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Chapter 1

Introduction

1.1 What is a Supercomputer?

There is no formal definition of a supercomputer, but a common way of
explaining the concept is to say that a supercomputer is a computer of which
the peak performance is at least 10% of the presently fastest existing computer.
This makes the definition a loose one, which changes over time, and this is
reasonable since the development of supercomputers is very fast: The perfor-
mance of a powerful, expensive and big supercomputer some ten years ago can
now be found in a relatively cheap desktop computer that is available for use
by a single researcher or engineer.

A similar, loose definition is the following: a supercomputer is a very pow-
erful computer, at least two orders of magnitudes more powerful in terms of
speed and storage than a conventional computer. '

To illustrate the aspect of speed, we cite the following performance figures
from a commonly used computer benchmark, namely the LINPACK bench-
mark [5]. In that test the performance of computers is measured from the
execution times when two linear systems of equations are solved: the first is of
dimension 100 and is solved using a subroutine from the LINPACK library[3].
The second is larger (dimension 1000) and here any program (i.e., even heav-
ily optimized) can be used. Below we give timings in Mflops (million floating
point operations per second) for some supercomputers and workstations.

This shows that for the fastest supercomputers and workstations (April
1992) and for problems that are worth solving on supercomputers (i.e., prob-
lems that are large in some sense, usually in terms of the number of floating
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Computer n =100 n =1000 Peak performance
Cray Y-MP C90 (16 proc.) 479 9715 15238

NEC SX-3/44R (4 proc.) 15120 25600
Fujitsu VP2600/10 (1 proc.) 249 4009 5000

IBM Risc/6000-560 31 84 100

SUN SPARCstation IPX 4.1

Table 1.1: LINPACK Benchmark for various computers, May 31, 1993.

points operations that are needed) it is really true that the supercomputers
are two orders of magnitude faster.

Since there is no real definition of the term “supercomputer”, and since it
gives the impression that a particular computer is something special, it can
be used by computer manufacturers as a marketing trick. Therefore, many
prefer the term “high performance computer”, which can be interpreted in a
wider sense, and is less prestigious. We will use the term supercomputer in
the sequel.

Supercomputers are made fast by introducing parallelism on different levels
in the architecture. We will refer to non-supercomputers as conventional or
sequential computers, although such computers normally have some parallel
features (especially on a low level of the hardware), but to a lesser extent than
supercomputers. The first computer, which was labeled supercomputer, was
the Cray-1. This machine appeared in 1976.

1.2 Why Supercomputers?

Supercomputers are designed to be very fast and are intended for problems that
would otherwise be intractable. Here we will give two examples of applications,
where the use of supercomputers is essential.

In the description of the examples we will use the terms Mflops and Gflops,
which are used as measures of the speed of fast computers. 1 Mflops and
1 Gflops are the same as 106 and 10° floating point operations per second,
respectively.

The first example is the simulation of car crashes where a car hits a wall
at a speed of 60 km/h. The model of the car has approximately 20 000
elements, with 6 degrees of freedom (unknowns) for each element, i.e., 120 000
unknowns altogether. The crash is simulated during 120ms, and 150 000 time
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steps are taken. In each time step around 100 floating point operations (flops)
are needed per unknown. This means that the total computation requires
1.2-10°-1.5-10°-10% ~ 2-10'2 flops. On a computer with a speed of 1 Mflops
this would take 210 seconds or 25 days approximately. This is too much in a
product development stage, when it is necessary to evaluate several alternative
constructions. On the other hand, with a supercomputer that can run at 1
Gflops, the same computation takes about 35 minutes, which is acceptable.

The second example is concerned with the flow around the Hermes space-
shuttle. In this computation there are around 10° grid points and 5 unknowns
per point. 10* time steps are taken and for each grid point and step 103 flops
are needed. This adds up to 5 - 10 flops altogether, and from the previous
example we see that this needs a computer with a speed of at least 1 Gflops
to be feasible.

In reducing computation time in a rate that is comparable to the improve-
ment seen since 1950’s, it is necessary to use parallelism. From 1950 to the
mid 1970’s, the improvement of an order of 10° was made in speed, which was
due to improvements in the clock cycle and in architecture and design. Since
gains from the improvement in semiconductor technology are becoming much
harder, parallelism is the only means for making orders of magnitude improve-
ment in computing speed. The hardware to deliver such performances have
been built but they are not easy to exploit efficiently. Therefore, the users
have to understand the architecture and be able to redesign their algorithms
to benefit fully from new technology. '
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Chapter 2

Architecture

2.1 Basic concepts

We shall here briefly discuss same basic concepts that are needed in the sequel
for describing supercomputers and for discussing their performance. Since the
emphasis of this text is the use of supercomputers for linear algebra problems
rather than the construction of supercomputers, we will not go into details
concerning hardware.

Earlier we have introduced the measures of speed Mflops and Gflops. Now
we will discuss the concept of cycle time, and its relation to the measures of
speed.

Time in a digital computer should be considered to be discrete: all events
take place at distinct points in time, and the cycle time is the constant time
between these points. The fastest a sequential (i.e. non- parallel) computer can
execute is one instruction per clock cycle. So, if the cycle time is 4 ns (1 ns is
10~° second), then the maximum speed is 1 / (4 107°) = 2.5 - 10® instructions
per second, i.e., 250 Mips (1 Mips is 1 million instructions per second).

Similarly, if the floating point arithmetic units of a computer can deliver
one result per clock cycle, then the maximum theoretical speed for floating
point operations is 1 over the cycle time. Thus, a computer with a cycle time
of 4 ns can have a maximum theoretical speed of 250 Mflops (under the above
assumption). Later we will see that it is possible to double that figure (or even
increase it by a larger factor) by introducing more parallelism.

It is interesting to note that the cycle times of supercomputers has not
been decreased very much, since the first supercomputer, the Cray-1, was in-
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troduced in 1976. The Cray-1 had a cycle time of 12.5 ns. The presently
fastest supercomputers have cycle times of the order of a couple of nanosec-
onds. However, present day machines are at least a factor 100 faster than the
Cray-1; it is obvious then that this increase in speed is explained by a higher
degree of parallelism than in the Cray-1.

In principle, a signal that is sent from one part of the computer should be
able to reach any other part during one clock cycle. Therefore, the speed of
light is one factor that limits performance. The computer must be so small
that signals can reach their destination during one cycle. To give an idea of
the distances involved, we note that the distance traveled by light in 1 ns is
about 30 cm. , _

To illustrate scalar computations we take the simplest possible example,
the addition of to real numbers,

sl=52453

The machine operations needed to execute this statement are (we use an in-
formal assembler type notation here and in the sequel; the number of cycles
given are only meant to be an example).

Number of cycles

load s2 --> Rl 1 ' R1-R3 are a registers
load s3 --> R2 1
add R1 + R2 --> R3 6
store R3 --> si 1

Sequential computers do everything in scalar mode. Thus the execution
of the following program

do 1=1,1000
s1(i)=s2(i)+s3(i)
enddo

takes 9000 cycles plus the overhead for the loop.
In the next section we will discuss how the time for this loop can be reduced
by parallelism.
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Later we will deal extensively with vectors: a vector is an ordered list of
scalars. When a vector is used in a loop, this is often done with a constant
distance, stride, between the elements referenced. In the code below, the
vector is referenced with stride 1 on the first loop, and stride 3 in the second.

do i=1,1000
a(i)=....

enddo

do i=1,1000,3
b(i)=....

enddo

A word is the basic unit of information that is addressed in a computer.

The IEEE standard for binary floating point arithmetic was adopted in
1985. It defines four floating point formats in two groups, basic and ex-
tended, each with two widths, single and double. The organization of the
double precision basic format is shown in Figure 2.1.

[s] e f J
0 II 63

Figure 2.1: Basic format, IEEE double precision.

The components are the sign s (one bit), the exponent e (eleven bits), and
the fraction f (52 bits), altogether 64 bits. The value v of a floating point
number z is

v=(-1)°1.£)2°71°®  for0 < e < 2047,

We see that the leading bit of the significant, i.e., the one to the left of the bi-
nary point, is not stored, since due to the normalization it is known always to
be equal to one. Thus, one extra bit is gained for the fraction. The largest and
smallest positive numbers that can be represented are 210232 -2-52) ~ 9.10%7
and 271922 x 2. 107308 respectively. Implementations of the standard provide
the addition, subtraction, multiplication, division and square root operations,
as well as binary-decimal conversions. Except for the conversions, all oper-
ations give a result that is equal to the rounded result of the corresponding
operation correct to infinite precision.
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Most modern computers implement the IEEE standard (the Cray Research
supercomputers are a notable exception: their word length is 64 bits, but they
have a different floating point format), and since most supercomputers have
word length 64, their normal floating point format is double precision.

As a first example of parallel computations we consider the problem of
computing an inner product of two vectors z € R" and y € R",

s = Xlzyi (2.1)
A typical algorithm would look like

s =0
doi=1,n

s = s+x(i)*y(i)
enddo

Although indices are referenced in the order of 1,2,- -, n, there are numerous
other ways of arranging them. If p processors are available for the computation
and m = n/p, we can rearrange the above as

do j =1, p in parallel

s(j) =0

do i = (j-1)*m+1, j*m
s(3) = s(3) + x()*y(1)

enddo
enddo
s =0
do j=1,p
s = s + s(j)
enddo

When there are more processors, we can apply the above idea recursively and
design a better parallel algorithm.

A dependency graph is a graph that represents the dependence among
tasks in an algorithm. The nodes in the graphs represent the tasks in the
algorithm and the directed edge from node 7 to node j represents that task j
can start only after task ¢ is completed. The following three figures show the
dependency graph of the above inner product algorithms. The graphs allow
us to identify the tasks that can be executed in parallel. The height of the
graph represents the minimum number of sequential steps in the algorithm.
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Figure 2.2: Dependency graph 1

compute s1 compute s2 compute s3

O

compute s1+52+s3

Figure 2.3: Dependency graph 2

K1=x1 y1+x2y2 x3=x3 y3+x4 y4 x5=xSyS+x6y6  x7=x7 y7+x8 y8

x1=x14+x$

Figure 2.4: Dependency graph 3

13
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2.2 Forms of Parallelism

2.2.1 Pipelihing

We will use the term functional unit for the hardware that performs different
arithmetic and logical operations in the supercomputer. We are mainly inter-
ested in the floating point addition, multiplication and division operations. In
this section, we discuss how these operations are efficiently executed on many
modern computers using pipelined functional units. This concept is described
- with addition as an example.

To introduce the concept of a pipeline, consider an assembly line for making
cars, and assume, for simplicity, that the line has only three stages, each of
which takes equally long (one time unit).

The normal operation of such an assembly line is to input enough material for
one car into the procedure every time unit, so that the workers are active all
the time and produce one car every time unit.

Next, consider floating point addition. The following example shows that
floating point addition can be divided into stages:

1.234 -10° +4.567 - 1072 = (1.234 + 0.04567) - 10° = 1.27967 - 10° = 1.280 - 10°.

For simplicity, we assume here three stages:

Z —p | adjust exponents add the normalize _
Y—> and shift fractions | ] —>z=rty

Assume that each stage takes one clock period. When the sum of two vectors
z:=z+y (e, z:=z;+y, 1=1,2,...,n) is computed in a computer with
pipelined floating point arithmetic, then the addition unit is operated like a
car assembly line, a pipeline: with a pair of input operands every clock period
(after an initial startup time), an output is produced every clock period.

At a certain point in the computation, the operands have progressed through
the pipeline as illustrated below.

g —» T7 Te Ty

Ys —b yr — Ys Ys > %
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After 3 cycles the first result emerges from the pipeline, and then one result
is produced every clock cycle. A timing diagram for a pipelined operation is
given in Figure 2.5

64 +

0 1464 t

Figure 2.5: Timing diagram for a pipelined operation with n = 64. The pipe
length is assumed to be I.

The computation in vector mode of the sum of the two vectors takes
I+ n clock periods, where [ is the length (in cycles) of the pipeline and n is
the vector length. The corresponding computation in scalar mode (without
pipelining) would take In clock periods.

2.2.2 Vector Register and Instructions

Pipelined functional units can produce one result every clock period, but they
also need operands at the same rate. It is very expensive to construct mem-
ories that can deliver operands at this rate, and therefore most modern su-
percomputers with pipelined arithmetic have vector registers, which can
be considered as intermediate storage between the functional units and the
primary memory.

In the Cray X-MP (and Y-MP) processor, there are 8 vector registers, each
with 64 elements. For our examples with vector registers we will assume that
they are of size 64.

The vector registers are used in vector instructions. As an example,
consider the following code:

do i=1,64
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Primary Vector Functional
memory registers | unit

Figure 2.6: Vector registers are intermediate, fast storage units between pri-
mary memory and functional units.

a(i)=b(i)+c(di)
enddo

On computers with vector instructions the (informal) assembler code for this
is:

vlcad b --> V1 % Vector load to the vector register Vi
vload c --> V2

vadd V1 + V2 --> V3 J, Vector addition

vstore V3 --> a % Vector store from V3 to memory

Thus, there are only four machine instructions. We also give a more detailed
assembler version of the same code:

vload b(1), 64, 1 --> V1 % Vector load to Vi1
vlcead c(1), 64, 1 --> V2
vadd V1 + V2 --> V3 % Vector addition

vstore a(1), 64, 1 <-- V3

Here b(1) is the start address in memory of the vector b, 64 is the vector

length (we assume that the vector registers have 64 elements), and 1 denotes
the stride.
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Typically, a vector instruction reserves the output vector register for as long
as the operation takes, and the input vector registers until the last element
has been delivered to the vector functional unit.

We say that a computation vectorizes if it can be performed with vector
instructions (operations). A compiler that can take a program written in
a high level language and produce code with vector instructions is called a
vectorizing compiler.

Note that a vector operation can not be stopped once it has started: as
many operations will be performed as the vector length indicates. Therefore,
loops with conditional statements cannot be vectorized (we will see later that
there are methods that circumvent this problem).

A more serious difficulty is recursion:

do i=1,n
x(i)=y(i)+x(i-1)
enddo

The same vector register can not be used both for input and output to the

floating point functional unit, and therefore recursion can not be vectorized.
If the number of operations in a vector operation is larger than the length of

the vector registers, then the loop must be divided up in sub-loops. Consider,

e.g.,

do i=1,n
x(i)=y(i)*z(i)
enddo

where n > 64. The compiler must generate machine code, where the vector
instructions have vector length equal to the length of the vector registers, i.e.,
64 in our examples. Thus, the above code is replaced by the following:

rem=mod(n,64) % Remainder when n is divided by 64.
do i=1,rem
x(1)=y(i)+z(i)
enddo
i=rem
do j=rem+1,n,64
do k=1,64
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i=i+l
x(1)=y(1)+z (1)
enddo
enddo

This technique is called strip-mining.

Let [ denote the startup and unit time for a certain vector operation,
i.e. the time to set up the vector instruction plus the time for the first pair
of operands to pass through the pipeline. Then, the time to perform that
operation on vectors with length n is

t=(I+n)t.,

where t. is the clock period. The rate of producing n results is

n

Tn = 75—

(I+n)t.
The maximum (or asymptotic) rate is obtained by letting n tend to infinity:

1

te

Too =

Another interesting parameter is the half performance length n,/; which
is the vector length required to achieve half the maximum performance. This
can be determined from the equation

n T'oo 1

(I+n)t. 2 2t

which gives
7’1'1/2 =1.

It is very important to have a short start up and unit time [, since this deter-
mines the performance for relatively short vectors.

2.2.3 Chaining

Other vector operations that can be pipelined are (componentwise) multipli-
cation z; := x;* y;, 1 = 1,2,...,n, and division z; := y;/z;, 1 =1,2,...,n. It
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is also common that two arithmetic functional units can be chained together
to form a single pipeline. By chaining the multiplication and addition units,

o _p | multipli-
z; _ | cation —> | addi-

tion —> Y+ a*xz;

Yi —o

the computation of the so-called Saxpy operation,

do i=1,64
y(i)=y(i)+s*x(i)
enddo

where s is a scalar, can be performed in vector mode, i.e., so that one result
is produced every clock period. Similarly, the code

do i=1,64
y(1)=y(i)+z(i)*x(i)
enddo

can be chained.
On the vector instruction level we have (assuming that appropriate vector
loads have been performed)

vmul V1*V2 --> V3
vadd V3+V4 --> V5

Chaining means that immediately after the vector multiplication has started,
the addition is issued. However, it can not start until the first result has
appeared from the multiplication pipeline. At the same time as the first result
reaches V3 it also goes into the addition pipeline, and the addition can start.
During this chained operation the multiplication and addition functional units
work in parallel in a carefully synchronized manner.

In Figure 2.7 we give a timing diagram for two chained vector operations.
For simplicity we assume that both operations have equal start up and unit
times.
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64 +

0 21464 t

Figure 2.7: Timing diagram for two chained vector operations.

It is seen that after 2! cycles the result of two floating point operations is
output every cycle. Therefore, on a computer where floating point addition
and multiplication can be chained, the peak performance is

- where t. is the cycle time.
Example:

The CRAY X-MP has clock period t. = 8.5 ns. This gives an
asymptotic rate for, e.g., vector (componentwise) multiplication of
Teo = 1/8.5-107° ~ 117 Mflops (1 Mflop = 10° floating point

operations).

The startup time ! for multiplication is { = 9 clock periods. There-
fore, the half performance length is ny/; = 9. This indicates that
the CRAY X-MP is very fast for short vectors also.

For the chained SAXPY operation y := y + a * z, the asymptotic
rate is 7o, &~ 234 Mflops, since here the result of two arithmetic
operations is output every clock period.

It should be emphasized that the values of these parameters are
only theoretical. In practice, one has to take into account the time

for memory accesses. The measured values are ro, = 70, ny/2 = 53
for vector multiplication, and r., = 148, ny/; = 60 for the SAXPY
operation (from [11]).
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2.2.4 Indirect Addressing

In sparse matrices, the majority of the elements are equal to zero. It is common
in applications that such matrices are of the order 10° — 108, but the number
of nonzero elements is less than 5%. For sparse matrices the usual matrix
storage scheme should not be used, since the whole primary memory and
much secondary memory would be wasted for storing zeros. Instead only the
nonzero elements are stored, together with information about their location in
the matrix. '

In such applications the following type of code appears quite often:

do i=1,64
a(3j(1))=b(3j (1)) +s*xc(jj(i))
enddo

jj is a vector of indices to elements in the vectors a, b, and c:

i

a: |
j: L1 5 T 14

Figure 2.8: The vector jj with addresses elements in a.

This is called indirect addressing. Many computers have vector instruc-
tions for indirect addressing operations:

vload jj --> VO % Load the index vector

vload c(VO) --> V1 % GATHER: load those elements of C, whose
% indices are in VO

vload b(V0) --> V2

vmult s*V1 --> V3

vadd V3+V2 --> V4

vstore V4 --> a(V0) % SCATTER
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2.2.5 Conditional Statements

As we said earlier, vector instructions cannot be interrupted. This means that
in order to vectorize conditional statements, special arrangements are needed.
The vector mask (VM) register is a register with 64 positions, each one
bit wide. It can be used to vectorize the following type of statements.

do i=1,n
if (a(i) > 0) x(i)=y(i)*a(i)
enddo

The following assembler code illustrates how the VM register is used.

vload a --> VO

set VM to 1 where VO>0 ¥ Otherwise 0

vlcad y --> Vi

vmul  VO*V1 --> V2 % Execute the multiplication for
% for all elements

vload x --> V3

Generate V4 from V2 where VM=1 and from V3 where VM=0

vstore V4 --> x

All instructions are vector operations. On some computers (but not on Cray’s)
arbitrary vector operations can be controlled by the VM register.
There are two problems with this construct:

e If only a few of the conditions are true, then many arithmetic operations
are wasted. It may be much faster to execute the loop using scalar
instructions. Note that the compiler cannot decide this in advance.

e It can not be used for codes of the type

do i=1,n
if (a(i) > 0) x(i)=y(i)/a(d)
enddo

since that would lead to division by zero.
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2.3 Memory Organization

We start this section with a quotation from one of the pioneers in the early
history of the digital computer.

In my opinion this problem of making a large memory available at rea-
sonably short notice is much more important than that of doing opera-
tions such as multiplication at high speed. (Alan Turing, 1947)

This statement is equally true today: to balance the speed of the floating
point functional units and the parallel features (multiple pipelines, multiple
processors), very large memories are needed, typically of the order 0.1 to 1
Gwords (1 Gwords is 10° words (64 bit)). Since the fast memory is very
expensive, compromises have to be made between size and speed.

Typically, the memory cycle time (the time it takes for one word to be
transferred from memory to a register) is larger than one cycle. For example,
on the Cray X-MP it is four cycles. It is obvious that with such a memory
speed, the vector load (and store) operations cannot deliver operands to (and
from) vector registers with a speed that matches that of the vector floating
operations (this is needed if memory accesses and floating point operations are
to be chained, as shown earlier).

In order to increase the performance of the memory, it is divided into
separate units, which can operate in parallel. Such memory organization is
called interleaved, see the next section.

As memory access patterns are important on high performance computers,
we need to specify here how matrices are stored in primary memory. In For-
tran, which is the most commonly used language for scientific computations,
matrices are stored in column major order. E.g., a 3 x 3 matrix A is stored

@11 — a1 — A3 — Q12 — A2 — A32 — 413 — G23 — 433
There are programming languages where matrices are stored row-wise, e.g., C

and Pascal. In the following, we assume the Fortran storage convention.

2.3.1 Interleaved Memory

The primary memory of many high performance computers is interleaved: it
consists of separate banks, which can operate independently of each other.
Reading or writing a word from a bank takes a certain number of clock cycles.
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The consecutive elements of a vector are stored in consecutive banks, see Figure
2.9

T T17
T2 T18
T3 Ti19

Z

T16 T32

Figure 2.9: The storage of a vector in interleaved memory with 16 banks.

As an example, on the Cray X-MP /416 the primary memory is interleaved
with 64 banks. ‘

Since the different banks can operate independently, it is possible to load
consecutive elements of a vector from memory to vector registers (or the other
way around), so that one word is delivered each clock cycle. On the other
hand, if one loads non-consecutive elements of the vector, it may happen that
when a word is requested from a memory bank, the bank has not finished
processing the previous request. This is called a memory bank conflict.
There is special hardware to resolve bank conflicts: the second request must
wait until the first is finished.

Memory bank conflicts may occur whenever non-unit stride references to a
vector are made. Note that since matrices are stored in column major order,
referencing a matrix row-wise is equivalent to referencing a vector with non-
unit stride.

With interleaved memory also vload (vector load) and vstore (vector
store) operations can be chained. The execution of the assembler code

vload b(1), 64, 1 --> V1 % Vector load to V1
vload c(1), 64, 1 --> V2
vadd V1 + V2 --> V3 % Vector addition

vstore a(1), 64, 1 <-- V3
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0 414-64 t

Figure 2.10: Timing diagram for four chained vector operations.

can then be illustrated by the timing diagram in Figure 2.10.

If memory bank conflicts occur during the execution of a vector load or store
operation, then the floating point operations are delayed (but not interrupted).

In order to perform the above code as a chained vector operation there must
be two read channels and one write channel between the primary memory and
the vector registers, provided that the memory can deliver operands at high
enough speed.

A similar type of conflict occurs if, in a computer with multiple processors,
two different processors access the same bank, and again that conflict is re-
solved by special hardware. Note that interleaved memory with many banks
is particularly useful in computers, where several processors share the same
memory, since this reduces the risk of this type of memory conflict.

We finish this section with a diagram (Figure 2.11) showing the basic struc-
ture of a vector register architecture.

2.3.2 Memory Hierarchy

Another important concept in high performance computers is memory hier-
archy. Due to the cost of manufacturing very fast memory hardware, com-
puter designers often must compromise between memory speed and size. Many
modern high performance computers, therefore, have a memory hierarchy, see
Figure 2.12. (We remark that some computers have vector registers and no
cache memory, while others have cache and no vector registers. There are
computers that have both.)

Obviously, it is desirable to perform as many floating point operations
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primary
memory

vector | -

registers

[ scalar registers

Figure 2.11: Vector register architecture. Pipelined units are shaded.

as possible for every floating point variable that is transferred from primary
memory to the registers or cache memory.

2.4 Shared Memory Parallel Computers

Multiprocessor architectures with shared memory are tightly coupled systems
in which there is complete connectivity between processors and memory mod-
ules. A simplified block diagram is shown in Figure 2.13.

The primary memory may be centralized (only one memory module) or
partitioned into several modules. The common memory is accessed by all
processors. The interconnection network is a potential bottleneck for these
systems. Memory contention (memory access conflict) is important because
of the need of many processors to simultaneously access the same memory
locations. The interaction between processors and processes are controlled by
a common operating system.

The major limitation of the shared-memory system is the possibility of
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Smaller, faster Registers
Cache Memory

Primary Memory

Bigger, SlOWGZ/ \ Secondary memory

Figure 2.12: Memory hierarchy

PE1 PE2 LB N J PEn
Interconnection network
M1 M2 [ N ] Mm
Global memory

Figure 2.13: Shared memory systems

primary memory access conflicts and this tends to put an upper bound on
the number of processors that can be effectively incorporated in the system.
Examples of shared-memory systems include the Alliant, the Encore Sequent,
the Cray-1, Cray-2, Cray Y-MP, Fujitsu VP2600, NEC SX-3.

2.5 Distributed Memory Parallel Computers

Distributed memory parallel computers are efficient for problems that can be
partitioned into larger tasks that do not interact very frequently. A typical
distributed memory system consists of several computer modules and an in-
terconnection network, see Figure 2.14.

Each computer module has a processor, a memory, and an I/O interface.
Data communication is carried out through message passing. Each message
usually consists of a number of fixed-size packets. Inter processor communica-
tion follows a predetermined communication protocol.
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LN
Ml M Ma
Interconnection Network

Figure 2.14: Distributed memory system

2.5.1 Interconnection Networks

We present several interconnection topologies that are commonly used in mes-
sage passing system.
Linear and Ring Arrays In a linear array, p processors are connected along

a line and in a ring array, they are connected around a ring as shown in Figures
2.15 and 2.16.

Figure 2.16: A processor ring

Two-dimensional arrays A two-dimensional array consists of an array of
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P X p processors connected as shown in Figure 2.17. Often, the wrap around
connection is assumed in order to yield more homogeneous complexity results.

Figure 2.17: A two-dimensional array

Hypercubes Hypercubes are based on the binary n-cube topology and they
are called by several different names such as Cosmic cube, n-cube, binary n-
cube, etc. The first hypercube system was built at Caltech in the early 1980s
as an experimental parallel computer for scientific computations.

A hypercube multiprocessor consists of 2" processors, consecutively num-
bered with binary integers using a string of n bits. Each processor is connected
to every other processor whose binary number differs from its own by exactly
one bit. Hypercube interconnection networks for n = 1,2,3,4 are shown in
Figure 2.18 A hypercube of order 0 has one node, and the hypercube of order
n+1 is constructed by taking two hypercubes of order n and connecting their
respective nodes.

The hypercube interconnection network has several important properties
such as the fact that the number of connection wires increases only logarith-
mically as the number of processors increases. Furthermore, several other in-
terconnection networks such as linear and ring arrays, two-dimensional arrays,
and trees, can be embedded efficiently in the hypercube, which means that
the embedding can be done in a way so that that neighbors in the embedded
graph become neighbors in the host graph (the hypercube).

The path length for a message between any two nodes is exactly the number
of bits in which their tag bits differ. The maximum is n and numerous possible
paths connecting any two nodes exist.
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n=1 =2 =3

Figure 2.18: Hypercube interconnection

Fat Trees Consider a binary tree and locate. computation processors at the
leaves (squares in Figure 2.19). Place communication control processors at the
other nodes (filled circles).

" Real trees become thicker further from the leaves. Fat trees resemble real
trees in the sense that the bandwidth increases further from the leaves. One
common scheme is to double the communication capacity (bandwidth) for
every level as we ascend from the leaves to the root.

Assume that the wires are full duplex at the leaf level. This means that any
two neighboring leaves, e.g. PO and P1 in Figure 2.19, can send and receive
messages from each other at the same time. Since the bandwidth is doubled
on the next level, there is enough capacity to let PO and P2 communicate with
each other at the same time as P1 and P3 communicate. Similarly, it is easy to
see that the bandwidth is large enough for the situation when each processor
is communicating with one other processor.

The Connection Machine CM-5 has a network based on the fat tree.

2.6 SIMD and MIMD Parallel Computers

Processors in various parallel processing architectures operate either under the
centralized control or work independently. In SIMD (Single Instruction and
Multiple Data streams) architectures, there is a single control processor which
dispatches instructions to each processor. The same instruction is executed by
all processors. Processors in MIMD (Multiple Instruction and Multiple Data
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PO P1 P2 P3 P4

Figure 2.19: Binary fat tree. The processors are located at the leaves. The
circles represent communication control processors, and the arcs are the com-
munication channels.

streams) architectures do not have this kind of external control and they can
execute different programs asynchronously. Any synchronization results from
a possible need for exchanging data with other processors.

In MIMD computer, each processor has its own control unit and it is possi-
ble to use general purpose microprocessors in MIMD computers as processing
units. MIMD computers offer a much higher degree of flexibility than SIMD
computers since in SIMD computers, all the processors should execute same
instruction in the same clock cycle. This means that each condition should be
executed serially in a conditional statement. Many unstructured applications
are better suited to MIMD computer. SIMD computer offer free synchroniza-
tion after each instruction execution and it is better for parallel programs that
require frequent synchronization.

2.7 Performance Measurements

2.7.1 Speedup and Efficiency

In ideal situation, one expects to gain a factor of p in time when using p
processors to solve a given problem. If T and T), are the time for executing
the algorithm on one processor and p processors, respectively, then the speed-
up is
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Figure 2.20: Typical SIMD and MIMD architectures

Sp = Tl/Tp.

Often the parallel algorithms are not the best ones on one processor and
this can lead to the following alternative which compares the best possible
algorithm on one processor to the parallel algorithm on p processors

Sy =T,/ T,

where T, denotes the time required for the best serial algorithm that solves
the problem.
The efficiency is the speed-up divided by the number of processors,

E, = S,/por E2 = S2/p.

2.7.2 Amdahl’s Law

It is interesting to study the performance of a code on a vector or parallel com-
puter, where only a certain fraction can be vectorized or parallelized. Given a
program, does it pay to run it on a supercomputer (in the sense that it utilizes
the hardware efficiently)?

Assume that we have a vector processor and that operations in scalar mode
and in vector mode take ¢, and t, (in some unit), respectively. Then the peak
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performance of this computer is

Too =

E.
Further assume that the fraction f, of the total number of operations in

the code can be run in vector mode. Then the total time to execute the code
is

T = N[(1 - f)t, + fot.],

where N is the number of operations performed in the code. The average time
per operation is

ty = [(1 - fv)ts + fvtv]a

and the performance of the computer on this code is

1
(1 - fv)ts + fvtv.

In Figure 2.21 we plot r; as a function of f,. We have assumed that vector
operations are 10 times faster than scalar operations. It is seen that only for f,
(the fraction of the code that is vectorizable) close to 1 does the performance
get in the neighborhood of r.

Assume that we have a code, which is vectorizable to 80%. With the values
of the parameters in Figure 2.21, we then get a performance of only 36% of
peak performance. Thus, Amdahl’s law give a rather pessimistic picture of
the usefulness of supercomputers. However, it is a little misleading in many
situations. ’

When one is evaluating a new supercomputer, it is very likely one has in
mind running bigger problems than are possible on the presently available
computer. Also, often the fraction of the code that is vectorizable depends on
the problem size.

Assume that the number of operations for a certain program depends on
the problem size n in the following way:

Tf=

A(n) = an® + bn?,

where the first term represents the vectorizable part, and the second the non-
vectorizable. One can think of Gaussian elimination with partial pivoting,
where the transformations of the matrix elements require O(n®) operations
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" fraction of code vectorized

Figure 2.21: Amdahl’s law. We have used t, = 10t,, and scaled so that peak
performance ro, is equal to 10.

and can be vectorized well. The pivot search, on the other hand, takes O(n?)
operations and vectorizes badly.

For a certain value of n 80% of the code is vectorizable (i.e., an®/(an® +
bn?) = 0.8). This gives the following relation: an® = 4bn?.

If we consider a problem that is 10 times larger, then we get

A(10n) = 10%an® + 10%bn?,
and the fraction vectorizable code is

1 3 3
0%an _ 1000 ~ 0.976.
103an3 + 102b6n% 1000 + 25

With the same parameters as in Figure 2.21 we now get 82% of peak perfor-
mance.

On a parallel computer, let us assume that the fraction of serial part in an
algorithm is f;. If the total execution time on one processor is t;, the execution
time for the intrinsically sequential part is fi¢; and the rest is (1 — f1)t;. On
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p processors, the sequential part cannot be parallelized, so its execution time
will be the same and the parallel part can be parallelized by a factor of p,
which gives ’

tp = fits + (1 = fi)ta/p.

Thus, the speed up is bounded by
sp < 1/(fi+ (1 = f1)/p))

which means that for any algorithm and any number of processors,

sp S 1/f1

and this indicates that the efficiency will decrease asymptotically to 1/(pf;).

2.7.3 Scaled Speed-up

According to Amdahl’s law for a parallel computer, the only way to increase
efficiency is to reduce fi. Often, a way to reduce f; is to increase the problem
size. Note that the parallel overhead will have more effect when the problem
size is smaller. This observation lead to the definition of scaled speed-up.

In Amdahl’s law, by assuming that the fraction of the sequential part is
a constant, it assumes a given problem size which takes a certain fixed time
on a sequential machine. If we assume that what is fixed is the time on a p-
processor machine, ¢; is the time to execute a given program on a p-processor
machine, and f; is the fraction of the sequential part, then the time for the
same program run on a single processor would be

ti=fity +p(1 - f1);
and the speed up is
s, = (fity +p(1 = M)/t = i + (1 = )p.

In the scaled speed up, we assume that the time to solve the given problem on
a p-processor computer is fixed, which means that the problem size increases
as the number of processors increase.

We can further modify the above speed up and calculate the speed-up by
allowing the problem that is as large as can be fit in memory. Define
s¢ = w,Ty/T,

p
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where T; is the time for executing Q;, @Q; is the maximum size problem that
can be solved on an i-processor computer, and w, is the adjustment factor,
which accounts for the difference in the number of arithmetic operations due
to the difference in problem sizes. The number of operations for solving @,
is w, times the number of operations required to solve ;. The adjustment
by w, guarantees that we are comparing two executions that will perform the
same number of operations.

2.8 Important Issues in Parallel Computers

Identification of Parallelism The parallelism can be expressed either by
users or compilers. Automatic parallelization of sequential programs for mul-
tiprocessors has been only partially successful.

Partitioning After parallelism is identified, we need to partition the compu-
tational task into processes and identify the objects that they share.
Memory Allocation The creation of new processes requires allocation of
memory space. Memory allocation is influenced by the memory organization
and by the interconnection network.

Memory Access In shared-memory multiprocessors, this is particularly im-
portant since processors compete for same memory locations. A problem in
multiprocessors is that of maintaining memory consistency in systems where
different processors attempt to read and write from and to the same memory
locations.

Scheduling The main goal is to assign processes to processors so that com-
munication time and overhead are minimized.

Synchronization It is necessary to maintain the correct execution order by
imposing the satisfaction of data dependencies.
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Vectorization and Fortran

3.1 Introduction

FORTRAN, created in the late 1950s first, is one of the most widely used
programming languages for solving problems in science and engineering. A
new standard has recently been finalized and the version of FORTRAN 90 has
many new features. We will use FORTRAN as a model language in describing
the details of vectorization.

3.2 Storage of Matrices

In Fortran matrices are stored in column major order. E. g., a matrix A declared
as

real A(1:4,1:3)

is stored

37
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D

A(1,D) A(1,2) A(1,3)
A(2,1) - [A@2,2) A(2,3)
AGD) AG32) A33)
A(4,1) A(4,2) A(4,3)

NN,

If we reference the matrix column-wise,
do j=1,3
do i=1,4
a(i,jl=...
enddo
then we have stride 1. If we reference row-wise
do i=1,4
do j=1,3
a(i,j)=...
enddo

then we have stride 4.

Exercise: What is the stride if we reference diagonal-wise:
do i=1,3
a(i,i)=...
enddo
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3.3 Fortran 90

A new Fortran standard has been adopted and it is called Fortran 90 (the
previous one was Fortran 77). It has several constructs that are aimed at
making vectorization and parallelization easier. Here we describe some new
features, which are important for vector and parallel computers.

3.3.1 Vectors and Matrices

One of the most important new concepts in Fortran 90 is that arrays (vectors
and matrices) are data objects in themselves, and they can be referenced as
such, not just as a collection of subscripted scalars.

Let a, b and ¢ be declared

real a(l:m,1:n), b(1:m,1:n), c(1:m,1:n)
Arithmetic operations for matrices can be written

a=b*c
c=a-b

Matrix multiplication is element-wise.
All the intrinsic functions can be used for matrices. Let a be declared as
above. The code

b=sin(a)
gives as result a matrix b, the elements of which are

b(i,j)=sin(a(i,j))

3.3.2 Array Sections

Array sections can be referenced using a notation analogous to that in the
do-loop:

i:j:k

where i is the start index, j the final index and k is the stride. This can be
used to write
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x(1:20:2)=y(1:10)
which in Fortran 77 was written

do i=1,10
x((i-1)*2+1)=y(i)
enddo

There is one important difference here, however: using the array section
the order in which the operations to the elements are performed is
not prescribed.

There are variants:

i:j
which means that stride 1 is assumed. If the first variable is omitted:
tJ

then the lower limit in the declaration of the array is assumed. The variant

means that both the lower and upper limit in the declaration are assumed.
Thus, if a is declared real a(100), then the following references are equiva-
lent,

a(1:100:1), a(1:100), a(:100), a(1:), a(:), a

and they all refer to the whole vector.
Let the matrix x be declared x(1:100,1:50). Then the first of the follow-
ing references

x(1:50,1:10)
x(:,25:30:2)

is a reference to the upper left submatrix of dimensions 50 x 10, and the second
to the column vectors x(1:100,25), x(1:100,27) and x(1:100,29).

If a scalar is used in a assignment statement together with arrays, it is
considered as an array of appropriate dimensions. The assignment

a(:)=3.14
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gives each element of a the value 3.14. A further example is as follows:
/real a(100), b(-1:98), x(100,50,25), y(100,100,10,70), p,q
a=1.0
b(:10)=p+q
x(:,n,1)=a+b
x(m:n,1:10,1:20)=y(1,m:n,1:10,41:60)

Note that all arrays used in an assignment must have conforming dimensions.

The following rule is important in understanding the difference between
array sections used in assignments and do, and in understanding how array
sections are executed using vector instructions.

Rule: In the assignment
array section=expression

the whole expression in the right hand side is computed before the assignment
takes place (imagine that the operations are performed in vector registers).

Thus, the assignment
a(2:n)=a(1:n-1)+a(3:n+1)
is not equivalent to

do i=2,n
a(i)=a(i-1)+a(i+1)
enddo

but equivalent to

do i=2,n
temp(i)=a(i-1)+a(i+1)
enddo
do i=2,n
a(i)=temp(i)
enddo

(in the sense that they give the same results).
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3.3.3 Vector Mask Operations

The construct
where (a(1:n) > b(1:n)) a(l:n)=x
gives the same result as

do i=1,n
if (a(i) .gt. b(1)) a(i)=x
enddo

Similarly

where (a(1:n) > b(1:n))
a(l:n)=x
elsewhere
a(1:n)=b(1:n)
endwhere

gives the same result as

do i=1,n
if (a(i) .gt. b(i)) then
a(i)=x
else
a(i)=b(i)
endif
enddo

These code sections can be implemented on vector machines using vector mask
operations.

3.4 Vectorization of Loops

In general, Fortran code where the assignments can be expressed with array
sections can be executed using vector instructions. However, not all algorithms
are or can be expressed conveniently using array sections. The task of a
vectorizing compiler is to analyze do loops, and generate vector instructions
where this is possible.
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3.4.1 Vector Reference

Earlier we saw that a memory reference for a vector, i.e. a vector load or store,
has a start address, a length (the number of words that need to be transferred),
and a constant stride. In principle we have

vload x(1), VL, stride --> Vreg

VL elements from the vector x are loaded to the vector register Vreg, starting
with element x(1). The stride is stride.

Definitions: An integer variable, which has a constant increment in a loop,
is called a CII (Constant Increment Integer).

A vector reference is a reference inside a loop where all indices are of
the form '

[finvariant expression ] CII [t+invariant expression]

It is easy to see that with this definition all vector references have a start
address, a vector length, and a constant stride.
In the example

real w(100), x(100,50), y(50,1500,2), z(1000)
do i=1,n

j=3*1i+3-n

k=1%j-5

x(i,n)=y(m,5*j,1)+z(k-4) /w(i)
enddo

all the references to arrays are vector references:

array s length stride

w w(1) n 1

X x(1,n) n 1

y y(m,30 =5%n,l) n 750
z z(6—n)*x1—9) n 3xl

Loops where all array references are vector references can be executed using
vector instructions.
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3.4.2 Indirect Addressing

Indirect addressing means that a vector is referenced via a vector of indices.
In Fortran 77 we write

do i=1,64 .
a(ia(i))=b(ib(i))+c(ic(i))

enddo

where ia, ib, and ic are integer arrays holding the indices of the elements
in the arrays that we use in the assignment statement. The corresponding
Fortran 90 code is

a(ia)=b(ib)+c(ic)

Loading data this way (b and c) is called gather, and storing (a) is called
scatter, cf. Section 2.2.4. Since the stride is not constant, these operations
are not vector references. In spite of this, they can be vectorized using special
machine instructions (e.g. on the Cray Y-MP).

Indirect addressing occurs in solving sparse systems of linear equations (a
system is called sparse if most of the matrix elements are zero), and in the
FFT algorithm for computing the discrete Fourier transform.

3.4.3 Scalar Temporary Variables

A scalar variable may inhibit vectorization in a loop where all the array refer-
ences are vector references. Consider, e.g., the code

do i=1,n
sca=a(i)*b(i)+sqrt (x(i)**2+y(i)**2)
r(i)=scax*xy(i)
z(i)=(d(i)+e(i))/sca

enddo

If at each iteration of the loop, the value of sca is to be stored in a scalar
register, then vectorization is not possible. However, by creating a temporary
vector, a pseudo vector, the compiler can generate vector instructions:

Vi=a(1:n)*b(1:n)+sqrt(x(1:n)**2+y(1:n)**2)
r(1:n)=Vixy(1:n)

z(1:n)=(d(1:n)+e(1:n)) /vl

sca=[last element of V1]
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3.4.4 Recursion

Since the semantics of Fortran prescribe sequential execution, data dependence
between two Fortran statements of the type

s=t+u
X=s*y

implies that the statements must be executed in this order. When a loop
is executed, then it assumed that the iterations are performed in the order
specified in the do statement. Therefore, a loop can be vectorized if no data
are used that have been modified in a previous iteration.

It is obvious that the iterations in the code

do i=1,n
a(i)=b(i)+1.0
enddo

are completely independent and can be vectorized (and also parallelized). Sim-
ilarly, the following loop can be vectorized

do i=1,n
a(i)=a(i+1)+1.0
enddo

since the elements on the right hand side in the assignment are unmodified
during previous iterations of the loop. However, in the loop

do i=1,n
a(i)=a(i-1)+1.0
enddo

elements that have previously been modified are on the right hand side. This
is called recursion and cannot be vectorized.

An example of a very important application, where recursion occurs, is the
solution of a bidiagonal linear system of equations

ay I dl
by a, T2 da
bg as I3 = d3

bn an -Tn dn

This can be solved by the code
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x(1)=d(1)/a(1)
do i=2,n
x(1)=(d(1)-b(1)*x(i-1))/a(di)

enddo

Such a recursion can only be executed in scalar mode.
In order for the compiler to generate vector instructions, it must be clear
at compile time that the code can be vectorized. Consider

do i=1,n
a(i)=c(i)+b(ib(i))
b(i)=x(i)*y(i)
d(i)=e(i)/a(i+k)
enddo

Here it is in general impossible for the compiler to determine if k will be nega-
tive or positive (unless k is explicitly assigned a constant value in the program,
and this is the only assignment where it occurs). Similarly, the compiler will
have difficulties with the indirect addressing in the first statement. It is pos-
sible that for some previous i, b(ib(i)) has been modified (e.g., if ib(2)=1).

In such cases the compiler cannot decide if recursion will take place or
not. But if the programmer knows that no recursion will occur, then the pro-
grammer should give the compiler directives to vectorize (and he/she becomes
responsible for errors, not the compiler).

Exercises:
1. Can the code
do i=n,1,-1

a(i)=a(i-1)+1.0
enddo

be vectorized?
2. Let the vector of indices be ia=(1,2,1). Can the code

do i=1,3
a(ia(i))=a(ia(i))+b(i)

enddo
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be vectorized?

3. Consider the matrix equation
BX =D,

where B is bidiagonal and all the matrices are n x n (for simplicity).
This can be regarded as a sequence of bidiagonal systems

B(Bj=dj, j=1,2,...,n,

where z; and d; are the column vectors X and D, respectively. The
matrix equation can be solved by changing the algorithm in the text
above so that each x(i) is replaced by x(i,j) and the corresponding
for d, and by adding a j loop outside the i loop. Do this.

Then rewrite the code by exchanging the order of the loops. Does it
vectorize now? If so, why?

3.4.5 Reduction of a Vector to a Scalar

A common difficulty in vectorization is reduction operations where a vector is
reduced to a scalar, e.g. summation

sum=0.0

do i=1,n
sum=sum+x (i)

enddo

or matrix multiplication

do j=1,n
do i=1,n
a(i,j)=0.0
do k=1,n
a(i,j)=a(i,j)+b(i,k)*c(k,j)
enddo
enddo

enddo
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If n is very large, then the compiler can optimize this operation so that most
of the operations are vector instructions.

Example: Consider the summation Y%, z(z), where n = 1000 x 64. the
computation can be vectorized :

0 --> Vo
do i=1,1000,2
vlcad x((i-1)*64+1:i%64) --> Vi
vadd VO + V1 -=> V2
vload x(i*64+1:(i+1)*64) --> V3
vadd V2 + V3 --> VO
enddo
Add the elements of VO using a special operation

Exercise: Why are two vadd operations performed in the loop?

When n is less than 64, then reduction operations cannot be vectorized
in the same way as ordinary vector operations (that would presuppose that
arithmetic operations could be performed with operands in the same vector
register). But since this type of operations is so common, many vector com-
puters have special machine instructions for performing them, so that they
execute faster than scalar operations, but not quite as fast as ordinary vector
instructions.

Note, however, that if the scalar variable is used in more than one statement
of the loop, then this can inhibit the use of such special instructions.

sum=0.0

do i=1,n
sum=sum+x (i) *y (i)
z(i)=sum*t (i)

enddo

Here the components of the vector z are functions of the partial sums, and
therefore all these must be made available.
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3.4.6 Rounding Errors

The result of a computation executed by vector operations may not be exactly
the same as when the computation is performed in scalar mode, since the
individual arithmetic operations may be performed in different order.

Assume that we have a computer with 15 decimal digits of accuracy in
floating point representation. The code

a(2:10000)=1.0E-16

a(1)=1.0

sum=0.0

do i=1,10000
sum=sum+a(i)

enddo

will give the result sum=1, if executed in scalar mode. If performed using vector
instructions (using e.g. the code from the beginning of the preceding section)
it is likely that the result is different. By summing the elements in this order,
enough small elements will be added so that some partial sums are greater
than 10715, and thus will give a noticeable contribution when added to 1.

3.4.7 Vectorization Inhibitors

a loop cannot be vectorized if it has
1. recursion
2. a subroutine call

3. 1/0 operations

-

assigned goto statements (1)

o

certain nested if blocks

>

goto statements that lead out of the loop
7. goto into the loop (1)

(1) denotes statements/constructs that no responsible programmer would use
anyway. )
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Chapter 4

Numerical Algorithms on
Vector Computers

4.1 Matrix Multiplications

4.1.1 Matrix—vector Product

To illustrate how linear algebra computations should be organized to execute
efficiently on vector computers, we use the example of matrix—vector product
y = Az, where A has dimension m x n. The components of y are given by

n
Y = Za,-j:cj, 1= 1,2,...,m.
j=1

The algorithm

{* ij variant *}
do i=1,m
- y(i)=0
do j=1,n :
y(1)=y()+a(i,j)*x(j)
enddo
enddo

a1l
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performs this computation. Symbolically we can write:

T
|
||

!
This figure should be interpreted as follows: each element of the right hand

side vector is equal to the inner product of z and one row of the matrix A.
This algorithm has a couple of disadvantages:

I

TTTT

X X X X
1Ll

1. The elements of A are referenced row-wise, which means that there is a
risk of memory bank conflicts.

2. Even though inner products can be vectorized (using special instructions
and hardware), they are usually slower than “real” vector operations.

~ We can exchange the order of the loops by writing the matrix as a collection
of column vectors

A=(aiaz - ay,), a;= )

we can write the multiplication in the form

T
T2 n
y=(a1az - an)| . | =D ajz;
=1
Tn

This is done by the code

{* ji-variant *}
do i=1,m

y(1)=0
enddo

do j=1,n
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do i=1,m
y(D)=y(D)+a(i, ) *x(j)
enddo
enddo

The inner loop is a Saxpy operation: a vector plus a scalar times a vector
(S denotes single precision). The code can be written using vector assignments:

{* ji-variant *}
y(1:m)=0

do j=1,n
y(1:m)=y(1:m)+a(l:m,j)*x(j)
enddo

Symbolically:
T TT 17
I T I
I 1
l Lol X

Here we have vector operations, which can be chained and executed very efhi-
ciently.

The semantics of Fortran prescribe that at each iteration of the loop, the
vector y is converted to the floating point format in which it has been declared.
Therefore, if, as is often the case, the vector register is wider than the standard
word length, the conversion must take place, and this is usually done by storing
y in the primary memory. Since we are only interested in the final value of v,
there are n — 1 unnecessary vstore operations.

Instead we would prefer to accumulate y in a vector register. This variant is
sometimes called Gaxpy (Generalized Saxpy). (In the code below we assume
that a scalar can be stored in the multiplication unit and used in a vector
operation.)

X X X

{* Gaxpy-variant *}

0 -->Vo

do j=1,n,2
vload a(1l:m,j) --> Vi
load x(j) to multiplication unit
Vixx(j) --> V2
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V2+V0 --> V3
vlcad a(l:m,j+1) --> V4
load x(j+1) to multiplication unit
V4xx(j+1) --> V5 °
V5+4V3 --> VO
enddo
vstore VO --> y(1:m)

Exercises
‘1. Which of the above variants is more efficient when m << n?

2. How should the matrix—vector multiplication be organized if m is much
larger than the length of the vector registers?

Compilers will usually recognize when a chaining operation can be done.
Unfortunately, compilers do not always recognize when intermediate results
could stay in vector registers nor when the overlapping of loads and arithmetic
operation can be done. To simulate Gaxpy, loop unrolling can be done. For
simplicity, assume that n is a multiple of 4. The ji-variant code can then be
written

{* ji-variant, unrolled loop *}
y(1:m)=0

do j=1,n,4
y(1:m)=y(1:m)+a(l:m,j)*x(j)+a(l:m,j+1)*x(j+1)
+a(1:m,j+2)*x(j+2)+a(1:m,j+3)*x(j+3)
enddo

Here the compiler can keep the vector y in vector registers while four chained
vector multiplications and additions are executed, and it is only necessary to
store it in primary memory when j changes.
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4.1.2 Matrix Multiplication

Consider the problem of computing the matrix product
A = BC,

where, for simplicity, we assume that all matrices are square with order n.
A common matrix multiplication algorithm can be written as

{* Sdot variant *}
do i=1,n
do j=1,n
a(i,j)=0
do k=1,n
a(i,j)=a(i,j)+b(i,k)*c(k,j)
enddo
enddo
enddo

In the same manner as we did with matrix-vector multiplication, we can now
change the order of the loops in 3! = 6 different ways. The above variant is
based on scalar products (Sdot).

Disregarding the zero initialization of A, we can write the generic matrix
multiplication algorithm

{* Generic matrix multiplication *}
do -----

a(i,j)=a(i,j)+b(i,k)*c(k,j)
enddo
enddo
enddo

If we restrict ourselves to column oriented variants without scalar products,
two variants are left (we denote them by the order of the indices): kji and
jki (note that by making i the last index, we have column oriented vector
operations in the innermost loop).
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We can illustrate the computation of the two innermost loops symbolically:

il |
kit T | x X X %

Ll !

The figure should be interpreted: “each column of A is updated by adding a
multiple of a column from B”.

We see that the operation is Saxpy, and that each column of A must be
fetched from primary memory, updated and then stored back.

The two innermost loops of the jki variant can be illustrated:

| P
Jki: | =11
l A A &

This should be interpreted: “a column from A is computed by summing mul-
tiples of the columns of B”.

This variant can be implemented using Saxpy operations, but we see that
since the computation of each column of A is finished before it is stored back,
we have a Gaxpy oriented algorithm. Furthermore, since the columns of B
need only be loaded from primary memory, and not stored back we have only
half as much memory traffic as in the kji variant.

The memory traffic in the three variants described above, Sdot (ijk), kji
and jki, is summarized in Table 4.1.2 (only the highest order term is given).

X X X X

Sdot [ k31 | jki
nd | 2n3 | nd

Table 4.1: Memory traffic in matrix multiplication.

4.2 BLAS: Basic Linear Algebra Subprograms

BLAS consists of a number of subroutines for basic linear algebra computa-
tions. The first level of BLAS were developed for LINPACK, which is a library

of subroutines for the solution of linear systems of equations.
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One of the main reason for developing BLAS was to make it easier for the
designer of linear algebra programs to write well-structured and efficient code
using a set of modules for the most common computations.

Another reason was that the BLAS routines can be implemented (often in
assembler language) by the different computer manufacturers so that they uti-
lize the hardware as efficient as possible. Thus all machine-dependent details
can be hidden inside the BLAS routines, and the programs based on BLAS will
be completely portable, i.e., they can be executed on all different computers
without changes. .

There are BLAS routines in single precision (with prefix S, e.g. Saxpy),
double precision (Daxpy), complex single precision (Caxpy), and complex dou-
ble precision (Zaxpy).

Level 1 BLAS

The first level of BLAS routines are vector-scalar operations and vector-vector
operations (e.g. Saxpy and Sscal; the latter scales a vector by a scalar).
As an example we take Snrm2, whose declaration begins

real function snrm2(n,sx,incx)

where n is the number of elements of the vector sx, the norm of which is to
be computed, and incx is the increment (stride) in the vector. The norm of a
row of a matrix can be computed as follows:

real a(100,50)

len=snrm2(50,a(3,1),100) {* the norm of row 3 *}

We list the level 1 BLAS in the following where & and y are vectors:

call _COPY(n,x,incx,y,incy) overwrite yv with x
s,D,C,Z

call _SWAP(n,x,incx,y,incy) interchange contents of x and y
s,D,C,Z

call _SCAL(n,a,x,incx) x <- ax

s,D,C,Z, CS,ZD (complex vector, real scalar)
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call _AXPY(n,a,x,incx,y,incy) y <-ax +y
s,D,C,Z

w = _DOT_(n,x,incx,y,incy) <x, y>
s,D,C,Z
C(conjugate) ,U(unconjugate)

sw = _NRM2(n,x,incx) 2 norm of x
s,D,sSC,DZ
sw = _ASUM(n,x,incx) 1 norm of x
s,D,SC,DZ
imax = _AMAX(n,x,incx) index of the component of maximum
1s,1D,IC,IZ absolute value
call _ROTG(a,b,c,s) returns ¢ and s such that
S,D [c s;-s c]*[a;b] = [r;0]

call _ROT(n,s,incx,y,incy,c,s) [x y] <= [x yl*[c -s;s cl
s,D,CS,ZD

Level 2 BLAS

When computers with vector instructions became available, it was soon evident
that Level 1 BLAS did not utilize the hardware efficiently (cf. the discussion
of Saxpy and Gaxpy above ). This lead to the definition of a set of routines
on a higher level, and thus the Level 2 BLAS routines perform matrix-vector
operations.

Some examples of Level 2 BLAS operations are

o matrix-vector multiplication, y = By + aAz, where a and J are scalars,
z and y are vectors and A is a matrix. The subroutine is called Sgemv in
the case when the matrix is general (i.e., non-symmetric). The discussion
above about Saxpy and Gaxpy operations shows that much can be gained
by implementing matrix-vector multiplication in assembler language.
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e outer product, A = A + azxy?, where z and y are column vectors. The
subroutine is called Sger (“r” denotes “rank 1 update”).

e solution of a system ¢ = Tz, where the matrix T is triangular. The
subroutine is called Strsv (“tr” for triangular and “sv” for solve).

Level 3 BLAS

In analogy to Level 1 BLAS for vector—vector operations and Level 2 BLAS for
matrix-vector operations, there is Level 3 BLAS for matrix-matrix operations.
Typical examples are

e Matrix product A = A+ aBC'. The subroutine is called Sgemm (“ge”
for general matrix, “mm” for matrix multiplication).

e Solution of triangular systems with several right hand sides B = T-!B.
The subroutine is Strsm (“sm” for the solution of system with multiple
right hand sides).

BLAS and memory references

One of the most important conclusions of this section is that in order to write
efficient programs on high performance computers, it is necessary to take into
account the traffic of operands from primary memory to functional units and
back. The following rule should be observed.

Rule: For each memory reference, perform as many floating point operations
as possible. '

We will now consider the different levels of BLAS from the point of this
rule. In each call of Saxpy, two vectors are loaded and one is stored. Thus 3n
memory references are made (in the sequel we assume that the vectors have n
elements and the matrices have order n). The routine performs n multiplica-
tions and n additions, altogether 2n flops. The Level 2 BLAS routine Sgemv
for matrix-vector multiplication load a whole matrix (n? memory references;
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we disregard the vectors here). The number of flops is 2n? approximately. Fi-
nally, the Level 3 BLAS routine for matrix multiplication, Sgemm, loads three
matrices and stores one, altogether 4n? memory references. Here we have 2n®
flops.

We summarize in Table 4.2, where we also give Megaflop rates on three

high performance computers. The data are taken from [6].

BLAS [ routine [ ref. [ flops [ flops/ref | Cray-2 | IBM 3090VF | Alliant FX/8
level peak 488 peak 108 peak 88

1 Saxpy | 3n | 2n 2/3 121 26 14

2 Sgemv | n? | 2n? 2 350 60 26

3 Sgemm | 4n? | 2n® n/2 437 80 43

Table 4.2: Memory traffic and floating point operations. Megaflop rates for
three computers. Unfortunately the source did not show the size of the prob-
lems.

It is very simple to parallelize Level 3 BLAS routines. Matrix multiplication
can be considered as a number of independent matrix—vector multiplications,
- which can be executed in parallel by different processors. Similarly, the solu-
tion of triangular systems with multiple right hand sides are independent and
can be distributed to different processors.

4.3 Linear Systems of Equations

4.3.1 Gaussian Elimination and LU Decomposition
Suppose we would like to solve a linear system of equations

Az = b,
where the matrix A has order n, and is assumed to be non-singular (see [9]).

For simplicity we will not consider pivoting in the algorithm for Gaussian
elimination. After k — 1 steps in the algorithm we have reduced the matrix to
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the form
(011 a12 ce Q1n bl\
a9g9 e Aoy b2
Ak Q41 --. Gk bi
ik Qiky1  --.  Gin b
\ Ank Apk41 -+ Qpp b }

In the next step of the elimination the elements below the main dlagonal in
column k will be annihilated. The result is

(au aio e A1n bl \
ago . Qdon bgn
ke Qkk41  --- Gkn Dk

. . . N

' / /
0 aiyk_*_l .o a,i,n bi
’ ’ ’

\ 0 appyr -+ ap, b ),

where the transformed elements are given by

/

a’ij = aij—aikakj/akk’ j=k+17"°7n7 Z=k+1, N
/ .
bi = b,- —a,-kbk/akk, = k+ 1,. .y,

Thus Gaussian elimination can be performed by the following program (for
simplicity we omit the transformations of the right hand side vector b):

do k=1,n-1
do j=k+1,n
do i=k+1,n
a(i,j)=a(i,j)-a(i,k)*a(k,j)/ak,k)
enddo
enddo
enddo
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As in the matrix multiplication, we can change the order of the loop and
describe Gaussian elimination by the following generic algorithm:

a(i,j)=a(i,j)-a(i,k)*a(k,j)/alk,k)
enddo
enddo
enddo

We can permute the loop variables i, j and k in 3! = 6 different ways. We
will discuss how the efficiency of the different alternatives depends on the
architecture.

We discuss three variants. First consider the kij variant (in the literature
it is often called the text book variant). Here the matrix is referenced as
follows in the two innermost loops: '

= )

kij:

TTTT
|
|
|

L

\ /

As in the case of matrix multiplication, the kji variant is a Saxpy oriented
algorithm:

kji:

—_—————
—_—————
e ——
—_——
—_———
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Another name for this variant is right-looking, since in each step the ma-
trix elements to the right of the column that is annihilated in the present
transformation are referenced (updated).

The Gaxpy variant, alternatively the jki variant, references the matrix in
the following way:

;
|
|
I

l

|
1 |
| |
| l
N
Lol /

The rightmost marked column is not modified until the present step of the
algorithm. After all previous transformations are applied to that column, the
elements below the main diagonal are zeroed, in principle. This need not be
done explicitly. The computation actually performed is to divide the elements
below the diagonal by the diagonal element, the pivot element. This variant
is often referred to as left-looking.

In the same way as matrix multiplication, the most efficient variant on
vector computers, e.g., Cray Y-MP, should be the one with as few memory
references as possible (all have the same number of flops). In Table 4.3.1 we
summarize the number of memory references for the three variants considered.

K T
2n°/3 | 2n3/3 | n3/3

Table 4.3: Memory references in three variants of Gaussian elimination.

4.3.2 Block Algorithms for LU Decomposition

In Section 4.2 we indicated that one can maximize the number of flops per
memory reference by organizing the computations as block algorithms. For
Gaussian elimination (LU decomposition) this can be done in the following
way.
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Consider the matrix A and partition it in blocks. For simplicity, we consider
the case of two blocks.
(An A1z )
An Az

Assume that Aj; is square and non-singular. A block LU decomposition can
be computed from the identity

(Au A12)=(L11 0) (Un Un)
A Aa Ly I 0 S5/°

where the blocks in L and U have the same dimension as the corresponding
blocks in A, and I is the identity matrix. Then multiplying the blocks

(Au An):(LuUn L1Us2 )
Ay Ap LaUy  Sae+ LaUs2 /)’

from which we have

1. L;1;Uy; = Ain. We can compute Ly; and Uy by the usual Gaussian
elimination algorithm applied to Ay

2. Ly ,Uyz = Aqz. Given Ly; from step 1 we can compute Usz by solving a
number of lower triangular systems.

3. LyyUy; = Agr. Given Uy from step 1 we can compute Lg; by solving a
number of upper triangular systems.

4. Sop = Agy — LyyUyz. The matrix Sz can be stored in the same place
as A,p. This step can be organized as updating the (2,2) block: Ajz :=
Az — LUna.

Obviously we can now continue the procedure with the block Az, and we
can formulate an algorithm for block LU decomposition. For simplicity,
assume that the matrix dimension n satisfies n = t * nb, for some integers ¢
and nb.

* Right-looking block LU decomposition
* Pivoting is omitted

do i=1,t
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s=(i-1)*nb+1 *Start position of block to decompose
e=i*nb *End position of block to decompose
u=e+1 *Start posit‘ion for update

Lyes:eUsie,s:e = Asiesie *Un-blocked LU

Us:eun = L;é’szeAs;e,um *BLAS-3 routine Strsm

Lynse = Auns:eUgl,.  *BLAS-3 routine Strsm

Aunun = Aunuin — Lun,sieUsieyun *BLAS-3 routine Sgemm

enddo

The memory references are illustrated in Figure 4.1.

Figure 4.1: Right-looking block LU decomposition. The darker shade indicates
the elements that are computed in the present block transformation and the
lighter shade indicates elements that are updated.

A left-looking variant can be derived as follows. Partition the matrices A,
L and U:

An Az Ass L Un Ui U
A Az Ay | =|Lau L U U |, (4.1)
Asi Az Ass L3y L3y L33 Us3

and assume that we have performed the first block step and Uy, L1y, Ly and
L3, are known, and we want to compute Ly, Las, Ura and Us,. By identifying
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the second column block in A with the second column block of the product in

(4.1) we get

Az = LU,
Ay = LoUip + LyUss,
Az = Ls1Usp + L3aUss.

From the first equation, we compute Uj, by solving a triangular system

Uiy = Ll‘llAn.
Then we update the (2,2) and (3,2) blocks in A:
()= () ()
As2 As2 L3
Now we can factor the updated diagonal block,

L22U22 = A22v

using an un-blocked code, and compute L3, := AUt
The algorithm is

* Left-looking block LU decomposition. Pivoting is omitted *

do i=1,t

s=(i-1)*nb+1 * Start position of block to decompose

* End position of block to decompose

e=i*nb
if i>1
Uris—1,5: 1= Li_;i_l,l;s_l Atiso1 sie * STRSM
Aginysie = Asinysie — Lsm,sieUnis—1,5:¢ * SGEMM
* BLAS-2

Ls:n,s:eUs:e,s:e = As:n,s:e

enddo
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Figure 4.2: Left-looking block LU factorization. Lighter shade indicates el-
ements that are used and darker shade indicates elements computed in the
present stage.

The memory reference pattern is illustrated in Figure 4.2.

The performance of two variants of block LU decomposition is illustrated
in Table 4.3.2 (data from [2]).

Note that the main part of the work in block LU decomposition is done in
BLAS-3 routines, depending on block size. The variants differ in how much
of the work is done by which subroutines. A subroutine may execute more
efficient or less efficient depending on a particular computer. It is therefore
possible to optimize the algorithm for a specific architecture by choosing block
size and variant of the algorithm.

4.3.3 LAPACK

LAPACK [1] is a library of subroutines for linear systems of equations, linear
least squares problems, and eigenvalue problems. It is designed to replace both
the LINPACK library (linear systems of equations and least squares) and the
EISPACK library (eigenvalue problems). LAPACK has been designed to give
high efficiency on vector processors, high performance workstations and shared
memory parallel computers.

The subroutines are written in Fortran 77, and as much work as possible is
performed by calls to BLAS routines, in particular block algorithms and BLAS-
3 routines are used. This way the LAPACK programs are portable, and at the
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[¢]

Variant BLAS % operations | % time | Mflops (average)

Left-looking | unblocked LU 10 20 146
Sgemm 49 32 438
Strsm 41 45 268

Right-looking | unblocked LU 10 19 151
Sgemm 82 56 414
Strsm 8 23 105 -

Table 4.4: Operations and times for block LU variants for n = 500, nb = 64
on Cray 2-S, 1 processor.

same time they perform well on most computers, in particular if the BLAS
routines have been optimized for each computer. On supercomputers from
Cray Research, the BLAS 3 routines are implemented with vector instructions
and parallelization (if there are any idle processors at the beginning of the call
to a BLAS routines then they are used for parallel execution of the code). In
addition, the BLAS 3 routines are highly optimized. Therefore, the LAPACK
routines parallelize automatically. '

The linear equations part of the library contains routines for the solution
of general linear systems, as well as banded, symmetric, positive definite, and
indefinite systems. There are single and double precision routines for real and
complex arithmetic.

The library contains routines for the computation of several matrix decom-
positions, e.g., LU, QR and SVD. Also a number of eigenvalue decomposition
routines for symmetric and nonsymmetric matrices are included. Much effort
has been made for providing comprehensive error bounds, both normwise and
componentwise.

LAPACK was developed by an international group of researchers and it is
available at no charge by electronic mail through netlib, at one of the e-mail
addresses

netlibQornl.gov
netlib@research.att.com

To obtain an index of the library send mail to one of the above addresses with
the message
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send index from lapack.

69
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Chapter 5

Numerical Algorithms on
Distributed-memory
Computers

5.1 Load-Balancing for Matrix Computations

Load balancing is important in achieving high efficiency on parallel computers.
The initial mapping of the data should be carefully designed by analyzing the
load balancing of a given algorithm before execution, and taking corrective
measures. A more difficult case arises when the behavior of the algorithm is not
predictable before execution because of the dynamic nature of the algorithm.
For example, in the block Jacobi method for the eigenvalue decomposition, it
is often the case that some blocks have reached numerical convergence while
others are still going through iterations. After a number of iterations, the
balance in work-load can become very poor and only dynamic load balancing
will remedy the situation. Another example where more extreme case can be
observed is the finite element codes that rely on dynamic grid refinement.

5.1.1 Mapping Matrices to Processors

Before a parallel processor can start a computation, the matrix has to be
partitioned so that parts of it can be assigned to different processors. The
way the data is distributed among the processors has enormous impact on the
performance of a parallel system and it is important to analyze for the most

71
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PEL PE2 PE3 PE4

1
5
PEl
9
13
2
6
10 PE2
14
1 23 4|5 6 7 8|9 1011 12/13 14 15 16 3
7 PE3
1
15
4
8
PB4
12
16

Column-wise blocked striping Row-wise schuffled striping

Figure 5.1: Striped mapping
efficient data mapping for a particular algorithm.

Striped Mapping

In a striped partitioning, a matrix is divided into groups of rows or columns
and each group is assigned to a processor. The partitioning is blocked if each
processor has contiguous rows or columns. If rows or columns are distributed
among the processors so that processor ¢ contains columns z,i+4p, :+2p- - -, then
it is called cyclic mapping (alternatively wrap-around, interleaved, shuffled,
etc. We have chosen to use the terminology of High Performance Fortran
(HPF, [12])). The matrix can also be partitioned using a method which is a
combination of these two mappings.

The left mapping in Figure 5.1 is achieved in HPF by the following compiler
“directive.

- 'HPF$ Distribute a(*,block)

The second dimension of a (i.e., the rows) is divided up into blocks, which are
distributed to the 4 processors. The * indicates that the matrix will not be
distributed along its first dimension (columns).

The cyclic mapping on the right in Figure 5.1 is specified in the following
directive
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11 12 13 14 15 16 17 18
2122 234 252 27 28
31 32 3334 35 36 37 38
41 42 43 44 45 46 47 48
51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68
7m 72 73 74 75 76 7 78
81 82 83 84 85 86 87 88

Figure 5.2: Blocked checkerboard mapping. Each square represents a proces-
sor.

'HPF$ Distribute a(cyclic,*)

The rows are distributed cyclically over the 4 processors.

Checkerboard Mapping

In Checkerboard mapping, the matrix is partitioned into square or rectangular
submatrices and distributed among processors, see Figure 5.2. As in striping,
checkerboard mapping can be blocked or cyclic (shuffled). This mapping fits
naturally onto a two dimensional array of processors. The finest grain in this
mapping is to assign one matrix element to one processor, which means that
it can potentially exploit more concurrency than striping.

This distribution is specified as follows

'HPF$ Distribute a(block,block)

5.2 Message-Passing Systems

Message passing parallel computer systems are usually of MIMD type. Com-
munication of data is done by sending messages from one processor to another
(or to several), using the interconnection network. A message is sent or re-
ceived by making a call to a special communication routine, send or receive.
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5.2.1 Matrix Multiplications

We describe briefly parallel versions, in a message passing context, of the
SAXPY and SDOT (see the preceding chapter) variants of matrix-vector mul-
tiplication.
First, we consider the matrix-vector multiplication y = Az where A is
m x n. We can write .
Y= a;i,
=1

where a; denotes the ’th column of A. If, for simplicity, we assume that the
number of processors p is the same as n and that a;, and 7’th component of z,
z;, are assigned to processor 7, then all the products z;a; can be computed in
parallel, cf. Figure 5.3.

xlal x2a2 ° ® L

Xn an

PE1 PE2 ' PEn

Figure 5.3: Parallel matrix-vector multiplication algorithm by linear combina-
tion

To compute y we need to add up all the vectors and this is done by a fan-
in algorithm, which requires transfer of data. Synchronization is needed to
ensure that the necessary multiplications are complete before addition begins
and this can be performed via communication. For example, when P and
P, are done with multiplication, one of them begins addition with the data
it receives from the other but it will wait until the data are received and this
wait achieves the necessary synchronization.

Assume that p = n = 2%, and that the processors are numbered 1,2,...,p.
Each processor is further assumed to have a local variable, myid, which is its
id number. In the code below we use integer division as in Fortran, where,

e.g., 1/2=0. Thus
{ 1 —1 if 7 is odd,

7 if 7 is even.

In the code we use the communication primitives send (vector ,proc-number)
and receive(vector), where the latter means that a message from any other
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processor is received. The whole computation is done if each processor executes
the following code.

%

% Parallel Matrix-vector multiplication.

%

% Each processor has local variables ai (vector) and xi (scalar)
A with its column from the matrix A, and its component of the

% vector x, respectively.

% It is assumed that the number of processors is equal to 2%*d
%

y=xi*ai(1:m)

if (myid/2)*2+1 = myid then

send(y,myid+1)  Even processors will continue
else
do k=1,d % Fan-in algorithm
twok=2*%xk
if (myid/twok)*twok = myid then
receive(y1l)
y=y+yl

twok1=2%*(k+1)
if (myid/twok1)*twokl not= myid then
send (y,myid+twok)
endif
endif
enddo
endif

Exercise: Which processor holds the final result in the above algorithm?

It is easy to generalize the above algorithm to the case when each processor
holds a block of columns from the matrix A.

The SDOT (inner product) variant of matrix vector multiplication is de-
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rived from the expression

=T =T

a% a%x
A= ay | &z
y=Ar=1| . | T= . )

Eﬁ Eiw

where the ith row of A is denoted as @’ . For simplicity we assume that p = m
and that processor 7 has @’ and the whole vector . Then each processor can
compute its inner product @z, and there is perfect parallelism.

Matrix-vector multiplication often appears as an intermediate step of other
larger computation and which algorithm to use will depend on the storage
of A and = at the time when the multiplication is required and also what
computation follows after.

For matrix-matrix multiplications, other than the algorithms that can be
obtained easily by generalizing the matrix-vector product algorithms, there
are also algorithms based on the checkerboard partitioning. Assume that we
want to compute C = AB and the matrices are partitioned commensurately
as

An - Arr By -+ Bu
C =AB = . e . . e . =2AikBkj-
Asl e Asr Brl e B‘rt
This leads to a variety of algorithms. For example, if p = s * ¢, the number
of blocks in C, then each block can be computed in parallel after proper

distribution of matrix elements. If s = ¢ = 1, then it gives block inner product
algorithm and when r = 1, we have block outer product algorithm.

5.2.2 Gaussian Elimination

To further illustrate the programming of a distributed memory parallel com-
puter with message-passing, we consider Gaussian elimination for solving a
linear system of equations

Az = b,

where A is an n X n matrix, and n is large. We will study the implementation
detail of a specific algorithm in this section. A variety of parallel algorithms
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Figure 5.4: Parallel block multiplication

for Gaussian elimination can be developed in a way that is analogous to those
methods for matrix multiplication we discussed in the previous section.

The code for solving the system can be written (for simplicity we do not
do pivoting)

do k=1,n-1
- do j=k+1,n
a(k+1:n,j)=a(k+1:n,j)-a(k+1:n,k)*a(k,j)/a(k,k)
enddo
enddo

We rewrite the code as

do k=1,n-1
a(k+1:n,k)=a(k+1:n,k)/a(k,k)
do j=k+1,n
a(k+1i:n,j)=a(k+1:n,j)-a(k+1:n,k)*a(k,j)
enddo
enddo

and, we rewrite it again to obtain

do k=1,n-1
cdiv(a(k+1:n,k),a(k,k))
do j=k+1,n
saxpy(a(k+1:n,j),a(k+1:n,k),ak,j))
enddo
enddo
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where cdiv and saxpy are procedures defined by
cdiv(x,s)

x=x/s

saxpy(y,x,s)
y=y-s*x ,

x and y are vectors of the same length, and s is a scalar.
Now, we implement this algorithm on a ring of p processors. Since we will

( P1 -~ P2 P3 P4 )

Figure 5.5: Ring of processors, p = 4.

‘only consider neighbor-to-neighbor communication, we can restrict ourselves
to the following communication primitives:

send(east,x)

which means that the vector x is sent to the neighbor to the east of the present
processor. Note that the processor to the east of P4 is P1.

receive(west,x)

‘means that x is received from the neighbor in the west. The processors are
numbered from 1 to p, and each processor is assumed to have stored its number
in the variable myno.

Since the algorithm is column based, we will consider assignments of columns
to the different processors. First assume that the matrix A is divided into
blocks of equal size,

A=(A Ay - A).

Then, since we are transforming A to upper triangular form, we see that
with this assignment processor 1 becomes idle after the initial n/p steps, then
after n/p steps additional steps processor 2 becomes idle, etc. Obviously, this
assignment will not give a good load balancing. Instead, we distribute the
columns to the processors in an cyclic way, as illustrated in Figure 5.6.

The elimination is performed if each processor executes the following pro-
gram.
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Figure 5.6: Cyclic assignment of columns to processors, p = 4.

% Dimensions: n=r*p.

% The columns of the local matrix C(1:r) are columns
% A(:,myno), A(:,p+myno), A(:,2p+myno),...

h

j=0
do k=1,n
if mod(k,p)=myno then % Remainder when k is divided by p
% This processor holds the
% pivot column
Jj=j+1
cdiv(C(k+1:n,j),C(k,j))
send(east,C(k+1:n,j),p)
piv_col(k+1:n)=C(k+1:n,j)
else
receive(west,piv_col(k+1:n),counter)
counter=counter-1
if counter>1 then
send(east,piv_col(k+1:n),counter) % Immediately
% send it further
endif
endif
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do jj=j+i,r
saxpy(C(k+1:n,jj),piv_col(k+1:n),C(k,jj))
enddo
enddo

We use the variable counter to keep count of how many processors have had
access to the present pivot column, and to prevent it from being sent around in
the ring forever. When the program has been executed, each processor holds
r columns from the upper triangular matrix U in the LU decomposition of A.
Under the diagonal in each column are the elements from the lower triangular
factor L.

Partial pivoting is needed in the Gaussian elimination algorithm for nu-
merical stability. When A is stored by column cyclic mapping, as above, then
the search for the pivot element takes place in one processor. In the meantime
all other processors are idle. Information about the pivoting can be sent to all
processors along with the pivot column, and then the interchange of rows can
be done in parallel within all the processors, before the SAXPY operations are
performed. ‘

5.2.3 Solution of Triangular Systems

After the Gaussian elimination, we need to solve triangular systems. We will
consider only upper triangular systems Uz = c since the lower triangular case
is similar and also we can update the right hand side vector simultaneously as
the triangularization process and there is no need to solve the lower triangular
system. We assume that U is stored by column wrapped storage, then the
following column sweep algorithm can be implemented in a straightforward
way.

do j=n,1,-1
x(3) = <(3)/U(5,3)
do i=1, j-1
c(i) = c(@) - x(3) * U@, j)
enddo
enddo

Assume that P,, the processor holding the last column of U also holds c.
Then P, computes z,, updates ¢, and sends the new ¢ to P,—1. Then P,_;
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computes z,_1, updates c and sent to P,_,. Thus, only one processor is doing
computation at any given time.

The inner product algorithm is

do i=nmn,1,-1
do j=i+1,n
c(i) = c(i) - U(E,3)*x(3)
enddo
x(i) = c(d)/U(i,1)

enddo

This algorithm uses the inner product of ith row excluding the main diag-
onal of U with z(i + 1 : n) in the computation of z;. We assume that these
components have been computed so that z; is in P; and P; can compute Xu;;z;
for all the z; that it holds. After these partial inner products are computed
in parallel, fan-in can be used to sum them. For large n and 7, there is almost

perfect parallelism in computing partial inner products although fan-in is less
satisfactory.

% parallel inner product algorithm

do i=n,1,-1
all processors compute their portion of i’th inner product
fan-in partial inner products to P(i)
P(i) computes x(i)

enddo

Exercise: Design a parallel algorithm for the Gaussian elimination and
triangular system solving as shown in this and previous sections assuming that
the matrix is distributed by rows over the processors. Discuss the advantages
and disadvantages over the column oriented method.
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5.3 Data-Parallel Computations

In data-parallel algorithms the basic idea is that the processors of the parallel
computer are assigned to the elements in a matrix in such a way that each
element has its own processor, where it is stored in the local memory, and
where the computations take place. Thus, the matrix is the basic structure,
and the computer is organized to match this structure. We assume that the
computer has communication links that make up a two-dimensional array, and
that the matrix elements in A are stored as in Figure 5.7.

a1 ayz a13 a14
a1 ag9 az3 A24
asy aso ass as34
as ay42 43 ‘ Qa44

Figure 5.7: Array of processors and matrix elements.

5.3.1 Distributed-Shared Memory

In writing a data-parallel program, we are not explicitly concerned with the
communication aspects of the computation. Thus we can write

A(1:10,1:10)=A(1:10,1:10)+B(21:30,21:30)

Since A(i,j) is stored in the same processor as B(i, j), it is necessary to move
the array section from B to the processors that hold A(1:10,1:10), perform
the addition, and then store results in the local memories. This is hidden to the
programmer and takes place automatically (the necessary communication code
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is generated by the compiler). Thus, processor (i,j) executes the following
code.

4 Processor (i,j)

% Local variable a corresponds to A(i,j)

load B(i+20,j+20) --> b_reg 4 Request to the communication
% system

a=a+b_reg

In the shared memory context the load instruction fetches a word from main
memory to a register. Here, load is a request to the communication system
to locate a variable in the local memory of another processor, and then fetch
the value to the processor (i,j).

From the programmers point of view there is no difference between this
aspect of the data-parallel program and the same program executed on a shared
memory computer, since there is no need to deal with the communication
explicitly. Therefore, in connection with data-parallel programming, we can
refer to this memory organization as distributed-shared.

5.3.2 Gaussian Elimination

To develop a data-parallel program for Gaussian elimination, we begin by
writing the code in the following way:

do k=1,n-1
do i=k+1,n
a(i,k)=a(i,k)/a(k,k) % Divide by the pivot element
enddo

do j=k+1,n
do i=k+1,n
a(i,j)=a(i,j)-ai,k)*alk,j)
enddo
enddo
enddo

Our aim is to reformulate this code in terms of data-parallel matrix assign-
ments. The main part of the work in the algorithm is in the j,i-loop. We
consider the communication needed for modifying the (i,j) element. The for-
mula is
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a(i,j)=a(i,j)-adi,k)*a(k,j)

Thus, in order for the (i,j) processor to modify its element, it must have
a(i,k) and a(k,j). This communication is illustrated in Figure 5.8.

Figure 5.8: Communication for modifying a(i,j).

This communication must be performed for all elements in the lower right
submatrix, and it can be expressed using the Fortran 90 intrinsic function
spread. Thus

spread(a(k,k+1:n),1,n-k)

creates a matrix of dimension (n-k) x (n-k), where the elements of each row
are equal to the corresponding elements of row k in a. Similarly,

spread(a(k+1:n,k),2,n-k)

creates a matrix where the elements of each column are equal to the corre-
sponding elements of column k in a. We illustrate this in Figure 5.9.
The following code is Fortran 90 style Gaussian elimination.

do k=1,n-1
a(k+1:n,k)=a(k+1:n,k)/a(k,k)
a(k+1:n,k+1:n)=a(k+1:n,k+1:n)-spread(a(k+1i:n,k),2,n-k)*
spread(a(k,k+1:n),1,n-k)
enddo
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(a) (b)

Figure 5.9: (a) spread(a(k+1:n,k),2,n-k) (b) spread(a(k,k+1:n),1,n-k).

The multiplication is element-by-element matrix multiplication, and each mul-
tiplication takes place in the processor where the element from a is stored.
Now assume that the matrix is too large to store one element per processor,
and that it is assigned processors in a blocked checkerboard fashion, see Figure
5.2. Then after a few steps in the algorithm, some processors will be idle
(Figure 5.10). In order to achieve better load balancing we used a column

Figure 5.10: Bad load-balancing in the Gaussian elimination algorithm with
blocked mapping. Each square represents a matrix block stored in one proces-
sor. The processors completely outside the shaded area are idle.

cyclic assignment in the message passing algorithm. Here we should use a
block cyclic assignment as shown in Figure 5.11.
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Figure 5.11: Block cyclic storage. The large squares represent matrix blocks.
Each block is distributed over the whole array of processors.

This assignment can be made in HPF by the following compiler directive:
IHPF$ Distribute a(cyclic,cyclic)

and the data-parallel code combined with this directive will execute with good
load-balancing.

5.3.3 Matrix Multiplication — Cannon’s Algorithm

Matrix multiplication appears to be ideally suited for data-parallel compu-

~ tation because of the regular nature of the operation. Our description of

Cannon’s algorithm for multiplication of square matrices will also show that

the communication aspects of data-parallel computations are very important.
Consider

C = AB,

where A, B, and C are square matrices. Assume, for the moment, that they
all have order 4, and that we have a 4 x 4 array of processors. In the algorithm,
processor (i, ) will compute ¢;;. From the definition of matrix multiplication,
the elements of the first column of C are given by

4
1 = Z a1kbrr = a11b11 + a12ba1 + a13bsy + a14bn
k=1
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4
€1 = Z azkbr1 = a22b21 + a23bsy + a24bsr + a2 by
k=1
4
C31 = Z askbr1 = aa3bsy + assbay + azibiy + azzby
k=1
4
Cqi1 = Z Agkbrr = agabsy + aa1b1y + agzbar + agsbs;
k=1

Note that we have written the sums in a nonstandard order. If at the start
of the computations b;; and a;; are in processors (i,1), i = 1,...,4, then the
first term in each equation can be computed in parallel.

The elements of the second column of C are given by

[
e

Ci2 = aikbrz = ar1biz + a12by2 + ay3bsz + a14bsg
k=1
4
Ca = Z a2kbk2 = a29byz + ag3bsy + az4bsz + a21bry
k=1
4
C32 = Z askbrz = aazbsy + assbsz + asibiz + azzbss
k=1
4
C2 = ) aarbir = ausbso + arbiz + auzbag + aysbsy

-
Il
o

Similarly, if at the start of the computations b;, and @;;4+1 are in processors
(¢,1),4=1,...,4, then the second term in each equation can be computed in
parallel, and, in addition, this can be done in parallel with the computations
for the first column in C.

Thus, with the initial distribution of matrix elements to processors illus-
trated in Figure 5.12(a), each processor can compute a first term in its sum.
To continue the computation, the elements of A must be shifted horizontally
and the elements of B vertically (with wrap-around, i.e., an element at the
bottom of the array is moved to the top, and correspondingly for horizontal
shift). After the first shift the elements of A and B are as in Figure 5.12(b),
and a second term in each sum can be computed. The algorithm proceeds as
illustrated in Figure 5.12(c) and (d), and after 4 elementwise multiplications
and 3 shifts, the result C' is computed.

The algorithm is implemented by the following Fortran 90 subroutine.
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All Al12 A13 Al4 Al12 Al13 Al4 All
B11 B22 B33 B4 B21 B32 B43 B14
A22 A23 A24 A21 A23 A24 A21 A2
B21 B32 B43 B14 B31 B42 B13 B24
A33 A34 A3l A32 A34 A3l A32 A33
B31 B42 B13 B24 B41 B12 B23 B34
Ad4 A4l A42 A43 Adl A42 A43 A4
B41 B12 B23 B34 B11 B22 B33 B44
() Initial alignment of submatrices (b) After the first shift
A13 Al4 All Al2 Al4 All A12 A13
B31 B41 B13 B24 B41 B12 B23 B34
A24 A21 A2 A23 A21 A22 A23 A24
B41 B12 B23 B34 B11 B22 B33 B4
A3l A32 A33 A34 A32 A33 A34 A3l
B11 B22 B33 B4 B21 B32 B43 B14
A42 A43 A44 Adl A43 A4 Ad1 A42
B21 B32 B43 B14 B31 B42 B13 B4
(c) After the second shift (d) After the third shift

Figure 5.12: Four steps of Cannon’s algorithm on 4 x 4 processors
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subroutine cannon(A,B,C,N)

integer N

real, array(N,N) ::A,B,C

% Perform the initial skewing of A and B

=cshift(A,2,-(/0:N-1/)) % Horizontal

B=cshift(B,1,-(/0:N-1/)) % Vertical

C=0.0

do i=1,N
C=C+A*B % Elementwise multiplication
A=cshift(A,2,-1) % Shift one step to the left
B=cshift(B,1,-1) % Shift one step up

enddo

return

The Fortran 90 intrinsic function cshift, which stands for circular shift, per-
forms the communication necessary for this algorithm. In the code we have
the statement A=cshift (A,2,1), which specifies that A is to be shifted one
step along the second dimension, i.e., rowwise, with wrap-around. In the
statement A=cshift (A,2,-(/0:N-1/)) each row of A is shifted by a different
amount, given by the vector /0:N-1/. This means that the first row is shifted
0 positions, the second row 1 position, etc.

5.4 Jacobi Method for Eigendecomposition

A case study based on the paper, P.J. Eberlein and H. Park, Efficient im-
plementation of Jacobi algorithms and Jacobi sets on distributed memory ar-
chitectures, Journal of Parallel and Distributed Computing, special issue on
Algorithms for Hypercube Computers, 8, pp. 358-366, 1990.
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