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PREFACE

This is the collection of notes which have been distributed during the
lectures on abstract harmonic analysis in the fall semester of the academic
year 1993 at Seoul National University. The main topic of the lecture was
to inﬁroduce measure theoretic or functional analysis approach to the group
representation theory. It has been assumed that the audience have good back-
grounds on abstract measure theory and elementary functional analysis with
Hahn-Banach and Banach-Steinhaus Theorems. Some advanced functional
analysis techniques such as Banach-Alaoglu, Krein-Milman, Stone-Weierstrass
Theorems and the spectral decomposition theorem have been discussed briefly
during the course.

One of the breakthrough in the group representation theory was the H.
Weyl’s observation that the multiplication of the group ring is nothing but
the convolution in Fourier analysis. This observation leads him to study the
representations of compact groups, generalizing those of finite groups. The
existence of left invariant measure for an arbitrary locally compact group by
Haar enables us to define the convolution and involution on the Banach space
LY(G), to get a Banach *-algebra. We begin this note with the proof of the
existence and uniqueness of the Haar measure, and examine elementary prop-
erties of the convolution and involution. Every unitary representation of a
group G naturally induces a *-representation of the Banach *-algebra L'(G),
where positive linear functionals play crucial roles. We conclude Chapter I
with elementary properties of positive linear functionals on L!(G), or equiva-
lently positive definite functions on G.

In Chapter II, we exclusively consider locally compact abelian (LCA)
groups, whose representation theory amounts to the Fourier transform which
converts L'-functions (respectively complex regular Borel measures) on G to
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continuous functions on the dual group G consisting of characters which van-
ish at infinity (respectively which is bounded). The Fourier transform on
L'(G) may be generalized to the Gelfand transform on arbitrary commuta-
tive Banach algebras. Classical inversion formula for periodic functions and
Plancherel transform on the real line will be proved for arbitrary LC A groups,
using Bochner Theorem on positive definite functions. The central theme of
Chapter II is the Pontryagin duality, which says that the double dual of an
LC A group is topologically isomorphic to the original group. With this du-
ality in hand, every result in Fourier transform has the dual interpretation.
The critical point of the Pontryagin duality is that there are sufficiently many
characters, and this will be proved using the inversion formula. The Fourier
transform may be extended to the distributions if the involving group has the
differential structures. We restrict ourselves to the circle group, and study
the Fourier-Schwartz transform of periodic distributions. The range of this
transform covers every slowly increasing sequence, and so every trigonometric
series with slowly increasing coefficients defines a distribution in a suitable
sense. This completes the idea of Jean Baptiste Joseph Fourier that every
periodic function is represented by a trigonometric series.

In the case of non-abelian groups, the characters should be replaced by
irreducible unitary representations. We begin Chapter III with the establish-
ment of the correspondences between continuous unitary representations of G,
non-degenerated *-representations of L(G) and continuous positive definite
functions on G. Irreducible representations correspond to continuous positive
definite functions which are extreme in a sense. Employing functional analy-
sis techniques such as Banach-Alaoglu and Krein-Milman Theorems, we show
that there are sufficiently many irreducible representations for an arbitrary lo-
cally compact Hausdorff group. We will pay attention to compact groups, for
which every irreducible representation is of finite-dimensional. We decompose
the regular representation of a compact group into irreducible representations,
which amounts to the Fourier series expansion for periodic functions. Compact
groups also enjoy dualities, and we discuss here the classical Tannaka-Krein
duality. We close this note by finding out all irreducible representations for the
simplest non-abelian compact groups such as special unitary and orthogonal
groups with low dimensions.



The lack of time prevents us to continue our study on general locally
compact groups. The author hopes to continue this part in an another chance.
The author would like to express his deep gratitude to all participants of the
lecture. Another special thanks are due to Professors Jaihan Yoon, Dohan
Kim, Hong-Jong Kim and Insok Lee. Discussions with them together with
their comments were indispensable to prepare this notes.






CHAPTER I

GROUP ALGEBRAS

We prove in §1 that there exists a unique left invariant positive Borel
measure on a locally compact Hausdorff group up to constant multiples. It
should be noted that the existence will be proved via compactness argument
using Tychonoff Theorem or equivalently Axiom of Choice. Therefore, it is
an another job to construct the invariant measure for individual groups. In
§2, we define convolution and involution on the space L'(G) of integrable
functions and M(G) of complex regular ‘Borel measures, to get involutive
Banach algebras. It turns out that L'(G) is an ideal of M(G), which has
always the identity for the convolutidn, the point mass 6, on the identity of
the group. Although L1(G) does not have the identity in general, we will see
that there are approximate identities, which are nothing but various kernels
in Fourier analysis. Every involutive algebra has the natural order structure
as in the case of matrix algebras. A positive definite function on a group G is
an L°°-function which represents a positive linear functional on L!'(G) with
this order. An intrinsic characterization of positive definite functions will be

discussed in §3 using the notion of semi-definite positivity of matrices.

1. Haar Integrals

A topological group is an abstract group together with a topological struc-
ture such that the group operations (s,t) — st and s — s~ are continuous.
An abstract group is a topological group with the discrete topology, called a
discrete group. Throughout this note, we denote by R the additive group of
all real numbers with the usual topology. The exponential map t — €2™*! from
R into the multiplicative group of all nonzero complex numbers is a continu-
ous homomorphism. The range and the kernel of this homomorphism will be
denoted by T and Z, respectively.
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From the definition, we see that the left and right translations s — as,
s +— sa are homeomorphisms for a € G, and so the local neighborhood systems
are translated each other. By a neighborhood, we always mean a neighbor-
hood of the identity e, unless stated otherwise. It is easy to see that for any
neighborhood U there is a neighborhood V' C U such that V = V~!. Such a
neighborhood is called symmetric.

Ezercise 1.1. Show that every nontrivial closed subgroup of R is topolog-
ically isomorphic to Z.

Ezercise 1.2. If a topological group G satisfies the Tj-separation axiom
then G is Hausdorff.

From now on, a “group” means always a locally compact Hausdorff topo-
logical group. We also impose implicitly the countability condition such as
o-compactness whenever it is necessary. An abelian group is said to be an
LCA group. The following proposition says that a continuous function on a

group with a compact support is uniformly continuous in a sense.

Proposition 1.1. Let f be a complex continuous function on a group
G with a compact support K. Then for any € > 0 there is a neighborhood V
such that

(1.1) stTle V= |f(s)- f(t) < e
For a function f on a group G, we denote by
fls)=f(t7's),  f'(s)=f(st), st€G.
Note that (1.1) is equivalent to say
(1.2) SEG,teV =>|f(ts)— f(s)| <,

or equivalently, ||f;-1 — f]lco < €fort e V.

Proof. Choose a symmetric compact neighborhood U, and put

W={teG:|f(ts)— f(s)| < e foreach s€ UK}.
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Then it is easy to see that V' = U N W satisfies (1.2). Therefore, it suffices
to show that W is a neighborhood. For each s € UK, the function (s,t) —
f(ts) — f(s) is continuous at the point (s, e), and so we have a neighborhood
Vs of s and a neighborhood W, of e such that |f(wv) — f(v)| < € for each
v € V, and w € W,. Because UK is compact, finitely many V,,’s cover UK. It
is easy to see that W contains the intersection of the corresponding W,,’s O

In the remainder of this section, we show that every locally corhpact
Hausdorff group admits a left-translation invariant (left-invariant, in short)
measure. By the Riesz representation theorem, it suffices to show that there
is a left-invariant positive linear functional on C.(G), the space of all contin-
uous functions on G with compact supports. Such a linear functional will be
exhibited as the limit of sublinear functionals as in the construction of the
Riemann integral.

Lemma 1.2. For given nonzero f,g in C}(G), there are t1,...,t, € G
andc,...,cn € R such that

(1.3) f(8) <) cigu(s), s€G.

=1

Proof. Take a € G with g(a) > 0, and a neighborhood U such that
g(s)2a>0forse€al. Ift1U,...,t U cover the support of f then we have

Aoy < 3 Mooy, (o)

=1

for each s € G. Indeed, if s € t;U then at; ls € aU, and so it follows that
gt.a-1(s) 2 a. O

For nonzero f,g € C}(G), we define the number (f;g) by the infimum
of the numbers {3, c;} through {c;}’s satisfying the relation (1.3). Then we
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have the following:

(1.44) (fr:9) = (f;9),

(1.4.i) (i + f2:9) < (i 9) + (f239),
(1.4.iii) (cf;9) =c(f;9), ¢>0,
(1.4.iv) fi £ f2 = (f1:9) < (f2:9),
(1.4.v) (HiR) < (f9)(gi h),
(1.4.vi) (£,9) Z I fllso/llgll oo

The first four relations are trivial. For (1.4.v), assume that f < }”c;gs; and
g < Y djhy;. Then we have

f(s) < Zcig(t,-_ls) < Zcidjhu,' (t:ls) = Zcidjht.'uj (8)
i,j 1,7

The last property is immediate, if we choose s € G with f(s) = || f]|co-

From now on, we fix a nonzero f; € C}(G), and define

Ag(f) = ((;(;”gg)) ’

for a nonzero f,g € C}(G). Then A, is a subadditive homogeneous functional
on C}(G) which is left-invariant, that is, Ay(fs) = Ag(f) for s € G. By the
relation (1.4.v), we also have

1

(1-5) Goi )

< Ag(f) < (f; fo)-

The following lemma shows that the functional Ay becomes approximately
linear as the support of g becomes smaller. The notations f < V (respectively
K < f) means that f € C¢(G),0< f <1 and

suppfCV (respectively f(z) =1, z € K),

where V' (respectively K) is open (respectively compact) in G.
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Lemma 1.3. For given fi, fo € C}(G) and € > 0, there is a neighbor-
hood V such that

g < V = Ag(f1)+ Ag(f2) < Ag(fl +f2)+€-

Proof. Take f' > supp(fi1 + f2) and 6,¢ > 0 arbitrary. Put f = f1 +
fo+6f and h; = f;/f for i = 1,2. If f(s) = 0 then we put hi(s) = 0. By
Proposition 1.1, there is a neighborhood V such that

tlse V= |h,‘(S) — h,’(t)l <€, 1=1,2.

If g <V and f < 3°,cjge; then |hi(s) — hi(t;)| < € for i = 1,2 whenever
gt;(8) # 0. Hence, for each s € G, we have

£i(s) = hi()f(s) < D cjgs; ()hils) € D ejgn; (8)(ha(ts) + €)-
J J
Therefore, we have
(fi;g) < ch(hi(tj) + 5')’ 1=1,2,

and so,

(f1;9) + (fr9) < ) cj(1 +2¢),
J
because h; + h, < 1. This completes the proof by the estimate

Ag(f1) + Ag(f2) < (1 +26)A5(f) < (1 +26)[Ag(f1 + f2) + 6A,(f)]. O

Theorem 1.4. For any locally compact Hausdorff group G, there is a
positive left-invariant linear functional on C¢(G).

Proof. For f € C}(G), we denote by Iy the interval [1/(fo; f),(f; fo))-
Then we have

re [ I, gecHO)
fect(e)
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by (1.5). By the Tychonoff theorem, []; Iy is compact with respect to the
product topology. For a neighborhood V, we also denote by Cy the com-
pact closure of {A; : ¢ < V}in [];I;. We see that the family {Cv : V is
a neighborhood} has the finite intersection property from the easy relation
Cv, N...Cv, = Cyn...v,. Therefore, there exists A which lies in Cy for any
neighborhood V. From the definition of the product topology, this means that
for any given neighborhood V, € > 0 and fi, fo € C}(G), there is g < V such

that |A(fi) — Ag(fi)l < efor i = 1,2, and |A(fi + f2) — Ag(fL + f2)| < e By
Lemma 1.3, we have

Af1) + A(F2) S Ay(f1) + Ag(f2) +2e S Ay(fi + f2) +3e S A(f1 + f2) + 4e.

Therefore, A is linear and it extends to the linear functional of C.(G). O

By the Riesz representation theorem, we see that there is a left-invariant

measure g on G in the sense

[ #auts) = [ sae)duts) = /G fe9)duts) = [ fs)duts),

for each t € G. By the same argument, there is also a right-invariant measure
v in the sense /fdu = /f‘du:

From now on, we discuss the uniqueness of the left-invariant measure. To
do this, we fix a nonzero g € C}(G) and a right-invariant measure v such that

(1.6) lﬂ@”ﬂﬂﬂ:L

We define the function I on G by

(L.7) mgzﬂﬂrwww.

Then we see that ' is continuous by Proposition 1.1, and I'(s) > 0 for each

s € G, because the function t — g(t~1s) is positive on an open set. Note also
that I'(e) = 1. Denote by A = 1/T..

Lemma 1.5. Let y be a left-invariant measure satisfying

(1.8) jG o(s)dp(s) = 1.
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Then we have dy = Adv.
Proof. Take f € C.(G). Then we have

[ s = [ ST Educs)
= [ [ 7@t 9aue)] auce
= [ s)8e)0(t yaus)ate
= [[ seau(eu)ane
= [ ][ et sancs
= [ ][ roaao)] staucs
= [ soa@ano.

Note that we have used the Fubini theorem in the third equality. O

Assume that p; and ps are two left-invariant measure on a group G. If
we normalize y; so that the equality (1.8) holds then we have u; = pj by
Lemma 1.5. Therefore, we have the following:

Theorem 1.6 (Haar). Every locally compact Hausdorff group admits

a unique left-invariant measure up to constant multiples.

We always denote by ds,dt,... this unique left-invariant measure. If G
is discrete then we always assume that every point has the unit mass. If G
is compact then the constant function 1g lies in C¢(G), and so the whole
measure of G is finite. In this case, we always assume that fG ds = 1. There
should be no confusion when G is a finite group.

Ezercise 1.3. If g' and V' satisfy the condition (1.6) then show that
I(s) = / g'(t71s)dv (t).
G
Show also that

/ F(Es)du(t) = T(s) / fENdu(t),  feCG), s€G,
G G
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whenever v is a right invariant measure.

Therefore, the function I in (1.7) is independent of the choice of g and v
under the assumption (1.6). The function A = 1/T is said to be the modular
function of G. A group G is said to be unimodular if A(s) = 1 for each s € G.

Ezercise 1.4. Show that the modular function of G is a continuous homo-
morphism from G into the multiplicative group of all positive real numbers.
Show that every compact or discrete group is unimodular.

Ezercise 1.5. Show the following relations:

[ sstyas =2 [ soyas
[ faas = /G F(s)ds,

for f € L}(G). [Hint: The measure f +— /f(s'l)A(s“l)ds is left-invariant.]

2. Convolutions
For complex-valued functions f and g on a group G, we define the con-
volution f * g of f and g by

@) GO = [ [ 0ds= [ ft)es, te.

If s is an element of a discrete group G then we denote by x, the characteristic
function on the singleton {s}. If f = 3 asxs and g = 3, bsx: with finite
summations then we have

(f *g)(r) = Ef(s)g(s_lr) = Easbs‘lr = Z agbs, rE€QG,

st=r

and so it follows that
(2'2) | (z aaXs) * (Z tht) = Z(Z asbs‘lr)Xr = Z asbeXst,
8 t r 8 8,t

which is nothing but the multiplication of usual group rings. Note that x, is
the identity for this multiplication in this case.
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If f,g € L'(G) then we may assume that f,g are Borel measurable, and
so the function (s,t) — f(s)g(s~'t) is also Borel measurable. Applying the
Fubini theorem, we get

/ [/ |f(3)9(s"1t)|ds] dt =/ |£(s)g(s~2t)|dtds
= / |£(s)llg()ldtds = £l lgll:-

Therefore, we see that the value (f * g)(t) is finite for almost all ¢ € G and

(2:3) 15+ gl < Wflaligly,  f.g € L'(G).

In particular, the space L}(G) is closed under the convolution.
Ezercise 2.1. Show that the convolution is associative.

This says that L'(G) is a Banach algebra under the convolution: It
is a Banach space with an associative multiplication satisfying the relation
llzy]l < |lz|llly]l- Note that this relation says that the multiplication is jointly
continuous. It is customary to assume that ||14|| = 1 if a Banach algebra A
is unital.

We denote by M(G) the Banach space of all (finite) complex regular
Borel measures on G. Note that L'(G) is a subspace of M(G) consisting of all
absolutely continuous measure with respect to the left-invariant Haar measure,
by the Radon-Nikodym theorem. Recall that every bounded linear functional
on Cp(G), the Banach space of all continuous functions on G vanishing at

infinity, is represented by an element x of M(G):

h— / hdu, h € Co(G).
G

For p,v € M(G), we define the linear functional u * v on Co(G) by

(24)  pxvihe / fG M x )0, e Co(G).

l/hd(,u*u)

Because

< rllool(e x ¥)(G x G)| < IPlleollalH I,
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we see that u * v defines a bounded linear functional on Co(G) with

(2.5) e xvll < Npllllvll,  pv € M(G).

If 4 and v are absolutely continuous measure (with respect to the left-invariant
Haar measure) represented by du(s) = f(s)ds and du(t) = g(t)dt, then we
have

/ hd(u * v) = / / h(st)f(s)dsg(t)dt, h € Co(G).
On .the other hand, ’

/ R(t)(f * g)(t)dt = / h(t) / f(8)g(s™t)dsdt = / h(t)g(s~1t)dtf(s)ds.

By the left-invariance, the above two quantities coincide, and so our definitions
in (2.1) and (2.4) are consistent. We denote by 6. the point mass at the
identity. It is easy to see that &, is the identity for the convolution (2.4).

We define one more operation. For y € M(G), we define the involution

u* of p by

(2.6) /G h(s)du*(s) = /G B(s—1)du(s), h € Co(G).

Recall that a map z — z* of an associative algebra A over the complex field

is said to be an involution if

* K

(z+y)*=z"+y* (az)" =az*, (zy)' =y*z*, %=z,
for z,y € A and a € C.

Ezercise 2.2. Show that (p*v)* A = p=* (v * ) for p,v, A € M(G) and
that g +— u* is an isometric involution.

This says that M(G) is an involutive Banach algebra together with (2.5).
If du(s) = f(s)ds for an L!'-function f, then we have

[ 1) = [ 1T = [ AT,
for h € Co(G) by Exercise 1.5. Therefore, we have

2.7 ()= ATNf(sY),  feLY(G).
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Theorem 2.1. Let G be a group. Then we have the following:
(1) M(G) is an involutive unital Banach algebra.
(ii) L*(G) is a *-preserving left-ideal of M(G).

Proof. It remains to show that L1(G) is a left-ideal of M(G). To do this,
take u € M(G) and f € L'(G). By the Fubini theorem, we have

Jf 1 spauctas = [[ 15t lasduce) = J[ 1o dsautey = st

Therefore, it follows that the function s — / f(t71s)du(t) defines an L!-

function. It is easy to see that
(28) (we)s) = [ £ )duo. D

Ezercise 2.3. Show that L'(G) is a two-sided ideal of M(G) if G is a
unimodular group. ’

Ezercise 2.4. Show that G is abelian if and only if M(G) is commutative.
Show also that G is discrete if and only if L!(G) is unital.

In the remainder of this section, we show that L!(G) has an approximate
identity. To do this, we first show that the function s — f, is uniformly
continuous from G into L'(G) whenever f € L'(G).

Lemma 2.2. Let f € L*(G). Then given € > 0, there is a neighborhood
V such that ||fs — flli < eforeachs € V.

Proof. We first consider the case f € Cc(G) with the compact support

K. We fix a compact neighborhood W, and choose a compact neighborhood
V C W such that '

s€V =>|If = follo < €/(KW),

by Proposition 1.1, where p is the left-invariant measure. If s € V' then the
support of f— f, is contained in KV C KW. Therefore, we have || f — fs|[1 < €.
If f € L'(G) then we approximate f by functions in C¢(G) in the L'-norm. O

Ezercise 2.5. If f € LP(G) with 1 < p < oo then show that the map
s + f, is uniformly continuous with respect to the LP-norm.
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Proposition 2.3. Let f € L'(G). Then given € > 0 there exists a
neighborhood V' with the property:

(2.9) ueL(G), u>0, suppuCV, / u=1 = |[f-uxflhi<e
G

Proof. Take a neighborhood V' as in Lemma 2.2. Note that

10 - @ O = [WO - Ols,  teG.

Therefore, we have

|f —u=*flli < / / u(s)|f(t) — fa(t)|dsdt
= [ wo) [ 1760 = rolaeas
< [ w@li- flhds <o O

Ezercise 2.6. For f € L'(G) and € > 0, show that there is a neighborhood
V such that

u e LY(G), u>0, supquV,/u:l = ||f-f*ulh <e
G

We denote by V the directed set of the neighborhood system of the iden-
tity. For each V € V, take a nonnegative continuous function uy satisfying
the assumption of (2.9). The above proposition and exercise say that

liml|f —uy £l = limlf ~ fuvlh =0,

for each f € LY(G). A net {uy : V € V} satisfying the above relations is
called an approximate identity.

Ezercise 2.7. Let X be a locally compact Hausdorff space. Show that
the Banach space Cp(X) is an involutive Banach algebra with respect to the
operations

(f9)(z) = f(x)g(z), f(z)=f(z), f,9€Co(X),z€X.

Show that Cp(X) is unital if and only if X is compact. Construct an approx-
imate identity of Co(X).

We close this section to consider the convolution of LP-functions.
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Proposition 2.4. Assume that G is unimodular and f € L?(G) and
g € LY(G), where 1 < p,q < o0 and ;1; + % = 1. Then we have f * g € Co(G).

Proof. Since G is unimodular, we have

I(f * 9)(®)] < / F¢)g(s™Dlds < | fllollolles  tEG,

by the Hélder inequality, and so the function f * g is defined everywhere, with
I1f * glloo < lIfllpllgllg- We also have

|(f # 9)(s) = (f * ) < [1famr — Fe=rllpllgll,-

Therefore, the function f#*g is continuous by Exercise 2.5. If we take sequences
{fs} and {gn} of C+(G) converging to f and g with respect to the L and
L7 norms, respectively, then it is easy to see that fy, * g, converges to f *g
uniformly, by an another application of Holder inequality. If f, and g, vanish
outside H and K, respectively then f, * gn vanishes outside HK. Therefore,
f * g is the uniform limit of functions in C(G). O

Ezercise 2.8. Let f € L'(G) and g € L*°(G). Show that f xg is a
continuous bounded function. If G is unimodular then g * f is also continuous
bounded.

Ezercise 2.9. Show that (xv * xv-1y)(t) = (V) for t € U, where p is
the Haar measure.

Ezercise 2.10. Let a and b functions on Z so that a(i) = b(i) = 0 for
|i| > n. Show that

(Z a(i)mi) (Z b(i)10i> = Z (a % b)(5)10%.

3. Positive Definite Functions

One of the merits of the involution is that there is a natural order. Positive
elements of an involutive algebra are those of the forms z*z. For the case of
Co(X), they are nothing but nonnegative functions. On the other hand, the
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positive cone of the matrix algebra consists of positive semi-definite matrices.
In this sense, we may consider the notion of positive linear functionals on the
involutive algebra L!(G). Recall that a bounded linear functional of L}(G) is
represented by an L*°-function. An L®-function ¢ of G is said to be positive
definite if

(3.1) (¢, f** f) >0, for each f € L}(G).

In other word, a positive definite function is an L®-function which induces a
positive linear functional on L!'(G). Note that

(F* + £)(2) = / Al Fe= 1) f(s~ t)ds = / TV f(st)ds,

and so, we have

(32) (b S xf) = / (" + F)(E)dt = / o(s™ )T () f(tydsdt.

Theorem 3.1. Let ¢ be a continuous bounded function on a group G.
Then the following are equivalent:
(i) The function ¢ is positive definite.
(ii) For each p € M(G), we have (¢, u* * p) > 0.
(ii) For each f € C.(G), we have (¢, f* * f) > 0.
(iv) For any choice of elements s, ..., s, of G and complex numbers

ai,...,0an, we have E:j=1 a_,'aqu(s;'lsi) >0.

Proof. The directions (ii) = (i) = (iii) are clear. For the implication
(iii) = (iv), take p = Y, a;8,,, where 6, denotes the point mass at s € G.
Then we have

(1N = Y aif(s7's),  s€C
for any f € C,(G) by (2.8). Since p * f € C;(G), we also have

0 (6, (ue 1) (ux 1) = Sy [ [ ST OFCTT) (55 e,

by (3.2). If we take f = uy satisfying the assumption of (2.9) then the integral
parts converge to the value ¢(s;'s;), and this proves (iv).
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For the converse (iv) = (ii), we need the following fact (see Remark
below): Every complex regular Borel measure y is the limit of {¢,} with finite
supports in the sense

(3.3) /fd,u = li{n/fdp, for each f € Co(G).

Note that (¢, p* * u) = / (s t)du(s)du(t). If u = 3 a;6,, with finite
support then we have :

($, 1% * p) =D Ta;p(s7's5) = 0.
5,3

First, we assume that y is supported by a compact set, and choose ¥ € C(G)
with 1 > K, where K is the support of u* * u. Then we have

(G = (@) = [ [ @0 OTENau)
= tim [ [ 06 OTaloIdin(®) = (o, 1) 2 0.

The proof is complete, because a complex regular Borel measure is the norm

limit of measures with compact supports. O

Remark. The relation (3.3) is a direct consequence of the two funda-
mental principles of functional analysis: The Banach-Alaoglu theorem and
the Krein-Milman theorem. We digress for a while to explain these two the-
orems. Let X be a normed space. Recall that the dual space X* is defined
by the vector space consisting of all bounded linear functionals of X. With
the norm topology, X™* becomes a Banach space. We introduce an another
topologies on X and X*. A net {z,} of X is said to converge to an element
z € X in the weak topology if

anqﬁ(xt) = ¢(z) for each ¢ € X™.

On the other hand, a net ¢, of X* is said to converge to an element ¢ € X™
in the weak*-topology if

lifn ¢.(z) =¢(z) foreach z € X.

Ezercise 3.1. Recall that (co)* = £* and (€')* = £°°. Discuss the relations
between the norm, weak and weak*-topologies of the space £!.
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Banach-Alaoglu Theorem. Let X be a normed space. Then the closed
unit ball B of X* is weak*-compact.

Note that every element ¢ € B is a function from the closed unit ball U
of X into the closed unit disc D of the complex plane, and so, we see that

B¢ [] D.,
zeU

where D, is a copy of D for each z € U. It is easy to see that B is a closed
subset of [[ D, with respect to the product topology, which coincides with
the weak*-topology on the subset B. These imply that B is weak*-compact
by the Tychonoff theorem.

Krein-Milman Theorem. Let X be a normed space. Then every com-
pact convex subset K of X is the closure of the convex hull of its extreme
points.

The proof of this theorem also depends on the Maximal Principle. Recall

that a point z of a convex set K in a vector space is said to be extreme if
y,z€ K, 0<t<], ty+(1—-t)z=2 = y=z2==z.

In other words, an extreme point is the point which is not the convex combina-
tion of other points. One of the important consequences of the Krein-Milman
theorem is that every compact convex set has an extreme point. Note that
the notion of extremity itself is irrelevant to the topology.

Ezercise 8.2. Show that the closed unit ball of (cp)* has no extreme point.
Conclude that there is no normed space X such that X* = co.

In the context of Co(G)* = M(G), the relation (3.3) says that u, converges
to p in the weak*-topology. In order to find a net {u,} with finite supports
satisfying the relation (3.3), the following would suffice:

Ezercise 3.3. Show that a measure u € M(G) is an extreme point of the
closed unit ball of M(G)*, the cone of all finite positive measures on G, if and
only if p is a point mass.
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The above Theorem 3.1 says that a continuous bounded function ¢ is pos-
itive definite if and only if the n xn matrix [¢(s;'s;)] is a positive semi-definite
matrix for arbitrary choice of a natural number n and element sy,...,5n of
G. We denote by P(G) the set of all continuous positive definite functions on
a group G. It is clear that P(G) is a positive cone:

¢,y € P(G), a>0 = ¢+1v,a¢ € P(G).

If we choose two points {e, s} of G then the matrix ( ¢?§E)1) igzg) is positive

semi-definite. Therefore, we have

s =9(s), |d(s) <dle), s€G, ¢€P®G).

In particular, we have

(3.4) li¢llco = d(e), ¢ € P(G).

Ezercise 3.4. Show that the entry-wise product of two positive semi-
definite matrices is again positive semi-definite. Therefore, the pointwise
product of continuous positive definite functions is again positive definite.

The entry-wise product of two matrices with the same sizes is said to be
the Hadamard product of matrices.

Ezercise 3.5. Let p be a finite positive Borel measure on R. Show that
the function

#(s) = / e**tdu(t), s€eR,
R
is continuous positive definite.

Later, we will show that every continuous positive definite function on R
is in this form. This is also the case for any LC A group in terms of characters.
In particular, the function s ~— e*** is positive definite for each ¢ € R.

Ezercise 3.6. Let ¢ = xo + ax1 + @x—1 be a function on Z. Find the
condition on a for which ¢ is positive definite.
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Positive definite functions will be discussed again together with the rep-
resentation theory. We close this section with an another example of positive
definite functions. For a function f on a group G, we define

fO =71, tea.

If G is unimodular then f is nothing but f*. We note that fneed not to be
integrable even if f is integrable, unless G is unimodular.

Proposition 3.2. Let G be a unimodular group and f € L*(G). Then
the function f * f is continuous positive definite.

Proof. The function f * fis continuous by Proposition 2.4. Note that

(F+ () = / H()FETo)ds, teG.

Therefore, we have
D @ * )t ) = Sy [ S(6)TG s
1,5 i,j
-y / @ (67 5)ay £t To)ds
$,)
= / [Ziaif(t7 s)|2ds > 0. O

Ezercise 3.7. Consider the convolution of the characteristic functions on
intervals, to find examples of positive definite functions on R which are piece-
wise linear with compact supports.

Assume that G is a discrete group. For a function ¢ of G, we denote by
Ay the matrix with the size of the order of G whose (s,t)-entry is given by
#(s71t):

(3.5) (Ag)sr = $(s7 ).

Then a function ¢ is positive definite if and only if the matrix Ay is positive
semi-definite. It is clear that A 3 = (Ag)". Note that

(B 9)(s7's5) = ) d()p(ss7sy) = Y d(s7 et 1s;).

8€G teG
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This shows the relation
(3-6) Apuy = AgAy,

with the usual (formal) matrix multiplication. Note that ¢(s) is nothing but
the (e, s)-entry of the matrix A4, and so the correspondence ¢ — A4 is one-
to-one. With this machinery in hands, it is easy to show the partial converse
of Proposition 3.2 for discrete groups.

Proposition 3.3. Assume that G is a discrete group. If ¢ is positive
definite function with the finite support then there is a function f on G with
the finite support such that ¢ = f * f: f*f.

Proof. Note that A4 may be considered as a matrix with finite size which
is positive semi-definite. Define f(s) by the (e, s)-entry of the square root of
the matrix A4. 0O

We note that the above proposition also holds for any locally compact
groups: Every function ¢ € C.(G) N P(G) is expressed as ¢ = f * f=fx*f
for an L2-function f.

We conclude this section with the Schwarz inequality: If ¢ is a positive
linear functional on an involutive algebra A, that is, ¢(z*z) > 0 for z € A,

then it is easy to see that ¢ induces a sesquilinear form on A by

(3.7) (z,y) = ¢(y"z), z,y€A

Therefore, we have

(3.8) #(y*z) = ¢(z*y), zT,YyE€A,
(3.9) le(y*z)|* < ¢(z*2)p(y*y), =,y € A
If A is unital then we take y = e in (3.8), to get

@) < de)d(a'a), s €4

If G is a locally compact group and ¢ € P(G) then ¢(8.) = ¢(e) = ||¢||co, and
so we have

(3.10) e, FY? < lllloo(d, F* * F), ¢ € P(G), f € L'(G).
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NOTE

We have followed [Loowmis, §29] and [ROYDEN, §14.6] for the existence and uniqueness
of the Haar measure, respectively. See also [HEWITT AND RoOss, §15], for another definition
of the modular function and history. For examples of non-unimodular groups, we refer to
[Loowmis, §30D]. The proof of Theorem 3.1 was taken from [DIXMIER, §13.4]. It should be
noted that a positive linear functional on an involutive Banach algebra with an approximate
identity is automatically bounded, and so the boundedness condition is actually redundant
in our definition of positive definite functions. A history in [DIEUDONNES1, Chapter VII]
would be useful throughout this note.



CHAPTER 1I

ABELIAN GROUPS

Let G be a finite group with the group algebra C[G]. Then every homo-
morphism 7 : s+ 7, from G into the group U(n) of all n x n unitary matrices
induces an algebra homomorphism from C[G] into the full matrix algebra by

Z AsXg Z AgTg.

s€G seG

If G is the circle group T and = is given by 't + e ™" € U(1) then the induced
algebra homomorphism is nothing but the n-th Fourier coefficient assignment
f — f(n) for f € LX(G).

When G is an abelian group, we define f (7) for each continuous homo-
morphism «, called a character, from Ginto T=U (1). We endow the group G
of all characters with the smallest topology with which the function fis con-
tinuous on G for every f € L*(G). It turns out that this topology is equivalent
to the compact-open topology. In this way, G becomes again an LC A group,
and the Fourier transform f — f defines a norm-decreasing *-homomorphism
from L'(G) onto a dense *-subalgebra of Co(G). This transform extends to
M(G), to get the Fourier-Stieltjes transform. Because every nonzero com-
plex homomorphism of L!(G) is of the form f — f('y) for a character v, we
also topologize the set of all complex homomorphisms for an arbitrary com-
mutative Banach algebra, to get the Gelfand transform, which generalize the
Fourier transform. We study Gelfand transforms in §5 together with the spec-
tral radius formula, with which we relates the L!-norm of f € L!}(G) and
L%-norm of f € Co(G).

In §6, we consider the dual map of the Fourier transform and characterize
positive definite functions on an LC A group in terms of characters. Using this
machinery, we prove the inversion formula for positive definite L'-functions

29



30 CHAPTER II. ABELIAN GROUPS

and prove the Plancherel theorem. As an another consequence of the inversion
formula, we show that there are sufficiently many characters to distinguish
points of an LC' A group in §7, and establish the Pontryagin duality, which
asserts that the double dual of an LC A group is topologically isomorphic to
the original group. We discuss dual interpretations of the former results, and
obtain the uniqueness theorem which says that the Fourier transform f — f
is injective.

In §8, we restrict ourselves to the circle group, and exploit the differential
structures. We endow with a complete metric on the space D(T) of all periodic
C*°°-functions which is invariant under the addition. The convolution, involu-
tion and the Fourier coefficients may be defined on the dual space D'(T) which
is bigger than M(T). In this way, we get the Fourier-Schwartz transform whose
restriction to M(T) is just the Fourier-Stieltjes transform. Because the range
of the Fourier-Stieltjes transform does not cover even sequences converging to
0, there was no way to interpret trigonometric series with these coefficients.
The Fourier-Schwartz transform gives us an isomorphism from the algebra of
distributions onto the algebr:i of all slowly increasing sequences.

4. Dual Groups and the Fourier Transforms

Let G be a locally compact Hausdorff abelian (LC A) group throughout
this section. A character v of G is a continuous homomorphism from G into
the group T = {e* : —7 < t < 7}. The set of all characters of G is denoted
by G. With the pointwise multiplication, G becomes an abelian group, which
is called the dual group of G. It is not so difficult to see that G is an LCA
group with respect to the compact-open topology. We will prove this during
the discussion of Fourier transforms. For f € L(G), we define the Fourier
transform f by

@1)  Fo)=(f+m(0)= /G F(Ev(~t)dt = /G fE7@d, €8

Therefore, fis a function on G. It is easy to see that the Fourier transform

converts the multiplication by a character into the translation and vice versa:

42 Fr=F @) =Ffaon(-9)=FonG), €8 seq.
Ezercise 4.1. Show that f/*\g('y) = f('y)ﬁ('y)
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Proposition 4.1. Let {v;} be a net of characters of an LC A group G.
Then the following are equivalent:
(i) The net {v;} converges to v € G pointwise.
(ii) For each f € L'(G), we have lim; f('y,') = f('y)
(i11) The net {v;} converges to v € G uniformly on every compact
sets in G.

Proof. The direction (i) = (ii) is a direct consequence of the Lebesgue
dominated convergence theorem, and (iii) = (i) is clear. For the converse
(ii) == (iii), we fix s € G and f € L'(G) such that F() # 0. By Proposition
2.2, there is a neighborhood V of s such that ||f; — fs]l1 < e foreach t € V.
By the assumption, there is an iy such that

Ffo(m)=Fo(Ml<e i

Now, for each t € V and 1 > 1, we have

|Fraym@®—-F@®l = 17 (%) = f: ()]
<[F(r) = Fo (o)l + 1o (1) = Fe OV + (£ (1) = Fe ()]
<\ fe = folls + €+ || fs = fellr < 3e.

Since f('y) # 0, we see that {v;} converges to v uniformly on V. We have
shown that for a given s € G there is a neighborhood V of s such that {~;}

converges to v uniformly on V. The usual compactness argument completes
the proof. 0O

This proposition says that the compact-open topology on G is the smallest
topology with which fis continuous for each f € L!(G).

Ezercise 4.2. Show that G is a Hausdorff topological group with respect
to the compact-open topology.

Before going further, we examine several examples. It is clear that a
character v of Z is determined by the value of 7(1) € T. Therefore, every
character of Z is of the form

ve i n o e n €7z,
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for some e € T, and the correspondence et — ~; : T — Zis a group
isomorphism. It is clear that this is a homeomorphism by Proposition 4.1.(i).

In order to determine the dual groups of T and R, we use Exercise 1.1.
From this, we see that every nontrivial closed subgroup of T is a cyclic group
consisting of the roots of unity. If v is a character of T then the kernel of
7 is a cyclic group of order n. It is easy to see that y(e'*) = e™* or e~ ™.
Therefore, every character of T is of the form

it it it
Tn : €F — e™, e €T,

for an integer n.

Ezercise 4.8. Show that the correspondence n + 7, defines a topological
group isomorphism from Z onto T. Show that every character of R is of the

form

ve: s — e seR,

for a real number ¢ € R. Show also that the map t — <, is a topological
isomorphism from R onto R.

In short, we have T= Z, Z = T and R = R. These relations recover the
ordinary Fourier transforms:

(4.3) fln) = 2i7r " f(Bemmdt, feL{(T), nez,

-7

“+oo

@y Fo=—=/[

f(s)e™***ds,  fe L'(R),t€R,

where the coefficient

1 . . . . .
will be explained later in the context of the inversion
V2r .
formula. Note that we confuse the variables ¢ € [-m, 7] and e'* € T.
Note that every v € G induces a complex homomorphism

(4.5) fefm,  feLl'G)

of L'(G) by Exercise 4.1: It is a linear functional which preserves the multi-
plication. We will show that every nonzero complex homomorphism of L!(G)

is in this form. To do this, we need the following simple fact about Banach
algebras:
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Lemma 4.2. Every complex homomorphism ¢ of a Banach algebra is a
bounded linear functional whose norm is at most 1.

Proof. Assume that |¢(zo)| > ||zo|| for some z¢o € A and put A = ¢(zo)
and z = z¢/\. Because ||z|| < 1, the sequence

converges to an element y € A. Since z +s,, = zs,-; we have z+y = zy, and
so it follows that ¢(z) + ¢(y) = ¢(z)¢(y). This is a contradiction, because
#z)=1. 0O

For a Banach algebra A, we denote by A4 the set of all nonzero complex
homomorphisms in A*. Then A4 is a subset of the closed unit ball of A* by
the above lemma. It is easy to see that A4 U {0} is weak*-closed in this unit
ball, and so A4 U {0} is weak*-compact. In the case of A = L!(G) we have
the inclusions

(4.6) G C Ape CLNGY,

with the relation (4.5). We also note that the compact-open topology on Gis
nothing but the weak*-topology on Ap:(g) induced by L'(G)* by Proposition
4.1. Thus, we have shown that G is a subset of a compact space.

Theorem 4.3. Let ® be a nonzero complex homomorphism of L*(G).
Then there exists a unique y € G such that &(f) = f(v) for f € L(G).

Therefore, we see that G = Api(g), and so it follows that G is lo-
cally compact space whose the one-point compactification is homeomorphic
to Apyg) U {0}.

Proof. Take ¢ € L°°(G) which represents ®, that is,

3(f) = / fOdt)dt,  f e ING).

Then it suffices to show that ¢ is a character. Note that ||¢||cc < 1 by Lemma
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4.2. For each g € Ll(G),- we have
[ et = [[ resss)asateyi
= [(F+o)0()s = 81 +9) = 2(H)2(0)
= [answa.

This shows that ®(f;) = ®(f)¢(t) for almost all ¢t € G. Because t — ®(f;) is
continuous, we may assume that ¢ is continuous if we choose f € L(G) so
that ®(f) # 0. Therefore, we have

®(f)d(t)=3(f:), feI'G), tedq.

Now, we have

O(f)d(s)e(t) = 2(f:)¢(t) = 2((fe)e) = (fare) = 2(f)e(s +1),

and so ¢ is a homomorphism from G into C. From the condition ||¢]| < 1,
it is easy to see that the range of ¢ is the unit circle. Finally, it is also easy
to see that if f(v) = F(v' ) for each f € L'(G) then v = 4, since they are
continuous. [ |

Ezercise 4.4. Show that f* = ? for f € L'(G).

It is clear that |||l < |||z for f € LY(G). Therefore, we see that the
Fourier transform f — f is a norm-decreasing *-homomorphism from L'(G)
into Co(a)

Ezercise 4.5. Define D,(e') = Z:_n e'*t for e* € T. Show that
|[Dnlli = o0 as n — oo, whereas ||5;||°° =1 for each n = 1,2,.... [Hint:

Dp(e'*) = sin(n + 1)t/sin { for t # 0.]
By the Stone-Weierstrass theorem, we conclude the following:

Theorem 4.4. The Fourier transform f f is a norm-decreasing *-
homomorphism from L*(G) onto a dense *-subalgebra of Cy(G).

We digress again to state and prove the Stone-Weierstrass theorem using
the Banach-Alaoglu and Krein-Milman theorems.
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Stone-Weierstrass Theorem. Let X be a compact Hausdorff space.
Assume that a norm-closed unital *-subalgebra A of C(X) separates points:
For any two different points z and y of X there is f € A such that f(z) # ().
Then we have A = C(X).

Define the annihilator A+ of A by
At ={upe M(X)=C(X)*: /fdp =0 for each f € A}.

Applying the Hahn-Banach theorem, it suffices to show that A+ = {0}. As-
suming contrary, the unit ball K of A* has a non-zero extreme point u by
the Banach-Alaoglu and Krein-Milman theorems. We show that p is a point
mass. We denote by E the support of u and take g € A with 0 < g(z) < 1
for z € E. Because A is an algebra; we see that two measure do = gdy and
dr = (1 — g)dp are elements of AL. It is easy to see that ||o|| + ||7|| = 1, and
so p is the convex combination of o/||o|| and 7/||7||. By the extremity of x in
K, we have yu = o/||o|| or gdu = ||o||dp. Therefore, g is a constant function
on E. We have thus shown that every real valued function in A is constant
on E. (Note that A has constant functions.) Because A is self-adjoint, we
see that real-valued functions in A separates points. This implies that E is a
one-point set {z}, and f(z) = 0 for each f € A. This contradiction completes
the proof of the Stone-Weierstrass theorem.

Ezercise 4.6. Let X be a locally compact Hausdorff space and A a #-
subalgebra of Co(X) which separates points of X, and assume that for each
z € X there is f € A such that f(z) # 0. Show that A is norm-dense in
Co(X). [Hint: Consider the one-point compactification of X ]

Ezercise 4.7. Show that the subalgebra { : f € L*(G)} of Co(G) satisfies
the assumptions of Exercise 4.6.

. Later, we will see that the Fourier transform is injective. The range of
the Fourier transform is called the Fourier algebra of G and denoted by A(@),
which is a proper *-subalgebra of Cy(G), in general. The Fourier transform
naturally extends to the whole M(G), called the Fourier-Stieltjes transform,
by the formula:

(4.7) A = (s )0 = [2(-0du®, €8
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Ezercise 4.8. Show that 11 His is a bounded continuous function on G. Show
also that i * v = it and p* = 7.

Therefore, we see that the Fourier-Stieltjes transform also gives rise to a
*-homomorphism from M(G) into the involutive algebra C3(G) of all bounded
continuous functions on G with the same operations as in Exercise 2.7. Note
that the function /i need not to vanish at infinity, considering the point mass.
The range of the Fourier-Stieltjes transform is said to be the Fourier-Stieltjes
algebra of G, and denoted by B(é)

Ezercise 4.9. Show that the dual group of a discrete group is compact.
Assume that G is compact and so the constant function 1g € L'(G). Show
that 1g(0) = 1 and 1g(7) = 0 for v # 0. Conclude that the dual group of a
compact group is discrete.

5. The Gelfand Transforms

The Fourier transform enables us to study the convolutions in terms of
the pointwise multiplications, which are much easier to deal with. We gener-
alize the Fourier transform for general commutative Banach algebras. For an
element z of a unital Banach algebra A, we define the spectrum of z by

spy(z) ={A € C:z— Al, is not invertible in A}.
We also define the spectral radius ||z||sp of z by
llzllsp = sup{|A| : A € spa(=)}-

Note that the spectrum of a continuous function f € C(X) is just the
range of f. If ||z|| < 1 then the sequence y,, = Y =¥ converges to an element
y € A by the completeness, and the relation

(5.1) yl-z)=(1-zpy=1

holds. Especially, if ||z|| < |A| then z — A is invertible, and so A ¢ spa(z).
This means that sp 4(z) is bounded and

(5.2) llzllsp < ll]]-
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The relation (5.1) also means that the open ball B(14,1) centered at 14
with radius 1 is contained in the group G(A) of all invertible elements of
A. For z € G(A), consider the left multiplication L, : A — A, which is a
homeomorphism witl. the inverse L,-1. Because the image of B(14,1) under
L, is an open neighborhood of z contained in G(A), we see that G(A) is open.
From this, it is easy to see that the complement of sp 4(z) is open. From the
relation (5.1), we also get

(1 =2)™ =174 < D llall* = ll=li(1 - ll=ID ™,

1

and we see that the map = — 27! is continuous at 1 € G(A). By the similar

argument using L,, the map z — z~! is a homeomorphism of G(A4).

We consider the function
(5:3) Fixmal@=NT),  Agsa),
for p € A*. From the relation
(2= XY = (@ =) = (X = X)(e - X) e - V)7,

it follows that FO) = )

1 _——_—_:_._— - — -2
by the continuity of z +— z~1. Therefore, the function f in (5.3) in holomor-
phic on the complement of sp 4(z). It vanishes at infinity:

Az —14)7) _
A

1i A) = 0.
am f()
If sp 4(z) is empty, this function vanishes everywhere by the Liouville theorem,
and especially we have p(z~1) = 0 for each p € A*. It follows that z=! = 0
by the Hahn-Banach theorem, a contradiction. Summing up, we have the
following:

Proposition 5.1. The set sp 4(z) is a non-empty compact subset of the
complex plane.
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Theorem 5.2 (Gelfand-Mazur). If every nonzero element of a unital
Banach algebra A is invertible then A is isomorphic to the complex field.

Proof. The assumption implies that sp 4(z) is a one point set, say {A(z)},
for each z € A. The singularity of A(z)14 — z also implies that z = A(z)14.
The map z +— A(z) is an isomorphism from A4 onto C. O

The following formula relates the spectral radius and the ordinary norm
in Banach algebras.

Theorem 5.3 (Spectral Radius Formula). For an element z of a
unital Banach algebra A, we have

(5.4) Nlzllsp = lim fl"]|=.

Proof. It is easy to see that if A € sp(z) then A" € sp(z"), and so it
follows that |A"| < ||z"||. Hence, we have |A| < ||z”||* for each A € sp(z), and
o .

(5.5) . lzllsp < liminf [lz"]|=.
1
For each |\ < +—— B ” , we have X ¢ sp 4(z), and so the function
sp
g: A p(la— 2o, A <

|l= Ilsp

is holomorphic for p € A* as in the case of (5.3). By the relation (5.1), we
have |

(5.6) g =p(Q_(Ax)) =D pe™, D<o " T

This Taylor series expansion also holds for |A\| < ——. We fix sucha A € C

\l= Nsp
e ” . The relation (5.6) shows that {|p(Anz™)| : n = 1,2,...}
3

is bounded for each p € A*. We apply the Banach-Steinhaus theorem to the

with |\ <
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family of bounded linear functionals {p — p(A"z") : n = 1,2,...} on A%, to
see that there is a number M such that

A"z < M, n=1,2,..

1

. 1Al

Al < el we see that limsup, ||z"||* < ||z|lsp. The proof is complete
sp

together with (5.5). O

From this, we have limsup,, ||z"||= < Because A was arbitrary with

From now on throughout this section, we restrict our attention to com-
mutative Banach algebras. For a unital commutative Banach algebra A, we
denote by A4 the set of all nonzero complex homomorphisms of A. For each
z € A, we define the Gelfand transform T by

(5.7) Z(h) = h(z), he€ Aa.

In the last section, we have seen that A4 U {0} is a compact space with
the weak*-topology induced by A*, the smallest topology that makes every
function h — h(z) on A, is continuous. This says that every 7 is continuous
function on Ay4. If A is unital then we have h(14) = 1 for each h € Ay, and
so the zero homomorphism is an isolated point of A4 U {0}. Therefore, Ay
itself is compact, and the Gelfand transform

T T, T €A

is a homomorphism from A into C(A,). In the case A = L!(G) with an
abelian group G, the Gelfand transform is nothing but the Fourier transform
by Theorem 4.3. The space A4 is said to be the maximal ideal space of A,
because every complex homomorphism corresponds to a maximal ideal of A.

Proposition 5.4. Let A be a unital commutative Banach algebra. Then
the kernel of h € A4 is a maximal ideal of A. Conversely, every maximal ideal
is the kernel of some h € Ay4.

Proof. 1t is clear that Kerh is a maximal ideal of A for each complex
homomorphism h of A, because it is of codimension one. Assume that I is
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a maximal ideal. Because the set G(A) of all invertible elements is open, we
see that TN G(A) = 0, especially T is a proper ideal. From the maximality
of I, we see that I is a closed ideal, and A/I is also a Banach algebra. For
the converse direction, it suffices to show that every nonzero element of A/l
is invertible by the Gelfand-Mazur theorem. For z € A\ I, put

J={az+y:a€ A yel}

Because J is an ideal of A which contains I strictly, we have J = A. This says
that for each z € A, there are a € A and y € I such that az +y = 14, and so
n(a)n(z) = m(14), where 7 : A — A/I is the quotient map. O

Corollary 5.5. Let = be an element of a unital commutative Banach
algebra A. Then the spectrum sp 4(z) coincides with the range of the function

~

Z.

Proof. We show that A € sp4(z) if and only if A = h(z) for a h € Ay,
and it suffices to show that z is singular if and only if h(z) = 0 for some
h € A,. I z is invertible then h(z) is also invertible, and so is nonzero for
each h € A4. If z is singular then the set {az : @ € A} is a proper ideal.
Using the Maximal Principle, we see that this ideal is contained in a maximal
ideal, which is the kernel of an h € A4. O

The above corollary shows that
(5.8) lzllsp = [1Zlleo, = € A.
Combining with the spectral radius formula, we also have
(5.9) |20 = lim[la"||%, = € 4.

Note that the relation (5.8) together with (5.2) shows that the Gelfand trans-
form is a norm-decreasing homomorphism from A into C(A,4). A commuta-
tive Banach algebra is said to be semi-simple if the Gelfand transformation is
injective. We will see later that L'(G) is semi-simple for each abelian group
G. If G is not discrete then L'(G) is not unital. In this case, we consider
the subspace L!'(G) + C§. of M(G), which is a unital commutative Banach
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algebra, In this way, we see that the formulae (5.4) and (5.9) hold for every
f € L'(G) even if L}(G) is not unital. |

More generally, if an involutive Banach algebra A has no identity, then
we may embed A into a unital algebra Ay. This is nothing but the direct sum
of A and the complex field C endowed with

(z,0)(y, b) = (zy + bz + ay, ab),
(5.10) . -~ (z,0)" = (2%,9),
li(z, a)ll = l|=|| + lal-

Ezercise 5.1. Show that A; is an involutive Banach algebra with the
identity (0,1). Show also that A is an ideal of A; under the identification of
z +— (z,0).

Ezercise 5.2. Show that there is a *-isomorphism from the C*-algebra
Co(X)s onto C(X U {o0}), where X U {co} denotes the one-point compactifi-
cation of X.

We note the typical relation || f|leo = ||f||%, for f € Co(X), which relates
the involution and norm structures, where X is a locally compact Hausdorff
space. An involutive Banach algebra A is said to be a C*-algebra if the relation

(5.11) le*z|| = |lz|>, z€A4

is satisfied.

Ezercise 5.9. Show that the L'-norm of a discrete group satisfies (5.11)
only if G is the trivial group. [Hint: Consider the function x. + axs + bxs-1.]

If z is a normal element of a C*-algebra, that is, z*z = zz*, then the
relation (5.2) becomes

(5.12) llzllsp = llz]l, for normal z € A.

Indeed, for a normal element z € A, we have

221 = I*")* (@)l = I(z*2)"(=*2)"|| = ll(="=)"||.



42 CHAPTER II. ABELIAN GROUPS

Therefore, we have ||z2?|| = ||(z")*z"|| = ||z"||>. By induction, we see that
llz™|| = ||z||™ for each m = 2",n =1,2,.... Therefore, we have
. 1
llzllsp = Lim [lz"||> = ||={].

Note that every element is normal if A is commutative. Therefore, the
relations (5.8) and (5.12) say that the Gelfand transform is an isometry if A is
a unital commutative C*-algebra. Actually, the Gelfand transform completely
determines the structures of a commutative C*-algebra.

Theorem 5.6 (Gelfand-Naimark). Let A be a unital commutative
C*-algebra. Then the Gelfand transform is a *-preserving isometric isomor-
phism from A onto C(Ay).

Proof. We first show that the Gelfand transform preserves the involution:
z*=7Fforz € A, or equivalently

h(z*) =h(z), z€A, he Ay

Assume that u is self-adjoint, that is u* = u. If h(u) = a + ib with a,b € R,
then we have '
h(u+islg)=a+i(b+s), s€eR.

Therefore, it follows that
a?+ (b+5)2 = |h(u+s14)]? < |lu+islgl?
= [I(u +is1a)*(u +is1a)ll = ||lu® + s*1a]| < [Julf® + 57,
for each s € R. From this, we see that b = 0, and h(u) is real. Note that every
element z is written by z = u + fv with self-adjoint elements u and v:

z+z* -2z
5.13 = .
(5.13) rE Tty

Now, we have h(z*) = h(u — iv) = h(u) — ih(v) = h(z). Therefore, the range
A of the Gelfand transform is self-adjoint subalgebra of C(A4), and so it
is dense by the Stone-Weierstrass theorem. We have already seen that the
Gelfand transform is an isometry, and from this we conclude that the range A
is complete, and so it is closed in C(A,). Therefore, we have A = C(A,). O
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Ezercise 5.4. If the Gelfand transform of a commutative involutive Ba-
nach algebra A is an isometry then show that A is a C*-algebra. If the Gelfand
transform is bijective then there exists € > 0 such that ||Z]|e > €l|z|| for each
z € A.

Ezercise 5.5. Show that the algebra Cy(X) becomes a unital C*-algebra
with the same operations as in Exercise 2.7. The maximal ideal space of Cy(X)
will be denoted by SX.

Ezercise 5.6. Let h, be a complex homomorphism on Cj(X) defined by
the formula h,(f) = f(z), for f € Cp(X). Show that the mapping z + h; is
a homeomorphism from X onto a dense subspace of 3X.

For a C*-algebra A, the norm in (5.10) does not satisfy the C*-norm
condition ||z*z||? = ||z||? in general. But, we can redefine a norm on A for a
non-unital C*-algebra A so that Ay becomes a C*-algebra. Recall that 4 is
an ideal of A;. Therefore, every left translation L, : y — zy defines a linear
map from A into A, for each z € A. It is easy to see that ||L.|| = ||z|| for
z € A. If we define

(5.14) lzll =L\l =€ Ar

then one can show that this defines a C*-norm on Aj.

Ezercise 5.7. Let A be a non-unital commutative C*-algebra. Show that
there exists a unique hg € Ay, such that ho(z) = 0 for each z € A. Conclude
that A can be identified with the ideal {Z € C(A4,) : Z(ho) = 0} of C(A4,).

6. Inversion Formula and the Plancherel Transforms

If f € L*(T) C LY(T) then the Riesz-Fisher theorem says that

+o0
(6.1) =Y fln)m,

n=-00

in the sense of L?-convergence. If f € £1(Z) then it is also easy to see that
the formula (6.1) also holds in the sense L'-convergence. In this section, we
prove the generalization of (6.1) for arbitrary abelian groups. To do this, we
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first consider the dual of the Fourier transform. For i € M(G) = Co(G)*, we
define the function ¢, on G by

(6.2) sut)= [ A0dutr),  tec.

Then we have ¢, € L>(G) with ||¢,|lco < ||ull, and
©3) @ = [ 0 [ Od= [ Fod) = @5,

for each f € L(G). Therefore, the map u — ¢, : Co(G)* — LY(G)*
is the dual of the Fourier transform if we adjust the (L!(G), L*°(G)) and
(Co(G), M(G)) dualities by the sesqui-linear forms. Note that

(6.4) (T = () = (),
If p is a positive measure then
G T *F) =¥ )= WPy 20,  feI'G)

and so ¢, is positive definite. It is also easy to see that ¢, is continuous.

~

Furthermore, the correspondence p — ¢, is injective: If ¢, = 0 then (&, f) =0
for each f € L'(G) by (6.3). Since A(G) is dense in Co(G), we see that p = 0.
In other word, we have

(6.5) pe M(G), ﬁv(t)du(7) =0 foreachte G= p=0.
G

Theorem 6.1 (Bochner). The map p — ¢, : M(G)* — P(G) is a
norm-preserving bijection.

Proof. Let ¢ € P(G). We may assume that ||¢|lcc = 1. Put h = f* * f.
Then we have

(6, /) < (8,h) S (B hah)d <ooo < (§, BV < IRFIET
for each n =1,2,... by (3.10), and so it follows that

(8, F)I? < [Rlloo = 1F112,
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by the spectral radius formula (5.9). This says that f = § implies (¢, f) =
(¢,9), and so § may be considered as a bounded linear functional on A(G),
which extends to the whole Cy(G). Therefore, there is 7 € M(G) with ||¢|| =
lell such that (@, f) :'(ﬂ,f) for f € L'(G), and so we see that ¢ = ¢, by
(6.3). This measure g is positive, because

18]l = 6(0) = /édu('r) = w(@) < llull = 119

This also shows that ||¢,|| = ||#|l- O

Theorem 6.2 (Inversion Formula). Let G be an LCA group. Then
we have the following:

(i) For f € L}(G)N P(G), we have f € L*(G).
(i1) There is a normalization of the Haar measure d-y on G such that
the formula

1= [ Fontoy
holds for each f € L}(G) N P(G).

Proof. Note that every f € L'(G)NP(G) corresponds to a unique positive
measure piy € M (G) with the formula

£t = féw)duf(v),

by Theorem 6.1. We fix k € Cc(@) with the compact support K. For each
v € K, we may choose u € C,(G) with u(y) # 0, and so there are finitely
many uj,...,un € Cc(G) such that the Fourier transform f of the function
f = uy *uj + -+ + up * uy, is positive on K. By Proposition 3.2, we have
f € C«(G) N P(G). We have shown that for each k € C(G) there is f €
C.(G) N P(G) such that f('y) > 0 for v € supp k. Define

k o~
T(k) = /A Fdu;,  kecdd)
Gf
In order to show that T is well-defined, we choose h € L}(G). Then we have

[ g = [ [ mer@aedusn = [ merse-ode= e 10)
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If g € Cc(G) N P(G) with g > 0 on the support of k, then we have

[y = (s )9O = )« NNO = [Ty, he L'@),

and so it follows that

k k kE -~ k
Zdus = [ =gduy = [ = Fag = [ Zu.
/f fg fg g

Therefore, T is well-defined. It is easy to see that T is a nonzero positive
functional on Cc(@), which is invariant under the translation. Therefore, we
have

T(k) = ﬁ kdy, ke C(G),
G

for a translation invariant measure dy on G. If f € L}(G) N P(G) then we

have

~

/ kdus = / -kg,\iduy = T(kf) = / kfdy, ke C;(G).

Hence, we have dyy = fdv, and it follows that f € Ll(a) since piy is a finite

measure. Furthermore, we have
= d = fl t)ydy. O
f® /6 Y(t)dps () ./5 Frr()dy

Ezercise 6.1. If G is discrete or compact then our conventions in §1 are

the right normalizations for the inversion formulae. See Exercise 4.9.

Ezercise 6.2. Normalize the Haar measure on R= R so that the inversion
formula holds. [Hint: Consider the function e~ or e=**/2]

Ezercise 6.3. We denote by Z, = {0,1,...,n — 1} the cyclic group of
order n. Show that every character of Z,, is given by

i P j €Ly,

where ( = e%* is the n-th root of unity. Show also that p ~— 1, is a group
isomorphism from Z,, onto Z,,. We normalize the Haar measure on Z, and
Z,, as compact and discrete groups, respectively. Prove the inversion formula

by a direct computation.
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Ezercise 6.4. Show that the dual group of G & F is isomorphic to GoH.

By the above two exercises, we see that the Fourier transform of a finite
abelian group G of order n gives rise to a *-isomorphism from ¢!(G) onto the
algebra C" with the point multiplication and involution. Therefore, the group
algebras of finite abelian groups are determined by their orders. It should be
noted that this is not an isometry by Exercises 5.3 and 5.4.

Ezercise 6.5. Consider the group Z,. If f = axo + bx; then show that
| flleo = max{|a + 8], |a — b[}.

Show also that this is identical with the operator norm of the 2 x 2 matrix Ay
in (3.5). ‘

From now on throughout this chapter, we always assume that the Haar
" measures are normalized so that the inversion formula holds. Now, we gener-
alize the Riesz-Fisher theorem for arbitrary abelian groups. Since L2(G) is not
contained in L!(G) in general, the Fourier transform does not make sense for

L2-functions. The point is that the Fourier transform defines an L2-isometry
on L}(G)N L*(G).

Theorem 6.3. For each f € L}(G) N L%(G), we have | € L*(G) with -
£llz = Ifllz- The range R = {f : f € L*(G) N L*(G)} is dense in L*(G).

Proof. Note that f * f € L'(G) N P(G), and so we have
1517 = [ 5@F@dt =+ HO) = [ FeFenar= [ [Fenlar =177,
G G G
by the inversion formula. Let % € L%(G) such that
(6.6) @9 = [oFDE =0,  seR.
In order to show that R is dense in Lz(@), it suffice to show that ¢y = 0 in

Lz(@). If $ € R with ¢ = f then the function 7 — d()(t) = )7_7(7) also
lies in R, and so we have

/ Yt)()b(r)dy =0, $ER, teG,



48 CHAPTER II. ABELIAN GROUPS

by (6.6). This implies that

(6.7) ¢ =0, ¢ER,

by (6.5), since ¢(7)1/;_('y_)d7 is a finite measure. If ¢ € R with ¢ = f then the
translation ¢, = j"'\y € R for each v € G. Therefore, every v € G corresponds
to a ¢ € R such that ¢ is nonzero on a neighborhood of 4. Now, the relation
(6.7) says that 3 = 0 in L*3(G). O

Because L!}(G) N L?(G) is dense in L?(G), we see that there is a unique
isometry from L?(G) onto L?(G) which coincides with the Fourier transform
on the dense subspace L!(G) N L?(G). This isometry is called the Plancherel
transform, denoted by the same symbol f — f as the Fourier transform.

Ezercise 6.6. Show that every isometric isomorphism between inner prod-

uct spaces preserves the inner products. Deduce the Parseval identity:

(6.8) ]G F(&)g(@ydt = /éf(v)mdm f.9 € I¥(G).

Put A(t) = g(t) 0(t) then A(7) = §(vo — 7), and so we have

Fa(10) = /G F(OR(D)dt = /5 f(v)ﬁd“r = /é Fa(r = Vdy = (F* ().

In short, we have

(6.9) Fa=F+*3, f.geL¥0G).

Compare with Exercise 4.1. This show that if f,?j € Lz(é) then f* g€
A(C:'), since fg € LY(G) for f,g € L*(G). Conversely, every L!-function is
a pointwise product of two L2-function. Therefore, we have the following
characterization of the Fourier algebra:

(6.10) AG)={¢+v: 9 € I*G)}.

Ezercise 6.7. For any compact subset K of G there is f € L!(G) such
that f =1 on K. [Hint: Exercise 2.9
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7. Pontryagin-van Kampen Duality

Let G be an LCA group with the dual group G. Then every element
t € G defines the function

ey (), 7Y€G

from G into the circle group T. This is nothing but the Fourier-Stieltjes trans-
form of the point mass §_;. By Exercise 4.8, e; is a continuous homomorphism
from G into T, and so gives us a character of G. Itis easy to see that the map

(7.1) eite:G—G teg,

called the evaluation map, is a group homomorphism. The Pontryagin-van .
Kampen duality theorem saysAthat this is a homeomorphic group isomorphism
from G onto the double dual G. Thus, every LC A group is the dual of its dual
group. This enables us to replace the pair (G,G) by (G,G) in our previous
discussions.

Lemma 7.1. For each neighborhood V of 0 in G, there exists a compact
subset K of G with the property:

1
(7.2) ly(#) —1] < 3 foreach ye K = teV.
Proof. Choose a compact neighborhood W such that W — W C V. Put
f= 1( xw and g = f % f, where p is the Haar measure. Then g € P(G)
[

by Proposition 3.2 with suppg C V. By the inversion formula, we have
9(y)dy=9¢(0)=1and g= |ﬂ2 > 0. Therefore, there is a compact subset
K of G such that

- 2 -
/ g(v)dy>3  and /A 3(7)dy <
K G\K

|

If t € G satisfies the assumption of (7.2) then Re~(t) > % for each v € K,
and so it follows that

Re /K g(r)y(t)dy > § /K g(v)dvy > g-
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Because < / [g(Mldy < -1-, we have
G\K 3

ﬁ Sty
G\K

~~ ~~ ~ 1
g(t) = /A gy (t)dy = / g(n(t)dy + /A gy (t)dy > 5.
é K G\K
Therefore, we have t € suppg C V. 0O

As an immediate consequence, we have the following:

Theorem 7.2. Every LC A group G admits sufficiently many characters
to separate points of G: If s # t in G then there is a character vy € G such

that y(s) # 7(t).

Proof. Assume that v(t) = 1 for each v € G. Lemma 7.1 shows that ¢
lies in every neighborhood of 0, and so t =0. O

Lemma 7.3. For each open subset U in G, there is a nonzero fe A(@)
such that f =0 on G\U.

Proof. Take a compact set K with positive measure and a compact neigh-
borhood V such that K + V C U. Then the function Xx * Xv lies in A(G) by
(6.10). This function satisfies the required conditions. O

Theorem 7.4. The evaluation map t — e; is a homeomorphic group

isomorphism from G onto G.

Proof. Note that Theorem 7.2 says that the evaluation map is an isomor-
phiim. If t; — 0in G then 4(¢;) — 1 for each v € @, and so we hive e, — 1
in G by Proposition 4.1.(i). Conversely, assume that e;;, — 1 in G and V is
a given neighborhood in G. Take a compact subset K of G with the property
(7.2). Then Proposition 4.1.(iii) says that ¢; satisfies the assumption of (7.2)
for sufficiently large i. Therefore, ¢; € V for these sufficiently large i’s, and so
we have t; — 0. Thus, the evaluation map is a homeomorphism from G onto
the range e(G) by the translations. Especially, e(G) is locally compact.

We proceed to show that e(G) is dense in G. Assuming the contrary,
there is a nonzero F € A(@ ) such that F = 0 on e(G) by Lemma 7.3. Note
that F is the Fourier transform of some ¢ € L!(G). Now, we have

| @oar = | sy = Beo = Feo =0,
G G
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for each t € G. By (6.5), we have ¢ =0, and so F = 0. This shows that e(G)
is a dense subgroup of G with respect to the relative topology. From this, it
is easy to conclude that e(G) = G . Indeed, if &(G) is a proper dense subgroup
of G then we see that for any neighborhood U of G, the set U N e(G) is not

compact with respect to the relative topology, and so it follows that e(G) is
not locally compact. O

We consider several dual interpretations of the previous results. First of
all, the relation (6.5) shows that

i€ M(G), /G 7(t)du(t) = 0 for each v € & = u=0.
In other word, we have
(7.3) pLEMG), i=0 = pu=0.
In particular, we also have
(7.4) FEL'G), f=0 = f=0.

This says that the Fourier transform is injective, and so L'(G) is semi-simple.
Note that (7.3) shows that M(G) is also semi-simple, because every character
induces a homomorphism of M(G) by Exercise 4.8, as well as of L!(G).

For a measure x € M(G), the map ¢, defined in (6.2) is a function on G:

(7.5) 4= [ 10O, 1eé.
If p is a positive measure of G then we have

bu(r) = [ Fdutt) = T = F),
and so, it follows that
(76) , ¢u = ;‘?a 78S M(G)+

If $ € P(G) then the Bochner theorem says that ¢ = p* for a u € M(G)*.
Therefore, ¢ € B(@) Conversely, assume that ¢ € B(@) with ¢ = . If we
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decompose p = (p1 — p2) +i(us — p1q) with pu; € M(G)* for j = 1,2, 3,4, then
it follows that

p=p= (ﬁ?—ﬁ?) + i(ﬁ;—' ﬁ?) = (¢u1 - ¢u;) + i(¢u§ - ¢u:)°

If p € M(G)* then ,u"" € M(G)*, and so ¢,- is a positive definite. We have
thus shown that

(7.7) B(@) ={(¢1—¢2) +i(d3 —¢4): ¢; € P(@), j=1,2,3,4}.

Of course, the relation (7.7) is valid for the group G itself. Therefore, we see
that the inversion formula holds for f € L}(G) N B(G).

For each p € M(G) with fi € L}(G), put f(t) = i(~t), t € G. Because
fi € L}(G)n B(G), we apply the inversion theorem to see that f € L*(G) and

Fon = [ Aot = [ Fonod = 7).
Therefore, we see that b= f € LY(G) and
f(t) = A(~t) = /G A=y = /G Fyer.

- Especially, we have shown that the inversion formula holds whenever fis an
L!-function:

(7.8) feING),FeI'@) = f(t)= /éf(v)'r(t)d'r-
If G = T then we have
(7.9) FeINT),fel(Z) = f®)= ), f(n)e™,

where the equality and the infinite sum should bé, of course, taken in the
Ll-space.

For a function f on G, we define the convolution operator Ay by

(7.10) Mf):€m-frE €€ L?G).
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The formula m = f E says that the operator A(f) is converted to the (point-
wise) multiplication operator m 7 through the Plancherel transform. There-
fore, the Fourier transform may be understood as a diagonalization process,
since the multiplication operators induce diagonal matrices. The following
easy relation

(7.11) fry=F(vy, €@, feL'(G)

says that every v € G is a common eigenvector of the family {A(f) : f €
LY(G)} with the eigenvalue 7(7) in an informal sense. The situation becomes
clear if G is compact.

Assume that G is compact. For each characteristic function x € €2(G),
we can take £, € L%(G) C L'(G) such that é:, = X by the Plancherel theorem.
Then we have

()= D X4(¥)' (&) = ()
v EG
by the inversion formula, and so ¥ = x. for each f € G. Therefore, the
correspondence v < X gives us complete orthonormal bases for L?(G) and
ez(c?), respectively. The relation (7.11) says that A(f) is a bounded linear
operator with ||[A(f)|| = || Filoo- By the completeness of G in L(G), we have

(7.12) F=Y =) fnn feL¥G)

~eG ~eG

It should be noted that the right sides of (7.12) need not to define a function
unless f € £(G). This is a distinction with the L!-inversion formula (7.8).
The formula (7.12) just means that the finite sums of the right sides converge
to the function f in the L2-norm. Therefore, it is absurd to conclude that the
formula (7.12) holds pointwise even in the sense of almost everywhere. Note
that the equalities in (7.8) and (7.9) hold for almost all £ € G. A finite linear
combination of characters is called a trigonometric polynomial. The relation

(7.12) says that trigonometric polynomials are dense in L*(G) if G is compact.

Ezercise 7.1. Assume that G is compact. Use the Stone-Weierstrass the-
orem to show that trigonometric polynomials are uniformly dense in C(G).
Deduce that they are also dense in LP(G) for 1 < p < oo.
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The statements (6.5), (7.3) and (7.4) are called the Uniqueness theorems.
Now, we infer that the Fourier algebra A(Z) is a proper subset of co(Z) by
Exercises 4.5 and 5.4. We can find an explicit example of co-sequence which
is not an element of A(Z). Let f be a 27-periodic function on R given by
f(t) =t for t € [0,2n] then we calculate

z": f(k)eikt Z =sinkt := 7 — 2¢,(t).

k=—n

Recall that a sequence converges to f in LP-space, 1 < p < oo, then a sub-
sequence converges to f pointwise almost everywhere. Therefore, there is a
subsequence of {¢,, } which converges almost everywhere on [0, 27] to the func-
—t . Although this is sufficient to find an example of co(Z) \ A(Z), we
proceed to conclude that {¢,} is uniformly bounded on R.

. ™
tion

Ezercise 7.2. Put D, (t) = Y ¢_,sinkt for t € R. Show that D} (t) < %

forn=1,2,... and t € [0,n]. [Hint: Y p_, e'** = e sin 2t/sin L]
Lemma 7.5. The sequence {¢,} is uniformly bounded.

T s
N+l SIS W
For k < N, we have sinkt < kt, and so I}:k_ ! Zsinkt] <tN < . On the
other hand, we infer that

Proof. For each t > 0, take a natural number N with

oo

Z -’1; sinkt| =

N+1

Z(-——kﬂwk(t) SO S T <2

using the summation by parts and Exercise 7.2. O

The above lemma would be trivial if we have pointwise convergence the-
orems, by which we know that {¢,(t)} converges pointwise to the function

z ; ¢ on (0, 2).

Proposition 7.6. Let f € L'(T) be an odd function: f(e'*) = —f(e™**).
Then the partial sums of the series Y o, ;f(n) are bounded.
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. ™
Proof. Since f is an odd function, we have f(n) = -:;_- / f(t)sinntdt. By
0

Lemma 7.5, we have

N oo
z;f(n)

n=1

P N
<+ [ |y 2 sinne

n=1

dt < M,

for a constant M, which is independent of N. 0O

Ezercise 7.3. Show that f € L!(G) is an odd function; f(—t) = —f(t) if
and only if fis an odd function, that is, f('y‘l) = -—f('y) for each v € G. Find

an example of a sequence {a,} in co(Z) which is not in the Fourier algebra
A(Z).

Ezercise 7.4. Modify the above argument to show co(Z) € B(Z).

Ezercise 7.5. Assume that f € L(R)is an odd function. Show that there
is a constant M such that

R
| FFwe

Find examples of Co(ﬁ) \ A(]ﬁ) and CO(IE) \ B(R).

<M, whenever ¢, R > 0.

8. Smoothness

Up to now, we have exploited the topological structures of groups. The
classical groups T and R have additional important structures; the smooth-
ness. In this section, we use the differential structure on T to construct the
distribution space D'(T) on T, which is bigger than M(T). The Fourier-
Stieltjes transform will be extended on the whole D'(T), so that the range of
this transform includes a very large class of sequences on Z.

We will denote by D(T) the vector space of all C*°-functions on T, or
equivalently, all periodic C*-functions on R with the period 27. Put

> 27P||D? f — DPgl|oo

p=0

where D is the usual differentiation.
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Proposition 8.1. Let {fn} be a sequence in D(T) and f € D(T). Then
the following are equivalent:
(1) d(fn,f)— 0asn — oo.
(ii) For eachp=0,1,..., the sequence {D?f,} converges uniformly
to the function DPf.
(iii) Given € > 0, there is a natural number N such that

(8.2) n>N, p< % => ||DPfp — DPflloo < €.

Proof. The directions (i) = (ii) = (iii) are easy. Assume that the
condition (8.2) holds. If we take a natural number P with P < 1 < P +1,

then we have

" 277||DPf — DPglles | o= 27P||\DPf — DPgllos
d(fn, f) ;;0 1+ |DPf — DPg|loo p__;l 1+ |[D?f — D?gle
P %)
<S 2Pt Y 2P <2e+27F <227,
p=0 p=P+1

whenever n > N. O

Ezercise 8.1. Show that (8.1) defines a metric on D(T) which is invariant
under translations; d(f + h,g + h) = d(f, g). Show also that the addition and
scalar multiplication are continuous with respect to this metric. Finally, show

that D(T) is a complete metric space, in which the unit ball is convex.

The above exercise says that D(T) is a Fréchet space. We say that {f,}
converges to f in D(T) if the conditions in Proposition 8.1 are satisfied. A

distribution ¢ on T is a continuous linear functional on D(T). The space of
all distributions is denoted by D'(T).

Egercise 8.2. Let ¢ be a linear functional on D(T). Show that ¢ € D'(T)

if and only if there is a constant C and a nonnegative integer P such that

6, )N <ClD?fllo, P=0,L,2,...,P.

Show that if a sequence {¢n} in D'(T) converges pointwise to a linear func-
tional ¢ on D(T) then ¢ € D'(T).
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It is clear that every measure is a distribution. Our first task is to define
the convolution on D'(T). The definition (2.4) suggests the following: For
$,9 € D'(T) and f € D(T), we define

(8.3) VR )(S)=(¢,f-s), ¢€D(T),feDT),seT,
(8.4) (*9,f)=(,¥Rf), ¢¥eD(T),feDT),

Compare with the relation (2.8). If ¢ and ¥ are continuous linear functionals
on C(T) and f € C(T), then this is nothing but the definition of the convo-
lution of measures. In order to show that the definition (8.4) is legitimate,

we should check that ¢ B f is a C°°-function. If Df is continuous then it is
f-n—f
h

easy to see that converges uniformly to Df as h — 0, by the mean-

value theorem, and so we see that they converges to Df in D(T), whenever
f € D(T). Therefore, it follows that

GRN+M =B _ g Gmedh=foe) (4 p(s)

as h — 0. The last quantity is equal to (¢,(Df)-s) = ¢ ®(Df), and so we
have

(8.5) D(¢R f)=¢R(Df), ¢€D(T),feDT).

The repeated use of (8.5) shows that ¢ X f is a C°-function.
Ezercise 8.3. Show that ¢ * f € D(T) for ¢ € D'(T) and f € D(T).

For each n = 1,2,..., take a nonnegative C*-function h, supported on
the interval [—1, 1], whose integral is 1. If f € D(T), then by the same
argument as in the proof of Proposition 2.3, we see that {h, ® f} converges
uniformly to f. By the relation (8.5), we conclude that it converges to f in
D(T). Therefore, we have

($*hn, ) =($,ha R f) = (8,f), ¢ €D(T),feD(T)

By Exercise 8.3, we see that every distribution is approximated by smooth
functions with respect to the weak*-topology in D'(T).
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Considering the definition (4.7) of the Fourier-Stieltjes transform, it is
natural to define

(8.6) #(n) = ($,7-n), nEL,

where <, is the character of T given by 7,(t) = e'™'. This is called the
Fourier-Schwartz transform on T.

Egercise 8.4. Show that ¢ * (n) = $(n)p(n) for ¢, € D'(T), n € Z.

Before the study of ¢(n) for ¢ € D'(T), we first investigate the properties
of the Fourier coefficients for functions in D(T). If f is a differentiable function,
then it is easy to see that ﬁ(n) = inf(n) for each n € Z using integration
by parts. Therefore, we have

(8.7) Drf(n) = (in)f(n),  feD(T).
Because D?f is, of course, an L!-function, we see that
(8.8) FE€D(T) = [n|Pf(n) — 0 for each p=0,1,2,....

A sequence {c,} on Z is said to decrease rapidly if the sequence {|n|?c,} is
bounded, for each p=0,1,2,....

Proposition 8.2. The map f — fis a one-to-one correspondence from
D(T) onto the set of all rapidly decreasing sequences. For each f € D(T), we
have

N
(8.9) f=lim > f()rm,

IN|—~oo =y
with respect to the topology of D(T).

Proof. For a rapidly decreasing sequence {c,}, it is easy to see that the
function f(t) = Y o _, cne'™ is a C*°-function, and F(n) = ¢, by the or-
thogonality of {y,,}. For the formula (8.9), we fix p = 0,1,2,... and note that
the sequence

N N N
D (3 Feomn) = 3 Fodinrm= 3 B

n=—N n=—N n=—N
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converges uniformly to D? f as N — oo, because Y oo _ Drf (n) is an abso-

lutely summable series. O

We say that a sequence {c, } on Z increases slowly if {|n|"Pcn} is bounded
for some p = 0,1,2,.... It is clear that the set of all slowly increasing se-
quences is closed under the pointwise product. Now, we are ready to state
and prove the following main theorem of this section.

Theorem 8.3. The Fourier-Schwartz transform ¢ — $ is an isomor-

phism from D'(T) onto the algebra of all slowly increasing sequence.

Proof. By Exercise 8.2, we see that there are C and p such that
nl7P1@()] = In|P(¢, 7-n)] < In|TPCIIDPy_n]leo = C-

Now, we assume that {c,} is a slowly increasing sequence with |n|~P|c,| < C

for each n € Z. Considering 7, as an element of D'(T), we have

o N
(o, fy = lim > (yn, f(k)m) = f(-n),

IN|—oo =4
for each f € D(T) and n € Z, by Proposition 8.2. Now, we fix f € D(T), then
there is a constant C' such that

N N

N
> lewm A= D leallf(=m) < 3 InPCIf(-n)l < C*
n=-M n=-M n=-M
for all M and N, because {f(—n)} decreases rapidly. This shows that the
series {E,I:,:__ M CnYn} converges to a distribution ¢ € D'(T) as M,N — oo,
by Exercise 8.2. It is clear that ¢(n) = c, by the orthogonality of {yn}.
It remains to show that ¢ — $ is one-to-one. To do this, assume that

$(n) = 0 and so (¢,7,) = 0 for each n € Z. By Proposition 8.2, we see that
(¢, f) = 0 for each f € D(T) from the continuity of ¢. 0O

Ezercise 8.5. Define the involution ¢ — ¢* for ¢ € D'(T) so that 3; = -:;

NOTE

For the direct proof that the dual group of an LC A group is LCA with the compact-
open topology, see [PONTRYAGIN, §34] or [MoRRiIs, §3]). The proof of Theorem 4.3 was taken
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from [RUDIN62, §1.2]. We have followed [LoowMis, §24] and [RuDIN73, Chapter 11], for the
spectral radius formula and the Gelfand transform. For the proof that (5.14) is a C*-norm,
see [DIXMIER, §1.3] or [TAKESAKI, §1.1]. The materials in Sections 6 and 7 were taken from
[RuDIN62, Chapter 1].

For another proofs of Pontraygin duality and related topics such as structure theorems
for LC A groups, we refer to the books [HEWITT AND Ross], [MoRRis] and [PONTRYAGIN].
For a brief history on Pontryagin duality, see [HEWITT AND Ross, §24 Notes]. Much larger
class of abelian groups than LC A groups enjoys the Pontryagin duality. See the Remark
in [MORRISs, §5] and references there. The abelian groups satisfying the Pontryagin duality
have been characterized in [Venkataraman, Math. Z. 149(1976), 109-119]. The Pontryagin
duality has the obvious similarity with the reflexivity of topological vector spaces, which
are abelian groups under the addition. See [Kye, Chinese J. Math. 12(1984), 129-136; J.
Math. Anal. Appl. 139(1989), 477-482].

For Classical Fourier Analysis on the groups T, Z and R, we refer to the books [CHAN-
DRASEKHARAN), [EDWARDS], [HELSON], [KATZNELSON] and [ZYGMUND]. Lemma 7.5 was
taken from [ZYGMUND, §V.1]. As for Proposition 7.6, the situation is quite different in the
case of even functions. See [KATZNELSON, §1.4] for more details and an another proof of
Proposition 7.6. For an example of ¢ € C(T) \ A(T), see [KATZNELSON, Exercise 1.6.6].

We have followed [KHAVIN AND NikoLsk13, Chapter 1.1] for §8. For the general the-
ory of distributions on R™ and the Fourier transform there, we refer to the book such as
[RUDIN73] or [ScHWARTZ]. For the history of Fourier analysis, we also refer to [BoTTAZZ-
INNI, Chapter 5], [DIEUDONNES1, Chapter VII] or [KHAVIN AND NikoLsK1J, Chapter 1.4].
It should be noted that the analysis of Fourier series was one of the main motivations for the
developments of the concepts of function and set. See the Introduction part of [CANTOR].



CHAPTER III

NON-ABELIAN GROUPS

The central theme of the study of abelian groups in the last chapter is
the Pontryagin-van Kampen duality, which enables us to recover the origi-
nal groups from its dual objects. The essential part of the duality theorem
for LC A groups is Theorem 7.2, which says that there are sufficiently many
characters to distinguish elements of an LC A group. If we consider a non-
commutative simple group then the only homomorphism into T is the trivial
one. This leads us naturally to consider the group U(n, C) of all n x n unitary
matrices. For non-compact groups, we need also infinite-dimensional unitary
matrices, or equivalently unitary operators on an infinite-dimensional Hilbert
space.

In §9, we establish the correspondences between continuous unitary rep-
resentations of a locally group G and non-degenerated *-representations of the
group algebra L'(G). For the case of abelian groups, this amounts to Theo-
rem 4.3, where we have seen that every complex homomorphism of L!(G) is
induced by a character. It also turns out that every representation of L!'(G)
is induced by a positive linear functional of L*(G), equivalently, by a con-
tinuous positive definite function on G. Therefore, a unitary representation
of G corresponds to a positive definite function on G. In this situation, we
show in §10 that an irreducible representation corresponds to a positive defi-
nite function which is extreme, called a pure positive definite function. With
this machinery, it is easy to see that there are sufficiently many irreducible
representations on a locally compact group. Considering Bochner Theorem,
we see that characters of an abelian group play the roles of both irreducible
representations and pure positive definite functions.

We restrict ourselves to compact groups in §11. Employing the spectral
decomposition theorem, we show that every irreducible representation of a

61
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compact group is of finite dimensional. This enables us to decompose the
regular representation of a compact group into the direct sum of finite di-
mensional irreducible representations, to get the noncommutative version of
Riesz-Fisher Theorem (7.12) for L2-functions. In this case, the notion of a
character is generalized as the trace of an irreducible representation. In order
to get the duality of a compact group, we take the set of all finite dimensional
representations as the dual object. This set has the operations such as direct
sum, tensor product and conjugate. With a suitable notions of representations
of this dual objects, we get the Tannaka duality in §12. We close this note
by exhibiting all irreducible representations for simplest non-abelian infinite
compact groups such as special unitary and special orthogonal groups with
low dimensions in §13.

9. Unitary Representations

From now on throughout this note, H and B(H) will always denote a
Hilbert space and the Banach space of all bounded linear operators on H. For
each z € B(H) and n € H, the map £ — (z£,n) is a bounded linear functional
whose norm is ||z]|. Therefore, there is a unique element, denoted by z*n in
‘H, such that

(z€,m) = (€,z*n), z€B(H), neH.

It is easy to see that n — z*n is a bounded linear operator on M, and z +— z*

is an isometric involution. Because

lle€ll* = (2¢, 2€) = (z*2€, €) < |l=*=|ll[€]1%,

we have ||z||? < ||z*z||. From the relation ||z*z|| < ||z*|[||z]| = ||z||, it follows
that
(9.1) la*all = llsl?, = € B(*).

This says that B(H) is a C*-algebra. An element u € B(H) is said to be a
unitary if u*u = uu* = 14, and the group of all unitaries on H will be denoted
by U(H).
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A unitary representation of a locally compact group G on a Hilbert space
‘H is a group homomorphism s — =, from G into U(H) such that the map
s — m4€ is continuous from G into H for each fixed { € H. For s € G and
€ € L*(G), we define

(9.2) E)(E) = Ea(t) = E(s718),  t€G.

Then we have ()\.£,n) = (£, ;1) for each £,n € L?(G). Therefore, ), is a
unitary operator on L2(G) with (A,)* = X,-1 for each s € G. By Exercise
2.5, we see that s +— ), is a unitary representation of G on the Hilbert space
L?*(G). This is called the left regular representation, which will be always
denoted by A. The right regular representation s +— p, is also defined by

(93) (p)(t) = E°(t) = £(ts),  s,t€G, £€ L*(G).

Ezercise 9.1. Let {u;} be a net in U(H), and u € U(H). Show that
u;€ — uf for each £ € M if and only if (u;€,n) — (u€,n) for each {,n € H.

A unitary representation  is said to be irreducible if there is no nontrivial
closed subspace of H which is invariant under {7, : s € G}. In other words,
if K is a closed subspace of H such that 7,(K) C K for each s € G, then
K = H. It is clear that every one-dimensional representation is irreducible:
Every character of an LC A group is an irreducible representation.

A representation of an involutive (normed) algebra A on a Hilbert space
H is a continuous *-homomorphism from A into B(#). The notion of irre-
ducibility is defined similarly as above. For a representation 7 of an involutive
algebra A on H, we denote by

K = the closure of the linear span of {n(z){:z € A,£ € H}.

Then we see that K is an invariant subspace of X, and 7 € K+ if and only if
n(z)n = 0 for each z € A. In other words, 7 acts trivially on the orthogonal
complement of K. We say that a representation is non-degenerate if K = 'H
in the above discussion, which says that every representation is the sum of a
non-degenerate representation and the trivial one. If {m;,H;} and {m3,H2}

are representations of A, then the sum 7 @ 73 is the representation of A on
H, & H, defined by = — (m1(z), m2()).
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For a given arbitrary family {H; : ¢ € I} of Hilbert spaces, we define the
direct sum Y2 H; = {€ € [T;c; Hi : ¥; ll6ill> < 0o}, with the inner product

Emy= (Em) &ne) ®Hi
i€l i€l

It is plain that Y% #; is a Hilbert space. If z; € B(;) with ||&]| < M for
each i € I then it is also legitimate to define the sum E? z; by

((Z$xi)€an) = Z(xifi’ni>v {777 € ZeHi°

i iel i

Then Y% z; € B(X® H,) with || 2% z;]| < M. The direct sum of representa-
tions {m;,H;} of A on the Hilbert space "2 7; is define by

ZGBW’. 1T Ze)m(m), z € A.
i H

Ezercise 9.2. Show that a representation 7 of an involutive algebra A on
H is non-degenerate, if and only if, for each nonzero ¢ € H there is a € A such
that w(z)¢ # 0.

The following theorem relates unitary representations of a group G and
representations of the group algebra L!(G). Compare with Theorem 4.3.

Theorem 9.1. Let s — 7, be a unitary representation of a locally com-
pact group G on H. Then the formula

04)  (n(u.m) = /G (rabom)du(s),  p€ M(G),En € H

defines a representation of the involutive algebra M(G), whose restriction to
L'(G) is non-degenerate. Conversely, if  is a non-degenerate representation
of L}(G) on H then there exists a unique unitary representation s + m, of G
on M satisfying the relation (9.4).

Proof. 1t is clear that w(u) € B(H) with ||7(p)|| < ||¢]l- By the straight-
forward calculation, we also have m(u * v) = w(u)r(v) and w(u)* = n(u*).
Note that ' '

(n(6¢ % £)E,m) = / / (or md6(s)F (r)dr = / (rentsm) £(r)dr,
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for each t € G and f € L!(G). If we take an approximate identity {u;}
satisfying the assumptions of (2.9), then it follows that

(9.5) Lm(n(6, xu;)€,n) = (mek,n), tE€G, EneMHN,

by the continuity of r - 7. We denote by K the subspace of H generated
by {n(f)¢ : f € L*(G),€ € H}. If n is in the orthogonal complement of K
then we see that n = 0 by (9.5) with ¢t = e. This shows that the representation
7 restricted on L'(G) is non-degenerate.

Now, we proceed to prove the converse. The uniqueness comes out from
(9.5). Assume that 7 is a non-degenerate representation of L'(G). Then K is
a dense subspace of H. We note that (u;), * f = (u; * f)s = fo in L!(G), and
so it follows that

n(fs) = im7((ui)s * f) = im 7 ((ui)s) 7(f), feI*G), s€G
by the continuity of 7. This shows that there is an operator 7, on K such that
won(f) = 7(fs) = m(8s * f), fe (@), s€q.

Because ||7((u;)s)|| < |||, we see that 7, extends to a bounded linear operator
on H with ||m,]| < ||=||. Since s — 7(f,)¢ is continuous, we see that s — 7,
is also continuous for £ € K, and hence for £ € H. Now, we have

moem(f) = 7(far) = 7((ft)s) = 7om(fe) = memen(f),  f € LY(G),
and so s + 7, is a homomorphism. From the relation (6,)* x6, = b,, it is easy
to see (m,m(f)E, msm(g)n) = (w(f)E, 7(g)n), and each 7, is a unitary operator.
It remains to show that the relation (9.4) is satisfied for u(s) = f(s)ds with
f € LY(G). We fix £,n € H. Note that g — (n(g)¢{,n) is a bounded linear
functional in L'(G), and so there exist h € L°(G) such that

(x(9)E,m) = / gh(r)dr, g€ IG)

Now, we have

/ (man(g)6,m) £(s)ds = / £(5)ge(r)h(r)drds
- / (F * 9)(Ph(r)dr = (x(f * 9)6,n) = (x(F)n(9)€: ).

By the density of KX, we may replace m(g) by £, and this completes the
proof. O
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Corollary 9.2. Every representation of L(G) is norm-decreasing.

The representation m (we use the same notation) on L!(G) given by (9.4)
is called the induced representation by the unitary representation s — m,. If
G is an LC A group with a character v, then the Fourier transform f — f(fy)
is nothing but the induced representation of the unitary representation given
by s + 7(s). Compare the formulae (9.4) and (4.7).

Ezercise 9.3. Show that a closed subspace of H is invariant under {=, :
s € G} if and only if it is invariant under {w(f) : f € L*(G)}. Conclude that
a unitary representation is irreducible if and only if its induced representation
is irreducible.

It is easy to see that the induced representation of the left regular repre-
sentation (9.3) of G is given by

ADEn) = (f*&m),  feL(G), &neL*(G). |

The norm condition ||A(f)|| < ||f]l1 implies that

If *€lla < 171 llElls  f <€ LY(G), €€ L*(G).

Ezercise 9.4. Assume that f € L}(G) and g € LP(G) with 1 < p < co.
Show that f *x g € L?(G) with ||f * g, < ||fll1]l9llp-

Now, we relate representations of L!(G) with positive-definite functions
on G, which are nothing but bounded positive linear functionals on the invo-
lutive algebra L'(G). If {x, M} is a representation of L!(G) and £ € H then
we see that the function

(9'6) $(s) = (msk, f)’ seEG

defines a positive definite function on G. Indeed, we have
O1) 6.5+ 1) = [ e * oM = (7" + €)= (eI 2.0,

by Theorem 9.1. In order to construct a representation of L'(G) from a given
positive definite function ¢, it is more convenient to consider general involutive
algebras.
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Let ¢ be a bounded positive linear functional on a unital involutive algebra
A with the following property:

(9.8) d(y*z*zy) < l|lz|*d(v*y), z,y € A

Note that the formula (3.7) induces a definite inner product on the quotient
space A/Lg, where

Ly={z € A: ¢(z*x) = 0}.

We denote by Hy the Hilbert space obtained by the completion of A/Lg4. For
every z € A, denote by mg(z) the linear map on the pre-Hilbert space A/Ly
induced by the multiplication;

m(z)(y+ Ly) =zy+ Ly, yEA4,

which is well-defined by (3.9). Indeed, if y € Ly then we have

6((zy)*(@v))I? = [((z"zv) V)I* < S(¥*V)d((z"2)"(z"zy)) = 0,

and so zy € Lg. The condition (9.8) implies

lmg(2)(y + Lo)ll3e, = 6((z9)*(zv)) < llzl*6(u™) = llzl*lly + Lol -

Therefore, m4(z) extends to a bounded linear map on Hy with ||7g(z)|| < ||z]|.
Also, if we denote by 4 the vector in Hy represented by the identity 1 of A,
then we have

(9.9) ¢(z) = (mg(2)€4,€4), T € A

It is easily seen that {m4,Hy} is a representation of A. Note that the set
{my(z)€y : = € A} is dense in Hy, by the construction of Hy. Such a vector
is called a cyclic vector. Especially, a representation with a cyclic vector is
non-degenerate. We have thus shown the following:

Proposition 9.3. Let ¢ be a bounded positive linear functional on a
unital involutive algebra A with the property (9.8). Then there is a represen-
tation {my, My} and a cyclic vector €4 € Hy satisfying the relation (9.9).

Ezercise 9.5. Let ¢ be the linear functional of the C*-algebra C|0, 1] given
by the Lebesgue measure on the unit interval. Show that the condition (9.8)



68 CHAPTER III. NON-ABELIAN GROUPS

is satisfied and describe the induced representation. Do the same question for
the normalized trace of the matrix algebra.

Ezercise 9.6. Let G be an LC A groups. Describe the representation of
L'(G) induced by the positive definite function ¢, defined by (6.2) for each
u € M(G)*. What is the corresponding unitary representation of G?

Ezercise 9.7. Show that a representation {r, H} of A is irreducible if and

only if every nonzero cyclic vector of H is cyclic.

Ezercise 9.8. Show that every non-degenerate representation of A is the
direct sum of representations with cyclic vectors. [Hint: Zorn’s lemma.)

For any positive definite function ¢ on a group G, we have
©10) (@ wn) = [[ ST < 6O, 1€ M(G)

For v € M(G), we define the L*®-function ¥ : t — /dB(str)du*(s)du(r) for
t € G. Then we have v

(Y, p) = // $(str)dv*(s)dv(r)du(t) = /d)(t)d(u* xpuxv)(t) = (@, v xu*v),

and so (¢, u* * ) = (@, (1 *v)* x (u xv)) > 0. Therefore, is also a positive
definite function on G and we have (1, u* * ) < (e)|[¢]|? by (9.10). In other
words, we have

(6, 0" * ™+ pxv) S (e)llull® = lull* (¥, 8e) = llull*(g,v* *v).

This shows that the unital involutive Banach algebra M(G) satisfies the con-
dition (9.8), and so we may apply Proposition 9.3 for A = L!(G) + Cé..

Theorem 9.4. Let ¢ be a continuous positive definite function on a
locally compact group G. Then there exists a representation {mg, My} of
L'(G) and a cyclic vector €4 € Hy such that

(6, f) = (ny(f)Es,Es),  f€LYG).

Proof. It remains to show that €4 is cyclic vector for L}(G). If {u;} is an
approximate identity satisfying the assumption of (2.9), then it is plain that
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(¢, ui) — ¢(e) and (¢, ul) — ¢(e). Now, we use the relations (3.10) and (9.10)
to infer that

(¢, ui) > < dle)(g, ui *ui) < ¢(e[|uill} = d(e)’,

and so (¢, u} * u;) — ¢(e). Therefore, we have

(8, (wi = 6e)" * (ui = 8)) = (¢, uf * wi) — ($,ui) = (4, i) + ¢(e) = 0

as i — oo. This means that the vector {4 is approximated in Hy4 by vectors
induced by L!-function. The proof is complete, because we already know that
€4 is cyclic vector for L!'(G) + C6, and 74(8:)(€g) = €4 O

We say that two representations {m;, H;} and {7, H,} of A are unitarily
equivalent each other if there is a Hilbert space isomorphism U from H,; onto
‘H, such that m;(z) = U*ny(x)U for each z € A.

Ezercise 9.9. Assume that two representations {mj,H;} and {ma, Hs}
have cyclic vectors £; and £, respectively, with the relation

(m1(2)€1, &) = (m2(2)E2, €2)s z € A.

Show that they are unitarily equivalent.

This exercise shows that the representation in Theorem 9.4 is determined
uniquely up to unitary equivalence. The notions of cyclic vector and unitary
equivalence are defined for unitary representations of groups by the similar
way.

Ezercise 9.10. Show that £ is a cyclic vector for a unitary representation
of G if and only if £ is also a cyclic vector for the induced representation of

L'(G).

Ezercise 9.11. Show that the left and right regular representations are
unitarily equivalent each other.

Theorem 9.5. Every unitary representation s — m, of G defines a con-
tinuous positive definite function ¢ by the formula (9.6). Conversely, for each
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¢ € P(QG) there exists a unique unitary representation s — m,, up to unitary
equivalence, and a cyclic vector £ satisfying the relation (9.6).

Proof. The first statement has been already proved. By Theorem 9.4,
there is a representation {m, H} of L*(G) and a cyclic vector £ € H such that
(¢, F) = (7(f)E,€) for each f € L'(G). By Theorem 9.1, this representation
is induced by a unitary representation s — 7, with the relation

/ 6()f(s)ds = (6, f) = (r(F)E,€) = / F(s)(mab,E)ds,  f € IMNG).
G G

From the continuity of two functions ¢ and s — (£, £), we have the required
relation (9.6). O

10. Irreducible Representations

In the last section, we have established the correspondence between uni-
tary representations and continuous positive definite functions for a locally
compact group G. In this section, we study the subclass of P(G) corresponding
to irreducible representations, and generalize Theorem 7.2 to noncommutative
groups: Every locally compact group admits sufficiently many irreducible rep-
resentations to distinguish elements of G. For an element s # e of G, take a
compact neighborhood U of e such that UNsU = @, and denote by ¢ € L%(G)

the characteristic function on U. Then we have
(10.1) (€)= [ €T = 0 £ (A6, €).

If we denote by ¢¢ the continuous positive definite function (9.6) defined by
the left regular representation A and ¢, then the above formula (10.1) says
that d¢(s) # de(e).

We denote by P(G); the set of all ¢ € P(G) such that ¢(e) = 1. It is
easy to see that P(G), is a weak*-closed convex subset of L'(G)*. Therefore,
we see that every element of P(G); is approximated by convex combinations
of extreme points of P(G); in the weak*-topology by the Banach-Alaoglu
and Krein-Milman theorems. An extreme point of P(G), is said to be a
pure positive definite function on G. If G is a discrete group and a net {¢;} of
P(G) converges to ¢ in the weak*-topology then {¢;} converges to ¢ uniformly
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on finite subsets, considering the point masses. This is the case for general

locally compact groups. Compare with Proposition 4.1. We need the following
general fact.

Ezercise 10.1. Let X be a normed space and {¢;} a bounded net in X*.
If {¢;} converges to ¢ in the weak*-topology then show that {¢;} converges
to ¢ uniformly on every compacta of X.

Proposition 10.1. Let {¢;} be a net in P(G), and ¢ € P(G)1. Then
the following are equivalent:

(i) The net {¢i} converges to ¢ pointwise.
(ii) For each f € L*(G), we have lim(¢;, f) = (¢, f)-
(ili) The net {¢;} converges to ¢ uniformly on every compacta of G.

Proof. The direction (i) = (ii) follows from the Lebesgue dominated
convergence theorem, as was in Proposition 4.1, and so it suffices to show the
direction (ii) == (iii). To do this, take a compact neighborhood V' such that
|¢(s) — 1] < e for s € V, and put h = a~lyv where a is the mass of V. We
first show that

(102) ¥ € P(G)1, [(¥ — ¢, W)l <& = |9(s) — (h*9)(s)| < 2VeA(sT),

for each s € G. Assume that i satisfy the assumption of (10.2). Then we
have

lfv(d)(t) - ¢(t))dt‘ < (¥ — ¢,ah)| < ae,

and so it follows that
l/V(l - ¢(t))dt| < '/V(l - ¢(t))dt| + |/V(¢(t) - z/)(t))dt‘ < 2ae.

If we write 1(s) = (m,£,£) for a unitary representation 7 of G then ||¢]|* =
¥(e) = 1. Therefore, we have

[(£) — ()% = [(mel — e, ) < [Imat — mek||?
= ||ms€||? + |Ime€|* — 2Re (ms€, ™€) = 2 — 2Re Yt~ 1s).
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Combining the above two inequalities, it follows that
_ 1
(h+ 9)e) = (o)l = | [ mowtetyae =2 [ wio
1 o
<7 [ s - uolar

< V2 / (1 - Rey(s~ts))bdt
a Jv

- \/TiA(s‘l) ( /V (1- Retp(t))dt)% ( /V dt)%

< 2VeA(s™h).

If we denote @(t) = ¢(t~1) then it is easy to see that {¢;} also satisfies the
condition (ii). We fix a compact set K of G. Then the set L = {h,-1 :s € K}
is compact in L(G) by Lemma 2.2. Applying Exercise 10.1, we see that
{h * ¢i} converges to {h * ¢} uniformly on K by the relation

(h+ $)(s) = / h(st)p(tVVdt = (§,he-1),  s€G.

Note that ¢; satisfies the assumption of (10.2) for sufficiently large i, because
h € L'(G). The proof is thus complete by (10.2) together with the usual
3e-technique. 0O

Ezercise 10.2. Let f € C.(G), and assume that uy € C.(G) satisfies
the assumptions of (2.9). Show that {f * uy} converges to f uniformly as V'
becomes smaller. Use the polarization identity;

3

af xg =3 i*(f +ig) * (F - ig),

k=0
to conclude that every continuous function on G is the limit of linear com-

binations of pure positive definite functions, in the uniform limit on every
compacta.

Proposition 10.2. Let s # e in a locally compact group G. Then there
is a continuous pure positive definite function ¢ on G such that ¢(s) # ¢(e).

Proof. If ¢(s) = ¢(e) for each pure positive definite function ¢ then the
same relation holds for each ¢ € P(G) by Proposition 10.1 and the discussion
before the proposition. This is absurd by (10.1). O
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Now, we investigate the properties of the unitary representation induced
by a pure positive definite function. We write ¢ < ¢ if ¢ — ¢ is positive
definite.

Lemma 10.3. A positive definite function ¢ € P(G), is pure if and only
if every ¥ € P(G) with ¢ < ¢ is a scalar multiple of ¢.
Proof. If 0 < 9 < ¢ then 0 < 9(e) < ¢(e) = 1. If ¢p(e) = 0 then 3p = 0.

If ¢)(e) = 1 then (¢ — 1)(e) = 0, and so ¢ = 9. If 0 < yp(e) < 1 then we infer
that 1 = y(e)¢ from the relation

:(1-¢(e)>[ oo™ ¢>]+¢(e>[¢()]

and the extremity of ¢. The converse is easier. [

Now, we assume that ¢ is a pure positive definite function with the asso-
ciate unitary representation {m,H} and the cyclic vector £. Assume that E
is a closed invariant subspace of H under {7, : s € G}, and denote by P the
projection onto E. By a projection, we always mean a self-adjoint idempo-
tent. By Exercise 9.3, E is also invariant under {x(f) : f € L*(G)}, and so
Pn(f)Pn = n(f)Pn for each f € L'(G) and n € H. Therefore, we have

(10.3) Pr(f) = (n(f*)P)" = (Px(f*)P)* = Pr(f)P = n(f)P,

for each f € L}(G). Now, we define the positive definite function v by ¥(s) =
(ms PE, PE) for s € G. Then it follows that

(@, f*+f) = Iw(HPEIP = |Pr(HI? < In(HEI = (¢, f*+f),  feL'(G),

by (9.7) and (10.3). This says that ¥ < ¢, and so there is scalar A such that
¢ = A by Lemma 10.3. Therefore, we have

(Pr(f)E,€) = (Pr(f)E, PE) = (n(f)PE, PE) = (Mn(f)E,€),  f € L'(G).

Because £ is a cyclic vector, we have P = A1ly. Since P is a projection, it
follows that P = 1% or P = 0. Therefore, we have shown the following:

Proposition 10.4. The unitary representation associated by a pure pos-
itive definite function is irreducible.
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Theorem 10.5 (Gelfand-Raikov). Every locally compact group G ad-
mits sufficiently many irreducible representations to separate elements of G.

Proof. If s # e then we can take a pure positive definite function ¢ such
that ¢(s) # ¢(e) by Proposition 10.2. If {w, H} is the irreducible representa-
tion associated by ¢, then we have

(ms€,€) = ¢(s) # #(e) = (mek, €),
and so it follows that 7, # w.. O

Corollary 10.6. If every irreducible representation of a group G is one-
dimensional then G is abelian.

Proof. Note that one-dimensional representation is nothing but a multi-
plication by a scalar, and so they commutes each other. For any s,t € G, we
thus have

Mgt = MMy = MMy = Mg
for every irreducible representation 7. By Theorem 10.5, we have st =ts. 0O

The converse is also true: Every irreducible representation of an abelian
group is one-dimensional. Because the proof involves the spectral decompo-
sition of unitary operators, we will prove here the partial converse: If {r,H}
is a finite-dimensional irreducible representation of an LC A group then it is
one-dimensional. For each s € G, we take an eigenvalue \(s) of the unitary
matrix m,, with the corresponding eigenspace E,. From the commutativity,
we see that F is invariant under {7, : t € G}. By the irreducibility, we infer
that E;, = H. In other words, every m, is a scalar operator, and so every
subspace of H is invariant. This implies that H is one-dimensional space.

The converse of Proposition 10.4 also holds, and the proof involves the
spectral decomposition again.

Ezercise 10.3. Let ¢ be a continuous positive definite function whose
associate unitary representation is irreducible and of finite dimension. Show
that ¢ is pure.

Ezercise 10.4. Assuming the converse of either Proposition 10.4 or Corol-
lary 10.6, characterize all pure positive definite functions and irreducible rep-
resentations of an LC' A group.
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Ezercise 10.5. Show that one-dimensional representations 7 and p are
unitarily equivalent if and only if 7 = p.

We will denote by G the set of all equivalent class of irreducible unitary
representations of a locally compact group G up to unitary equivalence. Note
that G is just a set (prove this!) without any additional structures. We
confuse an irreducible representation ¢ and the equivalence class of ¢ in G
unless stated otherwise.

Parts of the following exercise have been already used in the proof of
Proposition 10.4.

Ezercise 10.6. Let E be a closed subspace of H with the projection p onto
E. Show that E is invariant under z € B(H) if and only if zp = pzp, and
that E is invariant under z € B(H) if and only if E* is invariant under z*.
Show also that both E and E+ are invariant under z if and only if zp = pz.
Conclude that E is invariant under a *-subalgebra A of B(H) if and only if
zp = pz for each z € A.

Ezercise 10.7. Under the above situation, show that E is invariant under
a unitary representation {7, H} of a group G if and only if p7, = 7,p for each
s € G if and only if E* is invariant under 7. Finally, prove that every finite
dimensional representation is the direct sum of irreducible representations.

Now, we exhibit a concrete example of an irreducible representation of
the symmetric group S,. We denote by sgn the homomorphism from S, into
T which assigns the signs of permutations. Because the alternating group
A, is simple, we see that the trivial homomorphism 1 and sgn are only two
one-dimensional representations of S,,. It is clear that they are not unitarily
equivalent. There is a natural representation of S, on n-dimensional space
which permutes the basis. We take the usual orthonormal basis {e;, €2, ...,en}

of C". Define the unitary representation of S, on C" by
(10.4) Vg © € 7 €o(i), oc€S, 1=1,2,...,n.

There is an obvious invariant vector £ = e; + -+ + e,. Assume that W is
an invariant subspace in the orthogonal complement of the one dimensional
subspace [£] generated by . If w = Y"1 aje; in W then ) .., a; = 0, and

=1
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so there are ¢ and j with i # j, a; # 0, a; # 0 and a; # a;. Considering the
transposition o = (1, j), we see that w — v,(w) = (a; — a;j)(e; — €;) € W, and
so it follows that e; — e; € W. If we consider the permutation which sends ¢
and j to k and ¢, respectively, then e; — ¢ € W for any k,£ with k # £. It
is clear that they span [£]*. We have thus shown that the restriction of v to
[€]* is irreducible unitary representation on the n — 1 dimensional space.

Now, we restrict our attention to the simplest noncommutative group S3
which generated by a = (1,2) and b = (1,2, 3) with the relations a2 = b* = ¢
and ab = b%a. We list up elements of S3 by

e, b=(1,2,3), b = (1,3,2), a=(1,2), ab=(1,3), ab® = (2,3).

With respect to the usual basis, the representation v is expressed by

010 0 01
v,=|(1 0 0]}, w=11 00
0 01 010

In order to express the above 2-dimensional irreducible representation with
matrices, we choose orthonormal basis

: |
e=y/Fann n=y2@an. ¢=yf2 -as0,
2 1 2 3

where ¢ = cos 3"="3 and s = sin -7 = ——. We denote by P the orthogo-
nal matrix whose columns are €,7 and ¢. Then we have
1 0 O 1 0 O
Ply,P={01 0 ], PlyyP=(0 ¢ s
0 0 -1 0 -s ¢
Therefore, we get the following 2-dimensional irreducible representation of Sj:
2 . 2
1 0 cos-m sin=w
(10.5) a— (0 _1), b 3, 3

—sin §1r cos gﬂ'
Ezercise 10.8. Construct a 2-dimensional irreducible unitary representa-

tion of the dihedral group D,, which is generated by order 2 element a and
order n element b with the relation ab = b~'a.

We closed this section with a few comments on irreducible representations
of finite groups. It is plain that every irreducible representation of a finite
group is finite dimensional. We begin with the following simple lemma:
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Lemma 10.7 (Schur). Let {r,H.} and {p,H,} be finite dimensional
irreducible unitary representations of a group G. If U is a linear map from
Hy into H, such that p,U = Un, for each s € G, then either U is the zero
map or a bijection.

Proof. It is easy to see that Ker U and Im U are invariant under 7 and p,
respectively. This proves the lemma by the irreducibilities. O

Corollary 10.8. Let {w,H} be a finite dimensional irreducible unitary
representation of a group G. Assume that z € B(H) commutes with every 7,

that is, m, = myx for each s € G. Then z is a scalar operator.

Proof. Let ) be an eigenvalue of z. Then we have (Aly—z)7, = mg (A1 —
z) for each s € G. By Lemma 10.7, we have z=Aygx 0O

Note that we have already proved the following, during the proof of Propo-
sition 10.4: If the scalars are only operators which commute with every =, then
7 is irreducible. See also Exercise 10.4. Corollary 10.8 provides a partial con-
verse. A continuous linear map U : H, — H, with Un, = o,U foreach s € G
is called an intertwining operator for {m,H.} and {o,H,}. Noting that Hn
and H, are G-modules, an intertwining operator is nothing but a G-module
map.

Ezercise 10.9. Assume that {m,H,} and {0, H,} are two finite dimen-
sional irreducible representations which are not unitarily equivalent. Show

that the zero map is the only intertwining operator for = and o.

For a subset S of B(H), we define the commutant S' of S by
S'={yeB(H):zy=yz foreach z € S}.

Lemma 10.9. Let H be an n-dimensional Hilbert space and A a unital
*-subalgebra of B(H). Then we have A" = A.

Proof. It is clear that A C A". We denote by H®" the direct sum of
n-copies of . For z € B(H), we also denote T € B(H®"), the direct sum of
n copies of z, that is,

) =) %ti, =) ®Gen™

=1 i=1
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Then A = {Z : z € A} is a *-subalgebra of B(H®"), and the subspace At =
{Z€ : z € A} is invariant under A, and so the projection p onto A€ lies in
(A), by Exercise 10.6. If z € A" then it is easy to see that % € (A)", and
Zp = pz. By Exercise 10.6 again, we see that Z{ is invariant under z. Note
that £ = I¢ € A€, and so 36 € Af. If we take £ = ESB & with linearly
independent {;} in H, then we see that z € A. O

Ezercise 10.10. Show that every x-subalgebra of a matrix algebra is *-
isomorphic to a direct sum of matrix algebras.

Now, we consider the induced representation o of ¢}(G) of an irreducible
unitary representation {o, H,} of a finite group G. If f =3, .5 asxs € £(G)
then o(f) = ) ,cg @05, and so the range of o is generated by {0, : s € G}.
Combining Corollary 10.8 and Lemma 10.9, we see that o is a surjective *-
homomorphism from ¢}(G) onto B(H,). Applying Theorem 10.5, we have the
following;:

Proposition 10.10. Let G be a finite group. Then the sum of all induced
representations of irreducible representations gives rise to the *-isomorphism:

(10.6) Y @ :4(6) S S ®B(H,).
666 ' aeé

As an immediate consequence, we have

(10.7) The order of G = Y (dimH,)”.
aeé

Especially, we see that G is a finite set whenever G is a finite group. The
formula (10.7) is very useful to determine the group algebra £!(G) and G. For
example, we have £1(S3) ~ M;(C) & M;(C) & M,(C), and so this shows that
the three irreducible representations 1, sgn and (10.5) list up Ss.

11. Compact Groups

In this section, we restrict our attention to representations of compact
groups. It turns out that every representation of a compact group is finite
dimensional. Let {7, H} be a unitary representation of a group G. During the
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proof of Proposition 10:4, we have seen that if m,z = zm, for each z € B(H)
then = is irreducible. See also Exercise 10.4. The converse is also true, and this
is a generalization of Corollary 10.8. For the proof, the spectral decomposition

theorem for single operators are indispensable.

Spectral Theorem. Let z € B(H) be a normal operator; z*r = zz*.
Then every Borel subset A of sp(z) corresponds to a projection P4 with the
following properties:

(i) Pp=0and Py = 1.
(i) Panp = PaPg. f AN B =0 then Payp = P4+ Pp.
(iii) An operator y € B(H) commutes with z if and only if y com-
mutes with every Py.
(iv) For each £, € H, the set function A — (P4€,n) is a complex
measure, denoted by ¢ q.
(v) For each €,n € H, we have

(11.1) | (z€,n) = /s . Adpig,n(R)-

The projections {P4 : A is a Borel subset of sp(z)} are called the spec-
tral projections. If H is finite dimensional then sp(z) is a finite set and the
spectral projection associated to a point is nothing but the projection onto

the corresponding eigenspace.

Proposition 11.1. Let {m,H} be a unitary representation of a locally
compact group G. Then the following are equivalent:
(1) = is irreducible.
(ii) If z € B(H) commutes with 7, for each s € G then z is a scalar
operator.

Proof. 1t suffices to show the direction (i) => (ii). Assume that 7 is an
irreducible representation of G and z € B(H) is a self-adjoint operator which
commutes with every m;. Then every spectral projection P4 for * commutes
with 7, for each s € G. By Exercise 10.7, we see that the range of P4 is an
invariant space, and so P4 = 0 or P4 = 1 for each Borel set A. By the second
property of the spectral projections, we see that there is a single point {\}
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in sp(z) whose spectral projection is 13/, and this shows that z = Aly. The
general case follows from the fact that every element is the sum of self-adjoint
elements by (5.13). O

Ezercise 11.1. Prove the converses of Proposition 10.4 and Corollary 10.6.
Theorem 11.2. Every irreducible unitary representation of a compact
group G is finite dimensional.

Proof. Assume that {m,H} is an irreducible unitary representation of G.
We fix {,7 € H. Then the map ( — /(w,n,() (men, €) ds is a bounded

conjugate-linear functional on H by the compactness of G, and so there is a
vector, denoted by B,§, such that

(11.2) (Byts ) = /G (ran, Q) rom O ds £,myn € H.

It is plain that £ — By{ is a bounded linear operator on H for each n € H.
- Now, we have ‘

<Bn7rt§a C) = ‘/;<7!',7], C) (wt"lsn’é) dS = /C;<7Tts77, C) (7rs77, £> dS = (WtBnéa C)»

and so By,m; = m B, for each t € G and n € H. By Proposition 11.1, B, is a
scalar operator A(n)1y. Taking ¢ = £ in (11.2), we obtain

(10.3) A = [ i(mn, s,

Since G is unimodular, the roles of £ and n may be replaced in the right side
of (11.3), and so we have

AMUEN? = XOlnll* =2¢,  Enenr

If we take £ = 1 in (11.3), we see that c is a positive number.
For any orthonormal set {{1,...,&n} in M, the set {m,(¢&;): i =1,2,...,n}
is also orthonormal, and so

no=3 [ e elas= [ 3 lne)efds < [ ds=1

i=1 i=1

1
=
As a special case of the Gelfand-Raikov theorem, we have the following:

It follows that H is finite dimensional with dim H < O
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Theorem 11.3 (Peter-Weyl). Every compact group admits sufficiently
many finite dimensional irreducible unitary representations.

We continue to study properties of finite dimensional representations in
the relation of regular representation of a compact group G. Let H be a finite
dimensional Hilbert space. Then, the map (z,y) — Tr(y*z) is a sesqui-linear
form on B(H) which is positive definite. We denote by 7 () the Hilbert space
B(H) with the inner product '
(11.4) (z,y)1r = Tr(y*z), z,y € B(H).

Note that T(H) = B(H) as sets since H is finite dimensional. For a finite
dimensional representation {o, H,}, we define

(11.5) gs(z) = 0502, s€G, ze€T(H,).

Then it is easy to see that ¢ is a unitary representation of G on the Hilbert
space T(H,). Now, for'z € T(H,), we also define

£2(s) = (05, 2")1r = Tr(z 0 0y), s €.
Then £, is a continuous function on G, and so &, € L?*(G). Now, we have
[ps(£)](t) = &(ts) = Tr(z010,) = Tr(osz01) = £6,2(1);

for each s,t € G, where s — p, is the right regular representation in (9.3),
and so it follows that

(11'6) P(gz) =g, 2 s€EqG, € T(Ha).

This means that V, : z — & : T(Hs) — L?*(G) is an intertwining operator
for {5,T(M,)} and {p, L*(G)}. We denote by E, the range of V, in L*(G).
Especially, E, is an invariant subspace of L?(G) under the right regular rep-
resentation.

Ezercise 11.2. Let E be a finite dimensional subspace of L?(G) which
is invariant under the right regular representation p of a group G. For each
¢ € E, show that there is z € B(E) such that

£(s) =Tr[zo(plE)s), s€G.
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Ezercise 11.3. Let o be a unitary representation on the n-dimensional
Hilbert space H with an orthonormal basis {e,,...,e,}. Show that the map
U : T(H) — H®" given by

U:zw~ (ze,...,2en), z€T(H)

is a Hilbert space isomorphism. Conclude that {&,7(H)} is unitarily equiva-
lent to the direct sum {o®", H®"} of the n copies of {0, H}.

Ezercise 11.4. Let {0, H,} be an irreducible representation of a compact
group G. Show that every z € B(H,} is a finite linear combination of {o, :
s € G}. (See the paragraph preceding Proposition 10.10.) Conclude that if o
is irreducible then V,, is a linear isomorphism from 7 (H,) into L(G).

We actually show that V, is a Hilbert space isomorphism (up to constant
multiples) whenever o € @, and we also clarify the relations E, and E, for two
irreducible representations ¢ and 7. These are, of course, reduced to calculate
the inner product

(11.7) (Va(@), Vo)) 136y = /G Tr(zos) Te(yrs)ds.

for z € T(H,) and y € T(H;). It is plain that the results would follow if we
consider rank one operators. For two vectors £ € H and 5 € K, we denote by
€ ® n the rank one operator from H into X by

(11.8) o)) =(&n CeH.
Ezercise 11.5. Let H be a finite-dimensional Hilbert space. Show that
Tr[(u ® v)z] = (zv,u) for u,v € H and z € B(H).

Note that the formula Tr(u ® v) = (v,u) may be considered as the def-
inition of the trace free from orthonormal basis. Now, for u,v € H, and
¢,d € H,, we calculate

Tr{(u ® v)o,) Tr[(c ® d)7s) = (o5, u) (c, T5d)
= (0s((Ts-16,d)v),u) = (05(d ® v)7,-1¢,u).
Let ¢ : H, — H, be a linear map. The above calculation suggests to define

the linear map @ : H, — H, by
(11.10) (®c,u) = / (0s¢Ts-10,u) ds, c€H,, u€eH,.
G

(11.9)

Because G is compact, no integrability problem arises.
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Lemma 11.4. Under the above situation, the linear map ® is an inter-
twining operator for 7 and o.

Proof. The proof is the straightforward calculation using the left invari-
ance of the Haar measure:

(0¢®c,u) = (Pc, 0¢-1u)

= /(0’3¢Ta—1 c,04-1u) ds
= /(Uts¢Ts—lC, u) ds
= /(U3¢Ts—ltc, u)ds = (®rec,u). O

If o and 7 are irreducible representations which are not unitarily equiva-
lent each other, then @ is thus the zero map by Exercise 10.9. Therefore, we
see that E, and E, are orthogonal subspaces of L?(G) by (11.7) and (11.9).
If 0 and 7 are unitarily equivalent irreducible representations then it is clear
that £, = E,, and we may assume that ¢ = 7 is an irreducible representa-
tion on H,. By Corollary 10.8, we have & = A1y, for a scalar A. In order
to determine A, we choose an orthonormal basis {e;,...,en} of H,. Then it
follows that

nA = E(‘I’ei,ei) = /Z(¢03—16i,03—18()d8 = /Tr(¢)ds = Tr(¢),

=1 i=1
1
and so, & = ;‘-Tr(qﬁ)lu,, or we have

Tr(¢)
dim H,

(11.11) / (0s¢0g-1c,u)ds = (c, u), ¢ € B(H,;), c,u € Ho,
G

whenever {0, H,} is an irreducible unitary representation of a compact group
G. Therefore, we have

1 1
TmT Tr(d ® v){c,u) = m—:(v, d) (c, u).

On the other hand, we also have

(Vo(u®v), Vo(c®d))12(6) =

w®v,c®dym = Y ((u®v)es,(c®d)es) = (c,u) (v, d),

i=1
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and so, we get the following identity:

(11.12) (Vo(2), Vo)) L2() = (z,y)1r, z,y € T(Hq).

dimH,
Theorem 11.5 (Peter-Weyl). For a compact group G, we have

(11.13) I*G)= ) _®E,.

ceG

Furthermore, the right regular representation p is unitarily equivalent to the
. ® -
direct sum )7~ = 6.

Proof. Note that every L?-function on G is the limit of linear combina-
tions of pure positive definite functions by Exercise 10.2. Now, we note by
Proposition 10.4 that pure positive definite functions are obtained by elements
of E,, because

(0su,u) = Trl(u @ u)os] = Eugul(s) = [Vo(u @ u)](s), u€H,, s€G,

which exhaust all pure positive definite functions by Exercise 11.1. This proves
(11.13). The last assertion follows from (11.13) and (11.12), because we al-
ready know that each V, is an intertwining operator by (11.6). O

By Exercises 11.3 and 9.11, we see that the regular representation of a
compact group is decomposed by

(11.14) )

R

P Z ®(dimo) - o,
o€G

where n - 0 and “~” denotes the direct sum of n copies of ¢ and the uni-
tary equivalence, respectively. If G is a finite group then we recover (10.7)
from (11.13) or (11.14). If G is a compact group which is not finite, then
G should be an infinite set: G has infinitely many non-equivalent irreducible
representations. It does not mean that we need infinitely many irreducible
representations in order to distinguish elements of G. Consider the unitary
group U(n) consisting of all n x n unitary matrices. The identity map ¢ on
U(n) is an irreducible representation which'is faithful: s # e implies o, # 1.
Note that our proof of Theorem 11.5 is independent of Theorems 11.2 and
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11.3, although we use the spectral theorem in order to show that the direct
sum of (11.13) exhaust whole of L?(G). Theorem 11.5 or the relation (11.14)
actually implies that there are sufficiently many finite dimensional irreducible
representations.

Next thing to do is, of course, to find the explicit decomposition formula
of L?-functions with respect to (11.13). To do this, we introduce the notion

of character, denoted by X, of a finite dimensional unitary representation :
It is the function on G defined by

(11.15) X#(8) := Ve(l2,) = Tr(m,), s€QG.
Now, assume that 0,7 € G. Then, for each z € T(H,), we have
[Vo(z) * x-)(t) = / Tr(zos) Tr(7s-1¢)ds = / Tr(zos) Tr(7e-175)ds
G G

= (Va(x), Vr(Tt—l ))Lz(G)
{ 0, if o # 7in G,

1
dim H,

(z,0¢-1)1r, fo=7in (3’,‘
by (11.7), (11.12) and Lemma 11.4. Note also that
(z,00-1)1 = Tr(owz) = [Vo(2))(2), teG.
If we define the operator P, on L%(G) by
P,(¢) = [dimH,]¢xxo, 0 €G, €€ L¥(G),
then the above calculations show that

(11.16) P(E.)=0if o#7 in G, P.(€)=¢ if £€E,.

In other word, the set {P, : 0 € @'} is an orthogonal family of projections
whose sum is equal to 172(g) by Theorem 11.5. Therefore, we have

(11.17) €= P(§)=) [dmole+xo, €€ L*G).

oEG cEG
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Ezercise 11.6. For an irreducible unitary representation o, prove the fol-
lowing formula

(11.18) [djmo]/ Xo(rsr~1t)dr = x4(8)x0 (%),

G
for each s,t € G. [Hint: Use (11.11).] Show also that (X, x-) = 0 whenever
o#7in G.

A function f on a group G is said to be central if it is invariant under
inner automorphism. In other word, a central function is a function which is
constant on every conjugacy class of G. For this reason, a central function is
also called a class function. It is plain that every character is central. If £ €
L2(G) is central then the formula (11.17) may be expressed more conveniently:
We apply (11.18) to get

imal(€ «xo)(®) = [dimo] [ €(s)xals ™ 0)ds
= dimo] / / £(rsr)xo (s~ t)dsdr
= [dim o] / / £(5)xo (rs~r1t)drds
= [ €xals™xa(t)ds = (€ X))

Therefore, we have

(11.19) €= Z(f,xa)xa, whenever ¢ € L*(G) is central.
ocG

This the noncommutative analogue of (7.12).

Ezercise 11.7. Prove that X¢,@.-@0, = Xo1 +*** + Xo,- Show that xr =
~xr if and only if 7 and 7 are unitarily equivalent. Show also that a finite-
dimensional representation = is irreducible if and only if (Xx, X») = 1. (Hint:
Exercise 10.7.)

Ezercise 11.8. If G is a finite group then show that the number of G
coincides with the number of conjugacy classes of G.
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Ezercise 11.9. Let G be a compact group. Show that G is countable if
- and only if L?(G) is separable if and only if G is metrizable.

For an irreducible representation {o,H,} of a compact group G, let
{u1,...,un} be a fixed orthonormal basis of H,. Then the set {u; ® u; :
i,j = 1,...,n} is an orthonormal basis for the Hilbert space 7(H,). The
continuous function C7; defined by

(11.20) C7; s (0auj,ui) = [Vo(u; ® uy)](s), seEG

is called the coefficient function determined by o and ¢, j. By Theorem 11.5, we
see that {C7;:0 € G,i,j =1,2,...,dimo} is an orthogonal basis for L*(G)
consisting of continuous functions. If G = T then the coefficient function is
nothing but a character. In this sense, a finite linear combination of coefficient
functions is called a trigonometric polynomial, and we denote by T(G) the
dense space of all trigonometric polynomials on G. We will see in the next
section that T(G) is a dense *-subalgebra of C(G).

12. Tannaka-Krein Duality

There are several versions for the dualities of compact groups. We study
here one of the classical one, the Tannaka-Krein duality. Throughout this
section, G is always a compact group unless mentioned otherwise. We take,
as the dual object, the set V¢ of all finite dimensional representations of G. We
distinguish equivalent but different representations in Vg. We have already
defined the direct sum in Vg. There is an another operation in Vg; the tensor
product.

Let H; and H, be Hilbert spaces. We denote by H; ® H, the algebraic
tensor product of H; and H, as vector spaces. The Hilbert space tensor
product H; ® Hz is the completion of of H; ©® Hz with respect to the unique
inner product satisfying

(12.1) (& ®m, €2 @ m2) = (€1, &2) (M, m2), £1,€2 € Hy, m,n2 € Ha.

Let {n; : i € I} be an orthonormal basis of K. Then H ® K is nothing but
the direct sum Z?e 1 Hi, where H; is the copy of H, by the Hilbert space
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isomorphism

(12.2) U:Y %> 6oni: ) *HioHK.
il i€l i€l

The Hilbert space H; ® H; is characterized by the existence of a bilinear map
p: Hi x Hy — H; @ H, with the following property: For every bounded
bilinear map ¢ : H; x H, — K into a Hilbert space K, there exists a unique
bounded linear map g : Hy ® Ho — K such that ¢ = E o p. From this
universal property, we may define the tensor product z; ® z2 € B(H; ® Hz)
of z; € B(H,) and z, € B(H,) satisfying

(12.3) (z1 ® 22)(& ® &2) = 21&1 @ z262, &1 € Hy, 62 € Ha.

Ezercise 12.1. Show that the tensor product of unitary operators is a
unitary. More generally, show that ||z; ® z2|| = ||z1]|||z2|| for z; € B(H.),
1=1,2.

For unitary representations {m,Hr} and {o,H,} of a locally compact
group G, the tensor product © ® o is a unitary representation on the Hilbert
space H, ® H, defined by

(12.4) (T®0o)s =7 ® 0y, s€G.

Ezercise 12.2. Show that xr@r = XrXxr for finite dimensional unitary
representations 7 and 7.

A representation of Vg is an operator Q which assigns Q(r) € U(H,) for
each {r,H,} € Vg with the following properties:
(A1) Whenever U : H, — H, is an intertwining operator for 7 and o
in Vg, we have UQ(7) = Q(o)U.
(A2) Qr Qo) =Q(r)® Qo) for any 7,0 € V.
We denote by €2 the set of all representations of Vg which do not vanish
identically. We denote by 1 € Vg the trivial representation of G on C.

Ezercise 12.3. Show that Q(1) = 1¢ for any 2 € ©. Show also that
Q7 & o) = Q(r) & Qo) for any 7,0 € Vg.
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Now, we define the multiplication in £ by
(2:122)(7) = Ql(r)Qz(ﬂ'), 2,0, €R, meVg.
We also topologize € by defining that Q; —  if and only if
Qi(m)€ — Qm)E, m € Vg, £ € Ha.
Ezercise 12.4. Show that € is a Hausdorff topological group under the

above multiplication and topology.

Now, we fix a representative o for each equivalent class of G and an
orthonormal basis {u? : i = 1,...,dimo} of H,. For each Q € 2, we define
the linear functional ¢g on T(G) by

dq :Cf:jv—)(Q(a)u;-',uf), UEG', 1,7 =1,2,...,dimo,
where Cg ; is the coefficient function.

Lemma 12.1. Under the above notations, we have the following:

(i) The map ¢q extends to a complex homomorphism on C(G).
(ii) For m € Vg and €,n € Hn, we define the continuous function
vf , on G by vf (s) = (men,€) for s € G. Then we have

(12.5) pa(vf,) = (Qm,E), 7EVg, &n €My

Before the proof of this lemma, we now state and prove the main theorem.
Note that every s € G naturally defines a representation 2, € €2 by

(12.6) Qs(m) = 75, s€G, m€\Vg.

Theorem 12.2. For a compact group G, the map s +— €, is a topological
isomorphism from G onto §2.

Proof. 1t is plain that s — (1, is a continuous group homomorphism,
which is injective by the Peter-Weyl theorem. In order to show that it is
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surjective, let 2 € 2. Because ¢q is a complex homomorphism, we see that
there is s € G such that

¢a(f) = f(s),  feC(G),

by Exercise 5.6. (Note that G = G since G is compact.) Now, we have

' (Q(W)T]’ f) = ¢ﬂ(vg,n) = vg,q(s) = <7r877’ 5): ‘77 € Vg, &,n€ Hnx,

and this completes the proof with 2, =Q O

Let # € Vg be irreducible. Then there is a representative o € G and
a Hilbert space isomorphism U : H, — H, which intertwine 7 and o. For
€,n € My, we denote by {a;} and {b;} the coordinates of U{ and Un with

respect to the basis {u?}. Then we have

va'l(s) = (7(8"1 f) = (UsUT], Uf)
(12.7) = Za_ibj<0's‘u;, uf) = 'cTibjC;’,j(s),
¥ ~

for each s € G. By (A1), we have

$a(vg ) = Zabj(Q(U)U7» uf) = (Q(o)Un, UE) = (m)n, €).

This proves the second assertion of Lemma 12.1 when 7 € Vg is an irreducible
representation of G. If 7 = 7, @ m, is the direct sum of irreducible represen-
tations my,m; € Vg then we see that vf, = !  +v2  for £ = (£1,62) and
n=(n1,7m2) in Hn, & Hy,. We use Exercise 12.3 to infer that

$a(vg ) = (Qm)m, &) + (Qm2)n2, £2) = ([Q(m1) & QUm2)]n, £) = (Q(m)n, €).

Note that every finite dimensional unitary representation is the direct sum of
finitely many irreducible representations by Exercise 10.7. This completes the
proof of the second assertion of Lemma 12.1.

For any o,7 € 5, we note that

(12.8) C7;(s) CLe(s) = (o0uf, uf) (Taug, uf) = ((0®7)a(uj ®ug), (uf ®uf)),
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for each s € G. By the second part of Lemma 12.1 and (A2), we have

$a(C7; Cie) = (o @ 7)(u] ® up), (uf @ up))
(12.9) = (o) ® U))(uj @ ug), (v ® up))
= (Uo)uj, u) (Ur)ug, ur) = 6a(C7;) da(CLo)-

This shows that ¢q is multiplicative on T(G). The relations (12.8) and (12.7)
show that T'(G) is closed under multiplication because o ® 7 is the direct sum
of irreducible representations as mentioned before, and the calculation (12.9)
is legitimate. We proceed to show that the conjugate of a coefficient function
lies in T(G). Actually, we construct the irreducible representation @ whose
coefficient functions are the conjugate of the coefficient functions of o.

For £ € H, we denote by £ the element of H* given by

(12.10) &)=, nemn

Then £ +— € : H — H* is conjugate-linear; af = @€ for each a € C and ¢ € H.
Therefore, we see that

(1211) (Ea ﬁ)'ﬂ‘ = (Tlaf)’H, 5,77 EH

defines an inner product on H*. With this inner product, the map £ — € is
a conjugate-linear isometry. For a representation {7, H} of a locally compact
group G, we define the conjugate representation, denoted by 7, on the Hilbert
space H*, by

(12.12) (Ts )(n) = E(ms-1m),  EE€H*, neEH.

From the relation (7, £)(n) = (mg-11, &) = (n, 7€) = T,€(n), we have

(12.13) T =7k, sS€EG, E€H.

From this, it is immediate that {7, H*} is a unitary representation of G.

Ezercise 12.5. Show that FE is an invariant subspace of H under « if and
only if E = {€ € H* : ¢ € E} is an invariant subspace under 7. Conclude that
7 is irreducible if and only if 7 is irreducible.
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Now, for each o € é, we have the relation

C?;(s) = (auj, us) = (ui, 00u;)
= (0’3‘“]', ﬂ:)'H‘ = (Fat—‘;’ Ui)H = CE](S)’
for each s € G, and so we see that the conjugate of a coefficient function is

also a coefficient function. By the Stone-Weierstrass theorem, we have thus
proved the following:

Proposition 12.3. Let G be a compact group. Then the space T(G) of
all trigonometric polynomials becomes a unital dense *-subalgebra of C(G).

Ezercise 12.6. Show that the direct sum Zfe & Fo in Theorem 11.5 ex-
hausts the whole L?(G), without Exercise 10.2.

Now, the proof of Lemma 12.1 would be complete by the following in-
equality:

(12.14) 62l < IFloon £ €T(G)

Recall that an n x n matrix [u;;] is unitary if and only if ), uiUr =
Yk Ukiukj = 6;; for each 4,5 = 1,2,...,n. Furthermore, a linear map z on a
Hilbert space H with an orthonormal basis {uj,...,un} is a unitary operator
if and only if the n X n matrix [(zu;, u;)] is a unitary matrix. Because every
0, is a unitary operator on H,, we see that

th k(s) L(s)—&], SEG, i,j=1,...,n.

Note that 1g is a coefficient function with 1g = Cj 1, and so ¢a(lg) =
(2(1)1,1) =1 for each 2 € Q, by Exercise 12.2. Therefore, we have

(12.15) Zfﬁn(cfk) ¢a(C k) = ¢Q(Z ;k) = bij, ,7=1,...,n.

Since every (o) is unitary, we see that the dimo x dim o matrix [¢a(C{;)]
is a unitary matrix, whose inverse is [¢a(C? )] by (12.15), and so we have
$a(C?)) ?.) = ¢a(CF;) for each coefficient functxon C{;. Now, we conclude that

da(1f1?) = da(ff) = da(f)da(F) = ¢a(f)da(f) >0,
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for each trigonometric polynomial f € T(G). In other word, we have shown
that @q is a unital positive linear functional on T(G). If f € T(G) is real-
valued then the relation —||f|lcc < f < ||fllco implies thus that —||f|lec <
#a(f) < |Ifllco- The desired relation (12.14) follows from

l8(N)I* = da(fga(f) = da(f1*) < Ifllee  FET(G),

and this completes the proof of Lemma 12.1.

13. The Special Unitary and Orthogonal Groups

In this section, we study the special unitary group SU(2) of order 2, which
consists of all 2 x 2 unitary matrices s with dets = 1.

Ezercise 13.1. Show that every element of SU(2) is of the form

_f z+iy z+w
(;3'1) s_(-—z+iw a:——iy)
for some (z,y,2z,w) € $* = {(z,y,2,w) € R* : |z]* + [y[> + |2|* + |w[* = 1}.
Conclude that S* and SU(2) are homeomorphic each other. Show also that
this gives an isomorphism from the group of quaternions z +yi + zj +wk with
unit norms onto SU(2).

In this way, SU(2) and S* are topologically isomorphic each other. We
define the vector space E by

s [ zHiy z4iw) | 4
E—{x—_(—z-!-iw z_iy).x—(a:,y,z,w)ER}.

The the left translation t — s~ 't on SU(2) extends to a linear map L, on
E, which is also a linear map of R* with the identification x « X. Note that
||x||? = det X. Therefore, we have

|Lex||? = det(L,X) = det s~* detX = detX = ||x||*, x€R*,

and so L, is an orthogonal transformation of R*. Since the orthogonal group
O(4) has two component according to det = +1, we see that L, € SO(4) for
each s € SU(2). The same is true for the right translations. (Note that not
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every rotation arises in this way since dim SO(4) = 6.) In other word, the
translations on SU(2) amount to the rotations on S* under the identification
in Exercise 13.1. In order to construct the Haar measure on SU(2), it thus
suffices to find the rotation invariant measure on S3.

Ezercise 13.2. Write down the 4 x4 orthogonal matrix L, for each element
s € SU(2) given by (13.1).

Ezercise 13.3. Consider the map r — s~!rt of SU(2) for two elements
s,t € SU(2). Show that they induce rotations on S$®. Show also that every
rotation of S3 is obtained in this way.

If we put z = cosd with 0 < 6 < 7 in (13.1) then (y,z,w) is on the
2-sphere with the radius siné. Hence, we get the following parametrization:
(13.2)

z =cosf, y=sinfcos¢, z=sinfsingcosy, w = sinfsin¢siny,

where 0 <6< m, O$¢§1r, 051,1)527&

It is a well-known fact in differential geometry that

(133) 217 sin’ 8 sin ¢d0d¢dy

is the rotation invariant measure on S3 whose total mass is 1. Therefore, we
have

1 2 pm P
13.4 ds = —— 6 in? 0 sin ¢d0dpdip.
34) [ =5 [ [7 [ 500.0pysint osingdsagay

Now, we determine the conjugacy classes of SU(2). The characteristic
function of s € SU(2) is given by A2—A(Trs)+1, or equivalently \2—2) cos 6+1
with respect to (13.2). Therefore, there are 6 € [0, 7] and a unitary matrix u
such that

(13.5) s=u"hgu or s=u%h_gu,

i0
where hg = (eo e?,—g). Of course, the matrix u may be taken in SU(2) by

multiplying a constant in T, and so every element of SU(2) is conjugate to hg
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for some 8 € [—m,7]. Therefore, every central function f on SU(2) may be
considered on the function on [—, 7] with f(—n) = f(=) by

(13.6) f(s) = f(he) = £(6).

In other word, a central function is independent on the variables ¢, as a
function on S3. Therefore, we have

k(4
(13.7) / f(s)ds = 2 / £(6)sin” 6d6, whenever f is central.
SU(2) ™ Jo

Ezercise 13.4. Show that every central function f on SU(2) is an even
function of 6.

Now, we construct an (n + 1)-dimensional irreducible representation for
each natural number n = 0,1,2,.... We denote by E,, the Hilbert space of
all degree n homogeneous polynomials in two complex variables z and y, with
the inner product

n

n n \
(13.8) <Z akzky""k, z bka:ky"_k> = Z kl(n — k)!aka.
k=0 '

k=0 k=0

Ezercise 19.5. Let w = e be the n-th root of unity. Show that the
functions

(z+y)" (+wy)”, ..., (z+ WY, Yyt
are linearly independent in E,.

Now, we define the representation " of SU(2) on the space E, by
(13.9) (o™€)(2) = €(s712), seSU(2), E€ By, 2= (i) € C2.

It is immediate that s — o7 is a homomorphism. For u = (a,b) € C?, put

£u(2) = (u2)" = (az + by)" = i (Z) akor—kgkyn—k,

k=0
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For each u = (a,b) and v = (¢, d) in C2, we have

(6w e, = Y- MG~ 1) (Z> e (Z) A

k=0
n
N\ ok Thn—
=nly_ ( k) (ag)*(bd)"*
k=0
= n!(aZ + bd)" = n!(u, v)g..

Because (07€,)(2) = £u(s712) = (us™12)" = £,,-1(2), it follows that

(d;léuv U;lév.)En = n!<us'—l7 vs_l)" = n!(u’ v)n = (€U1§U)En5

! is a unitary operator on C2. Note that every multiplications

since every s~
such as us, uz or sz in the above calculations are usual matrix multiplications.
By Exercise 13.5, we have shown that every o} preserves the inner product
on a basis of E,, and so ¢ is a unitary for each s € SU(2).

Now, we proceed to find the character x, =: xon of o™. If we define
£x(z,y) = z¥y~* for k = 0,1,...,n then {£,&1,...,€.} is an orthogonal
basis of E, with ||¢]|> = k!(n — k)!. Because every character is central, it
suffices to find the value at the point hy for § € [-m,n]. From the relation
U;:ofk(l‘,y) — ei("'zk)ezky

n—k we have

n

I S B (i(n—2k)
Xn(he) g__:o( hofk’fk)n&uz >, :

k=0

Therefore, it follows that
(13.10) Xn(ho) =n+1=dimo", Xn(hz) = (-1)"(n +1).
If € # £1 then

ei(nt1)8 _ o—i(n+1)8 _sin(n + 1)0

(13.11) xXn(ho) = ——5———=——

Because

<Xm Xn) = %/ Sinz(n + 1)9d9 =1,
0
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we conclude that o™ is irreducible for each n = 0,1, 2,..., by Exercise 11.7.
Assume that £ € L2(SU(2)) is a central function with the property

(13.12) (6,xn) =0, n=0,1,2,....

Note that
2 [T 4 2 [T .
(€&xn) == | E@O)xn(6)sin®8d6 = = | £(6)sinBsin(n +1)9d6..
0 0

Since every central function is an even function of 8 € [—m, 7], we see that

n(8) = €(0) sin 8 is an odd function on T, whose Fourier coefficients are given
by

n(n) = -;r-/ n(8) sinnfdf = %(.{,xn_l) =0, n=12,...,

o

from the assumption (13.12), and so it follows that n = 0 and £ = 0. By
(11.19), we conclude that

(13.13) SU@) = {o":n=0,1,2,...}.

Ezercise 13.6. Express 0™ @ 0™ in terms of the direct sum of irreducible
representations up to unitary equivalence. [Hint: Use Exercises 12.2 and 11.7.]

Now, we consider an action of SU(2) on the 3-dimensional vector space.

Define .
V = {i:—‘ (y—ajzz y-_*-::z) -X=($,y,z)eR3}

We also define a homomorphism 7 : SU(2) — H(V) by
(13.14) 7(s)(X) = sXs*, se SU(2), XeV.

Because det X = —||x||3, we see that each 7(s) may be considered as a norm

preserving linear map on R3. Because O(3) has two components, we see that

7(s) € SO(3) for each s € SU(2).
Ezercise 13.7. Show that every element of SO(3) arises in this way.

Because ker 7 = {ho, hr}, we see that SU(2) is a double covering of SO(3).
If n is an even natural number then o} = o = 1g,, and so we see that there
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is a homomorphism " : SO(3) — U(E,) such that o™ = 6" o 7. Therefore,
we have a sequence

(13.15) {":n=0,2,4,...}

of irreducible representations of SO(3).

Ezercise 13.8. Show that the set (13.15) exhausts 57)(\3)

NOTE

~ We have usually followed [DIXMIER, Chapter 13] in §9. The representation constructed
in Proposition 9.3 is said to be the Gelfand-Naimark-Segal construction. It should be noted
that every *-representation of a Banach *-algebra is automatically norm-decreasing, and
so the continuity assumption is redundant in our definition of representation. The crucial
condition (9.8) is also valid for any Banach *-algebra with bounded approximate identity.
See [DIXMIER, Chapter 2] or [TAKESAKI, Chapter I]. The proof of Proposition 10.1 was also
taken from [DiIXMIER, §13.5]. The complete representation theory for symmetric groups
may be found in [JAMES AND KERBER].

We have followed [HEWITT AND RoOss, Theorem 22.13] for the proof of Theorem 11.2,
for which various proofs are available. For example, see [ROBERT, §4 and §8], or [VARADARA-
JAN, §2.1]. The spectral theorem is essential for these proofs. The compactness assumption
in the Peter-Weyl theorem is crucial. For example, every finite dimensional unitary rep-
resentation of the special linear group SL(2,R) is trivial. See [ROBERT, §11]. The proof
of the basic formula (11.12) was also taken from [ROBERT, §5]. For the further theory of
characters on finite groups, we also refer to [FEIT], [LEDERMANN] or [SERRE]. The proof of
Tannaka duality was extracted from [HEWITT AND Ross, §30]. See also [ROBERT, §9].

We have followed [SUGIURA, Chapter II] for the representation theory of SU(2). See
also [ROBERT, §10] and [DYM AND MCKEAN, Chapter 4]. For the full descriptions of the
duals of the unitary groups U(n) and the orthogonal group O(n) for arbitrary n = 2,3, ...,
we refer to [HEWITT AND Ross, §29], [TAYLOR], [VARADARAIJAN] or [WEYL].

The lack of time prevents us to continue our study on general locally compact groups.
One of the central theme is the notion of amenability. A locally compact group G is said to
be amenable if there is a finitely additive left invariant measure m with m(G) = 1. Every
abelian or compact group is amenable. Representations of amenable groups are relatively
well-understood. We refer to the books such as [DixMIER], [GREENLEAF], [PATERSON],
[PIER] for further study of amenability.

The basic motivation of representation theory is to regard an element of an abstract
group or a group algebra as a concrete operator on a Hilbert space. A crucial defect of
the group algebra L1(G) is that its norm does not share the characteristic property of the
operator norms: See (5.11) and (9.1). We endow L!(G) with various operator norms to get
group operator algebras by taking completions. Group operator algebras of non-amenable
groups have interesting properties in view of the theory of operator algebras. The free group
is a typical example of non-amenable group, together with various matrix groups. We refer
to [FIGA-TALAMANCA AND PICARDELLO] for further study on the free groups. The notes
[KYE, §4.6] and [WASSERMANN] explain some recent results on group operator algebras of
the free groups.
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