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Preface

It has seemed to me for some time that it would be valuable to have an
exposition of the theory of nuclear and exact C*-algebras, incorporating both
background material on tensor products and completely bounded maps on
the one hand, and a treatment of such related topics as the lifting results of
Arveson, Choi, Effros and Haagerup on the other. With the appearance of
Kirchberg’s remarkable work on exact C*-algebras, this whole circle of ideas
has reached a form which can be considered to some extent complete. It has
therefore been a pleasure to be able to collect together some of this material
here. Although I hope to give a comprehensive treatment of these topics in
the reasonably near future, my aims here are of necessity more limited.

These notes are the amplified text of a series of lectures given at Seoul
National University between 20th and 30th December 1993 under the aus-
pices of the Global Analysis Research Centre. There were essentially two
strands to the lectures: a description of certain families of exact and inexact
C*-algebras, and a proof of Kirchberg’s characterisation of separable exact
C*-algebras. The first two chapters deal mostly in outline with fundamen-
tal concepts, such as nuclearity and exactness. Chapter 3 is concerned with
some of the main examples of inexact C*-algebras that arise from countable
groups. The existence of such examples is, of course, the basis for the study of
exact C*-algebras. Chapter 5 is devoted to the work of Archbold and Batty
on property C, and chapter 6 to the afore-mentioned results on completely
positive liftings. These apparently disparate topics are a vital element in
establishing the characterisation of exact C*-algebras, and the corollary that
exactness passes to quotients, in chapter 9. Another essential ingredient is
the result, proved in chapter 7, that exactness implies nuclear embeddability.
In chapter 8 an isometric lifting result, originally proved independently by
Brown and Kirchberg, is established by elementary methods.

The appendix contains a short, self-contained and fairly elementary K-
theoretic derivation, based on Cuntz’s approach, of the K-groups of the reg-
ular C*-algebras of the free groups on finitely many generators. My purpose
in including this is two-fold. Firstly, the existing proofs in the literature are
either quite involved or require relatively sophisticated apparatus, such as
K K-theory. Secondly, the corollary that these regular C*-algebras are mu-
tually non-isomorphic for different numbers of free generators is important
in the context of chapter 3.



I was aided in my preparation of the final version of these notes by feed-
back from the audience. Dr Jang Sun-Young, Professor Kye Seung-Hyeok and
Professor Lee Sa-Ge, in particular, made a number of valuable comments. I
should also like to record my appreciation of the very warm hospitality they
extended to me during my visit to Korea. I should like to thank Professor
Kye especially for his careful reading of earlier drafts of the notes, which
resulted in many errors and imprecisions being corrected, and for inviting
me to make a most enjoyable visit to Korea.
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1. Tensor products of C*-algebras, completely positive
and completely bounded maps.

In this chapter basic results on tensor products of C*-algebras, and com-
pletely positive and completely bounded mappings will be reviewed. Since
the two areas are so intimately connected, it seems appropriate to give a
combined treatment. Much of this ground is well trodden, so proofs will in
general only be included when they differ significantly from published proofs
of the same results. Good sources for much of this material are the notes of
Kye in this series [Kye2, §§4.1, 4.2] and the monograph of Paulsen [Paul].

1.1. Tensor products. The tensor product of vector spaces E and F' will
be denoted by E ® F. If A and B are algebras over C, then A ® B is an
algebra with product

(Z a; ® bz)(z a; ® b;) = Zaia} ® b,'b;-,
1 J %J

for ,a; ® b, ;0 @b, € A® B. If A and B are, in addition, *-algebras
then A ® B is a *-algebra with involution

(E a; @ bi)* = Za:‘ ® b:
If E and F are normed spaces a norm || ||, on E © F' is a cross-norm if

lle® flla = llellllfll - (e € E, f € F).

The completion of E ® F with respect to || || will be denoted by E ®, F'.
If £ and F are Banach spaces, two cross-norms on E © F', the projective
norm || ||» and the injective norm || ||, are of particular interest. For z =
Y. ® fi € EQ F, these norms are given by

zlle = sup{l| >_ f(e)g(f) : f € E™,g € F7 |l llgll <1},

and

lelle = it (A o = 3 el ® 7).

It is not difficult to see that for any cross-norm || || on EQF, ||z|le < ||z]la <
||z||x for z € EQF.
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1.2. Tensor products of C*-algebras. If A and B are C*-algebras, a
norm || ||« on A® B is a C*-normif (i) ||zylla < llz|lallylla and (i) [|z*z]le =
||z||2 for 2,y € A® B. The completion AQq4B is then a C*-algebra. If A and
B are unital, then A®1 C AOBC A®qB,and fora € 4, |la® o = llall,
since the restriction of || ||« to A ® 1 coincides with the norm on A by the
uniqueness of the C*-norm on a C*-algebra. Similarly Il ® blla = ||b]| for
b€ B. Thus

lle ® blla = II(a ® 1)(1 & B)ll« < llalllib],

i.e. the norm || ||« is sub-cross. Vowden [Vow] has shown that this inequality
holds also in the non-unital case.

1.3. The spatial norm. Let A and B be C*-algebras, and let 7 : A —
B(H) and o : B — B(K) be faithful representations of A and B on Hilbert
spaces H and K, respectively. The map n © o : A® B — B(H © K) given
by
(r00)(a®b)(E®n) =m(a)f @a(b)y
(a € A,b€ B,¢ € H,n € K) is a x-isomorphism, and so a C*-norm || ||« on
A @ B is given by
lzlla = ll(r © o)(@)||BHeK)-

It might seem from this definition that the norm thus defined depends on
the particular choice of Hilbert spaces H, K and representations 7, o, but as

the following classical result of Takesaki shows, || ||« is in fact independent
of such choices, is minimal among C*-norms on A ® B and is a cross-norm.

Theorem 1.1. [Takl] Forzt € AO® B

||z]|2 = sup{(f ® 9)(y"z"zy)},

where the supremum is over all f € S(A),g € S(B) and y € A® B such that
(7&)(y°y) < 1. For any C*norm || |ls on A® B, ljalls > llzlla > |zl for
¢ € A® B. In particular, || ||g is a cross-norm.

Definition 1.2. For C*-algebras A and B, the norm || || is denoted by
| |lmin and is known as the minimal (or spatial) C*-norm on A ® B. The
completion A ®min B will mostly be written A ® B in what follows.
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From the spatial definition of the minimal norm it is easy to see that it is
hereditary, in the sense that if A and B are C*-algebras with C*-subalgebras
C and D, respectively, then the restriction of || ||min on A © BtoC®Dis
just the minimal norm on C® D, i.e. the embedding C®D — AQ® B extends
to an isometry C @ D — A ® B. Moreover if S and 7 are faithful families
of states on A and B, respectively, then the set {f® g: f € S,g € T} is
faithful on A ® B.

1.4. Completely positive and completely bounded maps. Let M, =
M, (C) be the C*-algebra of n x n complex matrices, the norm being the
operator norm resulting from the isomorphism M, = B(C*). If Ais a C*-
algebra, then M,,(A) denotes the *-algebra of A-valued n x n matrices, and
there is a natural *-isomorphism A ® M,, — M,(A) given by

Y ai; ® e — [ail,

where {e; ; : 1 <1,j < n} is the standard basis of matrix units in M,,. Since
M,, is finite dimensional, A® M, is complete in any cross-norm, in particular
| Ilmin. By the uniqueness of the C*-norm, My,(A) has || ||min as its unique
C*-norm.

Let ¢ : A — B be a linear map, where A and B are C*-algebras, and for
n=1,2,...let ¢, : M,(A) — M,(B) be the linear map [a;;] — [¢(ai;)].
Identifying M,(A) and M, (B) with A® M,, and B® Mx, respectively, ¢, is
just the map ¢ Q@ id, : A® M, - BQ M,.

Definition 1.3. 1. The map ¢ is completely bounded (c.b.) if ¢, is bounded
for n > 1 and sup,s; [|¢s]| < co. If finite this supremum, denoted by ||||cs,
is the completely bounded norm of ¢.

2. The map ¢ is completely positive (c.p.) if ¢ > 0 for n > 1.
3. The map ¢ is completely isometric (c.i.) if ¢, is isometric for n > 1.
4. The map ¢ is completely contractive (c.c.) if ||[¢n]| < 1 forn 2> 1.

A map ¢ : A — B between unital C*-algebras A and B is unital if #(1) =1.
In later chapters we shall be concerned particularly with unital completely
positive (u.c.p.), unital completely contractive (c.c.p.) and unital completely
isometric (u.c.i.) maps. We now review some of the important properties of
completely positive maps that we shall require.
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1.5. Properties of completely positive maps. 1.5.1. f4: A — Bis
completely positive, then ¢ is completely bounded and ||¢||cs = ||8]| = ||l
forn =1,2,.... If A has a unit, ||¢|| = ||[¢(1)]|-

1.5.2. If A is unital, a complete contraction ¢ : A — B is completely positive

if and only if ||¢(1)|| = llgll-

1.5.3. If A, B and C are C*-algebras and ¢ : A — B is completely bounded,
then the linear map ¢ @ id : A® C — B © C extends to a bounded linear
map ¢ ®id: AQ C —» B® C. The map ¢ ® id is completely bounded and
l¢®id|| = ||#||cs- If 6 is completely positive then #®1d is completely positive
and ||¢ @ id|| = ||4||-

1.5.4. Examples of completely bounded and completely positive
maps.

(a) A bounded linear functional f on a C*-algebra A is completely bounded
with ||flle = ||f|l- If f is positive, it is completely positive.

(b) If A and B are C*-algebras and f € A*, the map f®:d: A® B — C®B
is completely bounded. Identifying C ® B with B, this map, denoted by
Ry, is the right slice map corresponding to f. If f is positive, then Ry is
completely positive. For g € B* the left slicemap L, : AQ B — Ais the
map id ® g. Each of the sets {R; : f € A*} and {L, : ¢ € B*} separates
AQB. A

(c) *-homomorphisms from one C*-algebra to another are completely posi-
tive.

(d) Let B be a C*-subalgebra of a C*-algebra A and let 7 : A — B be a
projection from A onto B such that ||r|| = 1. Then 7 is completely positive.

1.5.5. For many purposes one can restrict attention to completely bounded
and completely positive maps between unital C*-algebras, as the following
observation shows. Let ¢ : A — B be a completely bounded map, where A
is a non-unital C*-algebra and B is a von Neumann algebra. For f € B.
let f denote the corresponding element of B*. If B is identified with its
canonical image in B**, then the dual of the map ¢ : f — fiB, = B*is a
projection ¢* : B** — B of norm 1 (see §5.1). It is easy to see that for any
C*-algebra C, M,(C)* is naturally isomorphic to M,(C**) for n = 1,2,....
Then (¢**)n : Mn(A*) — M,(B**) is bounded with |[[(#*)n|| = ||¢n|| for
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n € N, ie. 9™ is completely bounded with |6** |l = ||¢]|ct- Identifying the
unitization A of A with the C*- subalgebra of A** generated by A and 1, the
map ¢ A — B given by é = *¢**| 1 is a completely bounded extension of

¢ to A with ||@|| = ||¢|lcs- If ¢ is completely positive, then é is completely
positive.

1.5.6. The Cauchy-Schwartz inequality. If A and B are C*-algebras
and ¢ : A — B is a completely positive map, then

| $(a")g(a) < ||gllé(a"a) (a € A).
If A and B are unital, #(1) = 1, and for a particular a € A we have equality,
then

¢(za) = ¢(z)d(a) (z € A).
The set of such a € A forms a subalgebra of A, the mutiplicative domain of
¢. Choi [Ch1] proves these results in the more general setting of 2-positive

maps, but for completely maps they follow simply from Stinespring’s theorem
(Corollary 1.7).

Lemma 1.4. Let § : M, — A be a linear map. Then 6 is completely
positive if and only if the element Y7 ;_, 0(ei;) ® ei; of A® My, is positive.

Proof: 1. Let p= Y7, €ij ® €ij € My ® My. Then p = p* and p? = np, so
p > 0. If § is completely positive, then

(00 id)(p) = 3 O(eis) ® €5 2 0.

o4
2. Conversely, suppose that (§ ® id)(p) > 0 and let B be any C*- algebra
Then for by,...,b, € B the element

Ee(eu ® €ij ® 1 ® 1B)(E 1A ® 1 Qend® bkbl)
)J

of AR M, ® M, ® B is positive, since 1t is the product of two commuting
positive elements. Let V;, = 221-; eri ® € in M, @ M,. Then

0< Z(lA ® Ve ®15)( D 8(eij) ®eij ® e @ b)) (14 ®@ V), ® 1B)

7,8 1]1kl

= Z 0(61,]) Qerr ®ess ® b:bg

1'73711]

= 0(ei;) @1, ® 1, ® bibj,

0¥
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i.e. Zi,j 0(6,']‘) ® b:‘b‘7 >0. Thusif z = Zi,j €i; ® b,'j eEM,®B,

(6 @ id)(z"z) = EkI(Z 0(eij) ® byibr;)
>0,

1e.0 ®1d>0. O

1.6. Stinespring’s Theorem. We shall prove a version of Stinespring’s
theorem which is more general than the usual one and has an important
application to the maximal tensor product of C*-algebras (see §1.9). The
proof is essentially the same as that of the usual version. The following
simple fact will be required in its proof.

Lemma 1.5. Let A,B and C be C*-algebras, and let ¢ : A — C and
¥ : B — C be completely positive maps such that ¢(a)i(b) = ¥(b)¢(a) (a €
A,b€ B). Ifa = [a;;] € M,(A) and b= [b;;] € M(B) are positive, then

n

> #(aij)(bi;) > 0.

1,7=1
Proof: Let c;,...,c, € Aand dy,...,d, € B Then the element
(3 d(cie;) ®ei; @ 1) (D d(didi) @ L @ er) = D b(cfe;)b(didr) @ eij ® en
i) k,l ikl
of C ® M,, @ M, is positive, since it is the product of commuting positive

elements. With V., =31, e, ® e,

0< S (1o ® Vi) D d(ciei)d(didi) ® ei; ® ew)(lo @ V75)
T8 1,7,k
=Y d(ciej)(did;) ® 1n ® 1n,

iJ

e 3, ; d(cre;)w(did;) > 0. Let a = c¢*¢,b = d*d, where

c= Zcij Qeij, d= Zdij ® e

Y] i
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Then
™
a=Y ) chici®eij,
T4
b=Y_ > sida®en
s k|l
and

> $aig)(bis) = 323 d(chicr)(diids;)

T8 1).7

> 0.
ad

Theorem 1.6. Let A; and A; be C*-algebras and let ¢; : A; — B(H) be
completely positive maps such that [¢1(a1), #2(az)] = 0 (a1 € Ay, a2 € Ay),
for some Hilbert space H. There are a Hilbert space K, representations
m : A; — B(K) such that [r1(a1),m2(a2)] = 0 (a1 € Aj,a2 € A;) and a
bounded linear operator V : H — K such that

¢1(a1)¢2(a2) ='V*7r1(a1)7r2(a2)V (ai € Az)

for i = 1,2, and ||V||* = ||é1]ll|¢2]|. If ¢1 and ¢o are unital, then V is an
isometry.

Proof: By 1.5.5 we can assume that A; and A, are unital. A semidefinite
sesquilinear form is defined on A; ® A2 ® H by

(a1 ® a2 ® &1|by @ by ® &2) = (d1(b1a1)d2(b3a2)é1lé2).
By Lemma 1.5 this form is positive. Let
Ko={n€ A1© A0 H : (nln) = 0},

and let K be the completion of (A;© A2 ® H)/ Ko with respect to the resulting
norm. Let representations ; : A; — B(K) be defined by

mi(a)(a1 ® az @ £ + Ko) = (aa; ® a; ® £ + Ko)
ma(a)(a1 ® az ® £ + Ko) = (a1 ® aa; ® £ + Ko)
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and V:H — K by
VE=1Q01Q ¢+ Ko.

It is easy to verify that w1, 7, and V have the required properties. d

Corollary 1.7. (Stinespring’s theorem) Let A be a C*-algebra and ¢: A —
B(H) a completely positive map, for some Hilbert space H. Then there exist
a Hilbert space K, a representation 7 : A — B(K) and a bounded linear
operator V : H — K such that

$(z) = V*r(2)V (z € A).

If A is unital and ¢(1) = 1, then V is an isometry and we can assume,
identifying H with its image VH in K, that H C K and V = Ey, the
orthogonal projection onto H.

Proof: It suffices to take A; = A, A; = C and ¢(A) = Alg. a

1.7. Operator systems. An operator space is a linear subspace X of a
C*-algebra A. If A is unital, X = X* and 1 € X, then X is an operator
system.

Let X be an operator system. For z € X, z; = (1/2)(z + z*) and z; =
(1/2i)(z — x*) are self-adjoint elements of X and z = z1 + iz2. IfzeXis
self adjoint, then the elements z; = 1(||z||.1 +z) and z_ = 1(ll]|.1 — z) are
positive, and = z4 — z_. It follows that X is the linear span of its cone
of positive elements. A linear map ¢ from X to another operator system Y
is positive if ¢(z) > 0 for each positive z € X. Forn € N, X © M, is an
operator system and, as in the case of C*algebras, ¢, is defined to be the
map ¢ Qid, : X O M, =Y © M,. As before ¢ is completely positive (respec-
tively completely bounded, completely isometric) if ¢, is positive (repectively
bounded, isometric) for n € N.

Theorem 1.8. (Arveson’s extension theorem) Let A be a unital C*-algebra,
X an operator system in A, and ¢ : X — B(H) a completely positive map.
There exists a completely positive map ¢ : A — B(H) which extends ¢.

Definition 1.9. An operator system X is injective if, whenever Y and Z
are operator systems with Y € Z and ¢ : ¥ — X 1s completely positive,
then there is a completely positive extension ¢ : Z — X of ¢.
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Remarks. 1. Theorem 1.4 says that B(H) is an injective C*-algebra for
any Hilbert space H.

2. If X is an injective operator system in B(H), the identity map ¢d : X — X
extends to a completely positive surjective map 7 : B(H) — X. The map 7
is a projection of norm 1. Conversely, if X is an operator system in B(H)
which is the image of of such a , it follows from Arveson’s extension theorem
that X is injective. In fact if Y C Z and ¢ : Y — X is completely positive,
there is a completely positive extension ¢ : Z — B(H) of ¢, regarded as a
map into B(H). Then 7¢: Z — X is a completely positive extension of 4.

3. An injective operator system has a product relative to which it is a C*-
algebra. If X C B(H) and 7 : B(H) — X is a norm 1 projection onto X, a
product on X is given by z oy = 7(zy) for z,y € X. It is straightforward to
verify that with this product X is a C*-algebra.

1.8. Tensor products of operator systems. Let X and Y be operator
systems, with X C B(H) and Y C B(K) for suitable Hilbert spaces H and
K. If X and Y are also operator systems in B(H') and B(K"'), respectively,
then the identity maps on X and Y have completely positive extensions
¢ : B(H') — B(H) and ¢ : B(K') — B(K), respectively, by Arveson’s
extension theorem. The map ¢ ® ¥ is a contraction. Thusif z € X @Y,
llzllBex) < ||lzllBek). Interchanging H and H', K and K', we get
the opposite inequality. It follows that if we define ||z||min by ||Z||min =
llzllB(roK) for £ € X @Y, then || ||min is independent of the particular
representations of X and Y as operator systems. The completion of X O Y
relative to || ||min 1s denoted by X ® Y. Clearly X @ Y is also an operator
system. '

If X’ and Y’ are operator systems and ¢ : X — X’ and ¢ : Y — Y’ are
completely positive maps, an application of Theorem 1.8 similar to that above
shows that ¢ has a completely positive extension ¢®@¢ : XQY — X'QY".

We shall be interested later in the case where ¢ = idx, Y is a C*-algebra
B, Y' = B/J for some ideal J of B, and ¢ : B — B/J is the quotient
map. If X is an operator system in a unital C*-algebra A then A ® J
is an ideal of A ®@ B and is contained in the kernel of the homomorphism
id®1p: A® B— A® (B/J). This homomorphism thus has a factorisation

AR BL>~(A®B)/(A®J)2~A® (B/J),



10 1. TENSOR PRODUCTS OF C*-ALGEBRAS

where ¥ and T4 are *-homomorphisms. Now (A©® B)N ker(id®¢) = A J,
which implies that ¥(A ® B) 2 A© (B/J). It follows that

(AQ B)/(A® J) = AQ®, (B]J)

for some C*-norm || ||, on A ® (B/J). With the obvious identifications,
Ta:AQ®, (B/J) — A® (B/J) extends the identity map on A© (B/J).

We now consider the restriction of id ® ¥ to X ® B. For this we require
the following technical lemma.

Lemma 1.10. dist(z,A® J) = dist(z, X © J) for z € X © B.

Proof: Let J have an approximate identity {ex} with 0 < ey < 1. Given
z€ XO®Band ¢ > 0, there is an a € A® J such that ||z —a|| < § +¢, where
§ = dist(z,A® J). Choose e, so that ||a — a(l ® es)|| < &. Then

lz—z1@e)ll <z —a)1-1®e)| +lla(l -1 el
<|lz—a|l+e
<6+ 2.

Since z(1® e5) € X © J and ¢ is arbitrary, this shows that dist(z, X © J) <
dist(z, A ® J). The opposite inequality is obvious, so the result follows. O

It follows from this lemma that ¥(X ® B) is isometric to (X ® B)/(X ® J),
and the restriction of T4 to ¥(X ® B) is a unital completely positive map
Tx : (X®B)/(X®J) — X®(B/J). Since ¥(X © B) is naturally isomorphic
to X ® (B/J), identifying these two operator systems, T'’x is an extension of
the identity map on X @ (B/J). As we shall see in chapter 3, Tx is not, in
general, isometric.

1.9. The maximal C*-norm. Let A and B be C*-algebras, and let m be a
faithful representation of A® B on a Hilbert space H. Let 0 : A© B — B(K)
be a representation (i.e. a *-homomorphism) of A ® B on a Hilbert space
K. If T = m|aeB, then T @ o is a faithful representation of A® B on
Ha K. Thus ¥ @ o defines a C*-norm on A ® B, and, by Theorem 1.1,
|7(z) ® o(z)|| < ||2||x, s0 that ||o(2)|| < ||z||x for z € A® B. It follows that
for z € A ® B the supremum

lz|l, = sup{||7(2)||p(a) : ™ a representation of A® B}
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is finite, and defines a C*-norm on A® B. It is immediate from this definition
that for any C*-norm || ||gon A® B, ||z||g < ||z]|, (z € A® B). Accordingly
Il ||, is called the mazimal C*-norm on A ® B and is denoted by || ||mae-

It follows by the method of [Vow] (see also [La2]) that the norm || ||maz
on AQ® B is the restriction of || ||maez 0N AG) B, so that A®mas B C A®umaz B
canonically, and A ®,., B is an ideal of A ®,m0e B. If 7 is a non- -degenerate
representation of A® B on B(H), 7 extends to a representation of A ®maz B,
and hence to a representation 7 of A®mas BonH. Letms:A— B (H) and
7 : B — B(H) be the representations given by

ma(a) =7(a®1), 7p(d) =7(1®b) (a€ Abe B).
Then {74, 75} is a commuting pair of representations of the pair {A, B} on
H, ie.
ma(a)rp(b) = mp(b)ma(a) (a € A,b€ B),
Za, Rb) = Z?I’A )me(b;

Thus for 3,a; @ b; € A® B,
152 05 bl = sup |3 m(as)ma)l

and

where the supremum on the right is taken over all commuting pairs {7y, 75}
of representations of {A, B}.

Proposition 1.11. Let A, B,C and D be C*-algebras, and let ¢ : A — C
and 1 : B — D be completely positive maps. The map ¢y : AOB — COD
extends to a completely positive map ¢ @maz ¥ : A Qmaz B = C ®mar D with
16 @maz Y1l = ll2NlI¥]l.

Proof: Let 0 : C ®mar D — B(H) be a faithful representation, and let oy
and o, be the restrictions of o to C and D, respectively. Then if ® = o,¢
and ¥ = oy, ® and ¥ are commuting completely positive maps of A and
B, respectively into B(H). By Theorem 1.6 there are a Hilbert space K,
commuting representations m : A — B(K) and 73 : B — B(K) and a
bounded linear operator V : H — K with ||V]]* = ||<I>H||\II|| < ||¢|H|1/)|| such
that
B(a)¥(b) = V'm(@)m(®)Vla (a€ Abe B).
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Let 7 be the representation of A ®mass B in B(K) such that
m(a ® b) = m(a)my(b) (a € A,b€ B).
Then for z € A® B,

1(6 © ¥)(@)llmaz = I(e(¢ © ¥)) ()| B

= ||(016 © o29)(2)|| -

= [|(2 © ¥)(z)]|

= |[V*a(z)V|

< |im (@)l

< ||1llmazs
and 5o ¢ @maz ¥ exists. By continuity

(0(¢ ®maz P))(z) = V*r(z)V|n,

for £ € A ®maz B, from which it follows that ¢ ®maz ¥ is completely positive,
with the stated norm. d

The map ¢ ®mas id is of particular interest in the following special cases.

1. If AC B and ¢ is the inclusion map, then ¢ ®maz td is a homomorphism
of A ®pmaz C into B @maez C. In general this homomorphism is not injective
(see chapter 2).

2. If moreover A = J, an ideal of B, then ¢ @, td is injective, and we have
J @maz C C B @maz C, identifying J ®mq, C with its image under ¢ ®maz ad.

3. If 7 : B — B/J is the quotient map, then T ®maz id is a homomorphism
of B @maz C onto (B/J) @maz C- Since (BO C) N (J Omaz C) =J O C,

(B ®maz C)/(J @mas C) = (B/J) ®, C

for some C*-norm || ||, on (B/J)®C. It is also easy to see that J ®mas CC
ker(T @mas id). These two facts together imply that || |l = || [lmaz and
J @maz C = ker(7 @maz td). The coincidence of these two ideals is equivalent
to saying that the sequence

0_')J®max0'_‘)B®mamC—')(B/J)®maa:c-_)0

is exact.
If @maz is replaced by ®pmin in this sequence, exactness can fail (see chap-
ter 3).
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1.10. Other C*-norms. Let A and B be C*-algebras and suppose that
A is a von Neumann algebra. A representation 7 : A® B — B(H) is (left-)
normal if the map a — 7(a ® b) is normal for each b € B. The (left-)normal
C*-norm || ||nor on A ® B is defined by

||z||nor = sup{||7(z)]| : * a normal representation of A ® B}.

If B is a von Neumann algebra also, a representation 7 of A® B is binormal
if the map a — m(a ® b) is normal for each b € B, and the map b — 7(a ® b)
is normal for each a € A. The binormal C*-norm || ||pinor on A ® B is then
given by taking the above supremum over all binormal representations . It
follows from these definitions that for z € A ©® B,

”x“min .<._ Hx”binor S ”x”nor S “a/'”maa:-

If A = B(H), or, more generally, A is an injective von Neumann algebra,
then || |lnor = || |lmin on A ® B for any C*-algebra B, and if B is a von
Neumann algebra, || ||binor = || |lmin on A©® B.

If A and B are arbitrary C*-algebras and {7, 7} is a commuting pair
of representations of {A, B} on a Hilbert space H, then m; has a natural
extension to a normal representation 7; of A** on H (see §5.1). Then {7y, 7,}
is a commuting pair of representations of the pair {A**, B}. If, conversely,
{71, 72} is a commuting pair of representations of the pair {A**, B} with T
normal, and 7y = 7|4, then {71, 72} is a commuting pair of representations
of {A, B}. It follows that the restriction of the norm || ||nor on A™ © B to
A ©® B is the norm || ||mae- Thus the inclusion A ® B C A™ © B extends
to an isometric inclusion A ®mae B € A* ®nor B. Analogous considerations
show that A** Qunor B C A™ Qbinor B

1.11. Completely bounded maps. We give here a brief summary of
the theory of completely bounded maps and, in particular, results that will
be required in later chapters. Full details can be found in [Pau, Chapter 7].
The following results can be deduced from analogous properties of completely
positive maps using a dilation technique due to Paulsen, the basis of which
is

Proposition 1.12. [Pau, Lemma 7.1 Let A and B be unital C*-algebras,
M an operator space in A and ¢ : M — B a completely bounded map. Then
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the subspace S of M2(A) defined by

Al a
S={[b,, ld].)\,péC,a,bEM}

is an operator system, and if ||¢||s < 1 (i.e. ¢ is a complete contraction),
then the map ® : S — Mj(B) given by

Q([n a])z[ Al ¢(a)]
b pl o(b)*  pl
is completely positive.

Theorem 1.13. (Wittstock extension theorem) If M is an operator space
in a C*-algebra A, and ¢ : M — B(H) is completely bounded, then ¢ has a
completely bounded extension 1) : A — B(H) such that ||%]|c = ||¢]|cb-

Proof: This follows by applying the extension theorem for completely pos-
itive maps (Theorem 1.8) to be the completely positive map @ : S —
M;(B(H)) of Proposition 1.12, where ¢ is assumed completely contractive
(without loss of generality).

Theorem 1.14. (Decomposition theorem.) Let A be a unital C*-algebra
and ¢ : A — B(H) a completely bounded map. There exist completely
positive maps ¢; : A — B(H) (i = 1,2) such that ||¢i||s = |||l or, alterna-
tively when ||4||s < 1, such that ¢1(1) = ¢2(1) = 1, and such that the map
® : M,(A) — M,(B(H)) given by

o[ a])-[% 26
is completely positive.

Proof: This is proved by applying Proposition 1.12 with M = A, followed
by Arveson’s extension theorem.

Theorem 1.15. (Stinespring’s theorem for completely bounded maps.)
With A and ¢ as in Theorem 1.14, there are a Hilbert space K, a repre-
sentation 7 : A — B(K) and bounded linear maps V; : H — K (i = 1,2)
-~ such that |[Vi|||Vall = |||l and

$(a) = V()2 (a€A)
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If ||¢|ls < 1, then V; and V; may be chosen to be isometric.

Proof: Assuming, without loss of generality, that ||@||c; < 1, the map @ :
M,(A) — My(B(H)) given by Theorem 1.14 is u.c.p. The result now follows
by applying Stinespring’s theorem to ®.

Theorem 1.16. (Wittstock decomposition theorem.) Let A be a unital
C*-algebra and let ¢ : A — B(H) be a completely bounded self-adjoint map.
Then there are completely bounded maps ¢; : A — B(H) (i = 1,2) such

that ¢ = ¢1 — ¢2 and ||¢1 + 2|l < ||8[co-

Proof: Let Vi,V and 7 be as in Theorem 1.15, with |[Vi]| = |[Val| = ||6]l5.
Let ¢(a) = 1(Vi'r(a)Vi + Vym(a)Vs) (a € A). The map ¢ is completely
positive and ||¥]|le = ||¥(1)|| < ||¢lls. Since ¢ is self-adjoint, ¢(a*) =
Virr(a*)Ve = (é(a))* = Vyr(a*)V; for a € A. Let

41(a) = 3 (9(0) + 6(0) = 1% + Vi) 7(@) (Vi + Va)

and
$2(a) = 5 (b(a) = 9(a)) = 3 (Vi — Vo) m(@)(Vi - Va)

Then ¢; and ¢, are completely positive, ¢ = ¢1 — ¢ and ||¢1 + ¢2flee =
[#ller < [l llco- 0

We conclude this chapter with two perturbation results for self-adjoint unital
completely bounded maps. The first will be required in chapter 6, the second
in chapter 7. The following preliminary lemma is needed.

Lemma 1.17. [E-H, Lemma 2.4] Let E be an n-dimensional operator
system, A a unital C*-algebra and ¢ : E — A a self-adjoint completely
bounded map. Then there is an element w* € E* such that ||w*|| < n||¢||e
and such that the maps w*1 £ ¢ are completely positive.

Proof: Let E C B(H), let {e1,...,e,} be a basis of E such that e; = e} and
lles]l = 1, and let {e}, ..., €.} be the dual basis of E*. Then ¢ is self-adjoint,
and so has a self-adjoint extension to B(H) with the same norm. Taking
the Hahn decomposition of the extension and restricting to E, it follows that
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there are positive f!, ¢! € E* such that e} = f/—g/ and || f{||+]lg/ll = ll€}]| = 1.
Let

w* = ||8lls D_(fi + 90)-
i=1

A simple calculation shows that the maps w*1 & ¢ are completely positive.
O

Lemma 1.18. (cf. [E-H]) Let E be an n-dimensional operator system, B
a unital C*-algebra and ¢ : E — B a self-adjoint unital linear map such that
l|6lles <146, where 0 < § < 1/n. Then there is a u.c.p. map ¢ : E — B
such that ||t — ¢||e < 4né.

Proof: Letting B C B(H), there are c.p. maps ¢1, ¢, : E — B(H) such that
¢ = ¢1 — ¢2 and ||¢1 + é2|| < ||@l|cs, by Theorem 1.16. Then ¢1(1) —¢a(1) =1

and
g (D)l < 1161(1) + d2(DIl < [[dlles < 1+ 6.
Since ¢1(1) = 1 + ¢,(1),
L+ ||Vl = g2 (DIl <1 +6,

and so |[¢s]| = ||#2(1)|| < 8. By Lemma 1.17 there is a w* € E* with
|lw*|| < né, such that the maps w*.1 + ¢; are completely positive. Let
Yo = ¢ + w*.1. Then ¥o(E) C B, o = ¢1 + (w*.1 — ¢2) is completely
positive, and

Yo = @llee = [|w|lep = ||lw*|| < né.

Let b = 9o(1). Then b > 0 and
16— 1] = [|o(1) — S(1)]| < n6 < 1,
so that b1 exists. Also
162 — 1| < ||b— 1]| < né,
which implies that [[b3]| < 1+ né < 2. For y € B® M,
16 ® 1n)y(8 @ 1) — gl = (83 © L — Dy(6F © 1) + y(bF ® 1o — 1)

< (1% — 1])](67]| + 1162 — 1))l
< 3né.
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Let o = b=34ob~3. Then 1 is u.c.p., ¥(E) C B and
1% = wollas = Il — b29b |l < 3n8 ]| = 3né.
Thus |[¢) — ¢||s < 4né. a

Proposition 1.19. (cf. [Kir4]) Let A be a unital C*-algebra and let
W : A — B(H) be a completely bounded self-adjoint unital map. Then
there is a u.c.p. map U : A — B(H) such that

U —Wlle < [[Wlle—1.
Proof: By Theorem 1.16, there are completely positive maps S5, T : A —

B(H) such that W = § — T and ||S + Tl < ||W||e. Then S(1) = W (1) +
T(1) = 1 + t, where t is the positive operator T'(1). Let

Ula)= (1+1)"2S(a)(1+1)"% (a € A).
The map U is u.c.p.n and

W = Ulles < 1Tl + lls = Ulles

= It + [ILU[e
< it + | Llles
where
L) =(1+1)2b(1+¢)"7 —b (b€ B(H)).
Then

1

1Ll < 1L+ O3 +8)7F =1+ (1 +1)73 =1
= (L4 IIDF (@ + eDE = 1) + (@ + D7 -1
= |t
since t > 0. Thus |W — Ul|s < 2||t]|. Also
1Wle = 1S + Tlle = I1SQ) + T = 11+ 2¢]| = 1+ 2|¢]l,

from which it follows that |[W — Ul|s < ||W/|es — 1. a



2. Nuclear and exact C*-algebras.

2.1. Nuclear C*-algebras. Since M, is a finite dimensional C*-algebra,
for any C*-algebra B, M,(B) = B ® M, is complete in any C*-norm, so
that all norms are equivalent, hence identical. A C*-algebra A is said to
be nuclear if || |lmaz = || |lmin on A © B for any B. The following basic
facts about nuclear C*-algebras are well-known and mostly straightforward
to prove.

(a) M, is nuclear (n = 1,2,...). Any finite-dimensional C*-algebra is nuclear.
(b) Inductive limits of nuclear C*-algebras are nuclear. In particular all
AF C*-algebras are nuclear. If H is an infinite-dimensional Hilbert space,
the algebra K(H) of compact linear operators on H is an inductive limit of
matrix algebras, hence nuclear.

(c) Abelian C*-algebras are nuclear [Tak1].
(d) Type I C*-algebras are nuclear [Tak1].

(e) If A is a C*-algebra with an ideal J such that J and A/J are nuclear, then
A is nuclear, i.e. an extension of a nuclear C*-algebra by a nuclear C*-algebra
is nuclear.

(f) Recall that the Cuntz algebra O, is the C*-algebra generated by n ele-
ments S, ..., S, satisfying the relations 1 = $1.5 +...+ SnS;, 7S, =1 (r=
1,...,n). O, is simple and nuclear [Cul].

2.2. Approximation Properties. A unital C*-algebra A is said to have
the completely positive approzimation property (CPAP) if there are positive
integers {n,} and nets of u.c.p. maps ¥y : A = My, 5 : Mp, — A such
that

lim|(p3)(a) — 2l = 0 (s € A).

When A is non-unital, the maps ¢y and 1, are required to be completely
positive contractions. When A is separable, the nets {¢x}, {#)»} can be taken
to be sequences ¢, : M,, — A, : A — M,,. When A is separable and
unital we can find finite dimensional operator systems X; C X; C ... in A
such that A = U X;. Passing to subsequences of the sequences {er}, {0}
if necessary, we can assume that

. 1
lertdnlx, —idx, || < - (r=1,2,.. ).

18
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A formally weaker approximation property, the completely contractive ap-
prozimation property (CCAP), is obtained from the CPAP by requiring only
that the maps @) and 1) be complete contractions.

Proposition 2.1. If A has the CPAP, then A is nuclear.

Proof: If 1 : A — M,,,¢»: M,, — A are completely positive contractions
as in the above definition, and B is any C*-algebra, then the maps ) © id :
A®B — M,, ®B and 9, ®1id : M,, ® B — AQ® B have completely positive
extensions ¥y @ id : A® B — M,, ® B and ) ®mas id : My, Q@maz B —
A ®maz B, by 1.5.3 and Proposition 1.11. The maps 1) ® ¢d and @) Qmaz id

are complete contractions. Since || ||min = || |mac o0 My, ® B,

() Omaz 1d) (YA ®1d) : AQ B = A Qmaz B

is defined and contractive. For z =Y, a4, ® b; € A ® B,
112 ®rma id)(hr ® 1d)] (2) = Zllmaz = | 32 [(#2¥2)(ai) — @5)] ® billmaz
< 2 ll(era)(ai) — ailfllb]

— 0.

Since || [(#x ®maz 1d)(¥r @ id)] (2)||mez < ||]|min, it follows that |z]|maz <
|zl min, and 5o ||Z|lmaz = |Z]lmin, and || |lmez = || lmin on A © B. O

Remark. Smith [Sm] has shown that the stronger implication A has the
CCAP = A nuclear holds. A proof which is somewhat simpler than the
proof in [Sm] may be given by combining the first part of the Smith’s proof
with the technique used in the proof of Proposition 2.1.

The following converse of Proposition 2.1 was proved independently by
Choi and Effros [C-E1], and Kirchberg [Kirl].

Proposition 2.2. A nuclear C*-algebra has the CPAP.

Definition 2.3. If A and B are unital C*-algebras, a unital completely
positive map ¢ : A — B is nuclear if there are integers ny and nets 1) : A —
M,,, 5 : M,, — B of u.c.p. maps such that lim, ||(¢x)(z) — é(2)|| = 0
for x € A. If A is non-unital and ¢ is a completely positive contraction, ¢
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is nuclear if completely positive contractions ¢ and % exist such that ¢ is
the point-norm limit of @xt.

Remark. By Propositions 2.1 and 2.2, a C*-algebra A is nuclear if and only
if the identity map 7d4 : A — A is a nuclear map. In chapter 7 we will
consider nuclear embeddings A — B.

2.3. Injectivity of the second dual. One of the deepest results about
nuclear C*-algebras is the following characterisation involving the second
dual. That nuclearity of a C*-algebra A implies injectivity of A™ was proved
by Effros and Lance [E-L]; a short proof using an idea of Lance is given
in [Wal]. The converse implication makes use of Connes’ celebrated result
that injective factors on separable Hilbert spaces are hyperfinite [Co]. Choi
and Effros [C-E2, C-E3] gave a proof which built directly on Connes’ the-
orem. An alternative approach [Wa2] makes use of a generalisation of part
of Connes’ results to arbitrary Hilbert spaces.

Proposition 2.4. A C*-algebra A is nuclear if and only if A™ is injective.
Corollary 2.5. If A is nuclear, A/J is nuclear for any ideal J of A.

Proof: (A/J)* = eA™e for some central projections e of A™. It follows
easily from the definition of injectivity that if A** is injective then eA*e
injective. O

2.4. Examples. (a) Let G be a countable group. The left- and right-regular
representations A and p of G on [*(G) are given by

(M9E)() =&(g7"h),  (p(9))(h) = E(gh) (9,h € G,€ € £(Q)).

If C*(G) is the regular C*-algebra of G, i.e. the algebra C*(M(G)) S B(*(Q@)),
Lance [Lal] has shown that C(G) is nuclear if and only if G is an amenable
group. The free group F; on two generators is non-amenable, and so C*(IF,)
is not nuclear. This was first shown by Takesaki [Tak1], and can be demon-
strated explicitly as follows. For an arbitrary group G, {}, p} is a commuting
pair of representations of G and so defines a commuting pair of representa-

tions of {C*(A(G)), C*(p(G))}, also denoted by {A, p}. If U is the self-adjoint
unitary on £2 given by
Ue)(9) =&(g™),
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then p(g) = UX(9)U (9 € G) and C*(p(G)) = UC*(N(G))U = C7(G), so
that a representation m of C*(G) ® C}(G) on £*(G) is defined by

m(Mg) ® A(h)) = Mg)o(h) (9,h € G).

The C*-algebra C*(F;) is simple [Pow], so that, with G = F;, 7 is injective,
and a C*-norm || ||, on C*(F;) ® CX(F2) is defined by ||z, = ||7(z)||per.))-
If u and v are the generators of Fy, it can be shown [Wa3] that the self-adjoint
contraction

e = 7 (Awp(u) + A@)p(0) + Mu)p(u™) + A )pv™)

has the property that cf, = & and sp(c|(ce.)r) € [-1,1 — 427*], where £,
is the element of £2(F;) such that &(h) = n (B € F;). It then follows
easily by spectral theory that the rank 1 projection P, of £%(F;) onto C¢.
is in C*(A(F,), p(F2)), and hence so is the ideal K(¢*(F;)) of compact op-
erators on (2(F;), since C*(A\(Fz), p(Fz)) acts irreducibly on £2(F;). Thus
C*(F;) ®, Cr(F;) contains a non-trivial ideal. However C;(F) ® C7(F2) is
simple, by [Tak1], since C(Fz) is. Thus || ||, # || [|min-

(b) Choi [Ch2] has constructed an embedding of Cy(Z, * Z3) as a C*-sub-
algebra of the Cuntz algebra O,. Since Z;*Z3 is not amenable, Cr(ZyxZs3) is
not nuclear. Moreover the free group F, can be embedded in Z * Zs. Indeed
if @ and b are the generators of Zy*Zs, with a*> = b° = 1, the elements bab and
ababa generate a subgroup isomorphic to F;. Thus CF(Fy) C C(Zy* Z3) C
©,. This shows that the property of nuclearity does not in general pass to
C*-subalgebras.

2.5. Exact C*-algebras. If A and B are C*-algebras and J is an ideal of
B, we have seen in chapter 1 that (A® B)/(A® J) € A®, (B/J) for some
C*-norm || ||, on A® (B/J). If Ais nuclear then || ||, = || ||...- This last
condition is equivalent to saying that if o : B — B/J is the quotient-map,
then the kernel of the homomorphism id® 6 : A® B — A® (B/J) is just
A ® J. This is, in turn, equivalent to saying that the sequence

0—AQJ—A®B— A®(B/J)—0 (%)

is exact. A C*-algebra A such that (*) is exact for arbitrary B and J < B is
said to be ezact. Clearly nuclear C*-algebras are exact.
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A useful criterion for the exactness of () can be given in terms of slice
maps. For ¢ € A*, R,(id ® ¢) = oR,. Since the family {R, : ¢ € A}
is faithful, it follows that z € ker(id ® o) if and only if R,(z) € kerJ for
p € A% ie.

ker(id®@ o) = {r € AQ B: R,(z) € J (¢ € A")}.

Proposition 2.6. Let A, B and J be such that (*) is exact. Then if D is
a C*-subalgebra of A, the sequence

0—>D®J—>D®B————>D®(B/J)——>O
is exact.

Proof: Let z € ker(idp ® o). For ¢ € A%, let § = ¢|p. Then R,(z) =
Ry(z) € J, and since ¢ is arbitrary, z € ker(id ® 0) = A ® J, since (¥) is
exact. Thus ker(idp ® J) C (A® J) N (D ® B). Let {ex} be an approximate
unit for J with 0 < ey <1,andlet z € (A® J)N (D ® B). Then {1®e,} is
an approximate identity for A® J, so that lim, ||z(1®e,) —z|| = 0. However
z(l1®e)) € (D®B)(1®e,) € DQJ for each \. Thus z € DR J =
D ® J, and so ker(idp ® 0) C D ® J. Since the opposite inclusion is clear,
ker(idp ® o) = D ® J, and the given sequence is exact. a

Properties of exact C*-algebras.

2.5.1. Nuclear C*-algebras are exact.

2.5.2. If A is an exact C*-algebra, and D is a C*-subalgebra of A, then for
any C*-algebra B and ideal J of B, (*) is exact. By Proposition 2.6 D is
exact.

More generally, If X is an operator system in A, by the discussion of
§1.8, (X ® B)/(X ® J) is canonically isometric to the image of X ® B in
(A® B)/(A® J), which is canonically isomorphic to A ® (B/J), since A
is exact. It follows that the corresponding map Tx : (X ® B)/(X @ J) —
X ® (B/J) is isometric.

2.5.3. There exist C*-algebras which are exact but not nuclear. In fact, since
C*(F;) C O, (see §2.4), C¥(F;) is such an algebra, by 2.5.2. It is conjectured
ti.at C*(Q) is exact for any countable group G.
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2.5.4. There exist C*-algebras which are not exact, an example being the
full C*-algebra C*(F;) of F, (see chapter 3). Since C*(F;) can be embed-
ded as a C*-subalgebra in B(H) when H is an infinite dimensional Hilbert
space, it follows that for such H, B(H) is not exact and hence not nuclear.
By Proposition 2.2, B(H) does not have the CPAP. This result has been
strengthened in two ways. Szankowski [Sz] has shown that B(H) does not
have the approximation property of Grothendieck, which is weaker than the
CPAP. Very recently Junge and Pisier [J-P] have shown that the norms
I llmaz @and || ||min on B(H) ® B(H) are distinct (see chapter 10).

2.5.5. It is stra,ight—forwdrd to prove that the class of exact C*-algebras
is closed under the operations of forming inductive limits, restricted direct
sums and minimal tensor products.

2.5.6. If A is a C*-algebra with an ideal J such that J and A/J are exact, A
need not be exact, i.e. extensions of exact C*-algebras by exact C*-algebras
are not necessarily exact (see chapter 4). However if A/J and J are exact
and the quotient map 7 : A — A/J has a contractive completely positive
lifting (i.e. a c.c.p. right inverse), then it can be shown that A is exact.

2.5.7. Quotients of exact C*-algebras are exact. This deep result of Kirch-
berg will be proved in chapter 9.

2.5.8. Let M be the finite von Neumann algebra

B2y M; = {(zi) : x; € My, sup ||z;]| < oo}.

If Iy is the ideal {(z;) € M : lim;—, ||;]| = 0}, then a C*-algebra A is exact
if and only if the sequence

0—AQI — AQM — AQ (M/I,) — 0

is exact. The exactness of this sequence is in turn equivalent to the exactness
of the sequence

0— AQ K(H)— A® B(H) — A® (B(H)/K(H)) — 0,

where H = 43 [Kir2].



3. C*-algebras arising from discrete groups.

3.1. The factorisation property. Let G be a discrete group. A represen-
tation of G will always be taken to be a unitary representation. Recall that
the left- and right-regular representations A, p: G — 0%(G) are given by

A@E)(R) = E(7*h),  (p(g)é(h) = E(hg) (9, € G,€ € £(Q)),

and if U is the self-adjoint unitary on £2(G) such that (U{)(h) = E(R7Y),
then p(g) = UMg)U (g9 € G), i.e. X and p are unitarily equivalent.

Let g be the universal representation of G on the Hilbert space Hg.
The full (or universal) C*-algebra of G is the algebra C*(re(Q)). If G is
identified with the unitary subgroup 7¢(G) of C*(G), then any representation
7 : G — B(H) has a canonical extension to a representation T : C*(G) —
B(H), and T(C*(G)) = C*(r(G)) (this universal property defines C*(G) up
to isomorphism). For ease of notation we shall write 7 instead of 7 to denote
this extension.

Now the commuting pair {),p} of representations of C*(G) defines a
representation 7, of C*(G) ®mas C*(G) on B(£*(G)) such that

m(z®y) = M2)p(y) (z,y € C7(G)). (3.1)

Definition 3.1. The group G has the factorisation property if the represen-
tation 7, has the factorisation

C*(G) @maz C*(G) = B(¢4(@))

" Ty
C*(G) ® C*(G)

where 1 is the canonical morphism and #, is a homomorphism satisfying
(3.1) with =, replaced by 7.

Proposition 3.2. IfG is amenable, then G has the factorisation property.
Proof : This is an immediate consequence of the fact that if G is amenable,

then the canonical morphism X : C*(G) — C;(G) is injective and C}(G) is
nuclear [Kye2, Theorems 4.5.7, 4.5.8]. O

24
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Recall that a discrete group G is residually finite if, given g¢y,...,9, € G,
there is a homomorphism 6 of G into a finite group G’ such that the elements
0(g1),--.,0(gn) of G' are distinct. For a finitely generated discrete group
residual finiteness of G is equivalent to the formally weaker condition that G
be mazimally almost periodic, i.e. that G have a separating family of finite-
dimensional representations, by a theorem of Malcev (see [Alp]).

Proposition 3.3. [Wal] If G is residually finite, then G has the factori-
sation property.

Proof: Since G is residually finite, there are finite groups {G;}icr and ho-
momorphisms 6; : G — G; such that M;c;kerd; = e. Let A\; and p; be the
left- and right-regular representations of G; on H; = ¢*(G;) (i € I). For
each i let m; be the representation m, of C*(G;) ® C*(G;) (since G; is finite,
C*(G;) = C*(G;) is finite dimensional), so that

mi(z @y) = Ai(2)pi(y) (2,y € C*(Gi)).

Then \;6;, p;0; extend to a commuting pair {\l, p!} of representations of

{C*(G),C*(G)} on £*(G;). Let o; be the corresponding representation of
C*(G@) Qmaz C*(G). Then

o; = 7(0; ® 0:),
where 6; ® 0; : C*(G) ® C*(G) — C*(G;) @ C}(G;). Let 7 = @icroi. Then
(o) < 5up 05 © 64 i < Il
for z € C*(G@) ® C*(G), and the proof will be complete if we can show that

I (@)l < |l ()] (3:2)
for z € C*(G) © C*(G).

Since any element ¢ € C*(G) is a limit of elements of form Y7 ; aigi,
where o; € C and ¢; € G, for any z € C*(G) © C*(G) and € > 0 there is an
element z = 3™ a;(¢; ® g!) such that ||z — z||mes < €. If ||7.(2)]| < ||7(2)]],
then

7w (@)]| < llme ()l + € < [Im(2)]| + & < Im(2)]] + 2e.
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Thus if (3.2) holds for all z of this form, (3.2) will hold in general. So to prove
(3.2), we can assume that z = >r_; ox(¢9- ® ), and show that if £ € 2(Q),

then
|7 (2)éll < Il (@)I€]]- (3.3)

Let ¢, be the unit vector in £2(G) such that & (h) = 6;s. Then the elements
of form S_, B \(h,)€. are dense in £*(G), and to prove (3.3) it suffices to
take ¢ of this form. Now

71',-(:17)6 = Ear/@s)‘(g’f)p(g;)’\(hs)ée
= Zarﬂséyrhsg:'—l' '

Choose i € I so that the restriction of 8; to the set
{grhegi™:1<r<k,1<s<}U{h,:1<s< 1}

is injective, and let
l
£=2_ B:Xi(bi(hs))E,
s=1
l —
= Z 16360"(,55)
s=1
where ¢ is the vector in £*(G;) such that &,(h) = égn. Then

oi(2)E = 3 arBXi(0:(9-))pi(0:(g0) Mi(Bi(ha))E.

= Z O‘Tﬂszef(grhagi'l)‘
and _
|7 (2)é]1> = o BseieB, = ||oi(2)E]I?,
S
where

S={(r;s,t,u) : g:hog:'™ = gihugy'™'}
= {(r;s,t,u) : 0:(grhsg:'™) = 0:gehug ™)}
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Also B
”f“2 = Z |,33|2 = “€“2a
since 0;(h,) # 0;(hs) for r # s. Thus

I (2)€]1* = llos(2)E*
< llos@)I* €N
< = @)IIEN",
and (3.3) follows. a

Proposition 3.4. Let G be a discrete group which has the factorisation
property. If J is the kernel of the canonical morphism A : C*(G) — C}(G),
then the sequence

0—=J ® C*(G) —=C*(@) ® C*(Q) 224 C*(G) ® C*(G) —=0  (34)
is exact if and only if G is amenable.

Proof: 1. If G is amenable, J = 0, and the exactness of the sequence (3.4)
is trivial. '

2. If the sequence (*) is exact, let 7, : C*(G) ® C*(G) — B(£*(G)) be the
canonical representation. Now

(C*(G)® C*(G)/(J ® C*(@)) = (C*(@)]J]) & C*(G) = C7(G) @, C7(G)

for some C*-norm v on C*(G) ® C*(G). Since J @ C*(G) C ker 7, 7, has a
factorisation 7, = éo, where o : C*(G) ® C*(G) — C}(G) ®, C*(G) is the
quotient map and ¢ is a representation of C}(G) ®, C*(G) on £*(G) which
satisfies

$(a®b) =ap(b) (a € C}(G),be C7(Q)).
If (3.4) is exact, then || ||, = || |lmin on C;(G) © C*(G). Since

C:(G) ® C*(G) € B(*(G)) ® C*(G)

canonically, there are a Hilbert space K such that ?%(G) C K and a repre-
sentation ¢ of B(£%(@)) ® C*(G) on K such that

b(z) = E(2)|eo)



28 3. C*ALGEBRAS ARISING FROM DISCRETE GROUPS

for z € C*(G) ® C*(G), where E is the orthogonal projection onto £*(G).
For z € B(£3(Q)) let e(z) = E¢(z ® 1)|e(s). It is readily verified that the
map ¢ of B(£2(@)) into itself is a weak expectation for C*(A(G)), i.e. € is a
unital completely positive map into C*(A(G))" such that e(azb) = ag(z)b for
a,b € C*(\(G@)) and z € B(£*(G)) (cf. [Lal]).

For f € £*(G) let T; be the bounded linear operator on £2(G) given by

(Ts6)(9) = f(9)é(9) (9 €G).

If 7 is the canonical trace state on C*(A(G))” obtained by restricting the
vector state defined by ¢, then the map m : f — 7(¢(T%)) is a left-invariant
mean on £*(G). To see this, note that for f € £*(G) and g € G,
Mg)TsMg™) = Ty,, where fy(h) = f(g7'h), and

m(fy) = 7(e(M9)TsMg™))
= 7(M9)e(TH)Mg ™))
= 7(e(Ty))
= m(f).
It follows that G is amenable. O

Corollary 3.5. For a residually finite group G, C*(G) is exact if and only
if G is amenable.

3.2. Free groups.
Lemma 3.6. Let F be a free group. Then F is residually finite.

Proof: Let F' have generators {gx}xea, and let hy,...,h, € F. We can
find a finite subset gi,...,gm of the generators such that all the k; are in
the subgroup F’ generated by g1,...,9m. If b = gi'...g;' € F', where
tr # tpy1 for 7 = 1,...,1 — 1, the length |h| of h is |nq| + ...+ |n|. Let
k = maxj<i<n |hi| and let S = {h € F': |h| < k}. For each generator g; of
F' let S;={h € S:gh €S} Then S; C S, ¢:5; C S and the map h — g;h
takes S; onto ¢;.5; injectively. Thus |S;| = |¢:Si| and |S'\ Si| = |5\ ¢iS;|. Let
Q; be a bijective map from S\ S; to S\ ¢;5;, and define a permutation P; of

S by
o) gih (h€ES))
Rh_{ Q:h (he S\ S)).
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A homomorphism ¢ of F into the finite group II(.S) of permutations of S is

defined by
{ é(9:) P, (1<i<m)
b(9») 1 (gré&{g1,--59m})

For each h;, ¢(h;)e = h;, and so ¢(h;) # ¢(h;) for ¢« # j. O

Corollary 3.7. 1. A free group has the factorisation property.
2. If F is a free group, then the sequence

0—=J @ C*(F)—=C*(F) ® C*(F) 224 C*(F) ® C*(F)—>0
is not exact. In particular, C*(F') is not exact.

Remarks. 1. If F = F,, the free group on two generators v and v, and || ||,
is the C*-norm on C*(IF;) ® C*(F;) such that

(C*(F2) ® C*(F2))/(J ® C"(F2)) = C/(F;) ®, C*(F3)

canonically, it can be shown by an explicit computatlon [Wa3] that if c is
the self-adjoint element

1
Z(u®u+u_1®u”l+v®v+v_l®v'l)

of C*(F;) ® C*(F,), then the image of ¢ in C;(F;) ®, C*(IF;) is a contraction
containing 1 in its spectrum, whereas the image of ¢ in C}(F;) @ C*(F;)
is a contraction with spectrum contained in the interval [—1,1 — 4274]. If
f:[-1,1] = [0,1] is a continuous function such that f(¢) =0 for =1 <¢ <
1 —427* and f(1) =1, then f(c) € ker(A ® id) \ (J ® C*(F2)).

2. For any free groups F, C;(F)is a simple C*-algebra [A-L]. If F,, denotes
the free group on n generators, then K;(C}(F,)) = Z™ [P-V]. This implies
that C*(F,,) % C*(F,) for m # n. (A self-contained derivation of the K-
groups of C*(F,,) is given in appendix A).

3.3. Groups with Kazhdan’s property T. In this section all the groups
we consider will be discrete and countable. The principal reference is [Wa4].
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Definition 3.8. A countable group G has property T if there are a finite

subset g1,...,g, of G and and € > 0 such that, whenever 7 is a (unitary)
representation of G on a Hilbert space H containing a unit vector £ for which
lr(g:) —¢ll <e (i=1,...,n), (3.5)

then there is a non-zero vector in H invariant under 7(G).

Remarks 3.9. 1. This definition says that if a representation 7 of G' ap-
proximately contains the trivial representation 7 (in the sense of (3.5)), then
7 actually contains 7.

2. It follows from this definition that if G has property T, then it is finitely
generated [dH-V, Théoréeme 1.10], and we can (and will) take the elements
g1,...,9n to be a generating set for G with g; = e.

3. Examples of countable groups with property T are the matrix groups
SL.(Z) (n =3,4,...) (see [dH-V]).

4. Property T and amenability are mutually exclusive properties for infinite
groups. If a group G has both properties, amenability implies the existence
of a unit vector ¢ € £2(@) such that (3.5) holds with 7 = X [Kye2, Lemma
4.5.9], and then property T implies the existence of a non-zero invariant
vector { = Ypeq @rnén With ¥ |ax]?* < oo in £2(G). Since

M) = 3 anéen =,
it follows that o, = a, for all g € G, which implies that |G| < oco.

Let 7 be a representation of a group G on a Hilbert space H with orthonormal
basis {&;}ier, and let J be the conjugate linear isometry on H given by

J(O_aibi) =) @t
A representation 7’ of G is defined by
m'(9) = Jn(g)J (g€ G).

The unitary equivalence class of 7’ is independent of the particular choice of
orthonormal basis of H, and depends only on the unitary equivalence class
of m. The representation 7’ is the representation conjugate to 7.
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Lemma 3.10. If G has property T and the generating set 1 = g1,...,9n
and € > 0 are as in Definition 3.8, then there is a positive constant C < n
such that if m; and 7, are unitary representations of G on Hilbert spaces Hy
and H,, respectively, satisfying

En:ﬁ(gi) ® m5(9:)

1=1

2C,

min

then there is a finite-dimensional unitary representation = of G which is
contained in both 7, and m,. If, conversely, = is a finite dimensional repre-
sentation of G, then

n

Yorlg)@r(g)) =n

1=1 min

Proof: If .
Yomlg) ®@myg)]| =G,
=1 min
there is a unit vector ¢ in H such that
> (mi(g:) ® () €| 2 C.
=1

Since g1 = e, (m1(g1) ® 75(g1))€ = €. A simple calculation then shows that
I(m1(9:) @ m3(9:))é — €l S2vn—=C (i =2,...,n).

Since G has property T, if C is chosen so that 2v/n — C < ¢, there is a
non-zero 7 in Hy ® Hy fixed by (m1 ® 73)(GQ). If {e1,ez,...} and {fi, f2,...}
are orthonormal bases of H; and Hy, respectively, with the f; chosen so that

(m3(9) fil ;) = (m2(9) fil f5)

for g € G and 3,5 € N, then n = ¥, ; Mije; ® fj, where ¥, ;| Aij|* < oo. The
linear operator T : Hy — Hy given by

T¢= Z Xii (Clf5)e
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is compact (in fact Hilbert-Schmidt), and it is easily verified that m1(9)T =
Tra(g) (g € G). Since T # 0, T*T is non-zero, commutes with r; and is
compact. If E is the projection onto the eigenspace of T*T corresponding
to the eigenvalue ||T*T||, then E is non-zero, of finite rank and commutes
with mq. It follows that if U = ||T'||"*TE, then Um,U*|yn, and Er E|gyh, are
equivalent finite-dimensional subrepresentations of m and 7, respectively.

For the converse, if 7 is a representation if G on the finite dimensional
Hilbert space H with orthonormal basis {ey,...,en}, let 7' satisfy

(1'(9)eile;) = (m(g)eiles),
and let £ = YT ; ® e;. Then (7(g) @ 7'(g))¢ = { for g € G, so that

n

> m(g:) ® 7'(g:)

=1

=n.

min

a

Corollary 3.11. With the notation of Lemma 3.10, if 7 and 7, are irre-
ducible representations of G such that

3" ma(g) ® wh(g:)

i=1

> C,
min
then 7, and 7 are unitarily equivalent and dimmy; = dimm; < oo.

Corollary 3.12. There is an ¢’ > 0 such that if 7 and 7 are irreducible
representations of G on a finite dimensional Hilbert space H, then

l|m(gi) — ma(g:)ll < ¢ (t=1,... ;)

implies that m, and 7, are unitarily equivalent.

Proof: If ey,...,en is an orthonormal basis of H, and £ is the unit vector

(1/4/m) 21 € @ €y, then
S(mg) @ w;<gz~))s|| >

K

;(7’2(91') ® Wé(gi))§l|

X ((m(a) - malo) @ w;<gi>)e||

> (n — ne').
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It is thus sufficient to take ¢’ =1 — C/n. O

Corollary 3.13 For m € N there are at most finitely many equivalence
classes of irreducible representations of G of dimension m.

Proof: This is an immediate consequence of Corollary 3.12 and the com-
pactness of the unit ball of B(¢2,). O

From now on let G be a countably infinite, residually finite group with prop-
erty T, for example SL3(Z). Then G has infinitely many equivalence classes
of finite-dimensional irreducible representations, and by Corollary 3.13 the
number of these classes is countably infinite. Let my,m2,... be a sequence
of mutually inequivalent finite-dimensional irreducible representations of G
which includes a representative from each such equivalence class, let the
generating set e = g¢1,...,g, and € > 0 be as in Definition 3.8, and let C
be as in Lemma 3.10. If m; acts on the Hilbert space H; of dimension n;
(t=1,2,...), let H= &2, H;. The representation p; = ®2,;7; acts on the
Hilbert subspace @2, H; of H, and so we can regard each p; as a degenerate
representation of G by isometries on H. Let M = &2, B(H;) and let I, be
the ideal M N K(H) of M, so that Iy = {(z:) € M : limi_ ||zi|| = 0}.
Let ¢ : M — M/I, be the quotient map. Then the homomorphisms
épr : G — M/, coincide for k =1,2,....

Lemma 3.14. For any irreducible representation o of G,

n

> o(9:) ® (8p1)(9s)

1=1

Proof: Let £k € N. Then

<C.

min

> a(gi) ® (é01)(gi)

T

_ ”Za@,-) ® (61)(01)

min min

< ”Z: o(g:i) @ pr(gi)

min

> o(g:) ® milgi)

= sup
kAl

min

<C
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for all k if o is infinite dimensional, and for large enough k if o is finite-
dimensional, by Corollary 3.11. a

Let A = p;(C*(G)) C M.
Lemma 3.15. I, C A.

Proof: Let k£ € N and consider the element

1 n
T== > p(gi) ® mi(g:)
=1
of A® B(Hy). Since M ® B(Hy) = &=,(B(H:) ® B(Hy)), = is identified

with the sequence (z;), where

= 1 2m(a) @ i0) € BUL) © B(L)
By Corollary 3.11, ||z;]| < C/nifj # k and ||zx|| = 1, and so |||z;||| < C/n for
j # k and |||z||| = 1. Now let f: [0,1] — [0,1] be continuous and such that
f(1) =1and f(t) =0 for 0 <t < C/n. If z= f(|z]), then z = (2;), where
z; =0 (j # k) and ||2x]| = 1. Since z # 0, there is a ¢ € B(Hy)* such that
L,(2) is a non-zero element of A. Let y = L,(z) = (y;), where y; =0 (5 # k)
and yx # 0. Now y; € C*(mi(G)) = B(Hi), yxC*(mx(G)) = B(Hy), since

the representation 7y is irreducible, and
yA={(z;) € M :2;=0(j #k),zr € B(Hy)}.

It follows that A contains all elements z = (z;) in M with only finitely many

entries non-zero. Every element of I is the limit of a sequence of such z,
and so I C A. |

Let D be a C*-algebra through which the morphism p; : C*(G) — A factors,
so that p; = 4%, where ¢ and v are morphisms of C*(G) onto D and of D
onto A, respectively. Let B = A/Iy & ¢(A).

Theorem 3.16. The sequence

0 —Lh®D—>A®D —B®D—0
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is not exact.

Proof: The quotient (A® D)/(Io ® D) is canonically isomorphic to B®, D
for some C*-norm || ||, on B ® D. To show that the given sequence is not
exact, it is sufficient to show that || ||, # || ||min on B® D, i.e. to show that
llell, > |l¢)|min for some ¢ € B® D. Let

c= Y (4p1)(5) ® $(g:)-

=1

If o is an irreducible representation of D, then o4 is an irreducible represen-

tation of C*(G) and

n

1(éd ® o)(€)llmin = ;(Wl)(gf) ® (a%)(9:)

<C

min
by Lemma 3.14. Since the set of morphisms id ® o, where o varies over all
irreducible representations of D, is faithful on B ® D, it follows that

lle||min £ C < n.

Now let ex be the projection onto the finite dimensional subspace ®%_, H; of
H, for k = 1,2,.... Then {ex}sen is a (sequential) approximate unit for Iy
and {e;x ® 1} is an approximate unit for Io ® D. Also

“ (Z ps) @ ’”(9")) (1—ex)@1)

2 Pr(9i) ® ¥(9i)

min min

2

> m(9:) ® mi(9:)

:n’

min

by corollary 3.11, since p;, and hence 7}, factor through D. Nowif z € Ip,® D
and € > 0, there is a k such that ||z((1 — ex) ® 1)|| < e. Then

“ (Z p1(g:i) ® w(gi)) +z { (Z p1(g:) ® «b(gi)) + x} (1-ex)® 1)“

>n—e.

2

min
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Since ¢ is arbitrary,

>n.

” (Z p1(9:) ® tb(gi)) +z

min

It follows that

lelly = “;wm)(g» 8 %(s)

v

(; pi(g) ® «p(gi)) +heD

=n.

min

Thus || ||, # || lmin on BO D. O

Remarks 3.17. 1. If A, = A+ K(H), then A;/K(H) = A/(ANK(H)) =
A/I, = B. The sequence {e;} is an approximate unit for K(H) contained in
A, so that if z € (A®@ D)N(K(H)® D), then z = limy_o, z(e;,®1) € Ib® D,
and (A® D) N (K(H) ® D) = I ® D. Thus

(A1 @ D)/(K(H)® D) = (A® D)/ ((A® D)n (K(H) ® D)) = B®, D,
and ||c||, = |lc + K(H) @ D||min. It follows that the sequence
0— KH)®D — A1 @D —B®D—0

is not exact, and that the natural embedding ¢ of B in the Calkin algebra
B(H)/K(H) is non-liftable, i.e. the quotient map A; — B does not have a
unital completely positive right inverse (see chapter 6). This implies that ¢ is
a non-invertible extension of B in the sense of the Brown-Douglas-Fillmore
theory [BDF], so that Ext(B) is not a group.

2. Kirchberg [Kir7] has recently shown that if G is a discrete group with
property T , then G has the factorisation property if and only if G is max-
imally almost periodic, which is equivalent, in view of the remark following
Proposition 3.2, to G being residually finite. Now Gromov has shown that
there exist countable groups with property T which are not residually fi-
nite (see [dH-V, chap.3, §19-21]). It follows that these groups do not have
the factorisation property. The following short proof of Kirchberg’s result is
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based on a proof kindly communicated to me by A. Valette which uses an

idea of M.E.B. Bekka.

Theorem 3.18. Let G be a discrete group with property T which has the
factorisation property. Then G is maximally almost periodic.

Proof: Let T = {¢ ® 7 : o, 7 irreducible representations of C*(G)}, and let
F = {0 ® 0’ : 0 a finite-dimensional irreducible representation of C*(G)}.
Let wp and w; be the representations of C*(G) ® C*(G) given by

wo = DreFT, W1 = Orer\FT.
The representation wp @ wy of C*(G) ® C*(G) is faithful. Let
A =wo(C*GQ) ® C*(G@)), B=uw(C*G)&®C*G)).

Then C*(G) ® C*(G) = (wo ®w1)(C*(G) @ C*(G)) € A® B. A state f on
C*(G) @maz C*(G) is defined by

FQC aihi @ b)) = 32 ci(A(ha)p(Ri)éelée)  (hishi € G).

Since G has the factorisation property, f factors through C*(G)® C*(G), i.e.
there is a state f' on C*(G) ® C*(G) such that

7Y aihi @ 1) = L asMh)p(B)EIE)  (his i € G)

Identifying C*(G) ® C*(G) with its image in A® B under wo w1, f' extends,
by the Hahn-Banach theorem, to a state f” on A @ B. Then f" = fo + f1,
where f; and f; are positive linear functionals on A® B such that fo((0,1)) =
fl((lao)) =0.

Let Ga denote the diagonal subgroup {(g,9) : ¢ € G} of G x G. Then
G = Ga, and C*(G) & C*(Ga) C C*(G) ®mas C*(G) (=2 C*(G x G)). Let
@, 9o and ¢, be the restrictions of f, fowo and fiw; to C*(Ga), respectively.
Then

©((9,9)) = (Mg)p(g)elée) = 1

for g € G, i.e. ¢ is the trivial character of C*(G4), and so a pure state. Since
© = o + 1, it follows that o = ||po|l¢ and @1 = ||¢1]|l¢ (this also follows
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easily from the fact that ¢ is a homomorphism with range C). Suppose that
fi #0. Also

IIflllllwl(Z:: G®g) > fl(wl(i 5 ® )
= sol(f: 9 ® gi)

= llealle(3_gi ® 9:)
1

= nl|ea|
= n| fill-

This implies that ||w1(37 ¢ ® )| = n if fi # 0. Now if o and 7 are
irreducible representations of C*(G) such that o @ 7 € T \ F', by Corollary
3.11 ||(r @ 0)(T7 ¢: ® ¢i)]| < C so that |lwi (79 ® g:)|| £ C < n. Thus
fi=0and f = fo. Now

folwo(g ® 1)) = fg ® 1) = (Mg)p(1)&clée) = (§5l€c) = 0

if g # e. Thus wo(g ® 1) # 1, and so for some finite-dimensional representa-
tion o of C*(G), a(g) # 1. It follows that the finite-dimensional irreducible
representations separate the elements of G, i.e. G is maximally almost peri-
odic. d



4. Quasidiagonal C*-algebras.

4.1. Block-diagonal and quasidiagonal C*-algebras. I shall consider
only separable C*-algebras and representations on separable Hilbert spaces.
For such a Hilbert space H a set Q@ C B(H) is block-diagonal if there is a se-
quence P, < P, < ... of finite-rank projections converging strongly to I such
that [P,,T] =0 (T € Q, n € N), and quasidiagonal if lim,_,« ||[Ps, T]|| = 0
for each T € Q. Equivalently, letting E, = Poy1 — P, (n = 1,2,...), Q is
block-diagonal if there is a sequence Ey, Es, . .. of mutually orthogonal finite-
rank projections such that 32, F; is strongly convergent to I and [E;, T] =0
for each i € Nand T € ; and Q is quasidiagonal if there is a sequence { E;}
such that T — "%, E;TE; is a compact operator for T' € ().

A C*-algebra A is quasidiagonal if there is a faithful representation m of
A on a separable Hilbert space H such that 7(A) is quasidiagonal as a subset
of B(H). It is a simple consequence of Voiculescu’s theorem (see [Arv]) that
for A separable, the quasidiagonality of 7(A) for one faithful 7 implies that
of the image of A under any faithful representation of infinite multiplicity
on a separable Hilbert space. A quasidiagonal C*-algebra preserves, in some
sense, a vestige of finite dimensional behaviour.

One question which remained unanswered for some time was whether
the image of a quasidiagonal C*algebra A € B(H) in the Calkin algebra
B(H)/K(H) is necessarily quasidiagonal. This question has also been inves-
tigated in relation to specific C*-algebras. In §4.2 we shall look at a specific
instance, involving the algebras constructed from residually finite Kazhdan
groups in chapter 3, where quasidiagonality is not preserved on passing to
the quotient by K (H).

Using a technique similar to that used to prove the residual finiteness of
free groups in chapter 3 (Lemma 3.6), Choi [Ch3] proved

Theorem 4.1. If F is a free group on at most a countably infinite number
of generators, then C*(F') has a faithful block-diagonal representation on a
separable Hilbert space.

Proof: Let u;,us be the generators of Fy. Then the elements {ujujuy : n €
N} are free generators of a subgroup of F, isomorphic to Fo,. Thus F, C [,
for n = 3,4,...,00, and it is sufficient to consider the case F' = F,.

We show that for z € C*(F') there is a finite-dimensional representation
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o of C*(F') such that
lo(@)ll = llz]| —e. (41)

Given z € C*(F) and ¢ > 0, there is a z of form z = 17, aihi, where the h;
are elements of F, such that ||z — z|| < e. If (4.1) holds for 2 then

lo(@)]l 2 llo(2)ll — & 2 ||zl — 2¢ 2 |lz]| = 3e.

It thus suffices to prove (4.1) for z = Y%, ozhi. Let 7 be a faithful rep-
resentation of C*(F) on a Hilbert space H, and let & € H be a unit vec-
tor such that ||7(z)&| > ||lz|| — e. With k = maxicicn |hil, let K be the
finite-dimensional subspace of H spanned by the set {m(h)é : |h] < k}. If
K; = {¢€ € K : n(w;)¢ € K} (i = 1,2) then K; is a linear subspace of
K, 7(u))K; C K and 7(u;)|k, is an isometry. Since dim K; = dim 7 (ui) K,
dim(K © K;) = dim(K & 7(u;)K;), and so there is an isometry u: of K © K;
onto K © m(u;)K;. Define a unitary U; on K by

L ru)é (£ €K
U’f‘{ uE (€€ KP).

A representation o of C*(F) on K is defined by o(u;) =U; (i =1,2). It is
easy to see that for h € F with |h| <k,

o(h)éo = m(h)éo,

so that
llo(z)éoll = lIm(z)éoll = llzll — &,
and ||o(z)|| = ||l=|| —e.
Now let {aj,as,...} be a dense subset of C*(F). For n = 1,2,... there

are finite-dimensional representations o, of C*(F') on Hilbert spaces H, such
that

lo(@ll > fladl ~ = (1< <n),

Let M = @2, B(H,). Then the x-homomorphism o : z — (o (2)); C*(F) —
M is isometric on each a;, hence on C*(F'). Since M is block-diagonal, so is
. d

Proposition 4.2. The algebra C?(F;) is not quasidiagonal.
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Proof: To prove this result, we actually prove the more general result that
if G is a countable group and the C*-algebra C}(G) is quasidiagonal, then
G is amenable. The stated result will then follow, since F; is not amenable.
If C*(G) is quasidiagonal, there are finite rank projections P, < P, < ...1in
B(£%(G)) with strong limit I such that for z € C}(G), limp—co ||[Pn, z]|| = 0.
Let U be a free ultrafilter on N and let m be the linear functional on £*(G)
given by
m(f) = p(PuTy B (f € 2(G),

where 7, is the trace state on B(P,¢*(G)). Then
Lim ||X(g)Pn — P9l =0 (9 €G)

so that
lim || M(g) Pad(g™") = Pull = 0,
and so
117£n ITn(Pn)‘(g)Tf’\(g_l)Pn) - Tn(PanPn)l =0 (f € EOO(G))
Thus
m(fy) = L (P M9)TyA(g ™) ) = m(f),

and m is a left-invariant mean on G. Thus G is amenable. O

4.2. Quasidiagonal C*-algebras associated with Kazhdan groups.

Let G be a countably infinite residually finite Kazhdan group with generating
set 1 = g1,...,gn and Kazhdan constant ¢ < 1 as in Definition 3.8. Recall
that if, with the notation of §3.3, A = C*(p1(G)), B = A/ly and A; =
A+ K(H), then B = A;/B(H).

Theorem 4.3. The algebra B has no quasidiagonal representation, and is,
in particular, not quasidiagonal.

Proof: Suppose that B has a quasidiagonal representation 7 on a separable
Hilbert space K. Clearly 7 can be assumed non-degenerate. Then K has a
decomposition K = &%, K;, with dim K; < oo for each j, such that

m(g9) € ®52, B(K;) + K(K),



42 4. QUASIDIAGONAL C*-ALGEBRAS

for g € G. If w = m¢p;, and for each generator g; of G we let v; = w(g:),
then

U = (@jv;‘) + ki,

where (v})jen € 2, B(K;) and k; € K(K). Let Fy, be the projection onto
@®%-,K;. Then for each i, ||k; — F,k;Fp|| — 0 as k — oo. It follows that we
can find a p such that

lv: = (@;0) — FykiFyl| = |lk: — FpkiFyll <1,
fore=1,...,n,and so if f = F,,
11— v (@59} + fRif) < 1.

This implies that v} (&;v} + fk; f) and thus (G%v + fkif), are invertible.
Then for fixed it =1,...,n, vj is invertible for j > p, and if v} has polar
decomposmon v = u |v |, u} is unitary for j > p, ¢ = 1,...,n. Forj <k
let u be any umtary in B(K ) Since v; is unitary, (1 — EB, 1* vi) € K(H),
which implies that ||1; — vi"vi|| — 0 as j — oo. This in turn implies that
lim; . ||1; — |vi||| = 0 and hm,_w0 ||uf — vi|| = 0. Thus

w(g:) = (Bju}) + k]

for some k! € K(H) (i =1,...,n). Let E; be the projection onto K. Let j
be chosen sufficiently large that |k/E;|| < e/3fort=1,...,n. If e1,..., eq(
is an orthonormal basis of K; and

d(j)
6 = E er @ €k,
k=1
then
| (w(g:) @ '(g:) € — €Il = l|(u} + KiE;) @ J;(u + K E;)J;€ — €|
< |I(uf ® JjujJ;)€ — €|l
+2)| kLB |IEN + 11K E5]1% €]l

<(+5)ne

<eli€ll;
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where we can take w’ to be the representation Jw@p;J with J the conjugate
linear isometry (J;) corresponding to the given bases of the K;. Since G
has property T, it follows that there is a non-zero &, € K ® K invariant for
(w®w')(G). Then || ¥; w(g:) ®w'(g:)|| = n and, by Lemma 3.10, 7 contains a
finite-dimensional subrepresentation 7y of B. The representation o = modp;
is a finite-dimensional representation of C*(G) and

IIZU g) ® a(g:)ll = IIZ ® (modp1)(gi)l

< HZ (9:) ® (6p1)(9i)ll

<C
<n,

by Lemma 3.14. This contradicts the fact that || 3; 0'(¢9:) ® o(g:)]| = n, by
Lemma 3.10. It follows that B has no quasidiagonal representation, and is,
in particular, not quasidiagonal. d

Remarks 4.4. 1. For groups G of the type just considered, it is not difficult
to show that the canonical morphism A : C*(G) — C(G) factors through
B. 1t follows that C*(G) is not quasidiagonal. This fact also follows by
Proposions 3.3, 3.4 and Remark 3.9 (4).

2. It would be interesting to know if the algebra B is exact for any G of the
type considered here, in particular if G = SL,(Z) for n > 3.

3. Is there a quasidiagonal C*-algebra A in B(H) containing K (H) such that
Cx(F;) &2 A/K(H)? (See [Wa5] for an example of a quasidiagonal A such
that A/K(H) has a C*-subalgebra isomorphic to C*(F;).)

4. For any C*-algebra B, let Cone(B) be the C*-algebra C((0,1], B)".
Voiculescu [Voil] has shown that for any separable C*-algebra B, Cone(B)
is quasidiagonal. It is also quite simple to show that if B is exact, then so
is Cone(B). Indeed if B is exact, so are B and C([0,1], B) = C([0,1]) ® B.
Since Cone(B) is a C*-subalgebra of C([0,1], B), it follows that Cone(B) is
exact. Now suppose that A, B and C are separable C*-algebras and J is an
ideal of A such that B = A/J. Kirchberg [Kir6, Proposition 5.1] has shown
that if the sequence

0 —JRC—ARC —BC—0 (4.2)
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is not exact, then there are a finite type I von Neumann algebra M = @2, My,
and a C*-subalgebra D of M such that M, C D, with M, the ideal of zero-
sequences in M, such that Cone(B) = D/M, and such that the sequence

0— My®@C — D®C — Cone(B)® C — 0

is not exact. It will follow by theorem 9.1, Corollary 5.6 and Proposition 5.2,
that D cannot be exact. There are examples of sequences (4.2) in chapter 3
with exact B (e.g. with A= C = C*(G), B = C;(FF;)) which are not exact.
For such a B, Cone(B) is exact, but the algebra D is an inexact extension of
Cone(B) by the nuclear ideal My. This shows that an extension of an exact
C*-algebra by an exact C*-algebra need not be exact.



5. Property C.

In this chapter we consider property C, a rather subtle property of C*-
algebras introduced by Archbold and Batty [A-B]. Property C is defined
in terms of mappings between the second duals of C*-algebras, the proper-
ties of which are recalled briefly in §5.1.

5.1. The second dual of a C*-algebra. Let A be a C*-algebra, and for
a state f on A, let {m;, Hy,&;} be the cyclic representation of A associated
with f by the GNS construction, so that for a € A, f(a) = (7s(a)s|és)-

Let Hy = ®ses(a)Hy, where S(A) denotes the set of states on A, and let 74
be the representation @;es(a)s of A on Hy. The representation my is the
universal representation of A, and is faithful. Let 74(A) be the weak closure
of T4(A) in B(H4). Then the von Neumann algebra 74(A) is canonically
linearly isometric to A**. To see this, let f € m4(A),. Since T4(A) is weakly
dense in m4(A), the unit ball of 7rA(A) is weakly dense in that of m4(A) by
Kaplansky’s density theorem. Thus the functional f = fra has the same
norm as f, and the map 7 : f — fra;ma(A) — A* is linear and isometric
(and positive). For any state g on A, g = We, T4, where wg, is the vector
state defined by £,. Since any element of A* is a linear combination of
states, it follows that T(’)TA(A) ) = A*. The linear map 7" : A™ — 7 Ta(A) is
isometric, and if A** is given the (unique) C*-algebra structure making 7~

a *-isomorphism, it is easy to see that, restricted to A under its canonical
embedding in A**, this C*-structure is just the C*-structure of A. It is usual
to identify A** with 74(A), so that A* is a von Neumann algebra and 7~ is
the (unique) normal extension of 74 to A*.

If N is a von Neumann algebra with predual N, any f € N, is an element
of N*. If ¢ : N, » N* denotes the embedding map, then ¢* : N** — N is
a normal contraction. If N is identified with its canonical image in N** and
z € N, then for f € N,, f(e*(z)) = (e(f))(z) = f(z), i.e. €*(x) = z, and &"
is a projection of norm 1. Using the fact that the map &* is normal and that
it satisfies the module property of Tomiyama, since it is a projection of norm
1 (see [Kye2]), it is straightforward to show that ¢* is a *-homomorphism
with kernel a weakly-closed ideal J of N**. Then J = eN™*, where ¢ is a
central projection in N**, and N = e*(N**) = (1 — e)N**.

Now let o be a *-homomorphism of a C*-algebra A into N. Then o** is
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a normal *-homomorphism of A** into N**, and & = *¢** : A™ = N is a
normal *-homomorphism extending o. If o(A) is weakly dense in N, then
&(A*) = N. The map &, which is uniquely determined by o, is the canonical
exztension of o to A**. If o is a representation of A on a Hilbert space H,
taking N to be the weak closure of o(A) in B(H), the canonical extension &
of o is a normal representation of A** on H with image N.

If A is a C*-algebra and J is an ideal of A, then the weak closure J of
J in A* is a weakly closed ideal, and J = eA** for some central projection
e of A**. By the Hahn-Banach theorem, A N J = J, and if A is identified
canonically with its image in A**, then J = {a € A: ea = a}.

5.2. The norm || ||c. Let A and B be C*-algebras and let m; and 7, be
the restrictions of the universal representation magp : A® B — B(Hag B) to
A and B, respectively. Then {m;, 73} is a commuting pair of representations
of of the pair {4, B}. The representations m; and 72 extend to normal
representations ¢4 and ¢p of A** and B**, respectively, and the pair {¢a, B}
is a commuting pair of normal representations of the pair {A*, B**}. There
is thus a *-homomorphism 7 : A™ ®pinor B** — (A ® B)** such that

?r(a ®b) = ta(a)s(b) (a € A™,be B™).

If € A** ® B**, there are normal states f on A** and g on B*, ie. f €
A*, g € B*, such that (f ® g)(z) # 0. The state f ® g has a unique normal
extension ¢ to (A ® B)** and for a € A and b € B,

¢(1a(a)B(b)) = f(a)g(b)-

Since the bilinear maps on A** x B** defined by the two sides are separately
normal in each variable, this equality holds for a € A** and b € B™* also,
and so p(m(z)) = (f ® g)(z) # 0, which implies that & # 0. Thus 7|4++@p+
is injective. It follows that a C*-norm || ||c on A** ® B** is defined by

lzllc = lIr(z)||(1eB)> (z € A™ O B™),
and 7| ges@p+ extends to a *-monomorphism ¢4,5 : A ®¢ B** — (A® B)™.

The homomorphism 7 has a factorisation 7 = ¢4 g7, where T : A™ Qypinor
B* — A*™ @¢ B** is an extension of the identity map on A™ © B*™*.
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Proposition 5.1. Let A and B be C*-algebras such that || |lc = || |lmin
on A** ® B**. Then
(i) for any C*-subalgebra C of A, || |lc = || ||min on C** © B**;

(i) for any ideal J of A, || |lc = || ||min on (A/J)* ® B**.

Proof: (i) Since C ® B C A ® B, it follows that (C ® B)*™ C (A® B)*
canonically, and we have the following diagram of inclusions

C** @ B** > A** @ B**

‘C,Bl l‘A,B

(C ® By — (A® B)™.

To see that this diagram is commutative, let ¢ € C** and let {c)} be a
net in C converging to ¢ weakly. Let ¢ € (A® B)* and let ¥ = ¢|cgp. Then
limy B(ex ® 1) = @(eop(c® 1)), ie. top(er®1) — op(c®1) in (C ® B)™,
and, regarding cy and c as elements of A**, limy p(cx ® 1) = p(t4,5(c® 1)),
ie. tap(ca®1) = tap(c®1)in (A® B)*™. Now since c) € C, the image of
teg(ca®1)in (A® B)*™ is ta,8(cx ® 1). Thus

p(oB(c®1)) =B(io,p(c®1))
= limP(co,p(er @ 1))

= liincp(LA,B(CA ® 1))
= o(1ap(c®1)),

i.e. the image of (¢ g(c®1) in (A® B)** is ta,8(c ® 1). Similarly the image
of top(1 ®b) in (A® B)** is t4,8(1 ® b) for b € B**, and so0 1o,p(c ® b) =
LC,B(C®].)LQB(1®I)) has image LA,B(C®1)LA,B(1®I)) = LA,B(C®b) in (A®B)**
The commutativity of the diagram now follows by the linearity of the maps
involved. When A** ® B** and C** ® B** have their respective norms || ||c,
the maps ¢4 p and (o are isometric, as is the lower inclusion. Thus the
norm || ||c on C** ® B** is just the restriction of || ||c on A*™ ©® B**. Since,
by assumption, the latter norm coincides with || ||min, || llc = || ||min on
C** o B**.

(ii) The o(A**, A*)-closure J of J is a weakly-closed ideal of A**, and so
J = (1 — e)A™ for some central projection e € A™ (J = kero**). Since
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J=AnNJ,letting 0 : A— A/J be the quotiént map, we have
lo(@)ll = lla + JIl = lla+ J|| = lleal],

and the map o(a) — ea is a well-defined *-monomorphism of A/J onto the
C*-subalgebra eA of A*™.  This morphism has a normal extension
¢:(A]J)* — eA™. For a € A, (¢0™*)(a) = ea.

Similarly the *-homomorphism c®id : AQ B — (A/J)® B has the normal
extension (¢ ® id)™ : (A® B)* — ((A/J) ® B)**. Then ker(s ® 1d)™ =
(1— f)(A® B)** for some central projection f in (A® B)**, and there is a *-
isomorphism ¥ : f(A® B)*™* — ((A/J)® B)** such that (¢ ®id)*(z) = ¥(fz)
for z € (A®B)**. Since it is a *-isomorphism between von Neumann algebras,
the morphism %) is necessarily normal.

We now show that f = t4(e) = tas(e ®1). Let {aq} be a net in J with
o(A™, A*)-limit 1 — e, and let {bs} be a net in B with ¢(B*", B*)-limit 1.
Then

(0 ®id)™(1a,8(aa ® bs)) = (0 ® id)™ (aa ® bp)

= o(aq) ® bg
= 0.
Also
lim 4,5(as ® bg) = lim ¢4 (aa)i(bs)
= 1a(1 — €)up(bp)-
Thus

(o ®id)*(ea(l — e)eB(bg)) = P(fra(l — €)n(bs))
—0,

which implies that fia(1— e)eg(bg) = 0 since 1 is injective. Taking limg, we
have fia(1 —e) =0, and so f < ta(e).

Conversely, let {z,} be a net in ker(c ® id) tending weakly to 1 — f in
(A® B)**. Then

(e ® D)zallmin = [|(0 ® 1d)2x||lmin = 0,
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so that (e ® 1)z) = 0, and thus t4,8((e ® 1)z)) = ta(e)zr = 0. Then
0= li/{nLA(e)xA
= wa(e)(1 - f),

ie. wale) < f.
By hypothesis the map ¢4 p is an embedding of A** ® B** in (A ® B)™.
Consider the map 8 of (A/J)** ® B** into ((A/J) ® B)** given by

0(z) = ¢ (fra,((¢ ®@1id)(2))).

Since ¢ and 1 are normal, and ¢4 p is binormal, it follows that # is binormal.
Let c€ A/J, b€ B and let a € A be such that ¢ = o(a) = 0**(ea). Then

0(c ® b) = P(frap((c) ® b))
= P(fra,B((¢0™")(ea) ® b))
= ¢(fra(ea ®b))
= P(fra(e)(a @ b))
=(c®1d)(a®b)
=o(a)®b
=c®b.
By linearity (z) = z for = € (A/J) ® B. Since 0 is binormal, i.e. the map

(¢,b) — 0(c ® b) is separately normal for ¢ € (A/J)™, b € B™, it follows
that 6 is the restriction of 455 to (A/J)™ @ B**. For z € (A/J)™ © B™,

lzllc = lleasas(@)|l
= 1|16(=)|l
< (¢ ®@id)(z)|| aseB
= ||(¢ ® id)(z)||min

< |zl min-
Thus || |[c = || ||min on (A/J)™ © B*™. a
Proposition 5.2. Let A and B be C*-algebras such that || |lc = || |min

on A** ® B**. Then if J is an ideal of B, the sequence
0—ARJ —A®B— AR (B/J)—0



50 5. PROPERTY C

is exact.

Proof: Let e be the central projection in B** such that J = (1 — e)B*™".

Then if o : B — B/J is the quotient morphism, ||o(b)|| = ||eb]| (b € B) and
|(id ® o)(z)]| = ||(1 ® e)z|| for r € A® BC A® B*. Thus for z € A® B,
zeker(id®o) & (1Qe)r=0c=(10(1-¢)z ez € A® J. Thus
ker(id® o) = (A®@ B)N (A® J) C A™ ® B*.

By assumption the map ¢4 5 : A** ® B** is a binormal monomorphism.
Thus ¢4,8(A®J) is a subset of the weak closure A®Jof A®Jin (AQ B)™.
Now (AQ B)N(A®J) = A® J (see §5.1), from which it follows that
ker(id ® o) C A® J, so that the given sequence is exact. a

5.3. Property C.

Definition 5.3. A C*-algebra A has property C if for any C*-algebra B,
|l llc =1 |lmin on A*™ © B**.

Corollary 5.4. If a C*-algebra A has property C, then it is exact.
Proof: This follows immediately from Proposition 5.2. d
Proposition 5.5. Every nuclear C*-algebra has property C.

Proof: Let B be any C*-algebra. We defined a canonical binormal *-
homomorphism 7 : A* ®pinor B*™* — (A ® B)* in §5.2 which has a fac-
torisation 7 = 14 7. Now if A is nuclear, then A* is injective, and so
Il Noinor = || |lmin on A™ @ B** (cf. chapter 1). This implies that T and ¢4,B
are isometric. Thus || ||c = || ||min on A*™* O B*™. O

Corollary 5.6. Every C*-algebra A which is the quotient of a C*-subalgebra
of a nuclear C*-algebra is exact.

Proof: Let B be a nuclear C*-algebra, and let G be a C*-subalgebra of B
with ideal J such that A = G/J. Then B has property C, by Proposition
5.5, so that G and G/J have property C by Proposition 5.1. By Corollary
5.4, A= G/J is exact. O

We shall see in chapter 9 that every separable exact C*-algebra is a quotient of
a C*-subalgebra of a nuclear C*-algebra, and that the converse of Corollaries
5.4 and 5.6 hold in the separable case.



6. Completely positive liftings.

In this chapter we prove the lifting theorems of Choi and Effros [C-E4] and
Effros and Haagerup [E-H]. For the former we use the elegant approach
of Arveson [Arv], while for the latter we follow the original treatment of
Effros and Haagerup, which also uses Arveson’s technique. One of the main
technical ideas underlying Arveson’s methos is that of a central approximate
unit.

6.1. Central approximate units.

Definition 6.1. Let J be an ideal in a C*-algebra B. A net {ex}xea is a
central approzimate unit in J if ey € J with 0 < ey <1 (A€ A), {ex}is an
approximate unit for J, i.e. lim |lexz —z|| = 0 (z € J), and lim, ||exb—be,|| =
0 (be B).

Theorem 6.2. [Arv, Theorem 1]  For any B and ideal J of B, there is
a central approximate unit in J. If B is separable the approximate unit can
be taken to be a sequence e; < ez < ...

Lemma 6.3. With B,J and {e)}xea as above,

16+ 7)) = lim [b(1 = ex)]| = lim | (1 ~ e2)35(1 = ex)* .

The first equality is proved by the method of the proof of Lemma 1.10. For
the second, see [Arv, proof of Lemma 3.1}.

6.2. Lifting problems. Given a unital C*-algebra B, an operator system
E, an ideal K of B and a u.c.p. map ¢ : E — B/K, the lifting problem for ¢
is to find a u.c.p. map ¥ : E — B such that ¢ = ¢, where 7 : B — B/K is
the quotient map. The map ¥ is a lifting of ¢. For a given ¢ such a ) need
not exist (cf. Remark 3.15(1)), but if it does ¢ is said to be liftable.

Suppose that E is separable, and let {ay,as,...} be a sequence dense in
the unit ball of E. For u.c.p. maps ¢,9 : E — B let

ds(6,9) = i_ojl 2" | $(an) — )]

o1
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Then djp is a metric on the set of u.c.p. maps from E to B, and dg(¢n,¢) — 0
as n — oo if and only if ||¢n(a) — ¢(a)]| > 0 asn — cofora € E. Tt is
immediate from the definition that

dB/K(7r¢a W’Qb) < dB(¢) ¢)
for u.c.p. maps ¢,v : E — B, and

dB/K(Tran WQ,L’) = lnf{dB(¢7¢,) : ¢’ :A— Bucp, 7T¢', = 71'1/)}

(see [Arv, Lemma 3.1]). The following result shows that the set of liftable
u.c.p. map from E to B/K is closed in the dp/k- topology.

Proposition 6.4. [Arv, Theorem 6] If ¢, : E — B/K are liftable
u.c.p. maps forn = 1,2,..., and ¢ : E — B/K is a u.c.p. map such that
dp/Kk(¢n,d) — 0 as n — oo, then ¢ is liftable.

Proof: We can assume that dg/x(¢n,¢) < 270"*) (n > 1), and construct
inductively u.c.p. maps ¥, : E — B such that ¢, = 7, and d(Yn, Y1) <
2-". Let 1; be any u.c.p. lifting of ¢1. If ¥1,...,%, have been defined, let 0

be a u.c.p. lifting of ¢n41. Since
inf{dB(Q/"m 0,) cmf = ¢n+l} = dB/K('/T'Qbm 7T9) = dB/K(¢na ¢n+1) < 2—n,

there is a ¢' : E — B such that 7¢' = ¢n41 and d(pn,¢") < 27". Let
"/)n-i-l = ¢I-

Now for a € E, {t,(a)} is Cauchy sequence, which has a limit ¢(a). The
map ¢ : A — Bis u.c.p. and 7 = ¢. d

Lemma 6.5. Let ¢ : M, — B/K be completely positive and unital (re-
spectively contractive). Then there is a unital (respectively contractive) com-

pletely positive lifting v : M, — B of ¢.
Proof: Let {e;;} be the standard set of matrix units in M,, and let

p= (l/n)ZG,’j ® e € M, M,.

6]
Then p = p* = p?, so that p is positive, and
(¢ ®1d)(p) = (1/n) 3_ é(ei;) ® ei; 2 0
J



6.3. THE CHOI-EFFROS LIFTING THEOREM 53

in (B/K)® M,,. Since (B/K)QM, = (B&M,)/(K®M,), there is a positive
element Y b;; ® e;; in B @ M, such that

Y d(eii) @ eij = 3 m(bij) ® eij.
Let 6 : M, — B be the map [\;;] = X Ai;bi;. Then ¢ = 7. Since

Y 0(ei;) ®eij =D bij @eij >0,
0 is completely positive, by Lemma 1.4. Since ¢(1) > 0 and ||¢(1)]| < 1,
there is a b € B such that b > 0,]|8]| < 1 and 7(b) = ¢(1) (see Remark 8.6
(1)). Then 6(1) — b € K, so that (1) = b+ k where k* = k € K. There are
positive elements ki, k; in K such that k = k; — k2. If f is a state on M, let

$(2) = (1+ k) F(0() + f(2)ka)(1 + k)72
Then v : M, — B is completely positive, T = ¢ and
(1) = L+ k)4 k) (L + R

so that ||1(1)|| € 1, and ¢ is contractive. If (1) = 1, we can take b =1, so
that then (1) = 1. O

6.3. The Choi-Effros Lifting theorem.

Theorem 6.6 [C-E4, Theorem 3.10]. Let B be a unital C*-algebra, K an
ideal of B and E a separable operator system. If ¢ : E — B/K is a nuclear
u.c.p. map, then ¢ has a u.c.p. lifting ¢y : E — B.

Proof: (cf. [Arv, Theorem 7]). Since ¢ is nuclear, there are sequences of
natural numbers {n,}, and u.c.p. maps ¢, : E - M, , ¢, : M,, — B/K
such that lim, e dg/k(¢r¢r,¢) = 0. Now by Lemma 6.5, ¢, has a u.c.p.
lifting 8, : M,, — B. Then 0,4, is a u.c.p. lifting of ¢,¢,, so that ¢,¢,
is liftable. Since ¢ is the dp/k-limit of liftable maps, it is itself liftable, by
Proposition 6.4. d

Remark 6.7. A unital C*-algebra A has the lifting property (LP) if for any
unital C*-algebra B and ideal K of B, every u.c.p. map ¢ : A — B/K has
a u.c.p. lifting ¥ : A — B. By Theorem 6.6, every separable unital nuclear
C*-algebra has the LP. If F' is a free group on finitely or countably many
generators then the algebra C*(F) has the LP [C-E5, Lemma 4.4], [Kir6,
Lemma 2.1].
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6.4. The Effros-Haagerup lifting theorem.

Proposition 6.8. Let A and B be unital C*-algebras such that A= B/J
for some ideal J in A. Then the following conditions are equivalent.

(i) For every finite dimensional operator system E in A, idg : E — A is

liftable.
(ii) For every C*-algebra C, the sequence

0—JRC—BQRC—ARC—10 (6.1)
is exact.

Proof: (i) = (ii): For some C*-norm || ||, on A®C, (B®C)/(J&C) = A®,C.
Let £ = Ya; ® b; € A® C. Then there is a finite-dimensional operator
system E in A containing all the a;, and by assumption there is a u.c.p.

lifting ¢ : E — B of idg : E — A. Then

13" #(a:) @ billmin < 1Y @i ® billmin-
Also

1Y ai®bill, = 13 ¢(ai) @ b+ J @ Cll <113 é(ai) @ billmin

ie. ||lz||, < |lz]|- Thus || ||, = || lmi on A® C, i.e. (6.1) is exact.
(ii) = (i): Let E be a finite-dimensional operator system in A. Since E' is
finite dimensional, there is a linear lifting 1 : E — B of idg. Replacing v
by 1(¥+ ¥*), we can assume that i(e*) = ¢p(e)” for e € E. Let {ex}ren be
a central approximate unit in J. If 7 : B — B/J is the quotient map, then
m(1 —ey) =1, so that =((1 — ex)?) = 1. Thus the map ¢y : E — B defined
by

Do) = (1= en)F(e)(1 = en)?
is a lifting of idg for each A € A. Since ¥, is a lifting, |||l = 1. Tt is a
consequence of the hypothesis that, in fact,

lim [ = 1. (6.2)

To see this, suppose, to the contrary, that limsup, ||| > 1. Then replacing
A by a subnet, we can assume that for some € > 0

[¥alls 21 +¢
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for A € A. So for each XA we may choose n) € N and z) € E ® M, such that
llzall £1 and

163 ® ida, ) (@)l 21+ 5. (6.3)
Now let C = @)\M,,. Then (z,) € ®BN(E Q@ M,,) T EQ (&sM,,)=EQC
and for v € A, ||(¥, ® tdc)(z)|| > 1+ (¢/2). Also
(12 @ idg)(z) = (o @ idny (21))2en
= (1 — )i p(1 — €)% @ idn,)(za)ren
= ((1-e)f @ 1)((¢ ®ido)(2))((1—e)? @ 1).

By Lemma 6.3, it follows that
lim |, ® ido)(2)|l = lim ||(¥ ® ido)(2)((1 —e.) @ 1)]|
=||(¥ ®idc)(z) + J @ C|
= ||(7 ® idc)(¥ ® 1dc)(z)]|

(by the exactness assumption)
= ”w“’

where we have used the fact that (e, ® 1),ea is a central approximate unit
in the ideal J ® C of B ® C. However this contradicts (6.3), since by (6.3),

(% ® ide) ()]l = l|(%y @ idn, ) ()| = g.

So (6.2) holds.
Let ¢ > 0 and let w be a state on E. Replacing ¢ by some 1), we can
assume that ||¢]ls <14 ¢. Let

Pi(z) = (1— e)2(z)(1 — e)? +w(z)er (z € E).
Then )} is a lifting of idg and
oA ller < lle]le

for A € A. Moreover

1— (1) = (1—e)2(1— (1)1 —ey)

— 0

=

b
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since 1 — (1) € J. It follows that for some X € A, ||1 —¥4(1)]| <€, and

P"(z) = di(2) + (1 — $r(1))w(2)

defines a lifting 1" of 1dg such that ¥"(1) = 1 and ||3"|| < 14+2e. By Lemma
1.18 there is a u.c.p. map 0 : E — B such that ||§ — ¥"||s < 8¢dim E. The
u.c.p. map 78 : E — B/J is, trivially, liftable and |70 — idg||s < 8edim E.
Since € is arbitrary, dg is the limit of liftable maps in the sense of Proposition
6.4. By that proposition, idg is liftable. d

Remark 6.9. Let A, B and J <« B be as in statement (i) of Proposition 6.8.
Then the sequence (6.1) is exact for a given C' if and only if for any element
Y1bhi®ce BOCO,

u zj;vr(bi) ®all = | 5?3“”' ®c)+J 80, (6.4)

where 7 : B — A is the quotient map. If X is a finite dimensional operator
system in C containing cy,...,¢,, then

n i(b,- ®e)+J®C| = | i(bi ®c)+J®X|,

by Lemma 1.10, so that (6.4) holds for all ¥ b, ® ¢; € B ® X if and only if
the map Tx : (B® X)/(J ® X) = A® X is isometric. Thus (6.1) is exact if
and only if T’x is isometric for every finite-dimensional operator system X in
C. Let M = &>, M,. If H = (%, with orthonormal basis {,3,..., and Py
is the projection onto the finite-dimensional subspace spanned by the first k
of the basis members, then the map ¢ : B(H) — M;T — (P,TF;) is a u.c.p.
complete isometry. The operator system X is contained in some C*-algebra,
and the C*-subalgebra C that it generates is separable. Thus we have unital
u.c.p. completely isometric embeddings X C C C B(H) C M, where the
final embedding is that defined by ¢. It follows that conditions (i) and (ii) of
Proposition 6.8 are equivalent to the further conditions

(iii) For every separable C*-algebra C, the sequence (6.1) is exact.
(iv) The sequence (6.1) is exact when C = M.
(v) The sequence (6.1) is exact when C' = B(H).
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Lemma 6.10. Let B be a C*-algebra with a nuclear ideal J such that the
sequence

0—J®C—-—BRC— (B/J)C —0

is exact for any C*-algebra C. Then if E; C E, are finite-dimensional oper-
ator systems in B/J and v, : By — B is a u.c.p. lifting of idg,, given € > 0,
there is a u.c.p. lifting 1, of idg, such that ||¢2|E, — ¥1|| < €.

Proof: Let ¢ be a u.c.p. lifting of idg, (¢ exists by Proposition 6.8). For
z € Ey, ¢1(z) — ) € J, and so

lim [|(1 = ex)7 (#1(e) — (@) (1 — ex)2]| = 0
and . . 1 1
lim |[1(2) — (1 — ex)241(2)(1 = e2)? — eXpa(z)ef]| = 0.
Thus X . . .
lim [|¢1(z) — (1 — e2)2%(2)(1 = ex)? — e3¢ (2)ef]| = 0.
Let § < min{e/5,1}. Then with e = e, for a suitable A,

1(z) — (1 — e)Fp(2)(1 — €)F — edyu(e)e?|| < 8|zl (= € En),

where we have used the fact that E; is finite-dimensional, so that the point-
norm and operator norm topologies on the space of contractive linear maps
from F; to B coincide.

Now the map z — e21hy(x )e% E, — J is completely positive. Since J is
nuclear, there are a matrix algebra M,, a u.c.p. map p E, - M, and a
contractive c.p. map ¢ : M,, — J such that ||¢p — ezt el || < 6. Since M, is
injective, p has a u.c.p. extension p: E; — M,. If 0 = ¢p: E; — J, then

10(z) = e2un(2)ed|| < Sllall (= € Ba)

and ||0(1) —¢|| < 4. Let
P(z) = (1-e)3p(@)1—e)F +0(z) (z€ Es).
Then v’ is a c.p. lifting of ¢dg,,
l1(z) — $'(@)]| < l[r(2) = (1 = e)Fp(a)(L — e)F — eXepy()e? |

+le2yi(a)er — O(z)]|
< 26]|z||
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for z € E;, and
I$'(1) =1 =][1-e)+0(1) -1 <6< 1.

Thus b = /(1) is invertible, and if 1, = b=29'67%, then ||ty — ¢'|| < 36.
Since 7(b) = 1, vy is a lifting of ¢dg,, and

llh2(z) — $a(2)I| < 38]|2]| + [|4'(2) — $a(2)l]
< 56)|«|
< elle|

for z € Fy, so that |[¢a]g, — ]| <e. a

Theorem 6.10. Let B be a unital C*-algebra and let J be a nuclear ideal
in B such that for any C*-algebra C the sequence

0—J®C—BRC— (B/J)®C — 0

is exact. Then for any separable operator system E C B/J, tdg has a u.c.p.
lifting ¢y : F — B.

Proof: Let {aj,as,...} be a dense subset of E. There are finite dimen-
sional operator systems E; C E; C ... in E such that {a;,...,a,} C E, for
n = 1,2,.... By induction using the previous lemma, there are u.c.p. maps
¥ : E, — B such that (i) ¢, is a lifting of idg, and (ii) ||¥nt1]E, =¥l < 27"
For z € E,,{¥n(z),Yns1(z),...} is a Cauchy sequence which converges to
some element ¢(z) € B. Then ¢ : U2, E, — Bis a u.c.p. lifting of idElUEn.
By linearity and continuity, ¢ extends to a u.c.p. lifting of idg. a



7. Nuclear embeddability and exactness.

7.1. Let A be a nuclear C*-algebra. We saw in chapter 2 that any C*-
subalgebra D of A is exact. Moreover, since A is nuclear, the embedding
map ¢ : D — A is nuclear as a map into A. Let 7: D — B(H) be a faithful
representation of D on a Hilbert space S. Then by Arveson’s extension
theorem (Theorem 1.8) there is a completely positive contractive extension
7T: A — B(H) of m. Since 7 = 7¢, and ¢ is a nuclear map, so is w. This
motivates

Definition 7.1. A C*-algebra D is nuclearly embeddable if for some C*-
algebra A there is an embedding ¢ of D as a C*-subalgebra of A with ¢ a
nuclear map.

Using the technique above, the following properties of nuclear embeddability
are easily established: ’

1. D is nuclearly embeddable if and only if D has a nuclear embedding as a
C*-subalgebra of B(H) for some Hilbert space.

2. D is nuclearly embeddable if and only if there is a C*-algebra A and a
completely positive complete isometry 6 : D — A with 6 nuclear.

An obvious question that arises is the relationship between nuclear embed-
dability and exactness. Our main purpose in this chapter is to show that
these properties are equivalent for any C*-algebra. The easier implication to
prove 1s

Proposition 7.2. If a C*algebra D is nuclearly embeddable, then D is
exact.

Proof: Let ¢ : D — A be a nuclear embedding of D in a unital C*-algebra
A. Let B be any C*-algebra and let J be an ideal of B. If z is any ele-
ment of the kernel of the morphism id @ 7 : D ® B — D ® (B/J), where
7w : B — B/J is the quotient map, R,(z) € J for ¢ € D*, by the obser-
vations preceding Proposition 2.6. Since ¢ is nuclear, given € > 0 there are
n € N, and completely positive contractions ¢ : D — M,, ¢ : M, — A
such that ||(¢¥ ® id)(z) — (¢« ® id)(z)|| < . For f € My, fop € D*
and Rsy = Ry(¢ ® id). Thus Rs((¢v ® id)(z)) € J for f € M. Since
M, is finite dimensional, M,, ® B = M, ® B, and it is easy to see that

39
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(¥ ® id)(z) € M, ® J. It follows that (¢9 ® id)(z) € A® J. Since ¢
is arbitrary, it follows that (¢ ® id)(z) € A® J. Let {ex} be an approx-
imate unit for J. Then limy(¢ ® id)(z)(1 ® ex) = (+ ® id)(z) and, since
(¢ ® id)(z)(1 ® e)) € (D) ® J for each X, (+ ® id)(z) € «(D) ® J. Thus
reD®J, ker(id®7) =D ®J, and D is exact. d

7.2. The main result of this chapter is the following converse of Proposition
7.2.

Theorem 7.3. [Kir4, Theorem 4.1] If a C*-algebra A is exact, then A is
nuclearly embeddable.

To prove this theorem following Kirchberg’s argument, we need some pre-
liminary results. If A is exact, so is A, and so we can assume that A is a
unital C*-subalgebra of B(H) for some Hilbert space H. Nuclear embed-
dability means that for any finite subset F = {z1,...,2,} of A and € > 0,
there are m € N, and u.c.p. maps ¥ : A — M,,¢ : M, — B(H) such that
ld((2:)) — zi|| < € for ¢ = 1,...,m. Adding elements to F if necessary,
we can assume that X = span(F) is a finite-dimensional operator system
in A. Since all norms on a finite dimensional vector space are equivalent, it
follows that ||(#%)|x —idx|| < Ce, where C is a positive constant depending
on X but not on €. If, conversely, ¥ : X — M,, and ¢ : M,, — B(H) are
u.c.p. maps such that ||¢y — idx|| < ¢, ¢ has a u.c.p. extension ¥ to A, by
Arveson’s extension theorem, and ||¢((z;)) — zi]| < el|a:|| for ¢ = 1,2,...,n.
To show that A is nuclearly embeddable, it is thus sufficient to show that for
any finite-dimensional operator system X in A and € > 0, there are n € N
and u.c.p. maps ¥ : X — M,,é: M, — B(H) such that

¢y — tdx|| < e. (7.1)
Fix such an X and let
fin(X) = inf ||¢3p — idx]|,

where the infimum is over all n € N and all u.c.p. maps ¢ : X — M,,

Y : M,, — B(H). We need to show that fin(X) = 0.
Let B be an arbitrary C*-algebra, and let J be an ideal of B. Exactness
of A is equivalent to saying that the canonical morphism

(A® B)/(A® J) — A® (B/J)



7. NUCLEAR EMBEDDABILITY AND EXACTNESS 61

is an isometry (see 2.5.2). By Lemma 1.10, dist(z, A® J) = dist(z, X ® J)
for z € X ® B, so that the image of X ® B in (A® B)/(A ® J) is naturally
isometric to (X ® B)/(X ® J). Thus the canonical map

Tx:(X®B)/(X®J)— X®(B/J])

is an isometry for any B and J « B. We shall deduce the existence of u.c.p.
maps ¢ and 1 for which (7.1) holds from this fact.

7.3. Let X be a finite-dimensional operator system in B(H) and for k =
1,2,..., let O = Q(X, k) be the set of u.c.p. maps from X into My with the
point-weak topology. (% is compact and a u.c.p. map V¢ : X — C(Q, My)
is defined by Vi(z) = f. where, for z € X, fu(¢) = ¢(z) (¢ € Q). If
¥ : X — M, is any u.c.p. map, let ¢ be the evaluation map f — f() (f €
C(Q%, My)). Then p = 1V, i.e. ¥ has the factorisation

C(Qka Mk)

If k > 2,V; is isometric, as the following argument shows. Given z € X and
¢ > 0, there are unit vectors £,n € H such that |(z{|n)| > [|z|| —¢. I eis
the projection onto the subspace of H spanned by £ and 7, the map

¢ : X — B(eH);z — exe|ey

is u.c.p and ||@e()|| > ||z|| — €. Thus || fo]l > ||z|| — € for arbitrary € > 0, so
that || fz|| = ||z]|. A similar argument shows that Vj is in fact [k/ 2]-isometric.
V; is injective, but in general not isometric.

Lemma 7.4. For any C*-algebra B andz € X ® B,

el = sup (Ve ® idg)(z)]|

Proof: Since V; is completely contractive,

(Ve ® idp)(2)ll < llzll (k€ N).
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Given € > 0, there is a finite-rank projection e € B(H) such that
(e ® z(e®@1)|| = [|z]| —e.

If ¢ : X — B(eH) is the map ¢ — exe|ey, then ¢ = ¢Vi, where k =dim(eH)
and ¢ is the evaluation map corresponding to ¢. Thus

(Vi ®idB)(2)I| 2 II(¢ ® idB) (Vi ® idp) ()|

= [(e® Dz(e @ 1)
2 ||z]| —e.
Since ¢ is arbitrary, the result follows. d

Now let X} = Vi(X) C C(Q, My) for k = 1,2,.... Since the map Vj 1s
injective, the inverse map Wy, = V; ' : X — X exists. The map W is self-
adjoint and completely bounded, for £ = 1,2,.... (An elementary argument
shows that in fact ||W||s <dim(X) < oo for £ =1,2,....)

Lemma 7.5. For k = 1,2, ey ”Wk+chb S ”Wk”cb-

Proof: Fix k, let e be a fixed rank-k projection in Mj41, and let € be the

function in C'(Qk+1, Mr+1) taking constant value e. For ¢ € Q4 let ¢, be the

map  — ed(z)e; X — eMy1e = M. Identifying eMyy1e and My, ¢e € .
For f € C(Q, My) let f : Qgy1 — M1 be given by

f(9) = f(4e).

Then f € C(Qyy1, Miy1) since the map ¢ — @e; Q1 — (i is contin-
uous, and the map 6 : f — f;C(Qu, M) — €C(Qt1, Mip41)€ is a *-
homomorphism. Since any 1 €  is of the form ¢., with ¢ given by

o= "0 L0 |

where w is a state on X, 6 is injective. Moreover if z € X, then (6(f:))(¢) =
fo(9e) = ¢e(z) = ed(z)e = efs(d)e, so that (Vi(z)) = eViya(z).

Thus 0(Xx) = €Xk41, and a u.c.p map Vi 41 @ X1 — Xi is defined by
Vk,k+1 (.’E) = 0_1(5.’1:@). Clearly Vk,k+lv}c+1 = Vi, so that Wka,k+l = Wit
from which the required inequality follows. d
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Proposition 7.6. If X is a finite-dimensional operator system in an exact
C*-algebra A, then limy_,o || W]l = 1.

Proof: For k € N there are n; € N and yx € Xz ® M, such that ||yi|| =1

and
[Wello > (Wi @ idu)(u)ll > Wil — 7

Let by = (Wi ® id,, ) (yx) € X @ My, B = ®2, My, and J = {(21,23,...) €
B : lim;_ ||zi|| = 0}. Then h = (hq,hs,...) € B2 (X Q M,,) =2 X Q® B, J
is an ideal of B and for the element h + X @ J of (X ® B)/(X ® J)

I+ X © J1] = limsup|he]| = Jim Wil (7.2

For the element (Vi ® id)(h) + X ® J of (Xi ® B)/(Xx ® J)

I(Ve ® id)(h) + Xe ® J|| = limsup,||(Vi ® idi)(Ra)]|
< limyse flyll = 1, (7.3)

since for k < [,
(Vi ® dd) (Rl < (Vi - - - Vier Vi @ i) ()| < |(Vi ® i) (Ro))| = Nlwall-

fTx: (X®B)/(X®J)— X ®(B/J) is the natural morphism, then T’x is
isometric, by 2.5.2. Similarly the natural maps Tx, : (Xx ® B)/(Xx ® J) —
X ® (BJ) are isometric for k = 1,2,..., since X is an operator system in
C(Q%, My), which is nuclear hence exact. For each k,

(Vi ®dp)( X ®J) = Xz ®J,

and so a u.c.p. map &5 : (X ® B)/(X ®J) — (X ® B)/(Xx ® J) is defined
by
Pr(z+ X ®J) = (Vi ®idp)(z) + Xx ® J.

It is straightforward to verify that the diagram

X®B (X®B)/(X®J)—*—>X® (B/J)
Vk®’idBl l@k Vi®idp/s
X, ® B (Xe ® B)/(Xe @ J)—2—~ X, ® (B/J)
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commutes, i.e. that (Vi ® idp;s)Tx = Tx, Pr. Thus

ITx(h + X @ J)|| = sup ||(Vi @ idps)(Tx(h + X ® J))
(by Lemma 7.4)
= sup | T, (@ (R))l
= sup [|(Vi ® idp)(h) + X ® J||

(since T, is isometric)
=1

by (7.3). Since Ty is isometric, limg_.co ||Willes = 1, by (7.2). a

Proof of Theorem 7.3: Let A C B(H) be an exact C*-algebra. Ad-
joining an identity if necessary, we can assume that A is unital. If X is a
finite-dimensional operator system in A, with the notation of Proposition 7.6,
limi—oo ||Wk||es = 1. Let € > 0, and choose k so that ||Wk||s < 1 +¢€. The
map W : Xy — X C B(H) is self-adjoint and completely bounded. By the
Wittstock extension theorem (Theorem 1.13) Wy has a completely bounded
self-adjoint extension W : C(Qk, M) — B(H) such that [|[W]le = ||[Wil|eb-
By Proposition 1.19 there is a u.c.p. map U : C(Q%, M) — B(H) such that
W —Ulle < ||W|ls —1 < &. Then

lidx — UVi|l = (W = U)Vi|| <e.

Since C(Q,Mi) is nuclear there are an nx € N and u.c.p. maps

b : C(, My) — My, and ¢ : My, — C (%, My) such that
llpth|x, —idx,|| <e.
Then $Vi : X — M,, and U¢ : My, — B(H) are u.c.p. and
lidx — (Ug)($ Vi)l < 2.

Since X C A and ¢ are arbitrary, this completes the proof. d



8. Lifting elements in quotients isometrically.

In this chapter we establish a lifting result which will be crucial in proving
the main theorem of chapter 9. Let L and R be closed left and right ideals,
respectively, in a C*-algebra A. The following lemma is well-known (see, for
example, [Kir3, Lemma 4.9(iv)]), and although we shall, in the course of
proving Proposition 8.3, obtain a proof of the special case which we require,
it seems appropriate to include also the simple self-contained proof of the
general case that follows.

Lemma 8.1. The subspace L + R of A is norm-closed.

Proof: For a € L, dist(a, R) < dist(a, LN R). If {ex}xea is a right approx-
imate unit for L, with 0 < ey <1 for each A, and € > 0, there is an e such
that ||a — ae,|| < e. For r € R,

lla—rll = llaex — reull
> |la —rexll — lla — aes|
> dist(a, LN R) —¢.

Thus dist(a, L N R) = dist(a, R). If ¢ : A — A/R is the quotient map, this
implies that ¢|;, has a factorisation

L— L/(LOR) — (L+ R)/R,

where the first map is the quotient map and the second is an isometry. Thus
#(L) is closed, and so also is L + R = ¢~*(¢(L)). O

Since L + R is closed, the quotient A/(L + R) is a Banach space, and if
z € A/(L + R), for any € > 0 there is an T € A which is mapped onto z by
the quotient map and such that ||Z]| < (1+¢€)||z||. An important step in the
proof of Theorem 9.1 will be to show that when L is the left ideal generated by
an increasing sequence of projections and R = L*, Z can be chosen to have
the same norm as z. Kirchberg [Kir3] has proved, using quite elaborate
methods, that such an isometric lifting always exists for general L and R,
and Brown [Br] has given an alternative, shorter proof of this general result.
In the special case that we consider here, the proof, which is based on some
of Brown’s observations in [Br], is particularly elementary.
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Lemma 8.2. Let A be a unital C*-algebra, and p a non-zero projection in
A. Ife >0 and z € A with ||z|| <1+¢ and ||pz|| < 1, then thereisay € A
such that py =0, |ly|| < v2e + €2, and ||z —y|| < 1.

Proof: Let a = pz,b= (1 — p)z and
B =b(1—a"a)((1+€) 1—a%) 3.

Letting y = b— ¥/, it follows that a + &' = z —y, and it is readily verified that
y has the required properties. a

Lemma8.3. Let A be a unital C*-algebra, and p and q non-zero projections
inA. If0 < e <1, and z € A with ||z]| < 1+ € and |[pzq|| < 1, then
there are y and z in A such that yqg = pz = 0, ||ly|| < det, 2|l < 4et and
lz—(y+2)l <1

Proof: Let a = prq and b = pz(1 — q). Then
lla” 4+ &7|| = [l="pll <1+,

a* = gz*p and ||a*|| < 1. By Lemma 8.2, applied to z*p and the projection g,
thereis ay € A such that gy* = 0, ||y|| < v2¢ + €2 < 4e¥ and ||z*p—y*|| < 1,
i.e. yg = 0 and ||pz —y|| < 1. Replacing y by py, we can assume that py = y.
Lettingc=pz —y,d=(l—p)zand 2’ =c+d =1z —y,

llp='|| = llpell <1

and

lz'| <1+e+V2e+e2=1+¢

where

e =42 +e2 < 3/e

By Lemma 8.2, there is a z € A such that pz =0, ||z’ — z|| < 1, and

lz]| < V2e' + e

< \/6vE+ 9

< et
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Then |jz — (y + 2)|| = l|l2' — 2| < 1. U

Proposition 8.4 Let p;,py,... be non-zero projections in a unital C*-
algebra A such that p; < py < ..., and let L =) Ap;. For each z € A there
isanT € L + L* such that

|z — Z|| = dist(z, L + L*) = infaerir+||z — all.

Proof: Assume, without loss of generality, that dist(z, L + L*) < 1. Choose
Yo € L and 2o € L* such that ||z — (yo + 20)|| < 2 and let 2’ = 2 — (yo + 20).
Since dist(z’, L + L*) = lim;_,c0 ||(1 — pi)z'(1 — p;i)||, we can assume, passing
to a subsequence of the p; if necessary, that

I(1=p)'(1—p)| <1 +27% (i=1,2,...).

Sequences y1, Yz, . .. and 21, 22, ... such that y;(1 —p;)) = (1=pi)zi =0, ||yi|| <
9-27 ||zl £9-27°, and

2 = (4 et at. @) STH27%

are defined inductively as follows. If yo,..., Yy, 20, - - ., 2x have been chosen,
where k > 0, let zx =2’ —(p1+ ...ty +z1+...+z) =2 — (Yo+ ... +
Yk + 20+ ...+ 2x). Then

11 = presn)e(1 = pra)ll = (1 = prga)z'(1 = i)
<1+ 2—4(k+1).

Applying Lemma 8.3 with z the element z} = (1/1 4+ 2~4*+1))z; and p =
q =1 — pk41, since

14 2% _ak
|zl < mﬁ 14277,

there are y,, and 2, such that ||yf 4], ||2ksll < 6.27F,
(1- Pk+1)y;c+1 = Z;c+1(1 — pry1) = 0,
and [z}, — (4hes + )| < 1. Letting

Y1 = (1 + 2_4(k+1))y2+1> zker = (14 2_4(k+1))z;c+1>
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it follows that yz4; and zpy; have the required properties. This completes
the inductive step.
Now let y = Y y; and z = Y3 zi. Theny € L,z € L*, and if T =y + 2,

le — 2| = im |lz — (yo+ .-+ g+ 20+... +2)[ < 1.
O

Corollary 8.5. With A and L as above, L + L* is closed in norm. If
p: A — A/(L + L*) is the quotient map, then for each z € A/(L + L*)
there is an & € A such that z = p(z) and ||Z| = ||z||.

Remarks 8.6. 1. When L is a closed two-sided ideal corollary 6 is well-
known, and easy to prove. A simple proof goes as follows. Let z € A/L with
lz|| = 1, and let y € A with & = p(y), where p : A — A/L is the quotient
morphism. If f : [0,00) — [0,2] is the function given by f(t) = min{2,1},
then the element

=y +yy) f1+y7y)
satisfies ||z|]| = 1 and = = p(z).
2. Brown [Br,Lemma 3.1(b)] states Lemma 8.3 with the bounds on ||y|| and
l|z|| replaced by ||y + 2|| < 2v/2¢ + €2. While a bound of this order follows
from Kirchberg’s penetrating analysis of the geometry of the quotient map
A — A/(L + L*) in [Kir3], the proof in [Br] is incomplete. However using
the weaker bound of 8¢ given by Lemma 8.3, all the results in [Br] which
require [Br, Lemma 3.1(b)] follow with obvious slight modifications to the
proofs.



9. A characterisation of separable exact C*-algebras.

The main result of this chapter is the following remarkable result of Kirchberg
[Kir4, Corollaries 1.4, 1.5].

Theorem 9.1. For a separable unital C*-algebra A the following conditions
are equivalent:

(i) A is exact;
(ii) A is nuclearly embeddable;

(iii) there are a unital C*-subalgebra G of the CAR algebra B and a 2-sided
closed AF ideal J of G such that A is *-isomorphic to G/J;

(iv) there is a unital completely isometric linear map 6 : A — B.

Moreover A is nuclear if and only if there is a unital completely isometric
linear map 6 : A — B such that 6(A) is the image in B of a completely
positive projection.

The proof we shall give is taken from [Wa5] and uses techniques from [Kir3],
but is somewhat simpler than Kirchberg’s original proof. The following pre-
liminary proposition, implicit in [Kir3, Prop. 2.3, Cor. 2.4, Prop. 3.4], will
be needed.

Proposition 9.2. Let A be a separable unital nuclearly embeddable C*-
algebra and B a UHF C*-algebra. Then there are a closed left ideal L of
B, an isometry ¢ of the quotient Banach space B/(L 4+ L*) into a unital
C*.algebra D, and a unital complete isometry o : A — D such that if
p: B— B/(L+ L*) is the quotient map,

(i) o p: B — D is unital and completely positive,

(ii) o(A) C «(p(B)), and if A is nuclear, then o,. and L can be chosen so
that o(A) = «(p(B)).

Proof: 1. We can assume that for some Hilbert space H, A C B(H) unitally.
If 4 is a nuclear embedding of A in a C*-algebra D, the embedding of A in
B(H) extends to a completely positive contractive mapping ¢ of D into
B(H), by Arveson’s extension theorem (Theorem 1.8). Then ¢ is a nuclear
embedding of A in B(H). We can thus assume in what follows that D =
B(H) and that x is the embedding map of A in B(H).

69
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Since A is separable and g is nuclear, g is the limit in the point-norm
topology of a sequence of unital completely positive maps on A which fac-
torise through finite matrix algebras. This implies that y ®1idy : ARM, —
B(H) ® M, is the limit in the point norm topology of these maps tensored
with id,, for n = 1,2,.... It follows that there are a sequence A1 C A C ...
of finite-dimensional self-adjoint unital subspaces of A with union dense in
A and, for i = 1,2,..., an n; € N, and unital completely positive maps

Yi: A— My, and ¢; : M, — B(H) such that

(1 — dits) ® ;)| asenapll; < 27°

for 1 < j <1, where || ||; is the C*-norm on B(H) ® M;.

Since B is UHF, there are a sequence 1 < s; < s3 < ... of integers such
that s;|s;1 for each i and a sequence B; C B, C ... of unital subalgebras of
B such that for each k, By = M,, and B = U, Bx. By Arveson’s extension
theorem, the map ®; : A — M, extends to a completely positive unital
map ¢! : B(H) — M, for i =1,2,.... Let Vi = ¢i116i : Mo, — My,
and W; = ¢! : B(H) — B(H). We now show inductively that there is a
subsequence 0 < r; < ry < ... of the sequence 31,52, ... with n; < r;, so that
we can regard M, as a *-subalgebra of M,,, and projections p; € M, such
that (1—p;)M,,(1—pi;) = M, and such that, if ®; : M,, — M, denotes the
compression z —> (1 — p;)z(1 — p;), the following diagram is commutative:

(H) ———— B(H) ———— B{H)
M,, . M,, . M,,

(o2 @y (G2

B

M,, M,, M,,

The map in the bottom row from M, to M,,, = M, ® M, is the
embedding z — z @ 1. Identifying each M,, with its image in M., the
sequence {p;} will satisfy p; <p; < ..
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To start the construction, let r; be the smallest s; such that n; < s;. Let
g1 be a projection in M., of rank nq, and let p; = 1—¢;. Identifying M, with
1M, q1, the image of the completely positive unital map ®; : 2 — qzq: is
M,,. Now suppose that M, and p; have been constructed for 7 < k. Then
Vi®y : M,, — M,,,, is unital and completely positive. By Stinespring’s
theorem there are a Hilbert space K, a unital representation = of M, in
B(K), and a projection gx4+1 € B(K) of rank ng41 such that for z € M,,,

V;C(Qk(w)) = qk+17r(x)qk+1 IQk+1K’

where M,,,, is identified with B(gx4+1K) C B(K). It is apparent from the
proof of Stinespring’s theorem (Theorem 1.6) that K can be taken to be finite-
dimensional, since V;®; is a mapping between finite-dimensional C*-algebras.
Since matrix algebras are simple, it follows that 7 is an isomorphism. Thus
B(K) 2 M,, ® M, for a suitable r € N, and with this identification 7 is
the map ¢ — z ® 1,. Let rg41 be the smallest s; such that ryr < si.

Then ri|ris1, since r and rgyy are elements of the sequence s1, s, ... and
ry < rpy; thus B(K) 2 M, @ M, € M,, @ My, ,/r, & M, . With the

obvious identifications My,,, € M,,,,, and the above equation becomes

Vi(®x(2)) = (1 — pr1) (2 @ 1)(1 — prsa)
= ®k+1(x ® 1)’

where, for each i, p; = 1 — ¢;. This completes the inductive step and proves
commutativity of the above diagram at the kth square. Identifying py with
Pk ® 17

(1 = pet1)pr(1 — pry1) = Va(@x(pr))
=0.

Thus pr < prs1-

2. In the above diagram we can assume that the M,, and M, are x*-
subalgebras of B with 1 € M,, C M,, C ... and UM,, dense in B. Then
pi € B, so that L = U; Bp; is a closed left ideal of B. Let By, be the C*-
algebra of bounded sequences of elements of B with norm ||(z;)|| =sup;||z:|,
and let I be the ideal of zero-sequences in B, i.e. the ideal of sequences
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(z;) such that lim;_c ||zi]| = 0. Let 7 be the quotient map B — Beo /1,
and for z € B, let ¥ : B — B, /I be the map given by

¥(z) = 7((gizgi))-

Since 7 and the map
T — (1291, 422Gz, - - y

are both completely positive and contractive, the same is true of ¥, and ¥(1)
is the projection e = 7((¢;)) in Boo/I. Let D = e(Bs/I)e. Then ¥(B) € D,
and ¥, as a map to D, is unital.

If z € B, since p; < p; < ..., the sequence {||gizgi||} is decreasing, and
so tends to a limit as ¢ — oo. It follows that

1¥(2)|| = lim [lg;z g,

so that dist(z, L+L*) < ||¥(z)||. The opposite inequality holds since ¥(L) =
W(L*) = {0}, and so || ¥(z)|| = ||p(z)|| for z € B, where p: B — B/(L+L")
is the quotient map. It is now immediate that there is a well-defined linear
isometry ¢ : B/(L + L*) — D such that ¥ = ¢p.

3. It remains to construct the unital complete isometry o : A — D. With
the above identifications, M,, C B and for y € M,,, Vi(y) = ¢i+1¥git1, for
each 1. If z € Ay has unit norm, then ||z — Wi(z)|| < 27" for : > k, and

[ir1(2) = ViCi(@ )l = [¥aa(z — (wi())
< Jlz - W)
<27

Since ¢;Vi(¥i(z))g; = ¢;(¥i(z))g; for j > 1, it follows that W(yi(z)) =
U(Vi(¢i(z))), so that

19 (Wisa(2)) — T = (Wi (2)) — V()]
< (@) = (GWi(a)]
<27

This shows that for z € |J A, the sequence {¥(vi(z))} is Cauchy in D.
Since |J Ax is dense in A and the maps Wi, are all contractive, it follows
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that for any z € A, o0(z) = lim;_o ¥Y(¢i(z)) exists. The map o : A — D,
being a point-norm limit of unital completely positive maps, is itself unital,
completely positive, and therefore completely contractive. By construction,

a(A) C «p(B)).

To show that o is a complete isometry, it suffices to show that if n € N and
z € A®M, with ||z]| = 1, then ||c((z)|| > 1, where 0" = 0 ®1d,; and since
o is completely contractive, it is enough to show this for z € (U Ax) ® M,.
Thus it is enough to show that for ¥ € N and = € Ay @ M, with ||z|| = 1,
for any € > 0 there is N € N such that for « > N,

e @O @) = Jim|lg 4 (2)g”)
Z 1- €,
where q( "= =q;® 1,, ¥ = ¥ @ id,, etc. Now for z € Ay ® M, of unit
norm and e>0,let N € N satisfy 27V < ¢/3 and N > max(k,n). Then

A @M, C A M, C A ®M,; for i > N, so that z € A; ® M; for such z.
Fix : > N. Then

198 (2) — g @)l = 1) ™ (@ — ¢ (WM @)

<2

for [ > 4. For 7 > ¢ + 1, applying this for [ =1,...,j — 2, and using the fact
that for such ,¢; < 141, it follows that

g (2)g\™ — ¢y (2)gM]| < 27

and
18 (z) — ¢Mpi™ (2)g{™)| < 279,

so that, summing,

98" (@) — g9 (@)g )] < 27,

Thus |
1657 (85 (2) — ¢ (2)gf)l| < 27

and since also

e — 6™ (B ()| < 277 <27,
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it follows, finally, that

a9 @) > 147670 @)
> o] - 27 27
>1-—ce¢.

This implies that ||\Il(")(z,b,(")(x))|| > 1—cefori > N, so that ||[o(™(z)|| > 1—e.
Since ¢ is arbitrary, ||c((z)|| > 1, from which it follows that o is completely
isometric.

4. When A is nuclear, it satisfies the CPAP and so the maps ¢; and ¢; can
be chosen to satisfy all the previous properties and also ¢;(M,,) C Afor all .
The finite-dimensional operator systems Ay will be assumed chosen so that
for each i, ¢i(Mp,) C Aip1 (it is easy to see that this is possible since the A
are defined inductively). To show that o(A) = ¥(B), it suffices to show that
for z € M,, with ||z|| = 1, there is an @ € A such that o(a) = ¥(z). Let
z € M,,, with ||z|| = 1 and consider the sequence {¢;(¢;2¢;)}jen. For j >4,

16;(g524;) — bij-1(gi—12q-1)Il = [1(8;%5)($j-1(g;-12¢j-1))
| —¢;i-1(g5-12¢;-1) |l
< 27| |¢j-1(gj-12¢i-1)]]
<279,

Thus {¢;(g;zq;)} is a Cauchy sequence in A, and has a limit a with [|a|| < 1.
Let £ > 0 and choose k € N such that 27% < ¢ and

la — ¢i(g5xq;)ll < e

for § > k. This last inequality implies that for j > &,

() — grzginll = l1¥;(a — ¢;(g;2;)|l
<e.

Let o’ = ¢r(qrqr) € Agy1, so that |la — d'|| < € and ||a'|| < 1. For ¢ > k and
>4,

ltb141(a’) — qrrrtn(a’) ]| < 27
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so that, for j > 1+ 1,
l95(a’) — gsbi(a’)gill < 27
Combining these inequalities gives

lgivi(a')g; — gizgsll < e+27H < 3e

and
llgii(a)g; — gjzg;ll < 4e
for ¢ > k and j > i + 1, from which it is immediate that

1@ (i(a)) — ¥(z)|| < 4
for i > k. Thus '

lo(a) = ¥(2)|| = lim || ¥(si(a)) — ¥ ()]
<4e

and, since ¢ is arbitrary, it follows that o(a) = ¥(z), as desired. O
Proof of Theorem 9.1:
(i) & (ii): This is immediate from Proposition 7.2 and Theorem 7.3.

(ii) = (iii): Let A be a separable unital nuclearly embeddable C*-algebra
and let B be the CAR algebra. Thus B = |J; Bk, where By is a unital -
subalgebra of B *-isomorphic to My« and By C B; C .... Let A be faithfully
unitally represented on a Hilbert space H, so that 1 € A C B(H). By
Proposition 9.2, there are a unital C*-algebra D, a unital complete isometry
o0 : A — D and a unital completely positive map ¢p : B — D such that
o(A) C «(p(B)), with equality if A is nuclear. Now o(A) is a closed operator
subsystem of D and 07! : 6(A) — A C B(H) is a unital complete isometry,
hence completely positive. By Arveson’s extension theorem o~! extends to
a completely positive map 7 : D — B(H). Let # = 7¢p and let U(A)
be the group of unitaries in A. For u € U(A), o(u) € «(p(B)), so that
v Ho(u)) € p(B) = B/(L + L") and

[ (o))l = llull = 1.
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By Corollary 8.5, there is an element z € B such that ||z]| = 1 and p(z) =
" (0(u)), i.e. u = 7(z). Clearly 7 is unital and completely positive, and by
Choi’s generalised Cauchy-Schwartz inequality (cf. 1.5.6),

1 = u*u = 7(z")7(z) < 7(z*z) < ||z|°x(1) =1,

so that m(z*z) = 7(2*)7(z). Similarly n(zz*) = w(z)7(z*). This implies
that z and z* are in the multiplicative domain of , i.e. for a € B, 7(za) =
7(z)7(a) and 7(az) = 7(a)w(x) (see 1.5.6.).

Letting X = {z € B : ||z|| = 1,7(z) € U(A)}, X is self-adjoint and closed
under multiplication, so that its linear span sp(X) is a *-subalgebra of B.
Since X lies in the multiplicative domain of 7, 7|sp(x) is a *-homomorphism,
so that, if F = C*(X) = sp(X), 7|r is a *-homomorphism, by continuity.
Since 7(X) = U(A), n(F) = A. Let K = Fkerw, so that K is a two-
sided closed ideal of F and A & F/K. Let J = C*(KBK), the hereditary
C*-subalgebra of B generated by K. By [El|, J is approximately finite; also
FJ C J, and n(J) = {0}. Letting G = F + J, it follows by standard
arguments that G is a C*-subalgebra of B, J is a closed ideal of G, and
G/J = A. Indeed F + J is a C*-subalgebra of B with J as a closed ideal. If

7 F+J — (F+ J)/J is the quotient morphism, then K = F'N J and
T(F)2 F/(FNJ)=F/K = A.
It follows that F + J = n'~'(A), so that F' 4 J is closed in B.

(iii) = (iv): If A = G/J, where G C B and J is AF, J is nuclear and
G has property C, since it is a C*-subalgebra of B, which is nuclear, and
so has property C. It follows by Proposition 5.2 and Theorem 6.8 that the
quotient morphism 7 : G — G/J has a unital completely positive right
inverse § : A — G. Since 70 is the identity map on A, 6 is completely
isometric.

(iv) = (ii): Let m; : B — By = M, be a contractive projection, for
k=1,2,.... Then for z € B, ||mx(z) — z|| — 0 as k — oo. If A C B(H),
0 : A — B is unital and completely isometric, and so 67! : §(A) — A C
B(H) is unital, completely isometric, and therefore completely positive. By

Arveson’s extension theorem, §~! extends to a unital completely positive
7: B — B(H). For z € A,

[(rm:0)(z) — 2|l < [|mx(6(<)) — (2)[| — 0
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as k — oo. Since mf : A — My and T : Myx — B(H) are completely
contractive, it follows that A is nuclearly embeddable.

When A is nuclear, 0(A) = «(p(B)) in the previous notation. The existence
of the map 6 : A — B follows as above, but is also a consequence of the
Choi-Effros lifting theorem if A is nuclear. Then fo~'tp is a completely
positive projection of B onto §(A).

Conversely, let § : A — B be a unital complete isometry and ¢ : B —
6(A) a completely positive projection. Then

187" ¢mib)(z) — || = llé(m&(6(<))) — 8(2)]
— ll¢(6(=)) — 6(=)
=0

for z € A, as k — oo. Since mxf : A —> My and 07'¢ : My — A are
unital and completely positive, A has the CPAP and is thus nuclear. d

Corollary 9.3. Any quotient of an exact C*-algebra is exact.

Proof: 1. Let A be separable and exact and let J be an ideal of A. Then
A is exact and J is an ideal of A. It thus suffices to consider the case where
A is unital. By theorem 9.1 there is a C*-subalgebra G of the CAR algebra
B such that G/I = A for some ideal I of G. Then A/J = G/K for some
ideal K of G with I C K. By theorem 9.1 G/K, and hence A/J, are exact.

2. If Ais an arbitrary exact C*-algebra with J an ideal of A, and C is a
separable C*-subalgebra of A/J, there is a separable C*-subalgebra D of A
such that C = w(D), where 7 : A — A/J is the quotient map. Being a
C*-subalgebra of an exact C*-algebra, D is exact, and so C is exact, by part
1 of the proof. Thus every separable C*-subalgebra of A/J is exact, and this
implies that A/J is exact, since an inductive limit of exact C*-algebras is
exact, and A/J is the inductive limit of its separable C*-subalgebras. a

Corollary 9.4. 1. The CAR algebra B has a C*-subalgebra which is not

nuclear

2. If A is a non-type I C*-algebra and D is any separable exact C*algebra,
there is a completely positive complete isometry w : D — A.
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Proof: 1. let D be a separable unital C*-algebra which is exact but not
nuclear, e.g. let D = C*(F;). By Theorem 9.1 there is a C*-subalgebra G of
B such that D = G/J for some ideal J of G. Since D is not nuclear, neither
is G.

2. By the Glimm-Sakai theorem [Sak], A has a C*-subalgebra H such that
B = H/K for some ideal K of H. Since B is nuclear, the quotient map
H — H/K has a completely positive right inverse 7, by the Choi-Effros
lifting theorem. The map 7 : B — H is completely isometric. If D is
any separable exact C*-algebra, then by Theorem 9.1 there is a completely
positive, completely isometric linear map 6 : D — B. The composition
70 : D — A is the required map w. d

Remarks 9.5. 1. An alternative route from (iii) to (i) of Theorem 9.1 is as
follows. If a separable C*-algebra A is *-isomorphic to a quotient of a C*-
subalgebra of the CAR algebra, A is exact, by Corollary 5.6. By Theorem
7.3, A is nuclearly embeddable.

2. By Propositions 5.1 and 5.5, any C*-algebra which is a subquotient of
the CAR algebra has property C. Thus any separable exact C*-algebra has
property C. It can be shown that an inseparable C*-algebra has property C
if all its separable C*-subalgebras have property C. It follows that if A is an
arbitrary exact C*-algebra, each separable C*-subalgebra of A is exact and
has property C, so that A has property C. Thus a C*-algebra is exact if and
only if it has property C.
3. Blackadar [Bla] showed that any C*-algebra A which is not type I has a
C*-subalgebra with a quotient isomorphic to the Cuntz algebra O;. Since O,
has a non-nuclear C*-subalgebra, it follows that any non-type I C*-algebra,
in particular an AF algebra, has a non-nuclear subalgebra.

By Corollary 9.4 it follows that given a non-type I C*-algebra A and a
separable non-nuclear exact C*-algebra C, there is a C*-subalgebra D of A
with a quotient isomorphic to C. Clearly D cannot be nuclear.



10. Further results and open problems.

1. Kirchberg gives two rather different proofs in [Kir4] that an exact C*-
algebra is nuclearly embeddable, the second of which is given chapter 7. The
other proof makes use of the remarkable result, proved in [Kir5], that there
is a unique C*-norm on B(H)® C*(Fw ), where H is any Hilbert space. The
proof of this result in [Kir5] is quite complicated. It would be valuable to
have a simpler and more concise proof.

2. Junge and Pisier [J-P] have recently shown that, with H = £%, the norms
Il llmaz and || |lmin on B(H) ® B(H) are distinct. Their method of proof,
which we now outline, is interesting.

Fix n > 2, let X and Y be n-dimensional operator spaces, and de-
fine dy(X,Y) to be the infimum of ||@||e]|¢7||cs over all linear bijections
$: X — Y. Then dy(X,Y) = 1 if and only if X and Y are completely
isometrically isomorphic. Let OS, denote the set of equivalence classes of
n-dimensional operator spaces, the equivalence relation being completely iso-
metric isomorphism. A metric 64 on OS,, is defined by

6Cb(Y, ?) =logds(X,Y).

With this metric OS,, was known to be complete and non-compact, and Junge
and Pisier have now shown that for n > 2, O, is not separable. Their proof,
which comes down to a surprising application of the Baire category theorem,
is rather involved and relies on much previous work.

It is quite simple to derive the non-uniqueness of the C*-norms on
B(H) ® B(H) from the inseparability of OS,. For a given a separable C*-
algebra A, the set of equivalence classes of n-dimensional operator spaces
contained in A is easily shown to be a separable subspace of OS,. The
non-separability of OS,, then implies that there is an n-dimensional oper-
ator space which has no completely isometric embedding in A. Let A be
the unitary group of B(H), regarded as a set, and for A € A let uy be the
corresponding unitary in B(H). Since B(H) is the linear span of its unitary
group, there is a *-epimorphism ® : C*(Fy) — B(H) such that ®(g)) = ux
(A € A), where F, is the free group on generators {gr}xea. If the norms
Il llmin and || ||maz coincided on B(H) ® B(H), the sequence

0—>ker® @ B(H)— C*(Fx) ® B(H) 2% B(H) ® B(H)—>0

79
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would be exact and, by remark 6.9, each finite-dimensional operator system
in B(H) would have a completely isometric embedding in C*(F, ). Since an
n-dimensional operator space X is contained in a finite dimensional opera-
tor system, this would imply that each such X had a completely isometric
embedding ¢ in C*(Fy). For a suitable countable subset I of A, #(X) would
be contained in C*({gx : A € I}) & C*(Fs ), which is separable. Since every
n-dimensional operator space X has a completely isometric embedding in
B(H), this would imply that every such X has a completely isometric em-
bedding in C*(Fs, ), which contradicts the existence indicated above of an X
without this property. It follows that || ||maz # || |lmin on B(H) © B(H).

Since OS, is not separable, there exist an € > 0, an uncountable set K,
and a family {Xi}rex of n-dimensional operator spaces such that
bb( Xk, Xp) > € if & # k'. The inseparability proof in [J-P] is an exis-
tence proof, and no example of such a family {X;} is given. Presumably the
set K can be taken to be the interval (0,1). It would be satisfying to have
an explicit example of a such a family with this K.

4. Can every separable exact C*-algebra be embedded as a C*-subalgebra of
a nuclear C*-algebra? In particular, is every exact C*-algebra *-isomorphic
to a C*-subalgebra of the Cuntz algebra O,?7 By Proposition 9.2, if Ais
separable and exact, then (with the notation of Proposition 9.2)

a(A) € (tp)(B) € D.
Now (up)(B) & p(B) = B/(L + L*), and if the o(B**, B*)-closure of L in

B** is L, then I = B**e for some projection e € B**. Thus ((¢p)(B))™
is unitally completely isometric to (1 —e)B**(1—e), which is an injective
von Neumann algebra. Thus (1—e)B**(1—¢) is semidiscrete and has the
normal CPAP [Wa2]. From this it follows that (¢p)(B) is a nuclear operator
system, i.e. the identity map on (¢p)(B) is nuclear (see [Kir4]). Thus A has
a u.c.i. embedding in a nuclear operator system, and one might hope that
any nuclear operator system could be embedded as an operator subsystem
of a unital nuclear C*-algebra. However Kirchberg has shown that there is
a nuclear operator system which does not have a u.c.i. embedding in any

nuclear C*-algebra.

5. Is an arbitrary (inseparable) exact C*-algebra a C*-subalgebra or a sub-
quotient of a nuclear C*-algebra?
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~ 6. If G is a countable discrete group, is C*(G) exact? Let o be the action of
G on £*°(G) given by
(ag(€))(R) = E(97"h) (£ € £2(G).

Then C}(G) is a C*-subalgebra of the crossed product £°(G) x4,, G. There
has been speculation that this crossed product algebra is always nuclear,
which would imply the exactness of C}(G), but a proof has remained elusive.



Appendix: The K-groups of C}(F,) forn=1,2,....

In this appendix we give a self-contained derivation of the K-groups of C;(Fy)
for n € N. Our method, though based on the KK-theoretic treatment of
Cuntz [Cu3], uses only K-theory, and in particular the notion of difference
maps. The original derivation of these K-groups by Pimsner and Voiculescu
[P-V] also used K-theory; and Lance [La3] obtained the K-groups of a more
general class of groups using a method based on that of [P-V] involving
difference maps. However the present approach is somewhat simpler and
more concise. A good reference for K-theory is the recent book of Wegge-
Olsen [We].

For a C*-algebra A, K.(A) will denote the graded group Ko(A) ® K;(A).
If B is another C*-algebra and ¢ : A — B a *-homomorphism, then ¢. will
denote the induced homomorphism K,(A) — K.(B).

A.1 The K-groups of C*(F,). Recall that Ko(C*(F,)) = Z and
K1(C*(F,)) = Z™ [Cu2]. For completeness a sketch of the proof is included.
To keep the notation simple, only the case n = 2 will be considered; the
general case is analogous.
Let C*(F;) = C*(u,v), where u and v are the generators of F,. Then
C*(u) = C*(v) = C(T). Let
D ={(f,9): f € C*(u),g € C*(v), f(1) = g(1)} € C™(v) ® C*(v),

and let j : D — My(C*(F;)) and k : C*(F,) — D be the homomorphisms
given by

: [fo ]

i((£,9)) [ R
and

Bu) = (w 1), k(v) = (L,0).

The homomorphism kyj : D — M;(D) is homotopic to the homomorphism

BN 0
(f.9) [o (g(l)l,f(l)l)]

via the continuous path of homomorphisms

(f,g>—><1,w*)[(f’f(§1)1) (g(l‘;l,g)]a,m @elx/2), )

82
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cosf sinf
—sinf cosf
right-hand side of (1) is in ‘My(D) for (f,g) € D and € [0,1]). The

homomorphism jk : C*(Fy) — Mz(C*(F;)), which sends u and v to [ g (1]

where Vj is the unitary ] (it is not hard to verify that the

1 . . . .
and [ 0 2 ] , respectively, is homotopic to the homomorphism

””"“*[g «p?w)}’

via the continuous path of homomorphisms ¢4 given by

ww=[4 0], ww=v | o |w wenn

where 1) is the canonical character of C*(F;) extending the trivial represen-
tation of Fy. If ¢ : D — C*(IF,) is given by D((f,9)) = f(1), then ¢ = Dk,

and so
Juks = tdg,(co(Fy)) T Yo

so that
1K, (Cr () = Jnkn — Pu = (Jx — ).
Also R
kojs = idg, (D) + kutbu,
so that

idi.(p) = ks (ju — ).
It follows that the homomorphism k. : K,(C*(F;)) — K.(D) is a bijection.
Let I = {(f,g) € D : f(1) = g(1) = 0}. Then I = Cy(R)® Co(R) and

I a D. The short exact sequence

is split, so that

K;(D) = K;(C) & Ki(Co(R) ® Ki(Co(R).
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Since Ko((C) = Z, K](C) = {0}, KO(CO(R)) = {0}, and Kl(CO(R)) = Z, it
follows that Ko(C*(F)) = Z and K1(C*(Fy)) = Z°.

A.2 Difference Maps. If C is a unital C*-algebra and J an ideal of C
which is stably isomorphic to itself, i.e. J = B ® K(£) for some C*-algebra
B, let

D(C,J) = {(¢,d):¢c,d € C,c— € J},

and let *-homomorphisms j : J — D(C,J), = : D(C,J) = C,and 6 : C —
D(C,J) be defined by

i(z) = (2,0), 7((e,d))=¢, 0(c)=(c0).
Then the sequence
0—>J—1>D(C,J)—">C —>0
is exact and split, since 7 = 1dc. Thus
K.(D(C,J)) 2 K.(J) ® K.(C)

and a natural group homomorphism o : K.(D(C,J)) — K.(J) is given by
o = j7 (idk,(p(c,J)) — O«7x). We now obtain explicit formulae for the action
of o.

Since C, and hence D(C, J), are unital, the elements of K;(D(C,J)) will
be equivalence classes of unitaries in M,(D(C,J)), for n € N. A typical
unitary in M,(D(C,J)) & D(M,(C), Mn(J)) is of the form (u,u’), where u
and u’ are unitaries in M,(C) such that 1 — uw'™" € M,(J). Then uu'~! €
Mo (J) and [(u,u)] = [(we'"}, )] + [(w', &)}, so that

o([(u,u)]) = [wu'™"]

The group Ko(D(C, J)) is generated by equivalence classes of projections
in M,(D(C,J)), for n € N. A typical projection in M,(D(C,J)) is of the
form (e, f), where e and f are projections in M,(C) such that e— f € M,(J).
Then

[(e, /)] = (e, N = [(£; NI+ [(£, /)]
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and

[(e, ] = (£, N = ((e; NI+ [A=£,1=HD) = ((F, N + (1= F1=1)))
:[[ (e, f) 0 ]]_[[ (f, f) 0 ]]
0 (1_fa1—f) 0 (1—f,1~f)

| 1-f
U“[l—f I }

and V = (U,U) € My,(D(C,J)). Then V is a self-adjoint unitary and
V[(e,f) 0 ]V:(P,[l 0]),

Let

0 (1-f,1-f) 00

where
P=[1+f(e—f)f fe(1-1) ]
(1-fef (A=FHe(1-f) |

Thus

[[ rk (1—f(,)1—f) ]] B [ 7y (1—f?1—f) ]]
= [y o i-ufs o ]-[o o]0

ofllesD =171 5 o |1

since J = j(J) 4+ C(1, 1).

Now let A be another C*-algebra, which, for simplicity, will be assumed
unital. If ¢,¢' : A — C are x-homomorphisms such that ¢(a) — ¢'(a) € J
for a € A, then the map (¢,¢") : a — (¢(a),¢'(a)); A — D(C,J) is a *-
homomorphism, and so induces a group homomorphism (¢, ¢'). : K.(A) —
K.(D(C,J)). Let [¢,¢'] : K.(A) — K.(J) be the homomorphism o(4, ¢')..
If (1) = p and ¢'(1) = ¢, then for u a unitary in M,(A), ¢u(u)+(1-p)® 1,
and ¢/ (u) + (1 — ¢) ® 1, are unitaries in M,(C) and

(6, ¢N1([u]) = [(¢n(w) + (1 = p) ® La)($(w) + (1 =) ® 1), (2)

and so
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and for e a projection in M,(A),

st =e-(| 5 o ] ®)

where P. € Mzn(j ) is the projection
P [ 1+ ¢'(e)(d(e)—¢'(e))g'(e)  &'(e)é(e)(1n—¢'(e)) }
‘ (1n—¢'(e))d(e)¢'(e) (1n—¢'(e))g(e)(1n—¢'(e)) |

It is simple to verify directly that P. is a projection and a perturbation of

1(; g by an element of M,,(J). Indeed equations (2) and (3) can be

taken as the definition of the difference map [¢, ¢]. The following properties
of difference maps then follow easily from the basic definitions of K-theory.

1. If ¢,: A — C (t € [0,1]) is a continuous path of *-homomorphisms such
that ¢o = ¢; mod J for t € [0,1], and ¢' = ¢ mod J, then

[Bo, ¢'] = [¢1, ¢']-

2. If ¢ : A — J is a *-homomorphism, then [¢,0] = ¢. and [0, §] = —¢x.

3. For any *-homomorphism ¢ : A — C, [¢, 4] = 0.

4. If ¢;, ¢! : A — C are *-homomorphism such that ¢; = ¢} mod J (i = 1,2),
and ¢; @ ¢y : A — M,(C) is given by

then ¢; @ ¢ = ¢} D ¢, mod M3(J) and
[¢1 GB (]52’ ¢,1 @ ¢’2] = [¢17 ¢;] + [¢23 ¢l2]

5. If ¢ : A; — A is a x-homomorphism, and ¢, ¢’ : A — C are equal mod J,
then ¢ = ¢'yb mod J and

(¢, Y] = [, ¢

6. If ,¢' : A — C are equal mod J, and ¢ : C — D is a *-homomorphism,
let K =(J). Then v¢ = ¢’ mod K and

- [¢'¢’ ¢¢I] = d’* [¢a ¢l]a
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where 1, : K.(J) — K.(K) is the homomorphism induced by |;.

A.3 The K-groups of C*(F,). Let n € N be fixed, and let £3(F,) =
(F,) 6 (CE.). A unitary representation Ao : F, — B(£3(F,,)) is given by

b (9= u‘—l) :
Mo(ui)éy = ' L 1 <1< n),
oty ={ £ f130m) asiso
where u;, ..., u, are the generators of F,,. Let S; be the set of those elements
of F, which, when written as reduced words in the u;, end in a non-zero
power of u;, for i = 1,...,n. Then Sy,..., S, is a partition of F, \ {e}. Let
H; be the closed subspace of £3(F,) generated by {£, : g € Si}. Then H; is a
reducing subspace for Ao and Aol =~ . In fact if V; : £2(F,) — H; is given

by
& (g ends in a positive power of u;)

Vi€y = { ggw_l (otherwise),

then V; is unitary and for ¢ € F,, Mg) = Vi*Xo(9)Vi. Since H; L H; for
i # 7, it follows that Ao ~ A @ ... @ X (n copies).

If - : F, » B(H) is a any representation of F,, let 7 denote the
canonical extension of m to a representation of C*(F,) on H. Now let
w : C*(F,) — B(K) be a faithful representation of C*(Fy ), and let 7 = w|r,.
Recall that 7 ®\ is equivalent to a multiple of A. In fact, if U is the unitary on
(F,) ® K = ¢*(F,, K) given by

(U€)(9) =7(9)é(9) (& € £(Fy),

then
U*(m(9) @ Mg))U =1k ® A(g) (g € Fx).

Thus 7 ® A and 7 ® Ao are equivalent to multiples of A, and their extensions
7® X and T @ Ao to C*(F,) factor through C;(F,). We can regard Ao as
a degenerate representation of F, on %(F,), and m ® Ao as a degenerate
representation of C*(F,) on K ® ¢*(F,). Thus there are *-homomorphisms
0,00 : C*(F,) — C*(F,)® B(¢*(F,)) such that 7@ A = fX and 7 @ Ao = BoX.
Now A(u;) — Ao(u;) is of finite rank, and so (7 ® A)(u;) — (7 ® Ao)(wi) €
C*(F,) @ K({*(F,), for 1 < i < n. Thus 7® A = 7 ® Ao (respectively,
0 = 6y) mod C*(F,) ® K(*(F,).

Let t : F, — C be the trivial representation. If the representation
Xo @ t is identified with the representation on ¢*(F, ) whose restrictions to
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C¢. and (CE.)* are t and Ao, respectively, then Mui)*(Mo(ui) @ t(u;)) is in
Cl + K(£*(F,) for each i. By spectral theory A(ui)*(Xo(u:) @ t(u;)) can be
connected to 1 by a norm-continuous path of unitaries in Cl + K (£*(F,).
We thus obtain a path of representations {A*}o<s<1 of F, such that A0 =
A A= X ®t, X(9) — Mg) € K(£*(F,)) for g € F, (0 < s < 1), with
s — X*(g) norm-continuous for each g. We can regard ¢ and A as degenerate
representations of F,, on £*(F,) and £3(F,) & ¢*(F,), respectively. Then

TR(M®t)~ (TR ) B (T®1),
and

[0, 80] X, = [0, 6]
=[r®X7Q A
=[rQ®@ (A ®t),T® Ao
=[TQ@¢,0]+[7® do, 7™ ® o]
= (T @1).

= Ty

=w*’

i.e. w, = [0, 00\

Now (A®1)8r, = A®A, (A®1)bo|F, = A®@Xo and A =~ (A®X0)D(A®t) =~
(A® Xo) ®X. Thus (A ® 1)0 and (A ® 1)f, are multiples of the identity
representation 7, of C*(F,), and (A ® 1)8 ~ (A ® 1)6p & 7,. Hence

(X®1)8, X ®1)8g] = [r,,0] + [(X ® 1)bo, (X ® 1)80]
= (7"7)*)

i.e. A[0,80] = (7). Sincew, and (). are the identity maps on K.(C*(F,))
and K.(C*(F,)), respectively, it follows that A, : K.(C*(F,)) — K.(C}(Fy,))
is an isomorphism. Thus by the results of §A.1,

Ko(CX(F,)) = Z, K (Cx(F,)) = 2™
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