ¢, have several important properties that will be
used repeatedly in this lecture. The following theorem contains some of
those properties :

Theorem 3.3 [44]. Let a € B. Then

(1) ©a(0) = a,pa(a) =0, and pa(pa(2)) = =
(il) ¢'(0) = =(1 = [a*)Pa = V1 - |a*Qa

(iii) For all z, weB, we have

A—]aP)A-<zw>)
1- <z,a>)(1- < a,w >)’

(3.2a) 1— < pa(2), pa(w) >= (

2 _ (1—1al)1 = 2)
(32b) 1- I‘Pa(z)l - ll_ <za> |2 .

An important consequence of (i) of Theorem 3.3 is that the map @ 0 @,
carries a to b. Therefore, Aut (B) acts transitively on B. It is also important
to notice that the map : a — ¢, is continuous from B into Aut B. Hence,
if we identify ¢, with a, then ¢, — ¢, in Aut B if and only if a,, — a in
B. Finally, if e Aut B and a = ¢~1(0), then there exists a unique UeU,,
the group of unitary transformations of C", such that ¢ = Uyp,. This result
follows from the fact that 1 o ¢, is an automorphism of B which fixes 0, and
thus by Cartan’s theorem is linear, and hence must be unitary.

Theorem 3.4. Let 1 be a holomorphic mapping from an open set § into
an open set D in C". Then the determinant Jgi of the real Jacobian matrix
of v satisfies the following identity :

(3.3a) Trip(2) = |Jih(2)|? = |det 4'(2)[2.
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Moreover, if in particular e Aut (B) and a = ¢~1(0), then

1 |a? ]"“ _ [1— |¢(z>t2r+{

1— < z,a> |2 1—|z|?

(33b) ()P = [

4. Integral Formulas on B

Let v be the Lebesque measure in C” normalized by v(B) = 1. If V
denotes the usual euclidean volume measure in C", then c,dv = dV, where
cn = V(B,) = 7" /nl. Let o be the rotation invariant surface measure on S
normalized by o(S) = 1. The following integration formulas, the proofs of
which may be found in [44], will be used throughout this lecture.

Theorem 4.1.

(4.1a) fdv =2n /0 " pane /5 F(r¢)da(¢)dr

Cn

(4.1b) [S fdo = (1/27) /S /0 " f(e%¢)d8da(¢)
w10 [ram=am [ [T e ecmanc)

(4.14) /S fdo = /U FURU.

Here (' = ((1, ,(n—1)€C™ ! and dU denotes the Haar measure on the
group U = U(n) of the unitary transformations of C".

A linear transformation Ueld if and only if < Uz,Uw >=< z,w > for all

z,weS). The group U is a compact subgroup of 0(n), the orthogonal group
of C".

~ In addition to the above integral formulas, the following formulas hold :
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Theorem 4.2 [44]. If f is a function of a single variable, then for n > 1,
and (eS, we have

(4.2) /Sf(< ¢,n>)do(¢) = ?—1—;—1 /U(l — )L f(re®)rdrds.

If a, B are multi-indices, then the following hold :

- —1)la! .

‘. “do(()= N .
@) [0 = Bk ita=p, =0, iazp
la!
4.3b /z“zﬁdvz =% fa=8, =0, ifap.
@) [ v = Lo . #8

If X denotes the measure defined on B by
(4.4a) d\(2) = (1 = |z)») ™" du(2),

then
(4.4) [ fir= [ (fou@an:)

for every feL'(B,\) and every e Aut B. The measure ) is invariant under
Aut B.

For a € B and r€(0,1), we define : E(a,r) = ¢q(rB), rB = B(0,r). Then
zeE(a,r) if and only if |p,.(2)| < r. A little manupulation shows that E(a,r)
1s given by an ellipsoid of the form :

— a2 2
(4.5a) E(a,r) = {zeB : lep2 d + Q2] < 7‘2} )
p

where P = P,, @ = Q,, and

(4.5b) o (1-7r%)a 1— |a|?

1-r2ar’ P T 1-r2q

This means that the intersection of E(a, r) with the complex line [a] generated
by a is a disc with center ¢ and radius rp, whereas it’s intersection with the
(n —1) dimensional subspace perpendicular to [a] is a ball of radius r\/p. An
easy computation shows that

r2n

(1-r2)n’
and that it is independent of a. It is also clear that the ratio between
v(E(a,r)) and v(rB) is given by p™t!. Therefore, we obtain

(4.5¢) A(E(a,r)) =

T V(E(a,f‘)) — n+1
(4.54) (Trpe)0) = lim LGt = (1 —japtys,
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Chapter II Reproducing Kernel and Weighted Bergman Spaces

In this chapter we discuss some elementary but basic properties of repro-
ducing kernel under a rather general setting, and then consider an important
special case of weighted Bergman kernel and Bergman spaces on the open
unit ball B more in details. See also [11], [6], [32].

1. Reproducing Kernel
Let H be a Hilbert space of functions on some set © such that the point
evaluations f — f(z) are continuous linear functional on H for all zeQ. Then,
by the Riesz representation theorem, for each zef), there exists a unique
function K,eH such that
(1.1a) f(z) =(f,K,), feH and =zeQ.

We define the reproducing kernel as the function K (z,w) = K,(2) of z and
wel). Clearly,

(1.1b) K(z,w) = K,(z) = (Ky, K,).
Consequently,

(1.1¢) K(w,z) = K(z,w)

(1.1d) K(z,2)=||K.||* 20

(1.1e) |K (z,w)|* £ K(z,2)K(w,w)

(1.16) If@ S NN = K(z,2)2]| £l

(1.1g) K(z,z) =0 if and only if f(z) = 0 for every feH.

Furthermore, we have
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Proposition 1.1. Suppose that {4} is an orthonormal basis for the Hilbert
space H. Then for every compact subset K of ,

(11h) K(z,w) = Ku(2) = Y ¢a(z)pal®)

a=1
converges absolutely and uniformly on K x K. In particular, K(z,w) is
independent of the choice of the orthonormal basis {4 }.

Proof. By the Riesz-Fisher theorem, combined with (1.1f), we have

o 1/2
sup { (Z lcpo,(z)|2) : zeK}

=sup{ Zaagoo,(z) : zeK, Z laa|? = 1}

a=1 a=1

=sup{|f(2)] : zeK, [|fll2 =1}
=sup{K(z,2)'/?: zeK} < C(K)

for some constant C(K) > 0 which depends only on K. The convergence of
the series in (1.1h) is uniform on K x K, since

) o0 1/2 , 1/2
Zwa(z)soa('w)'lg(leoa(z)P) (le(w)V) :

a=1

For each feH, the series

f= Z(fv Soa)()oa
a=1

converges in the Hilbert space and thus it converges uniformly on compact
subsets of ) by (1.1f). In particular, if ze2

f(2) =) (frpa)palz) = (f, Z%(ﬂ%) :

Since Y oo va(2)pa€eH, the uniqueness of the Riesz representation shows
that

K(w,2) = K.(w) =Y pa(2)pa(w)
a=1

from which (1.1h) follows by (1.1c).
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Proposition 1.2. If every function in H is continuous, then the following
are equivalent :
(i) (z,w) — K(z,w) is continuous;
(ii) z — K(z,z) is continuous;
(iii) z — K, is a continuous mapping 2 into H.

Proof. The implication (i) = (ii) is trivial. To show (ii) = (ii1) fix z. If w — 2
then K(w,w) — K(z,z) by (ii) and K(w,z) = K,(w) — K,(z) = K(z,2)
because K eH. Hence, from (1.1b)

(1.2) 1Ky — K.||? = (Ku, Ky) + (K., K,) — 2Re (K, K,)
= K(w,w) + K(z,z) — 2Re K(w,2) — 0,

as z — w. The implication (iii) = (i) is immediate again by (1.1b). a

Let 4 be a measure on Q and let L%(u) = L?(f, 1) denote the space of
square integrable measurable functions on 2 with respect to the measure pu.
Suppose that H is a closed subspace of L2(u) such that the point evaluations
are continuous on H. Note that the functions in H thus are well-defined
everywhere, although functions in L?(u) are defined only almost everwhere
on .

Let P denote the orthogonal projection L?(u) — H. Then (1.1c) implies
that for any feL?(u) and zeQ, ’

(13)  (Pf)=) = (Pf,K.) = (f, PK.) = (f, K.)
_ / F ) Ko@) du(w) = / K (2, w) f(w)du(w).
Q Q

2. Change of Gauge and Change of Variables.

Definition 2.1. Let ¢ be a non-zero measurable function on Q. Then the
map

(2.1) Foof, w—le|™u

maps L?(p) isometrically onto ¢L%(u) = L?(|p|~%x), and H onto the sub-
space pH = {f : 7' f € H} of L%(||~2p). The map given by (2.1) is called
a change of gauge.



BESOV FUNCTIONS AND THEIR BOUNDARY BEHAVIOR 13

Since {¢@q}, where {¢,} is an orthonormal basis of ¢ H, the reproducing
kernel for the space 9 H is given by

(2.2) (2o @)K (2,w).
Consequently, the measure
dA(2) = K (2, 2)du(=)
is invariant under all changes of gauge. It follows from the fact that a change

of gauge transforms by du(z) — |p(2)|~2du(2).

Let ¢ be a bijection of Q onto ©'. Then under the change of variables v,
a measure y on §) maps onto the measure uo1~! on Q' and the space H is
mapped isometrically onto the space

Hoy™ C LA ()oy™! = L, pop™).
The reproducing kernel for H o~ is clearly
(2.3) Ky~ 1(2),% Y (w)), for z,wef.

3. Basic Hilbert Space.

In the remainder of this lecture note, we assume the following :

(C.0): Qisadomainin C" and p is an absolutely continuous measure on
 which has continuous strictly positive Radon-Nikodym derivative du/dv
with respect to the Lebesgue measure v.

Our basic Hilbert space will be the space of square integrable holomorphic
functions on 2. Namely,

(B18) A = )N E@) = {feH®): [ 7E)Pduz) < oo

with the inner product

(3.1b)  (fe)= /Q F(2)a ) du(z),

and the norm ||f|| = /(f, f). It is an easy consequence of the mean value
property of holomorphic functions that A2(u) is a closed subspace of the
Hilbert space L?(u) and that point evaluations are continuous. In fact, the
embedding A?(p) — L?(u) is continuous.
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Definition 3.1. The reproducing kernel for the space A?(u) with the Lebesgue
measure 4 = v is known as the Bergman kernel and the space A%(v) is the
~Bergman space on Q.

From now on we will only consider analytic changes of gauge and analytic
changes of variables. Note that if ¢ is holomorphic and nonzero in Q, then
@A?*(p) = A%(|¢|~2p). The Bergman kernel satisfies the following :

Proposition 3.2. K(z,w) is continuous on 2 x Q, holomorphic in z and

anti-holomorphic in w. Consequently, the map z — K, is a continuous map
of  into A?(u).

Proof : K(z,w) = K,(z) is holomorphic in z because K,eA?(u). By
(1.1c), K(z,w) is anti-holomorphic in w. Hence K(z,w) is holomorphic in
each variable on Q x ). By Hartog’s theorem, K(z,w) is holomorphic and,
in particular, continuous in Q x .

Proposition 3.3. If J(z,w) is holomorphic in z and anit-holomorphic in w
on ) x Q and that J(z,z) = K(z,z) for zeQ), then J(z,w) = K(z,w) for all

z, weld.

Proof. We may assume that 0eQ2. The function f(z,w) = J(z,@) — K(z,)
is holomorphic, and f(z,Z) = 0 in a neighborhood of 0. Hence, f = 0 by
identity theorem.

Let

(3.2) G(p) = {geAut(Q) : pog™" = |p[’n, for some peH(Q)}.

Note that G(u) is in general strictly smaller than Aut(f2), while G(u) =
Aut(2) for the Bergman space with p = Lebesgue measure v on © and ¢
being the Jacobian of ¢~1!.

Proposition 3.4. Let geG(p) and let e H(Q) be such that pog™! = |o|?p.
Then the following transformation formula for the kernel function K holds :

(3.3) K(g7(2), 974 (w)) = o(2)Yo(w)  K(z,w), zweQ

Proof. 1t follows from the fact that the change of gauge induced by ¢! and
the change of variables induced by g map the space A%(u) onto the same
space, and hence they transform K into the same kernel.

Corollary 3.5. (a) The measure d\(z) = K(z,z)du(z) is invariant for all
geG(p). (b) |K(z,w)|*/K(z,2)K(w,w) is a G(x) - invariant function of
(z,w)eQ x Q.
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Definition 3.2. G(u) is called transitive if for every z,wef), there exists
g € G(u) with g(z) = w.

Lemma 3.6. If G(p) is transitive and A?(u) # {0}, then K(z,2) # 0 for all
zefd.

Proof. If not, then by Proposition 3.4, K(z,z) = 0 for all ze2, which contra-
dicts (1.1f).

4. Weighted Bergman Spaces on the Ball.

In this section we consider the case where our domain €2 is given by the
open unit ball B in C" and the measure u is the weighted Lebesgue measure

Kq -

(4.12) by = cyl1 - [22)1d(2),

where ¢ > —1 is fixed, and ¢, is a normalization constant such that p,(B) =
1. It is given by

_ I(n4+q+1)  (n+gq
(4.1b) Cq‘r(n+1)1“(q+1)_< n )

Then
42 B = 43B) = {1eH(B): [ |1Pduy < oo
is the (weighted) Bergman space in the unit ball B.

We remark that if ¢ = 0, then duo = dv and A%(B) = A%(B) is the usual
Bergman space on B. If ¢ = —1, we define formally du—; by the surface
measure do on S, i.e., du_y is defined as a measure on B by

dp_y = ql_i)rr_ll dpg = do

in the weak* sense. This can be verified easily by a calculation based on
polar coordinates. In particular, if f is a continuous function on B, then

(4.3) /fdp_l = lim /fduqz/fda.
B —==1Jp 5
For f, geAg(B), we define the inner product by

<fio>o= [ fadu,
and the norm by ||f|laz = v/ < f, f >.
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Theorem 4.1. For all feL;(B)N H(B) and ¢ 2 -1,

(4.40) 5) = [ Kol w)w)dig(w),
where

(4.4b) Ky(z,w) = (1— < z,w >)~(e¥n+1),
Moreover,

(4.40) £2) = [ Byl w)f()dig(e),
where

(4.4d) B,(z,w) = Ka&wF

I{q(z )y % ) '
Proof. If feH(B), by the mean value theorem

(4.50) £(0) = /B f(rO)do(¢), 0<r<1.

If fe (L} N H) (B), then by integrating both sides of (4.5a) with respect to
the measure 2n(1 — r2)%r2"=1dr over [0, 1], we have

) .
@sb) o [ [ -y dndr = £0);
0o Js
Namely,
(4.50) £0) = [ £:)dua().
B
Replacing f by f o ¢, we find

(4.5d) f(e) = /B Flip- ()]dpg(w).
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By the change of variables formula,
(4.5¢) f(e) = /B £ () dpglip(w)]
—cy [ )1~ o)) edvlps(w)

From (4.5¢) together with (3.2b) and (3.3b) of Ch.1, and the fact that

(4.51) dv(s(w)) = | Tiox(w)Pd(w),
we find fhat
(45g)  f(z) = (1— |o)rtnHt fw) dptg ).

B Il_ <w,z> |2(q+n+1)

Replacing f(w) by f(w)[1— < w,z >]?t"*! in (4.5g), we obtain (4.4a). To
prove (4.4c), fix zeB and put

(4.5h) g(w) = K((‘: :)) f(w), weB.

Then ge (L; NH)(B) and g(z) = f(z). Hence,

£(2) = g(2) = /B Ko wig(wdug(w) = [ Bylz,0)f(w)dpg(w). O

From Theorem 4.1, we have the following corollary which in turn implies
the completeness of the Hilbert space Ag(B).

Corollary 4.2. Let feAZ(B). For each compact subset K of B, there exists
a constant C(K) > 0 such that

(4.6) ) S CUEfllag, for all zeK.
Proof. From Theorem 4.1,

(4.7a) F)P < /B 1Ky (2, 0) P () Pdptg ().
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But, |K (z,w)]* £ (1 — |z||w|)~2a+m+D)  Since K is compact in B, there
exists an re(0,1) such that |z| < r for all zeK. Therefore,

(4.7b) |Ky(z,w)]? £ (1 —r)"2at7+D)  for weB.

The corollary now follows from (4.7a) and (4.7b). O

5. Weighted Bergman Kernel.

As a consequence of Corollary 4.2, convergence in norm implies uniform
convergence on compact subsets of B, from which the completeness of Hilbert
space AZ(B) follows. Furthermore, point evaluation functional e (f) = f(z)
of f eAg(B ) is continuous at each fixed point zeB. Thus by the Riesz repre-
sentation theorem there exists the (weighted). Bergman kernel : K :€A2(B)
such that

(5.1) f(z) =< f,K,,, >= /l;f(w)K z(w)dpg(w), zeB.

We often write the Bergman kernel by K,(w,2) = K, ,(w). The Bergman
kernel Ky(z, w) clearly satisfies all the properties (1.1a) through (1.1h). Thus,
Ky(z,w) = Ky(w, z). Consequently, for each fixed weB, z — K (z,w) is in
A?*(pq). Furthermore, (5.1) implies

(5.2) Ky (z,2) = /B 1K (2, w)|2dpg(w),
and by the Cauchy-Schwarz inequality
(5.3) Ky (2, )] S Koy(z,2) K (10, 0).

From (1.1d) it follows that K4(z,2) 2 0. Since B is bounded, A%(B) satisfies
the hypothesis of Lemma 3.6 and hence K,(z,2) > 0 for all zeB.

Since Ag(B ) is separable Hilbert space, it contains a countable complete
orthonormal system {¢;} so that every f eAg(B) has a Fourier series expan-
sion :

oo
=Y ajp;, aj=<fp;>,
i=1
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where the convergence is in the norm of A2(B) But as a consequence of
Proposition 1.1 and Corollary 4.2, we also have

o

(5.4) f(2) =" ajei(2),

i=1

where the series converges absolutely in B, and uniformly on compact subsets
of B. In particular, for the Bergman kernel K (z,w), we have

Proposition 5.1. Let {¢;} be a countable complete orthonormal system
for A2(B). Then

(53) Ky(5w) = Y pi(=)es@),

where the series converges absolutely and uniformly on compact subsets of
B x B.

We now compute the (weighted) Bergman kernel of the unit ball B. It
is well-known [30] that a complete Reinhardt circular domain R C C™ with
center OeR admits a complete orthonormal system given by monomials of the
form ¢4(2z) = v42%. Hence, the reproducing kernel of any such domain is
given by

(5.6a) K, (z,w) = Z Z

In particular, if R = B, then

(5.6b) e asgu = [ 11~ ) edo(2)
_ all(g+n+1)
T(la]+g+n+1)
Therefore,
(5.6¢)

Ky (z,w) = Z <z,w>T(k+q+n+1)/T(g+n+1)
k=0

=(1- < z,w >)"17"7 L
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In particular, if ¢ = 0, we obtain the usual Bergman kernel of B:

(5.6d) K(z,w) = Ko(z,w) = (1- < z,w >)" "1,
and if ¢ = -1,
(5.6¢) S(z,w)=K_41(z,w)=(1- < z,w >)™"

is the Cauchy-Szego kernel of B.
For Q) = B, every peAut(§2) = Aut(B) acts on p, as a holomorphic gauge
transformation, i.e., G(iq) = Aut(B) = PSU(n,1). The group Aut(B) is

described in §1.3. The corresponding invariant measure is given by

57) IAg(2) = Ky (2, 2)dg(2)
= ¢g(1 = [2")717" (1 = |2|*)%du(2)
= cg(1)2)*) " tdu(2)
= cgdA(2).

6. Weighted Bergman p-spaces.

For 0 < p £ oo we denote by Ly the LP-space with respect to the proba-
bility measure du, for ¢ 2 —1, and the corresponding norm by

1/p
(6.1) 11l = { / IfI”duq} -

The term “norm ”

is used loosely here, since || - ||, does not satisfy the
triangle inequality for 0 < p < 1, but in this case p(f,g) = ||f —g|[5 , defines
a metric in L? which turns it into a Frechet space [8].

The weighted Bergman p-space is defined by AJ(B) = H(B) N L#(B).
Namely, A?(B) is the closed subspace of L?(B) consisting of holomorphic
functions on B. In particular, when ¢ = —1, we obtain the Hardy p-class
H?(B) = A? |(B), which we identify as subspace of L” ,(B) = LP(0B) [8],
and when ¢ = 0, we obtain the usual Bergman p-space A?(B).
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Proposition 6.1. For ¢ 2 —1, the following transformation formulas hold
under pq,eAut(B).

(628)  Ky(zw) = Ky(pa(2), ¢a(0)) [T0a(2)Tpa(w)]

Ky(z,w)Kq(a,a)

(62b) KQ(()DG(Z)ﬂoa(w)) = Kq(z,a)Kq(a, w)
(6.2¢) Bylpu(a)rpalw) = FH20.
In particular,
1

(6.2d) By(#4(0), pa(w)) = Bola,w)’
(6.2e) By(pa(2), pa(w)) = By(z,w)Be(¢a(0), pa(w)),
(6.20) By(a(2),10) = By(z, 9a(1)) By(9a(0),w)
(6.2¢) dpiq (a(2)) = T pa(2)| T dpsy(2)

_ Ko,

K ,(a,a) dpg(2).

Proof. Replacing g in (3.3) by ¢, we obtain
(6.3a) Ky(pa(2), pa(w)) = o(pa(2)) Kq(2, w)p(pa(w)).

After some manupulations, using (1.3.2b) and (1.3.2a), we find
(6.3b)

Ko(pa(2), pa(w)) = Ko(2,0)

— Kq(z’ w)KQ(a’ a’)
Ky(z,2)K4(a,w)’

(1- < z,a >)(1= < a,w >)] !

1 - |al?
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which proves (6.2b). (6.2¢), (6.2d) and (6.2e) are immediate consequences of
(6.2b) and (4.4d), the definition of B,. Replacing w by ¢,(w) in (6.2¢) we
get (6.2f). Comparing (6.3a) and (6.3b), we obtain

— < z,a>]0"T Kq(a,a
(6.30 o(al2)) = [%F] = ——ﬁq‘é,;))
and hence, from (1.3.3b).
(6.34) [oa(e))F = pa(a)| 2558 = Lol

(6.2g) follows from (3.2), together with (6.3c) and (6.3d). Namely,

(6.3¢) dpg(pa(2)) = lp(pa(2))| 2dpg(z)
2 g+n+1
[k
[|1— <z,a>|?

_ [Ey(a,2)|”
= mdﬂq(z)

2(q4n+1)
= |Jpa(z)| " mF dpy(z).

(6.2a) follows from (6.3a) and (6.3d). O
Theorem 6.2 [8]. For 0 < p £ 00, ¢ 2 —1, and peAut(B), the mapping :

dpa(2)

T, : LE(B) — LI(B),

given by T,f = (f o ¢)[Je(2)] ycay , is a linear isometry of L} onto L}
(and also A} onto A?) and involutive.

Proof. The theorem is trivial for p = co. For 0 < p < oo, we use (6.2g) with
w = ¢(z), zeB :

ITL I, = /B ()P o2) S g (2)
- /B () Pdug(w) = IFIE,.

The operator T,, is surjective, since if geA} and f = T,g, then feL?. That
T, is an involution follows from pop =1. O
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Definition 6.1. Let @ C C" be a domain. a C? function f : § — R is
harmonic if it satisfies the Laplace equation A f = 0, where

" [ 0? 0? t 92
(6.4) AZZ;(aT%“Lé‘;?):“;W

is the usual Laplace operator in R?" = C".

It is well-known that a function feC({2) is harmonic if and only if it satisfies
the mean value property, that is, for every zef and r > 0 with B(z,r) CC ,
it holds that

(6.52) f(2) = /5 £z +r¢)do(0).

Definition 6.2. A function f : Q@ — [—00,00),f # —oo is said to be
subharmonic if it is upper semicontinuous in  and satisfies the sub-mean
value propoperty: for every zeQ2 and r > 0 with B(z,r) CC £, it holds that

(6.5b) f(2) € /S £z +r¢)do(C).

It is clear that f is harmonic in Q if and only if both £ f are subharmonic in

Q.

Definition 6.3. An upper semicontinuous function

f:Q_)[_OO7OO), f%—OO

is plurisubharmonic if for every zeQ2 and weC”, the function A — f(z+Aw) is
subharmonic in a neighborhood of 0 in C. A continuous function f: Q — R
is pluriharmonic if the above function is harmonic in a neighborhood of 0 in
C for every zeQ? and weC".

A C? function f is plurisubharmonic in € if and only if it satisfies :

n 2 B
(6.6) > gz,fé,;) £i€; 20

for all ze€2 and £eC™, and pluriharmonic in  if and only if the inequality in
(6.6) is replaced by the equality.
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By h(R2), sh(Q2), psh(2) C sh(£2) and ph(Q2), we denote the spaces of har-
monic functions, subharmonic functions, plurisubharmonic functions and
pluriharmonic functions on 2, respectively. Evidently,

(6.7)  h(Q) C sh(Q), psh(f) C sh()and ph(R) = psh(Q) N h(R).

For 2 = B and ¢ > —1, we define (sh); =shnN L;, while for ¢ = —1 we let
(sh)L, denote the space of all uesh such that

(6.8) sup /S lu(r¢)|do(¢) < co.

0<r<1
In this case, ue(sh)L, if and only if there exists a finite Borel measure @ on
S such that its Poisson integral P[d] is the least harmonic majorant of u on
B. Similarly we let
(6.9) hy=h N (sh),, (psh); = psh N (sh);, and (ph); = phN (sh)g-

Theorem 6.3 [8]. Let u be a plurisubharmonic function in Ly(B) for q 2
—1. Then for any zeB,

(6.10) u(2) S [ u(w)By(z,w)di(w).

Equality holds at some point zeB if and only if u is pluriharmonic in B.
Here, for ¢ = —1, udp, in the above integral has to be replaced by a finite
Borel measure di on S = 0B.

Proof. Let 1 be a subharmonic function in B. Then by the sub-mean value
property we have

(6.11a) $(0) < /S $(r¢)do(¢), 0<r<1.

In particular, if z/;eL;(B), g > —1, then by integrating both sides over the
interval [0, 1] with respect to the measure 2nr2"~1(1 — 72)9dr we have

(6.11b) $(0) < /B $(=)dpg(2).
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This inequality is also true for ¢ = —1, provided that Ydy, is replaced by

dip = lim,_,, P(r{)dpuy(r¢). It is also clear that the equality in (6.11a) holds
if and only if ye(sh);(B) is harmonic in B. Since uoweLl(B) is subharmonic,

(6.11c) u(z) =uoy,(0) S /’;u 0 p,(w)dpu,(w).

By the change of variables formula and (6.2g),

©12) [ wlesw)dag(o) = [ uwduglow)

= [ ww) Kzl
ADS st 20

By passing to the limit as ¢ — —1%, (6.12) remains valid for ¢ = —1, provided
that udp, is replaced by di. Combining (6.11c) and (6.12) yields (6.10). If
ueL}(B) is pluriharmonic, then (6.10) must also hold with u replaced by —u
so that we have equality in (6.11c). Conversely, if equality holds for some
zeB, then it follows from (6.11c) that for some ¢,eAut(B)

(6.13) u(ip:(0)) = /B (i (1)) djtg ()

and hence u 0 ¢, L}(B) is harmonic. Since u is plurisubharmonic, u o ¢, is
also plurisubharmonic. So, u 0 ¢, and hence u = (u 0 ¢.) 0 p;'eL}(B) is
pluriharmonic in B. O

Corollary 6.4. Let 0 < p < 00, ¢ = —1 and let feAP(B). Then
(i) For any zeB,

(6.14) F)IP < /B |F(w)? By (2, w)dpy (w)

with equality at some point zeB if and only if f is constant on B. Here
for ¢ = —1, the above integral is regarded as the Poisson integral of the
boundary value function f* of feAl = H?.

(i) For any zeB,

(6.15) £ S {Kq(2,2)} 7711 fllp.g
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with equality at some zeB if and only if f(w) = AM(1— < w, 2 >)~2(atn+1)/p
for some constant \eC and every zeB.

Proof. Since |f|PeL] is plurisubharmonic in B, inequality in (i) follows di-
rectly from Theorem 6.3. Moreover, by the same theorem, equality in (i)
holds for some zeB if and only if |f|P is also pluriharmonic on B. Since
feH(B), this is equivalent to f being a constant on B, and (i) follows. To
prove (ii) we fix zeB and define a function g on B by g(w) = f(w)(1- <
w,z >)"2a+n+1)/P - Statement (ii) now follows from (i) with g in place of
f. O

Corollary 6.5 [56]. Let a eB. The following extremal problem
(6.16a) sup {£(a): fel, NIfllg=1, f(a)> 0}

has a unique solution for pe(0,0) and ¢ 2 —1, given by

Kq_wz]”",

(6.16b) F(z) = (To1)(2) = [Kq(a, a)

Proof. The equality in (6.14) holds at OeB if and only if f is constant and
positive. Hence f = 1 is the unique extremal function at a = 0. For arbitrary
a eB, Theorem 6.2 implies :

{fng N fllpg =1, fa)> 0} = {féA’; T fllpg =1, Ty, f(0) > 0} .

Therefore, feAl is extremal for point evaluation at a eB if and only if T, f
is extremal for point evaluation at 0. By the above argument, there exists
a unique extremal function F' that satisfies (T,,, F')(z) = 1, and thus by the
involutive property of T,,, we have

2(g4nt1 z,a)]Y/?
F&) = T, (D) = W) 5658 = | 2] .
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Chapter III The Bergman Geometry

In this chapter we discuss the basic properties of the Bergman metric on
a domain 2 in C" and related complex geometry in the analysis view point.
In constructing the Bergman metric, we take a non-standard approach by
embedding 2 into an infinite dimensional projective space by a holomorphic
mapping. We also give an inequality between the Bergman metric and the
Caratheodory metric. Finally, we consider the Bergman Geometry on the
ball and introduce various geometric quantities which are invariant under
the automorphisms of the ball.

1. The Bergman Metric

We assume that the domain 2 satisfies :

(C.1) For each zeQ, there exists an feA?(u) such that f(z) # 0, i.e.,
K(z,z) > 0 for every zef) by (1.1g) of Ch.2.

The Bergman (pseudo) metric by : Q x C* — R is defined by the differ-
ential form :

(1.1) ba(z,6) = Y bij(2)&€;,

1,7=1

where b;; = Q(g%;— (4,7 =1,--- ,n) and K = K(z,z) denotes the Bergman
kernel of €. ’

Let {4, } be a complete orthonormal system of the Hilbert space A%(u).
Then every feA%(u) may be represented uniquely by the series

(1.20) )= Y ewonl2), e = (fr00).

v

which converges absolutely and uniformly in every compact subset of {2.
Moreover,

(1.2b) fllazgy = Y lel* = llcll3,

where ||c||; denotes the £2(C)-norm of the infinite series ¢ = {c, }.



28 KyonG T. HAHN
It is clear from (1.2b), that the map

(13) g f - ¢ C= {CV}, Cy = (f, ‘Pu)a

is a linear isometry between A?(p) and the space £2(C) with the usual inner
product :

<a,b>= Z a,b,, a,bel*(C).

v=0

Under o, each ¢, corresponds to the standard orthonormal basis

ey = U(‘Pu) = {61/#}:;0

in £2(C). Therefore, the kernel function K, is mapped by o to

(1.4a) o(K;)= ZSOV(Z)CV = ¢(2),

v=0

and

(1.4b) lo(Ez =< ¢(2),0(2) >= llp()ll; = K(z,2), zeQ.

Clearly, K(z,z) > 0 under the condition (C.1).
Therefore, the mapping
¢: Q- £(C)

omits 0e£2(C) for all ze2. The mapping ¢ is also continuous on Q. It follows
from the fact that :

(1.5) lle(2) = p(w)ll; = K(z,2) = K(z,w) = K(w, 2) + K(w,w)

and that K(z,w) is holomorphic in (z,%)eQ x Q. Since each component ¢,
of ¢ is holomorphic in Q, ¢ is a holomorphic mapping of Q into ¢2(C) — {0}.
Under this mapping ¢ : @ — £2(C), the Hilbert metric in £2(C) induces the
following metric in {2 :

(1.6)

dh*(2) =< dp,dp > = < O0p[0z,, Op/0z, > dz,dz,
[z [
n,r=1
= Y (0°K(z,2)/82,0%,)dz,dz,,

p,v=1
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which is positive definite Kaehler metric in . In general, dh? is not invariant
under Aut(Q).

In order to equip 2 with an invariant metric, we construct the infinite
dimensional projective space P(€?) from ¢2 = ¢2(C). Let ¢ and ¢’ be two
points in £2 — {0}. We say they are equivalent if (' = A\( for some complex
number A. The quotient space of 2 — {0} by this equivalence relation is
the projective space P(¢?). We furnish P(£?) with the standard hermitian
metric, called the Fubini-Study metric :

(1.7)

dr? _ <w,w ><dw,dw > - < w,dw >< dw,w >
X (w) =

<w,w >2

’ ’wefz(C) - {0}

Then the induced holomorphic mapping :
¢:Q— P(), ¢g=poy,

where p : £2(C) — {0} — P(£2) is the usual projection map, pulls the Fubini-
Study metric back to 2. Indeed,

(1.8)
_<pp><dp,dp>—| < p,dp> |

dbg(z) = dx*((2)) < @, >2

= Y (0%loglp(2)I2/02,0%,) dz,dz,
p,v=1
= Y (8*log K(z,2)/02,0%,) dz,dz,

pu,r=1

is a well-defined positive semi-definite hermitian form which is Kaehler and
invariant under Aut({2), as Theorem 2.3 below shows. The metric db} is pos-
itive definite if () satisfies the following condition (see Corollary 2.2 below):

(C.2) For every holomorphic tangent vector ¢ at zef), there exists an

feA?(p) such that Vf(2)- € #0.

Therefore, any domain Q in C™ with properties (C.1) and (C.2) can be
furnished with an invariant Kaehler metric, called the Bergman metric [35].
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2. Comparison Between the Metrics of Bergman and Carathéodory.

Let Hol(2,U) be the set of holomorphic mappings f : @ — U, where
U denotes the open unit disc in C. The Caratheodory (pseudo) differential
metric cq : 2 X C* — R is defined by

(2.1) ca(z,€) = sup{|Vf(2)¢| : feHol(Q,U)}.

Then the Bergman metric dominates the Caratheodory metric as shown in
the following :

Theorem 2.1 [19]. Let Q be a domain in C* with properties (C.1) and
(C.2). For each z€) and £eC™,

(2.2) ca(z,€) < ba(z,§).

Proof. For any feHol(Q,U), let

(2.3a) alt) = F(OK.(2)
(2.3b) ) =3 & a(z, [ﬁg))} '

By the Schwarz inequality,

(2.4) [(a, B)I* £ (@, 0)(8, ).

Using the reproducing property of the kernel K ,, we have
(2.5a) (a,a) =(fK,, fK,) S K(z,z), since |f(t)]S1 in Q.

(2.5b)

S #?K 0K 0K
_ 13 e _ > -
(ﬂ’ﬁ) =4 Z 6#61’ [A 62,462,, 6zu afu ’ K K(Z, Z)’

p,v=1

=b°(2,6)/K(z,2)
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(2.5¢) (a,8) = Vf(2)¢.
From (2.4), together with (2.5a) - (2.5¢), we obtain
(2.6) IVF(2)€]* < ¥%(z,6),

which proves the theorem. O

As a consequence of inequality (2.6), we obtain

Corollary 2.2. The Bergman metric bg is positive definite if (C.2) holds.

Let v :[0,1] — Q be a piecewise C! curve. We define the Bergman length
of v by

27) s = / ba(4(2), 7'(£))dt.

If z, we?, then the Bergman distance between z and w is given by

(2.8) Pa(z,w) =inf{lyls : ¥(0) = 2, (1) = w},

where the infimum is taken over all piecewise C! curves between z and w
in ). Due to the invariant nature of the Bergman metric bg, we have the
following.

Theorem 2.3. Let Q and D be domains in C"* and let ¢ be a biholomofphic
mapping of ) onto D. Then for all z, wefQ,

(2.9) | Ba(z,w) = Bp(e(2),¢(2)).

Proof. From (II, Proposition 3.4), the kernel function admits the following
transformation formula :

(2.10a) Ka(z,w) = Kp(e(2), p(w))Jo(2) Jo(w),

In particular,

(2.10b) Ka(z,2) = Kp(p(2), 0(2))|Tp(2) .
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Therefore,

2

0z;0%;

2

- ajazj log Kp(w(2), ¢() I To(2)*

(2.11a) (z) ——F—log Kq(z,2)

0 .
02,07, log Kp(¢(2), ¢(2)),

since log |J¢(2)|? = log Jp(2)+1log Jp(z) + constant locally and hence is an-
nihilated by the mixed second derivative. Using the chain rule and Cauchy-
Riemann conditions for holomorphic functions, the last term of (2.11a) re-
duces to

Bcpa(z) e
(2.11b) Zb s(e(=) =5 0‘;

which implies :
(2.11c¢) b3 (p(2)) = dbi(2), zeQ,

for all biholomorphic mappings ¢ :  — D. Theroem 2.3 now follows by
standard integration. O

3. Invariant Laplacian.

Let Q be any bounded domain in C" furnished with the Bergman metric
bo. Then we may regard ({2, bg) as a Riemannian manifold. In particular, it
is a Kaehler manifold. Theorefore, the corresponding gradient is the vector
field, given by

- " (0f & Of .
— LY
(3.1a) an(z)—ziijzlb (02,- o, T os 05 ) for feC*(Q),

where (b7) = (b;;)7! is the inverse matrix of the Bergman metric tensor
(bi;). See [49], [51]. For feH(Q), 2L 5. = 0so that (3.1a) is reduced to the
following form :

of 0
(3.1b) Vaf(z) =2 Z bii azf; R

L 1,7=1
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If f,9eC*(Q), a routine computation yields :

. ~ ;i (Of 95  Of 89\ & <
= = R 9. 0%, =
(8.1c) 2(Vf)g=<Vf,Vg>=4 Z b (62,~ 0z; * Oz; 35i> V= Ve

1,j=1

If f=g,then

(31d) |VfP =< V[, Vf>=2Vf)f =4 b (%g t %g) '
. U J J t

i,5=1

In particular, if feH(Q),

(3.1¢) GiE =4y b (ﬂ) of

ij=1 Bz,- az]‘

The corresponding Laplace-Beltrami operator is given by

. n . Of
— t] 2
(3.2) Aqf(z)=4 i ]Ezl b 307, for feC*(Q),

Due to the invariant property of the Bergman metric, these operators are
invariant under the group G(u) = Aut(Q2). That is,

(3.3a) (Vaf)ow=Va(foyp), for feC'(Q),

(3.3b) (Aaf)ow=Aq(fop), for feC*(Q).
for all peAut(2). For this reason the operators 69 and AQ are often referred

to as the invariant gradient and invariant Laplacian on 2, respectively.
Further computations show that if f and g are real valued in ,

(3.4a) A(fg) = gAf +2(Vf)g + fAg,

(3.4b) A(f?) = 2fAf + 2V
In particular, if feH(2), then

(3.5¢) AlfP =2(VF)f = 2|VF[.
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4. Bergman Geometry on the Unit Ball B.

For the case where () is the open unit ball B in C", the Bergman metric
tensor can be written explicitly by

(4.1a)
bij(z) = loinq(z z),

Q+n+1 o .
BCEEDE (1 = |2]*)6ij + 2:2;], (i,5=1,---,n),

and thus, the Bergman metric (1.1) becomes :

(1)) B0 = G- PR + < 26>

When ¢ = 0, (4.1b) is the usual Bergman metric. These metrics differ only
by constant factors. In view of the insignificance of these constant factors in
dealing with the Bergman geometry, we normalize the Bergman metric by
choosing the constant factor to be 1. Namely,

(4.1¢) b%(2,6) = [(1 = =) I€]” + (= OIP1/(1 — |=*)?.

To compute the Bergman distance 8 = p on the unit ball B (see (2.8)),
we observe that the Bergman distance joining 0 and z in B is attained by
the line segment o(t) = tz, 0 £t £ 1. Hence,

1+ 2|
- |2

The distance between z and w in B is now obtained from the invariant
property of the Bergman distance 3 :

(4.1¢) Bz,w) = Bp:(2), pz(w)) = B(0, p;(w)) = tanh ™ |, (w)|.

= tanh™!|z|.

(@10)  B0,2)= [ ba(t), (et = 3 log

It is easily seen that the volume element of the Bergman metric (4.1c) on
B is given by

dv(z)

(41) 4A(z) = Wet(biy)ldb(z) = ke
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which coincides with (4.4a), Ch.1, given earlier.
From (4.1c) it follows that for (z,£)eB x C*

[4 €]
(4.2) JT-F SHz8) s — Bk

The inverse matrix (b' = (b;;)~! of the Bergman metric (4.1c) is
(4.3a) b(z) = (1 = |2|*)[8; — Ziz5].
Therefore, from (3.2) we obtain |
(4.3b) Ap =4(1 - |z]?) Z i~ Fizil 5=
i,j=1
From (3.3b) and (3.2), the invariant Laplacian A of B satisfies :
(4.3¢) Af(z) = A(f - 9:)(0), fe€CHB),

where A =437 | %;2; is the usual euclidean Laplacian in C".

When n = 1, we have

(4.3d) Af(z) = a1 - Py 52

35

Similary, from (3.3a) and (3.1a), the invariant gradient V of B satisfies :

(4.4a) VF(z) = V(foy.)0), feC'(B).
If feH(B), then

2

of
62,‘

n 6f
_Zzia_zi

1=1

(4.4b) V()" =41~ |2]*) [Z

2]
When n = 1, we have

(4.4¢) IVF(2)l = 2(1 = |=[*)If'()]
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Definition 4.1. The radial derivative of a C(f2) function u at z is defined
by .

(4.5a) (Ru)(z) = Ou(z) - 24 0u-2 = Z ( 38:; + zZ;— Ba: ) .

=1

The radial derivative ®™ of order m is defined inductively by R(R™!) for
m=12---.
For a holomorphic function feH({2), we have

n

(45b) (RF)() = 0f(z) = = Y 5151 (2).

1=1

In addition to the radial derivative R f, gradient V f and invariant gradient
Vf, we introduce the t tangential derivative D, f for feH(B) which measures
the size of the gradient Vf in the complex tangential directions.

Definition 4.2. Let T;; = (2;0; — 2;0;)/V/2 for i, =1,--- ,n, i # 7. The
tangential derivative of a holomorphic function feH(B) is defined by

(4.6) D-f(2)* = Z T £ (5], [41).

1,5=1

Then an elementary calculation yields :

(4.6b) D, f(2)" = Z(IZI% ziZ J)ai 9

it 32,

= |z|? Z Bf

2
n 6f

= IzIZIVf(Z)I2 - I?Rf(z)lz-

Moreover, we find

(4.6¢)

VI =201~ ) 6y — sz 2L 2
i,j=1

=21 = |zP?IVF(2)? +2(1 = |2")(D f(2))*.
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In particular, we obtain the following inequalities :

(4.6d) (Rf(2) = |2lIV(2)] £ [Vf(2)]
(1= [P)IVF(2) £ VI(z) S (1= 22V £(2)].
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Chapter IV Bloch and Besov Spaces of M-Harmonic Functions

In this chapter we consider M-harmonic (invariant harmonic) and M-
subharmonic (invariant sub-harmonic) functions on the unit ball and dis-
cuss their basic properties. It should be noted that the space of M-harmonic
functions is stable under the complex conjugation. Therefore, it must contain
both holomorphic functions and pluriharmonic functions. We also introduce
a formal definition of Besov p-spaces for M-harmonic functions.

1. M-harmonic Functions.

Definition 1.1. A complex-valued C? functions u defined on an open set

2 C C" is called (invariant) harmonic or M-harmonic on 2 (adapting Rudin’s
terminology on the ball [44]) if Aqu(z) =0 on Q.

Clearly, the notion of harmonicity is invariant under the actions of Aut(f).
We denote by h(2) the space of all invariant harmonic functions on .

For the case where Q = B, ueC?(B) is M-harmonic if and only if it satisfies

(1.1) Apu = 4(1 - |2]?) Z (6 — z,z,]g “é‘? 0, zeB.

i,5=1

Definition 1.2. We denote by h?(S) = h?(dB) the space of all M-harmonic
functions on B that satisfies the growth condition :

(1.2) sup / |u(r¢)|Pdo(¢) < 00, p>0.
o<r<1Js

we call AP (S) the Hardy p-space of M-harmonic functions on B.
Further, we let

(1.3a) h2(B) = LE(B)Nh(B) for ¢ 2 —1.

In particular, we let

(1.3b) h?(B) = k2(B) for ¢ =0,
0

(1.3¢) hP(S) = h? (B) for ¢ = —1.
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Definition 1.3. If y is a Borel measure on S = 9B, the Poisson integral
Plp] of u is defined by

(1.4) Plu)(z) = /S P(z,¢)du(C),

where P(z,() = II(TI;_E% is called the Poisson-Szego kernel of B. If

du(¢) = f({)do((), where feL'(dB, o), we denote P[fdo] by P[f].

Definition 1.4. A function feC(B) is said to have the invariant mean value property
if

(150) £(0)) = /S F((rQ))do(¢)

for every eAut(B) and 0 < r < 1. Let ¥(0) = a. Then ¢ = ¢,U for some
Ueld. By the U-invariance of do,

(1.5b) f(a) = / F(@alr0))do(C).

Integrating both sides of (1.5b) with respect to the measure 2n(1—r?)7r2"~1dr
over [0, 1]

(1.5¢) f(a) = /B F(a())dpiq(w).

Lemma 1.1 [44]. Let feC?*(B). Then f is M-harmonic if it has the invariant
mean value property.

Proof. For each fixed zeB, let h = f o). By the Taylor series expansion of
h about 0,

h(z) = h(0)+z [z, (0) + hi(())]
+§Z[ 0+ 2 550)

PP 5 a (0) +0(|2*).

t,5=1
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Let z =r(, (€S, 0 <r < 1. Then by (1.4.3b) and (1.4.3a)

[ HrOdo(€) = hO) + L (8m)0) + 06,

Thus,
. 4n <
(16) tim 22 [ £ 0%(r0) — FOHO)Ndo(0) = Bf(2)
from which Lemma 1.1 follows. O
The Poisson integral P[u] gives arise to an M-harmonic function on B.
See [44, p.49].

In the following we state a few basic properties of M-harmonic functions
on B :

Theorem 1.2 [44, Theorem 4.3.3]. Let ueh(B) be such that (1.2) holds
for some p,1 < p < co. If p > 1, then there is an feL?(S) such that u = P[f].
If p =1, then there exists a measure p such that u = P[y].

The following is a local version of the invariant mean value property which
follows from a minor modification of Lemma 1.1

Corollary 1.3 [55, Theorem 1.5]. Suppose that @ C B is open and u is a
locally bounded measurable function on . Then u is M-harmonic on § if
and only if the following mean value theorem holds :

(.7) u(z) = [ ulpa(r0)do(()
s
for every zeQ2 and r > 0 such that ¢,(rB) C Q.

Corollary 1.4. Let {f;} be a sequence of M-harmonic functions on an open
set 2 C B which converges to f uniformly on compact subsets of €2, then f
is M-harmonic on .

Integrating both sides of (1.7) with respect to the measure 2nr2?=1(1 —
r2)="=1dr over [0, 1], we obtain

Corollary 1.5. If u is M-harmonic in an open subset  of B, and if ¢:(rB) C
2, then
. 1
18 ULz = ———
( ) ( ) )‘[E(za T‘)] E(z,r)

where d)\(z) = (1 — [2]*)™™ " dy(z) is an invariant measure introduced in

(3.6a), Ch.1, and E(z,r) = ¢,(rB).

u(w)dA(w),
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Proposition 1.6. If u € Ly(B) is an M-harmonic function on B, then for
all zeB and q 2 —1

(1.9) u(z) = [ u(w)By(z w)dug(w)
Proof. If u is M-harmonic on B, then by Corollary 1.3 with z = 0, we obtain

(1.9a) u(0) =/Su(r<)da(g').

Integrating both sides with respect to the measure 2nr2"~1(1 — r2)4dr, we
have

(1.9b) u(0) = [ u(w)dy(w)

Replacing u by u 0 ¢,, zeB, in (1.9b), we get

(19) ()= (o )0 = [ (wor)w)dy(w)
= [ st

_ | Ky(2, w)|?
- / ) G duy(w), by(11.6.29). O

Proposition 1.6 was proved in [23] for the case ¢ = 0.

Definition 1.5. The Berezin transform B, with weight ¢ of ueL}(B) is de-
fined by

(110)  Byful(s) = [ ww)By(z wdw), B, g2 -1

In particular, when ¢ = 0, (1.10) coincides with the usual definition of the
Berezin transform of u. When ¢ = —1, it gives the Poisson integral Plux],
where ux is the boundary function of u on S defined by the radial limits
almost everywhere on S.

A consequence of Proposition 1.6 is that the Berezin transform of an M-
harmonic function ueLj(B) is itself. Namely, we have
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Corollary 1.7. If ueiz;(B), then B,[u] = u.

Remark 1.8. (a) Every M-harmonic functions on B has the invariant mean
value property [44, Theorem 4.2.4].

(b) Every feC(B) that has the invariant mean value property is M-harmonic
on B (see Corollary 2 of [44, Theorem 4.2.4]).

( (c[) EveCry ];leC(B) t]l)lat satisfies : By[f] = f(¢ = 0) is M-harmonic on B
see |23, Corollary 3.5]).

(d) For p 2 1, 71{1’(3) = LE(B)N h(B) is a Banach space, since the space
h(B) is closed under the topology of uniform convergence on compact sets
(see Corollary 1.4).

(e) Evidently, the space of M-harmonic functions is stable under complex
¢onjugation. Therefore, it must contain both holomorphic functions and
pluritharmonic functions.

(f) In genral, extending known results of holomorphic functions to M-
harmonic functions are nontrivial, due to the limitation of tools available for
M-harmonic functions. An example of such a limitation occurs from the fact
that an M-harmonicity is not stable under differentiation.

2. M-subharmonic Functions.

Definition 2.1. Let Q C B be an open set. A function u : § — [~00, 00)
is said to be M-subharmonic if it is upper semicontinuous and for each ze{2,
there exists r(z) > 0 such that for all 0 < r < r(z2),

(2.1) u(z) € /S u(p:(r())do(C),

and none of the integrals in (2.1) is —oo [55, Definition 1.15]. A function u
is M-superharmonic on § if —u is M-subharmonic on 2.

Let (5h)(B) denote the space of M-subharmonic functions on B and (5k)8(B) =
LE N (3h)(B).

It follows from Corollary 1.3 that equality in (2.1) holds on € if and only
if 4 is M-harmonic there. In fact, if ueC?(f), then u is subharmonic on Q if

and only if Au 2 0 there, as it can be shown easily using (1.6).
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Proposition 2.1. Let Q@ C B be an open set and let ueC?(Q2). Then u is
M-subharmonic on  if and only if it satisfies : Au(z) 2 0 for all zeQ.

Proposition 2.2. If u M-subharmonic on an open set Q C B, then so is
u o1 for all YeAut(B).

Proof. Let a € and let b = v(a). Then (g3 01 0 ,)(0) = 0. By Cartan’s

theorem (Theorem 3.2, Ch.1), @3 09 0 9, = Ueld or ¥(pa(2)) = ¢p(Uz).
Thus,

/ (u 0 %) (pa(r())do(¢) = / w(ion(UrQ))do(C)
s ‘ s
- /S w(s(r$))do(¢) = u(b) = (o $)(a). O

Proposition 2.3. u is M-subharmonic on an open set Q C B if and only if
1t satisfies the following sub-mean value property : for every ze)

1
(2.2) ROR /E L u(w)ixw)

for r > 0 sufficiently small.

Proof. 1t follows from (2.1) by using the same method as in the proof of
Corollary 1.5.

Definition 2.2. The Green’s function G for the invariant Laplace operator
A is given by G(z,w) = (g 0 ¢, )(w), where

(2.3) 9(z) = / 1 $2nHl(] _ g2yn=lgy

|=|

The Green potential Gu of a Borel measure p on B is defined by
(2.4) Gu(z) = / G(z,w)du(w), zeB.
B

The following analogue of the Riesz decomposition theorem for M-subharmonic
functions was proved by D. Ullrich in [55]. ’
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Theorem 2.4 [55, Theorem 2.16]. Ify is in a subharmonic Hardy 1-space
then

(2.50) u(z) = Pluxl(z) - Gu(2),

where P[u] is the least M-harmonic majorant of u and p is the Riesz measure
of u, i.e., du = Aud\. Moreover, the Riesz measure p satisfies :

(2.5b) /B (1 - Jwf2)"du(z) < co.

Conversely, for any positive measure p on B that satisfies (2.5b), the Green
potential Gy is M-superharmonic on B.

3. Bloch and Besov Space of M-harmonic Functions.

Definition 3.1. Let feC'(Q) and £eC™. The maximal derivative of f with
respect to the Bergman metric bg is defined by

Idf(Z)E |

(3.1a) Qf(z) = mup =,

z€ef),

where

i) 4 e=Y [+ S = ose-erase €

=1

If feH(Q), then the quantity Qf is reduced to

c z) = su IVf(z)fl Z€
(3.1¢) Qf(2) = U Bz 6) Q.

The quantity QF is invariant under Aut(Q), due to the invariant nature
of bg. More precisely,



BESOV FUNCTIONS AND THEIR BOUNDARY BEHAVIOR 45
Proposition 3.1 [22], [23]. For a C'(Q) function f and peAut(f2), we have
(3:2) Qfog)=(Qf) o, and Qf = Qf.

In particular, if feH(B) and peAut(B), then
1 - ~
(3.3a) Qf(2) = 5VAIfI*(2) = [Vf(2)], zeB.
Proof. Let feC'(Q) and @eAut(). For zeQ and £eC™ with |¢] = 1, set
n = ¢'(z)§. Then
ba(z,€) = ba(p(2),¢'(2)€) = ba(e(2),n)

so that

|d(f 0 p)(2)E] _ (df) o p(z)nl
ba(z,§) ba(p(2),n)
_ ld(f o 0)(2)n/Inll
ba(e(2),n/Inl)

<(Qf) o,

showing that Q( fop) S Q( f) o p. Applying this inequality to the function
f o @™t we obtain the reversed inequality. The second equality of (3.2) is
clear. If feH(B), then the following identity holds :

A(I£17)(0) = 42 0 /0zi(0)[?,

which implies

(3.3b) Qf(0) = s IV£(0)¢| = [V£(0)]

n

1/2
> laf/azz'(ﬂ)lz} = SVAIFP(0).

=1

Replacing f by f o ¢,,zeB, in (3.3b) we get (3.3a). O
Let éq(z) be the euclidean distance from z to the bounday 5.
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Definition 3.2. Let 0 < p < 0o, seR. The Besov p-space B3(2) with weight
s is defined by the space of all locally integrable functions f on  such that

(3.42) 1£1lp,s = { /Q <Qf)P(z)6<z)8dA(z>}l/P < oo,

Here Q f is defined in the sense of distributions and dJ is defined by
(3.4b) | d\(z) = B(z)dv(z),

where B(z) = det(b;;) is an invariant volume measure with respect to the
Bergman metric bq.

We shall denote by M BI’;(Q) a Besov p-space of M-harmonic functions,
and by HB;(Q2) a Besov p-space of holomorphic functions on (.

In particular, if s = 0, then the spaces MB)(f) are invariant under the
actions of Aut(2) and constitute most interesting spaces. We denote these
spaces simply by MB,. If p = 0o, then the corresponding space is the Bloch
space of M-harmonic functions. ‘ ’

Definition 3.3. The Bloch space MB(£2) of M-harmonic functions consists
of all M-harmonic functions on €2 such that

(3-4c) sz?g(Qf)(Z) < oco.

The little Bloch space MBy(f2) is as usual defined by those M-harmonic func-
tions f in MB(Q) such that

(3.4) lim (Of)(z) =0,

The Bloch space HB of holomorphic functions were first studied in [1] and
extended to the general homogeneous domains in [20]. But it was R. Timoney
[52], [53] who gave a complete description of the Bloch space of holomorphic
functions on the bounded symmetric domains. Recently, Krantz and Ma [39]
gave a definition of holomorphic Bloch functions on strongly pseudoconvex
domains and proved several interesting characterizations of Bloch functions.

It is well-known [20], [52], [53] that the Bloch space HB is a Banach space
with respect to the Bloch norm :

Iflls = 1£(0)| + sup(Qf)(2).
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The little Bloch space M By is precisely the closure of the polynomials in the
Bloch space MB.

Let 2 C C™ be a strongly pseudoconvex domain with at least C*- bound-
ary 0. Let r be a defining function of , i.e.,

Q = {2¢C" : r(2) < 0},
where reC'(2) and grad r(z) # 0 for all 2¢09. Let §(z) be the euclidean
distance from z to the boundary 0Q. Then 6(z) is equivalent to |r(z)| =
—r(z), 1.e., there exists a constant ¢ > 0 such that for all zeQ
(3.5) c16(2) S |r(2)| £ cb(2)  (see[39]).
We denote this equivalence by 6(z) ~ |r(z)|. The invariant measure dA used

to define the Besov spaces in (3.4b) is equivalent to dv/é§(z)"*! [39]. The
Besov norm (3.4a) can be written in the following more explicit form :

(3.6a) £ 1lp.s = {/Q IQfl”(Z)IT(Z)lsdA(Z)}I/p

on a strongly pseudoconvex domain Q, where d\(z) ~ 8(z) " 1dV(z) is a
measure on {2 invariant under Aut(Q2), and on the unit ball B

1/p
(3.6b) 1 f1lp,s = {[5 |QfIP(2)(1 - IZI2)‘“d/\(Z)} :

where dA\(z) = K(z,z)dv(z) = (1 — |2|>)"™"1dv(z) is the invariant measure

under Aut(B).
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Chapter V Properties of Besov Spaces.

In this chapter we give various characterizations of the Besov p-space
MB;(B) on the unit ball B of weight seR, and prove that it is a Banach

space for 1 £ p < co. We also consider the “modified ” Besov p-spaces B“‘
and “dlagonal ” Besov p-spaces B;. In general, MB; C M B“’ and M B, =
MB" . If s >n and p > 2n, then

MBy = MB; = MBS = h? (ﬂ:n;S, q=s—-n—1).

Let 1 < p = ¢ < co. It is shown that (i) for a fixed s £ 0, MB, C MB, C
MBe = MB, (ii) for a fixed s > n,MB = MB,, C MB;, and (iii) for

s-nH CHB"Whenp>2HB CHB"CH”WhenO<p<2 and
= HB}.

1. Characterizations of Besov p-Spaces with Weights.

Lemma 1.1. Let 1 < p < oco. Then there exists a pos1t1ve constant C}, such
that for all feC'(B)

[ 15 - sopa) s / “f{,,) ©IC) oa).
Proof. For zeB and a C'-function f, we have

15(2) - £(0)] = / LoDat = | [ d12) - sdtl, e (1v.2.10)

_ /01 %b(tz,z)dt'

< / (QF)(t2)b(t, 2)dt

s ||
< /0 @N(t2) s by (I1142)

Let ¢ be the conjugate exponent of p. Then Holder’s inequality implies
g q P

S Q)
(1’1) lf(z) - f(O)l é [/(; (1 _ 'tzl)(1+q)/2 ] [/ (1 _ Itzl)l/Z dt]
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After some manupulation on the first integral of (1.1), we find

N Cl| TQfP(ta)
1£(2) f<0>I§[¢1_|z| o V- lte] ]

for some positive constant C' independent of f. Therefore,

Pdu(z ! (Qf)”(tz)]z} (2
i@ -soraesc [ [ i)

! (Qf)”(z)|z| (2 2n+1
scf [ VT~ 1761~ ey =)/

(@) (2)l2| 1
= C/ V1-—|z| 12| Vit — |z|t2nt1/2 dtdv(z)

Qe [ a
<cf T | T

< 2C/ Mdu(z). O

B |z|2n—172

Lemma 1.2. For -1 < s <n+ 1 there exists a positive constant C such
that for each zeB

lK(Z7w)|2 —’w281/w _z23 .
/Blsow(z)P"—l/?(l |w|?)*dv(w) £ C(1 - |2)?)°K(z, 2).

Proof. Since |py,(z) = |¢.(w)|, the change of variables formula yields :
(1.2)

[ a0 - o) ()

= [ ECeLIL o w)ydsesw)
B |wl
_ . Jeoy
- K 1= b [ e

It is clear that the integrand of the last integral has no singularity at w = 0.
On the other hand, the following integral :

I,(z) = /B A= lol) w)

1— < z,w > |29

dv(w).
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is bounded whenever —1 < s < n + 1, according to [44, Proposition 1.4.10].

Therefore, the last integral of (1.2) is bounded by a constant and proves the
lemma. 0O

Lemma 1.3. Let 1 < p < oo and —1 < s < n+ 1. Then there exists a
positive constant A, such that for every feC'(B)

// |[fop(w)—f(2)|P(1—|2|*)*dv(w)dA(z) §Ap/(Qf)p(z)(1—|z|2)’d)\(z).
BJB B

Proof. Let feC'(B). Lemma 1.1 with f replaced by f o ¢, implies

[ [ 10wt - 5P~ =2y avw)arz)
BJB

=Gy / A ) - |2[*)*dv(w)dA(2)

lw[2n—1/2
Q@O 1 _Lpya D o
<c, / / ool e O)AE), ¢ = pu(w),

S Gy / / (QF)P(O)—rt 'I({C()Cl;i)'f,z(l—|z|2)8du(g)du(z), by (I1.2.29),

<c, [@r© [ W”({C()‘l;i)'l,z(l ) du(z)dn(0),

<cc, /B QFPO)( — () K(C,()dr(¢), by Lemma 1.2,
< 4, /B (@A~ [¢]*)dNQ). O

Definition 1.1. Two functional quanttities Q; f and Q f defined on B are

said to be equivalent on B, write @, f &~ Q,f, if there are positive constants
C: and C; independent of f such that

Q2f S C1Q1f £ C2Qf.
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Theorem 1.4. Let seR be such that —1 <s<n+1 Forl< p< oo and
f eh(B) the following semi-norms are equivalent :

171 = 15l = (f5(@0)2)1 ~ o arw))
171l = (Jg [51£(2) = ()P = |212)*du(z, w)) 77,

where du(z,w) = K(Zlfz(zl’?’()wfw) dM(z)d\(w) is an invariant probability mea-
sure over B x B.

1£lls = (J5 f31f 0 02(w) = ()l (1 ~ =) dv(w)dA(z)) "
il = (Ja(BIFP/2() = Lef2)ar(z))
171l = (pBIFPIE) = 1FR()2(1 ~ |2 )dA=) " (o2 2).

Proof. By the change of variables ¢ = ¢:(w) and (6.2g), Ch.3, with q = 0,
(1.3)

_ — f(2)|? sl ( C)I zl/p
Hflls—fB/BIf(C) FEIP (L= oy o8 au( (i)

1/p
= ([ [0 srera-rrya0)” <is.
BJB
To prove the rest, let feh(B )- An elementary calculation shows :

(1.42) (AlfP)(©0) = 42 ooz, D

[lVfl (0) + [VFI*(0)).
If feh(B) is real valued, then

(@Q)(0) = sup |47 (0)¢]
= sup [VA(0)¢ + V7(0)C]
=2 Sup |Re(V £(0)¢)] = 2|V £(0)]
so that by (1.4a)

(Af*)(0) = 8|V £[2(0) = 2(Q £)*(0).
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Replacing f by f o ¢, zeB, we have for all zeB
(14b) (A=) = 2AQf)P(2) = 8IVFI(2),  (QN)(=) =2V SI(=):
For an arbitrary M-harmonic function f in B,
amen =0 (L) sar dump=0 (L) <o
Of = O(Re f+iIm f) £ Q(Re ) + Q(Im f).
Therefore, by (1.4b)

Alf]> = A(Re £)? + A(Im f)?
= 2{(Q(Re 1)) + (Q(Im ))*} S 4(Qf)*.

On the other hand,
(Qf)” < 2{(Q(Re £))* + (QIm 1))’} = A(If]").
Putting all together, we have
(15) LVAIfP £ 0F = 2091 S VAIFP.

which proves : [|f|l1 = ||f]la:
Let feh?(B) for 1 £ p < oo. (IV, Proposition 1.10), with ¢ = 0 yields :

% 0)= [ s [ Blew)| _ avlw), i=100em

Setting M; = sup,,.p , t=1,---,n, we have

[%B(z,w)}

i

|§{;(o)| <, l / f(w)du(w)\ < Millfllzs o,

Therefore,

: n 1/2
(1.62) VFO) € MI|f|3ry, where M = (Z Mf) .
=1
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Similar arguments show that (1.6a) is also true with f in place of f so that
by (1.3)

VAIFP0) = VIVFO) +IVFO) < v2M||£llLs(v)-
Replacing f by f o, — f(z) yields :
(1.6b) VAIFP)E) £ V2MIf 0 p: = f(2)llLrw)-
Putting together (1.5), (1.6b), Lemma 1.3, and the fact that ||f||]2 = ||f|]s,
we find the equivalence of ||f||,,s and ||f|;, ¢ = 2,3,4.
If p 2 2, then it holds that

(1.7) e
1 o 0: = 5Dz = { [ 700 - st}
{

1/2
JREGE (z)Pde,(c»} (with w = ¢:(C))

1/2
{ JREGE f(Z)I2B(C,z)dV(C)} . by (6.2g), Ch2,

= {BIfI’)(=) = |FP()}'/?
S|foep. _f(z)”L"(u) for p 2 2,

which proves : ||f||s = ||f]|s for p 2 2. O

Theorem 1.5. Let S'eR~be such that -1 < s < n+1,andlet 1 < p <
0, 0 < ¢ £ p. For feh(B), the following semi-norms are equivalent to

1£llpe
151l = { Fa (foe 110~ SI )™ 1= oy}
R r/q 1/p
151k = {Jo (Joten ) = Fenle )™ 1 = zpyancs)
where |E(z,r)| = v(E(z,1)), E(z,r) = ¢.(rB), and

1/p

dv(w)
|E(z,m)|

f(z,r) = /E L Fw)dve (), dve () =
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Proof. The reproducing kernel of rB is given by

—2n f_ ﬂ
(1.8) K.p(z,w)=r" AB(r r)’ z, werB.

The mean value property of feh(B) (see [51]) and (1.8) imply that

f(z)=r" / f(w)KB - --) dv(w), zerB.
Using similar arguments as in the proof of (1.6a), we have that

(1.9) IVF(0)] £ M|\ fllLr(rBowy < M||f|Lo(B.0)s

where M is a positive constant independent of f. Replacing f by fop, — f(2)
yields :

(1.10) (Qf)(z) = M||f o, — F)r(rBwy S M||fop, — F(@)lLe(B,v)-

Since B(z,w)|E(z,r)| and |E(z,r)|/B(z,w) are both bounded by a con-
stant independent of zeB and wer B, (1.9) and the change of variables formula,
imply that for some constant My > 0

, | 1/p
(1.11) (Qf)(z)éM( [E |f(w)—f<z>"’”—"|§'</§ﬁ~))l)

,T

< M, ( /B If 0 pu(w) - f(Z)l”dv(w)) "

Replacing f by foo, — f(z, r) in the first inequality of (1.9) yields :

- )l

~ » dv(w)
gM{([E(Z 1) = S ),)

7

( L 1S )|”|d§(“’)),) }

1/p
(Qf)(z)éM( f,. )= Flemypr ) Fe )

+

1/p
~ »_dv(w)
§2M </;?(zr) lf(w)_f(z)l IE(Z,T’)I)

b

Theorem 1.5 now follows from (1.11), Lemma 1.3 and Theorem 1.4. O
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Lemma 1.6. For each compact set K C B, there exists a constant C > 0
such that

(1.12) sup [f(2)| = Cllfllps; 1S p<oo, seR,
Z€

for all M-harmonic functions feh(B).

Proof. The mean value property of M-harmonic function f implies that for
K|=1,0<t<1,

f(t¢) = r=2n / _Fopu(wiv(w),

Therefore,

d d
(1138)  dfO)C = ZHCO] g =" [ di(—0) oucw)] pd(w).
A routine calculation shows that
d
(1.13b) ac(w) = %‘ptC(w)lt=0 =(-<w,(>w,

and hence, is a bounded holomorphic mapping from B into C™ that satisfies
a¢(0) = ¢. From (1.13a) and (1.13b),

(¢ =r7" [ df(w) - actw) g me i),

which implies
41 £C [ (@f(-w)drw) =C [ (@) wdrw)
rB rB
where C' is a positive constant independent of f. Therefore,
@HO £C [ (@Nw)irw)
rB

Replacing f by f o ¢, and using the change of variables formula, we have

(Of)(2) < € / (@) 0 pu(w)ar(w) = € [E @ wdw)
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where C is a constant depending only on r and n. Holder’s inequality implies
that

) P;_l : ) 1/p
(Qf)(z)gé{ / (1—|w|2)»*—’~1dx<w)} { / (Qf)”(l—lwlz)’dA(w)} .
E(z,r) E(z,r)
Therefore,
(1.14) (QF)(=) £ (=17 |Ifllp,s,

where M is a constant depending only on r and n. Hence,

F(2) - £(0)] S / (df (t2) |t

" |df(t2)z]

= | o) b(tz,z)dt

< [(@neaLise

—L z
< Ml [ 0= o) b d (bv(114)),

This fact proves Lemma 1.6. O

Theorem 1.7. Let seR and 1 £ p < co.
Then the space MB,(B)/C is a Banach space under the quotient norm
associated with the norm || - ||p,s.

Proof. Let {f,} be a Cauchy sequence in MBy(B). By Lemma 1.6, we see
that { fn} converges uniformly on each compact subset of B to an M-harmonic
function f in B. Now the convergence f, — f with respcet to the semi-norm
| - ||p,s follows by standard arguments. O

Theorems 1.4, 1.5, and 1.7 have been proved in [23] for the case where
s = 0. The results similar to Theorem 1.4, 1.5, and 1.7 are proved in [25] for
the bounded symmetric domains.

In the case where s = 0 and p = oo, The most of the results obtained in
Theorems 1.4, 1.5, and 1.7 remain valid. More precisely, we have
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Corollary 1.8. Let 1 Sp<ocoand 0<r < 1. Let fefz(B). Then feMB if
and only if any of the following hold :

() [Iflls = sup,p(Qf)(2) < oo

(b) sup,.p ”f - f(z)“LP(u(Zy)) < oo

(c) sup,p ”f~° ¢z — f(2)l|Lr @) < o0

(d) sup,.p VA(If[*)(2) < 0

(€) SUP,cp SUPyep(:,n(Qf)(w) < co for any re(0,1)

(5) suPe { e,y (QFP(w)dA(w) } < 00

(g) sup.zeB(1 - l2|2)|Vf(Z)| <o
(f) sup,p(1—|2[*)|R(2)| < co.

2. More Properties of Besov p-Spaces.

By modifying Hardy’s inequality [27, Theorem 330], we obtain

Lemma 2.1. Let ¢ > —1, 1 £ p < o0, and let G(r) = for g(t)dt,0 < r < 1.
Then

(2.1a) /(; |G(r)IP(1 — r)4dr £ C/) |(1 —r)g(r)|P(1 —r)idr.

If in addition -1 < s <p—1, orp=1 and s =0, then
1 1
(2.1b) / IG(r)P(1 = rYir*dr < C / (1= r)g(r)P(1 = r)redr.
0 0

Proof. Inequality (2.1a) follows by making change of variable : z = 1 —1r

in the original Hardy’s inequality, while (2.1b) follows from (2.1a) by the
change of variable r = ¢t for a suitable a. ‘

Theorem 2.2 [5], Let1 < p < co and ¢ > —1. Then there exists a constant
C > 0 such that for every feC'(B)

(2.2a)
/ |£(z) = F(0)|Pduy(2) & C/ (1= 12)IRF()I/ |2l1P|2]' 2" dprg(2)
B B

<c /B QP ()| 2mdpy (2).
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If p > 2n, then

(2.2b) ,
/ |£(2) = F(O)[Pdpy(2) = C/ (1 = =) IRF(2)I/ 12117 dpg(2)
B B

<c /B (PP ()dug(2).

If feH(B), both (2.2a) and (2.2b) hold for every p > 0 even without the

negative powers of |z|. Namely,

(2.2¢)
/ 1£(2) = F(O)Pdpy(z) < C / (1 = |2P)RF() [Py (=)
B B

<c /B (QF)(2)duq().

Proof. Using (2.1a) on each radius to obtain

[ 1@ = s0ran@ < [ [ 1760 - 50P0 - rrarasc)
o[ [ a-nizseol] a-rsarasc
¢ [ [ = DIRFOI/rP(L — ryidrdo(C)
= ¢ [ [@ =~ EDRAIP L~ F =P ~"n()
<C [ @Yl du(a)

The latter inequality follows from (II1.4.6d) and (IV.3.3a).
To prove inequalities (2.2b), we apply (2.1b) with s =2n —1<p—1, or
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p > 2n, to obtain
156 = 10P i) S 20C [ [156:0 - SO - ryten=drdo(c)
B SJo
< 2nC'/S/0 [(1 - r)l-(%f(r(ﬂ] (1 —r)?r2"~ldrdo(¢)
< 2nC /S / (1 = D)IRFrON/rIP(L = r)1r2m = drdo(C)
<C [ [0 - DRI/ - )t
B
< [ @97 @due)
B

by (1I1.4.6d) and (IV.3.3a). O

Corollary 2.3. Let 2n < p < oo and s > n. Then there exists a constant
C > 0 such that for every feh(B)

/ [f(2)P(1 = [2*)*dA(2) S C/ (QFP(2)(1 = |2I*)*dA(=) + £(0)],
B B

1e.,

Ifllag < cllflls;, with s=gq+n+1.

Proof. Choose ¢ =s—n—1> —1in (2.2b) and use the triangle inequality
of the norm ||f||42. O

Theorem 2.4. Let 0 < p < 0o and seR. Then there exists a constant C > 0
such that for every feh(B)

[@rea-rrrasc [ [ 15w - epa - =P du,w),
B BJB

where du(z,w) = K(fz()zi’;"()wz’w dA(z)d\(w) is given as in Theorem 1.4.
Proof. From (1.5) and (1.6b),

OfP() < C /B 1 0 @2(w) — F(=)[Pd(w)

<o [ 170 - P20, <= ),
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Integrating the both sides with respect to the measure (1 — |z]?)°d)\(z2),
we obtain

[@pr@a-ipraxe s [ [ 150-fpa-lryIK G, O P
B BJB

which proves the theorem. [
The following corollary is a consequence of Lemma 2.1.

Corollary 2.5. Let 1 £ p < oo and s > n. There exist constants C;,Cy, > 0
such that for every feC'(B)

/ FP(L = |22)*d\(z) € Gy / (1 = [P = [22)°dA(z) + [F(O)
B B
<c, /B FP( = |2[2)dA(z).

If feH(B), then the above inequalities hold for all p > 0 with df replaced
by 0f = Vf in the second integral.

The above result was proved in [8, Theorem ‘5.12] for holomorphic func-
tions f and remarked also in [5, Remark 5.2]. For general case, see [41,
Theorem 1.4.6].

An immediate consequence of Corollary 2.5 is the following
Corollary 2.6. Let 1 < p £ oo, s > n. If feh(B), then for every k,m > n/p
L1 = EPHE AP = )aNG) < oo
if and only if
/B[(1 = [P)™d™ F(@)IP(1 = [2]*)*dA(z) < oo.

If feH(B), then the above equivalence holds for p,0 < p < oo, with d* f
and d™ f replaced by 8% f and O™ f, respectively.

Lemma 2.7 [8]. Let 0 < p < oo and s > n. Then for every feH(B)
[ RI@PQ =Py ~ [ 9P - Rae)
B B

Proof. The fact that the second integral dominates the first comes from
(II1.4.6d). The reverse inequality is obtained in [8]. See also [41, Theorem
14.2. O |
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Lemma 2.8 [8]. Let p > 2n and s > n. Then for every feH(B)

/(Qf)”(Z)(l = |2[*)*dX(z) ~ / (A= 12M)IVFAIPQ = [2])*dA(2).
B B

Proof. 1t is clear form (III.4.6d) that the integral on the left dominates that
on the right. To prove the reversed inequality, apply (II11.4.6¢) and (111.4.6d),
Lemma 2.7, and [5, Lemma 5.1]. O

Lemma 2.9 [5]. Let V be a linear subspace of H(B) which satisfies the
following two conditions :

(i) If feV and peAut(B), then fop € V.
(ii) If feV, then g(2) = [ e=* f(e')do [2meV .

Then either V contains only constant functions or V contains the linear
function z;.

Proof. Assume that feV is not constant. Then V f(z) # 0 for some zeB, and
if h = fo., then heV and |VA(0)| = (Qf)(z) # 0. If g is given as in (ii),
then g(z) = Y1, cizi, where ¢; = g—z{-(O) are not all 0. Finally, a suitable
rotation ¢ gives g 0 ¢(z) = cz;, with ¢ # 0, and thus z; = ¢ lgopeV. O

Lemma 2.10 [5]. Let n 2 2. Then [;(Qz1)?(z)d\(z) < oo if and only if
p > 2n.

Proof. By (1I1.4.6¢), (Qz1)%(2) = 2(1 — |2|*)(1 — |21]?). Hence,
[@ar@ne =c [ @ -1aPria-Priae)
B B
which is less than [5(1 — |21]|?)P/2d)\(z) and larger than
[ aprra-prrac) =c [ a-krrta).
lz1]<|22] B

These integrals are finite if and only if p/2 —n—1> —1. O
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Lemma 2.11 [5]. Letn 22 and 0 < p £ 2n. If feH(B) and if

[ @@ <o,
B

then f is constant.

Proof. Let V, = {feH(B) : [(Qf)?(z)d(z) < 0o}. Since d is invariant,
it follows from (IV.3.2) that (i) of Lemma 2.9 holds for V. The result will
follow from Lemma 2.9 and Lemma 2.10 as soon as (ii) is verified. To this
end, we assume first that 1 < p £ 2n. Then V,/C is a Banach space and
if feVp and fo(2z) = f(e’z), then & — fo is a continuous mapping of [0, 2]
into V,,. Hence, e~*% f, is Bochner integrable, and (ii) follows. To prove for
the case 0 < p < 1, we observe that if feV}, the function g, zeB, defined by

z)— f(0
a0 =T ZIO ey
00 =3 =2 50), ¢=0
i i=1 aZi , ,
1s holomorphic and that the maximum principle (pointwise or in LP) shows

that g = g.€V}, as a function of z. Thus, (ii) holds also for p < 1, which
proves the lemma. O

Corollary 2.12. Letn 22 and 0 < p < 2n. feHBg(B) if and only if f is
constant.

Proof. If feH Bg(B), then f is constant by Lemma 2.11. The converse is

trivial.

Lemma 2.13. For p > 2n, every feH(B) having bounded V f on B belongs
to the space HB).

Proof. By (I11.4.6d), and (IV.3.3a),

(@F)(2) S (1= )2 |Vf(2)] £ C(1 - |22,
which implies feH Bf, for p > 2n. O

3. Modified Besov p-Spaces I;; with Weights.

In addition to the Besov spaces introduced in Chapter 4, we define a
modified Besov p-spaces B, with weight seR as follows :
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Definition 3.1. For seR and pe(0, 00), let

35 = {£eC=(B) : |||flllp,s < o0},

where

1/p
1 £1llp,s = {/B[(l — |2)™d™ f(2)[IP(1 - IZIZ)sd/\(Z)} ;

where m is any integer larger than 8 = (n — s)/p.
It turns out that different values of m > 3 define the same semi-norm (see
Corollary 2.6).

The diagonal Besov p-spaces are defined by
By = {feC*(B) : (1 = |2*)™7*|R™ f(2)|eLP(dv/(1 — |2[*))}

for any integer m > s. Notice that B, = Bg"s”. The “diagonal ” Besov
spaces were originally defined for holomorphic functions and studied by many
authors, see [5], [41] for example.

It is clear from (IIL.4.6d), and (IV.3.3a) that B, C B; and from the def-

inition that for a fixed pe(0,c0), both B, and l§; are increasing families of
seR, that is, if —co < s £t < 00, then

B, C B;, and Bj C B;,.

In general, similar results do not hold for B, and B; when these spaces

are regarded as functions of pe(0,00) with fixed seR. In fact, we establish
the following :

Lemma 3.1. Let 1 < p < oo, seR, and feiL(B).

(a) If s < —np, then (Qf)(fQ S C=12*)"Iflls;-
(b) I —np<s<n, then (Qf)(2) S C(1~ |2*)~*/?||f||5;.

(c) If s = —np, then (Qf)(z) < C(1—|2[2)"[log(1 ~2[2) =1 ||fll;.

Proof. Let f (:'iL(B) and (eS. The mean value property implies

(3.1a) 760 = [ fovitw)dniw), (0,1,
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Therefore, using the definition of Qf and the estimate (II1.4.2) for the
Bergman metric, we see

/(Qf)(w)d ),

)1 = |
and hence
(3.1b) (©)0) < /,, (OF)(w)(1 = [w[?)"dA(w).

Replacing f by f o ¢, in the above equation, we obtain
(3.1¢) |

@ne@ sa-krr [ @ —aw)

> I2n
< @= kR | [@NP) - Py ixw) v

(1= Jwf2)statn=)
X
[ B |1— <w,z > |

d)\(w)] . .

It follows from [44, Proposition 1.4.10] that the second term I ,(z) of the
latter expression is bounded for s < —np and behaves like

Lip(z) m (1= |2)"7*/%, as |2 - 1,
for —np < s < n, and for s = —np
I p(2) » [log(1 = [2) 7%, as || - 1.
Lemma 3.1 now follows from (3.1c) when I, ,(z) is substituted. O
Theorem 3.2. Let 1 <p< ¢g< oo, s 20, and feﬁ(B). Then

MB; C MB; C MBo, = MB.

Proof. It follows from Lemma 3.1 that if s £ 0, then there exists a constant

C > 0, such that for all zeB

(3.2a) (@F)(2) S |Ifllw < ClIfllss-
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If p < g, then
B20) Wil = [ QP - P )

= [(@rr@0 - @ @)
< O 1, = CT A,
The theorem now follows from (3.2a) and (3.2b). O

Lemma 3.3. Let 1 < p < oo, seR, and feh(B).
(a) Ifs<—p(n+2), then (Qf)(z)<C(1- |Z|2)"+1”f||z§;-
(b) If —p(n+2)<s<n, then (Qf)z)<C(1 - lzlz)_l_slp”f“z%;-
(¢) s =—p(nt+l), then (Qf)(z)< C(1—|z|2)"+1[log(1—|z|2)"1]’%l||f||g;-

Proof. From (1.13a) and (1.13b),
dF(0)¢| < / dF(w)I(= < w,¢ > wldy(w)
B
<c / df (0)[(1 = [wl?)™* dA(w)
B
Qf(0)<C /,, |df ()|(1 = [w[?)™+ dA(w).

Replacing f by f o, in the above inequality, it follows from the change of
variable formula that

Qf(z) § CL Idf(w)l(]. — Icpz(w)lZ)n-}-ld)\(w)
s C/B ldf(w)|(1 — |w]?)" (1 — |2]?)"

=< w,z > oD

d\(w)

(1= Jw>)»e
1= <w,z > 20D
1/p

<01 - o)™+ [B (1~ o) df (w)[](L — wl?)* dA(w)

§ C(l - Izlz)n+l l:/B[(]' _ |w|2)|df(w)”p(1 _ |w|2)sd)\(w)
— lwl?)® g(n—s8)—n—1 1/q
X [/B (1= ') dV(w)] .

1= <w,z > Ao

By proceeding as in the proof of Lemma 3.1, we find the desired results. O
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Theorem 3.4. Let 1 <p< ¢ < oo, s < —p, and feh(B). Then

MB; c MB; C MBo, C MB.

Proof. 1t is clear that if s < —p, then (Qf)(z) < C||fl|lg. for some constant
C > 0 which implies : M B~; C MB.,. The rest follows as in Theorem 3.2. O

Definition 3.2. The uniform space of a linear space X of functions on B,
denoted by U(X), endowed with a semi-norm || - ||x is defined by

U(X) = {feX :sup||fop|lx < oo forall pedut(B)}.

In general, U(X) is a proper subspace of X. There are spaces whose
uniform spaces coincde with themselves. The Bloch space B and the Besov
p-spaces B, are such examples

Theorem 3.5. Let s > n be fixed. Then for all pe(0, 00)
B c U(B,) C B,.

Moreover, if 2n < p < ¢ < oo, then HB; C HB;.
Proof.
(3.3)

1F oeullyy = [ QPP (@)1= lpa(w)P)drw)

|w|2)8

<w,z> 2

— [wl?)*

<w,z > |28

==k [ @)t a\(w)

<(1-|z)?) i‘i‘;@f)p(w)/a -
< Cliflls

for all s > n and pe(0, 00), since the last integral behaves like (1 — |2|2)~* a

|z| — 1. This implies that B C U (B’) for all s > n. That U (B’) C B, is
clear. To prove the second statement, we observe that if s > n and p> 2n,
then HB, = H B’8 by Lemma 2.8. Also by Corollary 2.5, HIS’8 = AP for
g=s—n—1.Ttis Well known that A? is a non-decreasing famlly of functlon
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spaces of pe(0, 00) with a fixed ¢ > —1, and hence, H B is also non-decreasing
in pe(0,00) for a fixed s=qg+n+1. O

Remark 3.6. (a) It is easy to see that if p < n, then the space Hl;g consists
only of the constant functions and non-trivial for p > n. This contrasts
to the fact that the invariant space H Bg consists of constant functions for
p £ 2n (Corollary 2.12) and non-trivial for p > 2n (Lemma 2.10). When
n=1, HB) = H 32 for all 0 < p < oo, and there are non-constant functions
if and only if p > 1 [3].

(b) If feH(B), it follows from Corollary 2.6 that for every integer m
satisfying mp > n and for pe(0, 0o|, any of the following

1/p

1fllg, = [ [1a=lpmoms@pa - =ryrae)] - +15o)

defines an equivalent norm for the space H BZ, provided that m is an integer
satisfying m > . Therefore, for the sake of simplicity we usually take m =1
in the definition of norm.

(¢) In view of the previous results, the characters of the Besov spaces M B,
are strongly influenced by the values of seR.

Indeed, we have the following phenomena :

(i) For a fixed s = 0, the family of Besov spaces MB; is an increasing
function of pe(1, c0) and satisfies : L>)1M B, C MBs, by Theorem 3.2.
P

(ii) For a fixed s > n, HB; is a non-decreasing function of pe(2n, 00), and
satisfies : MBo C U(MB;) C MB,, by Theorem 3.5.

(ili) For s = n, H? C HBj when p 2 2, HB} C HBj C H? when
0<p<S2,and H2 = HBY.

Similar results are not available for each fixed value of s between 0 and n.

We shall call the weights s = 0 and n the critical weights for MB, and
describe the spaces corresponding to these weights more in detail in the next
chapter.
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Chapter VI The Besov p-Spaces with Critical Weights.

In this chapter we consider the Besov p-spaces I;; = B{f (s =n—Bp) of
weights s = n, n+ 1, and 0. As it is noted in Remark 3.6 in the previous
chapter, these weights make up in some sense threshold values for the be-
havior of the spaces M I§; Furthermore, the Besov spaces corresponding to
these weights constitute the most interesting spaces.

1. The BMO(0B) and VMO(dB) Spaces

We consider the Besov spaces lg;‘ with weight n. These spaces correspond
to diagonal Besov spaces Bg which are closely related to the Hardy spaces
H?, BMOA(OB), and VMOA(OB) spaces. ‘

The Hardy space H?(0B), 0 < p < oo, is the space of holomorphic func-
tions f on B which satisfy

FIE = Sup /S |7 (rO)Pdo(¢) < oo.

For (eS and 0 < § £ 2, let
(1.1a) S5(¢) = {neS: 1- < n,{ > | < 8},
be the Koranyi ball centered at (eS with radius V6, and let

(1.1b) Bs(¢)={zeB:|1— < z,¢( > | < §} [44,5.1.1].

Definition 1.1. A positive Borel measure y on B is called a Carleson measure
if there exists a positive constant C\, such that

(1.2) w(Bs({)) = C,é™, forall (S, 0<é<2

The following result concerning the Carleson measure is due to Hérmander.
See [29] for example.

Theorem 1.1. A finite measure p is a Carleson measure on 8B if and only
if there exists a constant C' > 0 depending on p such that for all feH%(0)

(1.3) [ 1£Pdu < €l
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Definition 1.2. The space BMO(0B) of functions of bounded mean oscil-
lation on B consists of L!(o) functions f which satisfy

”f”BMO = Sup{M6(C) : CGS, 6 > 0} < oo,

where Ms(¢) = ;m fSo(C) |f(n) — fsldo(n), and fs is the average of f over
S5(¢). The space VMO(OB) of functions of vanishing mean oscillation on
B is a subspace of BMO(9B) for which lims—.o Ms(f)(¢) = 0 uniformly for
all (eS. We denote the corresponding spaces of holomorphic functions by
BMOA(0B) = BMO(8B)N H(B) and VMOA(O0B) = VMO(8B) N H(B).

One of the fundamental rsults in the theory of Hardy spaces is the Fefferman-
Stein duality theorem between H' and BMO [16]. The corresponding result
for holomorphic functions was proved by Coifman-Rochberg-Weiss [15].

Theorem 1.2 [15]. (H')* = BMOA(OB) under the usual pairing

(1.49) < fu9>=lim [ £(Q)500do()

for feH' and geBMOA(OB).
There are many different characterizations of BMOA(OB) space in the
literature. We shall gather them in the following :

Theorem 1.3. Let feH*(B). Then feBMOA(OB) if and only if any of the

following conditions hold :
Ifll = llfllBmo < oo

1£ll2 = 1flle = sup,.5 { fs P(z, OIF(C) = F()Pdo(()}* < oo
17lls = 1fllc = sup.ep |1 0 ¢2llaz < o0

1flls = sup..5 {5 P(z, OIF(O)2do(¢) = |f(2)12}? < o0
]|f||5 = SUp,.B ]|focpz - f OSOZ(O)HH'Z < oo

1£lls = sup.ep { [ G(z,0)(QF) (w)dA(w) }'"* < oo
1£1lr = sup.ep { fy T Lmdis(w) } < o,

where dpuz(w) = (Qf)2(w)(1 — [w[2)*dA(w)
I£lls = sup{(us[Bs(Q)]/6") : 6 > 0, (eS} < oo
1£lls = sup.e { f LIV 11 = IRFP) (w)dv(w)} < oo
1£1lo = sup.cp { f T2 (1 = wl?) IV f(w)Pdv(w) } < oo
Iflhs = sup {| [ fado| : geHA(B), lgllmz =1} < oo

Il
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Proof. The proof of the equivalences between ||f||Bao, ||fll1, ||fllz, and
[|fll10 can be found in [33] when one uses Lemma 4.1 of [13], while the
equivalences of ||f||2, ||flls, ||flls, || fll7, and [|f|ls are proved in [13]. The
equivalence between ||f||2 and [|f||4 follows from a simple computation. The
equivalences of ||f||Bao, ||f|ls, and ||f||11 are proved in [15].

Therefore, it remains to prove the equivalence of ||f||¢ and ||f]|7. It is
easy to see that there are constants C; and C, such that Green’s function
G(z,w) satisfies :

(1.5a) Ci(1 = lp(w)]*)" £ G(z,w) (z, weB),
- and
(1.5b)  Co(1—p(w)’)" 2 G(z,w) (if |p:(w)| Z ¢ > 0),

see [21] for example. The equivalence of ||f||¢ and ||f||; now follows from
(1.5a) and (1.5b) together with (1.3.2b). O

Corollary 1.4. Let feH?(B). Then feV MOA(B) if and only if any of the
following conditions holds :

(a) limMg(f)(C) = 0 uniformly for all (eS.
(b) lhlml Js P(2,Q)IF(Q) = £(2)?do(¢) = 0

(c) Ihlmlllfwzllsn =0

(d) B {Js Pz, OIF(Q)IPda(¢) = 1f (=)} = 0
() Lim [lfop: = foe:(O)llm =0
(f) hm 5 G(z,w)(Qf)*(w)dA(w) = 0

II1

(&) lim [ 9L (Q)2(w)(1 ~ [w]?)"dM(w) = 0

|2 I—’1

(h) %l_if(l)ﬂf[B&(C)]/(sn =0 uniformly for all (eS.
() lim f pCE R (V12 = 1R 12)(w)dv(w) = 0
() hm 5 ol (1~ [w?)|V f(w) 2du(w) = 0

|z]—1
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Theorem 1.5. VMO(8B) C MBy(B) and BMO(8B) C MBu(B).

Proof. From (V.1.5) and (V.1.6b), there exists a constant C' > 0 such that
for all pe[l, 00) and feh(B)

(@F)(2) SClIf o ¢: = F(2)llLon)-
From the fact that ||f||zs(y) = v/2n]|f]|Lr(s), We obtain
(QF)(2) £ Cv2nllf o 0. — £(2)llzr (o)
from which the theorem follows. [
Theorem 1.6. Forallp21, MB, C VMO(8B) C MB,.

Proof. Fix p > 1 and let 1/p+1/¢q = 1. First, we shall prove : MB,, C
VMO(OB). Let feMB,p and let du(z) = (Qf)%(2)(1 — |2|*)"d\(2). Then

u[Bs(0)] = /B @I )

_ / (Q)(2) du(z)

) 1/p 1/q
@)"(=) . du(z)
= (/Bs(c) a-fepre ) (/Ba(c) (1- IZ|2)”+1“Q") '

The first integral approaches 0 as § — 0, since feMB;, and the second
integral is finite for ¢ > 1. Thus, MB,, C VMO. But since MB, C MB,,
by (V, Theorem 3.2), we have MB, C VMO C MB, forallp21. O

Theorem 1.6 has been proved in [60] for the case n = 1.

2. The BMO(B) and VMO(B) Spaces.

The holomorphic Besov p-spaces : H lgz',“"l =H B’I’,""1 = HB, P with
weight s = n + 1 are precsely the Bergman spaces A? = A}, due to (V,
Corollary 2.5). As we have proved in (V, Theorem 3.5), the spaces MBy*!
contain the Bloch space M B as a subspace and the inclusions are continuous
for pe(0, 00).
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Definition 2.1. For a fixed r¢(0,1), 1 £ p < oo, and feL!(v), we define
1
IE(Z,T‘)I E(z,r)

Mopf<z,r>={ [E INGRAC )lpld’(’(“’))l} Crso,

_ p E@APE@ R
10,1:) = { [ [ 1700 - s ELDECA 1y}

The space BMO(B) of functions of bounded mean oscillation on B con-
sists of L (v) functions which satisfy :

fr(z) = f(w)dv(w),

l|fllBMo = sup{MO, f(z,r): zeB} < oo,

" here the quantities on the right hand side of the equality are independent of
r > 0.

The space VMO(B) of functions of vanishing mean oscillation is the sub-
space of BMO(B) for which

|1}m1M01f(z’ r) =0 for some r > 0.

We denote the corresponding spaces of holomorphic functions on B by

BMOA(B) and VMOA(B).

Theorem 2.1 [34]. Let1 < p < oo and felil(u)ﬂiz(B). Then the following
statements are equivalent to fe BMO(B) N h(B).

(a) supMO,f(z,7) < 0o, for some re(0,1)
(b) szlelgMOpf(z,r) < oo, for all re(0,1)
(c) supMO, f(z) < oo

(d) SzI:lgMOz f(z) < o0

() sup {5 1f 0 0:(w) = F(=)Pdu(w)}” < o0
(f) feMB
(8) felip = {feC(B): flls < o0},

where ||flls = inf{a: [f(2) = ()| £ afi(z, w)}.
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Theorem 2.2. Let 1 < p < oo and let feL'(v) N h(B). The following
statements are equivalent to feVMO(B) N h(B).

(a) ]lilllllMOPf(z,r) =0 for some re(0,1)
(b) |£i|r—l>11M0pf(z’r) =0 forall re(0,1)
(©) lim MO, f(z) =0

(d) |1i|1—1>11M02f(z) =0

(©) Lm JpIf 0 pz(w) = f(2)Pdv(w) =0
(f) feMB,

From Theorem 2.1 and Corollary 2.2, we obtain

Corollary 2.3 [15]. BMOA(B) = HB and VMOA(B) = HB,.
The following duality theorem has been proved by several authors. See
[61, Theorem 3], [57] for example.

Theorem 2.4 [15]. A(B)* = HB and (HB,)* = A'(B) under the pairing

<ﬂg>y=éj@ﬁ@ﬁ%ﬂf

3. The Invariant Besov p-Spaces

Consider the modified Besov p-spaces gg of weight 0. These spaces corre-

spond to the diagonal Besov spaces By /P 1t p > 2n, then
HB}/? = HB = HB, = HB,.

and the spaces HB, are the only holomorphic Besov p-spaces HB, with
weight seR which are invariant in the sense that ||f o ¢,||,s = ||f]lp,s for
all peAut(B) and all feHB,. Therefore, we often call HB, the invariant
Besov p-space. As we have already observed in the previous section, there
are others. The Bloch space HB is such a space. In fact, the Bloch space is
maximal in the sense that it contains all such invariant spaces. The space
HB contains the little Bloch space HBjy which is the closure of polynomials
in HB (see § 4.3). The Bloch space HB also contains BMOA(0B) and
VMOA(OB).
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We now introduce the notion of Mobius invariant spaces. It was Arazy-
Fisher-Peetre [3] who first introduced the Mobius invariant Banach spaces
of holomorphic functions on the unit disc U and showed that H B,, B, By,
BMOA(OD), and VMOA(OD) are among the Mobius invariant spaces.

Definition 3.1. Let X be a linear space of functions on B with a semi-norm
p- X is said to be Mobius invariant if the following conditions hold.

(a) X is complete in the the topology generated by p and embedded con-
tinuously in the Bloch space B, i.e., there exists a constant A > 0 such that

[|flls £ Ap(f) for all feX.

(b) For all feX and peAut(B), fopeX.
(c) There exists a constant C' > 0 such that for all feX and peAut(B),

(3.1a) p(fop) = Cp(f)

(d) For each feX, the composition map Cj : Aut(B) — X, defined by
C¢(¢) = f o p, is consinuous.

Note that if (c) holds then we can define a new, and equivalent, semi-norm
p' on X by

(3.1b) p'(f) = sup{p(f o ¢) : peAut(B)}.

With this new semi-norm p’ in place of p in (c), C = 1. Namely,

(3.1¢) p(fop)=p'(f)

for all feX and peAut(B). When p in (c) satisfies (3.1c), X is called a
strictly Mobius invariant space. Evidently, every Mobius invariant space can
be made into a strictly Mobius invariant space.

In the following we exhibit some well-known spaces which are Mobius
invariant spaces and also some which are not. See [42].
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Examples 3.1. (a) The Besov p-spaces HB,(B) of holomorphic functions
on the unit ball B C C" is a Mobius invariant space for 1 £ p < co0. In
particular, when n = 1 and p = 2, the Besov 2-space is known as the Dirichlet
space and is denoted by D. It is given by

D-——{feH(U):/Ulf'(z)|2dxdy<oo}, z=2x+1y.

The fact that HB), is Mobius invariant is proved in [3] for the case of disc
in C and in [22] for the case of the unit ball B C C". The fact that HB,(B)
is Mobius invariant is proved in [42, Corollary 4.4]. Notice that HB, = H l;’p
for the case n = 1.

(b) Let A(B) = H(B)NC(B) be the ball algebra. Then A(B) is a strictly
Mobius invariant space with the sup-norm, as is the case for the space H®
of bounded holomophic functions on B.

(c) The Bloch space HB is (strictly) Mobius invariant, but it does not
satisfy the condition (d). Indeed, let f(z) = log(1 — 2z)™1, 2eU C C. Then
feHB(U), but for 8, 6'eR

Ifoei® = foe?|g22.

Hence the group action in condition (d) is not continuous. However, the
group action is continuous in the weak*-topology.

(d) The little Bloch space HBj is (strictly) Mobius invariant. The group
action in this case is continuous, since if feH B, is non-constant, then there
exists a point zoeB that realizes the semi-norm, i.e., sup(Qf)(z) = (Qf)(zo).

zeB

(e) The space BMOA(OB) is (strictly) Mobius invariant as is its subspace
VMOA(OB).

Note that neither H* nor BMOA satisfy condition (d) although in both
cases the group action is continuous when the space is given the weak*-
topology. The group action is also continuous when the function space is
given the topology of uniform convergence on compact subsets.

(f) The classical Hardy spaces H? do not satisfy conditon (c) for pe[l, co),
since for feH?

IIf o @llar £ CQA—|2[)7"?||f||a».

As is mentioned in the beginning of this section, H? is in general not con-
tained in HB. Neither is HB contained in H?.
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(g) The Besov p-spaces H B, with weight s > n satisfy condition (c) by
(V.3.3), but these spaces are not contained in HB. In fact, the opposite is
true by (V. Theorem 3.5).

In the following we construct the smallest Mobius invariant space, in the
sense that every Mobius invariant space contains it.

As it is remarked in Chapter 1, each aeB, the map a — @,eAut(B) is
continuous from B into Aut(B). It is also true that ¢, — @ uniformly on
compact subsets of B as |a| — 1. Thus we identify ¢, with a on 0B.

Definition 3.1. Let e;(2) = z;, ¢ = 1,--- ,n, be the coordinate functions

- and define the subspace M of H(B) by

M= {feH(B) f= Zc,«p,-, peAut(B), c;eC, Z lei] < oo} ,
=1 =1

and the norm by

Hﬂh4=hﬂ{§:kdnf=§:qw}-

1=1 =1 .

Then we have the following theorem of M. Peloso [42, Theorem 2.5] who
extended an earlier one variable result of Arazy-Fisher-Peetre [3] to the case
of the unit ball in C™.

Theorem 3.1. The space M is a Mobius invariant space. Moreover, it is
minimal in the sense that if X is any Mobius invariant space that contains
a nonconstant function, then there exists a constant C > 0 such that for all
feM

Ifllx = ClIfllam.

Corollary 3.2. Let X be a Mobius invariant space with invariant semi-norm
|| - ||x. Supposé that X contains a nonconstant function. Then there exists

two positive constants C;, 1 = 1,2, such that for every f, holomorphic in the
neighborhood of B,

Iflls = Cillfllx < Collfllma-
It is shown in [42, Theorem 4.1] that the minimal invariant space M can

be identitified with the modified 1-Besov space HB, which can be in the
following form :

HB, = {feH(B) : / |0™ f(2)|dv(2) < oo},
B
by [V, Remark 3.6 (b)], with m = n + 1. Consequently, we obtain
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Theorem 3.3 [42, Theorem 4.2]. The modified Besov 1-space HB; is a
Mobius invariant space.

Using complex interpolation and the same argument used in [62, Theorem
5], we obtain

Theorem 3.4 [42, Corollary 4.4]. For 1 £ p < oo, the modified Besov
p-spaces HB,, are Mobius invariant.
Theorem 3.4 has been proved earlier in [5] and [59] for the case p > 2n.

Introducing a modified radial differential operators R*, Peloso [42] proved

that B, is actually the unique Mobius invariant Hilbert space which realizes
the following duality relations :

Theorem 3.5 [42, Theorem 5.13 & Proposition 5.14]. Let p > 1 and
1/p+1/q=1. Then

M* = HB/C, (HBy/C)*=M, and (HB,)*= HBE,,

using the invariant Hilbert space inner product pairing :

2\n 2\n — .
< f,g >2= / (@ Izllil) Fr £ )-(-l-l—llil—)—%g(z)d/\(z), for f,geHB,,

where R, k = 0,1,---, are defined by setting R° = 1, R! = R, and for
kE>1, 5
RF = [R/(k —1) + IR+,

inductively.
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Chapter VII Boundary Behavior of Besov Functions

This chapter deals with the boundary behavior of M-harmonic functions
in the Besov p-spaces of various weights. It is shown that (i) if s = n, then
any M-harmonic function in B has admissible limits a.e. on the boundary
S = OB of the unit ball B in the sense of Koranyi for all p > 2n [14], (ii) if
0<s<n,1<p<oo,andn > 1, then any M-harmonic function in MaB;
has tangent1al limits a.lmost every where on S along a tangential approach
region {24,,(¢), CeS, having the degree n < n/s of tangency with S, (iii) if
s = 0, then feMB, has tangential limits along every direction in B, i.e.,
along an approach region having infinite degree of tangency with §, (iv) if
-p<s8<0,1<p< oo, then feMB, satisfies the Lipschitz condition of
order —s/p and has a continuous extension to the closure B, and (v) if s > n,
then the spaces M B, include the Bloch space MB as a subspace. Therefore,
there are functions in M B » Which do not have radial limits on a set of positive
measure on S.

1. Admissible Boundary Behavor of M-subharmonic Functions.

In the following we define various approach regions in B which will be
used in this and the rest of the chapter. For any zeB, we let z = r( for some
(eSand 0 S r < 1.

Definition 1.1. For (eS,a >1,and 0 < § < 1, let

(1.1a) S5(¢) = {neS: |1- <n,( > | <6}

be the Koranyi ball centered at { with radius /6, and for n > 1, let
(1.1b) Do(¢) ={2¢B: |1- < z,{ > | < a(1 — |2|)},

(1.1¢) Qapn(()={2eB:|1- < z,{ > |" < a1 — |2])}.

The regions D, (() are equivalent to the Koranyi admissible regions which
are non-tangential to S in the complex radial direction and tangential in the
other directions. On the other hand, the regions Q4 ,(() are tangential in all
directions with the boundary S.

The regions §24,,(¢) are considered by Nagel et al. [40] for n = 1 and by
Shaw [47] and Hahn-Youssfi [24] for general n > 1.

First we state Ullrich’s analogue of Littlewood’s theorem on the existence
of radial limits of subharmonic functions on the unit disc U in C.
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Proposition 1.1 [55]. Suppose u is M-subharmonic on B and satisfies the
growth condition (IV. 1.2) withp = 1. Then lirriu(rc ) exists for almost every

CeS.

The main result of this section is the following theorem of Cima-Stanton.

Theorem 1.2 [14]. Suppose f is M-subharmonic and satisfies the condition

(IV. 1.2) with p = 1. If Af is absolutely continuous with respect to the
invariant measure d\ and

(12) /B (AFP(2)(1 - |2)"dA(z) < oo

for some p > n, then f has admissible limits a.e. on S, that is,

lim wu(z) exists a.e. on S.
Da(¢)32—¢

Proof. By (IV, Theorem 2.4), the function f can be written as the sum of
an M-harmonic function h and a Green potential

(1.32) Gu(z) = /B Gz, w)dpu(w)

where du(w) = Afd) is a positive Borel measure defined in the sense of
distributions and satisfies :

(1.3b) /B(l ~ [w]*)"dp(w) < oo.

The function h satisfies the condition (IV. 1.2) and thus, by Koranyi’s result
[36], has admissible limits a.e. on S. Therefore, it remains to prove that the
Green potential has admissible limit 0 almost everywhere on S. We need the
following three technical lemmas :

Lemma 1.3. Leta > 1, 0 < r < 1. For any aeD,(() there exists a constant
€ = Cq,r > 0 such that for all § > c

¢a(rB) C Dg(()

Proof. Let zerB and aeDo(¢). From the identity (I. 3.2a), we have
[1-<a,(>||1- < z¢4(¢) > |

Il_ < (Pa(z)>< > | =

1- < z,a > |
o (L) (= laP)1 = e
= 1—r 1- < z,a > |?

S B(1 = lpa(2))),
which is the required inequality. O
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Lemma 1.4. Let zeB, a > 1, and Dy(z) = {CeS : zeDo(¢)}. There exists
a constant C' = Cy n > 0 such that

(1.4) o(Da(2)) £ C(1 = |z*)".

Proof. Let CeDy(z). Then zeDo(C). Set n = z/|z|. Then by [44, Lemma
5.4.3],

(1.5) [1- < ¢n> | <4dall- < 2z, > | £4a(l — |2}

so that Da(z) C S(n,/4a(1 — |z|?)). Using [44, Proposition 5.1.4], there
exists a constant Ay > 0 such that

o(S(n, vVAa(l — |27)) S Aglda(l - |2[))"
which proves the lemma. O

Lemma 1.5. Let p 2 1 and Dg ,(¢) = Dg({) N {2€B : |z| > p}. If

(1.6a) / F(2)P(1 = |z[*)"dA(z) < oo,
B

then

(1.6b) / F(2)PdA(z) < oo

Ds(Q)

and hence

(1.6¢) lini f(z)PdA(z) = 0.
P2 JDg,,(¢)

Proof. By Lemma 1.4, 0(Ds(z)) £ C(1—|2|>)". Hence, by Fubini’ theorem,

/S(/Dﬂ(c) f(z)Pd)\(z)> da(O:/B/SXb,a(z)(C)dU(C)f(Z)”d)\(z)
s¢C / (1= [z]*)" f(2)PdX(2).
B
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Since the last integral is finite by our assumption, the conclusion of lemma
holds. O

. Proof of Theorem 1.2. Let G(z,w) = (g 0 ¢.)(w), where g is defined by
(IV. 2.3), be the Green’s function of B. Define

(1.7) g90(t) = 9(t)x(0,1/2)(t), 91(t) = g(t) — go(t), -
Go(z,w) = go(lp:(w)]), Gi(z,w) = g1(J-(w)]),

so that the Green potential can be written as

(1.8a) /B G(z,w)Af(w)dA\(w) = 1po(z) + 11 (2)
with

(1.8b) Wo(z) = /B Golz, w)A f(w)dA(w)
(1.8¢) Py(z) = /B G1(z, w)A f(w)dMw).

We will show both 1 and 3; have admissible limits almost everywhere. By
(VI. 1. 5b) and (1. 3.2b),

$i(2) S C /B (1= () 2)" A f(w)dA(w)

—o [ (=) a-wpraswne)

1— < z,w > |2

We define a measure 7 on S by
(1.9 () = [ (1= [wP)"Bfw)iAw)
A

where A = {weB : w/|w|eA}. Since the measure du(w) = Af(w)d\(w)
satisfies (I.3b), 7 is a finite measure. From the inequality |1— < z,w/|w| >
| <2|1- < z,w > |, we find

( 1|2 ) < 2" P(z,w/wl),

1- < z,w > |2
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and hence

@) [ P dr).
We define the maximal function of 1); by

[Matp1)(C) = sup{)1(2) : zeDa(¢)}-
From [44, Theorem 5.4.5], we have
G{Malfll > t} < CIJ-E-U-
It is now standard that 1; has admissible limits a.e. on S. To see that g

has admissible limits almost everywhere on S, we observe that Go(z,w) is
supported on ¢,(B/2). Therefore, if 1/p+1/q + 1, then

w@ s ([ [G(,(z,w)]w(w))l/q (f [Af(w)]”dk(w)y/p-
Due to the invariance of d), we obtain
[ Gotwrar) = [ faoleslrarc)
= [ Ino(toDrarcw).

From the following estimates of Green’s function :

log(1/t) for0<t<1/2, n=1
(1.10) go(t) =~ { t272n for0<t<1/2, n=2
0 for1/2<t< 1

we find that Go(z,-)eL?(B, \), provided that ¢ < n/(n—1). Hence, if p > n,

1/p
o(z) £ C < / (3/2)[Af(w)]”d)\(w)) .

Let o > 1 be fixed and set § = 3a. If weB/2, then |p.(w)|? = 2|z|* - 1.
From Lemma 1.3, if p < 2|z|%2 — 1, we have the inclusion

¢:(B/2) C Dg,,(¢)
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and hence
1/p
Yo(2) SC ( / [Af(w)JPde)) .
Dg, 0 (¢)
Lemma 1.5 with Af in place of f and zeD,(() implies :

lin%z/)o(z) =0 a.e. ondS.

Since f = h + %o + ¥ and each function of the sum has admissible limits
almost everywhere on S, so does f. O
As a consequence of Theorem 1.2, we have

Theorem 1.6. If p > 2n, every feMB}(B) has admissible limits almost
everywhere on S. If s > n, then there are functions in M B;(B) which have
no radial limits on a set of positive measure on S.

Proof. If f = u + z'veiz(B), then v and v are both real valued M-harmonic
functions on B and |f|?> = u® + v2. Consider first the real part u. It satisfies:

(1.11) —;-\/[lzﬂ(z) < (Ou)(z) < VA,

by (V.1.5) and hence
(1.12) /B(Qu)f’(z)(l = [2*)"dA(2) = /B[Au2(z)]1’/2(1 = l2[*)"dA(z).

Therefore, by Theorem 1.2, if p/2 > n, then u? has admissible limits almost
everwhere on S and so does u. Since we can draw the same conclusion for
v, we prove the first part of the theorem. The second half follows from
[V, Theorem 3.5] and the well-known fact that the holomorphic Bloch space
HB(U) on the unit disc U contains a function which has no radial limits on
a set of positive measure on T' = 9U. In fact, the Riemann mapping function
f that maps the unit disc U onto the domain D = C — {(m,n) : m,n € Z}
provides such a function. O
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2. Tangential boundary behavior of M-harmonic functions.

Definition 2.1. For a function f : B — C and (eS, let

(2.1a) (Mo f)(2) = sup{|f(2) — f(0)| : zeDa({)}
denote the admissible maximal function (modulo constants) of f and let
(2.1b) (Mo, f)(¢) = sup{|f(2) — F(0)] : zeQa,-({)}

be the tangential maximal function (modulo constants) of f. That is, My, - f

is the maximal function of f with respect to the tangential approach region
Qq,7(¢). Note that Dy(() = Qa,1({) is an admissible region.

We prove the following L? estimate of the tangential maximal function.

Theorem 2.1 [24]. Let pe(1,00), 0 < m < n, and seR. Suppose that p is
a positive measure on S such that for all (eS and § > 0

(2:2) #(Ss(¢)) = C8™,

where C' is a positive constant.
Let s < m, then there exists a positive constant C such that

(2.3a) [[Mafllze(s,uy S Callfllss-

for all M-harmonic functions f on B. If, in addition, s < m/r, then there
exists a positive constant Cy r such that

(23]3) ”Ma,rf”LP(S,V) é C“.fHB;

for all M-harmonic functions f on B.
To prove the theorem we need a series of preliminary lemmas.

Lemma 2.2. Let z = |z|neB with neS, and let {n = ny,m2, - 1.} be an
orthonormal basis for C". If re(0,1) and (vy,--- ,v,)eC™ are such that v =
E;;l vjnjerB, then

(24&) ‘Pz(v) = 1"21_ V1 m \/1 — |Z| Z 5Ny

|z|v 1—|z|v =

(2.4b)

IZ|2) g 1- lgoz

Proof. (2.4a) follows from the definition of ¢, and (2.4b) is an immediate
consequence of (I. 3.2b). O
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Lemma 2.3. Let 1 < a < f3, (€S, and let z = |z|neD,(¢) N {|z] > 3/4}.
Then there exists re(0,1) such that ¢,(rB) C Dg(().

Proof. Let z and {n = 71,72, -+ ,na} be as in Lemma 2.2, and let 0 < r <
2/3. Then each w = |w|fep,(rB) can be written as

n

w=¢,(v) with v= Z vjn;erB.

J=1
If |z| > 3/4, then by (2.4a) we have
(2.5) lw||1 = |z|v1]| 2 ||2] — v1| 2 1/12.
By (2.4b),
1—r 2(1+r)
_ (1 -— <1-— <= 71—
(26) s - DS 1- s 2D,

from which it follows that

3
1

+r
1—|z]lw] £1=|z| +1 = |w| £ — (1= |w]).

But since |z| 2 3/4,
11— Jw® — (1 —2)|
2] + [w]

11— fwl* = (1= |2)]

< 5(11—6_%)(1 —w|), by (L3.2b).

(2.7) |lwl — || =

HA
W

Therefore, by (2.4a) we obtain

(2.8) 1-<&n>|=1- < p:(v),n > /|
_ lwl(@ = Jzfvr) — 2] + v
|w|[1 — |z]vy]
S 12[|w|(1 = |z]v1) — |2z] + v1], by (2.5),
254 3r
1— |wl).
- (1= |w|)

< 4r
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From (2.7), we also obtain

(29) 1l S1-ful+ fl - 2] € gH=5(0 - o)),

By the triangle inequality,

(2.10)

1- < &C¢> | S-< &n> V2 41— <n,¢ > V32

<

S1-<&n> "2+ a(l—|2|)]?, since zeDa((),
425430\ 2 /(3 +13r)a\ 2]

()" () e

It is possible to choose r > 0 so small that the expression within the bracket
in (2.10) can be made smaller than /3. For such an r > 0, we have

(2.11) 11— <&¢> [ < B(L = w])
so that ¢,(rB) C Dg(¢). O

Lemma 2.4. Let > 1, n > 1, and 0 < r < 2/3. Then there exists € > 1
such that for all (S, a > 1, and zeQq,-(¢) — Dg({) with |z| 2 3/4

¢z(rB) C Qea,r(¢)-

Proof. Here we use the same notations as in the proof of Lemma 2.3. Assume
that z is not in Dg((), i.e.,

(2.12) 1=zl s 1= <n,¢(> /8.
Then by the triangle inequality together with (2.8), (2.6), and (2.11)

(2.13a)
- <&n>|S[1-<&n> Y2 41— <, ¢ > V2

[(sr(l +7)(25 + :ar))l/2 o

HA

(1—7")2ﬂ |1_<777C>|'
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Denoting the quantity inside the bracket of (2.13a) by /€y, we obtain
(2.13b) 1—<én>|Sell—<n, (>, with ¢ > 1.
Since zeQdq r((), it follows that
1-<&C> " < ell— < 7,0 > |" < aeg(l - |2])

< ac] (1 + %ﬁ) (1-|wl), by (2.9).

3(1—r

Therefore, ¢,(rB) C Qeca,r(¢), with € = € (Lm)-) >1.0

Lemma 2.5. Suppose that zeB and 0 < t; < --- < tyy4; = 1 satisfy
(2.13) 1—telz| =2V ¥ 1 - |2]), k=1,---,N+1.

Then
(a) for each re(0,1) and te[tj,tj.l_v_l],j =1,---,N, we have

¢1:(rB) C ¢1;:(6B),
where § = 6(r) = /(Tr + 1)/4(1.4+ r).
(b) If, in addition, r < 7/47 and a > 1, then there exists € = €(r,a)

such that for all T > 1, (€S, and zeQ4,-(() if t;2eDo(¢) and |z| 2 3/4, then
tjz€QGa2“N+i‘1,r(C) forallj=1,--- ,N +1.

Proof. Let zeB and {n = n1,m2, - ,n,} be as in Lemma 2.2, and let w =
¢1:(v) € @i:(rB), where v = 3 7, v;njer B. Then

(2.14) wepy; .(rB) if and only if [y, 0 4. |(v) S 6(r).
But Pt;z 0Ptz = —P—b, where

z(t; —t
b= ((Ptjz 0 ¢¢:)(0) = ‘Ptjz(tz) = IEJTIZ??
J

This combined with (2.13) shows that

5] < (tj+1 _ tj)lzl — |tj+1|z| - 14+1- tjlz” —1/2
T4 SN~ o)
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so that

A=-PPA-P)  (1-1/490-r%) _301-r)

—_ 2 faed = .
L= lp—s(v)] 1= <b,0> |2 (1+7)? 4(T+r)

Thus, |¢_3(v)| < é(r) so that (2.14) follows which proves (a) To prove (b),
observe that if zeQq ({), then t;2eQ45-N4i-1 ) forall j =1,--- N +1,
by (2.13), and that if r < 7/47, then §(r) < 2/3. Part (b) now follows from
Lemma 2.5 by taking « in place of 8 and 27N+/~1q in place of a. O

Proof of Theorem 2.1. Let zeQ, -(¢) N {|z| > 3/4} and let #4€[0, 1] be the
unique number defined by to2e0D4((), the boundary of D,(¢), if zeDq((),
and ¢t = 1 if 2eD4(¢). Let 0 <r < 1and 1 < p < oo. If f is an M-harmonic

function on B, by the mean value property, there exists a constant C > 0
such that

(2.15a) @f() < C / (QF)(w)dA(w).
E(z,r)
Furthermore,
(2.15b) 1F(2) = FO) < / (@)
T

For the derivatons of (2.15a) and (2.15b), see (V, Lemma 1.6).
Substituting (2.15a) into (2.15b), we have

f(z) - FO) S C / /E _@D@)

(tz,r) (1= Jw]?)"+2
Let 1/p+1/q = 1. By Holder’s inequality, we have
(2.16a)

1 Y £VP (w 1/p
17(z) = O] £ C)\(TB)IM/ {/E(t y (1 Eclzil)z)(ﬁ)nﬂdy(w)} “

0
= C{A(z) + B(z)} for some constant C,

where

to 3 FYP (1 1/p
(2.16b) Az) = /0 { /E G £?£?2§p+)n+ldu(w)} dt
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t 3 £YP (w0 1/p
(2.16¢) B(z) =/; {/;;(t a -E?zj;)z)(”"‘)”‘*l dl/(w)} dt

Fix B > a. Since tzeD4({) for 0 < t < tg, Lemma 2.3 implies that there
exists 0 < r < 7/47 such that ¢, (rB) C Dg({) for all 0 < t < to. It follows
from this fact and (2.6) that there exists a constant C' = C(r,n) > 0 such
that

R 1/p
_[" @) .
A(Z) B /0 {/;(tz,r) (1 - |w|2)p+n+1 4 ( )} a

to A p l/p
<c (1 _ ItZIZ)—l—(s—-m)/P {/ (Qf) (w) dv(w)} dt.
0 E

(tz,r) (1 - |w|2)—-s+m+n+1

Since (s —m)/p < 0 and E(tz,r) C Dg(¢) for all te(0, 1),

A £\p w 1/p
A(z) s C {/;) (@f)"(w) dy(w)} ,

5 (C) (]_ _ |w’2)—s+m+n+1

where C is a constant depending only on r, s, p, and n. By (2.2), we have
(2.17) u(Dg(w)) £ CA™(1 — |w[>)™  for all wh.
Therefore,
(2.18)
[ SR A(AG)) : 260,001} du0)

(@1 ()
S0 [ [ T )

= C/Bu(ﬁﬂ(w))(l(Qf)P(w)

By R EER
<c /B (QFP(w)(1 — [w[?)*d\(w), by (2.17).

d\w), by Fubini’s theorem

If zeDg((), then to = 1 and B(z) = 0, so that by (2.16a) and (2.18) we find

/(Maf)”(C)du(C) S /(Qf)”(w)(l— |w|*)*dA(w),
S B
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so that (2.3a) follows. Next we establish an estimate for B(z). By (2.6),
there exists a constant C = C(n,r) > 0 such that

5 1/p
_[ (@A) e,
B(Z) B /to {\/E(tz,r) (1 - lez)l’+n+l d ( )} dt
A 1/p
1 i g\ —14 =2titm/7 Qf p
g ~/to (1 - ‘tzl ) ’ P {/E(tz,r) (1 - Iw‘z()_sim/f+n+2 dl/(’w)} dt

1 1/q
< c{ (1- |tz|2)("l+w)/th}
to

! ) | 1/p
(Qf)? ~
g {/to /E(tz,r) (1 — |w[?)=s+m/r+n+2 d’/(w)dt} , 1/p+1/q=1.

Since s < m/, it follows that

1 5 FYP (0 1/p
(2.19) Buagc{[‘éu ﬂl_gﬁﬁimhﬁwﬂwww% ,

where C is a constant depending only on r,s,p,7 and n. There exists a
nonnegative integer N such that

1 —tolz] > 2N (1~ |2]) 2 (1 —to|2])/2.

We now break up [to,1] into a partition 0 < t; < -+ < ty41 + 1 that
satisfies (2.13). By Lemma 2.5, we obtain that E(tz,r) C E(t z,6(r)) for all
teltj,tj41],7 =1,---, N, and then by (2.19) we obtain

N+1 i+1 A
» ’ Qf)P(w
(B(Z)) é ; /tj /E(tz,r) (1 _ |UEI2)..).3-E-m)/r+n+2 dl/(w)d‘t

N+1

(QF)P(w)
= tiv1 =1 dv(w).
B ]z=%( 1= H) /E‘(tjz,a(r)) (1 — |w|?)—stm/r+n+2 v(w)

Since tj+1 —t; £ 1 —tjlz] £ C(1 — |w|?), for weE(tjz,8(r)), where C is a
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constant depending only on r, it follows that

N+1 A
. @)
(B(Z)) g ; \/;(tjz,(S(r)) (1 — IwIZ)—s+m/r+n+1 d ( )

N+1

Q)P (w
=2 foo s Tl et

ea2~

S Qf)P(w
§ Z/ - (1 — |U(,l2)—)s-(}-m)/r+n+1 dy(w).

7=0 QeaZ"k ’

Therefore,
(2.20)
/S sup{(B(2))? : 2eQa,+(¢)}du(z)

S (Q1)(w)
=), {Z/ o (A= Twp)=rm/rns d”(“’)} e

=¢ ;:o /B : ({Qmw’fm }) (1- Iw(lg){)s(ﬂ“wm)/wnﬂ dv(w)

<C i(ea?‘k)m (Qf) (w) dv(w), by (3.17)
k=0

5 (1= [wp)—sor
<c /B QP (w)(1 = w[?)*dA(w),

where Qg +(2) = {CeS : 2zeQ4,-(¢)}, zeB. Equation (2.3b) now follows from
(2.16a), (2.18), and (2.20). O

The following theorem now follows from Theorem 2.1 by a standard argu-
ment, see [49].

Theorem 2.6 [24]. Let pe(1,00),0 < m < n,seR, and 7 > 1. Suppose that
p is a positive measure on S that satisfies (2.2). Let feMB,. If s < m, then
admissible limit : lim f(z)asz — (, zeD4((), exists a.e. [u] on S. If, in
addition, s < m/7, then the tangential limit : lim f(z)asz — (, 2eQq -(¢),
exists a.e. [p] on S.

Since the normalized surface measure o clearly satisfies condition (2.2)
with m = n, we have the following corollary.
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Corollary 2.7. Let pe(1,00),s€eR and 7 > 1. If s < n/7, then each feMB;
has the tangential limit almost everywhere [0] on S along an approach region

Qa,r(€)-

Theorem 2.8 [24]. Let pe(1,00),0 < m S n, and —p < s < 0. Then there
exists a positive constant C such that

(2.21) (2) = f(w)| £ Clz —w|™*/?||f||5;, for all z,weB.

for all M-harmonic functions f on B. In particular, feB, satisfies the Lip-
schitz condition of order —s/p.

Proof. Let zeB be fixed. By (2.4b) and (2.15), there exists a positive constant
C such that

QAN sC- Ile)“"/"/ )(Qf)(w)(l ~ [w[*)*PdA(w)

< CA(rB)Y1(1 — |)=/7||flls;, 1/p+1/q=1.

Since (1 — |z|?)|df (2)| £ (Qf)(2) for all zeB, we have
(2.22) |df ()] < C(1 = |2*)71=*/7|| || s

for all zeB. If —p < s < 0, then (2.22) and [44, Lemma 6.4.8] imply (2.21). O
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Chapter VIII Qustions and Comments

In this final chapter we pose a number of questions and comments related
to the subject described earlier in the text.

1. Notations and Definitions
For a function feC*°(B) and m = 1,2,---, we define

(1.1) O™ f(2) = (0% f(2))|al=m» 0™ f(2) = (8% f(2))|a|=m>
d™ f(z) = (8%0° f(2))al+|81=m>

where 0° f(z) = Mﬁl ,0%f(2) = %i(—z), and a and 4 are multiindicies.
Further we deﬁne

(1.2)
o= 155D, rsen= ¥ 1251
la|=m la|=m
= Y |55
|a|+|Bl=m ¢

The radial derivative ®™ of order m is defined inductively by R(R™™!)
form =1,2,---, where

(L3) R = (zj 32:5 5 (Z)) 0f(z) + 7+ Bf (2).

=1

Notice that if feH(B), then

(1.3b) Rf(:)= Y50 = 2 op(),

j=1 %

If feH(B) has a homogeneous expansion : f(z) =Y 7o, fk, then

oo

(1.3¢) R™f(z) =Y k™ fi.

k=0
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Let 0 < p < oo and seR. Recall that the Besov p-space of M-harmonic
functions feh(B) with weight s is defined by

(1.4a) By(B) = {feh(B) : QfeL?((1 — |2|*)*dA\(2))},

the “modified ” Besov p-space by

(14b)  By(B) = {feh(B) : (1 |2[*)™|d™ f(2)[eLP((1 — |2|*)*dA())},
for m > (n — s)/p, and the “diagonal ” Besov p-space by

(14c) By(B) = {feh(B): (1 - |z[*)™|R™ f(2)[eL?((1 — |=[)"P*dA(z))},

for m > s, where dA(z) = (1—|z|?)"™"1dy(2) is the invariant volume measure
on B.

Recall that the modified Besov spaces B8 are defined for any integer m >
(n — 8)/p, independently of m, see (V, Remark 3.6, (b)), and clearly B; =

B > °P. From the following inequalities :

(1.5a) (1= [2®)ldf (2)] £ Qf(2) £ (1 — |2*)!/?|df ()],
we have
(15b) B,"% c By B,

2. The Besov p-spaces and Their Weights

It is clear that for each fixed pe(0,00), both B, and B" are increasing
families of seR, as s increases. In general, similar results do not hold when
these spaces are looked at as functions of pe(0, 0o) with a fixed seR. In fact,
we have following phenomena :

(i) For a fixed s < 0, M B3 is an increasing function of pe(1, c0) and satisfies
: UMB; C MBOO, see (V, Theorem 3.2).

p>1
- See (V, Theorem 3.4) for a similar result in the case of modified Besov

MB3.

(11;) For a fixed s > n,HB; is a decreasing function of pe(2n,c0) and
satisfies : MBo, C MB, for all pe(0,00). See (V, Theorem 3.5).

(iii) For s = n, H? CHB" when p 2 2, HB”CHB"CHP when 0 < p <
2, and H? = HB? Whenp— 2. See [8].
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Question 2.1. The natural question to ask is whether or not the first state-
ment of (ii) holds for the M-harmonic Besov space M B,. That is, is MB,
a decreasing function of pe(2n,o0) for each fixed s > n? A similar question
may be asked for the modified Besov spaces M l§;

In proving (ii), we used the fact that the space HBj and the Bergman
space AJ coincide if ¢ = s — n — 1. Therefore, the question is wether or not
this same result holds for M-harmonic case.

Question 2.2. For a fixed se(0,n), nothing much is known about the be-
havior of the spaces MB,, the behavior similar to those described in (i) and
(ii), as a function of pe(1,00), not even for the holomorphic case H B,. We
do know, however, that if 1 < p < oo and s€(0,n), then feMB, has the
tangential limits of degree T < n/s of tangency almost everywhere on S.
See [24, Corollary 1.3] for details. It is interesting to know more about the
functions in the class M B, for se(0,n).

In the case where the weight s = 0, the following relationship exist between
HB, and HB,.
(i) For0<p=n,B) = ég = C, i.e., the spaces consist only of constant
functions.
(ii) For p>2n,B) = I§’2 = non-trivial, and contains all polynomials.
(iii) For n < p £ 2n, Bg is contained in Bg properly as a subspace.

Therefore, we may ask the following question.

Question 2.3. Find a relationship between BS and B2, analogous to (i) - (iii
: p p g
above, for the case where s # 0.

3. Zhu’s Conjecture

Zhu’s conjecture [22] states that for n 2 2, the Besov p-spaces HB)(B)
(with weight s = 0) of holomorphic functions on B is non-trivial if and only
if p > 2n. This conjecture has been answered positively by Hahn-Youssfi
[22] and by Arazy et al. [5] independently. The M-harmonic analogue of this
conjecture is likely to be true. This fact has already been conjectured in [23]
and is still open as far as we know.

It is also proved in [5] that for n 2 2 the modified Besov spaces H l%g (with
s = 0) is non-trivial if and only if p > n.
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Question 3.1. We conjecture that the M-harmonic analogue of the above
result for HBO holds. Namely, MB0 is non-trivial if and only if p > n.

4. Uniform Spaces

The Bloch space M B, the little Bloch space M By and the invariant Besov
p-spaces MB, (with s = 0) of M-harmonic functions are clearly uniform
spaces, see (V, Definition 3.2) for definition.

Question 4.1. It is of some interests to find the uniform spaces of M B, for
general weight seR.

An attempt may be made by looking at three different cases :
(i) The case where s £ 0, (ii) the case s > n, and (iii) the case 0 < s < n.

(i) Since U(B,) C B, C By for s £ 0 and HB) = C for p < 2n,U(HB}) =
CforsS0 andp < 2n On the other hand, for s £ 0 and for p > 2n, HB”
is non-trivial and contains all polynomials. Thus, U(H B;) must contain aII
the polynomials. It would be more feasible to find U (H B;) first and then
U(MB,).

(ii) Smce MB C U(MB,) C MB, for s > n (V, Theorem 3.5), U(MB;)
contain the Bloch space MB. On the other hand, for s > n, by (V, Corollary
2.5),

£, =~ / FEPQ = [=2)*dA(2).

Hence, ||f o ¢.|lp,s = ||fllLr(B,r) Which implies that U(MB;) contain M-
harmonic LP(B, ) spaces for all s > n. Therefore, U(MB3) contain both
MB and M-harmonic L?(B,)\) spaces. It turns out that nothmg is new,
because M-harmonic LP(B, \) spaces may be identified with M Bg under the
Berezin transform, see (IV, Definition 1.5), in which case we already know
that MB) C MB by (V, Theorem 3.2).

(iii) As of now there is no definite clue found in' this case, due to the
unpredictability of the behavior of MB; for se(0,n). For the case where
s = n, this question is even unpredictable, see (iii) of Question 2.2.
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5. The Space By (|H*®

Question 5.1. We know that for p < 2n,HB) = C C H* and for p >
2n,H BO contain all the polynomials, but so does the space H*®. Therefore,
it is reasonab]e to expect that there may be a value py > 2n such that
HB) C H®> for all p £ py. If such py exists, then HBO C HBy(H® for
all p < po. Recall that the space (By (VH>®)(U) is a subalgebra of H*(U)
on the unit disc U C C. The space (By(VH>)(U) is often called COP
(constant on parts), because it consists of the functions in H*®(U) which
are constants on each Gleason part (except U) of the maximal ideal space
of H*(U),see[B]. Another question which is not unreasonable is to find
go > 2n such that Bo(V\H™ C B, for all ¢ 2 qo. Any aforemative answer
to these questions may provide a powerful tool in the study of the Blaschke
products of holomorphic function theory on the unit disc U C C.

6. The Boundary Behavior of Functions in M B,

A description of the boundary behavior of M-harmonic Besov functions
in MB, is given in Chapter 7. It is rather surprising to see the boundary
behav1or of M-harmonic functions in the class M Bj being characterized by
their weight seR.

In the following we recapture this description :

(i) If s > n, then there is no result that describes a “good” boundary
behavior of functions in M B;. In fact, there is a Bloch function f in HB(U) C
MB,(U) on the unit disc U C C which has radial limits almost nowhere on
the boundary T = U, see (VII, Theorem 1.6).

(i1) If s = n, then any M-harmonic function in M B, has admissible limits
almost everywhere on the boundary S = OB of the unit ball in the sense of
Koranyi for all p > 2n, see (VII, Theorem 1.6) and [14].

(i) f0 < s < n,1 < p < oo,and 7 > 1, then any M-harmonic function
in MB, has tangential limits almost everywhere on S along a tangential
approach region , -(¢), (€S, having the degree 7 < n/s of tangency with §
for all a > 1, see (VII, Corollary 2.7) or [24].

(iv) If s = 0, then feMBg = MB, has tangential limits along every
direction in B, i.e., along an approach region having “infinite” degree of
tangency with S, see (VII, Corollary 2.7) or [24].
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(v) If —p < s < 0andl < p < oo,thenfeM B, satisfies the Lipschitz
condition of order —s/p and has a continuous extension to the closure B, see
(VII, Theorem 2.8) or [24].

The tangential boundary behavior of holomorphic functions similar to the
case (ii) has been considered by Nagel et al [40] for the case n = 1 on the
unit disc U C C and by K. Shaw [47] for general n 2 1 on unit ball B C C".

Question 6.1. Let1 < p < 00,pq = p+q,Fel?(S,0),S=0B,B C C",0<
a <1, and

F(¢)
hol) = [ Gy et

It is shown for the case where n = 1, [40], that

(i) if ap < 1, then h, has the tangential limits of degree v =
everywhere on T = U in the sense of [40],

(ii) if ap = 1, then h, has the tangential limits of “exponential contact
with T” almost everwhere on T, and

(iii) if ap > 1, then h, is continuous on U.

1
—ap almost

It is interesting to see if the above result of [40] can be extended to the
case of several complex variables. For a given a,0 < a < n, it is equally
interesting to find the values of s and p for which hy,eHB,.

Question 6.2. It is curious to see the statement made in (iii) in the begining
of this section still holds for the case T = n/s. The result of Shaw [47] shows
that it is likely to be true. However, it is not immediately clear from the
proof given in [24].

Supplementary Reference

[B] C. J. Bishop, Bounded function in the little Bloch space, Pacific J. Math.,
142 (1990), 209-225.
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