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Introduction

The lectures I want to give are based on the recent book by Prof. Simon
Gindikin and myself. “Distributions and convolution equations”. The initial
task of our investigations summed up in the book was to give up-to-date
interpretation to the classic work by I. G. Petrovskii “On the Cauchy problem
for systems of linear partial differential equations for non-analytic functions”
of 1938.

Petrovskii considered the Cauchy problem for system of differential oper-
ators on functions in R®*!. To shorten the notation I shall formulate his
result for a scalar differential operator

P(t,D;,Dy) = D{* + Y _ P;(t, D)D",

i=1

Here t € R is time and = = (z1,...,2,) € R™ are the space variables. As
usual D, = —i8/0t,D, = (Dy,...,D,),D; = —id/0z;. If a = (ay,...,a4)
is a multi-index, then |a| = a; + -+ + a,, D = D{* ... Dg".

Following Hadamard Petrovskii says that the problem

(1) P(t; Do, D.Ju(z,t) = f(z,8),s €R™0 <t < T,
(2) DFu(z,0) = pi(z), k=0,...,m—1,z€R"

is correctly posed if for any right-hand side {f, s, ..,¢¥n—1} bounded to-
gether with a finite number of derivatives there exists a unique solution u(z,t)
bounded on the interval 0 < t < T together with the given finite number
of derivatives, the operator {f,o,...,¥m—1} — u being continuous in the
corresponding norms.

Petrovskii proved that the problem (1), (2) is well-posed (in the above
sense) if and only if the ordinary differential operator P(t, %%,f ) obtained
after formal Fourier transform in (1) has the fundamental system of solutions
{W;(t,€),j = 1,...,m} which admits on the interval [O,T] the estimates
with constants increasing non faster than power of |{|. In the case of constant
coefficients Petrovskii condition is equivalent to the algebraic condition for
the polynomial (symbol) P(7,£): v such that

P(r,6) #0, Imt <~, (Rer,)e€ R™t!.
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L. Schwartz showed that within the framework of his distribution theory,
the theory of I. G. Petrovskii admit of a natural generalization, namely that
the Petrovskii condition is a necessary and sufficient condition for the cor-
rectness of the Cauchy problem in the space S’ of tempered distributions
smooth with respect to time. Schwartz also noticed that it is reasonable
to broaden the class of equations (systems) under consideration by replac-
ing differential operators with respect to spatial variables by more general
operators of convolution with distributions.

The indicated relationship between the question for the Cauchy problem to
be well-posed and the theory of distributions and the passage to convolution
equations is of conceptual importance. Proceeding from this relationship we
describe the general scheme for delivering results of the type of Petrovskii
theorem and present the structures responsible for such results.

We shall encounter a situation which will repeat many times in various
circumstances. We start from the linear topological space ® of C* functions.
We describe in detail the scales of spaces of functions and distributions closely
related to ®. In terms of these spaces and operations of inductive and pro-
jective limits the description of the space €(®) of convolutors on @ is given.
¢(®) can be transformed into an algebra by introducing the operation of
convolution for its elements. If ® is a "good” space the space €(®) admits
the full description, and the solvability of the convolution equation

Axu=f ufedAcd)

turns out to be equivalent to the existence of a fundamental solution G

Ax G =é(z),

which is a convolutor, or in other words A is an invertible element of the
algebra €(®).

Due to the description of convolutors algebra €(®) and, particularly, their
Fourier images F'&(®) the solvability condition becomes effective. It means
that the symbol A is an invertible element of the algebra F&(®) (with respect
to multiplication). In the case of a differential operator the Seidenberg-
Tarski theorem makes it possible to simplify the conditions since the required
algebraic estimates are fulfilled automatically.

In the above described results an important factor manifests itself: the
conditions of solvability of convolution equations in the scales and in the
“limiting”spaces, say, ® are equivalent.

In the beginning we shall realize this program for the case when @ is L.
Schwartz space S.
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The second more difficult step is connected with the Cauchy problem
in ® with zero Cauchy data. We separate out one of the coordinates, say
t = z,, in R™ and denote by @, the subspace of & consisting of functions
vanishing for ¢ < 0. We shall thoroughly study scales of such functions
and distributions and describe their Fourier transforms (the Paley-Wiener
theorems). We define the operation of convolution and convolutor spaces
€(®4). Then equation

Axuy=fr  ug, fr €24,A€Dy)

is solvable if and only if A is an invertible element of the algebra €(®).
Using Fourier-Laplace transform we come to the condition for the symbol of
A.

The conjugate space of the space @4 of functions (distributions) with
support in the half-space t > 0 is the factor space (®')g = @'/(®')-.

Along with the theory of convolutors and convolution equations in ®, we
can construct the conjugate theory for factor spaces ®g.

Denote by T, the translation operator ¢(t,y) — ¢(t +a,y). Then &, =
T_.®. is a subspace of those elements of ® which are equal to 0 for ¢ < a.

For a < b we put:

Bla,b) =T_, P4 /T_1®4

and we shall study the theory of convolution equations in ®[a, b). This theory
corresponds to the Cauchy problem in a finite strip @ < t <b with zero
Cauchy data for t=a.

To study the Cauchy problem with arbitrary Cauchy data we use following
notations. Let @[] be a space of elements of ® “cut off” for t < 0, 1.e.

By = {0+()p, v €2,04(t)=1 for t>0, 64+(t)=0 for t<O0}.

We denote by <I>[{_:]°°} the space of the elements of the form Q(D)¢4, ¢4 €

®(4), where Q(D) are arbitrary partial differential operators. The elements
of this space are of the form

ol =¥ =2 ¢i(@)D{6(t) +pr,04 € By s
=0

and they are smooth functions for ¢ > 0. It is possible to describe the

convolutors algebra L’Z(q)[{;]oo}) closely related to pseudodifferential operators
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with transmission property of Vishik-Eskin and Boutet de Monvel. Then
along the same lines as above we can construct the theory of convolution
equations in these spaces. This theory, as a particular (and important) case
contains classical (nonhomogenuos) Cauchy problem.

As it was mentioned above the lecture notes are based on the monograph
[1], there can be found all the references and details of the proofs. Basic facts
concerning distributions can be found in [4-6].
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Chapter 1. Convolution equations in S(R") and in the related
spaces of functions and distributions

§ 1. Preliminaries, Space S

1.1. To construct the space S we introduce spaces C((;';) = C((;')l)(R") of
m-times continuously differentiable functions with a finite norm

Okl = s A+ DVID%(E), meZs, IeR

c{™isa complete Banach space. For m = 0 or I = 0 the corresponding index
(0 g
is dropped (i.e. we write C(g) or C(™). 1t is easy to show that for different

values of £ the spaces C’((g) are isomorphic and the isomorphisms are specified
by operators of multiplication by a function. We need an elementary

Lemma 1. Let a(z) be an m-times continuously differentiable function
satisfying for |a| < m, the inequalities

|D%(z)] < Ko(1 + |]?)7/2.
Then the operator

cly) — CGY (0 — ap)

is continuous.
Proof follows immediately from Leibniz’ formula.

Proposition. (i) For any I, 7 € R the mapping

(2) Ci — C (o — (1+2[) )

is an isomorphism.
(i1) The inclusion ) € C((Z) holds if and only if

=1+, pecC™,




6 LEOID VOLEVICH
and there is a constant K, > 0 such that

KM el™ < I < Konilel™.

Proof. (i) Lemma 1 implies the continuity of theroperator (2) and of the
operator

(2) CiP, — C (% — (1+ )™ /?y).

Since the compositions of (2) and (2') are identity operators, the proposition
is proved.
(i1) follows form (i) for 7 = Z a

The proposition makes it possible to extend to all the spaces c™ the

(0
properties proved for a fixed £, say £ = 0. Obviously, for a function ¢ € C((Z;)

all the norms |‘Pl(e' are finite for m' < m and ' <[, and we have

el < lely),  m/ <m, €<t

Thus the continuous embeddings

nzﬂ

C((g) C((ZI)), m' <m, I'<I
take place and we have a scale {C((;;), z,n’:‘,} (see § 3).

Let us discuss the density properties of these embeddings.

Denote by D the Schwartz’ space of C* functions of compact support
equipped with the natural topology.

The space D is nondense in C((;';). For | = 0 this follows from the fact that
1 € C(™ and that for any function ¢ € D

11— @™ > sup |1 —p(z)] > 1.
z€R™?

Lemma 2. For any ¢ > (' the space D 1s dense in C(e) relative to the

topology of C((f, ),
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Proof. The elements ¢ € C'((;'; ) can be approximated in C((Z‘)) norm (I' < 1) by

elements of this space having compact support (we can use “cut off”functions).
Then we can use the traditional regularization technique.

Denote by ng) the closure of D in C((Z; ) _norm. As we mentioned above,

CE;’;) is a proper subspace of C((g ), and according to lemma 2, we have
inclusions

(3) cipcely ccl), wsm, A<t

1.2. The space S regarded as a vector space is the intersection of the

(m)

spaces C'( ¢ Of according to (3) the subspaces CE;’;):

_ (m)def ~(o0) _ ~p(m)
(4) s= () C<EC), s=nCy .
meZy LeR

The same space is obtained if we confine ourselves to the integral values
of £ in (4).

Using the system of norms (1) we introduce the structure of a countably
normed space in S, i.e. the system of neighborhoods in § is determined by

(5) |‘1‘9‘E;')1) <eg, m)l € Z+7 S R+'

The topology generated by these neighborhoods can be interpreted as the

topology of the projective limit of the spaces C((;;) (See § 3).
Using the operators of intersection and union we can introduce a number

of vector spaces of functions which are important for our further aims:

() _ ~(m) (m) _ (m) (m) _,0(m
Clo =NCe > Clo =R Cy» Clmer) = Y0

We shall turn these spaces into topological linear spaces by endowing
them with the topologies of projective and inductive limits. Applying the
operations of intersection and union to these topological spaces we form the
spaces

PNES) _ Aot
O=0C," M=0Cx,

which play an important role in what follows.
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The space O consists of C™ functions (z) whose all derivatives D*¢(z)
increase for |z| — oo, not stronger than a fixed power of |z| depending on
¢ solely. The space M consists of C*° functions whose every derivative is
estimated with the aid of a specific power of |z|. If it is obvious that

ocM
and the inclusion is strict what show the example
w(z) = exp(i(z + -+ 22) e M, w(z)¢O.

The definitions of § and M immediately imply

Proposition. (i) M is a commutative ring relative to multiplication, i.e.
a(z),b(zr) € M = a(z)b(z) € M.
(ii) S is an ideal of M, i.e. the operation of multiplication is defined:
M xS — S({a(z), ¢(z)} — a(z)¢(z)).

As usual we define the conjugate space 8’ as the space of continuous linear

functionals on S equipped with the strong topology of the conjugate space

(See §3)). We denote by (f,¢) the value of f € S’ on the element ¢ € S.
There exists a canonical embedding of S into S’

5 — 8'(f(z) — (fr¢) = / f(2)p(z)dz, ¢€S),

so we can understand S as a subset (dense) in S'.

1.3. Fourier transform in § is given by the classic formula

(©) 26 = r)? [ exp(=ife,€)o(e)d

Since the integral is absolutely convergent and the convergence is retained
when ¢(z) is replaced by z*DP?p(z) for any a and B, the differentiation
under the integral sign and integration by parts result in

20 p(€) = (2m)"? /(—1)”" exp(—i(z,€))e’ D¢(x)de.
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If n' > n, then

|£20Pp(€)| < (2m)~/2 (/(1-+ |€U|)_n’d:”) max(1 + |z|)" [2# DY (z )],
and we have derived the estimate

~1(€ - m
(7) |99|En)z) < K(m,1,n, ”')I‘P|El+)n')'

From this estimate follows
Lemma. For any integers m, £ > 0 and n' > n the Fourier operator

m 14 ~
F 2 C(ipny — Clmylp— )

is continuous.

Estimates of the type (7) is natural to call “Parseval’s inequalities”. From
these inequalities it follows (for the exact definitions see subsection 3.6) the
continuity of the Fourier operator

(8) F: S(RZ) — S(RI)(p — ).

The continuity of this operator and the reflection operator
(9) Iip — o(p(a) — p(~2))
implies that the composition of these operators

(10) IF : S(RY) — S(p(€) — (1))

is continuous. As is known the composition of (8) and (10) is an identity
operator, i.e. the inversion formula holds

(©) o) = 2y [ explite, €)6(6)de.

Thus (10) is an the inverse of (8) IF = F~! and the mapping (8) is a
topological isomorphism.

Based on conjugacy, the Fourier operator in &' is defined: for f € §' we
put
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(11) (f,1¢) = (f,#)-

As has already been said IFS = S, and therefore the functional f is
defined throughout S.

According classical Parseval’s theorem the relation (11) (with, (f,¢) re-
placed by [ ...dz) holds for any ¢, f € S. It follows that the Fourier operator
on S commutes with the canonical embedding § — S’

F
S — §

Lo

S ——— &
F

so the diagram is commutative and we can interpret f as the integral (6) and
as the Fourier transform in the sense of §'.
If we put p(z) = ¢(x) where ¥(§) € S, this results in

(11) (f,9) = (f,¢),
(12) F:8 —§

is adjoint operator of (8) and hence is an isomorphism.

1.4. Pseudo differential operators (PDO) in S.
By PDO meant operators having the form
(13)  (alx, D))e) = (21) " [ explife, )ae, E)2(E)dt
= F_l a($7€)F$—’599'

§—z

The function a(z, £) is called the symbol of the operator. If the symbol is
a polynomial in £, 1.e.

(1((]:, 5) = Z aa(x)éa(p(x)?
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then using the inversion formula (6') we can rewrite (13) in the traditional

form
(a(z, D)p)(2) = 3 aa(@)D%0(2).

o

If the symbol a(z,£) does not depend on z, then the corresponding PDO
(13) will be called a PDO with constant coefficients:

(1) (a(D)¢)(x) = Fi,a(€)Face.

Up to now all definitions were quite formal since we did not indicated to what
functions the operators (13) and (14) were applied and why the corresponding
integrals made sense.

We now consider the case ¢ € S and a € M. Then (14) is a composi-
tion of three continuous operators transforming S into itself and hence is a
continuous operator from S into S. Under the composition of operators (14)
their symbols are multiplied:

B(D)(a(D)p) = a(D)(H(D)p) = (ab)(D)p a,be M, o€ S.

In the case of polynomials a(¢) this is compatible with the definition of
differential operators with constant coefficients.
By conjugacy the same is true for pseudodifferential operators acting on

S'.

§ 2. The scale of Hilbert spaces associated with S’

In the foregoing section we introduced scales of Banach spaces C’((g' ) and,
applying the operations of inductive and projective limits to these spaces,
constructed Schwartz’ spaces S, O and M. In this section we shall consider
scales of Hilbert spaces H ((5)) consisting of functions possessing s derivatives
(in the sense of distributions) square integrable with weight (1 4 |z|?)¢. We
shall establish inclusion relations for the spaces C'((Z;) and H ((5)) (Sobolev
imbedding theorems) which will be later used to prove that S is the projective
limit of H ((;';), i.e., S is countably Hilbert space.

The scales of H ((5)) have a natural extension to fractional and negative

values of s, and the spaces H, ((;)) and H ((:;)) are dual. This duality will permit




12 LEoID VOLEVICH

us to establish that &' can be described as the inductive limit of H ((5)), and

the space O' (conjugate to O) is also can be described in terms of union and
intersection of these spaces.

2.1. The space Hy(R") (or, simply, Hs) consists of locally square
integrable measurable functions for which the norm

(1) lley = (/Iw(w)lz(l + lez)ldwy

is finite.
For £ = 0 we obtain the space LZ(R")d:e:fH d-—ng(o). It is obvious that for
a fixed 1 the norm (1) is strictly increasing function of ¢, which implies

the embeddings igl)) : Hypy — Hpy,£' < £, and we can consider a scale

{H(),i§ }. Using obvious relation

1l = 1L+ 12*) 2%l e-n),

we readily derive.
Proposition 1. (i) For any ¢ and 7 the mapping
Hy — Hr)(b — (1 + [2[*)/*9)

is an isometric isomorphism.
(ii) The inclusion ¥ € H () holds if and only if

v=1+ef)" e, peH and ¥l = llell

The proposition makes it possible to extend the properties proved for a
fixed £ to all spaces H(y. In particular the completeness of Ly implies that
all H(y are complete.

Lemma. The space D (and, consequently the space S) is dense in Hy
for V¢ € R.

Proof. For the case £ = 0 the lemma is well-known. Since the operator
of multiplication by (1 4 |z|?)¥/? transforms D and S into themselves, the
general case is reduced to the case £ = 0.
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The space H(,) becomes a Hilbert space if the Hermitian scalar product

lo,¥lo = (L + 12?0, (14 [2*)2 P)

is introduced in it. Here
) (v.0) = [ elapp(ai.
For £ = 0 the script £ will be omitted.

Proposition 2. (i) The bilinear form (2) is continued by continuity from
S xS to H(() X H(_g).
(i1) The embedding

Hgy — (Hg)' (¢ — (v,))

induced by the continuation of the form (2) is a canonical isometric isomor-
phism of H(_s and the Banach conjugate space of H(y).

Proof. (i) Follows from Schwartz’ inequality

(e )l = 11+ [e) ™0, (1 +12) 29 < Hlell-oll¥lle

and the lemma.

(ii) For £ = 0, the assertion coincides with well-known Fisher-Riesz theo-
rem.

For ¢ # 0 it should be taken into consideration that, by the conjugacy,
proposition 1 implies that the operator of multiplication by (1 + |z|?)¢/?
determines an isometric isomorphism of (H,)' and H', so (Hy) = (1 +
) 2H! = (1+|e*)/?H = Hi_y).

2.2. The spaces H(*)(R") As was already indicated, the Fourier operator
F:S8' — &' is one-to-one and transforms the subset S C S’ into itself. The
reflection operator I possesses similar properties. We have:

ScC H(s) cS'.
Denote by H(*)(R™) (or, simply, H(*)) the image of H ) under the operator

IF:
H*(R}) = IFH(S)(R?).
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Since the composition of F and IF is an identity operator in S, we have
FH®(R}) = Hy)(R).
We introduce the norm,

(3) A = 1F £l

in the space H®. Thus, H(®) consists of those f € ', possessing Fourier
transform, which are locally square summable and whose norm (3) is finite.
On the other hand, since S is dense in H(,) and the operators F and I

transform S into itself, S is dense in H(®), and therefore H(*) can be regarded
as the completion of § relative to the norm (3).
If we substitute f € S and ¢ = f into the relation

(F,18) = (f,¢)

and take into account that (Ff)(—¢) = Ff(€), then for f € S we obtain
Parseval’s relation

@) / f(2)dz = / F(O)Rde.

Hence, for s=0 the norms H(® and H, (s) coincide on S, whence it follows

that these spaces coincide. Thus, the notation H(®) = H and H) = H is
not contradictory. The norm in H will be denoted by || ||

Recalling the definition of the pseudodifferential operator (14 |D|?)*/2 we
find

(3) AN = ()1 + |DI?)*/2 £]].

The propositions proved for H(,) spaces imply
Proposition. (i) For any s and 7 the mapping
HY — HO)(f = (14 D)2 f)

is an isometric isomorphism.
(ii) The inclusion f € H(®) takes place if and only if
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f=@+IDP)*%g, geH, |IflI® =gl

(iii) The bilinear form (2) is continued by continuity from S x S to H(*) x
H(=*). The embedding H® — (H*))" induced by this form is an isometric
isomorphism of H(~*) and the Banach conjugate space of H(®):

(5) (H(“’))’ = H-9

The space H(®) can be turned into Hilbert space by introducing the Hermitian
scalar product

[£,6)) = [Ff, Fgly = [(1+IDP)/2f, (1+|D)"%g].

Remark. For s > 0 the representation in proposition (ii) can be rewritten in
the form

flz)= /Gs(w —y)g(y)dy,

where G, is so called Bessel potential. This representation is extensively used
in the theory of Sobolev’s spaces.
Using original definition of H(*) or the proposition (ii) we can easily obtain
various properties of the spaces H(®). We shall state them without proofs.
1) Let m > 0 be an integer. The inclusion f € H() takes place if and
only if D®f € H(s_m),|a] < m and

(NI

8 o s—m2
A = | > (Do sl

lor|<m

In the case s = m we obtain the following statement.
2) For an integer m > 0 the inclusion f € H(™ holds if and only if
Daf € L2, Ial < m, and

(e

A1~ [ Y 1D fIP

la|<m
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3) The inclusion h € H (#) holds if and only for an integer m > 0 h can be
represented in the form
h= Y Dham,

lee]<m
where
hma € HET™  ||hmal|6T™ < const ||R]|¢).
In the case s = —m we obtain the following statement.

4)Let m > 0 be an integer. The inclusion f € H (=m) takes place if and
only if there are ha € L, ||hal| < const||k||("™ such that h is represented

in the form
h = Z D%h,,.

la|<m

2.3. The space H((;))(R") In subsections 1 and 2 we considered one-
parameter families of spaces where the graduation with respect to smoothness
or growth (decrease) at infinity was specified by the operators (1 + |D|2)*/?
and (1+|z|?)¥/2. Now we are going to include these families in a unified two-
parameter scale of spaces with graduation with respect to both the smooth-
ness and growth. Since the operators (1 4 |D|?)*/? and (1 + |z|?)*/? do not
commute, their order in the definition of the norm is a priori substantial.

We introduce the space

(6) HYR) ={f €8, (1+|c*)if e H®}

and supply it with norm

(1) A = 1+ )21 = I+ D) 21 + o) £1I;
we similarly consider the space

(6") ‘HGR") = {f €8, (1+|DP)/*f € Hy |

and introduce the norm

(™) AN = 1L+ DY fllo = 1L+ 2721 + D)2 )]
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Since the operators (14 |D|?)*/? and (1 + |2|?)!/? transform S and S’ into
themselves, the continuous dense embeddings

ScHycs, Sc'HycS

hold, which make it possible to interpret the spaces H ((;)) , 'H ((;)) as completion

of S relative to norms (6) and (6'), respectively. In trivial manner these
spaces can be turned into Hilbert spaces.
Form the results above follows

Proposition 1. (i) For any s,¢,7 the mappings
HS) = B (f L+ 12)72), "B — "Hig D (f — (1+ [DIP)72 )

are isometric isomorphisms.

1) The inclusions f € H(s), 'H®) take place if and only if
(0) (£)

F=Q0+ )+ 1D g, 1Ifllly = llgll,

and, respectively,
F=+[DPY 21+ 12)"2h, IF1I5) = IR

) B9 (E =

(iii) The bilinear form (2) is continued by continuity to E ()

H,'H) and induces canonical isometric isomorphisms:

! !
(=8)\ _ z7(=s) rrr(8) 1 pp(=9)
(8) <H(_e)> —H(—l)v (H(4)> - H(—l)'

Since the Fourier operator transforms (1 + |D|?)*/? and (1 + |z|*)*/? into
each other, we have isometric isomorphisms:

(s) _ 14700 1 o7(8) 2 (0)
(9) FH ="H, FHq,=H:,.
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Proposition 2. The norms (7) and (7') are equivalent for any s, ¢, i.e., there
is a constant K = k(s,£) such that

(10) KA < IS < KNG, Vfes.

As S is dense in the spaces H, ((5)) and 'H ((;)) from (10) readily follows that

H((;)) ='H EZ; In what follows the spaces above will be denoted by H ((;));

however, different symbols will be retained for their norms (7) and (7').

Corollary 1. FH{;) = H{;) Vs,LR.

The proof follows from relations (9).
Corollary 2. The embeddings take place

HG) CHS) s>s,021,

(s")

, (0 S
||f||§2, ’||f||8,)) < ||f||8; are trivial consequences of definitions (6), (6').
The inequalities

Remark. The inequalities (and the corresponding embeddings) ||f||

IAIG) < const 111G, NFIIG) < const 'lI£IIG)
are meaningful, since the first is equivalent to the boundedness of the operator
of multiplication by (14|z|*)™¢¢ > 0 in any H (9 and the second is equivalent
to the boundedness of the PDO (1 + |D|*)™¢,e > 0 in any Hy).

For arbitrary s, the proof of the proposition is based on the calculus of
PDO. But for our near aims we can restrict ourselves to the case where s,/
are even numbers of any sign.

Proof of Proposition 2. Further we shall assume without a special stipu-
lation, that numbers s and £ take even integral values of any sign. By virtue
of proposition 1 (ii) the left-hand side in inequality (10) is equivalent to the
boundedness of the operator.

(11) Ase = (14 |DP)*?(1+[2)/* 1+ 1D ™1+ o)™/ : H — H,

and the right-hand inequality is equivalent to the boundedness of
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(12) Bue = (1+[z")2(1+|DP)*/*(1+ [=)~*(1+|DI*)™/* : H — H.

These operators satisfy the conjugacy relations(with respect to the scalar
product in H)

(13) As( = (B—s,——f)ly le? = (A—s,—f),

and the duality relations with respect to the Fourier operators (which follow
from the definition of PDO):

(14) FAg = Byy, FByg,= Ag.

By virtue of (13), (14), if we show that A, € L(H, H), this will prove
that B_, _¢, Bys and A_y _, € L(H, H). Similarly, from the inclusion B, €
L(H, H) it follows that A_s _¢; A¢s; B_e,—s € L(H, H).

By virtue of what has been said, to prove the boundedness of the operators

(11), (12) for any s and ¥, it is sufficient to verify that

(15) Bao € L(H,H) s>0, —oo<{< o0,

(16) Ay € L(H H), s>0, £<0.

As s is even, (1+|D|?)*/? is a differential operator, we denote it by P(D).
Using Leibniz’ formula (written in Hormander’s form):

P(D)(uv) = Y. = D*uP*(D)v,  P@(¢) = 0°P(¢)

we can rewrite By for s > 0 in the form:

Buv=>)_ [(1 + |x|2)‘/2£—!Da(1 + |x|2)—"/2] ['Pz(:()_l()])))] v.

[e g

Since for any 7 and «

(1+ |22 ID(1 + |2*)77*| < C(a,7,m),
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the operators in square brackets are bounded in Lp, which implies (13).

The proof of (16) is based on a version of the commutation formula for

PDO.

Lemma. If \({) € M and Q(z) is a polynomial, then

MDY(Qv) = 3~ Q@ @A (D).

(As Q(z) is a polynomial, the right-hand sum may contain only finite number
of terms.)

2.4. Sobolev embedding theorems for the spaces C((;;) and H((i))

Now we shall prove

Theorem. For any integer m > 0,{ € R, and Yk > 7/2 the following
embeddings (with topology) hold:

(m) (m)
(17) e c B,
(18) H(m+'€) C C(m)

0 0 -

Remarks. 1) As was already mentioned above; for the spaces Cg'; ) and H ((;)1 )
there exists a canonical identification with some subsets in §'. Therefore,

(17), (18) are in fact reduced to the following two assertions:

(1) the left-hand spaces in (17), (18) are contained, in set-theoretical
sense, in the right-hand ones;

(i1) the right-hand spaces in (17), (18) induce topologies on the left-hand
spaces which are weaker than the original topologies.

2) It is useful to note that for the Banach spaces (17) and (18) the assertion
(ii) is a direct consequence of (i). Indeed, let E and F be, respectively, the
left-hand and the right-hand spaces in (17), (18) and let J : E — F be the
embedding operator associating with each element ¢ € E that very element
regarded, however, as an element of F. The continuity of the embedding
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in the space of distributions J' : E — S’ implies the closedness of this
operator. Since it is defined throughout E, by the closed graph theorem, the
operator J is continuous, i.e., (ii) holds.

3) Instead of (18) we shall prove in fact a somewhat stronger assertion

(18,) O o olm),

So left-hand sides in (18,), (17) are dense in right-hand ones.

The proof of the theorem. The embeddings (18,), (17) are automatic
consequences of the inequalities

(19) oIl < Kmexlolipne Yo € Clrpny,

m - m+K
(20) lels) < Khellellin ™ Vo€ 8.

The inequality (19) is proved quite simply. We start from an obvious
estimate

lg(@)] < (1+1z]*) " lgl(n)-

If kK > n/2, we can take Ly-norms of both sides and obtain:
lgll < Kxlglwy, & >n/2.
Substitute the function (1 + |z|?)¥/2Df(z), |a| < m for g; this yields

1D flley < Kl D* Flierny < Kl FIG7 )

Summing these inequalities over «, |o| < m and using property 2) in subsec-
tion 2.2 we derive (19).

We now prove (20). According to Fourier’s inversion formula, for ¢(z) € S
we have

ID% ()| < (2m)7"/*

/ exp<i<x,£>>€°¢<s)d£\

< (2m)/? [ Jrerax |s|2)-m-~ds] ” [ Ja+ Iél"’)"‘*“l@(ﬁ)ﬁdé]l/z .
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For |a] < m and k > n/2 the first integral on the right-hand side is
convergent, whence :
1D%p(@)] < Kol ™.

Replacing ¢ by (1 + |z|?)¥/2f, we obtain the inequality

sup ID*(1+ |2[2)/2 §| < const ||f|I{5 ).
|e|<m, z€R™

Using Leibniz’ formula it is easy to prove that left-hand side norm is
equivalent to | i(() -norm.

Remark. The embeddings in the theorem imply corresponding embeddings
for the Banach conjugate spaces. Using (8) we obtain the inclusions:

(21) H((—“_K) C (C((;;)) C H((_m “) k> n/2.

The embeddings (17) and (18) show that the space & = ﬂC(() coincide

with the intersection

(00) (s)
S=HZ =5,

and according to embeddings (21) &' can be realized as a union of H ((;))
spaces:

—0o0 S
§'=HZ =Hp-

These relations are isomorphisms of linear spaces. As for the equivalence
of topologies, this is a rather delicate question. In the following section we
shall give a short exposition of the theory of linear topological spaces and
the theory of continuous linear operators in them. Then at the end of the
section we shall return to the spaces §,8',0,0".

Appendix to §2
Here we present a new embedding theorem recently found by Jaeyoung

Chung, Soon-Yeong Chung and Dohan Kim. We give the proof of this theo-
rem using their original idea and technique developed above.
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Theorem. For arbitrary s,£ € R the embedding takes place
(1) H®)n H(g[) C H(s)

(ON
Corollary. If s > 2k > n, then the embedding takes place

(2) HYNHe CCl.

Proof. Embedding (2) follows from (1) and (18).

Proof of the theorem. The left-hand side space in (1) can be turned into
complete Banach space supplied by a natural norm of the intersection of
Banach spaces:

WALHED N Hell = 1119 + 1 fll-

The space S is dense in HNH (¢)- So to prove the inclusion (1) it is sufficient
to prove the inequality:

(3) llull$s) < const ([[ul|® + |lulley) Vu€S.

To prove this inequality in complete form we need some calculus of PDO.
But, as in subsection 2.3 more elementary proof can be given in the case
when either s is natural or £/2 is natural. Indeed:

(HU”E‘;;)Z _ ((1 + |D|2)s/2(]_ + !x|2)€/2u’(1 + |D|2)s/2(1 + ImIZ)l/2a)
= ((1 + ‘D|2)3(1 + |$!2)l/2u,(1 + Ix|2)£/2a) .

Using commutation relation for PDO we can write (compare proposition

2 in subsection 2.3), with P(£) = (1 + |€]*)*:

(141D [(1 + 1)) = 3 = D1 + 22 P(D)u

In our conditions the sum contains only finite number of terms. Then the
right-hand side of our relation takes form

S = (P, D1+ )21+ [of) %)

«l

C =
<D =l ul [ emjap < constllul|®full .
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So we proved that

2
(Ilellp))” < const [1ul|®l[ull(zo).

Inequality (3) is the consequence of this inequality.

As H(")DH(Q C H(")ﬂHw), s > s', £ > ' we can consider the inductive
limit H(*) N H(s).

From (1) it follows that

2 (s)
HE) C H®) N Heey C Hyy)-

Then for the inductive limits we obtain
S =H®>)n H( .
In the paper of J. Chung, S.-Y. Chung and D. Kim, it is also shown that

S = C) N Clo)-

§3. Scales of topological linear spaces and their inductive and
projective limits

For the sake of convenience of references in this section we first of all make
a number of well-known facts of the theory of topological linear spaces (TLS)
used in these lectures, these facts are to be found in any text-book devoted to
TLS. The presentation of the theory of linear operators in scales and in the
limiting spaces of the scales is of a less standard character. As will be shown
the operators on the scales generate the operators on the limiting spaces. The
converse as a rule is not true. We separate a subclass of regular operators
admitting such an extension. One of the main purposes of this section is to
show that in the case of the limits of reflexive Banach spaces all continuous
operators are regular. In the second part of section the main results of the
first part will be applied to the spaces we are interested in: §,8',0,0'.

3.1. Fundamental notions in the theory of TLS

A vector space E (over a field of complex or real numbers) is called a
topological linear space if E is endowed with topology in which the operations




THE CAUCHY AND MIXED PROBLEM 25

of addition {z,y} — = + y and multiplication by scalar {z,a} — az are
continuous.

From this it follows that a topology in TLS is determined completely by
setting a system of neighborhoods of zero.

Generally, a given space can be equipped with different topologies com-
patible with vector structure. Let there be two topologies on E determined
by systems of neighborhoods 7; and 7;. If each of the neighborhoods of zero
V € T, belongs simultaneously to 7;, we say that the topology determined by
the system of neighborhoods 7; or, simply the topology 7; is stronger that
topology T2, (or 7, weaker than 77). If the topology 7T; is simultaneously
weaker and stronger than the topology 73, the topologies 7; and 7, are said
to be equivalent.

The setting of a system of neighborhoods of zero in a vector space deter-
mines convergence (sequential topology) in it. Namely, a sequence converges
in E (e, — e) if for any neighborhood U of zero there is such number N(U)
that e, —e € U for n > N(U).

A set B C E is said to be bounded if for any neighborhood U of zero such
that U C E and there is a number N(U) such that B C AU for all |A| > N(U)
(i.e., B is contained by any neighborhood of zero). This definition can also
be restated thus: for any sequence {e,} C B and any sequence A, of positive
numbers, A, — 0, the sequence A,e, converges to zero in E.

A TLS is said to be locally convex if each neighborhood of zero contains a
convex subset. We shall consider only locally convex TLS, as a rule we shall
not stipulate it.

A system T of neighborhoods of zero is called a neighborhood base (at
zero) of a TLS E if, given any neighborhood U of zero such that U C E,
there is a neighborhood V C 7 such that V C U. If a TLS has a countable
neighborhood base it is said to satisfy the first axiom of countability.

Let E and F be two LTS. A linear operator A : E — F is said to be
continuous if for any neighborhood V' of zero such that V' C F' there exists a
neighborhood of zero U € E such that AU C V. The family of all continuous
linear operators from E into F' will be denoted L(E, F).

It follows from the above definitions that if A € L(E,F) and e, — € in
E, then Ae,, — Aein F.

This fact and the description of bounded sets in terms of convergent
sequences imply that each continuous operator A : E — F transforms
bounded sets in F into bounded sets in F'; such operators are called bounded.

For the space F satisfying the first axiom of countability the converse
assertion is also true: each bounded operator A : E — F' is continuous.
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The conjugate space E' of continuous linear functionals on E is a special
case of the space L(E, F) (corresponding to F' = C,R). Of course, all that
has been said about continuous and bounded operators relates to this special
case as well.

If B is a set in E, then by its polar is meant the subset of E'

B°={¢ € E'|(¢,0) <1 VL& B}.

Where (£, €) denotes the value of the functional £' € E on the element £ € E.
The topology in E' is determined with the aid of polars of a family of sets in
E.

Taking the polars of all bounded sets B C E as neighborhoods of zero
in E' we obtain the so-called strong topology in E’. Forming a system of
neighborhood of zero in E consisting of the polars of any finite subsets in E
we construct the weak topology in E'.

We note that the strong convergence Elj — 0 in E' implies uniform con-

vergence of number sequences (E'j,ﬁ) — 0 on any bounded set B C E.

The weak convergence Elj — 0 implies the convergence (E'j,ﬁ) — 0 for any
LeE.

The conjugate space E' will be endowed with strong topology provided
that the contrary is not stipulated.

~ 3.2. Scales of TLS

The notion of a scale plays an important role in our lectures. By a scale
E = {Ea,ig} will be meant a system consisting of a family of TLS (as a
rule Banach or Hilbert spaces) E,, parametrized by points « belonging to a
partially ordered set K (we shall be interested in case K = R or R? or K is
a cone in R7, j=1, 2), and a family of continuous mappings:

i# Ey — E5, B<a
defined for any 8 < « and satisfying the following natural conditions:

a) i) P =i,
f ‘o a

(b) 1% = id (identity operator).
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3.3. Inductive limits of TLS

We consider a scale E = {Ea,lig}, a € K and we suppose that the partially
ordered set K satisfies following condition:

(1) Va, e K Fye K suchthat y<a, y<pB.

The scales with this property will be called inductive scales. The main
examples of K satisfying (1) are K = {a € R, @ < a} and K = {(a1,03) €
R%, ay < ay,02 < ag}.

With an inductive scale we can associate its inductive limit whose defi-

nition reads thus. Consider the union of all spaces belonging to the scale:

U E,.
a€K «

Two elements e, € E, and eg € Eg of this union are said to be equivalent,
ea ~ eg if Iy < o, B such that iJe, = igeg. So we have a partition of the
union consisting of classes of equivalent elements. The set of equivalence
classes is denoted E_.,. For the classes of equivalent elements we define in
a natural manner operations of addition and multiplication by a scalar, i.e.,
E_ is supplied with a structure of a vector space.

A linear operation associating with each element e, € E, the equivalence
class it belongs to will be denoted 7, (it would be more correct to write i3 *)

(2) Ey — E_ (e iq€).

Let us introduce in E_, the strongest locally convex topology in which
all canonical morphisms (2) are continuous. According to this definition, by
a neighborhood of zero in E_., will be meant any set containing a convex
set V whose full inverse images i, V are neighborhoods of zero in E, for
all @ € K. The topology will be called inductive and the space E_, will be
called inductive limit of the (inductive) scale E = {Eq,i5}.

A set B C E is said to be regularly bounded if there are @ and a bounded
set B, C E, such that i4(B,) = B. There exist examples of inductive limits
having bounded sets which are not regularly bounded. Due to Makarov is
the following

Definition. The inductive limit E_, of ascale { Eq, 4} is said to be regular
if each bounded set in E_, is regularly bounded.
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Theorem (Makarov). If {E,,i8} is a scale of reflexive Banach spaces then
the inductive limit E_ is regular, moreover the space E_o 15 reflexive.

In our lectures we shall deal only with those scales where the morphisms
i# . E4 — Eg are injective, i.e., are embeddings. In this case E, can be
identified with its image i?E, C Eg,8 < a, i.e., E4 can be regarded as a
subspace (as a rule not closed) in Eg, and the space E_ is identified with the
set-theoretical union of the spaces E,, 1.e., E_o = agKEO" Such inductive

limits are called inner. In them a subset U C E_ is a neighborhood if and
only if the intersections Uy = U N E, are neighborhoods in E4, Va € K.
A subset B C E_o is regularly bounded if B C E4 for some «a and B is
bounded in E,.

3.4. Projective limits of TLS

A scale E = {Ea, zg} , a € K is called projective if the partially ordered
set K satisfies the following condition (compare (1)):

(3) Va,f €K FIyeK v>a, v>p.

The main examples are K = {« € R,a > a} or K = {(a1,a2) € R?, ap >
ar, 72 > az}.
By a thread we shall mean any sequence

¢ = {eq € Ea,a € K}

whose elements satisfy the following condition: if a > 3, then eg = iPeq. In
other words for any two elements e, and eg of a thread there is an element
ey, > a,v > B (here we use (3)) such that e, =iJeq, €5 = i?/e,y.

The set of threads will be denoted E; this set can be supplied, in a
natural way, with a structure of a vector space. A linear operation associating
with each thread its element e, will be denoted as ¢* (it would be more correct
to write 12,). The morphism

(4) i®: B, — E,

is a canonical mapping of E into E,.
We introduce in E the weakest locally convex topology in which all the
morphisms (4) are continuous. This topology is called projective and the
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space E., with this topology is called the projective limit of the scale E.
According to the above definition, by a neighborhood of zero in E, is meant
any set containing a set of the form (:%)™' (Uq), where U, is a neighborhood
of zero in E,. A set B C E is said to be bounded if (i‘”)_1 B is a bounded
subset of E, for any a € K.

When the mappings 72 are embeddings, we identify E, and iPE,. In this
case E, can be identified with the intersection aQKEa and the neighborhoods

in Eo are sets having the form Uy N Eo, where Uy is a neighborhood in Ej,.
The boundedness B C E., means that B is bounded on any E,.

3.5. Duality between projective and inductive limits

Let E = {Ea, zg} be a projective scale of TLS and let E, be its projective
limit. The system of conjugate spaces E;g and dual mappings j§ = (zg)* :
E;, — E; forms an inductive scale E' = {E;?, Jg} and we can introduce

the inductive limit of this scale E. . Then the isomorphism of vector spaces
takes place

In the same manner, if the scale E is inductive we can define the inductive
limit E_, then we can consider the projective limit E_ , and the isomor-

phism of vector spaces takes place:

(6) , (B—)" = E,..

Now the left-hand sides of (5), (6) can be endowed with the strong topol-
ogy of the conjugate space, and the right-hand sides are equipped with the
topology of inductive (projective) limit. We say that these isomorphisms are
topological if these topologies are equivalent. In general, without additional
conditions on the scale E the topological isomorphisms do not take place.

Theorem. Let E be a scale of reflexive Banach spaces. Then

(i) the inductive limit E_ o is reflexive and the isomorphism (topological)
(6) takes place;
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(ii) the projective limit E, is reflexive and the isomorphism ( topological)
(5) takes place.

Proof. (i) The topology of (E_)" is given by polars of arbitrary bounded
sets in F_o. From above given definitions of projective limits follows that
the topology in E;o is given by the polars of regularly bounded sets (see
the Definition in subsection 3.3). As was mentioned above a priori the set of
bounded sets is wider than the set of regularly bounded sets, so the left-hand
topology in (6) is stronger than the topology of E._. If E is a scale of reflexive
Banach spaces then according theorem 3.3 all the bounded sets of E_o, are
regularly bounded, which implies the desired assertion.

(ii) Consider the scale E' = {E' iﬁ} of the conjugate spaces, and let

a’’'a

E' . be its inductive limit. By virtue of the reflexivity of the spaces Eaq,
the scale of conjugate spaces of the spaces in the scale E' coincides with the
original scale E. If E,, is the projective limit of the scale E, then applying
the above proved proposition (i) to E' we obtain

Eo = (E'_m)*,

(= ((B) ) -
According to theorem 3.3 the space E._ is a reflexive space, and we obtain
the topological isomorphism (5).

whence

3.6. Operators in the scales and their inductive and projective
limits

Let E = {E,,i?}, 0 € K and F = {F.,,ig},'y € K', be two scales of
TLS. By a compatible family of linear operators from E to F meant a system
2 = {AY, T} consisting of set £ C K x K' of pairs of indices («,7) and the
corresponding linear operators

(7) Al E,— F, (a,7)€X

such that following natural conditions hold:
(1) if the set ¥ contains a pair of indices (53,7), it also contains the pairs

(a,7), a > B and (8,6), 6 <7;
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II) the operators (7) commute with the mappings i?, 8, i.e., the diagram
g5 1asly g

Al
Eo, — F,

2| [
At
Eg —— F;
(,79)€Z  f<a, 657y
is commutative.
Given three scales and two compatible systems of operators in them we
can naturally define the composition of these systems.

1) Let E and F be two inductive scales. By a continuous operator from
inductive scale E into inductive scale F,

(8) A:E—F

is meant a compatible family of operators (7) satisfying the following condi-
tion:

Va 3y = vy(a) such that operator A) € L(E,, Fy) is defined.

Operators (7) are called components of the operator (8).

Proposition 1. Each continuous operator (8) from inductive scale E into
inductive scale F induce an operator on the inductive limits

(9) A E_o — F_.

This operator is continuous and Ya 3y = vy(«) such that

(9 Jy Ale = Aigqe Ve € E,,.
Here j.,io are the morphisms (2).

The proof is straightforward.

Operator (9) is called reguler if it is induced by a continuous operator (8).
The family of regular operators is denoted Lieg(E- oo, F-oo)-

2) Now let E and F be two projective scales. In this case by a continuous
operator (8) is meant a compatible family of operators (7) satisfying following
condition :

Vv Ja = a(7y) such that the component A} € L(E,, F,) exists.
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Proposition 2. Each continuous operator (8) from a projective scale E into
a projective scale F induces an operator

(10) A:E — Fg.

This operator is continuous and Vy € K' there is a = a(7y) € K such that

10 Ali% = j7 Ae Ve € E.
[ed

Here i* an j7 are the morphisms (4).

As above, operators (10) induced by continuous operators (8) are called
regular, their family is denoted L;eg(Eoos Foo)-

3) We are also interested in the case when the scale E in (8) is a projective
scale and the scale F is an inductive scale. In this case by a continuous
operator (8) is meant any nonvoid compatible family (7) of operators A} €
L(Eq4, Fy). This definition implies that there are a and v such that the
component A}, exists.

Proposition 3. Each continuous operator (8) from a projective scale E into
inductive scale F induces a continuous operator A from the projective limit
into the inductive limit

(11) A:E — F_,
and for some « and ~y the relations
(11") Ae =j, Al 1%, Vee€ Eq

hold.

The set of operators arising in Proposition 3 is denoted L;eg (Foo, F—co )

4) We can also consider continuous operators (8) from an inductive scale
into a projective scale. By such an operator is meant a compatible family (7)
satisfying the following condition: for any a and < there exists a continuous
component AY. Each continuous operator from an inductive scale into a
projective scale induces a continuous operator
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(12) A:E_o — Fg

which is natural to be defined as a regular operator. It can be easily under-
stood that in this case all continuous operators (12) are regular.

Propositions 1, 2, 3 directly follow from the definitions and in some sense
are trivial. The nontrivial question is: when all continuous operators (9),
(10), (11) are regular. Before formulating sufficient conditions which provide
this property we shall suppose in advance that in our scales all the morphisms
(2), (4) are injections and operators (4) have dense images.

Theorem 1. Let E_, and F_, be the inductive limits of inductive scales
and the following conditions hold:

(i) F is a scale of reflexive Banach spaces;

(i1) E is a scale of spaces satisfying the first axiom of countability.

Then each continuous operator (9) is regular.

Theorem 2. Let E,, and F be projective limits of projective scales and
F is a scale of Banach spaces. Then each operator (10) is regular.

Theorem 3. Let E be a projective scale of Banach spaces and let F be an

inductive scale of reflexive Banach spaces. Then each continuous operator
(11) is regular.

3.7. § as a countably Hilbert space

In sections 1, 2 we constructed the scale C = {C’((Z;),izlfl} of Banach

spaces and the scale of Hilbert spaces H = {H ((()), top } These scales are
projective because the set I of pairs of indices is R x Z4 in the first case
and R? in the second case. According to the theory above we can construct
projective limits C((;':)) and H ((OO)) of these scales. From the embeddings estab-

lished in §2 it follows that the sets of elements of the spaces C’(oo) and H (oo))

coincide and the systems of norms | | (0 ) and Il 1l ( e)) determme systems of
neighborhoods contained in each other. Thus

(00) _ zr(o0)
S =Clo) = Hig
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is a countably Hilbert space.
According to the dualities

@\ _ (=9
(13) (H(;)) = HY,

S is a projective limit of the scale of reflexive Banach spaces and we can apply
Theorem 2 from previous subsection to linear operators in S. According to
this theorem if the operator

(14) A:§ — S

is continuous then Vs, £ there exist s’, ¢’ and the operator Ag'f’ el (H ((Z,')), H ((;)))
such that the relation (10') takes place:

Ao =i"4p, Vp€S.

Here i*¢ are the morphisms (4) for E, = H((;)) and E,, = S. As S is

dense in H ((;,)) the operator (14) can be extended to a continuous operator

A, el (H((;,/)), H((;))> . So we have proved the

Theorem. A linear operator (14) is continuous if and only if Vs, £, 3s',£'
such that inequality

l4¢l(s) < Kallelle), Ve €S

holds.

3.8. S’ as a regular inductive limit
According to the duality (13) an inductive limit

(—o0) _ (s)
H-Z = Hg
EN4

of the scale H is regular and according to Theorem 3.5 the topological iso-
morphism
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(15) S'=H"%

(=o0)

holds. In other words the topology of the strong conjugate space to & coin-
cides with the topology of a regular inductive limit H ((_::)) . From this follows
the description of the elements of §'.

Proposition. For any f € §' there are A € R,k € Z; and f, € C(yy such
that f = (14 |D|*)* f,.

Proof. If f € §' then f € H((g for some §, A\ and f can be represented

in the form: f = (1 4+ |D?)~=%)/2f £, € H((f‘;). If 6 > n/2, then

fo € C(ny. The number —(§ —é,)/2 can be regarded as being positive integer
(if otherwise, we decrease 6 so that condition is fulfilled).

From theorem 2 in subsection 3.6 follows the

Theorem. A linear operator A : &' — §' is continuous if and only if

Vs, £, 3s', ¢’ such that

IAFIG) < KallFIIG), Yf e H).

3.9. The spaces 0,0 and M

Making use of the operations of inductive and projective limits we can con-
struct spaces H (((i) ) and H ((i)oo). They will be projective or regular inductive
limits and the dualities (13) are also valid when s or £ is o0.

Using natural embeddings

¢ pp(Foo) (£o0)
iy .H([) —>H(£,) , £>1

we can introduce the new scales {H((;)o),iﬁl} , {H((aoo), iﬁl} and define their

inductive and projective limits:

" _ (o0) " (=)
(16) O=UH{, 0 =nHG™.
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The space @' as a vector space can be identified with the space of linear
functionals on @. Denote by O* the space conjugate to O and endowed with
the strong topology of the conjugate space. It is an open question whether
O is a regular inductive limit. If the answer to this question is negative, then
the topology of O* is stronger than the natural topology of O’ (see the proof
of Theorem 3.5).

We also do not know whether there exist continuous operators from O
(O') into O (O') which are not regular.

According to the definition of subsection 3.6 an operator
(17) A:0— O

is called regular if V¢, 3¢' and the operator A € £ (H(‘;f), H((;‘;)) such that

the restriction of A on H ((;)o) coincides with Af' . As H ((:)o )isa projective limit
()

of reflexive Banach spaces H 0" then Vs, s’ such that operator Aﬁl can be
extended as a continuous operator from H ((;)I ) into H ((;,)). In other words we
have proved

Proposition 1. Operator (17) is regular if and only if V¢, 3¢' Vs 3s' such
that

1 4¢lI(s), < const llgll(s), Ve € H(.

Along the same lines can be treated regular operators

(18) A:0 0O

According to the definition of regular operators in projective limits V£ 3¢'

: e (—o0) (9 (=00) pr(—00)
such that A is a restriction to H((,) of an operator A(e') €L (H(f')oo , H([)OO )

As the inductive limits H ((;)oo), A = £, {' are regular inductive limits and the

operator Aﬁ, is regular, so Vs 3s' such that the restriction of Al to H ((5,)) is

a continuous operator into H ((5)). In other words we have proved




THE CAUCHY AND MIXED PROBLEM 37

Proposition 2. Operator (18) is regular if and only if V£ 3¢' Vs 3s' such
that

14¢ligy) < constlleliis), Ve €.

§4. Convolution in spaces of smooth functions and tempered
distributions

4.1. convolution of continuous functions If f and ¢ are continuous
functions and the expressions f(z — y)g(y) and f(y)g(z — y) regarded as
functions of y are absolutely integrable for each z € R™, then the classical
operation of convolution

(1) (f *9)(z) = / f(z - y)g(y)dy = / fW)a(z — y)dy

is defined for them, and f x g = g * f. First of all we refine the estimates

of the convolution (1) for the scale { C'((;; ) } In particular, we shall present

sufficient conditions on the numbers m;, £;, j =1,2,3, such that
(m1) (m2) (ms) —
Cloy * By’ © By E=C.H.

We start with an elementary but key

Lemma. Let £ > |A\| + n. Then the estimates take place:

(2) If * glcny < const|f]g]glny,

(3) I * gllxy < const|fligllglln-

Proof. As |f(2)] < (1+ |2|%)7%%|f|(r) and the same estimate takes place for
g with ¢ replaced by A, we have

(F*9)(=) < |flolgln /(1 +lz =y M2 + |y P) " 2dy.
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According to an elementary estimate
(1+ |z —y[?)™M2 <22 4 [y YPN2(L + [ )72

the integral in the right-hand side can be estimated from above by the con-
stant (14 |z|>)~*/2, so we have estimate (2).
To prove (3) we put g(y) = (1 +[y[*)"*/2go(y), go(y) € L2, then

1+ BPG = 9@I < Iflo [ K@ nloewld,
where
K(z,y) = (1+ |o)M2(1 + )21 + o — y[?) =2
<214 o — gy N Eh(a —y), he Ly
According to Young inequality

f*glloy = (L + 1Z)M2(f * )| < |floyllh * gol| < const|f|gllgo]l
= const|f|g)llgll(x)-

If fe C((Z), geC ((;;) and ¢ > |\| + n, then applying differential operators
to (1), differentiating under the integral sign and integrating by parts we find

(4) D*t(fxg)(z) = (D°f)* (D?g)) lal <k, B <m.

So we proved

Proposition. Let f € C'((f)),g € C((;';),H((;;). Then the convolution f *x g =

g*x f € Cfg+k),H((:;+k) exists for £ > |\| + n and relation (4) takes place.

From estimates (2), (3) easily follows continuity of the operator

( (m) (m+k m+k
iy By — C T HST (90— frg),

where f € C((f)) and £ > |A\| +n.

Following inclusions directly follow from the proposition:
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(5) §xSCS,
(6) S§x0CS,
(7) S * H(OO) C H(OO) S * C(Oo) C C(OO).

2 (CVI \) \)

4.2. Convolution of tempered distributions

Proposition 1. The operation of convolution defined originally on a dense
subset S x O C O' x §' (see(6)) is continued by continuity to a mapping of
O' x 8' into S'. The resulting operator commutes with differentiation, i.e.,

(4) holds for all a and §.

We first of all give a constructive definition of convolution for f € O' and
g € S'. This definition is faced on the description of elements of S’ and O'.

Lemma. (i) If f € §' then 3X € R, m € Z, such that
F=0+DP)"fo, fo € Cpy).
Gi)If f € O then V€ R, 3k = k(£) € Zy such that
f=0+[D** fe, feeCu.
Now we pose for f € O and g € §'
®) frg=0+DHF " (fexgo), €> M +n.

It can be checked that the definition is correct, i.e., the right-hand side of
(8) depends on f, g but does not depend on the choice of numbers k and m.
In the case of regular functions (k = m = 0) the convolution (8) coincides
with the classical convolution (1).

We now show that

(9) fi—=fin0,9j—>¢ginS = fj*xg; > inS".
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It follows from the definitions of convergence in S’ and O’ that there are
such A\, m,¢ and k = k(¢) that

goj = (1+ID")™"g; = (1+|DI) ™™g = go in Cer),
foj =@+ D) *Of; — (14 |DP)~FOf = £, in Cy).

Since k,m are integers and £ > |A| + n, then
Fi*gi =1+ |DP)*™ (fe; * 9o5) = (1 + |D))**™ (fe * go)in S'.
The direct corollary of proposition 1 and the lemma is

Proposition 2. Following inclusions hold:

— (00) 7(Eo0)
(10) O'x8cCS, S—S,O,S',O',C(e) 7H(l) V¢ € R,

(11) S'xScoO.

In conclusion we note that the convolution of tempered distributions pos-
sesses the properties of associativity and commutativity:

(12) fr(gxp)=g*x(f*xo)=(f*g)*xe, fe€S8,9, ¢

To prove these relations we approximate f, g,y by smooth functions and
use proposition 1.
4.3. Operators of convolution with distributions belonging to O’

By virtue of the results of the foregoing section following statements take
place.

Proposition 1. The operator
cong:®— & (pr— fxp), fe0

is continuous for ® = §,S’, H((z):oo) and C((;)o) and is regular for ® = O, 0'.
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Proposition 2. (i) O' is a commutative algebra relative to the convolution,

(ii) S is an ideal of the algebra O',

(iii) f > cony : & — ® is a mapping of the algebra O' into the algebra
L(®,®) for ® = 85,8’ and into the algebra L;eg(®, @) for @ = 0,0".

In the classical case there is well-known relationship between the convo-
lution and the Fourier operator. Namely, if f,g € Ly, then

(13) (F(f*9)) (&) = @m)"*(F£)(€)(Fyg)(&).

We shall elucidate the proof of this relation. Since f*g € Lq, the left-hand
side of (13) involves an absolutely convergent integral

(ry/7 [ epl-ife, ) ( [ 1t~ y)g(y)dy) d.

Since the integrals with respect to x and y are absolutely convergent, the
order of integration can be interchanged. Hence, the above integral is equal
to

[ expl=ite.eDatw) 207 [ expl=ila =~ v,z - v)ds dy
i.e., (13) holds.
The relation (13) also remain valid when f,g € O'. Indeed, let us define

f * g with the aid of (8), where m and k so large, that for some £ > n we
‘have fo, g0, € C(¢y C Ly. Then

2m) " 2(F(f * 9))(€) = (1+ €)™ £ (€)du(€) = F(£)d(8).

Proposition 3. (i) The relation FO' = M is an isomorphism of algebras.
(ii) The operator cony : & — &, ® = §,0’ is a pseudodifferential opera-
tor with the symbol (21)*/? f(£), i.e.
conj = (2m)"*f(D) VfeO.

By the definition of the Dirac’s delta function §(z) :

(6,0) = @(0) = (2m) "2 / (E)de = (2m)"12(1,5),
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ie., b = (2#)_"/2, whence § € M, i.e., §(z) € O'. Tt follows from (13) that
8(z) is the unity of the ring O':

(14) fxé=6xf=f VfeO.

4.4. Some additional remarks

With each vector h € R™ we associate the translation operator

(Tup) (2) = p(z + ).

It can be easily proved that the operator

®— 2 (p(z) — p(z+h))

is continuous for ® = C((;T;),C((;)o),S and regular for ® = O. From the

definition of the Fourier operator it follows that

(F(Twp)) (€) = exp(i(h, £))P(£), Yy €S,

and the operator Tj on S coincide with the pseudodifferential operator
COl’lg(,_h).
For functions belonging to & we have

(o) = [ ol + Wpe)is = [ olapita - e = (o, T-4).

Proceeding from this relation we can define the translation operator on &',
it is a pseudodifferential operator.

Using the translation operator, we can rewrite the right-hand integral (1)
as

/ F(y) (ITeq) (v)dy,

i.e., the convolution (1) can be defined by means of the relation

(15) (fxo)(a) = (f, ITeyp).
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If pe®=3S8,0, then IT,o € ¥, and the right-hand side of (15) makes
sense for any distribution f € 9'.

We can prove this formula approximating the distribution f € ¢' by the
functions from S and using the continuity arguments.

§5. Convolution equations
5.1. Convolution operators

An operator A : & — @, continuous for & = §,S' and regular for
® = O, is called a convolution operator, if it commutes with translations.

Theorem. Let ® = S,0,S',O'. For each convolution operator A: ® — ®
there is a distribution f € O' such that

(1) Ap =congp=f*xp, Vped.

In partucilar, each convolution operator on S and O can be represented
in the form

(2) (Ap)(z) = (f, ITzp), Yo €S,0, feO.
We begin with proving representation (2).

Proposition 1. Let ® be a space of smooth functions invariant with respect
to translations and reflections. If the topology in ® is stronger than the
topology of pointwise convergence, then each continuous operator A from ®
into ®, commuting with translations is of the form (2).

Proof. We associate with A a family of linear functionals:

(2) (fo, [Trp) = Ap(z).

Since the operators I and T, perform one-to-one mappings of ® into them-
selves, the functional (2') is defined throughout the space ®. The proposition
will be proved if we show that

(1) fz is a continuous linear functional, i.e., f; € ®;
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(i) the functional f, does not depend on z : f; = f € @'

To prove (i) we note that A is continuous operator and topology in @ is
stronger than the topology of pointwise convergence.

(i) follows from the commutability of A with translations. Indeed, for
P € ® we have

(farth) = (fo, ITeT—, Ith) & (AT_, Ip) (2)

def

= T_,(AIp)(z) = (AI¥)(0) = (£,¢).

As regular operators are continuous, in the case of ® = O we have already
proved that every continuous operator commutable with translations is a
convolution operator and for this operator the representation (1) takes place.

In the case of ® = S the theorem reduces to the following assertion

(3) {feS' . frpeSt=feO.

Formula (2) makes it possible to introduce the convolution between f € ¢
and ¢ € ®. A distribution f € @' is called a convolutor if fxp € &, Vo € ®.
The set of convolutors will be denoted €(®). We have already proved that
€(O) = O'. In previous section we proved that O' C €(S). So we have to
show that
(4) ¢S)c o
This statement and other statements of the theorem follows from
Proposition 2. (i) Each convolution operator
(5) A :® — @ (2=5,0)
is continued by continuity to a convolution operator

(6) AT —T (=08

(ii) Let (6) be a convolution operator. Then its restriction (5) to subspace
® = S, 0 is a convolution operator on ®.

Before proving the proposition we complete the proof of the theorem.
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- Let A, : ® — ® be a convolution operator. Then (proposition 1) Ay =
f*p, f €S and (proposition 2(i)) f*x¢ € O', Ve € O'. Since §(z) € O',
we have f = fx6 € O'.

If A: O' — (' is a convolution operator, then the restriction of A to
S is also a convolution operator, i.e., Ap = f*xp, Vo € S where f € O'.
By virtue of the properties of the operator cony, which we know from §4 the
continuous extension of this operator to O' has the form (1).

As was already mentioned, the representation (1) for ® = O follows from
proposition 1. Therefore, proposition 2 implies (1) for & = §'.

In view of propositions 1 and 2, it is natural to put

¢O') = sS), «S")=¢O0),

and statement of the theorem results in a chain of relations

(7) eS)=¢(0)=¢S")=¢(0")=0"
The proof of Proposition 2. (i) If ® = S, then according to proposition

3.7 the continuity of A = cony, f € &', implies that Vs, £ 3s' = s'(s,0), ¢' =
£'(s,2) such that

(8) 1£ % @l < constllell{s).
We shall prove that there exist such functions o(€), A(¢), that we can chose
9) s'=s+0(0), €' =\

Then replacing in (6) s by s — o({) we obtain the estimate

(Sl L]
(8" I1F = ellly) < constllellfs).

According to section 3.9 this estimate means that the operator cony can
be extended to a regular operator from O’ into O'.

If ® =0, then f € O, and the required assertion follows from the results
of section 4.3.

The estimate (6) for s = 0 means that

¢
IIf * @ll(ey < const ||¢||E‘/’\E£;;
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Replacing ¢ by (14+]D|?)*/?¢ and taking into consideration the equivalence
of norms (2.7) and (2.7") we find

s s o(L
I1£%(1 + |D[2)""%0ll(e) < comstI(1 + D)2l

s o(¢ +o(£ s+o(t
< const’||(1 + |D[?) /299][2/\&;; = conStl||‘19||2§(g)( ) — const ||go||§>‘(8§ ),

As (1 4 |£]?) € M the corresponding pseudodifferential operator is an
operator of convolution with a distribution from O’ and commutes with
cong, f € §'. Then the left-hand side can be estimated from below by

1+ DY f x el = IIf * @lly) = const]|f ]I -

(i) We first of all show that a convolution operator (6) commutes with
pseudodifferential operator (1 + |D|?)¥,k = +1,£2,---. To prove this we
note that commutability of A with translations T, implies commutability
with finite-difference operators |h|™! (T} — 1). Passing to limit for |h| — 0,
we see that AD; = D;A,j =1,...,n, whence it follows that A is commuting
with any differential operator with constant coefficients, and, in particular
commute with (1 + |D|?)* for integral values of k > 0. Since the operators
(14 |D2)~*,k € Z, are inverse to (1 + |D|?)*, they also commute with A.

The regularity of (6) for ¥ = O’ implies that V¢ 3¢' Vs' such that

1411ty < const [llI(:).

Using the same arguments as in (i) we prove (9). Then replacing by s — o (£)
we prove continuity of the restriction of A to §. The same way is proved
that for ¥ = &’ the restriction of (6) to O is a regular operator.

As a consequence of the theorem, we can give a description of multipliers
on S and §'.

A continuous function a(z) is called a multiplier on a space ¥ if ay) € ¥
for all 1 € ¥. The multipliers form a commutative algebra which we denote

M(T). Now we shall prove that
(10) M(S) =M(S") = M.
As M C M(S) (see subsection 1.1), it is sufficient to show that

M(S) C M.
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If a(€) € M(S), then the pseudodifferential operator a(D) is defined through-
out S, transforms S into itself and commutes with translations. By the closed
graph theorem this operator is continuous, i.e., it is a convolution operator.
According to the theorem, there is f € O such that a(D)p = f*¢ Vo € S.

It follows that a(é)g(€) = f(€)p(€). Since ¢ € S is arbitrary, we have
a(§) = f(§) e M.

5.2. Convolution equations

Theorem. Let ® = §,0,5',0" and A € €(®) = O'. The following two
conditions are equivalent.
(I) For any f € & the convolution equation

(11) Axu=f

possesses a unique solution u € ®.

(II) Equation (11) has a fundamental solution G € €(®) = O'
(12) AxG =G+ A=¥62x).

Proof. (I)=>(II). For ® = O’ this assertion is a tautology since é(z) € O'.
In the case ® = §,S’, O according to the Banach inverse operator theorem,
which holds for Fréchet spaces and their inductive limits, the condition (I) is
equivalent to the existence of a continuous operator

(13) (cong)™' :® — 8,8=38,5',0.

Since the operator cons commutes with translations, the operator (13) pos-
sesses the same property. Consequently (con A)—l is a convolution operator
on 8,8’ and O. By theorem 5.1 there is G € O' such that (cona)™" = cong.

By the definition of an inverse operator

(14) (A* (G f))z) = (G*(Axf))(z) = f(z), VfeS.
Note that (F * ¢)(z) = (F,IT,p) and (F * ¢)(0) = (F,Iyp). Putting 2=0

in (14) and using commutativity of convolution of elements of O' and § we
obtain:

(AxG,If)= (G, If)=f(0). Vg €56,
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i.e., (12) is fulfilled.

(ID=(1). If G € O’ satisfies (12), then G * f is a solution to Equation
(11) since A* (G x f) = (A* G)* f = 6 f = f. Further, if A+ u =0, then
0=G+(A*u) = (G*A)*u=§+u=u, ie., Equation (13) possesses no
more than one solution. R

The operator cong, A € O', has a symbol A(€) € M, and (II) is equivalent
to the following condition

(I') There are constants ¢ > 0 and p such that

(15) Al > C(1+[ED* VEeR™

Indeed, as FO' = M, the condition (II) is equivalent to

(16) ATY(E) e M.

Lemma. For a function A(€) € M the inclusion (16) takes place if and
only if condition (15) s fulfilled.

Proof. The necessity is obvious and the sufficiency follows from the chain
rule

DA (&) = 3 Camp.p DV A(E) - DT A©)AF1(8),

where 7!, ...,~* are multiindices, 4! + -+ + 7* = & and Cqqt ..o+ are con-
stants.

4.3. Differential equations with constant coefficients in R"
From (15) we derive a weaker condition

(17) A(&) #£0, £€R",

which is necessary for equation (11) to have unique solution. Generally, this
condition is not sufficient, since a symbol fl({ ) € M, satisfying (17) may
tend to zero stronger than any power of |¢| for |£| — co. However, if cony is
a differential operation, i.e., A(£) = P(£), then according to the Seidenberg-
Tarski theorem A(€) — 0 for |¢| — oo not stronger than some power [¢], i.e.,
in view of (17) the condition (II') holds. We have thus proved the following.
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Theorem. A differential equation with constant coefficients
P(D)yu=f

possesses a unique solution in §,0,S"' and O' if and only if its symbol P(£)
is nonzero throughout R".

4.4. Some versions of theorems 4.2 and 4.3

In the conditions of theorem 4.2 an operator

(18) cong : & — &, =8,0,58,0

possesses an inverse operator which is continuous for ® = §,8’ and regular
for & = O,0'. Interpreting the conditions of regularity of these operators
(continuous operators on S and S’ are regular) we conclude, that in the set
of equivalent conditions of Theorem 4.2 can be included following conditions:

(I,) Vs, £ 3s', 0" such that Vf € E®) (13) possesses a unique solution

()
() o _
u€ B, E=H,C.

(Ip) Vs, £ 3s', 0" such that Vf € E® (13) possesses a unique solution u €

(0
") _
E(e') ,E=H,C.

(Ic) V€ 30" Vs 3s" such that Vf € ES) (13) possesses a unique solution

) O
u € E((’)’E =H,C.

(I3) V€ 3¢' Vs 3s' such that Vf € E((;,)) (13) possesses a unique solution
ueEy) ,E=H,C.

In other words, the solvability of (11) in “limiting”spaces induct the solv-
ability in Holder and Hilbert scales, introduced in §1, 2.

The commutability of the operator (18), A € O' with the family of pseu-
dodifferential operators (1 4 |D|?)*/2 implies that if assertions (I,) and (I;)
hold for all £ € R and some s = 3, then they hold for all s, and s’ and £ are
expressed in terms of s and £ by (9).

Thus, the following conditions can be included in the set of equivalent
conditions of Theorem 4.2:

(I.) V€ Fo(£), A(€) such that Vf € HEHO (13) possesses a unique solution

@) (A ()
u € H([).
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(Ir) V¢ 3o(€), (L) such that Vf € 7Y (13) possesses a unique solution

(€)
(s—a(8))
u € H()\(l)) .
(c0) -

Finally, the continuity of an operator cony, G € O' in any H o implies a
condition stronger than (I,) — (Iy).

(Ix) 3¢ Fo(£) such that Vf € H((;;'a(e)) or C((:)-”(l)) (13) possesses a unique
(s) (s)

solution u € H,y or u € Cioy-

In other words, if A € @', then the solution of (13) decrease (increase) at
infinity with the same rate as the right-side, and the difference of smoothness
of the solution and the right-side depends only on the behavior of the solution

at infinity.



THE CAUCHY AND MIXED PROBLEM 51

Chapter 2. Convolution equations in the weighted spaces. Cauchy
problem

§1. General remarks on the scales of weighted spaces and the
theory of convolution in them

If u(z)isa nonnegative function on R™, we can associate with it a scale of

the spaces C(() consisting of m times continuously differentiable functions
with a finite norm

(1) lelpy) = L w(z)(1 + |2?)2| D% p(2)].

" Jal<m

Using the operations of projective and inductive limits we define the spaces

5 C T 50,0

o) (m) [ (o)
(2) Su=Cy = 1Cou 9u=U Cion-
¢

Along with (1) we can introduce the Hilbert norms

1/2

(3) el = > lluDeliy |
la|<u

and the correspondlng (Hilbert) spaces H™ ( e) , their projective limit H (oo))u =
N -y ( e) ) not necessarily coinciding a priori with §,,.

We assume that the weight function p(z) in (1) can take on the values
+00 and 0 on an open set.

In the first case the elements of the original space must vanish on this
set and in the other case we identify the functions differing on the set where
p = 0. Thus, the subspaces ®, and the corresponding factor spaces ®4 can

be interpreted as the spaces ®, corresponding to the respective weights

1, t=ux; >0, 1 t>0,
4 = = .
(4) wz) {-{-oo, t<0 > M) {O t<0
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To extend the theory developed in the first chapter we have to investigate
the following problems.
(I) Sobolev type embedding theorems:

(5) Clfpy CH C O™, kyr! >nf2.

These embeddings imply that
_ (s) _ g(o0) _ (s)
Su={1Hi=How O =UHe,
m, L m

In general, the right embeddings are not true for an arbitrary weight u, so
it is an interesting and difficult problem to describe such weights. We shall
restrict ourselves with the simplest examples of weights for which (5) is true.

(II) The problem of “extension” of the scale H ((;))u to any real s € R. Then
we can define the limiting spaces

(6) (8, =UHGh (0, =NUEE,
¢ s

8,0

Here the left-hand sides should be understood as formal symbols. How-
ever, they have to be interpreted as conjugate spaces, and we came to the
third step of our program.

(III) Duality between the scales and limiting spaces corresponding to the
weights p(z) and p~!(z).

The duality between “zero” spaces:

(Hu)’ = Hl/u

is a direct corollary of Riesz-Fisher theorem. We have to extend the scales
H ((5))1 Ju b0 arbitrary s € R and prove the dualities

Y _ (=9 &)\ _ (=9
(M) (Hu)u) = H_p1/u0 (Hu)l/u) =H_,,)

From dualities (7) follows that the scales {H ((;))ﬂ} and {H ((5))1 /“} are the

scales of reflexive Banach (Hilbert) spaces, so the natural dualities between
projective and inductive limits of these scales takes place. So the relations

(8) (S) = (SN0 (Sipn) =(8),
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are topological isomorphisms, and the relations

(9) (0. =0y, (O1,) =(0"),

are only the isomorphisms of the vector spaces, the topology of the right-hand
sides being weaker than the topology of left-hand sides.

(IV) Convolution, convolution operators and convolutors on the spaces
®,,Py/,, ®=5,0,8,0" If we are able to define the space (2,), ¢ P1/4)
we came to the problem of description of these eight spaces. In reality, we
have to describe only two spaces: €(S,),€(S1/,)- In the interesting cases, as
in chapter 1, convolution operators on S, S1/,, Oy, Oy, can be continued by
continuity to the spaces (respectfully) (O")u, (O")1(u)s (8" )ps(S')u- In other
words

(10) Q:((I)M) = €(\:‘[l/t)’ @(@1/”) = e(\I’l/;t)a

=80, ¥v=0.S§"

From the duality relations between the scales corresponding to p and 1/p
can be deduced natural dualities for the convolutor spaces:

(11) C(®,) =IC((®")1/,), €®1y,) =1€((2"),), €=8,0.
Finally, from (10) and (11) follows that,

(12) ¢(Su) = C((O'),) = I€(O1,) = IE(S)1/)s

(12) Siyu) = C(O)1y,) = 1€O,) = IE((S"),)-
(V) Convolution equation
(13) A*u:f, u,qu),,,, (I):S,O,S’,Ol, AE Q:(q)”)

The main result of this theory is the equivalence of unique solvability of (13)

and invertability of A in the algebra (with respect to convolution) €(®,).
(VI) “Explicit” conditions of solvability. In many interesting cases Fourier

transform exists in the convolutor spaces €(S,,), €(S;,,) even if in the orig-

inal spaces ®,,®,/, it can fail to exist. Then we can define the symbol A
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of our convolution operator. So the conditions of solvability in the spaces
P, D1/,,®=5,0,8", 0" are reduced to one of two conditions:

(14) A"l e FE(S,), A'e F&(Si,)

The first is the condition of solvability in S,,(O0")u,(8")1/4>O1/u, and the
second is the corresponding condition for S1/,,(0")1/u, (8" ), O

Along the same lines as in the case of the weight (4) corresponding to the
spaces of type &, and ®g = ®/®_, we can consider the theory of ®,[a,b)

spaces and the theory of @,{l(_f]o} and convolutors on them, this theory permits

to obtain exact results on the solvability of inhomogeneous Cauchy problem
in the spaces with the weight .

Remark. Let the variables z € R™ be split into two groups: z = (z',z"), 2’ €
R™, 2" € R"™™ and suppose that our weight is a product of weights depend-
ing only on z' or z':

(@) = pa(a")pa(a").

In this case the functions p(z',z") € ®,(R"),® = §,0 are elements of
®,,(R™) for z" fixed and elements of ®,,(R"™™) for z' fixed. In other words
the space ®, can be interpreted as tensor product ®,, (R™) @ ®,,(R"™™).
In the category of spaces considered in these lectures the operation of tensor
multiplication is commutable with the mapping & — €(®), i.e.,

(15) Q:(q)ul ©® (I)Mz) = Q(q’uz) ® Q((I)uz)-

The spaces €(®,;), as a rule, are obtained under a complex combination
of operations of union and intersection of Banach spaces of distributions,
so the tensor product of such spaces is far from an unambiguous notion,
and therefore an intuitive understanding of the right-hand side of (15) as a
space of functions f(z',z") belonging to €(®,,) as functions of &' and to
€(®,,) as functions z" should be supplemented with a formal (and often
rather cumbersome) definition. In complicated situations (15) allows one to
“guess” the structure of the space &(®,), = pip2, knowing the structure
of the spaces €(®,;),j = 1,2. After this the corresponding relations should
be justified rigorously.
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§2. The spaces S|,; and the related scales

If ® is a space of functions or distributions in R™ and w € R", then we
shall denote by @, the space of functions (distributions), having the form

(1) (I)[w] = {u = exp(—w,x)cp, LZAS Q}

endowed with the natural topology. In other words @[, is the space @, of
previous section for u = exp(w, z). In the case of this weight all the results
can be easily deduced from the results of Chapter 1. So we shall present the
main results without proofs and we shall made some remarks which will be
of constant use further.

2.1. If ® is a normed space, then the natural norm

(2) |, <I>M| = |exp(w, z)¢p, P|

is defined in the space (1).
If ® is the conjugate space of ®, the duality of (f,¢),f € ®',p € @
induces the duality of ®[,) and (®')[_,) so that

(3) (Ppy)’ = (2)=uy-

According §1 we can state definitions of the spaces C'((;';[)w] and H ((g [)w] 3 S1e]5 Ol
Interpreting the definitions of inductive and projective limits one can eas-
ily show that passage to such limit “commutes” with multiplication by exp
(w,z), so that

_ et _ (m)
S} = NCoy> Ot =Y N Coypa-

From Sobolev embedding theorems for the scales C'((;T;), H ((;;) trivially fol-

lows corresponding embeddings for C((;)l[i) P H ((;;[L > SO that

() 1 (oo
St =NHGL, 9w =UHgn
14

The scale H ((;))[w] can be extended from s natural to arbitrary s € R, we have
the dualities

)\ _ (s
(3 (B) = B oo
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and (3) holds for ® =S and O.

2.2. The definition of a convolution of smooth functions implies that if
f * g is defined, then so it does for exp(w,z)f and exp(w, z)g, and

(4) (exp(w, z) f) * (exp(w,z)g) = exp(w, z) f * g.

It follows from (4) that if some spaces ®;,5 = 1,2,3, are such that
(5) ®, x @, C @3,

then the inclusion

(5" - P * Do) C Bspy

holds.
All the results of §1.5 remain true when §,S', 0, O' are replaced by S|, - - -,
so that

(6) € (8i) = €(Op) = C((O)w) = €((S)1) = Ol

In subsequent sections we shall need some estimation for Fourier operators
in the spaces (1), and embedding operators, and it will be important for us
that the constants in these estimates do not depend on w. These estimates
demands some accuracy in defining Fourier transform, pseudodifferential op-
erators in the spaces (1) and corresponding norms.

2.3. In relation to Fourier operators, we consider complex space C" of

points ( = ¢ + iw and regard R™ as the subspace {Im{ =0} of C*. We
associate with w € R™ the complex Fourier (Laplace) operator

(1) (€ + i) = (Fug) (€ +iw) = F (explw, 2)) (€)

=2y [ exp(=ile + i a) () da.

For the operator (7) we can write the inversion formula

(8) o(z) = (20)"? / exp(i (€ + iw, ) JB(€ + iw) dE.
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Parseval’s relation is extended in a natural way to operators (7):

(9) (p,9) = (Fop, IF_,%),

where the integral on the right-hand side extends over R™ + iw.

Regarding the Fourier operator (7) we shall consider the spaces ¥[*l of
functions 9(§) on the subspace Im = w such that the functions 9,(¢§) =
YP(€ + tw) belong to ¥ (here w plays the.role of parameter). Accordingly
we introduce the spaces S = C((z)) [w], M =N C((TCZL‘;] The Fourier

m
operator determines the isomorphisms

(10) FuSp=8¥, F(0") =ML
The space M[*! is the ring of multipliers on the space SI*l:
(11) m (SM) = M.

Based on Fourier operators (7), (8) we can define pseudodifferential operators
on spaces of the type of @[

(12)
(wa(D)p = F'a(€é + iw)F,

= (2m) ™ [Lexp (e + i 2)al6 + )€ + i),

2.4. In subsequent sections we shall deal with intersections of spaces ®[,;,
corresponding to different w € R™. If & is a space of regular functions, than
the fact that function belongs simultaneously to ®(,},7 = 1,2 has a natural
meaning. Let ® be a space of distributions, for instance, let & = ¥’ where
¥ is a space of smooth functions. In this case we shall deal with the spaces
of continuous linear functionals on ¥[_,},j = 1, 2. For definiteness, assume
that these spaces contain D as a smooth subset. Then we define ®[,,,) N @[,
as a set of distributions f € D' such that they are continued by continuity
to both ¥(_,,) and ¥

Let us discuss the action of pseudodifferential operators on intersections
of the spaces ®(,). There arises a natural question of about the compatibility
of operators (12) on the intersection: whether is true that

—wo]-

(13.) (] UD)p =(w,) (D), Yo € @, U,
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In view of the definition of intersection of the spaces @, (13) means that

(14) [—wy](=D)Y =[_w,) a(=D)p, V¢ €D.

For symbols of the general form relations (15) are not necessarily fulfilled.
However, (15) are fulfilled under some natural assumptions concerning the
holomorphy of the symbol.

We choose the variables so that the vectors w; and wy dlﬁer only in the
first component i.e., we assume that w; = (y',w') and wy = (v",w'), where
v' < 4". Accordingly we shall write { = (&1,¢').

Note that if ¢ € D, then the Fourier transform zL({ ) is holomorphic in all
variables and decrease stronger than any power of |Ref|. So if the symbol
a(—(1,—¢'—iw") is holomorphic for v’ < Im(; < 4" and increase non stronger
that some power of |Re(;|+|¢'|, then relation (14) easily follows from Cauchy
theorem.

In this case we can omit the subscript w in notation (12).

2.5. Further we shall need some estimation for Fourier operators and
embedding operators for the scales C((?;[)w] H ((;)[ L and it will be important
for us that the constants in these estimates do not depend on w. Such
estimates can be obtained not in the norms (2) but in some equivalent norms
(where equivalence constants depend on w). In particular, for integral values
m and £ we shall consider norms

(15) ]99122)1[)‘,,] = Riulp|< exp(w, z)(1 + |z|*)¥? |D¥p(z)],
m)[w . £/2 o .
(16) el = sup (TIE+ i) 0% + iw)].
EER™ Ja|<m

Repeating literally the argument of §1.1 (see inequality 1.1.7) we derive
Parseval’s inequalities for the scale C((g[)w] with constants independent of w:

¢
B IE )] < const l‘Pl(e-t-n')[w] n>mn,

m ~ (€
Pl < const Blimpmogey ™' > .
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We shall consider analogous integrated norms:

=

D) liellighy = | [ exp@aa+Py ¥ D@ ds )

la|<m

2

(18) el = / (Hle+il?) S 10%(€ + iw) [ d

lo|<m

Parseval’s relation can be written for these norms
(19) / (€ +iw)*0Pp(€ + iw)|” dE = /exp(2(w,z)) |28 D% ()| da.

For # = 0 the relations (19) implies that the operator H[(:]‘) — H([:g) (o —
$) is isometric, i.e.,
el = el
Replacing the Fourier operator F' in the proof of the theorem 1.2.4 by F,,

we find for the norms of embedding operators C ((Z;)K)[w] CH ((;;[L], H ((:;[-:]n ) ¢

C((;';[)w], k > n/2, the estimates independent of w.

§3. Convolutors and convolution equations in spaces of functions
satisfying exponential estimates

In this section we shall realize the above program in the case of the weights

n

(1) w0 T2 =exp | S0 (% (24 +7i(e0)-) |

J=1

where IV = (71,...,7;1), " = (7;',...,7;;) are two given vectors and
z;)+ = x; for +x; > 0 and (z;), = 0 for +z; < 0. The correspondin
+ p g

spaces will be denoted as @/ iy, ® = C((gl), H((gl), etc. The theory of the

spaces @[/ r) depends essentially on the inequality relations for the compo-
nents of the vectors I'' and I'"'.
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As the weight (1) is the product of the weights
exp (vél(fci)+ + 72(»’6:')-)

depending on only one variable, the function spaces corresponding to (1) can
be interpreted as tensor product of the spaces on a line. So to simplify the
notation we shall study in detail only the spaces @[/ rn(R). At the end we
shall make some remarks about the general case.

In what follows we shall use the notions of the intersection and sum of two
TLS.

Let there be TLS E; and E; embedded in TLS E. Denote by E; N E;
the subspace of elements of E;, belonging to E;. The topologies of E; and
E, induce topologies in Ey1 N E;. In case Ey and E; are Banach spaces, the
Banach norm

lo, B1 N Ez| = |, Er| + |g, E2|

is defined on E; N E,.

In the same manner we denote by E; + E, the space of sums ¢; + P2,
p1 € Eq, @2 € E3, equipped with the norm

|907E1+E2|: inf I@15E1|+|S‘927E2|'

$1,P2,p1tP2=¢

If E; and E; are Banach conjugate spaces to E; and E, respectively, then
there are natural duality relations:

(2) (E\NE,) =E,+E, (E,+E) =E NE,.

3.1. The space S, .+ and the related scales (case 7" > ')

3.1.1. We shall study spaces of functions ¢, = C((;;)(R), H((Z;’)(R) on

the line t € R corresponding to the weight (1) in the case n=1, i.e.,
(1) p(v' 4", t) = exp (Yt +9t-).

These spaces we shall denote @[, i), ® = C((gl), H((f)), S, etc. In this

subsection we suppose that 4"/ > +'. Then from the elementary inequality

exp (Y't4 +7't-) < exp(7"t)+ exp(y't) < 2exp(vt4 +7't-)
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(m)

follows the equivalence of the norms |cp|( o el |( ¢, @nd respectively I@IEZ[)7/] +

(m) (m)
el el + el s

(m) (m) (m) (m) g(m)  w
3 Egiy v =Eoi [ VEwwp E=Ca By ("> ).

From this description of the spaces C’((g’[)v,,,y,,] and H((g[) ) and (1.2.17), (1.

2.18) directly follows Sobolev embedding theorems:

(m) (m) (m=r") ,
Clermtr © Hiopr o © Clopyamp #o6 > 1/2

So the scales {C((;")’[)A/,ﬂ,,]} , {I-I((;;[),7 7,,]} are equivalent and

_ (m) (m)
(4) S[V'#Y”] - m C(f)[v Nl ﬂH(f)[‘v ]

(5) Oy vy = L(;J ﬂ C((:)?)v T U ﬂ H((Zn)[)'r’,'r”]'

Remark. Originally, the left-hand sides should be understood as formal sym-
bols. But according to isomorphisms (3) we have isomorphisms:

Sty = Sy NSy Oyt = Opyy N Oy

Moreover, the weight (1') is not smooth in the point ¢ = 0. We can easily
define a weight i (y',7",t) € C* which can be estimated from above and
from below by (1'). Then the spaces @y, =8, O, C((;;), H((g) we can
understand as the spaces of such functions ¢(2), that i(y',7",t) o(t) € ®.
To describe the Fourier transform in S[‘/ ,v'1] 1t 1s convenient to use another

(equivalent) definition of the space C( O "]

Proposition. C(Z)[‘y -] consists of those and only those elements ¢ of the

intersection ) C((g[) P v <y < 4", for which the norm (see the definition of

norms (1.15))

s el
v <<y
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is finite. This norm is equivalent to the original norm in C((g'[)‘/,,_y,,].

3.1.2. 1) We shall describe the Fourier operator in Sj,+ . To this end we

introduce the scale of spaces C((:; ] whose elements are functions (1)

which are holomorphic in the tube domain
(6) TH,¥")={reC,y <Imr <4"},

2) $,(0) = (0 +iv) € C5), 7' <7< 4" and
3) the norm

(m){y' ¥
LA T
v <<y

is finite.

Denote by S [v:7"] the projective limit of the spaces C((;T)l)h o ]

The Fourier-Laplace operator induces the continuous operators

(m) QICRR /
FClexniyy € Clm) n>mn,
—1 O[] (m) '
F7Clmimn ™ © Clopy e ™ >

and the corresponding “Parseval’s inequalities” are fulfilled. As a conse-
quence we have the isomorphism

! 1"

(7) FS['Y’,’Y"] = 8[7 Y ]’ 7“ > ,),"

We define the space

(®) mbT =Y et

m ¢

It is clear, that this space is a ring relative to multiplication, and & [ 5

an ideal of this ring. It follows that for a(7) € M7 the pseudodifferential
operator

a(D)e = exp(—7t)a(D + iv) exp(7t)e

does not depend on the choice of v € (,4"") (see subsection 2.4) and trans-
forms S 4 into itself.
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3.1.3. We now proceed to “extend” Hilbert scale H ((5))[ vy bO arbitrary

s € R. As a “zeroth space” we take the.space H[,/ ,n] of measurable functions
square integrable with weight (1'), i.e., having the finite norm

(9) ey v = e (¥, 7" ) el

Then ¢ € Hy v if and only if ¢ € H,}, ¢' < <~ and the norm

(10) Nelly v = sup  [[p]|1
¥ <y<y!

is finite. =~
Let H"""] denote the space of functions ¥(7) holomorphic in the tube
domain (6) and such that ¢,(c) =¢¥(oc +1y) € H, ¥ <y < 7 and the norm

I = sup |||

v <y<y!

is finite. According Paley-Wiener theorem
(11) FH[.YI,A///] - H[.Y”.Y“],

and the Parseval’s relation takes place
(12) 'HfH[‘y’,»w] — Hfll[‘rl"yll].

Further, the function ¢(7) € H [v'7"] assume for Imr — 7' or 4" boundary
conditions in the sense of H (R,), o = Rer.

It can be proved, that S,/ . is dense in Hiy ), so SI7"] is dense in
g

We introduce the class of symbols

(13) Son = (72 + N2)/2
If N > max{|y|,|7"|}, then (13) is a holomorphic function in the tube
domain (6), more precisely é, nv(T) € C((:;))[‘Y " ] Using pseudodifferential

(s

operators with symbols (13) we define the space H[‘r’) AR the closure of

5[7,,7/,] in the norm

1828 (D)F 11y = IFIIES

¥,y
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From this follows, that we can define H, {( *) 1] 88 the intersection of H [(;,)] NH, [(,:,),]

and as the set of those ¢ € ) H[(,j]), v < v < 4", for which the norm

VA oy = sup (165, MDYl
v

<<y
is finite.
We now define H'® ( ()['y 1] 88 the closure of Sf ;] with respect to the norm
11 = |2+ 1o )f/2f||[ o
ie.,
(s) _ 2\—£/2 77(9) — () (s)
H(f)['r’,'r"] =1+l H[*/ AT H(f)[*/’] ﬂH 1

From this fact we can easily obtain that H ;)[,7, ) can be defined as 6_,, ~(D)
H(¢)[+,v and the corresponding norms are equivalent.
Now we define the spaces

(81 = U B o = (S (NS D

(%) ! '
(O’)[VI’7’I] = U n H(()[’Y'ﬁ’”] = (O )[7;] ﬂ(o )[’Y”]'
(s

3.1.4. Now we study the Fourier-Laplace transform in the spaces @[, 4.

The case & = § was considered above. For natural ¢ we define H ((l; [+'"]

as the set of functions ¢(7), belonging to H ([ ) "] with derivatives 9%, k =
0,...,1. Then

O "]

(s)

F(O ) i = ﬂ U H(f)h' "]

FH(“)

O =H

and

We can prove that the scales H ; [l and C'(()[7 7] are equivalent, which

implies the isomorphism

(15) F(O)yp o = MO,
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The new feature of the spaces @[,/ ] (in comparison to the spaces treated
in chapter 1) is contained in the fact, that it is possible to define the Fourier-
Laplace transform in the space (S')(y 4+ (and along the way in Opy ).

To describe the Fourier transforms of (S8')(y ,nwe have to extend the

C((s)) v (- f)[“/ e ] tez,

denote the space of functions 1 (7) holomorphic in the tube domain T &',¥")
and having singularities on the boundary up to order ¢; in other words the
estimates take place:

scale to negative integral values of m. Let C

l(7)| < Kd™*t (v, 9", Im7) (1 + |7|)°

where
d(')’l,’)’”,w) = min {w - 7’,7” - ""’} .
Then
' u def (-9 !
(16) F(p" )y = = bl U< brr]

l,s

3.2. The space S, .~ and related scales (the case 7' > v")
To establish the duality relations for the spaces treated in section 3.1, we
must introduce and study the spaces related to the weights (1') with ' > v".

2.2.1. The scales C(e)[ ] and 'H(f)['y T E Z4 in this case was in
fact defined above The new fact, arising in this case, is their description in

m) (m)
terms of spaces E(e)h,], E(ﬂ)[,y,,] E=CH.

Proposition. For~v' > " and E = C, H the space E((g[{/, ) coincides with
. (m) (m) . (m)

the linear hull of the spaces E(f)[ 1 and E(()['y”]’ and the norm in E(f)[‘Y’,‘r”]

1s equivalent to the norm of E((;';[)ﬂ + E(()['y”]

Proof. If 4" > 4", then~'"t, +~"'t_ < pt, p =+, 4"". But then the linear hull
of E((gl[)ﬂ + E((gl[)v,,} is contained in E((Z)l[)v’ ) the inclusion (with topology)
takes place

(m) (m) (m)
(17) Eoi + B © By 17>
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To prove the opposite inclusion we take the function x(t) € C*(R), x(t) =
1fort>1and x(t) = 0fort < —1. Thenif f € B, then f = xf+(1-x)f
where x f € E((;T)l[),r,,] and (1—x)f € Eé;?[),y,]. The embedding of the right-hand
side of (17) into left-hand side is a trivial consequence of this partition.

From the proposition directly follows Sobolev embedding theorems for the

scales E((g)‘[)y,ﬁ,,], v > 4", so
_ (m) _ (m) _
Sy =) Cltsporon = [ By vy = Str1 + St

— (m) _ (m) —
0[7/,7//] = U ﬂ C(f)[‘)",‘y”] == LZJ ﬂ H(()[‘Y'yﬁ’] == O["/'] + 0[7111.
¢ m m

3.2.2. To extend the scale H ((;))[7, > v > 4" from s € Z4 to arbi-

trary s € R we shall define pseudodifferential operators in the linear hull
of (8')y] + (8')y)- Let f is an element of this space. Then f can be
represented (non uniquely) in the form:

(18)  fe(S)y) + (S )y, f=F+ 1" F €S )y f€(S )y
Then if a(7) € M['YH’"’/], we pose

(19)  a(D)f =(yy a(D)f +m a(D)f", a€ ML <y

We have to check, that this definition is correct, i.e., do not depend on
representation f = f' + f. Indeed, if we have another representation f =
Fi4f, then f' = £ = ="+ f3 € (8" N(S")y#] = Sjy,4]- But on this
space the operators [yja(D) and (,+a(D) coincide, so the definition (19) is
correct.

3.2.3. Using pseudodifferential operators with symbols (13) we define
spaces H ((5))[7,,7,,] for v/ > 7. Then the obvious duality relation

(Hioly,v) = Hi=pi—ar,—)

valid for arbitrary 4’ and 4" can be extended to the duality

!
_ gr(=s)
) =&

O] -0+, ="

(20) (H“‘)
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From this follow duality relations for limiting spaces:
(21) (@[’Y’ y‘Y”]) = (@,)[—7’,—7"] ) @ = 87 O? 8’7 O"

in the case ® = S (21) is a topological isomorphism.

3.3. Convolutors and convolution equations in & . and @[, 41

for & = S,0,8',0'

3.1. As we mentioned above, if ®;,®,, ®3 are the space of smooth func-
tions and for this triple of spaces the inclusion

(1)1 * (1)2 C (1)3
takes place, then for an arbitrary p € R,
P1gp) * Pofg C Ppa)p-
Let v" > 4'. Using the representations
Bl v) = Q) O By By = Bpy + Py,
we easily see that
@1[7/’7//] * @2[7/’.’/:/] C (1)3[71’7“]7

@1(7'v7”] * @2[71/’7/] C @3[7//’71].

Pseudodifferential operators with symbols (13) can be applied to extend
these inclusion relations to the convolution of distributions as well. We thus
derive the following important relations

(22) (O’)[V'W“] * @[7/,7”] C (I’[‘Y/,"/”] P = S, Ol,

(23) (O,)[’Y'v’Y“] * \I’hn,‘yl] C \I’[../u,.y/] U = O,Sl.

By virtue of (22) (O")(,, ..} is an algebra with respect to convolution and
isomorphism (15) is an isomorphism of algebras.
We have showed that the Fourier operator transforms (S'),, ,») into the

algebra c gives us hope, that (S')

u]‘ is an algebra with respect
to convolution.

[
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The following key lemma takes place.

Lemma. Let f € C(()[.yl,.rul, ’)/" > ’)". Then
(1) Vi 3 such that

Fxg€Cuiyy Y9 € COy -

(i1) VA Ju such that

fx9€Cuyy1 V9 € Conpy -

Proof. (i) According to the hypothesis
()] < const (1+ )~ exp (=9"ts —7't-),

lg(t)] < comst (1 + [t])™ exp (—7't4 —7"t-),

and the desired assertion reduces to the proof of the fact that the integral

I(t) = ] (14 16D + It — 6)~>
exp (Y'ty +7"t- —4"04 —4'0_ —+'(t = 0)1 —4"(t — 6)-) db.

increases not stronger than const (1 + t)™# for A > A(u). We assume that
t > 0 (the case t < 0 is considered in a similar way). Let us represent the
integral as a sum of three integrals

I(t)=I1(t)+Ig(t)+I3(t)=/o d0+/td6+/ood9.

Replacing 8 by —6 and assuming that A > 0 we see that
L(t) = / Q1+6)7*1+t+6)">at
0
< (14t)7*x / (14641 +t+6)" ! < const (14 1) 7*
0

on condition that A > ¢+ |u| + 1.
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Further, for A > 0 we have

Lt = [(A+071+t-0) exp (- ("~ 7))
<1+t /00(1 +6) " exp (= (v" —4')8) d = const (1 +t)™*

if A > u. Finally, when A > 0, then

I(t) = / (140 1+ 68— 1) exp (= (1" — 4') 1) d8
t
[o o]
<14+ exp (= (1" = 1)) / (1+6)7¢ < C,(1 + 1)~
0
provided that A > |¢| + 1.

(ii) is proved in a similar way.

Using the lemma and the representation of the elements of (§')[,/ ) as
differential operators applied to some elements in C(g)[, ] We prove that

(24) (Sl)h’,v”] * Qpyiy) C Ry y), @ =8,0,

(25) (S/)[Vlﬁ“] * \I’['Y':‘Y”] C \II[‘Y'a‘Y”}’ v = O,S'_

In particular, according to (25) (Sl)[‘v’ﬂ”]’ v" > ~' is an algebra rela-
tive to the operation of convolution and it is readily verified that (16) is an
1somorphism of algebras.

3.2. The spaces @[, 4 and @[ 4, ® = §,0,8', 0" are invariant with
respect to translations and therefore the definition of convolution operators
is the same as for the case v' = ~" = 0.

Theorem. Let 4" > +' and let & = S(R),O'(R) and ¥ = O(R),S'(R).
(1) For each convolution operator A on ®(, 4], \I/hu ] there exists a dis-
tribution f € (O'){ys ) such that

(26) ALID = f * (p, V@ c @[717711]’ \P{vll,,yl].
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(ii) For each convolution operator A on @[y ) and Y[, ) there exists a
distribution f € (S8')y ) such that

(27) Ap=fxo, Yo €@y Yy g

Remarks. 1) The right-hand sides of (26), (27) make sense in view of (22),
(23) and (respectively) (24), (25).

2) We can rewrite the statements of the theorem in the following form:
(28)
¢ (S[.),I ’-.,u]) =C ((OI)[’Y',‘Y"]) =C ((O)["/”)'Y']) =C ((SI)[.Y//'.Y/])
= (OI)[,7/,7//] N ')’, < 7".

(29)
Q (8[7/"71]) = Q: ((O')[.Yu‘.,,/]) - Q: (0[7/77111) = Q: ((S,)[,yl’,yll])
= (Sl)[«/y.{/l] s ')’I < ’}’".

Proof of the theorem follows the plan of the proof of theorem 1.5.1.

1) Almost literal repetition of the proof of proposition 1 from subsection
1.5.1 shows that every convolution operator on the space @[, 4], @ =S, 0,
~1,72 arbitrary, can be represented in the form

(30) (Ap) = (f*@)a) € (L ITep), ¢ € By )

with the distribution.

(31) fel ((b[‘n,‘)’z])/ = I((I)I)[—‘h,—w] = (@’)[‘72,’71]'

2) Using (30) we can define the spaces € (@[, .,) for ® = S,0. From
this definition follows, that

C(Styr 1) TS, € (Opy,4) € (0)

¥, v~

As from (24), (23) follows the opposite inclusions, we come to the relations:

(32) Q: (8[.//1171]) = (Sl)[‘)",')’”]? Q: (0[7//’7/]> = (O’)[‘Y,:'Y”]'
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3) Repeating the argument of proposition 2 in subsection 1.5.1 we prove
that each convolution operator A, on @[, -,, ® = 5,0, can be continued
by continuity to a convolution operator A : Wiy, ) = Y[y, 4, ¥ = O, 8"
And the restriction of the convolution operator on ¥[,, .,) is a convolution
operator on @[, .,]-

Now we can define

(33) < ((O,)[‘n,‘rz]) =C (8[‘71,72]) , € ((SI)[‘Yl,'Yz]) =C (O[[‘nﬁz]) :

4) As the spaces (O')[v’,*/"] and (SI)W»‘/“] contain §(z), then € (Y[ ) C
Uiy v, =08 As the opposite inclusions take place (see (22), (25)),
we obtain the relations

(34 €((O)ypn) = (O s C((S ) = (S -
Combining these relations with (32), (33) we obtain all relations (28), (29).

3.3. We can now discuss the question of solvability of the convolution
equation

Axu=f

in the spaces @,/ ) and ®(,» ., where v > 5" and ¢ = §,0,5',0".
As in theorem 5.2 it can be proved that unique solvability of this equa-
tion is equivalent to invertibility of A in the space of corresponding con-
volutors, or to the invertibility of the symbol A(T) in the space of the
Fourier transforms of convolutors. In other words solvability condition in

Styt 715 (Ol)[-,/ A1) Oyt 41 (S’)[—,u ') 18

I,"f”]

(35) AN () e mby
This condition is equivalent to an estimate from below of the form:

(35') |A(T)

> const (1 + |7])*, Im7 <0.

The condition of solvability in Sy -1, (O iy Ot vty (8 )ior i 18
(v'"'] My Y (v, r"]

’ 1"

(36) A Yy el
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This condition is equivalent to an estimate of the form:
(36") l/i(T)’ > const (14 |7))* d™* (v',4",Im7) Imr <O.

In the case when A is differential operator, A(r) = P(7), conditions (35')
and (36') are equivalent (Seidenberg-Tarski theorem) to the conditions:

(37) P(r)#0, Imr <0,

(38) P(r)#0, Imr<0.

So we see, that conditions of solvability of the differential equation P(D)u =
fin 8y, Oy ) are more weak that analogous conditions for Spy 4
and 0[711,7/].

Concluding remark. The theory developed in this section can be ex-
tended without any difficulties to the scales in R™ corresponding to the welght
(1) in the case I'"' > T or r> 1"" The ¢ rmxed” case when, say, v, < 7;
for: =1,...,k < n and 'ka > 7k+1,...,'yn > 7n is more difficult. These

additional difficulties we shall discuss on the example of scales corresponding
to the spaces &4 (R").

§4. Convolution equations in S(R™); and in the related spaces
of functions and distributions

As we mentioned in Introduction, if in the space of functions or distribu-
tions ®(R™) the notion of support is defined, then we can define the subspace

(1) 4 = {p € suppp € RL},
where R} = {z € R®, z; >0}. In what follows we separate out one of
the coordinates, say t = z;, in R", and denote the other coordinates as

@, e,z = (ty), y = (22,...,2n), let £ = (o,n), n = (£2,...,n), be the
dual variables relative to the form (z,{) = to + (£,n) and let 7 = o + 1y be
the complex coordinate dual to t.

As it was explained in §1 the spaces of the type (1) can be regarded as a
weight space ®, with the weight p of the form (1.1").
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In the case ® = S(R"), O(R"), S'(R™), O(R"), n =1 the scales corre-
sponding to (1) are the limiting case of scales &,/ ,#(R), when 7" = 0 and
v' = —00, and we need not new ideas to work with them. The same is true
in the case n > 1. The difficulties arise only in the moment when we try
to define the convolutors and are connected with the fact, that ®; is not
invariant under arbitrary translation operators. Additional difficulties arise
in description of convolutors on O,. To overcome these difficulties we have
to introduce spaces of functions and distributions having different degrees
of smoothness and different behavior 7 at infinity with respect to different
variables and use special kernel theorems.

4.1. The space S; and connected scales

4.1.1. Since the notion of support is defined in D', the general definition of

the subspace @ given above makes sense for ® = S, O, C((;;), H((g), H((;)) , O,

S' C D' and ¥, is a closed subspace, i.e.,
(1) {p; € &4, ¢; — ¢ (in the topology of ®)} = {suppy € R} },

— (m) (s) oot
=5, 0 0, 0y, 0,8

It is suffices to prove this assertion for the broadest of these spaces, i.e.,
for ® = S'. In this case (1) is equivalent to the trivial assertion

{p; €8, (¢jy¥) =0, Y_€S_, pj > ¢pinS'}
= {(¢,-) =0, Vp_€S_} & {suppp €R}}.

The embeddings

EQ) cEGY, m2m', (>0, E=CH

induce the analogous embeddings for the subspaces
E cED), m>m! ¢>¢, E=CH
0+ )+ - 9 e 9 - ’ 9

commutable with the injective embeddings C((:;'j_ — ((;';), H((gj_ — H((;;),

etc. This makes it possible to define the scales of spaces {C((gll}, and
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(O+
manner with the (closed) subspace S; C S,

{H (m) } and their projective limits. The latter are identified in a natural

_ (o) def ) ol
St =Clooyr = N Clo-

In view of embedding theorems

_ (o) 4 g0
St =Hiy = N Hyy

The situation is similar in the case of the space O,

_ (m) _ (m)
O+ =0 N Cipt =Y 0 Hepy

To study the Fourier operator in Sy the following statement is of use :
Proposition. ¢ € C((gj_ if and only if ¢ € C((g'[)ﬂ for all v < 0 and the norm
9 (m) _ cun lol(™
(2) |‘P|(e).+ 7<€ |<'gl(f)[v]
is finite. Moreover

(m) _ j(m) (m)
(2") |‘P|((/)+ = |‘/9|(() , Vp € C(g)+-

Proof. If ¢ € C((;; _)F, then the norm |‘P|§Z;[)-,] is finite, increase monotonically

with v, and attains maximum at v = 0, i.e., (2') holds.
On the other hand, if a function has a finite norm (2), it vanishes at ¢ < 0.
Further, since (2) is finite

(1 + [t D(x)] < lelipys ol <m, v <0.

This inequality is continued by continuity to v =0, 1.e., ¢ € C'((;;l.

4.1.2. Denote by C((g)+ the space of functions of the variable 7, n, 7 =

o +ip, £ = (o,n), possessing the following properties (compare C((;;L)[‘Y Y

for v/ = —00, 4" =0):
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1) the functions ¢(7,n) € ™% are holomorphic with respect to 7 for
LAY (0 p
Imr <0, n € R*L.

2) @4(€) = p(o +iv,n) € C(y) for v < 0 (i.e., cat c Qo C((;v)t)[ﬂ)
2l
3) The norm
(3) |¢|Eg)+ = sup |‘P|EZ)M
v<0

/2 | po :
= sup (1+12 + 1€ 16%0(0 + iv, )|
v<0, EER™, |a|<m

is finite.

Denote by St the projective limit of the spaces C((;')'H, le.,

+ def ~(c0)+ _ (m)+
ST = Cle) =1 Clo’

Theorem. The Fourier-Laplace operator

(4)
Fig(ty)— or) = o™ [ [ exp(mitr = ity et iy d

is defined for all ¢ € St and generates a one-to-one and bicontinuous map-
ping

(5) FS, =S8".
The assertion of the theorem follows from the continuity of operators

m O+ -1, ~(O)+ m
6) F:CGY. ., —Cut, Fliclr . —Cy), nim'>n

The proof of the continuity of the first operator reduces to straightforward
verification of conditions 1)-3) in the original definition. As for the continuity
of the second operator, let us consider inverse Fourier-Laplace operator

(D) B(rym) — wlt,y) = (27) "/ / exp(itr + iy, n))é(r, )Rer di.

Imr=«~
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Since (3(7,n) is holomorphic with respect to 7 and decreases sufficiently
strong for Imr = const, |Rer| — oo, Cauchy integral theorem implies that
the right-hand side of (7) does not change if the contour of integration with
respect to 7, Im7 = v is replaced by the line Im7 =+' <0.

Thus, the right-hand side of (7) does not depend on the choice of v < 0,
i.e., (7) is defined correctly. Applying Parseval’s inequality (we obtain)

(m) O+
el < € 12l mamn:

Taking supremum over v < 0 and using proposition 3.1.1 we find, that

m ~1(O)+
leliy < ClBIt -

Remark. It can be checked that if ¢ € C((ZL)R,)+, n' > n, then $(7,n) assumes

boundary values @(¢) for Imm — —0 in the sense of C((fz). From this follows

that function 1 (7,n) € ¢* assumes boundary conditions for Im7 — —0 in
the topology of S. '
We introduce the space

M =AY e
m £

One readily proves that M is a commutative algebra relative to multipli-
cation and S7 is an ideal of M™. In other words a(r,n) € M are multipliers
on ST and the Fourier-Laplace operators (4), (7) makes it possible to define
correctly pseudodifferential operators

®) (D) =F i a(rym) Forrn)?

= (2m)"/? / a(,m) explitr + iy, n))3(r,n)dE,
Imr=~<0

a€pt, p€py.

4.1.3. Now we can define the scale H ((;)) +- We shall begin from the case

s =/ = 0. In this case p € H; if and only if exp(yt)p € H for v < 0 and

the norm et
lell+ = sup |lelll = sup |lezp(rt)e]]
<0 <0
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is finite. Moreover
lell+ = llell, Yo € Hy.

Denote by HY the space of functions ¥(7,7n) such that

1) they are holomorphic with respect to 7 for Imr7 < 0 and almost all
n € R*7,

2) Y4(€) = (o +1y,n) € H for all v < 0, and

3) the norm

111+ = sup [[]|]
<0

is finite.
There 1s classical

Theorem. (Paley-Wiener). The Fourier-Laplace operator determines the
isometric isomorphism

(9) FHy=H", lell+=lIgll*.

Now we shall consider H_(,_’) spaces for arbitrary s € R.

The theory of the spaces H(®) presented in §1.2 was based on the represen-
tation of H(*) as the image of “zeroth” space H'® = H under the graduating
pseudodifferential operator é_4(D):

H® =§_(D)H.

The analogous representation takes place for subspaces
HY ={feHY, swpfeRy},

if we replace the operators §,(D) (which do not preserve the support of
distribution) by operators 6} (D) with symbols

S

(10) 65 (rom) = (it + VI+TP)

Then we pose

LA = |63 (D))].
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Proposition. (i) The mapping
2O S HSTD O (f o 6H(D)S)

is an isometric isomorphism for any s, T,
(5) f € HY if and only if f = 82,(D)g, 9 € Hs, 1711 =1lol,
(i) f € H_(i,s) ifand only if f € H[‘/] for any v < 0 and the norm

(s) _
IFIE” = sup |13 (D)l

is finite. In this case

WA = A1,

Proof. We shall prove only (1) In view of proposition 1.2.2, it is only required
to show that the operator 6% (D) preserves support in the sense that

supp 67 (D)f C R for f € H,(‘_s).
Take ¢ € #_ and consider

(65(D)f, @) = (f,67(=D)e) .

The operator §1(—D) transforms S_ into itself and the right-hand side is
equal to 0 since the support of f belongs to R"
Denote by H () the image of H under opexator of multiplication by

6% (7,n). Then we have isometric isomorphisms

FEY = =Y, G = 1A

If in the theory of section 1.2.3, we replace H by H and pseudodifferential

operators (1 4 |D|?)*/? by §}(D), we obtain the theory of H((f))+ spaces.
According to the general convention on notation, (S')4 consists of distri-

butions f € S’ whose supports belong to R7?. On the other hand, we can
consider the inductive limit of the scale {H ((;)) +}. One can reading show that

these spaces coincide:

()
('5 )+ - U H(e)+
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i.e., in this specific case the operations of passing to the inductive limit and
to subspaces of elements with support in R} are commutable.
An analogous situation takes place in the case of the definition of (0')4:

N (s)
(O )+ - Q L;J H(e)...-

4.1.4. We denote by H ((g * . where ¢ > 0 is an integer, the set of functions

(o +1v,n) belonging to H(‘*;) together with their all derivatives 0%, |a| < £
and equipped with natural norm. Then we have isomorphism

() _ O+
FH), =HYY, VseR, Wlei,.

These isomorphisms imply that
e
RO - U 5
¢
It can be easily shown that there are embeddings

0+ O+ _ All=r)+
Clm CHy CCy 7 m>m

From these embeddings follows the equivalence of scales {C ((f;+ }, {H ((3 +}
and

(11) F((0')4) = M".

4.1.5. In previous section in the case of functions of one variable we de-
fined the Fourier-Laplace transform in the spaces O(R)[y 4, (S’ (R))h, weE

when v' < ~'". These results are also true in the case v/ = —o0.
Y aé Y

Proposition 1. For a function 1(7) in the half-plane Imt < 0 the following
conditions are equivalent.

(1) 9¥(7) is the Fourier-Laplace transform of a function ¢ € Oy, le., is
represented as an absolutely convergent integral

P(r) = (27)71/? /00 exp(—ut7)p(t)dt, ¢ € O4(R), Imr < 0.

(i1) ¥(7) is holomorphic for Imt < 0 and 3¢ > 0 such that Vm € Z,
|T(r)] < Cm |Im7|~0 (1 4 |7))~™.
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Proposition 2. For a function v(7) in the half-plane Imt < 0 the following
conditions are equivalent.

(i) () is the Fourier-Laplace transform of a distribution ¢ € (S'(R)),,
i.e., Vv < 0 the function ¥(o + i7,n) is the Fourier transform (in the sense
of §') of the distribution exp(yt)p € (O'(R)),-

(ii) the function v(7) is holomorphic for Imt < 0 and there are £ > 0,
¢ > 0, and s such that

[%(r) < ClImr|™* (1 +|7])".

We denote by £+(R) the space of holomorphic functions, described in

proposition 2. For 4" = 0, 4/ = 0 it coincides with the space £[ ’ ”]
considered in §1. So we have an 1qom0rphxsm

(12) F(S'(R)), = LT(R).

4.2. Convolution, convolution operators and convolutors in &4, (O')4,
homogeneous Cauchy problem in decreasing functions

4.2.1. Let functions f(¢,y) and ¢(¢,y) belong to a pair of spaces for which

the classical operation of convolution is defined and let f(t,y) = ¢(t,y) =
Ofort < 0. Then we have

13 U= [ [ fe—tiy = a

//R B (t',y")g(t —t' y —y')dy' dt’,

whence it follows that (f * g)(t,y) = 0 for t < 0. Here, if ®;,7 =1,2,3is a
triple of spaces for which classical operation of convolution is defined

®, x &, C O3,
then we have inclusion relations for subspaces:
D14 xPyy C by

The above assertions remain true in the case of ®; = O', &3 = §’, and
they apply to subspaces of these spaces. To show this it should be noted
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that convolution of (O')+ and (8')+ can be defined with the aid of the pseu-
dodifferential operators §} (D) which transforms distributions with supports
belonging to R} into distributions of the same type. We put

(14) f*9=8{m(D) (((Z(D)f) (62 (D)g)) -
In particular, we obtain that
(15) (OI)'F*(D"' C (I)+7 ¢ ’—’S,O,S,,OI.

From (15) follows that (O')4 is an algebra with respect to convolution
and the isomorphism (11) is an isomorphism of algebras.

The integration in (13) with respect to t extends over a finite interval,
and therefore the growth of the functions f and g with respect to t does
not affect the convergence of the integral. However, some estimates for the
rate of growth with respect to ¢t are needed for convolution to belong to the
required space. In particular we can easily deduce from (14) that (S'(R)),
is an algebra with respect to convolution:

(16) (8'(R)+ +S'(R)),. C (S'(R)),
and isomorphism (12) is an isomorphism of algebras.

4.2.2. f & =§5,0,8',0' then for h = (hq,...,hn), Thd®4 C &4 if and
only if hy <0, i.e., on &, only the semigroup of translations T, h € R" is
defined. However, it suffices to use the semigroup to construct a meaningful
theory of convolution operators in the sense of §1.5.

By a convolution operator A : &, — &, & = §,§', is meant a contin-
uous operator commuting with translations Tj, h € R”. This definition is
retained in the case ® = O, 0’ as well; it is only necessary to replace the
condition of continuity of the operator by the regularity condition. As any
continuous operator on § and S’ is regular, the convolution operators on

S+,...,(0")+ can be defined in unified manner as regular operators com-
mutable with translations T}, h € R™.

In this section we shall prove
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Theorem. (i) Let ® = Sy, (O")+. Then for each convolution operator A :
&, — @, there is a distribution f € (O')4 such that

(17) Ap = conpp = f*xp, Vo€ oy

(ii) Let n=1 and ® = O(R), S8'(R). Then for each convolution operator
A:®, — &, there is a distribution f € (§'(R)), such, that (17) holds.

The assertions of this theorem are proved following the scheme of theorem
1.5.1. On this way arise difficulties of technical character connected with
mentioned above fact of invariance of our spaces under only semigroup of
translations.

The generalization of (ii) to the case n > 1 (as it was mentioned in the
beginning of this subsection) demands new ideas and will be given in the
next subsection.

4.2.3. As in §1.5 we begin with an analog of proposition 1 in 1.5.1 for
convolution operators on S and O4. To this end we must select a space of
distributions which a priori contain those f for which the convolution (1.5.2)
make sense for ¢ € S4, 04 and z € R™.

Consider the family of subspaces

® (—oo,c] = {p(t,y) € ®, p(t,y) =0 for t >0}, &=8,0.
We have the natural embeddings
®(—o00,c] C B(—o00,c'], c<{,

the right-hand space inducing a topology in the left-hand space equivalent
to the original topology. Consider the inductive limit

P = U &(—o00,c|,
®, is a strict inductive limit and according to the result by Bourbaki is a

regular inductive limit, and, consequently, the conjugate space ($)' can be
identified with the projective limit

(2ec) = 1) (B(=00,])"
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However, we shall not use this description of (®.,)'. Since D is dense in @,
the space (®o)" will be interpreted as the set of those f € D' which are
continued by continuity to any space ®(—oo,c], ¢ > 0.

We note that if ¢ € @4, then

(ITeye) (' y") = @t =ty —y') € B(—00,1],
and therefore, for ¢t > 0 the expression

(18) (f* )t y) = (f, IT(1,)9)
is defined for ¢ € &, and f € (®o0).

Proposition 1. Let ® = §,0. Then for each convolution operator A :
®, — & there is a distribution f € ((®o)'), such that the operator A is
represented in the form (18).

Proof. Since the topology of Sy, Oy is stronger than the topology of point-
wise convergence, the functionals a,:

(az,¢) = Ap(z), Vo€ &y
are continuous, i.e., a, € (®4)" and a ) = 0 for t < 0. Put f; = IT;a,.
Then f(,,) € (®(—o0,t])" and

(fo: ITp @) = (az, ) = (Ap)(z).

The proposition will be proved if we show that the functionals f;, = =
(t,y) are the restrictions to (®(—o0,t])’ of a universal functional f € (®)’
with supp f € R}. The invariance of 4 with respect to the translations

T(o,y) and the commutability of A with these translations immediately imply

that the functionals f; ) do not depend on y, i.e., f(; ) = f(t,o)défft.

Let ¢ € ®(—o00,t], i.e., v = ITyp, ¢ € &4. Then, as was already men-
tioned, (ft,v) = (Ap)(t,0). If t' > t, then the functional fy is defined on a
broader space ®(—o0,t'] D ®(—00,t] and

(fo,¥) = (at',T~t'I¢) = (ay, T—p11¢)

= (AT_v4e0) (t',0) = T_p 1 (Ap)(t',0) = (Ap)(t,0) = (fi,¥).
We have thus shown that f; = f and (f,¢) = 0 for ¢ € &(—o00,1], t < 0.
The proposition is proved.
The proposition makes it possible to define spaces of convolutors on Sy
and O4:

€(¢+): {fe((q)oo)l)-{-a .f*99€¢+ v99€(1>+}7 @'—'—‘S,O
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Proposition 2. (i) Each convolution operator A, : &4 — &4, ® = §,0
is continued by continuity to a convolution operator A : ¥4 — ¥, where
v=0,8"

(ii) Let A: ¥4 — ¥y, ¥ = O, S' be a convolution operator. Then its
restriction A, to the subspace &, = Sy, is a convolution operator on
o, .

The proof of this proposition (as proposition 2 in 1.5.1) is based on the
commutability of A with differential operators, in particular, with the oper-

ators (:D; + l)k1 (1+ |Dy|2)k,2 , ki,ky € Z,. Therefore A commutes with

the inverse operators (D¢ + 1)"k1 (1+ IDylz)_k2. It can be shown that
we can graduate Sy and O with the aid of these operators. Repeating the
proof of proposition 2 in 1.5.1 we prove the desired assertion.

According to proposition 2 we can pose

(19) C((0)4) =€St), €((8")+) = €O4).

4.2.4. Proof of the theorem. The general plan of the proof is the same
as in theorem 1.5.1. We extend convolution operators from S4,O4 to the
spaces (O')4,(8')+ which contain §(z). From this follows that

(20) €(S4+) C (04, ¥O4) C(S)+.

The inclusion opposite to the first inclusion is proved above (see (15)), so
we have

(21) €(Cy) = €((0)4) = (O)4.

The inclusion opposite to second inclusion in (20) is true only in the case
n =1 (see (16)), so

(22) C(O+(R)) =€ (S'(R)}) = (S'(R)), -

But technically, the proof of (20) differs from the analogous proof in Chap-
ter 1. There the convolutor a priori belonged to §', and it was known in ad-
vance that the operation of convolution was associative. We now only know
that convolutors are distributions belonging to the space (Soo)’, and the as-
sociativity of the operation of convolution has to be proved directly. Here
some additional difficulties appear in relation to the fact that (Se,) may
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contain infinite-order elements. The desired assertion about associativity is
contained in the following lemma.

Lemma. Let A:S; — S be a convolution operator. Then

(23) Alg+p)=(Ag)*¢ Vg,p € Sy.

First of all we shall accurately prove the first inclusion (20), the second is
proved the same way. We select a sequence §;(z) € 84, 6;(x) — 6(z) in the
topology of O'. By the lemma

(24) A8 * @) = (A;) x ¢.

According to proposition 2(i) the sequence {A44;} converges to some dis-

tribution Aédz-elff € (O")+ in the topology of O'. Since this topology is not
weaker than the topology of §', for j — oo the expression

(A8; ) (t,y) = (A8;, IT(,,)¢)

tends to f * ¢ at each point (t,y) for a fixed function ¢ € S;. On the
other hand, the sequence §; * ¢ converges to 6 * ¢ = ¢ in § and therefore
A(6;*p) = Ap in S, and, all the more, this convergence takes place at each
point (¢,y). Thus, the passage to limit in (24) results in (17).

Proof of the lemma. To shorten the notation we shall give the proof forn = 1.
With regard to proposition 1, we must show that

(25) (Fx(g*x)(t)=((f*rg)*e)(t), VYg,p € Sy

Take an arbitrary T > 0. We shall prove (25) for t < T. In this case f
can be replaced by a finite-order distribution fr € (S§')4 such that

(26) (f*)(t)=(fr*y), YYes&;, Vi<T.

To prove this we note that if 1) € ¢4, then ITyp = (t —t') = 0 for t' > ¢,
and therefore the left-hand side of (26) does not change if f is replaced by
xtf where yr € C®, xp = 1fort < T and x7 = 0 fort > T + 1. The
functional f € €(S;) C (®wo) is defined for those functions belonging to §
whose supports are bounded from the right. Therefore the functional x7f is
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defined and continuous throughout the space S, i.e., fr = xrf € §', which
proves (26).

Replacing ¢ in (26) by ¢ * f and, as in Chapter 1 using commutativity of
convolution we find

(Fx(g+@)(t) = (Fr (g x0)) = (fr ) * 0) (1) = / (Fr * 9) (t — t)p(t")dt!

- / (f * )t = t)p(t)dt' = ((f *g) * ) (1).

4.2.5. Now we can repeat the argument of theorem 1.5.2 and prove that
convolution equation

Axu=f Ae(0);

for any f € S, (O')4 have the unique solution u € S;,(0')4 if and only if
there exists the fundamental solution G € (O');. The last condition means
that

A™Y(7,n) € F(O")4 = MT,

or there are such constants ¢ > 0‘, p that
(27) [A(r,ml > C(L+ 7|+ [n))*, Imr <0.

In the case of differential operators A = P(D)é the last condition accord-
ing to Tarski-Zeidenberg theorem is equivalent to the following condition

(28) ' P(r,n)#0 Imr <0, (Rer,n)e€R"™
So we proved :
Theorem. Differential equation
P(D)u=f

possesses a unique solution in Sy and (O')y if and only if condition (28)
takes place.
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4.3. Kernel theorem, convolutors in O, and (§');, Cauchy prob-
lem in increasing functions

We can interpret the space O, (R?) as a tensor product O (R;)®0O (R;“l).
Then according to the remark in §1 we have to interpret the space of convo-
lutors on O4 as a tensor product of the form

(29)  €O04) =COL(R))@C(O(R"™)) = (S'(Re)), @O (R7™)..

In other words €(O4) consists of distributions which are decreasing with
respect to y and, in general, may increase as some power of t. So before
studying convolutors in O, we have to introduce new classes of functions
and distributions with different behavior with respect to various variables.

4.3.1. Let the variables z € R" be split in two groups: z = (z',2"), z' €
Rm7 ZE” [ R‘n—'m
The space C((;n‘(,’ )2 consists of functions ¢(z',z") continuous together

with their derivatives D), Df,,go, la] < my, |B] £ my and having a finite
norm

el em® = sup (14 |2']2)/2(1 + |2"2)%/2 | D2, D,,, ()]
zlean’ .’L‘” GRn—m
la|<my, |B]<m2

These spaces form a 4-parameter scale whose projective limit coincides with
S. Similarly we can obtain @ as an inductive limit of projective limits of
these spaces.

But this new scale permits to define the new space

(30) k=Uczw=U N cuo
£y

£2 my,ma vel

It is obvious that if po(z', ") € K then for fixed '’ this function belongs to
S(R™) and for fixed 2’ it is an element of O(R"~™). The following embedding
with topology takes place

SCKcCO.

We shall need the space K' dual to K. To introduce this we have to intro-

duce the scale of Hilbert spaces H, (a1, (,2)) , equivalent to the scale C(ml’egz)
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We introduce the spaces

H,, 0y = (1+|2') 702 (1 + |2"P) 2 H(R™),

H(sl, s2) (1 + |D1|2)—31/z(1 + |D"|2)_32/2H(R"’),
and equip them with their natural norms. Following the definition of H ((;))
spaces we can introduce

(31) H((Zl’;:)) — {f € 99’» (1 + le|2)—l’1/2(1 + |x11‘2)€2/2f € H(sl,sz)} :

(31') IH((;II: ;22)) — {f €y, (1+ |D'|2)31/2(1 + IDH|2)82/2f € H,, [2)}

and endow them with natural norms. Since pseudodifferential operators in
variables z'(z'') commute with operators of multiplication by functions of
z"(z") the proof of proposition 2 in section 1.2.3 implies the equivalence of
the norms and thus coincidence of the spaces (31) and (31').

Embedding theorems of section 1.2.5 are extended to above spaces and

, - (o0, 00) __ (81, 82)
(30") }\“'—UH(oo,fz) ‘U ﬂ Hig gy -
0y '

£y 81,82,01

For our spaces the duality relations hold

(s1, 82)" _ gp(—s1, —s2)
(32) H(fxy l) T H(—fl, —£3) "

In view of this duality the space

_ (—o0, —0c0) __ (s1, s2)
(33) K' = ﬂ H(—oo, ) 2 ﬂ H(fll, f:)
12

81, 82, El

regarded as a vector space coincides with the space of continuous linear func-
tionals on K. As to the topology, we supply K' with the topology of projective

—o0, —00)
—o0, £3)

tributions belonging to X' have a finite order, increase in z' not stronger
than some power of |z'| and decrease in z'' stronger than any power of |z"|.

The following embeddings (with the topology) take place

limit of the spaces H, (( (which are regular inductive limits). The dis-

O'cK'cS§'.



THE CAUCHY AND MIXED PROBLEM 89

K' can be thought of as a tensor product

’C'(Rn) =‘ S,(Rm) ® OI(Rn—m).

4.3.2. With each distribution a € S(R™) we can associate an operator
(34) A:S(RY) — S'(RY)
determined by

(35) (Ap, ¥) = (a, vb), Ve € S(RE).

The left-hand side in (35) involves the value of the functional Ay €
S'(R™ ™) on the element ¢ € §' (R*™™), and the right-hand side contains
the value of the functional a € §'(R™) on the element

e € S(R™) x S(R*™™) C S(R™).
Similarly with each a € K' we can associate an operator
(36) A:S(RY) — O (RLT™M),

since in this case we can take the functions ¢» € O (RZ7™) in (35).
Theorem. (i) If a € S'(R™) then the operator (34) determined by means of
(36) is a regular operator from a projective to an inductive limit, i.e., there
are sy, S9, {1, and €, such that

(37) l4¢lli) < Cllell(s).

In the case a € K'(R™) Vl; sy, sq, £y such that (37) holds.

(i1) For each continuous operator (34) there is a distribution a € S'(R™)
such that the operator is represented in the form (35).

If the image of the operator (34) belongs to O' (R*™™), then a € K'(R™).

Proof. (i) If a € §' then Jsy, sq, {1, €y such that a € H((:;:,’ i’e)z). According

to Schwartz inequality
(—s1, 81, —8
(e, ) < Hlall( 23833 Hewllis: 233

= all5) Tl 1l 3.
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According to inverse Schwartz inequality

(37" 4@l < NalliZ3 52 Hlelliey) = const llpll(22)-

In case a € K', given an arbitrary £, there are s, s, and ¢; such that
(37'") holds.

(ii) According the general theorem 3 in subsection 1.3.6 continuity of the
operator (34) implies its regularity, i.e., existence s1, $2, ¢; and ¢, such that

(37) is fulfilled. Put

Ach = (1 + IDI/|2)—U2/2 ALP

If o, is sufficiently large, then A, is continuous operator from H ((Z‘)) (R™)

into C(g,) (R ™), ie.,

(38) 20l < Crllellley.

It follows that (A2¢) (z"") is continuous linear functional on S(R™ ) for each
2", and, consequently, there is a distribution a(-,z") € S'(R™) depending
on z' as a parameter such that

(A20) (2") = (az(-,2"), ).

Put _
al(x', :E”) = (1 + lDrrlz) 712 ag(-’ .’I:").

Then we have that

(39) = (1 +IDwl) (1 D) € BT,

If the image of the operator (34) belongs to O'(R™~™) then V¢, it belongs
to H((;?;”) (R*~™), and the closedness of graph of A in & x §' implies its

closedness in § x H (((f; ;’o). Thus, for any ¢, the operator

(40) A:S(R™) — H{ S (R™™)

)

is closed. Since S is a Fréchet space and H ((;2 ())o is an inductive limit of

Fréchet spaces, by the closed graph theorem, the closedness of the operator
(40) implies its continuity.
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The continuity of the operator implies its regularity and existence of s1, s,
and #; such that (37) holds. Therefore, the above argument implies that the
operator (36) is represented in the form (35) where for any £, a has the form
(39) with a fixed k > (n — m)/2. Hence, according our definitions, a € K'.

4.3.3. To study convolutors in Q4 we shall need another version of kernel
theorem.

With each distribution a € K'(R"™) we can associate, along with the oper-
ator (34') from S (R™) into O’ (RZ7™), another operator

(41) A:ORE™) — S'(RY)
determined by (cf. (35))

(42) (Ap, ¥) =(a,09), ¢ €ORT™), »eSRY).

The kernel theorem in application to the operator (41) reads:

Theorem. (i) If a € K'(R"), then the operator (41) determined with the
aid of (42) is regular, i.e., ¥l 3 sy, sy, {1 such that

l4ells) < Cllelliys), Ve e Hipy (RET™).
(ii) For each continuous operator (41) there is a distribution a € K'(R™)
such that the operator is represented in the form (42).

Proof. (1) If a € K' then Vé; 354, sq, £; such that a € H((zl" :;:)), and then

we can repeat the argument of the theorem above (see item 4.3.2 ).

(ii) Since O is an inductive limit of countably normed spaces for which the
first axiom of countability holds and S’ is a regular inductive limit according
to theorem 3 in subsection 1.3.6 the continuity of the operator (41) implies
its regularity, i.e., ¥l Jsy, ¢, such that the operator

. gy (o) 1— (s1)
is continuous. Therefore, there is sy such that this operator is continued by
continuity to a continuous operator

. (s2) n—m (s1) m
A: H(ﬂ:) (Rx“ ) - H(fll) (Rz’)v
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i.e., (37) is satisfied. It now remains to repeat almost literally the proof of
theorem above.

4.3.4. Now we confine ourselves to the case m = 1,so0z' =t € R, " =
y € R*~1, We can imagine the space K'(R™) as the tensor product §'(R;) ®
O' (Rp~1) and (K'(R™)), as (S'(R4)), @O’ (Ry~!). As the Fourier Laplace
transform is defined in (§'(R)), and O’ (R™~1) we can expect that the same
is true for the space (K')4+, and on intuitive level we can represent this space
as LY(R) @ M (R™1).

Denote by £LT(R") = L* the space of functions (7, 7) defined for Imr <
0, n € R™!, holomorphic with respect to 7, infinitely differentiable with
respect to n and such that 3¢ > 0 such that V3 3Kg, sg such that

(43) |07%(r,m)| < Kgllmr |~ (1+ 7] + [nl)®.

Theorem. A function +(7,n) is the Fourier-Laplace transform of a distri-
bution ¢ € (K')4 if and only if 9 € LY, i.e., the isomorphism

(44) F(KYy =Lt
takes place.

We shall not give the proof, it uses the ideas of the proofs of analogous
results for (§'(R)), and O' (R"7!). Pseudodifferential operators permit to

reduce the theorem to the case of spaces C((g’lm))‘z)+ of continuous functions.

Then we can separately study the behavior of the Fourier transform of the
function with respect to t and to y.

4.3.5. Now we shall discuss the convolution with distributions from (K') 4.
As we mentioned above, if functions f(z) and g(z) are equal zero for ¢t < 0,
then the growth of functions with respect to ¢ does not affect the convergence
of the integral which defines the convolution. We have the following :

Lemma. Let f € C(y,, ¢,), 9 € C(ay, 2,) Where £y > |A2| +n — 1. Then
f*9€Cu, ) where p < =] — [A| = 1.

Representing elements of (K')4 as differential operators applied to func-
tions from C(,, ¢,) (¢2 can be chosen arbitrary) we obtain following inclu-
sions:

(45) KNy +xdy C Oy, @=0,8 K"
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From (45) for ® = K' it follows that K' is an algebra with respect to
convolution and the isomorphism (44) is an isomorphism of algebras.

4.3.6. Now we can formulate the main result of this section.

Theorem. Let ® = O,S'. Then for each convolution operator A : & — &
there is a distribution f € (K')4 such that

(46) Ap = congp = f+p, Vo€ d,.

Proof. If follows from (45) that

(K4 C €(24).

So to prove the theorem we must prove the inclusion :
(47) €¢(04) C (K4
The case ® = §' follows from the relation (.,.).

Let A : O(R); — O(R™); be a convolution operator. Then for a fixed
function ¢ € O (R;’"l),

O(R;) — O(Ri)+ (#(t) = (Ale9))(¢,0)).

is a convolution operator. As we already proved for convolution operators
on O(Ry )4 there is a distribution Fy € (§'(R4)), such that

(48) (Ae))(t,0) = (Fy x ) (1).
Now we consider the linear operator

(49) OR;™) — (S'(Ry)), (= Fy).

Lemma. Operator (49) s a continuous operator.

We now apply kernel theorem (see item 4.3.4) to the continuous operator
(49). According to the theorem, there is a distribution a € K' such that

(a,x¥) = (Fy, x), Vx € ¢(Ry).
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Substitute the function x(s) = ITyp(s), where ¢ € S(R)4, into this rela-
tion. With regard to (48), this results in

(50) (a,(ITyp) $) = (Fy, ITip) = (Fy * ) (t) = A(e9)(t,0).

On the other hand, we have also proved that there exists a distribution f €

(Oo)'),4 such, that A is the operator of convolution with this distribution.
Therefore

(A(e))(t,0) = (f,(ITep) ¥)
comparing this relation with (50), we see that
(a,(ITep) %) = (f,(ITip) ), Vb € O (R"™Y), Vo € S(R)..
The set of the functions
(ITip)y, ¢ €SMR):, peO(R™), t>0

and their linear combinations is dense in the space K(R"), and therefore the
functionals a € K' are uniquely determined by their values on these functions.
We have thus proved that

f=ae K N(0x))y = (K')s.

Proof of the lemma. By virtue of the closed graph theorem (holding for in-
ductive limits of Fréchet spaces, in particular, for O), it suffices to show that
this operator is closed, i.e.,

{¢j = 0in O (R"?), F,, — Fin (S'(R)),} = {F =0}.

Indeed, if o(t) € O(R;) and %;(y) — 0 in O (R"7!), j — oo, then
e(t);(y) — 0) in O(R™), and, by the continuity of convolution operator A,
we have (A(py;))(t,y) — 0 in O(R™). According to definition of Fy (see
(48))

(A(pp))(t,0) = (Fy, *¢) (1) — 0, j — oo

Thus, if F is the limit of the sequence Fy,, then
Fxp=0 VeeOR),.

As in the spaces S'(R)4, O(R); the Fourier-Laplace transform is defined,
passing to Fourier-Laplace transforms we see that F(7)p(7) = 0 for Im7 < 0,
whence F(7) = 0.
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4.4.5. Theorem. Let A € (K')4. Then following conditions are equivalent
(1) For any f € (§')+ the convolution equation

(51) CAxu=f

possesses a unique solution u € (S')4.
(II) Equation (51) possesses a fundamental solution G € (K')4, i.e. A is
an invertible element of the algebra (K')..

Remark. It should be noted that the theorem above (in contrast to theorem
1.5.2) does not involve the space O4. This is due to the fact that unique
solvability of (51) in the space Oy implies (by the closed graph theorem)
that the operator cony : Oy — O possesses a continuous inverse operator
commutable with the translations T,, h € R®. However it is not known
whether the operator is regular and, hence, whether it is a convolution op-
erator. Therefore we cannot assert (as in the case of S and (§')4) that
(cony)~! = cong. We note that the condition (II) is sure to be sufficient for
the solvability of (51) in O4.

Since the Fourier operator is defined in (K')4, the condition (II) is equiv-
alent to the invertibility of the symbol A(r, 1) in (K')4, i.e.,

AN, p)e Lt

The last condition is equivalent to the following condition.
(IT") There exist constants ¢ > 0, p and v such that

‘A(T, n)

> C(1+ |7| + o))" Imr|”, Imr <0, n€R"L
The condition (II') implies necessary condition for solvability in (S')4:

A(r, 9)#0, Imr <0, neR"

In the case of differential operators, i.e., A = P(Dy, D)6 the correspond-
ing condition

(52) P(n, 7)#0, Imr<0, neR*L

is necessary and sufficient for unique solvability in (S§')4+ and sufficient con-
dition of solvability in O4.
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§5. Convolution equations in a finite strip
5.1. Scales of spaces in a finite strip

According to the notation in the Introduction ®[a,o00) and &(—o0,d] will
denote the subspaces of ® consisting of those elements of ® whose supports
belong to the half-spaces t > a and t < b, respectively. As was already noted
®la,00) = T, P4 and ®(—o0,b] = T_3;@_ where T, = T(o,q)-

For a < b we put

(1) Cila,b) = € la, 00)/C{py b, 00)

and introduce in these spaces the natural quotient norm

: (m)
(el = intlee + =I5

where ¢, is an arbitrary representative of the residue class ¢ and ¢_ €
C!
Cley [b,00).

The embeddings of subspaces

mhw%ﬂQWMwLCﬁmm%ﬂquw)

where £ < ¢/, m < m' induce the embeddings of factor-spaces (1), i.e., the
later form a projective scale, and we can consider projective limit C ((:2)) [a,b).

We have

def m

(2) Sla,b) = C(Z)la, )< N € la,b),
where the left-hand side should be understood as the factor space of S[a, 00)
relative to the subspace S[b,00). These relations can be derived from the
general results on projective limits of Fréchet spaces. In what follows we
shall not use this relation and the right-hand side of (2) can be regarded as
definition of S[a,b). A similar situation takes place in the case of the space
O

Ola, ) = un@?hm

Proceeding from the Hilbert spaces HE ( (), we put

Hj)la,0) = H{y)[a,0)/ H{;) [b,00)
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and introduce in these spaces the natural quotient norms.
The operator §} (D) commutes with translation operators T—,, T_; and
in a natural way induce the isomorphisms:

6;*'(D)H((;))[c,oo) H((:) T)[c,oo).

These isomorphisms induce the isomorphism of the factor spaces:
63 (D)H()[a,b) = H G "[a,b).
The embedding of subspaces

(m—k
C((Z_) yle,00) C H(,) [c,00) C C(y )[c,oo), c=a,b, k>n/2
imply the embeddings of factor spaces

m) m (m—k
C((H. )[( b) C H(((,))[a,b) - C(p) )[ )

whence if follows that
Sla,b) = ﬂH((;)) [a,b), Ola,b) = Uﬂﬂ((;’)) [a,b).
We put

(3) (8"a,b) = JHla,b),  (O")[a,b) = ﬂUH((j)) a,b).

We do not verify the correctness of these definitions, i.e., the relations
(')]a,b) = (8')]a, 00)/ (@b, %), @ = 8,0
are not proved, and (3) can be understood as definitions of left hand spaces.
Remark. If we define for a < b
®(a,b] = B(—oc, b}/(~00, ).
Then in the case & = C{j’, H}),

®(a,b) = IP®[—b,—a)
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and therefore any assertion proved for the spaces ®[a, b) is extended in trivial
manner to the spaces ®(a,b] and vice versa.

The form [ f(z)p(z)dz, {f,¢} € & x S can be defined correctly on
Sla,b) x S(a, b] or S(a,b] x S[a,b). It is continued by continuity to

HZa,b) x Hy)(a,b) or HZp)(a,b] x H;)a,b)

and induces the duality relations
! !
s —3) (s) _ (—s)
(4) (H((()) [a, b)) = H)(a,b), (H(e) (a, b]) = H})a,b),

so the spaces H ((;)) [a,b) and H ((;))(a, b] are reflexive. Then S[a,b), S(a,b] are
projective limits of reflexive spaces, (S')[a,b), (S')(a,b] are regular inductive
limits and the dualities

(5) (Sla, b)) = (8")(a, 8], (S(a,b])" = (5)[a,b)
are topological isomorphisms, and
(6) (Ola,b))" = (O')(a, 8], (O(a,b])" = (O)[a,b)

are isomorphisms of vector spaces.

Starting from the spaces % 32), ® = C, H, corresponding to the parti-
g p ([11 e?) g

tion R? = R, +R;‘“1, we can define in a natural way the spaces @EZ: ;:)) [a, b).

We note, that the elements of the spaces @E;i” Z)) and @Ef\‘l” Z)), ®=CH
are of the same degree of smoothness and differ only in the character of
growth (decrease) relative to t for ¢ — +oo. It can naturally be expected
that this distinction disappears when one passes to a finite strip. Following

isomorphism can be easily proved

(7) B a,b) = L) VO, M, @ =C,H.

With regard to the description of spaces K' and O' we obtain the following
important isomorphism

(8) (’C,)[aa b) = (Ol)[a’ b).
By analogy with isomorphisms (7) we can obtain the isomorphisms:

(9) ®la,b) = @, [a,00)/P(,[b, o)
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which holds for any p € R and —o0 < a < b < 400.
5.2. Convolution operators in a finite strip.

From the definition of convolution of regular functions it trivially follows
that if for the spaces ®;, ¢ = 1,2,3 the inclusion

(10) @1 * (1)2 C @3
takes place, then the inclusion relations
®,[0,00) * D2[c,00) C P3¢, )

take place. Whence it follows that the operator cong, f € ®1[0,00) is ex-
tended in a natural manner to the factor space ®;[a,b) and we have

®,[0,00) * ®3[a, b) C ®3]a,b).
Further, since according to the definition of convolution
®,[b— a,00) * Pyla,00) C 3[b, 00)

the operator con,, g € ®;[a,00), transforms ®;[a,b) into zero, we come to
the relation

(11) $,[0,b — a) * y[a,b) C P3(a,b).

Using definitions of the spaces of distributions we can easily obtain from
(11) the following inclusions

(12) 0'[0,b — a) * ®[a,b) C ®[a,b), &=S8,0,5,0"

If h € R", then the translation operator T} : ® — ®, where ® is one of
the function spaces under consideration, induces the isomorphism

(13) Ty : ®la,b) — ®la — h1,b— hy).

If hy < 0, then there exists a natural mapping of the right-hand space
(13) into the left-hand space. For the composition of T, and this mapping
we retain the notation T}, 1.e.,

(14) Ty ®[a,b) C ®[a,b), heR™,

By a convolution operator on ®[a,b), & =§,0,8',0' is meant a regular
operator commutable with translations (14). As in section 1.5 we can prove
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Proposition 1. For each convolution operator A : ®[a,b) — ®[a,b), ® =
S, O there exists a distribution f € (®')(0,b — a] such that

(Ap)(t,y) = (fL, 1T pe) = (F*@)(t,y), a<t<b, € P[a,b)

Remark. The space (®')[0,b— a) contains no infinite-order elements (in con-
trast to ((®o0)’) + ), which simplifies the description of convolution operators
on ®[a,b) for b < 400 in comparison with the analogous problem to b = +o0.

The commutability of the convolution operator A with translations (14)
implies its commutability with the pseudodifferential operators (¢D; + 1)k
(14 |Dy|*)*2, k1, k2 € Z, i.e., the graduating operators in the scale of spaces

i o) a,b). Since ®la,b), ® = §,0,8',0" are the “limiting” spaces of
(€1, £2)
the scale, the proposition below holds.

Proposition 2. Let ® = §,0 and ¥ = O',S'. Then for any a < b each
convolution operator A, : ®[a,b) — ®[a,b) is continued by continuity to a
convolution operator A : ¥[a,b) — ¥U[a,b). Conversely, the restriction of a
convolution operator A : ¥[a, b) — i[a,b) to the space ®[a, b) is a convolution
operator on this space.

Proceeding from proposition 1 we can define convolutors in a strip

(15)
&(®[a,b)) = {f € ®'[o,b—a), f*p € Pla,b), dVp € ®[a,bd)},
®=35,0.

By virtue of proposition 2,

(16) ¢(O'[a, b)) = €(S[a,b)), €(S'[a,b)) = €(Ola, b)).

Theorem. Va,b € R, a < b, we have

(17) €(®[a,b)) = Olo,b—a) &=8,0,8,0"

Proof. According to (12) the right-hand side space (17) is contained in the
left-hand side. According to the definition of convolutors (15) for ® = O the
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opposite inclusion takes place. With regard to second relation (16) it proves
(17) for ® = O, S'. With regard to first relation (16) it remains to show that

(18) €(0'[a,b)) C O'[0,b— a).
From the isomorphisms (13) it follows that
€(®la,b)) = & ®@la+c,b+c))
and therefore it suffices to verify (18) for the case a=0:
¢(O'[o,b)) C O'[0,b).

Now it remains to note that §(z) € O'[0,b).

Remark. It should be noted that in the case of a finite strip all the four
spaces of convolutors €(®[a,b)), ® =8,0,8', 0" are the same and coincide
with Olo,b — a). For b = 400 these spaces coincide pairwise and the strict
inclusion relation takes place

(0')4 = €(S3) = €((O')1) C €(04) = €(S)4) = (K')s.

The distinction between the cases of a finite strip and a half-space is due
to the fact that the isomorphism (8) takes place.

5.3. Convolution and differential equations in a finite strip, The
Petrovskii condition

Following the argument of theorem 1.5.2 we prove

Theorem 1. Let A € O'[0,b) and let ® = S,0,8',0'. Then the following
conditions are equivalent.
(I) The convolution equation

(19) Axu=f

is uniquely solvable in ®[a,a + b) for any a € R (for some a € R), b > 0.
(I1) The distribution A is an invertible element of (0')[0,b), i.e., there is

a distribution G € O'[0,b) such that

(20) A*xG—6(z)=G+*a—38(z)=0 (in the sense of(0')[0,d)).
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The condition (II) (in contrast to analogous conditions above) does not
allow one to find effective necessary and sufficient conditions on the sym-
bol guaranteeing the fulfillment of (I). However, (20) makes it possible to
derive separately a necessary condition and a sufficient condition for unique
solvability of (19). These conditions are similar and coincide in the case of
polynomial symbols.

Let A € O'[0,b), b > 0. Denote by A(r,n) € M* the Fourier-Laplace
transform of a distribution belonging to O'[0, 00) which is one of the repre-
sentatives of the residue class A. To each A € O'[0,b) there corresponds a
class of symbols A € M* differing by symbol belonging to F (T_4(0')4) =
exp(—ibr)MT.

According to (20) there is a symbol G € M such that

A(m,m)G(7,n) — 1 € exp(—ibr) M.
Therefore there are ¢ > Oandu such that
|A(T,n)G(7,n) — 1] < C(1 + |7| + |n])* exp(blm7), b > 0.

This inequality implies a necessary condition for solvability of (19) in a
finite strip:
there exist constants C; and Cs such that

(2))  {A(r,n) =0, Tmr <0} = {Imr > Cilu(1+1r] +Inl) + C2}-

We now state a sufficient condition for solvability of (19) in a finite strip:
there are ¢ > 0, p and p <0 such that

(22) |A(7,m)| > C(L+|r| + [nl)¥, Imr < p.

The condition (22) is necessary and sufficient for the invertibility of the
distribution F~1A € (0')4 C (O")[4)+ in the space (((’)')[p])+. Thus, accord-
ing to (22), there is G € (O')[,)4 such that Ax G = G x A = §(z). It now
remains to apply isomorphism (9).

Let us discuss relationship between (21) and (22). The condition (22)
implies that for some p < 0 the symbol A(7,n) has no zeros in the half-plane
Imt < p and admits of an algebraic estimate form below in this half-plane.
Under the condition (21) the symbol A(7,7n) can have zeros in the lower half-
plane, however, with increasing |n| the manifold of these zeros moves very
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slowly away from the manifold Im7 = const. In the case of partial differential
operators with constant coefficients, i.e. A = P(D;, D,)é, A = P(r,n), the
condition (22) is equivalent to the requirement that the polynomial P(r,n)
to be nonzero in the closed half-plane Imr < p

(23) P(r,n) #0 Imr<p, neR"

On the other hand, by Seidenberg-Tarski theorem the imaginary part of
the algebraic function 7(7) (the solution to the algebraic equation P(7,n) =0
) cannot tend to —oo slower than a certain power of |n|, and therefore (21)
implies that there must be p < 0 such that (23) holds. We have thus proved

Theorem 2. The differential equation with constant coefficients
P(Dy, Dy)u=f

possesses a unique solution in the space ®[a,b), for ® = §,0,S8',0' for any
a < b €R (or some a < b) if and only if there is p such that (23) is fulfilled.

Definition. A polynomial P(r,n), 7 € C, n € R*!, is said to satisfy the
homogeneous Petrovskii condition if (23) holds for some p.

The homogeneous Petroviskii condition differs from the classical Petrovskii
condition in the absence of the assumption that the polynomial is solved with
the respect to the highest power of 7. This condition is connected with non
homogeneous Cauchy problem.

§6. Some remarks about non homogeneous Cauchy problem for
convolution equations

6.1. By the non homogeneous Cauchy problem, say, in S, for a differential
operator

(1) P(Dy,Dy) = Zm: P;(D,)D{"™’

is meant the problem of determining a function u(t,y) € S (RQ‘_), satisfying
in RY the differential equation

(2) (P(Dy,Dy)u)(t,y) = f(t,y), t>0, yeR",
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with preassigned Cauchy data to order m — 1

3) (DF1) (0,9) = prly), k=1,...,m.

Here f € S(R?), and px € S (R*1), k=1,...,m.

Remark. We can define spaces C((Z) (R™) consisting of functions ¢(x) defined

and continuous in the closure m-, having in R} continuous derivatives D%¢p
to the order m extendible to continuous functions in R}, and such that the
norm

o, RE| = sup (14 [2[)¥2|D%(z)]
o z€RY, |a|<m

is finite. Then in a natural way we can define S (Ri) as the projective limit

of this scale and O (Ri) as the inductive limit of C((g’) (Ri) It is possible to

prove that these spaces coincide with the spaces of restrictions of functions
from S(R™), O(R") to the half-space R7.

In Chapter 2, by the homogeneous Cauchy problem we meant, somewhat
conditionally, the problem of inverting an operator P(D) on S;. We re-
mind the reader that each function belonging to S has infinite-order zero
at t = 0, and therefore in the case of an equation on &4 we require that not
only the derivatives to order m — 1 of the solution, but also the subsequent
derivatives should vanish at ¢ = 0 (accordingly the right-hand side must also
have an infinite order zero). To discard these excessive requirements it seems
reasonable to take, as a solution space, a space of functions having exactly
a zero of order m — 1. It will be more convenient to regard functions in the
half-space R% as functions on R" extended as zero to t < 0. More formally
as the space of right-hand sides in (2), instead of the space S (R7} ), we shall
take the space

(4) S[-I-] = {99+ =0+p, @€ S(Rn)}7

where 6, (t) is the characteristic function of the positive half-line. As the
solution space in (2) we shall consider the subspace

) S5 ={ps €S, Dies(+0)=0, k=0,...,m—1}

corresponding a natural m. By the homogeneous Cauchy problem we now
mean the problem of inverting the operator

(5) P(D,,D,): S} — Sa-
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6.2. This interpretation of the homogeneous Cauchy problem makes it
possible to easily pass to the non homogeneous Cauchy problem. The action
of the differential operator on S4 is not compatible with embedding this
space into (O')4+. The images of differential operators in the two definitions

differ by a distribution with a support at ¢ = 0. The following relation takes
place:

(6)  P(DiD,)(6su) = 6:P(Di,Dy)u= " hi(y)DI6()

where

(7) hily) = =i > Pa(Dy) (D7) (0,),
k=0

Let u(t,y) € S (R} ) be a solution to the problem (2), (3), then the func-
tion u4 = 6 u satisfies the equation in distributions

(8) P(Di,Dy)uy = fy + Y hi(y)Di™'6(t)
J=1

where, with regard to (7),

(9) h?(y) = —1 Z Pk(Dy)SOm-—j"k—Fl(y) €S (Rn—l) ) ] =1,... ) 172,

The relations (9) we can understand as a system of differential equations
on functions ¢;(y). Let us rewrite this system putting j = m,m —1,...

(10) Po(-Dq)(,Ql = ihma
Po(Dy)(,QZ = ihm,——l - Pl(Dy)901’

Po(Dg/I)SQm =1h; — P](Dy)(,om—l T m-—l(Dy)(Pl-

If

(11) P.(n)#0 neR"!,
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then differential operator Po(D) is invertible in the spaces, S (R*~!), O (R™!).
So given the functions h; € S,O we can reconstruct uniquely the Cauchy
data ¢; € §, O from (10).

By what has been said, it is advisable to extend the scale of 8[(_:;) to

negative exponents by putting

Sia™ ={p=vr+Y_wi)DIT6(t), @4 €Sy,

=
P; ES(Rn_l), j=1,...,m}.

We can introduce topology in these spaces and define the inductive limit

(o) _ | al(m)
S = S

Then the non homogeneous Cauchy problem can be interpreted as the
problem of inverting the operator

(5 P(D): Sy — Sig™-
The problems of inverting operators (5) and (5') are special cases of a
formally more general problem of inverting an operator

(12) P(D): {7 — S
The definitions above are applied in trivial manner to the spaces O and
we can also consider the problem of inverting

. H(—=0) (—o0)
(13) P(D): O[> — 0.

6.3. The problem of solving a differential equation with constant coeffi-
cients in the spaces @f_:]m) , ® =S, O we can include in more general problem

of solving convolution equations in these spaces. To this end we must first
(—o0)
)
separating out distributions belonging to (O')4 = €(S4) or (K'); = €(O4)
such that under the convolution with them the smoothness for t > 0 of distri-
butions is preserved. It is possible to prove that this is the property of those

and only those distributions A € (O')4, (K')+ whose symbols A(7,7) are

describe the spaces of convolutors € ( ) . The latter problem reduces to
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expandable at infinity with respect to variable T into asymptotic Laurent’s
series. Describing the convolutors on these spaces it is possible to prove,
following the scheme of these lectures, that the solvability of a convolution

equation Axu = fin S (=% is equivalent to the existence of the fundamental
[+) q

solution G € € (S[(_:]oo)) of the equation. In the case of differential operators
the condition of invertibility of P(D) in Sy is supplemented with the condi-
tion (11). If we shall treat analogous problem on a finite interval of time, i.e.
the problem of invertibility of P(D) in the spaces

SIS, 00), 6> 0

then homogeneous Petrovskii condition will be supplemented by (11).
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