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PREFACE

The second GARC Symposium on Pure and Applied Mathematics was
held at Seoul National University from February 4 to 20, 1993.

The symposium was organized by the Global Analysis Research Center
which was founded in 1991 as one of 30 centers of excellence under the sup-
ports of the Korea Science and Engineering Foundation.

The symposium covered a broad range of topics in the fields of mathemat-
ical analysis and global analysis. It was carried out in 6 sessions ; nonlinear
analysis, operator algebras, partial differential equations, topology and ge-
ometry of manifolds, differential geometry and complex algebraic varieties
and several complex variable.

Among them the session of partial differential equations was held in the
form of the first Korea-Japan joint conference. We expect the second joint
conference will be held in Japan next year. We are pleased to express here
our thanks to those participants from Japan whose collaboration made the
conference a successful one.

The GARC symposium was actively attended by more than 200 partici-
pants including 16 foreign mathematicians. This proceedings of three issues
contains research articles which were presented. The content will be of in-
terest both to the members of the Global Analysis Research Center and to
mathematicians working in the various fields of current mathematics.

We wish to express our gratitude to all contributors and especially to those
mathematicians from abroad. We also express our thanks to the Korea Sci-
ence and Engineering Foundation for having made this symposium possible,
to Professors Sage Lee and Hyuk Kim for their endeavor in organizing this
symposium and to Miss Jin Young Bae and Mr. Kyung Whan Park for their
help in editing the proceedings.

Jongsik Kim

Director

The Global Analysis Research Center
Seoul, Korea
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ACTIONS OF INFINITE DISCRETE GROUPS
OF PROJECTIVE TRANSFORMATIONS

Hyuk KiMm

1. Introduction

In this paper, we will discuss some results about the actions of infinite
discrete groups of projective transformations such as the limit singular pro-
jective transformations of the groups and the domains of discontinuity which
arise naturally by these limit transformations.

After some results about these domains have bean obtained, it was found
that the subject was already studied by Myrberg several decades ago [4], and
more recently the domains of discontinuity for a discrete group action in a
more general topological setting by Kulkarni [3]. Since the subject seems to
be quite important to those who are interested in the geometric structures
on manifolds, we reintroduce some of their works and make a comparison of
their domains of discontinuity.

In general, the difficult part in the study of an infinite group action lies at
the behavior of the action at infinity which is closely related to the structure
of the end of the group. The detailed analysis of the limit singular projec-
tive transformations given as accumulation points of the group of projective
transformations would then be expected to serve as a key for understanding
of projective actions at infinity.

While the study of subgroups of projective transformations and their ac-
tions should be of fundamental importance in various branches of geometry,
our motivation stems from the holonomy actions of projectively flat mani-
folds. (See [2, 5] for the notion of projectively flat manifolds.) The class of
projectively flat manifolds is quite broad including the classical space forms
(i-e., Riemannian or pseudo-Riemannian manifolds with constant curvature)

Supported in part by KOSEF-GARC 1992



2 Hyuk KM

and affinely flat manifolds. If we restrict the projective actions to subvari-
eties, we will have more list of interesting examples such as conformally flat
manifolds. Also the essential part of the investigation of the structure of pro-
jectively flat bundles or foliations lies in the study of the associated holonomy
actions. All the known special cases and detailed study about these examples
will thus suggest a guideline for a future development of uniformizing theory
which hopefully provide comparison and interrelations between the various
substructures through the extrinsic viewpoint in a broader setting, namely
in the projective space.

Let PGL(n + 1,F) be the group of projective transformations over a field
F = R or C, and T be an infinite subgroup of PGL(n +1,F). If T acts prop-

erly discontinuously on a subset of the projective space P", then T is clearly -

discrete. But a discrete subgroup I' in general does not act on P* properly
discontinuously and we want to find a canonical domain on which T’ acts
properly discontinuously. This problem is studied in a general topological
setting in [3]. But if we concentrate on the projetive actions, we can formu-
late such domains in a canonical way using the limit singular transformations
as observed in [4]. Let M(n+1,F) be the space of (n+1) by (n+1) matrices
identified with ]F'("+1)2, and let PM(n + 1,F) be its projectivization which
can be considered as a canonical compactification of PGL(n + 1,F). Let T"
be the set of accumulation points of T in PM(n + 1,F). Then an element
~ of I will be a singular projective transformation and the kernel of v will
be denoted by K(v). Let K(T) be the union of K(v) for v € I'. Then the
complement of K(T') is the desired domain on which T' acts properly discon-
tinuously. (See 2.6 below.) It can also be shown that this domain in general
is contained in the domain of discontinuity in the sense of Kulkarni [3]. These
two domains agree if the orbit space is compact and connected. See 2.9 and
2.10 for the precise statements. We also present some examples in section 3
illustrating these domains and other interesting invariant sets, including the
examples where ' occurs as the holomony group of various 2-dimensional
affine tori.

2. Domains of discontinuity for discrete subgroups

If we projectivize a singular linear transformation A € M(n + 1,F) —
GL(n + 1,F), its projectivization a is not defined on the projectivization of
the kernel of A which we denote by K(«), the kernel of . Hence the domain
of a is P* — K(a) and the range R(a) is the projectivization of the range

g




ACTIONS OF INFINITE DISCRETE GROUPS OF PROJECTIVE TRANSFORMATIONS 3

of A. Such an @ € PM(n + 1,F) — PGL(n + 1,F) will be called a singular
projective trans_formation. '

The natural action of GL(n+1,F) on F**! can be extended to M(n+1,F)
- canonically so that if 4, — A in M(n + 1,F) and v, — v in F**! then
Apv, — Av. '

This, of course, follows from

HAU - Anvn” s ”A” - Anv” + ”An” - Anvn“
S A = Aull ol + 1| Axll o = vall,

where || || stands for the usual lp-norm on Euclidean space. When we pro-
jectivize this statement, we need to be careful about the domain of singular
transformation as follows.

2.1. Ifap, —» ain PM(n+ 1,F) and ¢, — z in P" for z, ¢ K(a,), then

anT, — az whenever z ¢ K(a).

Let T" be a subgroup of PGL(n+1,F). In order to investigate the cannon-
ical extension of the action of I" on P" to the set IV of accumulation points of
I'in PM(n+ 1,F), we need to consider the kernel and range of the elements
of I first. Let K(v) and R(7) be the kernel and range of v € I’ respectively.
If v € I is non-singular, K(y) = 0 and R(v) = P", and hence we are inter-
ested in only singular 4. Let K(I') and R(T') be the union of K(v) and R(~)
respectively for singular v € I''. Now we have the followings as observed in

[4]-
2.2. K(T') and R(T") are I'-invariant.

Proof. In general, for « € PGL(n+ 1,F) and § € PM(n+1,F), a (R(B)) =
R(aBa™?) and a (K(B)) = K(afa™') = K(Ba™"). Now the I-invariance
of K(I') and R(T") follows from the I'-invariance of I'. q.e.d.

2.3. K(TI') is a closed subset of P".

Proof. Let z be an accumulation point of K(T'), say , — ¢ with z,, € K(an)
and a, € I''. We may assume that a, are distinct and a, - a € PM(n +
1,F) by taking a subsequence if necessary. Note that a € I'' since I"' is closed.
Choose A, — A in GL(n + 1,F) and v, — v in F**! whose projectivization
corresponds to a, — a and z, — z respectively. Since 0 = A, v, — Av, we

have Av =0 and z € K(a) C K(T). q.e.d.
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Now suppose that « € PM(n + 1,F) is singular and let o, — «, a, €
PGL(n + 1,F). In general, we can not guarantee that a,! converges unless
a is non-singular. But we can always find a subsequence which converges in
compact PM(n + 1,F). Hence we may assume a,' — @ € PM(n+ 1,F) by
taking a subsequence. Now then a;'a, — @a and this is absurd because
a;la, = id and @a is singular. We look at the problem in M(n + 1,F).
We can choose A, — A whose projectivization is @, — a, but no A1
can converge in M(n + 1,F) because of the above contradiction. However
we can choose a subsequence again denoted by A, and A, € F such that
A7l — A. Now A\, I = MA A, — AA and the projectivization forces
that A, — 0 and AA = 0. Hence R(a) C K(@). Now apply this argument
to I'.

2.4. If v, —» v and 7;! — 7 for v, € T and singular 7,5 € I, then
R(y) € K(¥) and R(¥) C K(v). In particular, R(T') C K(T).

When T is a discrete subgroup of PGL(n + 1,F), we have the following
simple characterization as observed in [4].

2.5. T is discrete if and only if each element of I is singular.

Proof. Suppose that an element ¥ € I' is non-singular and let a sequence
of distinct elements v, of I' converges to 7. Then clearly 7,;! converges to
7~! and v, yn+1 converges to the identity. Then I' can not be discrete. The
converse is obvious since the identity is an isolated point of I". q.e.d.

Note that T is infinte if and only if I # §.

Now we are ready to show that the complement of K(I') is the domain of
discontinuity on which a discrete I" acts properly discontinuously as desired.
(Compare [4].)

2.6. Let I' be a discrete subgroup of PGL(n + 1,F). Then I' acts properly
discontinuously on K(I')¢ = P* — K(T).

Proof. Let C be a compact subset of K(I')°. Suppose that the number of

a € T such that «C N C # 0 is infinte. Then we can choose a sequence z,, in

C and a sequence of distinct a, in I’ with a,z, € C. Since C is compact,

we may assume z, — ¢ and a,r, — y in C by taking subsequences. We can

further assume a, — a again by taking subsequence. By 2.1, a,z, — az

since ¢ € C C K(T')° and hence y = az. But then y € R(a) C R(T') since «

is singular by 2.5. This shows that y € K(I') by 2.4 and gives a contradiction -
since y € C C K(T')°. q.e.d.
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It would be interesting to compare K(I')¢ for a discrete I" with the domain
of discontinuity in the sense of Kulkarni. Following [3], a point z € P" is
called a cluster point of an indexed family {yA|y € I'} for a given set A C P®
if every neighborhood of = intersects vA for infinitely many v in I". Let Lo(T)
be the closure of the set of points in P* with infinite isotropy group, and L, (T")
be the closure of the set of cluster points of {yz|y € '} for all points z in
the complement of Lo(T). It is easy to show that these sets are I-invariant
closed sets which lie in the complement of any open set on which I' acts

properly discontinuously by standard argument. Also we can show directly
that L,(T') U Ly(T") € K(T') as follows.

2.7. (i) If x € P" has an infinite isotropy group, then z € K(T). (ii) If
z € P" is a cluster point of {yz|y € I'} for a point z € P", then z € K(TI).

Proof. (i) Choose v, € I'y such that 4, — 7. Then v,z — vz if ¢ ¢ K(v).
Thus either z € K(y) C K(T') or z € R(y) C K(T'). Note that v is singular
since I' is discrete. (ii) Let y,z — « with distinct v, in I'. If 2 € K(T),
then = € K(T') since K(T') is a closed I'-invariant set. If z ¢ K(T'), we may
assume vy, — v by passing to a subsequence and v,z — vz by 2.1. Thus
r=vz € R(y) C K(T'). qed.

Again following Kulkarni, let L,(T") be the closure of the set of cluster
points of {yC|y € T'} for all compact C in the complement of L,(I')U L (T).
Now the sets A(T") := Lo(I') U L1(T') U Ly(T') and T) := P* — A(T") are
called the lzmit set of I' and the domain of discontinuity of I' respectively
by Kulkarni.

2.8. Let C be a compact set in the complement of the set of cluster points
of {vz|y € T} for all z € K(I'), and let = be a cluster point of {yC|y € T'}.
Then z € K(TI').

Proof. Let v,y, — z with y, in C and distinct v, in I'. By taking sub-
sequences, we may assume vy, - Y and y, -y € C. f z € K(T')%,y, =
Y7t (Ynyn) — Fz by 2.1 and hence y = Fz, which shows that v, 1z — Fz =y,
l.e., y is a cluster point of {yz|y € '}, a contradiction. q.e.d.

2.8 shows immediately that Lo(I") C K(I') and we can conclude as follows.
2.9. A(T") C K(T'), or equivalently, K(T")* C Q(T).

It is not clear at the moment whether the equality holds in 2.9 in general,
but this is obviously true in the following situation.
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2.10. Suppose the quotient space (T")/T is connected and K(I')¢/T" is com-
pact. Then K(T')¢ = Q(T).

Proof. The inclusion i : K(T')¢ — Q(T') induces an open map ¢ : K(I')¢/T" —
Q(T)/T since the orbit projection map is always open. The quotient space
Q(T)/T is Hausdorff since the I'-action is properly discontinuous, and hence
1(K(T)¢/T) is an open and closed subset of a connected space Q(I")/T". This

shows i is onto. q.e.d.

3. Examples

In this section, we will discuss some examples and describe Myrberg’s and
Kulkarni’s domain of discontinuity for each of the examples. We use the ho-
mogeneous coordinates for a point in a projective space : The projectivization
of a point (aj,az, - ,anp4+1) € F**! is denoted by [a1,a2, -+ ,an41] € P
and similarly the projectivization of a linear transformation A = (a;;) €
M(n + 1,F) is denoted by a = [a;;] € PM(n + 1,F).

When we compute the limit transformation a of a given convergent se-
quence a, € PM(n+1,F), we can use any l,-norm on F(**1)* since these are
equivalent. For most of the example we consider, it is more convenient to use
l,-norm or lo-norm, i.e., ||A||ec = maz {|a;;|} for A = (a;;) € M(n + 1,F).

3.1. Let T' be a subgroup of GL(2,F) generated by a = (§ g) .

If we projectivize I, still denoted by I', we obtain a discrete group of

n
projective transformations acting on P!. Since o™ = [2 2_,,] converges to

7=[10] asn—>ooandt07=[0 as n — —oo, we have two limit

1
singular transformations v and 7. Clearly K(vy) = R(¥) = [0,1] € P! and
K(¥) = R(y) = [1,0] € P'. Hence K(T') = R(T') = A(T") = {[1,0],[0,1]}
and K(T')¢/T' = Q(T")/T is two copies of incomplete affinely flat circles when
F=R.

Now this time, consider the action of I' as an affine part of 2-dimensional

2
projective action by compactifying « as [ i ] € PGL(3,F). Then the same
1

1
computation as above gives two limit singular transformations v = { 0 ]
0
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0
and ¥ = [ 1 } ; and thus K() is the line passing through the points [0, 1, 0]
0

and [0,0,1] and R(v) is the point [1,0,0] in P?, and similarly for K (%) and
R(¥). Hence K(T') is the union of two lines and R(T') consists of two points.
K(I')¢ = Q(T') consists of two convex domains when F = R. Note that the
line at infinity is a I-invariant subset and the action of I' restricted on this
line is the 1-dimensional projective action described above. Also note that
7 (or 7) has the property that R(y) N K(v) = 0. A singular transformation
with this property may be called hyperbolic.

101
3.2. Let T’ be an abelian subgroup of PGL(3,R) generated by a = [0 1 0]
001

001

100
andﬂ:[on].

10n
For each [p,q] € P', there is a subsequence of a"g™ = [ 1 m] which
00p !
converges to vy = [0 0 q} € I" and these are the only limit singular trans-
000

formations. Thus I' is homeomorphic to P! and each v € I' has the range
[p,¢,0] € P? and the line at infinity, i.e., the line passing though [1,0,0] and
[0,1,0] as the common kernel for all v € I'. And K(T')¢ = Q(T') is an affine
subspace of P? whose quotient with I' is a complete affinely flat 2-torus. Note
that for each v € I'', R(y) C K(v) and a singular transformation with this
property many be called parabolic.

™~ 101
3.3. Let I' be an abelian subgroup of PGL(3,R) generated by a = [ 1 0]
110 !
and 8 = [ 1 1] .

1
. 1 m nt+im(m—1) L.
In this case, a™"f™ = 1 m and it is clear that for each

1
Ogp
€ P!, there is a sequence in I' converging to 5 = 0og| € T

and these limits exhaust I'. This shows again that I' is homeomorphic to
P!, and K(T) = R(T') = A(T') is the line at infinity. But this example is
essentially different from the example of 3.2 in that all Yp,q € I except
Y(1,0] has 1-dimensional range in P?. This shows that the quotient affine
torus obtained from 3.3 is not projectively equivalent to that of 3.2. It is
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well known that the affine torus of 3.2 and 3.3 are not affinely equivalent.
Nevertheless they are algebraically equivalent, i.e., there is an equivariant
polynomial diffeomorphism : R? — R2. (See [1].)

However, this diffeomorphism can not be extended to even a homeomor-
phism on P? equivariantly since the corresponding L(T) are certainly differ-
ent.

,
3.4. Let ' be an abelian subgroup of PGL(3,R) generated by a = [ 1 ]
1

1
and,B:[ 2 ]
1

2" '
In this case, a"f™ = [ 2™ ] and it is easy to show that v € I is of

1
27 1 0 0
the form [ 29 ] ,P,q € ZU{—o0}, [ 0 ] , { 1 ]or [ 0 ] Hence K(T)
0 1 1 1

consists of three lines determined by the three coordinate planes and R(T') is
equal to K(T'). In this case, K(T')° = Q(T') consists of four triangular regions,
each of which corresponds to a quadrant in an affine plane determined by
r3 = 1.

Notice that if we take logarithm to this action on the first quadrant, it
becomes the example of 3.2. Hence the intrinsic actions on a domain of
discontinuity are analytically equivalent.

3.5. Let ' < PO(2,1) < PGL(3,R) be a Fuchsian representation of a closed
surface group.

Let D and 8D be the projectivizations of the inside of the light cone
and the light cone respectively so that D serves as projective model for
hyperbolic plane. Let v be a hyperbolic isometry of D, and let v" — « and
4~™ — @ as n — 0o. Let [ be the invariant hyperbolic axis for 4 and let
1N &D = {p,q} where p is the source and ¢ is the sink of . Since 7" sends
all the points in D to ¢,  sends D — K(a) to ¢ and hence R(a) = {q}.
Similarly, {p} = R(@) C K(a). Therefore K(a) is a line passing through p
which is clearly invariant under 5. It is clear that the only invariant lines
passing through p are the axis [ and the line k tangent to 8D since 0D and
p are invariant under 4. Thus k and ! are invariant under o = lim 4". If [
were the K(a),a has to send k— {p} C P2 —1 to ¢ = R(a), which contradicts
" the invariance of k under a. Thus we conclude that K(a) = k. Similarly,
K (@) is the tangent line passing through ¢. Now if I' is a Fuchsian group of
the first kind, the hyperbolic fixed points form a dense set in 8D, the limit
set of I and hence K(T') = P? — D since it is closed. Thus K(I')° = D and
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R(T') = @D since each point of dD is a cluster point of {yC|y € T'} for any
compact set C'in D. Myrberg discussed this phenomenon in a general setting
with arbitrary invariant quadratic forms in [4]. For this example, Kulkarni
showed that A(T') = P2 — D and hence (T') = D [3]. Again Myrberg’s and
Kulkarni’s domain of discontinuity agree.
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VANISHING THEOREMS FOR EULER CHARACTERISTIC

JONG BuM LEE

In this note we discuss rank invariants (1) of finitely generated projective
modules via a ‘trace function’ on the endomorphism group, (2) of finitely

generated free modules of a group ring via a non-central localization, and (3)
of £2(G)-modules.

I. Hattori-Kaplansky-Stallings Ranks

Let A denote a ring; A-modules are understood to be right A-modules.
1. The group T(A). It is the quotient A/[A4, A] of A by the additive
subgroup [A, A] generated by all commutators [a,b] = ab — ba, a,b € A. We
write T' or T4 for the canonical projection A — T(A).

2. Coordinate systems of projective modules. An A-module P is pro-
jective if and only if there is a family (z;) in P and (f;) in P* = Hom4(P, A)
such that, for all z € P, fi(z) = 0 for all but finitely many i, and z =
> izi - fi(x). The system (z;),(f;) will be called an A-coordinate system
on P. Clearly, P is finitely generated if and only if there is a finite coor-
dinate system (z;),(fi). Let P(A) denote the category of finitely generated
projective A-modules.

3 Traces Tp. Let P € P(A). Definet : PxP* — T(A) by t(z, f) = T(f(z)). -
If'a € A then #(z - a,f) = T(f(z - a)) = T(f(z) - a) = T((a- f)(z)) =
t(z,a-f). Thus t induces an additive map P@4P* — T(A). Since P € P(A),
P®a P* — Endg(P),zQ f(y) = z- f(y), is an isomorphism. We have thus
defined a homorphism

Tp : Ends(P) — T(A),
called the trace on the A-module P. It is characterized by Tp(z ® f) =
T(f(z)) for z € P and f € P*. Choose any finite coordinate system (z;), (f;)
of P and write 1p = ) #; @ fi. If v € End4(P), then u = uolp =

11
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S u(zi) ® fi, so Tp(u) = T(X fi(u(z:))). Note that if z; is a free basis of
P then f; is the dual basis and the uj; = fj(u(z;)) are the coefficients of
the matrix representing w: u(z;) = 3_; zju;i. Hence Tp(u) = T(O uii). If
P € P(A) with coordinate system ()}, (fi)%;, then there is a canonical
A-map 7 : A® — P. Note that [f;(z;)] is idempotent in g€,(A) and 1p
extends to [f;(z;)] : A" — A™.

4. Hattori-Stallings ranks rp. If P € P(A) its Hattori-Stallings rank,
denoted rp, is the element rp = Tp(lp) € T(A). If (z;),(f:) is a finite
coordinate system of P then rp = Y. T(fi(z;)). If P = A", then rp = T(n).

5. Example. Let G be a finite group of order n and let k¥ be a ring in
which n is invertible. Then the multiplication by 1/n gsec 9 is a splitting
of the augmentation map € : kG — k. Hence k is a projective kG-module
with coordinate system zo = 1, fo = the multiplication by 1/n 3" 4€G Y SO
that 1/n deag is idempotent in kG. For any u € Endyg(k), Ti(u) =

T(1/n deG u(l)g) =T(1/n ZyEG g). Hence ry = Tx(1x) = T(1/n deG 9)-

6. Euler characteristics x(C) and Lefschetz numbers L(¢). Let
C = {P, —» --- — Py} be a finite projective A-complex; that is, a finite
dimensional chain complex of finitely generated projective A-modules. Then
the Euler characteristic of C is defined to be x(C) = Y(~1)'rp,.Let ¢ : C = C
be an endomorphism of a finite projective A-complex. The Lefschetz number

of ¢ is defined to be L(¢) = S (~1)!Tp,(4;). In particular, x(C) = L(1¢).

7. Theorem. Let f nad g be chain-homotopic endomorphisms of C. Then
L(f) = L(g)- |
Proof. Let {d; : Pi — Pi;1} be a chain homotopy between f and g. Then
fi — gi = Bipadi + di—18;. So, L(f) — L(g) = Y(=1)'(Tr(fi) — Tr,(9:)) =
OE(—S)'(TP.-(amdi)*-TP; (di-18:)) = 1(=1)"(Tp.(0i+1di)—Tpyy, (diit1)) =

8. Corollary. If the finite projective complexes C and D have the same
homotopy type, then x(C) = x(D).
Proof. If f : C — D is a homotopy equivalence and M is its mapping cone,

then 154 and O are chain-homotopic. By Theorem 7, x(D) — x(C) =
X(M) =L(1p) = L(Op) =0. O

9. Let G be a group, k be a commutative ring, and A the group algebra kG.
Since G is a k-basis for A it follows that the k-module [A, A] is generated
by the elements [s,t] = st —ts = sus™! — u = [su,u”!] where s,t,u € G
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and u = ts. Thus, for s,t € G, one has T(s) = T(t) if and only if s and ¢
are conjugate in G. Thus we shall identify T'(s) with the G-conjugacy class
of s, and identify T(kG) with the free k-module kT(®) having the set T(G)
of conjugacy classes of G as a basis. Each r € T(kG) thus has a unique
expression

r= Y r(r)-7e€T(kG)

T€T(G)
where 7 — r(7) is a function T(G) — k with finite support.

10. Definitions. We say that G is of type (FP) over k or k is a kG-
module of type (FP) if k (with trivial G-action) admits a finite projective kG-
resolution. In this case we call ry = Y (—1)'rp, € T(kG) the complete Euler
characteristic of G over k, and rx(1) = Y (=1)*rp,(1) € k, which we denote
x(G), the Euler characteristic of G over k. We also define the homological
Euler characteristic of G over k to be X(G) = 3., crq) k(7)) € k. The
complete Euler characteristic of G is the Euler characteristic of the complex

(Py— - = By).

11. Remark. If k' is a commutative k-algebra then k' ®; — yields a res-
olution of k' over k'G, so G is of type (FP) over k' and riv € T(K'G)
is the image of ry € T(kG) under the natural isomorphism of k’-modules
k' @r T(kG) — T(k'G) sending a ® T(g) to T(ag) for a € k' and ¢ € G.
Similarly for x(G) and X(G).

12. Examples. (i) If G is finite then G is of type (FP) over k if and only
if its order |G| is invertible in k. By Example 5, rx = T(1/|G| Y, cq 9) €
T(kG). In particular rx(g) = 1/|Cg(g)| for all g € G. We have x(G) = 1/|G|
and X(G) = 1.

(ii) Suppose that G is abelian and of type (FP) over k. Then as G is
finitely generated G = H x K with H finite and F free abelian. Since H has
finite cohomological dimension over k, |H| must be invertible in k. Therefore
kH = k® R for a certain ring R. Similarly kG = (kH)[F] = k[F]® R[F], and
the kG-module k is annihilated by 0 ® R[F']. Therefore ry € k[F]®0. A free
resolution of k over kF can be obtained from the Koszul complex associated
to the sequence 1 — s1,---,1 — s, where s1,---, 5, is a free basis of F. It
follows that 7 = 0 if n > 0, i.e., if F' # {1}. In conculsion, r; = 0 unless G
is finite.
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13. Theorem. ([Ba]) If k is a field and a kG-module of type (F'P), then

R(G) =Y (1) 'dimHi(G, k) = Y _(~1)'dimH"(G, k).

i>0 i>0

This theorem motivates the terminology “homological Euler characteris-

tic” for x(G).
14. Theorem. ([Sta]) Suppose k is a kG-module of type (FP).

(a) If ¢ € Z(kG) has augmentation ¢y € k, then ¢c-rx = co - Tx. In
particular z -, = r for all z € Z(G).

(b) If x(G) # 0 then Z(G) is a finite subgroup whose order is invertible
in k.

When k = Z the conclusion of (b) implies that Z(G) = {1}.

Proof. First we observe that the center Z(G) of kG acts on T(kG) so that
T: kG — T(kG) is Z(kG) linear. For if T(s) = T(t) for some s,t € G,
so that s = utu™!, and ¢ € Z(kG), then cs = cutu™ = uctu™; so that
T(cs) = T(ct). Thus ¢ T(s) = T(cs).

Let 0 — P, — -+ — Py — k — 0 be a finite kG-projective resolution for
k. Since ¢ — ¢ € Z(kG) annihilates k, (¢ —co) - 1 = 0. Hence (c—co) Tk =
Y(=1)i(c = ¢o) - Tp.(1p) = T(=1)'Tp,((c — co) - 1p,) = Til(c = co) - 1x) =
Ti(0) = 0.

(a) implies that ri(zs) = ri(s) for all s € G and z € Z(G); in particular
re(2) = ri(1) = x(G) for all z € Z(G). But only finitely many elements
of Z(@) can belong to the support of r. Thus if x(G) # 0 then 2(G) is
finite. Since the projective dimension of k as a kG-module and hence as a
kZ(G)-module is finite, the finite subgroup Z(G) must have order invertible
ink. O

15. Theorem. ([G]) If G is the fundamental group of a finite aspherical
complex K, and x(K) # 0, then Z(G) = {1}.

Proof. The chain complex C, (K) of the universal cover K of K is a finite
free ZG-resolution of Z, and x(G) = x(K). By Theorem 14, since x(K) # 0,
Z(G)={1}. O

16. Kaplansky ranks «(P). Let P € P(kG). Then the Kaplansky rank
of P is by deninition x(P) = rp(1) € k. A theorem of Kaplansky (cf. [M])
states that if P € P(CG) with n generators, then 0 < k(P) < n; if k(P) =0
then P = 0, and if x(P) = n then P = (CG)".
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I1. Localizations of Group Rings

1. Non-central localizations. Let B be aring and let S be a multiplicative
subset of B consisting of non-zero divisors in B. A ring of fractions of
B with respect to S is a ring S™'B and an injective ring homomorphism

¢ : B — S71B such that

(1) ¢(s) is invertible for all s € S and
(2) every element of S™!B can be written ¢(s)~'¢(b) for some s € S,b €
B.

It is known (cf. [Ste]) that S™! B exists if and only if for every s € S,b € B
SbN Bs # 0. When it exists it is unique up to isomorphism and we supress
the ¢ and identyfy B with its image in S™!B. Since S™1B is the direct
limit 11_1’{)1(3_1) of the submodules (s™') of S~ B generated by s~!, which is

isomorphic to B, it follows that S~!B is a flat B-module.

2. Theorem. ([Ros]|) Let K be a finite aspherical complex and let G =
71(K). If G contains a non-trivial normal abelian subgroup then x(G) = 0.

This theorem is a generalization of Gottlieb’s theorem. Let A be a non-
trivial normal abelian subgroup of G. Let B = CG and S = CA \ {0}.
Before proving Theorem 2, we shall prove the following: (1) S~ B exists, (2)
S~!B ®p C = 0 when C is the trivial B-module, and (3) free modules over
R = S7!B have well-defined ranks.

3. Localizability. Let B = CG and S = CA\ {0}. Clearly S is multiplica-
tive. Let {r;} be a set of representatives for the cosets Az in G. Then every el-
ement of B is uniquely expressible as a finite sum ), fir; (f; € CA). Suppose
feSandf-(X firs)=0. Then 0 = f - (3 fir) = S ffiri (ffi € CA),
all ff; =0, and since CA is an integral domain, all f; = 0. Thus }_ fir; = 0.
Similarly if (3 firi) - f = 0 with f € S, then Y fir; = 0. Hence S consists
of non-zero divisors in B.

Let f € S and z € B. We shall show that Sz N Bf # 0. Write z =

Yi—1 375 (v; € CA), fy = rifr;', b= fi-- f, and hy = fi---Fj -+ fi.
Since A is normal in G all f; € S, and since S is multiplicative all h; and
h € S. Hence Sz 3 hx =} h;fjz;r; =3 hjz;firi = (3 hjzrj)f € Bf

4. Triviality. We will show that if M, a finite dimensional vector space
over C, is a B-module, then S™'B®p M = 0. By fixing a C-basis of M, say
{mq,--+ ,m;}, we define CA — M" by f+— (f-my,---, f+-m,). Since A is
an infinite group its kernel annc 4(M) is nontrivial. Let 0 # f € annc4(M).
Then f is invertible in S™1B. Foranym € M, 1®@m = f~1@fm = f~1Q0 =
0. Hence S™'B ®p M = 0. In particular S~'B ®g C = 0.
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5. The completion of B. We endow B with an involution

(Eax-x)*z Zﬁ-z_l

z€G T€G

and an inner product

(Eazow,zbzow)=2az-b_z—.

Let H be the completion of B with respect to the norm defined by the
inner product. The elements of G are an orthonormal basis of H. Thus
H — £2(G),h — (g — h(g) = (h,g)), is a linear isometry by Riesz-Fisher
Theorem.

Let W be the closure of B = {L,},ep with respect to the operator norm
in B(H), where L, is the left multiplication by z and B(H) is the ring of
bounded linear operators on H. According to Kaplansky (cf. [M]), the ring
W has the following property: if n > 1 and u,v € g€,(W) are such that
uv = 1 then vu = 1. This property is called "finiteness” and we denote it by
(F). By Roos ([Roo]), we can enlarge W to W in such a way that

(1) W is a ring of (densely defined) operators in H,
(ii) W has property (F), and A
(ii1) if I is a principal ideal of W then I is generated by an idempotent
element in W.

6. Lemma. Let f € S. The operators Ly (Ry) defined by Lj(h) =
fh (Rs(h) = hf) are injective. That is, S consists of non-zero divisors in H.

Proof. Suppose Ls(h) = 0 for some h € H. Since H = ¢*(G) and G =
UAr;, we can write h = 35 g Ag g (DA <00 =32 ucqdar; - arj =
Ej(zaeA Aar; *@)rj = Ej firi (fi = EaGA Aar; - @ ﬂ:A and Zj I fill? =
Y ,ec A} < o). Then 0 = fh =Y :(ff;)rj, ffi € CA, and 35, |Iffill* <
co. Hence all ff; = 0. Let A be the subgroup of A generated by the

group elements appearing in f € S. Then A is finitely generated torsion
free abelian. Let {s;} be a set of representatives for the cosets of Ay in A.

Thus any ¢ € CA has a unique expression g € Y £;s; with ¢; € CAp and
S |16i||* < oo. Since f € CAo, 0= ffj = > (f4i)si, and so all f¢; = 0. Since
¢; € CAy = (*(Ay), ¢ has the Fourier expansion £; = ), 4 (4i,a)a with
Y aca,(bi,a)? < 0o, and since f € CAo, f hasafinitesum f = 3 ¢ 4,(f, a)a.
Hence 0 = f¢; = (a non-zero finite sum)-(a Fourier expansion) implies that
the Fourier expansion £; =0. Thus h=0. O
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7. Finiteness property of S~'B. We will show that R = S™'B has
property (F). By Roos (ii), it suffices to show that R embeds in W. Since
we have B = {L,;}.es C W C W cC B(H), by the universal property of
localizations it is enough to show that if f € S then f is invertible in W. Let
f € S. By Roos (iii), W - Ly = W - e for some idempotent e € W. Suppose
e # 1y. Then there is h € H such that (1 —e)(h) # 0. Since Ly € W-e,
Ly = woe for some w € w, and hence Lyo (1l —e) = woeo(l—e) =
w o (e — e?) = 0. However by Theorem 6, Lf o (1 —e)(h) # 0, which is
impossible. Thus e = 1, W=W-L 7, and Ly has a left inverse in W. We

note that the property (F) for R = S™!B implies that free modules over R
have well-defined ranks.

8. Proof of Theorem 2. Since K is a finite aspherical complex, the chain
complex C*(R ) over C gives rise to a finite free resolution of C over B = CG
0> F, »--— F - C— 0and x(K)+ Ej(—l)jrankBFj = x(G).
Since R = S !B is flat and R®3 C = 0, R ®g — yields an exact sequence
00— R®gF, —---— RQp Fy — 0 of finitely generated free R-modules.
By (F), x(K) = 3_;(—1)’rankgr(R ®3 Fj) = 0.

III. Amenable Groups

Theorem II.2 states that if G admits a finite K(G,1) and if G has a
nontrivial normal abelian subgroup, then x(G) = 0. Cheeger and Gromov
([CG]) and Eckmann ([E]) considered infinite amenable groups G and free
cocompact G-spaces X, i.e., connected complexes X on which G acts freely
and simplicially with G\ X being a finite complex. They showed that x(G\X)
has some special properties due to the amenability of G. In particular, they
showed that if the amenable group G admits a finite K(G,1) then x(G) = 0.

1. Definitions. Let G be a locally compact group with a left Haar measure
A. For the discrete G we take \ to be the counting measure. Denote by I(G)
the family of \-measurable subsets of G. Consider a positive, finitely additive
measure g : M(G) — C satisfying u(G) = 1 and u(N) = 0 for locally null N,
i.e., for N € M(G) such that A(N NC) =0 if C is compact. We can regard
p as m € Loo(G, ) as follows: Since {3 o, aixg; | @i € C,E; € M(G)}
is norm dense in Loo(G)', define m(}_ aixk;) = ) aip(E;) and extend it to
all of Loo(G). Clearly m(xg) = u(G) = 1. This functional m is called a
mean on Lo (G). We call g or m left invariant for G if m(¢g) = m(¢) for
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¢ € Loo(G) and g € G. The group G is called amenable if it admits a (left)
invariant mean on Lo(G).

2. Fglner criterion. A summing net for G is a net of nonempty compact
subsets {Ks}sea with the properties that
(1) Ks C K, if 6 < o;
(i) G = Usea K3
(ii1) AM(gKs A K5)/A(Ks) — 0 uniformly on compacta.

Theorem. ([P]) A locally compact group G is amenable if and only if there
exists a summing net for G. If G is o-compact, then G is amenable if and
only if there exists a summing sequence for G.

3. Examples. Let G = Z and K, = {-n,--,0,--- ,n}. Then {K,}isa
summing sequence for Z. Put f, =1/(2n+1) - xk, € B(Z) := {f € £:1(Z) |
f>0,% f(n) = 1}. To show the existence of an invariant mean for Z, we
use the following analysis facts:

(1) Li(6) = Li(G)" = LG
f—F: 6 € LalG) = J(9) = [ 67 dA -

(2) ¥ B(G) = {f € Li(G) | f 20, [ fd) = 1}, then P(G) is weak*-
dense in IM(G), the set of all means on Loo(G).

(3) M(G) is weak*-compact in Loo(G)'.

F°% ¢ ¢ oo(Z), Ta(9) = Toez #(s)fu(s) =1/(2n+1)- 10, ¢(r). I s 20
in Z, then

—n+s—1 n+s

PG WOE 2l

n+1

|Fa(#5) = Fu(®)] =

as n — 0o. A similar result holds for s < 0 in Z. Since {f,} C ‘g(-i) C
M(Z) C £o(Z), ‘@ is weak*-dense in 9M(Z), and IM(Z) is weak*-compact
in £5o(Z)', every weak*-culster point of {ﬁ:} is in 9M(Z) and a left invariant
mean.

For the monent, we will simply list some important examples of amenable
groups:

(1) Every finite group is amenable.

(2) Every abelian group is amenable.

(3) The class of all discrete amenable groups is closed under subgroups,

quotient groups, group extensions, and direct limits.
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(4) Grigorchuck constructed examples of finitely generated amenable
groups which cannot be obtained from finite and abelian groups by
successive extensions and increasing unions.

(5) Every amenable group does not contain any non-abelian free sub-
group. The converse was disproved by Ol’shanskii.

4. Fglner sequences. Assume that G is an infinite amenable group and
X is a free cocompact G-space. Then G must be finitely generated. By
Theorem 2, we can fix a summing sequence {K,} for G.

Claim. X admits a Fglner sequence {X,} associated to {K,}. That is,
there is an increasing sequence {X,} of nonempty finite subcomplexes of X
such that

(1) X, consists of k, translates of D, where D is a closed fundamental
domain for (G, X);

(2) X =UX,;

(3) If kj, = M{g9 € G | gDNndX, 76 0}), where 8Xn is the topological
boundary of X,, then lim,_,o &}, /k, = 0.

Proof. Let k, = A(K,) and X,, = {¢D | g € K,}. Then X, is the union of
kn translates of D. Hence X, is a finite subcomplexes of X and X = UX,,.

Since D is compact in X, we can choose a finite subset {z;, -+ , s} of G
so that DNx;D # 0, and DﬂzD 0 1f:1: #z;. fgDNOX, # @ then there
is ¢ € K,, such that gDNzD 75 P,orz"lg = w, for some: =1,--- ,£. Hence
g€ Kyzj. Ifg € Kn, then 27 1¢g fixes DNz} gD, which is nonempty Since
G acts freely X, z~ g = z; = 1. It follows that k! < 2‘ =1 M(Knz; A Kyp)
and hence hmn_.*oo ko =0.

O

5. Theorem. If G is an infinite amenable group which admits a finite
K(G,1) then x(G) = 0.

This theorem is due to Morgan and Philips (unpublished).

Proof by Eckmann. ([E]) Let X = K(G,1) with a closed fundamental do-
ma.in D and a Fglner sequence {X,}, and m = dimX. Then x(X,) =

n* X(K(G,1)) + A, and |Ap| < K, - A, where A,, comes from 8X, and
A is the number of simplices of dD. Thus x(G) =1/kn-x(Xn)—An/k, and
|Anl/kn < kb /kn+ A — 0 asn — co. Hence

n i=1



20 Jong BuM LEE

Now the inclusion (X \ X2,8Xn,) — (X, X,) yields the commutative dia-
- gram for homology with Q-coefficients

Hip(X \ X0,0X,) —— Hi(8Xn) —— Hi(X\ X}

lexcision isomorphism l P Jv

Hi(X,X5) — Hi(X,) —2— Hi(X).
Thus

Bi(X,) = dimg(kerp) + dimg(imp)
< dimg(ker¢) + dimgH(X) (. ¥ : kerg —» kerp)

Since 3;(0X,) < the number of i-simplices of 80X, < ki, -d;, d; is the number
of the i-simplices of D, we have

kl

kiﬁi(xn) < F'di+ ?1-,3,'()() — 0 as n — oo.

Here we must note that all 8;(X) are finite. Hence x(G) = 0. O

IV. Simplicial ¢;-cohomology Spaces

1. Definitions. Let G be a countable group and let £;(G) denote the Hilbert
space of real valued square summable functions on G. A Hilbert space P is
called a G-module if:

(i) G acts on P by isometries, and
(i) P is G-equivariantly isometric to a subspace of £2(G) ® H for some
Hilbert space H on which G acts trivially.

For a G-module P with a G-equivariant embedding P — £(G) ® H, let
p: £(G)® H — £3(G) ® H be projection onto P and write p as a matrix
(a;j) with entries in £(G). Then the von Neumann dimension of P is defined
to be dimgP = Y {eii,1g), where (,) is the inner product on ¢3(G) and
1¢ is the identity element of G. Let {h;} be a Hilbert basis of H and let
pi : £5(G) ® H — £3(G) be the projection 1 ® rih; — ;- 1. With Py = P,
we define inductively Piy; and I;4; to be the kernel and the closure of the
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image, respectively, of P; — £,(G) @ H 3! £,(G). Then P = Y- I; and I
is a G-module with a G-equivariant embedding I; < £5(G). For each i, we
write 1 = e; + (1 — ¢;), where ¢; € I; and (1 — ¢;) € I}, under the isometry
eg(G) = I,' b I,-‘L. Then dim(;'I,' = (e.-,lg) and dimGP = Zdimg.[,'. By
Kaplansky, 0 < dimgl; < 1 and dimgl; = 0 (resp. 1) if and only if I = 0
(resp. £3(G)). Thus dimgP € [0, c0].

2. Definitions. Let G be a countable group and X a free G-space. Denote
by X(i) the set of all i-simplices of X. Define Cf,(X) = {c € C'(X,R) |
Esex(;) ¢(s)? < oo} and call it the space of £5-cochains. Then C(iz)(X) =

£,(G) ® H; where H; is a Hilbqrt space having a set S; of representatives of
X(i) mod G as a basis. Hence C(,,(X) is a free G-module and dimc;C("z)(X) =

A(S;). It is clear that the differentials 6"C("2)(X ) — C'(";")l (X) commute with
the G-action. We define the (reduced) simplicial £,-cohomology spaces by

H{2)(X; G) = kers* /im&"1.

Since C("Z)(X).D keré' = iméi-1 @ FE”(X;G), and keré’ and iméi-! are

G-modules, F;z)(X : G) acquires the structure of a G-module and hence its
von Neumann dimension is defined, denoted by bf2)(X ; G), and called the
tth £5-Betti nember. Observe that if X is a free cocompact G-space, then

X(G\X) =Y (=1)'A(S:) (- G\Xis a finite complex.)
=) (-1)'dimgCfy(X)
=Y (~1)idimgH 5 (X; )
=) (-1)'by)(X; G).

The third equality follows from the fact that the cochain complex {C(*2)(X )}

——~——

of G-modules is finite dimensional. When X = K(G,1) we simply put
H4)(G) = H5)(X; G) and by (G) = bf, (X; G).

3. Example.

(1) If G is infinite and X is a connected free G-space, then ﬁ?Z)(X ;G) =
0. In praticular, b‘()z)(G) = 0.
- (2) If G is finite, then b‘()z)(G) =1/|G|.
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Proof. If c € C°(X;R) with §(c) = 0, then c is constant. If G is infinite, then
X(o) is infinite, and hence }_ ¢ Xco) ¢(s)? < oo implies ¢ = 0. Suppose G is
finite and let X = K(G 1) with one 0-simplex. Since C(z)(G) =C%X;R)
£,(G) = Rl we have H(Q)(G) = H°(X;R) = R and b0, (G) =1/|G|. O

4. Theorem. ([CG]) If G is amenable, then

. 1 =0
i (G) = ]E’T’ t
(%) {o, i > 0.

In particular, if G is amenable which admits a finite K(G,1) then x(G) =
2(—1)'b(g)(G) = 0.
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CLASSIFICATION OF FREE ACTIONS ON THE 3-TORUS

JOONKOOK SHIN

ABSTRACT. We classify free actions of finite abelian groups on the 3-torus, up
to topological conjugacy. By the works of Bieberbach and Waldhausen, this
classification problem is reduced to classifying all normal abelian subgroups
of Bieberbach groups of finite index, up to affine conjugacy. All such actions
are completely classified, see Theorems 2.1, 3.4, 4.1.

Introduction. The general question of classifying finite group actions on a
closed 3-manifold is very hard. For example, it is not known if every finite
action on S? is conjugate to a linear action. However, the actions on a 3-
dimensional torus can be understood easily by the works of Bieberbach and
Waldhausen. We shall study only free actions of finite abelian groups G on
a 3-dimensional torus T.
The group of affine motions on the euclidean space E™ is Aff(n) = GL(n,R)x

R™. The group law is

(4,a) - (B,b) = (AB,a + Ab),

and it acts on E™ by
(Aja)-z=Az+a

for (A,a),(B,b) € Aff(n), and = € E", after a coordinat of E™ is specified.
We shall denote the group of isometries of R® by E(n) = O(n)x R™ C Aff(n).
A cocompact discrete subgroup I' of E(n) is called a crystallographic group.
If T is torsion free, it is a Bieberbach group, and R"/T is a flat Riemannian
manifold. Conversely, let M be a flat Riemannian manifold of dimension n.
Then M = R"/T for some Bieberbach group I' C E(n).

A Bieberbach group T is torsion-free, contains a free abelian normal sub-
group Z" of finite index. In fact, R®" NI is the unique maximal free abelian
normal subgroup of I'. Conversely, any torsion-free group which contains a

Partially supported by GARC
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free abelian normal subgroup Z" of finite index can be made into a Bieber-
bach group by embedding it into E(n) as a cocompact discrete subgroup. We
call a group which is isomorphic to a Bieberbach group an abstract Bieberbach
group.

Let G be a finite group acting freely on a 3-torus T. Then clearly, M =
T/G is a topological manifold, and I' = 7;(T/G) is an abstract Bieberbach
group. Let N be the subgroup of I' corresponding to m;(T'). Let I' be an
embedding of T into E(3) as a cocompact subgroup, and let N’ be the image
of N. Then the quotient group G' = I''/N' acts freely on the flat torus
T' = R¥/N'. Moreover, M' = T'/G' is a flat Riemannian manifold. Thus, a
finite free topological action (G, T) gives rise to an isometric action (G',T")
on a flat torus. Clearly, T/G and T'/G' are sufficiently large, see [Heil2,
Proposition 2]. By works of Waldhausen and Heil [Heill; Theorem A}, M is
homeomorphic to M'.

Definition. Let groups G; act on manifolds M;, for « = 1,2. The ac-
tion (G1,M;) is topologically conjugate to (G2, M2) if there exists an
isomorphism 6: G; — G2 and a homeomorphism h: My — M, such that
h(g - z) = 6(g) - h(z) for all x € M, and all g € G;.

For T/G and T'/G' being homeomorphic implies that the two actions
(G,T) and (G',T") are topologically conjugate. Consequently, a free finite
action (G, T) gives rise to a topologically conjugate isometric action (G',T")
on a flat torus T'. Such a pair (G',T") is not unique. However, by the
following theorem of Bieberbach’s, all the others are topologically conjugate.

Theorem 0.1. (Bieberbach) [Wolf, 3.2.2] Any isomorphism between crys-

tallographic groups on R™ is conjugation by an element of the affine group
Affin). O

Consequenly, to classify all free actions by finite groups on a 3-torus, it is
enough to classify only free isometric actions by finite groups on a flat torus.
- When ' C Aff(n) acts properly discontinuously and freely on R", the
manifold R" /T is called an affinely flat manifold. Two affinely flat manifolds
R"/T and R™/T" are affinely diffeomorphic if there is an affine diffeomor-
phism between them. This is equivalent to saying that there is an element of
Aff(n) which conjugates I' onto I''. An abstract Bieberbach group I' which
is embedded in Aff(n) in such a way that R® N T is a lattice of R" is called
an affine Bieberbach group. We can use affinely flat manifolds rather than
flat Riemannian manifolds in the future discussions for simplicity. To justify
this, we need the following generalization of the above theorem.
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Theorem 0.2. Let , 7' C Aff(n) be two affine Bieberbach groups. Then
for any isomorphism 6 : 1 — ', there exists o € Aff(n) such that f(a) =
o-a-07! foralla € . -

Proof. Clearly Z = nNR" and Z' = 7' NR™ are the unique maximal normal
abelian subgroups. Therefore, 6 maps Z onto Z'. Let ¥ = /2 and ¥' =
7'/ 2’ be the holonomy groups.

Since Z and Z' are lattices of R", any homomorphism Z — Z' extends
uniquely to an automorphism D : R® — R”. Hence, §(I,z) = (I, Dz) for all
(I,z) e Z.

Let us denote the isomorphism on ¥ induced by 6 by § : ¥ — ¥, and
define a map f : ¥ — R” by

0(K,w) = (8(K,w), Dw + f(K,w)) (1)

For any (I,z) € Z and (K, w) € 7, apply 8 to both sides of
(K,w)(I,z)(K,w)™! = (I,Kz) to get

8(K,w)(Dz) = 6(Kz) = DK>. ()

This is true for all z € Z, so it holds true for all z € R™. It is also easy
to see that f(K,zw) = f(K,w) for all z € Z so that f : 1 — R" does not
depend on Z. Thus, f factors through ¥ = 7/Z. We will use the notation
f:¥ — R" to denote this new map.

It is not hard to see that, with the ¥-module structure on R™ via 8 :
¥ — ¥ C Aut(R"), f : ¥ — R" is a crossed homomorphism, this is,
f(KK') = f(K) + 8(K)f(K') for all K,K' € ¥. So, f € Z'(T,R").

However, H'(¥;R") = 0 since ¥ is a finite group. This means that any
crossed homomorphism is principal. In other words, there exists d € G such
that

F(K) = d — B(K)(d) (3)

Let 0 = (D,d) € Aff(n). Using (1), (2) and (3), one can show @ is
conjugation by o. That is, (K, w) = (D,d) - (K,w) - (D,d). This finishes
the proof of theorem. 0O

The reason for using Aff(3) rather than E(3) is obvious: We want to make
the maximal normal abelian subgroup to be the standard lattice of R®. For
such groups to act on E?, we need to introduce a coordinate system for E3,
which may be non-standard.

We list all the 3-dimensional affine Bieberbach groups. (Some of these are
not in the euclidean group E(3) = O(3) x R?, but they can be conjugated
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into E(3) by Theorem 0.2). We list their holonomy groups ¥ and homology
groups as well. There are 6 orientable ones and 4 non-orientable ones, see
[Orlik] or [Wolf]. In the following LIST (A), t; = (I,€:), ¢ = 1,2,3, where
{e;} is the standard basis in R?; namely,

G e CE)

where I is the 3 x 3 identity matrix.

LIST (A) 3-dimensional Bieberbach groups, their holonomy and first ho-
mology groups:

By := (t1,t2,ta), ¥ ={1}, H\(81;Z) =Z X Z X L.

1 0 0 3
@2 = (a,tl,tz,tg,), a = 0 -1 0 ) 0 ,
0o 0 -1 0

[@2,@2] = (t2—2,t;2), \I’=Zz, Hl(Q’g;Z)=ZXZ2 XZz.

10 0 3
63 = (a,tl,tg,t3), a = 0 0 -1 5 0 9
01 -1 0

[B3,83] = (t2t5,83), U =12Z;, Hi(83;Z)=2ZxZs

1 0 0
@4 = (Ot,tl,tz,t:;), a = 0 0 -1 )
01 0

[B4, B4] = (tat; 1, t7't5"), U=2Z4, Hi(O4Z)=ZXxZ,

1)
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65 = (Ot, tlat2a t3>a

[65’ 65] = <t27t3)a V= Z67

66 = (a713’ 7vt1’t2at3)3

- (345 1)

[B6, Be] = (tat; 857,172,852, 457%),
H1(®6,Z) = Z4 X Z4.

== O

B, = (€,t1,12,13),

[%17 %l] = (t3—2>’ U= Z2,

%2 = (€,t1,t2,t3),
(B2, Bs] = (titaty?), ¥ =2Z,,
%3 = (€>a7tlat27t3>a
1 0 0 3
a= 0 -1 01,10 ,
0O 0 -1 0

[%33%3] = <t2)t3_2)7 ¥ = Z2 X Z2)

1 0 O
o= 0 0 -1
01 1

(1 0 0] [3]
a=(l0 =1 o{,l0]]},

0 0 -1 |o0]

-1 0 0] 11\
Y= 0 -1 0 ) % )

0 0 1] _%_
\I’=Z2XZ2,

(5311

Hi(B1;2)=Z XL x Ls.

(3321

H](Bz;Z) =Z x Z.
1 0 O 0

€= 01 0], % ,
0 0 -1 0

Hl(%g,Z) =7Z x Z2 X Z2
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%4 = (61 a’t17t2,t3>7

1 0 0 3 10 0 0
a=110 =1 o|,|0]], e=|(0 1 0],|%]],
0 0 -1 0 00 -1 1
(B4, B4] = (tats, t57,157),
U =27y X Zy, Hi(B4;Z) =17 x Zy.

The group I acts on E? after a coordinate system of E® has been specified.
For all I’s except for the following three, E* has the standard coordinates
{e1,€2,€3}. The groups which uses non-standard coordinates on E3 are:

1 V3
&3 : {e1, eq, —5e + 3‘63}

Y

1 3
®s : {e1, ey, €2 + 76’3}

1
B, : {e1, e2, “‘5(61 +e2) + es}.

Here the second parts are bases for E® on which the covering groups act.

In Section 1, all necessary basics are explained. The normalizer of each
Bieberbach group is listed. Essentially, this section gives all the necessary
idea for our classification problem. In subsequent sections, hard cases are
worked out in detail; namely, actions (G,T) whose orbit spaces T/G are
homeomorphic to R3/®,, or R3/%B; are worked out. These are the most dif-
ficult and interesting cases, which should give the reader enough of the idea
for all the other cases. In the last section, we complete the remaining clas-
sification. This work contains the previous result of [Hempel], and supplies -
some missing ones there.

More details worked with K. B. Lee and S. Yokura will be published in
Topology and Its Applications.

§1. Criteria for conjugacy.
In this section, we develop a technique for finding and classifying all pos-

sible group actions on a 3-torus T. The problem will be reduced to a purely
group-theoretic one.
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Definition. Let I' C Aff(3) be an affine Bieberbach group, and let Ny, N,
be subgroups of I'. We say that (Ny,T) is affinely conjugate to (N, r) if
there exists an element o € Aff(3) such that oTo™! =T and o Njo~! = N,.

Notation. In a group T, u(o) denote the conjugation by . So for v € T,
ployy = oyo~l.

Let (G, T) be a free affine action of a finite abelian group G on a flat torus
T. Then T/G is an affiley flat manifold. Let I' = 7, (T/G), and N = =,(T).
Then T' is an affine Bieberbach group. In fact, Since the covering projection
T — T/G is regular, N is a normal (abelian) subgroup of I'. Since the
pure translations in I', Z = I' N R3, is the unique maximal normal abelian
subgroup of I', the normal abelian subgroup N must be in Z.

Our classification problem of free abelian group actions (G, T') with m; (T/G)
2 T can be solved by two steps:

(I) Find all normal free abelian subgroups N of T' of finite index and
classify (N,T') up to affine conjugacy.
(II) Realize the finite group I'/N as an action on the torus R3/N.

For (I), we need the following. Let I' C Aff(3) be an affine Bieberbach

group; and let
1 0 0
th=1|1,{0]}, to=\1,|1] ], t3 =11, ,
0 0 1

where I is the 3 x 3 identity matrix. Then Z = (¢;,t;,3) is the maximal
normal free abelian subgroup of I'. Let N be a subgroup of Z of rank 3 which
is normal in T, and let B = {t¢71¢5", tf2¢m2¢72 t'3¢™3478) be an ordered
set of generators for N. More precisely,

¢;
thigmigni = (I, [mJ) i=1,2,3.
ny

We shall represent the particular ordered basis B of N as a 3 x 3 integral
matrix

b by 4 (g, thagragne lagmayna)
Bl=|m;y my m3| <= ordered basis of a subgroup
np N ng Nof Z

The following Lemma is elementary but will be used repeatedly.
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Lemma 1.1. Any integral square matrix can be changed to an upper trian-
gular matrix by integral column operations. Thus, any free abelian normal
subgroup N of ' has an ordered set of generators of the form

L *
00m x|. O
0 0 n

Let us denote the normalizer of I' by Nag)(I'). The maximal normal
free abelian subgroup of I is characteristic (i.e., invariant under any auto-
morphism of I'). Under our representation of I' into Aff(3), the subgroup
T lies in Z3 C R3. Therefore, matrix parts of elements of Nags)(T') are
integral.

To make the exposition easier, we introduce some more notations. Let
N;, N, be free abelian normal subgroups of I'; B, B2 be bases for Ny, N,
respectively. If there is Y € GL(3,Z) such that [Bs] = [B1]Y ™!, then we say
[Bi1] ~ [B2]. Similarly, if there exists (X, z) € Nags)(I') so that [B;] = X[B,],

then we say [B;] % [B2]. Note that ~ is the column operation so that it do
not change I' and its normal subgroup. It is an operation that picks a new
set of generators. Therefore, if [B;] ~ [B;], then N; = N,. On the other
hand, % is the row operation on the matrix leaving I' invariant. If (X, z) is
in the normalizer of T, then it gives a new representation of I'. Moreover,
even if [B;] % [B2] , N1 and N, will generally be different subgroups of T'.

The following proposition is a working criterion for affine conjugacy. All
calculations will be done by this method.

Proposition 1.2. Let N;, N, be free abelian normal subgroups of a Bieber-
bach group I'. Then (N;,T") is affine conjugate to (N2,T') if and only if
for any ordered set of generators By, B, for Ny, N,, respectively, there exist

(X,z) € Nas(s)(T') and Y € GL(3,Z) such that

Bs] = X[B:]Y 1.

Proof. Let B;, B, be any ordered bases for Ny, N;, respectively, say

B, = {(I,al)a(Iaai’)’(I’a3)}’ By = {(Ia bl)v(I’ b2)’(Ia b3)}'

Then [B;] = [a1,a2,a3] and [B2] = [b1, bz, b3]. Suppose there exists (X, z) €
Aff(3) giving rise to an affine conjugacy from (N;,T') to (N3,T'). So the
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conjugation by (X, z) maps I' to I' itself and Ny to N. Since u(X, z)(I,a;) =
(I, Xa;), for i = 1,2,3, clearly {Xa;,Xa;,Xa3} is a new ordered set of
generators for N,. This is related to the original ordered set of generators
B; by an integral matrix ¥ € GL(3,Z). Thus

X[Bl] = X[al,az,a3] = [Xal,Xag,Xa;;] == [Bz]Y

The converse is easy. 0O

For convenience, in the rest of the paper we shall use the notation N; L N,
if [B;] = X[B1]Y ! as in Proposition 1.2.

Now, the first step (I) is a purely group-theoretic problem and can be
handled by Proposition 1.2. Firstly, we need to calculate the normalizer
Nasis)(T). Let (X,z) € Aff(3). For (X,z) to normailize the maximal free
abelian subgroup Z of T', it is necessary and sufficient that the matrix X to
be in GL(3,Z). To take care of the rest, Pick a finite subset F' of I" whose
image in the quotient (=holonomy) group I'/Z3 is a set of generators. Find

all (X,z) € GL(3,Z) x Z3 such that
(X,z)(4,a)(X,z) ' €T

for all (A,a) € F. In dimension 3, F can be taken so that it has cardinality
at most 2. For example, with &;, one can take F' = {a = (A, a)} a singleton,

1 0 0 3
where A= [0 -1 0 |,anda= [0 |. Now one needs to solve only the
0 0 -1 0

equations XAX ™! = A and (I — A)z + (X — I)a € Z3.
The following is a list of the linear parts of N g3)(T'), denoted by L(Ngs)
(T")), for all 3-dimensional Bieberbach groups.

LIST (B) The linear parts of Nags)(T):
(All matrices are in GL(3,Z), so their determinants are +1.)

®,: GL(3,Z). ®,: {[iol GL(‘;,Z)] }

1 0 0 -1 00
Bs3: Zg X Zs, the generators are 0 0 1],{0 0 1 .
0 -1 1 0 1 0
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1 0 0] [-1 0 O]
®4: Zy X Z,, the generators are 0 0 11,0 01 .
0 -1 0] |0 1 O]

10 0] [-1 0 O]
®s: Zg X Zsy, the generators are 0 0 -1},]0 01
{ |01 1] 10 1 0] }
+1 0 0
66: (Z2)3 A 53, where (Z2)3 = 0 +1 0 and Sg 1s the
0 0 =1

permutation group which acts on (Z;)* naturally.

[odd Z 0O
B: even odd 0 | € GL(3,Z) ;.
0 0 =1
%22 {

1 0 O
%3, %4! (Z2)3 = 0 +1 0 .
0 0 +1

The second part (II) “Realization” can be done by the following proce-
dure. Let T be an affine Bieberbach group, and N be a normal abelian
subgroup of I' with G = I'/N finite. To describe the natural affine action
of G on the flat torus R®/N, we must make the torus the standard torus,
and describe the action on the universal covering level. In other words, the
action of G should be defined on R? as affine maps (this is really explaining
the liftings of a set of generators of G in I'), and simply say that our action is
the affine action modulo the standard Z3. It is quite easy to achieve this. Let
{(I,a1),(I,az2),(I,as3)} be a generating set for N. Form a matrix B with the
three column vectors ai, az and az. Then B~ la; = e;, for i=1,2,3. There-
fore, u(B~1,0) maps I into another affine Bieberbach group in such a way
that the generating set for N becomes the standard basis for Z*. Suppose

[k
m
| 0
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{a1, -+ ,am},(m < 3) generates the quotient group G when project down
via ' — G, then {(B~!,0)a;(B,0),(B~!,0)as(B,0),(B!,0)a;s(B,0)} de-
scribes the action of G on the standard torus. Hence,

Procedure 1.3. Let I' be an affine Bieberbach group, and N be a normal
abelian subgroup of I' with G = I'/N finite. The natural affine action of G
on the flat torus R* /N can be described by the following procedure:
(1) Find a generating set for N: {(I,a;),(I,az),(I,a3)}.
(2) Form a matrix B with the three column vectors ay, as and a3 from
(1).
(3) Find a set of elements {ay,- -+ ,am} whose image in G is a generating
set for G. (This set can be taken so that m is at most 3).
(4) Conjugate {ay,- - ,an,} by (B™1,0) € Aff(3).
One should interpret the resulting action of G on R® modulo the standard
VAR

The above process involves many matrix calculations. These are done by
a computer using muMath, and hand-checked.

Let N be a normal subgroup of I'. Suppose that I'/N is a finite abelian
group. Then there is a surjective homomorphism of Hy(T;Z) onto I'/N.
However LIST (A) shows that H,(T;Z) has p-rank at most 3. Therefore,
I'/N has p-rank at most 3. Thus, for any finite abelian group G acting freely
on T, we only have to consider groups of the form Z, x Z,, x Z,. Note
Zy = {1}.

The following observations eliminate some of the possible actions on a
torus. Remarks (1) and (2) follow from the fact that G = I'/N is a quotient
group of Hy(T';Z). Remark (3) is true because the holonomy group ¥ is a
quotient group of G = I'/N. Note also that, by the composite map I' —
Hy(T;Z) — T'/N, the elements with non-trivial linear part map nontrivially
into I'/N.

REMARKS. (1) By virtue of Hy(®5;Z) = Z, there is no free action of a
non-cyclic group on T whose orbit manifold is R?/®s.
(2) There is no free action of a group G of p-rank 3 on T whose 7;(T/G) is
&3, B4, B¢, B, or By. All these cases, H;(I', Z) has p-rank at most 2.
(3) There is no free action of a cyclic group G on T for which m;(T/G) is S,
B3 or By. This is due to the fact that their holonomy groups are not cyclic.
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§2. Free actions of finite abelian groups G on T with 71(T/G) = &2.

Theorem 2.1. The following table gives a complete list of all free actions
(up to topological conjugacy) of finite abelian groups G on T which yield an
orbit manifold homeomorphic to R?/®,.

Group G Conjugacy classes of normal free abelian subgroups
Zzn alln K] = (a2",t2,t3)

n even Ky = (o™, a™2,t3)
Zzn X Zo alln N; = (a2”,t§,t3)

n even Ny = (a®",1%,a™t3)

Zgn X Z2 X Z2 L= (Olzn,tg,tg)
The action of 8, /K; = Z;, on the torus R®/K; is given by (h:), (i =1,2):

1 1
hl(xs y,z) - ('T + '2';, -Y, _Z)’ h2($ay, z) - (:L' +y + 5’7'{, -Y, _z)'

The action of ;/N; = Zy, x Zy on the torus R*/N; is given by (fi,gi),
(t=1,2):

‘ 1
fi=ha, 91(z,9,2) = (2,9 + 5,2);
1
2n
The action of /L = Za, X Zz X Ly on the torus R*/L is given by (¢,&,n):

fz(m,y,z)=($+z+ y Y, —Z), g2 = g1

1
¢=h1’ E=gl, ﬂ(xay,z)=($,y,z+§)-

Proof. Let N be a normal free abelian subgroup of ®; such that &2 /N is
abelian. Then [®,,8;] = (t3,t3) C N C (t1,t2,t3). Suppose N contains

n k 81
both t¥t,, tf‘ tg’tg. Then N can be represented by a matrix |0 1 #£3 | by
0 0 1

Lemma 1.1. By a column operation, N reduces to

n k £
0 1 0]|; thatis, N = (a®", a®*t,, a®'t3).
0 0 1
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For convenience, we will abuse notation and use N instead of [B] for an

ordered basis B of N, unless a confusion is likely. Since N contains t2 and
2k 2¢

t2, we have ( 0 ) , ( 0 ) € N. Thus 2k and 2¢ must be multiples of n. If
0 0

n is odd, then k = £ = 0, and N = (a®",t,,t3). If n is even, k =0, 2, and

£ =0, 3. Therefore if n is even, the possible abelian normal subgroups are

n 0 0] [n % 0
K,=(0 1 0}, Ky,=10 1 0],
0 0 1, (0 0 1

o - O
— ONs
O =3
— ON|3

n ] -n
K;y= |0 , Ky= |0 .
0 0

1 00 1 0 0
Recallthat |0 0 1], |0 1 =1 | are elements of L(N Aff(g)(@g)) from
010 0 0 1

LIST (B). Thus we have

n 0 % n 0 % n % 0
B2
K3=]0 1 0|~ |0 0 1|~]0 1 0f=K,,
00 1| ®%lo1 0[%lo 0 1
n % % n % 0 o, n % 0
0 0 1 0 0 1 0 0 1

It is easy to see that (K;,®;) is not affine conjugate to (K3, ®,), because
there do not exist X € L(Nag3)(®2)) and Y € GL(3,Z) for which XK, =
KIY. Thus we get K] = (az",t2,t3) and K2 = (a2",a"t2,t3).

Suppose N does not contain t¥t,, but t{‘t%’tg. Then, since t2 € N, N

n 0 r
can be represented by a matrix [0 2 0. Note that the (2,3)-entry was
[0 0 1
(1 0 0
killed by a row operation using |0 1 —1|. Since t € N, r = 0 or n/2.
0 0 1

Ifr=0,then N=N;. If r = n72 (with n even), then N = N,. The case
when t¥t, € N, t414£2t5 ¢ N is the same.
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Lastly, suppose both tft2,tf1 tg’ ts € N. Then N must be

n
L:=10
0

In this case, /L = G is of the form Zy, X Zy X Z,.

The realization of the action of G = &, /N on the torus R®/N, as an affine
action on the standard torus, is easy provided that we follow the Procedure
1.3. For example, let N = N;. Since G is generated by the images of o and
t, it is enough to calculate conjugations of a and t; by (N1, 0).

10 0 "
For a = (A,a) = ([0 -10 ] , [0]),
00 -1 0
1 0 0
(Nl,O)_.l(A,a)(N],O)=(N1_1AN1,N1.1(1)= 0 -1 0 s
0 0 -1
0
For ty = (I,e2) = (I, [1]),
0
0 0
(Nlao)_l(Iae2)(Nl,0)= ‘Nl-—lI]Vl,Nl_1 1 = I, % .
0
Thus, for the pair (N7, B2), we get an affine action of G = B3 /Ny & Zy, X Z2

0
on the standard torus:

o N O
N OO

} ; that is, (a®®, t3, t2).

1 1
fl(x’y’ z) = (:L‘ + 2_71,’ -Y, "Z) and gl(‘rayv z) = (l" y+ '2” z)'

The other cases are left to the reader. O

§3. Free actions of finite abelian groups G on T with 7,(T/G) = B;.

We begin with a consideration of some fundamental facts for integral

matrices. As usual N; R N, means that (N1,B,) is affine conjugate to
(N2,B1). We need some lemmas.
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Lemma 3.1. [Grosswald, p.234] If (p,q) = 1, then the set {p+ mq|m € Z}
contains infinitely many primes.

Corollary 3.2. Let(p,q) = 1 and k be any integer. Then there exist integers
m and n such that mp + nqg =1 and (k,n) = 1.

Proof. Assume that there exist integers a, b such that ap + bg = 1. Since

(b, p) = 1, there is an integer £ such that (b+£p, k) =1 by Lemma 3.1. Thus,
m = a — £q and n = b+ £p satisfy the requirement. [0

The next lemma shows how to eliminate the (1,2)-entries in upper trian-
gular matrices using L(Nag(3)(B1)).

Lemma 3.3. Let gcd(k,m,n)=c.

n m k * ® I
If — isodd, 00 n x| ~]0 ¢ =«
¢ oo« [0 0
n (m k x] » (c 0 x]
If — iseven, |0 n N[0 mro
¢ [0 0 x] |0 0 =«

Proof. For convenience, we work only in the first 2 x 2 blocks of matrices

involved. It is enough to check the case when ¢ = 1 so that o :] = [‘f)p dzq]

with (p,q) = 1 and (d,£) = 1. By Corollary 3.2 (with k = d), there exist
an integer @ and an odd b such that ap + bg = 1 and (d,b) = 1. Note

[a _pq] € GL(3,Z), thus we have

b
dp dqg _|d 0
0 ¢)c|t ep|°
Let £ be an odd number. Since (d,¢b) = 1 and ¢b is odd, there exist an
integer r and an odd s such that rd 4+ s€b = 1. If r is even, then we have

Eb—ddO_O——dﬁdepr
roos ||¢ ¢p| |1 splcl|l 0 1]

Note that [l;_b _Sd} is an element of L(Nagm3)(B; )). If r is odd, then d is

even. Set 7' =r —€b (so r' is even) and s’ = s + d.
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Then r'd+s'¢b = 1. By proceeding as above with [fj’ _S,d] € L(N Ag(3)(‘31)),
we get [eb ep] ~ [ 0 1] :
The case when £ is even is similar.

Theorem 3.4. The following table gives a complete list of all free actions
(up to topological conjugacy) of finite abelian groups G on T yielding the
orbit manifold R3/9B;.

Group G Conjugacy classes of normal free abelian subgroups
nm even (62"’" t3, €' ts)
n even = (&nm tn ti 1)
Zop X Lppm allm,n ) N4 = (e2", t7™, t3)
nm even (62" t’"" t,? t3)
n even = (e, t3™, "t3)

Zonm X Ly X Ly (52'"" 7, t3)

When m is odd, N1, N2, N3 and L, are affine conjugate to Ny, N5, Ns and
L4, respectively.

The action of G = B, /N; on the torus R®/N; is given by (fi, g:),
(1<i<6):

1 1

fl(x’y’ Z) = (:E + %’ Y, —Z), gl(w,y,z) = ((D, y+ ;v Z)
1

fz(w,yaz)=($+2+§n—m, Y, —Z), g2 = g1

1
f3(:v,y,z)=(a:+—,y+z, —Z), g3 = g1

1 1
f4(£l) y’z)“ (:L’+ ’y, ) g4($7yvz)= (xay’{"’%, Z)

1
fs(a:,y,z)=(:c+2—, y+z, _Z)’ gs = g4

1
fs(zy,z)-—(a:+z+2 7ya—) ge = 9g4.
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The action of G = B1/L; on the torus R®/L; is given by (¢, &, n:), (z =
1,2):

1
¢1 =fl7 £l=gl7 nl(m’y?z)‘:(x, y,2+‘2’)
¢2 = fa, €2 = g4, M2 = 11

Proof. Since (t3) = [B;,B;] C N, by Lemm 1.1, N has bases of the form

a b k p q O
0 ¢ ¢}, 0 r 0
0 0 1 0 0 2
By Lemma 3.3, there are 4 cases:
nm 0 fn 0 ]
Ay:=1 0 n t|, As:=10 nm t|,
0 0 1 [0 0 |
nm 0 0 (n 0 0]
Li:=| 0 n 0], Ly:=10 nm 0].
0 0 2 0 0 2

Note that when m is odd, A; and L, are affine conjugate to A, and Lo,
respectively, by Lemma 3.3. If s =0 and ¢t = 0, then A; and A3 yield N; and
Ny, respectively. We shall use the fact (t3) = [B;,B1] C N repeatedly. If s #
0 and ¢t = 0. Then nm even. So A; and A, yield N, and Ng, respectively. If
s = 0and t # 0 (so n is even), then A; and A; yield N3 and Ns, respectively.
When s # 0 and ¢ # 0, a calculation yields (e2"™, ¢3, e"’"tf_,%tg) R N3 and
(€2m, tpm™, e"t:’mtg) R Ns. Thus, A;, Az do not yield new ones. Note that if
n is odd, then B /L1 = Zopnm X Zan.

Let N be one of the normal subgroups which we obtained. To get an affine
action of B; /N on the standard torus, one proceeds as in Theorem 2.1. O

From this theorem, when n = 1 in Zspm X Z,, we get actions of Zy,,.
Compare [Hempel, Theorem 2].
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Corollary 3.5. For m even, there are exactly two free actions N1, Ny (up
to topological conjugacy) of Zym on T whose orbit manifold is R3/98,. O

Ezample. (How to read the table?) Let G = Z4 X Z3 act freely on T. Then
there are 6 distinct affine conjugacy classes of free actions of G on T with
m1(T/G) = B1. G can be viewed as Za.2.1 X Zy (n=2,m=1); Zyq X
Ziy (n=1m=4);and Zy1.9 XZ; XxZy (n=1m= 2) to yield Ny, No,
. N3; N4, Ns; and Ly. They are

(2 0 0] (2 0 1] (2 0 0]
Ny=1{0 2 0|, N,=1|0 2 0f, N;3=[0 2 1},
(0 0 1] (0 0 1] 0 0 1]
(1 0 0] (1 0 0] (2 0 0]
N,=|0 4 0|, Ns=|0 4 2|, Ly={0 1 0
0 0 1) 0 0 1] 0 0 2]

§4. Free actions of finite abelian groups G on T whose m(T/G) is
&1, 63, B4, &5, B¢, B2, B or B,.

The method which was used in the previous sections gives enough idea for
all the remaining cases. The following theorem is not hard and its proof is
left to the reader.

Theorem 4.1. The following table is a complete list of all free actions (up
to topological conjugacy) of finite abelian groups G on T whose 7(T/G) is
By, B3, &4, &5, G, B, By or B,.

r Group G Conjugacy classes of
normal free abelian subgroups
&y Zpnmr X Lpm X Zip Ly = (t3™", 3™, t3)
@32 Z3n K1 = (a3n t2, t3)
| n = 3k Kz = (a3",a"t2,a"t3)
Z3n X Zg all n N] = (a3”,t§,t2_1t3)

n =3k N2 = (aa”,tg,a"tg,)
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By Zyn all n = (", ta,t3)
n =2k = (a4, a’™ty, a?"t3)
Zyn X Zy all n = (a*", 12 15 t3)
n = %k = (%", 12, a?"t;)
Bs: Zg, = (a®", 15, t3)
Gs: Ly x Ly = (a?, B2, %)
Zy X Zy Ne = (a*, a?8%, 4?)
Zy x Z4 = (a4, B, a®B%4?)
By:  Zonm X o n odd Ny = (e3nm | e2ngn en=14"F 4 )
Zynm X Loy Ny = (™™, 242, eyt ?)
Nyo = (2™, 17, etyt3%)
Bj: Zyy X Ly all n N1 = (a?", €%, t3)
n =2k Niz = (@’ €2, a™;)
Lz X Ly X Loy Ly = (a®", €, 1)
By: Zon X Za all n Niz = (a?", €2, t3)
n =2k Nig = (a®", a"€?, a™t3)
Zop X Ly Nis = (@™, €, €2t3)

Ezample. Let G = Z4 X Zy act freely on T. Then there are 18 distinct
topological conjugacy classes of free actions. Recall that (G1,T) and (G, T)
are not affine conjugate unless T/G; and T/G; are homeomorphic. In fact,

there exist 2 distinct free actions in each flat manifold whose 1 (T/G) is B,
B, or B3, 3 in By, 6 in B, (see, Example in §3) and one in B;, B, or Bs.
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THE LIMIT SET OF A DISCRETE
SUBGROUP OF MOBIUS GROUP

SUNGBOK HONG

In this survey article, we devote to a detailed discussion of the limit set
of a discrete subgroup of Mébius group, M(B™*1!), and some interesting
subsets.

We denote by M(B™*1!) the full group of Mdbius transforms preserving
B™+1, A subgroup I' of M(B™*1) is discrete if the identity has a neighbor-
hood whose intersection with I' reduces to the identity.

A point £ € S™ is a limit point for the discrete group I' if for one, and
hence every, point £ € B™*! the orbit I'(z) accumulates at £. The set of
limit points is denoted by A(T") or simply A.

Our analysis of the limit set will be based on the rate at which orbits
approach the point in question. We will start by considering the most rapid
rate possible and then succesively weaken the rate of approach.

Given a discrete group I' acting in B™ and a point £ € A then, for any
v € T and any a € B™*! we have 1 — |y(a)| < |¢ —¥(a)|. In terms of orbital
approach, the best we can hope for is that, on a sequence {y,} C T,

|€ - 7n(a)l
1- I'Yn(a)l

— 1 as n — oo.

DEFINITION 1: The point € € A is said to a line transitive point for I' if for
every pair a, b € B there exists a sequence {v,} C I such that

€= m(a)] _ €= _
T h@] e T m

To have a geometric interpretation of this definition, we need the following
Lemma.
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Lemma 2 [N]. Suppose a € B and n,§ € S, n # €. Let s be the hyperbolic
distance from a to the geodesic joining £ and n then

2la ~ Ella—n|
€ =l(1 —1aP)

coshs =

Now suppose ¢ is a line transitive point and o is a geodesic ending at &
(with 7 the other end point of o) then from the Lemma 2, we have, on the
sequence {Vn}, p(7n(a),0) — 0 and, similarly p(vn(b),0) — 0 as n — oo.
Thus, for any pair of points a,b € B there is a sequence of images of the
geodesic o coming arbitrarily close to both points.

We weaken the requirement that orbits approach a limit point almost
radially and require that they approach within a cone.

DEFINITION 3: The point £ € A is said to be a conical limit point (point of
approximation) for T if for every a € B there exists a sequence {y,} C ' on
|€ = n(a)|
1 — |yn(a

The following result is s consequence of Theorem 1 of [B-M].

which the sequence remains bounded.

Thoerem 4. The point £ € S is a conical limit point for T' if and only if
there is a geodesic o ending at € such that for any point a € B there are
infinitely many T'-images of o within a bounded hyperbolic distance of a.

To see the geometric significance of the conical limit set consider a line
element /; determining a geodesic ending at a conical limit point. As the line
element slides along the geodesic it keeps meeting images of some compact
portion of B. On the quotient space this geodesic flow keeps returning to a
compact part of the manifold.

Analogous to the notion of the orbits approaching the boundary in a
conical region is that of the orbit approaching the boundary in a horoshere.

DEFINITION 5: Let T’ be a discrete group acting in B. A point £ € S is
a horospherical limit point for I' if for every a € B there exists a sequence
{vn} C T such that

IE - 7n(a)lz

— 0 as n — oo.
1- h’n(a)l

We denote by H the horospherical limit set. Now we see the geometric
interpretation of the horosherical limit point in dimension 2. Consider a
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line element /; determining a geodesic ending at a horosherical limit point £.
Construct a horocycle at { passing through the carrier point of I;. As the
line element moves around the horocycle it comes arbitrarily close to group
images of any other line element. On the quotient space B/I" these ideas give
rise to the horocyclic flow and the existence of a horospherical limit point
means that there is a point with a dense trajectory under the flow. Sullivan
has shown the remarkable equivalence regarding horospherical limit set and
group actions.

Let V = H"/T be a hyperbolic manifold and let V(r) denote the volume
of the points of V' within a distance r of some base point p. Also H(r) denote
the volume of the ball of radius r in hyperbolic space.

Theorem 6 [S]. The following are equivalent

(1) The fundamental domain has zero area at co.

(2) The ratio V(r)/H(r) — 0 as r — oo.

(3) The action of T on the sphere at oo is conserative.

(4) The horospherrical limit set of I' has full measure on the sphere.

Now we introduce another subset of the limit set which can be character-

ized topologically. Here we will study two kinds of objects associated to a
complete hyperbolic manifold M = B™ /T. The first are geodesic rays in M
which satisfy a simple tangential recurrence condition. The other is a certain
type of limit point of the universal covering group of the manifold. These
limit points are defined purely in terms of the local topological dynamics
of the action of the universal covering group on the sphere at infinity. We
will give several characterizations which are directly analogous to character-
izations of conical limit points. These show that every limit point of our
type is a conical limit point. All geodesics and geodesic rays are assumed
to have unit speed parametrizations, and to be oriented in the direction of
increasing parameter. From now on, we denote by I' a non-elementary tor-
sionfree discrete group of hyperbolic isometries acting on the Poincaré ball
B"={zeR™:|z|<1},m>2.
DEFINITION 7: An oriented geodesic or geodesic ray @ in M = B™ /T is said
to be recurrent if for every (equivalently, for some) tangent vector v to a,
there is a sequence of times ¢; — oo such that o'(t;) — v. A geodesic or
geodesic ray in B™ is called recurrent if its image in M is recurrent.

Equivalently, whenever a passes through a small open subset of the unit
tangent space of M, it leaves and returns infinitely often. Qur first result is
Theorem 1.5, which characterizes the recurrent geodesic rays as those which
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are well approximated by closed geodesics in M (see §1 for precise defini-
tions). This implies that the space of recurrent geodesic rays is topologically
complete.

Now let p € dB™ be a limit point of I'. By a neighborhood of p, we will
always mean an open neighborhood of p in the “sphere at infinity” 0B™.

DEFINITION 8: One says that a neighborhood U of p can be concentrated
with control at p if for every neighborhood V' of p, there exists an element
~ € T such that p € ¥(V) and ¥(U) C V. If such a neighborhood U exists,

then p is called a controlled concentration point for I'.

Obviously, the set of controlled concentration points of a Mobius group
is invariant under the action of the group. Related properties of controlled
concentration points are studied in [A-H-M] and [H].

The connection between recurrent geodesics and controlled concentration
points is simple and is given as Theorem 13: a geodesic (or geodesic ray) in
B™ is recurrent if and only if its endpoint is a controlled concentration point.

The space of geodesic rays in a hyperbolic manifold M can be identified with
the unit tangent bundle Ty M, and this endows it with a natural topology
which coincides with the compact-open topology when the geodesic rays are
regarded as maps [0,00) — Ty M. In this section we will find a characteriza-
tion of recurrent geodesic rays in terms of the closed geodesics in B™/T'. It
implies that the recurrent geodesic rays form a G5 subset of the space of all
geodesic rays, and hence can be endowed with a complete metric.

From the definition, it is evident that a geodesic or geodesic ray in B™ is
recurrent if and only if all of its translates are recurrent, and an (oriented)
geodesic is recurrent if and only if each (or one) of its compatibly oriented
geodesic subrays is recurrent. The following lemma gives two other descrip-
tions of recurrent geodesics in B™. Since they are direct consequences of the
definitions, we omit the proofs.

Lemma 9. The following are equivalent for an oriented geodesic a in B™.

(1) a is recurrent.

(2) fr € OB™ is the starting point of o and p € OB™ is its ending
point, then there is a sequence {vn} of elements of T so that {v,(0)}
converges to r and {yn(p)} converges to p.

(3) If ag is any subray of a, then there is a sequence {v,} of elements
of T such that the images of ap under the v, converge to a (with
respect to the Hausdorff metric on compact subsets of B™ UOB™ ) in
an oriented sense.
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Fix a metric on the unit tangent bundle of hyperbolic space B™ which is
invariant under the Mobius group, and let Ty M have the induced metric.

DEFINITION 10: Let B be a piecewise geodesic segment in M (possibly a
closed loop) with initial point b and let v be a closed geodesic. We say that
v e-approzimates [ if there exists a point ¢ on 7y so that a pair of points
starting at b and ¢ and traveling at unit speed along A and 7 respectively
remain within hyperbolic distance e until the point on v reaches ¢ again
(necessarily, if 3 is not a closed loop, its length () must be at least £(7)).

Lemma 11. Fix e > 0 and let D be a geodesically convex disc in M. Given
an oriented geodesic segment $; in M which starts and ends in D, denote by
B2 the geodesic segment in D running from the final point of 8, to its initial
point, and let 3 denote the piecewise geodesic loop 3 U ;. Then there are
positive constants L and § so that if £(;) > L and the initial and final unit
tangent vectors of (3 are within distance é, then
(i) the element g of T represented by (3 is loxodromic, and
(ii) the unique closed geodesic vy in M which is freely homotopic to 3 satisfies
¢(B) — e < £(v) < £(B) and e-approximates f3.

PROOF: Assuming (i) we first prove (ii). Some lift ¥ of v is the axis of g in
B™. Lift 8 to a piecewise geodesic curve connecting the endpoints of ¥, and
fix a lift b of the initial point of 8; which lies in the lift of 3. Let « be the
geodesic segment from b to 5 meeting ¥ perpendicularly at a point a. Let v
be the geodesic segment in v from a to g(a). Connecting b to g(b) is a lift
of B consisting of geodesic segments B; and f, which are lifts of 8; and 5.
Let o be the geodesic segment from b to g(b). Note that the lengths satisfy
U(v0) < £(o) < £(By) + £(B;) = £(B). By making L large and & small, we
may assume that the initial tangent vectors of B, and o are as close as we
want. By making é small, independent of L, we may force the final tangent
vector of B; and the initial tangent vector of g(,[?l) to be close, hence also the
final tangent vector of o and the initial tangent vector of g(o). Therefore in
the quadrilateral formed by o, a, g(a), and 7o, the (internal) angles at the
initial and terminal points of o must add up almost to w. This forces a to be
short, so we may assume £(a) < ¢/6. If § is chosen to force B2 to be shorter
than €/6, then ¢(8) < £(0) 4+ €/3 < £(7) + 2¢/3. Hence points traveling along
~ and 81 U By starting from a and b respectively will stay within distance e
until the point from a reaches g(a). This proves (ii) assuming (i).

To prove (1), suppose for contradiction that g is parabolic, fixing oo in the
upper half-space model of hyperbolic space, and make a similar argument
replacing a by the geodesic ray from b to co. Note that b and ¢(b) lie on the




50 SuNGBOK HoONG

same horosphere at co. Thus, when L is large, the initial and final tangent
vectors of o must point upward and downward at large angles, but then the
final vector of §; and the image of its initial vector under g cannot be close.

We can now obtain the characterization of recurrent geodesics and geodesic

rays.

DEFINITION 12: An oriented geodesic or geodesic ray f in a hyperbolic
manifold M is said to be approzimable by closed geodesics if for every b €
and every € > 0, there exists a closed oriented geodesic which e-approximates
the subray of 3 starting at b.

Theorem 13. A geodesic or geodesic ray in M is recurrent if and only if it
is approximable by closed geodesics.

PROOF: Let b be an arbitrary point on the recurrent geodesic § and let
€ > 0. Choose L and § as in the previous lemma (for a neighborhood of b).
By recurrence there is a segment of § starting at b, of length greater than
L, whose initial and final tangent vectors lie within distance é in Ty M. The
lemma yields a closed geodesic which e-approximates 3. The other direction
is clear.

Given a geodesic ray 3:[0,00) — M, a closed geodesic v:IR — M, and
to € R, define the fellow traveler distance from (v,%o) to B to be

maXp<t<e(n) d(’Y(to + t)> ﬂ(t)) )

where d denotes hyperbolic distance in M. (Remember that geodesics are
parametrized by arc length.) This function is periodic in #p, and we define
d(B) to be the minimum fellow traveler distance over all o € IR. According
to the previous theorem, f is recurrent if and only if there is a sequence v;
of closed geodesics in M such that lim d.;(8)=0.

For a closed geodesic v define B(v,¢€) to be the open subset of the unit
tangent space of M corresponding to the geodesic rays 3 such that d,(8) <
e. If 11, 72, ... is an enumeration of the closed geodesics in M, let U, =
U, B(vk,1/n). Then by Theorem 13 the G5 subset N5Z,Uy, is precisely
the subspace corresponding to the recurrent geodesic rays. Since the unit
tangent bundle admits a complete metric, the space of recurrent geodesic
rays does also . We state this as the following.
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Corollary 14. The space of recurrent geodesic rays in M is topologically
complete.

Theorem 13 will give the basic connection between recurrent geodesics and
controlled concentration points: the latter are precisely the endpoints of
recurrent geodesics in B™. As is well-known, if there is a sequence of distinct
elements v, of I" so that the images v,(0) converge to a point r, then r must
be in B™, since I is discrete. Moreover, for all z in B™, the v,(z) also
converge to r. It is known [M, VI.B.4] that a limit point p is a conical limit
point if and only if there exists a sequence {7, } of distinct elements of I" such
that v,(p) — ¢ and 7,(0) — r where r # g. We begin with an analogous
characterization of controlled concentration points.

Theorem 15. A limit point p is a controlled concentration point for T' if
and only if there exists a sequence {v,} of distinct elements of " such that

Yn(p) = p and ¥,(0) — r where r # p.
PROOF: See Thoerem 2.1 in [A-H-M]

Combining Theorem 13 and the description of recurrent geodesic rays
given in Lemma 9 (ii) yields immediately our unifying result:

Theorem 16. A limit point p is a controlled concentration point for T' if and
only if there exists a recurrent geodesic (equivalently, a recurrent geodesic
ray) in B™ which ends at p.

obvious.

As one application of Theorem 13, we will give a second characterization
of controlled concentration points. For p € 0B™, define a subset L(p) of the
space of geodesics in B™ as follows. Let & be a geodesic ray in B™ ending
at p and let a be its image in M. Define a subset ¢(p) of the unit tangent
bundle Ty M by

Up) = [ &(fr,00)) -

r>0

(4(p) is the w-limit set of a'(0) under the geodesic flow.) It is easy to check
that ¢(p) is independent of the choice of &@. Notice that if some tangent
vector to a geodesic in M lies in £(p), all of its tangent vectors do (i.e. £(p) is
invariant by the geodesic flow). Define L(p) to be the collection of (oriented)
geodesics in B™ such that the tangent vectors of their images in M lie in £(p).
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Lemma 17. Let G(p) be the set of geodesics in B™ which end at p. Then
the set of recurrent geodesics ending at p equals G(p) N L(p).

PROOF: Suppose f3 is a recurrent geodesic ending at p. Since L(p) is inde-
pendent of the choice of ray ending at p, we may take the ray to lie in S,
with initial vector v. A sequence of translates of the ray which limits onto the
geodesic determines in M a sequence of tangent vectors to the image of the
ray which limit onto the image of v, showing that B is in L(p). Conversely,
if L(p) contains a geodesic ending at p, then taking the defining ray for L(p)
to be contained in this geodesic shows that the geodesic is recurrent.

Using this Lemma, Theorem 13 gives immediately

Corollary 18. A point p € 0B™ is a controlled concentration point if and
only if G(p) N L(p) is nonempty.

There is an analogous characterization of conical limit points.

Proposition 19. A point p € B™ is a conical limit point if and only if
L(p) is nonempty.

PROOF: p is a conical limit point if and only if for some geodesic ray &
ending at p, there exists a sequence t; — oo such that the images a(t;) in
B™ /T lie in some compact region. Since the space of unit tangent vectors to
the points in a compact region is compact, this is equivalent to the existence
of a sequence s; — oo such that the a'(s;) converge to a vector in the unit
tangent bundle. Such limit vectors comprise £(p). '
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LOOP SPACES AND CATEGORIES

YONGJIN SONG

ABSTRACT. The coherence theory in categories has a strong relation with
the coherence problem in homotopy theory. This article is an elementary
introduction to the long-standing problem: »What algebraic structure of a
category corresponds to a n-fold loop space ?” This question has been re-
solved for n = 1 by Stasheff ([15]) and MacLane ([8]) and for n = oo by
Segal ([14]) .These answers to this question have been expolited in many ar-
eas like algebraic K-theory, homotopy theory, etc. This problem has recently
been reilluminated by Fiedorowicz who found an answer for n = 2 ([8]) that
is motivated by quantum groups. We recall braided tensor category (and
quantum groups) and define iterated monoidal categories which seem to be
the answer to the coherence problem.

1.INTRODUCTION

The recognition principle is to specify the appropriate internal structure
such that a space X has such structure if and only if X is of the (weak)
homotopy type of n-fold loop space. It has been known for years that there
is a relation between coherence problems in homotopy theory and that in
categories. It was shown by Stasheff ([15]) and MacLane ([8]) that monoidal
categories give rise to 1-fold loop spaces. It was later proved that there is a
similar correspondence between infinite loop spaces and symmetric monoidal
categories ( [14]). Precisely speaking, the group completion of the nerve of a
symmetric monoidal category is an infinite loop space. This correpondence
plays an important role in algebraic K-theory. This fact also provides new
examples of infinite loop spaces and infinite loop maps in which many topol-
ogists are interested. Now we may naturally raise the following problem :
“What algebraic structure on a category corresponds to an n-fold loop space
?” Fiedorowicz got the answer for n = 2 via braided tensor categories which
play key roles in quantum groups. Although his proof looks simple, it is
in some sense so mysterious that it is not immediate to see the generaliza-
tion. Fiedorowicz, Schwénzl and Vogt later found the generalization of the
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notion of braided tensor category whose algebraic structure is more trans-
parently analogous to the structure of a 2-fold loop space. They called this
2-fold monoidal category. The construction of 2-fold monoidal category en-
dows us with an idea to consturct n-fold monoidal categories which seem to
correspond to n-fold loop spaces. Although the main objective of this arti-
cle is to deal with the coherence problem, quantum group theory is roughly
introduced in section 2 because braided tensor categories have strong and
important connection to quantum groups.

2.QUANTUM GROUPS

Quantum group is a catchall term used to describe mathematical develop-
ments arising from mathematical physics centered around the Yang-Baxter
equation. Mathematcal physicists like to describe states of physical systems
by using representations of Lie groups or Lie algebras. Thus the basic objects
of study are k-modules V (k :fixed commutative ring, usually C) with some
extra structure, for example, action of Lie groups or Lie algebras. The basic
operation on such objects is tensor product V ®; W that is associative and
commutative up to isomorphism

UeV)@WSUR(VOW)
(uRV)Quwr— u® (v w)

rUQV3VeU
URQvr— vQRu
Around 1980, Yang and Baxter proposed that states of certain physical sys-

tems should be described by a tensor product which is commutative by an

‘exotic’ commutativity isomorphism R: V@V = V ® V such that R? #1d,
but which still acts reasonably with respect to the associativity isomorphism.
That means the following diagram commutes:

veveV 225 veveV
R®idl 1R®id
Vevev Vevev
id®Rl lid@R

VeVeV — VReVeVv
R®id
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Hence if we let Rl'z = R®d, Ry3 =1d ® R, then the commutativity of the
above diagram can be expressed by the following equation:

Ri2R23Ry12 = Ry3Ry2Ry3 (1)

This equation is called Yang-Baxter equation. We can see it exists by the
following example.

Example 2.1. Let V be a complex vector space with basis {vq,---,v,}.
Let g€ C - {0}. Define R: VQV -V @V by
qu; ® v; ifi=3j
R(v;@w): vj®v,-+(q—%)v,-®vj ifj <1
v; Q@ v; if7>1

Then R satisfies Yang-Baxter equation, but R? # id unless ¢ = 1.

Reamark 2.2. (Connection to braids) Given an R-matrix R: V@V — VV,
and for a braid group B, we get related group representation

¢ : B, — End(V®")

as follows:
Let {8;}"' denote the standard braid generators of B,,, then define ¢, (3;) =
R;, where R; € End(V®") is defined by

Ri(z2;® - Qzp)=21Q  QR(z; 2i41)® -z,

Then Yang-Baxter equation implies

R;R; = R;R; if|i—j|2>2

RiRi11R; = Ri11R;Riq
which are defining relations for #;. Thus ¢, is well-defined. With some
extra work, we can use these braid representations in defining knot and link
polynomial of V.Jones.

2. BASIC DEFINITIONS

Categories equipped with tensor product (call tensor categories or monoidal
categories) have been studied for years. Tensor categories equipped with
destinguished braidings, which are called braided tensor categories, have
recently attracted many mathematician’s attention since Drinfel’d’s Interna-
tional Congress talk on quantums groups. He provided a class of new natural
examples of braided tensor categories. In this section we define monoidal (or
tensor) categories, symmetric monoidal categories and braided tensor cate-
gories.
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Definition 2.1. A (strict) monoidal (or tensor) category (C,0, E) is a cat-
egory C together with a functor 0 : €x€ — € (called the (tensor) product)
and an object E (called the unit object) such that

(a) O is strictly associative
(b) E is a strict 2-sided unit for O.

Definition 2.2. A (strict) symmetric monoidal category is a monoidal
category (C,0, E) such that

(c) There exists a natural commutativity isomorphism Cy g : AOB —
BOA satisfying

(1) Cag=1da =CE,a

(ii) associativity condition:

ACOBOC Canpe COAOB
id,0Cg, ¢ \1 /CA,cDidB
AOCOB

(iii) Ca,B = Cg4
Definition 2.3. A braided tensor category is defined as follows:
Delete (iii) of Definition 2.2, and add another associativity condition

AOBOC Ca.ppe BOCOA
Ca,pDidc N / idp0O4,c
BOAOC

Example 2.4. Symmetric monoidal category.
Let F be a field. Let C be a category whose objects are F*, n > 0 and mor-
phisms are nonsingular square matrices. Then the product & : € x € — €

is defined by F™ @ F* = F™" and A® B = <A 0),WhereA €

0 B
GL,(F), B € GL.(F).
Then it is easy to see that C= [[ GL,(F) is a symmetric monoidal cate-
n>0
gory. This palys a key role in the definition of Quillen’s algebraic K-theory.
The nerve BC= [[ BGL,(F) has a monoid structure induced by &. It is
n>0
known ([10]) that the group completion of BC = [[ BGL,(F), which is
n>0
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QB ( 11 BGL,,(F),EB) , is homotopy equivalent to BGL(F)* x Z. Hence
n>0
we have

mﬂB([JBGLJF%@)::KxF)ﬁmizl

n>0

n>0
the general fact-Theorem 3.2.

Moreover QB | [ BGL,(F), 69) is an infinite loop space. This comes from

Example 2.5. Braided tensor category.
Let B be a category whose objects are [n], n > 0 and

6 Em#n
h ,[n]) =
oms (im, )= { 5 om 7"
[m] ® [n] = [m + n] and the tensor product of braids is the disjoint union of
braids. Let E = [0]. Define o{mj,n] to be the braid connecting 1,--- ,m to
n+1l,---,n+mandm+1,--- ,m+ntol,- - n, respectively. Then B is
the free braided tensor category on the object [1].

Remark 2.6. V. Drinfel’d found natrual examples of braided tensor category.
Let C; = C[t,t7!]. Let ¢ € C - {0}. Let S, be the funtor S, : Ci-
Mod — C-Mod,V — V 3C, C, where C is given the C;-module structure
by the ring homomorphism C; — C, ¢ ~ ¢. Let si(n) denote a Lie al-
gebra over C. V. Drinfel’d proved that there is a braided tensor category
M(sl(n,q)) € C-Mod whose image under S, is the category of finite di-
mensional representation of sl(n). The case when ¢ is a root of unity is of
special interest to physicists.

3. RESULTS ON COHERENCE

In this section we mention a couple of classical results on the coherence
problem and a recent result of Fiedorowicz. For all the results mentioned in
this section, the converse statement is alse true.

Theorem 3.1. ([8],[15]) The group completion of the nerve of a monoidal
category is of the homotopy type of a loop space.
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Theorem 3.2. ([14]),[17]) The group completion of the nerve of a symmet-
ric monoidal category is of the homotopy type of an infinite loop space.

These theorems are very important and have a plenty of applications. It
has not been resolved for the coherence of n-fold loop spaces. Fiedorowicz
proved a striking result:

Theorem 3.3. ([4]) Let C be a braided tensor category. Then the group
completion of its nerve QB(BC,0O) is a Q?-space up to homotopy.

4. ITERATED MONOIDAL CATEGORY

Although Fiedorowicz proved Theorem 3.3 in a simple and short way, it
was, in some sense, mysterious. In order to generalize the proof of Theo-
rem 3.3, Fiedorowicz, Schwiinzl and Vogt constructed a new category; 2-fold
monoidal category. It is analogous to braided tensor category, but better
than braided tensor category in the sense that it is more transparently anal-
ogous to the structure of a 2-fold loop space. We may regard a 2-fold loop
space as a loop space in the category of loop spaces. Similarly we consider
a monoidal category in the category of monoidal categories. This gives a
notion of a 2-fold monoidal category. By mimicking the Segal-Thomason
proof of Theorem 3., it is easy to prove that there is the same correspon-
dence between 2-fold loop space and 2-fold monoidal category. Fiedorowicz,
Schwanzl and Vogt generalized the definition of 2-fold monoidal category to
construct n-fold monoidal category which seems to be the probable answer
for the general coherence problem. The rest of this section consists of the
definitions of 2-fold and n-fold monoidal categories.

Definition 4.1. A monoidal functor (F,7) : € — D between monoidal
categories consists of a functor F such that F(E) = E together with a
natural transformation

na,s: F(A)OF(B) — F(AOB),

which satisfies the following conditions
(1) Internal Associativity: The following diagram commutes

F(A)OF(B)OF(C) 24220, pAnB)OF(C)
‘lidp(A)DnB,c lﬂAUB,C

F(AOF(BOC) 2229  F(A0BOC)
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(2) Internal Unit Conditions: na,g = ng,4 = idp(a).
Given two monoidal functors (F,n): C — D and (G,() : D — &, we define

their composite to be the monoidal functor (GF,¢) : € — &€ ,where ¢ denotes
the composite

GF(A)OGF(B) "5 q(r(4)0F(B)) ™) GF(AOB).

We denote by MonCat the category of monoidal categories and monoidal
functors.

Definition 4.2. A 2-fold monoidal category is a monoid in MonCat. This

means that we are given a monoidal category (C,0, E) and a monoidal func-
tor (&,7) : € x € — € which satisfies

(1) External Associativity: the following diagram commutes in MonCat

CxCx @ EBnxid o @
lidcx(El,n) l(El,n)
CxC G, C

(2) External Unit Conditions: the following diagram commutes in Mon-
Cat

CxE —S 4 CxC—=2_ExC

e s

¢E — € —<— ¢
Explicitly this means that we are given a second associative binary operation

B: € x € — €, for which E is also a two-sided unit. Moreover we are given
a natural transformation

na,B,c.p: (AOB)O(CED) — (ADOC)E(BOD).

The internal unit conditions give n4 B E,E = ME,E,A,B = 1damp, while the
external unit conditions give n4 g B,E = NE,AE,B = tdanp, The internal
associativity condition gives the commutative diagram

(UEV)OWEX)O(YEZ) “evrxDidves, (pow)n(vox))O(yez)

iduvanw,x,Y,zl lnvmw'vux,y,z

(Uav)O(Woy)m(xnz)) —Lrerxer, owoy)a(voxoz)
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The external associativity condition gives the commutative diagram
(UEvOW)O(X0Ynz) —LEvmXevi, (gav)D(Xoy))awoz)

ﬂv,vmw.x,vmzl an,V,X,YG‘deZ

UOX)B((VEw)Oynz)) ~extvwys, oy )avoy)awoz)
Notice that we have natural transformations

NA,E,E,B * AOB — AGB and NE,AB,E * AOB — BOA

Definition 4.3. An n-fold monoidal category is a category C with the
following structure.

(1) There are n distinct multiplications
Dl,Dg,...,Dn : Cx €—> C

which are strictly associative and C has an object E which is a strict
unit for all the multiplications

(2) For each pair (3,5) such that 1 < 7 < j < n there is a natural
transformation

4 5 c.p : (A0;B)0;(CO; D) — (AD;C)0;(BO).

These natural transformations 7'/ satisfy the following conditions :
17 .. y . . g
(a) Internal unit condition: n:‘{.’.B’E’E = ng,E,A,B =idao; B
(b) External unit condition: 7 5 p p = N5 aEB = 1da0; B
(c) Internal associativity condition: The following diagram commutes

ij .
’Tz;,v,w,xD-“dYDjz

» (UO,W)0,;(VD:X))0i(Y D, 2)

; (UD]'V)D,'(WD]'X)D,'(YD]'Z)
idUDjVD‘ng',X,Y,ZJv l”gniw,vaix,y,z

ij
U,v,wD;vY,X0;2

n
(U0, V)0:((WE,Y)0,;(X0;2)) (vo;w0,Y)0,;(vo, X0,2)
(d) External associativity condition: The following diagram commutes

ij
"vnj V.W,X0;Y,2Z

(UD]'VDJ'W)D,‘(XD]'YD]'Z) ———— ((UD]'V)D,'(XDJ'Y))DJ'(WD,'Z)
ﬂg,vnj w,x,ijzJ' 1"3,v,x,y|3i'.dwn.-z

; i
’dUU;XD) Mv,w,y,z

(U0:X)0;((VO,W)0,(Y D, 2)) (U0, X)0;(VO,Y)0; (Wi 2)
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Finally it is required that for each triple (3,7, k) satisfying‘l <i<j<k<n
the big hexagonal interchange diagram commute, which we omit here. (See
[6]).

Definition 4.4. An n-fold monoidal functor (F,\,...,A") : € —» D
between n-fold monoidal categories consists of a functor F such that F(E) =
E together with natural transformations

Ay p: F(A)O,F(B) » F(AB) i=1,2,....n

satisfying the same associativity and unit conditions as monoidal functors.
In addition the following interchange diagram commutes:

(F(A)O,;F(B))0;(F(C)O;F(D)) o renro, (F(A)O,;F(C))0;(F(B)3; F(D))

A;'BD;A"C'DI ,\j,,cm,.,\g,l,l
F(AOQ;B)O,F(CO;D) F(AD;C)O,F(BO; D)
’\:’QD,’B.CDJ'DJ' . AjAD;C‘.BD.‘Dl

F(ﬂz'a,c,o)
—_——

F((AOQ;B)0;(CO;D)) F((AO;C)O;(BO; D))

Composition of n-fold monoidal functors is defined in exactly the same way
as for monoidal functors.
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A NOTE ON RATIONAL L-S CATEGORY

Doo-BEUM LEE

1. Introduction

In this paper every topological space will be assumed to be path connected,
pointed and to have the homotopy type of CW complex of finite type. The
Lusternik-Schnirelmann category of a topological space S, cat(S), is the least
integer m so that S is covered by m + 1 open subsets each of which is
contractible in §. For example, contractible spaces have category 0, spheres
have category one, etc. The properties of L-S category have been studied
extensively by [3].

An equivalent definition was given by G. Whitehead [6]; Let T™+1(S)
denote the subspace of S™*! consisting of all (m+1)—tuples (z1, -+ ,ZTm41)
with at least one z; equal to specified base point in §. It is usually called
the fat wedge. Then cat(S) is defined as the least integer m so that we have
the following homotopy commutative diagram

s & Sfr"“ (%)
S
59 3 Tm+1(8)

where A and j denote the diagonal map and an inclusion respectively.
2. Rational Homotopy

For details on the material on Sullivan minimal model and the homotopy
of commutative differential graded algebra (CDGA) the reader is referred

This research was supported by GARC
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to [2] and [4]. Sullivan associated to every morphism (4,d) — (B, d) of
c-connected CDGA’s (i,e H°(C) = 0) a minimal model

(4,d) -5 (A®AX,d) %» (B,d)

where i is a KS-extension defined by i(a) = a® 1 for a € A, and X has a
well ordered, homogeneous vector space basis {wa'a el } such that dz, €
AQAX<o and a < B implies deg x4 < deg x5, where X<q denotes span
{z ﬁ|,3 < a}. The ' ' indicates a cohomology isomorphism.

Sullivan minimal model of a space S is defined by a minimal model of
(Q,0) — (A(S),d) where A(S) denotes the rational polynomial forms on S.
We usually denote a minimal model simply by (AX,d). The fundamental
theorem of rational homotopy theory is then

Theorem. Each space S has a minimal model AX and for nilpotent spaces
of finite type there is a natural isomorphism

X'~ Hom(m;8,Q), i>1
where m;S is the it* homotopy group.

Examples.

(1) M (82n+1) = A((D2n+1),d$ =0
2) M (82") = A (€20, Yan—1),dz = 0,dy = 2°

3. Rational Category

Let v : AX — A(S) be a minimal model of a space S. Then A(m+1)
(AX)®™+1 — A (S™*1) is a minimal model for S™*! and the multiplication
map g : (AX)®™+t1 — AX represents the diagonal map. The previous
diagram (*) translates into a homotopy commutative drigram of minimal
CDGA’s

AX £ (AX)P™HL ()

SN

where AY is a minimal model of 7™+1(S) and ¢ represents the inclusion j.
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Definition. The rational category of S, cat.(S), is the least integer m so
that the above diagram (**) exists; that is, there exists p with p¢ v p.

Remarks. (1) cato(S) < cat(S)
(2) cato(S) = cat(Sq) if S is 1-connected where Sq is the Q-localization
of S.

Definition. A morphism f: A — B of c-connected CDGA’s makes A into
a retract of B if there are morphisms

AX =% AY 25 Ax

(AX a model for A, AY a model for B) such that « represents f and Ba ~ id.
(If AX is minimal we can always modify f so that Ba = id. [1])

Let A>™X denote the d-stable ideal of AX consisting of all products of
length greater than m. We now describe a rational homotopy criterion for
category giving a different proof of the following theorem given in [1]. The
following lemma is well known in rational homotopy theory.

Lemma. If6 : A — B is a cohomology isomorphism, then 6, : [A, A] —
[A, B] is bijective for any mininal A.

Theorem. cat,(S§) < m if AX is a retract of AX/A>™X where AX is a
minimal model of S.

Proof. Consider the projection p : AX — AX/A>™X and a minimal model
6:AZ - AX/A>™X. By the lemma there exists a lift p : AX — AZ with
6p ~ p. Let v: AZ — AX denote a retraction, with yp ~ 1, x. We have the
following homotopy commutative diagram

AX £ (Ax)@mH
( ! g )
) [ SRR e [
::TG c.‘Igé

NG,

—
=
N
T=
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where [i is the map induced by p and ji is a lift. In order to prove that
cato(§) < m we must find p : AY — AX with pf ~ p. Let p = vji where vy
is the retraction. Then we have

~

6pp ~ pp = pm =~ A =~ Ouf

Since 8 is a cohomology isomorphism pu =~ fi€ also by the above lemma. Now

p§ = vl =~ P = laxp = p

Remark. The converse of the theorem is also true [1].

Before the work of Felix and Halperin on cat.(S) Toomer constructed an
approximation, eo(S), to L-S category of a space S in terms of the Milnor-
More spectral sequence. It can also be defined to be the least integer m so
that p : AX — AX/A>™X induces an injection in cohomology where AX is a
minimal model of S. The above remark clearly implies that e,(S) < cato(S).

Theorem. If the space S has a minimal model of the form A = (A(:vl, RN
,),a) with deg z; = odd for all i, then e,(S) = cato(S) = n.

Proof. The formal top dimension of the algebra A is ) deg z; and the only
element which can reach the dimension is z; ---z,. By the hypothesis the
fundamental class is maximally represented by a product of length n and
hence e,(S) = n. On the other hand we have an inequality

cato (A (21, ,2it1)) < cato (A (21, ,2i)) +1

by [1]. Hence cato (A (21, ,%n)) < n and the theorem follows immediately
from the inequalities
n = eo(S) < cato(S) < n.
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THE MORAVA K-THEORY AND SOME COMPUTATIONS

YOUNGGI CHOI

INTRODUCTION

Among many spectra, the spectrum MU for complex bordism has played
an important role in stable homotopy. Localized the spectrum MU at a
prime p, it splits as wedges of suspensions of the similiar spectra BP which
we call the Brown-Peterson Spectrum. The corresponding homology theory
is called Brown-Peterson homology. BP was also proven to be very useful
in stable homotopy, especially Adams Novikov spectral sequence. Quillen(7]
found some strong connection between the bordism theory and the formal
group law. But practically it never be easy to compute the BP theory. Early
1970’s Morava developed a more manageable generalized homology theories
known as the Morava K-theories, a sequence of homology theories which are
represented by the spectrum K(n) and satisfies the Kunneth isomorphisms
for all spaces. In this paper we will give an elementary introduction to the
Morava K-theories and compute the Atiyah-Hirzebruch spectral sequence
for the Morava K-theories of Q2Sp(n).

1. THE SPECTRUM K(n).

In this section we will give some basic facts about the spectra MU,
BP and K(n). The good reference for these spectra is [8]. According to
Brown’s representation theorem every homology theory has its correspond-
ing spectrum, a collections of spaces with structure maps. The spectrum
for the complex bordism is the sequences of the Thom space MU (n) of
the classifying space BU(n) for the unitary group U(n) with the struc-
ture maps ?MU(n — 1) —» MU(n) induced by the map from BU(n —1)
with the universal bundle {,_; @ C into BU(n) with £,. Exploiting the
map CP* ~ MU(1) - MU and the fact that H,(CP>;Z) is free on
Bi € Hyi(CP> : Z),i > 0, we get

H (MU;Z) = Z[by, by, ...].

71
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7«(MU) was computed by Milnor using the Adams spectral sequence with
E; = Exta, (Z/(p), H{(MU; Z/(p)))

.where A, is the dual of the Steenrod algebra A*, converging to p-primary
part of m,(MU). Due to the nice A, comodule algebra structure of H,(MU)
we can compute the E,—term easily and the Adams spectral sequence collapes
from E,—term because of the even dimensionality of the surviving generators.

Theorem [5].
To(MU) = MU, = Z[z3,24,...]

,where dim z,; = 21.

Localized the spectrum MU at a prime p, Quillen constructed a multi-
plicative idempotent map e of ring spectra:

€e: MUy — MU).

For any space X consider the map eAl: MU AX — MU AX. Then the
image of €, become a natural direct summand of MU,(X )p and it satisfies
all the axioms for the generalized homology theory, so by the Browm’s rep-

resentation theorem it has its representing spectrum. We denote it by BP
and homology theory by BP.(X) with

To(BP) = BP, = Z(p)[v1,v2,...]

,where dim v; = 2(p' — 1) . Historically Brown and Peterson[2] first con-
structed BP spectrum starting with Eilenberg Maclane spectrum localized
at p and building a postnikov tower to get a spectrum with torsion free in
homology. We can also construct BP in a homotopy aspect like Priddy’s
construction[6]. From the BP spectrum we can follow the Sullivan-Bass
way[1] to construct Morava K—theories spectrum K(n). Each element z in
7.(MU) can be represented by a manifold M.

A closed n-dimensional manifold W with singularity of type (), (n > k),
is a space of the form AU(B x CM) where the boundary of the manifold
Ais B x M and CM is the cone space of M. Consider the following the
cofibration

Sy AMU = MU — C(MU, z).

If z is not a zero divisor, the exact sequence in homotopy yields a short
exact. So we get 7, (C(MU,z)) = m.(MU)/(x). Note that in spectrum
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level a fibration is a cofibration and vice versa. We can interpreted above
cofibration in geometric aspect, i.e., for each manifold N the manifold N x M
is cobordant to empty set ¢ in C(MU, z), where we regard empty set as an
n-dimensional smooth manifold for all n.

We can iterated this process for elements z1,z3,. ..z, in 71.(MU). If each
element z is not a zero divisor in 7,(C(MU, zy,... ,z-1),

T(C(MU,zy,... ,zk) = m(MU)/(21,. .. ,zk).

From the spectrum BP we can constuct a tower of spectra by killing cer-
tain bordism classes. This means that we can build a tower of bordism
theories based on manifold with certain type of singularities. If we kill
(p,v1,--- ,Vn—1,Vn41,...) in BP, and we donote the corresponding spec-
trum by k(n), m.(k(n)) = Z/(p)[vn], where |v,| = 2(p™ — 1). If we kill v,
from k(n), we get the Eilenberg-Maclane spectrum H(Z/(p)) for the mod p
singular homology. In this constuction we may say that the mod p homology

theory is also a bordism theory allowing infinitely many types of singularities.
We have

S2@" =D A k(n) 22 k(n) — H(Z)/(p).
We define the spectrum

—2i(p" —1)

K(n)=lm Y  k(n)

This K(n) is just the spectrum for Morava K-theories. Obviously these spec-
tra are periodic , that is, 22(” - K(n) = K(n) and we have a sequence of
homology theories for each n. We can also construct K(n) using Landwe-

ber exact funtor method. Morava K-theories satisfies many nice properties.
K(n), is the graded field in the sense that all graded module over K(n), are

free. So Torf((n)‘(K(n),.(X), K(n)«(Y')) = 0 for all space X, Y. Hence from

the Kunneth spectral sequence we get
K(n)«(X xY)=K(n).(X)® K(n).(Y).

In fact besides the ordinary homology with field coefficients Morava K—theory
is essentially only homology theories with the kunneth isomorphism. And

K(n)"(X) = Homg (n), (K(n)«(X), K(n).).
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For the case n = 0, K(0).(X) = Hu.(X;Q) and K(1).(X) is one of p —
1 isomorphic summands of mod p complex K-theory for all p. Moreover
suppose that X is a finite CW-complex. Then consider the Atiyah Hirzebruch
spectral sequence converging to K(n).(X) with

Ey = Ho(X;Z/(p)) ® K(n)«.

If the dimension of the X is less than 2p™ — 1, there is no differential from
the dimension reason. So

K(n)«(X) = K(n)s ®25) H«(X; Z/(p))

Therefore we may consider the spectrum K(oco) as the Eilenderg-Maclane
spectrum with coefficient Z/(p).

2. SOME COMPUTATION

Now we will turn to the computation of the Morava K-theory. For a space
X and a generalized homology theory h,, there exist a spectral sequence, we
call the Atiyah—Hirzebruch spectral sequence, converging to h,(X) with

E2 = H*(X; h*(*))
Hence if h, is the coefficient ring for the Morava K—-theory, then
E; = H(X; Z/(p)) ® K(n)s.

Like the classical K—-theory the first non-trivial differential is determined by
the Milnor operation Q,[4],where Q,, is defined inductively as the commu-

tator for )
QO =Sq* 9

Qk+l=[Qka quk] ,fOI' D= 2’
QO:ﬂ’ .
Qk+1=[Qk,P?] ,for p>2.

Hence there is no differential until the E;,»_ stage because the dimension
of vy, is 2p™ — 2 and we have first non trivial differential: dypn_1(z ® vk) =
Qnz ®@vit! in Eypn_;—term. Of course above argument also hold dually for
a cohomology version of Morava K-theory K(n)*(X).

Now we will compute the Atiyah—Hirzebruch spectral sequence converging
to K(m)«(22Sp(n)) for p = 2 with

E, = H,(2*Sp(n); Z/(2)) ® K(m),.
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From (3],

H.(2*Sp(n); Z/(2)) = P(Q4x4iy1:0<i<n-—1, b> 0)
2k .
Qm($2k+1i+2k+2m+1-1) = A2i4151.6

aij_gm+1—i ,J<m
Om(agigs—y) = a;"m+k+1 ,j=m+1 and s—1=2%
2m+1 .
Qyj-m-14_17 ,)>m+1
;where P(z) is the polynomial algebra on z. Let T,,(z) be the truncated
polynomial on z of the height 2™ and @; be the homology operation defined

for (n + 1)—fold loop space as
Qi: Hy(Q"X;Z/(2)) — Hyqi(Q"M X;2/(2)) ,0<i<n.

Proposition 2.1. The E;m+1—term of the Atiyah-Hirzebruch spectral se-
quence for K(m).(22Sp(n)) is

Tl(wzkl.{.l 0<ki<n-1- 2m-1  and Tap+1 =0 if k> 2’"‘1)
®
Tp(r2k,41:n—1-2""1 < ky <n—-1-2m"2)
®

Te(zok,41:n—1-2m"U"D c < p 1 2""'3)
®

Tr(Z2kp+1: 0 —3 < km <n—2)
®
Tm+1(:v(28+1)2u(,)+,+1_1 8= 0, 1,2, vy — 1, t= 0, 1,2 ..o
T(2s4+1)2M()+e41_1 F T(2k;41)2i42m+1-1  for anyj)

®
Tm(ng(’)+m+-’+2(23+l)—1 LS = 0, 1, 2, R 1, j = 0, ]., 2, Y .)
®
Tm(w?zki_‘_l)zi_!_zmﬂ_l t=2,...,m.)

Ton(@gk, 41)242mr -1 * (k1 +1)2 4274 —1)2 4 om41 15 45— 3)
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where for each s, M(s) is the largest number a such that (2s +1)2% — 1 is of
the form 2k + 1 for some £ and if there is no such a, M(s) = 0.

Proof. Note that |Q%z4k+1| = 3 mod 4 for all a > 0.
From the above Milnor operation we get

2
Qum(Tgitam+is1) = G241 -

For T) part since (2:+1)24+2™*!1 -1 = 4i4+2mt1 41 = 1 mod 4, 4i+2m14+1 <
4n — 3. Hence we get 1 < n — 2™ — 1. If |zgp41]| > 2™ 4 1, that is,
k> 2m~1 z4r41 is the source of the differential. In general for T} such that
£ < m, let define v(|z|) = a if |z| = 2%t where t is odd. Then we have
v(1+]Q%(2)]) = a + v(1 + |z|). Moreover v((2k¢ + 1)2° + 2™*!) = £ and
v(|Q4zaiz1| + 1) = €+ 1. Hence (2k¢ + 1)2¢ + 2™+ — 1 < |Q{ ' 24n_s| =
(4n —3)2¢71 42671 — 1. So k¢ < n—1—2™~L. The remaining computation
is very routine except the last part. Note that in these cases we have choices
of generators. But here we abuse the notations and still use z; for those
choices. For last part if (2k; + 1)2 + 2™+ — 1)2 4+ 2™+ — 1 < 4n — 3, we
have a differential from z((ak, +1)242m+1-1)242m+1-1 tO vmx%%l_l_l)z“m_ﬂ_l.

Corollary 2.2. K(m).(Q?Sp) is

E(CL’4,+3 182> 0) ® E($43+1 :0<s< 2m—1) .

Proof. Since 22Sp = lim,—.oo 22Sp(n) and the homology theory preserves
the direct limit, Eym+1-term for K(m).(022Sp)

T1($2k1+1 :0 S k] S n—1-— 2m—1 and Tak4+1 = 0 if &k 2 2m—1) .

This spectral sequence is also the spectral sequence of a coalgebra. Thus
since there are no even dimensional primitive element the spectral sequence
collapses, i.e, Eym+1 = Eo. But Morava K-theories are not commutative
when p = 2. So there would be some multiple extensions in the E—term
. In fact the deviation from the commutativity of K (m)«() is determined
by Q1 action[9], that is [z,y] = vam_l(x)Qm 1(y) where Q,._; is the
operation in K(m)-theory which is similar to the Milnor operation Q,,_; in
mod p homology. Since ém-1($2i+1) is even dimensional primitive and the
E—term has only odd dimensional primitive element, there are no deviations
from the commutativity. So every element in K(m).(€2?Sp) is commutative
and there is no multiple extension.
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YANG-MILLS THEORY ON
BRANCHED COVERING SPACES

YoNG SEuNG CHO

§1. Introduction

Let X be a smooth oriented 4-manifold. Suppose that a cyclic group
Z, acts smoothly on X. Let P : E — X be an SU(2)-vector bundle over
X with a smooth G-action such that the projection P is a G-map. Let
7: X — X' = X/Z, be the projection and E — E' = E/Z, be the quotient
bundle of E.

In this paper we would like to study the smooth structures on X', the
relation between the moduli space of Z,-invariant anti-self-dual connections
on E and the moduli space of anti-self-dual connections on E', and the
relation between the polynomial invariants which is defined regarding the
invariant moduli space M%» and the polynomial invariants which is defined
by the moduli space M’ on the quotient bundle E'.

In [F.S] and [C1] they showed that there exists a Baire set in the G-
invariant metrics on X, when the manifold X has a finite group G-action,
such that the moduli space ME of G-invariant self-dual connections is smooth
except the reducible singularities. In [C1] by using the G-transversality argu-
ment of T. Petrie, we identify cohomology obstructions to globally perturbe
the full moduli space M of all self-dual connections into a G-manifold when
G = Z, and the fixed point set of the G-action on X is a non-empty collection
of isolated points and Riemann surfaces. In [C2] we find generic metrics on
X such that the moduli space M is smooth in a G-invariant neighborhood of
the fixed point set M S when G = Zn, for a Baire set of invariant metrics on
X. In [H.L] they show that when G is a finite group, the G-equivariant mod-
uli space M* has a Whitney stratification with invariant subspaces Mg,
G' C G as its strata, by perturbing the self-dual equations and Bierstone’s

Supported by GARC-KOSEF.
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general position argument of equivariant maps in finite dimensional mani-
folds. In [W] when the group G is Z; he gives the relations between the
invariant moduli space M€ on a G-bundle E — X and the moduli space M’
on the quotient bundle E' — X' and gives a relation between polynomial
invariants defined by them. In [C4] he find generic G-invariant metric on X
such that the moduli space M is a smooth G-manifold except the reducible
singularities if the instanton number c;(E) is large enough.

§2. Lipschitz structure

A topological manifold X of dimension 4 is Lipschitz if there is a maximal
atlas {Uqx, da}aer on X, where ¢o : Us — Vo C R* is a homeomorphism
from an open set Uy C M onto an open set Vo of R*, and the changes of
coordinates ¢z o ¢! are Lipschitz functions, i.e., |¢gd5(z) — dpd5 (y)| <
Koglz — y| for any z,y € ¢o(Us NUpg) with Kqp a constant.

In [S] Sullivan defined Ly-forms, exterior derivatives and differential forms
on the Lipschitz manifolds. An Ly-form w of degree r on X is a system,
w = {wq}aca, Where each w, is a Ly-differential form of degree r on the open
subset Vi, = ¢o(Us) of R*, and they satisfy the compatibility conditions:

(¢pda") wps = wa-

Proposition 2.1(Rademacher). Let U be an open subset of R*, and let
¢ : U — R* be a Lipschitz map, then;

(i) o is differentiable almost everywhere on U
(i1) Ve is a weak derivative :

/ fa_‘P - _ / of
v’ Oz O0x;

for smooth compactly supported test functions f on U.
(i1) ¢ preserves Lebesgue null sets.

Theorem 2.2 [S]. Any topological manifold of dimension # 4 has a Lip-
schitz atlas of coordinates, and for any two such Lipschitz structures L;,
i = 1,2, there exits a Lipschitz homeomorphim h : £; — L, close to the
identity.
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Theorem 2.3 [D.S]. (i) There are topological 4-manifolds which do not
admit any Lipschitz structure.

(ii) There are Lipschitz 4-manifolds which are homeomorphic but not Lip-
schitz equivalent.

In [D.S] Donaldson and Sullivan studied the gauge theory on the quasicon-
formal 4-manifolds. As consequences they showed that the compact simply
connected topological 4-manifolds with negative definite, even intersection
forms do not admit quasiconformal structure. They showed that the com-
plex Barlow surface is not quasiconformally equivalent to CP2#8CP? (they
are homeomorphic). Similarly we may establish the gauge theory on the Lip-
schitz 4-manifolds. We may apply their results to the Lipschitz 4-manifolds.
Then we will get Theorem [D.S].

83. Smooth structure on quotient spaces

Let X be a smooth oriented, closed 4-manifold. Suppose that the cyclic
group Z/n of order n acts semifreely on X with a 2-dimensional submanifold
B as its fixed point set, and let X' = X/Z, be its quotient space. Then we
have an n-fold ramified covering space:

m: X - X'

with branching locus n(B) = B'.

To study the smooth structures on X' we consider a small tubular neigh-
borhood N of B in X which is isomorphic to the normal bundle of B in
X. The projection 7 gives rise to a tubular neighborhood 7(N) = N' of
n(B) = B' in X' which is also isomorphic to the normal bundle of B' in X".
For a coordinate system {B,} of B, let N, — B, x C be a local trivialization
of the normal bundle N — B, given by (b,v) — (b, p4(v)).

Theorem 3.1. If we give a local trivialization 7(No) = N}, — n(Bj) xC =
B!, x C on the normal bundle N' — B' by (w(b),n(v)) — (7(b), pa(v)?),
then
(i) the quotient space X' is a smooth 4-manifold,
(ii) the projection map 7 : X — X' is smooth,
(iii) but = is not Lipschitz.
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Proof. (i) Suppose that the fixed point set B is orientable. Then the normal
bundle N — B is a U(1)-bundle. The transition map ¢gp,' : Bo N Bg —
U(1) gives an attaching linear map (b,v) — (b, e*®v) where €’ = @gp31(b)
on the normal bundle N. By definition this transition map induces the
transion map @l ~' : By, N By — U(1) given by (¥/,v") = (¥, ™), i.e.,
@l (V) = €™, and |v|* = V'] if 7(b,v) = (¥,v'). Thus N' —» B' is a
smooth U(1)-bundle.

If B is not orientable, then we consider the orientation line bundle L — B
which is given by transition functions, the Jacobian determinant of the matrix
of partial derivatives of the transition functions of the tangent bundle T'B.
We can get the same result by tensoring the orientation bundle L to the
normal bundle N.

(i1) On the free part the quotient space X' has the smooth structure
induced by the smooth structure of X. Near the fixed point B the projection
map 7 is just the bundle map between the normal bundles N and N'. Thus
the projection map 7 is smooth.

(ii1) Near the fixed point set, 7 : N — N’ is the normal bundle map. We
consider the local trivializations as above (i)

B, «—— N|g, —— B, xC

I R

since 7 = identity on the fixed point set, 7(b,2) = (b,2") and |(b,0)— (b, z)| =
2], |w(b,0) — m(b, z)| = |z|®. Thus 7 is not Lipschitz.

Theorem 3.2. If we give a local trivialization N}, = 7r(N ) = w(By) x C
on the normal bundle N' — B' in X' by

a(v)"
(B 7(0) = (n(8), 20,
then (i.e, in the polar coordinate (w(b),m(v)) (m(b),re'™?)
pa(v) = re'?)
(i) X' is smooth,
(i1) = is not smooth,
(iii) but = is bi-Lipschitz.
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Proof. (i) On the free part the Theorem is obvious because the structure on
X' comes from the structure on X. It is enough to prove the theorem on a
small tubular neighborhood of the fixed point set B. The proof is similar to
the proof of above theorem. As a normal bundle, if N — B has the transition
function e*? € U(1), then the transition function of N' — B' is e™® € U(1).
Thus the X' is smooth.

(i) In the local trivialization of the normal bundle. The projection 7 (b, re®®)

= (n(b),re'™%) is not smooth because re'"? = Iso‘z?v;Jl"n‘ is not smooth when

¢a(v) = 0, where @o(v) = re??. Thus 7 is not smooth on the fixed point set
B

(iii) Let ¢(v1) = rie'®

, @(v2) = ro€'%. Then

lo(v1) — (v2)| = (r} + 12 — 2r173 cos(8; — 61))%  and

Il #(v1) ) I = (r? +rZ —2rirycosn(f, — 01))%.

e(v)[*1 fp(vg)|m?

There are constants ¢; and ¢; so that

po)* p(v)"
p(o)|"71 fe(v2) ™~

erle(v1) — p(v2)] < || 7| < ealo(v1) = p(v2)]-

In this paper we will assume that X' has the smooth structure of Theorem
3.2. Since 7 is a bi-Lipschitz map, 7 sends sets of measure zero into sets of
measure zero, moreover 7 sends measurable sets into measurable sets and so
is w1,

From Theorem 3.2 we have following corollary.

Corollary 3.3. (i) The Z/n-invariant smooth metrics or differential forms
on X pushdown to the metrics or forms on X' which are smooth away from
B', and have bounded coefficients near B'.

(ii) The projection n : X — X' induces an 1-1 correspondence between
Z/n-invariant LP-metrics (forms) on X and LP-metrics (forms) on X'.

Proof. (1) Since the smoothness is a local property and the restriction = :
X\B — X'\B' is locally diffeomorphic, it is sufficient to prove the theorem
near B'. At near B the metric is of the form dz? + da2% + dr? + d6?, the
pushdown metric is of the form dz{? + dz}? +dr'? + d6'? = dz? + dz? + dr? +
nd6? since n(zy,zs,7,0) = (2},25,7',8") = (z1,z2,7,n0). In differential
forms since §' = n#f, they have bounded coefficients near B’.
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(ii) If we push down the Zy-invariant LP-metrics (forms) on X then they
are the LP-metrics (forms) on X'. Conversely the pullback of the LP-metric
(form) on X' is a Zy-invariant LP-metric (form) on X.

We consider some topological consequences on the quotient space X'. If X
is simply connected, then m, : m1(X) — m1(X') is zero. Indeed if we choose
a base point in the branching locus B’, any loop at the base point can meet
only the point with B’ by small perturbation. That loop lifts n-distinct loops
in X with a base point in B. Thus X' is also simply connected. In [C3] to
prove the following proposition we use the Hirzebruch G-signature Theorem.

Theorem 3.4 [C3].
(1) The signature of X' : sign(X') = L(sign(X) + "22‘1 Bo B)
(2) The Eular characteristic of X' : x(X') = £(x(X) + (n — 1)x(B))

(3) The rank of the maximal subspace of H?(X) which consists of the
self dual harmonic 2-forms:

n—1 n+1
5 {x(B) +

B (X) = = [0 + BoB-2)]

where B o B is the self-intersection number of B in X.

§4. Comparison between Equivariance and Quotient

Let E' — X' be an SU(2)-vector bundle with the second chern number
c2(E') = k' on the quotient X'. Let the pull-back bundle E = 7*E’ and
Z/n = (o) be generated by o and its lifting & on E. Then the second Chern
number of E, c;(E) = nk' = k. The lifting & is the identity on B, and is
smooth away from B and Lipschitz around B as a bundle map ¢ : E — E.

For p > 4, we would like to define a modified Sobolev space of 1-forms on
X;

Lp(Q) = {a € LP() |da € L2 (0%)},

AP = {Ag +ala € j)’:(Q}((adE)}, where Ag is smooth, AP is the Z/n-

invariant subspace of AP.

Proposition 4.1. (i) The projection map = : E — E' induces a bijection
AP . A'? where A' is the modified Sobolev space of connections on E'.

(i1) For an anti-self-dual, o-invariant connection A € AP the push down
connection A' on X' is also anti-self-dual.
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(iii) The diagram

L(adE)” —%4 [P(QY(ad E))° — A L2/*(0%(ad E))°

! ! !

P dt,
L¥(ad E') —Hs EP(QL,(ad E')) —2 L2/} (9% (ad E'))

is commutative for an anti-self-dual connection A in AP°. The above two
complexes are isomorphic and elliptic.

In [D.S] to compute the index of the above elliptic complex we may use
the parametrix Q4 for dj, instead of the adjoint operator d%, = — * d 4/ *
since the push down metric on X' of a G-invariant metric on X is singular.
If we use the excision principle of the Atiyah-Singer index Theorem, we have
the index.

Theorem 4.2. The index of the above elliptic complex is
iEr = SCQ(EI) - 3[1 - bl(X') + b;—(X’)]
1. 3(n—1 n+1
= Lie- XD my 4

—ZE.

Bo B}

In [D.S] Donaldson and Sullivan use a similar method to compute the
index for the quasi-conformal setting.

§5. Equivariant generic metric

We would like to introduce equivariant generic metric on a 4-mani-
fold X to define Donaldson polynomial invariant by regarding the equivariant
moduli space MZ/™ C BZ/™ as carrying a distinguished invariant homology
class, independent of the choice of metric used to define MZ%/",

Let E 2 X be an SU(2) vector bundle with ¢, = nk' = k over a simply
connected closed smooth 4-manifold X. Suppose a cyclic group Z/n acts
on X with a 2-dimensional submanifold B as the fixed point. set. Let Z/n
lift to the bundle E such that the projection p is a Z/n-map. Choose Z/n-
invariant metrics on X and E. Recall that the notations .A(.AZ/ "), g(gZ/ ™)
the space of (Z/n-invariant) connetions and the group of (Z/n-invariant)
gauge transformations on E respectively.
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Consider the fundamental elliptic complexes
0 — Q%adE) — QY (adE) — Q2 (adE) — 0

and
0 — Q°(ad E)2/™ — QY (ad E)2/™ — Q2 (ad B)2/™ — 0

Then the space A and A%Z/™ are affine spaces modeled on the spaces
Q(ad E) and Q'(ad E)%/™, and the groups of gauge transformations G(E)
and G(E)%/" are modeled on the spaces 2°(ad E) and Q°(ad E)%/™ respec-
tively. Since the gauge transformations act on the connection spaces, we have
the orbit spaces

B=A/G(E) and BY"=A"/"[G(E)"/"
We have some immediate consequences.

Proposition 5.1. Let E' 25 X' be the quotient bundle of E % X under
the Z/n-action.

(i) X' has a smooth structure such that 7 is smooth.
(1]) Cz(E) = TI,CQ(E’).
(iii) The natural map B%/™ — B is injective if we restrict to irreducible
connections and if the center of gauge group is trivial.
(iv) If we choose the pullback metric g on X from a smooth metric g’ on
X', then the metric g is Z/n-invariant.

Proof.

(i) Let 7 : X — X' be the projection map. If N is a tubular neighbor-
hood of B, then N — B is an U(1)-bundle and N' = n(N) —» B' =
7(B) is also an U(1)-bundle. If we identify B and B’', then N' is
isomorphic to N ®¢ -+ ®¢ N of n-copies of N

(i1) Since E = n*(E'), pi(E) = pin*E' = n*pi(E') = npi(E') and
c2(E) = nea(E').

(iti) Suppose A;,A; € B*Z/™ and A; = gAyg~! for some g € G(E).
Then A; = h7lghAsh™1g7h = gAsg~!, for any h € Z/n and
g 'h~lghAshg~'hg = A;. g 'h~lgh is an element of the center
of the gauge group. Since the center is trivial, gh = hg for any
h € Z/n and g € G(E)%/".

(iv) Since n*¢' = g, for any v,w € TpX, gp(v,w) = (7*¢')p(v,w) =
g;(p)(ﬂ*v, mw) and for any h € Z/n, ghp(hsv,how) =
E:r*g)')h(p)(h*v,h*w) = g;(h(P))(r*h*v,r*h*w) = g;r(p)(h*v,

«W).



YANG-MILLS THEORY ON BRANCHED COVERING SPACES 87

Let U = U(GL(T X)) be the set of c*-automorphisms of the tangent bundle
for a sufficient large k. Let U%/™ be the subspace of Z/n-invariant metrics in
U.

In fact if g is a fixed Z/n-invariant metric on X, then every Z/n-invariant
metric on X is realized by a pull-back metric $*(g) of g for some ¢ € UZ/™,

Let p, : Q¥%/n Qi’z/ " be the projection onto the self-dual Z/n-
invariant 2-forms with respect to the Z/n-invariant metric g. Then ¢*p + $1*
is the projection onto self-dual, Z/n-invariant 2-forms with respect to the
metric ¢*(g).

We define a map @ : B*2/m x YZ/" — Q2+(ad E)%/™ by ®(4,¢) =
p, ¢ 1*F4. The map ® is well-defined. Clearly a connection V is anti-self-
dual if and only if (V) is anti-self-dual with respect to the metric (h¢)*(g)
[C3].

Theorem 5.2 [F.U],[C1]. The map ® is smooth and has zero as a reg-
ular value. The inverse image ®~1(0) is an infinite dimensional Banach
manifold of anti-self-dual connections parametrized by the space UL/™ of all
Z/n-invariant metrics on X.

Consider the projection map

- VA
which is a Fredholm map with Z/n-invariant index of the fundamental Z/n-
invariant elliptic complex as its index. By the Sard-Smale Theorem for a
Fredholm map between paracompact Banach manifolds, we have the follow-
ing theorem.

Theorem 5.3 [C1]. There is a Baire set U' of UL/™ such that n~1(¢) =
Mﬁ{?y) is a smooth manifold in the moduli space My.(,4 of the irreducible
anti-self-dual connections for each metric ¢ € U'.

Let go,91 € U', and v : [0,1] — UZ/™ be a path between them. If bH(X'") >
1, by the similar proof as the above proposition we can perturb the path +
to a new path 7' which lies in &', that is, tansverse to 7. We may assume
7(0) = 4'(0) = go and (1) = 4'(1) = g;. Then we have a cobordism W,
between the moduli spaces M*(go)%/™ and M*(g;)%/". For any £ we can
choose the parth 4’ to have the transverse condition for all bundle E with
c2(E) < £. Also if b (X') > 1 we may choose the path 4’ to lie in U'. Let
us consider the reducible connection of E. If V is a Z/n-invariant reducible
connection, then there is an equivariant bundle decomposition E = L @ L™!
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and an equivariant decomposition V = Vo @ Vj of the connection V. In
addition if V is anti-self-dual, then the curvature form (:/27)F represents
the Euler class of the line bundle L and is a Z/n-invariant ASD harmonic
2-form on X. The Z/n-invariant fundamental elliptic complex

0 — Q%ad B)!™ - Q' (ad E)2/™ — Q% (ad E)?/™ — 0

reduces to

(%) 0 — QOZ/n  QUE/™ Q2 (da E)2/™ — 0

since the adjoint bundle is trivial. The index of () is (1/2)(XZ/"+0Z/") =1+
bf2/",  since dimH®%/" = 1 and dimH"2/" — dimH*%/"
— _-b;-.Z/n.

If b;" ‘Z/n > ( the Sard-Smale Theorem induces that generically there are
no anti-self-dual solutions. Since the dimension of Z/n-invariant, self-dual
harmonic 2-forms on X equal to the dimension of self-dual harmonic 2-forms
on the quotient space X' :

b 7m(X)
- (X))
= (1/n)[b3 (X) + ((n = 1)/2){x(B) + ((n +1)/3)B o B — 2}].

Thus we have the following proposition.

Proposition 5.4. (1) If b3 (X) > ((n—1)/2){2-x(B)—((n+1)/3)Bo B},
then there is an open dense subset U' of the Z/n-invariant metrics U%/™ on
X such that M?/ " does not have a reducible Z/n-invariant ASD-connection
for each g € U'.

(2) If b (X) > n+(n—1)/n{2— x(B) — ((n+1)/3B o B}, then any path
in UL/™ of metrics in Z/n-invariant metrics joining two metrics g; and g in
U' can be perturbed into a new path in U'.

(3) The moduli spaces M%/™ of the equivariant classes of Z/n-invariant
ASD-connections are smooth manifolds under the condition (1), are cobor-
dant under the condition (2) for the invariant generic metrics in U'.
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§6. Polynomial invariants

We need the following conditions to compute Donaldson polynomial in-
variant for the quotient bundle E' — X' (see [D.K]).
(i) The dimension of the moduli space, dim Mg = ig = 2d' is even.
(i1) To avoid nontrivial reducible connections and to get generic metric

bF(X) > n — ”T‘l{x(za)Jr "tlp.p_9.
(iii) The stable range
4 224301+ B (X)+ " x(B)+ "tlpop-2)).

To define the Donaldson invariant for the invariant setting we would like to
introduce the Donaldson y-map.
For ¥ € Hz(X;Z)Z/"~ with 7,2 = n[X/Z,] € Hy(X";Z), if A is Z/n-
invariant connection in AP, we have a coupled Dirac operator
P4 :T(STQE)Y - T(S”®E)°

where S¥ is the (£3)-spinor bundle on .
We have the determinant line bundle

7" (£s) Lr

! !

B(X)¢/» — X B(%)

with the fiber (det ind @4)~!, where v is the restriction map.
Note that we should use a small tubular neighborhood N(X) of ¥ instead
of £. There is a generic section sy of this bundle such that

s51(0) = Vx is a codimension 2-submanifold of MZ C Bg.

Vs is the Poincaré dual of the first Chern class ¢;(Ly) of the determinant line
bundle Ly. This is the image p(X) of the Donaldson map p : Hy(X;Z)° —
H?(B?;Z). Define the Donaldson invariant for the invariant setting

q°: symdl(Hg(X; Z)) - Z by
¢°(Z1,...,Zq) =#MEN Vg N,... ,ﬂVEd,.

Here the number is counted with sign, and M{ N Vg,,..., Vg, is a zero-
dimensional compact manifold, hence finite.

In [C1] and [F.S] they showed that for the generic G-invariant metrics
on X, the moduli space M{ of G-invariant anti-self-dual connections is a
smooth manifold.
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Proposition 6.1 [C3]. The image of the first Chern class is
W*(Cl (ﬁz)) = n.cl(ﬁz/zn), and

HX(X,2)" —— H*(X':Z)

PDl ln.PD
H)(X;Z)" —=— Hy(X':7Z)

is commutative where PD stands for Poincaré dual.

Theorem 6.2. If 7, : Hy(X;Z)%/™ — Hy(X';Z) and

(&) =nm;, i1=1,...,d, then
q°(&is- - &) = ' (M, ma)-

Sketch of the proof. Take a smooth generic metric ¢' on X'. The pull-back
metric ¢ = 7*¢’ is a bounded measurable o-invariant metric on X. Let {g,}
be a sequence of o-invariant generic smooth metric on X such that g, — g in
C7-sense. Then the push down metric g/, of g, on X' is bounded measurable
and g/, converges to ¢g'. So far we showed that

(1) ¢2(&,-.-y€a) = G,(m,...,na ) for the metric g, and g;, respectively,

where §], is the polynomial invariant with respect to g,.
(i1) For large n

dn(ny--snar) =4q'(m,...,na) (see [D.S] for detail).

Combining (i) and (ii), we have the required result,

qa(ﬁlv""ﬁd’) = q’(nl)“'and’)'
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ANALYTIC TORSION FOR ELLIPTIC OPERATORS

HonaG-JoNG KiMm
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ABSTRACT. Analytic torsion was first introduced by Ray and Singer [RS71,
RS73, RS, Ray, Sin, Che, Miil78, Miil91] in the study of Reidemeister-Franz
torsion [deR, DFN, Fra, Mil61, Mil62, Mil66, Rei]. Recently, it has become
more and more interesting [Bra, Fal, Fay, FG, Fre, Joh, Qui, Ros, Wit]. In
this elementary article we study finite dimensional linear algebra of analytic
torsions and its analogy for elliptic operators.

1. LINEAR ALGEBRA

1.1. Regularized determinant. In this section we fix a real or complex
field as a scalar field F. For an endomorphism P of a vector space V of finite
dimension n, the regularized or renormalized determinant® of P, denoted by
det P, is the product of all nonzero (complex) eigenvalues of P counted with
multiplicity. For a nilpotent endomorphism, the regularized determinant is
equal to 1.

One can see easily that

det(P') = (det P)*  Vi=0,1,2,....

The regularized determinant is nonzero and equal, up to sign, to the co-
efficient of the lowest degree monomial in the characteristic polynomial.

1 The notation det* P is also suggestive.

93
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1.1.1. Proposition. The map

det : EndV — F*

is upper semi-continuous.

Proof. Let det(t—P) = t"—an_1t" "'+ - -+(—=1)""*a,t* be the characteristic
polynomial of P, where a; # 0. Then it should be obvious that det P = ay
and det(t + P) =t" + ap_1t" "1 +--- + axt®. Thus

det(t + P)

(1.1.2) det P = }1_{% m

where k = k(P) depends on P. Observe that k(P) = lim;_ o, dimker(P?) =
dimker(P™). Thus the “stable nullity” k(P) is an upper semi continuous
function of P. Now the result follows from (1.1.2).

Note that det is continuous when restricted to each subvariety of End V
with fixed “stable nullity”.

1.1.3. Proposition. For any nonzero scalar c,
det(cP) = ¢! det P,

where | = lim; o, dim P*(V) = dim P*(V) denotes the “stable rank” of P.

Proof. Note that the stable nullities k¥ of P and ¢P are equal and hence their
stable ranks | = n — k are also equal. Now

‘det(t+cP) . det(ct+cP) ¢ . det(t+P)

WP == =" (@F ~FiR
= c'det P.

This completes the proof.

We will see later (2.2.4) that the stable rank of some elliptic operator @
is equal to the value of the zeta function {g(s) at s = 0.

1.1.4. Proposition. If P, is an endomorphism of V; and P, is an endo-
morphism of V3, then

det(Pl &) Pz) = det Pl - det Pg.
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1.1.5. Proposition. If two endomorphisms Py : V; - Vi and P, : Vo — V,
are equivalent in the sense that there exists an isomorphism h : Vi — V,
such that hP, = P,h, then the regularized determinant of P, and P, are the
same, i.e.,

det(ho Py o h™!) = det P;.

1.2. Zeta function and the regularized determinant. For an endo-
morphism P of a finite dimensional vector space V over C, define the zeta
function (p of P by

¢p(s) = Zx\"’, Vs € C,

A

where A runs through all nonzero eigenvalues of P counted with multiplicities
and A™® = |A\|7*e7**2"8 X (we fix an argument arg ) for each \). Then (p(0)
is equal to the stable rank of P and

det P = exp(—(p(0)).

1.3. The analytic torsion of a linear map. Suppose that we are given

a linear map
P: Vg — I/l

between inner product spaces Vy and V; of finite dimension. Then we have
the adjoint
P Vi -V,

of P. Since the nonzero eigenvalues of P*P and PP* are the same with the
same multiplicity, they have the same determinant, which is a positive real
number.

We now define the analytic torsion of P : Vo — V; between inner product
spaces to be

7(P) := y/det(P*P) = \/det(PP*) € Ry.

It is obvious that

7(P) = 7(P*).

For another interpretation of the analytic torsion see [Kim93], [BZ].

The analytic torsion for a single map P : V; — V; between inner product
spaces is clearly an upper semi-continuous function of P. If the analytic
torsion is restricted only to isomorphisms, then it is continuous and C*°.
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1.9.1. Remark. Suppose h; is an automorphism of V; for ¢ = 0,1. Then
it defines a new inner product (-, )" := (hi(*), hi(+)) on V; and hence we have
a new adjoint P* of P. Then

P* = (hiho) ' P*(hihy).
In particular, if h; is a nonzero scalar y;, then the new torsion 7(P) is equal

l
L1\ 7(P), where [ is the stable rank of P*P, which is equal to the rank

Ko
of P

We list some properties of the analytic torsion.

to

1.3.2. Proposition. For two linear maps P : Vo — Vi and Q : Wy — W7,

(P& Q) =7(P) 7(Q)
If there exist isometries hg : Vo — Wy and hy : Vi — W; such that Q =
hioPohy~?!, then

7(hy o Pohy™') = 7(P).
1.3.3. Proposition. If P is an endomorphism of an inner product space V
such that P*P = PP*, then

7(P) = |det P|.
In this case we have a geometric interpretation of 7(P). Note that if P is

normal, i.e., PP* = P*P, then

P: (ker P)* — (ker P)*
is an isomorphism and 7(P) is equal to the volume change ratio of this

isomorphism.

1.4. Analytic torsion of a chain complex. Now suppose that we are
given a chain complex

(1.4.1) P:o-V, Loy, B By oo

of finite dimensional inner product spaces. Then the analytic torsion of this
chain complex is defined as the alternating product

TP := H(TPq)(_l)q.
q20
Let P; be the adjoint of P; and let
O, := Py Py + Py—1 P_;.
Then by the Hodge theory, V, = im(P,_;) ® im(Py) & ker(0,) is a di-
rect sum of [, -invariant subspaces. Since Og|im(Py—;) = P;—1P;_; and
O,|im(Py) = P; P, we have, by the proposition (1.1.4)
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1.4.2. Proposition. det O, = (7(P,—1) - 7(P,))?.

Thus we have

(1.4.3) 7P = [J(det O,)~0"" /2,
q20

This identity will serve as a definition for the infinite dimensional case.

1.4.4. If V4 and V_ denote the direct sum of all V; for even ¢ and for odd
g, respectively, then we have maps

P+:V+—)V_, P_:V_—>V+
where Py = (P + P*)|Vy. Now P_ = (P;)* and
(P+)*P+=D0@D2®..., (P_)*P_.=D1€BD3®...,

and hence

(Py) = [T () = r(P-).

g0

1.4.5. More generally, one may be interested in
Ty 1= H T(Pq)tq
q20

for t € R.

1.4.6. From the above proposition, one can see easily that
!
[T (det 0" =1
q=0

in the complex (1.4.1). This phenomenon is also true for infinite dimensional
cases (2.2.5).

1.4.7. If we only consider the torsions of exact sequences P : 0 — V} N
Vi i RN Vi — 0, then P, : V; — V_ is an isomorphism and hence
7(P4) = [I;50 7(Fy) is a continuous function of P. Since [] . en 7(P,) and

[1,.0aa 7(Py) are upper semi-continuous, 7(P) = 7(P4)/( I1,.0aa 7'(Pq))2 =
(11 greven T(Pa ))2 /7(P4) is a lower and upper semi-continuous function of P
and hence is a continuous function of P.
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1.4.8. If we use the zeta function (1.2), then the torsion of the chain
complex (1.4.1) is given by

—1)9+1 1
P = [J(detO) D" 972 = exp (5 D _(-1)"a(t, (0))-
g>0 920

We now show that
> (=1%o, (0)
g20
is equal to the alternating sum of the ranks of P,’s.
Let z, = dimker P, b, = dimim P;_; and v, = dimV,. Then V, =
ker P, @ im P; and hence dimim P = vy — 24 = bg+1- Now (p,(0) is the
dimension of im0, = im Py_; ®im P; and hence

3 (=1)%g¢a, (0) = Y (=1)%q(by + bg41) = Y (1),

g0
as claimed.

1.5. Torsion vector and analytic torsion. For a finite dimensional vec-
tor space V, let det V be the highest exterior power of V and let V™! be
the dual space of V. f V, = {Vp,...,Vi} is a sequence of finite dimensional
vector spaces, then

det Vo :=det Vo ® (det V1)1 ®... @ (det V)"V,

Suppose we are given a chain complex

P:O—-)Vo—ﬂ)-)Vli)...-P';l)VIﬁO

of finite dimensional vector spaces. For the moment we do not assume inner
products. Let H*(P) = {H°(P),...,H!(P)} be the cohomology spaces of
the complex. Then

1.5.1. Proposition. There is a canonical isomorphism [BGS, BZ, Kim93,
Miil91]
det V, ~ det H*(P).

We may regard this isomorphism as an element 7(P) of (detV,)™! ®
det H*(P), which will be called the torsion vector of the chain complex P.

If we assume inner products on each vector spaces Vi, then det V, inherits a
canonical inner product, and by the Hodge theory, det H*(P) also inherits an
inner product. Thus one can measure the length of an element in (det V,)™!®
det H*(P). One can see easily that [Miil91]

1.5.2. Proposition. |7(P)| = 7(P).
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2. ANALYTIC TORSION FOR ELLIPTIC COMPLEXES

Suppose we have an elliptic complex?

(21)  P:0—C®(E) 2 coE) By DL em(E) - 0

for hermitian vector bundles Ey, Ey, ..., E; over a compact Riemannian man-
ifold M, where C* denotes the space of smooth sections. Then we have the
formal adjoints P} and the ‘Laplacians’ [J,. Motivated by (1.4.3), the ana-
lytic torsion of the elliptic complex P is defined by

7(P) = [J(det O,) -0 a/2,
g0

where the meaning of det [J is explained in the following.

2.2. Zeta function and the regularized determinant of a self-adjoint,
positive semi-definite elliptic operator. Let

Q:C¥(E) — C=(E)

be a self-adjoint, positive semi-definite elliptic (pseudo differential linear)
operator of order m > 0 on a hermitian vector bundle E over a compact
Riemannian manifold (M, g) of dimension n. Let A\ denote the k-th non
zero eigenvalue of @) counted with multiplicity. Then it is well known [Shu,

p. 124] that the limit
/\kn/m

kll»ngo k

exists as a finite positive real number. Thus the series

o) =" 5
k=1 "k

converges and holomorphic for complex numbers s with large real part.
We now show that (g(s) has a meromorphic extension for all s € C and
regular at s = 0. For this, consider the heat operator of Q;

e~1Q . C®(E) — C*(E).

2We assume the order of the linear differential operators P;’s are all the same and
positive.
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It is an integral operator with kernel
K (z,y): E, = E,, z,ye M, t>0

so that for any section s of E,
(795)(@) = [ Kule,0)s(u) b0

satisfies the heat equation ((—ft- + Q)s: =0, limy\ o 8¢ = s, where 6g denotes
the canonical density on (M,g). Then for each z € M, there exists an
asymptotic expansion (cf. Appendix, [Shu, p. 114], [Gil], [Roe]) as ¢ \, 0

oo
Ky(z,z) ~ Y 6i(x)t"™/™, ;€ C*(EndE)
=0
uniformly in = € M.
2.2.1. Corollary. Let

(o o]
ho(t) := Z e~ Mt = Tr(e™*?) — dimker Q.
k=1
Then as t \, 0 there exists an asymptotic expansion

ho(t) ~ Y ait=™/™  a; €R
=0
ast \, 0, where a; = [, tr(6;)8g if i # n and a, = [}, tr(6,) §g — dimker Q.
2.2.2. Now by the Mellin transform, we have

Co(s) = ﬁ/o t*"ho(t)dt, Res >>0.

The zeta function is regular at s = 0 and (g(0) = an = [,,tr(6r)8g —
dimker ) and (;(0) is a real number.

Now the regularized determinant® of Q is defined by

det Q = exp(—C}(0)).
Thus the torsion of the elliptic complex (2.1) is

‘ l
(2.2.3) TP = exp (% Z(—l)qqg’{jq (0)).

g=0

3Also called a functional determinant.
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2.2.4. Proposition. Let E be a hermitian vector bundle over a compact
Riemannian manifold M. Let Q : C®(E) — C*(E) be a positive semi-
definite self-adjoint elliptic operator. Then for any positive real number c,

ch(s) = C—SCQ(.S), seC

and

det(cQ) = ¢9 det(Q).

Proof. Let X denote the eigenvalues of @ so that c\’s are the eigenvalues of
¢@. Then for Res >> 0,

CCQ(S) Z s —SZ s _SCQ(S
(c/\) A

A>0

and hence it is true for all s € C. Now

(eq(s) = —c*(logc)Cq(s) + ¢ (g (s)

at regular point s and hence (,5(0) = —(log ¢){q(0) + (o(0). Finally,

det(cQ) = exp(—((o(0)) = exp((log c)(o(0)) - exp(—(5(0)) = ¢ (® det(Q).

This completes the proof.

This proposition says that (g(0) is the ‘stable rank’ of @ (cf. Proposition
(1.1.3)). Note that

/ tr(6,)dg = dimker @ + (g(0).
M
2.2.5. Proposition. In the elliptic complex (2.1),

Y (-1)%g,(s) =0, VseC

g0

and

l
[I(deto,) 0" =1.

g=0
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Proof. For A > 0, let I'y\(E,) denote the A-eigenspace of O,. Then we have
an exact sequence

0 — Da(Eo) =% TA(Ey) 25 - = TA(Ey) — 0.

The spaces I'y(E,) are finite dimensional and if cx 4 denote the dimension of

these spaces, then
> (~1)%erg =0.
q20

Now for s € C with large real part,
c c
3 (-1)%¢a,(s) = Z( 1Yy St = Z Z( it =
g>0 A>0
This shows the first assertion.
Now we have
> (-1)%¢g, (0) =

q20
and the second assertion is clear. This completes the proof.

2.2.6. Proposition. Let Q : C*(E) — C®(E) and Q' : C*(E') — C>*(E'")
be positive semi-definite self-adjoint elliptic operators on M. Suppose there
exists an isometric bundle homomorp]nsm h: E — E' such that Q'h = hQ.
Then

detQ = det Q'.

2.2.7. Corollary. Suppose that an elliptic complex (2.1) is equivalent to
another elliptic complex

P 0—co(E) 2o ceE) B D eoE S o

in the sense that there exist isometric bundle homomorphisms h, : E, — E|
such that hgy1 Py = Pyhy, then

7(P) = 7(P").
Proof. Note that P, = hg41P;h,™" and (Pp)* = hgPfhet1 . Thus
O, = hyOgh, ™!

and the result follows from the above proposition.
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2.3. Duality. Let

P:0—C®(E) 2o co(B) 2y ... Boh o) — 0

be an elliptic complex for hermitian vector bundles Ey,E4q,...,E; over a
compact Riemannian manifold M. Then we have the adjoint

P'1 *
P*: 0 C(E) -5 ... B c%(E) — 0.

2.3.1. Proposition. 7(P) = 7-(]:'*)(—1)"H
Proof. Note that

T(P*) = H(aet D,_q)(~1)"“q/2 — H(det Dq)(—l)""*‘(l—q)/z
q20 q

and hence

(P = ([](det O D) (] (det O,) -0 ar2),

q20 q20

which is equal to 7(P) by the Proposition (2.2.5). This completes the proof.

2.4. Change of the metric. Let P : C®(E,) — C®(E,) be a differential
operator between hermitian vector bundles (E,,(, ),), ¢ = 0,1, over a com-
pact Riemannian manifold (M, g). Let (, ), be a new hermitian structure on
E,. Then (-, -)~q = (Hy,-)q for some self-adjoint positive definite endomor-
phism Hg of (E;,(, )4). Let § be a new Riemannian metric on M so that

the new Riemannian density satisfies §§ = A\dg for some positive function \
on M. Then the new adjoint of P is given by (cf. (1.3.1))

; 1
P* = :\—HO_IP*HIA.
In particular, if A is constant and H, = p, id for some constant p, > 0, then
p*="2pr
Po

Now in the elliptic complex (2.1), if we use the new Riemannian density
6g = Mg (A = const > 0) and new hermitian structures (, ), = po(, )q,
then

Y Pg+1 px Pyq *
0o = P*P,+ P _,P* ..
! Pq 1 Pq—-1 ! !
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2.4.1. Corollary. Suppose we have a homothetic change of the Riemannian
density 6§ = A\6g on M and a homothetic change of hermitian structures
{(, Yo =p""po(, )q on Eq for some constants p, po > 0, then

O, =r0s Co,(s) =p""Co,(s)
(o, (0) = (g, (0), (g, (0) = —(log p){m,(0) + ¢p, (0)
det D’q — pCl:lq(o) det0,, #(P)= p—% Z(—I)WCU,,(O)T(P)
In particular, 7(P) is independent of A.

3. DEPENDENCE ON RIEMANNIAN METRIC

Note that the eigenvalues of an elliptic operator depends on the Riemann-
ian metric of the base manifold and the hermitian structure of the bundle.

In this section we study the dependence of the analytic torsion of the
elliptic complex (2.1) on the Riemannian metric on M. '

In this case, we fix hermitian structures on the bundles E;. Note that in
the cases of flat bundles and holomorphic vector bundles, if we change the
Riemannian metric on M, then the hermitian structures on the corresponding
bundles also change.

3.1. Lemma. Let E and F be hermitian vector bundles over a compact
smooth manifold M. P : T'(E) — I'(F) be a differential operator. Then with
respect to a density § on M, I'(E) and I'(F') are prehilbert spaces and the
adjoint P* is defined. If § := aé for some positive function « on M, then the
adjoint P* of P with respect to the new density § is given by

P*=a"'oP*oa.
In particular, if a is constant, then P* = P*.

Now we investigate the variance of the analytic torsion of the elliptic
complex (2.1) under the change of the Riemannian metric on M. We fix
a Riemannian density § and consider the 1-parameter family 6, = a,6 for
positive functions a, on M. Thus we will compute

d d -
Tu log 7(Py,) = ™ log ( H(det Og0) 1)"“«1/2)
920
d1
= <= 3 (=1)ach, . (0)
q20
d
= > (=D%az—(a,.(s)

04>0

L
ds

N =
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3.2. Proposition. Let denote the derivative with respect to u-variable.
Then for B = B, := d/a,

(1) P* = P*g — BP*.

(2) O4,u = —BP; Py + P;BP, — Py_1BP; | + P;_1 P;_, .

(3)

D (-1)%q Tr (Qgue™ o) =Y (~1)? Tr (B0, e~ Fe)

q>0 q2>0
=Y d 5 Tr (Be™"Fme) = =3 (~ 1)? ; Tr (B(e™ 0 — H, ),
q>0 g>0

where H, , denotes the orthogonal projection onto ker Oy, C L*(M, E,).
Now for Res >> 0 and hy := dimker O, ,,

d _ s— 1 —t0, «
duCD""‘(s) Tu F(s)/ t Tr(e & —hq) dt

= — 7 Ty (= ¢0, ye~BPev) dt
F(S)A ( q, )
1 * .
= —— 2 Tr (O, ye~tDen) dt
F(S) 0 ( q, )
and hence

S (-1)ao,,.(5)

g>0

=— oot’ —1)9¢g Tr (O, ye~ P+ ) dt
), T e

g0

° .d
=ﬁ%5 ;(—l)q /0 £ Tr (B(e™"er — Hy)) dt

(5 D ) .

s / T T (B~ — H, ) di)
___i —1\4 = s—1 r e‘“th,u _
0 Xq:( 1)/0 21 Tr (B( u)) dt.
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Now if we can show that the meromorphic extension of
o0
B:s— / t*~1 Tr (B(e~Dav — H, ,))dt, Res>>0
0

is analytic at s = 0, then the analytic torsion is independent of the Riemann-
ian metric on M, since T‘—(%T has a double zero at s = 0.

4. FLAT BUNDLES

Let E — M be a hermitian vector bundle with a flat connection D. Then
we have the associated elliptic complex

dp :0 — A°(E) 22, AY(E) 22, ... - A™(E) — 0.

The analytic torsion of this complex will be denoted by 7(D).

4.1. Proposition. Let D be a flat hermitian connection over an even di-
mensional oriented M. Then 7(D) = 1.

Proof. The Hodge star gives a commutative diagram

0 —A%E) —2, AYE) —2 ... AYE) >0

0 2A™E) —2, AnyE) —2, ... AYE) - 0.
Thus from Corollary (2.2.7) and Proposition (2.3.1),
(D) = 7(D*) = 7(D)™".

Thus 7 = 1. This completes the proof.

4.2. Remark. If D; is another flat hermitian connection on E equivalent
to D, then there exists an isometry h : E — E such that

dp, =h lodpoh.

Thus 7(D;) = 7(D) by Corollary (2.2.7). Thus 7 is a function on the moduli
space of flat hermitian connections.
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4.8. Homothetic change of the metric. Suppose D is a flat connection on
a hermitan vector bundle E over a Riemannian manifold (M, g) . If § = u?g
for some constant p > 0, then

(, )~q =u"29, )g on AY(E)
and hence A, = p72A,. Thus (cf. 2.4.1)
#(D) = #2("1)‘1‘1CA¢(0)T(D).

4.4. Example. For example, consider the Laplacian A = — (%)2 acting on
the space of smooth functions on the circle S(r) = {re*® : § € R} = R/27rZ
of radius r > 0. Then the spectrum of A is {’:—z : k € Z} and hence

2 r2s ’ 1
(a(s) = 22 i 2r2*(p(2s), Res > 3
k=1

where (g denotes the Riemann zeta function. Since [Tit]

CR(0) =3, Ch(0) = ~log Va,

we have
Ca(0) = =1, (4(0) = —2log2nr, detA = (2nr)%.
Thus the analytic torsion of the de Rham complex on the circle is

7(SY(r),d) = Vdet A = 27r.

If we consider a complex line bundle L over S!(r), then L must be trivial
and hence we may assume that L = S!(r) x C. We also assume the standard
Hermitian structure on L. Then a Hermitian connection D on L is given by

D=d+w

for some (real valued) l-form w on S!(r). One can see easily? that any
Hermitian connection on L is equivalent to

D, :=d+wudf

4If§1;fsl(r)w=k+ufork€Zand0§u<l,then

1
— w+igr " ldgr — udf =0,
27 Js1
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and hence we have an analytic torsion 7(D) for each Einstein-Hermitian
connection. The group of the bundle isometries of E acts on the space of
Einstein-Hermitian connections and the analytic torsion is invariant under
the action. Thus the analytic torsion is a function defined on the moduli space
of Einstein-Hermitian connections. This moduli space is closely related to
the moduli space of stable bundles.

APPENDIX: ASYMPTOTIC EXPANSION

Let F be the set of all (real or complex valued) functions defined on an
interval (0, €) for some € > 0. For f,g € F, let f = g if there exists ¢ > 0
such that f(t) = g(t) for all t € (0,€). Then = is an equivalence relation and
the quotient F/ = becomes an algebra.

For g € F, let

O(g):={fe€eF:3C>0,3e>0, |f(t)| < Clg(t)| Vt € (0,¢)}
and

o(g) :=={f € F:¥C >0,3e>0, |f(t)] < Clg(t)| Vt € (0,€)}.

Now let {gi}32, be a sequence in F such that g;1; € o(g;). We write, for
f € F and for scalars a;, '
o0
f~)aig
=0

if forany N >0
N
f=_aigi € o(gn)
=0

or equivalently
N
f=) aigi € O(gn1).
s

We list some properties. Suppose f,h € F and

o0 [ o]
f~Y aig, h~) bigi
=0

=0
Then
(1) for any scalar c, cf ~ Y o0 caigi.
(2) hgit1 € o(hgi) and hf ~ 352 ai(hgs).
(3) f+h~3Zo(ai +bi)gi.
(4) If g; 20 and f = h, then a; = b;.
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CAUCHY TRANSFORMS ON NON-LIPSCHITZ
CURVES, T1-THEOREM AND THE HAAR SYSTEM

HYEONBAE KaANG

ABSTRACT. The content of this note is twofold. We first summarize the
result by Kang and Seo on the L2-boundedness of the Cauchy transform on
smooth non-Lipshitz curves. We then give a discrete proof of T'1-theorem in
1-dimension using the Haar system based on known ideas.

1. INTRODUCTION

Let I' be a curve defined by y = A(z) in R%. The Cauchy transform C4
on the curve I' is a singular integral operator defined by the singular integral
kernel

1+:A'(y)
(z —y) +i(A(z) — A(y))

(1.1) k(z,y) =

If A is a Lipschitz function, i.e., ||A'||c < 00, then C4 makes the most
significant example of non-convolution type singular integral operators (SI10)
which has enough generality in itself. The problem of L2?-boundedness of
the Cauchy transform was raised and solved when ||A'||o is small by A. P.
Calderén in relation to the Dirichlet problem on Lipschitz domains [Call,
Cal2]. Since then, it has been a central problem in the theory of singular
integral operators and several significant techniques has been developed to
deal with this problem [DJ, CMM, CJS]. We refer to [Chr, Mur] for
a history of development in the last decades on the theory of the Cauchy
transform. One and the most significant one of such development is the
T(1)-Theorem of David and Journé.

The author is partially supported by GARC—KOSEF
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T(1)-Theorem (David and Journé). Let T be the integral operator de-
fined by
Tf(z) = lim k(z,y)f(y)dy
A N Jla—y|>e
for any bounded function with compact supports where the kernel k(z,y)
satisfy the so called standard estimates
(S1) |k(z,y)| < Clz—y™",
(S2) |Voyk(z,y)| < Cle —y|™"", Ve £y €RY,
Then, T can be extended as an operator bounded on L?*(R™) if and only if
T satisfies
(1) Weak Boundedness Property: there exist constants N and C such
that for any pair of functions ¢ and ¢ in C§°(R) satisfying ¢(z) =
¥(z) = 0 if |z| > 1 and ||¢|lcv <1 and |[¢llcy <1, for any z € R

andt > 0,
| < Tt 9™ > | < Ct

where p™*(y) = (L),
(2) T1 € BMO,
(3) T*1 € BMO.

T1-Theorem deals with a very hard question of L?-boundedness of singu-
lar integral operators and gives a necessary and sufficient condition even if
checking T1,T*1 € BMO is not, in general, an easy matter.

If |A'lc = oo, then the Cauchy kernel does not satisfy the standard
estimates. So, the theory of the singular integral operators may not be
applied directly. In [KS], we deal with the Cauchy transform defined on
non-Lipschitz curve and obtain the following theorem.

Theorem A. Let A(z) be a polynomial of the form

A(z) is any polynomial if d is an odd integer,

1.2 - .
(1.2) A(z) = Z a;z% if d = 2n is an even integer.

i=1
Then, the Cauchy transform C4 is bounded on L?.

In this note, we briefly summarize the idea and steps to prove Theorem
A.

We then turn to T1-Theorem and gives a discrete proof of it using the
Haar wavelet basis. Since David and Journé found T'1-Theorem, the proof
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has been improved by Coifman and Meyer. This improved proof can be
found in [DK] or [Chr], and it is based on the the following identity of A.
P. Calderdn; if T is an SIO, then

* t
0 t

where

Tof = (T e xvpy,  e(z) =t "Y(t ')

for some nice function ¢. If one discretize the parameter ¢ in (1.3), (1.3) is a
wavelet decomposition (or Paley-Littlewood decomposition) of T'. So, we can
discretize the proof. The proof in this note is not new. Since the concepts of
wavelets and multiresolution approximations were formulated by Y. Meyer
[Mey] and S. Mallat [Mal] in late 1980s, the idea of discretization prevails
among harmonic analysts like Y. Meyer [Mey] and R. Coifman [BCR]. But,
no complete proof seems available. So, we make a complete proof.

I would like to take this opportunity to thank Jin Keun Seo for all the
exciting discussions and collaborations.

2. CAUCHY TRANSFORM ON NON-LirscHITZ CURVES

For clarity, let us first consider the Cauchy transform defined on the curve
y = A(z) = z2. On this curve, the Cauchy kernel is

1425y
(z —y)+i(z? —y?)

k(x’ y) =

This kernel has two kinds of singularities: one at z = y as one can expect,
and a weaker one at * = —y. Because of this weaker singularity, k(z,y)
does not satisfy the standard estimates, for example, it does not satisfy
|k(z,—z)| < C|z|~*. However, we can decompose k(z,y) into two standard
kernels;

1+ 2wy 1 —
2.1 k, —_ - = . .
G Men) = e —e ~amy T 1Ty

The first kernel of the right hand side is the Hilbert kernel while the second
one is a kernel of Poisson type. So, if A(z) = 22, then C4 is bounded on
L?. This is the beginning of the whole story. We perform the same kind
of decomposition for general Cauchy kernels. The key idea in this process
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is how to separate the singularity at ¢ = —y from the one at z = y. We
proceed as follows; let ¢ be a C> smooth function such that

dz)=1 if |z| < !

2
(2:2) dz)=0 if |z| > %
6|l e < 10.
and we let
_y*"Y
(2.3) (z,y) = d(1 |$|)-

We then docompose the Cauchy kernel k(z,y) as
| k=ky +ky:=kd+k(1—9).

Let us see why this decomposition does the job. If z = —y and |z| is large,
then 11%__1—1'1' > 1 and hence ¢ = 0. So, k; does not have a singularity at
¢ = —y. On the other hand, if z = y, then ¢ = 1 and hence k; does not
have a singularity at z = y. Let C; and C; be the integral operators defined
by k; and k, respectively. We show that both C; and C, are bounded on L?
by using T'(1)-theorem. In fact, we prove the following theorem.

Theorem 2.1. C1,Cs, k1, and ks satisfy all the conditions of T'1-Theorem,
namely, the standard estimates, the weak boundedness property, C11,C;1 €
BMO, and C{1,C31 € BMO.

In order to prove Theorem 2.1, we use the following estimates for polyno-
mials.

Lemma 2.2. Let A(z) be d-th degree polynomial of the form:
A(z) is any polynomial if d is an odd integer
24 i )
(2:4) A(z) = Z a;z** if d = 2n is an even integer.
=1

Then,
(1) If d is odd, then

A() — AW)| ~ | — yl(j2l*1 + [yD).
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Moreover, there exists a positive number M such that
(2) Klo| > M, then |A(@)| ~ |ol, |4'(2)| ~ |2]4~", and |4"(2)] ~ |z|42,
(3) Ifd is even and if either |z| > M or |y| > M, then

|A(z) = A(y)| = & = ylle + yl(J2[*72 + [y|*7?).
(4) If|z| < M and |y| > 2M, then

|A(z) — Ay)] = |A(W)] = ly|*.

(3) is the most important one. Among the polynomials which are not
covered in [KS] is A(z) = 2* — z3. This polynomial does not satisfy Lemma
2.2. In fact, it does not satisfy the estimate |A(z) — A(y)| = |z — y||z +
yl(Jo? + yl?) when |o| + |y is large.

Regarding the proof of the fact that C;1,C21 € BMO, let us make a
comment. Showing that a function is in BMO is a fairly hard task. One of
the reasons is that being a BMO function is not just a size condtion. For
example, even if |f| € BMO, f may not be a BMO function. It can also be
shown easily that even if 0 < f < g and ¢ € BMO, f may not be a BMO
function. In particular, that f(z) = O(log|z|) as ¢ — oo does not imply
f € BMO. However, since A is a polynomial, we could use the smoothness
of the A to check that C;1,C;1 € BMO, and C;1,C51 € BMO. We show
that if f'(z) = O(]z|™!) as £ — oo, then f € BMO. In fact, we proved the
following lemma which is interesting in itself.

Lemma 2.3. Suppose that there exists a positive number m such that f
is bounded on [-m,m] and f is continuously differentiable if |z| > m. If

If'(z)| = O(]z|~!) as  — oo, then f € BMO.

3. THE HAAR SYSTEM
Let
(3-1) X = X[0,1) and h = X[0,1/2) — X[1/2,1)-

where xg is the characteristic function on E. When I = [277k,277(k + 1))
where j and k are integers, we define

(3.2) e1(z) = pjx(e) = 2/ x(2z — k),
(3.3) b1(z) = ¢ r(x) = 20/2h(2x — k).
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We note that ¢ and 1 are defined by translating and dilating functions x
and h. We then define for each integer j

34) Vi={ Y amwpr: Y lal <o}

=2-3 [I|=2-7
= {f € L*(R) : fljz-i k,2-i (k+1)) = constant for each k € Z },

and

(3.5) Wi={ Y amr: ) lal* <o}

|Ij=2- \I|j=2-i

Then, one can easily observe the followings (proofs can be found in [Dau]).

(1) Each V; is a closed subspace of L?,

(2) UjezV; is dense in L2,

(3) for each j, V; L W;,

(4) for each j, V; @ W; = Vi,

(5) L* = Djez Wi

(6) moreover, ¢ and ¢y are defined by translating and dilating functions
x and h.

The sequences {V;} and {W;} of closed subspaces of L? with the properties
(1)-(6) are called a multiresolution approximation and a wavelet decompos-
tion of L2, respectively.

4. A DISCRETE PROOF OF T1-THEOREM

In this section, we give a discrete proof of T'1-theorem using the Haar
system. We confine ourselves to skew-symmetric ones on R! for convenience.
An SIO T is skew-symmetric if T* = —T. If an SIO T is skew symmetric,
then it is automatically weakly bounded. Therefore, T'1-theorem for a skew-
symmetric SIO is as follows:

T1-Theorem. LetT be a skew-symmetric singular integral operator defined
by the kernel k(z,y) satisfying (S1) and (S2) with n = 1. Then, T' can be
extended as an operator bounded on L? if and only if T1 € BMO.

Let us begin the proof. Since the only if part follows from the general
theory of SIOs, significance of the T1-Theorem lies in the if part. Let {V;}
and {W;} be a multiresolution approximation and a wavelet decompostion
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of L? as defined in (3.4) and (3.5), and let P; and Q; be the orthogonal

projections onto V; and Wj, respectively. We need to prove that
KTf, 9l < Clflllgll V£ g € Co(RY).
Here, || f|| denotes the L? norm of f.

Lemma 4.1. For any f,g € C°(R?!), we have

nli—>nolo(PnTPnf,g) =(Tf,9),
lim_(P.TPaf,g) = 0.

We omit the proof of Lemma 4.1. Note that P;;; — P; = Q; since

V; @ W; = Vj;, for each j. Sincelimp_.oo P,TP, = T andlim,_,_o P,TP, =

0 in the sense of Lemma 1, we have

T = lim (P,TP, — P_,TP_,)

n—1
= lm 3 (Pj1TPjs1 — PiTP))
j=—n
oo
= Y [(Pi+1 = P)T(Pj1 — Pj) + P;T(Pjs1 — P;) + (Pjs1 — P;)TP)]

— 00

= Z[Q,-TQJ- + P;TQ; + Q;TP;]

Since P; and @); are orthogonal projections and T is skew-symmetric, we
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have, by the Cauchy- Schwartz inequality,

oo

(Tf,9)l = > _(Q;iTQ;f.9) + (P;TQ;f,9) +(Q;TP;f,g)

— 00

< 3 HQITQif Qi9) + D 1(Qif, QiTPig)
+ Y HQiTPif,Qj9)]
< ST1Q;TQ;fIQsell + X 15 £IIQ; TPyl

+ i:jo 1Q;TPif1Qs9l
< (T 10701 (S 1"
;
* (Z "fouz)l/z(%: 1Q;TPigll?)""?
+H I07R 1) (3 l@9l?)""*.

Since 3; |Q; fII* = | £]I?, it suffices to prove that

> 11Q;TQ;ifI? < ClIfI?,
]

ST fI* < ClifII*
J

We prove the following theorem.

Theorem 4.2. There exists a universal constant C such that

(4.1) 1Q;TQ; fI* <CIQ;fII°? VieZ
and
(4.2) > IQiTPf|I* < ClIfII.

i

To prove Theorem 4.2, we need a lemma. Throughout this paper, ||
denotes the length of the interval I.
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Lemma 4.3. If |I| = |I'|, then

C|I?
(4.3) (Tr, g1}l < T2 + dist(I,T')?’
and
2
(4.4) (T )] < S

1T12 + dist(I, I')?"

Proof We first prove (4.4). We first suppose that dist(I,I') > 0. Then,
since [ 1r(z)dr = 0, we have

Tyrgn) / / k(z,y)yr (y)p1(z)dzdy
= //{k(x,y)— k(zr,y)|Yr(y)vr(z)dzdy

where z is the center of I. It then follows from the mean value theorem and
the standard estimate (S1) that

(@or b0l <117 [ [ k(e - ker)ldsdy
<™ [ [ 19k 0)lle — arldady

for some ¢ in between z and zj

< I—l/ |CL' xlldl'd
=M rJrlE—yl?

C|I?
= 112 + dist(Z, )2

We now suppose that dist(I,I') = 0 but I # I'. Note that

4.5 -—/ / dz < C.
( ) d Ja 0o Y—r

By (4.5), we have

(Tor vl <17 [ [ G v)idedy

SIII_I// ! dedy < C.
rJrlz =yl
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Finally, suppose that I = I'. Then, since T is skew symmetric, we have

(yrvr) =5 [ [ Malor@i(e) = br(e)irw)ldedy = 0.

This completes the proof of (4.4)
To prove (4.3), it suffices to consider only the case when I = I' since the
rest can be proved in the same way as above. Suppose that I = I'. Then,

(Toror) = £ [ [ ke, 9)lorwis(@) — or(@)ybr(y)ldzdy.
2

By translating I if necessary, we may assume that I = [0,2d). Note that
or(y)¥1(z)—er(z)¢1(y) = 0 on [0,d) x [0, d) and [d, 2d) X [d, 2d). Therefore,

we have

2d pd d r2d 1
(Ter¥n) < ClI™! (/d /0+/0/d Hdmdy)SC.

This completes the proof. O

We now start to prove (4.1) and (4.2). We will clearly see for which the
condition T'1 € BMO is required and for which it is not.

Proof of (4.1). (4.1) is an easier part. Note that

QiTQ,f =Q;T( Y (f,vn)r)

|T|=2-3

= Y Y (fenTendr)er

\I'|=2-3 |T|=2-i

We regard this as an matrix multiplication. Then, by Shur’s lemma, it suffices
to show

(4.6) sup (3 WTyrmvn)l+ 3 (Toror)l) <C.

Hl=|1"] 1=1I'|

But (4.6) follows immediately from (4.4). This proves (4.1). O
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Proof of (4.2). Note that

Q;TPif = QT( Y (fren)er)

|I|=2~5

= Y S (fen)Tervr)en

|I'|=2-3 |T|=2~i

and hence

SN NQTPfIP=>"1 Y (fror)Ter,vn)*
II

JEZ I

['|=|1|
<2 | ) (fier — e Tor, b
! II'II'-'-‘III
+2) 1 Y (fen(Ter,vi)*.
I I
['|=|1]

Sublemma 4.4. If T is a skew symmetric standard SIO, then

(4.7) Y1 (frer —ei)Ter, v) < ClIfIP
T r

' =11|

Proof. We first note that we do not need the condition T'1 € BMO for this
lemma. We first fix a notation for convenience. When I is a dyadic interval,
we denote by I, the interval J such that dist(I,J) = |n —1||I] and if n > 0
then I,, is on the right hand side of I, if n < 0 then I,, is on the left hand side

of I. Suppose that f is real without loss of generality. By Jensen’s inequality,
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H. KaNG

S Y e —en(Tor v’
"o |
N
< CXI: ( ; I(f)SOI' - SOI>||I|2 +dlSt(I,I’)2)
17" |1=111

CZ(Z |(f79017. -LPIH'IP +(|nI|_ 1)2|I|2)2

I n#0

¢ (X When —enli)’

I n#0

CZ 1 +1n2 EI:(f"pIn _¢I)2‘

n#0

IA

IA

Therefore, it is enough to prove the following:

(4.8)

1
S Sifen —en) < CISIR.
n#0 I

Based on the observation that { ¢, — ¢r }s is an almost orthogonal system,
we use the Cotlar-Stein lemma (for the Cotlar-Stein lemma, refer to [Chr)

or [Tor]). In fact, if |I| = |J|, then

2 fI=J
(p1, —enern, —er) =4 —1 ifeither I = J,or I, =J
0 if I#J.

Define, for each integer j,

ki(z,y)= > (er, — 1) (@) (¢1, — 21) (¥),

|j=2-i

and define T by

Tf(z) = /_oo ki(z,y)f(y)dy.
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Then,

”T]f”2=2 Z (f)‘lpln_‘PI)z—z Z (fv‘PIn"SOI)(fa‘pI_SOI_n>7

[|=2-7 |7|=2-J
and hence

Y (fren —en)? < |ITfI

|T|=2~i

Therefore,

Y {frern —en)? = Z Y (fen —en? < S ITAIPR.

I JEZ |I|=2-i JEL

Note that

N N '
I Z TiflI*= > ITifIP+2 Y (Tif,Tif).

j=—N j=—N —N<j<i<N

Therefore, since T} = Tj for any j, we have

N N
49 Y ILAPSN Y TAF+2 3 ITTAAL

j=—N j=—N —N<j<i<N
Let
bia(enw) = [ k(e ke, )y
= > Y (#n-¢)@) (e1, —er) ()
\i=2~+ | J|=2-3
x [(on =00 @) o1, ~ 01 ().
Then,

TiT:f(z) = / 3z, 9)f(v)dy.

We may suppose that j > i. We claim that

(4.10) IT,Ti|| < Cvn2F" Wi, j.
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In order to prove the claim, we first deal with the case when n|J| > ||, i.e.,
n277 > 27

We note that

[ @1 =00 @) er, = en )iz #0
only if one of the followings occurs.
JclI, JoC1, JClI,, Jn C I,

Therefore,
lkj i(xa y)|

\/‘ <Z+ DI )(m +02) (@) (er, + 1) ().

JCI  J.CI Ja.CI  JnCla

Hence,
/ \T;T f(2) Pdz
gl 1
= (Z+ IIRPILDD )fu 1T T

JcI  J,CI J,CI J,Cl,

(Z+ IEDILDD ) 7/, @l

JCI JaCI JaCI JnClp
< C|IfII%.

dz

f(y)dy

Iul,

Now suppose that n|J| < ||, i.e., n277 < 27*. Then,

[ s —en @ en —on )z #0

only if one of the followings occurs:

(1) JCcTand J,NI=0,
(2) J C I, and J, NI, = 0.
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Therefore,
[rrs@ras(E+ ) [ P s o
" 2= Los, I o, 7Y
JngI I, QI
J

<c(Y + > )l ' £ (y)[*dy
JcI  J.cI Iul,

 JagI J,.Q;I

<c ¥ & / WP Y+ 3]
|I|=2- Jcl  J.CI

Jn@I  Ju g1,
< Cn277| £

This proves (4.10).
It then follows from the Cotlar-Stein lemma that

Z IT; 1 < | Z Tifl*+2 Y ITGAA < CvalfI?

j=—N j=—-N —N<j<i<N
for all N. So, we have

Y (fren —en)? < CVAllfII?

I
and hence, we have (4.8) and the proof of sublemma 4.4 is completed.

Sublemma 4.5. If T is a skew symmetric SIO and if T1 € BMO, then
(4.11) Z | Z (frer)Tor, )| < CIIfI1%.
II'I 11|

Let us find a necessary condition for (4.11). Let J be a dyadic interval
and let f = x, the characteristic function on J. Then, (4.11) implies that

DY (xaver WTor, )|

INJ#0 r
['|=11]
=> | Z (Tor,vn)|" + 3 17IP| Y. (Tor, 1))
IcJ JGI r

=) II'|=11]
< C|J|.
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That the second term in the second line is less that C|J| follows from (4.3).
So, a necessary condition for (4.11) is

(4.12) SN Y (Terwn|’ <ol

icJ I
'|=|1|

We will show that (4.12) is, in fact, sufficient. We first show the following.

Lemma 4.6. The condition (4.12) is equivalent to the condition to T1 €
BMO.

Proof. A proof can be found in [BCR)]. But we reproduce it here. Note that
Y Tep = |II7/°TL.
II
' |=|1}

Hence, (4.12) is equivalent to

(4.13) 17 [T en)]” < C.

ICJ

Put
my = !JI‘I/(TI).
J
Then, since f ¥y =0, (4.13) is equivalent to
7S (T -my,en)| < C
IcJ
which is

17! / IT1(2) — my|?dz < C
J

since {¢1}1cs is an orthonormal basis for L?(J). This completes the proof.
a

Proof of Lemma 4.5. Define an indicator function 8(1,t) by

1 if o<t < |[II7V3(f, 1),

0 otherwise.

o(I,t) = {
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Then,

Y UFenP| Y (Ter, o)’

I I
' |=|1}

=2 [TeSanom| Y (Torunfar
0 T 7

1'|=|1|

Let E; = U{I : |[I|7Y%|(f,r)| > t} and let {I;} be the maximal dyadic
intervals in E;. Then, by (4.11),

S| Y Temen < 3 1) Z (Tor,vr)[*
4 :

/I ICE, ,
['|=|1| Ul ]

<ZZ|I|| Z (Tor, )|

ICI
|I'l |}

<C)Y || < C|E.
k
Note that Ey C {z : M f(z) >t} where

1
Mi(@) =swp o [ 1Fwldy,
z€l lI | I
the dyadic Hardy-Littlewood maximal function. Therefore, we have

SlfenlP|l S (Ter,vn)|
I

’

| |=I1]

< [ tBde<c [s@pa s e
0
This completes the proof.
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A REPRESENTATION FOR THE SECOND
DERIVATIVE OF ENERGY DENSITY FUNCTION
IN NONLINEAR HOMOGENIZATION

H1i JuN CHOE AND YONG SUN SHIM

ABSTRACT. Using the representation formula, the Hélder continuity of the
second derivative of the homogenized energy density function in no nlinear
homogenization is proved.

1. INTRODUCTION

In this paper we consider the homogenization problems and compactness.
For given ¢, define

(1.1) () = /Q w (%, Vu(e)) de,

where Q@ C R¥ is a bounded domain and u : @ — R" is a vector valued
function. We assume that W : R® x R*M — R is measurable and periodic
on Y = [0,1]" with respect to its first variable and strongly convex on its
second variable. We know that as ¢ — 0, I* converges to the homogenized
functional

(1.2) I[u]szlW(Vu)dz

in the sense of I — convergence, where W is the homogenized energy density
function.

Here we want to show that the homogenized energy density W is twice dif-
ferentiable and its second derivatives are represented by an integral formula.
In the linear case, that is,

W(y,Q) = AY ;Q.Q7

This research is supported in part by GARC-KOSEF and Korea Ministry of Education

133




134 Hi1 JuNn CHOE AND YONG SUN SH IM

for some matrix A, we know that W is characterized by the corrector ma-
trix(see Tartar[Tar]). Here we find a similar corrector term for nonlinear
cases which will compensate the discrepancy between strong convergence
and weak convergence.

The characterization of the homogenized energy density function has been
solved by Marcellini([Mar]) when W is convex and of polynomial growth with
respect to the deformation gradient. Miiller([Mul]) has considered the case
that W is not necessarily convex and satisfies a polynomial growth condition.
He found a representation formula for W similar to Marcellini. We also note
that Weinan([Wei]) considered the case that W depends on u, that is, I¢[u]
is of the form

Flul=w (g g,Vu).

The characterization of the second derivative of the homogenized energy
density function W is closely related to bounding the effective moduli of com-
posite materials. For instance the effective conductivity tensor A is modeled
by the variational principle

1
1.3 A€ =inf—/ alé + V| dy
(13) (46,6) = inf = [ ale+ V9l
for any £ € R™, where ¢ ranged over Y — periodic functions and

a(y) = axa + Bxs-

We note that .
_ oO*w
T 0Q0Q°

It is rather an important and interesting question to bound the effective
conductivity tensor for nonlinear cases. We shall consider this question for
nonlinear cases in the forthcoming papers.

A

NOTATIONS AND PRELIMINARIES

After De Giorgi introduced the I' — convergence, it has been applied to

~many questions such as convex relaxation, homogenization, optimizations

and so forth. We review briefly about the I' — convergence and T’ — limuts.
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Let {I°}.>0 be a family of functionals on the Sobolev space W1?(£), 1 <
p < oo. I° converges to a functional I on W'P(f) in the sense of I' —
convergence if

i) (lower semicontinuity) for every sequence {u®}.>o that converges to
u in the weak topology of W1?(Q) we have

(2.1) lim i(I)lf I [u®] > I[u],

ii) (realization) for every u € W1P(Q), there is a sequence {u®}.¢ such
that u® — u weakly in W1?() and

(2.2) glir(l) IFu®] = Ifu].

The topology of W1?(Q) for I — convergence is the weak topology of
W1P(§1) and — means the weak convergence. The following lemma, is useful
for the calculus of variation problems.

Lemma 2.1. Suppose that {I*},, is T’ — convergent to I and g is a con-
tinuous linear function on W'?(Q) . Assume {u®} C W1P(Q) satisfy

(2.3) If[u®] + g(u®) < inf {I*[u] + g(uv) : u € W"P(Q)} + .

Moreover if {u®*} is a weakly convergent subsequence of {u®} and u®* — u

in W1?(Q) as ¢ — 0, then
(2:4) Iu] + g[u] < I[v] + g[v] for all v € W'P(Q)

(2.5)
min {I[u] + g[u] : u € W'P(Q)} = lim inf {I°[u] + glu] : w € WHP(Q)} .

For a proof for lemma 2.1 see Attouch([Att]).

For the composite materials the procedure from (1.1) to (1.2) is named as
homogenization and the I' — convergence idea follows passing to the limits.
Thus it is important to characterize the I' — lsmat I. Several authors are

successful in finding the representation formula for I. The following result is
due to Marcellini([Mar]).
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Lemma 2.2. (Marcellini) Suppose that W(z, Q) is convex and has poly-
nomial growth condition with respect to Q. Then I®[u] is T' — convergent
to

(2.6) Iu] = /QW(Vu)d:v
with
(2.7) W(Q)= inf W(y,Q + Vy)dy

YEWR(Y) JY

where W);2(Y') is the Sobolev space W'?(Y') with periodic boundary data.

When the energy density function W is not convex, Miiller ([Mul]) and
Weinan ([Wei]) found an integral representation formula similar to (2.7). The
integral representation formula is closely related to the relaxation problem
in the calculus of variations as is shown by Dacorogna([Dal). In particular
Miiller proved the following lemma in ([Mul]).

Lemma 2.3. Suppose that W : R® xR™Y — R is a locally Lipschitz function
and satisfies: ‘

alQP < W(y,Q) < b(1+1Q), a>0, 1<p<oo

W(y, P) = W(y, Q)| < C(1+|PPF1 + Q) IP - Q.

Assume ) is a bounded C°! domain. Then {I®}.>o given by (1.1) is T —
convergent to

(2.8) I[u]=/ﬂW(Vu)d:c,
where
(2.9) W(Q)=inf inf — [ W(yQ+Ve)dy.

kEN yewl P (ky) k™ Jry

In the next section using the characterization lemma 2.2 by Marcellini([Mar])
we prove a representation theorem for the second derivative of homogenized
energy density function W.



REPRESENTATION FOR SECOND DERIVATIVE 137

As usual the double indices mean summation and if there is no confusion,
we omit ¢ in various symbols. In particular the following symbols are used.

Z : the set of integers
Y =[0,1]"
B(z,r)={yeR": |y —z| <r}
D(z,r) = B(z,r)NQ
Was (11Q) = 504 Q)
Wo(y,Q) = [Was]
Wq - € =Wqik.
Waoéé =W, ;Q;,C';E,’;
09 : boundary of Q
|E|: the Lebesgue measure of E

1
(f)B(z,r) = m/f(y)dy
Zo : generic point

3. REPRESENTATION FOR THE SECOND DERIVATIVE OF W

In this section we characterize the second derivative of W using the integral
representation formula derived by Marcellini ( see lemma 2.2). We assume
that W(y, Q) is measurable with respect to y and continuous with respect to
Q. Furthermore we assume that W satisfies the following :

i) (Periodicity) |
(3.1 W(y+2,Q)=W(y,Q), for all Q € R* y € R" and z € Z".
i) (Strong convexity)

(3.2) AP < Wao(y, @)6E < ATH(IEP +1)

for some A > 0, for all y € R™ and for all Q,¢ € RV,
iii) (Continuity) ”

(3.3) Wae(y, @1) — Woqe(y, @2) < ¢|Q1 — Q|
for some u > 0, for all y € R™ and for all Q,,Q, € R*V.
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Hence from lemma 2.2,

flu] = 2 Vu)de
(3.4) I[u]_/ﬂw(e,v )d
is I' — convergent to
(3.5) Iu] = / W(Vu)ds,

Q
where
(36) W=t | WwQ+ Ve
L YEWL(Y) JY

Since W is strongly convex, we see immediately that there is a unique mini-
mizer 1 € W,.2(Y') for the functional

IQ[¢]=/YW(y,Q+V¢)dy

for each Q. We denote %< by the unique minimizer ¢ for I9[s]. Employing
the integral representation of W and using the Euler-Lagrange equation for
the minimizer 9, we prove that W : R™N — R is differentiable.

Theorem 3.1. The homogenized energy density function W is differentiable
everywhere and

(3.7) Wao(Q) = /Y Waoly, @ + V9?)dy.

proof. We set
AQ) = /YWQ(y,Q+ Vy9)dy.

and naturally we expect that A is the derivative of W. To prove that A(Q) =
W o(Q), we need only to show that for each H € R™N with |H| =1,

(8  LW(Q+eH)-W(Q)-eA-H|=ofe)
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Since %< is a minimizer of
[ W.0+ 7w,

»? satisfies the Euler- Lagrange equation

(3.9) (Wi (v,Q +Vy?)) =0,i=1,..,N

with respect to the periodic test function class W),2(Y'). Similarly we have
(Woi (v,Q +cH + V¢Q+“'H))ya =0,:=1,..,N

with respect to the periodic test function class W%2(Y"). Since 9+eH — 4@ ¢

per
W, :2(Y'), we obtain
(3.10)

[ [Wou (5, Qe H+V09%) oy (4, @+ V4] (4<#5—y), ay=0.

By the mean value theorem we have

Wai (4, Q + eH + VOreH) — Woi (y,Q + V)
1 | | |
0
= Bff;e (y,Q,eH) (eHg + @ty — ,/,%j) ,
where B is defined by

.. 1
BJs(y,Q,eH) = / Wi g3 (4, @ + Vi@ + t(eH + Vy I+ — vy 9))dt.
0 o
So using the strong convexity condition (3.2) we have

A / |VpQteH _ vyQ|® dy
Y

L arens on [ ores o
s/yB;fﬂ(zb;ie @) (W@~ @) dy




140 . Hi1 JuN CHOE AND YONG SUN SH IM
— < [ By
< Ce / |H||Vyp et — vy dy.
Y
Hence Young’s inequality gives
(3.11) / |VypQ+eH _ vyQ|* dy < Ce?
Y

for some C > 0.
On the other hand we have

(3.12) [W(Q +cH)-W(Q)—cA- H|

=| [ W @em+ 69wy, + V49 | Wols,Q+99) ety

1

= ‘/ / Wao (v,Q + Vy© +1t (eH + V9t — vy?)) dt

Y Jo
(B + VT - VyR) dy - [ Wo(,Q+V49): ede‘

Y

1

< / dt [ Wa(u, @+ V42 4 t (B + V4&+H — T49)) ~ Wo(y,Q + V49)|
0 Y

|eH + Vypo+eH — vyQ| dy + / Wo(y, @ + V@) - (Vyp@FeH Vz/)Q)dy‘ .
Y

Since %@ satisfies the Euler-Lagrange equation and ¢?+<# — Q@ € W1.2(Q),
we see that

613 [ Woln.Q+ V4 (TpT — 9y )dy = 0
Therefore from (3.11) and (3.12) we conclude that
(3.14) W(Q+eH)-W(Q)—cA- H|

<C <|5H|2 +/ |VypQteH _ V¢Q|2 dy)

< Ce? '

and this completes the proof.

Now we proceed to prove that W is twice differentiable. This is crucial
to get regularity results for minimizers of functional. The following lemma
is useful for the characterization of the second derivative of W.
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Lemma 3.1. Suppose f : R — R is a bounded continuous function and
{u®}e>o is a sequence in L*() such that u® — u strongly in L?. Then we
have

i H|ut|?dz = u)|ul*dz.
(3.15) ti [ ) Pde = [ flulta

proof. Let mop > 0. Since |u|? is integrable, there is 6 > 0 such that if
|E| < 6, then [y |u[*dz < no. Since u® converge u strongly in L2, there
exist €9 and po such that

{z € Q: |[u(z)] 2 po}| < bo
for all € < g9 and

{z € Q: |u(z) 2 po}| < o.
Hence we get

/ F(u) = ()] [ul? dz < eno
{lu¢|>po}u{lul>po}

for some ¢ depending on sup | f|.
Since f is uniformly continuous on [—po, fio], there exists 6y such that if
|u®—u| < &9, then

|f(u®) = f(w)] < no.

We also note that since u® converge to u strongly in L%, there exists g such
that
[{z € Q: |u*(z) — u(z)| 2 bo}| < bo

for each ¢ < ¢y. Hence we obtain that for all € < ¢g
[ 15 = )l |u2] e

<

/ () = £ [o2] do
{lue|>po}u{lulZpo} / ‘

+ 1) = )l luft o
{lut —u|<bo,|ut|<po,|u|<po}

&) — u)? dzx
b 1) = S d
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< cno

for some ¢. Therefore if ¢4 is small enough, we see that for each € < ¢g

] [ el = s

< Llf(u€)|||u€|2—|UI2|dw + /Qlf(u’)—f(u)HUIZdQJ
< eno

for some ¢ and this completes the proof.

Let Q € R™V. Let us define w(*") ¢ W;{‘;(Y — R¥) to be the solution to

(316)  (Woy1 (1@ + Vo) =~ (Woi1(5,@ +V99))

Yp

in Y with periodic boundary data. In the linear cases w(¥) is the corrector
matrix as is discussed by Tartar(see [Tar]). Hence we may consider w(*") as
a corrector term for nonlinear cases. Next we define

A55Q) = [ Wayp(5,@+ T99) [5785, + wil] dy

for each @ € R™V, where § is the Kronecker delta function. The following
theorem is our main result in this section.

Theorem 3.2. W is twice differentiable everywhere in R*V and

(3.17) Wao(Q) = AQ)

for each Q € RV,

proof. As in the proof of theorem 3.1 we need only to show that for each
Q € R™YN and H € R*" with |H| =1

1,— —
- [Wa(Q+eH) - Wq(Q) — cA(Q) - H| = ofe).
From theorem 3.1 we know that

Wa(@+eH) = [ Wo(u,Q+eH + Vu®+)y
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and

Wo(Q) = /Y Woly, Q + V49)dy.

Now define
(3.18)

.. 1
BJs(v,Q,eH) = / Waiq) (v, Q@+ Ve +t (eH+VyHH —vyQ)) at.
0 (=3
Hence from the mean value theorem we get

Wo(Q +eH) - Wo(Q)
= / Waly, @ + eH + VHo+eH) — Wo(y, @ + Vo) dy
Y
= / B(y,Q,eH) - (eH + V2t _ vy Q)qy.
Y
From the definition of A(Q), we have

(3.19) [Wa(Q +cH) - Wo(Q) —cA(Q) - H]
< ‘ fY (B(y, @, H) — B(4,Q,0)] - [cH + Vp+H — 7y€] dyl

+ | / B(y,Q,0)- [VytH - vyp? — Vu . ¢H] dyl
Y

=I41I.
Since Woq(y, @) is in C* with respect to @, we have

|B(y, @,eH) — B(y,Q,0)| < c|eH + VypteH _ yyQ*

for some ¢. From (3.11) we already know that
/ |VypR+eH _ vy?|® dy < ce?
Y

for some c. Hence from Young’s inequality we have

11| < Cle**o.

143
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Now we proceed to estimate II. Since [Wqq| < M, we see that
(3.20) Il < ¢ / |Vy@teH — vyp? — eVw - H| dy.
Y

To estimate the right handside of (3.20), we recall that for each: = 1,2,..., N

[Was (v, Q + eH + Vo) - Wo: (y,Q + V¥?)]

= (B @) (B +uZreR —ur)] =0

and

[Bis(v, Q.07 9eS] =~ (Bl(3,Q 0)eH})

o Ya

Hence we have

R ——

= {[Bisv @.0) - B, @.em)] (v - )}
v {[B0,0,0) ~ B, @) #3)

for each 7. Note that p9TH — @ —ew - H € W}A(Y). Hence taking
Pp@teH _ @ _ ¢ - H as a test function to (3.21), we have

o

(3.22) / |Vy@teH — vy? — eVuw - H|2 dy

Y
< / |B(y,Q,e H)—B(y, Q,0)| |[Vyp+eH — VR |Vyp@+eH — Vy? — eVuw - H| dy
Y .

+e / |B(y, Q,eH) — B(y,Q,0)| |[Vp9TH — V| dy = IIT + IV.
Y
Since Wgqg € C*, we have
|B(y,Q,eH) — B(y,Q,0)| < C |eH + Vyp+eH — vyQ|".

Since
/ ‘V¢Q+6H _ Vz,lezdy S c€2,
Y
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we obtain that

IV <e¢ / leH + Vip@teH _ wyQ|p |vyQteH _ gyQ| 4y
Y

< ce?tH 4 ce/ |V¢Q+8H — V¢Q|1+"dy
Y

S c62+ﬂ

for some c.
Finally we estimate III. By Young’s inequality we have

(23)  HI<% [ BQeH) - B, QO V4o — 94| dy
Y

+5/ |Vy@tel _vyQ — eVw .- H|' dy
Y

for any § > 0. Hence combining (3.22) and (3.23), we conclude that

(3.24) / |VyQteH _ vy — eVw - H| dy
Y

< C/ |B(y,Q,eH) — B(y,Q,0)|? |V¢Q+CH - V‘k/)le dy + et
Y
=V + ce?th,

To estimate V', we set v® to be

€

e — ¢,Q+6H _¢Q

€
We note that ||[v®||yy1,2(y) < C independent of € and v° satisfies
(325)  (Bhw@eHny) =-(Biw@emm))

in Y. Since Wy is continuous and bounded as a function of Q, we see easily
that

By(y,Q,cH) - B(y,Q,0)
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strongly in L%(Y). Let v® — v weakly in W1%(Y). Then the weak limit v

per
satisfies

(3.26) (B(v,Q.003,) =-(BY(v,Q.0H))

Ty T

Now we claim that Vv® — Vv strongly in L?. From (3.25) and (3.26) we
have

(3.27) By, QueH) (v = vi, )] a

= [(B(v,Q,0) - By(v,Q.e)) (i, + Hj)|

Lo

and taking v® — v as a test function in (3.27), we get

[ 190t =wobay < [ 1B, @cH) - By Q.0 Vol +1) d
Y Y
Note that B is bounded and

B(y,Q,eH) — B(y,Q,0) - 0 ae. as e — 0.

So from the dominated convergence theorem we have

[ 1B.QueH) = B3, QO (9 +1) dy =0
as € goes to zero and we conclude
Vv® — Vv strongly in L*(Y).

Finally, let us set g to be the modulus of continuity of B at (). Then from
lemma 3.1,

VypQteH _ y7yQ 2

1
(628 V< [ gelH]+evo) dy
Y

_ / g(e|H| + €| Vo )| Vo Pdy = ofe).
Y
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Combining (3.24) and (3.28) gives

(329) / |Vy@teH — vy? — eVuw - H|dy
Y

2
< [/ |VypQtetl — TyQ —eVuw - H|2dy
Y
< (e®o(e) + c€2+")% < eo(e).

Therefore from (3.19), (3.20) and (3.29) we conclude that

2 [Wo(Q+2H) - Wa(Q) - <A@) - H| = ofe)

and this completes the proof.

Now it is rather simple to prove that W is strongly convex. From the
mean value theorem we have that

(W(Q+H)-W(Q)-W(Q)- H

/ Wy, Q@+ H + V4o _ W(y,Q + V92) — Wo(y, @ + V9?) - Hdy
Y

1
= I/Y /0 Wq (y, Q+ Vy? + t(H + V@i Vsz)) dt'(H+V¢Q+H_v¢Q)
- Waoly,Q + Vz/)Q) (H + Vy@tH | VI/)Q)dyl

1 1
> // t/ Waiq) (v,Q + V@ +ts(H + Ve — vyp@) ) ds dt
Y Jo 0 “

(G + 9@ — w2 (Hf + 9@ -y @) dy|

> lA/ |H + VyO+H vy
2 Y

A2
> =
> 3 H]

for all @, H € R™V, where we used the fact that ¥2*tH and ¥»? are both
periodic. Hence we have the following lemma.
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Lemma 3.2. W is strongly convex and
— . 9
Wi 3 (Q)6a&h 2 Ale]

for all Q,€ € R™N,

Using the representation theorem for the second derivative of the homog-
enized energy density function, we prove the homogenized density function
is C%*. Define [Wqq]., as Holder norm of Wgq with respect to Q.

Theorem 3.3. We have Wgq € C* and

Waeelcn < clWoqlen

for some c.

proof. We define f& (B
ORIV = Wor 01 (4,Q + Vg (57T € WIA(Y).
Considering (3.16), it immediately follows that
(fSEDH,, = _(WQL,Q”‘V (v, Q + V),
Next we define ¢@(¥:7) ¢ W,2(Y) by

Ad= div (1)
Again from (3.16) we have

(3.30) (faQ+eH,(k,v),i _ f(?,(k,'y),i)ya

= - (quqg(y, Q + eH + VyQteH) _ Waiqi(y,Q + VI/’Q))y :

o

Taking ¢Q+eH(k:7) _ 4Q.(k7) a5 a test function to (3.30) we have

2
/Y ' FreH k) _ Q| gy

< C/Y [Waoo(y, @ + eH + V@+<H) - Woo(y,Q + V4?)|* dy



REPRESENTATION FOR SECOND DERIVATIVE 149

<c [ Wl (¢ + [V4@+e — vy2™) ay
Y

for some ¢. Using (3.11), we have

/ |fQ+€H.— fQ|2dy < ce?k,
Y
From the representation theroem 3.2 we obtain

(Wao(Q+cH) - Woo(Q)]

5/Y|WQQ(%Q+6H+V¢Q+’H)—WQQ(y,Q+V¢Q)|dy+L |FOreH — £9| dy

1
< 6/ Waqlcw (5” + |[Vyptet V‘/’QI“) dy+ec (/ |frter — po” dy)
Y Y
< c[Waqlcu

for some ¢ and this concludes the proof.

Now we consider a natuarl application. From the convexity and smooth-
ness of homogenized energy density function we have a partial regularity
result for the weak limit of minimizers(see [Gial).

Corollary 3.4. Suppose u® is a minimizer of I¢. Since W is in C** the
weak limit u of u® is CV*(Q\ E) for some a, where the exceptional set E is
closed and its Lebesgue measure is zero.
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WEAKLY CONTINUOUS HOLOMORPHIC
FUNCTIONS ON BANACH SPACES

YUN SunG CHOI

ABSTRACT. Let E be an infinite dimensional complex Banach space. Let
Hy (E) be the space of entire complex-valued functions on E which are weakly
continuous when restricted to any bounded subset of E. Each f € Hy(E) is
characterized in terms of its differential df.

Let E be a complex Banach space. For z € E and r > 0 B,(z) denotes
the open ball with center  and radius r. Let Hy(E) (Hyu(E)) be the
space of entire complex-valued functions on E which are weakly (uniformly)
continuous when restricted to any bounded subset of E. Let Hj,u(E) be
the space of entire complex-valued functions on E such that for each = € E,
there is a neighborhood of z such that f is weakly uniformly continuous on
V. It was known that Hyy(E) C H,(E) C Hiyu(E), but it remains still an
open problem whether H,,,(E) is a proper subspace of H,(E) or not, which
was suggested in [A-H-V]. In connection with this problem, we would like to
characterize each function f in terms of its differential df. Following such
characterization of f in Hyy(E) or Hyyy(E) was studied by Aron [A1, A2].
For general background on holomorphic functions we refer to [D] and [M].

Proposition A. f € H,,(E) if and only if df(B) is relatively compact in
E' for every bounded subset B of E.

Proposition B. f € Hjy,(F) if and only if for each * € E there exists
r > 0 such that df(B,(z)) is relatively compact in E'.

Recall that for a complex Banach space F, Hx(E,F) is the space of
all entire mappings f : E — F satisfying that for each £ € E there is a
neighborhood U such that F(U) is relatively compact in F. For details see
[A-S]. Hence Proposition B means that f € Hy,.(E) if and only if df €
Hyg(E,E").
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For each n € N let P("E; F) denote the Banach space of all continuous
n-homogeneous polynomials from E into F. Let P,,(E;F) be the space
of all continuous n-homogeneous polynomials P such that for any bounded
subset B of E, P is weakly uniformly continuous on B, and Pk ("E; F') be the
space of all continuous n-homogeneous polynomials P such that P(B(0))
is relatively compact in F. The following results are also due to Aron [Al,

A2).

Proposition 1. Let P € P("E). Then the following are equivalent.
(a) P € Pyu(E) (b) dp € Puu("'E; E') (c) dp € Px("" E; E')

Proposition 2. f € Hiwu(E) if and only if d"f(0) € Puu("E) for each
n € N (equivalently, d" f(z) € Pyy("E) for each z € E and n € N).

Compared with Proposition A and Proposition B we have the following
result about f € H,(E).

Theorem 3. f € H,(FE) if and only if given r > 0 and ¢ € B,(0), there
exists a weak neighborhood W of O such that df(B,(O)N(z+W)) is relatively

compact in E'.

Proof. (=) Let r > 1 and z € B,(O) be given. Since f € Hy(E), there
exist a convex balanced weak neighborhood V of O and M > 0 such that
|lf(y)] < M for all y € (z + V)N Bg,(O). Let W be a convex balanced weak
neighborhood of O with W+ W + W C V. From the Taylor series of f at z,
we have that for y € E,

f(y >~Zd(d 1))y -2
=ZnAn(y——a:,y—w,-~~ ,y_ma')’

-~

where A4, =4 f(z) . Let 0 < @ < 1 such that aB,(0O) C W.
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For y € (z + W) N B,(0),

. d"f(z
14 EHDyy )
= sup |ndAn(y —z,-,y —z,t)|
it <1
= —Ap(y—2z,---,y—2x,at
sup |2 Au(y )
o Ry [ LA )
||t”<1 « 27(’1, /\1 /\2
[A1]=2
[Az|=1
1 1., (47)(2r)M
< 2 (poy - U2
a 27

because ||z + A\i(y — ) + Az(at)|| < 6r and Ai(y — z) + A2(at) € V. Hence
df(y) = (dnf(z) )(y — z) converges uniformly on (z + W) N B,(0).
(%) Since ﬂ € Py ("E), d(—M) € Px(" 'E, E') by Proposition 1 and

hence d(#)((m +W)N B,(0)) is relatively compact in E' for each n. (%)
;From (%), (%*), we can show that df((z + W) N B.(0)) is totally bounded
in E'.

(«<) Let r > 0 and ¢ € B,(0O). By hypothesis, there exists a convex
balanced weak neighborhood V' of O such that df((z + V) n B;s,.(0)) is
relatively compact in E'. Then f is bounded on (z + V) N Bs,(0), because
for y € B5,.(0)N(z + V),

1f() = f(@)| < sup [ldf(o)lllz -yl

c€|z,y]

Let W be a convex balanced weak neighborhood of O with W+ W C V. For
y € (& +W)N B.(0),

|d"f(x)

z+ Ay —
-0l =1y [T gy
|A|=2
4 1
< 5 g Az A - 2)

M
<—7
= om
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where M = sup{|f(y)| : v € (z + V)N Bs5,(0)} < 4+o0. Given € > 0,
Choose N such that Y 7 41 ZM,. < §. (From hypothesis, we have that df €
Hg(E,E') and hence J(%) € Pg("1E, E') for each n by Proposition 1
and Proposition 2. Let K = U;-\’:l{An(y—:c,~ - ,y—z,) |y € (z+W)NB,} C
E', where A, = -d—"%x—). Then K is relatively compact in E' and so there
exist ¢q,- -+, in E' such that U,'F:lBe/eN,(qB,-) DK.Ifye (z+W)NB,.(0)
and |¢;(y —z)| < €/3N (: =1,--- ,k), then

N dnf(z) 2 d"f(z
tw-1@ <12 Dy a4y D g

N+1

N
<Y ((Anly =2,y —7,) = )y — )+ I6iy —2)) + 3

n=1

N €
< — — ) — @; — _
< Dty =2y =z bl =zl + 5+

€

3

¢ -2r+-2—e—e
6Nr 3

Hence f € Hy(E). O

Corollary 4. f € Hy(E) if and only if (a) given r > 0 and z € B,(0),
there exists a weak neighborhood W of O such that d((z + W) N B,(0)) is

bounded in E' and (b) ci(d—"%f—ﬂ) € Pyy("E) for all n.
Proof. It is straightforward from the proof of Theorem 3. [J

<N-
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BOUNDARY BEHAVIOR OF THE
BERGMAN KERNEL FUNCTION IN C~.

SANGHYUN CHO

ABSTRACT. Let € be a bounded pseudoconvex domain in C* with smooth
defining function r and let zp € b2 be a point of finite type. We also assume
that the Levi-form 88r(z) has (n—2)-positive eigenvalues at zo. Then we get
a quantity which bounds from above and below the Bergman Kernel function
in a small constant and large constant sense.

1. Introduction.

Let Q@ C C" be a bounded domain in C". A natural operator on §? is the
orthogonal projection

P:L*(Q) — H(Q)NL*(Q) = A%(Q)

where H((2) denotes the holomorphic functions on . There is a correspond-
ing Kernel function K(z,Z), the Bergman Kernel function, given by;

Ka(z,%) = sup{|f(2)I*; f € A(Q), [|fllz2¢) < 1}-

Since the important paper of Fefferman [10], the singularity of the Bergman
Kernel function on strongly pseudoconvex domain at the boundary is quite
well known. For weakly pseudoconvex domains, however, much less is known.
In [3], Catlin got a result which completely characterized the boundary be-
havior of Kq(z,Z%) for weakly pseudoconvex domains in C?. Estimates have
also been obtained for some weakly pseudoconvex domains in C?, but in each
case the lower bounds are different from the upper bounds [1,7,8,9].

Let 2 be a smooth bounded pseudoconvex domain in C" with smooth
defining function r and let z, € b2 be a point of finite type m in the sense

I would like to thank D.W. Catlin and Alan Noell for several conversations we had
about the material in this paper.
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of D’Angelo [6]. We assume that the Levi-form 80r(z) has (n — 2)-positive
eigenvalues at zo and that -a%"l— # 0 for all z in a neighborhood U of z,. After

a linear change of coordinates, we can find a coordinate functions z, ..., 2z,
defined on U such that

0
(1.1) Ll—a_zl’
0 0 .
Li= g +bigm Lir=0, bi(a) =0, j=2...,n

which form a basis of CT(U) and satisfies
(1.2) 90r(z0)(Li, L;) = 6i5, 2<4,j <n-—1,
where 6;; = 1 if = 7 and é;; = 0 otherwise. For any integers j,k > 0, set

L;x00r(z) = Lp...L, ?’—" . .f,z 90r(z)(Ln, L),

(j—1)times (k—1)times

and define
(1.3) Ci(z) = maz{|L;x00r(2)|;j + k = 1}.

We can state the main result as follows;

Theorem 1. Let Q2 be a smoothly bounded pseudoconvex domain in C"
and let zy be a point of finite type m on b§2. Also assume that the Levi-form
00r(z2) has (n — 2)-positive eigenvalues at z,. Then there exist a neighbor-
hood U of zy and constant C such that

19 &2 ICEHEI™T < Ka(z7) < €Y G ()
=2 =2

for all z € U, where C|(z2) is defined as in (1.3).

Remark 1.1. Since zy € b2 is a point of finite type m, we have C,,(29) > 0.
Therefore (1.4) says, in particular, that

Kq(z,%) > d|r(z)| ™ =

for all z € U, for some ¢’ > 0.



BOUNDARY BEHAVIOR OF THE BERGMAN KERNEL FUNCTION IN C" 159

Remark 1.2. In [9], Diederich, Herbort and Ohsawa proved that the Bergman
Kernel function satisfies

(1.5) Ka(e,2) 2 el [og ()]

if 2o € b2 has (n-2)—positive eigenvalues and (2 is uniformly extendable in a
pseudoconvex way of order N near a point 2o € b§2 (Of course, they proved
more than this). If zo € b is a point of 1-type, then it holds that N > m. In
[7], Diederich and Fornaess proved that the pseudoconvex domain with real
analytic boundary can uniformly extendable. Recently, the author showed
the same result in case b{) is pseudoconvex and finite type [5]. The main
theorem completely characterizes the boundary behavior of Kq(z,%) in C*,
in case 2o € b2 is of finite type with (n-2)-positive eigenvalues, while (1.5)
says a lower bound of Kq(z,Z%).

A key idea to prove Theorem 1 is that the terms mixed with strongly
pseudoconvex direction and weakly pseudoconvex direction can be negligible.
This result will be proved in several propositions in section 2. Then the
proof of the Theorem 1 is based on the construction of special polydiscs and
weighted Lo-estimates of Hérmander which Catlin has employed to get a
result for Kq(z,%) in C2.

I would like to thank D.W. Catlin and Alan Noell for several conversations
we had about the material in this paper.

2. Special Coordinates and Polydiscs.

In this section we want to show that about each point 2’ in U, there is a
polydisc (more precisely, the biholomorphic image of a polydisc ) of maximal
size on which the function changes by no more than some prescribed small
number § > 0. First we show how to construct the coordinates about 2z’
which will be used to define a polydisc.

Let us take the coordinate functions zy, ..., 2z, about zy so that (1.2) holds.
Therefore Lir(z) > ¢ > 0 for all z € U, and 80r(z)(L,,L )2<i,j<n—1 has
(n — 2)-positive eigenvalues in U where

g
L1 3_21— and

9 or\'or o
Lj_a—Z'j_(_a—ZT) -0—2;52, ]—2,...,7’L.
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Set

(2.1) wy =21 + Z

j=2

-1 3r( N d
62’1 Bz] ‘ . af

w; =2; for j=2,...,n

Then L; can be written as

0 , O .
== 4p T 2<i<
L; awj+b]awl,2_]__n,

. 8%r(
where b%(2') = 0. In wy,...,w, coordinates, A (awrazw )2<i,j<n—1 is Her-

mitian matrix and there is an unitary matrix P = (P;;)2<i,j<n—1 such that
P*AP = D, where D is a diagonal matrix whose entries are positive eigen-

values of A. Set

z1 = wy, 2Zp=w, and

n—1

zj = zﬁkjwk, for j=2,... ,n—1.
k=2

Then azaz (z') = Xibij, 2 < 4,5 <n—1, where \; >Olsanz—thentryof

D(we may assume that A; > ¢ > 0in U for all 7). Finally set w; = /\j
j=2,...,n—1 wy =2, wy = zp. Then

8%r

(2.2) Sord,

(z')=6g]~, 2<1,<n—-1.

Remark 2.1. If we take the above coordinate changes to get (2.2) with 2’
replaced by z¢, then this coordinate function satisfies (1.2).

Proposition 2.1. For each positive number € > 0, there is a neighborhood
U, of zy such that

(2.3) 100+(2)(Li, T;)| < e
forallz€ U, and2<t,j<n-—1,1#.

Proof. From the Remark 2.1, and from the coordinate changes up to (2.2),
one has Lj = 332, bjk 32 + b} 52, where b(z) = 0 and 80r(L;, L;)(20) =
6ij. So (2.3) holds provided one takes U, sufficiently small. [
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Proposition 2.2. For each z' € U and positive even integer m, there is a

biholomorphism &, : C* — C", ®,'(2') = 0, ®.,'(z) = (¢1,-.. ,(n) such
that

n—1
r(@u(0) =r(2) +ReGi+ > Re (854(z')G3Cnta)

a=2j+k<B
J,k>0
—k n—1
(2.4) + > ain(2)C + D Cal?
j+k<m a=2

J,k>0

+O(IGHICT+ IC" I+ IC"ICal FHE + [Cal™+).

Proof. We may assume that z' = 0 € b2. Let us take the coordinate func-
tions wy, ..., w, about 0 so that (2.2) holds. After a linear change, r(w) can
be written as

n—1

r(w) = Rew; + Z Z Re [(a?wf; + bj‘w{,) wa|

a=21<<3

n—1
(2.5) +Z Z Re(a;-"’kwflw,'iw,,)
a=2 j4+k< P
k>0

n—1
+ ) bigwimh 4+ ) Jwal?

2<j+k<m a=2
+ O(Jwslw] + " Plw] + [ [ T+ + |wa| ™),

where w" = (0,w2,... ,wp—1,0). It is standard to perform the change of
coordinates
2 o* r(O) wh 4 ak+1r(0)
2 =wr Z 2 > T gt
2<k<m a=21<k<m ! aw aw

25 = wy, ]—2,..., ,

which serves to remove the pure terms from (2.5), i.e, it removes w¥ " w'c
terms as well as wfw,, W@, terms from the summation in (2.5). We may
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also perform a change of coordinates,

1 0%1p(0
<l=zlv Cn=zn Ca=za+ Z Faﬁ]‘—aka)zs

1<k<z
to remove terms of the form @’ w, from the summation in (2.5), and hence
r(¢) has the desired expression as in (2.4) in (-coordinates. O

Remark 2.2. The coordinate changes in the proof of the proposition 2.2 are
unique and hence the map @,/ is defined uniquely.
Set p({) =70 ®,((), and set

(2.6)
A(2") =maz{la;(2);j+k =1}, 2<1<m,

Bu(2') = maz{|bx()ij + k=1, 2<a<n-1},2<r < 2.

2

For each § > 0, we define 7(2', §) as follows;
2.7) (2, 6) = min{(6/Ai(' )}, (6% /Bp(2')¥;2<1<m, 2<V' < -’;1}.

Since Am(z0) > ¢ > 0, it follows that A,(2') > ¢’ >0forall 2/ € Uif U is
sufficiently small. This gives the inequality,

(2.8) 6% <r(2,6) < 6w, 2 el.

The definition of 7(2', §) easily implies that if ' < é", then

(2.9) (6'/6")ir(z',6") < 7(',8") < (6')8") = r(2',6").
Nowset 11 = 86,70 = ... =Tp_1 = 6%, ™ = 7(2',8) = 7 and define
(2.10) Rs(2') = {¢ € C*;|¢k| < 7k, K =1,2,...,n}, and

Qs(2") = {22({);( € Ro(2")}.

n+v

In the sequal we denote D} any partial derivative operator of the form 5%27,
k k

where p+v=10k=1,2,... ,n.
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Proposition 2.3. Let 2’ € U. Then the function p = r o 8,.(() satisfies;

(2.11) 1p(¢) — p(0)| S 6, C € Rs(2"), and
IDiDnp(O)] S 87 '7 7, ¢ € Rs(2"),

forl+iﬂ§m,i=0,1,k=2,...,n——l.

Proof. The definitions in (2.6) and (2.7) 1mply that |Dip(0)] < 6777 and
|DiD%p(0)] < 62777 = 67777, Since |Dan 'p(0,... ,(x,0, ... )l <
l,fork=2,... ,n—1,and ID""“p(O ¢n)| < 1, we may use (2.4) and Taylor’s
expansion theorem to prove (2.11). O

In order to study how 7(z,6) depends on z for z € Qs(z'), it is convenient
to introduce an analogous quantity n(z,§) that is defined more intrinsically.
Recall that L, is given by

L 0 (oo
"7 Ozn 0z 0z, 021

For any j,k with 7,k > 0, define

L;k00r(z) = Ln...Lp Ln... Ly 30r(Ly,Ly)(z),

(j—1)times (k—1)times

and define

(2.12) Ci(z) = maz{|L;x00r(2)|;5 +k =1}, 1=2,... ,m,
(2.13) n(z,8) = min{(8/Ci(z))t;1=2,... ,m}.

Set L' = (d®,/ )" 'L,, and define

£54000(Q) = L. Ly L. Ly 90p(O)(Li L),

(j—1)—times (k—1)—times

Then

(2.14) L;x00r(®.:(¢)) = L} ,88p(¢)
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by functoriality. Notice that
0

-1 ! .
(Qz' )* = L aCn + b(C)OCI and
(2.15)
-1 0 or\ 1. _10r 9
-1 — 2 __ —_- 1 U
(@2 )L = ]_22})’” I8¢ (3(1) ;Pkﬂ\’ 9¢; 0¢
nz—:l
bk] = ’ y I — 1
i=1 9%’
dp -1 . . . .
where b(¢) = — (3p1) (3C ) and P = (Pyj) is an unitary matrix. Since

3(1 22(¢) # 0in ®,'(U), we obtain from Leibniz’s identity and (2.11) that
(2.16) |DiD! b(0)] < 6711,
for:=0,1, l+i—g‘- <m-1,k=2,...,n—1. Since

82

89 Ln, n) = +0
o i (5),

one gets by induction and (2.16) that

aJ+kp
(2.17) L ,08p = — + Ejtk-1,

8¢,
where
(2.18 DiDLE,(0)| < 6757 1+ <m—s
( ) | k™~n ~ k )

2

fori =0,1,1<s<m-1,k=2,...,n—1. With (2.17), (2.18) and by
induction one will get

IDDL, ,8Bp(0)] S 67~ (H+i+R6—3,
and hence one obtains that

|£;,100r(2)| S 677UFR) | 2 € Qs(2'),
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by Taylor series method and (2.14). Since this means that Cj(z) < §77,
z € Qs(2'), | = 2,...,m, one concludes that

(2.19) n(z,6) X 7(2',6),

when z € Qs(z'). We want to prove the opposite inequality in (2.19). To
show this, we first show that the quantities By(z') in (2.6) is less important
term than A;(z") for the definition of 7(z’, 6) in (2. 7) This is a key point in
the rest of this section. Recall that L;, = 5z~ C +b(¢) 5> &> Where b(() satisfies

(2.16). This implies that
(2:20) ()] < 677

for ( € P, = {¢;|¢1] < 6,|Ck| < 6277%,|Ca| < 7). Define a map As : C* —s
C" by

As(Q) = (671,67 %oy 1675 Cnor, 7 ) = (C1y - v 5 Cr).

Then
0 0

s 5C1
where we have dropped (™’s) in (-variables. With (2.20), one has

Bn=r(As)Ll = —— +b(A;1(Q) 6717

(2.21) b (A1 ()67 7 S 74

for ( € Q- = As(Pr) = {C; 1G] < 1,|Cal < 1,1¢k] ST_%,’C:Z,... ,n—1} If
we set p1,(¢) = 8-1((A; 1)*pur()), then

n—1
pL(Q)=Rei+ Y 3 Re b3, ()6~ iT C]

a=2j+k<B
7,k>0
(2.22) + Y air(2)6” rf+’°<,,cn+2|ca|2
J+k<m
]yk>0

+7O(I¢lIC] + 81¢ P 1¢T+ 1" 21¢)
+ 7O(C"I¢al T + [Cal™ ),
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for all ¢ € Q. From the expression in (2.22), we set

AT = Y aju(2)67 rITRIT,, and
j+k<m
7,k>0

BS(GnCa) = . Ba()8 3T, a =2, -1
Jtk<3
3,k>0
Since the level sets of p,(¢) are pseudoconvex and since L, = 7(As). L, is a

tangential vector field on the level sets of p®,, we have 98p% (¢)(L,L,) > 0.
By combining (2.21) and (2.22), one can get

(2.23)

— ~ = 62 '
0% (¢)(En, L) = —L2

%ot ) ( 2 0%0% )
o rp—= (@)
a0, ( a600,) T\ B,

_ 02 A% n—1 6233 (szn) 1
= ac.ag, T (Z —acac, ) TO ()

a=2

for all ¢ € Q, where b= 6"17b(A;* ().

Lemma 2.4. |B((n,(,)| < ric foralla =2,...,n—1, ¢ € Q,, provided
T is sufficiently small.

Proof. From (2.6) we know that the coefficients of A® and B? are bounded by
2 Ré 3
one. At first, let’s show that |M| < 710 for 7 € Q,. Suppose, on the

BCnaC
contrary, that | ——== |6C * ((n,g'n)| > 775 for some (n and a. Then gg’fgz&n)ca

—|O(r=%)|, provided one takes |¢,| sufficiently large (say 7~% < |(af <
T_%), with appropriate argument. If one combines this fact and (2.23),

then aép‘;,(in, f/n) < 0 at that point provided 7 is sufficiently small. This
contradicts to the fact that the level sets of p%, are pseudoconvex and hence

| g(;(g’;_’c" | < 7. This implies that |[B5((,,C,)| < 710 because |(n| <
O

Using this lemma, one can show that the coeflicients of B can be made
arbitrary small provided § is sufficiently small. First we prove the following
lemma.
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Lemma 2.5. Let Pi(2,z) = Zi+j=k a; ;2'7’ be a homogeneous polynomial
of order k in z and Z, and suppose that |Py(z,Z)| < € for all z on the unit
circle on C'. Then |a; ;| <.

Proof. Py(2,Z) =314, a1, je*"=9% on the unit circle in C!. So

jaj] = | / Py(z,7)e =90 dg|

2 J_ .

< 1 |P|oodf < e.
m -7

O

Proposition 2.6. Let P(z,%z) = Zi+j<n a;;2'7’ be a polynomial of order n
with |a;;| < 1. Suppose |P(z,%)| < €2 for all |z| < 1 for some small number
€ > 0. Then |a;j| < Cpe*, where a = #

Proof. Let P =Y }_, Px, where Py is a homogeneous polynomial of order k.
It is clear that |Po| < €2. Since | Y., Pi| < €? on |z| = €, we have | P;(z,7)| <
|P| + |Po| + | 312, Pi| S € on |z| < e. This implies that [Pi(z,%)| < € for
all |z| < 1, and therefore |a;j| <€, 7+ j <1, by Lemma 2.5. Similarly one
can prove that |Py(z,%)| < €? for all |z| < 1 and hence lai;| < €%, i47 <2
Let k > 2 and suppose by induction that |a;;| < e*t for all 1 + J < k. Then
| Y k2 P S T on |z| < ™17 and so

k k
1N RIS P+ P+ P S ert T
I=0 l=2

1
on |z| < €+, Therefore

n k
k
|Peta] S 1P|+ | Z P1|+|ZP1|56(T?'—‘:12W

I=k+2 =0

k42 k41
on |z| < ¢T+D7 . This implies that |Pryq| S eGFDT 7 G4 = 6“"1’15’, for all

|z| <1, and hence |a;;| < T for all 7 +J <k+1 by Lemma 2.5. So we
get the Proposition 2.6 by induction. 0O :

If one combines Lemma 2.4, Lemma 2.5 and Proposition 2.6, then

(2.24) |6% (') 379 +k| < 77w
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2
2,...,%, if é(and hence 7) is sufficiently small and therefore T(2',6) =

forall2<a<n-1,2<j+k<m So (5%/3,,(2#')) >> 7, I =

1
min{ (2—'—%2,—)) ':2 <1< m}. Now define

(2.25) T(2',6) = min{l;(§/A(z")T = 7(<',6)}.

Then there exists 7,k with j + k£ = T(z',é) so that

(2.26) laj k(") —| L)tk = 6r ik,
¢,
From (2.17), (2.18) and (2.26), one has
1C;48Bp(0)] > 5(j kST,

Again by Taylor’s theorem and by the fact that |Cn| < 7(2',b6) < bmr(z 6)
for ( € Rps(z'), one has

L}, 188p(¢) — L5,,88p(0)] < b 67797k,

and hence |£}; ,88p(¢)| ~ 6777k for ¢ € Rys(2'), if b is sufficiently small.
This implies that n(z,8) < 7(2, ), for ( € Qps(2'), and hence

(2.27) n(z,8) Sb¥r(2,8), z € Qs(2),

by (2.9). With (2.19) and (2.27), we have proved the following proposition.
Proposition 2.7. Let z' and z be any two points with z € Qs(z'). Then

7(2',6) Sn(z,6) S (2, 6).

Corollary 2.8. Suppose that z € Qs(z'). Then
7(2',6) = (2, ).

Proof. By Proposition 2.7, 7(z',6) = n(z,6) = 7(2,6). O

Using the definitions of n(2',6), 7(2',6), T(z',6) and with Proposition
2.7, Corollary 2.8, we can show the following semi-continuous result for the
integer T(z,6) as a method similar to Proposition 1.5 in [3)].
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Proposition 2.9. There exists a small constant b > 0 so that if 2 € Qys(2' ),
then

(2.28) T(z,e) < T(Z',6)
for all e < bé.

3. Estimates of the Bergman Kernel Function.

In this section we prove the main theorem of this article. The following
proposition is the local version of the problem constructing a function with
large Hessian near the boundary. For z near the boundary of 2, we denote
the closest point in b to z by n(z). Let us take the vector fields L;,..., L,
as in (1.1).

Proposition 3.1. Suppose z' € UN bQ. Then there exist a small constant
a > 0 and a smooth function g, s on ) that satisfies

(i) lg=,6(2)| <1 and g2 s € C5°(Qs(2")).
(ii) If —aé < r(z) < aé and if g+ 5 is not plurisubharmonic at z, then

(3.1) T(7(z),aé) < T(Z',9).
(iil) If z € Qqus(2'), —aé < r(z2) < aé, and if the inequality

n—1
(32)  80g.s(L,L)(2) 2 (7(2',6) 72 bal® + 671 ) [bel? + 72|y |2

k=2

fails to hold at z for L = 37%_, b;L;, then
T(7(z),ad) < T(Z',6).
(iv) For all z € Qs(2') and all L = 2;1:1 b;L; at z,

n—1
(33)  100g.r,s(L, L) S (7(2,6) 2 [bul + 671D [bi[? + 6726y .
k=2

(v) If ® denotes the map associated with z', then
(3.4) |D%g,r 5 0 @'(C)l < Cyrong—n §— 3ot tan_1)

where a; = B; + vi, D = D" ... D3 and Dy = D?i—ﬁ:"
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Proof. The proof will be similar to that of dimension two case of Proposition
2.1 in [3]. We will sketch the proof briefly here. Set 7(2',6) = 7 for the
convenience. From (2.15), Proposition 2.3 and Lemma 2.4, one has

80r(Ly, L) = 80p(Ly, I,) = O(8%r71), and
00r(Lx, L) = 00p(Lk, L) = 1+ O(6%),

for k = 2,...,n — 1. Therefore from Proposition 2.1 and the fact that
Lr = by Lyr, we obtain that if é is small,

(3.5)
A6190r(L, L) + (A6~ )?|Lr|?

= A67100r(Ln, Ln)|bal® + 206 ' Re Y _ 80r(Ly, L;)b1d;

J=1
) n—1
+ O Y bibe + A7) 90r(Ly, Li)|bk[® + A*672|by Ly r|?
2<j<k<n k=2
n—1
2 A§T100r (L, Ln)|bal? + A1) [Bf* + A?67218:]* + O(e) Jba |*.
k=2

Let ¥(¢) be defined by
n—1 '
P(¢) = Xx(E72G I + 67 ) Ik + 772 1Ga ),
k=2

where x(t) = 1 for t < % and x(t) = 0 for t > b. Here b > 0 is the small
constant as in Proposition 2.9. Now set ¥(z) = ¢((®,/)"!(z)). Then by
Proposition 2.3 and (2.15), one has

(3.6)

n—1
106%(L, )| = [00¢(L', T)| S [ba 2672 + 671 ) [bel* + 7% ba ),
k=2
. n—1
IL®| = || S 5|6~ + 677D [bil + 77" [bnl.
k=2
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Suppose at first that T'(2',6) = 2. Then we conclude from (2.25) that
(3.7 85r(Ln,fn)(z) ~6r7% z€ Qus(2').
For A > 1 we have

(3.8)

80(We* 'YL, T) = e T[00%(L,I) + A6~ > 2Re((Li¥)(L;r))bib;
i,7=1

+ A6 080 (L, L) + (A6 1) ¥|Lr ).

Combining (3.5)—(3.8), one will get
n—1

(3.9) 00(Wer ™ YL, L) m 672 by [P + 671 ) [bil? + 772|ba?
: k=2

provided ) is sufficiently large and ¥(z) > 1.
Let h denote a convex increasing smooth function such that h(t) = 0 for

t < 1 and h(t) > 0 for t > 1, and set g, 5(2) = h (\I/(z)e)‘rl"(’)). Then
% < XTI < % and hence ¥(z) > % for those z with —aé < r(z) < aé
and z € supp g, s, provided a > 0 is sufficiently small. Therefore g,/ 5(z) is
smooth plurisubharmonic with support in Qs(2'). It also satisfies property
(v) in Proposition 3.1 and hence this proves for T(z,6) = 2.

When T(z',6) = I > 2, one has |£;00r(z')| ~ é7~! for some positive
integers j, k with j + k = [. This implies that at least one of the inequalities

(3.10) |Ln(ReLj—1 100r)(2")| ~ 67! and
(3.11) |Ln(ImL;—y x00r)(2")| m 677!

is valid. (When j = 1, we replace L1 by Lix-1). We may assume
that (3.10) is valid. Now set G(z) = ReL;_; x00r(z) and suppose that
T(z,ed) =, for e still to be chosen. Then by (2.6), (2.7), (2.12), (2.13) and
Proposition 2.7, Corollary 2.8, one has

|£-1,£00r(2)] < Cioa(2) S etor=t,
and this implies that
900G (Ln, La)(2) > 8217,
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provided e > 0 is sufficiently small. Also from (2.15) and Proposition 2.3,
one has |L;G(2)| < §37~H1 for1=2,...,m, k=2,...,n— 1. Therefore
we get

n—1
(3.12)  99G*(L,I)(z) > 621 by |2 — C" Y 67722y 2 — C'|by [,

k=2

Set 1
Gao(z) = U(2)e™ 7 4 9672 7%(G(2))?)

and set g, 5(z) = h(G./ 5(2)), where ¢(t) is a smooth function that satisfies
$(t) =t t < &, #(t) =0for t > 1 and ¢(t) < § for all ¢. If one combines
(3.5), (3.6), (3.8), (3.12) and the fact that §7272/=2G(2)? < &, provided e
is sufficiently small, one will get (3.2) and (3.3) and hence g,/ s is plurisub-
harmonic for those z € Qps(2') with T(z,eé) = l. Since e < b, Proposition

2.9 implies that
T(n(z),e%6) < T(z,e8) < T(2',6) =1

for z € Qqs(2"), with a < €? and |r(2)| < aé. Therefore if T(z,eé) < I then
T(m(z),aé) < I and hence this proves (ii)-(iv). For (i), we divide g, s by
some constant. Since g, s(z) is a composition of the functions which satisfy
(3.4), it also satisfies (3.4) and this proves (v). O

Using Proposition 3.1, we can prove the following proposition which says
that there is a bounded plurisubharmonic weight function such that the Hes-
sian satisfies certain essentially maximal bounds in a thin strip near the
boundary of Q. For € > 0, we let Q, = {2;7(2) < €} and set

S(e)={z:—e<r(z) <€}

Theorem 3.2. For all small § > 0, there is a plurisubharmonic function
As € C°(Qs) with the following properties,

(1) |As(2)| £1,2€UNNs.

(ii) For all L = E?:l b;L; at z € U N S(6),

n—1
09Ns(2)(L, L) m 672{by |2 + 671 D [bi|* + 772 (bal?,
k=2
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(iii) If @, is the map associted with a given z' € U N S(6), then for all
¢ € Rs(2") with |p(¢)] < 6,

|D*(As 0 ®.)(¢)] < Co 6§t tan 1) —an

where o = (ai,... ,ap).

The proof is very cose to that of Theorem 3.1 in [3] and we omit the proof
here. The following theorem was essentially done by Hormander and Catlin

has modified it in [3].

Theorem 3.3. Let Q@ be a bounded pseudoconvex domain in C" with
smooth boundary. Assume that z' = (21,...,2}) is a given point in Q, that
T1,... ,Tn are given positive numbers, and that there is a function ¢ € C3()
that satisfies the following properties;
() [6:)] S 1, z €

(ii) ¢ is plurisubharmonic in Q.

(iii) Q contains the polydisc B = {z; |z — zl| < 1i,i = 1,... ,n}.

(iv) In Q, ¢ satisfies

> 97 ;;j(z)titj 2 Y 17, z€B.
2,7 =1

t,7=1 ?

(v) If D¥ denotes any mixed partial derivatives in z; and Z; of total order

a;, then D*¢ = D' ... D3¢ satisfies

ID°¢(2)] S Ca [[ 77, 2€ B, lal<3.

=1

Then Kq(z',z"), the Bergman kernel function of Q at 2', satisfies

n

(3.13) Ko(',2) = [[ 772
=1
We now ready to prove Theorem 1; Let z € U with r(z) = —"2—6 and

7(z) = z' € bQY where U is a small neighborhood of zy € b and b > 0 is
the number as in Proposition 2.9. Set ¢5({) = As 0 ®,/(¢). Then ¢ will
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satisfy Theorem 3.3 in (-coordinates. So we will work on 2, = (®,')().
Set ¢ = (—%,0,...,0). Then ¢ = ®;'(z) and by (2.11) there is a constant
0 < ¢ < 1 such that the polydisc B = {¢ : |[(1 + b6/2| < b, |Ck] <
%, |Ca] < e7(2,68), k = 2,...,n — 1} lies in Q.. Hence Ka,, (¢, () ~
6726~ (n=Dr (2! 6)72 = 6 "1(2',6)? by (3.13). Since the Jacobian of @,/ at
( satisfies -
341(C4

the transformation identity of the Bergman kernel function implies that

~1,

IJC((I)z')l =

det [

KQ(Z,:Z_) = |JC(¢Z')1—2KQ,:(C7Z:) ~ 5_nT(zl,6)_2.

Since |r(z)| = 6 and since z € Qs(2'),
Ka(z,z) = |r(2)|7"(n(2,68))? ~ Z ICi(2)|F|r(2)| "1
‘ =2

by (2.29), and hence we have proved Theorem 1. O

Remark $.1. Theorem 3.2 says that the optimal subelliptic estimates (of
order m ) holds near zy according to the Catlin’s theorem in [2].

Remark 8.2. The optimal estimates for the Caratheodory, Kobayashi and
Bergman metrics will be obtained in the forthcoming article using the theo-
rems in this article and [4].
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EXISTENCE OF RATIONAL FUNCTIONS OF RELATIVELY
HIGH ORDER ON COMPLEX ALGEBRAIC CURVES*

CHANGHO KEEM

By the basic theorem of Griffiths and Harris in Brill-Noether theory, a
general curve of genus g has a base-point-free pencil of degree d > [%] ,
but some special curve (in the sense of moduli) may not have such a pencil.
On the other hand, by the Riemann-Roch theorem for curves it is quite easy
to see that every curve of genus g possesses a base-point free pencil of degree
d > g. Thus it is quite natural to ask what kind of special curves do not have

a base-point-free pencil of certain degree d where d is a number close to g.

In this article, we present a new proof of the fact that unless the given
curve C' is hyperelliptic of odd genus, C' admits a rational function of order
g —1, which is equivalent to the existence of base point free pencils of degree
g—1.

It should be noted that the answer to the above question or the existence
(or non-existence) of base-point-free pencil of degree g — 1 for every non-
hyperelliptic curves has been known for many years (see e.g. [ACGH]), but
we provide a simpler proof for statement in this article.

Here the issue is not the statement itself. The importance we want to stress
is the new method in the proof, namely the enumerative method which we
hope will have wider applications in similar circumstances. Indeed, the case
for d = g — 2 can be proved in the same kind of spirit (see [BK]) and this

* This paper is in final form and no version of it will be submitted for publication
elsewhere.

# Partially supported by NSF Grant DMS-9022140 and GARC-KOSEF. The author is
grateful to KOSEF for providing him a round trip air travel to MPI-Bonn, FRG where
this manuscript was prepared for publication
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improves and simplifies the results proved by the author jointly with Coppens
and Martens [CKM].

Because there are many good references on the topic we are going to
discuss (e.g. again [ACGH]), we will restrict ourselves to the proof of the
more difficult part, i.e. we will only concentrate in providing new proofs for
the following two statements. And it is left to the reader to check the other
details.

Theorem 1. Let C be a trigonal complex algebraic curve of genus g >4
Then C has a base point free pencil of degree g — 1.

Theorem 2. Let C be an elliptic-hyperlliptic curve of genus g > 6. Then C
has a base point free pencil of degree g — 1.

The idea of our new proof is relatively simple. In fact, one needs to
prove that there exists a component in ng_l (C) other than the component

‘whose general element has a base locus. The proof as in [ACGH] is based on

calculating the intersection numbers on the subvariety of J(C), the Jacobian
variety of C, and this causes some technicai difficulties when one goes to the
lower degree cases, especially when one deals with curves which are multiple
covers of non-rational curves.

On the other hand, as far as the component we are considering are of pure
and expected dimension one can do the intersection theory on the appropriate
symmetric product of C; of C, thanks to the fundamental class formula for
the class of C] := {D € Div?(C) : r(D) > r} in case C] has the expected
dimension p(g,r,d) + r, where p(g,7,d) := g — (r + 1)(9 — d+r) is the Brill-
Noether number. And it turns out in general that this is relatively easy to
handle.

Proof of Theorem 1 and Theorem 2.

We first recall some of the notations used in [ACGH]. Let u : C4 — J(C)
be the abelian sum map and let 8 be the class of the theta divisor in J(C).’
Let u* : H*(J(C),Q) — H*(Cy-1,Q) be the homomorphism induced by u.
By abusing notation, we use the same letter 8 for the class u*6. By fixing a
point P on C, one has the map ¢ : Cy_; — C; defined by «(D) = D+ P. We
denote the class of ¢ (C4—;) by z.
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Let 7 : C — E be the 2-sheeted covering, genus (E) = 1. By the various
H. Martens and Mumford type dimension theorems on the subvariety of
J(C) or just by the well-known classical fact that the singular locus of the
theta divisor in the J(C) has dimension g — 4 for non-hyperelliptic curve
C,W,_,(C) is of pure dimension g — 4 = p(g,1,g — 1), hence the variety

_1(€Cy-q) is of pure dimension g — 3. Also it is easy to show that
the only component of W 1(C’ ) whose general element has a base point is

™ (WH(E)) + W,—s(C) and hence the only component of Cj_; consisting
of divisors whose complete linear series have base points is 7* (El) +Cy_s,
whose class in Cj_; we denote by . Because Cj—1 is of pure (and expected)
dimension p(g,1,9—1)+1, the fundamental class cy—1 of Cj_; is known (cf.
[ACGH], Theorem p326) : c;_; = 36% — z6. Let’s also recall that given a
cycle Z in Cy, the assignments

Zvw— Ar(Z):={E€Caqyx: E—~D >0 for some D € Z},
Z v By(Z):={E € Ca—k : D~ E >0 for some D € Z}

induce maps

A H™(Cy,Q) = H*™ 2 (Cy4r, Q) ,
Bk : H2m (Cd, Q) — H2m—2k (Cd—k, Q)

and the so called push-pull formulas for symmetric products hold (cf. [ACGH]
p367-369). Thus by the push-pull formulas,

-3y - (9-3)
Bg__5 (117 ) = mw

Denoting 4 by the class of 7* (E}) in C4, we have

(7°xg—3)cg . = (Ag-5 (%) -2~ 3) = (¥ By- 5("'39~3))C'4
_ ( (g=3) ) _(¢- 3)(9 4)
2(g—5)"

by noting the simple fact that (f? . 502) C. = 1.
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On the other hand
(ch_y-297%), = (.1_02 —z6- my—3> _Lp g3 g g2
g-1 2 Cg_l 2
S gl
“ s G ),

by the Poincaré’s formula. Comparing the above intersection numbers we
have

(7 . 139-3)09”1 < (C;_l . my—-a)ca_l

and this shows that there exists a component other than 7* (E3) + C,_s in
C;_l which in turn shows that there exist divisors of degree g — 1 which move
in a pencil and whose complete linear system does not have a base point.

For the trigonal curve case, one should remark that there is an elemen-
tary proof without using the enumerative methods, which is also left to the
reader. On the other hand, since the purpose of this note is to introduce the
enumerative calculation on the subvariety of the symmetric product on the
given curve C, we also present a enumerative proof for the trigonal case.

By the same reason as in the elliptic-hyperelliptic case, we note that the
only component of W]_,(C) whose general element has a base locus is of the
form W3(C) + W,_4(C). Hence the only component of C;_, consisting of
divisors whose complete linear series have base points is C3 +C,_4 whose class
in 03—1 we denote by 7. By the push-pull formulas, one has B,_4 (mg‘g) =
(9 — 3)z. On the other hand, denoting 7} by the class of C3 in Cj3, we have

(97 . x-"_a)cg_l = (Ag—4(ﬁ) : xg-a)c,_l = (77 ’ By—4 (‘73!]_3))03
=(7-(9-3)2)c, =93

again by noting the simple fact that (7 - z)c, = 1.

Comparing the intersection number (n - z973) c._. with (c;_l - z973)

Cg-1
which we already have, we see that ’

(77 . ;,;.(1—3)00-1 < (C;-1 .a,,g—z.)cg_1

and this shows that there exists a component other than C} + C,_4 in Ci-1
which in turn show that there exist divisors of degree ¢ — 1 which moves in
a pencil and whose complete linear system does not have a base point.
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STABLE REDUCTION OF SOME FAMILIES
OF PLANE QUARTICS IN ORDER TO
GET A COMPLETE CURVE OF M;

PYunGg-LYyuN KANG

Let M, be the moduli space of isomorphism classes of genus g smooth
curves. It is a quasi-projective variety of dimension 3g-3, when ¢ > 2. It
is known that a complete subvariety of M, has dimension < g — 1[D]. In
general it is not known whether this bound is rigid. For example, it is not
known whether M, has a complete surface in it. But one knows that there
is a complete curve through any given finite points [H]. Recently, an explicit
example of a complete curve in moduli space is given in [G-H]. In [G-H] they
constructed a complete curve of M3 as an intersection of five hypersurfaces
of the Satake compactification of M3.

One way to get a complete curve of M3 is to find a complete one dimen-
sional family p : X — B of plane quartics which gives a nontrivial morphism
from the base space B to the moduli space M3. This is because every non-
hyperelliptic smooth curve of genus three can be realized as a nonsingular
plane quartic and vice versa. Since nonsingular quartics form an affine space
some fibers of p must be singular ones. In this paper, due to semistable
reduction theorem [M], we search singular irreducible plane quartics which
can occur as a singular fiber of the family above.

Let P! be the projective space parametrizing all plane quartics, C a
singular quartic and E an equisingular stratum containing C. Let A be an
open unit disk of C. We embed A locally in P'* in such a way that A — {0}
is contained in the locus of smooth curves and 0 maps to C. Pulling back the
universal family over P!* to a family over A we get a family p: X — A of
smooth plane quartics degenerating to C. We call C' the central fiber of p and
P the singular point of C' we examine. Note that the total surface X is either

Supported in part by Korea Research Foundation 1992

183




184 PyuNGg-Lyun KANG

nonsingular or singular at P according how we embed A in P'*. We also take
a family whose generic fibers are not projectively equivalent to each other.
For a chosen family as above we make X nonsingular and do semistable
reduction (i.e., base change, desingularization, blowups and blowdowns, and
repetition of these), which gives us a semistable curve. A semistable curve is
a reduced nodal curve without (-1) rational component. It is allowed to have
(-2) rational components. Now by contracting (-2) rational components we
get a stable curve of genus three. We call it a stable model of C. From it we
can determine the map A into M3, the Deligne-Mumford compactification
of M3, i.e., the moduli space of all genus three stable curves.

The purpose of this talk is to find singular irreducible plane quartics which
have a nonsingular curve as one of its stable model.

In the following we list all possible distinct irreducible plane quartics in
terms of singularities. '

Proposition 1. There are 55 equisingular strata in P'*, 20 among which
are loci of irreducible curves, besides nonsingular ones. They are irreducible
quartics
0) which are nonsingular
1) with one node (1N)*
2) with two nodes (2N)
3) with three nodes (3N)
4) with one cusp (2C)
5) with one cusp and one node (3C)
6) with one cusp and two nodes (4C)
7) with a tacnode (3T)
8) with a tacnode and a node (4T)
9) with a triple point (4Tr)
10) with two cusps (4CC)
11) with two cusps and a node (5CC)
12) with a double cusp (4dC)
13) with a double cusp and a node (5dC)
14) with a tacnode and a cusp (5CT)
15) with an osnode (50N)
16) with a cusp with a smooth branch (5Cs)
17) with three cusps (6CCC)
18) with a cusp and a double cusp (6CdC)
19) with a triple cusp (6tC)
20) with an ordinary cusp of multiplicity three (6C3)
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* The number is the codimension in P'* and letters represent the singu-
larities of the corresponding curves.

Proof. For irreducible quartcs, it is classical, or see Namba [N].

Remark. (1) If one wants to get reducible ones, combine all possible plane
curves of degree < 4 with Bezout theorem.

(2) Each equisingular stratum of the space of all plane quartics is irre-
ducible.

(3) Some reducible ones can have a smooth stable model. A well known
example is a double conic; the canonical model of genus three smooth curves
approaching a hyperelliptic one will tend to a double conic. For other can-
didates we leave them in [K].

(4) A stable model is not unique. It depends on the given curve C and
the embedding of A.

(5) A stable model of C' will always contain as its components the nor-
malization of all nonrational components of C and components produced by
each singular point other than a node of C in the process of seminstable
reduction.

(6) If C does not have a unique tangent line at a singulaity and the pont
at infinity then the normalization must meet other components at more than
two points, so it cannot have a nonsingular stable model. More precise
statement will appear in a paper [K] on a rational map f : P1* — Mj.

Therefore, for irreducible plane quartics to have a nonsingular stable
model, it should be rational with only one singular point with unitangent
line (cuspidal singular point). From Proposition 1, there remain only two
curves; a plane quartic with a triple cusp, and one with an ordinary cusp of
multipliticity three.

A k-tuple cusp (of a plane curve) is a double point with a unique tangent
line which becomes (k-1)-tuple cusp after a blowup. An ordinary cusp of
multiplicity three is a triple point with a unique tangent line which becomes
smooth point by taking a blowup once, i.e., a point whose local equation is

y3 =zt

Theorem. The above two candidates have a smooth stable model.
Proof. 1t is enough to give a family p : X — A; of smooth quartics degen-

erating to each candidate, the stable reduction of which replaces C' with a
smooth curve of genus three.
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For a plane quartic with a triple cusp we take C y?2% +2z%yz+2%+zy% =
0. For a detail, see [K]. It has a triple cusp at (0:0:1) with a tangent line
y = 0. Let us take X as y?2% + 22%yz + z* + zy3 + tzz3 = 0 in P?xA,,
or Y222 + 2r%yz +at + 2y + 2t = 0 (y? + 222y + 2t + xyd +tx = 0, or
v+ 2%y +2t 42y +t=0in A:(”x’y’t) resp.). We note that these are not
the only possibilities for X for the chosen C. For other cases, see [K] too.
For several reasons we take the former X.

Since X has a unique singular point, it is a normal. So, blow up A3 at
origin and compute the proper transform X' of X. Here

X' ={y+22%y+2* +z’ +tz =0, oy —2'y=at' —2't = yt' — y't = 0}

~in A3 x P("’z,
becomes

v,¢) When z' is not equal to zero, the local equation of X'

y'? + 2y + 2+ 2%+t =0

with local coordinates z,y’ and t'. Over t = t'z = 0, we have two components-
the proper transform Cj of C {t’ =0,y"° +2zy’ + 22 + 2%y’ = 0} and the

exceptional divisor L, {x =0,y'° +t = 0}, which meet at (0,0,0) [figure 1].
Note that C; has a double cusp. For an affine neighborhood that y' or ¢’ is
not zero, we do the same computation and do not get any more information.
With X' smooth we apply semistable reduction theorem. We explain this
process by chasing the central fiber with the following figures. We first blow
up the intersection point of two components of the central fiber. In figure 2,
the vertical line is a triple exceptional line, Ly the proper transform of L,
and C; the proper transform of C, which has an ordinary cusp. Blow up
P,. The new central fiber is in figure 3. Note the number next each com-
ponent represents the multiplicity of the corresponding one. We also denote
M1 (or Liyy) the proper transform of M; (or L;). Blow up P; (figure 4)
and then P, (figure 5). In figure 5, there is no other singular point other
than nodes.

[*y]
(%1}
)]
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We now make base changes to remove multiple components. The base
change of order two gives us figure 6, where the vertical curve is two fold
cover of the previous vertical curve. By Riemann-Hurwitz, it is rational.
The base change of order three replaces figure 6 with figure 7. Here, the
vertical double line is over the previous vertical one totally branched at two
points ()1 and @J;. By Riemann-Hurwitz again it is rational too; 2g - 2 =
3(-2) + 2(2). The base change of order two to get figure 8: the genus of the
vertical curve has genus three; 2g - 2 = 2(-2) + 8.

12 6 B 1
16 T3 o —
—_ 1 1
i —_— =) ] )
of T | % T = 1
] C G Cs C,
figure 5 figure 6 figure 7 - figure 8

In figure 8, seven horizontal (-1) rational curve can be blow-downed. Af-
ter base change of order 5, you may make remaining rational components
reduced, so they can be blown down too. Therefore, we have a smooth curve
of genus three. In particular we get a hyperelliptic one.

For a plane quartic C with an ordinary cusp of multiplicity three, there
are two up to projective equivalence [N]: y3z +y* 4+ 2* = 0 and 4%z + 2* = 0.
Here we take C y3z + y* + 2* = 0 and X y32 + y* + 2% + t2* = 0, or for
similar reason, y3z + y* + z* + tz2® = 0. Doing the exactly same process as
before, we get a smooth curve of genus three as a stable model. In this case
it is a trigonal.

Remark. The above theorem does not claim that all possible stable models
of two curves in theorem are smooth. In fact, this happens rather rare. If
we take X y? + 2z%y + 2* + zy® + ty = 0 when C is a quartic with a triple
cusp, we get, as a stable model, a reducible curve consisting of a genus two
curve and an elliptic curve meeting at one point.

For a quartic with an ordinary cusp of multiplicity three, the similar ex-
ample y3 + y* + z* + ty = 0 gives a smooth one too. But if we take X as
y® + z* + t?z + tz® = 0, we get a reducible curve consisting of a genus two
curve and an elliptic curve meeting at one point.
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ON THE LUROTH SEMIGROUP OF ALGEBRAIC CURVES

KYUNGHYE CHO

ABSTRACT. In this note, we calculate the Luroth semigroup of a trigonal
curve, an elliptic-hyperelliptic, a 2-hyperelliptic crve. And we study which
curves are characterized by the difference in Luroth semigroup from a general
k-gonal curves.

In the study of smooth irreducible complete algebraic curve C it is inter-
esting and classical problem to know for which integers n there are linear
series of degree n without base points (equivalently: rational functions of
degree n). ‘

The Luroth semigroup S¢ of C is the additive sub-semigroup of N con-
sisting of all the degrees of the linear series on C' without base points.

The knowledge of this semigroup S¢ or, equivalently, the set of gaps of C,
that is N\Sc, gives a good deal of information on the geometry of C.

In few cases, S¢ is completely determined.

Example. (i) S¢ = N if and only if C ~ P!,
(ii) If ¢ =1, then n = 1 is the only gap.
(iii) If ¢ > 2 and C is hyperelliptic, then S¢ is generated by 2, g+ 1 and g + 2.
(iv) If C is non-hyperelliptic, then g € S¢ and for every n > g+ 1, n € Sc.
(V) If C is a general curve, then S¢ = {n|n > 9—‘,1,'—1 }-

Remark. In case C is a smooth plane curve and C is a smooth curve lying
on a smooth quadric surface, a lot of informations about S¢ are known (see

[GR], [PRR]).
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Lemma 1. (1) Let C, By, B, be curves of respective genera g, g1, g2.
Assume that m; : C — B; (1 = 1, 2) is a d;-sheeted covering such that
m = m X 7y : C — By X By, is birational onto its image. Then g < (dy —
1)(d — 1)+ d1g1 + da2g2.
(2) Let C be a n-sheeted covering of a curve C' of genus g' of genus g > (n —
1)24+2ng'. If f is a meromorphic function on C' with order o( f) < 9;—1‘{—,-1—1,
then f is a lift of a meromorphic function on C'.

proof. See [M].
Theorem 2. If C is a trigonal curve with g > 4, then

Sc={n| n> [9;—1]+10rn=3kforsomek}.

proof. If there exists a meromorphic function of order n < [ ] and n # 3k,
then ¢ < 2(n—1) < g — 1 by the lemma 1 (1). Thus n w1th n < [%—],
n # 3k is not contained in S¢. On the other hand by the result of [H] it holds
for a trigonal curve of g > 4 that W} = (W} + W,_3)U(k— W3 — Wzgg rr__5)
3<r<g-1). ThenWl__l—(W +Wy_g)U(k—Wy W_4)and =

(W3 +Wy_5)U(k—W3 —W]}_3). By the way, dim (k—W3 —W,_4) = g 4>
dim {(k — W3 — W}_3) + Wl} = g — 5. Thus there exists a base-point-free
g;_l, i.e. ¢g—1 € Sc. By the similar way we have g —2,--- | [9%1—] +2€ Sc.

Now consider [9%] + 1. Then we have

1 — (w1 ol [4]-2
Wleplan =8 # W] ) V=W =W ) )

And WE 1] =W+ W[ 1] s because there exists no meromorphic func-
. g+1 1 _ 1 _ [%] —2
tion of order [ > ], Moreover W3 + W[g_ﬂ] ) # k—W; W[3 =6 be-
2 1= 59—
cause otherwise W[%]_2 =k —2W} - W[L‘U_] y and hence k — 2W; C
2

[30] -6

W[[fg]]_—e e (- W[ o] )= ng‘_“s, which is a contradiction beacuse C' is
2

non-hyperelliptic (see [H]). Therefore there exists a base-point-free gl[ a4t

£ 41
ie. [H]+1€Sc. O
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Remark. In the above proof, we know that there exists a base-point-free

1 . And ¢} x ¢} is birational onto its image in P! x P! = Q. If
g[’%’—‘]-l-l g3 g[-ﬁ,’—‘—]ﬂ g Q
g is even, C is birationl to smooth (3, § 4+ 1) type curve on a smooth quadric
surface ). Thus we can get the same result about S¢ of a trigonal curve

with even genus by using the results in [PRR].

Theorem 3. Let C be an elliptic-hyperelliptic curve of g > 6. Then

Sc={n|nisevenwith4<n<g-—2andn>g—1}.

proof. By the lemma 1 (2), every meromorphic function on C with order
n < g — 2 is a lift of a meromorphic fuction on the elliptic base curve if n
is even, and no meromorphic function of order n < g — 2 exists if n is odd.
Moreover an elliptic-hyperelliptic curve of ¢ > 6 admits a base-point-free
g1 (see [H]) and hence we get the theorem. 0O

Theorem 4. Let C be a 2-hyperelliptic curve with g > 13 then

Sc={n|nisevenwith4 <n<g—4andn>g-3 }.

proof. By the lemma 1 (2), every meromorphic function on C with order
n < g —4 is a lift of a meromorphic fuction on the base curve of genus 2 if n
is even, and no meromorphic function of order n < g — 4 exists if n is odd.
Moreover a 2-hyperelliptic curve of ¢ > 13 admits a base-point-free g;_l,
93—2» g;_3 (see [CKM1]). O

Let C be a general k-gonal curve. By the Brill-Neothon theory we know
that if p(g,1,n) > 0 (i.e. n > £ 4 1), then C has a complete and base-
point-free pencil g, and if p(g,1,n) < 0 (i.e. n < £ +1) and n # mk for
some m, then n is a gap (see [CKM2]). By the theorem 2, we see that the
Luroth semigroup of a trigonal curve is the same as that of a general k-gonal
curve. But in the case that C is either elliptic-hyperelliptic or 2-hyperelliptic,
they are different (see Theorem 2,3). So we want to know which curves are
characterized by the difference in Luroth semigroup from the general k-gonal
curve.

Firstly we need the following lemma
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Lemma 5. Let C be an irreducible curve of type (a,b) witha+b > 9 lying
on a smooth quadric surface Q in P3. If g2, is a linear series on C with
m < a + b, then g%, is induced by the hyperplane system.

proof. Let D be a generic divisor in ¢, and let zo be the least integer for
which the following property holds: there exists an irreducible surface G of
degree zo in P? such that

1.G2C

2. G cuts out on C a divisor containing D.

We denote by D + D' the divisor cut out by G on C. Consider the linear
system ¥ formed by all surfaces of degree z¢ which cut out on C a divisor
containing D'. Let F' and F" be generic elements in ¥ and C' the complete
intersection curve of F' and F"'. Then h°(Irng(z0)) = h°(Ops(zo)) —
hO(OFing(z0)) = (°%4%) — {222 — (2% — 2z0 + 1) + 1} = 22E2(ad — 2z + 3)
because Of'ng(n) is nonspecial for n > zo — 1. Let n be the number of
conditions imposed by D' on hypersurfaces of degree zo in P®. Then n is
the same as the number of conditions which D’ imposes on the complete
intersection curves of the hypersurfaces of degree zo in P® and Q because Q
contains D'. Consequently, we have

RO (Ip:(20)) — B(Iring(0)) 2 (mo; 3) o %0+2

=x§+2x0—n>0

since dim|zoE—D'| = (*§*)— (**{ ') ~1—n = z¢(z9+2)—n > 0 where E is of
type (1,1) i.e., the divisor cut out on @ by the hyperplanes in P3. Therefore
we can choose F'' in ¥ such that F" does not contain F' N, and hence the
cycle of intersection QN C’ is well defined and QN C' O D'. Then this yields
deg(Q N C') > degD' and hence 223 > (a + b)zg —m > (a + b)zg — (a + b)
since deg D' = (a + b)zg — m. Thus we have

2w§ —(a+b)zg +(a+b) >0. (%)

and (*) can only happen if either g = 1 or z¢ > 9—;‘:2 — 2 because a;b > 4.
But the linear series |([%f%] — 2)E — D| is non-empty, for

([“;’b —2)El %2(( ath —2)E) (([a;b]—z)E—K>+1
% [ a;—b]_2)([a—2i-b],[a-2l-b])+1

(a-}-b)2 3 5
1 ——( +b)+—

dim

2
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and _“+71b)2 _ %(a+b) - % —(a+b) > 0since a+b > 9. Therefore z, < 2:2L” -2,
and this yields £y = 1 and hence the conclusion follows. O

Theorem 6. Let C be a k-gonal curve with k > 4. If | > k+ 1 and | # 2k
is contained in S¢ and k +1,--- k+ 1 — 3 except | are gaps of C, then C is
birational to a smooth curve of type (k,!) on a smooth quadric surface Q in
P3.

proof. Since | € S¢, there exists a base-point-free g] for some r. If r > 3,
then we have at least two linear series g{:ll, gi_, in case gJ is birational and

g,"__;‘, 9], In case g is not birational because any reduced irreducible and
nondegenerate curve of d > r 4+ 2 in P", r > 3 has an r-secant (r — 2)-plane.
This is a contradiction because there is only one element k in S¢ less than
I. Thus r < 2. If r = 2, then g7 cannot be birational because I — 1 is a gap.
Then g7 gives a m-sheeted map and we get | —m = k and [ is a multiple of m.
Thus it follows that [ = 2k, which contradicts to our hyphothesis. Therefore
r=1.

Now consider g; x g;. Then it is birational onto its image on a smooth
quadric Q). Because otherwise it defines a morphism of degree m > 2 onto
a curve C' in P3 of degree "—"nﬂ Then we can have a g",’,_.,i_1 on C' by

substracting a generic point from ¢3},, and hence gf,, . on C. Also we

have g;,;_,,. by substracting two generic points. Since C has only g}, g
with degree less than k + [, we have k+! —m =1l and k+ 1 - 2m = k and
hence [ = 2k, which is a contradiction. Moreover the image curve cannot be
singular because otherwise we can have g% with n < 1+ k — 3 by sustracting
a singular point and a smooth point from g3 +1» Which is a contradiction. [

Remark. If C is an irreducible smooth curve of type (k,l) with ¥ > 4 on a
smooth quadric surface Q in P?, then k+1,--- ,k + 1 — 3 except [ are gaps.
Because otherwise they are induced by the hyperplane system by the lemma
5 and hence C has a n-secant line L with3<n<k—-1,k+1<n<I[-1.
Then L is contained in ) because n > 3. So n is either k or /, which is a
contradiction.

Theorem 7. Let C be a k-gonal curve with ¢ > 22 and k > 4. If k + 1,
2k —2 are contained in S¢ and k+2,--- ,2k—3 are gaps of C, then C is either
a smooth plane curve of degree k + 1 or a singular curve of type (k,k + 1)
with a multiplicity 2 singular point lying on a smooth quadric surface @ in
P3.

proof. Since k + 1 € Sc, there exists a base-point-free g}, 41 for some r. If
r > 3, then we have a either g ,_, or g}, ,_,., for some m because any
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reduced irreducible and nondegenerate curve of degree > r + 2 in P" r > 3,
has an r-secant (r — 2)-plane, which is a contradiction. Thus r < 2. If r = 2,
then g7,, has to be very ample and C is a smooth plane curve of degree
k+1.

In case r = 1, consider g3,_, for some s. If s > 2, we have a base-point-
free g5z },_; for some I (I > 1) by substracting a generic point. Hence s = 2
and =k —2or k — 3 because k+2,--- ,2k —3 aregapsof C. If | =k — 2,
then C is a (k — 2)-sheeted covering of a plane 2£=2-tic curve C' and hence
k=3,4. If k =4, then C is a 2-sheeted covering of a plane cubic curve.
Since g > 22, g} is a lifting of a meromorphic function on C' by Lemma 1
(2), which cannot be happened. If | = k — 3, then C is a (k — 3)-sheeted
covering of a plane 2kk:32-tic curve C' and hence k = 4, 5, 7. If k = 4, then
g? is birational and hence g < 10, which contradicts our genus bound. If
k =5, C is a 2-sheeted covering of a plane quartic curve C' and by lemma
1 (2) g3 is a lifting of a meromorphic function on C' because g > 22, which -
cannot be happened. If £ = 7, C is a 4-sheeted covering of a plane cubic
curve and by lemma 1 (2) g} is a lifting of a meromorphic function on C'
because g > 22, which is a contradiction: Therefore s = 1 and hence C has
k> k41 and gy,

Now consider g; X gz ,- It is birational onto its image on a smooth quadric
surface in P?. Because otherwise it defines a morphism of degree m > 2 onto
a curve C' in P? of degree 251, Then we can have a ggﬁﬂ—l on C' by

substracting a generic point from ¢3.,, and hence g2, +1-m 0on C. Also we

have g3;.,_sn Dy substracting two g:neric points. Then by the hypothesis
on Sc we have m = 2. But in this case gJ; 1 5, = 93;_3, which is a
contradiction. Thus C is birational to a curve of type (k,k+ 1) on a smooth
quadric surface Q. By the lemma 5, g,_, is induced by the hyperplane
system and hence C has a trisecant line L. If C is smooth, then three points
lying on L are distinct and hence L is contained in ). Thus L is either k or
(k + 1)-secant line and so g3,_, has a base point, which is a contradiction.
Therefore C is singular. And from the condition "2k — 3 &€ S¢” it follows
that C has only one multiplicity 2 singular point. [

Remark. If C is a smooth plane curve of degree k + 1, then C has g}, ¢%,,
and g3,_,. Moreover we see that k + 2---,2k — 3 are gaps because there
is no base-point-free g1 with 5 < d < n < 2d — 5 except n = d and no g2
with n < 2d — 4, d > 4 except n = d and no gj with d > 2, r > 3, and
1< n <2d-3 (see [N]).
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If C is a singular curve of type (k, k + 1) with one multiplicity 2 singular
point lying on a smooth quadric surface in P3, then we can see k+2, -+ ,2k—3
are gaps of C because the linear series with degree < 2k + 1 are induced by
the hyperplane system by the lemma, 5.

Theorem 8. Let C be a k-gonal curve. If k + 1 is contained in S¢ and
k+2,---,2k — 3 and 2k + 3 are gaps of C, then C is a smooth plane curve
of degree k + 1.

proof. Since k +1 € Sc, there exists a base-point-free g}, 41 for some r. Then
r < 2 because otherwise we have a either g} +1—r OT g} +1—my for some m with
m 2> 2 because any reduced irreducible and nondegenerate curve of degree
>r+2in P" r > 3, has an r-secant (r — 2)-plane, which is a contradiction.

If r = 2, then g%, must be very ample and C is a smooth plane curve of
degree k + 1.

In case r = 1, consider g} x g} 4+1- It is birational onto its image on a
smooth quadric surface in P3. Because otherwise it defines a morphism of
degree m > 2 onto a curve C' in P3 of degree y%f—l- Then we can have a
934 , on C' by substracting a generic point from ¢3,,, and hence g2, +l-m

on C. Also we have g3, ,_,.. by substracting two generic points. Then by
the hypothesis on S¢ we have m = 2. But in this case g%k+1_2m = G3p_3)
which is a contradiction. Thus C is birational to a curve of type (k,k+1) on
a smooth quadric surface in P?. Now consider 3¢} +1 = 9343 (r > 3). Since

C has a k-secant line, we can obtain g;;_f_?) by projecting from a k-secant line.
Hence 2k + 3 € S¢, which is a contradiction.

Remark. If C is a smooth plane curve of degree k+ 1, then k+2,--- ,2k — 3
and 2k + 3 are gaps (see remark below theorem 8 and [GR)).

REFERENCES

[CKM1]. M.Coppens, C.Keem, G.Martens, Primitive linear series on curves,, manuscripta
math. 77 (1992), 237-264.
[CKM2]. M.Coppens, C.Keem, G.Martens, The primitive length of a general k-gonal curve,
preprint (1992).
[GR]. S.Greco, G.Ratici, The Luroth semigroup of plane algebraic curves, Pacific J. of
math. 151, No.1 (1991).
[H]. R.Horiuchi, On the ezistence of meromorphic functions with certain lower order
on non-hyperelliptic Riemann surfaces, J.Math.Kyoto Univ.21 (1981), 397-416.
[M]. G.Martens, Punktionen von vorgegebener ordnung auf komplezen kurven, J. reine
angew. Math. 320 (1980), 68-85.
[N]. M.Namba, Geometry of projective algebraic curves, Marcel Dekker, INC, 1984.




196 KyungHYE CHO

[PRR]. G.Paxia, G.Ratici, A.Ragusa, On the Luroth semigroup of curves lying on a
smooth quadric, manuscripta math. 75 (1992), 225-246.

KyungHye Cho
Department of Mathematics
Seoul National University



NORMAL QUINTIC ENRIQUES
SURFACES WITH MODULI NUMBER 6

YONGGU KM

ABSTRACT. We present a families of normal quintic surfaces in P® which
are birationally isomorphic to Enriques surfaces. These Enriques surfaces are
characterized by a special type of divisors D. We then show that the space of
Enriques surfaces obtained from the above family of normal quintic surfaces
is of dimension 6.

1. Introduction

An Enriques surface S is a non-singular surface S over a complex number
field C satisfying one of the following equivalent conditions:

(1) 2Kg ~ Og, but Kg » Og, and q(S) = 0.

(2) Ks =0 and b,(S5) = 10.

(3) S is minimal with »(S) = 0 and b2(S) = 10.
(4) S is minimal with »(S) =0 and p, =0, ¢ =0.

Normal quintic Enriques surfaces are then normal quintic surfaces in P3
which are birationally isomorphic to Enriques surfaces.

Enriques surfaces were dicovered by Federigo Enriques. They are one of
the first examples of non-rational surfaces with vanishing geometric genus.
The following theorem says that the dimension of the moduli space of En-
riques surfaces is 10.

Local Moduli Theorem. The Kuranishi family for an Enriques surface
S is universal at all points in a small neighborhood U around the point
corresponding to S. The base space is smooth and has dimension 10. The
period map is a local isomorphism at each point of U.

Let (V,p) be a normal surface singularity and 7 : M — V a minimal
resolution of (V,p).
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Definition. The geometric genus h(p) of V at p is the dimension of the
complex vector space H!(M,O m). This number is finite and independent
of the choice of resolution of singularity 7 : M — V.

If h(p) = 0, then p is called a rational singularity. A rational singularity
embeds in codimension 1 if and only if it is a double point. And among all
surface singularities rational double points are the simplest ones. They are
classified into the following five types with well-known dual graphs :

Ap(n>1) 24224y =0
Dp(n>4) : 224y +y"?)=0
Es : 22422 +4*=0
E; @ 2Z242(z2+4%)=0
Ey : 224234+44°=0

Definition. A cycle D > 0 on X is rational if x(Ox(D)) = 1, and elliptic
if x(Ox(D)) = 0, minimally elliptic if x(Ox(D)) = 0 and x(Ox(C)) > 0
for all cycles C such that 0 < C < D. Let Z be the fundamental cycle of
an isolated singular point p € X, then p is called rational (weakly elliptic,
minimally elliptic) point if Z is rational (elliptic, minimally elliptic).

In [7], H. Laufer shows that a singular point p of a surface F if P? is
minimally elliptic if and only if h(p) = 1. Let Z be a fundamental cycle of a
minimally elliptic point p. He then shows that if Z-Z = —1 or —2, then p
is a double point.

According to the classical definition, a point p of a surface X is called
tacnode if it is a double point and X has an infinitesimal double line L in
the first neighborhood of p (page 426, [8]). Following this definition, all
minimally elliptic double points are tacnodes. In this paper, we will consider
only those tacnodes which are minimally elliptic double points. From now
on, we only deal isolated singularities of a surface in P3.

For our purpose, we define tacnodes and triple points as follows.

Definition. Tacnodes are minimally elliptic double points with Z2 = —2.
And triple points are minimally elliptic triple points.

In general, the equation of tacnodes is given by the equation,

22 + f(z,y) =0,
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where f(z,y) are polynomials of degree four or five. Then tacnodal planes
are defined to be the planes given by the equation “z = 0” in the above
equation.

2. Normal quintic Enriques surfaces

Theorem 1. (E. Stagnaro [9]) Let F be a normal quintic surface in P? with
the following condition P:

F' has four tacnodal points at the vertices Ay, Ay, A3, A4 of a
tetrahedron T such that tacnodal planes to F' at A;, A; and
Az, A4 are identical.

If § is a minimal non-singular model of F, then S is an Enriques surface.
We prove this theorem by showing that the surface invariants py(S) =
0,¢(S) = 0 and 5#(S) = 0. The condition P at the above theorem is essential.

As soon as we drop the condition P, the minimal non-singular model of F
becomes a rational surface.

Corollary. Let X be a minimal non-singular model of a normal quintic
surface F' which has four tacnodes in general position and does not satisfy
the property P. Then X is a rational surface.

We now fix four points of the tetrahedron T, say A; = (1,0,0,0), 4, =
(0,0,1,0), A3 = (0,1,0,0), A4 = (0,0,0,1), and two tacnodal planes to F,

oy :xy+2z3=0and ay : 29 + 24 =0.

Proposition 2. F contains three lines L, L} and L, ; the lines L; = A; A,
and L| = A3 A, are lines joining two vertices of the tetrahedron T and L, is
the intersection of two tacnodal planes a; and ay. Furthermore, if tacnodes
are of type Iy, i.e. simple elliptic singularities, then the normal quintic surface
F' has the following equation:

F (23 4+ 23)(zy + 23)°
+H(ai + 23) (22 + 24)?
+(a1717273 + a2717224 + a3z 17374 + a4x2x324) (71 + T3)(22 + 24)

+aszyzi(Ty + 73) + agzizi(za +24) =0; a5 #0, a6 # 0.
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Let o : S — F be the minimal desingularization of F, which is a compo-
sition of blow-ups at points and along double lines. Then the proper trans-
forms of lines L, L} and L, become exceptional curves of the first kind. Let
p:§ — S the blow-down of S to S, contracting exceptional curves of the
first kind. Then by Theorem 1, S is an Enriques surface.

Let H be a hyperplane section of the normal quintic surface F, H the
proper tranform of H by the map o : S — F, and D the divisor which is the
image of H bt the map p : S — S. Then the divisor D has the configuration
as follows.

€ €,

Cs

Figure 1

Proposition 3. If S is the Enriques surface obtained from the normal quin-
tic surface F satisfying the condition P of Theorem 1, then S has a divisor
D = e; + ey +e3 +e4 with the configuration in the Figure 1, where ey, . .., e,
are ioslated elliptic curves.

Now we show that conversely a generic Enriques surface S with a divisor
D = e; + ey + e3 + e4 with the configuration in Figure 1 is birationally
isomorphic to a normal quintic surface F' in P2 satisfying the condition P of
Theorem 1.

Theorem 4. Let S be an Enriques surface with a divisor D = e;+e3+e3+eq
with the configuration in Figure 1, that is, e, ez, €3,e4 are isolated elliptic
curvesandel~e3 = €1 €4 = €2 €3 — €2 * €4 =1, ?nd61‘62=63~64 ——-2,
where ey, e, and e3, e4 meet tangentially at a point p.

Then the following statements are true:

(1) If the adjoints e1', e2’, e3' and e4' do not have a common point, then
S is birationally isomorphic to a normal quintic surface Fs in P?
satisfying the property P of Theorem 1, where four tacnodes are of
type I, (0 < n < 9). F may have finitely many isolated rational
double points.
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(2) If the adjoints e1',e2',e3' and e4' have a common point, then S is
birationally two to one onto a quadric surface Q in P3.

Notice that e;’, e2', e3' and e4' can not have more than one common point,
if any, because ;' - e3' = €1’ -es' = €2’ -e3' =€’ -e' =1.

It is well known that every Enriques surface has a divisor D = e; +e2+e3+
e4 satisfying all conditions of Theorem 4 except the requirement of tangential
contact at a point.

Since isolated elliptic curves e; are generically non-singular, tacnodes of
the normal quintic surface F' in Theorem 4 are generically of type Io, that
is, simple elliptic singularities.

3. The linear independence of four tacnodes

Proposition 5. In the space of all quintic surfaces of P?, tacnodal singular-
ities of type Iy, i.e. simple elliptic singularities at four points Py, P, P3, Py
of P?, which are in general position, give 40 linearly independent conditions.

There is a similar but more general result on rational double points of
hypersurfaces in P® by D. Burns and J. Wahl [2]. It is likely that four
tacnodes of type Iy are a maximum number on normal quintic surfaces in pP3
which give linearly independent conditions, and we do not expect the same
result for other types of tacnodes since tacnodes of type Iy are generic.

By applying Proposition 5, we get the following theorem.

Theorem 6. Let F be the space of normal quintic surfaces in P® which
satisfy the condition P of Theorem 1. Then the dimension of the space F is
6.

Corollary. Let £ be the moduli space of Enriques surfaces which are the
minimal non-singular models of normal quintic surfaces in . Then the
dimension of £ is 6.
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ON THE INDEX OF THE WEIERSTRASS
SEMIGROUP OF A PAIR OF POINTS ON A CURVE

SEON JEONG KIM

ABSTRACT. We obtain the exact formulas for the cardinality of the comple-
ment of the Weierstrass semigroup of a pair (p,q) of points on a curve C.
Using these formulas we obtain lower bounds and upper bounds on the car-
dinalities of such sets. Moreover, considering examples, we show that these
bounds are sharp.

1. Introduction and Preliminaries.

Let C be a nonsingular complex projective curve (or a compact Riemann
surface) of genus g. For a divisor D on C, dim D means the dimension of the
complete linear series |D| containing D, which is the same as the projective
dimension of the vector space of meromorphic functions f on C with divisor
of poles (f)oo < D.

Let M(C') denote the field of meromorphic functions on C. For points
p,q € C, we define the Weierstrass semigroup of a point and the Weierstrass
semigroup of a pair of points by

H(p) = {a € N | there exists f € M(C) with (f)eo = ap},
H(p,q) = {(,8) € N x N | there exists f € M(C) with (f)eo = ap + B4},

where N denotes the set of non-negative integers. Indeed, these sets form
sub-semigroups of N and N x N, respectively. We know that the cardinality
of G(p) = N \ H(p) is equal to the genus g of the given curve C. But
the cardinality of G(p,q) = N x N \ H(p,q) is not determined; that is, it
depends on the points p and ¢. In [1] we can find only the lower bound
card G(p, q) > (9;2) — 1. In this paper, we obtain formulas for card G(p, q)
depending on points p and ¢ in Theorem 2.6 and Theorem 3.1. Using these
formulas, we find lower and upper bounds on the cardinalities of such sets.

As usual, the weight of p is defined by w(p) = ZaEG(p) a — g(%ﬂ.

We will often use the following lemmas.

Supported in part by the GARC-KOSEF; to appear in Archiv der Mathematik.
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Lemma 1.1. [1] The weight of p, w(p) can be expressed as

w(p) = Y _(dim(ap) — max{0,a - g}).

Lemma 1.2. [2] For any divisor D and any point p on C, we have either

dim(D + p) =dimD +1 and (D +p)=1D)
or
dim(D + p) =dimD and (D +p)=14D)-1,

where i(D) = dim D + g — deg D, which is called the index of speciality of a
divisor D.

This work was done at the Department of Mathematics, Louisiana State
University, and the author would like to thank this department and R.F. Lax
for their generous help.

2. Lower Bounds on the Indices.

In this section, we prove a formula for the index of the Weierstrass semi-
group H(p,q), and give some examples to illustrate this formula. As an
application, we obtained lower bounds on the indices of Weierstrass semi-
groups.

Since the set H(p,p) is just {(a,08) | a + B € H(p)}, it is completely
determined by the set H(p) which we are already familiar with. Therefore,
we consider only the case p # ¢ in the following lemmas.

Lemma 2.1. For (a,8) € N x N \ {(0,0)}, the following are equivalent:
(1) (o, 8) € H(p, q).
(2) The complete linear series |ap + Bq| is base point free.
(3) dim(ap + fg) = dim((e — 1)p + Bq) + 1 = dim(ap + (8 — 1)g) + 1.

proof. Recall that, for any divisor D on C, the following are equivalent;
(1) There exists f € M(C) such that (f)e = D.
(2) The complete linear series |D| is base point free.
(3) dim D = dim(D — z) + 1 for any point z < D.
Then the proof is obvious. O
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Lemma 2.2. If (a,3),(c',8') € H(p,q) witha > o', B < f', then (o, ') €
H(p,q).

proof. We may assume a > o', § < ('. Let f and g be meromorphic functions

satisfying (f)eo = ap+ B¢ and (g9)oo = o'p+ B'q. Then (f+9)eo = ap+ 'y,
and hence (o, ') € H(p,q). O

Lemma 2.3. Let 8 > 1. Then dim(ap + B¢) = dim(ap + (8 —1)¢) + 1 if
and only if (v,8) € H(p,q) for some v, 0 < v < a. In this case, if there is
an element (a, 8') € H(p,q) for B' < B, then (o, ) € H(p, q).

proof. Suppose that dim(ap+8¢) = dim(ap+(8—1)g)+1 and that dim(ap+
Bq) = r. Then dim(ap+(8—1)g) = r—1 and so dim(a'p+§¢) < r—1for all
o' < a, § < f—1. Let v be the smallest number such that dim(yp+ Bq) = r.
Then (7, 3) is an element of H(p,q) by Lemma 2.1.

Conversely, suppose that (v, 3) € H(p, gq) for some 7, 0 <+ < a. Then ¢
is not a base point of |ap + Bq|, since |ap + Bg| = H’YP + Bq| + (a — 7)p| and
lvp + Bq| is base point free. Hence dim(ap + f¢) = dim(ap + (8 —1)g) + 1.

If there is an element (a,8') € H(p,q) for ' < B, then, by Lemma 2.2,
(o, 8) € H(p,q). O |

Lemma 2.4. If(a, ) and (o', 8) belong to H(p,q) witha > o' and 8 > 1,
then there exists an element (a,8) in H(p,q) with § < 3.

proof. Let f and g be meromorphic functions satisfying that (f)e = ap+ B¢
and (¢)oo = @'p+ Bq. Then we can choose suitable complex numbers @ and
b such that (af + bg9)eo = ap + 6¢ with § < . Hence (o, §) is an element in
H(p,q) with 6 < . O : '

Lemma 2.5. For a € G(p), let Bo = rhin{ﬂ | (a,8) € H(p,q)}. Then
(7,Ba) & H(p,q) for all y < o. That is, a = min{y | (7, B«) € H(p,q)}.

proof. Notice that B, > 1 since a ¢ H(p). Suppose that (o', 8,) € H(p,q)

for some @' < a. Then, by Lemma 2.4, there exists an integer 6 < B4 such
that (a,6) € H(p,q), which contradicts the minimality of 8,. O

Lemma 2.6. With the same notation B, defined in Lemma 2.5, {8 | @ €
G(p)} = G(9)-

proof. Lemma 2.5 implies that 8o ¢ H(q), and that 8, # By for a # 7.
Hence the set {34 | « € G(p)} is contained in G(g¢) and its cardinality is just
g, therefore it must be G(¢q). O

Now we prove a formula for the index of a Weierstrass semigroup. Recall
that ¢(D) = dim D + g — deg D.
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Theorem 2.7. Let p and q be distinct points on a smooth curve C of genus
g. Then

card G(p, g) = (g ' 2) “1tu@) tu@)+ Y i(ap+ fug),

a€G(p)

where 3, = min{3 | (a, 3) € H(p,q)}, as in Lemma 2.5.

proof. For each a > 1, consider two sets

Ao ={B1|B82>1,(a,B) € H(p,q)},
B, = {B| B >1,dim(ap+ B¢) = dim(ap + (8 — 1)g)}.

By Lemma 2.1, it is obvious that B, C A,. For all sufficiently large integers
B, dim(ap + fg) = a + B — g. So we have card B, = dim(ap) — (a — g).
Hence

card G(p, ¢) = card G(p) + card G(q) + Z card A,

a=1

> 29+ icardBa

a=1

= Z(dim(ap) —(a—g))+2¢

= Z(dim(ap) — max{0,a — g} + max{0,a — g} — (o — g)) + 2¢

a=1

=w(p)+(g;2>—1.

In the last equality, we used Lemma 1.1.

Now it remains to examine the difference of the two sets A, and B,. By
Lemma 2.3, if @ € H(p), then A, = B,. So, we consider only elements in
G(p)-

Let G(p) = {ni,n2, -+ ,ng}, where n; < ny < --+- < ny. By Lemma 2.3,
if B > Bn,, then B € A,, if and only if 8 € B,,,. Hence the set A,, \ By,
is the set of all numbers 3 satisfying 1 < 8 < B,, and 8 & B, . Note that
B € B,, means dim(ap+ fq) = dim(ap+ (S —1)¢)+1, by Lemma 1.2. Thus
the cardinality of the set A,, \ By, is just dim(ngp + B, ¢) — dim(nxp) — 1.
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Finally, we prove that
g 9
Y card(An, — Bn,) = w(g)+ > i(mp + P, q).
k=1 k=1
To prove it, we use the following facts;
(1) i(nkp + Bnrq) = g — (nk + Bn,) + dim(ngp + Bn, q) by definition of the
index of speciality.
(2) >2%=1Bny = Xi—;mi, by Lemma 2.6, where {my,mq,---,m,} =
G(q).
((;) w(q) = Y. 1_,(my — 1), by definition of the weight at q.
(4) dim(ngp) = nx — k by definition of its notation.
Now, we obtain the equality.

w(‘]) + Z i(nkp + ﬂnk Q) = w(Q) + Z[g - (nk + /Bnk) + dim(nkp + ﬁnkQ)]

k=1 k=1
g9 9 9
=w(g)+9¢° =Y nk— Y B, + Y dim(nep + etan, q)
k=1 k=1 k=1
g g9 g9
=w(q)+9¢° - Z ng — Z my + Z dim(nip + Bn,q)
k=1 =1 k=1
g9 g9 [ g
=w(@)+¢° =) me— Y (==Y 1+ dim(ngp+ fn,q)
k=1 =1 =1 k=1

g g g
Z(g —k)— an + Z dim(ngp + Bn,q)
1 k=1 k=1

k

i

g g
(k=1)- an + Zdim(nkp + B q)

1 k=1 k=1

g9
(—(nk —k) = 1) + > _ dim(nkp + Bn,q)
1 k=1

I
M-

kol
I

Il
M«

ko
Il

I
M«

(—dim(ngp) — 1) + sumi_, dim(ngp + Bn,q)

al
@ |l

1
= Z card (An, — Bp,)-
k=1

Thus the proof is complete. [
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Theorem 2.8. Let p be a point on a smooth curve C of genus g. Then

cexaGipp) = (V5 7) = 1+ 0(0)

proof. Notice that (a, ) € H(p,p) if and only if a + 8 € H(p). Thus, for
each k € G(p), there exist k + 1 elements (a, 8) € G(p, p) where o + 8 = k.

Hence
card G(p,p) = Z (k+1)= (g;—Q) -1+ w(p).

keG(p)

a

Corollary 2.9. Let p and g be, not necessarily distinct, points on a smooth
curve C of genus g. Then

g+2

cardG(p,q)z( ! )—1+max{w(p>,w(q>}.

proof. If p = ¢, then it is obvious by Theorem 2.8. If p # g, then the
inequality follows from Theorem 2.7 and the fact ¢(D) > 0 for all divisor
D. O

Corollary 2.10. Let p and g be distinct points on a smooth curve C' of
genus g. Then card G(p,q) = (9+2) 1+ w(p) + w(q) if and only if, for each
(e, B) € H(p,q), the divisor ap + Bq is non-special or (a, B) € H(p) x H(q).

proof. Suppose that card G(p, ¢) = (9;2) — 1+ w(p) + w(g), or equivalently,
by Theorem 2.7, i(ap + Bogq) = 0 for all a € G(p). This is also equivalent to
that all the divisors ap + Bagq, @ € G(p) are non-special.

If (a,8) € H(p,q) and a ¢ H(p), then B > B, by Lemma 2.5. Since
ap + Baq is non-special, ap + B¢ is also non-special.

If (o,) € H(p,q) and B ¢ H(g), then B = By for some v € G(p) by
Lemma 2.6. By Lemma 2.5, we have a > 7. Since yp + By¢ = vp + Bq is
non-special, ap + (¢ is also non-special.

Conversely, for each a € G(p), since (a,B,) € H(p,q) and (a,fBs) &
H(p) x H(q), ap+ Baq is non-special. Hence i(ap+Paq) = 0forall a € G(p)
Thus we have the equality by Theorem 2.7. 0
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Corollary 2.11. Let p and g be, not necessarily distinct, points on a smooth
curve C of genus g. Then card G(p,q) = (9’;2) — 1 if and only if dim(ap +
Bq) = 0 for all non-negative integers o,  with a + 8 < g.

proof. If p = q, Theorem 2.8 implies that card G(p,q) = (g;2) —1 if and only
if w(p) = 0, i.e., dim(gp) = 0.

Assume that p # ¢ and that card G(p,q) = (“2'2) — 1, or equivalently, by
Theorem 2.7, w(p) = 0, w(q) = 0, and i(ap + Bag) = 0 for all a € G(p).
Note that w(p) = 0 and w(q) = 0 implies G(p) = G(q) = {1,2,--- , 9}

Suppose that dim(ap + Bq) > 0 for some non-negative integers a, § with
a + B < g. Choose an element (79,6p) in the set I = {(7,6) | v < a,6 <
B, and dim(yp + 6¢) = dim(ap + Bq)} such that vy + 6 = min{y + ¢ |
(v,6) € I}. Then (7,80) € H(p,q), by Lemma 2.1. Since dim(gq) = 0,
v0 # 0. Hence 7o € G(p). Now we have 3, < 6o and hence

i(YoP + Broq) = i(70p + b0g) > i(ap + Bq) >0,

which contradicts our assumption.

Conversely, suppose that dim(ap + A¢) = 0 for all (a,8) with a + 3 < g.
Then G(p,q) = {(a,8) € N x N | a+ 8 < g} \ {(0,0}. Thus card G(p,q) =
(1) -1 O |

Now we give some examples of Weierstrass semigroups which illustrate the

formula in Theorem 2.7.

Example 2.1. Let C be a non-singular plane quartic curve with a bitangent
line which is tangent to C at p and ¢. Then the genus of C is three, and
its canonical series is K = |2p + 2¢| which is cut out by lines. Using the
Riemann-Roch theorem and Lemma 2.1, we get

G(p) = G(g) = {1,2,3},
G(p,q) = {(0,1),(0,2),(0,3),(1,0),(1,1),(1,3),
(2,0),(2,3),(3,0),(3,1),(3,2)}.
And
fr=2, P2=1, B3=3,
(p+2¢)=1, i(2p+g)=1, i(3p+3q)=0.
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Example 2.2. Let C be a non-singular plane quartic curve with a flex p of
order 1. Suppose that the other intersection point ¢ of C' and the tangent
line at p is not a flex. Then the genus of C is three and its canonical series
is K = |3p + ¢| which is cut out by lines. Using the Riemann-Roch theorem
and Lemma 2.1, we get

G(p) = {1,2,4}, G(9)=1{1,2,3},
G(p,q) = {(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),
(2,0),(2,2),(3,2),(4,0),(4,1)}.
And
Pr=3, Ba=1 ps1=2,
(p+3¢)=0, i(2p+q)=1, i(4p+2¢)=0.

Remark. Those curves in Example 2.1 and Example 2.2 can be constructed
easily.

Example 2.3. Let C be a hyperelliptic curve of genus g. We use the fact
that any special linear series is compounded of the g3, the linear series of

dimension 1 and degree 2.
(1) If p and ¢ are distinct points and dim(p + ¢) = 1, then

G(p,q) ={(a,8)|0<a<g, 0<B< g, a# B}

For each k, k = 1,2,--- , g, we have f; = k and i(kp + fxq) = g — k. Thus
card G(p,q) = 9(g +1) = (*3%) — 14+ Xoea(p) t(ap + Bag)-

(2) Let p and g be distinct points satisfying dim(p + ¢) = 0, dim(2p) = 0,
and dim(2¢) = 0. Then

G(p) = G(q) = {1’2a' o ag},
G(p,q) = {(a, ) |« + B < g} - {(0,0)}.

For each k, k = 1,2,--- ,g, we have B = g — k + 1, and i(kp + Brq) = 0.
Thus card G(p,q) = (*3?) — 1.

(3) Let p and ¢ be distinct points satisfying dim(2p) = 1 and dim(2¢) = 1.
Then '

G(p,q) ={(a,8) |a+B<29—-1, a or f isodd. }.
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~ For each k, k = 1,2,---,g, we have fr—1 = 2(¢9 — k) and ((2k — 1)p +
Bak—19) = 0. Thus card G(p,q) = ¢(3¢g +1)/2 = (*}?) — 1 + w(p) + w(q).
(4) Let p and ¢ be distinct points satisfying dim(2p) = 1 and dim(2¢) = 0.
Then
Glp)={2k-1|k=1,2,---,g},

G(q) = {1a21 ,g}v

Gpra) = (LR 8) | 1< B < g — k)]
k=0

UlUter-1810<8<g-k}].
k=1

For each k, k = 1,2,--- ,g, we have fot_y = g —k+ 1 and ¢((2k — 1)p +
Bak-19) = 0. Thus card G(p,q) = g(g + 1) = (*3%) — 1 + w(p).

3. Upper Bounds on the Indices.
In this section, we change the formula in Theorem 2.7 and find another
expression of it to get upper bounds on the indices of Weierstrass semigroups.

Theorem 3.1. Under the same assumption as in Theorem 2.7,

2 .
card G(p,q) = (g ; > -1-9g+ Z dim(ap + Baq).
a€G(p)

proof. By Lemma 2.6, we have that w(q) = 3_,cg(p) Ba — 9(9+1)/2. Hence

w(p) +w(g)+ Y i(ap+ fag)

a€G(p)

=( Y a+fa+ilap+Baq)) —g(g+1)

a€G(p)

=( Y dim(ap+fag)) +9° ~g(g+1)
a€G(p)

= ) dim(ap+Bag)— 9.

a€G(p)

Then the proof follows from Theorem 2.7. 0O

Now we get upper bounds on the indices of Weierstrass semigroups.
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Theorem 3.2. Let C be a smooth curve of genus g and p, q be, not neces-
sarily distinct, points on C. Then

2
card G(p,q) < (g; ) ~1-g+g°.

Moreover, the equality holds if and only if the curve C is a hyperelliptic curve
and 2p, 29 € g3, and p # q.

proof. Suppose firstly that p # ¢. We claim that dim(ap + Bag) < g for
each a € G(p). If ap + Bag is special, then dim(ap + Bag) < g — 1. Now
consider the case that ap + B.q is non-special. By way of contradiction,
suppose that dim(ap + Baq) > g + 1. Then o + B4 > 29 + 1, and hence
the degrees of the two divisors ap + (8. — 2)¢ and (@ — 1)p + (Ba — 1)g
are not less than 2g — 1, so both of them are non-special divisors. Then
dim(ap+(Ba—1)q) = dim(ap+(Ba—2)¢)+1 = dim((a—1)p+(Ba—1)9) +1,
by the Riemann-Roch theorem. Hence, by Lemma 2.1, (&, 8o — 1) € H(p,q),
which contradicts the minimality of B,. Thus the inequality follows from
Theorem 3.1.

In the case p = ¢, the inequality follows from Theorem 2.8 and the fact
w(p) < L. ,

In Example 2.3.(3), we saw that if C is a hyperelliptic curve and 2p,2q €
gi, and p # ¢, then we have equality in the above formula.

Conversely, suppose that the equality holds. Then, from the above proof,
we have the equalities dim(ap + B4q) = g, for all a € G(p). That is, for each
a € G(p), there is no special divisor ap+8q such that («,§) € H(p,q). By the
choice of B4, we have dim(ap+(B,—1)q) = g—1 and (o, Ba—1) € G(p,¢)- By
Lemma 2.1, we have dim(ap+(8a—2)g) = g—1 or dim((a—1)p+(Ba—1)g) =
g—1

If dim(ap + (Ba — 2)g) = g — 1, then the divisor ap + (8o — 2)q is a
canonical divisor. Since the canonical series has no base points, by Lemma
2.1, (o, Bo — 2) € H(p,q), which contradicts the minimality of 8,. Thus we
conclude that dim(ap+(8,—2)g) = g—2 and dim((a—1)p+(B.—1)g) = g—1.

Now dim((a — 1)p+ (8o — 1)g) = g — 1 implies that (a — 1)p+ (8o — 1)g
is a canonical divisor and hence (a — 1,8, — 1) € H(p,q). Then, since
dim((a — )p+ (Ba —1)g) = g — 1 # g, a — 1 is not an element of G(p).
Thus we conclude that no two consecutive integers are in G(p). Thus the
fact that 1 is an element of G(p) implies that 2 is an element of H(p). Hence
C is a hyperelliptic curve. Furthermore, letting a = 1 in the above proof,
we have (29 — 2)q is a canonical divisor and hence 2¢ € g3 And the fact
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that p # ¢ follows from knowing that dim(ap + (fa — 2)g) = ¢ — 2 and
dim((a — 1)p + (B« — 1)g) = g — 1. Thus the proof is complete. O

Corollary 3.3. Let C be a smooth curve of genus g, and let p and q be, not
necessarily distinct, points. Then

(g;2)—lscde@ﬂ)S(g;2>—1—y+g?

proof. This follows from Corollary 2.9 and Theorem 3.2.

Theorem 3.4. Let C be a smooth curve of genus g. Suppose that neither
of two distinct points p and q is a Weierstrass point on C. Then

card G(p,q) < (g ‘2*2) C1-gtglg+1)2

Moreover, the equality holds if and only if the curve C' is a hyperelliptic curve
andp+q € g;. |

proof. Since G(p) = G(q) = {1,2,--- ,g¢}, it is obvious that 2 < deg(ap +
Baq) < 2g and 1 < dim(ap + Baq) < g. Moreover, for each o € G(p), we
have dim(ap+849) < (a+ Bq)/2 by Clifford’s Theorem [1]. Hence we obtain

. o+
)" dim(ap+fag) < Y B
a€G(p) a€G(p)
_9lg+l)

2

By Theorem 3.1, the inequality follows.

In Example 2.3.(1), we saw that if the curve C is a hyperelliptic curve
and p + ¢ € g3, then the equality holds. Conversely, if the equality holds,
then dim(ap + Baq) = (a + Bo)/2 for all a € G(p), by the above proof. In
particular, for « = 1, dim(p+ f1¢) = (1+ $1)/2. But this value must be just
1 because there is no element (v,8) € H(p,q) — {(0,0)} with vy <1, 6 < ;.
Thus #; = 1 and hence p + q € g1 and C is a hyperelliptic curve. O

Corollary 3.5. Let C be a smooth curve of genus ¢, and let p and q be, not
necessarily distinct, non-Weierstrass points on C. Then

) 2
(9; >-1gcde@A)S<g;:)—1—g+ﬂg+1V2

proof. If p # g, this follows from Corollary 2.9 and Theorem 3.4. If p = ¢,
this follows from Theorem 2.8.
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MARTENS INDEX OF AN ALGEBRAIC CURVE

SEONJA KIM

ABSTRACT. Let C be a curve of Clifford index ¢ and Martens index ¢ + «
with Martens dimension r > 2. Then we obtain the following result as in the
case of the Clifford index and the Clifford dimension. Suppose that the linear
series |D| = g7 on C gives the Matens index and the Martens dimension
r2>3. Thend>4r-5+8, 8= (g~1)—din case h!(C,0(2D)) > 2 and
d > 6r — 8 in case h!(C,0(2D)) < 3.

1. Introduction.

Let C be a complete smooth curve curve of genus g > 4. For the linear
series |D| on C, the Clifford index of |D| is defined by Cliff(D) =deg D —
2r(D). The minimum of all Cliff(D) with degD < g — 1 is called the Clifford
index of C, denoted by CIff(C). If C has the pencil of degree c + 2, then the
Clifford index of C is given by that pencil. But if C has no such a pencil, then
CLiff(C') is given by the linear series g7 ,, with r > 2. The smallest dimension
of the linear series computing the Clifford index of C is called the Clifford
dimension r(C) of C. Then the linear series |D| computing the Clifford index
and the Clifford dimension of C' is very ample and the image curve of C via
the morphism ¢|p)| is not contained in any quadric hypersurface of rank no
more than 4.(See [ELMS].)

We also define the r—Clifford index Cliff,(C),r > 1, by the minium of all
Cliff(D) with degD < g—1 and r(D) > r.(See [B].) We set Cliff;(C) = c+a.
Then 0 < o < ¢. In particular, if C has at most finitely many base point
free pencils of of Clifford index of no more than ¢ + a + 2, then we say that
the curve C is of Martens index ¢ + a. In this case, any linear series |D| of
Clifford index ¢ + a with r(D) > 2 is birationally very ample.(See Theorem
3.1.) The minimum r for which there is a |D| = g] computing the Martens
index of C' is called the Martens dimension of C. We can see that if |D)|
computes the Martens index of C with r(D) the Martens dimension of C,
then the image curve ¢ p|(C) is contained in at most finitely many quadric
hypersurfaces of rank no more than 4.(See the proof of Theorem 3.2) In the
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case of & = 0, a lot is known by the various papers.(See [Ma], [ELMS], [CM]
and [KKM].) On the other hand, for & = 1 Ballico has recently proved the
similar result as in a = 0.

We now show that for any «, the linear series |D| which computes the
Martens index of C with the Martens dimension has the similar properties
asin a =0,1.

2.Result for a = 0,1

At first, we demonstrate only the theorems for @ = 0,1 which can be
similarly generalized for any « in this paper. In this section, the curve C is
of Clifford index ¢ and of genus g.

Theorem 2.1 [KKM]. Let the linear series |D| on C of Clifford index c.
If r(D) > 3, then |D| is birationally very ample, unless C is hyperelliptic or
bielliptic.

Theorem 2.2 [ELMS]. Let C be the curve of Clifford index c and Clifford

dimension r > 3. Then for a |D| = ¢} of Clifford index c, the image curve of
C via the morphism ¢|p) is not contained any quadric hypersurface of rank

: Iess than 4.

Theorem 2.3 [CM]. Suppose the linear series |D| computes the Clifford
index of C with r(D) > 2. Then degD < 4r — 2.

In fact, in the above theorems C has the Martens index c.(; That is the
case a = 0. In case a = 1, Ballico has recently proved the following theorem.)

' Theorem 2.4 [B]. Let C be of the Martens index c+1 and the linear series
|D| compute the Martens index(i.e., Cliff D) = ¢+ a and degD < g — 1.)
(1)Assume ¢ < 2r — 5; thenc = 2r —5,d = g—1 and D is a theta-
characteristic; then d > 4r — 4 + .
(2)Assume ¢ > 2r — 4 and h*(2D) < 1; thend > 4r —4 + B, B(g —1) — d.
(2)Assume ¢ > 2r —4 and h(2D) > 1; then d > 6r — 9 with equqlity only
if2D = K ® G~ with G pencil computing the Clifford index of C.

3. A curve of Martens index ¢ + «
In this section, the curve C is of Clifford index ¢ and Martens index ¢ + a.

Theorem 3.1. Let the linear series |D| compute the martens index c + a.
If r(D) > 2, then |D| is birationally very ample.

proof. Let ¢ be the morphism from C to P" which is associated with |D|.
Suppose ¢ is not birational. Set degy = k and ¢(C) = C'. Then the
degree d' of C' is equal to d/k. Then the linear series which consists of the
divisors cut out by the hyperplanes in P” is a complete |D'|. By the uniform
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position theorem, for the generic (r — 1)—tuple of the points Y P! on C’,
|D'|\Y_ P is a base point free pencil of degree d'—r+1. Then the linear series
|D|\ ¢~ (3 P}) has degree no more than ¢+ a + 2 and so it is a base point
free pencil. But because C has only finitely many base point free pencils of
degree no more than ¢ 4+ a + 2, for the generic (r — 1)—tuples of the points
)" P!, the linear series |D'\ 3 P]| are the same linear series which we denote
by |F'|. And then the generic (r — 1)—tuple of the points }_ P/ is contained
in | D'\ F'| Thus the dimension of |P}| is at least (r —1) and so C' is a rational
curve, for deg Y P! = r —1. Thus the curve C' has the 1-dimensional family
of g1's , Then for the pull-back G on C of a divisor in g1, |G| has the degree
less than ¢ + a + 2 since d' > v’ and kd' = d = ¢ + a + 2r. Thus by the
definition of the Martens index |G| is a pencil, and so the pullbacks of g}'s
are the distinct pencils of degree no more than ¢ + a + 2. Thus C has the
1—dimensional fmily of such pencils, which cannot happen. Therefore, the
morphism ¢ is birational. O

Theorem 3.2. Let C be a curve of Martens index ¢ + a and Martens di-
mension r > 3. Suppose |D| = g computes the Martens index of C. Then

(1) If K (C,0(2D)) < 2, thend > 4r — 548, = (g — 1) — d.
(2) If *(C,0(2D)) > 3, then d > 6r — 8.

proof. Since |D| computes the Martens index with the Martes dimension
r-> 3, the morphism ¢ p| is biregular. Suppose there is a quadric hypersuface
of rank more than 4 containing the image curve ¢ p|(C). Let |F| be the base
point free pencil on C, which is a subseries of the linear series generated by
the rullings of Q. Then h°(D \ F) > 2.

Suppose Cliff(D\ F) > c+a+1. Then r(D\F) <r—f/2—1. Then by the
base point free pencil trick, r(D+ F) > r+ f/2+1/2 and so Cliff(D + F) <
c+a—1 with h'(C,O(D+F)) > 2, which cannot happen. Thus Cliff(D\ F) <
c+ a and |D \ F| is a pencil since |D| has the Martens dimension. We set
B the base locus of |D|\ F and |D \ F|\ B = |G|. Then, as in the above,
|D\ G| = |F| + B is also of Clifford index no more than ¢ + a and a pencil.
And so both pencils |F| and |G| consist of the divisors cut out by the two
family of rullings of the quadric hypersurface Q. If there is another quadric
hypersurface @' of rank no more than 4 containing C', then C has also two
pencils which consist of the divisors cut out by the rullings of Q'. Thus two
pairs of pencils are distinct if @ # @Q'. Hence, there are at most finitely
many quadric hypersurfaces of rank no more than 4 containing ¢|p|, since
C has only finitely many pencils of Clifford index no more than ¢ + a. Thus
r(2D) > 4r — 4, by the sheaf exact sequence : 0 — Z¢(2) — Opr(2) — 0.
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Therefore, If h1(C,O(2D)) > 3, then Cliff(D) < ¢+ a and so d > 6r — 8. If
R1(C,0(2D)) < 2 then d > 4r — 4 + B, = (g — 1) — d, by Riemann-Roch
theorem. 0O
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CLASSIFICATION OF 3-DIMENSIONAL
COMPACT NONSINGULAR
TORIC VARIETIES WITH PICARD NUMBER 6

HYE SOOK PARK

ABSTRACT. The point of the theory of toric varieties lies in its ability of
translating meaningful algebro-geometric and analytic phenomena into very
simple statements about the combinatorics of cones in affine spaces over the
reals. We classify 3-dimensional compact nonsingular toric varieties by clas-
sifying corresponding complete nonsingular fans in 3-dimensional affine space
over the reals.

§1 Introduction

A toric variety was first introduced by Demazure and then by Mumford
et al., Satake and Miyake-Oda. It is a normal algebraic variety containing
algebraic torus Ty as an open dense subset with an algebraic action of T
which is an extension of the group law of Ty. A toric variety can be described
in terms of a certain collection, which is called a fan, of cones. From this fact,
the properties of a toric variety have strong connection with the combinatorial
structure of the corresponding fan and the relations among the generators.
That is, we can translate the difficult algebro-geometric properties of toric
varieties into very simple properties about the combinatorics of cones in
affine spaces over the reals. Also, the classification of 3-dimensional compact
nonsingular toric varieties is reduced to that of complete nonsingular fans.

Now we introduce some basic definitions which are used throughout this
paper. Let N be a free Z-module of rank r over the ring Z of integers, and
denote by M := Homy/(N, Z) its dual Z-module with the canonical bilinear
pairing

(,Yy MxN-—2Z.

We denote the scalar extensions of N and M to the field R of real numbers
by Ng := N ®z R and MR := M ®7 R, respectively.

219
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A subset o of NR is called a rational convez ‘polyhedral cone (or a cone,
for short), if there exist a finite number of elements ny,ns,...,ns In N such
that

o =R>on; + Ryonz +... + Ryoms
:= {ain; + ... + agn, | a; € R,a; > 0 for all i},

where we denote by R>o the set of nonnegative real numbers. o is said
to be strongly convez if it contains no nontrivial subspace of R, that is,

on(—o)={0}.
A subset 7 of o is called a face and denoted by 7 < o, if

r=on{me}t:={y€o| (mo,y)=0}
for an mg € oV, where
oV :={z € MR |(z,y) > 0foral y €0}

is the dual cone of o.

Definition. A finite collection A of strongly convex cones in NR is called
a fan if it satisfies the following conditions:

(i) Every face of any o € A is contained in A.
(ii) For any o,0' € A, the intersection o N o' is a face of both o and o'
The support of a fan A is defined to be |A]:=J,ca 0

A cone o is said to be nonsingular if there exist a Z-basis {nq1,n2,...,n.}
of N and s < r such that

o =Rxony + -+ Rxon,.

We say that a fan A is nonsingular if every cone o € A is nonsingular. A
fan A is said to be complete if |A| = NR.

If a fan A is given, then there exists a toric variety X := Tnyemb(A)
determined by A over the field C of complex numbers. For the precise
definition of toric varieties, see [2], [6] and [7].

It is known that the toric variety corresponding to a nonsingular fan is
nonsingular. Also, the toric variety is compact if and only if the correspond-
ing fan is complete (cf. [7] ).

§2 Some properties

In this section, we state some properties which are necessary for classifi-
cation of toric varieties. For the proof, see [6] and [7].
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Proposition 2.1. The set of isomorphic classes of 2-dimensional compact
nonsingular toric varieties is in one-to-one correspondence with the set of
weighted circular graph of the following form:

(i) the circular graph having three vertices with 1,1,1 as weights;
(ii) the circular graph having four vertices with weights a,0,—a,0 in this
order, where a is a nonnegative integer;
(i) the weighted circular graph with s > 5 vertices which we obtained
from those with s — 1 vertices by adding a vertex of weight —1 and
substracting 1 from the weight of each of the two adjacent vertices.

From now on, we fix Ng & R3.

Let X = Tvemb(A) be a 3-dimensional compact nonsingular toric variety.
The corresponding fan is nonsingular and complete. If we intersect A with
a sphere S C NR centered at 0, we get a triangulation of S

S; UJ@ns).

ocEA

We have a canonical N-weighting for this triangulation. Indeed, each spher-
ical vertex is of the form R>on NS for a primitive n € N, which we attach
to the vertex as an N-weight.

On the other hand, an N-weighting for a triangulation of S gives rise to
a double Z-weighting. Indeed, each spherical edge is of the form 7 N S for
a 2-dimensional cone 7 € A. There exist exactly two 3-dimensional cones
o,0' € A satisfying o No' = 7. Let {n,n1,n2} and {n',ny,n2} be the
primitive elements in N which generate ¢ and o', respectively. Since ¢ and
o' are nonsingular, there exist a,b € Z such that '

n+n' +ang + bng = 0.

We attach a pair (a,b) to the edge 7 N S as a double Z-weight, with a on
the side of R>on; NS and b on the side of Rxony N'S. Consider a vertex v
with NV-weight n in the triangulation. Let vy, vs,...,v, be vertices which are
adjacent to v in this order, with N-weights ny,ns,...,n,, respectively. We
have :
(*) ni-1+niy1 +ani+bn=0 1<:<s,

where a;,b; € Z and ng := ng,nsy; := ny . Note that the weights a;, as, ..., a4
are those appeared in Proposition 2.1.
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Definition. A doubly Z-weighted triangulation of S is called admissible if,
around each vertex, the equation (*) in unknowns n,n,,...,n, are compatible
and if the weighted link of each vertex is a weighted circular graph obtained
as in Proposition 2.1.

Proposition 2.2. We have canonical bijection between the set of isomor-
phic classes of 3-dimensional compact nonsingular toric varieties and the set
of combinatorial isomorphic classes of admissible doubly Z-weighted trian-
gulations of S.

The following is handy in deciding when a double Z-weighting is admissi-
ble:

Proposition 2.3. A double Z-weighting for a combinatorial triangulation
of S is admissible if and only if, around each vertex, the weights satisfy the
following under the same notation as above:

(1) E;=1 aj =12—3s

0 -1 0 0 -1 0 0 -1 0 1 00
D11 —a; 0}---|1 —ap O 1 —a; 0]=]1010
0 —-b, 1 0 —b, 1 0 =b 1 0 0 1

§ 3 Classification

Now we classify 3-dimensional compact nonsingular toric varieties by using
the classification of triangulations of S. According to Griinbaum [3], the
numbers of the combinatorial equivalence classes of the triangulations of S
are the following, where d is the number of the vertices in the triangulation:

-8 9 10 11 12
14 50 233 1249 7595

d 4 5 6
2

It is known that for a 3-dimensional compact nonsingular toric variety,
the Picard number is equal to #A(1) — 3, where #A(1) is the cardinality of
one-dimensional cones in the corresponding fan.

Oda [6] [7] have classified 3-dimensional compact nonsingular toric va-
rieties with Picard number five or less which are minimal in the sense of
equivarient blowing-ups. We classify those with Picard number 6 using the
classification of the combinatorically different triangulations of S with d = 9,
which is due to Y. Kado-oka and M. Ohshima. Now we state the result of
the classification without proof:
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Theorem 3.1. There are 79 different kinds of 3-dimensional compact non-
singular toric varieties with Picard number 6 which are minimal in the sense
of equivarient blowing-ups. We can describe the corresponding admissible
doubly Z-weighted triangulations with the label I ,2331’(’) which means that
the triangulation has p(s) elements of s-valent vertices of it (i.e., vertices
incident with exactly s edges) for each integer s > 3.

Remark Kleinschmidt and Sturmfels [4] have proved that r-dimensional
compact toric variety X with Picard number < 3 must be projective, while
Ewald [1] constructed an r-dimensional nonsingular, non-projective toric va-
riety with Picard number = 4 by using Gale diagrams (cf. [5]). We know the
sufficient condition for non-projectivity (cf. [6] ), which is very convenient
in concrete applications. We found 22 different kind of non-projective toric
varieties in the list in Theorem 3.1 by applying above sufficient condition.
There may be, however, more non-projective toric varieties in the list. It is
desirable to get a necessary condition for non-projectivity for toric variety,
which can be written in the concrete combinatorial language.
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THREE SHARP ISOPERIMETRIC INEQUALITIES
FOR STATIONARY VARIFOLDS AND
AREA MINIMIZING FLAT CHAINS MOD k

JAIGYOUNG CHOE

Preliminary Report*

It is well known [C, H, Chl] that a smooth minimal surface ¥ spanned by
a rectifiable Jordan curve C satisfies the isoperimetric inequality

4w Area(X) < Length(C)?, (1)

where equality holds if and only if C is a circle and ¥ is a disk. Some smooth
minimal surfaces in R® can be physically realized as soap films. However, the
soap film formed by dipping a connected wire frame consisting of two or more
closed curves in a soap solution represents a minimal surface which contains
interior singular curves. Here arises the main question of this paper: Does (1)
still hold optimally for this soap-film-like surface with singularities? In 1986
Almgren [A1] answered this question affirmatively if C' bounds a soap- film-like
surface which is an area minimizing flat chain mod k. In this paper we extend
his result and show that (1) holds also for two-dimensional stationary varifolds
with boundary multiplicity > 1 (Theorem 2). Moreover, if the spanning curve
C consists of k curves having the same end points, we obtain a new type of
sharp isoperimetric inequality for area minimizing flat chains mod k spanned
by C. Here, unlike (1), equality holds only for the union of k£ flat half disks
with a common diameter (Theorem 3). Finally it is shown that m-dimensional
stationary varifolds with boundary lying on a sphere centered at a point in their
support satisfy a third sharp isoperimetric inequality (Theorem 4).

*Full text with complete proofs will appear elsewhere.

225




226 JAIGYOUNG CHOE

1 Arcs and sectors

In this section we derive sharp isoperimetric inequalities for domains in the
plane where only a specific part of the boundary counts toward the length of

the boundary.

Lemma 1 (a) Let PQ be a line segment in R?. The only curve in R? from
P to Q that mazimizes the area of the domain bounded by the curve and PQ
among all curves of the same length is the arc.

(b) For any curve C from P to Q and the domain D bounded by C and PQ,
or Area(D) < Length(C)>.

Equaiity holds if and only if C is the semicircle from P to Q.

Lemma 2 Let Iy and I, be the rays emanating from a point O with an angle
of § < m. Let C be a curve from a point of Iy to a point of l without self-
intersection.
(a) Suppose that C lies in the smaller sector of the two formed by the rays (C
may lie in either sector if @ = x). Define D as the domain bounded by 13,
and C. Then

20Area(D) < Length(C)?,

and equality holds if and only if C is the arc perpendicular to the rays.
C lies in the larger sector, then

21 Area(D) < Length(C)?,

where equality holds if and only if C is a semicircle perpendicular to only one
ray of the two.

2 Cones with vertex on the boundary

Some two-dimensional cones satisfy the classical isoperimetric inequality (see
[Chl, Theorem 1]). This is because two-dimensional cones, being flat, can be
flattened (i.e., developed) to become a planar domain provided its density at
the vertex is not smaller than 1. However, if the vertex lies on the boundary
of the cone, the density hypothesis can be dropped [Chl, Corollary 1].
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Definition 1 A one-dimensional rectifiable connected set C' in R" is said
to be a compound Jordan curve if for any point p of C there exists a Jordan
curve (= a homeomorphic image of a circle) C' such that p € C' C C. For
g € R", ¢xC is the cone from g over C, the set of all line segments from ¢ to
the points of C.

Lemma 3 If C is a compound Jordan curve in R™ and p a point of C, then
4w Area(pxC) < Length(C)>.

Equality holds if and only if pC can be developed, by cutting and inserting,
one-to-one onto a disk.

3 Stationary varifolds

Our purpose in this section is to prove the isoperimetric inequality for a sta-
tionary 2-dimensional varifold in R". Every stationary varifold V is rectifiable
[A2, All], and if its density is bounded away from zero, an open dense subset
of the support of V is a continuously differentiable submanifold of R™ [All].
Following [All] and [S], we briefly introduce varifolds in R", define stationary
varifolds and their generalized boundary, and derive an area estimate of a sta-
tionary varifold from the first variation formula.

m-dimensional varifolds in R™ are simply Radon measures on G,,(R") =
R x G(n, m), where G(n,m) is the space of m-dimensional subspaces of R".
Given such an m-varifold V on R", there corresponds a Radon measure py on
R™ defined by

pv(A) =V(r7'(4)), ACR",

where 7 is the projection (z,S5) — z of G,»(R™) onto R™. The mass M(V) of
V is defined by
M(V) = uv(R") = V(Gn(R")).

If M = sptuy is rectifiable, then py = H™ _6 , where H™ is the m-dimensional
Hausdorff measure, # vanishes on R™ ~ M and is a positive locally H™-
integrable function on M. 6 is called the multiplicity function of py. The
support M and multiplicity 6 of yy completely determine V when V' is recti-
fiable. So the varifold V is also denoted by v(M, ). When 0 is integer valued
almost everywhere, V' is called an integral varifold.
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Let f : R® — R™ be differentiable. Then we define the image varifold fyV of
V by

V) = [, JsT@dV(z,8), ACGn(R?),
where F : G,(R") — G, (R") is defined by F(z,S) = (f(z),df=(S)) and

- where

Jsf(z) = \Jdet((df|S)* o (df:lS)), (z,5) € Gm(R™),
(dfz|S)* being the adjoint of df;|S.

The first variation §V of V is a linear functional on the set X (R") of continuous
vector fields with compact support on R™, defined by

d
V(YY) = aM(QSth)lt:O)

where {¢:}-1<t<1 is any 1-parameter family of diffeomorphisms in R" with ¥’
as the initial velocity vector field. Differentiation under the integral gives

§V(Y) = /G -

m

)divdV(m, S),

where .
divsY =) < 7, DY >,

i=1
Ti,..., T, being an orthonormal basis for S, and D the Euclidean connection.
V is said to be stationaryin U if §V(Y) = Ofor any Y € X(R™) with sptY C U.
Now we want to define ||6V ||, the total variation measure of 6V. Assume that
V has locally bounded first variation in R™, that is, for each W CC R" there
is a constant ¢ < oo such that [§V(Y)| < csup|Y| for any ¥ € X(R") with
spt|Y| € W. Then the Riesz representation theorem says that there exist a
Radon measure ||6V|| on R™ and a ||§V||-measurable vector field » on R"™ such
that |v| =1 ||6V|]-a.e. and

§V(Y) = /Rn v-Yd||§V]],
where ||6V|| is characterized by
[|6V||(W) = sup{6V(Y) : Y € X(R"), |Y| <1, and spt|]Y| C W}

for any open W CC R™. Differentiating ||6V|| with respect to uy, we see that

disvil, ) IVIB(z)
dny D= (B, ()
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exists py-a.e. and that

/Rnu Yd||6V|| = _/ H-Yduy + /Rnu . Ydo,
where 415V
i) = -1V ) (0), o= vl - 2,
(%
Z={zeR" d||5VH($) = o0}, and puy(Z) =0
duy

Thus for Y € X(R") we can write
SV(Y) = — /RnH-Yduv + /Z v-Ydo. 2)

By analogy with the classical first variation formula for a smooth submanifold
of R", we call H the generalized mean curvature of V., Z the generalized bound-
ary of V, o the generalized boundary measure of V, and v|Z the generalized
unit conormal of V. We can easily see that V is stationary in U if and only if

HU=0and ZNU =0.

Definition 2 (a) Let V be an m-dimensional varifold of locally bounded
first variation in R"™ and Z the generalized boundary of V with the generalized
boundary measure o. Assume Z is (m — 1)-rectifiable. Let :

: a(By(z))
V) =i iz n B "¢ 7

Then define 9V to be the varifold v(Z,%). In other words, 9V is the (m — 1)-
dimensional rectifiable varifold with support Z and multiplicity #. Clearly
pav = o. OV is called the varifold boundary of V.

(b) For an m-varifold V' = v(M,0), the varifold cone pxxV from p over V is
the (m + 1)-varifold v(px M, 0), where 0(y) = 0(x) whenever y lies on the line
segment from p to z € M.

Example Given a cube I® of volume 1 in R3, let F' be the union of the
faces of I3, E the union of the edges of I3. Define V to be the 2-dimensional
varifold with support F' and multiplicity 1 everywhere, i.e., V = v(F,1). Then
one can see that i) the generalized mean curvature H of V vanishes on F ~
E, ii) E is the generalized boundary of V, iii) 0 = (H! _ E) _ v/2 is the

generalized boundary measure of V, and iv) the generalized unit conormal
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v of V makes an angle of 45 degrees with the outward unit normals to F
along E. It follows that V is stationary in R® ~ E, the multiplicity of OV
is V2, i.e., OV = v(E,/2), and pxdV = v(pxE, Vv2), p € R®. Moreover
M(V) =6, M(0V) = 12v/2, and if pg, p; are the center of gravity and a vertex
of I3 respectively, M(poxdV) = 6, M(p;x0V) = 3 + 3+/2.

In [Chl, Proposition 1] we proved a volume estimate for minimal
submanifolds in R™. We extend this estimate to stationary varifolds in R" as
follows.

Theorem 1 Let V be an m-varifold of locally bounded first variation in R™. If
the generalized boundary Z of V is rectifiable and V is stationary in R ~ Z,
then for any p € R™

M(V) < M(pxaV).

Lemma 4 Let W = v(Z,1) be a rectifiable 1-varifold in R™ with ¢ > 1 and
let p be a point in Z. If Z is a compound Jordan curve, then

4rM(px W) < M(W)2.

Theorem 2 Suppose that V is a 2-varifold of locally bounded first variation
in R™, the generalized boundary Z of V is rectifiable, and V is stationary in
R" ~ Z. If the multiplicity of OV is > 1 and Z is a compound Jordan curve,
then

4TM(V) < M(8V)2

We conjecture that the theorem above can be extended in two ways: 1)
The theorem should hold without the hypothesis on the multiplicity of 9V if
the multiplicity of V' is assumed to be 1 a.e.; ii) The optimal case (equality)
should occur only when sptV is a disk. In case the multiplicity of JV is less
than 1, one can modify the theorem as follows.

Corollary 1 Let V be a 2-varifold of locally bounded first variation in R"™
such that V is stationary outside the rectifiable generalized boundary Z. Write
OV = v(Z,0) and define OV = v(Z,0), § = max{0,1}. If Z is a compound
Jordan curve, then

47M(V) < M(OV)%
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4 Area minimizing flat chains mod k

In this section we derive a different type of sharp isoperimetric inequalities
for certain area minimizing flat chains mod k. Roughly speaking, flat chains,
or currents, are obtained by assigning an orientation to the tangent space of
varifolds. First let us briefly define currents and related terminology.

Let D™ be the space of smooth differential m-forms with compact support in
R"™. An m-dimensional current in R" is a continuous linear functional on D™.
The set of such m-currents will be denoted D,,. Any oriented m-dimensional
rectifiable set M may be viewed as a current TM in the following way. Let
S (:z:) denote the unit m-vector associated with the oriented tangent space to
M at z. Then for any differential m-form w, define

Tae(w) = /M < S(),w > dH™

Furthermore, we will allow Ty, to carry a positive integer multiplicity 6(z),
and define

Taro(w) = /M < §(z),w > 8(z)dH™. (3)

Motivated by the classical Stokes’ theorem, we are led to define the boundary
0T € D,,_; of an m-current T by

T (w) = T(dw), we D™

Again motivated by the example above, Ty, we define the mass of T', M(T),
for T € D,, by
M(T) = sup{T(w) : |w| < 1, w € D™},

where |w| = sup,ecr» < w(z),w(z) >/2. The support of a current T,sptT, is
the complement in R" of the largest open set on which T = 0. T is called
a rectifiable current if sptT is rectifiable. The mass of a rectifiable current
is just the Hausdorff measure of the associated rectifiable support (counting
multiplicities). The integer multiplicity rectifiable currents Tz as defined
in (10) are characterized by the property that they agree, to within a set of
arbitrarily small H™ measure, with m-dimensional C* singular chainnteger
coefficients. Notice that one can associate T with the integer multiplicity
varifold V = v(M, ) in R™.

R, denotes the set of integer multiplicity rectifiable m-currents in R*. And
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Tk denotes the space of m-dimensional rectifiable flat chains modulo k whose
boundaries are also rectifiable flat chains modulo k, that is,

ISL = {T : T € Rm/kRm, (9T € Rm—l/kRm—l}

(see [F, 4.2.26]). We write the same notations spt,d, M for flat chains mod &
as we do for currents. One says T' € I% is area minimizing if

M(T) < M(S) for every S € I, with 85 = 9T.

Definition 3 Let Y* C R? be the union of k great semicircles on a sphere
meeting at the north and south poles at equal angles of 27 /k. Define Y§ C I}
to be the set of 2-dimensional flat chains T' mod k in R™with multiplicity 1
almost everywhere such that sptdT is homeomorphic to Y* and the associated
varifold V = v(sptT, 6) is locally of bounded first variation in R™.

Theorem 3 Suppose that T is a 2-dimensional area minimizing flat cahin
mod k in Y¥. If C1,C;,...,Cy are the curves that constitute sptdT and have
common end points p,p', then

k
27M(T) < Y Length(Cy)*.

=1
And equality holds if and only if sptT is the union of k flat half disks.

Lemma 5 Let T € V¥ be a 2-dimensional area minimizing flat chain mod k
and V the varifold associated with T'. Then sptdV C spt0T and the multiplicity
¥ of OV is less than or equal to 1 almost everywhere on sptoT.

Let Y be a union of three half disks meeting each other along their
common diameter at equal angles of 120 degrees. Let T (T, respectively) be
the intersection with the unit ball B;(Q) (0B;(0), respectively) of an infinite
cone from O through the 1-skeleton of a regular tetrahedron with its center of
mass at O. In [T2] J. Taylor proved that the disk, Y, and T are the only three
cones that are area minimizing under Lipschitz maps leaving the boundary
fixed. In view of this fact we raise the following problem as an analogue of
Theorem 3.

Open Problem: Suppose that V is a 2-varifold with multiplicity 1 almost
everywhere and is locally of bounded first variation in R™ such that V is
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stationary outside the rectifiable boundary sptdV. Suppose also that sptdV is
homeomorphic to T*. Let Cy,Cy,...,Cs C sptdV be the curves that constitute
sptdV and lie between 4 junctions of sptdV. Show that

[2 cos'l(———;-)]M(V) <) Length(C;)?,

=1

where equality holds if and only if sptV is a homothetic expansion (or con-
traction) of T.

5 Monotonicity of stationary varifolds

We derived the mass estimate of Theorem 1 from the first variation formula
(2) with Y = z — p. If one uses Y = ¢(|z — p|)(z — p) with ¢ equal to the
characteristic function of the interval (—oo, p), then one can obtain the well
known monotonicity of the mass of a stationary m-varifold V : p™"uv(B,(p))
is a nondecreasing function of p (see [S, p.236]). In this section we combine
the mass estimate and the monotonicity of mass to prove the third sharp
isoperimetric inequality for an m-varifold in a ball.

Theorem 4 Suppose V is an m-varifold of locally bounded first variation in
R™ and p is a point in sptV. If V is stationary in an open ball B centered at
p and sptdV lies on the sphere 0B, then

m"wn O™ (v, pYM(V)" 71 < M(8V)™. (4)

Here w,, is the volume of the unit ball in R™, and equality holds if and only‘if
V' coincides with the varifold cone pxJV .
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ON CONFORMAL GEOMETRY

Jost F. ESCOBAR

In this lecture I will report on some progress I have obtained in some prob-
lems in conformal geometry. Let @ C R? be an open, non-empty connected
domain which is not the whole plane. The Riemann mapping theorem asserts
that there exists a conformal diffeomorphism F' : § — B where B is a ball.
It is well known that the Riemann mapping theorem does not hold in higher
dimensions. Indeed if Q C R™ is an open, simply connected, bounded domain
with C? boundary and there exists a conformal diffeomorphism F': Q — B
then  is a ball. In order to see that we let 6;;(B) and 6;;(§2) represent the
Euclidean metric on the ball and 2 respectively. Since F' is conformal then

(1) F*(8;;(B)) = |DF[*8;;(%).

The boundary of the ball is umbilic (the second fundamental form is propor-
tional to the metric). Umbilicity is a conformal invariant property. Thus,
the boundary of € is umbilic. It is elementary to see that 0f2 is locally a
piece of sphere or a hyperplane. Since € is simply connected, bounded and

09 is C? then Q is a ball.

We consider the right-hand side of (1), that is, metrics of the form g =
u"%?é,-j(ﬂ) and ask: can we find a function u defined on 2 such that the
metric g satisfies that the scalar curvature vanishes and the mean curvature
of the boundary is constant? These two conditions are clearly satisfied by
the Euclidean metric on the ball. We answer the above question with the
following Theorem:

~ Theorem 1. Let Q C R™ be a bounded domain with smooth boundary n > 5
orn = 3. There exists a smooth metric G conformally related to the Euclidean
metric such that the scalar curvature of g is zero and the mean curvature of
the boundary with respect to the metric g is constant.

The author holds a Presidential Faculty Fellowship
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The existence of the metric § is obtained as a minima for a variational
problem. The functional we study is the “Total scalar curvature + total
mean curvature”.

Let M be a smooth n—dimensional compact manifold with boundary. Let
M denote the space of all smooth Riemannian metrics on M. For g € M we
denote by R(g) the scalar curvature of g and by h(g) the mean curvature of
OM with respect to the metric g. We define

D) F(g) = cx(n) /M R(g)dv(g) + &2(n) /a  hlg)dog)

where dv and do represent the Rlemannlan measure on M and on OM in-
duced by the metric g, ¢i(n) = -ﬁ; and cp(n) =

We denote by C,; = {9 € M| aVol(M, g) + bVol(BM g) = 1}
Let g € M bea fixed metric and consider § g € Cypsuch that gis W1th1n the

conformal class of ¢g. In this case the metric § can be written as § = u™- L= g,
where u is a smooth positive function defined on M.

The functional F takes the following form F(g) = F(u+-2 = g) = E(u) where

E(u)=/ |Vu|2dv+cl(n)/ Ru2dv+c2(n)/ huldo
M M oM

The constraint set C, 3 is

{u€C°°(M),u>0,a/ u”dv+b/ uldo =1}
M oM

where p = %5 and ¢ = 2(" 1) . The natural space to study the functional E

is Hy(M ), the Hilbert space of functions in L?2(M) and with first derivatives
in L?(M). For that reason we redefine the constraint set as

Cas = (¢ € Hi(M)| a/ ol? + b] ol1do = 1}
M oM

The Euler-Lagrange equation associated to the functional E defined on the
constraint set C, p is

Au — ¢1(n)Ru + Anaui =0 on M.

3)
g_:; + ca(n)hu = A(n — 1)bu?":'E on OM.
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where ) is a Lagrange multiplier.

Our first proposition shows that the functional E is bounded from below.
Proposition 1. There exists a constant Cy such that

E(p) > Cy, p €Cap

Proof. In order to prove the claim is enough to observe that for any ¢ € C,
and any ¢ > 0, there exists a constant C; = C;(e, M, p, g, a,b) such that

(4) / Pdv <e / Vol? + €y
M M

5) / Sdo Sa/'|V¢|2+Cl.
oM M

Holder’s inequality implies that

1

( /M <p2dv> < ( /M |<,o]"dv)l/p Vol(M)% .

22 1/p
< Vol(M) = [1 _ b/ qua]
oM

a,l/P
1/p
< Cy + Cy|b]!/? (/ |¢|qda)
oM

Using the Sobolev inequality we have

([ roar) < [( [ we)"+ /M¢2)q/2me

Thus

e o))"

and therefore we conclude that

1/2
(/ <p2dv) < Co+Cs
M
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Proposition 3 implies Theorem 1. In order to show inequality (7), it is enough
to exhibit a function ¢ € Hy(M), ¢ € Co,1(M) for which

E(¢) < Go,1(B).

To construct the function ¢, we first observe that Go,1(B) is minimized
by the standard metric, that is by a constant function (see [B] and [El])
The conformal change of variables, given by the inversion map z — I_zV
coupled with the conformal i mvanance of the Sobolev quotient show that if

= {(z,t)|z € R*~!,t > 0} then v#- 26,1, are the minimizers for Go (R} )
where

n—2

(8) et =

and c is a suitable constant.

On a compact Riemannian manifold with boundary, using Fermi coordi-
nates one can transplant the approximate extremal functions for R} given
by (8) to M and deduce

Go1(M) < Go(B).

From now on we assume that Go 1(M) is positive because Go 1(B) > 0.

In [E3] we showed that strict inequality in (7) holds provided that n > 6
and there exists a non-umbilic point on the boundary. This is the generic case.
To proof this we exhibited a function 1 supported in a small neighborhood
of a boundary point. Let (z!,22,...,t) be Fermi coordinates around a point
0 € OM. We define 3 = v.p where ¢ is a standard cut-off function and
v, is given in (8) for zo = 0. To proof our inequality we use the norm of
the trace free part of the second fundamental form as a correction term.
We can use this norm because at a non-umbilic point this tensor does not
vanishes. Recently we improved our previous estimate. We consider a small
perturbation of the function ¢ and is defined by

n—2

® o= (o)

where v is as before.

The parameter § plays an important role in distinguishing the eigenvalues
of the second fundamental form in the 3 1 az direction. Using the test function
¢ defined in (9) our proof succeded for n > 5 (see [E4]).
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When OM is umbilic and M is locally conformally flat, we use a global
test function. If we assume that (M, g) is locally conformally flat, then for a
suitable metric within the conformal class of g, the Green’s function G, for
the conformal Laplacian has the following asymptotic expansion for |z| small

G(z) = |z[*~" + A+ O(|z]).

In the appendix of [E2] we show that the Positive Mass Theorem holds for
locally conformally flat manifolds with umbilic boundary. In fact we show
that when Go (M) > 0, A > 0 and equality holds only if M is conformally
equivalent to B. The constant A is the crucial ingredient. However, when M
is a bounded domain in R™, we do not need to use the Positive Mass Theorem.
We show that E(c) < Go,1(B) where ¢ = (bVol(M))ﬁ%. In the general
case we construct a function ¢ that coincides with v, in a small neighborhood
of a point 0 € OM, so that we can get arbitrarily close to Go,1(B). Outside of
the small neighborhood of the point 0 € M, the function ¢ coincides with
a small multiple of the Green’s function. We use as a correction term the
constant A in this case. Since v, 1s not rotationally symmetric around the
point 0 and G is (asymptotically) gives rise a great number of error terms.

The estimates can be carried out for a general 4- or 5-dimensional Rie-
mannian manifold with umbilic boundary.

Our proof when n = 3 is quite different from the case n > 5. When n = 3
we first show that, if there exist an umbilic point on the boundary and M3 is
not conformally equivalent to B®, then G 1(M) < Go,1(B). To show this we
use again the Positive Mass Theorem that holds for 3 dimensional manifolds
having an umbilic point on the boundary. (This is not true when n > 4. One
needs to assume that the boundary is umbilic on a neighborhood.) The other
case is when the boundary is non-umbilic. This case follows by approximating
the manifold M by a sequence of manifolds having one umbilic point and not
conformally equivalent to B3. To this sequence we apply the previous result.
One proves then that strict inequality in (7) is preserved upon passage to the
limit.

Recently using a perturbation argument we were able to show the follow-
ing theorem Theorem 3. Let  C R™ be a bounded domain with smooth
boundary n > 3. There exists a smooth metric § conformally related to the
Euclidean metric such that the scalar curvature of g is constant and the mean
curvature of the boundary with respect to the metric g is constant.
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The proof of the above theorem is obtained by a perturbation argument.
In the proof of Theorem 3 one shows that for b small (positive or negative)
and for (M, g) not conformally equivalent to the Ball we have

Ga,b(M) < Ga,b(B)

In order to prove that we relay in the estimates obtained in our previous
paper [E2].

As a consequence of the previous theorem is that if a bounded domain in
R" admits a conformal metric to the euclidean with positive scalar curvature
and minimal boundary then it admits a metric with positive constant scalar
curvature and positive constant mean curvature on the boundary. The first
condition is satisfied provided that the first eigenvalue for the linear operator
associtaed with Euler-Lagrange equation is positive.

For compact manifolds without boundary we consider the functionals we
defined before but without the boundary integrals. A consequence of the
work of Aubin, [A] and Schoen [S] on the solution of the Yamabe problem
for closed compact manifolds is that

G(M) < G(S™)

when (M, g) is not conformally equivalent to (S™, go), where go is the stan-
dard round metric.

It is clear that by perturbing the standard metric of S™ we can construct
manifolds with Sobolev quotient arbitray close to the Sobolev quotient of
the sphere. However, it is unclear to decide whether or not the G(M) of an
arbitrary compact Einstein manifold can be arbitrary close to G(S™). We
show by using a compactness method that

Theorem 4. Let E,, denote the space of n-dimensional compact Einstein
manifolds, which are not conformally diffeomorphic to S™, n > 3. Then there
exists e(n) > 0 such that

sup G(M)<LG(S")—¢
(M,g)€EEn

Theorem 4 holds for compact manifolds with boundary provided that the
boundary is totally geodesic.

Critical points for the total scalar curvature functional (2) on closed com-
pact manifolds with a fixed volume are Einstein metrics.

Theorem 4 implies that there is a gap between the value of the total scalar
curvature functional (when restricted to a set of metrics with a fixed volume)
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on the sphere with the standard metric and the value of any other critical
point which is obtained as a critical point when we minimize in the set of
conformal metrics and then maximize in the ortogonal complemet to the
confomal metrics (modulus diffeormorphisms).
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HEAT KERNERL AND CONVERGENCE OF RIEMANNIAN
MANIFOLDS

ATSUSHI KASUE

Since M. Gromov introduced a notion of Hausdorff distance on the set of
Riemannian manifolds, or more generally metric spaces, this decade has seen
intensive activities around the convergence theory of Riemannian manifolds.
These include some works from the viewpoint of spectral geometry or proba-
bility theory.

In this report, we would like to discuss the convergence theory in connection
with the Laplace operators of Riemannian manifolds. After quick rewiew on
Gromov-Hausdorff distance and measured Hausdorff topology in Section 1, we
shall introduce a new distance on the set of Riemannian manifolds, making
use of the heat kernels , and mention some basic properties of the distance in
Sections 2 and 3. In Section 4, we shall focus on the study of Laplace operators
of manifolds with bounded curvature, and its applications will be given in the
last two sections.

1. Gromov-Hausdorff distance and measured Hausdorff topology

To begin with, we recall the definition of the Hausdorff distance on the set
MET (of isometry classes) of compact metric spaces introduced by Gromov
[14]. Given two metric spaces X and Y, a distance § on the disjoint union
X UY is said to be admissible if its restriction to X and Y are equal to the
original distances dx and dy in X and Y respectively. The Gromov-Hausdorff
distance HD(X,Y) is by definition the lower bound inf H®(X,Y), where 6 runs
over all admissible distances on X UY and H°(X,Y) stands for the Hausdorff
distance in (X UY,§), namely, the lower bound of the numbers ¢ > 0 such
that 6(z,Y) < € and é(y,X) < e for all € X and y € Y. We observe that
if HD(X,Y) < €, then there exist mappings f: X - Y and A : Y — X such
that the 2e-neighborhood of f(X) covers Y and for all z, y € X,

|dx (z,y) — dy (f(z), f())] < 2¢;
and also the 2¢-neighborhood of A(Y') covers X and for all @, b€ Y,

|dx (h(a), k(b)) — dy (a, )| < 2e.
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In fact, we take an admissible distance § on X UY such that H*(X,Y) < ¢
and then choose mappings f : X — Y and A : Y — X in such a way that
§(z, f(z)) < € and §(a,h(a)) < e for all z € X and a € Y. We call (not
necessarily continuous) maps f: X — Y and h: Y — X possessing the above
properties 2¢-Hausdorff approzimations between X and Y. Let us denote by
HD'(X,Y) the lower bound of the numbers ¢ > 0 for which there exist -
Hausdorff approximations between X and Y. Then we have

%HD'(X,Y) < HD(X,Y) < 2HD'(X,Y).

For this reason, HD and HD' induce the same uniform topology on MET.

Given a positive integer n and a positive number D, we shall denote by
S(n, D) the set of isometry classes of compact Riemannian manifolds M of
dimension n such that the diameter diam(M) < D and the Ricci curvature
Ricyr > —(n —1). Then Gromov [14] showed the following

Theorem 1. The set S(n, D) is precompact in MET with respect to the
Gromov-Hausdorff distance HD.

Now we shall consider pairs (X, ) of a compact metric space X and a
Borel measure y on X with unit total mass u(X) = 1. We say that a sequence
of such pairs {(X;,ui)} converges to a pair (X, u) with respect to the meau-
red Hausdorff topology if there exist Borel measurable mappings f; : X; — X
and positive numbers ¢; with lim; ., &; = 0 such that f; gives an e-Hausdorff
approximation of X; to X, and the push-forward fi.u; of the measure p; con-
verges to u with respect to the weak* topology, namely, for each continuous
function ¢ on X, we have

im [ 6o fidu = [ od
This topology was introduced by Fukaya in [10], where he discussed the con-
vergence of the spectra of compact Riemannian manifolds. The main result of
[10] is stated in the following

Theorem 2. Let M; be a sequence of compact Riemannian manifolds
in S(n, D) and pp; the normarized Riemannnian measure of M;. Suppose
(M;, par,) converges to a pair (X, p) of a compact metric space X and a Borel
measrure i on X with respect to the measured Hausdorff topology as i goes to
infinity. In addition, suppose the sectional curvature of M; is bounded in its
absolute values uniformly in 1. Then the following assertions hold:
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(1) For each k € N, the k-th eigenvalue A\(M;) of M; converges as i goes
to infinity.

(2) There ezists an (unbounded) selfadjoint operator Px,) on L*(X,p)
such that the limit lim;_ o Ax(M;) is equal to the k-th eigenvalue A\e(X, u) of
the operator P(x ).

(8) Let f; : M; — X be a Borel measurable ¢;-Hausdorff approrimation such
that im;_, o &; = 0 and fi.ppm; converges weakly to the measure p. Let ¢y pr; be
a normarized eigenfunction of Ap,. Put Ag; = {¢o fil¢p € L*(X, p), Pix,uyé =
Me(X,u)@}. Then the distance between Ag; and @r; in L*(M;, pps,) goes to
zero as i tends to infinity.

It is asked in [10] if the uniform boundedness of the sectional curvatures
could be dropped in this theorem (cf. Sections 3 and 4).

Here and after, given a compact Riemannian manifold M, we write ups
for the normarized Riemannian measure on M with unit total mass, py =

dvolps [Vol(M).

2. A Spectral distance

Now we would like to introduce a new distance on the set M of (isometry
classes of) compact Riemannian manifolds, making use of the heat kernels.
The contents of the present and the next sections are taken from [21].

Let M be a compact Riemannian manifold of dimension n and pm(¢,z,y)
the heat kernel of M in L*(M, ppr). By the Strum-Liouville decomposition,
we have the eigenfunction expansion of the kernel:

pult,z,y) = i e Mg, ()i (y).
k=0

Here 0 = Ag(M) < M(M) < X(M) < ... / oo are the eigenvalues of
M and {¢;} is a complete orthonormal system of L?(M, pups) consisting of
eigenfunctions with ¢, having eigenvalue A\x(M).

Given two compact Riemannian manifolds M and N, a mapping f: M —
N is called an e-spectral approzimation if

C—I/t |pM(t,$,y) —pN(t,f($), f(y))l <Ee€

for all ¢ > 0, and for all points z, y of M. The spectral distance between M
and N, denoted by SD(M,N), is by definition the infimum of the positive
numbers ¢ such that there exist e-spectral aproximations f : M — N and
h:N — M. Then SD becomes a distance on M. In fact, if SD(M,N) =0,
we have ¢;-spectral approximations f; : M — N with lim;_, &; = 0. Take a
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countable and dense subset My of M. Then we may assume that the mapping
fi converges to a mapping fo : My — N pointwise on M. Clearly f, preserves
the heat kernels on My, namely,

pM(ta T, y) = pN(ta fO(m)a fO(y))

for all t > 0, and for all z, y € My. This implies that M and N have the same
dimension, because of the asymptotic behaviour of the heat kernels as ¢ goes
to zero. Moreover recall a fundamental result on the heat kernels of complete
Riemannian manifolds, which asserts that

lim 4t log p(t, 2,y) = —disn(z,y)"

(cf. Varadhan[26], Cheng, Li and Yau [7]). Applying this result to our man-
ifolds M and N, we see that the mapping fo preserves the distances on My,
namely,

disp(z,y) = disn(fo(z), fo(y))

for all z, y € M,. Since M, is dense, f, extends uniquely to an isometry
between M and N.

The above argument suggests some connections between the spectral dis-
tance SD and the Gromov-Hausdorff distance HD. In fact, if we restrict-our
attention to the set S§(n, D) for given n and D, we have the following

Theorem 3([21]). (1) The identity mapping of the metric space (S(n, D),
SD) to the metric space (S(n, D), HD) is uniformly continuous.
(2) The metric space (S(n, D), SD) is precompact.

We can also show that the topology on S(n,D) induced by the spectral
distance SD is finer than that of measured Hausdorff convergence. Moreover
these two topologies actually coincide on the subspace K(r, D) of S(n,D)
which consists of manifolds with sectional curvature bounded by 1 in its ab-
solute values. This can be verified by the results mentioned below together
with Theorem 2. However it is not clear at the present stage whether these
two topologies coincide or not on S(n, D).

As for the completion C(S(n, D), SD) of the metric space (S(n, D), SD),
we have the following

Theorem 4 ([21]). A (boundary) element of C(S(n,D),SD) can be re-
garded as a triad (X, p,p) consisting of a compact metric space X (of length),
a Borel measure yu of unit total mass on X, and a positive Lipschitz function
p on (0,00) x X x X which is the heat kernel of a Co-semigroup on L*(X,p).
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In fact, let (X,u,p) be the limit element to which a sequence {M;} in
(8(n, D), SD) converges. Then there exist Borel measurable ¢;-Hausdorff ap-
proximations f; : M; — X and h; : X — M; with lim;_, &; = 0 such that
(M;, pas,) converges to (X, p) with respect to the measured Hausdorff topology
via the approximation f;, and further they give ¢;-spectral approximations:

e~ |pmi (t, 2, y) — p(t, fi(z), fi(y))| < &

e"tlpM‘.(t, hi(a), hi(b)) — p(t,a,b)| <&
forallt > 0, and for all z, y € M; and a, b € X. In addition, the limit measure

u satisfies

p(Bla,r) | Valr)

#(B(a, R)) ~ Va(R)
for every a € X and for all r, R, 0 < r < R, where B(a,r) stands for the metric
ball in X around a of radius r, and V,(r) = f;(sinh¢)"~'dt. This estimate is

well known as the Bishop-Gromov’s inequality for the case: (X, u) = (M, pp)
(cf.[14]). As for the kernel p, it has the following properties:

exp (—(1 —€)disx(a,b)* At +et)
#(B(a, V)2 u(B(b, VD)2

exp (—(1 + €)disx(a, b)* /At — (e + C")t)
p(B(a, V1)) 2 u(B(b, V1)1
(C" =(n—1)*/4), for any € > 0, and for all ¢t > 0 and a, b € X, where C(n,¢)

and C’(n,€) are some positive constants depending only on n and €. Moreover
we have

p(s,a,0)—  p(t,a’,¥)| < CO(n, D)d (d + (F)™! + (F)™+) x
{disx(a, ) + disx (b,B)} + CW(n, D)d" [()* — (L)"]

for all s, t > 0 and for all a, a’, b, ¥’ € X. Here we set d = diam(X) and
C®) and C™® are some positive constants depending only on n and D. For the
case (X,u,p) = (M, urp,pm), these estimates for the heat kernel have been
shown by several authors, especially by Li and Yau [22] (cf. also [8] and the
references therein). In fact, these geometric estimates for manifolds are crucial
to the proofs of Theorems 3 and 4.

p(t,a,b) < C(n,¢)

p(t,a,b) > C'(n,¢)

3. Convergence of eigenvalues and eigenfunctions
In this section, we shall first introduce a distance on the set of pairs of
compact Riemannian manifolds M and complete orthonormal systems ® =
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{#} in L?*(M, ppr) consisting of the eigenfunctions. For this, we fix some

notations.
Let £2 be a Hilbert space defined by

0 = {{ak}r=12,.. 1 3 @k’ < +oo}.
k=1

Let us consider the space Coo ([0, 00),#?) of continuous curves 7 : [0,00) — £2
such that the £2 norm |y(t)|e of y(¢) decays to zero as t goes to infinity. This
space is endowed with the distance dy.:

doo(7,0) = sup{|y(t) — o(t)|e2 : t 2 0}.

For a subset A of Cy([0,00),¢?) and a positive number r, N,(A) stands for
the r-neighborhood of A, N, (A) = {y € Coo([0,0),£?) : dos(A,7) < r}. The
Hausdorff distance éy on the set of bounded closed subsets of the metric space

Coo([0,00), £2) is defined by
§u(A,B) = inf{r > 0: A C N,(B), B C N,(A)}.

Given a compact Riemannian manifold M, we embed M into the metric
space Coo([0,00),¢%) as follows. Let 0 = A(M) < M(M) < A(M) < ...
be the eigenvalues of M and ® = {4} a complete orthonormal system of
eigenfunctions of M in L?*(M, uys) with ¢, having eigenvalue \;(M). For a
point = of M, we define an element Fg[z] of Coy([0,00),£2) by

FQ[x](t) = {Co(t)e_/\k(M)m‘ﬁk(x)}k=1,2,...,

where we put (o(t) = e~'/#. Then the map Fs of M into Cu([0,0),£?)
defined by ¢ — Fy gives rise to a continuous imbedding of M, since the

eigenfunctions separate the points of M. Given two such pairs (M, ® = {¢:})
and (N, V¥ = {¢x}), we put

SD*((M’ @),(N,\II)) = 5H(F<I>[M]7F\P[N])

We observe from the definition of SD* that SD*((M,®),(N,¥)) = 0 if and
only if there exist mappimgs f : M — N and h : N — M which preserve
the heat kernels and further the given orthonormal systems respectively, that
is, f*¢r = ¢, and h*¢r = ¥y for all k. Thus identifying such pairs, we
obtain a metric space consisting of (the equivalence classes of) the pairs of
compact Riemannian manifolds M and complete orthonormal systems ® of
the eigenfunctions in L2(M, upr).
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Let us now restrict ourselves to manifolds in S(n, D), and denote by FS(n, D)
the set of equivalence classes of pairs (M, ®), where M € S(n, D).

Theorem 5 ([21]). (1) The metric space FS(n,D) equipped with the dis-
tance SD* is precompact.

(2) The projection 11 of (FS(n,D),SD*) onto (S(n,D),SD) which sends
(M, ®) to M is uniformly continuous, so that Il extends uniquely to a con-
tinuous mapping Il of the completion C(FS(n, D), SD*) onto the completion
C(8(n,D),SD).

(3) An element of C(FS(n, D), SD*) can be regarded as a pair of an element
(X,p,p) in C(S(n,D),SD) and a complete orthonomarl system ® = {¢y}
of eigenfunctions of L, in L*(X,p), where L, stands for the infinitessimal
generator of the Cy semigroup in L*(X, u) with kernel p.

The first assertion follows from the fact that for any (M, ®) € FS(n, D),
F[M] is contained in some compact subset of C([0,00),¢?) depending only
on n and D.

Now we shall mention the continuity of eigenvalues and eigenfunctions with
respect to the spectral distance. Given two elements o and 7 of C(S(n, D), SD),
we set

[(o,7) = max{SD*(a,ﬁ_l(T)) ra € ﬁ_l(a)},
A(o,7) = min{SD*(a, ) : € T '(0),B € T '(r)}.

Then we can show that given a sequence {o;} and an element 7 in C(FS(n, D),
S D*), the following three conditions are mutually equivalent: (i) lim;_,.o SD(o,
7) =0, (ii) lim;e ['(04,7) = 0, (iii) limi— Aoy, 7) = 0. This yields the fol-
lowing

Theorem 6 ([21]). (1) For each positive integer k, the k-th eigenvalue A,
which is regarded as a function on (S(n,D),SD), extends continuously to the
completion C(S(n, D), SD).

(2) Let {M;} be a sequence in (S(n,D),SD) which converges to an el-
ement (X,p,p). Then for any complete orthonormal system ®; = {¢(}
in L*(M;, ppr,) which consists of eigenfunctions 8, of the k-th eigenvalue
Ak(M;), there exists such a system U; = {yp® .} in L2(X, p) with %, having
the k-th eigenvalue Ay of L,, and €;-spectral approzimations f; : M; — X and
h; : X — M; satisfying

0o 4 . . 2
ey Ie—/\k(Ms)t/2¢(’)k(hi(a)) — e—*k‘/%(’)k(a)l <e&
k=1
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forallt >0 anda € X,

Y le"\"(M')t/2¢(')k($) — ety )k(fi(w))| <&
k=1

for allt > 0 and x € M;. Here ¢; does not depend on the choice of ®; and goes
to zero as i tends to infinity.

Remarks. (1) Conditions for the convergence of a sequence in C(S(n, D),
SD) are given in terms of the resolvents or the heat semigroups (as a Trotter-
Kato type convergence theorem). (2) We refer the reader to [4] and [23] for
different definitions of spectral distance, and also [16] and [23] for related topics
on diffusion processes. (3) To simplify the exposition, we insist on the canonical
measures of Riemannian manifolds. However in view of the results mentioned
in these two sections, it would be natural to introduce a spectral distance in
a similar manner on the set of Riemannian manifolds equipped with measures
of some regularity conditions.

4. Bounded curvature and Laplace operators

The results mentioned in the last two sections are concerning manifolds
with Ricci curvature bounded below uniformly. However they are intermediate
in understanding the Laplace operators from the view points of the convergence
theory of Riemannian manifolds. In the rest of the report, we would like to stay
in the set of manifolds with curvature bounded uniformly and investigate more
closely the Laplace operators. In this section, we recall first a fundamental
fact on manifolds with bounded curvature, and secondly we review some of
geometric structure theorems due to Cheeger, Fukaya and Gromov. Then we
discuss the Laplace operators of manifolds collapsing to a lower dimensional
space while their curvature keeping bounded.

Let M = (M, g) be a complete Riemannian manifold of dimension n, the
sectional curvature of which is bounded in its absolute values by a constant,
say 1. Let z be a point of M and exp, : T,M — M the exponential mapping
of M at x. We shall identify the tangent space T, M with Euclidean space R™
by a linear isometry. Then for a positive number r less than 7, the exponential
mapping induces a local diffeomorphism of the Euclidean ball B™(r) onto the
geodesic ball B(z,r) in M around z with radius r. Let g* be the pull-back
metric on B™(r). If we take r less than a positive constant depending only
on n, then we have a coordinate system H = (hq,...,h,) on B"(r) which
possesses the following properties (cf. e.g. [17]):

(i) Each component h, is harmonic.
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(ii) If we write the metric g* in this coordinate system as

g = Zg}‘,k(a:)dhldhn,

Ik

then the coefficients g7, satisfy
1 2 - * ¢3¢k 2
‘C—1|£| < Egj,kf £ < Chl¢|
5.k

g5k (z) — 8ik| < Cor®

for all z € H(B™(r)) and ¢ € R", where C; and C, are some positive constants
depending only on n.

(iii) Given « € (0, 00), there exists a constant C5 depending only on n and
a such that the C1* norms of g5k satisfy

|9} klcre@mBr ) < Cs

and given p € (1,00), there is a positive constant Cy depending only on n and
p which bounds the Sobolev norms of g7 :

g} kllw2ra(Bn ) < Ca

(iv) If the m-th covariant derivatives of the Ricci tensor of M is bounded
by a constant A,,, then for some constant Cs,, depending only on n, m, o and
A,

|95 klcr+ma(EBa(r)) < Cam.

We remark that if the injectivity radius of M is greater than or equal
to a positive constant ¢, and if we take r which is less than some positive
constant depending only on n and ¢, then the above coordinate system may
be assumed to be defined on B(z,r). Hence such a manifold M is covered by
coordinate neighborhoods with the uniform estimates described as above, and
if in addition, the diameter of M is bounded above by a given positive constant
D, then the number of such coverings may be assumed to be not greater than
some constant depending only on n, ¢ and D. This leads to the following

Theorem 7 ([14], [13], [25], [18]). Let {M; = (M;,gn,)} be a sequence of
compact Riemannian manifolds of dimension n which converges to a compact
metric space M, with respect to the Gromov-Hausdorff distance. Suppose that
the sectional curvature of M; is bounded in its absolute values by a constant
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of measured Hausdorff convergence and the topology given by the spectral
distance coincide on K(n,D). Moreover we want to show that L. is the
limit of the Laplace operator Ay, of M; in a sense. To make it precise, we
shall replace the given fibration f; with another appropriate one for analysis.
To begin with, we cover M., with a finite number of geodesic balls B, of
sufficiently small radius. On each ball B, is defined a coordinate system H,
whose components are L, — harmonic, LooH, = 0. Set B;, = fi"l(B,,) and
let F;, be the solution of the Dirichlet problem:

AM‘E,,, - 0 in B,”,,
F, = H,of; on 0B;,

Then we have (local) approximations ®;, for f; in B;,. Taking a partition
of unity {¢;,} subordinate to the covering {B,} with uniformly bounded C?
norms, we obtain uniquely a smooth mapping ®; of M; onto M, called a
center-of-mass of {®;,} with weights {¢;,}, which is given by

‘ 'Eﬁi,u(w)eXPQ,.(x)_l 9;.,(z) =0

for z € M;. Now employing the standard elliptic regularity estimates together
with the fact mentioned at the begining of this section, we can prove

Theorem 10 ([19-a]). Let {M;} be a sequence in K(n,D). Suppose that
M; endowed with its normalized Riemannian measure p;(= ppr,) converges
to a metric space M,, with a Borel measure po, with respect to the measure
Hausdorff topology, and further that M, is a smooth manifold with metric of
class C** (any a € (0,1)). Then there exists a fibration ®; : M; — M, (for
large 1) having the following property: given B € [0,1), there exist a sequence
of positive numbers {e;} with lim; ., &; = 0 and a positive constant C such
that for all smooth function h on M,

(1) (1 —&)®;(|dh|) < |d®;(R)| < (1 + &:)®;(|dR|) on M;;
(2) |®F(A)|ckenmy < |hloksmy.)  (k=0,1,2);
(3) |A;®7(h) — ®;(calLooh)| < &;@7(|Ddh| + |dh]) on M;,

where A; stands for the Laplace operator of M; and L, is the operator
associated with a quadratic form

/Mm |dh[Pdptco.
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Let M;, M., and ®; be as in this theorem. For a smooth function 3 on M;,
we define a smooth function ©;(v) on M, by

1
= Vol(@-7(2)) [b;‘l(z)¢ (2 € My).

Then we have the following

0i(¥)(2)

Theorem 11 ([19-a]). Let M;, M., Lo, and ©; : C*(M;) — C*(M,,) be
as above. Given 3 € (0,1) and p € (1,00), there exists a sequence of positive
numbers {¢;} with lim,_, &; = 0 such that for large ¢ and for all p € C*(M;),

(1) 19:()lcr1(Mo) < (1 +&)¥lor ) 5
(2) 10: (D) w2p(Mooioo) < (1 + €)lbllwapasi i) 5
(3) [ Leo®i(¥) — ©i(Aith) || Lo (Moo o) < Eillllwoai) 5

(4) =@ 0 @uw)llwasasim < & ([$loown) + 1Ambloosary) -

We should here explain the notations used in this theorem. For a smooth
function A on a Riemannian manifold M with a Borel measure p, we set

1/p
llzons = ( [ 10Pd)

|Bllw2p () = IRllLoaay + |dh|| Loty + (| DAR|| Lot )

It is not hard to deduce Theorem 2 from Theorems 10 and 11. For details,
see [19-b]. Moreover in the following sections, we shall give two applications
of Theorems 10 and 11.

5. Energy spectra of harmonic mappings

In Section 3, we have discussed the continuity of spectra of Riemannian
manifolds in S(n, D) with respect to the spectral distance. We may ask a
similar question on the energy spectrum of harmonic mappings into nonpos-
itively curved manifolds. Let M = (M,g) and N = (N,h) be two compact
Riemannian manifolds. Given a smooth mapping ¢ of M into N, the energy
density e(¢) is a function defined by the trace of the induced tensor ¢*h with
respect to the metric g and the energy of the mapping ¢ is given by

E(¢) = /M e(¢)dvol,.
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A smooth mapping ¢ : M — N is said to be harmonic if the energy functional
E is stationary at ¢, or equivalently if the tension field 7(#) vanishes.

From now on we assume the target manifold N has nonpositive sectional
curvature. Then the fundamental theorem due to Eells and Sampson [9] asserts
that any smooth mapping ¢ : M — N is homotopic to a harmonic mapping
which has minimum energy in its homotopy class. In addition, Hartman [15]
showed a uniqueness theorem saying that if ¢o and ¢; are homotopic harmonic
mappings, then they are smoothly homotopic through harmonic mappings;
and the energy is constant on any arcwise connected set of harmonic map-
pings. We shall denote by H(M, N) the set of harmonic mappings of M into
N, and consider the energy spectrum {E(¢) : ¢ € H(M,N)}. In view of
the above results, we may set E(C) = E(¢) for a component C of H(M, N),
where ¢ belongs to C. A theorem of Adachi and Sunada [1] states that there
are explicit positive constants Cy and C, depending only on the diameters
diam(M), diam(N), the volumes Vol(M), Vol(N) and the lower bounds on
the Ricci curvatures of M, N such that

#{C C H(M,N): E(C) < A?} < CrexpC3A

for any . By virtue of this result, we may put the connected components {Ck}
(k=0,1,2,...,v — 1) of H(M, N) in order as follows:

E(C) <ECy) if k<K

(hence C, consists of constant mappings). Here v, 1 < v < +o00, stands for the
number of the connected components of H(M, N). Set

ok(M,N) = B,(Ci) = [ e(@)dum (6 € C).

Here for convenience, we understand ox(M,N) = +oo if k > v.

Now for the target manifold N of nonpositive curvature being fixed, we
may ask if ox(M, N) is continuous as a function of the domain manifold M in
S(n, D) with respect to the spectral distance SD. At the present stage, using
Theorems 10 and 11, we are able to show a partial answer for this.

Theorem 12([19-a]). Let {M;} be a sequence in K(n, D) which converges
to a triad (X, u,p) with respect to the spectral distance. Then given a com-
pact Riemannian manifold N of nonpositive sectional curvature, the limit of
ox(M;, N) exists for k < v and diverges for k > v, where v denotes the number
of the arcwise connected components of continuous mappings of X into N.
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We can also discuss the convergence of harmonic mappings themselves in
a certain sense. For details, see [19-a]. We remark also that in case N = R/Z,
the harmonic mappings of M into R/Z correspond to the harmonic one forms
on M with integral periods. In the next section, we would like to ask a question
concerning harmonic one forms and the spectral distance.

6. Convergence of Albanese tori

Given a compact Riemannian manifold M, we denote by H'(M,R) the
space of harmonic one forms on M equipped with an inner product < , >
defined by :

<w, >=/ (w,n)dpm-
M

Let H'(M,Z) be a lattice of H'(M,R) which consists of harmonic one forms
with integral periods. Dividing the dual space H!(M,R)* by the dual lattice
H'(M,Z)*, we obtain the Albanese torus

A(M) = H'(M,R)*/H\(M,Z)".

Let M be the universal covering space of M and m_the projection of M onto
M. We fix a point p of M, and take a point p of M with 7(p) = p. Then we
have a mapping Jus of M into the dual space H!(M,R)* defined by

Iu(F)(w) = /; Tw.

This map is obviously harmonic and it induces a harmonic mapping Jjs of M
into the Albanese torus A(M), called the Albanese map, in such a way that
Ju(p) = 0 and 7’0o Jps = Jyom, where ' : HY(M,R)* — A(M) is the natural
projection.

We shall consider A(M) as a mapping of the set of compact Riemannian
manifolds onto the set of flat tori. Then we would like to ask if this map is
continuous in S(n, D) with respect to the spectral distance. We note that the
Gromov-Hausdorff distance, the measured Hausdorff topology and the spectral
distance induce the same topology on the set of flat tori. We remark also that
the first Betti number b, (M), namely dim A(M ), for a manifold M in S(n, D)
is bounded above uniformly (cf. [12]). Moreover we claim that the diameter of
A(M) is also bounded above uniformly in S(n, D). In fact, for any nonconstant
harmonic mapping ¢ of M into R/Z,

e(¢) < CE,, (9)
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for some positive constant C depending only on n and D (cf. e.g., [1]). Since
the energy density e($) must be greater than or equal to 1/4diam(M)? some-
where in M, it follows that

1
E#M(¢) 2 ﬁ

Inother words, we have

272
> —.
M(AM)) > oD
On the other hand, we know that
Cl

MAM)) < G Ay

for some constant C’ depending only on dim A(M). Thus the claim is clear.
At the present stage, we are able to answer the above question partially.

Theorem 13 ([19-c]). Let {M;} be a sequence in K(n, D) which converges
with respect to the spectral distance. Then the Albanese torus A(M;) con-
verges to a point or a flat torus T™ of positive dimension m, where 0 < m <

Bminf;—co b (M;).

We refer the reader to [19-c] for the more precise statement of the theorem,
and also [27,28] for some related results.

In this report, we restrict ourselves to compact manifolds. However it is
possible to discuss noncompact manifolds from the same point of view. For
example, in [20], we investigated harmonic functions of polynomial growth on a
noncompact complete Riemannian manifold and as an application of Theorems
10 and 11, we gave some geometric conditions for the space of such functions
to be of finite dimension if the order is fixed.
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HARMONIC MAP HEAT EQUATION OF COMPLETE
MANIFOLDS INTO COMPACT MANIFOLDS
OF NONPOSITIVE SECTIONAL CURVATURE

DonNG Pyo CHi, HYEoNG IN CHoI, HYUN JUNG KIM

One of the interesting questions in the geometry of noncompact complete
manifold is that of infinity behavior of geometric objects. Since the concept
of infinity is rather hazy, one may envision it as approaching ideal points at
infinity. As a noncompact complete manifold has no boundary at infinity,
one somehow artificially attach an ideal boundary at infinity to form a com-
pactification of the original complete manifold. One typical example is the
so-called Eberlein-O’Neill boundary of complete simply connected manifold
of nonpositive sectional curvature [E-O]. There are many other construction
of ideal boundaries, and the geometric study of such ideal boundary is an
interesting subject in itself.

However, certain analytic property of geometric objects depends only on
some very general structure of the ideal boundary, regardless of its specific
geometric construction. One such example is the following very crude prop-
erty of the ideal boundary points.

Definition. Let M be a complete manifold without boundary, and let M
be a compactification of M with the ideal boundary M(co). We say M
satisfies the ball convergence criterion, if for any sequence {z,} in M with
Tn — T € M(o0) and for all r > 0, the geodesic ball B(z,,r) centered at z,,
with radius r converges to T.

It was Donnelly and Li who first gave the above definition [D-L]. They
proved that the over-determined problem of initial boundary value problem
of the heat equation can be solved as long as each ideal boundary point

This work was supported in part by the Basic Science Research Institute Program,
Ministry of Education, 1992, Project Number BSRI-92-107, and by GARC. The third
author was also supported by the Daewoo Foundation.
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able to overcome this difficulty by carefully choosing the function ¢ which
replaces the role of the naively defined distance function. By doing so, the
terms involving 4 miraculously disappears in our calculation and we are left
with terms expressible solely in terms of h. In carrying out our program, we
must be able to control the growth of the Christoffel symbol of N. It turns
out that the curvature bound and the bound on the covariant derivative of
the curvature tensor are enough to prove that the Christoffel symbol grows
exponentially, which is enough for us.
The following is one of our main results.

Theorem 1.1. Suppose that M is a complete Riemannian manifold with
Ricci curvature bounded below by a constant, and N is a compact Rie-
mannian manifold with nonpositive sectional curvature. Let f € C(M,N)N
C'(M, N) such that e(f) < co. Let u be the unique solution of (1.2) with the
initial map f. If M satisfies the ball convergence criterion, then u(z,t) = f(z)
for all (z,t) € M(o0) X [0,00), namely, u is a solution of (1.3).

- Remark. In the course of the proof, we have to estimate the growth prop-
erty of the Christoffel symbol of the universal cover of N. To do that, we need
the bounds of the covariant derivative of the curvature tensor as well as the
sectional curvature of N. Thus the assumption on N can be replaced with N
being a complete manifold with —¢ < Ky < 0 for some nonnegative constant
¢, where K is the sectional curvature of N, and the covariant derivative of
the curvature tensor bounded by a constant.

When the target has nonpositive sectional curvature, the existence of the
solution of (1.2) was proved by Li and Tam. However, if the target manifold
has positive curvature, it is no longer true that the (1.2) has a solution
for all time. The solution may blow up in finite time, and it may develop
singularities. However, when it is confined to a convex geodesic ball B, (p)
of radius 7 and center at p in N, the following long time existence holds.

Theorem 1.2. Suppose that M is a complete Riemannian manifold with
Ricci curvature bounded below by a constant and N is a complete Riemann-
ian manifold with sectional curvature bounded above by a constant u > 0.
Assume that T < min{ﬁﬁ, injectivity radius of N at p}. Let f € C1(M,N)
be such that f(M) C B(p) and supyse(f) < oo. Then (1.2) has a unique
solution u defined on M x [0,00) with the initial map f such that u has the
following properties:



HARMONIC MAP HEAT EQUATION OF COMPLETE MANIFOLDS 271

(a) w(M x [0,T]) € B,(p) forall T > 0

(b) sup e(u)<ooforallT>0
Mx[0,T]

With this long time existence theorem, the maximum principle technique
which is similar to, but harder than, those used in the proof of Theorem 1.1
gives the following result:

Theorem 1.3. Suppose N is a complete Riemannian manifold whose sec-
tional curvature is bounded above by a constant u > 0. Let p € M. Assume
that 7 < nﬁn{é—"ﬁ, injectivity radius of N at p}. Let f € C*(M, B,(p)) N
C(M,B.(p)). Let u be the unique solution of (1.2) given by Theorem 1.2
with the initial map f. If M satisfies the ball convergence criterion, then
u(z,t) = f(z) for all (Z,t) € M(o0) x [0,00), namely, u is a solution of (1.3).

Our results, Theorem 1.1 and 1.3, are related to the earlier result of the
second author with Aviles and Micallef. But, one crucial drawback of the
argument in [A-C-M] is the assumption that the map must lie in a convex ball
of the target manifold, which exclude most interesting geometric situation.
Thus, one of our main contributions, among others, is that we were able to
remove in Theorem 1.1 the smallness assumption of the image in the context
of harmonic map heat equation.

The following maximum principle due to Liao and Tam [L-T] will be ex-
tensively used in this paper:

Theorem 1.4. Let M be a complete noncompact Riemannian manifold
such that there exists a point p € M and a constant k > 0 satisfying that
Vol(By(p)) < exp(k(1 + r?)) for all 1 > 0. Let f be a function on M x
[0,T),T > 0. f is smooth on M x (0,T) and continuous on M x [0,T).
Suppose f satisfies the following conditions;

(a) (A= 2)f>0o0nMx(0,T);

(b) f(z,0) <0 for all z € M; and

(c) foT(fM eXp(—a'r2(p,y))lVf|2(y)dVM(y))dt < 00, for some a > 0.
Then f <0 on M x [0,T).

Rough sketch of proof of Theorem 1.1:
We now give a very rough sketch of the proof of Theorem 1.1: First, the
existence of the solution u of heat equation for harmonic map on M x [0, c0)

which satisfies that u(z,0) = f(z) is proved by Li and Tam [Li-T]. So we have
only to control the boundary behavior. Let M and N be the universal covers
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of M and N respectively. Consider the lifting f and @ of f and u respectively.
An easy application of the maximum principle shows that 4 is the solution
of (1.1) with the initial data f. Choose global normal coordinates on N.
Then with respect to these coordinates the map @ .M — N is represented
as @ = (ul,...,u"™), and the initial map f M — N is also represented as
f=("...,f*). Let A': M x [0,00) — R be the solution of the linear
heat/gqgation with the initial value f*, for ¢ = 1,...,n. Let  be the lifting
in M(o0) of a point Z € M(o0), and let z, € M be a sequence of points
converging to Z. Let U be a neighborhood of #. Then for sufficiently large
n, £, € U. Then probabilistic arguments can be cooked up to show that
most Brownian particles originating from z, does not get out of U. In fact,
one can estimate the escaping probability rather accurately to prove that
limp, oo A(Zn,t) = f(:c)
© Define now % : N x N — R by $(y1,82) = $(p(y1,v2)) for (y1,9) €
NxN , where ¢ : R — R is a smooth function such that for some constant

C' > 0 ¢(0) = ¢'(0) = ¢"(0) = 0,0 < ¢'(t) < C', and ¢"(t) > 0 for all
t € [0,00). Note that the condition ¢'(0) = 0 guarantees that 1 is smooth
along the diagonal. It is not hard to prove that

(A - g)gb(ﬁ(w,t), h(z,t))

S0 o5 OR* ORI
2oy Tho™ e 508
> — eS|\ yp)2,

Here, we use the following Lemma 1.5 to control the growth of the Christoffel
symbol T o of N. We then apply the maximum principle technique to prove
that

P(i(z,t), h(z,t)) < Cy {v(w,t) _ eCth|2(z,t)} ,

where v be the solution of the linear heat equation with the initial data
v(z,0) = eC3lf . Now as we mentioned above, out probabilistic argument
shows that v(z,t) converges to eC2lf ®I* as z converges to z. Therefore,
Y(i(z,t), h(z,t)) converges to 0 as & converges to &. Since we have proved
above h(z,t) converges to f(#) as  converges to &, the theorem follows.

As mentioned above, the following Lemma shows how to control the
growth properties of the Christoffel symbol. Its proof is based on the Ja-
cobi equation argument.
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Lemma 1.5. Suppose (N, h) is a simply connected complete Riemannian
manifold such that its sectional curvature K satisfies —k < Secty < 0 and
the covariant derivative of the curvature tensor is bounded. Let (z?,...,z™)
be a normal coordinate centered at a fixed point p € N. Let ds* = hopdz®dz?
be the Riemannian metric. Let I'g, be the Christoffel symbol. Then I'g, =

O(e€7®) on N for some constant depending only on the dimension, the
bounds of the sectional curvature and the covariant derivative of the curva-
ture tensor of N, where ~ is the distance function from p in N.

Remark. This note is based on the lecture at the GARC conference given by
the second author, and the details of this work will be published elsewhere.
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ON THE ROLE OF SINGULAR
SPACES IN RIEMANNIAN GEOMETRY

KARSTEN GROVE

There are many examples of problems in mathematics, where solutions are
found only after enlarging the collection of objects the problem is concerned
with.

Our aim here is to discuss several types of such phenomena in riemannian
geometry, where of course the basic objects are riemannian manifolds.

In general, the right class of spaces to consider will depend on the particu-
lar problem, but is often found by “completing” the class of interest relative
to an “appropriate topology”, or relative to “desirable operations”.

When trying to construct a suitable topology on a class of riemannian
manifolds, one must keep in mind, that its utility is balanced between “hav-
ing easy convergence”, and “getting sufficient structure” on the limit objects.
Another issue, of course, is generality. The so-called Gromov-Hausdorff
topology, introduced in [G1], (cf. also [Pe]), is defined on the class of all
compact (separable) metric spaces, and is coarse enough to satisfy the first
criteria (cf. Section 1). However, in general it does not satisfy the sec-
ond criteria: For example, any compact inner metric space (i.e., a space in
which distances are measured by the infimum of lengths of curves) is the
Gromov-Hausdorff limit of closed surfaces [C]. So far, the largest classes of
closed riemannian manifolds for which Gromov-Hausdorff limits inherit suf-
ficient structure, are the classes of manifolds whose sectional curvatures are
bounded below by an arbitrary, but fixed real number (cf. Sections 1,2).
Specifically, if X is the Gromov-Hausdorff limit of a sequence of (closed) rie-
mannian n-manifolds {M;} with sec M; > k, then X is an inner metric space
with curvature, curv X > k in distance comparison sense, and the Hausdorff
dimension of X is at most n [GP1].

We refer to finite Hausdorff dimensional inner metric spaces with a lower
curvature bound simply as Alexandrov spaces. As we shall see, their impor-
tance to riemannian geometry is not only due to the fact mentioned above,
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(cf. Section 3), but also because there are other natural geometric operations,
which are closed in Alexandrov geometry but not in riemannian geometry.
These operations include taking quotients by isometric group actions and
forming joins of positively curved spaces (cf. Section 4).

By itself, the collection of Alexandrov spaces form a large and interesting
class of spaces. They do not only allow metric singularities, but topological
singularities as well. In fact, locally such a space X, is homeomorphic to a
cone on a positively curved Alexandrov space, and globally X is stratisfied
into topological manifolds [P1,2] (cf. Section 2).

The problems discussed here all deal with relations between geometry and
topology of riemannian manifolds/Alexandrov spaces. Specifically, they are
concerned with questions of the type: How do restrictions on metric invari-
ants of a riemannian M manifold restrict the underlying (differential) topol-
ogy of M? Answers are sought in the form of finiteness theorems, structure
theorems or recognition theorems. Rather than trying to be complete, we
have just chosen a few illustrative examples.

This paper is based on a series of 3 lectures given at the Global Analysis
Research Center of Seoul National University in February 1993. I am grateful
for this opportunity, support and hospitality provided by the Center and H.
J. Choi, D. P. Chi and J. W. Yim.

1. THE GROMOV-HAUSDORFF TOPOLOGY

Without reference to any particular problem, it is natural to ask whether
there are any reasonable topologies on say the collection of all isometry classes
of closed riemannian manifolds.

To get an idea of what seems reasonable, let us consider the following
examples.

Example 1.1. In each of the examples below we will construct sequences of
metrically singular spaces from which smooth examples are easily obtained.

(a) Set M; = S? the unit two-sphere. For each ¢, let M; be obtained from
S? by replacing two antipodal spherical caps of radius,
(1 — 1/i)n/2 by the corresponding euclidean discs of radius
sin(1 — 1/4)7/2. The double of the flat unit disk in R? is a limit
candidate.

(b) For each i, let M; be the orbit space S?/Z;; where the generator of
Z; acts as a rotation by angle 27 /i. The interval [0, 7] is a limit
candidate.
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(c) Let X be the compact set in R? obtained from the unit disc centered
at (0,0) by deleting the open 1/2"+2 - discs with centers at (1 —

1/2",0),n = 0,1,---. For each ¢, let M; be the set of points in R3
at distance 1/i from X C R? C R? x R. The double of X is a limit
candidate.

(d) Set M; = S3, the unit 3-sphere and consider the Hopf action S* x
S$3 — S3. For each i, let M; be the riemannian manifold obtained
from S? by scaling all Hopf orbits by the factor i, but keeping the
riemannian metric unchanged perpendicular to the orbits. The 3-
sphere with Carnot-metric induced by the distribution perpendicular
to the Hopf fibers is a limit candidate.

(e) For each i, let X; C [0,1]® be the grid consisting of points, two of
whose coordinates are of the form p/i,p = 0,--- ,i. If M; is the
set of points in R® at distance say (10:)™! to X;, then the limit
candidate of these surfaces is [0,1]® with distances induced by the
#!-norm.

To accommodate the desire that each of these sequences (a)-(e) above be
convergent with the given candidates as limit spaces, the topology will nec-
essarily have to be fairly coarse. Such a topology was proposed by Gromov
in connection with his celebrated work on groups with polynomial growth
[G1]. In fact, he extended Hausdorff’s classical notion of distance between
compact subsets of a compact metric space, to the situation where no am-
bient space is given: Indeed, if X and Y are compact metric spaces, the
Gromov-Hausdorff distance, dgy(X,Y) between X and Y is the infimum of
all Hausdorff distances between X and Y, when isometrically embedded in

compact metric spaces Z. For Z, it actually suffices to take Z = X II'Y.
Thus

(1.2) dGH(X, Y) = inde(X, Y),

where the infimum is taken over all metrics on X II'Y extending those of X
and Y.

Using (1.2) it is easy to see that dgy is indeed a metric on the collection of
all isometry classes of separable compact metric spaces. It is also not difficult
to verify that the limit candidates of Example 1.1 are indeed limits relative
to the Gromov-Hausdorff topology.

Note that if N C X is an e-net in X, i.e.,

D(N,e) = {z € N | dist(z,N) < ¢} = X,
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then dgu(X,N) < e. In particular, any compact X can be approximated
arbitrarily well by finite subsets of X. If we let

Cov(X,€) = min{n | X is covered by n closed € — balls}

Cap(X,€) = max{n | X is contains n disjoint open €/2 — balls}

the following precompactness criteria due to Gromov are easy to derive (cf.
e.g., [Pe]).

Theorem 1.3. Let C be a class of compact metric spaces. Then C is pre-
compact relative to dgn if and only if the following equivalent conditions
hold
(i) There is a function N : (0,a) — (0,00) such that Cap(X,e) < N(e)
for all e € (0,a) and all X € C.
(ii) There is a function N: (0,) — (0,00) such that Cov(X,e) < N(e)
for all e € (0,3) and all X € C.

This criterion applies to large interesting classes of riemannian manifolds.
For example:

Corollary 1.4. Foranyk € R,D > 0 and integer n > 2, the class R{ (n) =
{M™ |RicM > (n— 1)k, dlam M < D} is precompact.

Corollary 1.5. Forany: >0, V > 0 and integer n > 2 the class MY (n) =
{M™ |injM > i, volM <V} is precompact.

The first of these corollaries follows from the relative volume comparison
theorem (cf. [BC], [GLP] or [Grl]), and the second from a volume estimate
due to Croke [Cr] (cf. [GPW]).

As mentioned earlier, the utility of this topology depends to a large extent
on how much structure is carried over to the limit objects. Looking back at
the examples in (1.1) one might get the impression that little or nothing is
carried over. In fact, the dimension can go down as in (b), go up as in (d)
and (e). Even when the dimension is preserved, the limit space can have bad
local properties such as not being locally contractible, (c).

Nevertheless some metric properties are indeed preserved. First of all,
any Gromov-Hausdorff limit of inner metric spaces is an inner metric space.
Moreover, if for example the a-dimensional Hausdorff measure is bounded,
say HY(M;) < ¢, then H*(X) < ¢ when X = lim M;. Finally, if the sectional
curvatures are bounded from below, say sec M; > k, then the curvature of X
satisfies curv X > k in (global) distance comparison sense ([GP1]).
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Our main concern here is the following class of closed riemannian manifold

CP(n) = {M™ | sec M > k, diam M < D}.

From 1.4 we know that the Gromov-Hausdorff closure CP(n) is compact, and
from the discussion above we know that any X € CP(n) is a locally compact
inner metric space with Hausdorff dimension, dim X < n and curv X > k. As
we shall see in the next section, it turns out that these few general properties
alone are restrictive enough to yield a rich geometric structure.

2. ALEXANDROV SPACES

In this section we give a brief overview of the geometric and topological
structure of Alexandrov spaces, i.e., finite Hausdorff dimensional complete
inner metric spaces with a lower curvature bound in distance comparison
sense: Following Berestowski [B] (cf. also [W]), we say that a metric space
X has curvature, curv X > k if every point p € X has a neighborhood U
such that for any four (distinct) points a,b,¢,d in U, the comparison angles
of a satisfies:

(2.1) < bac+<bad +< cad < 27.

Here the comparison angle, < bac is the angle at d in the triangle (&, b, ¢)
in the k-plane S? with sidelengths equal to the corresponding sidelengths
in (a, b, c). Independent and different approaches to the basic theory can be
found in [BGP] and [Pl]. The local and global structure results are due to
Perelman (cf. [P1,2]).

It is a nontrivial fact, that any Alexandrov space as defined above is locally
compact ([BGP], [P]]). By Ascoli’s theorem this implies in particular, that
any two points in such a space can be joined by a segment, i.e., a shortest
curve or minimal geodesic. Given the existence of segments, there are several
useful equivalent ways in which distance comparison can be formulated. One
of them, “the hinge version” (2.2), gives rise to the notion of angle (2.3):

Two segments c;: [0,¢;] — X,7 = 1,2 with common initial point p =
c1(0) = ¢2(0) in an Alexandrov space X is called a hinge at p. The assump-
tion curv X > k can now be formulated as follows

(2.2) (t1,t2) = < (c1(t1),p, c2(t2)), ti €[0,4;]
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is nonincreasing for any hinge (c1,¢2) in X. The angle between c; and c; at
p can then be defined as

(2.3) (e, 62) = tllgl-l-»o e1(t1), p, c2(t2))-

We are now ready to describe the infinitesimal structure of X. Fix
p € X and let G, denote the set of geodesic germs at p. This is well
defined because geodesics cannot bifurcate in an Alexandrov space. It is
easy to see that (2.3) defines a metric on G, which in general is incomplete.
The completion G, = S, is called the space of directions of X at p (the
unit sphere if X is a riemannian manifold). It turns out, that S, is also an
Alexandrov space and curv.S, > 1. Moreover, dim S, = dim X — 1, where
dim is the topological as well as the Hausdorff dimension (cf. [BGP] or [P]]).
The euclidean cone CyS, on S, is called the tangent space to X at p, and
T,X = CyS) can also be viewed as the pointed Gromov-Hausdorff limit of
the scaled spaces (AX, p), A = oo [BGP)]. Clearly T, X is an Alexandrov space
with curvT, X > 0 and dim 7T, X = dim X.

To come to grips with the local structure, one has to extend critical point
theory for distance functions as known in riemannian geometry (cf. [Gr2],
[Ch]) to Alexandrov spaces. This is done in [P1,2]. In fact, a general local
fibration theorem for m-tuples of distance type functions 1 < m < dim X,
near a “regular point” is established by inverse induction in m, i.e., starting
with m = n and ending with n = 1.

The main results derived from this are:

Local Theorem 2.4. Let X be an Alexandrov space. Then any p € X has
an open neighborhood which is homeomorphic to the tangent space Tp,X =
CoSpX to X at p.

Stability Theorem 2.5. Let X be an n-dimensional Alexandrov space with
curv X > k. There is an € = ¢(X) > 0 such that any other compact n-
dimensional Alexandrov space Y with curvY > k and dgp(X,Y) < € is
homeomorphic to X.

It should be noted that globally any Alexandrov space admits a natu-
ral topological stratification into topological manifolds: the m-dimensional
strata consist of points whose canonical neighborhoods splits off a euclidean
factor (topologically) of dimension at most m. This was used in [GP2] to gen-
eralize the classical sphere theorem in riemannian geometry to Alexandrov
spaces.
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To make further progress in understanding the structure of Alexandrov
spaces it seems necessary to find a stratification, which is more geometric in
nature. This is currently being pursued by Perelman and Petrinin (cf. [PP]).
One also hopes to be able to extend Theorem 2.5 to some kind of “stratified
fibration” theorem when dimY > dim X (cf. Theorem 3.1, [Y1,2], [Sh] and
[Wi]).

It should also be mentioned that the isometry group of an Alexandrov
space is a Lie group [FY].

As we will see in the next sections, the knowledge we have already about
Alexandrov spaces, has strong implication in riemannian geometry. This is
not only due to the fact that the class Ag(n) of Alexandrov spaces X with
dimX < n and curvX > k is closed in the Gromov-Hausdorff topology
and My(n) C Ag(n) (cf. Section 3), but also because there are other
natural geometric operations which are closed in Alexandrov geometry but
not in riemannian geometry. One of these is taking quotients by a group
of isometries (immediate from (2.1)). Another is the operation of forming
(spherical) joins of positively curved spaces. The quickest way to see this is
as follows: Let X and Y be Alexandrov spaces with curv X > 1, curvY >
1. Then CyX and CyY are Alexandrov spaces with curv > 0, and so
is CoX x CoY = Z. Now X xY can be identified with the space of
directions S, ) in Z where p and ¢ are the cone points in CoX and CoY
respectively. Applications of these constructions to riemannian geometry
will be given in Section 4.

3. CONVERGENCE TECHNIQUES

So far, the applications of taking Gromov-Hausdorff limits from the class of
riemannian manifolds with a lower curvature and an upper diameter bound,
hinge on two results: The Stability Theorem 2.5 (or its predecessor in [GPW])
and the following Fibration Theorem due to Yamaguchi [Y1].

Fibration Theorem 3.1. Let N be a closed riemannian manifold with
secN > k. There is an ¢ = ¢(N) > 0 such that for any other closed
riemannian manifold M with secM > k and dgu(M,N) < € there is
7(€)-almost riemannian submersion f : M — N, where 7(¢) — 0 as
e — 0. In particular, if dimM = dim N, f : M — N is a diffeomor-
phism.

Recall that for the class CP(n) of closed riemannian n-manifolds M
with secM > k and diam M < D there is a C = C(n,k,D) such that
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dim H,(M,F) < C for any M € CP(n) and field F [G2] (cf. also [Ls]). To

get more information, consider for example the volume function
vol : CP(n) — R.

For the superlevel sets CEU(n) ={M € CP(n) | volM > v > 0} we have (cf.
[GPW], [P1] and also [F]).

Finiteness Theorem 3.2. For every k € R,D,v > 0 and integer n > 2,
the class CD ,(n) contains at most finitely many homeomorphism types.

- Indeed by 1.4, C,c v(n) is compact. Moreover, since each X € CP (n) is
an n-dimensional Alexandrov space, the claim follows from 2.5.

Note that it is also a consequence of 2.5 that each X € C,Ev(n) is a
topological manifold.

To investigate the extremal case, where M € CP(n) and vol M > sup{vol N |
N € CP(n)} —¢, the strategy is to first find this supremum and then attempt
to classify the corresponding Alexandrov spaces. So far, however, it is only
known that sup{volN | N € CP(n)} < vol D}(D), where DP(D) C S} is
the closed ball in S} of radius D (cf. [GP1]). This problem is a natural
extension of Alexandrov’s classical and unsolved area problem for convex

surfaces in R® [A].
If we replace the assumption diam M < D with

rad M = minmax dist(p,q) < R,
P g

a complete solution to the extremal volume problem was found in [GP3].

Volume Recognition Theorem 3.3. Fix n > 2. Then

a) [0, volS,':] if k>0and R >
b) [0, volD P(R)]  otherwise.

G)  vol(CP(n)) = { 2k

Moreover, if vol M is almost extremal, then

(i) Mi { diffeomorphic to S™ in case a)
i is

homeomorphic to S™ or to RP™ in case b).
The proof follows the strategy described above. Using a volume compar-

ison theorem for non-star-like sets proved in [GP1] (cf. also [D]), one shows
that in case (a) the only possible limit space is Sp~2 x SY(R/7), whereas in
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the second case the space must be of the form D}(R)/z ~ I(z), z € 0D} (R)
where I : 0D — 0D is an isometric involution. From 2.5, however, only the
antipodal map and reflexions are possible, corresponding to singular metrics
on RP™ and S™ respectively. The diffecomorphism claim does not follow
from this argument, but uses the description above together with the pack-
ing radius theorem of [GW] (see 4.6).

In order to fully understand the structure of manifolds M € CP(n) with
volM < €, ¢ > 0 small, it seems necessary to extend 3.1 and 2.5 to the
case where X = N is an Alexandrov space. Note, however, that in general
CP(n) G Al(n) (cf. [PWZ)).

However, using the Fibration Theorem 3.1 and the Splitting Theorem for
non-negatively curved Alexandrov spaces (cf. [GP4] and [ShW]) as the key
tools, Fukaya and Yamaguchi [Y1], [FY2] were able to probe the following
results for manifolds with almost non-negative curvature (cf. also [Wu]).

Structure Theorem 3.4. There is an € = ¢(n) > 0 such that any closed
riemannian n-manifold M with sec M - (diam M)? > —e satisfies

(i) A finite cover of M covers a by(N)-torus, where by(M) is the first
Betti number of M.
(i1) If by(M) =n, then M is diffeomorphic to the n-torus.
(iii) the fundamental group (M) is almost nilpotent.

The volume function is just one natural function which can be used to in-
vestigate the classes CP(n) or CF(n). In principle, any metric invariant which
assigns to a metric space a number, can be used in a similar fashion. When
applied to the classes above, or subclasses defined e.g., as sub/super-level sets
of other invariants, one is lead to investigate extremal problems which either
should give rise to structure results (as in 3.4) or to recognition results (as
in 3.3 and 4.3). The general strategy towards the classification of riemann-
ian manifolds via metric invariants is described in [GM] as the recognition
program. To make any progress in this direction it is of course necessary
to introduce and investigate numerous new and old invariants. As specific
examples of such invariants we mention Urysohn’s intermediate diameters
or widths (cf. [Pe] and [P3]), Berger’s systoles (cf. [G3]), Gromov’s Filling
radius [G4], excess invariants [GP4], extents [GM], packing radii [GM,GW],
etc.

Of course, these basic invariants play important roles in a variety of prob-
lems, and their use in the recognition program has only just begun.
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4. OTHER TECHNIQUES

In the remaining part of this paper we will discuss applications of other
natural operations which are closed in Alexandrov geometry but not in rie-
mannian geometry. '

We begin with the operation of taking quotients by an isometric group
action. Using (2.1) it is trivial to see that if G is a compact Lie group (cf.
[FY1]) of isometries acting on an Alexandrov space X with curv X > k then
X/G is an Alexandrov space with curv X/G > k as well.

Here we will consider the case where X = M is a riemannian n- manifold
with positive curvature, i.e., sec M > 0. The classification of such manifolds
is far from complete and the list of known examples is rather slim. All of
the known examples, however, are constructed by means of groups and it
only seems natural to seek a classification of smaller classes of positively
curved manifolds with large groups of isometries. The fact that M/G is an
Alexandrov space with curv M/G > 0, turns out to shed light on problems
of this type.

If for example largeness is measured in terms of the dimension of a max-
imal torus in the isometry group, Iso M, of M (called the symmetry rank
of M, symrank M = rank Iso M) we have [GS1]:

Theorem 4.1. Let M be a closed riemannian n-manifold with sec M > 0.
Then symrank M < ["'2"1], and equality holds if and only if M is diffeomor-

phic to one of S™, S™[Z;. or cpl"il,

The proof is divided into the cases n = 2m and n = 2m + 1 . The
first claim is proved by induction on m and is based on the simple fact
that the fixed point set of an isometric group action is a disjoint union of
totally geodesic submanifolds. The key point in the second claim is that
if symrank M = ["',;l] then M admits an isometric S'-action with fixed
point set of codimension 2. This is also proved by induction on m . Using
the geometry of M/S* one finds that S* x M — M has precisely one fixed
point component N of codimension 2, that there is exactly one orbit 5 L.po at
maximal distance from N, and that S! acts freely on M — (N U S'py).
Furthermore, since 3(M/G) = N, M/G is the cone on the space of directions
Sp, at po € M/G corresponding to the orbit S1.py (cf. the Soul Theorem
for Alexandrov spaces [P1]). Sj, however, is easily seen to be S. /S , where
S}‘,'; is the normal sphere to the orbit S -py at po and S;o is the isotropy
group of S at py. Combining this with a closer look at the quotient map
M — M/S' completes the proof.
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There is another case related to the Hopf conjecture, where a similar

situation arises (cf. [HK], [K]).

Theorem 4.2. Let M be a closed simply connected 4- manifold with
secM > 0. If symrankM > 1, ie., Iso(M) is not finite, then M 1is
homeomorphic to either S*, CP%, S? x $? or CP*# + CP?. Here only the
first two can occur if sec M > 0.

By assumption there is an isometric S'-action on M. From the topologi-
cal classification of 4-manifolds [Fr] it suffices to show that the Euler character
x(M) = x(Fix S*) of M is bounded above by 4. This on the other hand can
be proved using the geometry of the Alexandrov space X = M/S":

When FixS?! is finite, the argument boils down to estimating extent
invariants of $3/S! (cf. [GM] and [GS2] for other applications). If e.g.,
sec M > 0 one needs to show that Fix S' can have at most 3 isolated fixed
points. Assume on the contrary that po,---,ps are isolated fixed points.
Join py,- -+ ,p3 pairwise by a minimal geodesic in X. There are 4 triangles
in this configuration, so for the total sum of angles we get, Y < > 4, since
curv X > 0. However, Y < < 4 since the sum of angles at each p; is <7
(the space of directions Sp, has 3- extent, zt3 S5, < T since S5, = 5%/S!
and S acts almost freely on S3).

There are other natural ways in which to express largeness of Iso(M)
(cf. , e.g., [S], [GS2]). It is only natural that the Alexandrov geometry of
the orbit space is likely to play a significant role as in the above examples.

An exception of course is the case of homogeneous manifolds, but here a
classification is already known [AW], [Be], [BB], and [Wal.

We conclude with a brief discussion of the significance of the join operation
between positively curved spaces.
Recall that the q’th packing radius of a compact metric space X is defined
by ~

pack, X = max min dist(p;, p;).

1
2 (pl [ ypq) ’<]

For an inner metric space, X, pack, X is clearly the maximal radius of ¢
disjoint open balls in X. Of course

1 .
(4.3) -2—d1amX = packy X > -+ > pack, X > --- = 0.

If X is an n-dimensional Alexandrov space with curv X > 1, a simple
distance comparison argument yield the estimate

(4.4) pack, X < pack, ST
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To determine pack, S in general is an exceedingly hard problem. For
g < n+2, however, it is not difficult to see that pack, ST is realized by the
vertices of a (¢ — 1)-simplex in R?™? regularly inscribed in S} -2,

Using the rigidity comparison distance Theorem from [GM] and critical

point theory for distance functions in Alexandrov spaces (cf. [P1,2]) one can
prove [GW].

Theorem 4.5. Let X be an n-dimensional Alexandrov space with curv X >
1. For each ¢ < n + 2 we have
(i) pack, X = pack, ST, if and only if X is isometric to 5‘1’_2 x E
for some (n — ¢ + 1)-dimensional Alexandrov space E with
curv X > 1.
(i) If pack, X > 7, then X is homeomorphic to S597% x E for some E
as in (i).

Using convergence techniques as discussed in Section 3 one can use 4.5(1)
to prove a diffeomorphism theorem for riemannian n-manifolds M with
secM > 1 and pack,,, M or pack,,; M almost maximal. It turns out,
however that one can do much better (cf. [GW]):

Packing Radius Sphere Theorem 4.6. Any riemannian n-manifold M
with secM > 1 and pack,_; M > § is diffeomorphic to S™.

Note that this result is optimal in the sense that pack,,_; M > T cannot
be replaced by pack,_; M = 7. Indeed, even pack, RP" = pack, ; RP* =
%- Morever, even pack, M about maximal allows collapse to DIY(%).

The proof exploits in an essential way the geometry of the (n + 1)-
dimensional Alexandrov space X = Y, M = S°+ M the spherical sus-
pension on M. Using this geometry together with smoothing theory for
distance functions it is shown that M can be smoothly embedded in R™!.

The equality discussion pack, X = T is difficult even for ¢ < n + 2.

4
In the maximal case, in the sense of (4.3), it is easy to see however, that

diamX < Z if curvX > 1. For pack,,; X = JdiamX = Z there is a
complete classification (cf. [GM]).

Theorem 4.7. An n-dimensional Alexandrov space X with curv X > 1
has pack,,; X = ;diamX = T if and only if X is isometric S}/H for
some finite abelian group H C O(n + 1) of involutions acting without fixed
points on ST.

It is worth mentioning, that the class of spaces in Theorem 4.7 is closed
under the spherical join operation. Also, it turns out that the only topological
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manifolds among these spaces are spaces homeomorphic to S™ or isometric
to RP (see [GM]).

i From the convergence techniques, i.e., 2.5 and 3.1, combined with the
diameter sphere theorem [GS] one therefore gets

Corollary 4.8. There is an € = €(n) > 0, such that any riemannian n-
manifold M with secM > 1 and pack, ; M > § — € is homeomorphic to
S™ or diffeomorphic to RP™.

In view of 4.6, one might hope to be able to replace homeomorphism by
diffeomorphism in this corollary.

N
[AW]
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