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0. INTRODUCTION
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These notes were prepared in conjunction with a series of lectures
given at Seoul National University in July 1993. They are intended as a
brief introduction to a subject which has been very important over the
past 10 years and which is still very much alive today i.e. the application
of techniques of global analysis to both differential geometry and topology.
To illustrate the sort of applications possible, we shall use heat equation
methods to prove the Gauss Bonnet theorem, the Hirzebruch signature
theorem, and Milnor’s theorem that non-singular algebra structures exist
on R" only for n = 1,2,4,8. There are many other applications.

We begin in Chapter I by reviewing the analytic preliminaries we
shall need. §1.1 deals with the spectral theory of elliptic self-adjoint oper-
ators, and in particular those of Dirac and Laplace type. We also discuss
spherical harmonics as these provide a convenient set of examples. In §1.2,
we turn to the heat equation asymptotics, the zeta function, and the eta
function. We discuss the relationship between these invariants and com-
pute some specific examples. We conclude Chapter Iin §1.3 by discussing
the formula for the index of an elliptic operator in terms of heat equation
asymptotics found by Bott and by introducing both the de Rham and the
Hirzebruch signature complexes.

We turn our attention in Chapter II to differential geometry. In §2.1,
we discuss the characteristic classes in terms of curvature. We define the
Euler polynomial, the Chern character, and the Hirzebruch L polynomial;
these play a crucial role in the index theorem. In §2.2, we discuss in-
variance theory; invariance theory to build a link between the invariants
of the heat equation and the characteristic classes. We discuss the Weyl
theorem on the invariants of the orthogonal group. We state some for-
mulas for the invariants of the heat equation on differential forms derived
by Patodi to illustrate some of the concepts involved. We conclude with
a technical result from invariance theory giving a diagonal form. In §2.3,
we compute some normalizing constants by evaluating the Euler form on
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even dimensional spheres and the Hirzebruch L polynomial on products
of complex projective spaces to show that the Euler characteristic and
signature result in these examples.

We conclude in Chapter III by discussing some topological appli-
cations. §3.1 deals with the Gauss-Bonnet theorem and §3.2 with the
Hirzebruch signature formula. We use the invariants of the heat equation
discussed in Chapter I to provide us with local formulas for the index
of the respective elliptic complexes. The invariance theory of §2.2 is then
used to identify these invariants with the appropriate characteristic classes
of §2.1. In §3.3, we change focus slightly and use the eta invariant rather
than the index to define a topological invariant in K and to prove Mil-
nor’s theorem. We conclude in §3.4 by giving a brief introduction to the
Lefschetz fixed point formulas.

At the end of these notes, we provide a brief list of some of the most
important references in this subject; we refer to the bibliography of Pro-
fessor Schroeder which will be part of the second edition of Gilkey’s book
(to appear fall 93 with CRC press) for a more complete set of references.

It is a pleasant task to acknowledge with gratitude the support of
Seoul National University and the GARC in conjunction with these lec-
tures. We also acknowledge the support of the NSF (USA) and MPIM
(FRG).



1. ANALYTIC RESULTS
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§1.1 Spectral theory

Let M be a compact Riemannian manifold without boundary. Let
z=(z',...,z™) (1.1.1)
be a system of local coordinates on M. Let
9; := 5% and dz* (1.1.2)

be the coordinate frames for the tangent and cotangent bundles of M. We
adopt the Einstein convention and sum over repeated indices. Thus, for
example, the metric g can be expanded locally in the form:

g = gijdz’ o da’. (1.1.3)

Let ¢g'/ be the inverse matrix; these are the components of the dual metric
on the cotangent bundle T*M. The Riemannian volume element takes the

form locally:
|dvol | = y/det(g;;)|dz" - - - dz™|. (1.1.4)

We use the absolute value signs to emphasize this is a measure not a
differential form as this will be important later.

Let VY (M) be the set of smooth complex vector bundles over M
which are equipped with a positive definite Hermitian inner product. If
V € BV (M), let C(V) be the space of smooth sections to V and let
End (V') be the bundle of endomorphisms of V. Let a be a multi-index and
let 8% denote multiple partial differentiation. If D is a k** order partial
differential operator on C*°(V'), we may decompose D locally in the form:

D= E|a|skpa(a:)3:. (115)



8 1. ANALYTIC RESULTS

The leading symbol of D is defined to be
o1(D) = (V=1)*Z|aj=kPa(z)E” (1.1.6)

where we formally replace differentiation by function multiplication. This
is invariantly defined on T* M.

A second order partial differential operator D on C*®(V) is said to be
of Laplace type if the leading symbol of D is given by the metric tensor.
This means that locally D has the form:

D = —(¢"Iy3;0; + A'9; + B) (1.1.7)

where A', B € C®End (V). Let £(V) be the set of all self-adjoint opera-
tors of Laplace type.

The following is a brief summary of the spectral theory of such op-
erators. Choose a connection V on V. We use the Levi-Civita connection
and V to covariantly differentiate tensors of all types. If ¢ € C°(V), let
VEp € @T*M ® V and let

$lloo,k = sup zemZ;<k||V $(2)]]; (1.1.8)

since M is compact, different metrics on M and different connections on
V define equivalent norms.

Theorem 1.1.1: Let D € £(V) be self-adjoint. There exists a complete
orthonormal basis {¢,} for L2(V) so that:

(a) The ¢, € C=(V) and D, = A, ¢,.

(b) For any k € N, there ezists C(k) and (k) so that

118]lo0,k < Cr(1+ AP,

(c) Only a finite number of eigenvalues are negative. Order Ay < Xy < ...
There exists a positive constant C so

lim n=%/™)\, =C.
n—oo

(d) Decompose ¢ € L*(V) = Z,c,, where c, = (¢,6,)r2 are the Fourier
coefficients. Then

¢ €C®(V) & Z,v¥ec,| < oo Vk€N.
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Let D = —82 on S. Then {e"®,n?},cz is the spectral resolution of
D. The expansion ¢ = Z,c,e'™ is the usual expansion in terms of Fourier
series. More generally, spherical harmonics give the decomposition of the
Laplacian Ay on the unit sphere S™ of R™*!. Let

S(m+1,5) ={f € Clz’,...,a™*"): f(tZ) =t/ f(¥) for t € C} (1.1.9)

be the vector space of polynomials in the {z*} variables which are homoge-
neous of degree j. Let A, = —92 — ... — 82, ; be the Euclidean Laplacian.
Let

H(m,j)={f € S(m+1,5): A.f =0} (1.1.10)

be the subspace of harmonic polynomials; identify a harmonic polynomial
with its restriction to S™. Let r = |z|?> = 23 + ... + 22, ;.

Theorem 1.1.2:

(2) dim{S(m +1,5)} = ("+7).

(b) S(m+1,5) = r2S(m +1,j — 2) & H(m, j).

(c) dim{H(m, )} = ("x7) = ("57%).

(d) {1(G+m—1),H(m,j)}32, is the spectral resolution of Ag.
Remark: If m =1, let 2 = z; + iz, € S(2,1). Then

Span (1) if j =0,

H(Q,j) = {Span(zj,ij) if 7 > 0. (1.111)

Consequently the spectral resolution —83 is the Fourier series decomposi-
tion discussed above:

L*(SY) = @;e? . C. (1.1.12)
Proof: We prove (a) by induction using the following relationships:

S(m + 1’]) =Tm41 S(m + l)j - 1) @ S(m7.7)’
dim{S(m +1,5)} = dim{S(m + 1,5 — 1)} + dim{S(m, )},
dim{S(m +1,0)} = 1, and dim{S(1,5)} = 1.

If p=3%,paz® € S(m+1,j5), let

P(p) := Zapala- (1.1.13)
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Define a positive definite symmetric bilinear inner product (-,-) on the
space of homogeneous polynomials S(m + 1, j) by:

(P, q) := P(p)() = Ta,p PaBa{Ts2”} = Tat!pada- (1.1.14)
Let pe S(m+1,j —2) and g € S(m + 1,). Since P(r?) = —A,,
—(p, Aeg) = (r’p,q). (1.1.15)

Multiplication by r? is injective. Since coker(r?) = 91(A.), (b) and (c)
follow.
We have identified a harmonic function with its restriction to S™. Let

A=3;H(m,j) C C=(S™) (1.1.16)

be the subspace generated by the H(m, j). Since r?|sm = 1, we use (b) to
see:

2VS2jH(m’ V) = {S(m + 1a2.7) + S(m + 172.7 - 1)}IS'”

1.1.17
A= Ui{S(m+1,2)) + S(m +1,2] — 1)} sm. (LL17)

Since

S(m+1,5)-S(m+1,k) C S(m+1,5 + k), (1.1.18)

A is a sub-algebra of C*°(S™). Since 1 € H(m,0), A is unital. Since
the coordinate functions z* € H(m,1), A separates points. Thus by the
Stone-Weierstrauss theorem, A is dense in C*°(S™) so

L*(S™) = A. (1.1.19)

We introduce polar coordinates z = (r,6) for r € [0,00) and § € S™
on R™*! to express the Euclidean Laplacian in the form

Ae=—82—mr10, 4 r2A,. (1.1.20)
If f e H(m,j), then A.(f) =0 so (1.1.20) implies
of(8) = (G +m — 1)£(). (L1.21)
Since Ay is self-adjoint, the eigenspaces E(\, Ay satisfy
E()\,Ag) L E(p,Ag) for X # p. (1.1.22)
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Since
H(m,j) C B((j +m — 1), Agn), (1.1.23)

H(m,j) and H(m, k) are orthogonal in L%(S™) for j # k. This shows
L*(S™) = @;H(m,j)

H(m, ) = B +m — 1), Agn). W .
Let AP M be the bundle of p forms on M and let
dp : CPAPM — C®APH M (1.1.25)
be exterior differentiation. Let
6p : CPAPYIM — C®APM (1.1.26)
be the dual, interior multiplication. Then the Laplacian
Ap =bpdp+dp_16,-1 € L(APM). (1.1.27)
Define the de Rham cohomology groups by:
HP(M) :=N(dp)/R(dp-1). (1.1.28)

The de Rham theorem provides an isomorphism between these cohomol-

ogy groups and the ordinary topological cohomology groups. The Hodge

decomposition theorem relates these cohomology groups to spectral the-

ory:

Theorem 1.1.3 (Hodge decomposition theorem):

(a) If ¢ € C®(APM), then ¢ € N(A,) if and only if dy¢p = 0 and
Op—16 =0. N(A,) is finite dimensional.

(b) CX(APM) = N(Ay) @ dp-1(CX(AP~1M)) @ ,(C=(APHM)) is a
direct sum decomposition which is orthogonal with respect to the L?
wnner product.

(b) The inclusion map is an isomorphism from N(A,) to HP(M).

Proof: We use Theorem 1.1.1. Let {¢,,\,} be a spectral resolution of

Ayp. Since limp_,oo Ap = 00, only a finite number of eigenvalues are zero
so M (A,) is finite dimensional. Let ¢ € 9N (A,). We compute:

0=(Ap¢,¢)2 = (dp—16p-19,0) 12 + (8pdp¢, 4) 12

=(6P—1¢’6P—1¢)L2 + (dp¢, dp¢)L2- (1129)
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Consequently A,¢ = 0 implies 6,_1¢ = 0 and dp¢ = 0; this proves (a) as
the reverse implication is immediate. ,

Expand ¢ € C®(APM) in the form ¢ = X,¢, ¢, for ¢, = (J, ¢,) 2.
~ Let
$o := T, =0y and B := Ty, xocu X} . (1.1.30)

Since M (A;) is finite dimensional, the sum defining ®y is finite and hence
®, € C°(APM). Since ¢ € C°(APM),
2, vFe,| < oo VE. (1.1.31)

The non-zero eigenvalues of A, are uniformly bounded away from zero.
Consequently
Ty, 2ovFle, A < oo (1.1.32)

for all k and hence ®; € C°(APM). We note:
@ € N(Ap) and Ap®1 = Ty, %0¢u ¢y (1.1.33)
Consequently ¢ = &g + A,®;. This shows we may express

¢ = Do+ dp—1(8p—1®1) + 6,(dp®1) s0

COO(AP) — m(Ap) + dp_ICOO(Ap—lM) + 6p(C°°(Ap+1M)) (1.1.34)

We complete the proof of (b) by showing this is an orthogonal direct sum
decomposition:
(®0,dp—1¥p-1)12 = (6p—-1%0,¥p-1)12 =0,
(‘I’o,5p¢‘p+1)m = (dp<I>0, Yp+1)r2 =0, (1.1.35)
(dp—1¥p—1, 6p¥p+1) 12 = (dpdp—1¥p—1,%p+1)12 = 0.

If ¢ € M(A,), then dy¢ =050 ¢ € N(d,) and

¢ — [¢] € H'(M) (1.1.36)
is a well defined map from M(A,) to H?(M). If ¢ = dp_13pp—1, then
¢ € N(Ap) NR(dp-1) = {0}; . (1.1.37)

this shows this correspondence is 1-1. Let ¢ € 9N(d,). We expand

t/) =®o + dp-l("/’p—l) + 5p('¢p+1). (1138)
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We complete the proof by showing 6,(¢p+1) = 0 so [¢)] = [®o] and the
correspondence is onto:

0 =(dp¥, ¥p+1)12
=(dp @0, ¥p+1)12 + (dpdp-1%p—1,¥p+1) 12
+ (dp6p¢p+l) @/"p~l-l)L2
=0+0+ (6p¢p+17 6p¢ﬁ+l)L2‘ |
We conclude this subsection with a brief description of the Hodge

* operator. Let wy - 6 be the inner product on A*M arising from the
Riemannian metric. Define the Hodge * operator

(1.1.39)

x € C°(Hom (A*M, A™"*M)) by w; Axw; = (w; -wz)dvol.  (1.1.40)

The following is well known.

Lemma 1.1.4:

(8) *m_pxp = (—1)km=F),

(b) bk = (—1)mk+1 *m—k Am—k—1 *k+1 -

(c) *Ap =Am_p*.

Remark: x; defines an isomorphism from 9 (Ay) to M(A,—x) which is
the realization of Poincaré duality.
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§1.2 Heat equation, zeta, and eta functions

Let D € £(V). The heat equation is the system of equations for
t>0:

(1) (0t + D)h(=,t) =0. (Evolution equation)

(2) lim ¢—oh(z,t) = ¢(z). | (Initial condition)

Let {#,,A,} be a spectral resolution of D. Decompose ¢ € L*(V) in a
Fourier series:

¢(z) = Zyc,du(2) for ¢, := (@, du) L2(v). (1.2.1)
For t > 0, and =z € M, define:
(e Pg)(z,t) := E,e e, ¢, (). (1.2.2)

Since |cn| < ||#]|L2, we may use Theorem 1.1.1 to estimate:
lle™ cu8uloo,k < C(R)ISllLe™ (14 A, )*®). (1.2.3)
We use Theorem 1.1.1 to see there exists ¢ > 0 and vq so
Ay > v for v > vy (1.2.4)

The estimate e 7" \¢ < C(£)t~%e~**/2 for A > 0 then permits us to esti-
mate that if v > vy,

lle™™ ey )look < C()t ™" . (1.2.5) -

This implies that the series in (1.2.2) converges absolutely to define a C*
function; the convergence is uniform in ¢ if we bound ¢ away from zero.

Since this holds for all k,
e P e C(V) for t > 0. (1.2.6)

It is immediate from the definition that e tP¢ satisfies the differential
equation:

(0; + D)(e~P¢) = 0. (1.2.7)

It is also immediate that if § € C™, then e *P¢$ — ¢ in C™ as t — 0.
Thus (1.2.2) defines the solution to the heat equation.
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The operator e~tP is defined by a smooth kernel function. Let
K(t,z,y) = Spe” ¢n(2) ® $n(y) € End (Vy, Va); (1.2.8)

the estimates given above show that this series converges uniformly and
absolutely in the ||, x norm so K is C*® for ¢t > 0. It is then immediate
from the definition that:

fMK(t,m,y)¢(y)|dvol (y)| = E11“3»”\"Cnﬁlsn(“"')

- (1.2.9)
= (e7*P¢)(2).
Example 1.2.1: Let D = —9% on C*°(S?). Then
K(t,z,y) = Spe~t" ein(==y), (1.2.10)
The operator e *P is of trace class on L%(V) for t > 0;
T —tD :=2V —t\,
ria(e™) =Bye (1.2.11)

=fMTr v, K(t,z, z)|dvol (z))];

again the estimate A, > v for v > v, shows this series converges uniformly
if we bound t away from zero. Then

Tr 12(e"P) = J 3 Trv, K(t, 2, z)|dvol (z)]. (1.2.12)

The behavior of the trace of the fundamental solution to the heat
equation is of particular interest as ¢ | 0.

Theorem 1.2.1: Ast | 0, there i3 an asymptotic expansion
Trz2(e"2) ~ 5 an(D)tm—m™/2,
n=0

The an(D) vanish if n is odd. If n is even, there exist local invariants
an(z, D) of the jets of the total symbol of D so

an(D) = [, an(z, D)|dvol (z)|.
More generally, if f € C°(M), then
Tr 2(fe™*P) ~ 8 an(f, D)™/
where an(f, D) = [,,f(z)an(z, D)|dvol (z)|.
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Although we have chosen to study the heat equation, there is a close
relationship with the zeta function. Let D € £(V) be positive semi-
definite. Let 91(D) be the null space of D. We define the zeta function:

(s, D) := Ex, >0, (1.2.13)

the estimates of Theorem 1.1.1 show this is well defined and holomorphic
for Re(s) >> 0.

Example 1.2.2: Let D = —92 on C*°(S'). Then ((s, D) is the Riemann
zeta function

¢(s,D) =2 %"ln-?’. (1.2.14)

More generally, if Ay is the spherical Laplacian on S™, we use Theorem
1.1.2 to see:

((8,80) = T {("™H) = ("HHIG +m—1)}
(s, 80 + 2(m — 1)) = Zj5o{(™F) - (™ 72)} (1.2.15)
(7 + 3(m —1))7%.

We use the Mellin transform to relate the zeta function to the invari-
ants of the heat equation. For Re(s) > 0, we define the gamma function:

I(s):= [ t* e "dt. (1.2.16)

We use the functional equation
sI'(s) =T(s+1) (1.2.17)
to extend I' to a meromorphic function on C with isolated simple poles at
s=0, -1, =2, ... (1.2.18)

There is an infinite product formula for I' which shows I' is never zero.
Let

. _Jan(D) if n#m,
an(D) = { am(D) — EmN(D) ifn=m,

h(t) :=Tr 12(e~*P) — dim 91 (D)
~ S an(D)tr—m/2,

n=0

(1.2.19)
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Theorem 1.2.2: Let D € £(V) be positive semi-definite.
(a) IfRe(s) >> 0, then T'(s)((s, D) = [ t*~1h(t)dt.

(b) T'(s)¢(s,D) has a meromorphic extension to C with isolated simple
poles at the values s = (m —n)/2 for n € N. Furthermore,

Res s=(m—n)/2r(3)C(5, D) = &n(D).

Remark: Let s be a non positive integer. Then I'(-) has a simple pole at
s with non zero residue. We use (b) to see ( is regular at s. In particular,
since Res ,—oI'(s) = 1, ( is regular at 0 and ¢(0, D) = @,,(D). All the @,
are locally computable except n = m.

Proof: Since we have subtracted off the effect of the 0-spectrum of D, h
is exponentially decreasing as t — oco. Therefore h(#)t*~! is integrable for
Re(s) > m/2. We use the following identity to prove (a):

ot e Mdt = ATT(s). (1.2.20)
To prove (b), we decompose I'(s){(s) = Fo + F1 where:

Fo(s) :=[t* " h(t)dt, and (1.2.21)
Fi(s) :=[7t*"1h(t)dt. (1.2.22)

Since |h(t)| < €% for t > 1, (1.2.22) converges exponentially and Fi(s)
is entire. Given k, we can find N = N(k) so that

h(t) = Zn<nN(k an(D t(n=m)/2 + Rn(t), and
<N (k)

1.2.23
|[Rn(t)| < ext™F. ( )
Consequently,
Fo(s) =Xn<nan(D)(s+ (n — )71 + &N f
o(s) <Nan(D)(s + (n —m)/2) w for (1.2.24)

En = [ot* I Rn(t)dt.

We use (1.2.23) to see En(s) is holomorphic in s for Re(s) > —k. This
gives a a meromorphic extension of ¢ to the halfplane Re (s) > —k; we use
uniqueness of analytic extensions to see the extension is independent of %.
The remaining assertions are immediate. ll
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If P is a first order self-adjoint partial differential operator on C*(V),
we say P is of Dirac type if P? is of Laplace type. This means that
p := o (P) satisfies:

p(a,€)F = ¢ - Iy. (1.2.25)

Let ® (V') be the set of such operators. While operators of Laplace type
exist on every vector bundle, not every vector bundle admits operators of
Dirac type. The operator

d+ 6 on C*(AM) (1.2.26)

is of Diract type; there are many other such operators.

If P € ®(V) is an operator of Dirac type, it is possible to define a
more subtle invariant which measures the difference between positive and
negative spectrum. Let

1 ifA>0,
sign () := { 0 ifA=0, (1.2.27)
-1 ifA<0.
We define:
n(s, P) := Tysign(A,)|A]|°. (1.2.28)

Since A2 > v€ for v > vy, this series converges absolutely for Re(s) >> 0
to define a holomorphic function of s.

Theorem 1.2.3: T'((s + 1)/2)n(s, P) has a meromorphic extension to C
with isolated simple poles at s = (m+1—n)/2 for n € N. All the residues
are locally computable. n is regular at s = 0. We reduce mod Z to define:

n(P) = 3{dim 9N (P) + n(s, P)}s=0 € R/Z.

If P(¢€) is a smooth 1-parameter family of such operators, then den(P(e))
18 locally computable. If m i3 even, n(P(€)) is independent of e.

Remark: 7(0, P) has 2Z discontinuities as eigenvalues cross the origin;
consequently it is necessary to reduce mod Z to ensure 7 is smooth. This
is an essential feature of the eta invariant and one which makes it different
from most other analytic invariants; torsion plays a crucial role.

The following construction will be important in §3.3. We begin with
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Lemma 1.2.4: Let m = 2n > 2. We can find 2™ x 2" complez self-adjoint
matrices e; for 0 < 1 < 2n satisfying the Clifford commutation relations
eie; +eje; = 25,'j.

Proof: If m =2, let

€2 = ((1) _01), e? = ((1) (1)) 2 :=(;\3__1 ‘/()‘_f) (1.2.29)

We prove the general case by induction. Suppose {eJ*”?,...,em_2} are
27=1 x 2"=1 matrices satisfying the conditions of the Lemma. Define

m._ _m—2 2 m e m=2 2
€y ‘=€ @ €0y eeey €mg ‘= €5 @ €g,

| (1.2.30)

m . . m 2 m.,__  _m-—2 2
€m—1 "= €n_oQe€], €, =€, _5®e;.

Let {ei}o<i<m be as in Lemma 1.2.4. Let e(z) = Zjejz; and define
Q on C=(R™F! x C?) by:

Q := V—1Zje;0;. (1.2.31)
Then @ is self-adjoint and of Dirac type since |
Q*=A.-I,=—(0}+ ...+ 8%)I,. (1.2.32)

Lemma 1.2.5: Let m =2n > 2 and let v = 2™.

(a) There exists a first order tangential operator A so
Q=+V-1e(0)0, +r 1A
(b) A satisfies the identities:
A=A+ V-1me(9),
Ae(0) +e(0)A=+v—-1m-I,, and
A% —/“1e(0)A= N @ I,.
(c) Let P =+/=T1e(§)A+ 2(m — 1)I,. Then
(i) P is self-adjoint and of Dirac type.
(i) P2 ={A¢+ 3(m—-1)?}®I,.
(iii) n(s, P) = Zj»or (™73 + 1(m - 1)),
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Proof: Let {¢;}1<j<m be local coordinates on S™ and decompose
Q = £(r,6)0, + 5 £5(r, )0y, + 9(r,6). (1.2.33)
We define
A= Ejfj(r, 0)8,,,,. + g(r, 0). (1.2.34)

‘Let v € C” be a constant vector. We compute:

Qv) = g(r,0)v =0
Q(r?v) = 2rf(r,0)v = \/lejejaz,.(r%) = 2rv/—1e(8)v
Q(zrv) = V=lexv = V=1e(8)0,(rbxv) + Z; f;(r, 6)0y; (rbrv)
= {\/—_le(e)ok + 'I‘Ejfj(’r‘, 9)6¢,j (0k)}v.
This shows g(r,0) = 0 and f(r,8) = /—1e(8). Since v/—1exv is indepen-

dent of r, rf;(r,8) is independent of r so f; is homogeneous of degree —1
in r. This proves (a).

(1.2.35)

Let |dvol| and |dvol 4| be the Euclidean and spherical volume ele-
ments.

|dvol | = |[r™drdvol 4|
Q=V-1e()0, +r 1A
Q* =r ™{V-1e(8)0, + r1A*}r™
= V—1e(0)8, + r 1 (v/—1me(6) + A*).
Since @ = Q*, A = A* + v/—1me(8). We compute
Q*=A.Q®1I, = (=02 —mr 10,4+ r2Ag} QI
= -0 +V-1{e(8)8, - r 1A+ r "1 4e(6)d,} + r—2A2

= -0 +V-1r"{e(6)A + Ae(8)}0, — V—=1r"%e(6)A 4+ r—242%.
(1.2.37)

(1.2.36)

We equate radial and spherical derivatives to prove (b).
We show P is self-adjoint by computing:
P* = —/=1A%(0) + 1(m - 1) (1.2.38)
= —V—-1{A - V-1me(6)}e(8) + 3(m — 1)
= —v/—1{4e(8) — vV—Im} + 2(m-1)
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= —V-1{—e(§)A} + i(m -1)=P.
We square P to prove (ii) and show P is of Dirac type:

P? = —e(8)Ae(8)A + V=1(m — 1)e(§)A + L(m - 1)?
= —e(8)(—e()A + V-1m)A + V=1(m — 1)e(6)A + 1(m — 1)?
= A2 — V/=Te(6)A + 1(m — 1)?

=(Ag+3(m—-1)*)®1I,.
(1.2.39)
P is the square root of the normalized Laplacian

{Ag+im-1)"}Q1, (1.2.40)

so the eigenvalues of P are +1(2j +m —1) by Theorem 1.1.2; as m > 2, 0
is not an eigenvalue of P. Since these eigenvalues are distinct for different
values of j, the harmonic spaces H(m,j) ® C” are invariant under P.
Decompose

H(m,j)® C" = H*(m,j,v) ® H(m,j,v) (1.2.41)

into the eigenspaces of P for the eigenvalues +3(2j + m — 1). We must
show

dim H¥(m,j,v)—dim H (m,j,v)=v("1?%). (1.2.42)

m—2
Choose scalar partial differential operators B.4 and By so
B :=+/—1e(8)A = L.<qBcaeced + Bol,. (1.2.43)

By (b) o1(A) and hence o1 (B) anti-commute with e(6). This shows By
is a 0t order operator. If v € C”, Qu = 9,(v) = 0 so A(v) = B(v) = 0.
Since {eceq,1} are linearly independent endomorphisms, By = 0. Since

4B, = (e,Bey — e,epB — Beyey — ey Bey,) (1.2.44)

we may conclude
Buy(H(m,j,v)) C H(m,j,v). (1.2.45)

Since T'r(eqep) = 0 for a < b,

Tt H(m,j»)B = Za<s Trcr(€aes)Tr H(m,j)(Bas) = 0. (1.2.46)
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Since the eigenvalues of P = B + 3(m — 1) are
+3(2j +m—1)
on H*(m, j,v), we conclude that:
Tr f(m,j)P = %l/(m —1)dim H(m, j,v) v
= gv(m = D{("7) = ("N
= -1,_,—(2j +m - 1){dimH+(m,j, v)
—dim H ~(m, j,v)}
Consequently
dim H*(m, j,v) — dim H ~(m, j,v)

—v(m D{(™H) = (")} (2i+m - 1)
m+]—2) .

(1.2.47)

(1.2.48)

(1.2.49)
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§1.3 Index theory

Let V; € BY (M) and let P : C=(V;) — C’°°(V2) be a first order
partial differential operator. We say that

P = {(P,V1,V2)} (1.3.1)
is an elliptic complex of Dirac type if the associated second order operators
D, = P*P and D, = PP* (1.3.2)

are of Laplace type. We define

Index (P) :=dim N (P) — dim N(P*)

this is well defined by Theorem 1.1.1. Let a,(-) be the invariants of the

heat equation defined in Theorem 1.2.1. We define:
an(z,P) := an(z,D1) — an(z,Dy) (13.4)

an(P) = fMan(:c,’P)|dvol (z)|-

Theorem 1.3.1:

(a) an(P) =0 for n # m.

(b) am(P) = Index (P).

Proof: We shall reproduce Bott’s original argument since it is extremely

elegant. Let E(A,D;) C C*(V;) be the eigenspaces. Since P and P*
intertwine the D;,

P : E(\Dy)— E(\ Dy) and P*: E(\, D) — E(\, Dy). (1.3.5)

Since P*P is multiplication by A, these maps are isomorphisms for A # 0.
Consequently,

dim E(\,D;) =dim E(A,D,) for A #0, (1.3.6)

so that
Tr Lz(e"tDl) -Tr Lz(e_tDZ)
=Yxe~*Mdim E(\,D;)—dim E()\, D)} (1.3.7)
=dim E(0,D,)—dim E(0,D;) = Index (P).
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On the other hand, we use Theorem 1.2.1 to expand:

Tr 2(e7tPr) — Tr 2 (e7*P?)
~En>0{an(D1) — an(Dz) }t""™/2 (1.3.8)
Nznzoan(p)t(n—m)ﬂ_ ]

Example 1.3.1 (de Rham complex): Let
A*M := ®pA* M and A°M := @,A?PT! (1.3.9)

be the bundles of differential forms of even and odd degrees. Let d be
exterior differentiation and § be interior differentiation. We define:

P,=d+6:C®AM — C®A°M, and

1.3.10
Py,=d+6:C®AN°M — C®A°M. ( )

Let
Paer := (Pe, A°M,A° M) (1.3.11)

be the de Rham complex. It is immediate that P} = P, and that
D¢ = @pA2p and D? := ®pA2p+1 (1312)

are of Laplace type.We use the Hodge decomposition theorem to see the
index is the Euler Poincare characteristic x(M) :

Index (P) =dimN(A®) — dim 9N (A°)
—5,(~1) dim N (A,)
—5,(~1)" dim N (H?(M; C))
=x(M).
Example 1.3.2 (signature complex): Let M be an oriented manifold of

real dimension m = 4k. Let %, : APM — A™7PM be the Hodge operator.
Define 7, € Hom (AP M, A™ P M) by:

(1.3.13)

Tp(wp) = (_l)k(_l)P(P—l)lz o (). (1.3.14)
Let 7 = ®p7p € Hom (AM,AM). We use Lemma 1.1.4 to see that:

r2=1and (d+ &§)r = 7(d + 6). (1.3.15)
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Let A*M be the eigenbundles of 7. Then
d+6:C®ATM — C®A™ M. (1.3.16)
Define the signature complex by:

Psign := ((d+8), At M, A~ M),

1.3.17
Sign (M) := Index (Psign)- ( )

The index of this elliptic complex is called the signature of M. It can be
computed topologically. We define a natural symmetric bilinear form J
on the real de Rham cohomology group H2¥(M;R) by:

J(al,az) = fMal A Q9. (1318)

The index of J is the number of +1 eigenvalues minus the number of —1
eigenvalues when J is diagonalized over the real numbers R. Then

Sign (M) = Index (J). (1.3.19)

The observation that the index of an elliptic complex of Dirac type is
given by a local formula has many important consequences. We present
just a few below. Let M;# M, be the connected sum of M; and Mj; this
is defined by punching out disks in both manifolds and gluing along the
common resulting boundaries. Let CP?* be complex projective space of
real dimension m = 4k.

Theorem 1.3.2: Let m be even.

(a) Let F — My — M, be a finite covering. Then x(M;) = |F|x(My).
Assume further that My is oriented and that m =0 (4). Give M, the
orientation inherited from My. Then Sign (M;) = |F|Sign (M>).

(b) Let M = M1#M,. Then x(M) = x(M1)+x(M2)—2. Assume further
that M 1is oriented and that m = 0 (4). Give the M; the induced
orientation. Then Sign (M) = Sign (M;) + Sign (Mz).

(c) Let F — CP* — M be a finite covering. Then |F| =1 so M =
C P2k,

Proof: Since local formulas are multiplicative under finite coverings and
since both the Euler characteristic and the signature are given by local
formulas, (a) follows.
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To prove (b), we note that the two disks removed when creating M
glue together to form a sphere. We use the additivity of local formulas to
show that ‘

X(M) + x(8™) = x(My) + x(M2), and

‘ 1.3.20
Sign (M) + Sign (S™) = Sign (M) + Sign (M3); ( )
(b) follows since x(S™) = 2 and Sign (S™) = 0.
We recall that
viep2k.oy— [C ifr=0(2)and :f 0 <v < 4k,
H(CP™:C) {0 if otherwise. (1.3.21)

Consequently x(CP%¥) = 2k + 1 and sign (CP?*) = 1 (with the usual
orientation). By (a),
|Flx(M) =25 +1, (1.3.22)

so |F| is odd. Consequently, F' is orientation preserving and M is ori-
entable. We see that |F| = 1 from the identity:

1 = Sign (CP %) = |F|Sign(M). A (1.3.23)
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§2.1 Characteristic classses

The characteristic classes are topological invariants of a vector bundle
which are represented by differential forms. They are defined in terms of
the curvature of a connection. Let M be a smooth manifold. We adopt
the Einstein convention and sum over repeated indices. We introduce the
following notational conventions.

Let V € BV (M). A local unitary frame 5 = (s!,...,,s%) for V is
a collection of smooth local sections s* to V over an open set O which
are an orthonormal basis for the fiber of V over every point of O. The
total derivative d is not invariantly defined on C°°(V) unless V has a
given global trivialization. A unitary connection V on UV (M) should be
thought of as an invariantly defined total derivative. It is an additional .
piece of structure that is imposed on V. V is a first order partial differential

operator from C*(V') to C®°(T*M ® V') such that

V(fs1) =df ® s1 + fVsy, and
(Vsi1,82) + (81, Vsa) = d(s1, 52)

for all f € C*°(M) and s; € C°(V). Let €U (V) be the set of all unitary
connections on V.
Let 8= (s!,...) be a local unitary frame for V. Let the decomposition

(2.1.1)

Vs =wi@s! (2.1.2)

define the connection 1-form w = (w;) of V relative to 8} V is uniquely

determined by the w; #nd the Leibnitz property. We emphasize that w is
not invariantly defined and we will use the notation w = w(5) when we
wish to exhibit the dependence on § explicitly. Since V is unitary,

w+w'=0. (2.1.3)
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We can always construct unitary connections locally. Since the convex
combination of unitary connections is again a unitary connection, ¢ (V)
is non empty.

If we choose another frame = (t!,...,t¥), then we can express

t' = his (2.1.4)

where h := h} is a smooth local section to End (V). Let k™! be the inverse
endomorphism; it is defined by the identity:

hi(h71)] = 6i (2.1.5)
where § is the Kronecker symbol. Let V' = &;tj. We compute:
Vit = it! = V(his")
=d(hi)® s* + hiwfF @ s (2.1.6)
= (dhi(h™)j + hiwi (A 71);) @ t'.
Consequently & satisfies the transformation law:
55 = (dhi(h™N)5 + hiwf(R7H))), ie.

2.1.7
&=dh-h7" + hwh™l (1.7)

This is, of course, the manner in which the 0t* order symbol of a first

order partial differential operator transforms.
We extend V to a derivation of C°(AM ® V) as follows. Let 6, €
C>(APM), and let s € C°(V'). We define:

V(6, ®s) :=db, @ s+ (=1)P6, AVs € CO(APHM V).  (2.1.8)

Let f € C®°(M), and let s € C>°(V). We show V2 is a 0t* order operator
by computing;:

V2(fs) = V(df @ s + fVs)
=d’f@s—df AVs+df ANVs+ fV2s (2.1.9)
= fV3s.

The curvature 2 € C*°(A’M ® End{(V)) is defined by:
zo)s := V2(8)(zo) (2.1.10)
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where § is any extension of s € V(zo) to a smooth local section; this is
independent of the particular extension chosen. Q is invariantly defined
independent of the choice of the local unitary frame. Let Q'(s") be the
components of 2 relatlve to the local unitary frame 3. Then:

Qs' = V(wj ®s') = dwj ® s —w; /\wk®3k,
Q;(§') = dw]'(é') —wi(d A w]'-‘(s”), ie. (2.1.11)
U(3) = dw(8) — w(3) Aw(3).

We use the notation £ when we are thinking of the curvature as an in-
variantly defined endomorphism; we use the notation Q(5) when we are
thinking of the curvature as a matrix Q}(5) of 2—forms. Since V is unitary,

Q+Q*=0. (2.1.12)

Since V2 is a 0t order operator,  transforms like a tensor. If i = hs,
Qi(E) = QA (A7) ie. Q) = RQI)A. (2.1.13)
Lemma 2.1.1: Let V € U7 (M), let V € €7 (V), and let o € M. There
 exists a local unitary frame ¥ for V so that w(t,z0) = 0 and dQ({, zo) = 0.

Proof: Let w(s) = w;(:}') be the connection 1 — form of V relative to a

local unitary frame for V' defined over a contractible open set O. Choose
h:0O — U(-) smooth so that

Let £ = h5. We use (2.1.7) and (2.1.11) to see:
w(t, zo) = dh(x0) 4+ w(5,z0) = 0
dSU(t,z0) = d(duw(?) — w(f) A w(B))(o) (2.1.15)
= {—dw(t,20) Aw(f, 20) + w(f,20) A dw(f, )} = 0. W

Remark: As the curvature is invariantly defined and does not vanish in
general, it is not possible to find a parallel frame s so w vanishes in a
neighborhood of z.

We now discuss the Chern-Weyl homomorphism. Let
u(n):={A€End(C"): A+ A* =0} (2.1.16)
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be the Lie algebra of the unitary group U(n). Let P : u(n) — C be a
complex valued polynomial map. Let

J(U(n)) ={P: P(hAR™Y) = P(h) YVh € U(n), VA € u} (2.1.17)
be the algebra of invariant polynomials. We decompose
J(U(n)) =@;3;(U(n)) (2.1.18)

as the direct sum of the invariant polynomials which are homogeneous of

order j. Let P € 3;(U). Expand
P(t1 A1 + ... +tjA;)/j! = Sat*Pa(Ay, ..., 4;). (2.1.19)
Let @ = (1,...,1), and let P(4y,...,4;) := P,(41,...,A;) be the total

polarization. This is a symmetric multi-linear function of its arguments

such that
P(A)=P(A4,...,A), and

2.1.20
P(hA1h7Y, ... hA;R™Y) = P(4y, ..., A;). ( )
For example, the complete polarization of Tr (A3) is
%TI‘ (A1A2A3 + A2A1A3). (2121)

Let Ve BV (M), let V e ¢Y(V), let P € J(U), and let 5 be a
local unitary frame for V. Since forms of even dimensions commute, we
substitute to define:

P(Q(3)) € C®(AM). (2.1.22)

If £ = kS, then P(Q(1)) = P(hQ(3)h~1) = P(Q(E)) is invariantly defined;
we denote this common value by P(V). If P € 3 ;(U(n)),

P(V) € C®(A¥”M ® C). (2.1.23)

Lemma 2.1.2: Let V € BV (M), and let P € 3(U (n)).
(a) If Ve €V (V), then dP(V) =0 so P(V) is closed.
(b) If Vi € €Y (V), there ezists TP(Vo, V1) € C®AM so

dTP(Vy, V1) = P(V1) — P(Vy).

(c) Let P(V)=[P(V)] € H*(M;C). This 1s independent of the connec-

tion chosen and of the fiber metric chosen.
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Proof: By decomposing P = Py+...+ P, for P; € 3 j(U), we may suppose
without loss of generality that P is homogeneous of degree j. We take the
complete polarization to replace P by a multi-linear symmetric invariant

function. Fix o € M and choose a local unitary frame § so w(3,z¢) =0
and dQ(s,z9) = 0. Then

dP(Q(3, 20)) = dP((S), .., 23))(w0)

— 1P(d3), 93), ... 23))(zo) = 0. (2:1:24)
Since dP(€)(3)) is independent of s, (a) follows. Let
V(e) =€eVi+(1—¢€)Vy (2.1.25)

be an affine homotopy in €Y (V) between V, and V; for € € [0,1]. The

connection 1 — form of V() is given by:
w(€e) = wo + €b for 0 = w1 — wy. (2.1.26)
We use (2.1.7) to see that in a new frame
0 =1 — @
=(dh-h™' 4+ hw A7) — (dh- R + hwoh ™) (2.1.27)
=h6h~!

so @ is invariantly defined and transforms like a tensor. This is, of course,
because the difference between two first order operators with the same
leading symbol is a 0** order operator. Let () be the curvature of the
connection V(e). Since 6 is a 1 — form, it commutes with 2 — forms and
we can define

P(8,9(e), ..., Qe)) € A IM (2.1.28)

by substitution. Since P is invariant, the complete polarization of P is
invariant and

P(6(%), Q(e, 1), ..., e, 1))
=P(hO(h™L, hQ(e, 3R, ..., hQ(e, R TY) (2.1.29)
=P(8(3), Qe, 3), ..., e, 5))
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is invariantly defined and independent of the frame chosen. We compute:
P(V1) — P(Vo) =[,0.P(V(e))de

ot (2.1.30)
=5 [y P(2(e), Qe), ..., Ue) )de.

We define:
TP(V1,Vo) = j [ P(6,(e), ..., €))de € AP~ M. (2.1.31)

To complete the proof of the Lemma, it suffices to check
dP(6,9(e), ..., Ue)) = P(Q(e), Qe), ..., Ue)) (2.1.32)

for all € € [0,1]. Since both sides of (2.1.32) are invariantly defined, we
can choose a local unitary frame to s1mphfy the computation. Let 1o € M
and eg € [0,1]. Use Lemma 2.1.1 to choose £ so relative to this local frame,
w(eo,t,z9) = 0 and dQ(e, f, ) = 0. We prove (b) by computing:

Qeo, T, 20) = De{dwo(?) + edb(E) — w(e, ) A w(e, D} (e, z0)
= db({, o) — (e, 1, 70) A w(eo, £, o) (2.1.33)
- L{J(Go,{:xo) A @(ﬁo,t-:mo) = da(t-; :1:0)3

and
dP(8(%), Qeo, 1), ..., A€o, 1)) (z0)
= P(da(t-)’ 9(50,125'30),---,9(50,{,330)) (2134)
= P(Q(Go,t—;Ivo),Q(éo,t—;:L'o),...,Q(Eo,t-‘,ilio)).

We complete the proof by showing [P(V)] is independent of the fiber
metrics chosen. Suppose given two fiber metrics (-,-);. Let V =V x [0,1]
be the induced bundle over M x [0,1]; use a partition of unity to define a
fiber metric (-,-) on V agreeing with (-, *)o near € = 0 and with (,-); near
€ = 1. Let V be a unitary connection for V'; we restrict V to define unitary
connections V; on M x {i} for i € {0,1}. Smce dP() = 0, it follows that
the restriction to M x {0} and to M x {1} gives the same element of de
Rham cohomology. H

We can apply functonal constructions to connections. Let V; €
YU (M) and V; € ¢U(V;). Let w; and ©; be the associated connection
1 —forms and curvatures relative to some local unitary frame. Choose the

dual frame for the dual bundle V;*. Define:
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(1) VieeU (V) by:

(s1, Vis?) :==d(s1,87) — (Vis1,s7),
wys = —w;, and Qv = -01.

(2) Vi@ Ve (Vi@ Vs) by:

(V] EB V2)(81 @ 82) = V]Sl @ V232,
W(v,9V,) = w1 D wa, and Q(V1€9V2) =0 @ Q.

(3) V1 ®V2 € Q:U(Vl &® Vg) by:

(V1®V2)(s1®s2) := V181 ® 52+ 81 @ V33,
Wv,0v,) =w1 ®1+1Q®w,, and
Qv,ev,) = @1+1® Q.

(4) V € ¢V Hom (¥4, V2)) by:

V(E)(s1) := Va(E(s1)) — E(Vi(s1)),

wy(E) = (wE — Ew,), and Qu(E) = QE — EQ;.

(5) Let f: N — M be smooth, let V € BV (M), and let
FVi={(z,v) e N x V: f(z) = n(v)} ¢ DY (N)
be the pull-back bundle. If s € C(V), let
fr(s)(@) := (z,5(f(z)) € C=(f*V)

33

(2.1.35)

(2.1.36)

(2.1.37)

(2.1.38)

(2.1.39)

(2.1.40)

be the pull-back section. If V € ¢ (V), the pull back connection

frvee’(fv)
is defined by:

(f*V)(f*s) := f*(Vs) for s € C=(V),
wf:-v = f*wv, and Qf‘V = f*Qv.

(2.1.41)

(2.1.42)

Remark: (4) is a special case of (1) and (3) since Hom (V4,V2) = Vi*QVs.
In a similar fashion, we can define the induced connection on APV (the
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bundle of p — forms), on SPV (the bundle of symmetric p — tensors), and
on any other natural bundle.

We define the total Chern polynomial ¢(A) by:

c(A) :=det(I + i%

=1+ c¢;(A4) +... + cx(4). (2.1.43)

The corresponding characteristic classes are called the Chern classes.

Lemma 2.1.3:

(a) 3(U(k)) = Cley, -, k-

(b) (V1 ® V) = ¢(V1) A c(Vz) and ci(V*) = (=1)kci(V).

Proof: It is immediate that the ¢;(A) are invariant polynomials which are
homogeneous of degree 2i. Let A = diag()y, ..., Ax) be a diagonal matrix.
Let s ](X) be the elementary symmetric functions;

det(I 4+ A) = IL;i(1 + Aj) = so(X) + ... + sk(:\‘).' (2.1.44)

Let £ =1);/2n. Then
cj(A) = s;(%). (2.1.45)

Let P € 3(U(k)). Then P(A) = P(Z) is polynomial in these variables.
Since we can permute the eigenvalues of A by conjugating A with a suit-
able element of U (k), P(&) is a symmetric function of Z. The elementary
symmetric functions are an algebraic basis for the algebra of all symmetric
polynomials so there is a unique polynomial @) so

P(A) = Q(c1, ..., ck)(A). (2.1.46)

We have established (2.1.46) for diagonal matrices. Since P is invariant,
(2.1.46) holds for diagonalizable matrices. Since the elements of u are all
diagonalizable, (2.1.46) holds for all A. This shows J (U (k)) is generated
algebraically by the {c,...,cr}. Since the ¢; correspond to the elementary
symmetric functions, there are no relations in this algebra. This proves
(a).

The first assertion of (b) is immediate. The curvature of the dual
connection V* on V* is —Q'. Consequently

(V) = det(I + -=Q)

) . 2.1.47
o(V*) = det(I — 5=Q°) = det(I — ;=0). W ( )
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We define the Chern character by the generating function:

ch(A) = Tr(e!4?™) = k+ ch1(A) + ... + ch ¢(A) + ..;

ch,(A) = (:/27)" Tr (A%) /). (2.1.48)

Strictly speaking, ch(A) is an infinite series rather than a polynomial.
This causes no additional difficulties since we can always work with the
homogeneous pieces. When we substitute the components of the curvature
tensor, Tr (Q7) = 0 if 2j > m so the discussion above applies.

So far, we have discussed complex vector bundles, the real theory is
analogous. Let 0(n) be the Lie-algebra of the orthogonal group. We define
the Pontrjagin polynomials by:

p(A) =det(I+(27) 'A)=14+p1 +... (2.1.49)

The p, are invariant polynomials which are homogeneous of degree 2v
in the components of A. Let A € o(k) have eigenvalues {£iAq,..., i)z}
if k = 20 or {0,%i)\q,...,£i)Ae} if & = 2£+ 1. By conjugating A by an
appropriate element of O (k), we can put A in the form:

0 -\ 0 0
A 0 0 0 ..

A= 0 0 0 -x .. |. (2.1.50)
0 0 X 0

If k is odd, the last block will be a 1 x1 block with zero. Let z; = —\; /2.
Then the total Pontrjagin class is given by

P(A) =TI;(1+ z3) (2.1.51)

so the p; are the elementary symmetric functions in the z;.

There is one additional characteristic class, called the Euler form,
which is important. If k is odd, let ex = 0. If £ = 2j is even, we define
er as follows. Let A(s,) = Agpsp; we use the metric to raise and lower
indices. Let o be the group of permutations of k£ symbols. Let

ek(A) = (—47r)‘fE,€,k Sign(O’)A,(l),(z)...Aa(k_l),(k)/j!. (2.1.52)

We omit the proof of the following result in the interests of brevity as it
is analogous to the proof already given of Lemma 2.1.3.
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Lemma 2.1.4:
(a) If k =25 + 1, then 3 (SO (k)) = 3(0 (k)) = C[p, ..., pj].
(b) If k = 2j, then €2 = pj, ex € I(SO(k)), and

3(0(k)) = Clp1, ..., pj], and
J3(SO (k)) = Clps, ..., pj] ® ek - C[p1, ..., pj]-

We define the Hirzebruch L-genus using generating functions. Let:
Zj

L(4) =T € IO (B)) (2.1.53)

The function z/tanh(z) is an even functions of the parameter z so the
ambiguity in the choice of the sign of z; plays no role. We decompose

L(A)=1+Ly(4)+.. (2.1.54)

into symmetric functions L; of degree 2: in the normalized eigenvalues
of A which are even functions of the z;. Since the elementary symmetric
functions of :vf generate all such symmetric functions,

L; =L(p1,--,p5) (2.1.55)

is expressible in terms of the Pontrjagin nolynomials and hence is polyno-
mial in the components of A.

It is immediate from the definition that the Chern character satisfies
the identities:

ch (Vi ® V3) = ch (V1) + ch x(V2),
ch k(Vl ® V2) = zy+q=kChP(Vl) A ch q(V2), (2156)
ch x(V*) = (=1)*ch (V).

In other words, ch is a ring homomorphism — 1.e.

ch (Vl D Vg) =ch (Vl) + Ch(Vg), and

ch (V1 @ V) = ch (V1) A ch (V3). (2.1.57)

We may express these invariant polynomials in terms of the Chern
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and Pontrjagin polynomials; we list only the first few terms:

ch =k+c1+ 3(cd — 2c3) + ...

(2.1.58)
L =1+43p1+ 35(Tp2 — p}) + ...
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§2.2 Invariance theory

In §2.2, we discuss Weyl’s theorem on invariants of the orthogonal
group, give Patodi’s theorem, and state some specialized results concern-
ing orthogonal invariance.

Introduce formal variables

9ijja = 079ij (2.2.1)

for the partial derivatives of the metric tensor. We will also use the nota-
tion g;;/ki.... We emphasize these variables are not tensorial, but depend
on the choice of the coordinate system. We define the order in the jets of
the metric by:

ord (gij/a) = |a]. (2.2.2)

Let G be a Riemannian metric on M and let zo € M. We say that
a system of coordinates X on M is normalized with respect to (G, z¢) if
zo = (0,...,0) is at the center and if:

g,'j(X, G)(mo) = 5,']‘ and g,'j/k(X, G)(a)o) = 0. (223)

In such coordinates, the value of the curvature tensor at z for the coor-
dinate frame 0; is given by:

Rijri = 3(gjuix + gixsj1 — giyjx — 9jx/i)(X, G)(zo). (2.24)

Let
A9 = Clgij/a) for |a] > 2 (2.2.5)

be the polynomial algebra in these variables. We restrict to coordinate
systems which are normalized with respect to (G, z¢) and consequently we
may omit the variables {gij,gij/x} from consideration. Such coordinate
systems always exist; for example we could take geodesic polar coordinates.
Let 27, , be the linear subset of polynomials which are homogeneous of
order n in the jets of the metric.

We define g;;/4(X, G)(z0) and P(X,G)(zo) by evaluation. We say
that P € A, is invariant if

P(X, G)(zo) = P(Y,G)(z0) (2.2.6)
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for any coordinate systems X and Y which are normalized with respect
to (G, zo). We denote the common value by P(G)(z¢). Let 39, C A9 be
the ring of all invariant polynomials in the derivatives of the metric which
are defined in the category of Riemannian manifolds of dimension m. Let

Imn CUAN n (2.2.7)

be the linear subspace of polynomials which are homogeneous of order n
in the jets of the metric.

We shall also need to consider invariants which are form valued. Let
P = %;Prdz! for Pr e A9,. (2.2.8)

Let
P(X,G)(z¢) := ZrPi(X,G)(zo)dz! € AP M () (2.2.9)

be the evaluation. We say that P is invariant if

for any coordinate systems X and Y which are normalized with respect
to (G, z9). We denote the common value by P(G)(zo).

Let 37, . . denote the algebra of all invariant form valued polynomials;
let 3'?,,,",}, denote the subspace of p form valued polynomials which are
homogeneous of order n in the jets of the metric;

38, =35 0. (2.2.11)

We shall always assume p < m. If A is a monomial, let ¢(A, Pr) be the
coeflicient of A in Pr;

P =YX, 1c¢(A, Pr)Adz?. (2.2.12)
We say A is a monomial of Py if ¢(A, Pr) # 0.

Example 2.2.1: The scalar curvature 7 belongs to 37, , ;. If the coordi-
nate system is normalized with respect to (G, o), then 7(G)(z) is given
by the formula:

T(G)(xo) = 254 j(9ij/i5 — 9iisj; (X, G)(x0). (2.2.13)
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The variable gy1/92 is and the variable g;;/;; is not a monomial of 7.
Similarly, dr € 37, 5, since

dr(G)(z0) = {Eijk(gij/ijk - ggi/jjk)dxk}(X, G)(zg). (2.2.14)

The definition of ord which we have given is purely algebraic; there
is a geometrical characterization that is useful.

Lemma 2.2.1:
(a) Let P € 3%,, ,. Then P € 37, ., if and only if for all (G,z0) and

c#0,
P(2G)(zo) = P~ "P(G)(zp).

(b) jgn,*,* = @n,pj,gn,n,]y
(¢) Imnp =0 forn+p odd
(d) If0# P €39, . p» there exists (G, z0) so P(G)(z0) # 0.
Proof: Let P € 37, , ,. Fix ¢ # 0 and let X be normalized with respect
to (G, xo). Let Y = cX. Since 8¥ = ¢~1¢,
G(3Y,3Y) = 2 G(7, 0,
gij/a(Y, G)= 6_2_|a|gij/a(X,G)’ and (2.2.15)
gij/a(Y’ C2G) = c_lalgij/a(X7 G)

If A is a monomial of some Py, then A is homogeneous of order n in the
jets of the metric so

A(Y,*G)(zo) = ¢ "A(X, G)(z0). (2.2.16)

We note dy! = cPdz!. Since Y is normalized with respect to (c?*G, zo) and
X is normalized with respect to (G, zo), we use (2.2.16) to establish one
implication of (a):
P(c*G)(x0) = Ta,1¢(A, Pr)A(Y, *G)(zo)dy’
= Y4 1P "¢(A, P)A(X, G)(xo)de?! (2.2.17)
= "7"P(G)(20)-

The other implication of (a) follows similarly.
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If P is form valued, we may decompose
P=PO 4 . 4 pm (2.2.18)

where each P®) is p form valued; clearly P is invariant if and only if each
P®) is invariant. Further decompose

P®) =%, p) (2.2.19)

where the P,(,p ) are homogeneous of order n in the jets of the metric. We
use (a) to see the PP e J n.n,p are invariant separately. Consequently:

3 s = ©npT T p (2.2.20)

This gives J7, , , the structure of a graded algebra and proves (b); we
take ¢ = —1 to prove (c).

Let 0 # P € 77, ,, be non-zero as a polynomial. We use (b) to
assume without loss of generality that P is homogeneous of order n in the
jets of the metric and is p form valued. Choose real constants c! i/a for
la| > 2 s0 0 # Pr(c;jja) for some I. Define the germ of a metric G on R™
by:

9i;(2) = 8ij + Tagja|<ntij/az®/al. (2.2.21)

Use a partition of unity to extend G to a compact manifold. Then the
standard coordinates on R™ are normalized with respect to G and

P(X,G)(0) = £,Ps(cijjq)dz” #0. W (2.2.22)

Remark: (d) is the reason we work with the algebra of jets; it is a pure
polynomial algebra and there are no relations. If we worked instead with
the algebra of covariant derivatives of the curvature tensor, we would
be forced to introduce the additional relations which correspond to the
Bianchi identities and the covariant derivatives of the Bianchi identities;
the resulting algebra would no longer be a pure polynomial algebra. We
identify the polynomial and the formula which it defines henceforth.

Lemma 2.2.2: a,(z,A,) defines an element of 39, .
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Proof: The total symbol of A, is functorial so an(z,A,) is given by a
polynomial in the jets of the metric. Since a,(z,A,) is invariantly defined,

this polynomial is invariant. Let ¢ be constant. Then
A(2G) = c2A,(G).
Let f € C*(M). By Theorem 1.2.1,

Tr Lz(fe_tD) ~ Zn>0an(f, D)t("_'")/2 where
an(f, D) = [ 4 fan(z, D)|dvol (z)|.

This specifies the an(z, D) uniquely. We use this to compute:

Tr f2(fe™t27 (D)

~ Eatm™E [ fan(z,Ap)(c?G)dvol (c*G)

~ St [ fan(z, Ay)(c2G)dvol (G)

= Tr 2(fetc Ar(9))

~ Batrmm2m=n) [ fa(x, Ap)(G)dvol (G).
We equate coefficients in the asymptotic expansions to see

J s fan(z,Ap)(*G)dvol (G)
=c™" [ fan(z, Ap)(G)dvol (G).

Since f was arbitrary,

an(2,8,)(c2G) = ¢ "an(z, A,)(G).

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

We use Lemma 2.2.1 to see that a,, is homogeneous of order n in the jets

of the metric. Il

Introduce constants:

eo(m,p) = () = sy
Co(map) = c(m,p) - 6c(m -2,p— 1)’

ci(m,p) = 5¢(m,p) — 60c(m — 2,p — 1) + 180¢c(m — 4,p — 2),
ca(m,p) = —2¢(m, p) + 180¢(m — 2,p — 1) — 720c(m — 4,p — 2),
c3(m,p) = 2¢(m,p) — 30c(m — 2,p — 1) + 180c(m — 4,p — 2).
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Set ¢(m,p) = ¢,(m,p) = 0 for p < 0 or p > m. The following theorem
for p = 0 is due to McKean and Singer and to Patodi for general p; we
present it without proof.

Theorem 2.2.3:

(a) ao(Ap) = (4)™™/2 [} c(m, p)|dvol |.

(b) az(Ap) = (4m)~™/2671 [, co(m, p)r|dvol |.

(c) as(Bp) = (4m)~™/23607 [ {c1(m, p)7? + ea(m, p)p?
+c3(m, p)R?}|dvol |.

We review H. Weyl’s theorem on the invariants of the orthogonal
group. Let V be a finite dimensional real vector space equipped with
a positive definite inner product (:,-). Let O(V) be the group of linear
transformations of V preserving the inner product. Let

FVN=V®..0V (2.2.28)

be the k™ tensor product of V. If g € O(V), extend g to act orthogonally
on ®*V and on APV let 2 — g - z denote this action. We let O (V) act
trivially on C.

We say f € Hom (®FV, APV) is equivariant if

flg-2)=g-f(2) Vg € O(V) and Vz € @*V. (2.2.29)
We denote the set of equivariant mappings by: |
Hom © V)(@FV, APV). (2.2.30)

If p =0, the action of O (V) on the scalars is trivial and f is simply said
to be invariant.

We construct such equivariant mappings as follows. Let o(k) be the
group of permutations of {1,....,k}. If p € a(k), let F? act on @*V by
permuting the factors. Let

Ap 1 @PV — APV (2.2.31)
be the anti-symmetrization; if p = 0, A, is the identity map. Let

9: VeV ->R (2.2.32)
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be the inner product and let
¢V=¢Q..09:0%V > R. (2.2.33)
If p€o(k) and if kK — p =2 is even, let
L, = (g9 ®Xp) 0 FP € Hom ® V) (@*V, APV). (2.2.34)
We set f,f,p =0if k <porif k—pisodd.
Theorem 2.2.4 (H. Weyl): {f{ },cox) spans Hom © V)(®FV, APV).

Example 2.2.2: Let {e;} be an orthonormal basis for V and let k = 4.
We sum over repeated indices to expand z € @V in the form:

z=ajke; ¥ e; Qer ®ey. (2.2.35)

Let p = 0. We remove duplications to construct the spanning set:
gl(z) = Qiijj, gz(z) = a,'j,-;, and g3(z) = a;,-,-,-. (2.2.36)

Here g; = f4,0 corresponds to the identity permutation, g, corresponds
to the permutation which interchanges the second and the fourth factors,
and g3 corresponds to the permutation which interchanges the second and
third factors. The g; are linearly independent if dim(V') > 2. If p = 2, the
spanning set becomes:

h](z) = aiijkej N eg, h2(z) = a;jike; N eg,
hg(z) = aijkie; A ek, h4(z) = ajiki€j N e, (2.2.37)
hs(z) = ajiike; N eg, he(z) = a;jrii€j N eg.

We use theorem 2.2.4 to give a spanning set for the spaces Tnp:

Lemma 2.2.5: Consider monomial expressions in the covariant deriva-
tives of the curvature tensor where the order is n and where we contract
indices in pairs relative to a local orthonormal frame. Such ezpressions
span 35, .. There is a similar spanning set for T mnp instead of fully
contracting all indices in pairs, we alternate p of the indices and contract
the remaining indices.
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Proof: We refer to the discussion in Atiyah, Bott, and Patodi for further
details and only summarize the argument here briefly. In geodesic polar
coordinates, all the jets of the metric can be expressed in terms of the
covariant derivatives of the curvature tensor. Thus we can regard P as a
polynomial in the {R.........} variables.
The curvature R € ®*TM consists of tensors satisfying the 3 rela-
tions:
Rijki = Riuij, Rijri = —Rjin, and
Rijki + Ririj + Rijr = 0.

Similarly V¥R lives in a sub-bundle of ®*+t*TM which is defined by the
higher order Bianchi identities. Consequently P defines an equivariant
map

(2.2.38)

P:R— APM (2.2.39)

where R is a suitable O (m) invariant subspace of the direct sum of ten-
sor powers of the tangent bundle. Extend P to be 0 on the orthogonal
complement of R. Then P is an equivariant map from the direct sum of
tensor powers of the tangent bundle to A? M. We apply H. Weyl’s theorem
to each summand to derive Lemma 2.2.5 from Theorem 2.2.4. l

The following diagonalization Lemma will be extremely useful.. As
the proof is a bit technical, we shall omit details.

Lemma 2.2.6: Let 0 # P = X Prdz! for Py € ASVL pe invariant. Let

m,n,p
A = gi]_jl/al”‘giyjy/ay

be a monomial of P. Then we can find a monomial A, with
A1 = Gkity /By 9k, 1 18,
so that for 1 < p < p,

Iﬂul = lau’a 1<k, <Ju <
Buli) =0 for j > v + .
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§2.3 Normalizing constants

We begin this section by computing the volume of even dimensional
spheres and by evaluating the Chern character of vector bundles given by
Clifford matrices over spheres. A Clif (R**!) module structure on C* is
a linear map ¢ from R?*! to the set of self-adjoint k x k complex matrices
such that

q(z)? = |z|* - L. (2.3.1)

Expand z = z;s' relative to a unitary frame 3 for C* and let
g(z) = ziq". (2.3.2)
Then the {¢'} satisfy the Clifford commutation rules:
¢'d +¢q' =26Y. (2.3.3)
Let
7i(z) = 2(1 £ ¢(2)) for |z| =1 (2.3.4)
be orthogonal projection on the +1 eigenspaces of ¢(z), and let

% = {(z,v) € S™ x C*: g(z)v = £v} (2.3.5)

be the corresponding eigenbundles. Since Tr(g(z)) € Z is a continuous
function, it is constant. It vanishes since ¢(—z) = —¢(z). Thus dim(IT%) =
%k is constant so the II} define smooth complementary sub-bundles;

SmxCt=1¢ oml. (2.3.6)

Example 2.3.1: If m = 2, we could take:

q —(0 _1),q —(1 0), and ¢ _(—-i 0) (2.3.7)

to be the Dirac matrices. More generally, we could take the symbol of any
operator of Dirac type.

Lemma 2.3.1:
(a) vol(S%) = jlwi2%+1/(25)L.
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(b) Let q give a Clif (R¥*!) module structure to C¥. Orient S% so that
dz! A ... Adz¥ is the volume form at the north pole z = (1,0, ...,0).
Then

J goschj(II%) = 7277 Tr (¢°...¢™).

Proof: To prove (a), we use polar coordinates and integrate by parts to
see:

miT = fRz,-+le_|”|2d:c (2.3.8)
= [ e dbdr
= vol(S2j)f:°r2je_'2dr
= vol(52j)2-;u2-;u...%f8°e_'zdr. (2.3.9)
We compare (2.3.8) and (2.3.9) to prove (a).

Let Iy = %, 74 = 7%, etc. We use the decomposition (2.3.6) to
3 1 et p
project the flat connection on $§27 x C* to define connections V4 on In, :

Visy =7mydsy. (2.3.10)
Let §4(zo) be a basis for II1(z¢); we extend this basis to a local frame by
defining:
§4(z) = 74(2)5+(z0). (2.3.11)
We compute:

Vi(z)st(z) = ma(z)drs(z)5+(z0),

Q;h(.’t)gi(:v) = “i("’)d”i(x)dﬂigi(wo). (2.3.12)

This shows that:
Q4 =7mydrydry € End (I1y). (2.3.13)

We use (2.3.13) to compute ch j. Choose oriented orthonormal coordinates
for R¥*! 5o that zo = (1,0,...,0) is the north pole. We note

(¢°...¢%)% = £1 so Tr(q°...¢¥) € ZU1Z. (2.3.14)

Consequently, this is continuous and hence constant on S%; it is invari-
antly defined and only depends on the orientation of R**!. We sum over
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1 <1 £ 25 compute:

dvol (zo) = dz A ... Adz?,

m4(z0) = 3(1+¢°),

dry(zo) = 1dz' - ¢', (2.3.15)

Q4 (z0) = (1 +¢°)(gda’ - ¢')?,

Qi (o) = 2727121 + ¢°) (g ...¢¥ ) (dzt A ... A dz¥)

=27H71(2)(1 + ¢°)(¢...q% )dvol.

Since ¢! anti-commutes with ¢!....g%, Tr(q...¢¥) = 0. Consequently

ch j(V4)(zo) = (55)7 G274 Tr (¢°...¢% )dvol . (2.3.16)
Since xo was arbitrary:

Jsach (Vi) = (55) 2227571 (¢°...¢%) vol(S%). M (2.3.17)

Next we study the Euler form on products of two dimensional spheres.
Recall that if m = 2n, then

cm = {(—8m)"n!}~!, and

Ep = cmX1,5€1,7Rijizj o R _vimim— 1im- (2:3.18)
Lemma 2.3.2: [, Ez,|dvol | = 2.
Proof: The curvature tensor of the standard sphere is given by
Rijri = (8iebjr — birbje). (2.3.19)
Consequently
Ean = cn(—1)"2"(2n)! = (47)~"(2n)!/n! (”2.3'20)

2 E2n|dvol | = (47)7™(2n)!/n! - vol($?") = 2. W
S

Let CP " be complex projective space; this is the set of complex lines
in C™*! and is a holomorphic manifold. The real dimension of CP " is 2n.
Let L be the tautological line bundle over CP *;

L={(z) x2€CP"xC":z ¢ (z)}. (2.3.21)
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Let L* be the dual line bundle; this is often called the hyperplane bundle.
Let T. be the holomorphic tangent bundle. The following result is well
known.

Lemma 2.3.3: Let z, = —c;(L) = ¢;(L*) € H*(CP ™).

(a) fopnzn=1

(b) H*(CP ™ C) = Clza]/(z3*! = 0).

(c) Letin: CP™ ' — CP™. Then i*(zy) = Tp_1.

(d) T(CP™) @1 (n+1)L*.

(€) «(Te(CP™) = (14 2,)"* and p(T(CP ™)) = (1 + z2)"+1,

Remark: Since the cohomology class z, is stable under pull back, we
drop the dependence on the dimension n and let z € H?(CP "; C) denote
this universal class.

Let m = 2n, let P be a characteristic class, and let
P[M]:= [, P,(TM). (2.3.22)

The projective spaces form a dual basis to the real characteristic classes.
Let p = (¢1,...,%;) for ¢; > ... > i; > 0 be a partition of

k=|pl:=1i14+..+14,. (2.3.23)
We let £(p) = j be length of p. For example, if k = 4, there are 5 partitions:
4=4,4=34+1,4=2+2,

(2.3.24)
4=2+141, and4=1+1+1+1.
We define classifying manifolds and characteristic classes:
CP(p) =CP" x .. x CP%, and
(p) o (2.3.25)

p(p) = piy-..pi; -

Lemma 2.3.4: Let k € N. The matriz {p(7)[CP (2p)]} p|=|r|=k 18 invert-
ible.
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Remark: This means that products of even dimensional projective spaces
form a dual basis to J(O ). In other words, real characteristic classes are
completely determined by their values on the appropriate classifying man-
ifolds. This also means that given constants C,(p), there exist unique
characteristic polynomials @, € J(O) so that

Q-[CP(2p)] = Cr(p)- (2.3.26)
There are corresponding statements in the complex category.

Proof: If V € M, define:
ch(V)=ch,(V®C). (2.3.27)
It is easy to establish that
J(0(2k)) = Clchy,...,ch ;). (2.3.28)

Let
Cpa =ch (2T)[CP c(2p)]|p|=|r)=k§ (2.3.29)

we must show this matrix is non-singular.

The advantage of working with the Chern character rather than with
the Pontrjagin classes is that the Chern character is additive with respect
to Cartesian product — i.e.

ch,(M*! x M?) = ch ,(M?') + ch ,(M?). (2.3.30)
Furthermore, ch , (M) = 0 for v > 2dim(M). We note:
ch2,-[CP ((2p)] =0 (2.3.31)

if £(1) < £(p) or if £(T) = £(p) but T # p. We define a partial order 7 < p
if £(1) < £(p) and extend this to a total order. Then the matrix defined
in (2.3.29) is triangular. We complete the proof by showing the diagonal
elements are non-zero.

We use (2.3.30) to see it suffices to show

ch 2,[CP 2"] # 0. | (2.3.32)
We use the identity
(T(CP™ @®1*)®C = (2n+ 1)L+ (2n + 1)L* (2.3.33)
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to compute that
ch 9, (T(CP?™)) = 2(2n + 1)2*"/n!. B (2.3.34)

The Hirzebruch L-polynomial was defined using generating functions.
The generating functions were chosen so they would be particularly simple
on the classifying examples. We recall the definition. Let A € u(k) have
eigenvalues {/\j}f=1. Let z; = tAj/2m. Let

L(A) = € 3(U). (2.5.35)

i fanh(z;) h( i)

Let A € o have non-zero eigenvalues {+i);}_;. Let z; = —)\;/2. Let

L(A) = €3(0). (2.3.36)

] anh( i)
Let B € u(k) and let B, € 0(2k) be the underlying real matrix. Then

L(B) = L(B,). (2.3.37)
Lemma 2.3.5: L[CP (2p)] =1 Vp.

Proof: The Hirzebruch polynomial is a multiplicative class. Conse-
quently, it suffices to prove Lemma 2.3.5 in the special case that M =
CP 2", We must show

L[CP*"] =1. (2.3.38)

If V is a complex vector bundle, let V, be the underlying real vector

bundle. Then L (V) = L(V;). Since {T.(CP **)}, = T(CP *"),

L(T(CP ")) =L %(T(CP ")) = LY(T(CP*™) @ 1)
=L¢(L* @ 12"*!) = L(z)* ! (2.3.39)
=z2"*! [ tanh(z)?"t1.

We must show the coefficient of 2™ in this expression is 1; i.e.

Res ;—o tanh(z)™2""! = 1. (2.3.40)
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We compute:

T

tanh(z) = £, (2.3.41)
tanh(z) ™" = (22) 72+ O(e)) = z7'(1 4 O(2)),

so (2.3.40) holds for n = 0. Establishing (2.3.40) directly would be a
combinatorial nightmare for larger values of k, so we use instead a standard
trick from complex variables. If g(z) is any meromorphic function, then

Res ;=09'(z) = 0. (2.3.42)
We set g(z) = tanh(z)~*. Then
¢'(z) = —ktanh(z)"*~1(1 — tanh(z)2). (2.3.43)

Consequently,
Res ;=0 tanh(z) "¥~! = Res ;¢ tanh(z) " *+!. A (2.3.44)
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§3.1 Gauss-Bonnet theorem

We shall give an axiomatic characterization of the Euler integrand
and prove the Gauss-Bonnet theorem using heat equation methods. We
recall the definition of the Euler integrand. Let R;jx; be the components
of the curvature tensor of the Levi-Civita connection relative to a local
orthonormal frame for the tangent space; with our sign convention, the
scalar curvature 7 = R;jji. Let E,;, = 0if m is odd. If m = 2n is even

define E,(g9) € 37, ., by:
erg= (e A Aem e AL Aeim),
cm = {(—8m)"n!}~!, and (3.1.1)
Em = CmEI,JeI,JRi1i2j1j2°"Rim_1imjm_1jm°

For example:

E; = (47)7 171, and (3.1.2)
Ey = (32n%)7Y{7% — 4|p|* + |R|?}. (3.1.3)

We use H. Weyl’s theorem to see

3.2 =Span{r}, and

39, = Span {r%, %, B, Ar). (314
The scalar curvature 7 is non-zero and forms a basis for 39 , if m > 2;
the scalar invariants of (3.1.4) are linearly independent and form a basis
for 39 ,if m > 4. Clearly 7 = 0 if m = 1 since the metric is flat. If m =3,
the invariants of (3.1.4) are linearly dependent; there is a single additional
relation which is given by the Euler form:

(32027 {r? — 4]p[* + |R[?} = 0. (3.0.5)
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This reflects the fact that the Euler form is an unstable characteristic
class; E2n(G) = 0 if m < 2n since we must repeat an index in (3.1.1).
Similarly En,(G) = 0 if the metric is flat in one direction.

There is a natural restriction map

R A (3.1.6)
which is defined algebraically as follows. Let
deg r(9ij/a) = bik + 65k + (k) (3.1.7)

be the number of times the index k appears in the variable g;; Ja- Let

.. — ) Yij/a if deg m(gij/a) =0, ,
r{9iife) = { 0 if deg (gij/a) # 0. (3.1.8)

Since (g;j/a) does not involve the last index, r(g;j/q) € U5, _;. We extend
r to an algebra homomorphism from %7, to AJ _, which preserves the
grading defined by the order in the jets of the metric;

(AN ) CUY (3.1.9)

The map r is the dual of a natural extension map. Let G be a metric
on a manifold M of dimension m — 1. Let

i(G):=G+d6* on M := M x S'. (3.1.10)

Let 6y be the base point of the circle. If X are coordinates on M which
are normalized with respect to (G, %), then the coordinates

i(X):=(X,9) (3.1.11)

are normalized with respect to (G,zo x 6y). It is immediate from the
definition that:

r(P)(X,G)(z0) = P(i(X),i(G))(zo x 60). (3.1.12)

What we have done evaluating on a product manifold is to introduce the
relation which says the metric is flat in the last coordinate. This shows
restriction r is the dual of this natural extension i; consequently rP is
invariant if P is invariant; r defines an algebra homomorphism

r:J39 -39 _, (3.1.13)
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which restricts to linear maps
s A S (3.1.14)

We define:
Kun=N(r:3% . =30 _1.) (3.1.15)

Theorem 3.1.1:

(a) r:3% . = J5_1 . 18 surjective.
(b) The Euler invariant E,, € K m:
(¢) If n < m, then K7, , = {0}.

(d) K7, = Span {E,}.

Remark: This provides an axiomatic characterization of the Euler inte-
grand. The Euler form is an unstable characteristic class in contrast to
the Pontrjagin classes; this characterization captures this property.

Proof: We use a third description of r to prove (a). In a Weyl spanning
set, the indices are summed from 1 through m; the restriction is defined
by letting the indices range from 1 through m —1. Thus r(R;j;i) = Rijji is
its own restriction in a formal sense; of course r(R;jj;) = 0 if m = 2 since
all the jets of the metric vanish on a circle. If we take a Weyl spanning
set for an_l’n, we extend these elements to define invariant polynomials
in J7, , by extending the range of summation. This proves (a); (b) is
immediate if m is odd since E,, = 0. If m is even, we defined:

Em(9) = cmZ1,0€1,0Risizj140 - Rimn_simjom1m- (3.1.16)

Since er,;7 = 0 if an index is repeated in either I or in J, both I and J are
permutations of {1,...,m}. Thus in particular, some i, = m if e; ; # 0.
To define r, we took a product with the circle and hence R;jx; = 0 if the
index m appears. This proves (b).

We use orthogonal invariance to prove (c) and (d). Let

0#PekKy, ., =N 3% . =37 _1.) (3.1.17)
Let
A = giljl/oq-"giljl/a[ (3-1.18)

be a monomial of P. Since r(P) = 0, deg,,(4) # 0. Since P is invariant
under the action of the coordinate permutations, deg;(A) # 0 for all
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indices ¢. Since P is invariant if we change the sign of a coordinate function,

deg ;(A) is even. This shows
deg;(A)>2for1 <i<m. (3.1.19)
A total of 2£ + n indices appear in A. Thus
2m < Tici<cmdeg ;(A) =2+ n. (3.1.20)

On the other hand, we normalized the coordinate systems so |a,| > 2.
Thus
20 S Elsysela,,| S n. (3.1.21)

We use (3.1.20) and (3.1.21) to see:
2m <20+ n < 2n. (3.1.22)

Consequently, if n < m, then K7, ,, = {0}; this proves (c).
Since 0 # En, € K7, 1, to prove (d), we must show

m,m>
dim(K7, ) < 1. (3.1.23)

In the limiting case n = m, all the inequalities of the previous paragraph
must have been equalities. Thus any monomial A of P can be put in the
form:

A = Gisji fpray - Jicie [peae (3.1.24)

where 2¢ = m and where deg ;(4) = 2 for 1 <1 < m. We use Lemma 2.2.6
to construct a monomial A of P with

iv,Jy <v and p,,q, <L+ v. (3.1.25)

This shows i; = j; = 1. Since each index appears exactly twice in A,
the index 1 appears nowhere else in A. Thus 7, = j, = 2 and inductively
ty = J» = v. All these indices appear exactly twice so none of the indices
from 1 through £ appear in the {p,,¢,}. The same argument now shows
Py =¢qy =v + L so:

~

A= 911/¢+1,+1---92¢/mm (3.1.26)
is a monomial of P. We summarize. If 0 # P € K7, .., then 0 # ¢(A4, P).

m,m»
Since one linear functional separates polynomials in the kernel,

dim(K7, ) <1. W (3.1.27)
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Remark: It is absolutely crucial that we are dealing with a free polyno-
mial algebra at this stage so that ¢(Ay, P) is a well defined linear func-
tional; this argument would fail if we were dealing with the covariant
derivatives of the curvature tensor owing to the Bianchi identities.

We can now prove the Gauss-Bonnet theorem. We recall some nota-
tion. We use Lemma 2.2.2 to see a,(z,4,) € J7, .. Let

an(z,d +6) := Tp(=1)Pan(z,A,) € 35, ...

The index of the de Rham complex is the Euler-Poincaré characteristic
x(M). We use Theorem 1.3.1 to see: -

_fo if n #m,

J 3g@n(z,d + 8)|dvol | = { x(M) ifn=m, (3.1.28)
Theorem 3.1.2:
(a) an(z,d+ 6) = 0 if either m is odd or if n < m.
(b) am(z,d + 6) = E,, 1s the Euler integrand.
(¢) x(M) = [,,Em(G)(z)|dvol . (Gauss-Bonnet)
Proof: Locally, we can always choose an orientation for the tangent bun-
dle TM. Let * be the Hodge operator. Thus, % intertwines A, and A,,_,.
Since these two operators are locally isomorphic, their local invariants

agree so
an(z,Ap) = an(z,Am—p). (3.1.29)

Since the argument is local, (3.1.29) holds even if M does not admit a
global orientation. Consequently, we may compute:

an(z,d + 6) =L,(=1)au(z, A,)
=Zp(—1)fan(z, Am—p)
=(=1)"Z,(-1)"Pan(z, Am—p)
.—_(—l)man((B, d + 6)

(3.1.30)

This proves a,(z,d + §) = 0 for m odd. We therefore suppose m even for
the remainder of the proof. _
Let M = N x S?! have the product metric. Decompose

A(M) = A(N) @ df A A(N). (3.1.31)
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Let F = ext !(d6) + int '(df) € End (AM); if w = w; + df A wo, then:
F(w) = df Aw; + ws. (3.1.32)
Since the metric is flat in the S' direction, FA = AF. If we decompose
A(M) = A (M) ® A°Y(M) (3.1.33)

into the forms of even and odd degree, then F interchanges these two
factors. Thus an(z,Aey) = an(z,Ayq) and

an(z,d+6)=0 (3.1.34)

for such a product metric. This implies r(a,(-,d + §)) = 0. Consequently
a, = 0 for n < m which completes the proof of (a). Furthermore, there is
some universal constant é(m) so that

am(,d+6) = ém)En,. (3.1.35)
We use Lemma 2.3.2 to show ém) = 1 by computing:
2=x(8™)= [4nEm =2¢M). W (3.1.36)

Remark: This result was first established if m = 2 by McKean and
Singer. The general case was first proved by Patodi who used a compli-
cated cancellation argument very different from the argument we have just
given based on invariance theory. This gives a heat equation proof of the
Gauss-Bonnet theorem; we refer to Chern for a more geometrical proof.
There are many other proofs, of course.
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§3.2 Hirzebruch signature theorem

We begin with an axiomatic characterization of the Pontrjagin forms.
We adopt the notation of §2.1. Let 37 be the vector space of p form

m,n,p
valued polynomials which are homogeneous of order n in the jets of the

metric and which are defined in dimension m. If P € 37, , ,, decompose

P = E|I|=pPIde for Pre Ud = C[g,-j/a] with |a| > 2. (3.2.1)

The Pontrjagin forms are examples of such polynomials. Let R be the
curvature of the Levi-Civita connection on the tangent bundle TM;

p(R) := det(I + (27)"'R) = 1+ p1(R) + ... + P[m/4(R). (3.2.2)

Since R is homogeneous of order 2 in the jets of the metric and since R is
2-form valued, p, € 37, 4, 4,- For example:

p1 =(=87%)"'Tr(RAR) (32.3)
:(—32#2)_1R,-jk1szjik3k4ek1 Aekz A eks A eks, o

The following theorem provides an abstract characterization of the algebra
generated by the Pontrjagin forms.

Theorem 3.2.1:

(a’) jm,n,p = {0} fOT n< p'
(b) @537, ,p s generated by the Ponirjagin forms of the tangent bundle.

Proof: Let 0 # P = Z|I|=pPId:1:I € 3";’,;?"’1,. Let A be a monomial of some
P; where

A = giljl/al "-gi,,j,,/a,, (3.24)

We apply Lemma 2.2.6 to choose a monomial A, of some P; so that
v(Ay) = v, |Bi] = |ai|, and degi(A;) =0 for k > 2v. (3.2.5)
Since P is invariant under the action of hyperplane reflections,

deg,A; + deg, J is even (3.2.6)
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for all k. Consequently deg;(J) = 0 for k¥ > 2v so that
p<ow. (3.2.7)
Since Ia,-‘ > 2 and |B;| > 1, we may estimate:
2v < |ay| + ... + |a,| = n. (3.2.8)

Consequently 0 # P implies p < n which proves (a).

In the limiting case n = p, all the inequalities of the preceeding para-
graph must have been equalities. Thus p is even and P is a polynomial in
the 2-jets of the metric. We now shift our point of view completely. We
choose geodesic polar coordinates centered at z¢; this reduces the struc-
ture group from the group of germs of normalized diffeomorphisms to the
orthogonal group O (m). In such coordinate systems, the 2-jets of the met-
ric can be expressed in terms of the curvature tensor R;j;; and vica versa.
Consequently, we may regard P as a polynomial which is invariant under
the action of O (m) in the variables

{Rijri}. (3.2.9)

The group O (m) acts on the indices {1, j,k,!} from the tangent bundle.
The algebra in the variables (3.2.9) is no longer free; the Bianchi identities
enter.

Let A be a monomial of P where

A=R R (3.2.10)

11828304 -t iy, _3l4p 2140 —114, °

We apply H. Weyl’s Theorem to this setting. A spanning set for the space
of p form valued invariants can be formed by alternating p = 2v indices
and contracting the remaining indices in pairs. By the Bianchi identities,
we can not alternate more than 2 indices in any R;jr; variable without
getting zero. Thus a counting argument shows we must alternate exactly
two indices and contract exactly two indices in each R.... variable. We use
the Bianchi identities to see:

k k 1 k k
Ri1k1i2k26 ! /\ € = iRﬁizklkge ! /\ € 2 (3-2.11)

so we may always assume that the last two indices in R are alternated.

Let
Rij == 3Rijk ke N e (3.2.12)
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be the curavture 2-form of the Levi-Civita connection. Then
P = P(Rf‘j (3.2.13)

is a polynomial which is homogeneous of degree %p in these commuting
2-form valued variables.

The structure group is O (m). The analysis of §2.1 extends at once
to this setting to show that the ring of invariant form valued polynomials
is generated by the Pontrjagin forms of the tangent bundle. Contracting
tangential variables corresponds to taking products of traces of endomor-
phisms of TM and yields Pontrjagin forms. Il

We now discuss the signature complex. Let
(d+6): C*°AM — C*AM (3.2.14)

be exterior differentiation d plus its adjoint interior differentiation § as
discussed earlier. As discussed earlier, we decompose

AM=A*"MoA™M (3.2.15)

and let
(d+8)% : C®ATM — C®AFM. (3.2.16)

The adjoint of (d + 6)* is (d +6)~. Let
Sign (M) := index(d + 6)*. (3.2.17)
We decompose the Laplacian
A=ATpA~ (3.2.18)

where A¥ are operators of Laplace type on C°A* M. Then by the Hodge
decomposition theorem,

Sign (M) = dim 9N (AY) — dim9N(A7). (3.2.19)

Let
aé(z,g,0rn) = {a,(z,A%) — a,(z, A7)}dvol. (3.2.20)

By Theorem 1.3.1

s -0 if n # m,
Jaen= { Sign (M) if n=m. (3.2.21)
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The operator underlying operator (d + §) on A.M is real. If m = 2
mod 4, then 7 is pure imaginary. Complex conjugation defines an isomor-
phism

ATM ~A~M (3.2.22)

which intertwines At with A~. Consequently, if m = 2 mod 4,
Sign (M) = 0 and a}(z,g, orn) = 0. (3.2.23)

We therefore assume m = 4k henceforth.
Let x be the Hodge operator and let * be Clifford multiplication. We
identify A.M with Clif (M). Then:

T(er Ao Nep) =(V=1)™2(e1 % . ¥ e ¥ €1 % ... % €)
=(VoI)™A (1Pt D/2e A Aen  (3.2.24)
=(v/-1)™/?(—1)plp—1)/2 *p -
The spaces APM @ A™~PM are invariant under 7. If 2p # m, the map
wp — 2(wp £ Twp) (3.2.25)
defines an isomorphism
APM ~ (APM @ A™PM)* (3.2.26)

which intertwines A? and A% on C>((APM @ A™ P M)*). Consequently
these terms cancel off in the alternating sum and the only contribution is
made in the middle dimension m = 2p.

If m = 4k and p = 2k, then 7 = x by (3.2.24). We see that:

N(AZk) — N(AZk,+) ® N(AZk,—)
Sign (M) = dim 0N (AZ%) — dim N (A7) (3.2.27)
al = {an(z, A1) — a,(z, AZ®7)}dvol.

Example 3.2.1: Let M = S** be the sphere. Then H2¥(M;C) = 0 so
sign (§*%) = 0. (3.2.28)
Example 3.2.2: Let M = CP ?* be complex projective space. Let
z € HY(M;C)=C (3.2.29)
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be the generator discussed in Lemma 2.3.3. Then if 0 < v = 25 < 4k,
H*(M;C) =2z’ -C; (3.2.30)

HY(M; C) = 0 otherwise. We note z* generates H2¥(M;C) and (z*)? =
z2¥ gives the orientation of H*¥(M;C). Consequently

*(z¥) = «¥ and sign (CP %) = 1. (3.2.31)

The signature complex is multiplicative with respect to products. Let
M; be oriented even dimensional manifolds and let M = M; x M, have
the induced orientation. Then

ATM =(ATM; @ AT My) ® (A~ My @ A~ M),

A™M =(ATM; @ A™M,) & (A~ M; @ AT M,), (3.2.32)
N(AT) =(N(A3,) @ N(ATL,)) & (N(Any,) @ N(ARy,),
N(A3) =(N(A%,) © N(A3,)) & (N(Ay,) ®N(AL,)).

This shows that
Sign (M) = Sign (M;)Sign (M,). (3.2.33)

Example 3.2.3: Let p = (i1,...,4;) fori; > ... > 4; > 0and k = i1 +...+4;.
Let _ .
CP(20) =CP? x ... x CP %, (3.2.34)

Since sign (CP %) = 1,
Sign (CP (2p)) = 1. (3.2.35)

Theorem 3.2.2: Let m = 4k.

(a) a},:= (an(, A%) —an(-,A7))dvol € 39, .

(b) ap =0 for n < 4k.

(¢) a3y = L 1s the Hirzebruch polynomial.

(d) Sign(M) = [, L. (Hirzebruch signature formula)
Proof: The invariant af, is m form valued. If we reverse the orientation,
the roles of At and A~ are interchanged since 7(—orn) = —7(orn). Sim-

ilarly, dvol(—orn) = —dvol( orn). Thus a? is an invariantly defined m
form which does not depend on the orientation.
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We can express 7 functorially in terms of the metric tensor. It is
worth noting that if we replace the metric G by ¢2G for ¢ > 0, then the
spaces AT are not invariant. On A?, we have

7(c2G)(wp) = "™ 1(G)(wp). (3.2.36)

A2k,:l:

However 7 is unchanged on A%* so the spaces are unchanged by

rescaling. We note
AREQ) = ¢ TTATRE(G). (3.2.37)

We use Lemma 2.2.1 to see aj, is homogeneous of order n in the jets of
the metric.

We use Theorem 3.2.1 to prove (b) and to see that a3, € J (0 (m))
can be expressed in terms of Pontrjagin forms. We use (3.2.21) to see that

Jep (20)%m = sign(CP (2p)) = 1. (3.2.38)
By Lemma 2.3.5
Jep @l =1 (3.2.39)
Consequently
Scp (2p){afn —-L}=0 (3.2.40)

so that a3, = L is the Hirzebruch polynomial by Lemma 2.3.4. Il

Remark: This proof is similar to the proof given for the Gauss Bonnet
theorem. The heat equation provides a local formula for Sign (M). The
invariance theory of Chapter II identifies this local formula as a charac-
teristic class. We evaluate this local formula on a sufficient number of
classifying examples to determine the normalizing constants and to prove
a$, = L is the Hirzebruch polynomial.

Remark: It is possible to generalize the signature complex by taking coef-
ficients in an auxiliary coefficient bundle V. The analysis we have described
generalizes easily to that setting to show

Sign (M, V) = Lygq2e=m [ ,2°ch (V) A Ly(M). (3.2.41)
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§3.3 Milnor’s theorem

We use the eta invariant to give an analytic proof of Milnor’s theo-
rem that R™ admits a non-singular bilinear multiplication only for n =
1,2,4,8.

We begin by extending the 7 invariant discussed in Chapter I to a
map in K-theory. Let P € © (V) be an operator of Dirac type. Let p
be the leading symbol of P. Let W € %Y (M). Use a partition of unity
to construct an operator Pw of Dirac type on C°(V @ W) with leading
symbol p ® I'y. This means that if locally

P=%0i+a (3.3.1)
for 4*,a € C=(End (V)), then locally
Py =7 '@Iw+b (3.3.2)
for b € C°°(End(V @ W)).

Lemma 3.3.1: If m i3 even, then n(Py) € R/Z i3 independent of the
choices made. If Vi ~V,, then n(Py,) = n(Py,).

Proof: Let Py and Py be operators of Dirac type on C°(V ® W) with
the same leading symbol. Then

P(e) := ePy + (1 — €)Py (3.3.3)

is a smooth 1-parameter family of operators of Dirac type. The desired
result now follows from Theorem 1.2.3. ll

We study the Hurwitz zeta function. Let a be a complex parameter
with Re(a) > 0 henceforth. Let p(j) be a polynomial of degree v. Let

Cp(sa 2, 0,) = E]ZO ZJP(])(] + a)-—s; (334)
(p is holomorphic for Re(s) > v+ 1 and |z| < 1.

Lemma 3.3.2: (,(s,2,a) is holomorphic for s € C and z € C —[1,00).
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Proof: Let
C(S, Z, a) = szOz](j + a)—s. (335)

correspond to p = 1. If ¢, = p(™(—a)/n!, then:

p(j) = Zncn(j +a)"
Cp(s,2,a) = Encnzjzj(j + a)~(—m™) (3.3.6)
= Yncn ((s—n,z,a).

This shows it suffices to prove Lemma 3.3.2 in the special case p = 1.

Define:
f(z,a,t) =(1 - ze"t)—le'“t

8(s,z,a) = f;f(z,a,t)t’"ldt (3.3.7)
61(s,z,a) = [T f(z,a,t)t° " dt.

Let z € C — [1,00). 87 is holomophic since f decays exponentially at oo.
As f is holomorphic at ¢t = 0,

f(z,a,t) = EOSancj(z,a)tj/j! + O(t"t) (3.3.8)
8(s,z,a) = To<j<nci(z,a)(s + j)'l/j! + €n(s, 2, a). s

The c¢j(2,a) are holomorphic. €,(s,z,a) is holomorphic if Re(s) > —n.
We use the Mellin transform discussed in Chapter I:

((s,2,a) =T(8) ' Tjno [ 2l e et~ Dat
=T(s)7 [ f(z, 0, 1)t Vat (3.3.9)
= P(S)_l {6(3, z, a) + 61(3, z, a)}

The zeros of I'™! cancel the poles of (s + j)~! so ( is regular Vs € C. i

Let m = 2n and let RP™ = S™/Z, be real projective space. We
adopt the notation of Lemmas 1.2.4 and 1.2.5. Let v = 2" and let
{ei}o<i<m be v x v Clifford matrices. Let e(z) = Ijzje; and let

Q := X;ie;8/0z; on CP(R™H! x C7). (3.3.10)
Decompose Q = /—1¢(8)3/0r + r~1A. Let m = 2n and let

P:=V-Te()A + i(m - 1)L,. (3.3.11)
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P is a self-adjoint elliptic first order partial differential operator on S™;
if we replace § by —6, then @ changes sign so A(—60) = —A(6). Since
e(—0) = —e(0), P does not change sign under the antipodal map and
defines an operator of Dirac type over RP™. Let L = S™ x R/Z, where
we identify (s,A) = (—s,—A); we may also identify L with the classifying
line bundle

L ={(p,z) € RP™ x R™*! . z € p}. (3.3.12)

We complexify. Since L is flat, P also defines an operator
P, :C®w-L)— C>®v-L)on RP™.
Theorem 3.3.3: Let m = 2n. Then n(Py) —n(PL) =

Proof: Let f € H¥(m,j,v). If j is even, let € = 1 and if j is odd, let
e = L. Sections s to e over RP™ correspond to functions g on S™ so g(z) =
(=1)?g(—z). Consequently f € C®(v-V) and Py f = £1(2j + m — 1).
This provides the complete spectral resolution of P; and Py, so

n(s, P1) = n(s, Pr) = vZ;(=1) ("F 332/ + m - 1)} °.  (3.3.13)
Since ('"1:1 ;2) is a polynomial of degree m — 2,
(m(8,2) =vE; 27 (m+]—2) (3(2j +m—1))"° (3.3.14)
is a Hurwicz zeta function. Since (,, is holomorphic in (s, 2),
n(0, ) =n(0,PL) = lim (m(0,2).
Differentiate the equation (1 — 2)™! = £} 2% m — 2 times to see:

(m =2)I(1 = 2)'™™ = Tpk(k — 1)..(k — m + 3)z*~(m=2)
=T +m—-2)(j+m—3)..(j + 1)’
v(1—2)' "™ = vE ("3 = (w(0,2)
n(0, Py) — (0, Pr) = v2'™™,

(3.3.15)

Since M (Py) = ker(Pr) = {0},
7(Py) = 1(Pr) = 3n(0, P) — 17(0,P) = 2" " =2~ M (3.3.16)

We can now give a purely analytic proof of Milnor’s theorem:
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Theorem 3.3.4: If R* admits o non-singular multiplication, then

k€ {1,2,4,8}.

Remark: R, C, the quaternions H and the Cayley numbers provide
examples of non-singular multiplications on R, R?, R*, and R®.

Proof: Let [] be the greatest inte%er function. Suppose 3 a non-singular
bilinear multiplication f: RF x RF — R*. Let f(z,y) = g(z) - y define

g: {R¥ -0} - GL(k,R); (3.3.17)

g(—y) = —g(y). g defines an isomorphism between the bundles & - 1 and
k-L over RP*~1 Let n = [(k—1)/2] and m = 2n. Then'k-1 and k- L
are isomorphic over RP™ since RP™ = RP*~! or RP*~?% as k is odd or
even. Thus by Lemma 3.3.1,

k(n(P1) —n(Pr)) =0. (3.3.18)

Thus by Lemma 3.3.3, 27"k = 0 in R/Z so 2" divides k. We check cases.
Let £ #1, 2,4, 8.

k=3 n=1 2 divides 3 impossible
k=5,6 n=2 4 divides 5 impossible
k=17 n=3 8 divides 7 impossible.

If £ > 8, then 2" > k so this case is impossible as well. Il
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§3.4 Lefschetz fixed point formula

We conclude with a brief discussion of the Lefschetz fixed point for-
mulas for the de Rham complex. Let T': M — M be a smooth map. Let
T* denote the natural action by pullback on C*®A? M. Since

d,T* = T*d,, (3.4.1)
T* induces a natural action on the de Rham cohomology groups. Let
L(T) := Z,(-1)PTr (T* on HP(M)). (3.4.2)

Remark: £(T) € Z. If T; are homotopic maps, then £(T1) = L(T3); we
shall not need these facts in what follows.

Theorem 3.4.1 (Lefschetz): If T has no fized points, then L(T) = 0.

We postpone the proof for the moment to give some applications
of this formula; they are all fairly elementary but illustrate the sorts of
consequences which follow from this formula. Let

CP":=§t1/g1 (3.4.3)
denote complex projective space.

Corollary 3.4.2:
(a) Let T: CP™ — CP" for n even. Then T has a fized point.

(b) Let F — CP"™ — M be a finite cover. Then |F| =1 if n is even and
|F| <2 ifn is odd.

(c) If G is a compact Lie group of dimension m > 1, then x(G) = 0.
Proof: The de Rham cohomology of projective space takes the form:

k .
HY(cP™ ={% ‘R if v =2k for 0 < k <n, 3.4.4
( ) {0 if otherwise. ( )

It is a truncated polynomial ring on a two dimensional generator x. Let
T*(z) = Az for A € R. Since T* is a ring homomorphism, T*(z") =
T*(z)" and

LT)=14+A+..+2" (3.4.5)
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We suppose T is without fixed points so £L(T) = 0. Then XA # 1. We
multiply by (1 — A) to see

0=(1=NLT) = (1= NI +A 4t A) =1 A" (3.46)

If n is even, there are no real solutions to (3.4.5). Hence T must have a
fixed point if n is even. This proves (a).

Let F — CP"™ — M be a finite covering projection. Since CP" is
simply connected,

F = my(M) (3.4.7)

acts on CP " via deck transformations; if f € F and f # I, then f is fixed
point free. This is impossible for n even. If n is odd, let f*z = A(f)z.
Then

1- M) =1 (3.4.8)

Since A(f) # 1, M(f) = —1. The map f — A(f) gives a representation of
F to Z, which is faithful; (b) now follows.

Let G be a Lie group of dimension m > 1. Let g, € G with g, — I
and g, # I. Let

Gn(9) =9gn-9g (34.9)
be left translation in the group. This is fixed point free and hence

L(Gy) = 0. (3.4.10)

On the other hand, g, — I implies G}, — I* and hence C(Gn) — L(I);
(¢) now follows since

L) = x(M). R (3.4.11)

The operator =47 is trace class in L2(V); T* defines a bounded
operator on L?(V). Thus

Tr 12(T*e™07) (3.4.12)
is well defined for ¢ > 0.

Theorem 3.4.2: Let T : M — M be a smooth map.
(a) Tp(—=1)PTr 2(T*e™*20) = L(T).

(b) If T is fized point free, Tr p2(T*e~'2r) vanishes to infinte order as
t— 0t
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Proof: We extend Theorem 1.3.1 to the equivariant setting to prove (a).
Let E(\, Ap) be the eigenspaces of the Laplacian A, on C®APM. Let
m(A, p) be orthogonal projection from L%(APM) to E(X,A,). Then

p(=1)PTr 2(T*e™'2%) = Tre P8, (=1)PTr (v(\, p)T*).  (3.4.13)

The first assertion will then follow from the identity:

. T) if A=0,
ZpTr (m(A,p)T7) = {g( ) ;f N> g. (3.4.14)

We use the Hodge decomposition theorm to identify
| E(0,A,) = HP(M); (3.4.15)
it is an easy exercies to verify that
7(0,p)T* : E(0,A,) — E(0,4,) (3.4.16)

corresponds to the action of T* on HP(M) under this identification so the
first assertion of (3.4.14) now follows. To prove (b), we note that

dpyT* =T*d, and dpm(A,p) =7(A,p+1)d,. (3.4.17)
Consequently m(\, p) o T* defines a chain map on the chain complex
{E(X\ Ap),d}. (3.4.18)

We observed in the proof of Theorem 1.3.1 that this chain complex was
acyclic. Consequently

Ep(=1)PTr (w(A,p)o T*) = 0. (3.4.19)

The proof of (b) uses some analytic facts concerning the kernel of the
heat equation. Let K(t,z,y,A,) be the fundamental solution of the heat
equation;

(e7*2¢)(z) = [ K(t,2,y, Ap)d(y)dy. (3.4.20)
Consequently

(T*e™*42 ¢)(z) :=(dT(2))"$(Tx)

=fM(dT(w))*K(t>Tx,y,Ap)(ﬁ(y)dy. (3.4.21)
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From this it follows immediately that
Tr 12(T*e™*4?) = [, Tr (dT(z)*K (¢, Tz, 2, Ap))dz. (3.4.22)

The kernel of the heat equation K(t,z,y,A,) vanishes to infinite order
if we bound the distance between z and y away from zero; it is only on
the diagonal that there is an asymptotic series. We refer to Gilkey [8] for
details. Since T is fixed point free, Tz # z by hypothesis. [l

We can now complete the proof of Theorem 3.4.1. Let ¢ > 0 and let
T : M — M be fixed point free. Then by (a).

L(T) = Tp(—1)PTr 12(T*e4). (3.4.23)
On the other hand, by (b)
Tr 12(T*e™*47) < Ct (3.4.24)
since T is fixed point free. Thus
|£(T)| < Ct (3.4.25)
for any t € (0,1). We take the limit as trightarrow0 to see £(¢) = 0.

If T is fixed point free, £L(T) = 0. More generally, Theorem 3.4.2
shows that £(T') is determined only by the behavior of T near the fixed
point set. The case of isolated fixed points is particularly simple. We refer
to Gilkey [8] for a heat equation proof of the following result as well as
other results related to the Lefschetz fixed point formulas.

Theorem 3.4.3 (Lefschetz): Let T : M — M be a smooth map with
a finite number of fized points z;. Assume as a non-degeneracy condition
that

det(I — dT(z;)) #0

for all . Then L(T) = L;sign (det(I — dT(z;)).
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