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Preface

This lecture note is based upon the series of ten lectures I presented as part of
the program of the Global Analysis Research Center at Seoul National University,
Seoul, Korea in May 1993. Since the audience already had certain backgrounds in
Differential Geometry and Several Complex Variables, this exposition starts rather
abruptly skimming and skipping through the basics in the first chapter.

In the second chapter, which is the main part of this lecture notes as well as
the lectures, the techniques of “scaling methods” in several complex variables and
the important results thereof concerning the domains with noncompact automor-
phism groups are introduced. First, Wong’s Theorem and Rosay’s generalization
receive an alternative proof by scaling method in the beginning sections. The
scaling methods have advantages in many places over the classical normal family
arguments in actual applications, even if the scaling method itself can be viewed
as a version of the classical normal family arguments. The second part of the
chapter is devoted to the theorem of Bedford and Pinchuk which characterizes
the domains in C? with a finite type boundary which possess noncompact auto-
morphism groups. The use of scaling and the holomorphic vector field actions
is demonstrated and explained. The final part of the chapter is on the theorem
characterizing the convex domains with piecewise Levi flat boundaries possessing
noncompact automorphism groups proven by the author. In doing this, I present
another version of scaling method initiated by S. Frankel along the way.

The final chapter introduces several sketches of the applications of the scaling
methods without the presence of any noncompact automorphism group actions on
the domain in question. First item presented is Pinchuk’s generalization of the
proper mapping theorem of H. Alexander, which demonstrates the application of
a scaling method without any noncompact automorphism group actions. Then a
very recent theorem by the author in collaboration with J. Yu which generalizes
the well-known theorem of Klembeck as well as an earlier theorem by the author on
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the asymptotic behavior of the holomorphic sectional curvatures of the Bergman
metric is explained. There are other important applications of scaling in part of
the arguments in the recent articles by Barrett and McNeal to mention only a
few. However, time did not permit me to introduce any of these important and
interesting ideas and results at this point.

In writing this notes, I would like to thank Professors Hyung-In Choi, Jongsik
Kim, Hong-Jong Kim, Hyuk Kim and all the other faculty members of the Depart-
ment of Mathematics in Seoul National University for inviting me for the lecture
series at the Global Analysis Research Center. It is my pleasure to acknowledge
my indebtedness to Steve Krantz for his encouragements, for many enlightening
discussions and for numerous valuable suggestions throughout the writing of this
manuscript. Large part of this lecture notes has been written while I was visiting
Washington University in St. Louis in the Spring of 1993. I would like to express
my gratitude to its hospitality. Finally, I would like to thank my brother Sang-
Tae Kim for his emotional support and constant encouragements throughout my
studies, without which I cannot imagine myself even beginning any career of mine
in Mathematics.

The author’s research is supported in part by a research grant from the National
Science Foundation of the United States of America.



CHAPTER 1

Basic concepts

1. Some Notations

Let us denote by C the set of all complex numbers. Let i = /=1 as usual.
Write

C"={(21,..-,2)|2; €C, Vj =1,... ,n}

With notations z; = z; +iy;, (z;,y; ER) (j =1,...,n), we define

o _1(o 90
82]'_2 6:1:j zay,-

for each j =1,... ,n.

Furthermore, for each j we set

de = d.'l’j + Zdyj

d.;c'—j = d.’l?j - Zdy]
Notice that all the vector fields and the differential forms introduced in this way
can be understood rigorously as elements of the complexified vector fields and

differential forms. From such understanding, following the standard way of intro-
ducing the wedge product it is easy to see that

(21 Adza) ... (dZn A dza) = (20 (doy Ady) A .. (dz A diy).



8 I. BASIC CONCEPTS

Let f : C* — C be a continuously differentiable function, then we define

of = Za dz;

7=1

En: of dZJ

As usual the standard way of generlization lets us to define the operators d and 9
acting on the higher degree differential forms. It follows then that d = 0 + 9 and
that 90 = 0 = 09.

Finally, we denote by
Bp,r)={2€C"||]z—p| <7}

D*p,r)={2€C"||z1—p1| <7,...,|zn — Pu| < r}
where
z=(21y--+ y%n)
p=(p1,---,Pn)

|z —=p|* = o1 —pi|* + ... + |20 — Pl

We call B*(p,r) the open ball in C* centered at p with radius r, whereas D™(p,r)
is called the polydisk with radius r centered at p.

2. Holomorphic functions

DEFINITION 2.1. Let 2 be an open subset of C*. A function f : } — Cis called
complex analytic [analytic, or holomorphic] if it is continuously differentiable and
satisfies the Cauchy-Riemann equation 0f = 0 on (.

Notice that the identity f = 0 on  implies that f is holomorphic in each
variable separately. There is a deep (but seldom used) theorem by Hartogs which
states

THEOREM 2.1 (HARTOGS). Let §) be a domain in C*. If a function f : Q) — C
is holomorphic in each variable separately at every point, then f is conlinuous.

Note that the real C* analog of this theorem is false.

EXERCISE 2.1. Construct a discontinuous function which is differentiable indef-
initely many times in each variable separately.

It is relatively easy to see that the continuous functions holomorphic in each
variable separately are in fact continuously differentiable from the following:
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THEOREM 2.2 (CAUCHY’S INTEGRAL FORMULA). Let f : D"(p,r) — C" be a
continuous function holomorphic in each variable separately. Then

flz1,eey20) =

1 f((l7"'a(n) eondz
(2me)" /IG -p1|=r /ICn—pnI=r (G—z1) (G — Zn)dzn dan
for any z = (z1,... ,2z.) € D™(p,r).

This theorem is a direct generalization of Cauchy’s integral formula in one vari-
able. Observe that the “differentiation under the integral sign” implies

COROLLARY 2.3. Let Q) be a domain in C*. If a continuous function f : Q@ — C
is holomorphic in each variable separately, then f is C* smooth.

Another obvious imitation of the one-variable argument yields

COROLLARY 2.4. Any holomorphic function on a domain in C" is locally a
power series that converges absolutely and uniformly.

Notice that the integral representation above is always holomorphic even if the
function f is not necessarily holomorphic as long as the differentiation under the
integral sign is permitted. (Although, in such a case the integral does not neces-
sarily coincide with the original function.) Hence, we get another consequence of
the Cauchy integral formula:

COROLLARY 2.5. If a sequence of holomorphic functions on a domain converges
uniformly to a function on every compact subsets, then the limit function is also
holomorphic.

Cauchy’s integral formula also provides

THEOREM 2.6 (THE CAUCHY ESTIMATES). Let K be a compact subset of a
bounded domain Q0 in C*, and let f: Q — C a holomorphic function. Then

(2) s

for some constant Cy depending only on K and ) and the length |A| = |ay|+...+
|an| of the multi-indez A = (ay,... ,a,). Moreover,

(a%)Af(Z)

sup
z€K

< Cy-sup |£({)]
e

sup
z€K

<o ([ Werauts)’
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for some constant Cy > 0 depending only on the multi-indez A = (aq,... ,a,), the
compact set K and the domain Q. In the above, dy denotes the standard volume
form (or, equivalently, the Lebesgue measure) of C* and

a A a al 0 an
@) - () ~6)
PRrROOF. Exercise. The first inequality is easy to derive. For the second, use
polar coordinates in each variable. [

An immediate consequence of the above is that the L? convergence of a sequence
of square integrable holomorphic functions necessarily yields the uniform conver-
gence of all derivatives on all compact subsets. Thus, the resulting limit is also
holomorphic.

3. Domains of Holomorphy

One of the many surprises in the study of the theory of analytic functions in
several complex variables in contrast to the one variable case is the following
theorem due to Hartogs: '

THEOREM 3.1 (HARTOGS). Let 2 be a domain in C* and let K be a compact
subset of Q with O\ K is connected. Then, for any holomorphic function f :
Q\ K — C, there exists a holomorphic function F : Q@ — C such that F = f on
Q\K.

This theorem leads us to consider which domains should be the natural domains
for the analytic functions of several complex variables. Hence we arrive at the
following definition.

DEFINITION 3.1 (DOMAINS OF HOLOMORPHY). An open set Q in C" is called
a region of holomorphy, if there do not exist nonempty connected open sets U; ¢ 2
and U, C 2N U; such that for every holomorphic function g : U, — C there exists
a holomorphic function § : U; — C satisfying §|y, = g.

Such a complicated definition is indeed necessary due to the existence of exam-
ples such as the “snake domain biting its own tail.” Thanks to the solution of
the Levi problem, we now have many useful equivalent definitions for domains of
holomorphy which we will introduce from the following sections.
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4. Pluriharmonicity

We begin this section with the following:

DEFINITION 4.1. Let Q be a domain in C*. An uppersemicontinuous function
¢ : Q0 — Ris called plurisubharmonic on D if ¢ o h is subharmonic on the unit
disk B = B' = B'(0;1) for every linear holomorphic mapping k : B — § of the
form a +b- 2z = (a1 + biz,... ,a, + by2). A function 1 is called plurisuperhar-
monic if — is plurisubharmonic. A function is called pluriharmonic if it is both
plurisubharmonic and plurisuperharmonic.

Several facts dre known about this definition.

REMARK 4.1. All pluriharmonic [plurisubharmonic or plurisuperharmonic, re-
spectively] functions are harmonic [subharmonic or superharmonic, respectively].
But the converse is not in general true.

REMARK 4.2. The real part of every holomorphic function is pluriharmonic.
And, every pluriharmonic function is locally the real part of a holomorphic func-
tion. The first assertion is easy to check. The second follows from for instance
the following arguments: First, notice that every harmonic function is C*® smooth
due to Weyl’s Lemma. Then a smooth function u is pluriharmonic if and only if
d9u = 0. Now, let @ = i(d — O)u. Then, da = (0 + 0)a = 0. So the Poincaré
Lemma implies that o is locally d-exact. Namely, in a small neighborhood there
exists a smooth real-valued function v such that @ = dv = v + dv. Comparing
types, one then gets —idu = Jv. Hence, u — v is holomorphic.

From now on, we will mention mostly the plurisubharmonicity. For the sake of
brevity, we will denote this property by “psh” instead of “plurisubharmonic.”

REMARK 4.3. Plurisubharmonicity is preserved under holomorphic mappings
in the following sense: Let u : @ — R be psh. Then for any holomorphic mapping
h : G — (), the composite u o k is psh. This property is in general false for the
usual (sub/super) harmonic functions in complex dimensions higher than one.

REMARK 4.4. Let ¢ : @ — R be C? smooth. Then, ¢ is psh on Q if and only if
@ o h is subharmonic for any holomorphic function A : B — Q.

REMARK 4.5. Let f be a holomorphic function defined on a domain G in C™.
Then, log|f], log(1 + | f[?), and |f[? (p > 0) are psh.
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5. Convexity and Pseudoconvexity

In the light of Hartogs’ extension theorem (Theorem 3.1 above) and the defini-
tion of domains of holomorphy, one realizes that some notions including convexity
should play an important role in the theory of holomorphic functions in several
variables. In this section, we will simply introduce various types of convexity and
pseudoconvexity. '

DEFINITION 5.1 (GEOMETRIC CONVEXITY). A subset K of R" is called con-
vez, if for every pair of points p, ¢ € K the straight line segment joining p, ¢ belongs
to K. A point in a convex set is called eztreme if it is not an interior point of any
line segment contained in the convex set. A convex set is called strictly conve if
every boundary point is extreme.

There are at least two different ways of re-interpreting these concepts.
5.1. Convexity with respect to a class of functions.
PROPOSITION 5.1. A subset K of R™ is convez if and only if

{z € R*|£4(z) < sup{(y) for any first order polynomial £(v) = av + b}
yek

is always contained in the closure of K.
Proor. Exercise. [J

This triggers the following definition of convexity with respect to a certain class
of functions:

DEFINITION 5.2. Let a domain 2 be given in C" and let K be a compact subset
of . Let F be a given class of real valued functions. Then the hull of K in
with respect to F is given by

Kr = {z € C"|u(z) < supu(() for all u € F}.
(EK

We say § is convez with respect to F if the hull K is compact for every compact
subset K of ().

Most common notions of much interest in several complex variables are:

e the convexity with respect to the set of the absolute values of the holomor-
phic polynomials, which is called the polynomial convexity, and

o the convexity with respect to the set of the absolute values of the holo-
morphic functions on the given domain, which is called the holomorphic
convezity.
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EXERCISE 5.1. Show that an open set is geometrically convex if and only if it
is convex with respect to the real-valued linear functions.

EXERCISE 5.2. Show that every open set is convex with respect to the class of
real-valued continuous functions.

EXERCISE 5.3. Show that every open set in C is holomorphically convex. More-
over, construct an example of an open set in C? that is not holomorphically convex.
Also, give an example of a domain in C that is not polynomially convex.

5.2. Pseudoconvexity. Another way of considering convexity is along the
Hessians of the boundary surface. For such consideration, it is natural to assume
C? smoothness of the boundary of the domain in question. It turns out that in the
study of the theory of holomorphic functions in several variables, the convexity
concept along complex tangential directions of the boundary of the domain is
relevant as in the following.

Let Q be a domain in C" defined by the inequality
p(z) = p(z1,.-- y20) <0

for a twice differentiable real-valued function defined on C" satisfying:

o The boundary 02 of § is defined by p(z) = 0.
o The gradient vector 0p = (0p/0z,...0p/0z,) is never zero at any point of
on.
o C*"\ Q= {2z €C"|p(2) > 0}.
In such a case, p is called a defining function of Q. Notice that by the Implicit
Function Theorem the boundary of such domain §2 is a C? smooth hypersurface
in C". Now we are ready to give the definition of Levi pseudoconvexity.

DEFINITION 5.3. Let € and p be as above. A boundary point p € 99 is called
a (Levt) pseudoconvez point if

) AL

———(p)w;wg >0
k=1 szazk(p) T

for all w = (wy,... ,w,) € C" satisfying

(2) Z az] . =0.

If the strict inequality holds in (1) for every nonzero vector w € C" satisfying (2),
then the boundary point p is called strongly pseudoconvex. The complex hessian
form of p in (1) is called the Levi form of p. The vectors w satisfying (2) are called
complex tangent vectors to 0 at p. The domain § is called Levi pseudoconvez if it
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is exhausted by the domains whose every boundary point is Levi pseudoconvex. (2
is called strongly pseudoconvez, if every boundary point is strongly pseudoconvex.

EXERCISE 5.4. Show that a strongly pseudoconvex domain admits a defining
function, say r, such that for some C' > 0

n 827. ~ n
> 8z-8zk(p)ijk > Clw|*, V0 # w = (wy,... ,w,) € C".
7,k=1 2

Such a function is called strictly plurisubharmonic.

EXERCISE 5.5. Suppose that there exists a holomorphic function f from the
unit disk in C into the closure of a strongly pseudoconvex domain in such a way
that the origin is mapped to a boundary point of the domain. Then show that f
is constant. _

One of the big theorems in Several Complex Variables is the solution of the Levi
problem which is

THEOREM 5.2 (LEVI PROBLEM). Fuvery domain of holomorphy in C" is Lev:
pseudoconvez.

This highly nontrivial problem was solved by K. Oka, H. Bremerman, F. Norguet
and others. There are many other useful approaches to the problem and general-
izations by many authors. Many important problems related to the Levi problem
are still open.

In fact, there are many important and useful conditions that are equivalent to
the Levi pseudoconvexity. For a detailed exposition, we would like to refer the
readers to the book by S. Krantz ([51]). One fact to mention however is that the
Levi pseudoconvexity is equivalent to the holomorphic convexity defined above.

6. Peak points and peak functions

Let (} C C" be a bounded domain and let p € Q. Then p is called a peak point
if there exists a continuous function f : § — C which is holomorphic on ) such
that f(p) = 1 and |f(2)] < 1 Vz € 0\ {p}. Such a function f is called a peak
function of ) at p. Sometimes, it is enough to consider the existence of the peak
functions defined only on a neighborhood of the boundary point in consideration.
In such cases, such functions are called local peak function and the boundary points
that admit local peak functions are called the local peak points.

There are many subtle and important problems involving the peak functions.
Problems concerning peaking functions are of great interests. However, we will
discuss only a few simple facts on the local peak functions in this section.
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PROPOSITION 6.1. Let 2 be a domain in C* and let p € N be a local peak
point. Suppose that f : B — Q is a holomorphic function from the unit disk in C
to the closure of Q such that f(0) = p. Then f(2) = p Vz € B.

PROOF. Let U be an open ball centered at p with a small radius such that
there exists a local peak function h at p defined on U N Q such that h(p) = 1
and |h(z)| < 1for all z € UNQ\ {p}. By continuity, there exists a small open
disk D containing the origin in the unit disk B such that f(D) C U N Q. Then
ho f: D — Cis a continuous function which is holomorphic except possibly at
the origin. By a removable singularity theorem in one complex variable, A o f is
indeed holomorphic on entire D. Then the Maximum Principle implies that A o f
is identically equal to 1. This implies then that every component of f is constant
on an open set. Then the theorem of analytic continuation in one complex variable
yields the result. O

EXERCISE 6.1. Show that every boundary point of the unit ball in C* are peak
points. Generalize this to any strictly convex domains.

EXERCISE 6.2. Find the set of all the peak points of the polydisk

D™"(1) = {(21,-.. ,2n) €C*||z1]| < 1,... ,|za| < 1}

There are standard techniques of extending local peak functions to a global
peak functions by using the L? estimate of the d operator, when the domains in
consideration are special. However, we do not include any further details in this
note except for providing a few references on the peak functions in the bibliography.

7. Order of contact and Finite type

One of the remarkable recent progress in the study of boundary geometry of the
hypersurfaces in C" in relation to many geometric and function theoretic problems
is the notion of finite type discovered by J. D’Angelo [16]. Again avoiding intricate
details we will simply introduce the most simple definition followed by a very basic
discussion.

Let M be a real hypersurface in C* and let p € M. In a neighborhood of p in
C", one can find a real-valued function p such that M is defined by the equation
p = 0 and such that the gradient 9p is never zero on M. Consider a germ of an
analytic variety defined by a holomorphic mapping

v:U—C"
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such that 4(0) = p, where U is the open unit disk in C centered at the origin.
Denote by v,(f) the order of vanishing of the function f at ¢. Let

(M, p,p) = 22D

Then, the type of M at p is defined by
T(M)p) = supT(M,p, ¢)

where the supremﬁm is taken over all the germs of analytic varieties ¢ : U — C"
with 1(0) = p. If 7(M, p) is finite, then p is called a point of finite type.

It turns out that the strongly pseudoconvex boundary point is of type 2. If
the Levi form of the hypersurface vanishes identically at every point along all the
complex tangent vectors of M, then such a surface is called Levi flat. Notice that
every point on a Levi flat surface is a point of infinite type. See the exercise below.

EXERCISE 7.1. Let X be a vector field which is complex tangent to a real hyper-
surface M in C* with a defining function p. Let X denote the complex conjugate
of X. Then verify first that X is also tangent to M. Now, let u be the tangent
vector field to M such that /=1 u is normal to M. Then compute the real valued
function A on M satisfying

(X, X]p = \/—:1—’\(1’)“10

modulo the space of complex tangent vectors to M at p. Here the bracket operation
is the standard Lie bracket operation of C".

EXERCISE 7.2 (CONTINUED). If the surface M is Levi flat, show that there
exists a nontrivial complex analytic variety contained in the surface.

EXERCISE 7.3. Show that real hypersurface does not admit any nontrivial ana-
lytic variety in it passing through a point of finite type.

EXERCISE 7.4. Find examples of various finite type points on various real hy-
persurfaces in C2.

For many useful and important details concerning the notion of finite type, we
refer to [16).



8. AUTOMORPHISM GROUPS OF BOUNDED DOMAINS ’ 17

8. Automorphism groups of bounded domains

Let 1 be a domain in C*. By an automorphism of  we mean a biholomorphic
self-mapping of 2. The set of all automorphisms of Q is called the automorphism
group of  and is denoted by Aut D, Wthh is naturally equipped with the law of
composition of mappings.

For 1 is bounded, H. Cartan [14] proved that Aut () is a finite dimensional (real)
Lie group with respect to the topology of uniform convergence on compact subsets
of ). H. Cartan also proved the following theorem which is, in particular, very
effective in computing the automorphism groups of the ball, the polydisks, and
some other types of circular domains.

THEOREM 8.1 (H. CARTAN’S THEOREM I). Let D be a bounded domain in C*
forn>1. Letpe D. If f : D — D is a holomorphic mapping such that

f(p) =p, and df(p) =
then f(z) =z for all z € D. Here, I denotes the identity matriz.

PROOF. This theorem follows from the iteration of f, and the Cauchy estimates.
Assume without loss of generalities that p is the origin. Since f(0) = 0 and
df(0) = I, the Taylor expansion of the k-th component of f at p = 0 is given by

filz1y. ooy 20) = 26 + P(2,.. ) , 2 ) + higher order terms

where P denotes the first non-vanishing (if any) homogeneous holomorphic poly-
nomial beyond the linear terms. If f is not the identity map, choose k such that
P above is the lowest degree, say m, polynomial beyond the linear terms among
the Taylor expansions at p of all the components of f. Now notice that the k-th
component of the N-th iterate foN = fo fo...o fof fis

2zt + N - P(z1,...,2z,) + higher order terms

This implies that there exists a multi-index (as,... ,a,) with m = |a;| + ... + |ay]
such that
mfoN
A ol

On the other hand, the range of f°V for every N is the domain  which is bounded.
Therefore, the supremum of the absolute value of f°N on € is bounded by a
constant independent of N. Which means that all the mixed partial derivatives of
order m at the origin of all f°V has to be uniformly bounded for all N by Cauchy
estimates. Apparently, this causes a contradiction. Therefore, f has to be the
identity mapping. O
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A modification of this brilliant proof yields even more surprising results as in
what follows. Denote by

0

ro(21y. .. ,2n) = (€921,... ,€%2,).

Then, a domain D is called circular if ry € Aut D for all § € R. Now we state the
following

THEOREM 8.2 (H. CARTAN’S THEOREM II). Let Dy and D, be circular do-
mains in C* that contain the origin inside. Let f : D; — D, be a biholomorphic
mapping such that f(0) = 0. Then, f is a complez linear mapping of C".

PROOF. Exercise. Consider F = f~'or_go f ory and apply Cartan’s Theorem
I to this function. Then compare the Taylor coefficients of the mappings rg o f
and f ory. (See [55] for a detailed proof.) [

“EXERCISE 8.1. Use the above theorems to find an upper bound of the dimension
of the automorphism group of a bounded domain.

EXERCISE 8.2. Using the above theorems, compute the automorphism group of
the unit ball and the polydisks in C". For the case of the unit ball centered at 0,
use the unitary maps and the Mobius transformations of the form

a+a 1-la’2 1—Ia|"’zn)

(zl’”"zn)’_)(1+c-zz1’ l14+az =~~~ 1l+4azn

As the readers may have notices already, the theorems above are generalizations
of classical Schwarz’s Lemma in one complex variable. There are various other
types of generalizations of Schwarz’s Lemma in various different settings. For our
purposes, we will simply introduce the following simple case of a theorem of H.

Wu ([69)):

THEOREM 8.3 (WU). Let Q be a bounded domain and let p € Q. Suppose that
f:Q — Q is a holomorphic mapping such that f(p) = p. Then, the following
hold:

(1) Every eigenvalue of the holomorphic Jacobian matriz Jof(p) has absolute

value not bigger than one.

(2) det Jcf(p) =1 if and only if f € Aut ).

PROOF. Exercise. Use the scheme of the proof of Cartan’s Theorem I and
consider the Jordan canonical form of the holomorphic Jacobian matrix. [
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THEOREM 8.4 (H. CARTAN). Show that the isotropy subgroup, say G,, of the
automorphism group G = Aut Q) at p defined by

= {f € AutQ| f(p) = p}

is compact with respect to the topology of uniform convergence on compact subsets
provided that Q0 is a bounded domain in C".

PrOOF. Exercise. [

PROPOSITION 8.5. Let Q be a bounded domain in C*. Then Aut () is noncom-
pact with respect to the topology of uniform convergence on compact subsets if and
only if there exist a point p € Q and a sequence {f;}52; C AutQ such that the
sequence {f;(p)}32, accumulates at a boundary point of Q.

PROOF. If such a sequence of automorphisms {f;}$2; and an interior point
p € (Y exist as in the statement of the proposition, choose a subsequence of {f;}%2,
that converges uniformly on compact subsets to a holomorphic function, say f,
using the usual normal family argument. Then f(R2) C ! and f(p) € 8Q. This
implies that f is not an automorphism of 2. Therefore, Aut 2 is not compact.

Conversely, assume that there does not exist any orbit of a point by a sequence
of automorphisms accumulating at a boundary point. Then for every ¢ € Q,
G(q) :={f(q)| f € Aut Q} is compact. We prove first the sequential compactness
of the automorphism group. Fix the point ¢, and consider an arbitrary sequence
{f;}; € AutQ. By compactness of G(g), we may choose a subsequence which
we will also denote by {f;}; such that f;(¢) = y; — y € G(¢g) C Q as j — oo.
Since (1 is bounded, by using Cauchy estimates and a standard normal family
argument and by choosing a subsequence again, we may assume that f; converges
to a holomorphic function f. Now, consider the subsequence chosen last time and
consider the sequence of inverse mappings fj'l. Again, one can easily extract a
subsequence to show that the chosen subsequence of mappings f;' converges to
a holomorphic mapping g : & — Q. This implies that the determinant of the
holomorphic Jacobian matrices of fj"l is uniformly bounded on compact subsets.
This yields in turn that the determinant of the holomorphic Jacobian of f is never
zero on (). Hence f is locally one to one, and hence f(2) C Q. Again using
uniform convergence on compact subsets with derivative estimates, it is not hard
to show that f is indeed globally one-to-one. Do the same for g. Then it is simple
to see that f and g are inverse to each other. Hence, we have established the
sequential compactness of Aut ().

To finish we will simply provide the metric on G = Aut ) which induces the
topology of uniform convergence on compact subsets. Let {K;|j =1,2,...} bea
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compact exhaustion of 2. Then we simply define the metric on G' by

3 00 i SuszKj |f(z)"'g(z)|
d(f,g9) = ; 2 T suprer, F(2) — 9(2)]

for f,ge G. O

More on automorphism groups will be discussed in the later chapters.

9. Finslerian Invariant Metrics

9.1. The Carathéodory metric. In this section, we introduce the (pseudo)
distances which makes all holomorphic mappings distance-decreasing. We start
with

DEFINITION 9.1. Let B = {z € C||z| < 1}. Then, we define the Poincaré
~ (infinitesimal) metric on the tangent bundle of B by

dz ® dz
(1— 122>

This notation simply means that for a piecewise C* smooth curve v : [0,1] — B,
the length L(«) of « is given by

_ M@l

Accordingly, the Poincaré (integrated) distance is defined by

2 _
dsg =

pe(p,q) = inf L(7)

where the infimum is taken over all possible piecewise C' smooth curves in B
joining p and gq.

The fact that the holomorphic mappings from B to B are distance decreasing
with respect to the Poincaré metric follows from

THEOREM 9.1 (SCHWARZ-PICK LEMMA). Let f : B — B be a holomorphic
mapping. Then
@l 1

L= ()P = 1=z’

for all z € B.

PROOF. Exercise: First compose with appropriate Mobius transforms so that
the origin is preserved. Then use the classical Schwarz lemma. O
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REMARK 9.1. The real part of the Poincaré infinitesimal metric is a well-defined
Riemannian metric on B. The open unit disk B equipped with the Poincaré
distance is a complete metric space. Moreover, the Gauss curvature of the Poincaré
metric is constant —4.

REMARK 9.2. Distance decreasing property implies that all the biholomorphic
self-mappings of the disk B are isometries with respect to the Poincaré metric and
distance.

EXERCISE 9.1. Compute an explicit form of the Poincaré distance on B. First
realize what the distance minimizing curves are, either by computation or by using
some facts on geodesics in Riemannian manifolds.

The next step is to implant the Poincaré metric and distance to an arbitrary do-
mains ! in C". For convenience, we will denote by H(D,G) the set of holomorphic
functions from the domain D into the domain G in what follows.

DEFINITION 9.2. Let © be a domain in C*. Then the Carathéodory distance is
defined by

pe(p,9) = sup{ps(f(p), f(9))| f € H(Q, B)}.
Likewise, the Carathéodory metric is defined by

5 (p,€) = sup{|df (p)é|| f € H(Q, B)}

It is known that the integrated distance of the infinitesimal Carathéodory metric
is not in general the same as the Carathéodory distance defined above.

EXERCISE 9.2. Show that all the holomorphic mappings are distance decreasing
with respect to the Carathéodory metric and distances.

9.2. The Kobayashi-Royden metric. Now we introduce the Kobayashi-
Royden metric and distance. First, define by, on a domain € in C",

8a(p,9) = inf{pp(a,b) | f(a) = p, f(b) = g for some f € H(B,Q)}.

In general, this definition does not yield a pseudo-distance, because the triangle
inequality fails.? Therefore, one needs the following definition by S. Kobayashi
([43], [48]):

In fact one can introduce the invariant metrics for the complex manifolds exactly in the same
way. However, we restrict ourselves to the case of domains in C".
?For the bounded convex domains § above does become a metric. ([52])
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DEFINITION 9.3. Let 2 be a domain in C*. Then the Kobayashi distance on {2
is given by

pk(p,q) = inf Y 6a(z;, w;)
where the infimum is taken over all the finite collection of points
| (21, w1)y--- ,(2n,wN) E R XQ
and the mappings fi,...,fnv € H(B,Q) such that
f(z1) = p, f(wn) = ¢, f(w;) = f(zj41),V5 =1,... ,N - 1.

EXERCISE 9.3. Show that the Kobayashi distance satisfies the triangle inequal-
ity.

The infinitesimal version of the Kobayashi distance is defined as follows:

DEFINITION 9.4. Let © be a domain in C*. Then the Kobayashi-Royden metric
is defined by

FR(p,€) = inf{[t|| f(0) = p, df (0)t =  for some f € H(B, ()}

EXERCISE 9.4. Show that all the holomorphic mappings are distance decreasing
with respect to the Kobayashi-Royden metric/distance.

The integrated metric of the infinitesimal Kobayashi-Royden metric is indeed
the Kobayashi distance. This was proven by H.L. Royden in 1970. See [64].

REMARK 9.3. The metrics and distances introduced above are not in general
positive definite. However, for the bounded domains, they are always positive

definite. (Why?)

REMARK 9.4. Unlike Riemannian metrics, neither the Carathéodory nor the
Kobayashi metrics is in general an inner product metric. Rather, they only de-
fine a norm on the tangent spaces. Such metrics in general are called Finslerian
metrics. It is known that among the Finslerian metrics that make the holomor-
phic mappings distance-decreasing, the Kobayashi metric is the largest while the
Carathéodory metric is the smallest.
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9.3. The Sibony metric. Now we introduce the metric introduced by N.
Sibony in [66]. The definition is as follows.

Let §) be a domain in C*, and let p € Q. Let S, be the family of C? functions
u defined on §Q such that

e 0 <u<1,and u(p) =0; and
e logu is psh on (2.

Then the Sibony metric is the pseudometric on the tangent bundle of Q defined
by

=~ 0%u(p)

F§(p,€) = sup \l > 6zj82k£j£—k'

uESP jk=1

This metric enjoys many useful and flexible features including the distance de-
creasing properties of holomorphic mappings. The distance decreasing property
implies immediately that the Sibony metric is smaller than the Kobayashi-Royden
metric. Hence this metric is in particular good to produce significant lower bound
estimates for the Kobayashi metric when there is a good psh function on the
domain for instance as in the following proposition.

PROPOSITION 9.2. Let Q be a domain in C*. If there is a psh function u : Q —
R bounded from above which is strictly psh in a neighborhood U of a point p, then
there exist a constant 6 > 0 and a neighborhood V C U of p such that

Fg(q,€) > 6l¢l,
forallg €V and § € T,Q.

REMARK 9.5. The Carathéodory, Kobayashi and Sibony metrics can be easily
defined on complex manifolds without changing the definitions. Among them, the
Sibony metric seems most flexible to deal with, since the psh functions are rather
easier to handle than the holomorphic functions.

10. The Bergman Kernel Function and the Bergman Metric

10.1. The Bergman kernel function. Chronologically, the first invariant
metric (in the sense that the biholomorphic mappings are isometric with respect
to it) discovered is the Bergman metric which is discovered by Stefan Bergman in
1928. (See for instance [9] and its references.) We will introduce the definition
and some basic properties of this important metric in this section.

Let (2 be a bounded domain in C". Let L*(f2) be the space of square integrable
complex valued functions on 2. Then we first define the Bergman space

A% Q) := {f € L*(Q)| f holomorphic}.
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By the Cauchy estimates, the Bergman space A?(f)) is a closed subspace of the
separable Hilbert space L?(), with respect to the L? inner product. So we may
choose an orthonormal basis system {¢;|j = 1,2,...}. Now the Bergman kernel
function K : 2 x Q — C is defined by

Ka(z0) = i%(z)w(o»

We will also introduce a different definition which is more canonical in the sense
that it is a priori independent of the choice of the orthonormal basis systems of
the Bergman space.

Let z € Q, and let @, : A*(Q2) — C be the point-evaluation at z defined by
®.(f) = f(z) for every f € A*(f2). By the Riesz Representation Theorem, there
exists a holomorphic function & € A%(f2) such that

£z) = [ FORIC) du(C), ¥f € A2(@),

where dp denotes the Euclidean volume form (or, equivalently, the standard
Lebesgue measure) of C".

PROPOSITION 10.1. On a bounded domain  in C*, Kq(z,() converges abso-
lutely and uniformly on compact subsets and in fact Kq(z,() = k$({). In partic-
ular, the definition of the Bergman kernel function is independent of the choice of
the orthonormal basis of A*(Q).

COROLLARY 10.2. For a bounded domain ) in C*,

Kﬂ(z7C) = Kﬂ(Caz) for all (Z, C) €N x .

COROLLARY 10.3. For a bounded domain §) in C*,
=[ K d
1) = | K(,05(0) du
for all f € A%(Q).
EXERCISE 10.1. Compute the Bergman kernel function of the unit ball.

EXERCISE 10.2. Prove that the Bergman kernel function of a product domain
is the product of the Bergman kernel functions of the components.

Denote by Jcf(z) the holomorphic Jacobian matrix of f whose jk-th entry is

(0f;/0z)(2), where f; represents the j-th component of the mapping f. Then we
have
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PROPOSITION 10.4. Let f : & — G be a biholomorphic mappings of between
two bounded domains in C*. Then,

Ka(f(2), £(€)) = det(Jcf(2)) - Kal(z,() - det(Jef(C))
for (2,¢) € @ x Q.

10.2. The Bergman metric. Let Q be a bounded domain in C*. Then it is
easy to see that one can choose an orthonormal system by applying the Gramm-
Schmidt process with respect to the L? inner product starting with the constant
function 1. This in particular implies that Kq(z,z) > 0 for all z € Q. We will fix
the domain () momentarily and denote simply by K = K. Then we define the
(1,1)-tensor as follows :

d*log K (2, 2)

j _k
92,07 dz’ ® dz°.

(3) g=9"=gppds @ dz* =

Now we present

PROPOSITION 10.5. The Hermitian (1,1)-tensor g in (3) above is positive defi-
nite.

PROOF. This proof is entirely due to Bergman himself. Fix 2o € Q and a
nonzero tangent vector u = ulé’Z—l +...+ u"% at zp. Then We will choose a
special orthonormal basis system {p;}32, for A*() and show that g(u,u) > 0.
Since the Bergman kernel function is independent of the choice of the orthonormal
basis system for the Bergman space and since 2o and u are chosen arbitrarily, this
will show the positive definiteness of the tensor g = ¢®.

First choose o € A%(f2) such that

® ©o(29) is a positive real value;

¢ ||vo|lz = 1; and

® f(20) < po(z0) whenever f € A%(Q) satisfies the first two conditions ¢y
does.

Why would such ¢q exist? Notice that for any f € A? satisfying the first two
conditions above ¢y satisfies, one gets

flzo) = [ K(20,0)f(¢) du(C)
= | K0 01O o),

since f(zo) > 0;

-

2

< ([ 1Ko ¢ au(©) -1,
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by Holder inequality and by || f||l2 = 1;

= ([ Ko 0K o))
= K(zo, 20)%.

This shows that po(z) = K(z,20)/v/K (20, 20). (Verify!)

Now we find the next member of the orthonormal basis system. First realize
that the orthogonal complement of ¢, in A%(Q consists of f € A%(Q2) such that
f(z0) = 0. (Verify!) Now we choose @1 € (¢o)* such that

o ©1(20) =0, ||¢1]lz2 = 1, and dp1(z0)u is a positive real value; and
o df(z)u < dp;(z0)u whenever f € A%*(Q2) satisfies the first condition ¢,
does.

Proving the existence of such ¢; could be slightly more technical, but it follows the
similar ideas. So we omit the proof here. (First do it with v = (0,...,1,...,0)
and then think about creating one for an arbitrary u.)

Then consider the orthogonal complement in the Bergman space of two elements
¢o and ;. (What is the characterization of this new orthogonal complement?)
Simply choosing any orthonormal system there, complete the orthonormal system
for the Bergman space A%(Q2) so that

K(52) = ¢5(:)053),

7=0

where dp;(20)u = 0 for all j > 2. Then by a simple calculation, one sees easily
that g(u,u) > 0, as desired. (Ezercise. Fill in the details.) O

DEFINITION 10.1. The positive definite Hermitian tensor g® in the above is
called the Bergman metric of (1.

PROPOSITION 10.6. Let f : Q@ — G be a biholomorphic mapping of bounded
domains. Then f*¢g¢ = g%, i.e., ng(z)(df(z)X, df(2)Y) = ¢%(X,Y), for any X,Y €
T.. ‘

This immediately implies

COROLLARY 10.7. Let dq and dg denote the integrated Bergman distances of
the domains Q and G. Then any biholomorphic mapping from Q onto G is indeed
distance-preserving.

REMARK 10.1. However, the Bergman metric/distance behaves rather irregu-
larly with the general holomorphic mappings. Being a Kéahler metric, the Bergman
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metric opens an important connection between Several Complex Variables and Rie-
mannian Geometry, even though it does not conform with the general holomorphic
mappings as nicely as the invariant Finslerian metrics such as the Carathéodory
and Kobayashi metrics.

REMARK 10.2. There are very few known examples of invariant Kahler metrics.
In fact, at least at this writing, we are not aware of any discovery of invariant
Kahler metrics other than the Bergman metric and the Kahler-Einstein metric. In
this lecture notes, we will concentrate on the Bergman metric when we lead into
geometric discussions.

REMARK 10.3. Certain important facts concerning completeness, curvature be-
haviors, approximate expressions of the Bergman metrics are known. And yet the
larger part of the features is yet to be discovered. We will discuss on this subject
in the later chapters.
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CHAPTER II

Domains with Noncompact Automorphism Groups

1. Perturbation of the domains and automorphism groups

One of the striking differences between the complex one dimension and the
higher complex dimensions is the failure of the Riemann mapping theorem in
complex dimension two or higher. The first example given by Poincaré is that
there is no biholomorphic mapping between the ball in C? and the bidisk in C2.
Of course, the bidisk is the complex two dimensional polydisk which is the product
of two unit open disks in C. More recently, D. Burns, S. Shnider and R. Wells
([12]) proved

THEOREM 1.1 (D. BURNS, S. SHNIDER, R. WELLS). The domains which are
obtained by perturbing the boundary of the unit open ball in C*,n > 2 in C™ sense
yields an infinite dimensional family of holomorphically distinct bounded strongly
pseudoconvez domains. Moreover, an arbitrary dimensional family of such distinct
domains can be chosen such that their automorphism groups are trivial, consisting
of the identity alone.

Keeping in mind that these domains are all diffeomorphic to the ball up to the
boundaries, this theorem indicates not only that the Riemann mapping theorem
in classical sense fails in an essential way, but also that the bounded domains with
compact automorphism groups should be generic. On the other hand the last
remark is only philosophical in the light of the above theorem of Burns, Shnider
and Wells, because in the family of domains produced from perturbing the unit ball
may contain some other domains with larger automorphism groups. For instance,
the domain

{(z,w) € C*[|2* + [w|* + €|w|* < 1}
is close to the unit ball in C? in C* sense (which we will define in the following
paragraph) for ¢ > 0 sufficiently small. But, notice that this domain contains
enough rotations in its automorphism group.

29
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R.E. Greene and S.G. Krantz ([25]) later obtained a finer version of the above
mentioned theorem of Burns-Shnider-Wells. To state their theorem precisely, as
well as to make the terminologies in the preceding theorem, we introduce the
concept of C* perturbation of the boundary of the domains.

Let po be a C*® smooth defining function for a bounded domain ) € C". A
domain Q € C" is c_e_z_lled e_—close to Qo in C™ sense if there exists a C™ smooth
diffeomorphism F' : 0y — € such that

| F' = I|lox < e

for every k = 0,1,2,..., where the || ||ox denotes the maximum taken over all the
supremum norms of all the mixed partials of order & of all the components of the
given mapping. As usual I denotes the identity mapping.

EXERCISE 1.1. Let Gy be a strongly pseudoconvex domain in C*. Show that
there exists € > 0 such that any bounded domain with a C'° boundary that is
e-close to Gy is strongly pseudoconvex.

Now we state

THEOREM 1.2 (GREENE-KRANTZ). Let B™ be the unit open ball in C", where
n > 2. Then there exists € > 0 such that, for any Q that is e-close to B™ in C*°
sense, either

(1) Q is biholomorphic to B*, or
(2) AutQ is compact, has a common fized point, and admits a faithful unitary
representation by a biholomorphism @ : @ — G C C".

These theorems suggest in principle that the bounded domains admitting a
noncompact automorphism group must be very rare. Hence it is natural to ask a
question

Which bounded domains in C* admit noncompact automorphism
groups?

The current chapter is devoted to this question. Before we begin to discuss any
further details, we list in the below several known examples of bounded domains
with noncompact automorphism groups.

e The bounded symmetric domains including the ball and the polydisks.
e Thullen domains of type

{(z15---,22) EC* 1) + |22 + ... + |za]™ < 1}.
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o The examples by P. Griffiths: There exists a bounded domain in C? which
covers a compact variety but the automorphism group is completely dis-
crete.

e An example by Greene and Krantz: There exists a bounded domain in C®
for every n > 2 whose automorphism group is isomorphic to Z. This domain
has a smooth boundary except at one point where the automorphism group
accumulates.

2. Wong-Rosay Theorem

2.1. Statement and Background. In the standard realization table by E.
Cartan ([13]) of the bounded symmetric domains, it is somewhat simple to realize
that the open unit ball is the only kind of domains that admit globally smooth
boundary. One obvious thing to try may be an effort to find a new holomorphic
embedding of bounded symmetric domains other than the ball to produce a model
that has globally smooth a boundary. The following theorem by B. Wong ([68])
and J.P. Rosay ([63]) demonstrates that such an attempt cannot be successful.
This indicates another aspect of “rigidity” of the domains that admit noncompact
automorphism groups, or the “persistence” of the singularities in the boundary in
complex dimensions higher than one.

THEOREM 2.1 (WONG 1977; ROSAY 1979). Let Q be a bounded domain in
C", n > 1, which admits a point ¢ € Q and a sequence of automorphisms
{fi} C AutQ such that the sequence of points fi(q) accumulates at a bound-
ary point p € 9 at which 0Q is C* smooth strongly pseudoconvez. Then ) is
biholomorphic to the open unit ball.

This in particular implies

THEOREM 2.2 (WONG). Let Q be a bounded domain in C* with a C? smooth
strongly pseudoconver boundary. Then Aut§ is noncompact, if and only if it is
biholomorphic to the open unit ball in C".

Historically speaking, B. Wong proved the preceding theorem in 1977. For the
C'* smooth strongly pseudoconvex boundary case, P. Klembeck ( [42]) presented
about at the same time a completely different proof which is much more differential
geometric. Then in 1979, J.P. Rosay strengthened the theorem and the proof of
B. Wong and presented the full version of Theorem 2.1 stated above. Rosay’s
contribution is indeed an improvement because it implies the following

COROLLARY 2.3. Let Q) be a bounded domain in C* with a C? smooth boundary.
If it covers holomorphically a compact complex variety, then Q is biholomorphic
to the open unit ball.
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At this point, a theorem by S. Frankel ([22]) should be mentioned. The state-
ment is

THEOREM 2.4 (S. FRANKEL). If a bounded conver domain in C* covers holo-
morphically a compact complez manifold, it is bounded symmetric.

This theorem is unique in the sense that boundary smoothness is not at all
assumed except for the convexity. On the other hand, the assumption on the
automorphism groups is much stronger than mere noncompactness, because the
hypothesis of the preceding theorem allows the automorphism orbit accumulate at
every boundary point. Therefore, it does not fit into the frame of this lecture note,
and hence we will simply refer the readers to [22] for further details. However, one
of the methods Frankel introduces in the above mentioned paper is the “convex
scaling technique” which plays a key role in proving the Product Domain Theorem
in the later sections of this chapter. This method will be presented in detail.

2.2. Proof of Wong-Rosay Theorem by Scaling. In this section, we are
going to introduce the scaling technique which was initiated by S. Pinchuk in the
late 1970’s ([60]). In doing so, we prove Wong-Rosay Theorem by Scaling Tech-
nique. In earlier papers of Pinchuk, this was called “the stretching coordinates.”
Similar, but different both in techniques and results, ideas precede Pinchuk’s tech-
nique in many other branches of mathematics.

We clearly point out that the proof and the idea that follow are mainly due
to Pinchuk. The original proof by Wong (which is later improved by Rosay) is
completely different from the arguments we introduce in the below. However, we
take such direction because of two reasons: (1) To demonstrate the idea of the
Pinchuk scaling technique; (2) To connect a bridge to the weakly pseudoconvex
cases generalizing Wong-Rosay Theorem to Bedford-Pinchuk Theorem, which is
the main content of the next section.

Preparation for Scaling

To prove the Wong-Rosay Theorem, let us start with the bounded domain Q
with a boundary point p € 9 such that

(i) 99 is C? strongly pseudoconvex at p; and
(ii) there exist a point ¢ € Q2 and a sequence {p;}32; € Aut{ such that
lim;.o0 ¢i(q) = p.
Passing to a quadratic polynomial biholomorphic mapping of C? mapping p to the
origin after choosing an appropriate defining function of {2, we may assume that p
is the origin and that there exists an open ball U centered at the origin such that
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UN$ is in fact strongly convex. (See for instance Narasimhan’s Lemma in p. 128-
129 of [51].) Then by a complex linear change of coordinates, and by shrinking U
to a smaller ball if necessary, the set U N (2 is represented by the inequality

(4) p(z) = Rezi + ['z]* + o(|Sm 21| + '2?) < 0
where
' ata
Rea = 5
a—a
29 =
ma=;

for any complex number «, and where

2= (22,... y2n)

2> = |zf* +... + |2 |?

Now we prove the following localization lemma:

LEMMA 2.5. Let Q, p, q and ¢; be as above. Then for any neighborhood V of p
and for any compact subset K of Q) there exists N > 0 such that '

ei(K)CcvVNaQ.

Furthermore, for any v € C",
lim |dy(q)v| = 0.
j—00

PROOF. Notice that the sequence {¢;} is uniformly bounded, since i(Q) =Q
and () is bounded. Therefore, every subsequence of {p;} admits a subsequence
which converges uniformly on compact subsets to a holomorphic function, say
¢ Q — Q, with ¢(q) = p € 0Q. Since the strongly pseudoconvex boundary
point does not admit any nontrivial analytic variety passing through it (why?),
@(z) = p for all z € Q. Since this convergence is uniform on K in particular, the
first assertion follows rather easily.

For the second assertion, introduce a fixed number r > 0 such that h(z) =
¢ +rzv € (L for all z € C with |2| < 1. Then apply the normal family argument
to @;oh: B — () as above. (Here, as before, B denotes the open unit disk in C.)
If there exists a subsequence {y;, }+ such that

(5) lde;(q)v| >8>0

for some fixed § > 0 independent of k. Then choose a subsequence again so that
a subsequence of @;, o h converges to a mapping, G : B — () with G(0) = p. By
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the standard normal family argument, G'(0) # 0. This means that there exists
a nontrivial analytic curve contained in {} passing through p. As above this is
impossible, and so the proof is complete. [

REMARK 2.1. The assertions above as well as the proof are valid for the bound-
ary point other than strongly pseudoconvex points. As one sees from the proof,
non-existence of the non-trivial analytic varieties in the closure of the domain pass-
ing through the boundary point in consideration is sufficient for the conclusion and
the proof.

Pinchuk’s Scaling Method

Continuing from the preceding section and the Wong-Rosay Theorem, let us
denote by

Py, = ¢,(q), foreach v =1,2,...
Recall that p, = p = 0 as ¥ — oo and that the domain  in consideration is
defined, at least near p = 0, by the inequality (4). Write p, = (p{,...,p%). Then,
for each v, consider the biholomorphic change of complex coordinates of C* by
{21 = ez — p} — Lig we(2e — pY)

(6)

Zr=2—py for{=2,...,n
where p* € C and a4 € C are chosen so that in the coordinates (Z4,... ,2,) we
have
e the point (0,...,0) € 09,
® p, is given by (—¢,,0,...,0) for some ¢, > 0 for every v; and

e the tangent plane to 0 at (0,...,0) is given by Rez; = 0.
Now the defining function (4) in new coordinates is given by
Y uE) = e (5 + S A2 ) + 3 Biwio+ Bl
=1 kf=1
where E, (%) = o(|Sm 2| +|'2|%), and where the coefficients of the quadratic terms
converge to the corresponding quadratic terms of the defining function p in (4) as

v — oo. Moreover, ¢, — 1 as v — 0. Let D, be the intersection of U (as in the
paragraph of (4) and the domain defined by p, < 0 above.

Now we finally introduce the Pinchuk’s scaling sequence

®) h=hl
Zy=2/\)¢ forl=2,...,n
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Let us denote by L(%2) = 2. Clearly, L is a complex linear isomorphism of C”,
and hence in particular is a biholomorphic mapping. Since ¢, — 0 as v — oo, the
defining function of the domain L(D,) may be normalized as

9)  p.(2) =cRe (21 + E Ang) + Z Biziz + € E,(€,21,/€,'2) < 0.

Form the above, it is clear that the limiting defining function as ¥ — oo is defined

by
(10) p(z) =Rez + 2> < 0.

It is not hard to see that in fact the domains L(D;) converges to the domain
defined by (10) above, in the sense of local Hausdorff set convergence. Notice that
{) is biholomorphic to the open unit ball.

Now here is the crucial step. Combining all the complex coordinate changes
above in this section as well as in the previous section, we arrive at an injective
holomorphic mapping for each v, say,

g.:UNQ— L(D,).

Let K be a compact subset of 2. Then there exists N > 0 such that K CC L(D,)
for all v > N. So we consider the sequence of injective holomorphic mappings

G, =¢; og;' : K =,

Since ) is bounded and since K is an arbitrary compact subset of Q), a subsequen-
tial limit will yield a holomorphic mapping, say G : {8 — ). Now we present

LEMMA 2.6. G: Q0 > Q isa biholomorphism.
Notice that this lemma implies the Wong-Rosay Theorem.

PROOF. Observe that det dG, is never zero at any point of K since G, is one-
to-one and holomorphic. Therefore, Hurwitz’s Theorem implies that detdG is
either identically zero or nowhere zero on ). Let ¢o = (—1,0,...,0). By choices
of our D,, it is simple to observe that the Kobayashi metrics satisfy the following
uniform estimate

FP)(go,8) > 6)¢|

for all £ € C" for some 6 > 0 independent of ». This implies that det dG(go) # 0.
Notice that det dG is a holomorphic function which is at the same time the limit of
nowhere vanishing holomorphic functions which converges uniformly on compact
subsets. Applying Hurwitz’s Theorem, we can deduce easily that det d@ is nowhere
zero. So G : ) — (1 is locally one-to-one. From the uniform convergence on
compact subsets, it is easy to see that G is globally one-to-one.
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It remains to show that G is onto. To see this, we remark that G, (q) = ¢
for all v in our construction. Now, observe that the Kobayashi distance of {2 is
Cauchy complete. (Exercise.) By choosing U above small, realize that all the
domains L(D,) stays inside a fixed domain defined by Rez, + r|'z|? < 0. And
hence by the distance decreasing property, the image of any fixed compact set
under g, o ¢, is indeed uniformly bounded for all v. Then it is an easy exercise
to construct an inverse holomorphic mapping of G from 2 to §). Therefore, the
proof is complete. [

EXERCISE 2.1 (HURWITZ’S THEOREM). Let Q2 be a domain in C" and let f; :
! — C form a sequence of holomorphic functions that converges to f : § — C
uniformly on compact subsets. Assume further that none of the functions f;
vanishes anywhere on €. Show that either f is nowhere zero or it is identically
Z€ero.

REMARK 2.2. If one knows beforehand that the point sequence ¢;(g) approaches
p inside a cone with vertex at p contained in 2, then the adjustment such as (6)
would be totally unnecessary.

'REMARK 2.3. The above proof is much more descriptive than the original proof
of Wong which uses the quotient of the Carathéodory-Eisenmann volume and the
Kobayashi-Royden volume.

REMARK 2.4. There are other proofs of the Wong-Rosay theorem. We will in-
troduce a Differential Geometric proof in the final chapter following the discussions
of the Bergman curvatures.

3. Finite Type Cases
Consider now the following domains, usually known as the Thullen domains
(11) Eom = {(2,w) € C*||2* + |w[™ < 1}

for m = 1,2,.... The boundary of this domain is not strongly pseudoconvex
everywhere. In fact, the Levi form of the defining function degenerates along the
curve defined by the equations w = 0,|z| = 1. Furthermore, this domain admits

the automorphisms of the following form '

z+a (m);

1+az’\ 1+az

(zw) =

for any branch of the m-th root in the expression. Therefore, the automorphism
group is noncompact. It is also known that this domain is not homogeneous.
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Hence, Wong-Rosay Theorem of the preceding section yields that the orbit of a
point of Ey, can only accumulate at the weakly pseudoconvex points.

If one considers the bounded domains in C* with a globally C* smooth bound-
ary, then the Thullen domains E,,, above are the only examples that are known
by far. Therefore, a natural question to ask is if the Thullen domains constitute
the complete list of the bounded domains in C* with a C* smooth boundary that
admit a noncompact automorphism group.

3.1. Characterization of the Thullen Domains. The first result in this
direction is the following theorem of R.E. Greene and S.G. Krantz ([26]) later
improved by K.T. Kim ([35]) to the present form:

THEOREM 3.1 (GREENE-KRANTZ (1987), KIM (1989)). Let Q be a bounded
domain in C* with a boundary point p € 90 such that

(i) there exist a point ¢ € Q) and a sequence of automorphisms @; such that
lim;_e 0;(q) = p;

(ii) there exist neighborhoods U of p in C?* and V of (1,0) in C? and a dif-
feomorphism F : UNQ — V N Ey, which is holomorphic on U N Q and
satisfies F(U N ON) =V N OE,,, and F(p) = (1,0).

Then, Q is biholomorphic to E,,,.

Original theorem of Greene and Krantz was proven under the extra hypothesis
that 00 is globally C* smooth. Kim gave a new proof using the scaling tech-
nique (modified Frankel scaling) and also removed the global boundary regularity
assumption. Then A. Kodama, in [48] and other papers, obtained various gener-
alization for the generalized Thullen domains which may have singularities in the
boundary, by using Pinchuk’s scaling method combined with other techniques.
After the original version of the above theorem of Greene-Krantz was presented,
about the best result one can hope for in complex dimension two was presented
by Bedford and Pinchuk. From the following sections, we would like to present
the theorem of Bedford and Pinchuk.

3.2. Statement of Bedford-Pinchuk Theorem. Even if there are more re-
cent papers of Bedford and Pinchuk which contain further generalizations to higher
dimensions, we would like to restrict our attention, in this note, to the complex
dimension two. For the readers who would like to know more details and further
developments in this direction, we refer them to [6] and [7].

THEOREM 3.2 (BEDFORD-PINCHUK). Let ) be a bounded pseudoconvezr do-
main in C* with C* smooth boundary such that every boundary point is of finite
type. If the automorphism group of Q is noncompact, then Q is biholomorphic to
a Thullen domain E,, for some positive integer m.
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Even if the above mentioned theorem of Greene-Krantz is not a consequence
of this theorem (because of the global finite type assumption), it appeals to us
that this theorem of Bedford and Pinchuk deserves more attention. Therefore, we
would like to discuss in detail the proof of this theorem in the following sections.

REMARK 3.1. The first version of the theorem above was initially proven with
the stronger assumption that the boundary of Q is real analytic. An argument
needed to establish the biholomorphic equivalence between the bounded domain
and the scaled domain (See the proof below, please) was not given in [5], and it was
pointed out by Berteloot and Cceuré and proven in [10]. Another proof is given by
Bedford and Pinchuk in [6]. S. Bell and D. Catlin (unpublished) discovered how to
generalize the result to C* smooth finite type boundary cases. Lemma 3.9 in this
note (which is Lemma 6 of [6]) was essentially from the ideas of Bell and Catlin.
Most recently, Bedford and Pinchuk obtained a higher dimensional generalization
for bounded convex domains with finite type boundaries ([7]).

REMARK 3.2. The final problem to solve is how to localize the hypothesis in the
Bedford-Pinchuk theorem. Namely, one would hope to prove the same conclusion
under the hypothesis that there exists an automorphism orbit accumulating at
a point of finite type without assuming the global finite type condition on the
boundary. At this writing, this problem is yet to be answered.

In what follows, we present the proof of the Bedford-Pinchuk Theorem in several
steps.

3.3. Preliminary Scaling. Keeping in mind the scaling arguments we pre-
sented in the proof of the Wong-Rosay theorem in the preceding section, we will
also perform the scaling at the orbit accumulation point.

First we normalize the defining function. By a linear change of coordinates, let
us assume that

® Do = (0,0) € 99, and
o there exist ¢ €  and {¢;} C AutQ such that lim; . ¢;(¢) = Poo-

and the tangent plane to OQ at the origin is {Smw = 0} in C?. Therefore, near
the origin, the defining function of {2 may be given by

r(z,w) =v+a(z,z,u) <0
where u = Rew and where v = Sm w. Now, we may write
a(z,z,u) = ag(z, 2) + O(Juz|).

Notice that ag(z, z) cannot vanish to infinite order at z = 0, since every boundary
point of € is of finite type. In fact, if the origin p,, is the point of type m, then up
to a holomorphic change of local coordinates, we may assume that ap must vanish
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to order p, and for any holomorphic coordinate change ag cannot vanish to order
any higher than g. (Such an argument is in general false in higher dimensions.)
Let us assume that ao vanishes to order u at the origin. Then, let

2/)(2,2): Z akgzkée.
k+i=p

Then not all the coefficients of the non-harmonic monomials in the expression of
¥ can be zero. For, otherwise, the type of the boundary at the origin cannot be
p- Finally, Q being pseudoconvex, p must be even. (Exercise: Verify!) Therefore,
we have the following new (local) defining function p of Q near the origin:

2m
(12) p(z,w) = v+ Y a2 2 + o([u| + |uz| + |2|*™).
=1
In the above, observe that @, = az;,—¢ and not all the values of a; are zero.

Now we will perform the first scaling. Let

P =w.(q) = (z,,,w,,).

Introduce the new holomorphic coordinates of C? by

(13) {ézz—z,,

W= efvw —wk —b,(2 - 2z,)

where w},b, € C and 0, € R are chosen such that in the new coordinate system
e (0,0) € 09,
e p, = (—1i¢,,0) for some ¢, > 0, and
o the tangent to 9 at (0,0) is {Smw = 0}.
This can be achieved as follows: First, choose w? so that (0,0) € 95, then choose
b, such that the real line segment joining w — w} — b,(z — z,) to the origin is
complex perpendicular to z-plane. Then choose the correct rotation factor (which

may change the values of w} and b,, respectively) so that all three conditions are
satisfied.

The (local) defining inequality of © near (0,0) in the new coordinates is

2m
b+ Y Yru(3,2)+ E,(4,2) <0

k=2
where:
o W =1u-+10,
o £,(d,2) = of|4] + |[a2] + |2*™), and

® 1 is a polynomial in 2,z with homogeneous degree k, for each .
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Introduce the “stretching coordinates”

(142 {z =z/é,

w=1/e,

For each v, consider the function

122 s 1
(15) pu(z,w) = ¢,Smw + = > (2, 2) + 6—E,,(e,,§Re w,6,2)

V k=2 4
Choose 6, for each v, such that the largest absolute value of the coefficients of
the monomials in the expression of €165y, is 1.

Notice that by our choice of coordinate change in (13) above, %m,u converges
to 15, uniformly on compact subsets, as ¥ — oo. Consequently,

2m
v

€

sup < 0.
v

Due to the growth condition on F,, passing to a subsequence if necessary, we may
conclude that p, converges to

(16) p=Smuw+ P(z,2),

uniformly in C* norm on compact subsets of C%, where P is a polynomial in z, z
of degree at most 2m. (Exercise: Verify/)

At this point, we define by
D, = {(z,w) € C*| p,(2,w) < 0, 2| < v, |w| < v}
for each v. |

Now we need the following technical lemma.

LEMMA 3.3. In the above, P is subharmonic such that 3*P/8z0%z does not van-
ish identically. Moreover, D admits a peak function at infinity, i.e. there exists a
holomorphic function f : D — C such that |f| < 1 at every point of D and such
that limpsp o f(p) = 1.

- PROOF. Being the uniform limit of psh functions p, in C* topology on compact
subsets, p is psh. Therefore, P is subharmonic. Since P has no pure harmonic
terms, 32 P/920% cannot vanish identically. Now, notice that the degree of P has
to be even since P is subharmonic.
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Let us denote by P, the top degree homogeneous part of P. The existence of
the peak function at infinity follows from the construction of peaking functions by
Bedford and Fornaess ([4]) for the domain

D :={(2,w) € C*|Smw + Pyn(2,2) < €(jw] + |2*™) + C}

for a sufficiently small € > 0 and an arbitrary C' > 0. Notice that for a given € > 0,
D C Dif C is large enough. Let us focus on D. By a linear change of coordinates,
we may assume that C' = 0. According to [4], there exists a holomorphic functlon
h: D — C satisfying
e For some constants 0 < ¢ < C, ¢(|z]*™ + |w]) < |A(z,w)| < C(|z]*™ + |w]),
for all (z,w) € D;
o There exists an integer N > 1 such that a branch of /A exists and
| Arg V/h| < 7/4; and
o exp(— ¥/h) is holomorphic on D.

Notice that exp( ¥/h) is then the peak function at infinity for both D. Changing
the coordinates back to the original, one gets the second assertion. [J

We are now at the final phase of the preliminary scaling. For each v, consider
the mapping G, : C* — C? which is the composition of the linear biholomorphic
mappings introduced in the form of change of the local coordinate systems (13)
followed by (14) in the above.

Let K be a compact subset of D. Notice that there exists N > 0 such that
K C D, for every v > N. Now for such v, define g, : K — Q by

g =, oG

This mapping is well-defined if one chooses a larger value for N. Notice that
9v(—1,0) = ¢ for all v by construction. Since ) is bounded, passing to a subse-
quence, we may assume that g, converges to a holomorphic mapping g : D — )
uniformly on compact subsets of D. Obviously, g(—:,0) = q. Now we conclude
the preliminary scaling with the following

LEMMA 3.4. g(D)=Q and g : D — Q is a biholomorphic mapping.

PROOF. Note that g(—i,0) = q. Hence, by maximum principle, g(D) C Q. By
[18], there exists a smooth function a with a(0) = 0 such that # = —e*(—r)? is

a psh exhaustion function for 2, where r is the defining function of ) we began
with. Then

pv=—e""(-10g,)'e" = —e*"(~p,)’

is psh. Moreover, p, converges uniformly in C* topology on compact subsets to
p = —(—p)° as v — 0o. Now choose a point gy € D such that g(go) €  and e?
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is strictly psh at go. For v sufficiently large, e’ is uniformly psh at ¢o. Hence, we
get a uniform lower bound for the Sibony metric

F§*(g0,€) > cf¢], for all ¢ € C"

for some ¢ > 0 independent of v. Due to the distance decreasing property, and
the fact that Fg* is strictly positive definite, if follows that dg(go) is nonsingular.
Since every g, is one-to-one and since g, — ¢ uniformly on compact subsets as
v — 00, g is (globally) one-to-one. Namely, g : D — g¢(D) is a biholomorphic
mapping.

Now we show that g(D) = Q. First, choose small neighborhoods By of go and By
of g(go) such that ¢,(Bo) C B for v large. We choose s > 0 such that j < —s on
By (and thus the same inequality holds for 5, for large v). Now let h: Q\ B, — R
be the harmonic function such that A = —c on 0By and h = 0 on 0. By the Hopf
lemma, there exists a constant € > 0 such that —edist(p, Q) > h(p) for p € Q.
For an arbitrary € > 0, choose a compact subset K of 2 such that h > —¢€ outside
K. Hence, for v sufficiently large, we have

—edist(p, 0Q) > h > p, (g, (p)) — €

for p € K, since the last item above is subharmonic with a smaller boundary data.
If p € g(D), we may pass to the limit as ¥ — oo and obtain the same inequality
for p with ¢ = 0. On the other hand, the defining function p for D satisfies that
for a constant R > 0 there exists n > 0 such that

—ndist(¢q,0D) < p(q), for all ¢ € D with |¢| < R.
We conclude then, by a simple calculation, that for ¢ € D with |¢| < R,
(17) /%y dist(g(q), ON)/® < dist(q, D).

This can be roughly summarized that g maps the boundary of D to the boundary
of ). Now, we would like to finish the proof of the lemma. Suppose g is not onto.
Then, for any po € QN 9(g(D)), the preceding estimate implies that

L1

Jim g7 (p) = o0
where p € g(D). Let f be the peak function for D at infinity constructed in
Lemma 3.3 above, then

fogT(p)—1
as p — po, p € g(D). By Rado’s Theorem (See [30]), f o g~! extends holomor-
phically onto §2 if we set f o g~! to be identically 1 on  \ g(D). However, since
|f og7!| <1 on g(D), the extended function has modulus at most 1 on . This
implies that Q \ g(D) is empty, by the Maximum Principle. This complete the
proof. [0



3. FINITE TYPE CASES 43

Notice that the assertion of the Bedford-Pinchuk theorem does not follow im-
mediately from this lemma. It is mainly because it is not obvious at this point
why the scaled model has to be biholomorphically equivalent to one of the Thullen
domains.

To achieve such a goal, Bedford and Pinchuk study a new automorphism orbit
which is obtained as a result of the preliminary scaling. In the following section,
we will observe that at the boundary point of £ at which the new automorphism
group accumulates, one obtains a noncompact holomorphic vector field action in
the boundary of © which results in that the defining function of £ at the above
mentioned orbit accumulation boundary point is has the lower order terms that
resemble the defining function of a Thullen domain.

It is still a step away from the final conclusion. But, investigating closely the
behavior of the above mentioned automorphism orbit, Bedford and Pinchuk rescale

the domain repeating the same procedure we introduced in this section and gets
the desired result.

So, we now introduce the new automorphism orbit and the induced holomorphic
tangent vector field action on § in the following section.

3.4. Parabolic flow. Notice that on the scaled domain D there exists a non-
compact one parameter group action by translations

Li: (z,w) — (z,w+ 1)

for all ¢ € R. The biholomorphism g : D — ) then yields a one parameter family
of holomorphic automorphisms

hyi=goLiog™.

LEMMA 3.5. The group H = {h;|t € R} is parabolic, i.e. there ezists a poznt
p € Q such that

Jim_hi(g) = p = lim hy(q), for every q € Q.
In the sequel, p is called the parabolic point. |

PROOF. By the localization lemma (Lemma 2.5 in page 33), it is enough to
show that

Jim £(0,i + ¢) = Jim £(0,~i+1),

By the lower bound estlmate for the Kobayashl metric in [4] and [15], and the
obvious estimate of the Kobayashi metric on the plane z = 0 in D, we have

(18) FR((0,w),(0,€)) < 1] X|/|Sm wl
(19) Fg(p,Y) 2 el Y |(dist(z,00)) ™
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for some positive constants ¢;,c; and e. Moreover, due to the existence of the
holomorphic function & : D — C such that

o h extends continuously across the boundary of D;
o cs(|2|*™ + [w|)'N < |g(z,w)| < ea(l2]™™ + [w])'/¥ on D; and
o Argg(z,w) € [-n/4,7/4].

Now consider the function

2
_|9(zw) = 11"
(P(Z,w)— g(z’w)+1l
which is negative psh on D satisfying the estimate
(20) lp(0,w)| ~ feo| MY

on D. (See the proof of Lemma 3.4.) Applying the Hopf lemma to pog™' : @ — C,
one gets

lp 0 g7 (p)] 2 cs dist(p, OD).
Combining this with (20) above, we get
(21) dist(g(0, w), 8Q) < cglw| V.
From (18), (19), (21), and the invariance of the Kobayashi metric under biholo-

morphisms, one gets
99
e

for all £,k = 1,2 where ({1,(z) = (2, w). The convergence of the improper mtegral
[Pt /N dz 1mp11es that there exists a point p,, € 0§ such that

(22) < ¢|Sm w| ™ w| N

7 (0,0)

tl_1+r(1)1°g(0, —i —1t) = Poo-

Finally, the derivative estimate in (22) implies that

—i41)—g(0,—i —it)| <
60— £ g0 i —it)] <o [ 7w

=ct™NIn(l14+1t) — 0 as t — oo.
This finishes the proof. O

Notice that together with the estimate (17) in page 42, the lemma above implies

that the biholomorphism g : D — () extends to a homeomorphism between Du
{o0} and Q.

Parabolic Vector Field Action
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By [10] and [18], every automorphism of  extends to a diffeomorphism of (1.
Therefore, it make sense to define the holomorphic vector fields H = (Hy, Hs)
acting on {2 induced by H in the sense that

H(p) = dh;gp) L,

Note that H(ps,) = 0, by construction. Also by definition, Re H is tangent to the
boundary 9} of the bounded domain Q. Hence, for any ¢ € 99,

(23) Re (aLégf—)Hl(o ; —a—"é%lﬂz(o) =0

where p is a defining function of Q. In what follows, without loss of generality we
set po = 0. Expand p near 0 as in (12) in page 39:

(24) p=Smuw+ (2, 2) + o(|w| + [wz| + |2|*™),

where 1 is a subharmonic polynomial with the homogeneous degree 2m which
does not have any pure harmonic terms. Then we observe the series of lemmas
in the following. We do not include the proofs of the first three lemmas here and
simply refer to pages 146-147 of [5].

LEMMA 3.6. For all z we have
Re (29(z,2)) = my(z, 2).
Furthermore, if Sm (23(z,2)) = ap(z,2), then a = 0, and ¥(z,7) = c|z|*™.

Proor. This follows from elementary computations on coefficients. We leave
the details as an exercise. [

LEMMA 3.7. Suppose that Smw = —(2,2) and that
Re (azwk'lﬁ/)— + bwk) =0,
0z

where the compler numbers a and b are not zero at the same time. Then, k s
either 1 or 2; and

(a) If k=1, then b=2mRea; and if a # 0 then ¢(z,2) = c|z|*™.
(b) If k = 2, then 9(z,2) = c|z|*™, b = ma and both a and b are purely
imaginary.

PROOF. Exercise. []

- Now assign weight 1'to the variable z and weight 2m to w.
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LEMMA 3.8. Let Q1(z,w) and Qy(z,w) be weighted homogeneous polynomials
with weights ¢ and g + 2m — 1 respectively. Suppose that '

e (@) 300 + Qs(ey)) = 0

holds for Smw = —(z,2). Then q must be either 1 or 2m + 1, and
(a) If ¢ = 1, then @ = az and Q2 = 2mbw with b = Rea for some a € C.
Further, if Sma # 0, then ¥(z, 2) = c|z|*™.
(b) If ¢ = 2m + 1, then @, = iazw and Q; = imaw? for some o € R, and
P(z,2) = clz™™.
PROOF. See Lemma 3.3 in page 146 of [5]. O
LEMMA 3.9. The vector field H vanishes to finite order at the boundary point
P = g(00).
PROOF. Recall that for a smooth real-valued test function ¢ on {2, we have

(25) (Re H)(0)lp=g() = g g(qdlt+ k) |t=0

where ¢ = (¢1,92) € D. It is shown in the last inequality in the proof of Lemma 3.5
in page 43 that there exists € > 0 such that

(26) 19(g0 + (£,0)) — Poo| < Ci[™

holds for go € D and for [t| large. Observe that € > 0 can be chosen that t°|g(go +
(t,0))] — 0 as t — oco. Also observe that at a point p = g(q) € §2, we have

dg(q + (t,O))l
dt t=0

27) |Re H(p)| =

To prove the lemma, let us set po, = 0 and choose § > 0 such that 1 —6 > 27¢. Let
us denote by g(t) = g(¢ + (¢,0)) in the rest of the proof. Then since t¢|g(t)| — 0
as t — oo, there exists a sequence t; /* co such that

(28) |t59(2;)| = (1 — 6)t|g(2)]
for all ¢ > ¢;. Thus,
lg(t;) — 9(2t;)] = (1 = 6)7'27 g (t;)], Vi.
By the Mean Value Theorem, there exists ¢ with t; < ¢ < 2t; such that
(29) |tig'(€)] = clg(t;)| = 27%|g(£)]

where the last inequality follows from (28), and where ¢ = (1—6)~*27¢. From (26),
we have t; < ¢ < |Cg(€)|7/¢. Then it follows from (29) that |¢'(¢)| > C|g(&)|**/
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for some constant C; > 0. Therefore, from (27), Re H can only vanish to finite
order at p,, =0. O

As remarked in [6], this somewhat crucial lemma was first observed by S. Bell
and D. Catlin. In the original setting that 9§ is real analytic, the same conclusion
was proven in Lemma 3.4 of [5].

LEMMA 3.10. The holomorphic vector field H = (H,, H;) is given by one of the
following, in a neighborhood of po, = (0,0):
(a) Hy = (a+1t8)z+... and Hy = 2maw+ ..., where the dots represent the terms
of higher weight, o, B € R, a®> + 8% # 0, and if B # 0 then ¢(z,2) = c|z|*™;
(b) Hy =tazw+... and Hy = imaw? +..., a € R, a # 0 and ¥(z,2) = c|z|*™.

PROOF. Form the preceding lemma, H vanishes to finite order at p., = (0,0).

Thus, we may set
Hﬂ = QM(Z,’U)) +... (/‘ = 1’2)

where (); and @), are weighted homogeneous polynomials with weights ¢ and ¢ +
2m — 1 respectively. Such restriction on weights follow from the fact that Re H is
tangent to 9§ admitting the defining function p = Smw+1y(2,z)+.... Again, the
dots represent the terms with larger weights, and neither @; nor @), is identically
zero. Then comparing the terms with smallest weights, the arguments that proved

the preceding analogous lemmas without larger weight terms apply here and yield
the desired conclusion. O

PROPOSITION 3.11. 9(z,2) = c|z|*™ where ¢ is the one in (24) of 45.

PROOF. If ¢ does not have the indicated form, then the above lemma implies
that H; = az+yw+ ... and Hy(z,w) = 2maw + ..., where a« € R and a # 0.
Perform the change of coordinates

z=63,w = 6.
Then the vector field H in new coordinates may be written as H = (ﬁl, I:_fz) where
Hy = 67 Hy (82,6 0) = az + 46 b + ...
H, = 672 H,(6%,6"™ ) + 2maib + . ..
Then consider the Euclidean scalar product of the vectors H and (%, ) which is
(30) a(|Z]* + 2m|w|?) + 2Re (v6*™'2d) + higher order terms.

For a small value of 6 > 0 the sign of this product is either identically negative
or identically positive near the origin depending upon the sign of a. This means
that the flow of H is either attracting or repelling, accordingly. However, this
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contradicts the fact that the origin is a parabolic point of H-flow. Hence the
conclusion follows. O

COROLLARY 3.12. The scaled domain D scaled at the parabolic point by the
parabolic orbit above is convex.

PROOF. It follows from that the local Hausdorff set limits of a sequence of
convex sets is convex. [

Final Rescaling by Parabolic Orbits

Before we perform the final scaling by parabolic orbit, we need to know that
the parabolic orbit is “not too tangential” to the boundary. From the arguments
above, we now have

e 0 € 0N is the parabolic point, associated with the parabolic group H.

e g: D — Q is the biholomorphic mapping from the scaled domain D to (2.

o D = {(z,w) € C?|Smw + P(z,2) < 0} is convex, where P(z,Z) is a
positive polynomial of degree 2m.

Passing to the mapping (z,w) — (z,—1/w), the domain D takes the form
{(z,w) € C*|Smw + |w|*P(z,z) < 0}
which we will henceforth denote by D*.

The parabolic point 0 € €2 is now corresponding to the complex line {(z,0) €
C?|z € C} C 9D*, and the preimages of the parabolic orbits under the transform
g are now the circles given by

Z =daz,
W=———-, —00<1t<o00.

_ia2+t’

Since P(z,z) > 0 due to convexity of D, we have D* C {Smw < 0}. The
function v(({,({2) := Sm(; is negative psh on D*. We also have |v(0,()| =
dist((0,¢),dD*) for (0,() € D*. Applying the Hopf lemma to v o g~! defined
on {2, one gets the estimate

(31) dist(f(p), 0N) < ¢; dist(p,dD*)
for the points p € D* of the form p = (0, ().



3. FINITE TYPE CASES 49

As before, denote by p the defining function of §2. Let

o) = (500 ~5209)) . 2at6) = (220, 2210)

denote the “tangential” and “normal” vector fields to the boundary 99). Since the
defining function p is defined on a neighborhood of the closure of the domain 2,
the vector field X = ayL; +ay L, is well defined in a neighborhood of the boundary
of 2. By [15], in a neighborhood of 0, we have the estimate on Kobayashi metric

|aa | |aa|
(32) FR(p, X) 2 ¢ (Ip(p)ll/Zm + |p(p)|>

Denote by §(z,w) = g(2,—1/w). Combining (31) and (32) with standard tech-
niques, one easily obtains

LEMMA 3.13. There exists a neighborhood V containing the origin in C? such

that the biholomorphic mapping § : D* — Q extends to V N D* as a mapping of
Holder class 1/2m.

Notice that we may choose a defining function 5 of §2 so that it is psh near 0 by
Corollary 3.12. Hence, applying the Hopf lemma to po § in V N D*, we have the
estimate

(33) dist(g(p), 00) > c3 dist(p, dD*)
where § = (g1, §2). Then we have
LEMMA 3.14. Let m > 1 in the expansion (35) of the defining function of Q at

the origin, which is a parabolic point. Then there exist constants ¢, > 0 and 6y > 0
such that for all 6 > 6 > 0 we have

lg2(0, -36)1 < 045.
PROOF. From the estimate (32) and by the definition of X, we have

Op,. 1 )

5:7) ’ I (o 3(p) 7o
where p is the defining function of (2.

Since we are interested in the behavior of the parabolic orbit in {2 near the origin
Poo, We may freely assume that p = j and it takes the expansion

(34) )

<C5(1+(

(35) p(z,w) = Smw + c|z[*™ + terms with larger weights
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as in (30). Since

= O(|=P"" + [Smwp),

‘5;(27“’)

and since §(0, —i6) = O(8*/?>™), from (31) and (33) one gets

9% o _s\l = o(s0-mm
0%(0,8) = 050,

and so §(0, —i6) = O(8"/™). Substitute this into (34) and repeat the same proce-
dure. Then one gets

992 | _ Ay s@=2m)/2m
|8w (0, —zé)’ =0(6 ),
ie. §,(0,—i6) = O(8%*™). Repeating this a finitely many times, one eventually
gets §2(0,—26) = O(6), as desired. O

We are arriving at the final phase of the proof of the Bedford-Pinchuk theo-
rem. First of all, if  is strongly pseudoconvex at the parabolic point, then the
conclusion of the Bedford-Pinchuk theorem follows from the Wong-Rosay Theo-
rem. Thus, we may assume in the following that the parabolic point is a weakly
pseudoconvex boundary point.

Now consider the defining function p of { with the expansion (35) above. Since
Smw < 0 for (z,w) € Q near the origin, Lemma 3.14 above allows us to use the
Julia lemma (See [65]) for the function { = §,(0,w). The Julia lemma implies in
particular that for any constant K > 0, there exists € > 0 such that the image
7(t) of the circle t — (0,—1/(—%e+1)) under g, lies in the disk Smw+ K |w|* < 0.
Notice that the image () in € is the orbit of the parabolic group H at a point
in Q. In fact, hy(7(0)) = 7(¢) for all t € R.

Denote by ¥ = (y1,72), and we begin the final rescaling with the following
notations:
o §=|Smy(t)]
o 33 = Rey(t)
® 51 =7(t)
In the above, we observe that by the choice of € we have

$2/6<1/K

and by (35) we get
|31|2’m S 44.
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Now we apply the scaling method as in the earlier sections. Let us consider the

transformation (¢, €) = Si(z,w) of C? defined by

{c =2/ /s
= (w—5,)/8

The composition S;o0h; maps the domain 2 biholomorphically to its i image defined
by the defining function given by

pC,) = 590 ST(C,8).

Investlgatlng the convergence of these defining functions as t — oo, one gets that
p: converges to the expression

p(C,€) =Smé+ ¢ +c

for some real constant c, by the estimates on sq,s; by § in the above. Denote by

Eam = {(¢,€) € C*| 5(¢,€) < 0}

This domain is biholomorphic to the Thullen domain E,,, by a linear fractional
transformation. (Exercise: Verify’) Repeating the arguments of the preceding
section on preliminary scaling, it is easy to see that a subsequentlal limit of the
family {S; o h;}; as ¢ — oo will yield a biholomorphic mapping from € to E,,,.
Therefore, the conclusion of Theorem 3.2 follows.

PROBLEM 3.1. For a bounded pseudoconvex domain in C* with a C*™ bound-
ary. Is it true that up to a holomorphic change of coordinates the domain in a
neighborhood of any boundary point at which an automorphism orbit accumulates
is indeed convex? It is proven by Greene and Krantz ([27]) that for a bounded
domain in C* with a C? smooth boundary, the boundary is pseudoconvex in a
neighborhood of every orbit accumulation point.

PROBLEM 3.2. Can one generalize the arguments above to higher dimensions?
If Q is bounded conver with a C smooth finite type boundary, then the optimal
generalization is known ([7]). Can one find a way of handling the non-convex
cases?

PROBLEM 3.3. Let 2 be a bounded domain in C* with a C* smooth boundary.
Prove that every orbit accumulation boundary point (if any) is a point of finite
type. This is a conjecture by Greene and Krantz. Some partial answers are known.
([28], [40]) However, this problem is still open in its full generalities.
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4. Product Domain Theorem

In the preceding sections, we discussed the bounded domains in C* with a
noncompact automorphism group when the boundary surface is smooth and not
Levi flat at least at the orbit accumulation points. In this section, we will discuss
the case when the boundary of the domain is either singular or Levi flat at the
orbit accumulation point. This section is from the author’s recent paper [38].

4.1. Statement of the Product Domain Theorem. Let p: C* — R be a
C smooth function such that

Vp (p) # 0,Vp with p(p) = 0.

The Implicit Function Theorem implies that the set X, := {p € C* : p(p) = 0} is
then a C* smooth real hypersurface of C*. Call such a hypersurface ¥, Levi flat
at pe X, if

2 azja— (p)ijk =0

Jik=1

for any w = (ws,... ,w,) € C" satisfying
n ap
92 (1) w; =0,
j=21 sz I

Moreover, X, is called Levi flat, if it is Levi flat at every point.

Let D be a bounded domain in C". Its boundary 0D is said to be piecewise C*
smooth if

D={z€C"|p(z) <0,...,p(z) <0}

for some C* smooth functions py,... ,p satlsfylng the condition that, for any
possible choice of mutually distinct mdlces 11y ey Loy

dpi, A -+ Adpi, (p) # 0

whenever p;, (p) = -+ - = p;,(p) = 0. Moreover, 0D is said to be piecewise Levi flat
if the hypersurface {p € C" | p;,.(p) = 0} is Levi flat, for every m = 1, ..., k.

The first main result of this section is the following characterization of the bi-
disk in C? by its automorphism group among bounded convex domains in C? with
a piecewise C'* smooth Levi flat boundary.

THEOREM 4.1 (K.T. KiM). Let D C C? be a bounded convezr domain with a
piecewise C™ smooth Levi flat boundary. If Aut D is non-compact, then D is
biholomorphic to the bi-disk in C2.
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Note that an attempt to generalize directly this statement to the polydisks
of higher dimensions is not possible, since the assumption of noncompactness of
the automorphism group of G is not strong enough in case the boundary is only
piecewise Levi flat, as one may see in the examples such as the product of the
open unit disk in C and an arbitrary domain in C"~! with a piecewise Levi flat
boundary. The best one can hope for with such a boundary may be the following.

THEOREM 4.2 (K.T. KiM). Let D C C™ be a bounded conver domain with a
piecewise C™ smooth Levi flat boundary. If Aut D is non-compact, then D is
biholomorphic to a domain that is the product of the unit disk in C and a convex
domain in C*1,

Partial results can be easily deduced from the theorems presented in the earlier
papers such as S. Frankel [22], A. Kodama [48], [49], [50] and S. Pin¢uk [61] for the
domains that are essentially homogeneous or admit a special strictly pseudocon-
vex boundary point where a certain non-compact orbit (with a certain behavior
control) of the automorphism group accumulates. Major differences of the above
theorems are twofold. First, there is no special restriction on the boundary points
being smooth or being singular at which the orbits of the automorphism group
accumulate. Second, the assumption of non-compactness of the automorphism
group is in most cases much weaker than being homogeneous or covering a quo-
tient with a finite volume with respect to an intrinsic Kahler metric. On the other
hand the convexity assumption in the statement of the theorms above is somewhat
strong. It may be possible to relax the convexity condition slightly, but some kind
of such a global restriction on the domain seems inevitable, since there is no hope
of localizing the arguments in case the boundary is Levi flat.

Needless to say, the theorems above are in good contrast with the Wong-Rosay
theorem and the Bedford-Pinchuk theorem introduced in the preceding sections.

4.2. Convex Scaling Technique. In this section, we introduce another scal-
ing technique which was initiated by Sidney Frankel around 1986 ([22]). This
technique, when modified properly, is also a powerful technique comparable to
Pinchuk’s scaling method. Frankel’s scaling has a certain technical merit for the
proof of the theorems above, and hence we will introduce the technique here, rather
briefly.

Let D be a bounded convex domain in C"* whose boundary 0D is piecewise Levi
flat. Call a boundary point p € 0D singular, it 0D is not smooth at p (regular, if
0D is smooth at p, respectively). Denote by Spp the set of all singular boundary
point of D. Also define Ryp = 0D \ Ssp.
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Moreover, throughout this section without exception, we assume that there are
a point ¢ € D and a sequence {f;} C Aut D such that

lim fi(q) =pe€oD.

Now we introduce the convex scaling method initiated by S. Frankel.

THEOREM 4.3 (S. FRANKEL). Let D be a bounded convex domain in C* and
let ¢ € D and f; € Aut D be such that f;(q) — 0D as j — oo. Then, the sequence
of holomorphic mappings from D into C* defined by

| wi(z) = [0fi(0)] 7 (fi(2) - fi(9))
is a normal family, every subsequential limit of which is a holomorphic embedding
of D into C*. Here, 0f;(q) denotes the holomorphic Jacobian matriz of f; at q.

ProoF. Consider the map
F;:DxD—D

defined by
1 [wi(z) +w;(¢
Fj(Z,C)zwjl( J( ) 5 J( ))
Notice that this mapping is well-defined.

Since D is bounded and since Fj(q,q) = ¢ for all j, {F}}; is a compact normal
family. Therefore, for each compact subset K of D, all the derivatives of F; of a
given multi-index are uniformly bounded on K x K. Now, from the definition of
F; we have

wyo Fy(z,¢) = L)

In the following we drop the index j momentarily and indicate the derivatives by
subscripts. We consider the second order derivatives in short-hand notations:

(36) Ww-F, - F,+J'F,, = -;—w"
(37) W F, Fe+W'Fe =0

Notice that by the symmetry in the definition of F, F, = F, at a point of type
(p,p) € D x D. Hence, at (p,p) € D x D one gets by subtracting the second
expression from the first

W'=2F, — Fy) - o'

Now, this gives rise to the estimate on each compact set K of D such as

[l < Crc[Je]
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where Ck > 0 is a constant independent of the index j while it is clearly depending
upon K and the sequence of the automorphisms. Now using the fact that dw(q) =
I and using the comparison theory of ordinary differential equations, one obtains
that w’ is locally bounded (uniformly on the index j which has been suppressed).
Finally, using the fact that w(q) = 0 always, one gets the conclusion that w;’s form
a compact normal family.

So, we assume, by choosing a subsequence, that w; converges to the mapping
w : D — C", and the sets w;(D) converges in the sense of local Hausdorff set
convergence. (Blaschke selection, for instance. Notice that w;(D) is convex for all
J.) Observe that det Qw; is never zero on D, since w; is a one-to-one mapping onto
w;(D). Therefore, by Hurwitz’s theorem, either det dw is never zero on D, or it is
identically zero. Since Ow;(q) = I for all j, Ow; is nonsigular at every point of D.
Hence w is locally one-to-one. Using the uniform convergence on compact subsets
of D, a standard argument shows that w is globally one-to-one.

Finally, the convexity makes it easier to show that w(D) = lim;_,., w;(D). We
leave this final part as an exercise to the reader. [

The following modification observed earlier by the author (cf. Lemma A, p. 143
of [34]) is also useful.

PROPOSITION 4.4. Let D,p,q, f; be as before. Assume further that there is no
non-constant analytic set at p contained in 0D. Then, by choosing a subsequence
of f; if necessary, we have a sequence {p;} of the boundary points of D converging
to p such that the family of holomorphic mappings on D into C™ defined by

oi(z) = [0fi(@)] ' (fi(2) — p3),

any subsequential limit of which is a holomorphic embedding of D into C*. More-
over, it follows that

(38) lim 19£;(9)]) = 0.

REMARK 4.1. Notice that with one extra assumption in its hypothesis, the scal-
ing effect by o;’s is more explicit in the modified version not because it scales lin-

early near the fized boundary point p but because it shows that every vector scales
to an infinite length by [0f;(q)] 7.

PROOF. (Sketch) The second assertion follows from Lemma 2.5. Therefore,
every vector scales to infinite speed by [0f;(¢)]™". By Theorem 4.3 above, we
also know that lim;_,., w;(D) cannot contain a complex line, because it must be
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biholomorphic to the bounded domain D. Now suppose that for every sequence
of boundary points s; of 0D we have

(39) | Lim [0f5(q)]™(s; = fi(q)) = oo

Let s; be a boundary point that is closest to f;j(¢g). Choose the affine complex line
L; containing the line segment joining s; and f;(¢). Then consider the sequence
of sets [0f;(q)]"*(L N D — f;(q)). Note that the complex line [0f;(¢)]"*(L — £;(q))
always passes through the origin for every j. Therefore, the assumption (39) above
then implies that lim;_.[0f;(¢)]"*(LN D — f;(q)) is in fact a complex line, which
is contained in the scaled limit lim; o, w;j(D). This is not possible. Therefore,
there exists a sequence of boundary points p;, say, of D such that

hm [afJ(Q)] ( fJ( ))

is bounded. Then the conclus1on of the proposition follows from the triangle
inequality and a standard normal family argument. [

4.3. Proof of the Product Domain Theorem. We first proceed in complex
dimension 2 in detail. Then, at the end, we show that the same technique and the
proof can be generalized to establish the proof in the higher dimensions.

Scaling at a Singular Boundary Point

Let D be a bounded convex domain in C? with a piecewise Levi flat boundary
from now on. Let p € Ssp. Note that there is no non-constant analytic set at p

contained in the closure of D. To see this, let U be an open neighborhood such
that
' UND ={(z1,2) €C?: p; <0,p, <0}
where

dp1 Adp;y () # 0 whenever p; (z) = p2(z) =0,Vz € U.
In particular, the vectors Vp,(p) and Vpg(p) are linearly independent over C. Let
us assume, without loss of generality, that p is the origin in C2. Then by a complex
linear change of coordinates, it can be easily arranged so that

UNnD= {(Zl,Zz) € C2 : Sm z1 > v,bl(zl,zg),%m 29 > ’(/)2(21,22)}

where ; and 1, are smooth convex positive real-valued functions such that the
normal vectors at p = (0,0) to the hypersurfaces {Sm z; — ¢, = 0} and {Sm 2z, —
2 = 0} are parallel to the Sm 2z and Sm w axes, respectively. Then, it is easy to
see that there exists a strictly psh function

2 2

-1

1:—-22

1:+22

i—Zl

hz) = i+ 2
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satisfying
h(z) <1Vze D\ {0}, and A(0) = 1.
Hence, there is no non-constant analytic set at p in D.

Therefore, we can apply Proposition 4.4 to prove Theorem 4.1 in case

lim £;(¢) = p € Sop.

Denote by .
(o) = (@
(40) afi(q) = (aél a,
for each j = 1,2,..., then it follows that
(41) lim a}, = 0,Vk,£ = 1,2.
J—00

With our previous setting with p = 0 and ,,,, the defining inequalities for
the domain D can be written as follows:

Sm (21) > hi(22) + O(2}, z1.22)
Sm (22) > hz(zl) + 0(2122’ 222)

Since D is convex Levi flat at every regular boundary point, all the analytic sub-
sets of the boundary 4D is trivial or Euclidean flat (see the lemma below) and
consequently both A; and h; are linear. Now we apply Proposition 4.4 here. First,
let r be an arbitrary positive number. Let p; = (pj,p}). Then due to (41) above,
there exists an integer jo such that for any j > jo the scaled domain o;(D)N B,(0)
inside the open ball B,(0) is represented by the following two inequalities

(42) Sm(asCi+ adaGe + pl) > ha(adiCo + aly(a + p))
+ 0((“11(1 +afoC + pi) (ahi G+ adoCa + p1)(adiGo + adyCo + P%))

(43) Sm(aiCi + adyla + ) > ha(ad o + alsCe + p))
+ O((“il(l + oG+ P])(ahi G + afaCa + pd), (adiCo + adyCo + p;)z)

Without loss of generality, by extracting a subsequence from {f;} if necessary, we
may assume that

J
. ai
lim =2

<C < oo.
i~ aj

(44)
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Then divide by |al,| the inequalities of (42) and (43) above, and consider their
limits. By Proposition 4.4, a subsequence of this will converge to a domain biholo-
morphic to D, in the sense of local Hausdorff set convergence. To have (42) and
(43) above yield a subsequential limit of {¢;(D)} in the sense of local Hausdorff
distance so that neither is its image contained in a lower dimensional subset of C?
or it contains a complex line, we end up with the limit described by

(45) Sm (A + A12(2) > Sm (Caaly + Ca2la)
(46) Sm (A1 + A22) > Sm (Ciiy + Cr2l2)

for some constants Aug, (o, =1,2). Then the domain
o(D) = lim o;(D)
j—o0
is defined by the inequalities

(47) Sm (B + Bia(z) > 0
(48) Sm (Bau(z + Bnlz) >0

for some constants By, € C, k,£ = 1,2. Since o(D) is biholomorphic to D by
Proposition 4.4, it cannot contain a complex line. Therefore, it follows that

' By By
4
(49) det (B21 Bzz) #0
This shows in turn that o(D) is (Hence D is also) biholomorphic to the domain
(50) H = {(z1,2) € C* : Smz > 0,3mz > 0},

which was desired. (This argument is related to earlier work of Pin¢uk ([60], [61])
and Kodama [49] in its idea, but different in its techniques.)

However, as one notices, our proof of Theorem 4.1 is indeed not yet complete,
since the case that the automorphism orbits accumulate only at the regular (Levi
flat) boundary points has not been treated. Hence we continue our argument in
the following section.

Scaling at a Levi flat Point
Let D C C? be as in the preceding arguments, except
p = lim fi(q) € Rop.
Jj—o00

Then the boundary 0D is Levi flat at p. To treat this case, we first make a few
easy observations that will be used later.
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It is well-known that a hypersurface, say S, is Levi flat, if and only if the
complex tangent vector fields on S form an integrable distribution, in the sense of
Frobenius. Thus, S is foliated by complex analytic curves. In particular, at any
regular boundary point € Rjp, there is a smooth analytic curve V, through =
contained in Rsp. Then, by convexity of D and the Maximum Principle, we get

LEMMA 4.5. For any ¢ € Ryp, the analytic curve V, through = contained in
Rsp is Fuclidean flat.

Notice that, unfortunately, Proposition 4.4 cannot be applied in this case, since
lim f;(q) is a Levi flat boundary point. So we analyze the effect of the scaling
method of Theorem 4.3 so that we may come up with a technique effective enough
and comparable to Proposition 4.4 and finish the proof of Theorem 4.1. So, we
observe

LEMMA 4.6. There ezists a constant & > 0 and a unit vector w € C? such that
1055 (@l > 6, ¥ = 1,2,...
by choosing a subsequence of {f;}, if necessary.

PROOF. Let V; be the analytic curve through = € Rsp, contained in D, where
z is very close to p. Note that Frobenius’ Theorem also yields that the dependence
of V; upon z is C'™° smooth. Therefore, there exists an open neighborhood G of p
such that, for each £ € GNAD, V; is represented by a smooth family of holomorphic
maps

he: A — 0D C C?
satisfying

(51) he(0) = 2, ho(A) COD, |k (0)| = 6, >0

for some constant 6; > 0. Using Lemma 4.5 and the convexity of D, we infer that,
by shrinking G if necessary, for any y € G N D there exists a holomorphic map

hy: A — D C C?
such that
(52) hy(0) =y, [B(0)] > 6,/2 > 0.

Thus, there exists an integer j, > 0 such that fj”l o h,, maps the unit disk into
D for all j > jo, where p; = f;(¢q). Since D is also hyperbolic in the sense of
Kobayashi ([44]), there is a constant C > 0 such that

(fj_l 0 hpj)l(o)l <C, Vj > j.
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Thus, let
. o LOF(@)] 1, (0)
> RS, O

It follows then that

L b
(53) 105 (awill 2 ik, O)] = 25

By choosing a subsequence, we may assume that the sequence {w;} converges, and
denote by w = limw;. Then, using the Kobayashi hyperbolicity of D again, it is
easy to show that at each g, the sequence {||0f;(¢)||} is bounded. Thus, it follows
that there exists a constant § > 0 such that

(54) 10f;(9)wll = 6, V5 = jo.
O
We also observe the following

LEMMA 4.7. Let u = /—17 € C?, where ©i denotes the outward unit normal
vector to D at p above. Then for the sequence of 2 by 2 matrices 0f;(q), we get

lim [[9£5(@)] ™l = oo.

Needless to say, in the above lemma, one can make better sense if one translates
u to a vector with its initial point at f;(q), for each j, by the Euclidean parallel
translation. However, we are safe even if we understand 0f;(q) as a 2 X 2 matrix,
for each j, with respect to the standard complex vector space basis for C2.

PROOF. The proof of Lemma 4.7 also follows easily by a normal family argu-
ment. Suppose that there is a subsequence of {f;}, which we again call {f;} by
an abuse of notations, satisfying

l0fi(g) ull < C
for some constant C' > 0 independent of j. For convenience, denote by
vj := [0f;(q)] " u.
Now, consider complex analytic disks
hj: A= devi+q:A—D

where € > 0 is chosen independent of j to guarantee that the image of each h; is
contained in D. Then as before, we obtain an analytic disk

n:= lim f; o h;
J—00
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contained in 0D, satisfying n(0) = p and 7'(0) = u, which is not allowed. [J

Therefore, if we choose, for each j = 1,2, ..., the eigenvalue ¢; of [0f;(q)]! that
is of the larger absolute value than the other, we have

llIIl fj = 00.
J—00

Let us denote by L; the complex eigenspace of [0f;(¢)]™! corresponding to ¢;, for
each j. By Lemma 4.6, Lemma 4.7 and the preceding observation, for large j’s,
L; is complex one dimensional. For our scaling purposes, by L; we mean the
affine hyperplane L; + f;(q) in C? from now on. Again, choosing a subsequence if
necessary, we may assume that the sequence {L;} converges in the local Hausdorff
sense. Write L = lim L;. Again, as before, it is easy to see that L cannot be
tangential to the boundary 9D of D.

Notice that, with the notations of Theorem 4.3, the proof of Theorem 4.1 is
complete as soon as we show, for instance, that the domain

w(D) = lim w;(D)
J—00
= lim [0(9)] (D - fi(9))
is biholomorphic to the bidisk.

To show this, we now concentrate on the effect of scaling by [0f;(¢)]™ on L;ND
with the origin at f;(¢). First of all, the set-limit

(55) Jim [0f;())7H(L; N D - fi(9))

is clearly contained in w(D) above. (The limit exists, by taking a subsequence if
necessary, since all the sets in the sequence are convex.) Moreover, note that there
exist an open neighborhood W of p and an integer j, such that

(56)  {s; € (L; N D)| dist(s;, fi(g)) = dist(f;(4),(L; N D)) } N W
is non-empty for all j > jo and such that dist(W, Ssp) > 0.

Note then that the sequence {¢; dist(s;, f;(¢))} has to be bounded. Otherwise,
w(D) will contain a complex line, which is not allowed because D is bounded.
Hence, again extracting a subsequence if necessary, we get that the set

Jim (L; N D ~ fi(q))

= Jim[0f;(@)] (L N D —s;) + lim £;(s; — f(g))

J—oo
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is in fact an open half plane in a complex affine hyperplane in C?. Moreover, we
obtain another scaling sequence

(57) 7i(2) = [0£;(@)] 7' (fi(2) — 3))
which will be used in place of w; from now on for the rest of the proof of Theo-

rem 4.1. We will also denote by 7 = lim7;. For convenience, we write D = r(D).

It is obvious that the proof will be complete as soon as we show that D is biholo-
morphic to the bidisk. So we define

H := lim [0f;(q)] " (L; N D — s;)

which is again a half plane contained in the closure 7(D) of 7(D). Clearly, H C D
and H C 0D. Fix a point 6 € H. Then we claim that, for any boundary point
p € D C C?, the half plane defined by

H;=H+ (p—0)
(58) ={zeC’.z2—-p+o6€ H}
is properly contained in D, meaning that
(59) H;c D and 8H; C 8D.

Justification of this claim is fairly simple and based only on the convexity of
D. Moreover, it is also not hard to see that H is not parallel to any real two
dimensional subspace of the tangent plane.

Notice that the claim above implies only that the domain D is set theoretically

a product of a real straight line and a convex domain in R3. Since it is obviously

not yet enough to conclude that D (and hence D also, biholomorphically) is a
product of two convex domains in C, we need investigate further.

So we come back to consider the complex direction that stays bounded under
the linear scaling sequence {[0f;(q)]"'}. We observed in an earlier step that, for
each s; € 0D, there exists a Euclidean flat analytic set V, ; C 0D which is in turn
obviously convex (and hence also flat). Then we also have that the set

(60) V= lim [0f;(q)] 7 (Vs, — 5;) C 0D
exists, by taking a subsequence again if necessary, and is also a convex analytic

subset of D in C2.

Since both V and H are open subsets of two independent C-linear subspaces of
C?, the vector sum

V+H={z+y:zeV,ye H)
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is an open subset of D. We claim that D=V +H. To see this, let z € D. Then
by the construction of D, there exists a sequence {y;} C D such that

z = lm[0f;(q)] ™ (y; — s)-
Since V;; and L; span C?, we can write
Yi — 8; = u;j + ¢jb;
for some u; € L; and b; € V;; — s, and ¢; € C. Then it follows that
z = lim [0f;(9)] ™ (u; + ;b;)

(61) = Im[0£;(@)]7 () + ;- im 855 (9) (1)

€(lime)-V+H

j—00

The second identity follows due to the boundedness of the second limit. To be
precise, one needs to choose a subsequence again if necessary. Moreover, in the
above, we have lim;_,,[0f;(q)]~!(u;) bounded also. This implies in particular that

u; — 0 as j tends to co. Then, due to convexity of D, we must have that, for any
€ > 0, there exists jo > 0 such that c;b; € (1+¢)(V;, —s;) for all j > jo. Therefore

ze(1+eV+H.
Since € is arbitrary, we get € V+H.

Now we have established that D is a product of two convex plane domains that
are also Kobayashi hyperbolic. By Riemann Mapping Theorem, Di is, and hence
D is also, biholomorphic to the bi-disk in C®. Now, the proof of Theorem 4.1 is
complete.

REMARK 4.2. V and H are obtained by separating the directions of scaling
by a bounded sequence and the directions by an unbounded scaling sequence,
respectively.

Higher Dimensional Cases

Now we observe that almost all the techniques we have used in the preceding
section can be generalized to the higher dimensional cases. Let D be a bounded
convex domain in C* with a piecewise Levi flat boundary given by

D={ze€C": pi(2) <0,..., px(2) < 0}.
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Suppose, under the hypothesis of Theorem 4.2, that the limit boundary point
of the sequence {f;(q)}, for some {f;} C AutD and some ¢ € D, is a regular
boundary point. Then we see first of all, the piecewise Levi flat condition on the
boundary 8D of the domain D C C" ensures the fact that 9D is (at least locally)
foliated by real codimension one complex analytic subsets (hence of complex di-
mension n — 1). As in the previous sections, because D is also convex, all the
(complex analytic) leaves are Euclidean flat, by Maximum principle. Of course,
Lemma 4.7 continues to be valid. Then all the arguments continue to be valid
except that the complex analytic flat set V is now complex (n — 1) dimensional.
Therefore, D becomes biholomorphically equivalent to V, a convex domain in
C"1, and H, the upper half plane in C.

There are some difficulties in the scaling at the singular boundary points, as
there may exist nontrivial analytic subsets passing through them. If the point
p = lim;_, fi(q) € 9D is such that

piy(p) = -+ = pi,(p) = 0 and
dpi, A -+ Ndpi,(p) # 0,

then the techniques for scaling at a singular boundary point in dimension two through
a line by line imitation in this n-dimensional case, since there is no non-trivial
analytic subset at p contained in dD. (And hence, the technique of Proposition
4.4.) In this case, we obtain even better a conclusion that D is biholomorphic to
the n-dimensional polydisk.

For the remaining cases, let m be an integer satisfying 1 < m < n and consider
the case described by

pir(p) =+ -+ = pin(p) = 0,
dpi, A--- Ndp;,(p) # 0, and

pe(p) # 0Vl ¢ {ir, ..., 15}

Let us start with describing the complex analytic set in the boundary of D passing
through p. For each j € {1,...,m}, denote by X; the (complex n — 1 dimensional)
ana.lytic set through p contained in the real hypersurface

¥, ={ze€C" : pj(z) =0}.

For convenience, assume without loss of generality that :; = j, foreach j = 1,...,m.
Again, the convexity of D forces that ¥; be Euclidean flat. Thus, in particular,
the maximal analytic set through p contained in 8D is, near p, the complex n —m
dimensional flat set
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Now we begin analyzing the effect of the scaling of Theorem A in this setting,.

Let Xo = X(p) — p. Then there exists ¢ > 0 such that, for any j, the complex
analytic disk h; : A — C" defined by

hj(z) = zv + f(q)
satisfies h;j(A) C D, whenever v € Xo and ||v]| < e. Then, the vectors
&= (f7" o h;)'(0)
satisfy
s<lelsc

for some constant C' > 0 independent of j. Taking a subsequence if necessary, let

&
=1
wiv) = Jim e

Choose an orthonormal basis v1,... , v, for the span of Xy, and denote by
Wo = w(v,), fora=1,2,... ,n—m.

We then claim that

LEMMA 4.8. The vectors w1, ... ,Wn—m are linearly independent over C.

PROOF. Let ay,...,a,_,, € C be such that

awy + -+ pep Wy = 0.
Then
=3 "o h,)(0)
0= 3w = S i e

=1

n—

1 -1
Eaf hmm 0fi(q) " ve

=1

= 50" | g

Since {||0f;(q)||}; is bounded, since {||0f;(¢)~!||}; is bounded when restricted to
the span of Xy, and since vy, ... ,v,_,, are linearly independent, we may conclude
that @, =0for all {=1,... ,n — m. This completes the proof. [J

fI) T
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Thus, we have proven that the scaled domain

A

D = lim w;(D)

J—00

(where w;’s are as in Theorem 4.3) contains in its boundary the convex complex
analytic subset

(62) X = Jim [9f;(q)]™"(Xo)

of complex dimension n — m.

Now we consider the behavior of the sequence {8f;(¢)™!} along the directions
that are tangential but not complex tangential to the boundary of D. Let v be a
unit normal vector to Xj at p, for each k = 1,... ,m. Define

U = v-1 Vi, (k =y ,m).

Then again u;’s may be tangential to dD, but there is no non-trivial analytic
subset at p in the direction of ug. Thus by a usual normal family argument one
can easily show that

}B?o 10;(q) " uk|| = 00, (k=1,...,m).

Define

W:=Cu;®---&@Cu,,
and denote by

Pi:=(W+fi(g))nD
for each j, then

Jlll{)lolafj(q)]_l(Pj - fi(q9))

exists, up to subsequences, as a convex subset of C". Imitating the arguments in
(40) through (50) above, one can deduce that this limit set is equivalent to the set

H™ = {(z1,...,2,) €EC" : Smz >0,...,Smz, >0,

and z,4q =+ = 2, = 0}

via a complex Euclidean rigid motion in C*. Then the remaining arguments are
a line by line imitation of those in (55) through (61) in the case of complex two
dimension, which implies in turn that D is biholomorphic to X x H™ which is in
fact the product of the m-dimensional polydisk and a (n —m)-dimensional convex
domain. Therefore, Theorem 4.2 follows. In fact, we have proven slightly stronger
a conclusion than Theorem 4.2 as follows.
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THEOREM 4.9. Let D C C" be a bounded conver domain with a piecewise Levi
flat boundary. If an orbit of Aut D is accumulating at a boundary point, say p,
and if p is a boundary point such that

pi(p) =+ = pin =0,
dpi, A -+ ANdpi,,(p) # 0, and

for some m € {1,... ,n}. Then D is biholomorphic to the product A™ x D' of
the complex m-dimensional polydisk and a convex domain of complex dimension
n—m.

REMARK 4.3. There is a way of relaxing the convexity assumption in the Prod-
uct Domain Theorem above (an unpublished note by the author). However, a
general theorem without convexity is yet to be discovered.
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CHAPTER III
Further Scaling with Stability

As final subjects of the lecture notes, we introduce the scaling technique without
assuming the existence of the noncompact automorphism orbit which used to
play an important role in the scaling methods in the preceding sections. This
particular scheme, when accompanied with holomorphic invariants that are stable
in the interior under the perturbation of the boundary of the bounded domain
in consideration, serves as an effective way of computing the boundary behavior
of the complex analytic invariants. We will introduce such a scheme initiated
by the author in [37] around 1989, which was originally inspired by Pinchuk’s
generalization of well-known Alexander’s proper mapping theorem in [61] which
introduces a version of scaling method without noncompact automorphism orbits
accumulating at a boundary point. '

Following the chronological order, we begin with the ideas of Pinchuk. Then we
will introduce the modified scaling scheme of the author demonstrating the sketch
of the ideas of the proof of several different generalization of Klembeck’s theorem
on the boundary behavior of the holomorphic curvatures of the Bergman metric.

1. Pinchuk’s Generalization of The Proper Mapping Theorem

Philosophically speaking, the effect of the scaling technique which magnifies
(or, blows up) successively the infinitesimal data in the boundary geometry to
the global boundary geometry of much simpler a domain usually called the model
domain. Changing the viewpoint, the scaling of a domain is the same as the scaling
of the identity mapping of the domain in consideration.

To illustrate this viewpoint, consider the unit open ball B? in C?, and the

69
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identity mapping I : B? — B2. For each j, let a; = 1 — 1/j and let

2
z—a; 1—'(1]10
1—ajz’ 1-—ajz

pi(z,w) = (
Consider also the linear mapping L; of C* defined by

z—1 w
LJ(Z,U))z (l—a.?’\/l__a2)
f]

for each j = 1,2,.... Then the scaling of the identity mapping by ¢; and L; which
is the sequence

w; :=L,~oIo¢j:B("’—>C2
that in turn gives the scaling we discussed in the preceding section.

Scaling of a Mapping

As the readers might have noticed already, it is possible to perform the scaling
of mappings in much more general situations. For instance, consider

(1) Let Q and G be bounded strongly pseudoconvex domains in C* and let f :
Q — G be a holomorphic mapping which admits a sequence of points p; € Q
such that p; — p € 0Q and g; := f(p;) = q € 9G as j — oo.

Now we discuss what the scaling of f by the sequences p; and g;.

At the moment, we assume for the sake of simplicity that
e p = ¢ = the origin in C".
e ) near p= (0,...,0) is defined by the inequality

Sm oz + 'z + o(|'z)* + |1]) < 0.
e ( near the origin q is defined by
Smwy + ['w]? + o(|'w|* + |wi]) < 0.

o p; = (—i¢;,0,...,0), ¢; = (—8;,0,...,0), for some positive real numbers
aj, B for each j.

Then, consider for each j the linear mappings
®;(21,... ,2n) = (@j21,/05 '2)

Us(wy,. .. ,w,) = (Bj21, \/[Tj'w
and the holomorphic mapping

fi =010 £8; : U71(Q) — 9;(G)
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First of all, notice that in the sense of local Hausdorff set convergence we have

lim ®;() = R” = lim ¥;}(G)
j—oo

J—00

where

R" = {(z1, 2) € C" |Re 21 + |'2|* < 0}.
By a standard normal family argument, the holomoprhic mappings fj converge to
a holomorphic mapping, say,

f:R*—>TR",

with f(—,0,...,0) = (—1,0,... ,0). Passing to a linear fractional transformation,
f gives rise to a holomorphic self-mapping f of the unit open ball in C" preserving
the origin.

At a glance, the mapping f does not have much reason to have any relations
with the original holomorphic mapping f. However, the following is a good start
toward seeing that certain properties are preserved throughout the “direct” scaling
process even without the presence of the noncompact automorphism orbits.

EXERCISE 1.1. Show that f is proper, if f is proper.

In the above, by a proper mapping we mean a continuous mapping such that
the preimage of every compact subset of the co-domain in compact.

This case may appear to restricted. However, without such strong restrictions
we started with in the direct scaling above, the same (!) conclusion can be obtained
with an arbitrary sequence as in (f) by applying Pinchuk’s stretching coordinates
as introduced in the Section 2 of Chapter II. In this general case, we give

EXERCISE 1.2. Do the same exercise as the above with the general sequences.

Pinchuk’s Generalization of The Alexander Proper Mapping Theorem

Such a cicle of ideas result in the theorem of Pinchuk ([61]) which is a general-
ization of the Proper Mapping Theorem of H. Alexander ([1]). The statements of
the theorems are:

THEOREM 1.1 (ALEXANDER). Every proper holomorphic self-mapping of the
open unit ball in C*, n > 1, is an automorphism.

THEOREM 1.2 (PINCHUK). Every proper holomorphic mapping from a bounded
strongly pseudoconver domain with a C* smooth boundary to another is in fact a
biholomorphic mapping.
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In the above, by a proper mapping we simply mean a continuous mapping which
possesses the property that the preimage of every compact set is compact.

The proof of Alexander’s theorem does not use scaling at all. The role of scaling
in Pinchuk’s theorem is to reduce the proof to the case of Alexander’s Theorem.
While referring to [60] for any details, we will sketch the ideas in the proof very
briefly.

First, one proves that the proper holomorphic mapping is locally one-to-one.
Assuming the contrary, one looks at the variety along which the determinant
of the holomorphic Jacobian matrix of the proper holomorphic mapping vanishes.
Hartogs’ extension theorem implies that the variety must meet the boundary of the
domain. So choose a sequence on the variety that converges to a boundary point.
Then using this sequence, the image sequence under the proper mapping and
using the strong pseudoconvexity, we scale the image domain, the proper mapping
and the domain of definition simultaneously. The resulting subsequential limit
(produced by Montel’s theorem) is then a proper holomorphic self-mapping of the
open unit ball. Moreover, the way we scale gives a nontrivial variety along which
‘the determinant of the holomorphic Jacobian of the new limit proper holomorphic
mapping. This contradicts Alexander’s theorem, and hence we can conclude that
the original proper holomorphic mapping must be locally one-to-one.

Then finally one argues that the proper holomorphic mapping that is locally
one-to-one is indeed a covering map. Appealing to the continuous extension to
the boundary, one obtains global injectivity as desired.

2. Asymptotic Behavior of the Bergman Curvature

Another merit of the scaling technique in comparison to the other methods
involving analytic invariants is that the requirements on the regularity of the
boundary surface of the bounded domains in consideration is quite weak. This
point yields new results in Bergman geometry as in [37], [39], [41], [54] and others.

Boundary Behavior Problem

Let us now consider how to obtain information on the boundary behavior of
the holomorphic curvature of the Bergman metric of a bounded domain € in C".
More precisely, the general problem is

PROBLEM 2.1. Let ) be a bounded domain in C", and let p; form a sequence in
{2 such that lim;_,, p; = p € 9. Now choose a nonzero vector {; € C* = T}, (1 for
each j. Then describe the behavior of the sequence of the holomorphic (sectional)
curvature of the Bergman metric of { at p; in the direction { as j — oo.
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The first result in this direction is due to P. Klembeck [42] which states

THEOREM 2.1 (KLEMBECK). Let §) be a bounded domain in C* with a C*
smooth strongly pseudoconver boundary, and let {p;} C Q be a sequence accu-
mulating at a boundary point. Also let {; be a nonzero vector in C* = T, Q for
each 3. Then the holomorphic sectional curvature of the Bergman metric of §) at
p; in the direction £; converges to —1/(n + 1) as j tends to oo.

This theorem is based upon the celebrated theorem of C. Fefferman which is
better known as the asymptotic expansion of the Bergman kernel function on the
bounded domain with C' smooth strongly pseudoconvex domains in C*. We state
a simpler version of the theorem here which is sufficient for this exposition. For
more details and the full version, see [20].

THEOREM 2.2 (FEFFERMAN). Let Q be a bounded domain in C* with a C*
smooth strongly pseudoconver boundary. Then there exists a neighborhood U of
the boundary O of Q) such that there exist C® smooth functions ®,¥ : UNQ — C
such that the Bergman kernel function of §} satisfies

Ka(z,2) = ®(2) - {dist(z,00)" ") 4 U(2) - log dist(z,00)}, V2 e UNQ
where @ is never zero on 0S).

It is possible to localize the theorem of Klembeck using pseudo-local estimates of
the 0 operator. This results in that the same conclusion as in Klembeck’s theorem
is valid if one only assumes that  is pseudoconvex, that 92 is C*° smooth, and
that 0f) is strongly pseudoconvex at the boundary point at which the reference
points p; approach as j — oo.

One notices however that C* smoothness is not the natural regularity condition
for such a problem, since the minimum regularity condition required for the strong
speudoconvexity is C2. On the other hand, as long as one stays in the circle of
ideas depending upon the pseudo-local estimates for the & and/or the asymptotic
expansion formula of the Bergman kernel function, it seems impossible, at least
at this writing, to obtain the natural C? version of the theorem of Klembeck
due to the essential difficulty that both Fefferman’s formula and the pseudo-local
estimate need C'* regularity of the boundary of the domain in question. Successful
generalizations of either Fefferman’s expansion or the pseudo-local estimates to the
C? strongly pseudoconvex cases are yet to be discovered if at all possible.

Therefore, the technique we introduce in what follows is indeed new in the
sense that both the ideas and the techniques do not depend upon either one of the
methods used in Klembeck’s work. The following method is in fact much simpler
as well. We first introduce the results, and then the ideas of the proof.
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THEOREM 2.3 (KIM-YU). Let Q be a bounded pseudoconver domain in C* and
let p be a boundary point of Q at which the boundary 9 is C* smooth and strongly
pseudoconvez. Then for any sequence of points p; € Q tending to p as j — oo and
for any sequence of holomorphic sections II; in the tangent space of Q) at p; for
each j, the sequence of the holomorphic curvature of the Bergman metric at p; in
the direction II; converges to the constant —4/(n + 1).

Several new results follows from this theorem. For details and some of the
applications, see [41].

Let us now discuss first how one can use the scaling technique to obtain such a
result.

Conversion of Boundary Problem to Interior Problem

Here, we will demonstrate that one can convert the problem on the boundary
behavior [or equivalently, the asymptotic behavior] of the holomorphic (sectional)
curvature of the Bergman metric to an interior stability problem of the Bergman
kernel function under a suitable perturbation of the boundary. Such a frame of
ideas was introduced first by the author around 1989 (See [37]) as follows:

Let Q2 be a bounded domain in C*, let p; form a sequence in ) converging to a
boundary point p € 99, and let {; € C* = T}, Q for each j. Assume without loss
of generality that p is the origin. Then find a suitable sequence of complex linear
isomorphisms L; : C* — C" such that

(A) The open sets L;(€2) converge to an open set, say fl, in an appropriate sense
such as the defining functions of L;(§2) converging locally uniformly to the
defining function of { as j — 00, for instance;

(B) The Bergman curvature of £} is known;

(C) There exists a compact subset F of ) which stays inside L;(2) uniformly
bounded away from the boundary for all large 5; and

(D) On the compact set F' x F, the Bergman kernel functions Ky (0)(z,() of

the domains L () and Kg(z,() of the domain § satisfy that
jli{{)lo sup IKQ(Z,C) - KLj(n)(zaC)| =0

Notice that the Bergman kernel function K(z,() is holomorphic in both z and ¢
variables. Therefore, if all four conditions above hold, then (D) and the Cauchy
estimates imply immediately that the partial derivatives of every order of the
Bergman kernel function converges uniformly on compact subsets of F' x F. Thus
the interior stability of the holomorphic curvatures in ¢ directions of the Bergman
metric follows. More precisely, let Sg(z,¢) denote the holomorphic (sectional)
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curvature of the Bergman metric of the bounded domain G at z in the holomorphic
direction generated by the tangent vector £ to G at . Choosing a subsequence,
assume that

Jim dL;(€)/14L; (&) = .
Then we get
Sa(pj» &) = Sry)(L;i(p;), dL;(&;))

= 54(4,8), as j = oo.

Consequently, one obtains the limiting behavior of the holomorphic curvature ten-
sor Sq along (p;,€;) € TS in terms of the interior curvature behavior of the
Bergman metric of the domain (2.

More Discussions and Details

If the boundary of the domain € in question is C? smooth strongly pseudoconvex
at p € 9 in the preceding section, and if { is pseudoconvex, then after some
modifications the above scheme in (A) through (D) is indeed valid with € being
biholomorphic to the unit ball. While referring to [41] for any detailed arguments,
we will discuss the ideas, difficulties and appropriate techniques in what follows.

The most serious difficulty of all in this process is proving (D). With a general
pseudoconvex domain ) with a C? strongly pseudoconvex boundary point p as in
the above, it is not clear if (D) can hold in general. But if £ can be replaced by a
very small piece of ) near p, then (D) holds due to rather simple arguments. (See
for instance [37] and [39].) Thus, an effective localization of the Bergman curvature
is necessary to get around such difficulties. Indeed, in [41] a sharp estimate of the
localization of the Bergman curvature is proven, based upon the sharp estimates
for the localization of the minimum integrals introduced by S. Bergman. We point
out that for such estimates, the L? estimates of the 8 operator by Hérmander with
appropriate weights is enough as clearly remarked in [41]. Hence, no regularity
assumption beyond the existence of the local peaking function at the boundary
point p in consideration is necessary for the localization in this arguments.

Combining this with the scaling scheme in (A) to (D) the theorem by Kim and
Yu follows immediately. We choose not to include any further details in this notes.

REMARK 2.1. The scheme in (A) through (D) above together with the afore-
mentioned localization arguments should be applicable to much broader a col-
lection of pseudoconvex domains. For essentially locally strictly/strongly convex
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domains, even with the presence of certain singular boundary points, the asymp-
totic behavior of the holomorphic curvature of the Bergman metric is understood
to a considerable extent. On the other hand, weakly pseudoconvex finite type do-
mains, verifying (B) seems very difficult in contrast to the strongly pseudoconvex
cases. At this writing, we are not aware of any effective way of circomventing such
difficulties.

In the light of the above dicussions, it may be fair to pose the following inter-
esting problem:

PROBLEM 2.2. Compute the (holomorphic) curvature tensor of the Siegel do-
mains.

Only a very simple cases has been treated. See [37].

3. Final Remarks

Although simple in its ideas, the scaling technique seems prosper in the geo-
metric theory of Several Complex Variables. Different, yet equally or even more
powerful, scaling schemes can be found in the recent papers by J. McNeal [54] and
other papers of his, and work of D. Barrett [2] concerning another important as-
pects of the Bergman kernel function. As far as the Bergman kernel function itself
is concerned, McNeal’s results seem most general and powerful for the essentially
convex domains with finite type boundaries.

We refrain ourselves from introducing any further topics and details here.
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