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Preface

The present note is based on the author’s series of lectures given
at Seoul National University under the project of the Global Analysis
Research Center in Seoul.

Comparing with the long history about the interplay between mea-
surable dynamics and theory of von Neumann algebras or factors,
there seems to have been considerable lack of results in C*-versions for
the interplay between topological dynamics and theory of C*-algebras
though there are intensive studies about the structure of transforma-
tion group C*-algebras by Effros-Hahn and others. Restricting to a
topological dynamical system with single homeomorphism it is thus
the purpose of this series of lectures to fill out this lack to some ex-
tent providing recent aspects of the subject for both people who are
working on topological dynamics and on operator algebras. We remark
that references attached are quite optional. They are mainly chosen
for those readers who are interested in further investigations in the
subject.

The author is grateful to all members who are willing to participate
this series of lectures. He is particularly indebted to Prof. S. G. Lee
for his warm hospitality during his stay in Seoul. Special thanks are
also due to Prof. S.-H. Kye for his careful and critical reading of the
author’s draft and typed manuscript as well, besides his warm hospi-
tality, without which the present note would never have this complete
form. Finally, he expresses his gratitude to Ms. Park for her excellent
typings to finish the present note.

February 1992.

Jun Tomiyama






§1. Crossed products of C*-algebras

Let X be a compact Hausdorff space. One may then recognize that
the aspect of the space X reflects to the structure of the algebra of
all complex valued continuous functions on X, C(X). Suppose further
that X admits the action of a homeomorphism o. To consider the sys-
tem ¥ = (X, 0) is then equivalent to consider the algebra C'(X) with
the automorphism a induced by o as a(f)(z) = f(o~'z), the action
of the integer group Z on C(X). In this aspect, however, functions
and automorphisms are in different levels but we can often transplant
them into the same kinds of objects, operators on a Hilbert space. The
simplest way is to find the space L?(X,u) for a suitable measure p
on X so that a function f in C(X) can be faithfully represented as a
multiplication operator m(f) on L?(X, u) and moreover there exists a
unitary operator u such that un(f)u* = m(a(f)). We have thus the sit-
uation of a so—called (faithful) covariant representation of the (commu-
tative) C*-dynamical system (C(X),Z, a) and in principle the struc-
ture of the system (C(X),a) could reflect exactly to that of the C*-
algebra C*(n(C(X)), u) generated by 7(C(X)) and u. This C*-algebra
becomes necessarily non-commutative unless the automorphism « is
trivial. Now, by the covariant condition, un(f)u* = =n(a(f)), the
algebra C*(n(C(X)),u) is regarded as the norm closure of the self-
adjoint linear subspace consisting of those elements Y ,__, m(fi)u*.
Among those C*-algebras associated to many covariant representations
of (C(X),Z,a), it is then natural to ask (at least) the following con-
ditions for the good generation of 7(C(X)) and u, namely; the set
{u™|n € Z} should be independent over the algebra 7(C(X)) and
moreover at least the norm condition || Y r__, w(fe)uf|| > |I7(fo)]l-
In this way, we finally reach the primitive concept of the C*-crossed
products A(X) = C(X) X Z concerned with the topological dynamical

o

system ¥ = (X, 0).

Thus we start from the definition and basic properties of C*-crossed
products. We employ here a rather general context in order to un-
derstand the general situation. By a C*-dynamical system, we mean a
triplet (A, G, «) where A is a unital C*-algebra, G a discrete group and
the action a of G on A means a homomorphism from G into Aut(A),
the group of all *-automorphisms. A pair {m, u} of a representation 7 of
A and a unitary representation u of G on a Hilbert space H is called a
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covariant representation of the system (4, G, a) if uym(a)u* = 7(a,(a))
for every a € A and s € G. The full crossed product A x G for the sys-

[e 4
tem (A, G, «) is then defined as the universal C*-algebra for the family
of covariant representations. In order to realize A x G in a concrete

way, we first consider the space of all A-valued funoéztions on G with
the ¢'-norm, ¢*(G, A). Define the product (twisted convolution) and
x-operation in ¢! (G, A) so that it becomes a Banach *-algebra; for two
functions z = {z(s)} and y = {y(s)},

2*(s) = a,(2(s™1)"),  ay(s) = Y a(t)ady(t™'s)),

t

where the norm convergence of the value zy(s) in A as well as the sum
3, llzy(s)|| are assured by the ¢!-norm property. One may look at
these operations somewhat technical but those are quite natural ones
once we have a covariant situation. At first, the algebra A can be
identified with the algebra of functions d’s defined as d(e) = a (e is
the unit of G) and vanishes elsewhere. Moreover, if we consider the
function é, for s € G as a function vanishing on all points except at
s where 8,(s) = 1, it becomes a unitary element of ¢!(G, A) satisfying
the covariant relation

bsab; = a,(a)

for every a € A = A (identified) and s € G. With this covariant
relation, we can expand those functions  and y as ¢ = ) _ x(s)é, and
y = >, y(s)és. The definitions of the above product and *-operation
simply mean that we can proceed operations in ¢!(G,A) in a quite
natural way, that is,

z* —Zﬁ*x(s) —Za Y2(s)*)6e-1 = Zas(w(s 1Y*)6s,
Ty = (Zx(t 5,)(2 y(s)85) Zx(t)éty(s) .

s,t

=Y a(ta(y(s)bis = D (O e(B)ar(y(t™"s)))ss.

Let E be the projection of norm one from ¢!(G, A) to the (embed-
ded) algebra A defined as E(z) = z(e). The map E has obviously the
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module property, E(azb) = aE(z)b for a,b € A and positivity in the
sense,

E(z*z) = a*z(e) = Y z*(s)as(z(s7"))
- Z as(z(s™)*z(s71)) > 0.

Hence E is faithful, namely E(z*z) = 0 implies z = 0. It follows that

the algebra ¢*(G, A) has sufficiently many representations and we can
consider the C*-envelope of £*(G, A), C*(£*(G, A)), as the completion
of (G, A) with the norm

[2]loo = sup [|7(2)]| < [l]|x
where 7 is ranging over all representations of £!(G, A). Now one may
easily verify that any covariant representation {m,u} of (4, G, a) gives

rise to a representation 7 of £!(G, A) (hence of C*(¢1(G,A)) defined

for a finitely ranging function z as

7(z) = Z m(z(s))us.

3

Note that any representation of C*(¢*(G, A)) has the above form. Thus
we finally reach the following

DEFINITION 1.1. The full C*-crossed product Ax G is C*(£}(G, A)).

Henceforth, we write the representation # as # = m x u. It is to be
noticed that the linear space

D= {Z asés | all are finite sums, a; € A}

turnes out to be a dense *-subalgebra of A x G and the projection E

[0 4
extends to A x G, which is however not faithful in general.
83



We next define the reduced crossed product A x G. Suppose that
ar

A is acting on a Hilbert space H as a concrete C*-algebra. Let K =
*(G) ® H, which is also regarded as the H-valued ¢2-space on G,
?(G, H). Define a representation 7, (actually a *-isomorphism) of A
and a unitary representation A; on K by

(Ta(a)E)(s) = ay-1(a)é(s) E€K, acA
(AE)(E) = (7).

The pair {74, As} becomes then a covariant representation.

DEFINITION 1.2. The reduced crossed product A x G with respect to

the action « is the C*-algebra on K generated by the family {7y (a), A, |
a€ A, seG}.

It is then naturally proved that this definition does not depend on
the acting space H.

Now in the simplest case where A = C with the trivial action of G,
the algebra ¢1(G, A) coincides with £}(G) and {),} is the left regular
representation of G so that A X G and A X G are nothing but the group

C*-algebra C*(G) and the reduced group C*-algebra C(G). Therefore
one may call out the difference between C*(G) and C}(G) and this is
also the case for A x G and A x G. Namely we have;

ar

THEOREM 1.1. The canonical homorphism ® = 7w, X A from Ax G

o
onto A x G becomes an isomorphism if and only if the group G is
ar

amenable.

Since in the following we shall only rely on the fact of this deep
theorem and are not concerned with details of the amenability property,
we employ here rather a heuristic definition of the amenability for a
discrete group;



“Every finite group and every abelian group are amenable. A
semidirect product of two amenable groups is amenable as well as its
subgroups.”

The free group on two generators is not amenable and there is a
long standing conjecture that every non-amenable group may contain
such a subgroup.

Now in order to proceed our discussions we need more detailed
knowledge about the structure of A x G. Let w, be an operator of
K on H such that o

w, = E(s7h), E€K.

Then, w*w, is the projection on the subspace of I{ which consists of
those functions having only nonzero values at s™'. On the other hand,
wow* = 1y and {wiw,|s € G} is a family of orthogonal projections
with sum 1. Futhermore, the following basic rules are easily verified.

LEMMA 1.2. We have

Wy = Wer, WsTo(a)wy = as(a),

Z wias(a)ws = Ta(a),

where the sum means in the sense of strong operator topology.

Put ¢(z) = wezw? for z € B(K). The map ¢ is a normal positive
map of B(K) to B(H). Write also as ¢, the restriction of ¢ to A x G.

ar

THEOREM 1.3.
(1) The map ¢ is a positive faithful norm one projection of A x G

to A (identifying A with mo(A)) with the property,

10 E(z)=co®(z) for z€AxG,

and :
e(AsaX¥) = as(e(a)) for a€ AXG

(2) Define
a(s) = e(aXy)
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for an element a € Ax G, then the family {a(s)|s € G} in A determines
ar
the element a uniquely and the algebraic operations of A x G are

ar
expressed by this family as follows; denote the above correspondence

by a ~ {a(s)}, b~ {b(s)}, then

a* ~{ay(a(s™))} and ab~ {Y a(t)a(b(ts))},

where the sum ), is taken in the strong operator topology.

Proof. For a finite sum a = ) mq(as))\s, one may easily verify by
Lemma 1.2 that ¢(a) = a.. It follows that 7, o E(z) = ¢ o ®(z) for
any ¢ € D, hence for any + € A x G. Moreover, we also see that

e 4
e(Asa)y) = as(e(a)) for any a € A x G. Next suppose that a(s) = 0
ar
for every s € G, then for any s and t, we have
weaw; = weAgadjw) = e(Asa\i_1 A\Y)

= a, 0e(adi_1,) = a,(a(s't)) = 0.

Hence a = 0. Furthermore, for ¢ and bin A x G,
ar

ab(s) = e(ab)}) = weab\iw?
= Z Weawy; webw?
1

= 3" a()au(b(t™s)).

Note that though the last member is concerned with an infinite sum
with respect to the strong topology it is still in the C*-algebra A as
e(ably). Similarly, a*(s) = as(a(s™)*). We assert at last that ¢ is
faithful. This will be seen from the following identities,

e(a*a) = a*a(e) = Y a*(s)as(a(s™)) =Y as(a(s™)*a(s71)).

The above set of coefficients {a(s)} is called the Fourier coefficient
of an element a and we write the correspondence sometimes as a =
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Es a(s)ds as a formal sum. Here one has to be careful for the fact that
the above sum is neither convergent in norm nor even in the strong
topology in general. In fact, when A = C and G = Z, the integer
group, one can verify that A x Z = C*(Z) = C(T) for the torus T and

the set {f(n)|n € Z} for f E C(T) is nothing but the usual Fourier
coefficients of the function f.

Finally, we put some remarks how the above situation changes when
we plan to discuss the interplay between topological dynamics about
flow, that is, dynamical systems with actions of the real line R and
the theory of C*-algebras. In this case we have a one parameter au-
tomorphism group {a;} on C(X) so that we must naturally replace
sums in our discussion by integrals on the real line. Thus starting
from a topological dynamical system ¥ = (X, R, 0¢) we have to handle
with the space L'(R,C(X)) instead of ¢}(Z,C(X)) with definitions of

operations given by integrals such as

ru(s) = [ alt)alu(t o)

and we reach the concept of the continuous crossed product C(X) x R
as the C*-envelope of the Banach *-algebra L'(R,C(X)). Amenabil-

ity of the group R also works in this context. There appears however

considerable difference between discrete and continuous crossed prod-

ucts. Indeed, in the latter case we can expect no more the embedding

of the original algebra C(X) into C(X) X R nor realization of those
o

automorphisms oy by means of unitary operators inside the crossed

product. Moreover, the existence of the connecting projection map E

from C(X) xR to C(X) also goes out of context. Thus, even a starting
[0 4

point to discuss about state extensions of the evaluation functional p,
takes different aspects from our present arguments. We shall have to
work mainly with the multiplier algebra of C(X) x R and the author

is afraid of admitting simply this crossed product as the transforma-
tion group C*-algebra A(X) canonically associated with the dynamical
system ¥ = (X,R, o).



§2. Topological dynamical systems and their transforma-
tion group C*-algebras

Henceforth we shall be always concerned with the topological dy-
namical system ¥ = (X, o) for a single homeomorphism ¢ on a com-
pact Hausdorff space X. The system gives rise to a C *_dynamical sys-
tem (C(X),Z,a) for a single automorphism « defined by a(f)(z) =
f(o71z) as the action of the integer group Z on C(X). Thus we may
consider the full crossed product C(X) x Z and, since Z is amenable, it

is isomorphic with the reduced crossedaproduct C(X) x Z. Therefore

identifying these two kinds of crossed products we denote this algebra
by A(Z) and call it the transformation group C*-algebra associated
with the dynamical system ¥ = (X,0). Write § = &;, the unitary
element corresponding to 1. It is to be noticed that in A(X) the pro-
jection map E is faithful and moreover we can freely make use of both
the universality of covariant representations and Fourier coefficients of
elements of A(T). The algebra A(T) is considered as a transplanta-
tion of the dynamical system ¥ into an algebraic frame of C*-algebra.
Here we do not impose the countability condition on X contrary to
usual topological dynamical systems because once we are concerned
with both the theory of C*-algebras and that of topological dynamical
systems we sometimes meet the system ¥ = (X, o) for a quite big com-
pact space such as ¥ = (Z,0) where 3Z is the Cech compactification
of Z and o, the extension of the shift map on Z to the whole space SZ.

In the reduced crossed product C(X) x Z, the unitary operator

ar

A1(= 6) is written as s @ 1 for the unitary operator s on ¢*(Z), and
C(X) x Z =C*(ma(C(X)), s®1).
Here sometimes the automorphism « happens to be spatial on H, that

is, there exists a unitary operator u on H such that a(f) = ufu* for
every f € C(X). Then the unitary operator w on (*(Z, H) defined by

w(€)(n) =u""é(n) for &€ (Z,H)
intertwines the algebra C(X) x Z and the C*-algebra C*(1® f,s @ u |
f € C(X)). In fact, one may g;sily verify that
wlta(Hw=10f (feCX)), w'(s@hw=su



Therefore, in this case we can treat A(X) also as the C*-algebra gen-
erated by 1 ® C(X) and the unitary operator s @ u.

Now the first basic problem towards the interplay between ¥ and
A(Y) is the question what is the relation between two systems X; =
(X1,01) and &3 = (X3, 02) when A(X;) is isomorphic to A(X3). Topo-
logical conjugacy of o; and o2 implies of course an isomorphism be-
tween A(X;) and A(Z;), but the converse is not valid in general. The
former relation is too strong. The first aspect causing this difference
seems to be breaking of symmetry. In the case of crossed products,
universality of covariant representation assures that C(X) x Z is iso-

o

morphic to the crossed product C(X) x Z with respect to the action
a-1

a~1, which corresponds to the dynamical system £’ = (X,07!). It is
however not always true that o and o~ ! are topologically conjugate.
In fact, for instance let X be the three-points-compactification of Z,
X = (Z,w;,ws,ws) where w; and w, are the limit points of even and
odd positive integers respectively and w3 is the limit point of negative
integers. We consider in Z the shift operator, o(n) = n+ 1, and its ex-
tension on X such that o(w;) = we, 6(wy) = w; and o(w3) = wz. One
may then easily verify that ¢ and o~! are not topologically conjugate.
On the other hand, if X is the two-points-compactification of Z with oo
and —oo (symmetric compactification) the extended shift homeomor-
phism is easily seen to be topologically conjugate to its inverse. Now
it may be worth while to recall here what had happened in the case
of the measurable dymanical system ® = (Q,0, ) where o is an er-
godic nonsingular bimeasurable transformation in the Lebesgue space
(Q, p). Starting from the algebra L>°(, u) acting on the Hilbert space
L%(Q, p) as the algebra of multiplication operators with the induced
automorphism a by o, the von Neumann crossed product R(®) on the
space (2(Z,L?(Q, p)) is defined as the o-weak closure of the reduced
crossed product L°(€, 1) x Z. With further condition, the action be-

ar
ing free, the von Neumann algebra R(®) turns out to be a factor, that
is, its center is trivial. After a long history about the interplay be-
tween the theory of von Neumann algebras and that of ergodic actions
since Murray-von Neumann’s works, it is then the celebrated result
by Krieger [10] that the isomorphism class of R(®) can be completely
determined by the orbit equivalence class of the system ®, where the
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discovery of the concept of orbit equivalence is due to Dye [2].

In connection with this result, recently the notion of topological or-
bit equivalence has been proposed by Skau [18]. For two topological
dynamical systems ¥; = (X1,01) and E3 = (X3,02), X1 is said to be
topologically orbit equivalent to Ly if there exists a homeomorphism
® such that ®(0;(z)) = O0,(®(z)) for all z € X;, where O;(z) and
O2(®(z)) mean the orbit of z by o1 and the orbit of ®(z) by o2 respec-
tively. With this definition, the result is satisfactory at least for the
minimal systems (see Definition 2.1 below) on the Cantor set. Indeed,
Theorem 4 in [18] says;

. “For two minimal dynamical systems ¥; = (X1,01) and ¥ =
(X3,0,) where X; and X, are Cantor sets, if A(¥,) is isomorphic
to A(X,y) then ¥, is topologically orbit equivalent to ¥5. The con-
verse holds with other (technical) condition on Kq-groups of A(Z1)
and A(X2). (This extra condition is suspected to be superfluous).”

The author feels however that for general dynamical systems includ-
ing periodic points we should consider more about the counter part of
the concept of “almost everywhere” in the case of measurable dynam-
ical systems as in the case of topologically free actions, which will be
discussed in §5. We shall be concerned later with the problem in case
of rational and irrational rotation C*-algebras. At any rate, as of now
rather restricted results are known for this important problem. We
mention [4] besides Skau’s paper for the very recent development.

In what follows we shall be mainly concerned with the following
types of topological dynamical systems. Write Per®(X) = {z € X |
o"z = z} and Per,(X) the set of all (exactly) n-periodic points in X.
We also write Per®(X) the set of all aperiodic points. We denote by
Per(Z) the set of all periodic points in £. As we have already used,
the orbit of a point z is denoted by O(z). By the isotropy group Z,
for z € X we mean the subgroup of Z defined by {n € Z|o"z = z}.

DEFINITION 2.1. (a) We call T to be minimal if every orbit is dense
in X;

(b) T is said to be topologically transitive if for every pair of open
.sets {U,V'} there exists an integer n such that c"U NV # ¢;

(c) T is said to be topologically free if Per™(X) is dense in X.
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We say that the action is effective if for every integer n the homeo-
morphism o™ does not coincide with the identity map except for n = 0.
We also notice that our definition of topological transitivity is a little
different from usual one, which takes as its definition the condition (1)
of the next Proposition 2.1.

One of the most fruitful example of a minimal system in the interplay
between ¥ and A(X) is the case of an irrational rotation og : ¢ +— z +6
on the torus T for an irrational number 6 (or €™ s €2™(z46) op the
circle S'). We call this algebra A(Xy) an irrational rotation C*-algebra
and write as Ay. We shall later discuss this algebra in detail. It may be
also worth while to mention the result by Denjoy (cf. [16]) that all C2-
diffeomorphisms ¢ of the circle with the rotation number 8 = p(o) and
with no periodic points are conjugate to the rigid rotation oy. Thus,
they are all minimal and all their transformation group C*-algebras
are isomorphic to Ay.

As for a topologically transitive action, we mention the following
Proposition.

PROPOSITION 2.1. Consider the following three assertions for a sys-
tem ¥ = (X, 0).

(1) There exists a point in X with dense orbit;

(2) ¥ is topologically transitive;

(3) The set {z € X |O(z) # X} is of first category.

Then (1) = (2) and (3) = (1). If X is second countable, the asser-
tion (2) = (3) holds, hence all three conditions are equivalent in this
case.

The result is standard and we omit the proof. The implication
(2) = (3) or (2) = (1) does not hold in general. The well known
symbolic dynamical system {X(k), o1} of Bernoulli shift is an example
of a topologically transitive system. Here the compact space X (k)
stands for the product space of infinite copies of the finite set of integers
{0,1,2,...,k — 1} and oy is the right (or left) shift homeomorphism.
The space X (k) turns out to be a metric space and if we regard the
points of X(k) as k-adic expansions of the points in the interval [0, 1]
the point zo whose expansion contains every finite portion in such k-

adic expansions satisfies the condition O(zo) = X (k).
The name, topologically free action, has not appeared in literature
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but actually this action has appeared in several papers ([9], [T] etc.)
in the form below.

PROPOSITION 2.2. The following two assertions are equivalent;

(a) ¥ = (X, 0) is topologically free;

(b) For every positive integer n, the set Per,(X) does not contain
an interior point.

Proof. 1t suffices to show the implication (b) = (a). Suppose that
the set Per®(X) is not dense in X. Since X is regular, we can find an

open set U whose closure U is also disjoint from Per>(¥). We have
then

U= G (Per™(Z)NT),
n=1

and, by the category theorem, there exists an integer n such that
Per”(Z) N U contains an interior point in the space U. Let m be
the smallest one among such integers, then we can say that the set
Per,,(Z) N U contains an interior point. Thus we finally see that the
set Per,,(X2) contains an interior point in X, contradicting the assump-
tion.

In case of topological dynamical systems on manifolds, the set Per(%)
becomes quite often countable (though it often becomes also dense),
hence those systems are all topologically free. We shall see later that
this notion plays a central role in the interplay between ¥ and A(X).
On the other hand, in C*-theory the notion of the free action (the
isotropy group Z, is trivial for every & € X) is often used, but the
author feels that an appropriate counter notion to the free action in
a measurable dynamical system could be the above topologically free
action and not the free action itself.

Obviously, if a system ¥ is minimal (hence free provided that X
consists of infinite points) it is topologically transitive and, if the action
is effective, topological transitivity implies topological freeness of the
action. The converse is naturally not true. An important example to
show this difference is the dynamical system & = (T?,o) where T?
means the two dimensional torus and o the homeomorphism: (s,t) +—
(s,t +s). The map induces an irrational rotation at each level of an
irrational number s, whereas it induces a rational rotation at each level
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of a rational number s. This is also an example of those maps coming
from the action of SL(2,Z) to T?.

We note that, throughout this lecture, an ideal of a C*-algebra A
means always a closed ideal of A. Thus simplicity means that there is
no proper closed ideal in A but this coincides with algebraic simplicity
because as is well known an element a which is near to the unit such
as |1 — a|| < 1 becomes invertible in A. We mean by an invariant set
both ¢ and ¢~! invariant set and not a mere o-invariant set.
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§3. Structure of the state space S(A(X)) of A(X), pure state
extensions of point evaluations on C(X) and uniqueness of the
trace on A(L)

A link to connect the system ¥ with the structure of A(X) is to
consider the state space S(A(X)) together with GNS-representations
of A(X) for states as the extension of the state space S(C(X)). In
this connection, notice that the space X is embedded into S(C(X))
as the compact subset of pure states {u, |z € X} consisting of point
evaluations p, for x € X. In this section, we investigate this relation.

Recall that a scalar valued function ® on Z is said to be positive
definite if for arbitrary finite sets {s1,$2,...,5n} in Z and complex
numbers {A1, Ag,..., A, } we have

Z X;)\j@(sj- —3s;) > 0.

,5=1
In the context of crossed products beyond group C*-algebras, we need

to generalize this notion to the following

DEFINITION 3.1. Let ¢ be a positive linear functional on AZ). A
function ® on Z to C(X)*, the dual of C(X), is said to be positive
definite with respect to the action « if it is defined as

O(n)(f)=¢(fé") for feC(X), nel.

Write this relation by ® = ®,. Then as the generalization of the cor-
respondence between the set of scalar valued positive definite functions
on Z and that of positive functionals on C*(Z) we have the following

PROPOSITION 3.1. A bounded function ® on Z to C(X)* is positive
definite, i.e., ® = &, for a positive functional ¢ on A(X) if and only if
> ®(s; - si) (@™ (Fif5) = 0

5,3

for all finite sets {s1,32,...,8n} in Z and {f1, f2,..., fn} in C(X).
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Proof. If & = &, for a positive functional ¢ on A(X), then for a
finite sum z = ), f;6°,

0 < pla*e) = (3 0™ (Fof)6% )
i,J
= ®(sj —si)a*(Fify).
i,J
On the other hand, given a bounded function ®, define the functional
@ by
p(x) =) B(si)(fi)

for a finite sum =z = Zi fi6%. Since ® is bounded, ¢ extends to a
bounded linear functional on ¢!(Z,C(X)), which becomes naturally
positive by the assumption. Hence it can be extended to a positive
functional, say ¢, and by definition ® = ®,. This completes the proof.

The proposition means that each state ¢ on A(Y) determines a
distribution of a bounded family of signed measures on X, {y,, |n € Z}.
We write this relation as ¢ = > ®pun, then ¢ is an extension of the
state po on C(X) and if it is unique, it is the state p o E.

Let p, = pu} +1u2 be a decomposition of p, into its real and imag-
inary parts. Define the positive measure |u,| as

lnl = |l + |12

We say that u, is absolutely continuous with respect to a probability
measure p, pn < i, if both pl and p2 are absolutely continuous to p.
This is in fact equivalent to say that |ul| < p and |p2| < p.

PROPOSITION 3.2. With the above notations, we have for every
integer n,

(1) pn < po and pn < pooa™";

(2) p=n(f) = pn(a™(f)) for f € C(X).

Proof. Let E be a Borel set of X and suppose that po(E) = 0. For
a positive number ¢, by the regularity of yo and |pun| there exist then
a compact set C and an open set U such that

CCECU and

1o(U\C) <&, |ual(U\C) <e.
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Take a continuous function f on X such that f(z) =1on C, f(z)=0
on U¢ and 0 < f(x) < 1. Then,

2\ 2N 2 2
o(F2) = po(f )—/Cf duo+/U\Cf duo
< 10(C) + po(U\C) < ¢,

and
D= [ faun] 2 I/Cfdunl—l/u\cfd,un|
2 |/-‘n(C)| —&.
Hence,
lun(C)] < lpn( )l +€ = l@(f8™)] + €
SVe(f)+e<ete
and

lun(E)| < 1un(C)| + [un|(U\C) < 2¢ + Ve.

It follows that p,(E) = 0. Moreover if we make use of another identity
Un(f) = p(6™a~"(f)) almost the same argument leads us to the other
conclusion, p, < pgoa™".

For the assertion (2), we note that by Proposition 3.1 the matrix

w@)  uealf) ]
ua@™(F)  po(a™(|f]2))

is positive for pairs {0, —n} and {1, f}. Hence
p—n(f) = Nn(an(?))'

Now to construct a positive linear functional ¢ for a probability
measure g on X there is a simple way when y is an invariant measure.
In fact, we have the following
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PROPOSITION 3.3. Let ® be a scalar valued positive definite func-
tion on Z, y an invariant probability measure on X, then the functional

o=, B®(n)u on A(Y) is positive.

Proof. Let {s;} and {f;} be finite sets in Z and C(X), respectively.
Then,

Y B(s; —sula (Fafi) = Y ®(sj — si)u(F.fi)

= [®(s; — si)] o [u(Fifi)] =0,

where the above product means the expansion of Schur product of ma-
trices. The Schur product of positive matrices as well as its expansion
1s again positive. Thus, by Proposition 3.1 the function: n — ®(n)u is
positive definite and ¢ is positive.

This method is not available for arbitrary positive measure. We can
however look for another way and obtain the result about unicity of
state extensions.

THEOREM 3.4. Let p be a probability measure on X. Then p has
a unique extension if and only if the measure p o a™" is singular with
respect to u for every n € Z except n = 0.

We leave the detail to the-paper [6].

For a point ¢ € X, let u, be the pure state of point evaluation on
C(X). Let ¢ = Y, ®un be a state extension of u, (i.e., po = pg).
Then, by Proposition 3.2

supp|un| C supp po = supp pz = {z}.

Hence, pu, = ®(n)y, for a scalar &(n). Moreover, we also have the
inclusion '

supp|pn| C supp pz 0 ™",

Hence, if o™z # = p, = 0. Namely, the function @ is supported in the
isotropy group Z,. With this result, combining Proposition 3.3 and
the above theorem one can see a fact that the state extension is unique
if and only if the isotropy group Z, is trivial, that is, Z, = {0}. But
we shall clarify this situation in a more concrete way.
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THEOREM 3.5. There exists a bijective correspondence between the
set of state extensions of yu, on A(X) and that of scalar valued positive
definite functions ®’s on Z, with ®(0) = 1. The correspondence :
® « p is given by o =} o, ©P(n)py with p, =0 forn ¢ Z,.

Proof. We first show that the induced function ® from a state ex-
tension ¢ of u, is a positive definite function on Z,. Let {s;} and {f;}
be finite subsets in Z, and C(X) respectively. Then

0< Zu<s,~ — s:)(a™ " (Fif))
= Z @v(s, —si)fi(oe)fi(o* )
—Z@(s, si)fi(x)fi(z 2
= (@ (8,. = s:)] o [fi(2) fi(@)).

Since the set {f;} is arbitrary, this means that the matrix [®(s; — s;)]
is positive. Namely @ is a positive definite function. Conversely take a
scalar valued positive definite function ® on Z, with ®(0) = 1. Let &
be the function on Z such that & |z, = ® and vanishes elsewhere. One
can verify that ® is a positive definite function on Z (A general fact
about the extension of a positive definite function on a subgroup to
that on the whole group). Define the functional ¢ on the set of finite

sums y_. ;6% by

99(2 fi6%) = Z O(si)fi(z).

One then easily sees that the functional ¢ extends to £}(Z,C(X)) and
bounded. Now again for a finite sum a = ), fi6*, we have

pla*a) =Y &(sj — s)fi(0%z) fi(o%x)
t,J

= 3" 18(s; - s)Fi(e"a)f (0" )
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where the ), is ranging over Z,, that is, over only those integers such
that s; —s; € Z,;. Thus, 0%z = 0%z in the sum ), and finally the
above sum becomes

> &(s; - s)Filoma)fi(o%a)
4,

= [&(s; — si)] o [fi(o*e)fi(o )] 2 0.
Therefore, ¢ extends to a state on A(X), which is clearly a state ex-
tension of p,. This completes all proofs.

COROLLARY. The pure state extensions of the pure state p, 1is
unique if and only if Z, is trivial.

Notice that a pure state extension of u, is obtained as an extreme
point of the set of all state extensions of u,. Hence, by Krein-Milman’s
theorem, u, has a unique pure state extension if and only if it has a
unique state extension.

The so-called irrational rotation C*-algebra A9 = C(T') x Z for the

g

map : ¢ — = + 60 on T (6, irrational) provides a typical example of
the above corollary. On the other hand, when the isotropy group is
not trivial, say Z, = {nko|n = 0,%1,...}, the ambiguity of state ex-
tensions of u, depends on the variety of scalar valued positive definite
functions on Z, and the latter corresponds to the state space of the
group C*-algebra C*(Z,) & C(Z:) = C(T). Therefore, referring the
property of extreme points for pure states the set of pure state exten-
sions of u, corresponds to the set of characters on the group Z,, which
coincides with the torus T.

Now in a quite different feature comparing with irrational rotations,
the shift dynamical system ¥ = (8Z, o) mentioned in §2 also provides
an example of the system in which there is no periodic point. In fact,
suppose that there was a p-periodic point w in BZ\Z. Let f be a
bounded function on Z such that

fin(p+1)+j)=j5 0<j<p, nec

Let {n,} be a net in Z converging to w. Then, regarding f as a
continuous function on (BZ, we have

f(na) = f(w) and
f(na +p) = f(0"(na)) = flo®(w)) = f(w),
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whereas by definition of f
|f(ng) — f(ng +p)| 21 for every ng,.

This is a contradiction.

We next discuss existence of traces on A. Here we call a state 7 a
traceif 7(ab) = 7(ba) for all @ and bin A(X). If one considers the forms
E(a*a) and E(aa*), one may recognize that the composition po E with
an invariant probability measure u is a trace on A(X). On the other
hand, since the action « is inner in A(X) the restriction of a trace to
C(X) is an invariant measure. Thus the only candidates for traces are
state extensions of invariant probability measures.

PROPOSITION 3.6. Let u be an invariant probability measure in X
and T be a state extension of p to A(X), 7 = Y @®pn. Then T is a
trace if and only if every measure u, is invariant and its support is
containd in Per!"/(D).

Proof. The assertion that 7 is a trace is equivalent to the following
series of identities;

T(fé"gé™) = 1(g6™ f6") f,9 € C(X), myn€Z
= 7(fa"(g)6™ ") = r(ga™(£)E™FT)
— /lm.+n(.fan(g)) = Mm'l'n(gam(f))'

Hence, putting g =1
,Un(f) = /vL1n+(n—m)(f) - /’Lm+(n—m)(am(f)) = “n(am(f))

Note also that pn(fa™(g)) = pin(fg). Take a point z ¢ Per/”(¥), then
there exists a neighborhood U(z) of z such that U(z)No™(U(z)) = ¢.
Hence if we take a function f with supp f C U(z), we have

tin(f?) = pa(fa™(f)) = 0.

It follows that un(f) = 0 for a positive function f, and p,(f) = 0
whenever supp f C U(z). Therefore, the point x does not belong to

supp pr and supp pin, C Perl?/(2).
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Conversely suppose two conditions hold, then

T(f6"g6™) = pm4n(fa"(g))
= :um+n(am(f)am+n(g))

-/ o™ (£)(2)a™ " (9)(@)dtom
Perlm+ni(%)

= / flo™"z)g(x)dpmsn
Perlm+nl(3)

= /‘m+n(am(f)g)
=7(g6™fé").

This completes the proof.

With this result we can determine the case where the extension of
{t 1s unique.

THEOREM 3.7. Let p be an invariant probability measure on X,
then u has a unique trace extension if and only if u(Per®(X)) = 0 for
every natural integer n.

An immediate consequence of this theorem is the following assertion,

“The C*-algebra A(L) has a unique trace if and only if ¥ is
uniquely ergodic and, for this unique ergodic measure y, we have that
p(Per®(X)) = 0 for every natural integer n.”

We notice that the existence of a unique invariant ergodic measure
is equivalent to the existence of a unique invariant measure because an
invariant ergodic measure is an extreme point of the weak-* compact
convex set of invariant probability measures. In the theory of C*-
algebras, the existence of a trace and its uniqueness plays an important
role.

If all points of X are aperiodic such as those systems mentioned
before, every invariant measure on X has a unique trace extension. In
particular, in case of an irrational rotation oy the Lebesgue measure is
the only one invariant ergodic measure (uniquely ergodic). Hence the
C*-algebra Ay has a unique trace. On the contrary, if all points are
periodic such as the case of a rational rotation then for any invariant
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probability measure u there exists an integer n such that y(Per™ (X)) #
0. Therefore, in this case, trace extensions of u are always not unique.

Proof of Theorem. Let 7 = ) @un be a trace extension of pu. If
u(Per™(X)) = 0 for every natural integer n, then u, = 0 for every
n # 0 by Proposition 3.6 and 7 = g o E. Suppose next that there
exists a natural integer n with u(Per™®(X)) # 0. We shall construct
another trace extension of u. Put yg = p and

1
Hn = l—n = “,u lPer"(E)'

Let 7 be the bounded linear functional on EI(Z C(X)) by the distri-

bution of measures;
T = o ® tn D pt—n-

Since Per™(X) is an invariant closed subset we have

pn(a® () = pn(a®(£)) = pa(f)-

The functional 7 satisfies the conditions in Proposition 3.6. Therefore
it suffices to show that 7 is positive, hence extends to a trace on A(XL).
Take an element a = 5" f6* of finite sum, then

r(aa) = r( @ Fufur)d)
- u(;’ @ Fuf) + i o™ Ffeon)
+ ,u_n.(%: a *(Fifr-n))
= };(u(lfklz) + ttn(Fifran) + tmn(Frgnfe))
253 [y TR0 4 Tue) () + Faa(o) (o)
+ Frn(T) frgn(z))dp

=53 [ 1A+ fanla)Pdn 20,
k .

Pern (%)

This completes the proof.
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§4. Induced representations of A(X) arised from isotropy
groups.

There is a general theory about covariant representation of a C*-
dynamical system (A, G,a) induced from covariant representation of
the system (A, K, a|) for a subgroup K of G ([21], [25]) but we dis-
cuss here particular features of induced representations of A(X) arised
from isotropy subgroups. In order to clarify the context, however, we
shall first define them for an extended topological dynamical system
Y = (X,G,0) where G is a discrete group and s — o, is the action
of G on X as a group of homeomorphisms. Let G, be the isotropy
group for a point z. Write the left coset space G/G, = {s4G.} for
the representatives S = {so} where so = e (unit of G). Let Hy be
the Hilbert space with dim Hy = |G/G.|. For a unitary representation
u of G, on the space H,, put H = Hy @ H,. Then every vector £
in H is expanded as ) e, ® {, with respect to a fixed completely
orthonormal basis {e4} in Hy where the sum is ranging actually over
countable union of indices a for which £, # 0. We define the unitary
representation LY of G on H induced by u in the following way;

L3 (s)(ea ® ) = €5 Quyk

if ss, = spt for t € G,. One may easily verify that this is in fact a
unitary representation of G. Next consider the orbit of z,

O() = {saz|a € I},

where we use abbreviation s, instead of o, z, and define the repre-
sentation 72 of C(X) on H by

75 (F)ea ®€) = f(sa)ea @ E.

One then sees that the pair (75, L) turns out to be a covariant repre-
sentation of (C(X), G, a), which gives rise to a representation of A(X),
frf’u =7 x LY.

We state basic results about this representation in the following

THEOREM 4.1. With the above notations, we have

(a) The unitary equivalence class of the representation 75 , does not

depend on the choice of the representatives S = {sq}.
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Hence we write the representation simply as 7y 4.

(b) Two representations #,, and 7, , are unitarily equivalent if
and only if O(z) = O(y) and, putting & = s,,Y, the representations of
G, :t—ugandt— Vozlts,, 1€ unitarily equivalent.

(c) 7z is irreducible if and only if the representation u of G, is

irreducible.

We remark that the assertion (c¢) does not necessarily hold for a
usual induced covariant representation. ‘

Though essentially the same as usual one, the above approach to in-
duced covariant representations may have a little advantage, for once
representation spaces are same for different unitary representations of
G, the representation space for our induced representations remains
the same, whereas in usual case it is changing according to each repre-
sentation u. We leave details of proofs to [T] since we are treating here
very special case ¥ = (X,0). Note that for ¥ the isotropy subgroup
Z, is just trivial or the group {nk¢|n € Z}. Moreover, since an irre-
ducible unitary representation of an abelian group becomes necessarily
one dimensional, it is simply a character of this group. Therefore for
the system ¥ = (X, o) the assertion (b) in the above theorem says;

“Two irreducible representation 7, , and 7, , are equivalent if and
only if O(z) = O(y) and u = v as characters of Z, = Z.”

Here the representation space H appears as H = Hy ® C = H,.
Now take the unit vector ey in H corresponding to the coset Z,, then
the state

Wx,u(a) = (ﬁx,u(a)e% 60)

is a pure state extension of u,. We shall show that the converse is
also true. Namely, every pure state extension of u, has the above
form. Thus, let ¢ be a state extension of p, and {H,,7,,€,} be the
GNS-representation of ¢.

LEMMA 4.2. For a € A(Y) and f € C(X) we have
plaf) = o(fa) = f(z)p(a).
Proof. Tt suffices to show that
To(f)€e = f(z)§, for every fe C(X).
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In fact, once we have this relation,
elaf) = (mp(af)le,€p) = (Tp(a)f(2)€y, Ep) = f(x)p(a),

and similarly ¢(fa) = f(z)e(a).
For the first assertion,

le(FI? = 1f(@)]* < lImo(£éll?
= (W¢(|f|2)§¢»£¢) = |f(5”)|2
Hence,

(7o (e o)l = lIme(Féull 1€ 1l-

Therefore,
To(f)Ep = A, for some scalar A,

and we have that A = f(z).

PROPOSITION 4.3. Keep the above notations. Define the subspace
H,, as

Hy = {& € H, |mo(f)6 = f(0"2)¢ for every f € C(X))

and write u = 7,(6). We have then

(1) ¢, € Ho, H, = u"Hy and the restriction m, to the group
{6™|n € Z,} gives rise to a unitary representation of Z, on Hy (write
also as u and henceforth we continue this notation).

(2) If x is aperiodic,

H,= z ®H, (direct sum)
n€z

and if x is a p-periodic point
HcszO@Hl @"'@Hp——l-

Therefore, 7, is unitarily equivalent to the induced representation 7, ,
arised from the unitary representation of Z, in (1) and ¢ = @  u;
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(3) The space Hy becomes one dimensional if and only if ¢ is a pure
state extension.

Proof. Lemma 4.2 and covariant relation for 7,(f) and u imply
the assertion (1). As for the orthogonality of subspaces (common
eigenspaces) in (2), take two vectors £ € H, and n € H,, with m # n
(or 0 < m < n < p—1if z is a periodic point). We can find a
continuous function f on X such that f(o"z) = 1 and f(c™z) = 0.
Then ’

(&) = (mo(£)&,n) = (§, 7o (F)n) = 0.

The assertion (3) follows from (c¢) in Theorem 4.1 and the remark
mentioned before.

If z is a periodic point, the unitary operator u acts on H in a cyclic
way but uP{ for € € Hy may not coincide with £ even if Hy is one
dimensional. In this case, however, uP{ = A¢ with |A] = 1 and this A
generates the character associated to the one dimensional irreducible
unitary representation u of Z,.

We shall show that conversely every finite dimensional irreducible
representation of A(Y) arises from a periodic point. Before going into
this discussion, we need some preparations.

Let # = 7 x u be a representation of A(X) on a space H and let I
be the kernel of 7. The image 7(C(X)) is expressed as the algebra of
continuous functions, C(X)), on a compact space X. On the other
hand, as a closed invariant ideal of C(X), I is written as the kernel
k(X,) for a closed invariant subset X, of X, where k(X,) means the
set of all functions vanishing on X,;. We have

7(C(X)) = C(XL) =2 C(X) /I, = C(Xx).

It follows that we can identify X! with X, together with the action
or = o|x, and that on X! induced from the action of u = 7(6)
on C(X!). With this identification, m(f) on X is nothing but the
restriction of f on X, and ||x(f)|| = || f]x,||- We denote this dynamical
system by S = (Xg,0x).

PROPOSITION 4.4. With the above notations, if # is irreducible, the
system ¥, is topologically transitive.

Proof. Suppose there exist two non-empty open subsets U and V in
X, such that c2UNV = ¢ for every n € Z. This means that there exists
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a closed invariant set S in X, such that S DU and SNV = ¢. Put
I = k(S), then the closed linear span [IH] turns out to be an invariant
subspace for 7(A(X)) and [IH] = H. If we take, however, a function
7(f) such that suppn(f) C U, then n(f)I = 0, a contradiction. This
completes the proof.

PROPOSITION 4.5. Every finite dimensional irreducible representa-
tion of A(X) is unitarily equivalent to an induced representation 7,
arised from a periodic point z.

Proof. Let & be a p-dimensional irreducible representation of A(X)
on a space H. Put 7 = 7|¢(x) and u = 7(6). Since 7(C(X)) is
finite dimensional, its spectrum X, must consist of isolated points
of finite number and moreover the system ¥, is by Proposition 4.4

topologically transitive. Therefore, there exists a periodic point z in
Xr with O(z) = X4, say

X, ={z,02,0%z,...,6" 'z}

Let p; = 7(f;) be the characteristic function at the point oiz. One
then easily verifies that u'po(u’)* = p; and if we denote

H;=pH={¢ € H|n(f)f = f(o'z)¢ VfeC(X)},
H; =u'H, (0<i<n-1) and Hy=u"Hy.

We assert that py is a one dimensional projection and n = p. In
fact, let K be an invariant subspace of Hy for the associated unitary
representation v of the isotropy group Z,. The closed linear span
[7(A(X))K] is then an invariant subspace of H, hence

H = [#(A(D))K].

Considering the action of 7(A(X)) on H, this means that Hy = K and
Z, acts irreducibly on Hy. Hence Hj is one dimensional, and n = p.
Thus, 7 is unitarily equivalent to the induced representation 7, ,.

In case of infinite dimensional irreducible representations of A(X)
we can not say in general that they are all arised from representations
of isotropy groups. It would be interesting to clarify the condition of
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a topological dynamical system for which every irreducible represen-
tation of A(X) is induced from a unitary representation of an isotropy
group. There are related results in literature (cf. [21]) but most of
those results are referred about smooth actions meaning that the orbit
space X/Z has a rich structure of Borel sets, whereas to settle down
the above question completely we have to deal with actions such as
irrational rotations for which the orbit spaces T/Z become extremely
wild.

So far finite dimensional representations are concerned, we have par-
tial answers.

THEOREM 4.6. (1) Every irreducible representations of A(%) is fi-
nite dimensional if and only if the system ¥ = (X, o) consists of peri-
odic points, that is, X = Per(X).

(2) A(Y) has sufficiently many finite dimensional irreducible repre-
sentations if and only if the set Per(X) is dense in X.

Proof. Since we have already those results of Proposition 4.3 and
Proposition 4.5, what we need to show for the assertion (1) is to prove
that any irreducible representation # = 7 x u of A(X) is finite dimen-
sional when X = Per(X). From the assumption, X, = Per(Z,) hence
by category theorem there exists an integer n such that Per"(X,) con-
tains an interior point. Let n be the smallest one among such integers,
then the set Per,(Xr) = Per”(X;)\Per" !(Z,) contains an interior
point, say . We choose a compact neighborhood U of z such that
U C Per,(X;) and the sets {o'U |0 < i < n— 1} are mutually dis-
joint. It follows that UZ 'o'U is an invariant closed subset of X, hence
X =Ul)oU by P1op051t10n 4.4. Furthermore, if U contains another
point y, choosing a smaller compact neighborhood V' of x which does
not contain y, we reach the same conclusion, X, = U], 0 V a con-
tradiction. Therefore, X = O(z), and the rest of the proof proceeds
as in the proof of Proposmon 4.5.

For the assertion (2), suppose that there are sufficiently many finite
dimensional irreducible representations of A(X) and let f be a contin-
uous function on X vanishing on the set Per(X). Then by considering
the structure of representations induced from periodic points in Propo-
sition 4.3 we see that f is in the kernels of those representations, hence
f = 0. This shows that Per(X) is dense in X. Next suppose that
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Per(X) is dense in X and let J be the intersection of all kernels of
finite dimensional irreducible representations. We assert that J = {0}.
Take a periodic point = with period p and let J, be the intersection
of all kernels of associated irreducible representations. Let I, be the
ideal of A(X) generated by k(O(z)). It is then not hard to see that
the quotient image of C(X) in the C*-algebra A(X)/I; has its spec-
trum O(z), the orbit of z, in the sense discussed before Proposition
4.4. On the other hand, as those functions in k(O(z)) are contained
in the kernels of induced representations, we have that I, C J,. Let
P be an arbitrary primitive ideal of A(X) containing I, and 7 be an
associated irreducible representation of A(X). The image n(C(X)) is
then isomorphic to the quotient image of C(O(x)), hence it remains
the same as C(O(z)). This means that 7 is a p-dimensional irreducible
representation associated to the point z. Therefore, P contains J,.
Since any closed ideal in a C*-algebra is the intersection of primitive
ideals which contain that ideal we see that J, = I,. It follows that
E(J;) = k(O(z)) for the projection map E on A(X) and since J is the
intersection of all ideals J,’s for « € Per(X), the set E(J) is contained
in the intersection of all ideals k(O(z))’s. Therefore, for any element a
of J, E(a) vanishes on the set Per(X) and E(a) = 0. This means that
J = {0} because J is linearly generated by positive elements and E is
faithful. This completes all proofs.

This theorem with Proposition 4.5 shows that isomorphisms be-
tween transformation group C*-algebras bring at least (almost) all in-
formations about the set of periodic points, in particular if a system
¥ consists of periodic points all other systems whose transformation
group C*-algebras are isomorphic to A(X) also consist all of periodic
points. The author does not know whether or not this situation leads
us to topological conjugacy of those relevant homeomorphisms.

One might sometimes misunderstand that if a compact space X
consists of periodic points their periods have to be bounded. This is
however not the case, in fact let X be the union of circles in the unit
disk having radii L (n =1,2,...) together with the origin and define
the homeomorphism o at each n-th circle by the rotation; e2mie
2™+ ) and o(0) = 0. Then the system consists of periodic points
and moreover contains periodic points for any period n.

Typical examples of topological dynamical systems satisfying the

>
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condition of Theorem 4.6 (1) are those for rational rotations of the unit
circle S!. In this case, the situation becomes even more simple, namely,
for a rational rotation of ;9; every point of S! (or T) becomes a periodic
point of period p and irreducible representations of its transformation
group algebra are all p-dimensional. On the other hand, an example of
a dynamical system satisfying the condition (2) of the theorem is the
Bernoulli shift as we mentioned before. :

There was a conjecture by Effros and Hahn starting from separa-
ble transformation group C*-algebras remained open until the work
of Gootman and Rosenberg [3] in a quite general situation. In our
present context, it is the problem whether or not every primitive ideal
P in A(Y) for a metric space X becomes the kernel of an induced ir-
reducible representation arised from the isotropy group. In this case
we can see directly from our arguments that the conjecture is true. In
fact, if the quotient algebra A/P is finite dimensional this is seen from
Proposition 4.5. If an associate irreducible representation # of A(X) for
P is infinite, X is topologically transitive and by (1) of Proposition 2.1
there exists a point = in X, whose orbit is dense in X,. Then if we con-
sider the induced irreducible representation for z, its kernel coincides
with P as will be seen from Corollary 5.1.B. For a general compact
space, the problem is still remained open even in this restricted case.

There is a basic classification for C*-algebras. A C*-algebra A is
said to be liminal (or CCR) if every image of its irreducible represen-
tation consists of compact operators. When A is unital, this means
that every irreducible representation of A is finite dimensional. In this
terminology, the assertion of the above Theorem 4.6(1) is nothing but
a characterization of the system ¥ for which A(X) becomes a liminal
C*-algebra. The algebra A is called a postliminal (or GCR) algebra if
every quotient algebra of A contains a nonzero liminal ideal. When A is
separable it is well known that the following assertions are equivalent;

(1) A is postliminal,

(2) A is of type I, that is, every representation of A generates a von
Neumann algebra of type I,

(3) The image of every irreducible representation of A contains the
algebra of compact operators (or equivalently the image contains a
nonzero compact operator),
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(4) Every two irreducible representations of A are unitarily equiva-
lent if their kernels coincide each other. :

The C*-algebra A contains always the unique largest ideal I which
is postliminal and when K becomes trivial A is said to be antilimi-
nal. Roughly speaking, this classification means that every reasonable
behavior (such as those properties appeared above) of C*-algebras is
attached to the class of C*-algebras of type I, whereas we have to face
most bad phenomena in the case of C*-algebras of non-type L.

We shall give characterizations of dynamical systems whose trans-
formation group C*-algebras become of type I and antiliminal. Recall
that a point x is recurrent if for every neighborhood V of = there ex-
ists an (non-zero) integer n such that o™z belongs to V. We denote
by C(o) the set of all recurrent points. The closure of C(0) is usually
called the Birkhoff center. Here by old Birkhoff’s theorem the set C(o)
is always non-empty. Note that Per(X) is a subset of C(0).

THEOREM 4.7. (Aoki-Tomiyama). For a dynamical system ¥ =
(X,0) where X is a compact metric space, we have;

(1) A(X) is of type I if and only if C(c) = Per(X),

(2) A(Y) is antiliminal if and only if the set C(c)\Per(X) is dense
in X.

Thus the size of the postliminal part as well as that of the antil-
iminal part within A(Y) depends completely on the size of the set
C(o)\Per(T). Details of proofs of the above theorem will be published
elsewhere.

On the other hand, there is another important class of C*-algebras
called nuclear algebras. A C*-algebra A is said to be nulear if it deter-
mines the unique C*-crossnorm in the tensor product A® B for any C*-
algebra B (there are usually the maximal and minimal (spatial) ones
among C*-cross norms). There had been tremendous discussion about
characterizations of a nuclear C*-algebra such as the one which has
the approximation property with respect to the family of completely
positive maps of finite ranks and also as the one whose representations
always generate injective von Neumann algebras. The algebra C(X)
is the simplest example of a nuclear C*-algebra as well as the matrix
algebra M,. What we emphasize here is that so far we are working
on the system ¥ = (X, o) the algebra A(X) always remains within the
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category of nuclear C*-algebras because crossed products of a nuclear
algebra by amenable groups fall in the same class.
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§5. Topologically free action and qualitative properties of
A(L).

In our setting ¥ = (X, o), the topologically free action is in fact
equivalent to the action known as the properly outer action for a C*-
dynamical system (A4,G,a). The latter plays an essential role in de-
termining the simplicity of the general crossed product A x G, but as

a terminology related to topological dynamical systems Wg prefer the
present name, though it has not been used before in literature even
in the author’s book [T]. In this section we shall illustrate the results
which reveal the importance of this concept in the interplay between
¥ and A(X). The following is a key result in our discussions.

THEOREM 5.1. Let # = m X u be a representation of A(¥) on a
Hilbert space H. If the dynamical system Y = (Xr,0.) is topologi-
cally free, there exists a projection of norm one €, from the C*-algebra

7(A(X)) to n(C(X)) such that

erof(a)=mnoE(a) for ae€ A(Y).

Proof. We note first that the space X, consists of infinite points by
the assumption. Put u = 7(§) (this may not cause confusion with the
writing # = m X u). From the covariant relation, the set

{3 w(fi)u* | fr € C(X), nez}

is dense in 7(A(X)), hence for the existence of a projection map e, it
is enough to show the inequality,

1Y 7 ()bl = Nx(fo)ll-

Write a = %", 7(fr)u* and assume that 7(fo) # 0. We choose a
positive number ¢ such that

l=(fo)l| — 2¢ > 0.
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Let z¢ be a point of X, with |fo(zo)| = ||7(fo)|| and define a neigh-
borhood @ of x4 as

Q = {z € X« |[fo(z) = fo(zo)| < ¢}.

There exists then an aperiodic point yo in (). Therefore we can find
an open subset Py of @ (a neighborhood of yy) such that if we put
Pj = 01(Py) the sets {P;| — 2n < j < 2n} become mutually disjoint.
Let g be the continuous function on X whose restriction to X, that
is m(g), satisfies the conditions,

supp7(g) C Py, ||7(g)]| =1 and
lm(g)x(fo)ll = I (fo)ll — .

Now consider the unit vector £ in H such that

Im(gfo)éll = llm(gfo)ll — € 2 lI(fo)ll —2¢ > 0.

We assert that vectors {m(f;)u/n(g)é| —n < j < n} are orthogonal.
In fact, for any pair (k,j) with k # j and —n < k, 5 < n we have by
the condition for {P;}

(n(fi)u' ()€ | m( fr)u*n(9)€)
= (m(@u*r(Fi fi)ul m(g)€ | €)
= (u*r(a* (@) frfi)uim(9)€ | €)
= (u*n(Fifi)u'm(a* I (g)9)€1€) = 0.

Therefore,
lam(9)éll* = llm(fi)u*n(g)El?
> |l7(fog)éll* = (lm(fo)ll - 2¢)?,
and

llar(g)¢ll > |lm(fo)ll — 2e.



35

Hence
llall = lI7(fo)ll —2¢ and |lal| = [Ix(fo)ll-
This completes the proof.

An immediate consequence of this theorem is the fact that if the
representation 7 is faithful then the whole representation # becomes
faithful, too. For if #(a*a) = 0, then

erof(a*a) = 1o E(a*a) =0,

and FE(a*a) = 0. As E is faithful, this means that a = 0. Therefore we
have the following corollaries.

COROLLARY 5.1.A. Keep the above notations, then the image
7(A(X)) is isomorphic to the transformation group C*-algebra A(Xr)

(= C(Xz) x Z).

Proof. It is enough to mention that because of the covariance rela-
tion there exists a natural homomorphism from A(X;) onto 7(A(X))
whose restriction to C(X) is faithful.

Combining this result with Proposition 4.4 we have

COROLLARY 5.1.B. Let 7 be an infinite dimensional irreducible rep-
resentation of A(X), then the image #( A(X)) is isomorphic to the trans-
formation group C*-algebra A(Xr).

In case of a finite dimensional irreducible representation 7 we know
its structure by Proposition 4.5, and the image 7(C(X)) turns out
to be a diagonal matrix algebra for some basis in the representation
space. Thus we also obtain a projection of norm one from 7(A(X)) to
7(C (X)) but this projection is not compatible with the map E in the
sense of the above theorem.

Corollary 5.1.A allows us to describe the kernels of representations
of A(Z) for which associated dynamical systems are topologically free.

PROPOSITION 5.2. Let P be the kernel of a representation @ = mXu
for which the system Yp = (X, 0r) is topologically free, then
(1) P coincides with the closure of the set

> ft*|freCX), neZ and fi|x, =0}
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Namely it is the closed ideal generated by k(X).
(2) An element a of A(X) belongs to P if and only if every Fourier
coefficient of a vanishes on X .

Proof. Let I be the closure of the set in (1). We easily see that
I = I(k(X#)), the closed ideal generated by k(X), because X, is an
invariant subset of X. There is a natural embedding of C(X,) with
covariant relation into the quotient algebra A(X)/I. On the other hand,
since the quotient algebra A(X)/P is the crossed product C(X,) X Z

there exists a canonical homomorphism from A(X)/P to A(X)/I. ThlS
means that the quotient homomorphism from A(X)/I to A(X)/P is
actually an isomorphism and P = I.

Next let e, be the projection map associated to #(A(X)). Then the
Fourier coeflicients of the element 7(a) is computed as,

7(a)(n) = ex(F(a)F()™™) = ex 0 T(ad™™)
=m0 E(aé™") = m(a(n)) = a(n)| x, .

Hence, a belongs to P if and only if a(n) vanishes on X, for every
n € Z. This completes the proof.

THEOREM 5.3. The algebra A(Y) is simple if and only if the system
¥ is minimal, provided that X consists of infinite points.

Proof. Suppose that ¥ is minimal, then any representation 7 of
A(L) becomes infinite dimensional. Furthermore, its restriction to
C(X) is faithful because X = X. Therefore by Theorem 5.1 (as
well as by Corollary 5.1.B) 7 is faithful and A(ZT) is simple.

Next suppose that ¥ is not minimal. There exists a proper invariant
closed subset of X and this implies the existence of a proper invariant
ideal I of C(X). Let J be a closed ideal of A(X) generated by I. Since
I is proper we see that

I1—f|l >1 forevery fel.
As E(J) = I this time, we also have the inequalities,

1 —al| 21— E(a)]| 21
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for every a € J. Hence J is also proper in A(X) and A(X) is not simple.
This completes the proof.

Besides simplicity, other basic qualitative properties of C*-algebras
are primeness and primitivity. A C*-algebra is said to be prime if
every pair of nonzero closed ideals {I, J} has nonzero intersection I N
J, whereas it is said to be primitive if it has a faithful irreducible
representation. In order to discuss these properties, we need to know
the structure of ideals in A(X). In fact, a standard procedure to get
ideals of A(X) is to consider the ideals generated by those invariant
ideals of C(X), the latter of which come from invariant closed subsets
of X. It is therefore always a big problem whether or not this procedure
exhausts all ideals in A(X). In this connection, we meet again the
meaning of topologically free actions. The following result gives the
answer to this question.

THEOREM 5.4. The following three assertions are equivalent;

(1) X is topologically free;

(2) For any closed ideal I of A(X), INC(X) # {0} if and only if
I#{0}; |

(3) C(X) is a maximal abelian C*-subalgebra of A(X).

Proof. Let a ~ ) fn6™ be the Fourier expansion of an element
a of A(X). The equivalence of (1) and (3) is the consequence of the
following series of equivalent assertions;

ag = ga for every g € C(X)
— ana"(g)én = ngnén for every g € C(X)

< fna"(9) =gfn foreveryneZ, g€ C(X)
< fa(z)g(c7"2) = fu(z)g(z) foreveryz € X, n€Z, g € C(X),
< supp fn C Per'"’l(E) for every nonzero n.

Now suppose that ¥ is not topologically free. By Proposition 2.2 we
can find the positive integer n such that Per,(X) contains an interior
point. Let f be a nonzero continuous function on X such that its
support is contained in Per,(X) and let I be the closed ideal generated
by {f — fé"}. We shall shows that I N C(X) = {0}, which leads us
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to the assertion (2) = (1). For each point z in Per,(X) we choose
the n-dimensional irreducible representation #, of A(X) associated to
z such that, with notations of Proposition 4.3, u™¢ = € for £ € Hy, 1.e.,
u"™ = idy. For other point z ¢ Per,(X), take the GNS-representation
7, of an arbitrary state extension of u,. With this choice if z belongs
to Per,(X) we have,

T (f = f6") = 7a(f) — 72(f) = 0,
whereas if 2 does not belong to Per,(X) we have,
O(z)NPer,(X)=¢ and #,(f)=0.

Therefore, the representation 7, vanishes on I for every z. Since the
family {7, |z € X} is total on C(X), we see that

INC(X) = {o0}.

Next suppose that the system ¥ is topologically free and let I be a
closed ideal of A(Y) such that

INC(X) = {o}.

Let ¢ be the quotient homomorphism: A(X) — A(X)/I. The algebra
C(X) is naturally embedded into A(Z)/I. For each point z, let p!, be
the pure state on ¢(C (X)) defined by u’.(¢(f)) = f(z). We consider a
pure state extension ¢, of p, on A(X)/I, then the pure state ¢, 0q on
A(Y) is a pure state extension of u,. If I # {0}, take an element a of
I for which E(a) # 0. From the assumption, we can find an aperiodic
point x such that E(a)(z) # 0. Since z is aperiodic, the state p,
has the unique pure state extension by Corollary of Theorem 3.5, and
pz0E = p,0q. But this is a contradiction because ¢, 0¢(a) = 0. This
completes all proofs. v

Since a minimal dynamical system is necessarily topologically free,
we can also derive the hard part of Theorem 5.3 from the above theo-
rem. For, in this case minimality assumption implies that there is no
invariant closed ideal in C(X) so that by the theorem there exists no
proper ideal in A(Z).
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THEOREM 5.5. A(X) is prime if and only if ¥ is topologically tran-
sitive, provided that X consists of infinite points.

Proof. Suppose that ¥ is not topologically transitive. There exist
then two disjoint invariant open sets Oy and O, such thzﬁ 0,U0, = X.
Let I; and I; be closed ideals of A(Y) generated by k(0;) and k(O>).

Then, they are both nonzero ideals, whereas

E(I,nIL)C E(I,)NE(I)
= k(01) N k(02)
=k(0,UO0;,)
= k(X) = {0}.

Hence, I; N I, = {0} and A(X) is not prime.

Next suppose that ¥ is topologically transitive. Then the action of
Z on X is effective because if it were not effective X would consist
of a single orbit O(z) for a periodic point z as seen from the proof
of (1) of Theorem 4.6. Thus, the action is topologically free. Let I
and J be nonzero closed ideals of A(X). Then by (2) of Theorem
5.4 both I N C(X) and J N C(X) are nonzero ideals of C(X). Write
INC(X) = k(E) and J N C(X) = k(F) for invariant proper closed
subsets £ and F in X. The complements E¢ and F° are invariant
(nonempty) open subsets, hence

E°NF° # ¢.
It follows that
EUF#X, and INJ#{0}.

This completes the proof.

It is well known that for a separable C*-algebra A it is prime if
and only if it is primitive, and it has been remained open for a long
time whether or not this is true in general. In C*-theory, the problem is
deeply concerned with the old question of Naimark which asks whether
or not the algebra of all compact operators on a non-separable Hilbert
space could be characterized as a unique C*-algebra having the only
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one equivalence class of irreducible representations. For a separable
Hilbert space, the question was answered quite before by A. Rosenberg
(1953). On the other hand, in our case for A(X), separability means
the condition X being a metric space. Therefore, with the above the-
orem coincidence of primeness and primitiveness for A(X) where X is
a metric space is nothing but the consequence of the equivalence (1)
and (2) in Proposition 2.1 together with argument given before about
the Effros-Hahn conjecture in §4. Moreover, it is known that the above
equivalence in Proposition 2.1 does not hold in general. The author
suspect that study of suitable examples of topological dynamical sys-
tems which illustrate the gap of (1) and (2) well would lead to the
(negative) solution of the problem. Thus, as of now we have not had
yet the characterization of a topological dynamical system ¥ = (X, o)
for which A(Y) is primitive except Theorem 5.5 for a metric space X.
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§6. Irrational rotation C*-algebras and representations of
three dimensional Heisenberg group

Before going into discussions of various important aspects of irra-
tional rotation C*-algebras whose importance has been first notified
by Reiffel [17] we sketch the case of rational rotations. Take a ratio-
nal number § = 2 (m and n are relatively prime) and denote by Ay
the algebra A(Xy) for the rational rotation o4 : ¢ — ¢+ 6 on T (or
e2mi% 1y ¢27i(216) on S'). As we have already shown, all points of T are
n-periodic and all irreducible representations of Ag are n-dimensional.
Such a C*-algebra is called an n-homogeneous C*-algebra. In this case,
the dual of Ay, ;1\9, the space of all unitary equivalence classes of irre-
ducible representations of Ay with Mackey topology (or the space of all
primitive ideals with hull-kernel topology) turns out to be two dimen-
sional torus T?. This would be guessed from the facts that the orbit
space T/Z is obviously homeomorphic to T whereas the ambiguity of
induced irreducible representations yields another torus (cf. Theorem
4.2.1 in [T]). The algebra Ay is then isomorphic to the C*-algebra of
cross-sections in the fibre bundle (called the structure bundle of Ag)
over T? with the fibre M,,, nxn matrix algebra, and the structure group
U,, the n-dimensional unitary group. Thus the isomorphism class of
Ag’s is determined by the isomorphism class of bundle maps of these
structure bundles. As in the-case of irrational rotation C*-algebras for
which we shall discuss later, two rational rotation C*-algebras Ay and
Ag (for 6 = & and §' = ’:—,I) are isomorphic if and only if § = ' or
6 =1 —6', namely when 4 and ' are topologically conjugate (cf. [1],
[5])-

Let now 6 be an irrational number with 0 < § < 1. Then Ay is a
simple C*-algebra by Theorem 5.3. The following proposition shows
an aspect of Ag.

PROPOSITION 6.1. Ay is the C*-algebra C*(u,v) generted by two
unitary operators u and v with the commutation relation,

wv = 2™y,

The algebra does not depend on the choice of generators.

Proof. It suffices to show that the above relation gives rise to a co-
variant representation of (C(S'), ag) to C*(u,v). Write the assumption
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as

vuv® = e 2my,

We have,
—2mi6

sp(u) = sp(vuv®) = e ?sp(u),

which shows the invariance of the spectrum of u by the rotation 8. Since
¥ is minimal, we see that sp(u) = S! and we may regard C(S!) as the
C*-algebra generated by u. Moreover, in this situation the relation

vuv* = "7y,

simply means that the action of v on C(S') (as ad v(f) = vfv*) coin-
cides with the action ag on C(S') induced by o4. Hence, (C*(u),adv)
is a covariant representation of (C(S!), ag).

The second aspect of Ag is that it has a unique faithful trace 7 by
Theorem 3.7. Since

N, ={a € Ag|7(a*a) = 0} = {0},

Ap is embedded into the Hilbert space H;, in the GNS-construction for
7. Let v and v be generating unitary operators for Ag. Since 7 has the
form 7 = dt o ¢ where dt is the Lebesgue measure on T,

T(u™v™) =0 except for the case m =n =0.

It follows by the commutation relation that the set {u™v™|m,n €
Z} constitutes an complete orthonormal basis in H,. Therefore, each
element a of Ag has the expansion

a= E aAmpum "
m,n

in the Hilbert space H, and 7(a) = agp. Now define the action of T?
on Ag by .
a(‘s’t)(umvn) — 627rz(ms+tn)umvn.

It turns out to be a continuous effective ergodic action. Conversely it
is known that a C*-algebra admitting a continuous effective ergodic
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action of T? is either an irrational ratation C*-algebra or else a ra-
tional rotation C*-algebra. (cf. [5], [13]). The above action of T2
naturally induces two canonical derivations §; and 8, (densely defined
and unbounded) along the directions s and ¢ respectively. They have
forms, :

61 (u™ov™) = 2mimu™o™,  §;(v™) =0

6a(u™v™) = 2minu™o",  8(u™) = 0.

These two derivations play basic réle in the set of all derivations in A,
(cf. [19]). Thus we may recognize that a non-commutative differential
structure is given by the pair (61,62) and may regard the following
subalgebra

X ={a= Z Amnu™v"™ € Ag|{amn} are rapidly decreasing}

as the natural C'>°-object. This was a starting point of non-commutative
differential geometry initiated by A. Connes.

The another important aspect of Ay is that it has surprisingly rich
structure for projections.

THEOREM 6.2. (Rieffel). For any number « in the set (Z+7Z6)N[0, 1]
there exists a projection p such that 7(p) = a.

Proof. By Proposition 6.1 we may regard Ag as the C*-algebra gen-
erated by multiplication operators of C(T) and the shift operators s
defined by

msg = fg and s(g)(t) = g(t—9).

Henceforth we identify m; with f. With these notations the value of
the trace 7 is given by

n 1
(3 fask) = r(fo) = /O fo(t)dt.

We shall first construct a projection p with 7(p) = 6 in the form,

p=hs'+f+gs hf,g€C(T).
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Suppose first that we have such a projection. Then the condition p = p*
implies the conditions that f is real and h = s*gs. Combining with
another condition p = p?, we finally reach the relations,

(1) g(t)g(t — 6) =0,

(2) g(t)(1 - () — f(t — 6)) =0,

(3) F(£)(1 = F(£) = lg(t)* + g(t + O) teT.

Conversely if we can find two functions f and ¢ satisfying the above
three conditions with f being real, then putting h = s*gs the element

p=nhs"+f+gs

becomes a projection. We shall construct this kind of pair (f, g) sat-
isfying further condition that 7(f) = 6. Here we may assume that
0<b< % because Ay is isomorphic to A;_g. Take a positive number
¢ such that

1
0<e<@ and 9+5<§.

Let f be a real valued continuous function on T defined as follows. On
the interval in [0,¢], f may be any continuous function with values in
[0,1], £(0) = 0 and f(¢) = 1. The function f should be constant value
1 on the interval [¢, 8] and 0 on [0 +¢, 1] respectively, and finally define
fon[6,0+¢] by

f)=1-f(t-0).

We next define the function ¢ by
g(t) = (F(O(1 = f(H)? on [6,6+¢]

and let ¢ be zero elsewhere on [0, 1]. Then f and ¢ satisfy relations (1),
(2) and (3) above, so that they define a projection p. By construction,

1
o) = [ ftit =6,
0
For the general case, let {nf} be the fractional part of nf and sup-
pose n is positive. We have,

uy = e271‘1719,Uun — e21rz{n0}vun.
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Hence by Proposition 6.1 the algebra C*(u",v) is regarded as the al-
gebra A(,¢) and by the above arguments there exists a projection p in
C*(u™,v) such that

(p) = {nb}

for the trace 7/ on C*(u™,v). The trace 7' coincides however with 7
by the unicity of the trace on these algebras.

In case n < 0, it is enough to find a projection p with 7(p) = {—n6}
and to consider the projection 1 — p. This completes all proofs.

Actually, more about the above result is known for the range of 7
on the set of all projections of Ag, (Ag)p. In fact, the range 7((Ag)p)
coincides with the above set (Z+Z6)N[0,1]. We need however another
serious argument to prove this fact (cf. [T: Theorem 5.3.2]) and we do
not enter further arguments. We have to mention here that once we
know the range of 7((Ag)p), then we can determine the isomorphism
class of Ag’s. Namely,

“For two irrational numbers 6; and 03, Ay, is isomorphic to Ay,
if and only if 8; = 03 or 8; = 1 — 02, namely when o4, and o4, are
topologically conjugate.”

Let R be the real line. Recall that the suspension of a dynamical
system ¥ = (X, o) consists-of the space Y = (X x R)/~ factored
through the equivalence relation;

(c"(z),s) ~ (z,s+n)
and the flow 3; on Y defined as

Bz, 8)] = [(z,s +1)];

where [(z,s)] means the equivalence class of the point (z,s). If we
consider the suspension of the system ¥, the space Y turns out to be
T? and the flow B3; becomes the so-called Kronecker flow. This flow
forms a simple example of a foliation F on T?, and if we construct the
foliation C*-algebra C*(T?, F) from F it turns out to be isomorphic
to the tensor product Ag @ C(H).

We skip the other aspects of Ay such as the case occuring in the
projective representations of locally compact abelian groups but we
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can not overlook the next important result by Pimsner [14]. Some
definitions both from C*-theory and topological dynamics are in order
before stating the result.

DEFINITION 6.1. A C*-algebra is called an AF (approximately fi-
nite dimensional) algebra if it is spanned by an increasing sequence of
finite dimensional C*-algebras.

Since a finite dimensional C*-algebra is nothing but a direct sum of
full matrix algebras, the class of A F-algebras is the most tractable class
of C*-algebras. It is known by Pimsner-Voiculescu that the algebra A
can be embedded into an AF-algebra though Ay itself is not an AF-
algebra.

Recall that a point z is said to be non-wandering for o if, for any
neighborhood U of z and any natural number k, there exists an integer
n with |n| > &k such that ¢™(U)NU # ¢. The set of non-wandering
points, §2(¢), is an invariant closed subset of X.

DEFINITION 6.2. (1) Let V = (V;)ier be an open cover of X. A
sequence w = (w(n))nez, w(n) € I is called a V-pseudo-orbit of o if

V) N 0 (Vsns1)) # ¢ forevery n € Z.

If the V-pseudo-orbit is periodic we denote by p(w) the smallest
natural number p such that w(n + p) = w(n) for every n € Z.

(2) A point z is said to be pseudo-non-wandering for o if for every
open cover V = (V;)ier and any ¢ € I such that @ € V; there exists a
periodic V-pseudo-orbit w = w(n)nez such that w(0) =:.

The set X (o) of all pseudo-non-wandering points also turns out to
be an invariant closed subset of X. Pimsner’s result clarifies in the
following way the situation why the algebra Ay is embedded into an
AF-algebra.

THEOREM 6.3. Let X be a compact metric space. Then the trans-
formation group C*-algebra A(X) is embedded into an AF-algebra in
a unit preserving way if and only if X = X (o).

The proof is a little complicated and we leave full details to the
Pimsner’s paper [14].
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Actually in the case of an irrational rotation oy, we have that
(og) = T. Every non-wandering point is pseudo-non-wandering but
the converse is not true in general. In fact, consider the action of the
shift o9 on the one point compactification of Z, X = (Z, ), that is,
oo(n) = n + 1 and 0¢(c0) = oco. In this case the only non-wandering
point is co, whereas every point of X is pseudo-non-wandering (Q(o) =
{oo} and X (o) = X).

There is another class of homeomorphisms of the circle S! called
Denjoy homeomorphisms for which the isomorphism class of their trans-
formation group C*-algebras is determined. Let o be an orientation-
preserving homeomorphism of S'. Then o can be lifted to a strictly
increasing function & on the real line R satisfying §(z + 1) = 5(z) + 1.
Normalized as 0 < 6(0) < 1, such a function is uniquely determined
and the rotation number p(o) for the map o is defined as the limit

o) = tim ),

n—00 n

which exists and is independent of z € R. The number p(¢) is rational
if and only if o has a periodic point.

DEFINITION 6.3. A Denjoy homeomorphism is a homeomorphism o
of S! with no periodic points.such that o is not topologically conjugate
to a regid rotation.

Thus, for this homeomorphism ¢ the rotation number p(c) = 6 is
irrational and, by the famous Theorem of Poincare about the order of
the set {o"(z)}, there exists an orientation-preserving continuous onto

map h of S! such that
hoo=ocgoh.

Namely, o is semiconjugate to L9 = (S!,04). The measure p = dh
defined in particular u([a,b]) = h(b) — h(a) is a unique o-invariant
probability measure on S!.

THEOREM 6.4. (Putnam-Schmidt-Skau). Let o7 and oy be two
Denjoy homeomorphisms of the circle S', and let A(Z;) and A(Z,) be
their transformation group C*-algebras respectively. Then A(X;) is
isomorphic to A(X3) if and only if o, is toplogically conjugate to oy or

-1
gy .
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We leave details to their joint paper [16] but illustrate here how to
construct some typical Denjoy homeomorphisms. The observation is
also quite important in their analysis.

Denote by S, the support of p, then it turns out to be a Cantor set
for which h(S,) = S' (S, g SY). Let S, = S'\ U2, I, where {I,}

are countable disjoint open intervals with end points {an, b, |n € Z}.
The connecting map h naturally collapses each of the interval I, into
a single point, hence h(an) = h(byn). Set

Q(0) = {h(z) |z is a, or by for some n}
= {h(I,)|n € Z}.

The set is uniquely determined by o up to a rigid rotation. It is count-
able and invariant under o4. Let n(o) be the number of disjoint orbits
in Q(o) by o4 (n(o) could be infinite). Thus, Q(o) = U2, Q;, where
each orbit Q; is of the form 7; + nf. Now consider the space S'Q( o)
which is the circle S! with the points Qo) being doubled in the follow-
ing way. At each point of Q(o) we cut the circle with two end points
adjoined and connect the pair of end points by an arc. The lengths of
attached arcs should tend to zero as n increases to co. We then define
the continuous map &4 of Sb( ») 88 the rotation oy on S! but at the
doubled point x € Q(o) as a homeomorphism sending the arc at z onto
the arc at the doubled point z + 6, so that & = (S!, o) is conjugate to
%' = (Sg(o): 96)- Here the conjugation map netween % and ¥’ maps
the component I, = (an,b,) onto one of the attached arcs with the
pair a,, b, corresponding to the relevant doubled point of S'. Thus to
obtain an example of a Denjoy homeomorphism for each n, say n = 2,
we can start with the dynamical system (Sq,d9) for Q@ = Q1 U Q2,
where Q; = {nf|n € Z} and Q2 = {y+nb|n € Z} with v ¢ Q:. We
then pull back this system to the situation S'\ U2, I, assigning each
double point to the appropriate pair a,, b,. The resulting map of St
becomes a Denjoy homeomorphism with p(o) = 6.

Let H be the three dimensional discrete Heisenberg group expressed
by matrices, that is,

H = {m,n €%

OO =
O~ s
-3 3
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There are two generators a and b in H, where

az( ) and b=(
1 01

c=aba”'b'=10 1 0

0 0 1

belongs to the center of H. Let G be the abelian group generated by

b and ¢, then
1 0 m
G= 01 n l m,n € Z
0 0 1

and G is isomorphic to Z x Z. On the other hand, the group generated
by a is isomorphic to Z and it acts on G as

0 m

1 n|]e€eq.

0 1

1 0 m+n
aza =10 1 n for = =
0 0 1 '
0 m 1 ¢ 0
1 n 01 0},
0 1 0 0 1

Thus we get an action of Z on G and since

m

n =

1
the group H is considered as the semidirect product of G and Z. There-
fore, H is an amenable group. Let a be the action of Z on the group
C*-algebra C*(G) (= C*(G)) lifted from the action : & — aza™'.
Here the algebra C*(G) coincides with the algebra C(T?) of continu-
ous functions on T? (= G, the dual of G). It is known then

O O
O =
—= O O
O O =
O = O
—_ -0

) |

The element

1
0
0

O O =
O =
S O =

C*(H) = C*(G)x Z = C(T?) x Z.

We shall prove later this fact for general case (Proposition 6.5). Be-
fore proving the above result, we determine the homeomorphism ¢ on
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T? induced by the action « and describe the structure of irreducible
representations of C*(H ) induced from those points of T?. We regard
first an element of G as a continuous function on T2, which we denote

by fm,n for (m,n) € Z x Z. We have

a(fm,n) = fm+n,n~

Therefore
a(fm,n)(sa t) = fm-l-n,n(sv t)

— e21ri((m-}-n)s+nt)

— 627ri(m.9-{—n(s+t))

= fm,n(s,t + 3)
= fmn(071(s,1)).

Since the linear span of those functions {fm,} is dense in C(T?), the
above relation determines the homeomorphism o as

o (s,t)=(s,t+s) and o(s,t)=(s,t—s).

Thus we have the homeomorphism which induces a rational or irratonal
rotation along t-axis according to the condition, s being rational or
irrational. Hence we obtain the following

THEOREM 6.5. The group C*-algebra C*(H)(= C}(H)) is regarded
as the transformation group C*-algebra arised from the topological
dynamical system ¥ = (T?, o) where the homeomorphism o is the one
described above. It therefore has every rational and irrational rotation
C*-algebra as its quotient image. Futhermore, C*(H) has sufficiently
many finite dimensional irreducible representations with ranging all
dimensions.

For the proof we just mention that the restriction of the dynamical
system ¥ = (T?, 0) to the torus

T, = {(s,t)|t € T}

at level s naturally induces a dynamical system ¥, = (T,,o0,) for
o, = 0|T,, and we get the canonical homomorphism from A(Z) to
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A(Z,), the latter of which is a rational or irrational rotation C*-algebra
according to the level s. The last conclusion follows from (2) of Theo-
rem 4.6.

Let u,v and z be unitaries in C*(H) corresponding to a, b and ¢. For
each point (s,t) for an irrational number s the pure state extension of
H(s,t) 18 unique by Corollary of Theorem 3.5 and two induced irreducible
representations m(, ) and 7, 4,) are unitarily equivalent if and only
if O((s,t1)) = O((s,t2)). Here we can say moreover that there exists
precisely one state on C*( H) satisfying

99(2) — e27ris and L,O(’U) — e27rit'

For, an argument similar to the proof of Lemma 4.2 leads us to the
assertions,

p(az) = p(za) = ™p(a) and
plav) = p(va) = ™ ¢(a)

for every a € C*(H ), which implies the fact that the restriction of ¢
on C(T?) coincides with the point evaluation H(s,¢)- In the next section
we shall shows that the family {A(Z,)|s € T} is actually connected
in a continuous way and A(X) is expressed as the algebra of all (non-
commutative) continuous fields having values in A(X;) at each point
seT.

Finally we prove the realization of C*(H) as the crossed product in
a general context for reference since the detailed proof of this fact is
hardly found in literature except in [T).

PROPOSITION 6.6. Let G = K x L be a discrete group which is

a semidirect product of groups K a.(;id L by the action « of L on K.
Then
C*(G)=ZC*(K)x L.

Proof. Note first that by the definition of semidirect product the
action a of L on K is expressed as a,(z) = aza™! for 2 € K and
a € L. Consider the algebra ¢!'(G) as a usual convolution algebra with
x-operation a*(g) = a(¢g~!) and the algebra ¢!(L,¢}(K)) as a twisted
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convolution Banach x-algebra for construction of the crossed product
C*(K) x L. We shall define an isomorphism & between ¢!(G) and
(Y(L,*(IV)). For an element a = (a(g)) in ¢*(G) put ®(a)(l) = a; for
I € L where a; is a function of ¢!(K) defined as ai(k) = a(kl). One

then easily verify that @ is a linear isometry. Moreover, we have for a

and b in (}(G),
(®(a)(b))(1)(k) = (Z@ (a)(1r)au, (B(B)(171)))(k)
= ZZ@(a (L) kl)all(q’(b)(l_ll))(’» 'k)

ki L
=) a(kud)b(I7 kT RD
l1,ky

= ab(kl) = ®(ab)(1)(k).

Hence, ®(ab) = ®(a)®(b) and @ is an isomorphism. Similarly we can
show that ®(a*) = ®(a)*. We assert next that ® is an isometry for
the C*-norm ||a||. Let 7 be a representation of ¢!(G), then there
exsits a unitary representation u of G such that 7(a) = Eja(g)u(g).
Let v and w be the restrictions of u to K and L respectively. Let p be
the representation of £!(K) associated with v. We see that (p,w) is a
covariant representation of (¢1(K), L, a) such that (p x w)o® = 7. In
fact,

px w(®(a)) =Y _ p(®(a))(Dw(l)
l
= a(klv(k)w(l)
k,l
=" a(klu(kl)
k,l
= 7(a).

Therefore, ||®(a)||oc > ||a|loo. Conversely, let p x w be a representation
of C*(K) x L. Put u(g) = v(k)w(l) for an element ¢ = kl € G, then

u becomes a unitary representation of G because (p,w) is a covariant
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representation and G is the semidirect product of K and L. Thus we
obtain a representation 7 of ¢!(G) through u and as mentioned above
(pxw)o® = . It follows that ||®(a)||cc = ||a]leo. Therefore, with this
mapping ® we obtain a *-isomorphism of C*(G) to C*(I{) x L. This

completes the proof.



54

§7. Decompositions of topological dynamical systems and
their transformation group C*-algebras

In studying topological dynamical systems we sometimes meet the
situation that a given topological dynamical system is decomposed
into a sum of closed invariant subsets, or even into a sum of minimal
dynamical systems. Actually when a system ¥ = (X, o) is decomposed
into the sum of minimal systems, it is said to be semisimple.

In this section, we discuss how the algebra A(X) is decomposed in
terms of continuous fields of operators when the system ¥ is decom-
posed into a sum of invariant closed subsets. Here we restrict the space
X to be a metric space for simplicity although all results in this section
are valid without any countability condition for X if we make use of
the uniform structure attached to the compact space.

DEFINITION 7.1. (1) A topological dynamical system ¥ = (X, o)
for a metric space (X, d) is said to be distal if the condition

inf{d(c"z,0"y)|n€Z} =0

implies that z = y.
(2) ¥ is said to be equicontinuous if for any positive number ¢ there
exists a positive number é such that

d(z,y) <6 = d(o"z,0"y) < e forevery n€Z.

It is obvious that an equicontinuous system is distal. To illustrate
their difference we consider the so-called Anzai skew product of an
irrational rotation og on T, that is, the mapping ¢ on T? : (s,t) —
(0s,t+s). For those points = (s1,t;) and y = (s2,t2) in T? put the
distance, d(x,y) = |s1 — so| + [t1 — t2].

We see then for every n,

d(o™x,0"y) = |s1 — 82| + |t1 — t2 + n(sy — s2)|
2 |s1 — sal,

and > |t —ty] i s; = so.

Hence the system © = (T?,0) is distal but if we consider the se-
quence zx = (1,s) (k = 1,2,...) converging to (0,s) we have that
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d(c*z),0%(0,s)) > 1. Therefore, ¥ is not equicontinuous. A typi-
cal example of an equicontinuous system is the case for an isometric
homeomorphism. Thus most of those examples discussed before are
equicontinuous, hence distal systems.

We shall prove first that a distal system is necessarily semisimple.
We need however some preparation before this assertion.

Let XX be the space of all maps in X with the pointwise convergence
topology. By Tychonoff’s theorem the space is a compact Hausdorff
space with the semigroup structure. For a dynamical system ¥ =
(X,0), we consider the closure E(Z) of the set {o™ |n € Z} in XX. The
set E(X) becomes a commutative semigroup called the Ellis semigroup
of ¥.

PROPOSITION 7.1. The semigroup E(X) becomes a group if and
only if ¥ is distal.

Proof. Suppose that E(X) is a group and consider points z,y and 2
in X such that both nets {¢"*(z)} and {o"*(y)} converge to z. Since
E(X) is a compact space, by passing to a subnet we may assume that
the net of mappings {¢"*} converges to a map ¢ in E(X). Then

g(z) = lilr)n o"(z)=2z= hin o™ (y) = g(y)

and as ¢ is invertible we have that 2 = y. Namely, ¥ is distal. Con-
versely suppose that ¥ is distal. It follows that each map ¢ in E(X) is
injective and E(X) has a cancellation law; gg; = ggo implies g; = go.
Therefore the only possible idempotent element in E(X) is the identity.
We assert that every element of E(X) is invertible. Take a map h in
E(T) and put E, = {gh|g € E(X)). Consider the family

® = {5 | closed nonempty subset of E;, 5S> C S}.

Obviously E; € & and ® is not empty. Assume the order in @ by
inclusion, then we can apply Zorn’s lemma to ® finding a minimal set
So. Take an element ¢ in Sy and put

Sog ={fglf € So}.

Since S2 C Sp, Sog is a subset of Sy and moreover (Sog)? C Sog.
Hence Sog = So, which means that there is an element f € Sp such
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that fg = g. Therefore, the set W = {k € So | kg = ¢} is a nonempty
subset of Sy satisfying the condition, W? C W. Hence, W = S, and
g € W. This means that g2 = g and as mentioned before E, contains
the identity. Thus, & has the inverse in E(X) and E(Z) is a group.

With this proposition we have the following
THEOREM 7.2. A distal system is semisimple.

Proof. Suppose that ¥ is distal and take a point z. It is enough to
shows that the closure O(z) becomes a minimal system. Let y € O(z)
and consider a net {¢"(z)} converging to y. By passing to a subnet,
we may assume that the net {o"*} converges to a map ¢ in E(Z)
and g(z) = y. By the above proposition we have z = ¢g~!(y) with
g~' € E(X). It follows that = € O(y) and O(z) = O(y) meaning that
the system &' = (O(a), JIO—(z)-) is minimal. This completes the proof.

Now suppose that the system ¥ is decomposed into the disjoint
union of subdynamical systems {£, = (X,,0,)|y € '} where each
X4 1s an invariant closed subset of X and o, = o|lx,. Write the
corresponding action of Z to C(X) by a,. We shall be concerned with
the discussions how and in what circumstances those corresponding
transformation group C*-algebras A(X.)’s are connected to build up
the original algebra A(X). We have to consider first the quotient space
of X by the relation R (z ~ y <= 2,y € X,, for some v € I') assuming
each subset X, being a point of the space, still denoted by I'. Let
E., be the canonical projection of norm one of A(X,) to C(X,). The
restriction map p, : C(X) - C(X)|x, = C(X,) is compatible with
the action « and it induces the natural homomorphism p., from A(T)
to A(X,) such that p, 0 E = E, 0. Let I, be the kernel of 5. Then
although the system T, may not be topologically free we can apply
the proof of Proposition 5.2 and get the results that I, is generated
by k(X,) and an element a belongs to I, if and only if every Fourier
coefficient of a vanishes on X.. Let ¢ be the quotient map of X to TI.
We recall here that a subset S in the quotient space I is open if and
only if ¢71(S) is open in X.

Now our object is the fibred space {I'| A(X,)}. Write

a(y) = py(a)
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for a € A(X). We are aiming, under suitable conditions, to represent
A(X) as the C*-algebra of continuous operator fields with respect to
this fibred space. Thus we have to explain what we mean by the above
expression. Let {A(t)|t € Y'} be a fibred space on a compact space Y’
with a C*-algebra A(t). Let a be a cross section or an operator field on
Y meaning the function such that a(t) € A(t) for every t. In general,
we can not consider the distance between a(t) and a(s) for different
points ¢, s, hence can not talk about the continuity of a over Y. This
situation is not improved even in the case where A(t) is isomorphic to
a fixed C'*-algebra A because the isomorphism 6; between A(t) and A
may vary along t. Therefore, in order to define a continuity of operator
fields in this fibred space we need the following family F of operator
fields satisfying the conditions;

(1) |la(t)] is continuous on Y for every a € F;
(2) At each point ¢, the image {a(t)|a € F} is dense in A(t);
(3) F forms a *-algebra under pointwise operations.

We say then an operator field a continuous at a point t; in ¥ with
respect to F if for any positive number ¢ and for any operator field
bin F with ||a(to) — b(to)|| < € there exists a neighborhood U of o
such that ||a(t) — b(t)|| < ¢ for every t € U. It then turns out that
the set of all continuous operator fields with respect to F forms a C*-
algebra Cx(Y | A(t)) with the norm |la|| = sup ||la(t)||. We refer the
details to [22]. Note that this continuity depends on the family F and
moreover it may happen that there could exist no such a family for
{Y | A(t)}. On the other hand, in particular case where any A(t) is
isomorphic to C, the complex number field, the isomorphism between
A(t) and C does not depend on t so that we can talk about the distance
between a € A(t) and b € A(s). Therefore, in this case the continuity
is unique and the algebra of all continuous functions, C(Y’), is nothing
but the algebra Cx(Y | A(t) = C) with respect to the family F of
constant functions on Y. As we have mentioned above we may replace
this family F by other family of continuous functions satisfying the
starting conditions. Now in order to find the continuity of the function
la(7)]|| for a € A(X) we need the following lemmas.

LEMMA 7.3. The following assertions are equivalent;
(1) T is Hausdorff;
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(2) The map q is a closed map;
(3) The function : v — ||la()|| is upper semicontinuous for every
element a € A(Y).

Proof. Since the map ¢ is continuous it maps a closed hence compact
subset of X to a compact subset of I', and if I" is Hausdorff the latter set
becomes closed in I'. Thus, (1) implies (2). For the assertion, (2) =
(3), consider the set H = {y € T'|||a(7)|| < ¢} and take a point v, in
H. Because ker p., is generated by k(X,) as mentioned before we can
find an element b = £ ;6% of finite sum such that fy| x,, = 0 for every
k and ||a+b|| < &; for a positive number e; with |Ja(yo)|| < &1 < ¢e. On
the other hand, by the compactness of X, there exists a neighborhood
U of X, such that

Z Ife(z)] <er—lla+b]| forevery zeU.
k

Here by [8; Theorem 3.10(c)] the union of all members X.,’s contained
in U forms an open set containing X,,. Hence its quotient image V
becomes a neighborhood of v such that for every v € V' we have

la(Il < llaly) + 0N+ 1> (felx, )p+(6)*]
k

< la+ ]| + sugz |fi(z)] < e1 <e.
FAS L

This means that H is an open set.

Now suppose that the function ||a(v)]|| is upper semicontinuous and
take two different points 7; and v, in I'. Since X is normal, there
exists a continuous function f such that 0 < f <1, f x,, = 0 and
flx,, = 1. From the assumption the sets Vi = {y € T'|||p4(f)|| < 3}

and V3 = {y € T'||lp4(1 — f)|| < 3} are disjoint open subsets of T
which contain 4; and 4, respectively. Hence, I' is a Hausdorff space.

The next lemma clarifies the situation of the a.nofher half of the
continuity of those functions |la(~)]|’s.

LEMMA 7.4. The following assertions are equivalent;
(1) q is an open map,
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(2) The closure of any saturated subset of X with respect to the
retation R is also saturated,
(3) The function ||a(7)|| is lower semicontinuous.

Proof. The implication (1) = (2). Take a set S = Uyep X and let
z be a point of the closure S. Let y be a point of X equivalent to z and
take a neighborhood U of y. The image ¢(U) is then a neighborhood
of q(y), and ¢(U) N A # ¢ because ¢(y) = ¢(z) € A. Hence,

UNg ' (A)=UNS#4¢

which implies that y € S. Namely, S is also a saturated set. For
the implication (2) = (3) we assert that for any ¢ > 0 the set F' =
{v € T||la(7)|| £ ¢} is closed. Here we may assume that a is positive.
Suppose that there exists a point 7o € F such that ||a(yo)|| > e. We
consider the continuous function h on the real line defined as

0 if t<(e+|la(y)l)/2
ht)=< 1 if 2> la(yo)ll
linear otherwise

Then,

h(a)(7) = po(h(a) = h(ps(a) = 0 for every 7 €F

hence every Fourier coefficient of h(a) vanishes on X, (v € F'). On the
other hand, from the assumption for (2) the set X is contained in the
closure of ¢7'(F). Therefore every Fourier coefficient of k(a) vanishes
on X.,, and h(a)(yo) = 0. However, the property of the function h(t)
tells us that h(a)(vo) # 0, a contradiction. Hence, F' is a closed set.
Next suppose the assumption (3) and consider an open set G in X.
We assert that ¢(G) is an open set in . Thus, take a net {7} in ¢(G),
the complement of ¢(G), converging to 9. Then, X, NG = ¢ and
every X, is contained in the closed set G°. Suppose that vo belong
to ¢(G) and take a point z¢ in G with ¢(zo) = 7. There exists then
a continuous function f on X such that 0 < f < 1, flge = 0 and
f(zo) = 1. Put F = {y € T||lp5(f)ll £ 3}. By definition, every v,
belongs to F whereas 7o does not belong to F because ||p,(f)]| = 1.
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This is a contradiction and o belongs to ¢(G)°. It follows that ¢(G)°
is a closed set, and ¢(G) is open. This completes all proofs.

Now suppose further that, in the decomposition X = U,er X, both
conditions in Lemma 7.3 and 7.4 hold. Then the function |la(7)|| is con-
tinuous for every element a € A(X) and we can talk about continuous
fields of operators with respect to the family

F={a(y)|a € A(Z)}.

Let Cx(I'| A(X,)) be the C*-algebra of all continuous operator fields
with respect to F. Obviously, we may regard the algebra A(Z) as a
C*-subalgebra of Cx(I'| A(X,)).

In order to show that A(X) actually coincides with Cx(T'| A(Z,))
we need the following non-commutative Stone-Weierstrass theorem (cf.
[22]).

. “Let A be a C*-subalgebra of the C*-algebra Cx(Y | A(t)). Sup-
pose that for any two points t; and t; and for any elements a € A(t;)
and b € A(t,) there exists an element z of A such that z(t,) = a and
z(ty) = b, then the algebra A coincides with C (Y | A(t)).”

With the help of this theorem we can prove our decomposition the-
orem.

THEOREM 7.5. Suppose that in the decomposition X = U,erX,,
both conditions in Lemma 7.3 and 7.4 hold, then the algebra A(X)
1s 1somorphic to the C*-algebra Cx(I'| A(X,)) of continuous operator
fields. '

Proof. Let ® be the map from A(X) into Cx(T'| A(Z,)) defined by
®(a) = {a(y)}. If a(vy) = 0 for all 4, all Fourier coefficients of a vanish
on X, for all 4, hence on X and ¢ = 0. Namely & is a *-isomorphism.
Hence, it suffices to show that @ is surjective. Thus, take two different
points 71 and 7, in I' and a continuous function f on X such that
flx,, =0and f|x,, = 1. Then, f € I, and 1— f € I,,, which means
that I, +1,, = A(Z). Take an arbitrary pair (¢,d) in (A(Z,,), A(Z,))
and consider those elements a; and ay in A(Z) such that a;(y;) = ¢
and as(v2) = d.

We then easily see that the element a = (1 — f)a; + fa, satis-
fies the conditions that a(y1) = ¢ and a(y2) = d. By the above
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non-commutative Stone-Weierstrass theorem, we have that ®(A(X)) =
CH(T | A(S,)).

Applying this theorem to the dynamical system associated to the
three dimensional discrete Heisenberg group H discussed in §6 we have
the following corollary.

COROLLARY 7.6. The group C*-algebra C*(H) is isomorphic to
the C*-algebra of all continuous operator fields over the fibred space
{T|A(X,)} where &, = {(s,T), 05 = o|s,m}. At each level s an
irrational rotation C'*-algebra or a rational rotation C*-algebra appears
as the algebra A(Z;) according to the condition s being irrational or
rational.

The maps o, in the above corollary are actually isometries in (s, T?)
so that by Theorem 7.2 each dynamical system ¥, = ((s,T),0,) for
a rational number s is further decomposed into minimal systems. In
this case the precise description of the corresponding representation of
A(Z,) is nothing but the representation of the homogeneous C*-algebra
A(Z,) cited in §6 as the C'*-algebra of all continuous cross-sections in
its structure bundle over the torus T.

Now in general when a given dynamical system ¥ is distal one may
easily verify that the decomposition of ¥ in Theorem 7.2 satisfies the
condition (2) of Lemma 7.4. As for the condition of Lemma 7.3 we
have

PROPOSITION 7.7. Suppose that the system ¥ = (X, o) is equicon-
tinuous, then the decomposition of ¥ satisfies both conditions in Lem-

mas 7.3 and 7.4.

Hence, in this case, A(X) is expressed as a continuous connection of
those algebras A(Z,)’s.

Proof. Tt suffices to show that the quotient map ¢ : X — I' is a
closed map. Thus, let F be a closed subset of X. We must show that
the saturation R(F) of F is closed, too. Let {z,} be a sequence in R(F)
converging to a point xo. We may assume here that the sequence {z,}
is not eventually contained in any set X, in R(F). For, otherwise,
the point zy belongs obviously to some set X, in R(F). Now choose
an element y, € F N X, for each z, € X, . We may assume then
that {y,} also converges to a point yo in F. For an arbitrary positive



62
number ¢ there exists a positive number é such that
d(z,y) < é = d(o™z,0™y) < ¢ for every n € Z.
Choose a natural number & such that both d(zy,z¢) and d(y, yo) are

less than ¢ and ¢. Since z} is equivalent to yy, that is, O(2x) = O(ys)
we can find an integer ny such that d(zy,o™ (yx)) < . Then,

(o™ (y0), z0) < d(a™*(yo), o™ (y)) + d(0™* (yx), zx) + d(xk, x0) < 3e.

Hence, zg € O(yo) and ¢ belongs to R(F'). This completes the proof.

In this kind of decomposition, most fibre algebras are simple pro-
vided that those corresponding component subsets X.,’s consist of in-
finite points.
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Notes and Remarks

In this note, although we restrict our discussions to the case of a
topological dynamical system with single homeomorphism for simpli-
fication all results except Theorem 4.7 are proved imposing no count-
ability condition on the space X contrary to standard arguments in
topological dynamics (condition for §7 is just conventional as men-
tioned there). This is one of our basic standpoint based on a fact that
we sometimes have to handle with and to apply our results to topolog-
ical dynamical systems defined on large compact spaces coming from
operator algebras such us shift dynamical systems (cf. [T: Chapter 5]).

Most materials in §3 and §4 are taken from the author’s book [T].
The uniqueness of traces on A(X), Theorem 3.7 is extended in [6] to
the case of a topological dynamical system for an arbitrary discrete
group (in [T] the abelian case is proved).

85 is a revised version for a corresponding part in [T] emphasiz-
ing the role of topologically free actions in Definition 2.1, whereas this
concept has been used in literature as the condition (b) in Proposition
2.2. Since in topological dynamics problems about periodic points are
always occupying important roles, the author feels that there is a strict
difference between free actions (no nontrivial isotropy group) and topo-
logically free actions. As is seen in the discussions of this section the
useful observation Proposition 2.2 is due to my student K. Mise. The
key step in the form of Theorem 5.1 (existence of the compatible projec-
tion of norm one) was first treated in S. C. Power [S9] in case ¥, being
minimal, while in [T] proved when ¥, was topologically transitive. In
a form Proposition 2.2(b) the topologically free action is equivalent to
the properly outer action in the context of C'*-algebras. For this type
of actions G. Elliott has proved a similar result to Theorem 5.1 for an
arbitrary discrete group but when the relevant C*-algebra A is either
separable or simple AF-algebra [S1] (thus leading him to the proof of
the simplicity of A X G in these cases). We note that the algebra C(X)

hardly becomes a.naerF—a,lgebra, unless X is totally disconnected. The
simplicity of A(T), Theorem 5.3 is extended in [7] to the case of a
topological dynamical system for an arbitrary amenable group. Here,
contrary to abelian case, we need minimality and topological freeness
(in their appropriate extended sense) altogether as the necessary and
sufficient condition for simplicity. In the context of a C*-dynamical
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system (A, G, a) for a separable C*-algebra A with G being discrete,
D. Olesen and G. K. Pedersen has given the sufficient condition for
the simplicity of A x G where the action a is properly outer and A

is G-simple [S8|. In our context however it is also important to know
how the qualitative property of A(X) determines the property of the
dynamical system ¥. In this sense corresponding generalization of
Theorem 5.5 parallel to the result in [7] has not been obtained yet.
Proposition 5.2 is not mentioned in [T]. The equivalence (1) <= (3)
of Theorem 5.4 is an old result by G. Zeller-Meier [25] and though
the proof given here makes no use of advanced results for C*-algebras
the noncommutative version (acting group is Z) of the equivalence (1)
<= (2) (considering the transposed action of the automorphism on
the dual of a C*-algebra A) was stated in [S6]. As pointed out by D.
Olesen and G. K. Pedersen [S7, Remark 4.8], however, the implication
(2) = (1) contained the gap which has been overcome in the article
at least for a C*-algebra A of type I. The general case seems to be
still open. On the other hand, the assertion (2) is also shown in their
paper to be equivalent to the condition for the Connes spectrum, that
is, I'(a) = G for an abelian discrete group G.

When G = Z and A = C(X), this spectrum condition is naturally
equivalent to our assertion (1). Even in the case G = Z, however, it
seems to be not known whether or not the condition I'(«) = T implies
topological freeness of the action whereas the other implication is true.

In connection with §6, for those people who are interested in more
advanced results about irrational rotation C*-algebras a series of works
by K. Kodaka (still continuing as of now) is indispensable. Most of his
papers are published in Tokyo J. Math. such as [S3, S4, etc.]. There is
however one notable paper appeared in [S5], which we shall introduce
in the following. An automorphism « of an irrational rotation algebra
Ay is called a diffeomorphism if a(A5°) = Ag°. There are then three
kinds of typical diffeomorphisms; one is the ad_)omt automorphism adw
for a smooth unitary element w, that is, w € AJ°, the next one the

automorphism a, defined for an element g = [(cl Z] of SL(2,Z) as

ag(u) = u®v® and ay(v) = ubv? and the last one is the canonical
automorphism a(, 4 for (s,t) € T?. On the other hand, an irrational

number 6 is said to be generic if it is a Liouville number, that is, if
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there are » > 1 and ¢ > 0 such that

c
In|”

1627”'710 _ 1| 2

for any integer n # 0. G. Elliott proved before that any diffeomorphism
of Ay for a generic number 6 is composed of the above three diffeomor-
phisms [S2]. In the above cited paper, Kodaka has shown that there
exists a nongeneric irrational number § and an automorphism « in Ay
which is different from those composed automorphims adw o a4 0 a(, )
for any smooth unitary element w, any element g € SL(2,Z) and any
(s,t) € T2. This means a remarkable fact that this rotation C*-algebra
Ay inherits another exotic (noncommutative) differential structure dif-
ferent from that in irrational rotation C*-algebras for generic numbers.

Results in §7 are based on the author’s preprint [23] in which cor-
responding results are proved for topological dynamical systems with
arbitrary amenable discrete groups of homeomorphisms.
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