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PREFACE

The second GARC Symposium on Pure and Applied Mathematics was
held at Seoul National University from February 4 to 20, 1993.

The symposium was organized by the Global Analysis Research Center
which was founded in 1991 as one of 30 centers of excellence under the sup-
ports of the Korea Science and Engineering Foundation.

The symposium covered a broad range of topics in the fields of mathemat-
ical analysis and global analysis. It was carried out in 6 sessions ; nonlinear
analysis, operator algebras, partial differential equations, topology and ge-
ometry of manifolds, differential geometry and complex algebraic varieties
and several complex variable.

Among them the session of partial differential equations was held in the
form of the first Korea-Japan joint conference. We expect the second joint
conference will be held in Japan next year. We are pleased to express here
our thanks to those participants from Japan whose collaboration made the
conference a successful one.

The GARC symposium was actively attended by more than 200 partici-
pants including 16 foreign mathematicians. This proceedings of three issues
contains research articles which were presented. The content will be of in-
terest both to the members of the Global Analysis Research Center and to
mathematicians working in the various fields of current mathematics.

We wish to express our gratitude to all contributors and especially to those
mathematicians from abroad. We also express our thanks to the Korea Sci-
ence and Engineering Foundation for having made this symposium possible,
to Professors Sage Lee and Hyuk Kim for their endeavor in organizing this
symposium and to Miss Jin Young Bae and Mr. Kyung Whan Park for their
help in editing the proceedings.

Jongsik Kim
Director

The Global Analysis Research Center
Seoul, Korea
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ON THE INTEGRAL ESTIMATES FOR WEAK SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS

DoNGgHO CHAE

ABSTRACT. In this note we review the author’s previous results concerning
the improvements of Foias-Guillopé-Temam’s a priori estimates for the weak
solutions of the Navier-Stokes equations in the periodic domain in R3. More
specifically, we present theorems and the corollaries on the estimates for the
upperbounds for the temporal averages of the Gevrey class norm for the weak
solutions of the equations.

1. INTRODUCTION

We consider the Navier-Stokes equations in a periodic domain Q = (0, L)3:

(1) %—uAu+(u-V)u+Vp=f
@) ' V.u=0
(3) u(-,0) = uo

The unknown functions are u = u(z,t), v = (u1,uz,us3) and p = p(z,t).
The force f and the kinematic viscosity » > 0 are given. We assume that
u,p and f are periodic functions with period Q. For the problem (1)-(3) the

This work was supported partially by grants from KOSEF(K92018), BSRI(N91125),
and GARC-KOSEF.



2 DonGHO CHAE

fundamental result due to Leray and Hopf states that for uo in Vp we have
global in time existence of weak solutions satisfying:

(4) u € L*(0,T; Vo) N L*(0,T; V1)

(3) /OT lu(t)[idt < e(1 +T)

for all T > 0, where the constant c;depends on the data v, f,Q and ug.(See
[C,F], or [T1] for proofs.) Above and in the sequel, V,,m > 0, denotes
a class of periodic, H™(Q)- Sobolev functions. Further descriptions of the
space will be given in the following section. Thus, for almost every ¢ € [0, 0)
the weak solutions satisfy u(t) € Vi, . On the other hand Foias-Guillopé
-Temam[F,G,T] have proved the regularizing effect of the Navier- Stokes
equations by showing u(t) € Vy, for almost every t € [0,00], and for any
large m’s. This follows from their estimate of type:

T
(6) w € Lo (0,T; Vi) | / lu(t)|%m dt < em(1+ T)
0
for all T > 0 and m > 1, where a,, is given by
| 2
(7) m = 2m—1

As one of crucial steps leading to (6) they established and used the fact that
the strong solutions of (1)-(3) (i.e. solutions u € C([0,T]; V1) associated
with initial data ug € Vg , where T, depends on the data ) with regular force
f € L>®(0,T; V) have corresponding regularization properties:

(8) u € C(0,Ty]: Vi) forug eV

In their recent paper [F,T] C. Foias and R. Temam pushed such local in
time regularization for the strong solutions even further up to Gevrey class
regularity. This class of functions will be defined in the next section.

One main result in this paper is an integral estimate of type (6) with V;, re-
placed by suitable Gevrey classes firstly for m = 1 and then, by the induction
procedure similar to one used in [F,G,T], for arbitrary m > 1 by exploiting
this result of local in time Gevrey class regularity and its strengthened ver-
sion. The other of the main results is to use local in time analyticity result
of strong solutions to obtain inegral estimats for the temporal derivatives of
weak solutions.
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2. PRELIMINARIES

It is well-known that (1)-(3) are equivalent to an abstract evolution equa-
tion for u(see e.g. [C,F])

du

9) = T vAu + B(u) = f

(10) u(0) = ug

in a Hilbert space H which consists of solenoidal vector fields in L?(Q)3
with scalar product and norm denoted by (-,-), | - | respectively. The opera-
tor A ( corresponding to the Stokes operator with space periodic boundary

condition) is a linear self-adjoint unbounded positive operator with domain
D(A) C H. B(u) = B(u,u) where B(u,u) is defined by

3

Oug

(B(u,u),w) = Z /QujGTjwkdw
7,k=1

For any m > 0 we denote V,,, = D(A%) where D(A7) consists of functions
u:

(11) u(m) = Z uke%”.k.z/Lvuk € Csyu—k = Ug,up =0,
keZz3
with
(12) k- U = 0
2T omyp2m). 12 m o9
(13) Z(f) |k["" uk|” = A2 ul|® < o0
keZz3

Thus H = V;, and, as usual, we denote V = V;. We will use the notation
|A% u| = |u|m with the roman letters and arabic numbers for the subscripts;
in particular, for the scalar product and norm in V' we will use ((-,-)), || - ||(=
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|- |1). For r,s > 0 given the Gevrey class D(e"™") is a set of functions u
satisfying (11)-(12) and

(14) S B 2 = 74 < oo
kezs3

i
In particular for the scalar product and the norm in D(e™?) we use (-, ), |-
1 ;
|-, while for D(A2e™4?) we use ((+,-))r, || - || with greek letters only for the

subscripts. It is easy to check the (compact) imbedding ,D(e"A%) C Vi,
with o

(15) ‘u|m < cm,a|“|a

for any o > 0 and m > 0. For the combinations we use D(A%e”d) =Vm,r

and IA%e"A%| = |u|m,r respectively.

Now let us recall some facts on the weak and the strong solutions to (9)
- (10). Below T is an arbitrarily given positive number. Firstly, the well-
known Leray-Hopf theorem asserts that for f € L*°(0,T;H) and uo € H
given, there exists at least one (weak) solution u of (9)-(10), such that

(16) u € L*(0,T; H)N L*(0,T; V)
and
(17) Z—: € L3(0,T; V")

where V' denotes the dual of V. For the strong solutions we have the fol-
lowing: Let ¢ > 0 be given, and u(t) € V then there exists unique (strong)
solution u of (9)-(10) such that

(18) C([t, ()} V) N L*(t, Tu(t); D(4))
and

du 2
(19) pr € L*(t,Ti(¢); H)

whrere Ti(+) is given, throghout this paper, by

(20) Ti(t) =

(14 Jlu()]?)?
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with constant c¢; depending on f,v, Q). The following a priori inequality for

the strong solutions, which can be derived from (9) easily (see (3.27) pp.20
of [T2]), is also very useful for us:

(21) DO < e+ )P

where the constant c3 depends on the data f, @ and v. We say that an
interval (¢;,t,) C RY is maximal H™ —regularity interval for solution u if

(22) u € C((t,tr); H™(Q)) and

and there is no greater interval than (%;,¢,) containing this interval and having
the property (22). From the definition itself and the local in time (regular)
existence property of strong solutions one can show easily (see [C,F] or [T2])
that

(23) . litm_0 sup |u(t)|m = 400
We denote
Om = {t € (0,00),3e > 0 such that u € C((t —e,t +€); H™)}

i.e. Oy, is the maximal open set on which H™-regularity holds. The following
lemma was established in [F,G,T].

Lemma 1. Let u be the weak solutions of the Navier-Stokes equations with
uo € H and f € L*>(0,T; Vin—1) ,then we have the following:

(24) 0:=0,, r=12,---,m
and
(25) [0,T]\ O, has Lebesgue measure 0

Concerning local in time regularization effect for the strong solutions of

the Navier-Stokes equations we have the following recent results due to C.
Foias and R. Temam(see Theorem 1.1 pp.361 [F,T]).
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1

Lemma 2. Let u(t) € V and f € L*(0,00; D(e’4*)) for some o > 0,
and u € C([t,t + Ti(t)]; V) with Ty(t) given in (20) be the associated strong
solution to (9)-(10). Then, the strong solution satisfies: The mapping s —

A“z‘e"’(s‘t)A%u(s) from (t,t + Ti(t)) into H is continuous and

(26) #9042 4(s)|2 < e5(1 + u()])
for all s satisfying

(27) t<s<t+Ti(t)

where the function () is defined

(28) | ¥(s) = min{o, s}

and, the constant cs depending on the data v, f and Q.

We will use the function () defined above throughout this paper. Below
we state the temporal anayticity result for the strong solutions, but holding
also for the weak solutions for the set of time in which u(t) € V' [F,T]. This
was obtained for the complexified equations of (9)-(10). By this complexi-
fication we mean we consider complex time ¢ € C, the complexified space
H¢ with the corresponding scalar product and norm, the extended operators
A, B, and the corresponding complexified spaces D(A%)’s and D(e’Aa )’s.

Lemma 3. Let u(t) € V and f € D(e"A%) for some o > 0, and u(§) be
the associated strong solution to (9)-(10). Then, the strong solution satisfies:

The mapping £ — e'/’(Ref—t)A%u(E) from A; into Vg is analytic and
1
(29) sup [le? B4 u ()| < 2(1 + [[u())I*)
EEA,;
where the function (-) is defined in (28). and A; C C is given by

(30) Ar={E=t+se? 0<s Tl(t),——\g—éScOSGSI}
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3. THE MAIN RESULTS

In this section we present our main theorems and their corollaries; the
proofs of those are omitted here, which could be found in [Ch1],[Ch2]. The
first theorem below can be viewed as an integral version of the lemma 2.

Theorem 1. Let us assume ug € H, f € L*°(0,T; D(A%e”A%)) for some
o > 0 and that u is a weak solution of the Navier-Stokes equations. Then u
satisfies

1 T 1
(31) u € L*(0,T; D(e?(MA% ), / |e?®D4% u(t)||2dt < C1(1+ T)
0

for some function ¢(t), continuous on [0,T] and
(32) #(t) > 0 for almost every t € [0, T]

In (31) the constant C; depends on the data v, f,uo, Q.

Remark. Specifically the function ¢(t) constructed in the proof of the theo-
rem is the following:

(33) #(t) = (t — 7(t)) = min{o,t — 7(2)}

where the function 7(-) is defined by its inverse 771(-),

(34) i) = {t+ min{t — I(t),cT1(¢)}t € Oq
tt € [0,T]\ Oy
where I(t) is the left end point of the maximal interval of H'-regularity con-
taining ¢ and c is a chosen constant. Actually, we have {t € [0,T] : ¢(t) >
0} = O4, the complement of which has Lebesgue measure 0 by the lemma 1.
For further detailed description of the function 77!(-) (hence, ¢(-)) see the
next section. We note (32), which makes the theorem 3 below an improve-
ment of the corresponding Foias-Guillopé-Temam’s. The above theorem 1
itself can be viewed as an improvement of the Leray-Hopf’s estimate (5).
Note the above proposition implies immediately that

(35) u(t) € D(AYe# 04T with ¢(1) > 0
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for almost every t € [0,T]. In virtue of the injection relation (15), (35)
implies, in turn, '

(36) u(t) € V, for any m >0

for almost every t € [0,T], Thus the theorem 1 already implies a regularity
in [F,G,T], which is described at the introduction of this paper.

The following theorem is a generalized version of the lemma 2 , which
states that the strong solution becomes further regular locally in time if the
forcing is more regular.

Theorem 2. For any given t > 0 assume u(t) € V and

m— 1
f € L (0,00; D(A™T €°4%)) for some ¢ > 0 and m > 1, then the
associated strong solution u, defined on [t,t + Ty(t)] satisfies: The mapping

loc

m=—1

7 et/)(s—t)A%u(.s) from (t,t + T1(t)) into H is continuous.

s— A

The following theorem can be viewd as an integral version of the above
one.

m-—1

Theorem 3. Let us assume uo € H, f € L*=(0,T; D(A™ ) for some
o > 0 andm > 1 and that u is a weak solution of the Navier-Stokes equations.

eaA%)
Then u satisfies
. 3 T 1
(37) ue L (0,T; D(A2e#04%)), / |42 DA% u(t)|*dt < Cr(1+ T)
0

for all r = 1,2,--- ,m + 1, where the constant C, depends on the data
v, f,u0,Q and r, and #(t) is the same function as in the theorem 1 and o, is
given by

2
T or—1

(38) Qr

Remark. For m =1, r = 1 the above theorem reduces to the theorem 1. On
the other hand, for formal substitution of & = 0, the theorem reduces to the
Foias-Guillopé-Temam’s estimate (6), since ¢(t) = 0 in this case.

Similarly to the corollary 1 in [F,G,T] we can deduce the following:
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1
Corollary 1. Let us assume ug € H, f € L*(0,T; D(e°4*)) for some o > 0
and that u is a weak solution of the Navier-Stokes equations. Then u satisfies

T 1
(39) / 1904} (1) o ot < C(1+T)
0
for the same function ¢(t) as above, where the constant C depends on the

data ug, v, f, Q.

Using the local in time analyticity result of strong solutions in a periodic
domain we obtain the following another generalization of theorem 1.

1
Theorem 4. Let us assume ug € H, f € D(e’?) for some o > 0 and that
u is a weak solution of the Navier-Stokes equations (9)-(10). Then u satisfies

T
@) [ IGHET O P = () < i1+ T)

for all integer k > 0, where the function 7(-) is defined by its inverse as in
(34). In (40) the constant Cy depends. on the data v, f,uq, Q.

The following is an immediate result from the above theorem:

Corollary 2. Let ug and f satisfy the same assumptions as in the theorem 4
and u be the corresponding weak solutions to the 3-D Navier-Stokes equations
in the periodic domain Q). Then, u satisfies

(41) (t = m(£))e?=TO4% (1) € C((0,00); V)

with the same function T as in the theorem 4.

Using the local in time analyticity result in more general boundary con-
ditions and forcing we can obtain:

Theorem 5. Let us assume ug € H, f € H and that u is a weak solution

of the Navier-Stokes equations in a periodic, or bounded domain ) with
O € C?. Then u satisfies

T
(42) I IR - ot < c1+7)

for all integer k > 0, where the constant C}, depends on the data v, f,uo, Q.

Again, by the essentially same arguments leading to the corollary 1 we
obtain:
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Corollary 3. Let ug and f satisfy the same assumptions as in the theorem 5
and u be the corresponding weak solutions to the 3-D Navier-Stokes equations
in the periodic, or bounded domain Q with Q € C?. Then, u satisfies

(43)

[Ch1]
[Ch2]
[C.F]
[F,G,T]
[F,T]
8]

[T1]

[T2]

(t = 7(t))u(t) € C([0,00); V)
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FREE BOUNDARY OF EVOLUTIONARY
P-LAPLACIAN FUNCTIONS

Hi Jun CHOE

1. INTRODUCTION

We study the free boundary problems involving the evolutionary p-Laplace
equation

(1) ug — div (|VuP?Vu) = ug — Apju =0, p> 2
in R™ x (0,00), n > 1, with a nonnegative initial datum
u(z,0) = uo(z)
of compact support.
Since we are assuming p > 2, the equation (1) is degenerate when Vu = 0.
Hence we need to consider a weak solution. A function u(z,t) satisfies the

followings:
For any T > 0,

T
/ / w?(z,t) + |Vul? dzdt < oo
0 n

and

T
/0 /n u%—? — |Vul|P~?Vu - V¢ dzdt + /l;n uo(z)p(z,0) dz =0

for any continuously differentiable function ¢ with compact support in R" x
[0,T). The unique solvability of our Cauchy problem in R" x (0,T) follows
from Theorem 1 and 4 in [12].

This research is supported in part by Korea Ministry of Educations and GARC-KOSEF

11
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For the porous medium equation
vt—A(vm)=0, m>1

various results for the interface are known. Assuming the initial datum vo
has compact support, the interface consists of two parts -a moving boundary
and a nonmoving boundary - and the support (t) = {z € R™ : v(z,t) > 0}
is monotonically increasing. Furthermore, the regularity of interface has been
investigated by many authors(see [1], [5], [6], [7], [16] and etc.).

Here, following a similar argument to [5] and [7] we study the interface
questions for the evolutionary p-Laplace equation (1). We define

A = {(z,t) € R" x [0,00) : u(z,t) > 0}

Q(t) = {z € R" : u(z,t) > 0}
I'(t) = the boundary of Q(t)

and

Hence T'(0) is the boundary of {z € R" : up > 0}.
In section 2 we consider the initial behaviour of the interface. When the
initial datum wug satisfies

(2) uo(z) > c[dist(z)]7~7

where dist(z) = distance(z,T(0)), then Q(t) is strictly increasing initially.
On the other hand we show that (2) is sufficient for strict monotonicity of
the set Q(t). In fact we show that if there is a supporting hyper-plane P at
Zo € F(O) and

uo(2) < cldist(@)]", 7> =5,

then there is a positive time 7 > 0 such that
u(z9,t) =0, forall0 <t <7

and hence the interface does not move at zo for a short period. There are
corresponding results for porous medium equations(see [16] for one dimension
and [5] for higher dimension. Finally we find an integral expression which
describes the pointwise behaviour of the interface. In fact we use the Harnack
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type inequality and an integral estimate by DiBenedetto and Herrero([12])
and obtain a necessary and sufficient condition for moving point.

In section 3 from the Harnack principle and the maximum principle we
prove Holder regularity of the interface. First we show that the interface con-
sists of two parts- a moving part I'; and a nonmoving part I';. In particular,
if the interface I' contains a vertical line segment o = {(z,t) : z = zo,% <
t < t1},0 < tg < t;, then the entire segment {(z,t) : z = 29,0 < t < #;}
belongs to I'. Following an iteration method we show that if (zg,t9) € T
does not lie on a vertical line segment belonging to I, then I' N {t = 7}
increases at a rate > (7 —to)* for 7 > to, 7 —ty small, |z — z¢| small, for some
p > 1. Solutions of porous medium equations show the same behaviour(see
Theorem 3.2 in [5]). Therefore the Holder continuity of the interface follows.
Here, the Harnack principle is a main tool in showing the above results.

2. THE BEHAVIOUR OF THE INTERFACE AT ¢t =0

In this section we study the initial growth rate of the interface. We show
that I'(¢) is increasing, if the initial datum near I'(0) satisfies a certain integral
criterion. ‘

Following an argument similar to Knerr([16]), it is shown that the Holder
exponent of Vu is critical in the behaviour of interface. Suppose z( is on
['(0). Constructing a sequence of subsolutions near interface, we prove that
if

uo(2) > [dist(z)]7~7

for some vy < p, then the interface is moving near zy. Otherwise, the interface
does not move for a short period.

Lemma 1. Let I'(0) be of C?. Suppose that Bg(0) C (0) and Bg(0) N
I'(0) = {zo}. Furthermore, we assume that

(3) uo(z) > |dist(z)] 72
for some v < p. Then we have
u(zg,t) >0

for allt > 0.

proof. Without loss of generality we may assume that

p—1l<y<p.
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Let g(r) = (R —r)", where n = -2;7. Note that 7 > 1 and this is crucial for
the following argument. Since we are assuming

Bgr(0)NT(0) = {zo},

we see that

|£L'0‘ = R

Now we choose a sufficiently close to R such that

n—1+1im-1(p-1)

R < a< R.
n—1+n-1)(p-1)

We find s satisfying

' —1_ 1 g(a)
— —n(R—g)"1 =2
§(8) = —n(B -yt = 2 L
and set Z by
~ To
Z=s—:.
|o|

Since g is a convex function and gl(R) = 0, it is always possible to choose
such s. We set s; = s. Define recursively

s _ Sk + R
k1=
for k=1,2,3,... and
To
Tp = Spg—.
|0

We define a supporting cone T} at (&, g(|Zx])) as
Ti(x) = g(sk) + (R — sx)" (s — lz])-
We see that
Ti(0) = g(sk) +n(R — sx)" s

Moreover when

9(sk)

el = sk + SR T

1
=sk+;7-(R—3k)E§k,
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we find that
Ti(z) = 0.

Since ¢(s) is convex near R, we conclude that

Ti(z) < g(l2])

15

for all z € Bg(0). We also observe that Tj(0) decreases monotonically as k

goes to oco.

Now we are ready to construct comparison functions which are subsolu-
tions to (1). Since the maximum principle holds for solutions of (1), we can

assume

uo(z) = u(z,0) = [(R—|z)*]"

without loss of generality. From a result of Lieberman(see [19]), if Vuq is
Holder continuous, then Vu is Holder continuous up to ¢ = 0. Hence it

follows that
u(z,0) = div (|VuP"2Vu)

_ —1)(p—1)— n—1
=77 (R =)V (= D(p - 1) = T (R leD)| 20,

if )
n—

R <|z| < R.

G-De-Drn-1 <=
Recall, from the choice of a.
n-l R<a<R.

(n-DP-+n-1 7
So we see that there exists 7 > 0 such that
u(Z,t) > 0, for all t € [0,7),

where T = a2%.
[zol

Now we consider a family of functions {fi(z,t)} given by
Fi(z,t) = oft + ar(8i — |2), if |z| < 8 + af ¢

and
fr(z,t) = 0, otherwise,
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where ax = (R — sx)""!. Note that fy(z,0) = Tk(:v). We define

uk(z,t) = [fi(e, )],

where ¢ = ];%. Then after suitable calculation we have that

(ur(z, 1)), = gaf [aft + ax(8k — |2])]"

and

div (|Vug[P7?Vuy) = ¢Paj [oft + ak(3x — L)

~ar g ot + an(e — )
Thus we have
(uk(z,t)), — div (|Vuk|P—2Vuk)
= of [0}t + ax(5k — [2])]" -
(q ¢+ | | ~ odt + a5k - le)]>
Therefore if
0=+ B [ G lel)] <

that is,

¢~ (n —1)(ah 't + &)
g?+¢*7(n—1)—¢q

|z 2

then uj is a subsolution to (1) and
(uk(z,1)), — div (|Vug[P~?Vuyg) <0.

We note that
uk(zo,t) =0, forall 0 <t < 7

with

1 .
Tk = P—1 (R - Sk).
g



FREE BOUNDARY 17

Hence we find that

) . »~ . R — 34
— —_ <
khm Tk khm ai_l (R—-3k) < khm (R §k)ﬂ—1]”'1
. 1 . \p—n(p—1
= khm = (R —3;)p~e=1) =0,

since
R>35,>s,andp—n(p-1)>0.

From a direct computation it is rather simple to see that
fk(.’i, Tk) = ak(R — |.'i|) = Olk(R - a)

and since a; < a; for all k > 2 it follows that from the choice of s,

1 1
fu(@, ) < @ (R = a) = 3(a) = 34(l2]).
Now recall
p—1

=—>1
q p—2>

and
u(Z,t) >0, forall0 <t < 7.

Théréfore we conclude that for R <1
1
ui(2,1) = fu(@,t) < g(l2]) < wi(z,1)

for all 0 <t < 7, since

uy(z,t) >0, forall0 <t < 7.
Recall uj is a subsolution to (1). Consequently from the comparison principle

1

uf (20,) = fi(@o,1) < ui (20, 1)

for all 7, <t < 7 and since

jyre=o
we conclude that :
u((l?o,t) >0

forallO<t< .

Now we prove a lemma which is a converse to Lemma 1. The growth
condition (2) is almost sufficient for showing that the interface is moving at

(1170,0).
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Lemma 2. Suppose that zo € T'(0) and there is a supporting hyper-plane
P in R" such that zo € P and Q(0) lies completely in one side of P. If

4) uo(2) < [dist(z, T(0))] 77 ,
then there is a small positive constant T > 0 such that
u(zo,t) =0

forall0<t<T.

proof. We find a supersolution bounding u. Since the partial differential
equation (1) is invariant under translation and rotation for the space vari-
able z, we assume that o is origin, P = {z € R" : z, = 0} and Q(0)
is contained in the upper half space. We notate z = (:c',mn) and hence

T = (1, T3, .., Tn—1). Since ©(0) lies in the upper half space, we have for
each z € Q(0)
dist(z,T'(0)) < z,

and from the assumption (4)
i .
ug(z) < zi™?.
We choose M so that
M > u(z,t)

for 0 < t < T,, where Ty, is a fixed positive time. We define d = diam((0)),
then ug(z ,z,) = 0 on 8B, (z ) x (0,d) and ug(z',0) = 0, where B)(z') is the
n — 1 dimensional ball centered at z with radius d. By direct computation
we have

is a solution to (1), where

- (55 2)q 2 e

Fix 6 > 0. Now we take T so small that

P
b (—) > 2M.

T
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Hence we obtain
w(z,0) > uo(x)

and
w(z,t) > M

for all (¢,t) € By(z') x {6} x (0, T). Therefore from the comparison principle
we conclude that
w(z,t) > u(z,1)

for all (z,t) € B:i(a:l) x (0,6) x (0,T) and in particular
w(0,t) = u(0,t) =0

forall0 <t <T.

Now we find an integral expression which describes the initial behaviour
of the interface. From the Harnack type inequalities we prove the following
theorem which implies Lemma 1 and Lemma 2.

Theorem 1. Define
I(z) = sup R~ %7 / uo(y)dy.
R

Br(zx)

Given z € R™ we have u(z,t) > 0 for all t > 0 if and only if I(z) = oo, that
is,
Ne>o2(t) = {z : I(z) = o0}.

Moreover there exists a constant ¢ = ¢(n,p) > 0 such that u(z,t) = 0 for
every (z,t) such that
0<t<cl>P(z).

proof. Suppose I(z) = oco. From the Harnack principle(see Corollary 1 in
[9]) we have that

(5) R /B ( )uO(w)d:c <c (t'rl“z +t%R"“‘;LLzu(x,t)4—)—" L=t ’”’) .
R\T

Hence if u(z,t) = 0 for some ¢ > 0, then

I(z) < et 72
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and this contradicts I(z) = oo. _
Now we assume I(z) < co. From Theorem 1 in [12] we know that

supu(z,t) < ct~ % prz (IR(:I)))%
Bﬂ
for all p > R > 0 and 0 < t < T(R), where
Ip(z) = sup p~ "7 / uo(y)dy
p>R B,(z)

and

T(R) = c[I(z)] 7.
Taking R — 0 we are set.

3. HOLDER REGULARITY OF THE INTERFACE

We show the interface is a Holder continuous graph as a function of z.
The Harnack principle, which is proved by DiBenedetto([9]), is a main tool.

Theorem 2. (Harnack principle by DiBenedetto) Let u be a nonnegative
weak solution of (1). Let (zq,t9) € R™ x (0,T) and Bg(zo) be the ball of
radius R centered at zo. We assume u(zg,to) > 0. Then there are constants
¢o and ¢y depending only on n and p such that

6 ,t0) < inf ,to +6),
(6) u(zo 0)._002651;(“)“@ 0+96)
where

ClRp

" [u(zo, to)” Y
provided to > 6.

For the proof of Harnack principle, the fundamental solution ®; , to (1)
plays a central role(see [9]):

—_ 7 -1 | P~
B (x,t;%,1) = kp"S(t)"* |1 - (lm ?') ,
sor) |,

where

S(t) = (vo(n, p)kP~2p"P"D(t — 1) + p"), t > ¥,
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p \"
'WWJﬂ=K(p_2) , k=n(p—2)+p.

Considering the above fundamental solutions, we can show that if Q(0) is
compact, then W is compact for all ¢ > 0. Moreover an integral estimate
independent scaling follows from the Harnack principle and we omit the
-proof(compare with Corollary 1 in [9]).

Lemma 3. For all R,0 > 0 such that Q2r(6) C R™ x (0,00) there holds
(M) |

_1 uP(z,tp)dz < B (E>;ﬁ+ (i>n[ inf  u(zo,t +9)]'c
|BR(:E0)' Br(zo) e - 0 Rp z€BRr(z0) 0,70

for some positive constant B depending only on n and p, where the cylinder

Q2r(0) is defined by

Q2r(0) = Byr(o) x (to — 6,t0 +0),

and
k=n(p—2)+p.

For the Harnack principle the condition that p > 2 is rather critical. As

2n

iz <m< 2 and u be the solution to a

the following example shows. Let
Dirichlet problem

ug — div (|Vu|™"?Vu) = 0 in Bg(0) x (0, 00)
with initial boundary condition u(z,0) = ue(z) > 0 for all £ € Bgr(0) and

lateral boundary condition u(z,t) = 0 for all (z,t) € dBr(0) x (0,00). Then
there is a finite time T depending on ||ug||r2 such that

u(z,t) =0, for all (z,t) € Br(0) x (T, o).

So we can not expect Harnack principle of the form (6).
The monotonicity of the interface follows immediately from the Harnack
principle.
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Theorem 3. (t) is monotonically increasing, that is,

Q(tl) C Q(t2), if0 < t; <ts.

proof. Let zo € Q(t1), then
u(zg,t1) >0
and there exists a small ball Bg,(zo) C £(t1). Define

C1 Rg

6o = — 0
[u(zo,t1)]"”

and we assume R is sufficiently small so that
t1 2 90.

Hence from the Harnack principle we have

) < inf 1+ 0
u(zg,t1) < ¢o zellan(xo) u(z,t; +6)
for all R < Ry, where

ClRp

" [u(zo, t)PP Y

Now if
ty <ty + 6o,

té,king R sufficiently small we have
(8) u((lfo,tl) S cou(x,t1 + h)

for all 0 < h < 6,. We observe that since p > 2, p goes to oo as u(zo,?1)
goes to 0. By the maximum principle u is bounded and 6 > € for some fixed
positive number &. Therefore if

ty >ty + 6o,

we can iterate (8) and we obtain

u(zg,ty) < c(’fu(w,tg)
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for some k. Therefore
u(.’l,'o,tg) >0
and zo € Q(t2).

Indeed following an argument of Benilan and Crandall([3] and [11]), Theo-
rem 3 can be proved without referring to the Harnack principle. We can show
that the unique solution v with initial datum v(z,0) = /\F%Tuo(m), A>0is
given by

v(z,t) = /\P_lﬁu(a:, At).
If A > 1, then v(z,0) > u(z,0). Hence from the comparison principle we
have u(z,t) < v(z,t) for all (z,t) € R® x (0,00). Choosing A =1+ 2 for
small positive number h, we obtain

u(z,t + h) — u(z,t) = u(z, At) — u(z,t) = /\ﬁv(a:,t) —u(z,t)

> (/\7}7‘ - 1) u(z,t).
Dividing by h and sending h to 0, we conclude that
1 wu

and this implies Theorem 3.

Now considering Theorem 1 we can not expect that §(t) is strictly in-
creasing. Indeed, if the interface contains a vertical segment, this segment
goes all the way down to t = O(see [5] and [11]). This phenomena appears

for the porous medium equations too. Define a cylinder Q%(z,t) by
Ql(z,t) = Br(z) x (t,t +h).
Following a Moser type iteration method we have a local maximum principle.

Lemma 4. Suppose u(z,ty) =0 for all ¢ € Br,(zo). Then we have

1

©) ) e ra:)
9 sup uSc(——) uP dz
Q' (zosto) B3/ \|1Qk,(20:t0)l Jai, (zo,to)
2

for some ¢ depending only on n and p.

Since the proof of the lemma 4 follows from the assumption u(z,tp) = 0
for all x € Br,(zo) and a standard iteration, we omit the proof.

Under the assumption of Lemma 4 that u(z,ty) = 0 in Bpg,(zo), it is
shown that if the input of the total mass is small, the speed of propagation
of the mass is small. Here the Harnack principle is a main tool.
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Lemma 5. Suppose that u(z,ty) =0 in Bpg(zo). Let h <t—2°- There exists
a large constant c such that if

P
1 1 (RP\7
—_— uP(z,tg + h d:cg—(—) ,
Bao)] Jogey 0 TM eSS

then
u(z,t) =0

in B%(xo) X (to,to + h)
proof. From the maximum principle(see Lemma 4) we have

A\:
supu_<_c(—R—P) supu?.
Q"% Q%

Let z € B%(xo), then B%(:z:) C B%(xo). Set Ry = ;ﬁ,—,k =1,2,3,..., then
we have

1
2
Mk+1 S C <2kp1_:’;) Mk%’

where My = supgs_ u. Since we are assuming £ > 1, we obtain
2

M — 0, ifM1<—°—"_:

for some c. In other word if
' P\ 73
(10) supu < 1 (R—> !
Qh C h
&
for some large c, then
u(z,t) =0

foralltg <t<to+handallze B%(zo).
Now we show (10) is true if

P

1 1 (RP\ 77

—_— uP(z,to + h da:S—(——) ,
Bro)] Jogey B0 TM e,
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for some large c. From the Harnack principle we get
(11) u(z,t) < cu(z,to + h)

for all tg < t < to + h and all z € Bgr. Considering the maximum principle
(9) and the Harnack principle (11) we have

. L

A\Z[ 1 ?
supu < ¢ (—-—-) —_— u? dz
@y Rp (lQ'z'zl Qb

1
h\? 1/‘°+" 1
<c|—=— - dt — uP(z,t) dz
<e() [h o TBal Jp, Y
1

1
<c(i>2[—1— uP(z,t -l~h)d:1:]2

[0

for some c¢. Hence if

P _
1 1 /RP\ 72
- P(e,to+h) de < = [ 2=
Bal /5, &0+ R x—c(h>

for some large ¢, we obtain

1
h\?1 (Rr\TD
= <ecl—=—) ==
i =swuse(z) 2 ()
7

(BT
“c\ h

u(z,t) =0

This implies

for all (z,t) € Br X (to,to + h) and we completes the proof.

As in the case of porous medium equations we prove that the interface
consists of moving part and nonmoving part. We prove this by contradiction.
We refer ([5]) for the porous medium equations.
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Lemma 6. T, UT, =T

proof. Suppose the assertion is not true. Then for some (zo,t0) € T, there

exists t; and t; with 0 < #; < t; < o such that
u(z,t,) =0, for z € Br(zo)

for some R > 0 and )
sup u(z,tz) > 0.
B_}.}(Io)

Furthermore without loss of generality we may assume that

_tg— 1y
Tty —t

S

is sufficiently large. Hence from Lemma 5 we conclude that

_»_
1 1 P -2
_ uP(z,tz) do > - ( il )P
|Br(z0)| JBRr(zo) c\t2—ty

and

_2_
1 — -2 P -2

—_— uP(z,t2) d:vz—l-(to t2>p ( R )p .

|Br(z0)| JBg(z0) c\t2—t to — t2

Now we recall Lemma 3 and obtain

1 (to—t\72 [ RP \7 1
d — . uP(z,t3) dz
c \ty — 14 to — t2 |BR(x0)I Br(zo)

£
RP p-2 to — 1 "
< K
—c[(to—tz) +( TP ) u(2o,t0) ] :

Thus if -:-Q—:—:z is large enough, then have
2 1
i .

to""t2 " K RP p-2
( Rr ) u(zo,0) Zc(to—tg) >0

and this contradicts the fact that (zo,t9) € I' and u(zo,%0) = 0.
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Lemma 7. I'y is relatively open in T and ' is relatively closed in T.

proof. We need only to show that I'; is close. Let (zg,t9) be a limit point of
I';, then there is a sequence of points (zx,tx) € 'y such that

(zkstk) = (20, t0)-

Since zx € I'(0), we note that o € I'(0). From Lemma 6 we know that
I'y UT,; =T'. Therefore we conclude that

(zo,t0) € T.

Now we prove that the rate of the growth of I'; is Holder continuous.

Theorem 4. Suppose that (z¢,t9) € I'1, that is, the vertical segment does
not contain any point of I'. Here we assume ty is a certain positive time.
Then there exist constants ¢, h and o such that

u(z,t) =0, fortg —h <t <ty and |z — zo| < c(ty — t)*

and :
u(z,t) >0, fortg <t <to+ h and |z — zo| < c(to —t)*.

proof. Let t; < ty be fixed and h = t; —t;. We know that, from Lemma 6,
there exists R such that Bg(zo) N Q(¢;) = 0, that is,

u(z,t1) =0, for all z € Br(zo).
Let t = t; + 6h, where § is fixed later. From Lemma 5, we see that if
dist(zo,2(t)) < dR,
then

1
[Ba-a)r(20)l JB1 _4)r(a0)

b

(1—dyPRr]52
6h

uP(z,t) dz > % [

where d < i is a small number fixed later. Thus we obtain

-

1 1(1-d)*(1—d)¥s [RP

— n — p—-2 p—2
—_— uP(z,t) dz > - .
|Br(20)| JBr(z0) (=2,¢) §73 [ h ]

[
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Again as in the proof of Lemma 6 we have

P
p—-2

1
< —_
- IBR(xO)I Br(zo)

£ n
RP p-2 to—t "
o[ (5

o) () ]

where B is the constant appearing in (7). Hence we obtain

1(1-d)(1- Y= [E’l}

- uP(z,t) dz

C 6p—2

B

11-dr@-d#s B (By-z
c 5§73 (1 —5)# h

<B ((i“_‘i)_")"u(wo,toya

Rp
On the other hand if é is small and d is near 0, then

11-dra-d*s B

>0
c 572 (1-—8)52

and this contradicts the fact that
u(a:o, to) =0.

Thus we have

dist (z0,I'(t)) > dR.
We set d = (1 — §)*. Hence we have

dist (zo,T(to — (1 — 6)h)) > (1 = 8)°R.
Repeating the above process with ¢; = ¢, we obtain

dist (zo,T'(to — (1 — 6)%h)) > (1 - 8)’*R.
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In a similar way we can iterate the above process for all k¥ > 1 and we
conclude that

dist (zo,T(to — (1 — 6)¥h)) > (1 — §)**R

for all k. Varying h we conclude that

dist (z0, T(t)) > (t"h_t)aR

and this completes the proof for the first claim. The second claim can be
proved in the same way.

From Theorem 1 we know that if
uo(z) > [dist(2)]7°7, v < p

for all z € (0), then I' = I';. Moreover Theorem 4 implies that the interface
is given by a function

t=S5(z)
and if S(z¢) > no, for some fixed no > 0, then

1S(z) = S(z0)| < clz — zo|=.

for some ¢ depending on 7. Hence I'(t + h) is contained in the (ch%)

neighborhood of I'(t) for A < 1. Now we find a bound for the Holder exponent
of the expansion rate of the interface.

Theorem 5. For any 1y > 0 there exists a positive constant ¢ depending
only on p,n,ny such that for any t > 19,0 <6 <1

['(t + h) is contained in the (ch%) neighborhood of T'(t).
proof. Suppose that u(zg,t9) = 0 and dist (zo,I'(¢9)) = a. Let

q9
)

o(z,1) = A ([a”(t —to) + al|z — zo| — b)]+)
where ¢ = I;’—:—% and o and b are decided later. Observe that

(¢g-D(-1)=g¢
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From a direct computation we obtain

vy — div (|Vo|P72Vv)

= xqe? ([o(t — to) + a(lz — 20| = D)) =

_yp-2gp-1 _ yp=2g-2 (M= D o —zol =0T
(1 AP~%q AP~%q a|$”$0|[a (t —to) + a(|lz — zo| — b)]" ).

Thus if

1— AP72gpmt — \P2gP |(wn —asl)l [O‘p—l(t —t0) + (lz — zo| — b)]+ >0,
— Zo

that is,

-1
(12) 32gp~1 4 AP—zqP-I‘im"T—O)—I [a?~2(t — to) + (Jz — 2ol = B)] T < 1,

then v is a supersolution.
Now we take a and b such that

M
a0 _ b)Y —
a(a =) = =,
where

M = supu.

With this choice of a, A and b we find that v(z,t) > u(z,t) for all z, |z —zo| =
a and ¢ty < t < t;, where t; is a certain fixed time. By the usual comparison
principle we see that

u(z,t) < v(z,t)

for all ¢ € B,(z0) and ¢ < t < t; Note that the interface of v(z,o + h) is
decided by
|z — 20| =b—aP A

1 /M\7
TMN et
a(/\> aP ™ h

We take a satisfying

and hence

Q

|
/N
>
N——
-
/N
>~ g
N—
2}
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Therefore the interface of v(z,t + k) is

1
Ix—$o|=b-a""1h=a—l(¥—)q —a?'h

a4

=a—2 (%) " R,

Taking A so small that

AP2gP=l 4 /\”_2‘1?—1‘(‘71‘:“1% [aP=1(t —t0) + (le — zo| - bt <,

|z — 2

we see that ['(¢p + h) is contained in the ch?® neighborhood of I'(%).
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ON THE VARIATIONAL INEQUALITIES FOR
CERTAIN CONVEX FUNCTION CLASSES

Hi JuN CHOE AND YONG SUN SHIM

ABSTRACT. The existence and the C1 regularity of the weak soluti on to
the variational inequality

—(ai(zauyvu))xi - (g;(:c,u))x.- + b(:lt, u,Vu) >0

with respect to a closed convex function class is proved. For the r egularity, we
used the fact that the regularity for the viscosity s olutions to the Hamilton-
Jacobi equations implies the C1' interior regularity of the solution to the
bilateral obstacle pr oblem which in turn gives that of the solution to the
variational i nequality.

1. INTRODUCTION

In this paper we consider quasilinear variational inequalities for certain
convex function classes. We show the existence and C1* regularity for the so-
lutions of nonlinear variational inequalities with some general constraints on
functions and their gradients. Such a variational inequality arises in elasto-
plasticity and optimal control problems. As a canonical example we might
consider a minimization problem such that

min/ |Vul> — fu de
Q

with respect to a function class K = {u € Wy'*(Q)+uo : G(Vu) < 0}, where
G is a convex function.

Brezis and Stampacchia[Brl] considered the case G(A) = |A|? — 1 and
proved W2?P regularity for solutions. We also recall that Gerhardt proved
W?2P regularity for a quasilinear operator. In [Evans] Evans studied the

This research is supported in part by GARC-KOSEF and Korea Ministry of Education

33
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problem of solving a linear second order elliptic variational inequality with
a function class K = {|Vu| < ¢} for some smooth function g. He proved
W?2?P regularity for solutions and W% regularity for restricted cases. His
result for W2 regularity was extended later by Wiegner[Wieg]. On the
other hand Ishii and Koike[Ish] considered the existence and uniqueness of
the solutions of the variational inequalities of the forms which are considered
by Evans. Caffarelli and Riviere[Caff] proved W% regularity for elasto-
plastic problem such as the canonical example using apriori estimate on the
free boundary. Finally Choe[Choe] showed W2 regularity for a quasilinear
operator without nonhomogeneous term under some general setting on the

constraint.
Now we state the problem. Let @ C R™ be a bounded domain with C?

boundary. Let
G(A):R" >R

be a C? convex function and strictly convex on A such that
(1) [Gai(A1) = Gai(A2)] [A1,i — Az,i] 2 c] A1 — Aqf?

for all A;, A, and for some positive constant c. Let uo be a C%(Q2) function
and

G(Vue(z)) <0
for all z € Q. We define a closed convex function class K by
K = {v e Wy*(Q) +uo : G(Vv) < 0}

that is nonempty since uo € K.
Suppose that {a;,7 = 1,...,n} are functions

ai(z,u, A): AXxRxR*" =R, i=1,..,n

satisfying
i) ai(z,u, A) are Holder continuous in z for all (u, A), that is,

Iai(IL',u,A) - ai(yaua A)I S CIIB - y!a

for all z,y € Q, for some a > 0, ¢ and for all (u, A) € R x R"
ii) ai(z,u,A) are Holder continuous in u for all A and for all z € 2, that
s,
lai(z,u, A) — ai(z,v, A)| < cJu — v|*
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for some a > 0, for some ¢, for all A € R", and for all u,v € R and
for all z € Q

iii) ai(z,u,A) are C! function in A € R™ for all u € R and for all z € Q
with the ellipticity condition

ai,Aj (SII, u, A)é'l{] Z ’\|£|2

for some positive constant A and for all z € 2, for all u € R and for

all 4,¢ € R,

Note that we don’t assume any growth condition on a; as |(u, A)| goes to
0.
Suppose that

gi(z,u) : QA xR-R, :=1,2,...,n

are Holder continuous such that
lgi(z,u) — gi(y,v)| < c(|Jz —y|* + |u—v]|*), i=1,...,n.

for some ¢ and for some a > 0.
Also suppose that

b(z,u,A) :R" x Rx R®* = R

is bounded if |(u, A)| is bounded, that is, if |(u,A)] < M, then there is a
constant ¢(M) such that

|b(z, u, A)| < (M)
for almost all z € 2. We say that u € K is a weak solution to
(2) —(ai(z,u, Vu))s, — (gi(2,u))s, + b(z,u, Vu) > 0
if u satisfies

/s; ai(z,u, Vu)(v — u)z; + gi(z)(v — u)z; + b(z,u, Vu)(v —u)dz >0

for all v € K.
The following theorem is our main result in this paper.
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Theorem 1. There exists a weak solution u € K to (2). Furthermore
u € C1*(Q)

for some a > 0.

We describe the outline of the proof. For the proof of C1'* regularity in
theorem 1, we employ a comparison method suitable for using Campanato
space. To show the interior regularity we consider a comparison function
which is a solution to a very nice differential operator with the same type
of constraint. The existence and uniqueness property of the comparison
function follows from the monotone operator theory. For the regularity of
the comparison function we consider a bilateral obstacle problem where the
obstacles are defined by the solutions of the vanishing viscosity equations.
Sending the viscosity term to zero, we conclude that the bilateral obsta-
cles converge uniformly to the viscosity solutions to certain Hamilton-Jacobi
equations. In fact, the Perron process for the viscosity solutions to Hamilton-
Jacobi equations, discovered by Ishii[Ishii], characterizes the upper and lower
envelopes for the function class K. Furthermore, the semiconcavity and semi-
convexity regularity for the viscosity solutions to Hamilton-Jacobi equations
is translated to C1'® regularity in the interior to the solutions of the bilateral
obstacle problems. We then use a maximum principle to show that the solu-
tion to the bilateral obstacle problem, where obstacles are characterized by
the viscosity solutions to certain Hamilton-Jacobi equations, is the solution
to the variational inequality with a nice differential operator. Now the usual
comparison argument shows that the solution to (2) is C* in the interior.

Near the boundary, similarly, we follow a comparison argument in which
comparison functions come from the variational inequalities with a nice dif-
ferential operator. We show by the maximum principle that the solution to
the variational inequality with respect to K is the solution to the bilateral
obstacle problems. For the regularity of the comparison functions, we use the
fact that near the boundary, the viscosity solution to Hamilton-Jacobi equa-
tion can be characterized using the characteristic method if the boundary
and the boundary data are smooth enough, that is C2. Hence C? regularity
for the viscosity solutions near the boundary follows immediately. Conse-
quently we can show again the solution to the bilateral obstacle problem is
a C1 function near the boundary. Hence we can proceed to show that the
solution u has a Campanato type growth condition near the boundary by the
usual comparison argument.

Once we have a priori C1*(Q) regularity, the existence result follows from
Leray-Schauder’s fixed point theorem.
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The following symbols will be used.

Zo : a generic point
|E|: the Lebesgue measure of E

Br(zo) = {z € R" : |z — x| < R}

1

_— - wdzr
|Br(z0) N 2| JBr(z0)n0

(w)R,xo =

W1P(Q): the Sobolev space with L? norm
WiP(Q): the closure of Cg°(R2) in WP(R2)
||lw|lr : the L-norm of w in Q
w, : the directional derivative of w along 7

If there is no confusion, we drop out the generic point z¢ in various ex-
pressions. As usual the double indices mean summation up to n.

2. INTERIOR REGULARITY

In this section we use the solutions to vanishing viscosity equations to ap-
proximate the bilateral obstacle problems, where obstacles are defined using
the viscosity solutions to vanishing viscosity equations. Indeed, sending the
viscosity term to zero we prove the local C!** regularity when obstacles are
solutions to certain Hamilton-Jacobi equations.

Let Bg C  and wo € WH*°(Bpg). Moreover assume that G(Vwg) < 0.
Suppose w = w#* is the uniqﬁe solution to the vanishing viscosity equation

(3) LP#e(w) = —eAw + G(Vw) =0
with w = wy + p on BR for some small positive p and €. The existence and

uniqueness of such solutions to vanishing viscosity equations are known by a
result of Lions(see [Lions2]).
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Lemma 1. There exists a unique solution w to (3) such that w is Lipschitz
with
lwllwr. < ¢

for some ¢ independent of u and €. Furthermore for all + € B(;_s)g, w is
semiconcave and

%w

(4) 547(@ <c, forall |¢|<1

for some c independent of p and ¢.

For the proof of lemma 1 we refer to theorem 2.2 in [Lionl]. Observe that
the strict convexity condition

G a4, (A)EiL; > cfé)?

for some ¢ > 0 and for all £ € R" is needed to assure the semiconcavity result
(4) for the viscosity solutions. Let wt#° be the viscosity solution to

G(Vwt ) =0

with the boundary condition wt#° = wy + u on J0Bpg.

The existence of such a viscosity solution wt#? can be proved by the
Perron process|Ishii] or sending ¢ to zero in (3). When min G < 0, we have
a comparison principle proved by Ishii(see theorem 1 in [lishii]) and the
uniqueness follows immediately. Otherwise, that is, minG = 0, then the
uniqueness follows from the fact that the minimizer of G is unique. The
following lemma is in [Lionl].

Lemma 2. As ¢ goes to zero, wt™¢ converges to wt*° uniformly in
C(B(1-sr) for each § > 0 and wt*° > v for all viscosity subsolutions
v such that

G(Vv) <0

with v = wo + u on OBR.

Similarly, we can find w™** as the solution to the vanishing viscosity
equation

—eAw — G(Vw) =0

where w = wg — ¢ on dBp for each positive u and €. Hence we get the
following lemma.
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Lemma 3. As ¢ goes to zero, w™*¢ converges uniformly in C(B(_s)r) for
each 6 > 0 to the viscosity solution w™*° of

~G(Vw™*%) =0
with w™*°% = wy — u on OB and
[lw™ "¢ wie <c

for some ¢ independent of ¢ and u. Furthermore, for all ¢ € B(y_syg w is
H (1-9)
semiconvex
a2w_)l‘ye
—3C2—-($) > ¢, forall|(| <1

for some c independent of p and e.

Since w™*? is Lipschitz and —G(Vw™#?) = 0 in the viscosity sense,
we see that G(Vw™*?) = 0 a.e. and hence by the convexity of G that
G(Vw™*%) < 0 in the viscosity sense. By the comparison argument as in
lemma 2 we see that each given p > 0,

w e < wHte and wH? < wtH0

if ¢ is sufficiently small compared to pu.
Now we consider a bilateral obstacle problem. Let us define the function
class J§© by

JI’;’E ={ve Wol’z(BR) 4wy :w**<v< w+”"€}

for each given positive y and €. Since w™*¢ and w** converge uniformly
to w™*% and w*? respectively, then for given u > 0

w_yﬂye < w+7”’5

for sufficiently small ¢ > 0 compared to p. We note that wy € J§°.
For notational convenience, we write

—(ai(Vw)), = _(ai(mvao(wO)’vw))li
and assume that w = w** € J&'° be the solution to
—(ai(Vw))z, 20

with respect to the function class J%°. The following lemma is essential in
our comparison argument.
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Lemma 4. If BR C Q and p < {‘1, then the estimate
n+o
(5) / |Vw — (Vw),|?dz < ¢ (B-) / |Vw — (Vw)g|*dz + cR™*
' B,, R Br

holds for some c independent of y and € and for all o € (0,2). In particular,
Vw is locally Hélder continuous in Br with '

Hw”C}‘;: <c

for some ¢ independent of p and €.

proof. We follow a penalization method. Let 81 be a nondecreasing smooth
function such that ‘
0< pui(t) < 5t, ift >0

Bi(t) =0, ift <0
By(t) =0
By (t) > 0.

Similarly we define 8, by a nonincreasing smooth function satisfying

5t < Ba(t) <0, ift <0

ﬂZ(t) = 0’ if ¢ > 0
By(t) > 0

By (£) 0.

We approximate our problem. Fix p € R™ so that G(p) < 0 and let
0 < 6 < 1. Define wy(z) = 8p -z + wo((1 — 6)x). Then wy is defined
in B £ and satisfies G(Vwg) < 0 a.e. Also, wy — wp uniformly in Bpr
as § — 0. Moreover we approximate wg by a smooth function using the
mollification technique and we denote the smooth function again wg. Let
v=v)"" € Wol ’2(B R) + wg be the solution to the penalized equation

B1(v — whte) + Bo(v — w™He) _o

T T

(6) L**7(v) = —(ai(Vv))s +
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for a given small positive number 7. Existence and uniqueness can be proved
from the monotone operator theory(see [Harl]). Since all the following esti-
mate is independent of 8, we omit 6 in the various expressions from now on.
Taking some large number ¢ so that

||w+’”’e||WIn°°(BR) + ||w-’”,€||W1,°O(BR) S c

as a supersolution to the operator L**7 we can prove that v is bounded
from above. In a similar way v can be shown to be bounded from below.
Hence we conclude that

(7) lollze < e

for some c independent of y,e and 7.
Next we estimate the Lipschitz norm of v. Let p = dist(z,0Bpg) and

¢t = wo + vp — vp? for some large v. We know already that
[Vp| =1 and [V?p| < c
near the boundary of Br. Therefore we see that
¢t = v on OBR and ¢T > v on 0B(1-s)r
for some small § when v is sufficiently large. Since for some large v
L*=7(4%) 20,
that is, ¢ is a supersolution to L***", we conclude that
v < ¢t.

Similarly we have
v2> ¢

for some ¢~ and we see that
[|Vo]|pesaBr) < €

for some ¢ independent of p,e and 7. Since L¥*7 is a monotone operator,
then |Vv|? satisfies the weak maximum principle. Hence it follows that

(8) [|Vo||pe(Br) < €
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for some ¢ independent of y,e and 7.
Now we apply the LP-theory for quasilinear elliptic equation. First we
prove that

(9) H ”LP+”—”L <e

for all p and for some c independent of u,e 7 and p. With this L? estimate
on % and é— we conclude that v is in W2?(Bg) and Vv is in C1* for all
a € (0,1) w1th Hélder norm independent of p,e and 7. To see (9), let us
choose a nonnegative smooth cutoff function 7 so that

n=1in B-s)R,

n=0in aB(l—&/Z)R
and
A4
V| < 5R

for some ¢ and appropriate 4.

p—1
Applying (%) nP as a test function to (6), we get

Jouro[() ] e ] (2 e J2) (3) =
() (%) =
for all t. Subtracting

/a(Vw W)[(ﬂl) n] de

ST

Note that

from the both sides of (10), we have

) - [ T - a0 -t (2) B

+p/ [ai(Vv) — ai(Vwt )] ng, (ﬂl) P~ dz + / (%—)pn" dz
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B\
/a’ AJ (Vw aﬂ)e)wz‘y;:‘;) (_) np d.’L’.
T

From the ellipticity condition for a; we see that

-2
/ [a:(Vv) — ai(Vwt#)] (v — whe),, (%)p %‘Up dz > 0.

Therefore we have
(12)

/(ﬁ) n? dz <_/ |Vol|pe + ||V *¢|| Lo )(ﬂ1> nP~1 dz
-

B\
+ / @i, a; (VutHeywhote (7) 7P da.

+:#¢ is semiconcave(see lemma 1), we have

Since w

wib&ik; < cl¢f?

for some c independent of 4 and €. Moreover, a; 4; is a positive definite
matrix. Therefore,
@i a, (Vwrt iyttt < c

for some c¢; independent of u and . It follows that

B\
(13) [ a7 ’“)wz’:e(—l) WP do
J T

| -1
o () e
(v

for some c¢. Using Young’s inequality on the first term of the right hand side
of (12) and the estimate (13) we have

P
”?“LP(B(I—os)R) S c
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for some ¢ independent of u,e and 7. Similarly we also have

B2
||_7_—||LP(B(1_6)R) S c

for some ¢ independent of u,e and 7. This proves (9).
From the classical L? theory for quasilinear equations we conclude that

2
T W

and
[o* =T || g2 < €

loc

for some ¢ independent of u,¢ and 7. Once we have v**7 € Wfo’f , We see
immediately the following Campanato growth condition for v

n+o
/ |V sT —(VoreT), | de<c (f_) / |V T —(Vot o) g|? dz+cR™7
B, R Br

for all o € (0,2), for all p < %— and for some c independent of p,¢ and 7.

Sending 7 to zero and using Minty’s lemma ([Chipot]), we conclude that
the unique solution to (6) is in W,2o’f and satisfies the Campanato type growth
condition

n+o
/ |[Vw* ' —(Vw**),|> dz < c (ﬁ) / |Vwh e —(Vw*€)g|* dz+cR™°
B, R Br

for all o € (0,2), for all p < 1} and for some c independent of 4 and €.

Sending € to zero we have that the unique solution w0 to the variational
inequality

(14) —(ai(Vw*?))z; 20
with respect to J R’O is In Wfo’f and satisfies the Campanato type growth

condition (5).
Set wt as the viscosity solutions to Hamilton-Jacobi equation

G(Vw+) =0, wt =w on dBr
and w™ as the viscosity solution to

—G(Vw™) =0 w™ = wo on OBpg.
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Also set Jp = {v € W(}’°°(BR) +wo : w™ < v < wt}. Suppose w is the
unique solution to the variational inequality

(15) —(ai(Vw))z; 20

with respect to Jg. Then it is easy to see that

0

wh? — w weakly in W2?

and

0

wh® — w strongly in WH?

for all p as u goes to zero. Hence we have the following lemma.

Lemma 5. If w is the unique solution to (15) with respect to Jg, then w
satisfies

n+o
(16) / IV — (Vw),|? dz < ¢ (-’-’-) / IVw — (Vw)g|? dz + cR™°
B, R Br

for all o € (0,2), for all p < % and for some c independent of p and R.

Since the constant ¢ in lemma 5 goes to oo as o goes to 2, we don’t
have C,lo’i regularity for w. But we recall that Choe[Choel] proved C,lo’i
regularity for homogeneous variational inequalities of the form (15) with
gradient constraints employing the truncation idea of DeGiorgi.

Now we want to show that the solution w to the variational inequality (15)
with respect to Jg is indeed the unique solution to the variational inequality
(15) with respect to a function class Kgr, where Kg is defined by

Kp={ve W01’°°(BR) + wp : G(Vv) < 0}.

We note that Kp C Jg. Hence if we show that w € K, that is, G(Vw) < 0,
then w is the solution to the variational inequality (15) with respect to Kg.
We define contact sets I and I;'z' by

I, ={z € Br:w(z) =w"(z)}

and
I} = {z € Bg: w(z) = wt(z)}.

We also define Ir by
Ip =I5 UI{.

Since G is a C? convex function, we have the following maximum principle.
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Lemma 6. We have that

<0.
a17) foax G(Vw) <0

Note that w satisfies the strict elliptic equations
—(ai(Vw))s; =0
in Br \ Ir. Hence we see that that G(Vw) is a subsolution to
—(aia;(Vw)Gq;)z; <0

in B \ Ir. We omit this rather a direct computation.
As in the proof of lemma 4 we regularize wo by ws and the using the
regularity result in section 3 we can assume that wg is differentiable on B 2B

and G(Vwy) is continuous in B B Since all the estimate is independent of
8, we omit 8 in various expressions. Since wt(z) = w™(z) = w(z) for all
z € 0Bg and w™(z) < w(z) < wt(z) for all z € Bg, we have that
+ —_
ow™(z) < Ow(z) < ow~(z)
o ~ o T Oy
for all z € OBR, where 7 is the outward normal vector at « € Bpg. Since
owt(z) Ow (z) Ow(z)
or ~  or  or
for all tangent vector 7 at z € 0Bg, we have for each z € Br

Vuw(z) =tVwt(z) + (1 — t)Vw (z)

for some t € [0,1]. Since G is convex, we obtain
G(Vw(z)) < tG(Vwt(z))+ (1 - t)G(Vw (2)) <0

for all z € 0Bpg.
Now we show that

G(Vw(z)) <0

on OIg. Recall that wt(resp. w™) is semiconcave(resp. semiconvex). Then
we find that for each € I§ N Bgr(resp. = € I N Br) wt(resp. w™) is
differentiable. For instance, if z € IE N By, then w* is superdifferentiable
since it is semiconcave, and also subdifferentiable since w is in C! and w* —w
attains a minimum. Once we know the differentiablity we see that G(Vw) <
0 on Ig N Bg, which is enough to apply the maximum principle. Indeed,
if z € I} N Bg, then G(Vw*(z)) = G(Vw(z)) = 0 since w* is a viscosity
solution. Similarly we see that G(Vw™(z)) = G(Vw(z)) = 0for z € I;NBg.
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3. BOUNDARY REGULARITY FOR SIMPLE CASE

In this section we show that a Campanato type growth condition holds
for solutions near the boundary for simple case.

Let o € 09Q and 99 be C3. Also let wy be a Lipschitz function in BRNQ
and a C? function on 8Q N Bg. From the Perron process we know that the
viscosity solution w* to Hamilton-Jacobi equation

(18) G(Vwt) =0, wt = wy on (2N Bg)
can be characterized by
wt(z) = sup{v(z) : v = wo on (N N Bg),

v is a viscosity subsolution of G(Vv) = 0}.

For all subsolutions v of G(Vv) = 0 with v < wg on (BrNQ), it holds that

wt > 0.

Similarly we find a viscosity solution w™ to
—G(Vw™)=0, w~ =wo on 0(BRNQN)

and for all supersolutions v of —G(Vv) = 0 with v > wg on (Br N N), it
holds that

w- <.

When min G = 0 the C? regularity of w* and w™ near 99 is trivial. When
min G < 0, near 9§ we can compute wt by the method of characteristics
and hence wt is C?(5) for some small §(see the appendix and lemma 2.2
in [Flem]), where ;s is defined by Qs = {z € Q2 : dist(z, Q) < 6}.

Now we prove a lemma which describes the size of the oscillation of the
solution w near the boundary to the variational inequality

(19) —'(ai(ilfo, wO(xO)a vw))z:,' Z 0

with respect to Kg -, = {v € Wy *(Br(zo) N Q) + wo : G(Vv) < 0}.
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Lemma 7. If p < %, then w satisfies

n+o
(20) / |Vw—(Vw),|?dz < c (ﬁ) / |Vw—(Vw)g|?dz+cR™°
B,NQ R BrNQ

for some c and all o € (0,1).

proof. We consider a bilateral obstacle problem as in section 2. We drop out
the generic point ¢ in a; as follows

ai(A) = ai(zo, wo(z0), A).
Define a function class Jg by
Jr={ve€ WJ’Z(BROQ)-’rwo cw” <v<wt)
Let v € Jg be the unique solution to the variational inequality
(21) | ~(ai(V0))s, 20

with respect to Jg. The existence and uniqueness for solutions to (21) also
follow from the monotone operator theory.
Let v~ be the solution to

(22) —(ai(Vv7))z; = —(ai(VwT))s,

and suppose that v — wg € Wol’2(35 N Q). Note that wg is C? near Bs N 0N
and w™ is C%(Bs N Q) for some small § which we determine later. Since
v™ = wp > w~ on d(Bs N N), it follows from the maximum principle that

vT 2w

in Bs N Q. Since w™ € C?%(Bs N N), we see-that for small p < %,
n+o
/ Vo~ — (Vo) Pdz < c (2) / Vo~ — (Vo )s|2dz + c6™*°
B,NQ 6 Bs

for some ¢ and for all o € (0,2). Now it is evident that o :== v~ Aw™ € Js
and is an admissible competing function to (21). Hence we have

(23) /Bmﬂ Vv — Vo~ |*de < c/an [ai(Vv) — ai(Vv7)] (v —v7 ), de
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= c/ ai(Vo) v —v~ Awt),,dz + c/ ai(Vo)(v™ Awt —v7),,dz
BsnQ B

sNQ

_/an ai(Vo7)(v—v7),,dz

= I 4+ II + III

We note that since v~ A w™ is an admissible competing function in Jj,
(24) I <o
As in lemma 3, it can be shown that

[IVo]| Lo (Bsnay < €

for some c¢. Thus we see that
(25) Ir1< c/ Vv~ Awt) = Vo~ |dz
BsNQ

1
2

< cb? (/ IV(v™ Awt) — Vo~ |? da:)
BsnQ

for some c. Since v~ Awt —v~ € W01’2(B5 N Q), we have

/ Vv~ Awt) — Vo~ |?dz
BsNQ
< c/ [ai(Vv™) = ai(Vwh)] (v™ —v™ Aw?),,de
Bs;nQ
= c/ [a:(Vw™) — ai(Vw ™ (20))] (v~ — v~ Aw™),,de
Bs;NQ

—c/ [ai(Vw'*') — ai(Vw"'(a:o))] (vV —v” Awt),,dz
BsnQ
for some ¢. We note that since w™ and w* are C? near 992,

|ai(Vw™) = ai( Vo™ (20))], lai(Vw™) — ai(Vw™(z0))| < €8
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for all z € Bs N 2. Hence using Young’s inequality we have
/ IV(v™ Aw?t) = Vo~ 2dz < c6™F?
BsNQ

and
(26) IT < 6™t

for some c. Similarly,

27 IIT = -—C/B . a;(Vo7)(v —v7 ) dz

= —c/ [a:(Vw™) — ai(Vw™ (20))] (v — v )z, dx
Bsn$?

< 1

<= / |Vo — Vo~ |2dz + cént?
4 /Bsna

for some c.

Combining (23) through (27), we conclude that

(28) / Vo — Vo [2de < c6™F!
BsNQ

for some c.
Now we apply a comparison argument to estimate the oscillation of Vv.
For each small p < %, we have :

(29) /B Vo= (Vo) e

< c/ Vo~ — (Vo7),|%dz + c/ Vo — Vo~ |?dz
B,NQ B,nQ

for some c. Since v~ is a solution to (22) and satisfies a Campanato type
growth condition for Vv ™, then we estimate the first term of the right hand
side of (29) as follows:

(30) /B - Vo™ — (Vo7),|*dz
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n+to :
<e(? Vo — (Vo) +e [ [Vo— Vo~ Pde + 5™
)
BsNQ BsNQ

for some c. Furthermore using the estimate (28) we have
(31) / |Vv — Vo~ |2dz < ™!
BsNQ

for some c. Therefore combining (29), (30) and (31), it follows that Vv is
- Holder continuous in B N 2 and satisfies

(32) /B Vo= (Vo) e

n+o
<c (E) / |Vo — (Vv)s|2de + c6™°
6 BsN

for all p < % and for some c.

Since the viscosity solution w? and w™~ can be derived from the method
of characteristics if O is smooth enough, e.g., C3, we can prove that the
viscosity solution w* to Hamilton-Jacobi equation

+G(Vuwt) =0

with w¥ = wo on 9N are C*(BrN ) for R < §.
Note that Kr C Jg. So if we show that

v € Kp,

that is,
G(Vv) <0

for all z € Bs N2, then v is the unique solution to the variational inequality
(19) with respect to Kg. Thus w = v and we conclude that Vw is Holder
continuous up to B s N 0 and satisfies the Campanato growth condition
(20).

Here we use the maximum principle again for G(Vv). From a direct
computation we see that G(Vv) is a subsolution to a strictly elliptic equation
and

—(a,"AJ. (V’U)ij ):c.- S 0
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and G satisfies the maximum principle. Let I; and I}t be the contact set
such that

Ip ={z € BRNQ:v(z) =w (z)} and If ={z € BRNQ:v(z) = wt(z)}.

Consequently from the maximum principle it follows that max G(Vv) is at-
tained on 8 (Br N\ (I U I})) and this in turn gives

G(Vv) <0.

Therefore we conclude that
v € Kp.

4. REGULARITY

In this section we work under the full generality. We prove that the
solution u to the variational inequality (2) with respect to K is C*® for
some a € (0,1). We exploit the perturbation techniques using the interior
and boundary regularity results for the simple case from sections 2 and 3.

We approximate our differential operator. Since the function class is
bounded in W1, there exists some large number M such that

[o(2)] + [Vo(a)] < M
for all z €  and v € K. Hence we have
(v(z), Vo(z)) € Bp(0) C R*H!
for all z € Q. We can find functions

ai(z,v,A):R" xRxR" - R, :=1,..,n

and
b(z,v,4) - R
such that
ai(z,v,A) = ai(z,v,A4), 1=1,..,n
and

b(z,v,A) = b(z,v, A)
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for all (v, A) € By C R™!, and @; and b satisfy

Cl(M)KI2 S ai,A,’ ('T,v, A){t{] S 62(M)|§‘2
and
b(z,v,A) < (M)

for some ¢;(M) > 0 and for all (z,v,4) € & x R x R". For notational
simplicity we write a; and b instead of a; and b.
Let u € K be the solution to

(33) —(ai(m’u7vu))z; - (g,'(x,u))z‘. + b(z,u,Vu) >0

with respect to K. The following lemma is our main result in this section.

Lemma 8. Fix a the minimum of 1 and the a’s in the assumptions i) and
ii) in the introduction. Suppose zo € Q and p < {,i. Then for all o € (0,2a),
Vu satisfies ' ’

n+o
(34) / [Vu— (Vu),2dz < (£) /  |Vu—(Vu)pl'dz + cR™
B,,ﬂﬂ R BrnQ

for some ¢ depending on u only through M. Consequently, u € C**(f).

proof. Let zg € Q and Kg be the function class with domain in Bg N2 such
that Kr = {v € W™ +u: G(Vv) < 0}. Let @ € Kg be the solution to the
frozen coefficient variational inequality

— ai(20,u(%0), Vt))z; 20

with respect to Kg. From sections 2 and 3, u satisfies a Campanato type
growth condition

n+o
(35) / IVa — (Va),|2dz < ¢ (ﬁ) / |V — (Va)g|2de + cR™°
B,nQ R BrN©2

for some c, for all o € (0,2a) and for all p <
Therefore we have

(36)
/ |Vu — (Vu),|?dz < 2/ |Va — (Va),|*dz + 8/ Vi — Vu|*dz
B,nQ Q

»NQ B,n

R
>
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4 nto 2 n+o
<c(2 - d
_c( R) /B - |Vu — (Vu)g|*dz + cR

+c/ |Vu — Vi|*dz
BrnN

for some ¢ and for all o € (0,2a). Now we see that @ € Kg and is an
admissible competing function to (33). Hence we have

(37)
ai(, 4, Vuu)(@ — w)a;ds + / [05(2, u) = 9i(z0, u(@0))] (8 — W)esda
BrN Brn
+ ./;3an b(z,u, Vu)(z —u)dz >0
and
(38) /l;,mn ai(zo,u(z9), Vi) (u — @),,dz > 0.

Subtracting (38) from (37) we have

(39) /B . [ai(zo, u(z0), V&) — ai(z,u, Vu)] (4 — u)gz, dz

< /;;Rnn [9i(z,u) — gi(zo, u(x0))] (& — u)z;dz + / bz, u, Vu)(@ — u)dz.

BrNQ

The left hand side of (39) can be written as

/ [ai(z0, u(zo), Vi) — ai(z, u, Vu)) (@ — 1)z, dz
BrnN$Q

= / [ai(zo, u(z0), V&) — ai(zo,u(x0), Vu)] (& — u);,dz
BrNQ
+ /BRnQ [ai(zo,u(Z0), Vu) — ai(zo, u, Vu)] (& — u);,dz

+ / [ai(zo, u, Vi) — a;(z, u, Vu))] (@ — u),,de
BrNQ

= I + II + III.
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Using the ellipticity condition we estimate

(40) / |Va — Vu|’dz < eI
BrnN$2 .
for some ¢. From Hélder continuity of a; with respect to z we have
(41) III] < ¢ / R*|Vii — Vulds
BrNQ
< 1 / |V@ — Vu|?dz + cR" 2>
8 BrNQ

for some c¢. From Young’s inequality we also have

(42) II = /B . [ai(z0,u(z0), Vu) — ai(z,u, Vu)] (u - u)z,dz

< c/ lu(z) — u(zo)|*|Va — Vuldz
BrNQ

< c/ R*|Va — Vuldz
BrnNQ

< 1

=8

where we used the fact that u is Lipschitz continuous and

/ |Va — Vu|?dz + cR™ 2,
BrNQ

lu(z) — u(zo)| < clz — o]

Finally using Poincaré’s inequality we estimate the right hand side of (39) as
follows:

1
/ [gi(z,u) — gi(zo, u(x0))] (& —u)dz < = / |Va — Vu|’dz + cR™ 2
BrNQ 8 JBrna
and
/ b(z,u, Vu)(t — u)dz < E / |Va — Vu|?dz + cR™ 12,

BrNQ 8 JBrno
Thus combining all these together we have that
(43) / Vi — Vul2de < cR™2°

BrN

for some c. Therefore using the estimate (43) on (36) we conclude that

n+2a
/ |Vu — (Vu),|%dz < c (ﬁ) / |Vu — (Vu)g|2dz + cR™2®
BpﬂQ R BrnN2

for some ¢ and this completes the proof.
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5. EXISTENCE

We employ Leray-Schauder’s fixed point theorem to show the existence of
the solution to

(44) L(u) = —(ai(z,u, Vu))z; — (gi(z,u))s; + b(z,u,Vu) >0

with respect to K = {v € Wy'®(Q) + uo : G(Vu) < 0}.
We define a compact map T : K — K. Let v € K and u = T(v) be the
solution to the variational inequality

(45) L(v,u) = —(ai(z,v, Vu))z; — (9i(z,v))z; + b(:c,‘v, Vv) >0

with respect to K. We note that K is a bounded close convex subset of
Wy'%(Q) + uo. Moreover for each fixed v € K, L(v,u) is strictly monotone
as an operator of u. Therefore from the theorem 1.1 in [Harl] we see that
there is a unique solution u = T(v) € K to (45) and hence T is well defined.

From the C1:%(Q) regularity result in section 4 we have that for each v € K

u = T(v) € CY*(%).

for some fixed & > 0. Moreover the C1'® norm of u is bounded by some fixed
number M indepedent of v € K, C'* norm depends on v only through the
upper bound of the Lipschitz norm of v. We note that the space Ch(Q) is
compactly imbedded in the space of Lipschitz functions Lip(§2). Hence the
image of K under the map T is a precompact subset of K. Therefore from
Leray-Schauder’s fixed point theorem we conclude that there is a fixed point
u for T such that
u=T(u)

and u is a C1*(Q) solution to (44) with respect to K.
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AN APPLICATION OF A VARIATIONAL REDUCTION
METHOD TO A NONLINEAR WAVE EQUATION

Q-HEuUNG CHOI
TACKSUN JUNG

Introduction

In this paper we investigate the existence of solutions u(z,t) for a piecewise-
linear pertubation aut — bu~ of the 1-dimesional wave operator s — Ugzs
under Dirichlet boundary condition on the interval —5 < z < 7 and periodic
condition on the variable ¢

Uy — Uge +aut —bu~™ = f(z,t)in (¢,d) x R
u(c,t) = u(d,t) =0 (0.1)
u(z,t+T) = u(z,t),

where the period T is given.

We assume that the period T is a rational multiple of the length (d —
c) of the z-interval where problem (0.1) posed (As is well-known, serious
difficulties of a number theoritical nature arise when that is not the case).
For simplicity, only the case T = 7 will be considered. By obvious changes
of variables, problem (0.1) can be reduced to

Ugp — Ugg + aut —bu™ = f(z,t) in (-—g—, -72:) x R

u(:}:g,t) =0 (0.2)

u(z,t +7) = u(z,t)
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Here au™ is an upward restoring force and bu~ a downward restoring force.
We shall assume that f is even in z and periodic in ¢ with period 7, and we
shall look for 7-periodic solutions of (0.2).

The existence of multiple solutions of elliptic boundary value problems
with nonlinearities crossing multiple eigenvalues was shown by a variational
reduction method in Lazer and McKenna [4]. Also the existence of multiple
solutions of a nonlinear suspension bridge equation was shown by the same
method in Choi, Jung, and McKenna [3].

In this paper we shall use the same method to show the existence of
multiple solutions of a nonlinear wave equation (0.2).

In Section 1, we show that only the trivial solution exists for the homo-
geneous problem in the Banach space H spanned by eigenfunctions. We
also prove the continuity and Fréchet differentiability of the corresponding
functional to (0.2).

In Section 2, we show the existence of multiple solutions of equation (0.2)
when the forcing term is supposed to be a multiple s¢oo(s # 0,s € R) of the

first (positive) eigenfunction ¢go = ‘/Ti coszand -1<b<3<a<T,
Ut — Ugz + G/U,+ —buT = S(]Soo in H. (03)

Here a and b satisfy the condition

1 1

+ > 1.
Va+1l Vb+1

The main result is the following :

(i) For s > 0, (0.3) has at least three solutions, one of which is a positive
solution.

(ii) For s < 0, (0.3) has at least one sulutions, one of which is a negative
solution.

1. The Banach space spanned by eigenfunctions

In this section we investigate the properties of the Banach space spanned
by the eigenfunctions of the wave operator.
Let L be the wave operator, in R2,

Lu = uy — Ugy.



AN APPLICATION OF A VARIATIONAL REDUCTION METHOD 61

When u is even in z and periodic in t with period =, the eigenvalue problem
for u(z,1),

Lu=Xu in (—-g, ?2-) x R, (1.1)
u(:i:-g, t) =0,
has infinitely many eigenvalues
Amn = (2n+1)2 —4m?  (m,n=0,1,2,--+)
and corresponding normalized eigenfunctions ¢mn, Ymn (m,n < 0) given by

don = ? cos(2n + 1)z for n > 0,

2
Gmn = — cos2mt - cos(2n + 1)z for m >0,n >0,

N

Ymn = — sin2mt - cos(2n + 1)z for m > 0,n > 0.
T

Let n be fixed and define

A= igf{/\mn :Amn >0} =4n+1, (1.2)

A, =sup{Amn : Amn < 0} = —4n - 3. (1.3)

Letting n — oo, we obtain that A} — +oco and A; — —oo. Hence, it is
easy to check that the only eigenvalues in the interval (—15,9) are given by

,\32-_——1].(/\21=—7</\10=—3<A00=1<)\11=5'

Let Q be the square [—-—g, %] X —-g—, -g] and H, the Hilbert space defined
by

Hy = {u € L*(Q) : u is even in z}.

The set of functions {@mn, ¥mn} is an orthonormal basis in Hy. Let us denote
an element u, in Hy, as

U= (hmndmn + kmntmn),
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and we define a subspace H of Hy as follows
H={u€H: Y Pmnl(hn + ko) < 00}

Then this is a complete normed space with a norm

el = 13 Pmnl(h2un + krun)]?

Since |Amn| > 1 for all m,n, we have that

() |llull] = llu|l, where ||u|| denotes the L? norm of ,
(i) |lu|| = 0 if and only if |||ul|| = 0,
(iii) Lu € H implies u € H.
We note that 1 belongs to Hy, but does not belong to H. Hence we can see
that the space H is a proper subspace of Hy. The following lemma is very
important in this paper.

Lemma 1.1. Let ¢ be not an eigenvalue of L and let u € Hy. Then we
have (L —c¢)"'u € H.
Proof.  Suppose that c is not an eigenvalue of L. When n is fixed, At and
A, were defined in (1.2) and (1.3):
A =dn+1,
A, = —4n —-3.

We see that Af — +oo and A\, — —o00 as n — oco. Hence the number of
elements in the set {Amn : [Amn| < |¢|} is finite, where A, is an eigenvalue

of L. Let
u = Z(hmn¢mn + kmn¢mn)-

Then

1 1
— =1, = _ O
(L—¢)""u E :( Aoom + chmn¢mn + Ao ckmn¢mn)-

Hence we have the inequality

1
-1 _ 9 2
|”(L C) u”l E : |/\mn|(/\mn | 0)2 (hmn I kmn)

<SCY (hhun + Fimn)
for some C, which means that
(L =) ulll < Cillull, Ci=VC. O

With the above lemma 1.1, we can obtain the folloing lemma.
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Lemma 1.2. Let f(z,t) € Hy. Let a and b be not eigenvalues of L. Then
all the solutions in Hy of

Lu+aut —bu” = f(z,t) -in  Hp

belong to H.

Let p; and ps be two successive eigenvalues of L. Then we have the
uniqueness theorem.

Theorem 1.1. Let f(z,t) € Hy and —p2 < a,b < —p;. Then the equation
Lu + aut — bu™ = f(z,t) (1.4)

has a unique solution in Hy. Furthermore equation (1.4) has a unique solution
in H.

1
Proof. Let f(z,t) € Hypand —pg < a,b < —py. Let 6 = ——5(;11 + p2). The

equation (1.4) is equivalent to
u=(L+8)7!(é—ajuT —(6-bu” + f(,1)],

where (L +6)~! is a compact, self-adjoint, linear map from Hj into Ho with

. We note that

morm
p2 —

1(6 — a)(uz — uf) = (8§ = b)(ug —uy)ll < max{|6 —al,[6 — b[}|uz — il

1
< 5(p2 = m)lluz = wl.

It follows that the right hand side of (1.4) defines a Lipschitz mapping of
H, into Hy with Lipschitz constant v < 1. Therefore, by the contraction
mapping principle, there exists a unique solution u € Hy of (1.4).

On the other hand, by Lemma 1.2, if f(z,t) € Hy then we know that the
solution of (1.4) belongs to H. O

We now state a symmetry theorem which was proved in Lazer and McKenna

[5].
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Theorem A. Assume that L : D(L) C L*Q) — L*(Q) is a linear
self-adjoint operator which posseses two closed invariant subspaces H, and
H, = Hi. Let o denote the spectrum of L and o; the spectrum of L|H; (i =

1,2; 0 = 01 Uoz). Let ?—i(u,m) = f. be piecewise smooth and assume that

fu € [a,b] for all u € R and = € Q2.
If [a,b] N 02 = ¢ and if the Nemytzki operator U Fu = f(u(z,z) maps
H, into itself, then every solution of

Lu= f(u,2) in L*)

is in Hl.

With the Theorem A, we have the following theorem, which is useful in
the later.

Theorem 1.2. Let —1 < a,b < 7. We assume that

1 1
1. 1.5
Va+1 * Vo +1 # (15)
Then the equation
Lu4+aut —bu"=0 in H (1.6)

has only the trivial solution u = 0.

Proof. The space H; = span{coszcos2mt : m > 0} is invariant under
L and under the map u — aut — bu~. The spectrum oy of L restricted to
H, contains Ao = —3 and does not contain any other point in the interval
(=7,1). The spectrum o3 of L restricted to Hy = H i does not intersect the
interval (—7,1). From Theorem A, we conclude that any solution of (1.6)
belongs to Hj, i.e., it is of the form y(t) cos z, where y satisfies

y' +y+ayt —by” =0.

Any nontrivial periodic solution of this equation is periodic with period

T

T
+
Va+1 b+1

# 7.

This shows that there is no nontrivial solution of (1.6).
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The condition (1.5) is essential. When the equation

1 1
- =1
Va+1 b+1

holds, we can construct a nontrivial solution ug of (1.6) and any kug(k > 0)
becomes a nontrivial solution of (1.6).

In this paper we investigate nonlinear oscillations in the wave of a string,
s€R,

Lu+aut —bu™ =s¢p in H. (1.7)
Let us define the functional on H, s € R,

1 b
Fop(u,s) = / [-2-(—|ut}2 + ug|?) + %|u"’|2 + §|u_|2 — s¢oou)dtdr. (1.8)
Q :

For simplicity we shall write F' = F, , when a and b are fixed. Then F is
well-defined in H. The solutions of (1.7) coincide with the critical points of
F(u,s).

Proposition 1.1.  Let a and b be fixed. For s € R, F(u,s) = F,3(u,s) is
continuous and Fréchet differentiable in H.

Proof. Let u be in H. For s € R, to prove the continuity of F(u,s), we
consider

F(u+v,s) — F(u,s)
1
=/ [w(vee — vzz) + §v(vtt — vz )|dzdt
Q
b
+ [ 10+ 0P = 1)+ 5 +0)F = ™) = sboondes
Q
Let u = E(hmn¢mn +kmn¢mn), v = Z(ilmnqsmn‘{’i‘;mnd)mn)- Then we have
I/u(vtt — Vgg)dzdt| = Iz ’\mn(hmni"mn + kmni&mn)' < el - Hlwlll,
1 ~ -
| [ 3000 = vea)dedt = | 3 A (B + Ran) < 0.

On the other hand,

(w+v)H? = [ut]?] < 2ut o] + |v]?,
(uw+v)7 P = Ju™?] < 2u” |v| + |v]?,
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and hence we have

I/(|(u + o) — jut P)dedt| < 2wt ol + ol < 2llulll - ol + 1ol

I/(l(u + )72 = uTP)dadt] < 2w ol + lloll® < 2fllull- ol + ol

With the above results, we see that F(u,s) is continuous at u.
Now we prove that F(u,s) is Fréchet differentiable at v € H with

DF(u,s)v = /(Lu +aut — bu” — sdoo Jvdzdt.

To prove the above equation, it is enough to compute the following :
|F(u +v,s) — F(u,s) — DF(u, s)v|
=| / %va dzdt + %/(I(u + )T = |ut]? — 2utv)dzdt
b -2 -2 -
+3 (J(u + )7 = [u™|* + 2u"v)dzdt|
1 la| |b] /
<Z 2 ~i 2 = 2
__2|||v||| + 3 /v dzdt + 5 | © dzdt
1
<L(1+lal + oI,

since
0<|(u+ v)’*‘l2 — |u“'"|2 —2utv < lvl2

and
0<|(u+v) 2= |Ju > +2u"v < o’ O
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2. The nonlinearity —(aut — bu™) crosses
the first negative eigenvalue )\

In this section we investigate the existence of multiple solutions of equation
(0.2) when the forcing term is supposed to be a multiple sggo(s # 0,s € R)
of the first (positive) eigenfunction ¢gp and -1 < b <3 <a <7,

Lu+ aut —bu™ = sdgo in H. (2.1)

Hereafter, in this section we assume that a and b satisfy the condition

1 1
+ >
Va+1 Vb+1

Let V be the 2 dimensional subspace of H which is the closure of the span
of the eigenfunctions ¢;0 and %19, both of which have the same eigenvalue
Ao = —3. Then |||v||| = V3||v|| for v € V. Let W be the orthogonal
complement of V in H.

Now we state the main result in this paper.

1. (2.2)

1

1
+ > 1 and
Va+1l Vb+1 an

Theorem 2.1. Let -1 <b< 3 < a <7 with

s € R. Then we have the followings.

(i) The equation (2.1) has at least three solutions for s > 0, one of
which”(ii)” is a positive solution.
(iii) The equation (2.1) has at least one solution for s < 0, one of which
is a negative solution.

For the proof of Theorem 2.1, we need several lemmas which we first prove.

Lemma 2.1. Let s € R. Then we have :
(i) If s > 0, then the equation (2.1) has a positive solution.
(ii) If s < 0, then the equation (2.1) has a negative solution.
s
a+1
doo. O

Proof. (1) For s > 0, the positive solution of (2.1) is u =
s

b+1

Next we shall use a variational reduction method to apply the mountain
pass theorem.

Let P : H — V denote the orthogonal projection of H onto V and
I — P: H— W denote that of H onto W, where V and W are defined in
the beginning of this section.

bo0-

(2) For s < 0, the negative solution of (2.1) is u =
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Lemma 2.2. Let —-1<b<3<a<7andletveV begiven. Then we
have :
(i) There exists a unique solution z € W of the equation

Lz+ (I — P)la(v+2)" —b(v+2)” — s¢oo) =0 in W. (2.3)
If for fixed s € R we put z = (v, s), then 8 is continuous on V and we have
DF(v + 6(v, s), s)(w) 0 forallweW.

In particular 6 satisfies a uniform Lipschitz cond1t1on in v with respect to
the L? norm (also the norm ||| - |||).
(i) If F : V — R is defined by F(v,s) = F(v + 6(v,s),s), then F has a

continuous Fréchet derivative DF with respect to V and
DF(v,s)(h) = DF(v + 6(v,s),s)(h) forallh € V.

If v is a critical point of F', then wvo + 6(vo) is a solution of (2.1) and
conversely every solution of (2.1) is of this form.

Proof. (i) Let -1<a<3<b<?7 6=3, and g(¢) =alt —0b¢". If
91(¢) = g(¢) — 8¢, the equation (2.3) is equivalent to

z=(L+6)YI - P)[—g1(v + z) + sdoo)- : (2.4)

Since (L + 6)~1(I — P) is a self-adjoint, compact, linear map from (I P)H

into itself, the eigenvalues of (L 4 §)~}(I — P) in W are (Amn + 6)™!, where
1

Amn > 1 or Appn < —=7. Therefore its L, norm is g Since

191(¢2) — 91($1)| < max{|a — 6,16 = b[}|¢2 — (1] < 4[¢2 — Gl

it follows that the right hand side of (2.4) defines, for fixed v € V, a Lipschitz
mapping of (I — P)H, into itselt with Lipchitz constant v < 1. Therefore,
by the contraction mapping principle, for given v € V, there exists a unique
z € (I— P)H, (also z € (I — P)H) which satisfies (2.4). Since the constant ¢
does not depend on v, it follows from standard arguments that if 6(v) denotes
the unique z € (I — P)H which solves (2.4) then 6 is continuous. In fact, if
z1 = 6(v1,8) and 22 = 0(vz, s), then we have

llz1 = 22|l = (L + 8) 7' (I = P)(—g1(v1 + 21) + g1(v2 + 22))|
<|l(v1 + 21) = (v2 + 22)||
< Y(llvr = vall + |21 = 22]))-
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Hence : 5
21 = 22|l S eflor —well, e=——.

With this inequality we have
lz2 — 22|l = lII(L +6)7 (I = P)[~g1(v1 + 21) + g1(v2 + 22)]l|
f||(I P)[=g1(v1 + 21) + g2(v2 + 22)]||
< 2(||z1 = 22|| + [lv1 — v2)

\/—(C + Dlor — vl

Let v € V and set z = 6(v,s). If w € W, then from (2.4) we see that

/ [—zew; + 2zzw, + a(v + 2)Tw — b(v + 2)"w — sdgow]dtdr = 0.
Q

/ viwg =0 and / vew, =0,
Q Q

DF(v + 6(v,s),s)(w)=0  forwe W. (2.5)

(ii) Let W; be the subspace of H which is the closure of the span of
functions @, and v¥,,, whose eigenvalues are A\, < —7 and let Wy be
the subspace of H which is the closure of the span of function ¢, and
¥mn Whose eigenvalues are A, > 1. Let v € V and consider the function
h : Wi x W3 — R defined by

Since

we have

h(wy,wy) = F(v + wy 4+ wa, s).

Then the function h has continuous partial Fréchet derivatives Dy h and D, h
with respect to its first and second variables given by

D;h(wy,ws)(yi) = DF(v + wy + w2 )(y;) for y;eW;, =12

Therefore, if 6(v,s) = 61(v,s) + O2(v,s) with 8;(v,s) € W;, ¢ = 1,2, it
follows from (2.5) that

D;h(6y(v,s),62(v,s)) =0, 1=1,2. (2.6)
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If w, and y, are in Wy and wy € Wi, then

[Dah(wy, ws) — Dah(wy, y2)|(w2 —y2)
=[DF(v + wy + wy,s) — DF(v + w; + Y2,3)](w2 — y2)

- /Q (= [(2 — ga )il + |(ws — v2)s?
+ (g(v + w1 + w2) — g(v + w1 + y2))(w2 — y2)]dtdz,
where g(¢) = a¢t — (™.
Since (g(¢2) — 9(¢1))(¢2 — ¢1) = b(¢2 — ¢1)? for all ¢; and (2, and
/Q (= [(ws — g )il? + (w2 — va)sPJdtdz = [[lwz — vall 2,

it follows that
(D2h(wy,wz) — Dah(w1,y2))(wz — y2) = (1 + min{d, 0})|||lwz — ya||*.

Therefore h is strictly convex with respect to the second variable, since 1+b >
0. Similarly, using the fact that (g(&;) — g(&))(é2 — &) < a(éa — €1)?, we see
that if w; and y; are in Wy and wy € W3, then

(D1 h(wy,wy) — Dih(y1, wy)) (w1 — y1) < —[llwy — vallI? + allws — vl
a
<(-1+ 7)|||w1 - ulll?,

where —1 + = < 0. Therefore, h is strictly concave with respect to the first
variable. From (2.6) it follows that

F(v + 6;(v,w) + 05(v,8),s) < F(v+61(v,s) + y2,5)
for y, € W, with equality if and only if y2 = 6(v, s).

Since h is strictly concave(convex) with respect to its first(second) vari-
able, Theorem 2.3 of [1] implies that F' is C* with respect to v and

DF(v,s)(h) = DF(v +6(v,s),s)(k), hE€V. (2.7)

Suppose that DF(vg + 8(vo, s),s)(v) = 0 for all v € V. Since (2.5) holds for
all w € W and H is the direct sum of V and W, it follows that DF(vy +
6(vo,s),s) = 0 in H. Therefore, u = vy + 6(vy, s) is a solution of (2.1).
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Conversely, our reasoning shows that if u is a solution of (2.1) and v = Pu,
then DF(v,s)=0in V. O

Let -1 < b < 3 < a < 7. From Lemma 2.1 we see that for s > 0, (2.1)

s
Y 1<1500 € W, and that for s < 0, (2.1) has a

doo € W. By the above Lemma 2.2, ug and u;

has a positive solution uy =

negative solution u; =

b+1
can be written as u; = vj + 6(vj,s), v; € V (j = 0,1). Since the solutions
ug and u; belong to W, vg = v; = 0. Therefore we have u; = 0+ 6(0, s).
Lemma 2.3. Let —1 < b< 3 < a < 7. Then we have the following.

(i) For s > 0, there exists a small open neighborhood B of 0 in V such
that v = 0 is a strict local minimum of F(v, s).

(ii) For s < 0, there exists a small open neighborhood By of 0 in V such
that v = 0 is a strict local maximum of F(v,s).

Proof. (i) Let s > 0. Since the positive solution of (2.1) is ug = 0+ 6(0, s)
and I + 6, where I is an identity map on V, is continuous on V, it follows
that there exists a small open neighborhood B of 0 in V such that if v € B
then v + 6(v,s) > 0. Here §(v,s) = 6(0,s) in B. Therefore, if v € B, then
for z = 6(v, s) we have

F(v,s)=F(v+2z,s)

1

= / [5(=1(0 + 22l* + (v + 2)") + %|(v +2)[2 = sdoo(v + 2))dtdz

Q
= / [l(—|vt|2 + v |?) + gv2]dtd:1: +C,

Q2 2

where
C= / [l(—lzt|2 + 'Zzlz) + 222 - S(ﬁooz]dtdl'
Q2 2

= F(z,s) = F(0,s).

Each v € V has the form v = cj0¢10 + ¢}o%10, Where the eigenvalues of ¢

and v is the same integer A;9 = —3. Therefore we have, in B,
. . 1
Fo,5) = F0,9) = [ (5=l + oaf?) + 5o’
Q

= l(—3+a)/ vidtde.
2 Q
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Since 3 < a < 7, v = 0 is a strict local point of minimum of F.

(ii) Let s < 0. Since the negative solution of (2.1) is u; = 0+ 6(0,s) and
I+ 8 is continuous, there exists a small neighborhood B of 0 in V such that
if v € B; then v + 6(v,s) < 0. Here 8(v,s) = 6(0,s) in By. Hence, if v € By,
then for z = 6(v, s) we have

F(v,s) = F(v+ z,3)
1 b
= / [‘("Ivtl2 + vz |?) + —v?]dtdz + C,
Q2 2

where C = F(z,s) = F(0, s). Therefore we have, in B,

F(v,s)— F(0,s) = %(-3 +b) /Q o2dtdz.

Since —1 < b < 3, v = 0 is a strict local point of maximum of F. O

Lemma 2.4. Let s € R be fixed. Let -1 < b < 3 < a < 7 and assume
that condition (2.2) holds. Then the functional F(v,s), defined on V, satisfies
the Palais-Smale condition : Any sequence {v,} C V for which F(vn,s) is
bounded and DF(v,,s) — 0 posseses a convergent subsequence.

Proof.  Suppose that F(vy,s) is bounded and DF(vp,8) — 0in V a
sequnce. Then, since V is 2 dimensional and spanned by the smooth functions
#10 and 19, we have, with up, = vy + 8(vn, s),

Lun + au} —bu; = DF(un,s)+ séoeo in H.

Assuming [P.S.] condition does not hold, that is ||vn|| — oo, we see that
|lun]| — +oo. Dividing by ||u|| and taking wy = ||ua|| " u, we have

Lw, + aw,f —bw, = ||u,,||"1 (DF(un,$) + séoo)- (2.8)

Since DF(uy,s) — 0 as n — 0o and ||u,|| — oo, the right hand side of
(2.8) converges to 0 in L%(Q) as n — 0o. Moreover (2.8) shows that || Lwn||
is bounded. Since L~ is a compact operator, passing to a subsequence we
get that w, — wp in Hy. Since ||w,|| = 1 for all n = 1,2,---, it follows
that ||wo|| = 1. Taking the limit of both sides of (2.8), we find

Lwy + aw{," —bwy =0
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Lemma 2.6. Let —1 < a,b < 7. Then we have :

(i) Fro(v) <0 forallv €V withv #0.

(i1) F};“’b(v) <0 forallveV withv # 0.
Moreover if we let —1 < b < 3 < a < 7, satisfying the condition (2.2), then
we have

(iii) F¥,(v) <0 forallv € V with v #0.

Proof. (i) To prove (i) , it suffices to show that F:’O(v) does not satisfy
the following cases :

(a) F’;’O(v) >0 and 13’;“,0(170) = 0 for some vy € V with vy # 0.

(b) ﬁ’;",o(v) <0 and ﬁ':,o(vl) = 0 for some v; € V with v; # 0.

(c) FZo(v) >0 forallv eV withv #0.

(d) There exist v; and v; in V such that ﬁ’g"o(vl) < 0 and F’;,o(vg) > 0.

Suppose that (i) holds. It follows that F :,O(v) has an absolute minimum
at vy and hence Dﬁ‘:,o(vo) = 0. Therefore, by Lemma 2.2, ug = vg + 6*(vp)
is a nontrivial solution of the equation Lu + aut —bu~™ = 0 in H, which is a
contradiction. A similar argument shows that it is impossible that (ii) holds.

Suppose that (c) holds. Then there exists t¢ € (0,1) such that for all
t <t

tﬁ:’o(v) +(1- t)ﬁ'&o(v) <0 forall v#0.

We note that there exists vg # 0 and t(< tg) such that tﬁ‘g"o(vo) +(1-
t)ﬁ’g"o(vo) = 0. Let t; be the greatest number such that

tEyo(vo) + (1 — ) Fgo(vo) = 0

for some vy # 0 and t. Then 0 < t; < ty. Since tlﬁ‘:,o(v)+(1—t1)ﬁ‘6"’0(v) <0
for all v # 0 and hence vy is a point of maximum of ¢, ~:’0(v)+(1 -t )F’o*’o(v),
we have 3 3

D[t1 F3o(vo) + (1 — t1)Fgo(v0)] = 0.

Let v € V be given and 0 < t; < 1. Let 67 (v) be the unique solution of the
equation
Lz+ (I — P)(tia(v+2)") =0 in W.

We note that we can obtain the same results as Lemma 2.2 if we replace
6(v,s) and Fy (v,s) by 6, (v) and t1F;4(v) + (1 — t1)Fg(v). Therefore, it

follows that vo + 67, (vo) is a nontirivial solution of the equation

ti(Lu+aut)+(1-¢)Lu=0 in H,
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with ||wel|| # 0. This contradicts to the fact that the equation
Lu+aut —bu= =0 in Hy
has ohly the trivial solution. 0O
We now define the functional on H

1 a b, _
F*(u) = F(u,0) = /Q S Tul? + ) + St + 2 lu™ Fldtda.

The critical points of F*(u) coincide with solutions of the equation
Lu+4aut —bu" =0 inH. (2.9)

Let —1 < b < 3 < a < 7 with the condition (2.2). Then the above equation
(2.9) has only the trivial solution and hence F*(u) has only one critical point
u=0.

Given v € V, let 8*(v) = 6(v,0) € W be the unique solution of the
equation

Lz+(I-P)la(v+2)t —=bv+2)7]=0 inW
Let us define the reduced functional F*(v) on V, by F*(v +6*(v)). We note
that we can obtain the same result as Lemma 2.2 when we replace 6(v, s)

and F(v+6(v,s)) by 6*(v) and F*(v). We also note that F*(v) has only one
critical point, v = 0.

Lemma 2.5. For ¢ > 0, F*(cv) = 2 F*(v).
Proof. IfveV and z € W satisfy
Lz+(I-P)la(v+2)" —=blv+2)7]=0 inW,
then, for ¢ > 0,
L(cz)+ (I = P)la(cv +c2)t —blcv +¢2)7]=0  in W.

Therefore 8*(cv) = c6*(v) for ¢ > 0. From the definition of F*(u) we see
that ‘

F*(cu) = *F*(u) for u€ H andc>0.
Hence, for v € H and ¢ > 0,

F*(cv) = F*(cv + 8*(ev)) = F*(v + 6*(v)) = EF*(v). a

Now we remember the notation Fj j, which was defined in the equation
(1.8). Until now, the notations F, F*, and F™* denote Fop, Fy ,, and F:’b,

a
respectively. In the following lemma we use the latter notations.
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that is,
Lu + tjaut =0 in H,

which contradicts to the fact that the above equation has only the trivial
solution because —1 < tja < 7.

A similar argument shows that it is impossible that (d) holds. This proves
(i). The proof of (ii) is similar to that of (i).

(iii) Let —1 < b < 3 < a < 7 with the condition (2.2). To prove (111), It
suffices to show that F*b(v) does not satisfy (a)-(d) replaced F:o by F b

The proofs of (a) and (b) for F:,b are similar to those of (a) and (b) for F,

Suppose that F‘;b satisfies (c), that is, F‘;’b(v) > 0 for all v # 0. Then
there exists to € (0, 1) such that for all t <%,

tF*b(v) +(1-t)F, ao(v) <0 forall v#0.
We note that there exists vo # 0 and #(< o) such that
tﬁ’:’b(vo) +(1- t)ﬁ‘:,o(vo) =0.
Let t, be the greatest number such that
Fyy(vo) + (1 = )Ego(vo) =

for some vy # 0. Then 0 < t; < to. Since t,F ap(v) + (1 - ty)F wo(v) <0 for
all v # 0 and hence v is a point of maximum of

t2F2y(v) + (1 — t2) E o (v),

we have

D [t1F25(v0) + (1 = 1) Fip(v0)] = 0.

Let v € V be given and 0 < t; < 1. Let 6;,(v) be the unique solution of
the equation

Lz+(I—=P)a(v+2)t —tb(v+2)")=0 in W.
Then v + 67,(vo) is a nontrivial solution of the equation

to(Lu 4+ aut —bu~) 4+ (1 —ty)(Lu +aut) =0 in H,
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that is,
Lu+aut —tybu” =0 in H,

which is a contradicts the fact that the above equation has only the trivial
solution because

1 1
va+1 + Vieb+1

Similarly we can prove that ﬁ’:,b(v) does not satisfy :
(d) There exist v; and v, in V such that ﬁ’;“,b(vl) < 0and F’:’b(vz) >0. O

> 1.

Lemma 2.7. Let -1<b<3<a<7 satisfy the condition (2.2). Then
we have F(v,s) — —oo as ||[v|| — oo. Here we note that |||v||| = V3|

Proof.  We showed in Lemma 2.6 that F*(v) < 0 for all v # 0. Suppose
that it is not true that F(v,s) — —oo as ||v|| — oo. This means that there
exists a sequence {v,}$° in V and a number M < 0 such that ||v,| — oo
as n — oo and ﬁ’(vn,s) > M.

For given v, € V let w, = 6(v,) be the unique solution of the equation

Lw+ (I — P)(a(vn +wn)T — b(vn + wa)” — $00) =0 in W.
According to Lemma 2.2 we have that for some constant k

18(va) = 6(0)]| < llvall, or [[18(vn) — 80| < Elljvnll]-

From this we see that the sequence {Qﬁ—-—tlTvﬂ} is bonded in H. Let z, =
n

VUp + Wp, —ﬂ—"-” n—-ﬂ"andz = vk +w}) for n > 1. For
wy, = 6(v,) and wy, —|—“-H we have

wh =L (I-P) (a(vn +wn)¥ - b(v" +wn)” s boo ) in W.

[[oall [[nll [[on]l
Since {%—Fﬂ} is bounded and 22" o ” — 0 as ||vp]| — o0, it follows that
(vn +wn)* (vn +wa)” Poo

Tl 0 Mol “Toul




AN APPLICATION OF A VARIATIONAL REDUCTION METHOD 77

is bounded in H. Since L~! is a compact operator, passing to a subsequence
we get that w}, converge to w* in W. Since V is a 2-dimensional space, we
may assume that {v}}° converges to v* € V with ||[v*|| = 1. Therefore, we
can assume that {2z }$° converges to an element 2* in H.

On the other hand, since F(vy, s) 2 M for all n, we have, for all n,

1
/Q [§LG czn + —-|z"’|2 ——|z;|2 — 8¢go2n | dtdz > M.
Dividing the above inequality by ||v,||?, we obtain

[P 1) + FIe P+ 5

dtde > —— 2.10
st el 2 [ (210

From the definition of w, = 6(v,), it follows that for any y € W and
n>1

/ [=(20)tys + (20)2Yz + a2}y — bz y — sdooy]dtdz = 0. (2.11)
Q
If we set y = wy, in (2.11) and devide by ||v,||?, then we have

SR+ 00+ (a2 = e sl = 0. (.12)

for all n > 1. Let y € W be arbitrary. Dividing (2.11) by ||v,|| and letting
n — 00, we obtain

/Q (=" )epe + (") + al=") Py — B(z") " yldtde = 0. (213)

We see that (2.13) can be written in the form Dﬁ':’b(v* + w*)(y) = 0 for
all y € W. Hence by w* = 6(v*). Letting n — oo in (2.12), we obtain

Jim Q(—I(w:)tlz + |(wr)z|*)dtdz
=— lim [ (a(zX)* —b(zX)" - 5200 2 Vo* dids
n— Jq *Toal
- / [a(z*)t — b(z*) " |w* dtdz
Q
- /Q [—(")e(w")e + (=)o (w"),] deda

- / [ (") + (") 2] dtda,
Q
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where we have used (2.13). Hence
i [ (=120 + e3P s = [ (0 4 1E)ef o
n—eeJQ Q
Letting n — oo in (2.10), we obtain
” 1 * * a * b *\ —
Fiaw) = [ (GG + e+ 5T + i) F | dvd 20

Since ||v*|| = 1, this contradicts to the fact that F*(v) < 0 for all v # 0.
This proves that Fi(v,s) — —oo as ||v|| = co. O

We now state the deformation lemma, which is useful in the critical point
theory [6).

Lemma 2.8. Let E be a real Banach space and I € C*(E,R). Suppose
I satisfies Palais-Smale condition. Let N be a given neighborhood of the set
K. of the critical points of I at a given level c. Then there exists € > 0, as
small as we want, and a deformation 0 : [0,1] x E — E such that, denoting
by Ay the set {z € E : I(z) < b},

(a)n(0,z)=z Vz €E,
(b) n(t,z) ==z Vz € Ac—2e U (E\Act2e), Vt€[0,1],
(C) 71(1, )(Ac+e\N) C Ac_f.

We now prove our main result in this section, with the aid of several
lemmas.

Proof of Theorem 2.1.  The statement (ii) is valid. Hence it suffices to
prove (i). Let —1 < b < 3 < a < 7, satisfying the condition (2.2). Let s > 0.
By Lemma 2.3, there exists a small open neighborhood B of 0 in V such that
in B, v = 0 is a strict local point of minimum of F. Since F — —oo as
[lv]]]| — oo (Lemma 2.7) and F € CY(V, R) satisfies Palais-Smale condition,
max,cy F (v) exists and is a critical value of F'. Hence there exists a critical
point vg of F such that

F(vg,s) = max F(v,s).

_ Let C be an open neighborhood of vy in V' such that BN C = ¢. Since
F(v,s) — —oo as |||v]|] — oo, we can choose v; € V\(B U C) such that
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F(vy,s) < F(O,s). Let T’ be the set of all paths in V joining 0 and v;. We
write 3
c= }yrelf“ 31‘1yp F(v,s).

Let I'={y€eT:yNC = ¢} and

' . r-
c —‘;ggl sgpF(v,s).

The fact that in B, v = 0 is strict local point of minimum of F(v, s), the fact
that F(v) — —oo as |||v||| — o0, the fact that F' satisfies the Palais-Smale
condition, and the Mountain Pass Theorem (cf. [1]) imply that

= inf sup '
c ;Iérsgp (v,9)

is a critical value of F.

First we prove that if F(vg,s) = ¢, then there exists a critical point v of
F at level ¢ such that v # vy (of course v # 0 since ¢ # F(0)).

We claim that if F(vg,s) = ¢, then ¢ = ¢. In fact, since I' C T, ¢ < .
On the other hand, ¢ < ¢ since ¢ is the maximum value of F. Hence ¢ = ¢'.
Suppose by contradiction K. = {vo}. By the above claim ¢ = ¢'. Let us
fix ¢, n as in Lemma 2.8 with E =V, [ = F,c=¢, N=C and taking

€ < %(c — F(0,s)). Taking v € I" such that sup ' < ¢. From Lemma 2.8
), .
n(l,-)oy € T and

sup Fi(n(1,-)oy) <c—e<e,

which is a contradiction. Therefore, there exists a critical point v of F' at
level ¢ such that v # v, 0, which means that the equation (2.1) has at least
3 solutions.

Finally, if F(vg,s) # ¢, then there exists a critical point v of F" at level ¢
such that v # v, 0 (since ¢ # F(vo,s) and ¢ > F(0,s)). Therefore, in case
F(vg,s) # ¢, the equation (2.1) has also at least 3 solutions. [
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A CHARACTERIZATION FOR
FOURIER (ULTRA-)HYPERFUNCTIONS

JAEYOUNG CHUNGY, SOON-YEONG CHUNG? AND DoOHAN Kim?

ABSTRACT. The space of test functions for Fourier hyperfunctions is charac-
terized by two conditions sup |¢(z)|exp k|z| < oo and sup |@(€)|exp hlé| < oo
for some h,k > 0. Also, the space of test functions for Fourier ultra-
hyperfunctions is characterized in a similar fashion. Combining these results
and the new characterization of Schwartz space in [1] we can easily com-
pare important spaces ¥, G and S which are both invariant under Fourier

transformations.

The purpose of this talk is to give new characterization of the space F of
test functions for the Fourier hyperfunctions.

In [6], K. W. Kim, S. Y. Chung and D. Kim introduce the real version of
the space F of test functions for the Fourier hyperfunctions as follows,

|0°¢(z)| exp kx|
hlela!

F={p€C®|sup < oo for some k, h>0}.

They also show the equivalence of the above definition and Sato-Kawai’s
original definition in complex form.

Also, in [1] J. Chung, S. Y. Chung and D. Kim give new characteriza-
tion of the Schwartz space S, i.e., show that for ¢ € C* the following are
equivalent:

(1) p€S;

(2) sup |z%p(z)| < 0o, sup|8Pp(z)| < oo for all multi-indices a and S;

(3) sup |z%p(z)| < oo, sup |£83(€)| < oo for all multi-indices o and B.
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In a similar fashion as above we will give new characterization of the space
F of test functions for the Fourier hyperfunctions as the main theorem in
this paper which says that for ¢ € C* the following are equivalent:

(1) pe F;

(2) sup |p(z)]|exp k|z| < oo, sup |B(€)| exp h|é| < oo for some h, k > 0.

Observing the above growth conditions we can easily see that the space
F which is invariant under the Fourier transformation is much smaller than
Schwartz space S. Since an element in the strong dual F " of the space F is
called a Fourier hyperfunction, the space F' of Fourier hyperfunctions which
is also invariant under the Fourier transformation is much bigger than the
space S’ of tempered distributions.

The complete version of this talk will be published in [2].

We need the following characterization to compare the space F of test
functions for the Fourier hyperfunctions with the Schwartz space.

Theorem 1 [1]. The Schwartz space can be characterized by the following
two conditions

sup [z%p(z)| < oo,

sup |¢7(€)] < oo

for all multi-indices a and f3.

Now, we are going to introduce the original complex version and new real
definition of test functions for the Fourier hyperfunctions as in [6], and state
their equivalence. ’

Definition 2 [7]. A real valued function ¢ is in F if ¢ € C°(R") and if
there are positive constants h and k such that
0% ()|
|

lelk,n = sup Hlelal <P k|z| < oo.

Definition 3.  We denote by F' the strong dual space of F and call its
elements Fourier hyperfunctions.

Now we shall give new characterization of the space F of test functions
for the Fourier hyperfunctions which is the main result in this paper.
First, we state o
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Theorem 4. The following conditions for ¢ € C* are equivalent:

(i) There are positive constants k and h such that

|0%¢p(z)| exp k|z|
o,z hlela!

< oo.

(ii) There are positive constants C, k and h such that
sup |p(z)| exp k|z| < oo,
x
sup |0%p(z)| < Chlolal.
T
(iii) There are positive constants k and h such that

sup |o(z)|exp k|z| < o0,
4

sup [$(6) exp hig] < o

Now we can rephrase Theorem 4 as follows.

83

Theorem 5. The space F of test functions for the Fourier hyperfunctions

consists of all locally integrable functions such that for some h, k > 0

sup |p(x)| exp kle| < oo,

sup (&) exp hl¢| < oo.

Similarly, the space G of test functions for the Fourier ultra-hyperfunctions

can be obtained as follows.

Theorem 6. The space G of test functions for the Fourier ultra-hyperfunctions

consists of all locally integrable functions such that for every h, k > 0

sup [p(z)| exp k|z| < oo,

sup [6(&)] exp hl¢]| < oo
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Remark. Combining Theorem 2 on the Schwartz space S, Theorem 5 on
the space F Theorem 6 on the space G we can easily compare the spaces
S, F and G all of which are invariant under the Fourier transformations as
follows:

(i) The space S consists of all locally integrable functions ¢ such that ¢
itself and its Fourier transform ¢ are both rapidly decreasing.
(ii) The space F consists of all locally integrable functions ¢ such that ¢
itself and its Fourier transform ¢ are both exponentially decreasing.
(iii) The space G consists of all locally integrable functions ¢ such that
¢ itself and its Fourier transform ¢ are both super-exponentially de-
creasing.
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AN INVERSE PROBLEM FOR THE HEAT EQUATION

SOON-YEONG CHUNG

ABSTRACT. If U(z,t) is a heat solution satisfying
[1ev@ 0Pz <M, lal<s, >0, p>1

then its initial value U(z,07%) belongs to WP¢, which shows the regularity of
the initial state. Also, the integral representation of the solutions of the heat
equation and a structure theorem for Sobolev spaces are given.

0. Introduction

In the theory of partial differential equations with given initial values and
boundary values one usually investigates to examine the well-posedness. This
problem is called the direct problem in our view point. This theory is strong
enough for us to determine the situation anywhere and anytime provided
that the data are actually given. However, in many cases the data are not
completely known for us. Then in those situations arise the new problem
to determine the unknown data by taking other conditions for the solution,
which is called the inverse problem.

In this paper we discuss the very simple direct and inverse problems for the
heat equation (8; — A)U(z,t) = 0 with the initial data. The main theorem
states that if U(z,t) is a heat solution satisfying

/ 10°U (, £)|Pdz < M

Key words and phrases. Sobolev space, heat equation.
Partially supported by GARC-KOSEF
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for 0 <t < T, |a| < s and p > 1 then its initial value U(z,0%) must belong
to the Sobolev space WP* (see Theorem 2.4). Thus in view of Sobolev
imbedding theorem we can obtain the regularity of the initial condition by
considering the growth of solution. As a corollary of this result we a structure
theorem for the Sobolev spaces WP, The complete version of this paper with
the detailed proofs will be published elsewhere.

§1. A Direct problem
We recall the definition of Sobolev spaces. Let s be a nonnegative integer

and let 1 < p < +o0.

Definition 1.1. We denote by WP the space of all distributions u such
that
0°u e L?, |a|<s

equipped with the norm

1/p
lullp,s = {Z lla"UIl”]

|a|<s

where || - ||, denotes LP-norm on R".

Let E(z,t) be the heat kernel defined by

(4mt) /2 exp (—|x|?/4t), t>0
0, t<0.

B(z,t) = {

First, we present a direct problem which is, in fact, an initial value problem
for the heat equation with initial data in W?*,

Theorem 1.2. SupposethatT >0,S > 0and1l <p < +oo. Then for every
u € WP U(z,t) = E * u is well defined and a C* function in R" x (0,T)
satisfying that '

(1.1) (8: — A)U(=z,t) =0, (z,t)eR*x(0,T)

(1.2) There exists a constant M > 0 such that

/laaU(az,t)P’da: <M, 0<t<T, |a|<s

(1.3) U(z,t) » u in WP* ast — 0,
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where x denotes the convolution with respect to the space variable z.

§2. Inverse problems

Here we restate a uniqueness theorem for the heat equation in simple form
which is very useful later

Theorem 2.1. ([F], Theorem 1.16) Let U(z,t) be a continuous function on
R™ x [0,T) with the following property

(i) (0 — A)u(z,t) =0inR"™ x (0,T)

(i1) fOT Jgn lu(z, t)|e ¥1*I*dz dt < +00 for some k > 0.
Then u(z,0) = 0 implies that u(z,t) =0 in R™ x [0, T).

Actually the inverse problem given here is nothing but a converse part
of Theorem 1.2. But that result will give many meaningful information as
corollaries.

Now we are in a position to state and prove the main theorem in this
paper.

Theorem 2.2. Suppose that U(z,t) is a C* function in R™ x (0,T) satis-
fying

(2.1) (0: — A)U(z,t) =0, (z,t) e R* x (0,T)

(2.2) there exists a constant M > 0 such that -

/l@"U(m,t)Pd:z: <M, 0<t<T, |a] <,

for T > 0,5 >0 and 1 < p < co. Then the initial value U(z,0%") exists
in WP* where the limit U(z,0%) = lim;_o+ U(z,t) is taken in the topol-
ogy of WP*. Furthermore, U(z,t) can be uniquely expressed by U(z,t) =
U(z,0+) * E.

Remark. If p = 1 then this theorem may not be true. To see this consider
the heat kernel F(z,t). This satisfies all the conditions but E(z,0%) becomes
§(z) which does not belong to L*.

Now we will give some corollaries of the above result. Using the Sobolev
imbedding theorem we can directly obtain;
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Corollary 2.3. If s> 3 +k and if U(z,t) is a C* function in R™ x (0,T7)
satisfying
(0 — A)U(z,t)=0, 0<t<T

and

/|6°‘U(:c,t)|2dx <M, 0<t<T

then the initial value belongs to C¥(R™), i.e., k-times differentiable function
in R™.

The following presents a structure theorem of Sobolev spaces.

Corollary 2.4. If1 < p < co and s > 0 then every u € WP can be written
of the form
u(z) = Ag(z) + h(z)

where g is a continuous function and h(z) is a real analytic function on R"

and Ag,h € WP,

Corollary 2.5. U(z,t) is a heat solution satisfying that
/lU(m,t)|2dm <M, 0<t<T
if and only if there exists a function f € L? such that

U(z,t) = /ei"y_tyzf(y)dy, 0<t<T.
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REGULARITY FOR DIFFRACTION PROBLEMS

EscauriazA Luis AND JIN KEUN SEO

1. INTRODUCTION

In this note, we will describe regularity for solution of the diffraction
problems of the system of elasticity in domain consisting two heterogeneous
media with non-smooth interface of these media. The idea of this paper is
the almost same as the our previous paper(see [E,S:1]) but the novelty in
this paper is the complicated computational scheme to carry out the idea of
the previous paper.

Let Q be a bounded domain and let D be a Lipschitz domain and D C
DcQcCR". . -

We will consider for weak solutions of the system of elasticity
(1.1)

n

foreach r =1,..,n, Z 52_— ((af;XD + bf;XDc) Bz ~u") =0 inQ
j

1

i,J,8=1

where

Z -ég—- (afj’ a%u’) = the r-th component of pA@ + (A + p)Vdivd,
- :
Bhe=1 " ’

Z 9 b;? iu‘"’ = the r-th component of ZAT + (A + ) Vdiva.
L Oz; \ 'V Oz;

We assume that the Lamé constants A, y, A, fi satisfy

—2ji

—92 .
p>0,i>00> —F and i >
n n

91
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By a weak solution @ = (u1,..,un) € WH?(Q) of the system of elasticity
(1.1), we mean ,for all ¢ = (¢1,..,9n) € C5°(2),

/ w(VE + VIt Ve + Mdiv(@)div($)dX
D .
+ / AV + VI)VE + Miv(@)div($)dX = 0
Q\D

where (Vi + Vi)V = 7. (Div/ + Dju')Dig’.

We wish to investigate the behavior of Vi near the interface 0D and
understand the meaning of certain compatibility condition(or transmission
condition) on the interface 8D.

There is a large list of works where the regularity of solutions to this type
of equations is studied [L,R,U], but in them the boundary of D 1s required
to be sufficiently smooth so that the boundary can be flattened. Of course,
in these cases the regularity of the solution is much better; for instance,
when 8D is locally the graph of a function in the class W?? | the class of
all L? functions with first and second derivatives ( in the distribution sense)
belonging to L?, and p > n the gradient of u is Holder continous up to the
boundary from either side of D (See [L,R,U]). But these method does not
work even for C? interface. '

In [B,F,I], when n = 2 and D is polygon, H. Bellout, A. Friedman, and
Isakov studied a weak solution u of the divergence form operator

(1.2) div((k—=1)xp+1)Vu) =0 in$

to apply stability for Inverse Problem. They studied the behavior of u near
~aconer Xg € 0D of D and show that |u(X)—u(Xo)| < C|X — Xo|3+* where
a>0.

In [E,F,V], L. Escauriaza, E. Fabes and G. Verchota showed that the weak
solution of (1.2) satisfied the estimate (1.3) below for any Lipschitz domain
D and any dimension n.

In [E,S:1], we considered a weak-solution u of the elliptic equation:

n
0 ( 0 .
Z — | aij(z)5— u) =0 mQCR"
ij=1 6:1:,' 8z,~
where
aij(z) = aj;xp + @} Xpe>

' (a}j) and (a?j) are positive definite constant matrices .
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Under the condition that (aj;) — (a?;) is a semi-positive definite matrix (or

semi-negative definite matrix), we show that the trace of Vu on 0D, the
boundary of D, makes sense, and in fact

(1.3) /a Iy e < o

where ()* denotes the nontangential maximal function (see body of paper for
the relevant definition). In [E,F,V], to obtain (1.3) they reduced the problem
to showing that if |A| > 1 and A is real,

M — K*: L*(8D) — L*(dD) is invertible,

where K*(f)(P) = p.v;}—l;- /aD (P I_}-,C_)_’gl(np))f(Q)do(Q),

N(P) denotes the outer unit normal vector at the point P on 0D,w, the
surface area of the unit sphere in R", and (-, -) denotes the scalar product on
R™. As a consequence, they obtained a representation of u in a neighborhood
of D as the sum of a Single Layer Potential and of a Newtonian Potential.

For the general case we may assume (a,lj) = A is a diagonal matrix and
(a?j) = I is the identity matrix. Formally, through a careful integration by
parts, the transmission conditions

{ vt =u~ ondD,
(AVut,N) = (Vu~,N) on 0D

together with the condition that A — I ( or I — A) is a strictly positive
matrix, allow us to bound [, |Vu|?do by a constant times Ja |Vu|*dz. Here
the superscripts + and — indicate limits inside D and outside D respectively.
This formal reasoning was used to invert a system of operators which gives
us a representation formula for the weak solution u as a sum of two different
single layer potentials over dD. In particular, we showed that when S and S
denote respectively the Single Layer Potentials(see section 2 for the similar
definition) of the constant coefficient operators (i.e.a}jDi ;j and a?jDij) in the
interior and exterior of D in (1.2), the mapping

L*(8D) x L*(dD) — L*(9D) x L*(8D)

14 ~ ~
B9 () = (S0 - 80). (N, VS(1)*) = (42N, 95(0)7)).
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is invertible, where A! = (a};), A? = (a%). Here L}(0D) denotes the set of
all L2(dD) functions with first derivatives in L?*(dD). As in [E,F,V], this
representation of the solution gave us the desired estimates and the concrete
meaning of the transmission conditions. In the the case when A — I is semi-
positive definite matrix (or semi-negative definite matrix), the integration by
parts argument mentioned above only controle

/(A = I)Vul||[2(aD)-

But we again controled the L?(0D) norm of the full derivatives of u by using
the singular integral estimate

IVL % (V - ((A = I)Vu))xp) l|z2(ap) < CI|(A — I)Vul|p2(aD)-

Here T is the fundamental solution of A and * denote the convolution. The
method to obtain the above singular integral estimate is similar to the one
used in [D-K-V;l1].

But, unfortuately, our method does not work all the cases, that is, we
imposed the semi-positive(or semi-negative) restriction on A' — A?.

Problem 1. Can we show the estimate (1.3) for solutions of the diffraction
problem (1.2) for any positive matrices A' and A??

When A! — A? is not semi-positve and not semi-negative, we met severe
difficulty to prove the closed range of the operator in (1.4). Recently, in
[E,S:2], we gave a partial answer under severe geometric restriction on D.

In the above system (1.1), Frenando[F] studied the behavior of the solution
near a singular point in R? using Mellin transform. v

In [E,S:1], under the conditions A < X and g < ji we show the similar
estimate as (1.3).

A more careful analysis shows the following :

Theorem 1. Let D be a bounded Lipschitz domain with D C D C Q.
Let @ = (u1,..,un) be in [WH2(Q)]" be a weak solution of the system (1.1).
Then, if

2u+k\>2i+kXandp > jiforallk=1,.,n
(or 2u + kX < 2fi + kX and p < i for all k = 1,..,n),

there is constant C' depending on the Lipschitz character of D and the Lamé
constants p, fi, \, A such that

I(VE*)* || 2op) < Clldllwr.2(s)-
In this note, we will explain the idea of the proof of Theorem 1.
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2. PRELIMINARY

The letters X,Y will denote points in R™, and the letter P, Q) will denote

points of the boundary of a domain. Derivatives - will often be written

D;. We will use the index summation convention of repeated indices. Given
a n X n matrix A = (a;;) and vectors £ = ({1,..6x),n = (Mm,..,Mn), We can
then write

(A&, n) = aij&imi.

An open ball of radius r centered at X will be denoted as B,(X) and when
the center of the ball is the origin we will simply use the notation B,.

Definition. A bounded open connected domain D C R" is called a Lipschitz
domain if for each P € 0D there is an open, right circular, double truncated
cylinder Z(P,r) centered at P, with radius equal to r, whose bottom and top
are at a positive distance( usually a multiple of r) from 0D, such that there
is a coordinate system (z,s),z € R""!,s € R, with s-axis containing the
axis of Z and a Lipschitz function ¢ : R*~! — R such that ZND = {(z,s) €
R 1'xR:s>¢(z)}NZ,and ZNJD = {(z,s) e R ! x R:s=¢(z)} N Z.

If u is a function defined on a neighborhood of D we define the interior
and exterior nontangential maximal fuctions of u at P € 0D as

(u)*(P) = Sup{|u(X)| : X € 74(P)}
and  (u”)*(P) = Sup{|u(X)|: X € v_(P)}

where
v+(P)={X € D:d(X,P) < gd(x,ap), d(X,0D) < r}
and
v-(P)={X € R"\ D : d(X,P) < gd(X, D), and d(X,dD) < r},

and r is chosen so that the sets are strictly contained in the interior of D
and the interior of 2\ D (here § is in the introduction).

pAT + (X + p)V(divd) = 0
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with Lamé constant

2
p>0and/\>—:u,

the corresponding Single Layer Potential is given by S( ) =(S( A1rsS(Fn)s
where

S(F) = /a DX - Q)(Qe(Q) for X € BNi=1,m

F=(f1,. fn) € [LP(8D)]", and (T*(X)) is the Kelvin matrix or the funda-
mental solution (see [Ku])

0y xviz=n 2 Byvoxxi-n

(X)) w@_n)a,,p(] + 2 XXX

where 11 1 11 1
- (= dB=~(=— .
A 2(u+2u+z\)an 2(u 2u+/\)

As before, the following properties are well known:
pAS(f) + (A + w)V(divS(f)) =0 in R™\ 8D,

S( f ) is continuous across 0D,

and from the result in [C,Mc,Me] we have

22) (VS Neromy+I(VS(F) ) lleromy < Cllfllzropy 1<p<oo

where C' depends on the Lipschitz character of D, A,and p. Here V4 is the
matrix (D;u’). As before, the standard arguments yield the trace formula

. = 1 7
N Gzzfirzp)zm( HiX)=+ {éﬁNifj(P) — BN;N;(N, f(P))}

X—P

+po. / DT (P - Q)fu(Q)do(Q).
oD

We will write the coefficient matrix (a]}) associated to the system pAw +
(A + p)V(divid) as

alf = p6ij(6rs + 6isbjr) + A6jsbri.
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Therefore
aj = af;
Ou® Ou” p ‘12 . 2
rs N — — A — .
a;; 39X, 3%, 2|Vu+Vu |* + A(divd

(This shows we do not have the strong ellipticity condition, that is, a;7¢/ €7 >

e 1€FI2.) Here Vu' denote the transpose of the n x n matrix Vu. The
coefficients satisfy the Legendre-Hadamard condition

afj{,'{jz'z’ > c|§_]2|212for all nonzero E, 7€ R",

: s . .. 0
where c is a positive constant. The conormal derivative — on the boundary

)
is given by ’
% — u(Vii + VE)N + Aiv(@)N.
Therefore
3 = 1 */
(2:2) 5, S(*(P) = £5f(P) + K*()(P)

where K* is a bounded singular integral operator on LP(0D), 1 < p < oo by
the result of [C,Mc,Me].

Let ¥ denote the space of vector valued function on R™ satisfying the
equations D;i? + Djzbi =0 0<1,7 <n. Define

[%(8D) = {f € |[L*(8D)]" :/ Foddo=0 forallyet).
éD

Theorem 2.1 [D,K,V;2]. Let D be a bounded Lipschitz domain with con-
nected boundary. Then

(1) 8 : [L*(@D)]" — [L3(8D)]",
(ii) — %I+ K* : L% (8D) — L%(3D),
(i) %I +K* : [2(3D) — L*(3D)

are all invertible.
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3. TRANSMISSION PROBLEMS IN ELASTICITY

Throughout this paper, S and S denote respectively the Single Layer
Potential of the operators pA + (A + ¢)Vdiv and A + (A + i)Vdiv, that is,

S (X) = /a (X - Q)f"(@do(Q)  and
57 (x) = /a (X - QF(@)ie(@)

where T and I are respectively the Kelvin matrices or fundamental solutions

0 .
of the above operators. £ and — % denote the corresponding conormal
1

derivatives ( also called traction) to the operator in the interior and exterior

of D so that

-+
aaL = MNdiw@H)N + p(VEt + Vit N
1
B w o
55 = Mdivd™ )N + g(Va~ + Vi™")N.

We shall also assume, for simplicity, that the domain Q in (1.1) is the unit
ball B and D C By

Theorem 2. If D, u, A, ji, and X satisfy the assumptions of Theorem 1 , then
the mapping

T : [L*(8D)]" x [L*(0D)]" — [L}(0D)]" x [L*(dD)]"  defined by
7(7, = () - @) 25077 - 5-5@)")
is an invertible operator.

For simplicity we assume n > 3 leaving the details when n = 2 for the
reader. Now, we will prove Theorem 2 assuming that Theorem 1 has been
already proved.

Proof of Theorem 1. We take a cut-off function ¢ € C§°(B§) with ¢ =
1 on Bs and define ~

R {aA(@e) + (A + i)Vdiv(@8) ) xpm\ b-
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As before it is easy to see that h € [C§°(Bz \ Bs)]" and “ﬁHLz(Rn) <
C”'l_[”wl,z(B). Then

I'(h) & /R . I(X - Y)R(Y)dY.

is a smooth function in the neighborhood of D. From Theorem 2 we can
choose f,§ € [L%(OD)]™ such that

S(f) - 8(7) = -T'(k) on 8D
0 s O g  0x=
and 5—;5(]‘) - E/;S(g) = ——5—51‘(71) on 0D.
We introduce a function w defined as
_ [@$-T(h)+8(§ inR"\D.
W= -
u+ S(f) in D.
It is easy to check that @ € [W,o2(R™)]", and for all § € [C$°(R™)]"

loc
/ W(VE + V& )VE + Adiv(@)div(F)dX
D
+ / AV + V)V G + Adiv()div(@)dX = 0.
o\ D

We will show now that & = 0. Let 5 € C$°(Bz,) be a cut-off function with
n=1lin B, and ||V7]|e < % We will denote the Fourier transform of v by
F(v). We have

/ VadX <O /R V()X
<c [ 17 (V) Pax
<C [ EIF (Vn) + V(@) [+ X (F (div(iin)))” dX
<c /. £V () + V(@) + A (div(@n))* dX

BXD + EXR\D

B2r 2
+ (AXp + Axr\p) (div(in))* dX

<C V(i) + V(@)



100 E. Luis AND JIN KEUN SEO

The third inequality comes from the Legendre-Hadamard condition (see sec-
tion 1) and and the fifth ineqality comes from the fact that

M divd)? + g-ww + V@' ~|VE + VI ~
(3.1) ) .
Adivd)? + 5|V + V']

where by W ~ V we mean that there are positive constants ¢ and C such
that ¢V < W < CV. By standard arguments (see [G;chapter3,proposition
2.1]) we have

/ Vilds < C V|2 dz.

Br B2r\Br

Since |Vw(X)| = O (|X|*~") at large |X| we can see that ‘[Br |Vi|?dr < oo
for all r > 0. By using the standard hole-filling method [G] and letting r — oo
we get the inequalty

/ |Vi@|de < 9 |V@|?°de where 0 <9 < 1.
R" Rn

Therefore |Vw| = 0 on R"™ and when n > 3 the behavior of w at infinity
shows that w is identically zero on R"™. We obtain thus the representation
formula for @ in the neighborhood of D, that combined with the estimate
”Vf(h)“Loo(B%) < C||@||w.2(B) proves theorem 1.

Lemma 3. Under the assumption of theorem 2, given f and § € [L?(6D)]"
the function

(3.2) T = »

gt | TEES(F) D
@~ = 8(§) in R™\D.

satisfies the estimate

(3.3) Vit |lz2om) + IVE 220y < C{llR1llz2op) + B2l 2oy +
+ IVl L2(py + IVl L2(B\D) }

where

I-z'lzﬂ""—ﬁ'_ andf—z'2=2ﬂ'+—£ﬂ'_ on O0D.

ov ov
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Sketch of proof of Lemma 3. To prove (3.3), we will use the following for-
mulas. Recall from Sec 1 that {N,T?,.., 7" !} is a orthonormal basis as-
sociated to some point P € 0D, where T!,..,T" ! are n — 1 tangential

vectors.

(3.5)
n—1
(V& + Vi) 2 = (V7 + VFN[ + Y [(VE + Vi) T'|?

. =1

n—1

= (V& + V&*)N,N)2 +2) (V& + Vi*)N,T')?
=1
n—1n-1
+ )N (Vi + VT, TF)?

=1 k=1

(3.6) div? = %((vm V#*)N, N) % Z (Ve + VvaH)T!, T
(3.7)
(P ) = (u+ SU(V5+ VN, N) + Zl X (v + vatyT!, T
a b — 2 ’
(3.8)
(g” TY = (V&4 V)N, T") foralll=1,.,n—1

From the above identities we have the identity

A(divd)? + §|(va+ Vit)|?

(N

—_—A{%«vm VN, N) + 3

n—1
> (Vi + Vi) T, T')}
=1
n—1
{((w + V& )N,N)* +2) (Vi + V&*)N,T')?
=1
n—1n-1

+ 3N (VE+ V)T, T*)?}  (see (3.5) and (3.6) )

=1 k=1
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1 9v ., 1,0V
_2u+A(57N) * (61/

n—1
PR+ A on | oatyml ply2
+,Z=;_——2#+>\ (V7 + V)T, TY

T')?

(3.9)
tu Y (VE+ VT, TH?
1<I<k<n—-1

+2x > (VI + VT, T(VE + VI TH, T)
1<I<k<n~1

Let 3 € C5°(B) be a vector field such that (B(Q),N(Q)) > ¢ >
0 for Q € 0D. Since u* is a solution of the system

pAT + (A + p)Vdiwu =0 in D,
the Rellich-Necas identity ( see [N],[D-K-V,1]) gives

(3.10) /a D(ﬁ, NY{A(divit)? + p|Vat + Vut'P}do

out
=2 [ (6", G o +0 (1M o))

We have the identity

(3.11)
out > 011"" out
(B:Diir*, ) = (B, N)(Vat +2; ¥
=7, N>{1<a—§;, N)(VEZ* + VEON, N)+

n—1

u 'l# u
+Z Wy + S E T T,

I=1
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Substituting (3.9) and (3.11) in (3.10) we get the formula

” 1 eat ., 1,08t .,
/aDw,N){QMA(@—,N) + (G T

2(2 )(E((Vu + VathHT!, T’))

=

/‘- e\l k2
52_: (Vat + vattT!, T*)?

(3.12) o
—(8_’ )((Vu +V t)NvN)
—2n§: VT, N) (e a“ —, T')}do

n—1
= out out
— l
-2 BTG,  S77)do +0 (VeI ) -

From (3.7) we have the identity

I

2 out D "

4 v-’+t N) = i

(vat +v TARDY A A
1

l

and therefore we obtain the identity

1 out ., L ot out
(3.13) 2““(—87, )2 — (V@ + Vati)N, N)Y(—, )
A out kN eyl ol 1 oat .,
_2”+/\(—6—V—,N)Z((Vu + Vi )T,T)—2H+A($,N).

=1

From (3.8) we have the identity

(3.14) %E(aa"y T2 —2ZVNT)(66u ')

_ Z(T;‘V_,T') ((V@'N,T) — (V@N,T")
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Substituting (3.13) and (3.14) in (3.12) we obtain
> 1 out
| BN - g G MY
aD

20+ A
A (a(;‘y ,N) (Z((Wﬁ + Vfﬁ‘)T',T'))
+ -2(2&—5 (nZ—:((Vfﬁ + vz'ﬁf)T',T')>

1=
(315) n—1n-—1

[l —tt\l k|2
+2I§k=l((vu + vatHT!, T*)

+2,u+x\

+ f(%:r’) (VZ*N,T') = (VZ*'N.T"))}do
=1

n—1
- dut out
—2 [ S (AT G e +0 (IVet )

=1
The same argument leads to the identity corresponding to (3.15) but with

0
@t,p, A, and % replaced repectively by ﬂ'—,p,/\ and %% and we obtain

SO S e
S BN

+
L(‘—?i‘: N) nf((vm + vatHT! T
i+ Ov’ ’

=1

=1

~X n—1 2
fiA - st il
+ — Vi~ = Vi )T, T
T (Z(( ) >)
(3.16-1) ) .
+ 5‘2- (Vi — Va—H)T!, T*)?

+ ni(ai:— T" ((Vi@~N,T") — (V@™ 'N.T")) }do
=1

n—1
2y, 00 0~
— l
=2 ) S BTG 5 S7r)do +0 (IVu™Iapy ) -
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out

ov

From (3.8) and the transmission conditions h; = 4% — @™, and h,

_3_: on 0D, we have

95

/ (65‘: , T ((V@~N,T") — (V&~'N,T")) do

/ (&‘—;,T') (2(Va~N,TY — (V@™ + Vi™'N,T") do
aD

3u' 1 —— 1 1 3u_ i

(a T)((V N,TH — u((9 T))da

ou . n 1 out
/(61/ T)(2<v N, T — u<6 T))da
+0 (111200 + I1Ralz(om)
+0 (IV#*llz2ny sl zzom) + I1Rallzaom})

—o+ ~
=/ (2 Ty (-—z‘ﬂ ”(va,T‘)—-’é(thN,T’)) do
aD H H

+0 (IR 12300 + B2l 200
+0 IVl 2omy {1130y + 1Ballon) ) -

Substituting the last identity and the transmission conditions in (3.16-1) we
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obtain
(3.16-2)
girt
— —(—,N 2
[ M- )
X out “
2 (= N vat + vat)Th T
toii e >(;(( @+ Vit ))
,.:\ - 2
f‘+ (Z (W++va‘+t)T',T'))
(24

-~ n—1n-1
+£ (Vat + VattyT!, T
=1 k=1
n—1 _,+ ~
+ (BL,T’) (M(VWN, T — E(vattN, T!) ) }do
=1 61/ K K
aa'+
=2 (B, T\ (——, do+ O (||Va~
” ; O Vo +0 (1N o))

+0 (nhl B2om) + I2li2om)
+0 (IVa* ooy {lilzom) + Whzllzom})

Subtracting (3.16-2) from (3.15) we have

ov
n—1
S (vat + vathT!, T'))

=1

N
( pA :i X)) (i((Vﬂ‘*+Vﬂ‘“)T',T'))

=

n—1n-—1
a»{-+V,LTI-t)TI,Tk)2

W

Sty ((2ﬁ —H_ 1> (Vat N, T - (ﬁ - 1) (Vare, T’>>}d"
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=0 (“’-{1“2}4(30) + h2llZ2 00y + V@ 200y {1 [l L2¢aD) + ”hzllm(ab)})

+0 (“aniz(o) + HVTWL:(B\D)) :

Using the identities (3.7) and (3.8) the right side of the above identity is

equal to

n—1
A((VEt 4+ Vat )N, N)? + B> (Vat + vath)T!, 1)
=1
n—1

+C Y ((Vat + Vath )N, N)(Vat + vath)T!, T

=1
(3.17) +D Y ((Vat + vathT!, T(Vat + vattTk, TF)
1<I<k<n—1

Hp—p) Y (Vat+vathT! Tk
1<I<k<n—1

Y Chad D) n\j«vzﬁ + Vitt)N, T')?

=1

where

Ao 2+ N2+ X -2 —X)

42 + X)
B A2 —/\5\+2/L:\+4uﬁ—~4ﬂ5\—ﬁ2 + 27\
42+ X)
o= (A= 3\)(2u~+ A)
2(2i 4 X
(A ;\)(2[‘:'- A) when n > 3
D= 2(2f + X) =

0 when n =2
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We will prove that the n x n matrix

A
3 B 7 7
¢ppp .k

def

M=(Mgj)=|. . : :
: D
\(} D Ig 12;)
77 7

is positive (or negative) definite. Define the k x k matrix

My ... Mk
M=\ :
My, ... Mg
where the M;; entries are as above. An elementary computation shows then
that for2<k<n :

A S 0 o0 0
€ B -1 0 0
£cD 1 -1 o0 0 b
detMp=|: i 0 1 -1 0 |(B-3)"
f{:’ % 0 1 -1
¢ b o .. 0 1
k-2 C? D\*?
=|AB + —— —(k-1)— N
(4545240 -w-0%) (5-2)
_ (= B2+ N@p + kA =2 — kX) (u—ﬁ)H
8(2i + A 2

From the well-known basic theorem of Linear Algebra([Ho, page 328]), it

follows that M is positive definite matrix (or neagtive definite) under the
assumptions

2u+kA>2i+kland p> jpforall k=1,.,n
(or2p+k)\<2ﬁ-|-k:\ and p < iforall k=1,.,n).
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Therefore, from (3.17) and (3.5) we obtain the estimates

(3.18) |Va* + Va1 ap) < ClllhilZ2ap) + 1B2ll72om)
+HIVE*|| L2y {llPa ||L§(aD)+”h2||L2(6D)}+||V17+||%2(D)+“V’7_||%2(B\D)}-

At this point we recall the following form of the Korn type boundary
inequality(see [D,K,V:2])
Theorem 4[D,K,V:2]. Let @ be the function in lemma 3. There is a con-
stant C depending on the Lipschitz character of D, u, and \ such that

IV@ll2op) < C{IVE + V| L2ap) + |Vl L2(p) }-

From this theorem, the transmission conditions, and (3.18) we obtain
(3.3).
Lemma 5. Under the assumptions of Lemma 3, given f and g € [L*(oD)|"

we have the estimate

(3:20) [|fllz2(op) + Il z2com) < C{IIS(F) — S(9)lz2op)

S-SV = 8@ Neromy + 1L+ (Pl + @)

where L and L_ denote bounded linear functions from L*(8D) to R™ whose
norms depend on the Lipschitz character of D and the measures in R of D

and B\ D.

Proof. Let
= ot
Bl=_1_/ V4 - Vi
|D| Jp 2

and
! Vi - Vit
|B\ D| Jp\p 2

B,

where |E| is the measure of E in R".
By the Korn inequality (see [N] or Lemma 1.18 in [D,K,V:2]),

/ IV(#(X) — B1 X)|?dX < C/ IV(@(X) — B1X) + V(@(X) — B X)!|*dX
D D
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and
/ IV (#(X)—Bo X)[PdX
B\D

<c / | IV(@(X) - BoX) + V(@(X) — BiX)'PdX
B\D

so that from (3.3) we have

V@t || z2apy+HIVE lL2(apy < C{llRallL2(ap) + llh2llL2(oD)
+ V@ + V@ || p2(py + IIVE + V@' 12(B\D)

(3.21)
+/ |B1X|2dX+/ |B,X|*dX}.
D B\D

On the other hand, from [D,K,V:2] there is a constant C depending on the
Lipschitz charactor of D and the measures in R" of D and B \ D such that

1fllz20py < CUIVE*l|z2(ap) + 1L+ (HI}

(3.22) . o .
1]l z2apy < C{IVE~ ||L2(op) + |L-(§)I}-

From the identities

H 2 t)2 . 2 _ A0 o R
/D§]V5(f)+VS(fjl 4 (diS(f)) dX—/aDS(f)E-;S(f)dea

and
[i Ny = N = k¢ . A 2 ~ = a Ny =\ —
[ Ews@+vs@? + 5 (ad@) ax =~ [ $@15;5@) de
Br\D 8D v
+0( [ IVI@IS(@)do)
dDgp
and Poincaré inequality we have

V@ + V|32 py < CIVE|720D)

(3.23) ) B}
IV + Vo) < CLIVT 22y +] /a dof?

Inequality (3.20) follows from (3.21),(3,22), and (3.23).
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Theorem 5. Letn > 3, D a smooth domain with a connected boundary and
D C B;. Foragivenh € [Cs°(R™)]" there is a solution @ of the transmission
problem

pAT + (A + p)Vdivi =0 in D
BAT + (X + @)Vdivi =0 in R*\ D
@t -4~ =0 ondD

(3.24 %—?—- - aau_ﬂ_ =h ondD
(V@) |lL2opy + (VET)* |l L2(op) < o0
IX||VE(X)| + |[@(X)| = O (|X|*~") at infinity.

Moreover

where T(f, 7) = (0, l_{)

_ [S(f) mD
U=1q .

S(g) mR"\D
The proof of the above theorem is standard.

Proof of Theorem 2. Given f and § € [L2(8D)]", we will use the same
notations in Lemma 3, that is

i~ %' 8§ in R"\D.

To prove that 7 is one to one, let T(f, g) = (0,0). From the identities (3.23)
we can see that @ € [W,{,’C2 (R™)]*, @ is a weak-solution of the elliptic system
(1.1) in the entire domain R™. As in the proof of theorem 1, & = 0 on R™.
Therefore from the jump relations of the traction, f =g§=20ondD.

From the estimate (3.2) and the fact that the operator in the the theorem
2 is invertible when D is smooth, it follows that 7 has closed and dense
range. We will leave these details as an exercise for the reader.

We can state the following theorem:

Theorem 6. IfD,u, A, fi,and A satisfy the assumption of Theorem 3.2, then
there exists € > 0 such that the mapping

T : [LP(8D)]" x [LP(dD)]" — [LP(OD)]" x [LP(OD)]"  defined by

T(7.9) = (S - 3@ 550 - 50"
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is an invertible operator for 2 —e < p <2 +e.

From G. David and S. Semmes’s L2-booster theorem there is also an € =
(D) and a constant C, so that when # is as in the theorem 1 the following
estimate holds

I(V@*)*||L2+e(ap) < CllEllwr.2B)-

From the Sobolev imbedding theorem and Theorem 6, we can obtain the
following 3-dimensional result.

Theorem 7. Let n = 3. If ¥ is as in Theorem 1, then
@ € [CO%(D)" N[C™*(Bs \ D)I" N[C(Ba)]"

for a small § > 0.

Problem 2. In the case where sign(p — i) # sign(A — )), the result of
Theorem 1 is still open problem.
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REGULARITY FOR WEAK SOLUTIONS OF
ELLIPTIC PARTIAL DIFFERENTIAL
EQUATIONS OF SECOND ORDER

KAZUHIRO KURATA

ABSTRACT. We show continuity and the property |Vu|? € K1°¢(Q) for weak
solutions u of general uniformly elliptic partial differential equation with com-
plex coefficients: Lu = —div(A(z)Vu) + c(z) - Vu + V(z)u = f under the
assumptions |V, |c|?, f € K}¢(Q). Moreover, when ¢,V are real-valued we
show Harnack’s inequality for nonnegative weak solutions of Lu = 0 under
the same assumption on ¢, V.

We also show local boundedness for weak solutions u € Hllo () of Tu =
—(V = ib(2))?u + V(z)u = f in © under the assumptions |V|,|b|?,f €
Kloc(q).

1. INTRODUCTION AND MAIN RESULTS

We consider the following elliptic equation of second order:
(1) Lu=—dw(A(z)Vu(z)) +c(z) - Vu(z) + V(z)u(z) = f in Q.

Here A(z) = (aij(z)) is real-valued, ¢ and V are complex—valued and A(z)

satisfies

(2) aij(2) = aji(e), MEP < D aij(2)eil; AP z€Q, E€R”
,j=1

for some A € (0,1]. We assume

(A) V1, Ic?, f € K25(Q).

This work is supported by Grant-in-Aid for Encouragement of Young Scientists (No.-
04740096), The Ministry of Education, Science and Culture.
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Here we say V € K°(Q) if lim,—on(V;r;©1) = 0 for each compact
subdomain ; with Q; C Q, where

(3) | n(f;r) = sup /B -lf(—y)l-dy

zeR» JB,(2) [T — y[" 2

and n(f;r;G) = n(fxa;r) and x¢ is the characteristic function of G and
B(z) ={y e R%|z—y| <r}forr >0. Wesay u € H, (2) = {u €
L ();Vu € L ()} is a weak solution of (1) in €, if u satisfies

(4) /

for every ¢ € C°(Q).

Thoughout this paper we denote by C(n, A,n) the constant depends only
on n, A, and the modulus of functions n(|V|;-) and n(c|?;-). Since we are only
concerned with local properties of weak solutions, we may assume that € is
bounded and n(|V|;r; ), n(|c|?;r;Q), and n(f;r; Q) tend to zero as r — 0.
For simplicity we use the notaion n(g;r) = n(g;r; ).

3y aijaiuaj¢+c.v¢++vu¢dm=/Qf¢dx

i,j=1

Theorem 1. Suppose (2) and ASSUMPTION (A) and let u be a weak so-
lution of (1). Then u is continuous in ) and there exist constants r, =
ro(n,\,n),C = C(n,A,n) > 0 and non-decreasing functions w(s) and wg(s)
satisfying lim,_,o w(s) = 0, lim,_ow(s) = 0 such that

T — T,
lu(z) — u(z,)| < Cw("";‘*") lwll oo (Bsr (20))
5
(5) + G [l2==
f r

for every 0 < r < r, with Bg,(z,) C Q. Moreover |Vu|? € K!*°(Q) holds.

Theorem 2. Suppose ASSUMPTION (A) and ¢, V are real-valued. Then for
nonnegative weak solution of Lu = 0 there exist constants C,r, > 0 such
that

(6) maxu < Cminu

r r
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for 0 < r < r, with By, C Q.

We also consider the Schrédinder equation with singular magnetic fields:
) Tu = —(V —ib(2))*u(z) + V(2)u(z) = f in Q,

where ¢ = /-1, b(z) = (bj(z))}-,; is real-valued and V(z) is complex-
valued. If we apply Theorem 1 to this Scrodinger equation we must impose
div b € K!°(Q). However we can show local boundedness of weak solution
of (7) without this additional condition. We say u € H (Q;C) = {u €
L% (Q;C);Vu € L (Q;C™)} is a weak solution of (7) in §, if u satisfies

loc

(8) /Q(Vu —ibu) - (V¢ — ibd) + Vuddz = /S;fada:

for every ¢ € C°(Q;C), where ¢ is the complex conjugate of ¢. We also
write HL = HL (€;C) for simplicity. We denote by Vg the real part of V
and use (Vg)~ = max(—Vg,0). We also use f, f dz = Flﬂ [, f(z)dz, where

|A| is the Lebesgue measure of A. For local boundedness of weak solution of
(7) we have

Theorem 3. Suppose |V|, |b|?, f € K}¢(Q) and let u be a weak solution of
(7). Then u € L{2,(R) and there exist constants r, = ro(n,n),C = C(n,n) >
0 such that

1/2
(©) ||uuLw<B,,2<z,,»s0(]{3 ( )lul“’dw) +Cn(fi2r)

for every 0 < r < r, with By,(z,) C Q, where r, depends on n, p, n(|V|;-; Q)
and n(|b|?; ;) and C only onn, p and n((Vgr)™;-;2). When f = 0, we have

1/p
(10) ”u”Loo(Br/z(xo)) SC(%;( ) ]u|1’dx>

for every 0 < p < +o00.

Since —(V —ib)%u = —Au + 2ib(z) - Vu + ¢ divb(z)u + |b(z)|?u, as an
immediate consequence of Theorem 1 we have
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Corollary 4. Suppose V,|b|?, divb, f € K}°¢(Q) and let u be a weak solu-
tion of (7). Then u is continuous in Q and |Vu|? € K}°(Q).

Remark 1. If we assume somewhat stronger condition V,|c|?, f € KL‘ZE(Q)
for some é > 0, then Theorem 1 yields Holder continuity for weak solutions
of (1). Here we say g € K}:”‘;(Q) if

: l9(y)l
11 lim sup / ———dy =0
(11) 0 pertn J B, (oyne 1@ — [P 2F0

for every compcat subdomain €' of 2. We remark that K°§(Q2) C K1*°(2)
for 6 > 0 and that if g € L, (£2) for some p > n/2, then g € K,?§(Q) for
~some én > 0.

Theorem 1, 2 and Theorem 3 generalize the previous results of [LU]J,
[AS], [CFG], [Si], [HK]. The property |Vu|? € K?°() in the statement
of Theorem 1 was first shown by Donig [Do] for weak solutions u of Lu =
—Au+Vu =0,V € K!2¢(Q) and was generalized to general elliptic equations
(1) in [Kul,2].

Remark 2. If b € CL _(Q) and V, f € K°°(Q2), one can show local bounded-
ness of a distributional solution of (7), that is u, Vu € L{, () and u satisfies
(7) in the distributional sense. Because we can use Kato’s inequality directly
(see [Hi]). We prove Theorem 3 by using Kato’s inequality, but for an ap-
proximated solution. Since a local bounded distributional solution u belongs
to HL () (see e.g. [HS,Lemma 2.2]), u is a weak solution. Applying Corol-
lary 4 we can conclude that u is continuous and |Vu|? € K!°°(Q) even for a

distributional solution of (7).

Remark 3. In [HS] Hinz and Stolz proved the local boundedness of distri-
butional solution u of (7) with u € L% () and Vu € L4/3(Q) under the

loc

assumptions V € L} (Q),(V)3 € K'*(Q) and |b|?,divb € L? (). But we

loc loc
do not know continuity of solutions under this conditions.

Example 1. We cannot expect in general Holder continuity under ASSUMP-
TION (A). Let u(z) = 1/(log1)*,a > 0,r = |z|. Then u is a weak so-
lution of —Au + Vu = f in By(0) with V = & € K\*(B1(0)),

f= ﬁ% € K'°¢(B,(0)). u is continous but not Holder continuous.
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Example 2. Let V(z) = —r;ﬁ;}s—q; and b(z) = b(r)%,r = |z| with b(r) =
mls—qr_—. Then V, |b|?> € K!¢(B,(0)). Hence Theorem 1 implies continuity of
weak solution of —div(A(z)Vu)+b-Vu+Vu = f € K}¢(B;(0)), Theorem 3

implies local boundedness of weak solution of Tu = f. However since div b ¢

K¥¢(B1(0)), div b = b, + 2L = r2nlo—g2',1.“ - rmolg Iyz; We cannot apply

Corollary 4. Note that since |b| = |b(r)| & K¢, (B1(0)), the result of [CZ]

cannot be applied.

We prove Theorem 1 by using some global integrability of the Green func-
tion of L ( (32) ) and the mollified Green function of Ly = —div(A(z) V
) (Theorem 4, Lemma 4 below ) as in [Kul,2] (cf. [CFG]). This paper is
organized as follows. In section 2 we present several lemmas which play an
important role in our proof. In section 3 we give the sketch of the proof of
Theorem 1 and 3. For the proof of Theorem 2 and the details of the proof
of Theorem 1 and 3, see [Kul,2].

Finally we give comments on different approach on this regularity problem.
There exists an approach due to Simader, which is simple in the sense of using
the Green function of the principal part Ly = —div(A(z)V), but only give
partial results on our problem in the case b # 0. For this approarch see [Ku2,
Appendix]. For a probablistic approach see [AS], [CFZ], [CZ]. Especially
Cranston and Zhao [CZ] proved Harnack’s inequality for L = —A+b-V+V
under V, b2 € K*°(Q) and an additional assumption |b| € Ko () (see
Example 2).

&

Acknowledgement. I would like to thank the organizers of this conference
for their gracious hospitality during my visit to Korea.

2. SOME LEMMAS

2.1 Approximation. Let j(z) € C(R"™) be a function satisfying 0 <
J(z) £ 1,j(z) = 0 for |z| > 1, and [j(z)dz = 1. For € > 0 let j(z) =
e "j(e7'z) and let g(z) = jex g = [ je(z — y)g(y) dy for g € L] (R™). Let
u be a weak solution of

(12) Lu = —div(A(z)Vu + b(z)u) + c(z) - Vu + V(z)u = f
on §2 and consider the smooth solution of

(13) Lfv = —div(A(z)Vv + b(z)v) + c*(2)- Vo + V(z)v = f* in B
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and v—u € H}(B). Wesay g € L} (Q) satisfies the condition (§) on B, if

loc

| lg(y)l 6
14 su —2 7 _dy < =
(1) zez%/w o -y Y =2

fof a ball B with 2B C Q, where we denote by 2B the ball concentric with
B but with the radius two times as large.

Lemma 1. There exists a constant § = &(n,)\) such that if V,|b|?,|c|?
and f satisfy the condition (§) on B, then there exists a unique solution

ue € C2(B) of (13) such that

loc

(15) [Vue — Vul| L2y + lue — u|lz2(By — 0 (e = 0).

Proof. See [Kul, Lemma 2.1] O
Note that, for A€, g¢, we have

Mel < Y agi(e)et; S ATUER, n(gSr) < nlgir) +n(g; )
t,y=1
The second inequality is due to Simon [Sim,page 455]. This implies
(b 7) < n(Ibl* ) + n(Ibl*;€),

n(g%;r; By) < n((9xB,, )5 7; Br) < 2n(g; 75 Bar)
for 0 < e < r, g € K¢(Q) and a ball By, C Q.

2.2 Weighted Norm Inequality. We note the following inequality. For
g € K!°¢(Q) we have

(16) / lglv* dz < Con(y;r;Br)(/ lvv|2dx+l2/ v? dz)
B, B, r* JB,

for v € H'(B,) and B, C §, where Cj is a constant depending only on n.
(It is sufficient to our argument to use a classical inequality in [HK] which is
weaker than (16).) The inequality (16) is due to [FGL, Lemma 2.1].
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2.3 Scaling property. We also note that the following scaling property.
Set ur(z) = u(rz), Ar(z) = A(rz), by(z) = rb(rz), c.(z) = rc(rz), and
Ve(z) = r?V(rz). If u is a solution of (12) in B, C 2, then u, is a solution
of —div(A.(z)Vu, + bru,) + ¢ - Vur + Veu, = 0 in By. Moreover, ¢, and
V, ( we omit b, ) satisfy
(17)
2 2
wp [ BR[| DGR,
B JB, |z —y|"7? zeB, Jp, |w—z|"7?

V()] + le2(2))xa(2)
Swsé‘é’n/&,w) lw — 2|2 de

= n(V;2r) + n(|c[*; 2r).

Therefore, Lemma 1 says that there exists r, = r,(n,A,7) > 0 such that
the solution u of (12) can be approximated by the smooth solution u, of the
approximated equation (13) for every B = B, with 0 < r < r, and B,, C Q.

2.4 Caccioppoli-type Inequality. The following Caccioppoli-type in-
equality holds for weak solutions of (12).

Lemma 2. Suppose that V, |b|?, |c|?, f € K!°(Q). Let u be a weak solution
of Lu = f on Q For 0 < s < t with B; C §Q, there exists a constant
C = C(n,\,n,Q) > 0 such that

(18) / ;vu|2dxg—c—2/ wtde+C [ |f|de.
B, (t—3)? Jp,

B

Proof. The proof is standard. For the details see [Kul, Lemma 2.1]. O

The following lemma is applied for the Green function of L and is used
essentially in the proof of Theorem 1.

Lemma 3. Suppose f = 0. and the same assumption as in Lemma 2. Then
we have

1/2
(19) (f o d:v) < C(n, A, n) ]f lu| dz
Br/2 B,

for every B, C Q.
Proof. For the case f = 0, Lemma 2 yields

c
(20) / Vil ds < s /B 2 da
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for 0 < s < t with B; C 2. Once we obtain this estimate we can prove
Lemma 3 in the same way as in [CFG], by using Sobolev’s inequality. [

2.5 Mollified Green Function. To show local boundeness for weak so-
lutions of (1) we must control the term [ |Vu(y)|?>/|z — y|* "2 dy. It turns
out that the mollified Green function technique yields desired estimates for
our purpose. Recall the definition of the mollified Green function G(z,y)
for Ly = —div(A(z)V) and its properties. For y € D, D is a domain, the
mollified Green function for Ly on D is defined by

(21) /D

for all ¢ € H!(D). The mollified Green function has the following properties
G°(-,y) € Hy(D)NL®(D) (y € D);G°(z,y) — G(z,y) (¢ = 0,z #y)
0< G(z,y) < K(n,\)|z —y|* ™ for z,y € D,0 < o < dist(y,dD),

where G(z,y) is the Green function for Ly on D. G has the following well-
known properties:

0 < G(z,y) < K(n, Nz —y[>™ for z,y €D,
K(n, Mz -y~ < G(z,y) for |¢ —y| < (3/4)dist(y, OD).
For the proof of these properties, see [GW].

2": a;j0;¢0;G°(z,y) dz =][ ¢dx

i,j=1 Bs(y)

2.6 Estimate of Green Function for L. Next theorem implies ex-

istence and global integral estimate (see (32)) of the Green function for
L =—-div(A(z)V)+c-V+V.

Theorem 4. Let B = B,(0) and n/2 < p < +oo. Suppose that V,|c|?
satisfy the condition (6) for sufficiently small § = é3(n,\) > 0 on B. Then
there exists C = C(n,p,\) > 0 such that

(22) lullze(B) < CllfllLr(B)
for any weak solutions u of Lu = f with u =0 on 0B.

Proof. 1t is sufficient to show the same estimate for the approximated so-
lution u = u, of Lu, = f¢ by Lemma 1. The idea is, for y € B, to take
é =uG?(-,y) as a test function of

/<A6u,6¢>+c-Vu¢+Vu¢d:c=/f¢dx, ¢ € H)(B)
B B

where G?(-,y) is the mollified Green function of L§ = —div(A*(2)V) on B.
For the details see [Kul, Theorem 3.1]. O
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2.7 Property |Vu|? € K?¢(2). We use the notation 8(r) = n(|V|;r) +
n(lc|?;r), 8(r; D) = n(|V|;r; D)+n(|c|?;r; D), 6o(r) = n((VR)™;r)+n(lel*; ),
8o(r; D) = n((Vr)7;r; D) + n(le|*;m; D). oscpf = sup, ,eplf(z) —f(y)l-
oB,rf = sup, yep,jz—y|<r |f(z) = f(y)|. The following lemma plays an im-
portant role in the proof of continuity of weak solutions. Let G(y, z) be the
Green function of Ly on B.(z,) C Q. Then we have

Lemma 4. Let u € HL () N LL() be a weak solution of (1) and let

loc

By, (z,) C Q. Then there exists a constant C = C(n,A) > 0 such that

(23) /B G IVUw) dy < Cosep, o luf
£CB0(2r; Br(zo)[ell3eo 5,0 + C1F 25 Bu(@o))lull (5,20

for z € By(z,).

Proof. The idea is the same one as in the proof of Theorem 4, but we need
a modification because we do not have boundary condition in this case. For
the details see [Kul; Lemma 3.1]. O

Take z = z, in Lemma 4 and note G(y,z,) > K(n,\)|ly — z,|>~™ for
ly — zo| < (1/2) dist(zo, OBr(z,)) = /2. Then we obtain

|Vu(y)|?
/B (z) [y — To|"2 dy < Coscp, (z,)lul*
r/2(To °

+C80(2r; Br(wo))||ullLee B, (z,))) + C1(F5 2r; Br(zo))|tll Lo (B, (20))
for Bz,(z,) C . Once we establish continuity, this estimate yields the
property |Vu|? € Klo¢(Q).

Theorem 5. Suppose Suppose ASSUMPTION (A). Let u € HL (Q)NL{2(Q)
be a weak solution of (1) and let ; C Q be a compact set. Then |Vu|? €
K!°¢(Q) and there exists a constant C such that

n(|Vul?;r; Q1) < Cho(4r)||ull Lo (5) + 00, ar(w))||ull Lo (0y)

24
(24) + Cn(f;4r; Q)||ull L (29

for Q, C Q, C Q and for sufficiently small r > 0.
Proof. See the proof of Theorem 5.2 of [Kul]. O
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In section 3 we will show local boundedness of weak solutions (Theorem 6).
Hence Theorem 5 implies that every weak solution u of (1) satishies |Vu|? €
K2e(9Q).

3. SKETCH OF THE PROOF

We give the sketch of the proof of Theorem 1 and 3. First we show local
boundedness of weak solution of (1).

Theorem 6. Suppose V,|c|?, f € K!°°(Q) and let u be a weak solution of
(1). Then there exist constants r, = ro(n,A,n),C = C(n,p,A\,n) > 0 such
that

(25) sup [u] < C(f [ul? do)/2 + Cn( f; 2r)
B,

Br/2

for every 0 < p < +00 and 0 < r < r, with By, C Q. When f =0,

(26) sup [u] < C(n,p,A,nxf [ul? do)'/?
B,

Br/2

holds for every 0 < p < 400 and 0 < r < r, with By, C .

Proof. For the sake of simplicity we prove only in the case f = 0. By the
scaling argument in section 2 it suffices, under the condition (6) on B2(0)
for V,|c|?, to prove

1/p
(27) sup |u| < C(][ |ul? d:z:)
B,

B2

for 0 < p < 2. The case p > 2 follows from the case p = 2 and Holder’s
inequality. To show (27) it is enough to prove

o L\
(28) [ullze=(B,) < (t—_;)ﬂ—n/g(/& u dy)

for any 1/2 < s < t < 1. Because, once we establish (28), the argument
of [FS] yield (27) and complete the proof. Hence we prove (28) for a weak
solution u of (1). By Lemma 1 it also suffices to show (28) for the solution u.
of the approximated equation L¢v = 0. Let G, be the Green function of L¢
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on B = B;(0). Then, by omiting superscript or subscript ¢ for G, u., c¢, V¢,
we have

(29) /B < ABG(-,2),0p > +G(- 2)e(y) - Voo + VG(-, 2)p dy = ()

for every ¢ € C3°(B) ( see e.g., [St]). Take ¢(z) such that 1/2 < s <t <1,
¢ € C(Bi—(t-5)/4)s 0 £ ¢ < 1, ¢ =1 on B(yys2, V| < C/(t — s).
Substituting ¢ = u¢ into (29), noting u = u, € C°(B) by the regularity
theorem, we obtain, for z € By,

u(z)é(z) = / (< AOG(-,z),0¢ > u— < Ad¢,0u > G(-,z)) dy
(30) ;
+ /B G(-,z)uc- Vo dy.

Here we used the fact that u is the solution of Lu = 0. We denote by J; (J2)
the first term (the second term ) in the right-hand side of (30), respectively.
For J1, as in [CFG]( see also [Gu]), we obtain

(31)

c 1/2 1/2
315 (o o w) ([ )
— S Bt_(t—a)/é\B(t"‘ﬂ)/2 B

c 1/2

Tz (/ |G(y,w)|2dy)

SNIBi_(t—0)4\B(e44)/2

1/2

X </ [Vul? dy)

Bc_(t—a)/4\B(‘+‘)/2

c 1/2

<—— 2 :
< e ()

In the last inequality of (31), we used Lemma 2, Lemma 3 and Theorem 4 (
the estimate (32) below). Note that L.G(-,z) = 0 on B\ {z} for the adjoint
operator L, of L and that Theorem 4 and the duality argument yield

(32) sup / Gy, )| dy)? < +oo
z€B JB
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for 1 < ¢ < n/(n —2). For J; we have

C
<
lJZ‘_t—s

|G(y, z)|le(y)l|u(y)| dy
By _(t—)/a\B(t4s)/2

. O\
33 < (/ |G(y, $)| dy)
(33) t = 8 \JB,_(t_e)sa\Biete)/2

1/2
( / |c(y)|2u2(y>dy) -
Bi—(t-s)/4\B(t42)/2

By Lemma 2 and the weighted norm inequality (16),

lc[Pu?(y) dy < / lclPu?(y) dy
Bi_(t-s)/4

1
<cmopiimy(f Py [ )
Bt—(t—a)/4 4 Bt—(t—,)/‘;

1
< CoTl(|¢|2;1;1‘31)65—_;)3/}B u? dy.

X

v/Be—(z-.)/4\B(z+.)/2

Hence we obtain

C 1/2
. o < — 2d
(34) ol < Gz, )

for any 1/2 < s <t < 1 and for the solution u = u of the approximated
equation. This completes the proof. [J

Proof of Theorem 1. By Lemma 4, we can prove Theorem 1 exactly in the
same way as in [Theorem 5.1, Kul]. We give the sketch of the proof.

Let ¢ € CX(Bz.(z,)) satisfy 0 < ¢ < 1, ¢ =1 on Bs, /5(z,), and
|V4| < C/r. Let u be a solution of Lu = f¢ on By,(z,), and let I(z,y)
be the fundamental solution of L§. Notice that there exists a constant C,
independent of ¢, such that |I'(z,y)| < C(n, A)|z — y|= ("2 z,y € R*. We
omit the superscript € for A€, c¢, V¢, f¢ in the following argument. Since
u=u, € C*™, we have

w(@)p() = [T(a,) 3 Oulassdy(us))dy

(35) - _/r(x,.)’(J(: Vu+Vu-—f)e

+ < A0¢, Ou >> dy +/ < Adl'(z,-),0¢ > udy.



REGULARITY OF WEAK SOLUTIONS 127

Therefore, for z € B,(z,),
(36)

(@) —u(za) = [(Dlzar?) = Dz, e Vus dy
+ /(F(azo, ) —=T(z,))Vuédy — /(F(:t, ) =T(z,,)) < A0$,0u > dy

+ / < A(dT(z, ) — OT(z0,)), 06 > udy + / (N(z, ) = D(z0,-)) f dy
=I.+1Iv+ 11+ 111+ If.

For Iy,II,III,I; we can estimate as in [CFG] and obtain for some a(n, A)

and C(n,A)
. _ o 1/2
\I[T| + |II1] < c('f—;f”——') (][ u? dm) ,
B3r

1 < (B2 P2a(vs ) a2 — 2,7
X Null oo (Bar (z0))5

15| < C((Ii:rio—')mn(f; 4r) +n(|f;4r' e - xoll/z)) .

For I, as in [Kul] we obatin for C' = C())

C
el < ran(lel®; 47 Bar(26))! /(1 + 6(8r; Bar(20)))' /2 [lul 1= (B (2))

T (e 42 — o, |'/2 By(2,) 2
x (1+6(8r!/?|z — zo|'?; Bsr($o)))l/2”“||L°°(Bsr(zo))

C
+ ‘N—aﬂ(lclz; 4r; Bsr(2,))*n(f;8r; Bar(z,))
+ n(lel?;4r' 2|z — z,|'/?; Bs,(x,))'/?
x 1(f;4r? |z — @,|'/%; Bsr(2,))

for N = 2(r/|x—z,|)!/2. Thus we obtain the desired estimate for the solution
u = u, of the approximated equation. By Lemma 1 we can conclude the
same estimate for weak solution u of (1) for sufficiently small 0 < r < r, =
ro(n, A,n). Thus we complete the proof. O
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Proof of Theorem 8. We show that there exist constants r, = ro(n,n) > 0,
C = C(n,n) > 0 such that

(37) lull (B, < c<]{3 [ul? da)/% + Cry(f; 2r)

for every 0 < r < r,. When f = 0 we show that there exist constants
7o, C > 0 such that

C
) 2
- o < ey f,

for every 0 < r < 7, and 0 < s < ¢t < 1. Once we obtain (38) we can obtain
the estimate

(39) lullz= 5.,y SC(]{B ful? dz)!/?

for every 0 < p < 400 and 0 < r < r, with B;, C @, by Lemma 5 in [HK].

By Lemma 1 it suffices to establish (37) for the approximated solution u,
of T¢u, = f€. We first show that there exists a constant C > 0 independent
of € such that

(40) [ue(y)] < c(]{g N dw) " et

for 0 < r < r, with Bgr(yj C Q. Since b*,u, € C2(B2,(y)), Kato’s inequal-
ity implies
Alue| > Re(sign(u_G)(V - ibe)zue)

= Re(sign(we)(Veue — f°))

2 Velue| — £

2 —(V)rluel = £

(41)

in the distributional sense in B2,(y). Then by the argument as in the proof
of Theorem 1 in [HK] (see also [H1]) we can obtain (40). Here we used
n((Ve)g;r) < 2n(Vg;2r) for € < r and Lemma 2. As in [HK page 128] (40)
implies the desired estimate (37) for u. and hence also for weak solutions
u. O
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ON SOME IMPROPERLY POSED ESTIMATE
OF THE CAUCHY PROBLEM FOR
QUASILINEAR ELLIPTIC EQUATIONS

KAazuya HAYASIDA

We consider the Cauchy problem for degenerate quasilinear elliptic equa-

tions and degenerate elliptic Monge-Ampeére equations. It is well-known
~ that this problem is not well-posed even for linear elliptic equations. But
an estimate holds for a class of them. Such an estimate is said to be an
”improperly posed estimate”, which is close to Hadamard’s three circles in-
equality (see [3] and [5]). It is stronger than the unique continuation property.
Kazdan [4] proposed the question : Does the strong unique continuation hold
for p-harmonic function ? Generally, it is negative for solutions of degenerate
quasilinear elliptic equations (see [7]).

Here we treat the two nonlinear operators

N
Ly(w) = Y 0, (10sul ™ Osu), P22,

=1

M(u) = 82u 82u — (8,0,u)* .

The operator L, appears in [6]. If M(u) 2 0, the operator M is degenerate
elliptic.

We write z = (z1,--- ,2n),2' = (21, - ,on-1) and y = zn. The origin
in RY is denoted by O. Let D be a domain in RN such that D is in the half
space {y > 0}. Let I" be an open subset of 8D with I' 3 O. Let T be of class
CL.

131
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We assume that there is a positive number a < 1/2 such that for any c
with 0 < ¢ £ a,D N {y < ¢} is connected and

(DN {y<c)={0}UTn{0<y<c})
uDn{y=c}).

This means that D is strictly convex at O. We fix such a positive number
a. From now on we write D, = DN{y < ¢} and I'. = ' N {y < ¢}, and
L.=Dn{y=c}

First we have

Theorem 1. Let u belong to ¢v'* (D,) for a with1/2 < a £ 1. Let
IL,(w)| € KlufP™! in D,

for a constant K. Then, if

/ (Ju? + |Vul?) dS <e,
|

/ (Jul” + [Vu?) dS <M
Lo
and ¢ exp (2?P71K),e exp (p/2) £ a®® M, it holds that

/ (Jul? + |[VulP) de £ C(1 4 K)2e/2M(2=2)/2
a2

where C is a positive constant depending only on p.

Next we consider the degenerate elliptic Monge-Ampére equation, when

N = 2. We define

llu]loo,p = sup u}, (w)eor, = sup |,
(4 c
and

(U)ot = sup Ju].

c
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Theorem 2. Let u belong to C? (D,) and let u satisfy M(u) 2 0 in D,.
Then, if

(u)wara + <azu)00,ru + (3133,11)00,& + <a§u>°°,ra g €
(Uoota + (Ost)cg g, +(0:8yu) e p, + (Bju) _, S M

and ¢ €8/3 < M, it holds that

”ulloo’D“/2 + Haxu”oo,Da/z é Ca_25a/2M(2_a)/2a

where C is a positive constant independent of ¢, M and a.

The precise proof of Theorem 1 is given in [2]. The special case was proved

in [1].

(2]
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 REMARKS ON THE GLOBALLY REGULAR
SOLUTIONS OF SEMILINEAR WAVE EQUATIONS
WITH A CRITICAL NONLINEARITY

Jongsik KiM! AND CHOON-HO LEE?

ABSTRACT. We prove that the semilinear wave equation with a critical non-
linearity has a globally regular solution provided that it has a locally regular
solution

Introduction

In this paper we study the existence of a globally regular solution of the
semilinear wave equation with a critical nonlinearity
(0.1) uy — Au+u’ =0,
where u(z,t) : R* x R — R is a function of four space variables and time. In
order to solve (0.1) one has to prescribe initial data at a fixed time ¢ = 0, i.e.

(0.2) u(z,0) = uo(z), ue(z,0) = ui(z).
The equation (0.1) is a special case of a more general set of model equations
(03) Ut — Au + |u|p_1u = 0,

where u(z,t) : R® X R — R is a function.

In case n = 3 and p < 5, Jorgens[5] proved in 1961 that the nonlinear
wave equation (0.3) with initial data
(0.4) u(z,0) = ug(z) € C3(R?), uy(z,0) = ui(z) € C*(R®)
has a globally unique C? solution. In case n = 3 and p = 5(critical power),
Rauch[7] in 1981 first proved the existence of a global C? solution provided
the initial energy is small enough. In 1988 Struwe [9][10] proved the existence
of a radially symmetric global C? solution provided the initial data is radi-
ally symmetric. Finally, Grillakis[2] in 1990 was able to remove symmetric
assumption in Struwe’s result. In case 4 < n < 7and p = (n+2)/(n—2), sev-
eral authors proved the globally regular solution of (0.3) with smooth 1nitial
data (see [3],[4],[6],and [8]).

In this paper we shall give the sketch of proof of

1 This work is partially supported by KOSEF-GARC.
2 This work is partially supported by KOSEF and Daewoo Foundation
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Theorem 0.1. Let ug € C*(R*),u; € C*(R*) be arbitrary initial data. If
u € C*(R*x[0,T)) is a solution of (0.1) and (0.2), then there exists a solution
u € C*(R* x [0,00)) to the Cauchy problem (0.1) and (0.2).

The proof is divided into several parts. In Section 1, we shall establish
an integral representation of the solution of a semilinear wave equation. In
Section 2, using the Hardy type inequality we prove the existence of a global
C? solution with small initial data. In Section 3, we apply the identities
to drive the several estimates of solutions. In Section 4, we shall prove the
existence of a global C? solution with arbitrary initial data. In Section 5, we
shall introduce the results of (0.3) in the higher dimensional case.

We shall use the following notations: Let z = (z,t) denote a point in the
space -time R* x R. Given zp = (o, o), let

K(zo) = {z=(a,): =20 Sto =t}
be the forward(backward) light cone with vertex at z,
M(z) = {z = (z,t) : |z — zo| =10 —t}
its mantle, and
D(t,z) = {z = (z,t) € K(z0)} (t fixed)

its time-like sections. If zg = (0,0), zo will be omitted. For any space-time

region Q C R* x Rand T < S, we let
Qi ={z=(z,t)eQ: T<t<S}
the truncated region. Hence, for instance, we have
OK; = D(s)U D(t) U M;.
If s = 0o or t = —00, it will be omitted. For zo € R*, let
Ba(o) = € B*: o= 20| SR}

with boundary
Sr(zo) = {r € R*: |z — 20| = R}.
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1. Integral Representation

In this section we shall give an integral representation of a solution of the
semilinear wave equation

(1.1) U — Au + f(u) =0 in R* x R
with initial data
(1.2) u(z,0) = uo(z), ue(z,0) = uy(z).

Assume that u is a solution belonging to C?(R™ x[0,T)) of (1.1) and (1.2).
Let z¢ and z be points in R™. Let y = ¢ — z¢9 where z, is a fixed point and
¢ is a variable. Define the functions [u] as

[u] = u(z,t - [yl).
Then
Viu] = [Vu] — glud],

n—1

Alu] = [Au] = 2[Vuy] - § + [un] — o] [ue],

Viug] = [Vuy] = [u] - 9,

where § = TiT is the unit vector of y. Eliminating [Vu,| from the above, we
have

(13) Al +2§- Vud + %[ut] = [Au] — [uwer] = [f(w).

Multiply (1.3) by ]—yT,ITj to get the identity

1 Y n—2 n—3 1 u
(14) V{MT_Q[VU]+ lyln_l [ut]+ lyln y[“]}+W_1[“t] = Iyln_2 [f( )]

Take 29 = (20,%9) such that |zo| < ¢g and ty < T and integrate (1.4) inside
the domain A bounded by the surfaces Se = {|y| = €}, S = {|y| = to}. Then

1 y n—2
VAV e + Tl

n—3 1
- / (~Erlud + gl dy.
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The divergence theorem gives

/QtAmw-“ Vu(a,0) + (w,0) + "z, 0) do

-2
_]I IyI" 1{y Vu(z,to — e)+ut(x,to——e)+n|y| u(z,to — €)} do
ly|=¢€

- / { o n— lut(x to — |y|) + n—2 f(’u,)(.’E to — ‘yl)}dy
<ll<to 1Yl lv '

By letting € — 0 we have
(15)
-2
/ L (Vu(z,0) 4 u(2,0) + (e, 0)} do = (n — 2)enuan, o)
lyl=to |y| lyl

='/ (23 et f(u)} dy.
lyl<to l |

ly|™~

Thus we have

1 1 -2
(n - 2)wn /y| =to lyln -1 {Vuo y T + lyl uo}do

1 / n—3
4+ — ——uy(z,to — |y|) d
(n = 2)wn |y|<t0| |n ! (=t = lvl) dy

Ty, e =)

= ur(zo,%0) + un(zo, to),

u(xo,t0) =

where the linear part of u(zg,t) is given by

(1.6)

! / L Va4 + B2} d
e — u u u o
(n—mmly.MWWI 0§ turt T

1 / uy(z,to — [y)
+ — — = dy
(n = 2)wn Jiy<to ly|m—1

and the nonlinear part of u(zo,%o) is given by

UL(ll/'o,t()) =
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_ 1 f(u)(@,to — ly)
0D st =g [ SO

Let zo = (zo,t0) and z = (,t) for z € M§*(z0) = {(z,t) : |z — 0| =
to—t, 0<t<to}. Then z — zo = (y, |y|) and

(1.8) un(zo,to) = (_\@_'ii/M Mdo

(n - 2)wn SO(ZO) IZ - Z()l"'m2

Thus we have proved the

Theorem 1.1. Let u € C?(R™ x [0,T)) be a solution of (1.1) and (1.2).
Then for every zo € KI = {(z,t)||z] < T —t,0 < t < T}, u satisfles the
integral equation

(1.9) u(zg) = uL‘(zo) + un(20),

where ur,(29) and un(zo) are given by (1.6) and (1.8).

2. Globally Regular Solutions for the Small Initial Data

In this section we shall prove the existence of globally regular solutions of
semilinear wave equations with small initial data. Given a function u on a
cone K(z) we denote its energy by

1 1
o(w) = 5wl +Vuf’) + u'
and by

E(u:D(t: 2))= / e(u)dz

D(t:20)

its energy on the space-like section D(t : z). Let © = y + 2. We denote by
1. 1
dy(u) = §|yut — Vul® + ZU4

the energy density of u tangent to M(z¢). The following Hardy’s inequalities
are useful to prove the regular solutions of semilinear wave equations.
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Lemma 2.1. Suppose u € L*(BRr) possesses a weak radial derivative u, =
& -Vu € L?(Bg). Then with an constant Cy independent on p and R for all
0 < p < R the following holds:

3 / |u(w)‘2 / 2 1 2
(2.1 - dz < us“der + — ul® do.
( ) 4 Br\B, |x|2 Br\B, l l 2R ‘ ‘

(2.2) /B ) '“I(x‘”lz'z < Co { /B o + ( /B ! dw)l/2}

(2.3)

N 1/2 1/2 3/4
/ uddo < C’o{(/ u? dm) (/ ufdx) + (/ ut dw) }
Sr Br Bgr Br

Proof. See [6].

. Note that if u = u(z, ) is a solution of (1.1), then u(z, —t)is also a solution

of (1.1). Since the semilinear wave equation is conformally invariant, the
solution is translation invariant in ¢.

Let z = (z,%) be given and suppose u is a C?-solution of (0.1) on the
deleted backward light cone K|(Z) = Ko(Z)\{Z}. In order to prove that u
can be extended to a global solutlon of (0.1) and (0.2), it suffices to show
that for any z as above

m = limsup z—z |u(20)| < oo.
20€K(2),20#2

We may assume that m = supg,(z)|ul.

Lemma 2.2. Let F(u) = [, f(t)dt and assume F(u) > 0 for all u € R.

Suppose u € C?(K}(z)) solve (1.1) and (1.2). Then for any 0 <t < s <1
there holds

E(u:D(s,2))+ —\}_—2 /M‘(_) dz(u)do =.E(u : D(t:z)) < Ey,

where E(u,D(s,2)) = [ 3(Jusl* + |Vu|?) + F(u)dz and dz(u) = F|jus —
Vul|? + F(u).
By Lemma 2.2, for any fixed z the energy E(u : D(s,z)) is a monotone

decreasing function of s € [0,) and hence converges to a limit as s . It
follows that

(2.4) / d:(u)do — 0 as s,t /'t
M;(2) '
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In Section 1, we had a decomposition of the solution of (0.1) and (0.2) as
u=ug +up,

where y = z—1, and v, and u are defined as in (1.6) and (1.8) respectively.
Since we are interested in points zo such that |u(zo)| — ™ as z9 — Z, we need
only consider points zo satisfying |u(zo)| = mazk,(;,)|u| = mo. Thus, and
splitting integration over M{ (2o) and Mr(2o) for suitable T, from Hélder’s
inequality we obtain

(2.5)
mo = |u(z)| < C + o / —yf—(—%-)—do+ ! / Mdo
° o= V204 Iy (z0) 17 — 20/ V2wy Jur (o) 12 = 202

3
By Lemma 2.2 the last term is bounded by Clto — T|"'E#. Thus to
establish our main result, it suffices to show that for any z = (Z,%) there
exists T < t such that

. u’(z)
(2.6) limsup zy—:z ———do < V20,.
#€K(z) Jmp(z) |7 — 20

This observation and Hardy’s inequality gives

Theorem 2.3. If u € C?([0,T) x R*) is a solution of (0.1) and (0.2), then
there exists a constant €y > 0 such that for any ug € C*(R*),u; € C3*(R?)
with

1 1
Eq =/ (G + Vo) + Fluol)ds < eo,
R* ’
(0.1) and (0.2) admit a global C*? solution.
Proof. Let v(y) = u(zo + y,to — |y|). Then by Lemma 2.1 we have

(2.7)

2 1 2
/ Ju] (2)2 do— L |v(y2| dy
Mr(z0) 12 — 20l V2 JB,,_r0) Yl

1/2
<C |Vo|? dy + C / lu|* dy
BQO_T(O) Bto—T(O)

1/2
<C’ dz(u)do+C </ d;o(u)do
M7 (20) Mr(z0)

< C(Ey + Ey'%).
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Letting T=0, the theorem holds from (2.5). /1]

Since t = 0 no longer plays a distinguished role in the following, we may
shift coordinates so that z = (0,0) and thus in the sequel we may assume
that u is a C? solution of (0.1) on K¢, \{(0,0)} for some ¢; < 0.

3. Some Estimates for the Large Initial Data

In this section, we introduce the multiplier tu; + = - Vu + %u to drive the
following identity

(3.1) 0:Qq —divP; + Ry =0,

where

Qa =te(u) + - plu) + guut

1 1 '
= gt =r)(ue - ur)? + 2+ 7)(uet ur)?
+ 2t|Vu urZ|© + 4tu + zuut
3
=Qo+ U
Py = tplu) + zl(u) + (z - Vu)Vu + guVu,
1
Rd = Zu“.

The identity (3.1) is equivalent to the identity

d z 3 3 ,
(3.2) t {a(e(u) + e plu) + oy e + azt )

—div(p{u) + %l(u) + %(:c - Vu)Vu + %uVu)}

1 3
+e(u)+;a:-ﬁ(u)+——u2+Rd=0.

22
Lemma 3.1. There exists a sequence of numbers t; / 0 such that
1
(3.3) — uus dz < of1),
ltil /o)

where o(1) — 0 as [ — oo.
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Lemma 3.2. For any | € N there holds
(3.4) L / |u|* dzdt + / {e(u) + z. plu)}dz <o(1) —0
4ltd| Jk,, D(t) t

as | — oo.

Lemma 3.3. There exists a sequence of numbers t; / 0 such that the
conclusion of Lemma 3.1 holds for (t;) which in addition we have

t
141

(3.5) 2< L <4

|

o~~~

foralll e N.

In the sequel to simplify notation we shall assume that ¢; = ¢; for all [,
initially.

z 4. Globally Regular Solutions for the General Data

In this section we shall prove the Theorem 0.1. Fix zo = (20,t0) € K\{0}
arbitrary. Let y = ¢ — 29,y = I—;'/Ll,af: = % Divide (3.2) by t and then for
s > to integrate over K \K(2o) to obtain the relation

1 3 3
0= {e(u) + 7T lu) + —uue + 2} dz
D(s) 2t

3 3
_ / {e(u)+ S Flu) + uu + et} da
D(t;)\D(t, 20) 4t

3 5 .
+—\/—= Mﬂ{e(u)+ —z- ﬁ(u)+——-uut+4t2u —&-P}do

3 u —gy-Pl}do

1 3
{e(u) + e ou) + Sy Ut + — pre

-E Mtl(zo)
1 3
+/‘ —{e(u)+ <z plu) + s5u 2 + Ry} dzdt
K \K(zo)t 2t
=I+II+III+IV+V,

where P = p{u) + £l(u) + (37 - Vu)Vu + uVu = 1P,



144 JonNagsik KiM AND CHOON-HoO LEE

By Hoélder’s inequality and Lemma 3.2 the first term I — 0 if we choose
s = t with k — oo. Similarly, IT — 0if ! — co. By Lemma 3.2 also II] — 0
as | — oo. Finally V < 0. Thus we obtain the estimate for any zo € K\{0}.

1 3
(4.1) / {e(uv) + =z - plu) + —:-;—uut + —u?—§-P}do<o(l) >0
M, (s0) t 2 412

as | — oo, with error term o(1) independent of 2.
In order to bound (2.6) we shall use (4.1). Let r = |z|; then we may
rewrite

1 3 3
A:=e(u)+—t-x-ﬁ(u)+§uut+ﬁu -y P

_ 1 'r,\ A 2 rA ~ 1 2 1 4
= 20 =T gl + (14 TG IVl + Flul?)

3 ) r 5 ) . 3
+§t-(ut—y~Vu)u+~t-(ut—y~Vu)x°Vu—uty-Vu+4—t2—u2.

Introducing u, = § - Vu,a = & — §(J - &), |ajuq = a - Vu,Qu = Vu — ju,,
we have

1 . . ro ol 1
A= §(1 _ ?x -9 (ue — Ua)2 +(1+ ;x : y)(-Q—lQulz + Z|“|4)
3 r N
+ é;(ut — ug)u + 't'lalua(ut —ug) + 4t2u

Now let & - § = cosé, |a| =siné and let u, = -\-/l-—f(ut — ug). Then we have

(42)  A=(1-Tcosd)lu,l +(1+ gcosa)(-;-muw + i]u]‘i)
r 3 3
- iné = = u?
+ tﬁlsm ]upua+\/§tuu,,+4t2u
3 3
= Ao+ ——uu, + 2.
o ﬁtuup+ "

Note that if we estimate |uq| < |Qu|, then we have
(4.3)
r 2 r 1 e 1 4
Ao 2 (1- n cos 8)|u,|” + (1 + 7 cos&)(§|u¢,| + Z|u| )

+ ;\/ﬂ sin é|u,uq

1
=(1+ C)(lu,,|2 + Z|ugl?) = L(\/ﬁx/l + cos u, — V1 — cos bu, )’
t 2 2t

1
+ Z(l + ;cos &)|ul* >0
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on Mt,(ZO).
Now for any € > 0 there exists a constant C' = C(e) such that for any
7o € K and any z € M©*(z) we may estimate

—;—ﬁlsin6| <k, —gcoséz

DN =

In fact, for z = (z,t) € M (2) we have

|t —to ly|
Hence 20| 0
A A o A~ Zo
Z-g=cosé6>1—-|g—%>1-2"—2>21— ——
lyl C-1
while

1

r_ _lyl ﬁ—%Hﬂz(L_%xy_atTy

1>-2=
t o Jt—tol [t| Iyl

This yields the following estimate.

Lemma 4.1. For any € > 0, any z9 € K, letting C = C(€) be determined
as above for t;; < Ct, we have

1
/ Ado > —/ lu,|? do — eEy
M, * (z0) 2 J M (20)

Note that u, may be interpreted as a tangential derivative along M(zp).
In fact, let ® be the map

(4.4) ®:y—(z0+y,to—lyl)

and let

(4.5) v(y) = u(®(y))

wherever the latter is defined. Then the radial derivative v, of v is given by

(4.6) Vo =7 -Vo=uy —uy = —\/§up.
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Lemma 4.2. For any 29 € K and any C > 0 there holds
UpU
—£—do > (1 +log(1+ C))o(1),
M(14c)ty(20) t

where o(1) — 0 if (1+ C)tg > t; and | — oo.

Combing Lemma 4.1 and Lemma 4.2 it follows that for any € > 0, if we
choose t < C(€)ty < tr+1, we can estimate '

(4.7) o(1) > / Ado
My, (20)

1
> —/ lu,|?* do — €Eq
2 M:,b(zo)

N / A do — o(1) (1 + log(1 + C(e))),
Mt,(zo)

where o(1) — 0 as | — oco. To estimate Ay on My, (2¢) now introduce the
new angle &y, where |z¢| = 19,30 = — &0, &0y = cosdp. Againlet y =z —xo
r

0
and |y| = 0 = |t — to|. With this notation

ré-g=a-g=y-g+a0-

= o + ¢ cos by,

o = | =20 2o (2 9,

r T
= r—°|sin50|.
-
Hence
(4.8) .
_(1-2_T 2 7+ coso) Lo + Lt
Ay = (1 i cos&o) lup|” + (l+ " + : cos 8y <2|Qu| + 4|u| )

+ Tt—o\/§|sin6|upua.
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Estimating |Qu| > |uq| as before, we have
(4.9)

to — 2
Ay > (2 -2 " 7’0) lu,|? — g—% (\/5\/1 + cosfpu, — /1 — cos&oua)

to To 2 to o 4
+ 5 (1 + to) lual® + ym <1 + 7 cos6g) [ul®.

Note that all the latter terms are nonnegative for z € M (20),20 € K. Since
ro < [to] in (4.9), for t < 2t we have Ag > |u,|?>. Moreover, given, 0 < € <
1,20 € K, let t,, <2t < tm+1 and set

= T(e:20) = {2 € My, (20) : |60] < €}/4}
A= A(e: z9) = My, (20)\I.

Note that by (4.8) on I' we have an estimate

Ay > Iu,,I2 — \/561/4|u,,u0,|
> |u,|* — V2e!*d,, (u)
while, by (4.9), on A we have

t r
Ap > 4—‘;(1 + icos 60)|ul*

1 e1/2
> (1 — o 4
> 2 (1-(1- S+l
l/2
> —|ult — .
= 32 lu’l Edzo(u)
Combining (4.7) and Lemma 4.1, we thus obtain
(4.10)
/ lu,|? do < / Ag do + V264 E,
r Mtk(zo)
< (e+ V26'/*)Ey + o(1) (14 log(1 + C(e))),
/2
(4.11) — [ |ul*do S/ Ao do+ €Ey
32 Ja M., (20)

< 2eEq +0(1) (1 + log(1 + C(e))),
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(4.12)

/ lu,|? do < / Ao do-I—/ u,|? do
M, ™ (20) M; ™ (20) M; ™ (20)

< 3¢Ey + o(1)log(1 + C(e)),

where o(1) — 0 as | — oo, we may assume that ¢; < tx < .

Proof of Theorem 0.1. Given e > 0, we split the integral in (1.9) and use
Holder’s inequality as follows

2 2 2 2
M,V—Zd r |z — 2o a lz = 2 Mmlz“%|

By Lemma 2.1 and (4.10)

|u|2 4/ 2 1 —1/ 2
————do< = | |uyl°do+ <|tm — %o ul® do
_/I‘ |z — 20 |2 3Jr g GI " | 8D(tm:20) it

< S;f(e + V2 /) By + o(1) (1 + log(1 + C(€)))

2/3
+C (/ |u|? do) .
8D(tm:20)

By Lemma 2.1 and Lemma 3.2

/ lu|® do
8D(tm:20)

1/2 ‘ 1/2 3/4
<C { (/ |u]* dx) (/ |Vul|? da:) + (/ Ju)* dw) }
D(tm) D(tm) D(tm)
/2 3/2 1/2
<C { (/ |Vu|? d:c) + (/ |u)* d:c) } (/ |u* dar:)
D(tm) D(tm) D(tm)

< C(Eo)o(1),

where o(1) — 0 as m > ! tend to infinity. Similarly, by Lemma 2.1, Lemma
3.2 and (4.12)

ul? 4 1 _
/ ¢ Izl_lz |2 do < g/ . |upl2d0+ 6|tm—t0| 1/ Iulzdo
Mt,m 0 M:{n(zo) 8D(t1:20)

< 4eEy + o(1)log(1 + C(e)) + o(1)C(Ey).
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Finally, by (4.11),

e s (f pime) ([ ore)”

4/3 3/4
= 64¢!/2 (/ ™ do) Eo 4 o(1)e/? (1 4 log(1 + C(¢))).
a

|Z - 20|8/3

Hence, if we first choose ¢ > 0 sufficiently small and then choose Il € N
sufficiently large, then the integral

/ Juf®
———do
M., (z0) |2 — 20

can be made as small as we please. 11111/

5. The Higher Dimensional Case

In this section we shall introduce the recent results for
(5.1) Uy — Au+ |ufP'u=0 in R"x R
with the initial data

u(z,0) = uo(z), ug(z,0) = us(z).

A solution u of (5.1) is regular if u is locally bounded and as smooth as the
initial data permit for general semilinear equation (1.1) involving nonlinearity
f all of where derivatives are bounded.

Theorem 5.1 (Brenner-von Wahl). Let1 < p < 242 Ifn <9 ,then (5.1)
has a global classical solution.

Proof. See [1].
Theorem 5.2 (Grillakis, Shatah-Struwe). Let p = 22, Suppose u is a
solution of (5.1) with smooth initial data. If n < 7, then u is regular.

The proof of Theorem 5.2 bases on the energy inequality, the estimate of

/ | 22 do
D(t;0)

and the estimate of Strichartz for the inhomogenous wave equations, for

details see [4],[8].
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MULTIPLICITY RESULTS FOR DOUBLE-PERIODIC
SOLUTIONS OF NONLINEAR DISSIPATIVE
HYPERBOLIC EQUATIONS

WAN SE KIM *AND JEAN MAWHIN

ABSTRACT. Amprosetti-Prodi type multiplicity results for double-periodic
solutions for nonlinear disspative hyperbolic equations are treated

1 Introduction

Let Z and R be the set of all integers and real numbers, respectively and
let Q = [0,27] x [0, 2x].

Let L'(Q2) be the space of measurable real-valued functions u : Q@ — R
which are Lebesgue Integrable over 2 with usual norm || - ||z:1. Let L2(Q) be
the space of measurable real-valued functions u :  — R which are Lebesgue

square integrable over ) with usual inner product (,) and usual norm || - || 2
and let L>°({2) be the space of measurable real-valued functions v : @ — R
which are essentially bounded with usual essential norm || - || .

Let C*(2) be the space of all continous functions u :  — R such that the
partial derivatives up to other k with respect to both variables are continuous
on 2, while C(€) is used for C°(2) with the usual norm || - ||oo and we write
C=(Q) = Nz, CH(Q).

Let W¥2(Q) be the Sobolev space of all function u : § — R in L*(Q)
such that all partial distributional derivatives up to k belongs L%(Q) with
the usual Sobolev norm.

*This work was done while the first author was visiting Université Catholique de
Louvain,Belgique.the first author was supporter by KOSEF Post-Doc. program 1991 and
the research grant of Université Catholique de Louvain.
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The purpose of this work is to investigate the weakend Ambrosetti-Prodi
(briefly WAP) type and Ambrosetti-Prodi (briefly AP) type multiplicity re-
sults (see [1]) for weak double-periodic solutions of the nonlinear dissipative
hyperbolic equations of the form

(1.1) Bug + Uy — Uzz +g(t,z,u) =s+ h(t,z) in Q

where A(# 0) € R, u = u(t, z), h € L*(Q),
g:Q x R — R is a caratheodory function and s is a real parameter.
A weak double — periodic  solution of (1.1) will be u € L?() such that

(1.2) (4, —Bve + vee — vaz) + (9(-u) - v) = (s + h,v)
for every v € L?(Q) satisfying boundary conditions
v(t,0) — v(t,27) = v,(t,0) — v, (t,27),t € [0,27]

v(0,z) — v(27,z) = ve(0, z) — vy(27, 2),t € [0, 27].

Let us remark that a necessary condition for (1,2) to have meaning is that g
be such that g(-,-,u) € L?(Q2) when u € L*(£). .

Besides, g is a Caratheodory function; i.e., g(-,-,u) is measurable on Q for
each u € R and g¢(t,z,-) is continuous on R a.e. on (1.

We assume the following.

(H1) There exist a € L>(f2) and b € L*(€) such that
lg(t, z,u)| < a(t,z)|u| + b(t,z) ae on K.

Fabry, Mawhin and Nkashama, and Mawhin have shown AP type muti-
~ plicity results for periodic solutions of forced second order ODE in [3] and
in [11] respectively. Ding and mawhin treat WAP andAP type multiplicity
results for periodic solution of higher order (in fact more general operator
is considered) ODE in [2]. Ramos and Sanchez and Ramos deal with WAP
and AP,and WAP multiplicity results for periodic solutions of higher order
ODE in [12], and in [13] respectively. Lee treats WAP an AP results for pe-
riodic solutions of proof is related to that of [2]. However we use the specific
properties of the periodic problem for (1,1) in the obtention for the required
a priori bound. :

2 Preliminary results
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Now consider the equation

(2.1) Bug + ugg — ugr = h(t,z),#0 and u=u(t,z)
u(t,z) = Z Uim exp[i(lt + mz)]
(1,m)€ZxZ
h(t,z) = Z him exp[i(lt + mz)]
(I,m)EZXZ

with Um = U—j—m and Aim = h—j—m since u and h are real.

Lemma 2.1. u € L?(Q) is a weak solution of (2.1) if and only if ,for all
(ILm)e Zx Z,

[Bli 4+ (m? — ) tm = him.
Let DomL = {u € L*(Q): E(l,m)ezxz[ﬂzﬂ + (m? = )?]|uim|? < oo}.
Define an operator L : DomL C L%(Q) — L%*(2) by

(Lu)(t,z) = Z [Bli 4+ (m?® — I®)]wim exp[i(lt + mz)).
(l,m)eZxZ

Then DomlL is dense in L?(Q), KerL = R

ImL = {h € L*(Q) // h(t, ) dt do = 0)
Q
ImL is closed, and
[KerL]™! = ImL.

Moreover, L2(Q) = Ker L @ ImL. Consider a continuous projection
P:L*Q) — L*(Q) such that ImL = KerP.

Then L%() = KerL @ KerP. We consider another continuous projection
Q : L2(Q) — L%(Q) defined by

(Qh)(t,z) = 4—71r—2//9h(t,w)dtdx.

Then we have L?(Q) = ImQ @ ImL, KerQ = ImL, and L*(Q)/ImL is
isomorphic to ImQ.

Since dim[L%(Q)/ImL] = dim[ImQ] = dim[KerL] = 1, we have an iso-
morphism J : Im@Q — KerL and L is a Fredholm mapping of index 0.
Moreover, we have easily the following lemma.
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Lemma 2.2. L: DomL C L*(Q)) — L*() is a closed operatert.
If h € L?(Q), then u is a weak solution of (2.1) if and only if u € DomlL,
Lu = h. L is not bijective but the restriction
Lipomr 1mz : ImL( ) DomL — ImL
is bijective, so we can define a right inverse

KR = [L|pomrtme] ™ : ImL — ImL(") DomL

and

(KRR)(t,2)= > [Bli+(m® — )] hum expli(lt + maz)].
(I,m)eEZXZ '
(1,m)#(0,0)

We have the following lemma.

Lemma 2.3. DomL(\ImL = KER[ImL] C W'2(Q)NC(Q)NImL and
KR[Wk2\ImL) C W12\ ImL, k =0,1,2,3,... . Moreover, ifh € ImL,
then | K ®h||w1.2 < C4||h|| for some Cy > O independently of h.

proof. See [4], [10] and [7].

Since

(KBh)(t,z) = Z [Bli + (m? — )] him expi(1t + mz)).
(1,m)€ZXZ
(1,m)#(0,0)

We can represent K as a convolution product

(KBh)(t,z) = (K * h)(t,z) = //Q K(t — s,z — y)h(s,z)dsdy

where K(t,7) : 75 Y (1,m)ezxz[Bli + (m? — L?)]" Y exp[i(lt + mz))].
(1,m)#(0,0)

We have the following lemma.
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Lemma 2.4.. the operator KE : ImL — C(Q) is compact. If h € ImL,
then ||K®h||oo < Cy||k||12 for some constant Cy > 0 independently of h.

proof. See [4], [10] and [7]. )
* Now we can extend K® to L!(Q) by defining K% : L}(f2) — L%*(2) by the
formular

(KBh)(t,2) = //g K(t—s,z —y)h(s,y)dsdy for he L'(R).

Then, by Holder’s inequality and Fubini’s theorem, we have the following
lemma.

Lemma 2.5. [|[K®|, <|IK| L, Az, -
proof. See [7]

3 (WAP) Type Multiplicty Result
Let us consider the following double-periodic boundary value problem
(312)
Bus + ug — ugy + Ag(t,z,u) = As + Ah(t,z), A € [0,1].

Let L : DomL C L%(2) — L?(Q) be defined as befor and define a substitution
operator N : L%(Q) — L%*(Q)

(NM(t,z) = Ag(t, @, u) — Xs — Ah(t,z)

for u € L?(Q) and (t,z) € Q. By krasnosel’skii’s results, N} is continuous
and bounded. Let G be any open bounded subset of L2(Q2), then QN : G —
L?(Q) is bounded and K’(I — Q) : G — L?(Q) is compact and continuous.
Thus, N is L-compact on G. The coincidence degree Dr(L + N}, G) is
well-defined and constant in A if Lu + N} # 0 for A € [0,1], s € R and
u € DomL()0G. 1t is easy to check that (u, ) is a weak double-periodic
solution of (3.12) if and only if u € DomL and

(3.2)) Lu+ N}u=0.
Here we assume the following.

(H2) g(t,z,u) >0 on Q2xR,

(H3) lim|y|—o0og(t, z,u) = +00 uniformly on Q.
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Lemma 3.1. If (H1) and (H2) are satisfied, then, for each s* € R , there
exists M(s*) > 0 such that

_ lallze < M(s%)

holds for each possible Weak double-periodic solution u = 4 + 4, with 4 €
KerL and @ € ImL, of (3.1)) where s < s*, A € [0,1].

proof Let (u, A) be any weak double-periodic solution of (3. 12). Then (u, A)
is a solution of (3. 2)) where u = @ + @ with @ € KerL and 4 € ImL.

By applymg KR on the both sides of equation (3.2)),we have, since
KlI mL = KR

i =—-AKENM = AKR[—g(, ,u)+s+ h(y )]
Hence, by Lemma 2.5,
lallze < IE N2 lllgCs iz +4n®ls] + [|Allz:]

By taking the inner product with 1 on the both sides of (3.2)), since 1 € kerL,
we have

// g(t, z,u(t, z))dtde = 4n’s +/ h(t, z)dtdz.
Q Q.

Hence by Lemma 2.5 and (H2), we have 4||g(-,, u)||z2 < 47?|s*| + ||A||L:.
Therefore, we have

lillze < 201K\ p2[4n%s™ + [[Allz:] = M(s").

The proof is complete.

Lemma 3.2. If (H1), (H2) and (H3) are satisfied, then, for each s* € R;
there exists v(s*) such that

| < (™)

holds for each possible weak double-periodic solution v = 4 + 4, with u €
‘KerL and @ € ImL, of (3.1) where s < s* and A € [0,1].

:p'roof Suppose there exist a sequence of constants {s,} with s, < s* and

the corresponding weak double-periodic solutions {(%m,n, Am,n)} of (3. 13"‘ ™)

with {|@m |} is unbounded. Then (umn,Am,n) is a solution of (3. 23 ")
where Um n = Um,n + mn With Umn € I\erL and 4, , € ImL. We may
choose a subsequence, say again {ﬁm,n} such that lﬁm,n| — 400 as m,n —
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+00. Now suppose that @, n, — +00 as m,n — +oo. Let My > 2rM(s*)
where M(s*) is given in Lemma 3.1 and let Q,, , = {(¢,2)|tmn(t,z) <

Moy
T 4n?

Then

2rM(s*) > / liim n(t, 7)|dtdz

/ / [ famatt, )

> [———]measure[Qm nl-

Therefore, measure [Qm n] < 4#2% and hence measure [ — 2 n] =
measure {(t,Z)|um,n(t,z) > — Mo.} > 4n?[1 — 21rM(3‘)] >0,

Since lim|y|—+009(t,z,u) = +o0 uniformly on Q there exists C(s*) > 0
such that

g(t,z,u) > (4n%s* + // h(t,z)dtdz)/measure[2 — Qp, ]
Q

for all m,n if |u| > C(s*).

Since @m n — +00, there exists Ny > 0, Ny > 0 such that @, , > 4%9,— +
C(s*)if m > Ny, n > N,.

Hence, for (¢t,z) € @ — Qun,n and m > Ny, n > N, we have

Um,n(t,Z) = Umn + Um,n(t,z) > C(s%).

Thus, for m > Ny, n > N, we have

// g(t, T, um o(t,z))dtdz > 4n?s* + // h(t,z)dtdz.
Q=Qpon Q

On the other hand, by taking the inner product with 1 on the both sides
of (3.1;\,','"”), we have

// g(t, T, Um n(t,z))dtdzr < 4r?s* + // h(t,z)dtdz.
Q Q
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Therfore, for m > Ny, n > N,, by (H2),
4n’s* + // h(t,z)dtdz > // 9(t, &, Um,n(t, z))dtde
Q Q

> // 9(t, z,um n(t, z))dtd
Q=Qm,n
> 4m?s* + // h(t, z)dtdz
Q

which is impossible.
Similary, we can lead another contradition.
The proof is complete.

Lemma 3.3. If (H1), (H2) and (H3) are satisfied, then, for each s* € R,
we can find an open bounded set G(s*) in L?(Q) such that G D G(s*) we
have

DYL+N!,G)=0 forall s<s*

proof. Since lim|y|—4o09(t,z,u) = +o00, for each s* € R there exists ¥* > 0
such that g(t,z,u) > s* + ;X5 [[,, h(t,z)dtdz if |u| > 7*. Let G(s*) = {u €
L*(Q) : |a| < 7, ||i||z2 < M} where v = @ + @ with @ € KerL and @ € ImL,
and ¥ > max{y(s*), 5}, M > M(s*), and (s*) and M(s*) are given in
Lemma 3.1 and Lemma 3.2 .

Let so = min(, 5)eq(t, z,u) — o5 [[, h(t, z)dtdz.
©€ER
If (3.22) has a solution u for some 5 € R and A €]0,1], then, by taking the

inner product with 1 on the both sides of equation (3.22), we have

50 < ;1-71;5[ / /Q ot o, u(t, ))dtdo — / /9 h(t, ) dtds] < 5.
Thus (3.12) has no solution for 5 < so. Hence , we have
Di(L+NLG)=0 for 5<so.
Choose 3 < s¢ and define F : (D(L)(G) x [0,1] — L*(Q) by

F(u,p) = Lu + Ny_pys54ps(u) for s < s*,
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Then, by Lemma 3.1 and Lemma 3.2, we have 0 ¢ F(D(L)N8G) x [0,1)])

for s < s*. By the homotopy inveriance of degree, we have

Dr(L+ Nsl’G) = Dr(F(-,1),G)
= Di(F(-,0),G)
=Dr(L+ N;,G)
=0 forall s<s*

and the proof is complete.

Lemma 3.4. If (H1), (H2) and (H3) are satisfied, then there exist s; > s
such that, for each s* > s;, we can find an open bounded set A(G(s*)) in
L?(§2) on which

|DL(L + Ny, A(G(s*))| = 1

for all s; < s < s*.

proof. Let (to,z0,up) € X R such that

g(to, Zo, Uo) = min(t,z)EQg(ta z, U)
u€ER

and let s; = max (4 ;)eq g(t,z,u) — 4% ffﬂ h(t,z)dtdz.
u€[uo—M,uo+M)]

Let A(G(s*)) = {u € L*(Q) : wo < @ < #,||tt||z2 < M} where ¥ and M
are given Lemma 3.1 and Lemma 3.3. if s > s;, A €]0,1] then (u,)\) is a
possible solution of (3.2}) such that u € dA(G(s*)), then by Lemma 3.1 and
Lemma 3.2, we haxe necessary 4 = ug and

wo — M < u(t,z) =@+ a(t,z) < ug + M

for all (¢,z) € Q.
By taking the inner product with 1 on the both sides of (3.22), we have

//Q g(t,z,u(t,z))dtde = s + //Q h(t, z)dtde.

52 ol / /9 o(t, 2, u(t, 2))dtdz — / /Q h(t, o) dtdz] = s

But
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which is impossible. Thus, for s > s; and A €]0,1],
Di(L+ N;,A(G(s")))
is well defined, and
Di(L + N}, A(G(s*))) = D(JQN.X, A(G(s*)) [ | KerL,0)

where JQN} : L%(Q) — KerL is an operator defined by

(JQNM)(t,2) = 4%[ / /Q o(t, 7, u(t, ©))dtdz — / /n h(t, 2)dtdz] — s

(see :[5]) and Dp denotes the Brouwer degree.

Thus, for s; < s < s*, we have JQN1|xerL(up) < s; —s < 0 and, by
definition of 4, JQN!|kerr(¥) > 0.
Therfore

IDL(L + N2, A(G(s*)0)| = |Da(JQNL, A(G(s*)) (| KerL)]
=1

and the proof is complete.

Theorem 1. Assume (H1), (H2) and (H3). Then there exist real numbers
so < s1 such that

() (1.1) has no weak double-periodic solution for s < sq.

(42) (1.1) has at least one weak double-periodic solution for s = s;.

(722) (1.1) has at least two weak double-periodic solutions for s > s;.

proof. Let so and s; be constants defined in Lemma 3.3 and Lemma 3.4.
‘Part (7) has been proved in Lemma 3.3. For part (i), if s > s;, then we
can choose G O (#)A(G(s)), where G and A(G(s)) are defined in Lemma
3.3 and Lemma 3.4, respectively. By the additivity of degree, we have

0=Dy(L+N},G)=Dr(L+N!G)+Dr(L+N}G\A(G(s)))
and hence, by Lemma 3.4,
|Dr(L + Ny, G\A(G(s)))| = 1.

Therefore, (1.1) has one weak double-periodic solution in A(G(s)) and one
in G\A(G(s)). For part (i), let {s(n)} be a sequence in R with s(;) > s(2) >
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-+ > 81 such that s(,) — s; and let {u,} be the corresponding sequence of
weak double-periodic solutions of (1.1). Then u, is a solution to (3.2]) and
Up = Up + Uy with u, € KerL and %, € ImL. By Lemma 3.2, we have a
subsequence {@,,} of {#,} which converge to some @ in R. On the other
hend, by (H1), Lemma 3.1 and Lemma 3.2, we can easily see that {Luy, }
is a bounded sequence in ImL C L*(Q). Since K® : ImL — C(Q) is a
compact operator and ii,, = K%(Luy,), we have a subsequence say again
{tin, } which converges to some @ in C(§2). Therefore, we have a subsequence
{un, } of {un} which converges to u = @ + & with @ € KerL and @ € ImL.

Since L is a closed operator, u € DomL and u is a solution of (3.2}). Thus
u is a weak double-periodic solution of (1.1) for s = s;. This complete our
proof.

4 (AP) Type Multiplicity Result

Let us consider the following double-periodic boundary value problom
(4.1)) Bus + ugs — ugy + Ag(u) = As + Ah(t,z), A € [0.1]

where g : R — R is continus and h € ImL.
Let L : DomL C L*(Q) — L%*(Q) be defined us before and define the

substitution operator defined
(VX)(t,2) = Ag(u(t, 2)) — As — Ah(t,)

for u € L?*(Q) and (¢,z) € Q. Then N} is L-compact on G for any open
bounded subset of L(2), and u is a weak double-periodic solution to (4.12)
if and only if v € DomL and

(4.22) Lu+ N}u = 0.

Here we assume the following.
(H3) lim|u|_,+°og(w) = 400,
(H4) there exists 0 < a < 1 such that

(67
27TC2

lg(u) — g(v)| < |lu—v| forall wu,vé€R,

where Cj is a constant defined in Lemma 2.4.
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Lemma 4.1. If (H1) is satisfied, then for any s € R, there exists M > 0
which is independent of s such that

lillze £ M

holds for each possible weak double-periodic solution u = u + %, with & €
KerL and i € ImL, of (4.1) where X € [0.1].

proof. Let (u, ) be any weak double-periodic solution of (4.13). Then (u, \)
is a solution of (4.2)) where u = @ + @& with @ € KerL and @& € ImL.
By taking the inner product with @, on the both sides of (4.2)), we have

(Lii, i) + A / / o(w)idtdz = \ / / h(t, 2)iicdtdz.
Q Q

Since Li € L?(Q), ther exists a sequence {7} in C°(2)(ImL such that
§n — Li in C?(Q2) as n — +o0.

Let @, = K®j,. By Lemma 2.3 and the sobolev embedding theorem
;le., Wit22(Q) < CY(Q), j = 0,1,2,..., i, € C®°(Q)(NImL. Since
KZE is cotinuous from L%(f) into each of W'2(Q2) and C(2), we have that
i, — K®(La) in each of those spaces as n — +o0.

Thus i, — @ in L?(Q2). Intagration of these smooth functions, using the
boundar conditions, show that for each n =1,2,3,...,

(Lun, ﬂnc) = IB“ﬂ’nt ”%2

Letting n — 400, we have (L, @) = B||t¢||3.. Moreover, since, for each n,
the periodicity of @, (¢, z) in ¢ inplies (g(un), @n, ) = 0, we have (g(u), %) = 0.
Hence, we have
BllaelZ: = Ah, i)

and
1

18]

But since |1z < ||t¢]|2; for all @ € DomL () ImL, we have

laellZ: < T liRlle.

N 1
llillz> < l—ﬂ*lllh”L?-

The proof is complete.
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Theorem 2. Assume (H1), (H3), and (H4). Then there exists real number
s1 such that

() (4.11) has no weak double-periodic solution for s < s1,

(#2) (4.11) has at least one weak double-periodic solution for s = s1,

(173) (4.1]) has at least two weak double-periodic solutions for s > s;.

proof. By a usual Lyapunov-Schmit argument in [9], (4.2)) is equivalent to

(4.3) Li+(I—Q)g(a+a)+h

(449) Qg(a+a)=s

where v = 4 + 4 with ¢ € KerL and &« € ImL, and @ is the continuous
projection defined in section 2. For fixed @ € R, consider the equation (4.3).
Define an operator N : L?(f2) — ImL by

(Nu)(t,z) = —(I — Q)g(u + i(t, z)) + h(t, 7).

Then N is continuous and maps bounded sets into bounded sets.Since the
inclusion mapping i : C(2) — L*(f) is continuous, the right inverse K% :
ImL — L*(Q) is compact. Hence KRN : L*(Q) — L%*(Q) is completely
continuous and (4.3) is equivalent to

i=puKENi, pelo,1)

are bounded in Z?(Q) independently of x € [0, 1].

Thus, by Leray-schauder’s theory, (4.3) has at least one solution @ for
each @ € R. Such a solution is unique. Indead, if 4; and @, are two different
solutions with @, then

L(iy — d2) + (I — Q)lg(u + 1) — g(@ + d2)] = 0.

Applying K% on the both sides of the above equation, we have; by Lemma
2.4 and (H4),

|t — tizfloo < eflia — ti2]loo
which is impossible since 0 < a@ < 1. Thus @3 = .

Denot this unique solution of (4.3) by V(),
then V:R — C(Q)(ImL. If 4,4 € R, then

LV(a) — V(uo)] + (I — Q)lg(a + V(a)) — g(@o + V(o))] = 0.
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By Lemma 2.4 and (H4), we have

o
|@ — o).

V(@) - V@)l < 5

—

Thus V is continuous.
By Lemma 4.1, ||[V(@)||z2 < M for all @ € R. Let @ = {(t,z) :
[V (a)(t,z)| > l%’—%}, then

1+M

o ]*measure[Q].

M? z/ —Q|V(a@)(t,z)|*dtdz > |

Thus measure[{] < 4m2[1EM )2,

Let Q; = Q — Qo = {(t,2) : [V(@)(t,z)] < LM} then measure[:] >
4r?[1 — M52 > 0.
Thus

// g(a + V(a)(t, z))dtde > j/ [9( + V(@)(t,z)) — Bldtdz + 47
Q Q
z[wa+vww@»—mwn+M%

where 3 = min,er 9(u).
Therefore, by (H3), [[, (@ + V(a)(t,z))dtdz — 400 as |a| — +o0.
Define G: R — R by

G(@) = Qq(a + V(1)) = ;—71,—2 / /ﬂ o( + V(@)(t,2))dtde,

G is continuous by (H4) and the continuous of V and G(4) — +oo as
|a| = 4o0. ‘
Equation (4.1}) is then reduced to the scalar equation in u;

(4.5) G(u) = Qg(u+V(a)) = s.

Let s; = minyer G(@), then ImG = [s1,400[.

If s < 51, clearly (4.5) has no solution.

If G(tg) = 81, we easily prove, by the intermidiate value theorem, that, for
each s > sy, (4.5) has one solution in ] — 0o, o[ and one in Jto, +oof.

This complete the proof.
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Belgique



SCATTERING FOR SEMILINEAR WAVE EQUATIONS WITH
SMALL DATA IN TWO SPACE DIMENTIONS

KivyosHi MOCHIZUKI

In this talk we are concerned with a small data scattering for the semilinear
wave equation

% —Au= f(u) in (z,t) e RN xR, (1)

where f(u) represents a nonlinear term +|u|® or y|u|[’~'u with p > 1 and
v € R\ {0}. In the latter case the energy

1 Y
§{||Vu(t)||2m + 10 (t)|Z2} - mllu(t)ll‘iﬂl

is independent of ¢ as long as a good solution exists. However, it becomes
indefinite if ¥ > 0, and we can not in general expect the existence of global
solutions. The scattering theory is based on the global existence of solutions.
So, it is necessary to check that under what conditions on p we can expect
global solutions.
In case N = 3, John [5] considered (1) with f(u) = |u|’ assuming that the
initial data
u(:K»O) = 90(37)’ 6{(.1,(.'17, 0) = ’l/)(:l,') (2)

are smooth and compactly supported functions. He proved the following:

(i) If p > p(3) =1 + /2, then the problem (1), (2) has a global C%—solution
for sufficiently small initial data. (ii) If p < p(3), then we can not expect
global C?—solutions no matter how small initial data are.

The results were extended to N = 2 by Glassey [3], [4], and the blow-up part
(ii) is extended to N > 4 by Sideris [13]. Schaeffer [12] showed in case N = 2,3
that for the critical value p = p(NN), the blow-up occurs. Moreover, Zhou [17]
recently showed (i) for N = 4 in the frame work of strong solutions. In these
results p(NN) is defined as the positive root of

(N=1)p" = (N+1)p-2=0,
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that is, ,
N+1+4+/N2+10N -7
p(N) = :
2(N -1)
As I shall explain below, the scattering theory treats the Cauchy problem
with initial data at ¢ = —oo. Thus, it is not natural to restrict ourselves to

the problem with compactly supported initial data. We assume

S Vig(a)] + 3 V()] < 1 + Jal) 3)

=0 i=0

where € > 0,k > 1. With this condition, Asakura [2] proved the following
results in case N = 3.

(i) fp>p3)andk > Z—é—%, then (1), (2) has a global C?—solution provided

that € > 0 in (3) is sufficiently small. (ii) If p > p(3) and k < e——t%, then we
p —

can not expect global C?—solutions no matter how small € are.

Asakura’s results are extended to N = 2 by Agemi-Takamura [1], Kubota [7]
and Tsutaya [15].
Now, the scattering theory compares solutions of (1) with those of the free
equation

0Pup— Aug =0 in (z,t) € RY xR (4)

near ¢ = +00. The comparison will be done in the energy space with norm

@I = 30Ol + I9u@lE:) (5)

More precisely, we start with a solution ug (t) of (4) with sufficiently small
initial data

U (2,0) = ¢~ (2), g (x,0) =97 (2) (6)
satisfying (3). Then we construct a global solution u(t) of (1) behaving like
ug (t) near t = —oo:

|u(?) — ug (t)||e = 0 as t = —oo. (7
Moreover, there exists another free solution ug (¢) of (4) such that
lu() — ud (t)|]le — 0 as ¢ — +oo. | (8)

Thus, the scattering operator S : ug (t) — ud () is shown to exist on a dense
set of a neghborhood of 0 in the energy space.
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The existence of the scattering operator has been proved by Strauss [14],
Klainerman [6] and Mochizuki-Motai [9],[10] in the general N(> 2) dimen-
sional problem. These works are based on the so called L? estimates of the
fundamental solution of the free equation and the Sobolev embedding theorem,
and require a stronger restriction on p. For example, it is assumed in [10] that

N? 43N —2+,/(N? + 3N —2)2 — 8N(N — 1)
2N(N - 1)

p> = p(N).

We have p(N) < p(N), and their values for lower dimensions are as follows:

N p(N) A(N)
3+

3

= 3.561--- 2++3=3.732--.
4++/13

3
13 + V145
12

The gap between p(N) and p(N) is covered by Pecher [11] in case N = 3. He
showed the existence of the above mentioned scattering operator for p > p(3)
based on a weighted norm in space and time originally introduced by John [5].
Our aim is to obtain the corresponding sharp result in case N = 2.

Our problem (1), (7) will be reduced to the integral equation

= us(z ttoT f(u(z +(t—1)¢,7)
(o=@ | e e i

2
2

3 14++v2=2414--. =92535...

4 2 =2.089---

. (9)

To show the global solvability of (9), we also use the weighted norm of space and
time. Note that in the 3-dimensional problem the right side integral becomes
simpler, and one can estimate it by almost the same method as in the case of
Cauchy problem at time 0. In our 2-dimensional problem, however, to add an
extra estimate which is not used in the Cauchy problem is really necessary.

The details of the proof can bee seen in the recently published paper
Kubota-Mochizuki [8]. So, in the following we shall only explain how to obtain
a good estimate for the nonlinear term. Note that similar results have been
obtained independently by Tsutaya [16], where the basic estimate is proved by
a different way.

Acknowledgement. I would like to thank the organizing commitee of
this symposium for the kind hospitality I get during my visit to Korea.
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First we shall estimate the free solution

'(a:+t§ Y~ (z + t€)
o8- (%/'fl« 1 e ) 2“/Ifl<1 N

of (4), (6). In the following, we require that the initial data satisfies (3), and
for the sake of simplicity, we choose k > 2 in (3).

Proposition 1. There ezists a constant C > 0 depending on k such that
2 A
S IViug (z,)] < Ce(1+ 7+ [t) 721+ |r — ]2 (11)
=0
where r = |z|.

Proof. We shall only estimate the term
t Pz + ) / Y+
" 2 Jigee

2 Jigk<a \/1_—2 N

In the last integral we use the polar coordinates {n,0}, n = |{|, and put

v(z,t) =

A= \/r2 + 5% + 2rysind.
Then by means of (3), |

-k

o(z,b)] < ~ t{t2—2'1/2d "/21 24 p242rpsinf) do
Bl < — n*}~dn +/r? +n? + 2rysin

_ ,,{tz n?} 1/2dn/ M1+ k(A ,7)dA,
-n

where

Byt = {(r+n)? = AN — (r )2}
= QA+ =Y - (A=)

Changing the order of integrations, we have

2¢ [+
|v(x,t)|5—/,”,<1+x [t = ki (12

™

¢ max{t—r,0}

Atr
(14N [ (e =}, )

s
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2¢ [t+
< 2= —k+41 2 -1/2
< W/'_r|(1+)\) (A +7) = £2)72ax

min{t—r,0}
2¢ (14 27512 — (A +7)2}724),

™ Jo

Since k — 1 > 1, the desired estimate easily follows from the last inequality. O

Note here that we have used the following lemma to show the last inequality
of (12).

Lemma 1. Leta<b<c. Then
b
/ (o0 —a)™V2(b— o) V*c— o) Yo < w(c — b))V

Next we shall estimate the nonlinear term

flue+ér) |
L) ~or / A{Kt -7 J(t —7)? lﬂ? (13)

where f(u) = v|u|*~! or = v|u|® with ¥ € R\ {0} and p > p(2).

Proposition 2. Assume

u(e, )] < M(1+r+[¢) 721+ |r = |t (14)
' 1 p—3 . .
for some M >0 and — <v < — Then there exists a C > 0 depending on

p
v such that
|L(f(w)(z,t)| < ClyIMP(1+ 7+ [t) 721+ |r — |t]])™. (15)

Remark. The inequality p > p(2) imples that

2 > e.i_]; and l < ﬂ.
p—1 p 2
Noting (14), we put
w(A,7) = IMP(L+ X+ 7)1+ A= Il (16)

Then since

If (w)(z + &, 7)] < w(le + ], 7),
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we have as in the above proof,

L) <2 [ dr an)

x [/It_ Aw(), r)dA/ n{(t — )% = n?} " 2h(A, ,7)dn

t—7— r

max{t—7-7,0} 2 2y -1/2
+ 2w r)dn [ (= =t RO,

= 114'15.

In the following we shall estimate the first term I; in case ¢ > 0. The case
t < 0 is easier to estimate (for we are not necessary to use Lemma 2 given
below), and the second term I, can be similarly estimated.

As is already used in the above proof, we have from Lemma 1,

Sl oA =2 RO, < SO - (=Y )

To proceed into the proof, we need one more inequality
t—
Jo 8 = RO, ) (19)

<CI+N {1+ +r—t+n)HE -1 = (A=)

which is resulted from the following lemma. Here § is any positive number and
C, > 1.

Lemma 2. Leta <b<c. Then
b
/ (0 = a)"Y3(b — o)~ V*(c — o) 2do

< \/5{71' + log 4(:::) }(b —a)"V2,

Proof of Proposition 2. We devide I into two terms:

n=2([ +[)ar[ -]z n+m

and apply (18) and (19) to J; and Jy, respectively. Then

t—747
Jy < / dr / OO = t—7)2} 2,
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f.7'+7'
J1<01/ dr/ 7)1+ A

-7 r|

x{14+ A +r—t+7)2 (1t —7)2 = (A +71)2}" 240

We choose the new independent variables
a=A—7 and f=A+T,

Then since A + || = § (or @) and A — |7] = a (or B) in the expression of J;
(or Jp), noting (16), we obtain

4 t+r
gy < DT g gy 4 v — 120 (20)
2 |t—7|
B
x / 1+ lal)~"(a +r + ) Vda,
T—t
Cily|MP e ‘
5 < S g - B4 (B 4N (21)
x *® 1+ —pf2+146( . +t -1/24.,.
[nax{r—t,ﬁ}( a) (a " ) “

In (20) the integral for a is estimated by C(1 + ¢ + r)~Y/2 since pv > 1.
On the other hand, the integral for 3 is estimated by C(1 + |t — r|)™" since
v < (p — 3)/2. Similarly, in (21) we choose

1 p—
0<5<min{§,p2—3—u}.

Then the integrals for 3 and a are estimated by the terms C(1 + ¢ + r)~1/2
and C(1 + |t — r|)~", respectively.
The inequality (15) for I; is thus proved when ¢ > 0. a

Now, we introduce a weighted norm in space and time

lollw = sup[(1 +[¢] + M)A+ = ) Jo(z, 0)]]

and define a Banach space
Y = {v] V'u(z,t) € C(R? x R),||V’v||w < 00 (0 < j < 2)}.
Since v < 1/2, we see that the free solution ug (z,t) belongs to Y and

IViug |lw < Ce, 0< j < 2. (22)
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On the other hand, Proposition 2 shows that

IL(f()lw < Clylllullw (23)

for any u € C(R? x R) such that ||u|lw < oo.

With these inequalites, choosing € > 0 sufficiently small, we can follow a
method of successive approximation (already used by John [5]) to establish
the unique existence of solutions in Y of the integral equation (9). Moreover,
asymptotics as t — oo of the solution u(t) can be derived since we have f(v)
€ LY(R;RY) forveY.

Our results are summarized in the following theorem.

Theorem. Let p,k,v be as given above, and assume {¢~,%~} satisfy (3).

(i) There exists an g > 0 depending on the above parameters and 7y such
that the integral equation (9) has a unique solution u € Y provided 0 < € < ¢
in (3).

(i) This u = u(z,t) is a classical global solution of the wave equation (1),
and we have

llu(®) = ug @)l < Cllullw(® +[t) ™" as t — —oo (24)

(i) If we define

or—t, [ f@@+ (=)

ug (z,1) = u(z,t) — /t o2r  Je<a 1— ¢

dg, (25)

then ul € Y and satisfies the free wave equation (4). Furthermore,

llut) = ug ()]l < Cllullw(1+)77** as t — +oo. (26)

References

[1] Agemi,R., Takamura,H., The life span of classical solutions to nonlinear
wave equations in two space dimensions, Hokkaido Math. J. 21(1992),
517-542.



SMALL DATA SCATTERING 175

[2] Asakura,F., Ezistence of a global solution to a semi-linear wave equa-
tion with slowly decreasing initial data in three space dimensions, Comm.
P.D.E. 11(1986), 1459-1487.

[3] Glassey,R.T., Finite-time blow-up for solutions of nonlinear wave equa-
tions, Math. Z. 177(1981), 323-340.

[4] Glassey,R.T., Ezistence in the large for Ou = F(u) in two space dimen-
stons, Math. Z. 178(1981), 233- 261.

[5] John,F., Blow-up of solutions of nonlinear wave equations in three space
dimensions, Manuscripta Math. 28 (1979), 235-268.

[6] Klainerman,S., Long time behavior of the solutions to nonlinear evolution
equations, Arch. Math. Mech. Analy. 78 (1982), 73-98.

[7] Kubota,K., Ezistence of a global solution to a semilinear wave equa-
tion with tnitial data of non-compact support in low space dimensions,
Hokkaido Math. J., to appear.

[8] Kubota,K., Mochizuki,K., On small data scattering for 2-dimensional
semilinear wave equations, Hokkaido Math. J. 22(1993), 79-97.

[9] Mochizuki,K., Motai,T., The scattering theory for the nonlinear wave
equation with small data, J. Math. Kyoto Univ. 25(1985), 703-715.

[10] Mochizuki,K., Motai,T., The scattering theory for the nonlinear wave
equation with small data II, Publ. RIMS, Kyoto Univ. 23(1987), 771-790.

[11] Pecher,H., Scattering for semilinear wave equations with small data in
three space dimensions, Math. Z. 198(1988), 277-289.

[12] Schaefter,J., The equation uy — Au = |ufP for the critical value of p, Proc.
Royal Soci. Edinburgh 111(1985), 31-44.

[13] Sideris,T.S., Nonezistence of global solutions to semilinear wave equations
in high dimensions, J. Differential Equations 52(1984), 378-406.

[14] Strauss,W.A., Nonlinear scattering theory at low energy, J. Funct. Anal-
ysis 41(1981), 110-133.

[15] Tsutaya,K., Global existence theorem for semilinear wave equations with
non compact data in two space dimensions, J. Differential Equations, to
appear.




176 K1yosHI MOCHIZUKI

[16] Tsutaya,K., Scattering theory for semilinear wave equations with small
data in two space dimensions, preprint 1992.

[17] Zhou,Y., Cauchy problem for semilinear wave equations in four space di-
mensions with small initial data, preprint 1992.

Kiyoshi Mochizuki

Department of mathematics
Tokyo Metropolitan University
Minami-Ohsawa, Hachioji ’
Tokyo, 192-03 Japan



THE INTERMEDIATE SOLUTION OF QUASILINEAR
ELLIPTIC BOUNDARY VALUE PROBLEMS

BoNGsoo Ko

1. Introduction

We study the existence of an intermediate solution of nonlinear elliptic
boundary value problems (BV P) of the form

(BVP) {Au = f(z,u,Vu), in Q

Bu(z) = ¢(z), on 09,

where ) is a smooth bounded domain in R®, n > 1, and 99 € C%°, (0 <
a < 1), A is the Laplacian operator, Vu = (Dju, Dyu, -+ - , D,u) denotes the
gradient of u and

Bu(z) = p(a)ul@) + (a) 1o(a),

d )
where d_u denotes the outward normal derivative of u on 952.
v

Suppose now, that v, ¥ and w, W are two pairs of subsolutions and super-
solutions in the class C%(Q2) or in the usual Sobolev space W2?(Q), p > n
of (BV P) such that 9(z) < o(z), w(z) < (=), 9(z) < w(z) for all z € Q
and 9(z¢) < W(zo) for some zo € Q. Then there is a solution in the order
interval [0, 3] = {u € C(Q) : o(z) < u(z) < 5(z), z € Q} and a solution in
[@, w]. And furthermore Amann [1] or Amann and Crandall [3] showed that
there exists an intermediate solution in the set [7, @]\ ([?, 8] U [w, @]) under
additional conditions.

The existence of a solution given a pair of quasisubsolution and quasisu-
persolution of (BVP), ¢ and 9, with 9(z) < o(z) for all z € Q, is well
known (see [9]). Since these functions may have singular points in the in-
terior of 2, there arises the question, does there also exist an intermediate
solution if there are pairs of quasisubsolutions and quasisupersolutions as in
the preceding paragraph ?

177
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Suppose now, in addition, that f is independent of Vu and that there
are pairs of quasisubsolutions and quasisupersolutions as in the preceding
paragraph. Ko [6] proved the existence of an intermediate solution in [5, @]\
([v, %) U[w, ®]) under additional conditions. Hence there also arises the ques-
tion, does there exist an intermediate solution if f depends nonlinearly on
Vu ?

The author is able to solve the above problem which is the existence of an
intermediate solution for (BV P) using Maximum Principles and the theorem
on existence of several fixed points (see pp241, [4]). The multiplicity result
is a generalization of Theorem(1.6) in [1] or Theorem 2 in [3].

Throughout this paper we assume that p, ¢ € C*(9) are nonnegative
real valued functions which either ¢(z) = 0 for all z € 0Q or ¢(z) > 0 for all
z € 0%, and f satisfies the following conditions:

O0<axl,
(1) f: @ xIx R" — R is a a-Holder continuous function, such that
f(-,&,7) € C*(Q) and such that -g% and Q—f- are continuous where

(z,€,7m) denotes a generic point of & x Ix R" and Iis a fixed bounded
and closed interval in R.
(2) There exists a continuous function ¢ : Ry — R4 = [0, co) such that

|f(z,&m)| < e(p)(1+ [n|*)

for every p > 0 and (z,&,n) € Q x [-p, p] x R™.
(3) ¢ € C?**(Q) and for the Dirichlet problem case, ¢(z) € I for all
z € 0.
By a solution of (BV P) we mean a function u : { — I such that u € C?()
and u satisfies (BV P) pointwise. :

2. Main Results
First of all, we state definitions of a quasisubsolution and a quasisuperso-
lution of (BV P).

Definitions. A function w : Q — R is a quasisupersolution of (BV P) in Q,
_if for any z¢ € 2, there exist a neighborhood N of zy and a finite number of
functions wy € C?(N), k = 1,2,--- ,p such that

(I) | w(z) = xmn wk(w)
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for all x € N, where p may depend on zy, and
(II) Awg(z) < f(z,wi(z), Vwi(z)),

forallz € NNQand k=1,2,---,p. Furthermore, if 2o € 09,

arn P(zo)wa(20) + a(z0) ok (2) > d(z),

for all k.
A quasisubsolution w : § — R is defined similarly, replacing min by max
in (I) and reversing the inequalities (II) and (I1I1).

To state the theorem for the existence of an intermediate solution of
(BV P), we need the following notations: Let u, v : @ — R be functions.
Then we write u < v if u(z) < v(z) for all z € Q, and u < v if u < v but
u # v. By [u,v] we mean the order interval between u and v, that is,

[u,v] ={w: Q@ =>R:u<w<v}.

Theorem 1. Let f satisfy (1) and (2) and ¢ satisfy (3). Suppose that
v; Is a quasisubsolution and 9; is a quasisupersolution of (BV P) for j =
1,2 such that ’(_)1 S 61, 52 S f)z, ’(-)1 S ’62 and i}](.’to) < ’52(.’[10) for some
zo € Q. Assume moreover that 0; and v, are not solutions of (BVP) and
[01(2),2(x)] C I for all z € Q. Then (BV P) has at least three distinct
solutions uj such that v; < uy < ug < ug < ¥y, uj € [0}, 0;] for j = 1,2 and
ug € [0y, D2] \ ([01, 1] U [D2, D2]).

Theorem 1 is a generalization of Theorem(1.6) in [1] or Theorem 2 in [3]
and follows at once from the next proposition.

Proposition. Let the hypothese of Theorem 1 hold and let h : R® — R"
be defined by h(z) = (hi(z),he(z), -+ ,hn(z)) and bounded and of class
C* such that each partial derivatives for h; is bounded on R"™. Then the
following elliptic boundary value problem

(BV Py) { Au = f(z,u,h(Vu)) in

Bu=¢ on 00
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has at least three distinct solutions ug, u, uz such that v; < uy < up < ug <
Da, u; € [’5]‘, 'i)]] fOI'j =1,2, and ug € [’51, '62] \ ([1_)1, 131] U [1—)2, '52])

To prove Proposition, we first convert (BV Py) into an operator equation.
Choose A > 0 large enough so that g—é(z’,f, h(n))+ A > 0 for all (z,{,n) €
Q2 x I x R". For any g which belongs to the following set

g € [01,92) N C*(Q)
and we also assume that ) satisfies

f(z,e1,R(0)) + Aer — g(x)) <0 < f(z,¢2,h(0)) + Az — 9(<))

for some constants ¢;, ¢ with ¢; < 0 < ¢y and for all z € Q. Furthermore,
if Bu = u, then ¢ : Q@ — [c1, ¢, and if not, p(z)e; < ¢(z) < p(z)c, for
all z € Q. Then it is known that there is a solution u € C*%(f) of the
following boundary value problem

Au = f(z,u,h(Vu))+ A(u—g) in
{Bu =¢ on ON.

This solution is denoted by u = T'g below.

Lemma 1. A function u € [0y, ;] N C*(Q) is a solution of (BV P,) if and
only if u = Tu.

Lemma 2. Let v; and 9; be a quasisubsolution and a quasisupersolution of
(BV Py), respectively. Then

Proof. To show T%;(z) < 9;(z) for all z € £, suppose that there is a point
zo €  such that §j(z¢) < T9;(z9). Let a = T9;(%) — 9;(&) be positive
maximum value of T'0; — ¥;. Then there exists a neighborhood U; of Z such
that £ € U; and 0 < T9;(z) — 9j(z) < a for all z € U;.

Case 1. £ € Q2.

By the definition of a quasisupersolution, there exist a neighborhood N;
and a finite number of functions wy € C?(N;), k = 1,2,---,p such that
z€N; CU; and

0j(z) = min wi(z)
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for all z € N;NQ. Let 9(2) = wi(&) for some k. Then 0 < T9(z)—wi(z) <
a for all z € N; N Q. Since

0 < T9j(x) —wi(z) < Toj(z) — vj(z) < a
forallz € N; N, so
0< Tf)j(.’t) - wk(x) < Tf)j(:i') — wk(;%) =aqa

for all z € N; N Q. Hence T9; — wy has the positive maximum value a at &
in the neighborhood N; N €.

On the other hand, in N; N 2, by Mean Value Theorem,

A(wi — Tb;)(z)
< f(z,wi(z), A(Vwi(2))) - f(z,To;(2), (VT;(x)))
= X(T%; — 9;)(=)
= [fe(z,£7(2), A(Vwi(z))) + AJ(wi — T;)(2)
+ fa(2, T9i(z), h(n*(2))) - dh - V(wk — T9;)(z).

where £*(z) lies between wi(z) and T'0;(z), h(n*(z)) lies on the line segment
joining h(Vwyi(z)) and h(VT9;(z)), and

oh oh
-g-i}(pf) e ge(PT)
ax(03) .- 522(p3)
Oz \F2 Az, \F'2

dh =dh(pl,py,- pp)=| oo,
L RSRRAREEEREE IR
o (Ph) . 5= (eh)

and the points p7,p3,---,p; lie on the line segment joining Vwi(z) and

Since f, - dh is bounded on 2 x I x R", we can choose a bounded function
b:R™ — R"™ such that

fa(z,Toi(z), h(n*(x))) - dh - V(wr — TH;)(z) < b(z) - V(we — T9;)(<)
for all z € N; N Q2. Hence, on N; N €2,

A(wy — To;)(z) — b(z) - V(wg — To;)(x) < 0.
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By Maximum Principles, T9j(z) — wi(z) = a for all z € N3z N {2, whence
Tb;(z) = 9j(z) + a for all z € N; N Q. By the continuation of the method
on the boundary of N; N Q, we can conclude that T%;(z) = 9;(z) + a for all
z € Q. And so, for any z € Q,

Adj(z)
= AT%;(z)
= f(z,9;(z), M(VD;(2))) + (fe(z, & (2), H(VDj(2))) + N)a,

where £*(z) lies between 9;(z) and 9j(z) + a. Hence, for any z € 2, -

Ady(w) > f(2,55(2), H(V5;(2))).

 Since Ad;(z) < f(=z,9;(z), M(Vj(z)) locally in €2, so

[fe(z,€*(z), R(VDj(z))) + Ala < 0.

This leads to a contradiction for a > 0.

Case 2. ¢ € 09.
Since T9;(%) = wk(2) +a and 0 < T9j(z) —wi(z) < aforall z € Nz N,

so
dToj(2) > dwi(Z)
dv = dv
If p(£) > 0, then
A A g a A AT0(2
8(2) = p(&)Tey(8) + o(2) T2
. . - dwi(Z
> p(@)ln(®) + a] + (@) 2
2 ¢(&) +p(&)a.
This leads to a contradiction for p(£)a > 0.
Let p(2) = 0. Then ¢(£) > 0. If
dTo;(z) S dwi(Z)
dv dv ’
then
dTv() S dwi(Z)

$(&) = 9(8)—~ 9(&)—— 2 ¢(&).
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This also leads to a contradiction. Let

dTﬁ](:%) _ d’u)k(fl\:)

dv dv

Forallz € N; NQ,

A(Toj — wi — a)(z)
> f(z,T9;(z), A(VTDj(2))) — f(z,wr(z), R(Vwi(z)))
+ \(T5; — 9;)(2).

By the Mean Value Theorem and choosing suitable bounded function b :
R™ — R" as before, we can also show that

A(T8; — wi - a)(a) - b(e) - V(Td; - w —a)(z) > 0.

Since T'%; — wi — a has the zero maximum value of the boundary point £ in
N; N Q, by Maximum Principles, for all z € N; N {2,

Toj(z) —wi(z) =a.

This implies that T9; — w; has the positive maximum value a at an interior
point of 2. By Case 1, this also leads to a contradiction. Therefore, T'0; < 9;.
Similarly, we can show that Tv; > 5;. W

Lemma 3. Let 9; and 9 be a quasisubsolution and a quasisupersolution of
(BV Py), respectively. Then T is an increasing operator from [v;,9;]NC*(Q)
into itself, i.e. if u < v, then Tu < Tw.

Proof. Since [0;,9;]NC%(Q) is a bounded interval in C(Q), if we choose two
constants ¢; and ¢y such that ¢; < 0 < ¢, ¢ —9 <0, co—g > 0 for all
g € [9;,9;] N C*(£), then there is u € [c1,c2] N C*() such that u = Tg.

We first show that T' is well-defined on [3;,9;] N C*(£2). Let u = T'g and
v="Tg. Then

A(u —v)(z) = f(z,u(2), h(Vu(e))) - f(z,v(2), (Vo(2))) + A(u — v)(2) .

If we choose some bounded functions b; : R® — R", : = 1,2 so that

A(u —v)(z) — by(z) - V(u—v)(z) <0,
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and

A(u —v)(z) = ba(z) - V(u —v)(z) 20,
for all z € Q, then by Maximum Principles, u = v. B
We secondly prove that T is increasing on [0j,0;] N C*(). Let g1,92 €
[7j,9;]NC*(2) and g1 < g2. Then
A(Tg; — Tg1)(x)
= [f(z, Tg2(2), (VTg2(2))) — f(z, Tg2(z), (VT g1(x)))]
+ [f(2,Tg2(z), (VT 91(2))) — f(2,Tg1(x), (VT g1(x)))]
+MTg2 — Tg1)(z) + A(g1 — 92)(=) -

We then choose two bounded functions b: R" — R" and 8 : R" - R such
that —\ < B(z) < A for all z €  and

A(Tg2 — Tg1)(z) — b(z) - V(Tg2 — Tg1)(z)
— (B(z) + A)(Tg2 — Tg1)(z) < Mg1 — 92)(2) <0

for all z € . By Maximum Principles, (T'g; — Tg;)(z) > 0, z € Q.

By Lemma 2 and that T is increasing, we note that u = Tg € [9;,9;]N
c*(Q). W
Lemma 4. Let v; and 9; be a quasisubsolution and a quasisupersolution
of (BV Py,), respectively. Then T is continuous and compact from [0;,9;] N

C2(Q) into itself.
Proof. We ﬁr_st show that T is continuous. Consider a sequence {gn} in
[5,9;] N C*() and suppose limp—c0 gn = ¢ in [71,D2] N C*(2) and

lim Tg, =y

n—oo

in C%*(Q). Then limp—oo ATg, = Ay and lim,—oo Vg, = Vy in C().

Hence
Ay(z) = f(z,y(z), M(Vy(z))) + Ay — g)(z)

for all z € Q and By(z) = ¢(z) for all z € 0. By the uniquenees of solutions
corresponding g, Tg = y. By the Closed Graph Theorem, T is continuous
on [t‘)j,'f}j] N CG(Q).

We note that C?>*(Q) is compactly embedded in C*(Q?). Hence T is
compact on [5;,9;] N C*(Q). MW

To extend the operator T to [7;,9,] N C() continuously, we will use the
following theorem. It can be found in Amann and Crandall [3].
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Theorem 2. Let f satisfy (f2). Then there is an increasing function v :
[0,00) — [0,00) such that if u is a solution of (BV Ph) then

lullw2r @) < vllulle)) -
Moreover, v depends only on A, B, §}, n, p, and c.

Since C%(Q) is dense in C() and T is a continuous increasing compact
operator from [7;,9;] N C*() into itself, we can extend T to [;,9;] N C()
continuously and compactly. To show that this is possible, let u € [7;,9;] N
C(9). Then there exists a monotone sequence {u,} in [7;,9;]NC*(£) so that
up, — u in C(R) as n — co. Since {Tu,} is bounded in C(f), by Theorem
2, {Tu,} is bounded in W2?(Q), and if p > n, then {Tu,} is bounded in
CY%(Q). By the Mean Value Theorem, {T'u,} is equicontinuous on C(Q).
By Ascoli-Azela Theorem, {Tu,} has a convergent subsequence in C({2).
Since {Tu,} is monotone, we can define T'u by

Tu = nler;o Tu, .
Since T, is bounded in C1%(), so Tu € C*(). Therefore, we view T
as a continuous extension to an operator (denoted again by T') mapping
[5;,8;] N C(Q) into [8j,9;] N C*(Q). Since the imbedding of C*(Q) in C(Q)
is compact it follows that the operator T' maps [3;, §;]N C() compactly into
['Bj’ 6]'] n C(Q)

To complete the proof of Proposition, we need the special ordered Banach
space C¢(§2) whose positive cone is normal and has nonempty interior. In

defining C.($2), e € C(Q), e(z) > 0 for all z € Q, e(z) # 0. Let C(Q2) be the
set of all functions u € C(2) so that

—ce(z) < u(z) < ce(z)
for some constant ¢ > 0 and for all z € Q. If u € C,(Q), we define the norm
lulle = inf{c > 0 : —ce(z) < u(z) < ce(z), = € Q}.

It can be shown that the Minkowski functional || - ||, is a norm on C.(Q2).
Furtheremore, C,(2) is a Banach space with respect to the norm.(see [2])

Now we state the theorem which will be use in proving the existence of
an intermediate solution of (BV Py) for Dirichlet boundary condition. The
main idea of the proof for the following theorem can be found in Amann [2].
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Theorem 3. Let e be the unique solution of the boundary value problem

Ae(z)=-1, z€Q
e(z) =0, z€0Q

and T be the operator induced by the boundary value problem

ATu = f(z,Tu, h(VTu)) + A(Tu —u), z € Q
Tu(z) =0, z€ 0N

with a quasisubsolution ; and a quasisupersolution ©; of (BV Py) so that
9; < 9;. Then Ce(R) is continuously imbedded in C(2) and T is a compact
operator from [v;,9;] N C(Q) into C.(£).

Proof. By the previous statements, T' maps [v;,9;] N {u € C(Q) : ulaq = 0}
compactly into [0;,9;] N {u € C}(Q) : ulsq = 0}. Therefore it suffices to
show that {u € C(Q) : u|sq = 0} is continuously imbedded in C.(2). We
follows the proof in [2, Theorem 4.2]. Since, by the Maximum Principle, on
every compact subset of 2, e is bounded below by a positive constant and
since, for every =z € 01, % < 0, it follows by continuity that, for every

u € C}(R), there exist a, > 0 with
—ae <u < fe,

ie. CL() is a subset of C,(£). Since convergence in the norm of C.({2) as
well as in the norm of C}(Q) implies pointwise convergence, it is easily seen
that the injective map from C3(Q) into C.(f2) is a closed linear operator.
Hence, by the Closed Graph Theorem, C3(Q) is continuously imbedded in
C.(R) and the statement follows. M

Now, we obtain the conclusion.

Theorem 4. Let v; and 9; be a quasisubsolution and a quasisupersolu-
tion) of (BV Py), respectively. Then the operator T induced by the problem
(BV Py) is continuous, increasing and compact from [0, 9;]NC(Q) into itself.

Finally, to prove Proposition, we will use the following theorem of existence
of several fixed points, and we can find it in Deimling [4] or Amann [2].
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Theorem 5. Let X be a Banach space: S C X aretract and T : S — S
compact; Sy, S nonempty disjoint retracts of S; E; C Sj open in S for
J = 1,2. Suppose that T(S;) C S; and Fix(T)N (S;\ E;) =0 for j = 1,2,
where Fix(T) = {u € S : Tu = u}. Then T has fixed points u; € E; and a
third fixed point ug € S'\ (S1 U S2).

Proof of Proposition.
Case 1. g(z) > 0 for all z € 9.
Let
O, ={ueCQ):u(z) < ty(z), z €N},

and

02 = {u € C(R) : u(z) > vo(z), z € O},

S = [’51,’62] n C(Q), Sl = [51,61] n C(Q), 52 = [’52,’02] n C(Q), E1 = Sﬂ 01,
and E; = SN O;y. Then E; and E, are open in S. From Lemma 2,3,4, and
Theorem 4, T : § — S is compact. Clearly, S; and S, are disjoint retracts
of S, E; C S;, T(S;) C Sj for j =1,2. To show that Fix(T)N(S; \ E;) = 0,
we assume that there is u € Fix(T) N (S; \ E;) for some j. Then u € S; \ E;
and Tu = u.

Let 7 = 1. We note that u is a solution of (BV P;,). Since u € S; \ E, so
91 < u < ¥; and there is a point zo €  such that u(z,) = 01(z0). By the
definition of a quasisupersolution, let

o(z) = I<_nk1-r<—1p wi(x)

on some neighborhood U, of z¢ and let u(z¢) = wi(zo) for some k. For all
z € Uy, NQ, we can show that

A(u —wi)(z) —b(z) - V(u — wi)(z) — Mu — wi)(z)
> [—Ge(z, & (2), A(Vu(z))) + A(wi — u)(z) >0,

where b : R® — R" is some bounded function. Since ?¥; is not a solution
of (BV Py), by Maximum Principles, u(z) = wi(z) for all z € U,, N 2 and
ro € 0N. Since u — wy has a zero maximum value at the boundary point z,
either u(z) = wi(z) and z € U,, N Q or %L(xo) < %(wo). We note that
both cases lead to a contradiction. Consequently, Fix(T)N (S; \ E;) = 0.
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Similarly, we can show that Fix(T)N(S;\ E2) = 0. Therefore, by Theorem
5, T has at least three distinct fixed points ug, u1, ug such that u; € [}, %]
for j = 1,2, and especially note that

ug € [01,02] \ [01,01] U [0z, Da] -

Case 2. ¢(z) = 0 for all z € 0.
We assume that the Dirichlet boundary condition for (BV Py), i.e. Bu =
u=¢ =0 on 0. Let
' S = Ce(Q) N [01,02]

- and B
Sj = Ce(2) N [5j,9;]
for j = 1,2. We note that T : § — S is compact; S; C S and nonempty;

T(S) C 8, T(S;) C S; for j = 1,2. Since S, S; and S; are convex in C,(Q?),
these are retracts of S, and clearly S; NS, = 0. Let

By =81 N{u € Ce(R) : u(z) < d1(z),z € N}

and
Ey, =S8N {u € Ce(Q) : u(z) > v2(z),z € Q}.

We show that E; and E, are open in S. Let v € Ey. Then v(z) < 9;(z) for
all z € Q, and there is constant ¢ > 0 such that

—ce(z) < v(z) < ce(x)

for all z € Q. Then we can choose 8 > 0 so that 8 < ¢ and v(z) + fe(z) <
dy(z) for all z € Q. Let B(v,) be the open ball in S with respect to the
norm || - ||, with center v and radius 8. Then for any u € B(v, 3),

—Be() < u(x) — v(x) < Be(z)

for all z € Q. Hence u(z) < Be(z) + v(z) < 91(z) for all z € Q. Hence
u € E,;. Therefore, B(v,) C E;.

Similarly, we can show that E, is also open in S.

Next, we show that Fix(T) N (S; \ E;) =0, j = 1,2. Suppose that there
is u € Fix(T) N (S; \ E;) for some j. Then u € S; \ E; and Tu = u.

Let j = 1. We note that u is a solution of (BV P;). Since u € S \ Ey,
7, < u < 0; and there is a point 7o € Q such that u(zg) = 0;(z¢). By
Maximum Principles and the definition of a quasisupersolution of (BV P),
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we can show that there is a neighborhood Uy, of z¢ such that u(z) = 9;(z)
for all z € U, N Q. By the continuation of this method on the boundary
of the neighborhood U;, N 2, we can conclude that u(z) = 0;(z) for all
z € Q. This implies that 9; is a solution of the (BV P,). This leads to a
contradiction because 07 is not a solution of (BV Py).

Similarly, we can prove that Fix(T)N(S; \ E;) = 0. Therefore, T satisfies
all conditions of Theorem 5. So T has at least three distinct fixed points ug,
u1, ug such that u; € [3;,9,], j = 1,2, and note that

U € [01,02] \ [01,D1] U [0,0]. W

To prove the main theorem, we will use the following well known theorem
and it can be found in [7]:

Theorem 6. Let f satisfy the condition (f2). For every constants P > 0
there exists a constant () > 0 such that: if u is a solution of

Au = f(z,u,Vu), z€Q,

u € C*(Q), |u(z)| < P for all z € Q, then |Vu(z)| < Q for all z € Q. The
constant () only depends on P and the bounding function c.

Proof of Theorem 1.

Since we seek solutions of (BV Py) on the order interval [y, 3,] N C(2),
we can choose Qg > 0 such that if u is a solution of Au = f(z,u, Vu), for
all z € Q and 9, < u < 9y, then |Vu(z)| < Qo for all z € Q. Since Q is
compact, we let

Q; = sup{any directional derivatives of 7; at 2} < oo
€N
and X
Q= sug{any directional derivatives of ¢; at z} < oo
T€

for j = 1,2. Furthermore, let Q = max{Qo, Q1, Ql, Q2, Qz} Then we choose
a bounded smooth function A : R® — R" such that h(n) =nif |n| < Q +1
and its differential dh is bounded on R". To get the main result, we solve
the following boundary value problem

Au = f(z,u,h(Vu)), ze€
Bu(z) = ¢(z), =€ IN.
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Hence, Proposition implies the proof. W

Remark. The above theorem is valid if we replace A by a uniformly elliptic
operator

L=>) " Aij(z)D + ) Ai(z)D* + Ao(),

=1 j=1 =1

where the coefficients of L and B are smooth.
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FOURIER SPANNING DIMENSION
OF ATTRACTORS FOR THE
2D NAVIER-STOKES EQUATIONS

MINKYU KWAK

1. Introduction.

In the construction of inertial manifolds for dissipative partial differen-
tial equations, it is usual to construct as an invariant graph from lower-
dimensional Fourier modes to higher modes. But, as far as we are concerned
in 2D Navier-Stokes equations, the existence of such a graph is still unsolved.

As an attempt to this goal, we here show that the global attractor for the
2D periodic Navier-Stokes equations is actually a part of a graph from low
modes to higher modes. In particular, this result implies that the orthogonal
projection Pp is injective on the attractor, which was conjected by C. Foias
and R. Temam in 1979 (see Foias and Temam (1979) and Foias (1980)).

2. Notations and the Main Result.
Suppose @ = (0,L;) x (0,Ly). We consider the Navier-Stokes equations
of viscous incompressible fluid with space periodic boundary condition:
Ou .
(2.1) E—uAu+(u-V)u+Vp=f in Q
(2.2) V-u=0.

The unknown functions are u = (u1,u2) = u(z,t),p = p(z,t). The volume
forces f = f(z) are given and v > 0 is the kinematic viscosity. We may
assume that f,u and p are )-periodic. For simplicity, we also assume that
the average value of f,u on Q is zero:

(2.3) /ﬂf(:r:)d:c =0, '/Qu(a:,t)d:v =0, vVt > 0.

This research was partially supported by KOSEF-GARC and Mathematical Research
Center, Chonnam National University. This paper is to appear in Nonlinear Analysis,
TMA.
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As usual (2.1)-(2.3) are equvalent to an abstract evolution equation for u
(see Temam (1988)):

(2.4) %’ti + vAu = R(u)

in a Hilbert space H that is a closed subspace of L*(;R?). The operator
A corresponds to Stokes operator with space periodic boundary condition

and it is a linear self-adjoint unbounded positive operator in H with domain
D(A) C H. In fact, if we write

V = {u € H,,(Q);divu= 0,/ udz = 0},
Q

then
D(A) = H? (£2; R2) nv.

per

See Constantin and Foias (1988) and Temam (1983, 1988). Finally R(u) is
defined by

(2.5) (R(u),v) = — /ﬂ((u - V)v)udz + /Q f(z)vdz for veV.

When an initial-value problem is considered, the equation (2.4) is equipped
with

- (2.6) u(0)=up for u€H.

The existence of the global attractor A for 2D Navier-Stokes equations is
well known, see for example Hale (1988), Temam (1988).
By introducing a nonlinear change of variables

J(u) = (u,v,z,w),
where

u = (uy,uz)

0
v = (v1,v2) = 5%

0
2= ('03,’04) - B—Z

def
w = (wy, w2, w3) =uu = (ufizulu%u’g)a
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we can prove that if u(t) is a solution of (2.4), then (u(?),v(?), 2(¢), w(t)) =
J(u(t)) is a solution of the following reaction diffusion system;

wlx +1 W2
us = —vAu — P y]
¢ 2w21: + wsy f

wlzz + ’lD2 T
vy =—-vAv—P |, 2R 4+ f,
| §w2:m: + W3yz

(27) 2 = —vAz —P 'ivlzy + %Uﬂyg} + fy
| gW2zy + W3yy
202 + 202 & 0
wy = —vBw —v [ 4v1v2 +4vguy | +2uy | & | +2ug | €1 |,
202 + 202 0 &2

where P is the Leray projection, B is the operator on L?(Q; R?®) induced by
—A with periodic boundary condition on 2 and

& u1v1 + u2v3
[52] =7 [ulvz + u21)4] -

We remark that all of u, v, z, w satisfy periodic boundary condition and in
addition, u,v,z satisfy average free and divergence free condition. Con-
versely we see that if (u, v, z,w)(%) is a solution of (2.7) with initial condition
(u,v,z,w)(0) = J(ug), then from the uniqueness of solution, u(t) is a solu-
tion of (2.4). (See Proposition 3.8, Kwak (1991).) In particular, the image -
of A under the imbedding J is a bounded invariant set of (2.7).

We are now led to the study of reaction diffusion system (2.7). Let U =
(u,v,z,w)* and we define an operator A on the space D(A) x D(A)x D(A) x
D(B) by

[ Au + P[w”+ w2”] -
W2y +1 W3y
zz + FW2
Av+ip | e
AU = v §’w2zz + w3y:c

"w2zy + W3yy
Bw

L .
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We also define
- f -
fz
= fy
F= 202 + 203 & 0]
—v | 4vivg +4vsvg | +2uy | Lo | +2uz [ &
L 2'1)% + 2v§ 0 & |
Then the equation (2.7) can be rewritten in the form
(2.8) % = —vAU + F(U).

The operator A is not self-adjoint but it is sectorial, i.e., —A generates an
analytic semigroup on H = H x H x H x L*(£; R?) as shown in Proposition
3.6, Kwak (1991). (See also Henry (1981).)

In general, the nonlinearity F(U) may not admit the dissip ative dynami-
cal system, but since we are interested in the dynamics near the invariant set
J(A), we truncate nonlinear term and consider a modified equation which
provides the same long-time dynamics near J(.A) but different for large norm
in D(A).

Let us assume [AU| < % for U € J(A) and the modified equation of
(2.8) is

dU

(2.9) S = —vAU+F(U),
where AUR
Ru) = o2 D),

and ¢ : Ry — [0,1] is a smooth monotone function such that ¢(s) =1 for
0<s5<1,¢(s)=0"or s >2, and |¢'(s)] < 2.

We now note that A has compact resolvent and its spectrum o(A) consists
of countable number of eigenvalues with no finite accumulation points and
each with finite multiplicity and finite positive index. In fact

, m?  n?
o(A) = {pimn; m,n = 47 (F + F),m >0,n > 0}.
1 2
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Let 0(A) = {A\n;An < Ang1,m =0,1,2---} and let P be the projection
associated with the first (V + 1) eigenvalues of A and @ = I — P. Then we
easily see that

(2.10) P(H) c D(A), H=P(H)® Q(H)

and P(H), Q(H) is invariant under A. We denote the projection of H as-
sociated with the first N eigenvalues of the stokes operator A by Py and
Qn =1- Py.

The inertial manifold for the equation (2.9) is constructed as a graph from
P(H) to Q(H)N D(A).

Proposition 2.1. If A is the global attractor of (2.4), then J(A) is contained
in the global attractor of (2.9). Moreover if we assume that (%)2 is a rational
number, then for any constant v, K1,l we can find N > 1 so that there exists
an inertial manifold M = Graph ® for the equation (2.9), where ® is a
mapping from P(H) to Q(H) N D(A) such that

(1) ® has a bounded support in P(H);

(2) |A®(p)| < 55 for all p € PH;

(3) |A®(p1) — A2(pz)| < Il|Ap1 — Apy| forall py,p; € P(H).

Proof. We refer to Theorem 4.8, Foias, Sell, and Temam (1988) and Proposi-
tion 5.6, Kwak (1991) and Theorem 3.7, Sell and You (1990) for the complete
proof. O

The existence of an absorbing ball of (2.4),
B = {u€ D(4%); 4% < pr},

for some p > 0, is proved in Temam (1983). Without loss of generality, we
may assume that

|AU| < p1 for U e J(B).

We notice that J(B) is invariant under the flow of (2.9) and since M itself
is invariant,

S=MnJ(B)

is invariant under the flow of (2.9). In particular J(A) C S and A C J71(S5).
Now we can state our main result.
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Theorem 2.2. Under the hypothesis stated above, there exists N > 1 such
that J~1(S) = Graph ©, where © is a Lipschtz mapping from a bounded
subset of Py H to QnH N D(A). In particular the orthogonal projection Py
is injective on J~1(S).

3. Proof of Theorem 2.2.
We first note that there exists p3 > 0 such that
(3.1) |u|pee < p3 for ué€B,

thanks to the imbedding D(A?) ¢ L*(Q;R?). Moreover if u € J —1(9),
then J(u) € S. Let J(u) = U = (u,v,z,w), then

u=p1+¢q, v=pr+4q, 2z=p3+tqs, W=ps+qs
and since J(u) € M,

(32) q: = Qi(plaPZ’p&p‘i)v 1 ..<_ l S 41

where PU = (py, p2,p3,ps4) and & = (91, P;, D3, 9,).

Now since v = uz, 2z = uy, we easily see that p; = p1s,p3 = p1y, l.€., two
components {pz,p3} are uniquely determined by p;. All we have to do is to
show that given p;, ps is also uniquely determined.

It is clear that ps = Pgw, where Pg is the projection associated with the
first (N+1) eigenvalues of B, and since w = u ® u on §, (3.2) implies

(3.3) g1 = ®1(p1, P12, P1y, PB(P1 + 1) @ (P1 + @1))
or
(3-4) Q1= ¢(P1,Q1)-

We claim that for p; in PyJ~(S),
(3.5) q1 — ¥(p1,q1)is a strict contraction in a ball in H

so that (3.4) can be uniquely resolved into

(3.6) a1 = O(p1).
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The proof of (3.5) is as follows. Let ¢;,41 € QnH and let u = p; +q1,4 =
P+ ¢, w =14®u and py = w. Then

(3.7) [¥(p1,q1) — ¥(p1,41)|L2
= |®1(p1, P12, P1y> P4) — P1(P1, P12, P1y, Pa)| L2

1 -
< /\—IA(I)I(plaplzaplyap4) — A®1(p1, P12, P1y, Pa)| L2
N+1

Cl

AN41

Cl\n B
< 3 |Pa — PalL>
N+1

S CL|w - ’LT)le.

< |A(ps — Pa)|L2 (from Proposifion 2.1)

Moreover
w—w=uQu—uUQ@i=(v—U)Qu+uQ(u—1u)

and

. 3 .

(0= @l < Sl il

. . 3. .

58 (=) < | falymlu— il
Thus we obtain from (3.1) that
(38) Iw—u”)ILz S\/épgl’u-—ﬂle.

From (3.7) and (3.8), we finally have
[¥(p1, 1) — ¥(p1,dGilre < CIV6pslar — daly2.

Hence (3.5) holds provided Clv/6p; < 1. This completes all the proof.
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SINGULAR SOLUTIONS TO A NONLINEAR
PSEUDOFFIFFERENTIAL EQUATION
ARISING IN FLUID DYNAMICS

LEONID R. VOLEVICH

1. The lecture is devoted to some mathematical problems arising in the
study of inviscid incompressible flows with concentrated vorticity. Such flows
are potential in the compliment to a small (with respect to the volume)
domain where the vorticity is considerable, so its integral is not small. As
the mathematical model of such flow one can consider solutions to (nonlinear)
equations of hydrodynamics with vorticity function being a distribution. The
support of this distribution is a finite set or a line. The problems of this
type arise in some applications and there are quite a lot of results obtained
by means of computation, but there are not many rigorous results. In the
lecture we shall concentrate our attention on mathematical statements of
these problems, some of them contain open questions.

2. We shall study below the two-dimensional flows of an ideal fluid. These
flows are described by two complonents of velocity u(z) = {ui(z), us(z)},
z € R? and the pressure p(z). These functions satisfy the system of Euler
equations

3_u+u Ou +u3_u rad p=10
at 1 axl 2 0$2 g p - Y
and the conservation of mass equation
0 0
ﬂ + _E.l'_2_ =0.
8:1: 1 a:llz

If we consider u(z) as a vector in R3, then rotu(z) has only one nonzero
component w = Quq/0x; — Ouz /0, called the vorticity function, or shortly,
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the vorticity. Applying rot operation to the Euler equations we obtain the
evolution of vorticity equation

., O B
ot UIaafl U26£L'2_ '

For a flow in a simply-connected domain, say R?, we can introduce the stream
fuction 9(z), so that u; = 8v/0zs, ug = —0¢%/0z; and the equation above
can be rewritten in the form

Ow _ O Ow O Ow
(1) E- + {d),w} - 0, {d),w} - 8:1}2 6w1 - B:cl 6:::2'

Inserting the stream function in the mass conservation equation we obtain
(2) -AY = w.

The solution 9 to Poisson equation (2) has the form

3) (@) =(Crw)x) = [ Gla—yu@dy, Gl)= —Inla|
R2 2w

Inserting from (3) into (1), we obtain a nonlinear pseudodifferential equation
for the vorticity function w:

(4) %ttf-+{G*w,w}=0.

We shall treat the Cauchy problem for this equation, pprescribing a initial
distribution of the vorticity

(5) w(z,0) = wo(z).

For the problem (4), (5) there exist unique solvability theorems in the
classes of smooth bounded functions (T. Kato) and in Sobolev spaces (V.
Youdovich)

Remark. If w = 0, then ¢ is a harmonic function, the conjugate harmonic
function ¢ is called the potential of the flow so that u; = 0p/0z1, us =
0p/0zy. Such flows are called potential. If w = 0 in some region D C R?,
then we say the flow is potential in D.
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We are interested in the case of wo(z) being a distribution of one of the
following forms:

(6) we(@) = 3 758(z — 29,

8(z) is the Dirac function, zW ... 2D are some points on the plane,

Q on(2) = [ 1(6)6(a = a(s))ds,
where z(s) = {z1(s),z2(s)},z € R?, is a smooth curve on the plane,

(8) wo(x) = 78() + af<),

where a(z) is a smooth function.

The initial condition (6) corresponds to the case of a finite number of
isolated vortexes. This problem, in fact was investigated in the classical
works of Kirchhoff. Condition (7) is a continual analog of (6), such conditions
arise when we treat the flows with tangential discontinuities of velocities
(see below). Condition (8) corresponds to the problems of interaction of
an isolated vortex with the distributed vorticity. Such problems arise in
investigation of a hurricane moving over the ocean surface. Unfortunately,
the lack of space do not permit us to dwell on this problem.

3. As equation (4) has no mechanism of dissipation, the smoothness of the
solutions of the problem (4), (5) do not improve in the course of evolution.
So when the initial condition is of the form (6)-(8), the solution must be a
distribution for ¢ > 0. But in this case we have to explain in what sense our
distribution is a solution to the nonlinear equation (4).

A distribution u € D' is called a solution of the nonlinear equation L(u)=0,
if there exists a sequence u, of smooth functions such that

(1) ue —u for ¢ =0,

(i1) L(u;) » 0 for ¢ =0,

where the convergence is understood in the sense of the theory of distribu-
tions.
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In the nonstationary case we suppose that the distribution u(z,t) depends
smoothly on the parameter ¢ and

(iii) ue(z,0) = uo(z), € =0,
where uo(z) is the initial distribution.

4. On the heuristic level the problem (4), (6) must have the "exact”
solution of the form

© w(z,t) =Y v6(z — (1),

j=1

where zU)(t) = {:I:gj)(t),xgj)(t)} ,j = 1,...,J are solutions of the Cauchy

problem for Kirchhoff’s system of ordinary differential equations.

(10)
da:gj ) oG . dz oG :
- _ G (G _ (B, 2 _ () _ (k)
= n— |z z : = E Tk —z x
dt ey oz} ( ) dt oy ang) ( )

with initial conditions:

(11) 2D0)=2zP,j=1,...,J.

Introducing the Hamiltonian
. 1 .
(1) M) == . () _ (k)
H(:c ,...,x’)—zz;#Z’YﬂkG(x’ T )

we can rewrite the system (10) in the form

. d:c(lj) _ OH . da:gj) _ OH

The distribution defined by (9), (10), (11) is a solution of the problem (4),
(6) in the sense of the previous section. To check it we introduce a ”cut oft”
function x(s) € C®,x(s) > 0,x(s) =1 for s > 1 and x(s) = 0 for s < 1/2.
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We pose Ge(z) = G(z)x(|z|/¢). Then the approximate solution w, of (4),
(6) can be defined by the relation

9" we(z,t) = 2 v AG(z — 2 (t)).

It is easy to verify that G.(z) and AG.(z) weakly converge to G(z) and §(z)
respectively, condition (ii) for (9') can also be verified.

5. As the initial condition (7) is a continual analong of (6) it is reasonable
to seek solution of (4), (7) in the form

(12) w(z,t) = /7(8)5(37 — z(s,t))ds.

where z(t,s) is a solution of the system of integral differential equations
obtained from the system (10) when the number 2J of equations tends to
infinity.

Bxl _ .’l:2(3,t)—$2(0',t)
(13) 5t 2(5.0) — 2(0, )2 v(o)do,
, Ory [ z1(s,t) — z1(0,)
(13 Bt = ) Ta(s. D) —a(o.p)p VO

These equations are complimented by the Cauchy data
- z(s,0) = z(s).

The integrals in (13), (13') are understood in the sense of the Cauchy prin-
cipal value.

To justify this solution we consider like in the case of isolated vortexes an
approximate solution

we(z,t) = /’y(s)AGe(:v —z(s,t))ds.

The verification of condition (ii) in this case is less straightforward than
above, but it can be done along the same lines. The system (13), (13') can be
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treated as an infinite dimensional Hamiltonian system, if for the Hamiltonian
we take the functional

H(z1(s,8), 22(s, 1)) = (47" / / 2(s)(0) In [2(s,8) — 2(c, 1)) ds do.

Then we can rewrite (13), (13') in the form

6:1,‘1 5H 0332 6H
¥(s) 5 = 5z, ¥(s) 5 = 9y

where 6H/ézj,j = 1,2 denotes the variational derivative of H.

6. If we introduce the complex function 2(s,t) = z1(s,t)+ +ix2(s,t), then
the system (13), (13') in the terms of this function can be rewritten as a
single complex equation

9z(s,t) 1 [ v(o)do _
(14) ot + 2mi /_oo z(s,t) — 2(0,t) 0-

This equation was introduced by G. Birkhoff as the equation discribing the
evolution of the tangential discontinuity. The mechanical problem can be
formulated in the following way. We consider a flow which is potential in
the complement of a curve z = z(s,t), and on this curve the free boundary
conditions are satisfied. The last means that on both sides of the curve the
projections to the normal to this curve of the velocities of the fluid and the
velocity of the curve itself coincide, and the limiting values of the pressure (or
Cauchy-Lagrange integrals) also coincide. If we denot by ¢(z,t) the potential
of the flow and represent this function in the form

o(z,t) = Re % /_0; v(8) In (z — 2(s,t))ds,

then (14) will be the equation of the unknown interface z = 2(s,t). Moreover
on the curve the relation
It Fp” _ A(s)

or or  |z4(s,t)]

holds. Here 7 is the tangent to the interface. From this relation follows that
the vorticity density v(s) is determined uniquely by jumps of the tangential
velocity on the interface.
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7. Let us consider a flow with constant velocity (U, O) for z; > 0 and

(= = U,0) for z; < 0. Then there exists a stationary solution of equation
(14):

(15) z(s,t) =s, ~(s)=2T,

corresponding to this low. The problem of stability of this flow is a classical
problem investigated by Kelvin and Helmholtz.

If we replace in (15) z by z + cw, differentiate with respect to ¢ and pose
€ = 0, we obtain the linear equation for small perturbations

ow 1 [% w(s,t)—w(o,t)
(16) ot T om — o (2(5,1) — 2(0, 1))

5 Y(0)do =0.

- It can be shown that the second term in the left hand side is a pseudodifer-
ential operator with the symbol

7(S) g 4 ( 7'(s) _ 2(s)zss(s,)

22(s,t) z%(s,t) 23(s,t)

) sgn €+ o(1), [€] = o.

Writing the system (16) in the real form we obtain the linear elliptic system
of pseudodifferential equations. From this it follows that, in general, the
Cauchy problem for this system is well-posed only in the spaces of analytic
functions. The same is, probably, true for the original nonlinear equation

(14).

If we consider small perturbations of the solution (15), we obtain the
system with constant coefficients:

Ou Ov
(17) 5t—+U|D|v-—O, 5t—-+U|D|u=0,

here |D| = (—32/032)1/2 = HQO/0s, where H is the Hilbert transform. In
the periodical case the solution of the Cauchy problem can be easily written
down in the form of u+iv = ) cx(t) exp (¢ks), and from the explicit formula
for the amplitudes ci(t) it follows, that they grow as exp |Uk|t. In other
words the exponential instability takes place. This instability is the cause of
considerable difficulties arising in numerical analysis of flows with tangential
discontinuities. One can overcome these difficulties by adding the regularizing
terms in the equation. In particular, it is possible to add in (14) the term
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arising from surface tension on the interface. Then the equation will have
the form '

gz 1 o v(o)do a 0 [z, _
&) % " omi o Het)— 2@ | () Os (TTI) -

If we consider the linearization of (18) on the solution (15), we obtain the
system of the form

Ou v ov

The symbol of this is of the form:

it U] - B

A=yl ir

. —detA =1 + U — UBJ|¢P.

If UB > 0, then the Petrovskii condition for the symbol det A(7,§) is sat-
isfied and the Cauchy problem for this system is well-posed in the spaces
of functions of finite smoothness (i.e. is well-posed in Hadamard’s sense).
Numerous calculations made by the author showed the usefulness of this reg-
ularization. If we linearize (18) on an arbitrary solution z(s,t), we obtain
the system of the form (19), but generally with variable coefficients. It is
interesting to investigate whether the Cauchy problem is well posed for this
system in the sense of Hadamard.

Leonid R. Volevich _
Keldysh Institue of Applied Mathematics
Russia Academy of Sciences



ON THE RELATION BETWEEN SOLVABILITY
AND A RESTRICTED HYPOELLIPTICITY
OF CONVOLUTION EQUATION

DAE HYEON PAHK

In this paper we survey the equivalence between the solvability and the
restricted hypoellipticity of convolution equations in various distribution
spaces.

In the space D' of distributions on R", L. Ehrenpreis[5] proves that, for
S in the space £’ of distributions having compact support, the followings are
equivalent;

(a) There is positive constants A, C such that

sup IS(z)| > C(1+[¢))™4, €eR”
=€ < Alog(1+1e)

(b) S+xD' =D
(c') Every entire function G satisfying SG € D belongs to D

In fact, the condition (c¢') can be replaced by the following condition, which
we will see;

(c) Every u in &' satisfying S * u € D belongs to D

Moreover, S. Sznajder and Z. Zielezny[14] show the similar results in the
space K} as follows : for S in the space O'(K,K!) of convolution operators
in K}, the followings are equivalent;

(a); There exist positive constants N,r, C such that

sup  [S(E+2)|>C(1+[¢)7N, €eR”
z€C™, |2|<r

(b1 S*xKi =K}
(c)1 fueO(K],K])and S+xu €Ky, then u € K,
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The condition(c) in D' is just the hypoellipticity of S in the space &'. Thisis
the reason why we call this kind of condition as a restricted hypoellipticity.

We now state our first theorem, which include part of the Ehrenpreis’
results as a special case generated by w(&) = log(1 + |£]).

Theorem 1. For a convolution operator S in &, the following statements
are equivalent;

(a), There exist positive constants A, C such that

sup  |S(z)| > Ce 4O ¢eR"
lz—¢|<Aw(E)
zeR™

(b)y S*xD, =D,
(c)w Ifu€ &, and S *u € D, then u € D,.

The equivalence of the conditions (a),, and (b), is proved by S. Abdullah
in [1]. The space D, is the space of Beurling’s generalized distributions on
R" generated by the weight function w({) which will be explained later.
When w(¢) = log(1 + |¢]), D, is the space of classical distributions on R"™
and our result is the same as the Ehrenpreis’ first three, but our proof is
different from his.

Before presenting the idea of the proof we briefly introduce the general-
ized distribution spaces and their properties which we need in this paper.
We denote by M. the set of all continuous real valued functions w on R"
satisfying the following conditions;

(@) 0=w(0) Sw({+n) <w()+wn), &neR"

(8) fan w(O)1+IENVE < 00

(7) w(€) > a+ blog(1 + |¢|) for some constants a and b > 0

(6) w(€) = a(|¢]) for an increasing concave function ¢ on [0,00)

Throughout this paper w represents an element in M. Let D, be the
space of ¢ in L!(R"™) which has compact support, equipped with the inductive
limit topology of Frechét spaces D, (K) induced by semi-norms

18I = ]R 13(6)[*© < oo for every A > 0

where K'’s are compact in R®. We denote by &, the space of complex valued
functions ¥ on R™ equipped with the topology induced by semi-norms ||¢%||x
for every ¢ € D, and A > 0. The dual space D/, is denoted by the space
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of continuous linear functionals on D,,, whose elements are called by the
generalized distributions on R™ and £, the set of generalized distributions
whose support are compact in R". According to this definition D, is D
when w(£) = log(1 + |¢]) and &, *x D, C D!, which is defined by (S * u, ¢) =
(u,S * ¢)for u € D!, and ¢ € D,,. For the further details we refer to [3].

Sketch of the Proof of Theorem 1. (b), =(c), : I T = § € &', then
S : D, — D, is the transpose of T'* : D,, — D,, and so the condition (b) is
the same that T'* is an isomorphism of D, onto T * D,,. In particular, the
inverse mapping 1" * 1) — 1 must be continuous.

Suppose now that S *u = ¢, equivalently T * @ = (—1)"4. Applying
the approximation identity {¢x}, the sequence T * (@ * ¥;) = (—1)"¢ * oy
converges to (—1)"4 in D,, and, from the continuity of the inverse mapping
@ * ¢ has to converge in D,. But this limit has to be % in D, because
U — 4 in D).

(¢)w =(a)y : Let K = supp(S) + B(0,1) and let F be the space of all
continuous functions v on K such that S *u € D,(K). Then F is Frechét
space equipped with the semi-norms

lulle = lfulloo + IS * |, k=1,2,....

Furthermore, let G be the space of all functions v € C*(K°) N C(K) such
that
Jull = sup [D%u(a)] < oo
T€K
laf<1
and G is a Banach space under this norm.
Assumption (c), implies that 7 C G and the natural mapping is closed

and so continuous. Consequently, there exist an integer m and a constant
C; > 0 such that

lull < €1 (llulloo + 115+ wll )
for all u € F, which gives

lull = Cillufloo < C1]|S * ]|

< Cysup e(FH3)® |iy(¢)).
Rn

(*)
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Suppose now the condition (a) is not satisfied. Then there is a sequence

{6]} such that |€]l — oo and

sup 18(z)] < eI &)
le—&; |<sw(€5)

Choose ¢ € D, such that ¢ > 0, supp ¢ C B(0,1) and qAS(O) = 1. Let kj =the
Gaussian integer of w({;) and define

$i(z) = PGk w ok gy
-

k;-times

where ¢ (x) = k7 ¢(kjz). Substituting {¢;} into (x) and estimating both
sides, we arrive a contradlctlon The detailed proof will appear in a different
paper.

Corollary 2. Every hypoelliptic convolution operator in D, is solvable.

We now consider the same problem in the space K, of distributions on
R" which grow no faster than e™ (k2) for some k > 0.

Theorem 3. Let S be in the space OL(K};, K’,) of convolution operators

in K%, and S be its Fourier-Laplace transform of S. Then the following
statements are equivalent;

a)MmM There exist positive constants A,C and a positive integer N such
P g
that

sup 15(z)l 2 C1+ )N, EeR”
le=€1<A9 " flog 2+ ¢D]

(b)m S*Ky =Ky
(c)m Ifu e OL(Ky,KYy) and S *u € Ky, then u € K.

The equivalence of (a) and (b) is also proved by S. Sznajer and Z. Zielezny[13]
for M(z) = |z|P and then S. Abdullah[2] for general M. Before discussing
the idea of the proof we briefly introduce the spaces and their properties
which appear in our theorem.

Let u(€) (0 < € < o) be a continuous function on R* such that x(0) =
0, p(oco) = co. Then we define

Jo w(&) de, >0

M(=) = { M(z) = M(-z), z<0
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and on R", M(z) is defined by M(z1) + -+ + M(zn).
The space K of all C*°-functions ¢ in R™ such that

ve(é) = sup eM('”’)|D"¢(a:)| <oo, k=0,1,2,...
z€R™

lee|<k

, equipped the topology induced by these semi-norms, is a Frechét space. The
dual K, is the space of continuous linear functionals on K s endowed with
the topology of uniform convergence on all bounded sets. If v € K}, and
¢ € K, then the convolution u * ¢ is a C*°-function defined by u * ¢(z) =
(g, 6(z — ).

The space OL(K'y,K}y) of convolution operators in K, consists of dis-
tributions S € K, satisfying one of the following equivalent conditions;
S* K'Yy CK'y or S*Kp C Ky, where (S * u, @) is defined by (u, S * ¢) for
every u € K, and ¢ € K. For further details we refer to [6].

The proof of theorem 3 can be done by the same spirit as that of theorem
1. The detailed proof will appear in (8] for M(z) = |z |P,p > 1 and [9] for
general M(z).

We present some open problems which is related to the solvability of con-
volution equations;

(1) S. Sznajder and Z. Zielezny[14] show the equivalence of (a)s and (c)s
in the tempered distribution space, but that of (b), in this space is still open.

(2) L. Ehrenpreis[5] show the equivalence of S*D' =D' , SxD' O D
and S x &' = £. Can we generalize these equivalence in various distribution
spaces?

(3) C. C. Chou[4] proved the same equivalence of (a), and (b), corre-
sponding to the ultra distributions defined by Roumieu[11]. Can we have
the same equivalence condition (c), for this case?
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A VISCOSITY SOLUTION APPROACH TO
FUNCTIONAL DIFFERENTIAL EQUATIONS

SHIGEAKI KOIKE

ABSTRACT. We are concerned with viscosity solutions for fully nonlinear
second-order degenerate elliptic PDEs;

F(z,u, Du(z), D*u(z)) = 0 for = € Q.

We present a general approach for uniqueness and existence of viscosity solu-
tions so that we can apply our method to various applications; e.g. impulse
control, piece-wise deterministic control, switching games, etc.

1. INTRODUCTION

In this paper we consider the following scalar functional differential equa-
tion

F(z,u, Du(z),D*u(z)) =0 in Q, (1)

where € is a bounded subset of R™, u : § — R is the unknown function
and F:QxC()xR" xS™ — R is a given continuous function, where S™
denotes the set of all real symmetric matrices of order n. We remark that,
in order to apply our theory to some systems arising in switching games etc.
(see [I-K2]), we will not suppose that ) is open.

The aim here is to present a brief survey of the uniqueness and existence
results for continuous viscosity solutions of (1).

For the details and for an extension to the evolution problem in this di-
rection we refer to [I-K1]. We also refer to [C-I-L] for the standard notation
in the viscosity solution theory.

‘ 1. DEFINITION

We shall give our definition of viscosity solutions of (1).
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Definition 1. A function u € C(Q) is said to be a viscosity subsolution
(resp., supersolution) of (1) if the following inequality holds,
F(z,u,D¢(z),D*¢(z)) <0 (resp., >0),
whenever u — ¢ attains its maximum (resp., minimum) over Q at z € Q for
some ¢ € C*(Q).
If u is both a viscosity sub- and supersolution of (1), then it is said to be
a viscosity solution of (1).

The term “viscosity” will be omitted in our presentation here since we
only discuss viscosity sub-, super- and solutions in what follows.
Throughout this paper we suppose the continuity on F;

(A1) FeC@xC(Q)xR"xS")
We will occasionally use the following fact:

Proposition. Let u € C(Q) and let (A1) hold. Then u is a subsolution
(resp., a supersolution) of (1) if and only if

F(z,u,p,X) <0 forall z€Q, (p,X)€ Tg u(c)
(resp.,
F(z,u,p,X)>0 forall z€, (p,X)E€ 7?{_14(37:)).

3. UNIQUENESS

In this section we shall present a uniqueness theorem for solutions of (1)
under the Dirichlet boundary conditions.
First we give the definition of a monotonicity of F'.

Definition 2. (cf. [I-K1]) F: @ x C() x R" x S™ — R is said to be
monotone if there exists a function wy € C([0,00)) satisfying the following
properties:

(i) wo(r)>0 for r>0
and, for all (p,X) € R" x 8",
(i) {F(z,u,p,X)~ F(z,v,p,X)}sgn(u(z) — v(z)) 2 wo(llu - v|loem))

provided that u, v € C(Q) and |u(z) — v(z)| = [Ju — v||gg) > O for some
z € .

We shall suppose a modified assumption in the standard theory of viscosity
solutions.
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(A2) For each u € C(f2), there is a continuous function w; : [0, 00) — [0, 00)
with w;(0) = 0 such that if X, ¥ € S™ and v > 0 satisfying

R ) E O N

F(y,u,q/(:c - y)a_Y) - F((I},U,’Y(l‘ - y)’X) S w1(7|$ - y|2 + .7—)

then

for all (z,y) € Q x .

We note that various kinds of second-order degenerate elliptic partial dif-
ferential operators satisfy (A2). For this we refer to [C-I-L].
We also assume a uniform continuity of F' in the variable u.

(A3) For each u € C(Q2), there is a continuous function w; : [0,00) — [0, c0)
with w2(0) = 0 such that

'F(xau’an) - F(fl?,v,p,X)I S“)Z(HM - v“C(ﬁ))

for all (z,v,p, X) € 2 x C(Q) x R" x S™.

Theorem 1. Let F satisfy (A1) — (A3) and be monotone. Let u, v € C()
be solutions of (1). If u = v on Q\Q, then u = v in Q.

Proof. The proof is by contradiction: Suppose that ||u — ””C(ﬁ) =6 >0,
then we will get a contradiction. o
Put ®(z,y) = |u(z)—v(y)|— |:L':y|2_/_(26) for e > 0, and let (z,,y.) € 2%

be a maximum point of & over 2 x §2;

®(ze,ye) = mté)sc)_q)(x,y).
T,y

We may assume without loss of generality that u(z.) > v(y¢). It is then
well-known (see, e.g., [C-I-L]) that

. ze —yel® _
i 2 =0 @
It is clear that u(z.) — v(y.) > 6. From these it is easily observed that
Te,Ye € §2 for a small € > 0.
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Now, we use a well-known fact (see, e.g., [C-I-L]) that there exist X and
Y € S™ such that

Te — Ye =2,+ Te — Ye —=2,—
( ean)EJQ u(xe)’( eya”Y)GJQ v(ye),

3(1 0\_(X 0\_38(1I1 -I
_Z(o 1)5(0 Y)SE(—I I)’

Then, since u and v are solutions of (1), it follows that

and

0 Z F((l)e,U;,P,X) - F(yevvapa _Y) (4)

Here and henceforth we denote p = (z¢ — y.)/e. Furthermore, using (A2), we

obtain

Iwe - yf|2
€

F(ye,U,P,—Y)—F(iUmU,P,X) S“"1( +6) (’5)

We shall denote the extension of u to R" by u again. Define u. € C(Q)

by
ue(z) = (u(z + ze — ye) Av(z) + 0e) V u(z),

where 6. = u(z¢) — v(ye). Let w, be a modulus of continuity of u. Since
0. > 6, it follows that

u(z) > u(z) > v(z) -6 forall ze€Q
and that
ue(z) < v(z) + 0 Au(z) +wy(|ze —ye|) forall z €.
Moreover, observe that u.(y.) = u(ze) = v(ye) + 6. From these, we conclude

that [|ue — ullg@) < wu(|ze — ye|) and (ue — v)(ye) = fJlue — v”c(ﬁ)'
By the monotonicity of F', we have

F(ye,ue,p,~Y) — F(ye, v, p, =Y) 2 wo(b).
Using this inequality and assumption (A3), from (4) and (5), we have

> P |me - yel2
0> wo(fe) — wl("—e—— +€) —w2(llu — uellc@y)-

According to (3), this is a contradiction for sufficiently small ¢ > 0. 0
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4. EXISTENCE

In this section we shall show the existence of a solution of (1). For simplic-

ity, in this section, we shall treat the following functional differential equation
instead of (1):
u(z) + G(z,u, Du(z), D?*u(z)) = 0. (6)

In order to apply Perron’s method for the existence result to our functional
equation (6), we will assume the existence of sub- and supersolutions which
have extra properties.

Definition 3. A couple of functions (¢,%) € C(Q) x C(Q) is said to be a
pair of a subsolution and a supersolution of (6) in the strong sense if the
following properties hold:

(i) ¢ <% in Q and ¢ = ¢ on Q\Q.

(i) For each w € C(R) with ¢ < w < in Q, ¢ and ¥ are, respectively, a
subsolution and a supersolution of

Mu(z) + G(z,w, Du(z), D*u(z)) =0 in €. (7

Remark. It is worthy of noting that if whenever u,v € C() and u < v in Q,
then

G(z,u,p,X) 2 G(z,v,p,X) forall (z,p,X)€Qx xR"x8" (8)

and if ¢ and ¢ are a subsolution and a supersolution of (6), respectively,
then the pair (¢,%) is a pair of a subsolution and a supersolution of (6) in
the strong sense. In fact, (8) holds in many applications mentioned in the
abstract.

We will denote the diameter of by d. We will also use the following
notation: For ¢ € C(f2),

wg(r) = max{|¢(z) — ¢(y)| | z,y € Qand |z —y| < r}.

We shall suppose the following hypothesis for our existence result:

(A4) There is a pair, (¢,), of a subsolution and a supersolution in the strong
sense and a nondecreasing concave function @ € C([0, 00)) with &(0) = 0 such
that

(7) max{wg,wy} < @ in [0, d], and
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()ifuef{welC@)|¢<w<YinQuwy, <Oin(0,d},if z,y € Q2 and
z # y, if r € R satisfies ¢(y) < r < Y(y), if ¢ € D~&(r) and if X,Y € s”
satisfy (2) with v = ¢/|z — y|, then

Gly,u, (e = 9), =) = Glau, (e =9, X) S0 (9)

_1
lz -yl |z

Here D—&(r) is the closure of {p € R | &(r + s) < &(r) + sp,Vs > 0},
which is called the subdifferential of @ at r.

Theorem 2. Let G satisfy (A1), (A2) and (A4) and Q be locally compact.
Then, there is a solution u € C($2) of (6) such that ¢ < u < 1 in Q.

Sketch of proof of Theorem 2. Let ¢, and & be functions from (A4). We
shall define K = {w € C(Q) | ¢ <w < ¢ in Q,w,, <@ in [0,d]}.

Fix w € K. Noting that Q is locally compact and using Perron’s method
and Theorem 1, we find that there is a unique solution u € C(2) of (7)
satisfying ¢ < u < ¢ in Q. Define the mapping S : K — C(Q) by associating
to each w € K the solution u of (7) with ¢ < u < ¢ in Q. By standard
stability results for viscosity solutions, we see from (Al) that this mapping
S is continuous.

Now, we shall show that S(K) C K. To this end, we only need to show
that wg(yw) <@ in [0,d]. Fix w € K, and set v = S(w).

Suppose that max, yEQ(|v(:c) - v(y)l —&(lz —y|)) > 0, and will get a
contradiction.

Let (2,9) € Q x Q be a maximum point of the function |v(z) — v(y)| —
O(Jz —y|) on Q x Q. We may assume that v(&) > v(g). Clearly, & # . Since
¢ <v<tinQand ¢ =1 on Q\Q, it can happen that neither # € Q\Q nor
§ € Q\Q. Set # = |2 — g| €(0,d].

Now we need the following lemma:

Lemma. (Lemma 4.2. in [I-K1]) Let w : [0,00) — R be a nonnegative
concave function. Then, D=&(r) # 0 for all r > 0.

Set # = |& —§j| and choose ¢ € D—w(+). We thus observe that v(z)—v(y) —
¢(|z — y| — #) — &(F) attains its maximum over Q x Q at (£,§). Moreover,
if we set \Il(m,y) = ¢(|z — y| — 7) + w(7), then we easily see that D¥(Z,7) =

(¢/F)(& - 94,9 — %) and

2 PN g I I
»DW(x,y)sf(_I I).
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By a general result concerning the maximum principle (e.g. [C-I-L]), we find
that there are matrices X and Y € S™ such that

A A _2,+ -
(3 - §), X) € Tg"o(2),

(4(z - 9),-Y) € Tg v(§),

3 (I 0\_(X 0\_3¢(1 -I
7(0 I)S(OY)S?(—I I)'

Now, using that v is a solution of (7) and assumption (A4) together with
Lemma 3, we see that

3|

and

02 G(2,w, (3 - §),X) = G w, $(& = §), =¥) + A(u(#) — (7))

> G(#,w, g(:z —§),X) — G(§,w, 7%(:2 —§),-Y) >0.

This is a contradiction. Thus, we see v € K.

Finally, applyimg Schauder’s fixed point theorem to S : K — K, we
conclude that there is a function v € K such that S(u) = u. This u is a
solution of (6) and satisfies ¢ <u <t in Q. O
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MOVEMENT OF HOT SPOTS IN RV

SHIGERU SAKAGUCHI

ABSTRACT. We consider the initial-boundary value problems of the heat
equation over unbounded domains in RV and study the movement of hot
spots of the solution for bounded nonnegative initial data having compact
support.

§1. Introduction.

This note is a summary of my recent work with Jimbo [5].

In [3] Chavel & Karp studied the heat equation in Riemannian manifolds
and obtained some asymptotic properties of solutions concerning the move-
ment of hot spots. At each time a hot spot is a point where the solution

attains its maximum. They characterized the limit of the hot spots of the
~solution as the time goes to infinity for several kinds of manifolds. Particu-
larly in the case of the Euclidean space R, a sharp result was given there.
They considered the initial value problem of the heat equation for u(t,z):

(1.1) Ou = Au in (0,00) x RN and u(0,z) = ¢(z) in RV,

where ¢ is an initial datum. They showed that if ¢ is a nonzero bounded
nonnegative function having compact support, then the set of hot spots:

(1.2) H(t) = {a: € RY;u(t,z) = max u(t,y)}

yERN
is contained in the closed convex hull of the support of ¢ for any ¢t > 0, and
as t — oo it tends to the Euclidean center of mass of ¢ ( see [3, Theorem 1,
p. 274] ). By a little more argument in addition to their proof, one can prove
that H(t) consists of one point after a finite time. Actually one can see this
by calculating the Hessian of the explicit representation of the solution:

(13) u(t,z) = (4mt) ¥ / e () dy.
]RN
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Our purpose is to consider a similar problem on unbounded domains in RY to
see how the movement of hot spots is influenced by the existence of boundary
and boundary condition.

On the other hand, if one considers the initial-boundary value problem
over bounded domain in R¥, by the eigenfunction expansion one knows that
under the homogeneous Dirichlet boundary condition or under the homoge-
neous Robin boundary condition with a constant coefficient the shape of the
solution approaches that of the first eigenfunction as t — co and under the
homogeneous Neumann boundary condition it approaches the shape of the
second eigenfunction provided the second coefficient of the expansion is not
zero( see [6, 7, 11] ). In the case of the homogeneous Neumann condition,
Rauch’s observation is that the hot spots move to the boundary as ¢ — oo
(see [6, pp. 45-46]). In the case of the homogeneous Dirichlet or Robin
condition one can say that the hot spots go away from the boundary. For
example, consider the case that N = 1 and the domain is an interval. Then,
under the homogeneous Dirichlet condition or under the homogeneous Robin
condition with a constant coefficient the set of hot spots consists of one point
after a finite time and it tends to the center of the interval as t — oo , and
under the homogeneous Neumann condition it consists of one of the bound-
ary points after a finite time provided the second coefficient of the expansion
is not zero.

In this note we consider the initial-boundary value problems of the heat
equation over unbounded domains in RY and study the movement of hot
spots of solutions. Precisely, let  be an unbounded domain in RY with
smooth boundary 92 and consider the problem:

Ou = Au in (0,00) x £,
(1.4) u(0,z) = ¢(z) in £,
and the boundary condition (BC),

where ¢ is a nonzero nonnegative bounded function and the support of ¢, say
S,, is a compact set contained in {2, and where (BC) is one of the following:

(D) u=0 on (0,00) X% 0N,
Ou

(N) | 3_1/=0 on (0,00) x 01,

(R) 0—u+ﬂu=0 on (0,00) x 012,

ov
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where v is the exterior unit normal vector to 92 and 3 is a positive constant.
Let u(t,z) be a solution to these problems. We define the set of hot spots
H(t) of u(t,z) by replacing RN by Q in (1.2), and let C(t) be the set of
critical points with respect to the space variable z:

(1.5) C(t) = {z € % V,u(t,z) = 0}.

Note that H(t) C C(t). The first example of unbounded domain is the
half space RY = {z = (21,...,zn) € R¥;zy > 0}. By using the explicit
representation of the solutions we obtain

Theorem 1. Let @ = RY. Consider the boundary conditions (D), (N), or
(R). Then, if T > 0 is sufficiently large, C(t)(= H(t)) consists of only one
point, say z(t) = (z1(t),...,zn(t)), for any t > T. Furthermore,

1

(1.6) zn(t) X (2t)72 > 1 ast — oo, When (BC) = (D) or (R).
and |
(1.7) zn(t) =0 for any t > T, when (BC) = (N).

Also, for 1S jS N—1,ast — oo

Jyiyne(v)dy/ [ yne(y)dy,
zj(t) = ¢ [yje(y)dy/ [ e(y)dy,
Jyi (v + B7Y) e(w)dy/ [ (ynv + B71) ¢(y)dy,

(BC) = (D),
when { (BC)=(N), respectively.
(BC) = (R),

Namely, the half space is a good example to show that the hot spots go
to the boundary under the Neumann condition and they go away from the
boundary under the Dirichlet or Robin condition.

The second example of unbounded domain is the exterior domain of a
ball. In this case it is not easy to know the Green’s function precisely as
in the cases of RV ,Rf . For example, it is difficult to know the sign of the
differential of the Green’s function. However, if the initial datum is radially
symmetric with respect to the center of the ball, the problem is reduced to
the one-dimensional parabolic boundary value problem.
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Theorem 2. Let @ = {z € RY;|z| > 1}, and let ¢ = ¢(r), where r =
|z|. Consider the boundary conditions (D), (N), or (R). Then, if T > 0 is
sufficiently large,

(1.8) Ht)=C@t)={z € RY;|z| =r(t)} forany t>T,

for some smooth function r(t) 2 1. Furthermore, when (BC) = (D) or =
(R), limsup,_,o, (t) = 0o, and when (BC) = (N), r(t) = 1 for any t > T
and

(1.9) C(t) c {z € RY;|z| < sup{|y|;y € S,}} forany t>0,

where S,, is the support of .

Remark. Since the solution is radially symmetric with respect to the origin,
let u = u(t,7) be the solution. When N = 3, the function ru(t,r) satisfies
the one-dimensional heat equation and one can calculate the solution u(t,r)
explicitly. Therefore, we see that if N = 3 and (BC) = (D), then r(t) X
(2t)"3 — 1 as t — oo and there exists T > 0 satisfying %—'ti(t) > 0 for any
t>T.

The last theorem gives estimates of the size of C(t) when { is a general
exterior domain in RY.

Theorem 3. Let Q be the exterior domain of a bounded smooth domain
in RN. Consider the boundary conditions (D), (N), or (R). For any ¢ there
exists a positive constant K satisfying

(1.10) C(t) C {a: € Q;|z] £ K(/t|logt| + 1)} for any t > 0.

Especially, when Q = {z € RY;|z| > 1} and (BC) = (N), the above estimate

becomes

(1.11) C(t) C {a: € Q;|z| §K(\/f+1)} for any t > 0.

Remark. In [3, p.285] the similar estimates of the hot spots in complete
Riemannian manifolds without boundary were obtained with the help of a
Harnack inequality of Li & Yau[8].

§2. On the proofs of the theorems.

In Theorem 1 to prove the uniqueness of the hot spot after a finite time
we need
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Lemma 1. Let u be the solution. Then there exists T > 0 satisfying:

IfV,u(t,z) =0 witht > T, then (%(t,z))l< <N is negative defi-
’ Si,5S

nite.

The proof of Theorem 3 is due to the moving plane method (see [4, 9] or
[6, p. 100]). Choose R > 0 sufficiently large to get

(2.1) Br(0) D RN\ Q,

where Br(0) denotes an open ball in RV centered at the origin with radius
R. Let u be the solution under one of the boundary conditions (D), (N), or
(R). To apply the moving plane method we need the following key lemma.

Lemma 2. If C' > R is sufficiently large, then
sup u(t,z) < inf u(t,z) for anyt > 0,
> |z]=R
lz|=C( t|log t|+l)

By using this lemma let us prove (1.10). Let z = (2',zn) and z' =
(z1,...,2n-1). For A € R define the function vy by

(2.2) oa(t,z) = u(t,z’,zN) —u(t,z',2) —zN).

For any A 2 C consider the domain D) defined by
(2.3) Dy = (R¥\ B(0)) N {n < A}.

Then v) satisfies

6tv,\ = Av,\ in (0, OO) X D)\,
(2.4) vA(0,z) 20 in Dy,
vy =0 on (0,00) X {zny = A}

Furthermore it follows from Lemma 2 that there exists Th > 0 satisfying
(2.5) vx >0 on (0,T)) x 0Bg(0).
Hence by the strong maximum principle we get

vy > 01in (O,T,\) X D,\,
(2:6) 0> | =22 (4,2,2) for (t,2') € (0,T) x RN,

orn drn

IN=
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Since the heat equation is invariant under the rotation of the coordinates,
we can adjust the positive zy-axis to any direction. Therefore, in view of
Lemma 2, we obtain (1.10). Also we note that (1.11) is a consequence of a
similar lemma to Lemma 2.

In Theorem 2 to prove that after a finite time C(t) consists of only one
sphere we employ the results of Angenent[1] and Angenent & Fiedler[2] and
the idea of Ni & Sacks[10]. Owing to the results of [1] and [2] we can see the
path of the bottom of the valley of the temperature precisely provided the
problem is one-dimensional. The idea of Ni & Sacks[10] is simple, that is, if
a valley of the temperature continues to exist, then the temperature at the
bottom of the valley never decreases and this contradicts the decay of the
temperature. Using these facts and Theorem 3, we prove that after a finite
time C(t) consists of only one sphere. Furthermore by using the comparison
principle we see that lim sup,_,,, r(t) = co when (BC) = (D) or = (R). By
using the moving plane method we can prove (1.9) when (BC) = (N), that
is, in this case we can convey the plane from the neighborhood of the infinity
to the extremal position.

For the details we refer to [5].
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REMARKS ON THE BLOWUP SHAPE FOR A SEMILINEAR
PARABOLIC EQUATION

TAKASHI SUZUKI

August 24, 1993

1 Introduction

We discuss the parabolic equation

u,—Au=¢€" in Q=Bx(0,T) (1)
with the boundary condition
ulop =0 (2)
and the initial condition
uli=o0 = uo(z) > 0. (3)

Here, B = Bg(0) = {|z| < R} denotes an n-dimensional ball, u, =
u (|z]) € C*(B) N C°(B) a radially symmetric function satisfying

—Aug<#e®, up <#£0 inB (4)
and T > 0 the blowup time:
lu( )l e = 400 as TT (5)
The condition (4) is equivalent to suppose that
u=u(lz],t), ut >0, —Au<e* inQ (6)

and 4
u, <0 in @\ {z =0} (7)
for the solution u (c.f. [10]).
In this situation, the blowup shape

u(|w|,T)=2log|—i—|+loglog|71—l+log8+o(1) (lz] < 1) (8)

229
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is expected by several authors (c.f. [9]). For instance, [8] proved the fact for B
replaced by a convex domain . Then the blowup shape (8) holds if z = 0 is
a blowup point and ug(z) belongs to an open set in C°(Q)). However, it is not
cirtain that the set contains radial functions when @ = B and uo = uo(|z|).

About the upper estimate we have a result of [4] as

1 1
u(|:c|,T)S?logm+loglog|:v—|+0(1) (lz] € 1). (9)
~ On the other hand the lower estimate
1
wlleh T) > 2log o +log2(n —2) (lel <) (10)

was proven by [5] for n > 3, and [16] for n = 2.
What we prove in this note is the following.
Main Theorem Let n > 2, uo € C*(B) and

A?ug + e®|Vuyg|?> > (Auo)2 . (11)
Then, for any K > 0 we have
1
w(lal T) 2 2o+ K (Jel <1). (12)

Here, the condition (11) has to be discussed in connection with (5). It
actually holds for uy = u*, solving

— Au* = )e* in B (13)
with
v*=0 on dB, (14)
where 0 < A < 1. In the case of n < 9, we have an appropriate ball B = Bg(0)
such that a nonminimal solution u* of (13) with (14) exists for A = 1. In fact,
R > 0 is taken to be arbitrarily large if n = 2. For these facts we refer to [12],
[17], and [20].
In this situation, it holds that

u** Z

=

; (15)

where u denotes the minimal solution for (13) with (14) and A = 1. Therefore,
if 0 < A < 1 is sufficiently close to 1, the estimate

u*>u inB (16)

holds. Now the theorem [11] indicates the blowup in finite or infinite time for
the parabolic equation (1) with (2) and (3) for this uo = u*. This consideration
supports the possibility for the condition (11) to be compatible with (5).
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2 Strategy for the proof

Uniform estimates on the parabolic region of Giga-Kohn ([13] [14] [15]) have
been established by [5], [18] and [7]. However, the estimate (12) which we are
going to prove is uniform and does not follow from them by themselves.

We employ the argument of [16] to prove the following lemma.

Lemma 1 Suppose the existence of ¢ (|z|) € C*(B), ro € (0,1] and to €
[0,T) such that

—A¢p >0 in B, (17)
and
J=eu,>1—e® dn|zg| <1, to <t < T. (18)
Suppose furthermore that
ifn > 3. Then it holds that
1
u(|z],T) 2210gm+¢o(|wl)+log2 (lzl < 1). (20)

Unfortunately, continuity of J(z,t) around (z,t) = (0,T') cannot be proven
(cf. [6]). However the requirements of the above lemma are assured in the
followng way.

Lemma 2 The function J(z,t) is monotone increasing in t at each r € B,
provided that the condition (11) holds.

Lemma 3 We have
Jlg=0 =1 ast]T. (21)

Lemma 2 follows from a standard argument of comparison due to [10],
while Lemma 3 is a consequence of the asymtotic analysis on the parabolic
region of Gigg-Kohn, by [5] and [18].

To prove the main theorem, we just take ¢o = K > 0, an arbitrary large
constant. Then the condition (18) follows from Lemmas 2 and 3.
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3 TItoh’s principle and generalizations

The proof of Lemma 1 is based on two inequalities, Bandle’s mean value the-
orem and Bol’s isoperimetric inequality.

Proposition 4 (Bandle) Let B = Bgp(0) C R? be a ball and p € C3(B)
satisfy the differential inequality

—Alogp<p B (22)
with
= d 8. 23
m /517 T < 8w (23)
Then it holds that :
p(0) <8R *m(87 —m)~". (24)

Here and henceforce, C2(B) denotes the set of positive C?- functions on
B. In fact, the above assertion is equivalent to corollary 1.1 of [1]. See also
[19]. Applying it on the ball Br_js|(z), we obtain the following.

Corollary 5 Under the assumption (22) with (23) we have
p(z) <8(R—|z|) *m(8r —m)™! (z € B). (25)

On the other hand, Bol’s inequality is nothing but an isoperimetric in-
equality on the surface M = (B, pY/ 2d.s) with the Gaussian curvature K =
—Ap/2p < 1/2, where ds? = dz} 4 dz3 for z = (21,22) € B.

Proposition 6 (Bol) Under the assumption (22) with (23) we have
L
2 = 1/2 > — —
= ( 5P ds) > 2m(87r m). (26)

Analytic proof is performed by [2].
Combining these two inequalities, we reach the following conclusion.

Proposition 7 Under the assumptions (22), £ < 2V2r, and m < 4n we have

the estimate
m < 4r (1——\/1—-]'2) (27)

-2

p(@) <8(R-la) "5 (141-77)  (ceB), (28)
where j = £/(2V/27).

and
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Proof: Because of (26), m < 47, and £ < 2271 we have m < m_, where
m_ denotes the smaller solution for

M?*—8xM + 02 = 0.

Namely, m_ = 4w (1 - \/l_——?) < 47 and (27) follows. Now (28) holds by
(25). , o

The following assertion is an immediate consequence, but plays the key role
in our argument. We call it Itoh’s principle.

Corollary 8 (Itoh) The assumptions (22), £ < 2/27 and m < 4r deduce
that m < 4r.

Let {pi}o<.c7 be a blowingup family of positive functions on a domain
QCR™ -
lpellpe — +o00 astTT. (29)

Then the blowup set
S {Pt}ogt<T ={z €| P, (zx) = 400 with some

zr —>c and 4 TT as k— +oo} (30)

is defined and
St{p}ocicr = S {ptlocicr NN (31)

denotes the interior blowup set. The following theorem is due to T. Itoh.
Theorem 9 If {p,}oc,cr C C2(R) N COR) satisfies (29),
t > p, € C°(Q) continuous, monotone increasing (32)

and

—Alogp; <p; i for 0<t<T, (33)
then any xo € St{pi}ocicr €njoys the property that

/B ( )p}nds >0/ (0<r<1), (34)
r{Z0

where

pr(e) = imp@) € (0,4+%] (e € Q). (35)
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Proof: If (34) is false, there exists a sequence r | 0 such that
V20s <22 (k=1,2,--).
/a B, (zO)PT ( )

In particular for some r > 0 sufficiently small holds that
me < 4 and fp < 2V/2m, (36)

where

= dz and £, = / 12, 37
my /;BT(IO)Pth an t 8B,(zo)pt S ( )

From the monotonicity follows ¢, < 227 (0 < t < T), while t — m, is
continuous. Therefore, Itoh’s principle Corollary 8 works and m; < 47 remains
to hold for 0 <t < T, so that

-2

pz) < 80—l — o) 752 (141 32) (38)

for z € B,(%), 0 <t < T, and j; = £,/(2¢/27). This means that zo ¢
S1{pt}o<icrr @ contradiction. O
We can reproduce Itoh’s result referred to in the introduction.

Corollary 10 Let B = Bg(0) C ®? and u(|z|,t) € C¥(B)NC°(B) (0 <t <
T) have the property that

t > u(-,t) € C°(B) continuous, monbtone increasing (39)
u(0,t) > 400 astTT (40)
and
—Au<e* in@Q=Bx(0,T). (41)
Then it holds that
1
u(|z|,T) > 2log 2] +log2 (0<|z| < 1). (42)

Proof: We can applv the previous theorem for p; = ettt Q0 = B, and
7o = 0. The conclusion (34) implies that ’

p(lel, T) 2 2/le]* (0 <la| < 1),

or (42). O
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Corollary 11 Let B = Bp(0) C R withn > 3 and u = u(|z|,t) € C*}(B) N
C°B) (0 <t < T) have the property that

u, <0 inQ (43)

besides (39)-(41). Then the conclusion (42) follows.

We go back to the two dimensional ball B = Bg(0) C R2. For each € > 0
sufficiently small, let a family {p}oc;r C C3(B) N C°(B) be given with the
properties that

t— p; € C°(B) continuous, monotone increasing, (44)
pi(0) > +o0 ast1T, (45)
— Alogp; <p; in Bg,(0) fort. <t<T, (46)

where R, | 0 and ¢, T T as ¢ | 0. Let another family {p{},., . C C3(B°) be
given for B° = B\ {0} with the property that -

pi(z) - pi(z) ase |0 forzr€e B*and 0 <t < T. (47)
In this case the mapping
to p(z) (o € BY) (48)
is monotone increasing, and we have the limitting fucntion
Po(z) = limpi(e) € (0, +00] (a € BY). (49)
We suppose, furthermore, that

sup |z|* |pf(z) — p{(z)| — 0 ase | 0. (50)
z€B°,0<t<T

Lemma 12 Under those situations we have

V205 > 9v2r (0 1
/3&(0)% s>2V2r (0<r<l). (51)
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Proof: Applying Theorem 9 directly deduces that

245> 9/ (0 < 1).
/;B,(o)pT s>2v2r (0<r<1)

(52)
However, the effective range of r depends on € and (51) does not follow.
First we note an inequality implied by (50):
12ds — / A24s| -0 ase | 0. 53
0<r<R /fiBr(O) Pr 3Br(0) pr l ( )

In fact, the left-hand side is dominated by

27
/ sup r
0

0<r<R

i () " - 53 (re)

dé,
where (50) can be utilized.

If (51) is false, there exists a sequence ry | 0 such that

/ p;'l/2<2\/-2-7r (k=1721)
8B, (0)

From the inequality (53) follows that

/ pids < 2v2r (k=1,2,--") (55)
8By, (0)

for ¢ > 0 sufficiently small. For such ¢, we have an r € (0, R.) sufficiently
small, with the property that

205 < 2V/2
/3}3,(0) pr'ids < V2r (56)
and '

¢ d 4.
/;-(0) pidz < 4w (57)

Now, we repeat the argument of Theorem 9 on B = Bpg,(0) for {pf}, ., to
deduce that 0 ¢ Sy {pf}, <, 2 contradiction. -

a.
Once Lemma 12 has been proven, the following assertions follow similarly.

Corollary 13 Let {v{(|z])}oq;cr C C*(B) N C°(B) be a family on B
Bgr(0) C R? for each ¢ > 0 sufficiently small, with the property that

t — vi(|z]) € C°(B) continuous, monotone increasing

(58)
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v;(0) > 400 ast 1T (59)
— Avf <e% in Bg,(0) fort, <t <T, - (60)

where R, | 0 andt. TT ase | 0. Let another family {v{(|z|)}oc;cr C C°(B°)
be given on B° = B\ {0} with the property that -

vi(z) 2 vi(z) ase |0 forze B°, 0<t<T (61)
sup z|? exp vp(Jal) |exp {vf(J2]) — vP(le)} —1| = 0. (62)
z€B°,0<t<T

Then we obtain

1
v° (|z|,T) > 210g|$—‘ +log2 (0<|z| K1), (63)
where
v’ (|z],T) = 1}{}1”" (lzl,t) (z € B°). (64)

Corollary 14 Similar conclusion holds on n-dimensional ball B = Bg(0) with
n > 3, if the assumption

(v§), <0 inBfor0<t<T (65)

is added in the previous corollary.

4 Proof of the Main Theorem

We have only to prove Lemmas 1-3.
Proof of Lemma 1: For v = vy = u(|z|,t) — ¢o(]z|), we examine the
assumptions of Corollary 14. In fact we have

—Av; = —Au + Ay
< —Au=—¢" (e'“ut -1+ e“¢°) + e¥ %0
<e P =¢% inz| <1, o<t <T. (66)

and also
(v§), =u, — ¢or <0 in Q. (67)
The conclusion (63) means (20). O
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Proof of Lemma 2: From the equation (1) follows that
Ut — Aut = e“ut in Q
and
Uprt — Auy = €* (uf + u“) in Q.

Therefore, we have for
I= Ut — U?

that
It b AI = Ut — 2utum bt (Autt -2 |Vut|2 - 2utAut)

=e* (uttv-— uf) +2|Vw* > eI in Q

as well as
IlaB = 0.

Now the condition (11) is equivalent to

IIt::O Z 0.
Hence
I>0 inQ
follows, which is nothing but
Jt 2 0 in Q

for the function J(z,t) defined in (18).

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

O

Proof of Lemma 3: In the case of n > 3, we can utilize the result of [5].

The function w(y,o) defined through

w(fz]t) = w (a:(T — )72, log t) —log(T — ¢)

enjoys the property that
w— 0 loc. unif. in y € R" as 0 — +o00.

Since w(y, o) satisfies the parabolic equation

1
wa=Aw—-2—y-Vw+(e“’—l),

(76)

(77)

(78)
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a standard argument implies that
Wy, Wy — 0 loc. unif. in u € R" as 0 — 400, (79)

where p = |y|.
These asymptotics deduce that

u(0,t) + log(T —t) = w (O,log Tzi t)

—0 astlT (80)

and

1 T T
(T — t)uy(0,t) = 5PWe (0,log -]—,—:——t> + w, (0,log T t) +1
—1 astlT, (81)
respectively. Therefore,
J=e"u,—1 astTT (82)

follows.
For the case n = 2 we make use of the result of [18] instead.
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SECTOR THEORY

H. KOSAKI

1. INTRODUCTION

Sector theory was introduced by R. Longo([Lo2]) and the index theory
was introduced by V.F.R.Jones([Jol]) in case of finite factors and by H.
Kosaki ([Kol]) in case of infinite factors. Sector theory is a useful tool for
the classification of subfactors of type III factors with finite index ([Iz1], [122],
[IK], [Ko3], [KS], [Lol]) and for the characterization of strongly outer actions
([Kal], [Ko4]). In this paper we will review basic concepts of the sector
theory, the index theory via sector approach, and Fusion rules. Throughout
this paper M is a type III factor.

2. PRELIMINARIES ON SECTORS

Let M be a type I1I factor. A Hilbert space H is called an M —M bimodule
(or M — M correspondence) if and only if H is an M — M bimodule and the
left and right actions of M are o weakly continuous.

Let L?(M) be the standard Hilbert space of M and J be a modular con-
jugation. Then L?(M) is an M — M correspondence by

z-€-y=aJy*J¢ for ¢€ L*(M), z,yeM

For p € End(M), the class of unital nomal *-endomorphisms, define an
M — M correspondence H, = L*(M) by

z-€-y=p(e)Jy"JE  for E€IXM), ayeM

241
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Theorem 1. (A.Connes) Any M — M bimodule H is unitarily equivalent
to H, for some p € End(M).

Proof. Since M is of type III, M right action on H is spatially isomorphic
with M right action on L?(M). So there exists a surjective isometry v :
H — L*(M) such that Ué-m = U(¢-m) for m € M, € € H,ie. 72" (M)U =
UrH(M). Thus we get

H(M) C 7H(M) = (U*E (M)U) = U*xE (M)'U = U*F" (M)U.

So that UrH(M)U* C n* (M) = M. Set p(m) = Urf(m)U* € M, then
p € End(M)and H = H, via U.

By lemma we can see that the study of M — M bimodule is the same with
the study of endomorphisms on M.

Let p,¢ € End(M) and suppose that H, and H; are unitarily equivalent
as M — M bimodules. Then there exists a untaryU : L*(M) — L*(M) such
that U(m, - € -mg) = my - U - my, 1.e.U(p(m1)Jm3JE) = ((m1)Im3JUE . Set
my = 1 then UJm3J€¢ = JmaJUE for £ € L*(M). So U € (JMJ) = M.
Set M, = 1 then Up(my)¢é = ((my)UE for £ € L*(M),m; € M. Hence
¢(m) = Up(m)U* for m € M, thus ( = AdU - p.

Definition 1. For p;,p; € End(M) define p; ~ py,unitary equivanent, if
and only if p, = AdU op; for some unitary U € M. We denote by Sec(M) the
‘quotient of End(M) by unitary equivalence,and we call elements in Sec(M)
sectors of M.

We can see that the study of unitary equivalence classes of M — M bimod-
ules is same with the study of the sectors. The class [p] ,p € End(M),will be
denoted by p sometimes.

There are two basic operations for bimodules, say the relative tensor prod-
uct and the contragredient bimodule. For M — M bimodules R;, R; the
relative tensor product is R; ® Ra, tensor product as M modules. And
H, ®m H,, = H,,,, (See [Sa]). For M — M bimodule R the contragradient
bimodule is R = { £ | £ € R} via

F_X, (&0 =0, mi-E-my=mifm

for A\ e C,£,( € R,m;,mq € M.
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Let M O N be a properly infinite von Neumann algebras on L?(M), then
there exists a common cyclic separating vector & for M and N ([DM]). Let
IN go> JM g, be the modular conjugations of N, M respectively on L*(M).
Set v = AdJn,¢, M ¢, then v : M — N and we say that v is the canonocal
endomorphism of M O N, here v does not depend upon the choice of &
up to an inner perturbation (See [Lol],[Lo2]). And also we can see that
M > N D v(M) is a downward basic construction.

For p € End(M), we find v = v,, the canonical endomorphism of M D
p(M). Then we can find an endomorphism p on M such that pp = 7. We -
say that [p] is the conjugate sector of [p]. In this case H, = Hz (See [Lo2])

3. IRREDUCIBILITY AND IRREDUCIBLE DECOMPOSITION OF SECTORS.

Definition 2. We say that p € End(M) is irreducible if and only if M N
p(M) =Cl1

For p1, p2 € End(M) choose partial isometries vy,v2 € M such that viv] +
vovy = 1. Define

p(m) = vy p1(m)v] + vepa(m)v; forme M
[e] = [p1] @ [p2]-

Then the definition of [p] does not depend on the choice of v;’s.

Let p € End(M) suct that M D p(M) is of finite index. Then M Np(M)' is
a finite dimensional algebra ([Kol], [Ko2]). Let {p;};=1,...,» be a partition of
1 consisting of minimal projections in M N p(M)'. Choose partial isometries
v; € M,i = 1,---,n, such that v;v} = p;. Set p;(m) = v}p;(m)v; then
pi € End(M) is irreducible and we have the irreducible decomposition of [p]
as follows

[p)=1[p1] ®--- @ [pal.
This decomposition does not depend upon the choice of p;’s and v;’s ([Lo2]).

Definition 3. For p € End(M), we define the statistical dimension dp of p
as follows([Lol], [Lo3]);

dp = (the minimal index of M D p(M))'/2,
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Theorem 2. (Longo[Lol], [Lo3] ) Statistical dimensions satisfies the follow-
ings;
(i) dp € {2cos% |n=34,-}U[4 00,
(ii) dp =1 if and only if p € Aut(M),
(i) dp = dp,
(iv) d(p1p2) = dprdps,

(v) dX_elp] = dpi,

=1 =1

Next theorem says the characterization of the conjugate sector which is
an important tool for the Fusion rules. This theorem is due to R. Longo[Lo2]
and M. Izumi[Iz3].

Theorem 3. (Characterization of the conjugate sector) Let py, p2 be irre-
ducible sectors with dp,,dp; < oo, then the fololowings are equivalent.

(i) [id] < [p1p2],
(if) [id] < [p2p1];
(iii) [p1] = [p2].
In this case [p; p2] contains [id] with multiplicity one.

Corollary 4. Let p,o be sectors such that p is irreducible and dp,do < oo.
Then the followings are equivalent.

0) (o] <o,
(ii) [id] < [pal,
(iii) [id] < [o7].
Proof. Let [0] = [01] @ - @ [on] be the irreducible decomposition of [o].
Assume (i), then [p] = [0;] for some i. So that by the theorem we get

[id] < [poi], lid] < [oip],

hence we have (ii),(iii)
Now we show (ii)—(i) ((iii)—(i) is similar). By (ii) we have [id] < [po;]
for some 7, hence by the theorem 3 [p] = [0;]. So that [p] < [o].

Theorem 5. (Frobenius reciprocity) Let pi,ps,ps be irreducible sectors
with finite statistical dimensions. Then pp2 = ps if and only if p3p, > p1.

Proof. pip; > ps <> p1p2Ps > 1d > p3Ppy > id <> p3Py > p1-
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4. INDEX THEORY VIA SECTOR APPROACH.
Let M D N be factor-subfactor pair of finite index, and let

NCcMcMycM,C---

be the tower obtained by iterating the basic constructlon([J 0]). Then we get
a chain of finite dimensional algebras;

NnN cMON cM ;NN cM,NN'C

Definition 4. ([GHJ]) The principal graph of M D N is the bipartite multi-
graph constructed as follows: On the Bratteli diagram of the derived tower
delete on each floor the vertices belonging to the old stuff, and the edges
emanating from these vertices.

Dual principal graph of M D N is defined similarly using the Bratteli
diagram of the following chain of finite dimensional algebras:

MnMcMnNnM cCcM,NM C

Example 1. Suppose that the Bratteli diagram of NN N' € M NN' C
MyNN' C MyNN'C--- is given as follows,

Figure 1.
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then the principal graph of M D N is Ds ;

Figure 2.

If [M : N] < 4 then the principal dual graph is isomorphic to the dual
principal graph (See [Oc]). In this case the principal graph of M O Nis
one of An(n > 2), Dn(n > 2), Es, Es (See [GHJ],[Oc],[123]).Principal graphs
and dual principal graphs are good invariance for studying subfactors ([KS],
[Ko3], [Kod], [Iz1], [122], [IK], [Kal], [Ka2] and many others)

Let NC M C M; C M, C--- be the tower for M D N, then
M, =JuN'Jy = IMINNINIM = Ad(JMJN)(N),
My = Iy, M' Iy, = I, IMM I Iy, = Ad(Iy, Im )(M).
Let £ be a common cyclic separating vector for M O N and let Ju, Jn
be modular conjugations such that Jar(&) = Jn(&o) = &o, then & is also
a cyclic separating vector for My C B(L*(M)). Thus Ju, = JuJInJIm,

hence we get My = Jy, JuMJImJIym, = Ad(JmJIn)(N). Similarly we have
the following basic extensions ;

NCMCcC M =Ad(JuJn)(N) C My = Ad(JpJn)(M)
C M; = Ad(JpIN)A(N) C My = Ad(Im N )2 (M)

We see that M D N D (M) is a downward basic construction. Now
M; DN D JvM{JIn = INIm, MyJIm, IN
= INIMINIMAA(IMIN)YN)IMINImIN
= Ad(InTn)(N) = 2(N)
M;DOND JNMZ'JN = JNJMzMgJMzJN
= JInIm, Im I, Mo I, I I v, IN
= JInImINIMINIMMa I INIMINIMIN
= INImINIMINIMAA(IMIN) M)IINIMINI M IN
= JINIMINIMMIMINIMIN
= Ad(InTm)* (M) = 7*(M)
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So that the iterating downward basic construction , called the tunnel for
M D N, is as follows:

M>DNDyM)Dy(N)D¥*(M)D¥*(N)D ¥ (M)D+*(M)D -

We write as (M) = Ny,7(N) = Np,v3(M) = N3,7*(N) = Ny, ¥*(M) =
Ng,---. If p € End(M),N = p(M) then v = pp. So that the tunnel for
M D (M) is given as follows; :

M D p(M) D pp(M) D ppp(M) D pppp(M) D ppppp(M) D -

Now we will cosider the irreducible decompositions of p, pp, ppp, - - -. Since
M, = Ad(JmJIN)(N) ,we have AdJy(M N p(M)') = M' N (AdIm(N)') =
M'n(Ad(JmJIN)(N)) = M' N M. Similary we get the followings ;

Mnp(M) =MNON' =AdJy (M, N M)

M pp(M) = M NN, = AdJy (M, N M)
M N ppp(M) = MN Ny =AdJy(M; N M')
M N pppp(M)' = M N Ny = AdJy(My N M")

Next we will cosider the irreducible decompositions of pp, ppp, pppp, - - .
Since M Np(M)' = p(M) N pp(M) = NN N{ and AdJy(NNN{)=N'nN
AdJnyy(M) = N'NAdINAA(INIM)(M)' = N'N M, similarly we get the

followings;

MnNp(M) = p(M)N pp(M) = NN N; = AdJy(M N N")
M Npp(M) = p(M) N ppp(M)' = N NN = AdJn(Mi N N')
M N ppp(M)' = p(M) N pppp(M)' = N N Ny = AdIn(M; N N')

So that the dual principal graph of M D p(M) corresponds to the irreducible
decompositions of p, pp, ppp, - -+ and the dual principal graph of M D p(M)
corresponds to the irreducible decomposition of pp, ppp, pppp, - - - .



248 ‘ H. KosakI

Example 2. Suppose that the principle graph of M D p(M) is E, then
the diagram of the irreducible decompositions of id, 5, pp, ppp, - - - is given as
follows;

Figure 3.

By the characterization of conjugate sectors, we get pp > td. Then pp =
1d @ o for some irreducible sector « by the diagram. Since ppp = p @ ap and
7 is irreducible the left one in level pp is ¢d and the right one is o and ap is
decomposed as sum of three irreducible sectors. By the Frobenius reciprocity
pp > o implies ap > p. Sothat ap=p @D @ 6 and ppp =2p B S & 6 for
some irreducible sectors (3,8. In diagram we let the center one be § , right
one be § in level ppp.

Now pppp = 2pp D Bp D bp =2idD2a® Lp® bp. Since ap=pPBD 6,
we get Bp > a,6p > a by the Frobenius riciprocity. So that by the diagram
we get the followings;

Bp=a, bp=a®e, pppp=21dD4aDe
for some irreducible sector €. And
PrPPP =2p®4ap D ep=2pD4(pD L D) Dep=6p D4 D46 D ep
By the diagram e€p is irreducible and by ép > € we get €p > 6. So €p = 6

and ppppp = 6p @ 45 @ 56 and we get the following diagram of fusion rules
in case of Fj
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Example 3. Suppose that the dual principle graph of M D p(M) is Ds,
then the diagram of the irreducible decompositions of id, p, pp, ppp,- - is

given as follows;

Figure 5.

By the similar method of Example 1 we can get the following diagram of

fusion rules.
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Figure 6.

Theorem 6. (Peron-Frobenius Theorem)([GHJ])For a matrix with non neg-
ative entries there exists unique eigen value which is maximum in modu-
lus, this eigen value is nonnegative and of multiplicity one, such eigenvalue is

called PF-elgenvalue.

In this case we can choose an eigenvector with positive entries for the

PF-eigenvalue.

Example 4. Suppose that the principle graph of M D p(M) is A4, then by
the similar method of Example 1 we get the fusion rule as follows;

l-p=pp-p=10a,a p=p&pB-p=a
By theorem 2, we get
dl-dp=dp,dp-dp=dl & da,do-dp=dp®dp,dB-dp=da

So that
dl dl
dp | _ dp
A da | dp da
ap dp

where A is the incident matrix of A4. Hence dp is the PF-eigenvalue of the
incident matrix A.

Theorem 7. Let p € End(M) and M D p(M) be a factor-subfactor pair

with finite index. Then dp is the PF-eigenvalue of the incident matrix of the
principal graph of M D p(M).
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