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PREFACE

The topic of these notes is g review of the sort of results that one
can obtain with the relatively elementary methods of nonlinear topo-
logical analysis. Although some of the results can be improved by vari-
ational methods, many are at the frontier of mathematical knowledge
at present. I hope that collecting this set in one place has the effect
of inspiring students of degree theory to work on concrete problems in
nonlinear partial differential equations.

I wish to thank all those who made the seminars at GARC possible.
In particular, I would like to thank professors Jongsik Kim, Dohan Kim,
Sung Ki Kim, and Q-Heung Choi for their separate roles in the seminar.
Dongwoo Sheen’s perceptive comments during the seminar have added
to this presentation.
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Degree theory and the
semilinear Dirichlet problem



2 PATRICK J.MCKENNA
I.1 Introduction

The purpose of this series of lectures is to explain recent progress on a
classical problem of nonlinear mathematics, and to show how this ma-

terial leads to new insights into applied mathematics and engineering.

We shall confine ourselves primarily to the use of degree theory,
although variational methods also play an important role in the study
of nonlinear boundary value problems.

The first result we know of is the result of Picard on the nonlinear

boundary value problem

v+ f(z,u) = 0 in (0,1),
w(0) = u(1) = o. (L1)

Picard rewrite this equation as a nonlinear integral equation

u(e) = [ o(z,9)f(s, u(s))ds (12)

with the usual Green function, and was able to show that the iterative

scheme
1
ui(z) = [ g(a,5)f(s,u"(s))ds
0
converges to a solution of ( I.1) under the additional assumption that
0
% (z,s)
This is now an easy exercise for a beginning analysis class since one
merely shows that | fol g(z,8)ds| < % and therefore the right hand side
of ( 1.2) defines a contraction on C(0,1).
It is a little-known fact that it was this result which led Picard to

< 8 for all z,s.

his celebrated method of successive approximations, a method which

most people now associate with the initial value problem.
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It is élso typical of the history of this problem that it should lead
to new interesting methods with wide spread application. Indeed, the
contraction mapping theorem can fairly be said to have its roots in this
first result.

It is clear that some limitation on the nonlinearity f is required since
in the case f(z,u) = u — sin7z, the equation ( 1.1) has no solution.

The correct limitation was eventually realized for the more general

corresponding partial differential equation

Au+ f(u) = h(z) in (L3)
u = 0 on 00

with § a bounded (nice) region in R™, and f a continuously differen-

tiable function. We shall not state Hammerstein’s Theorems in their

most general form but shall content ourselves with a version that fits

the context of these notes.

I.2 Some non-resonance results

We begin with a uniqueness theorem, for the partial differential equa-

tion
Au+ f(u) = h(z) in 0,
u = 0 on Of). (I.4)

THEOREM 1.1 (HAMMERSTEIN’S THEOREM) If there exist real num-
bers p and € with > 0,6 > 0, and —p + € < f'(s) < Ay — € for all s,
then equation ( 1.4) has a unique solution for all h € L2(f).

Proof. 'The proof is by now a fairly standard contraction mapping

argument. We let v = (A, —)/2, and g(u) = f(u) — yu and we rewrite
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equation ( 1.4) as
— Au—qu= f(u) —yu—h(z) = N(u). (1.5)

where N : L*(Q) — L?*(f) is a nonlinear map taking the function

u(z) into f(u(z)) — yu(z) — h(z). We note that

INW) = N©)l@ = [ 1) = f0) = y(u = o)f
= [19'6(@)Plu P

be the Intermediate Value Theorem.

- Since —u+e< f'(u) < M\ — €, we have

- A
—l——ﬁ+e<g'(u)<7l+

E_
2 9 €.

2
Representing the linear unbounded operator (—A — 1) as a ma-
trix with respect to the orthonormal basis {¢;} on L*(Q2), we get the

unbounded matrix

e 0 0
0 d-—d4z 0
0 0 0

and of course (—A — 4I)™" is obtained by inverting the diagonal ele-
ments of the matrix. Since the operator norm of a diagonal matrix is
given by the supremum of the absolute value of the diagonal entries, it

follows that .
\ _
S~ = [2L B

Now, if we rewrite equation (1.5) as

u=(=A—vI)""(g(u) — h(z)),
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we can observe that the right hand side
T(u)=(-A =97 (g(u) - h(z)) (L6)
satisfies
IT(w) = T@)Il = I(=A = 21) 7 (g(u) - g(v))]|

and thus
S VERNA RS
T -1 < (3+4) (F+E-) -

and thus T is a contraction on L?(Q). Therefore it has a unique fixed

point in L?(2) and the equivalent equation ( I.4) has a unique solution
in L*(Q). .

We remark that in its way this theorem is very precise. If the
condition f'(u) < A, is relaxed, uniqueness may fail. Let F(u) = A\ju
on (—=1,41), f(u) = A, v > 1 and f(u) = —A;, v < —1 and let
h(z) = 0. Then u = e¢; are solutions for all € < 1/(sup |4]).

It is also worth remembering that at least in certain circumstances,

if f'(£o00) = A; then existence may fail. Consider the case were
f(u) = Mu + arctan u.
Then equation ( 1.4) becomes
A(u) + Mu — arctanu = h(z) (I.7)
and if we multiply across by ¢, and integrate, we obtain

(Au + Mu, ¢y) — / (arctan u)g; = / h(z) .
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The first inner product vanishes since A¢; + A\1¢y = 0 and the
second integral can be estimated from above by 72"- [ ¢1 and below by
—5— [ ¢1. Thus, in this case, we obtain for ( L.7) to have a solution, a
necessary condition is that —% [ ¢1 < [h¢1 < % [ ¢1 and therefore,
solutions may fail to exist. We now turn to the situation where exis-

tence remains although uniqueness fails.

THEOREM 1.2 Suppose sgglw ﬂsﬂ = B, and slil_noo ﬂsﬂ = A, where
—00 < A,B < ). Then ( 14) has at least one solution.

Proof. Again, write ( 1.4) as
u= (=A=' (f(w) - yu = h(2)).

Let f(u) = But — Au™ + fi(u) + f2(u) where |fi(u)| < € u| (we choose
¢ > 0 later) and there exists ¢, > 0 so that | f2(u)| < ¢4 for all u. Choose
g > 0 so that —u < A, B < A; and choose 7y = (A + ¢)/2 as before.

Let go(u) = But — Au™ — yu and, as before we write ( 1.4) as

u=(—A—7I)"(go(u) + fi(u) + fo(u) — h(z)).
Again, as in the previous theorem, observe that

I(=A =7 go(w)ll < erlull for e <1,

=82 Al < (252 el

and

(a0 sl < () a=ea
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Letting ¢ = é%ﬂﬁ, and ¢z = ||(—=A — 4I)"'h(z)||, we obtain that
I(=A =D (f(w) = yu + h(@)|| < (e1 + )lull + ¢z + ¢,
and we can choose € so that ¢; + € < 1. Now choose R so large that
(t+€R+c;+cs< R:
Then the map
Tu = (=A = 41)7"(f(u) — yu — h(z))
satisfies
ITu <R if |lul|=R
and thus maps the ball of radius R into itself. Since T is compact we

obtain by Schauder fixed point theorem that it must have a fixed point

and equivalently ( I.4) must have at least one solution. .

The reader may ask if the requirement that A and B be finite is
essential. There are answers. If one considers only ( 1.4), then we can
use the maximum principle if & is bounded to obtain a priori pointwise
bounds, then solve a modified problem which satisfies the same a priori
bounds. However, if we consider more general self-adjoint operators
for which there is no maximum principle, then one must use an L'(Q)
argument to prove the existence of weak solutions, for which regularity
is not known [McK-R].

- Our first two theorems said that the nonlinearity f (actually its
derivative) remained below the first eigenvalue, either always, as in
Theorem 1.1 or at infinity as in Theorem 1.2. The following two the-

orems, due to Dolph, provide a natural extension.
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THEOREM 1.3  Suppose there exists € > 0 so that A\, + € < f'(u) <

Any1— € for all u. Then equation ( 1.4) has exactly one solution for all

h € L*(Q).
Proof. Lety = ’\"—'{"Qﬁ‘il— As before, write ( 1.4) as

u=(=A=4I)7(f(u) - yu ~ h(z))

and let g(u) = f(u) — yu. Observe that |¢g(u)| < &l'—l;_—'\" — € and,

by the same reasoning as before, that

2

-1 _ &
(—A—7I) - /\n+1 —An

We can conclude, as before, that the nonlinear map on L?(Q) given by
Tu = (-4 - 11) ™ (g(w) - h(z))

must be a contraction and thus has a unique fixed point. Therefore the

equivalent equation ( 1.4) must have a unique solution. "

THEOREM 1.4 Let lim ﬂsﬁ =B, lim ﬂ;‘:} =Aand )\, < A,B<

s—+00 s—+00
Ant1- Then equation ( 1.4) has at least one solution.

Proof. This is left as an exercise for the reader. "

On a separate problem, there have been some papers dealing with
solving ( 1.4) with the hypotheses of Theorem 1.1 under the assumption
that h(z) € L*(Q). Can one do the same thing for Theorem 1.3?

The above results all share a curious feature; they all show the exis-

tence and (sometimes) uniqueness by using the fact that the equations
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can be written as a perturbation of a linear equation. The equation

may be nonlinear but it is close to the linear equation

Au+yu = h(z) in Q
u 0 on 00

and this is what guarantees solutions. In the next section, we begin the

study of what happens when we can no longer say the solution is close

to an invertible linear problem.

I.3 The piecewise linear nonlinearity cros-
ses the first eigenvalue

In this section, we begin our study of the case where the interval
(f'(=00), f'(+00)) contains at least one eigenvalue. To get some feeling
for this situation we study a deceptively simple equation

Au+but —au™ = s¢ in Q,
u =0 on 0.

We have already seen that if a,b < A or if A, < a,b < Ap41, then (1.8)

(L8)

has exactly one solution for all real s, and indeed we can write it down.
For example if a,b < Ay, we can verify that if s > 0, then u = b—sﬁr
— A1

is a solution, whereas if s < 0, then u = E%é_l)\_l is.
Now, let us see what happens if a < A\; < b.

THEOREM 1.5 Ifa < )y <b< )y, then equation ( 1.8) has

exactly 2 solutions if  s$>0,
ezactly 1 solution  if s=0,
no solution if s<0.
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Proof. We consider the three cases separately.
a) s <0.
Write ( 1.8) as

(A + A])u + (b - /\1)u+ - (a - /\1)u— = S¢1.

Multiply across by ¢;(z) and integrate over Q. Note that ((A+X1)u, ¢1)=
0. We obtain that

/ (b= A)u* — (a = A)u" )y = s / # =s. (19)

But (b—Ay)ut —(a—A1)u” is greater than or equal to zero and strictly
greater than zero if u is. Also, ¢; > 0 in Q. Therefore the left hand
side of ( 1.9) is always greater than or equal to zero, and there are no
solutions of ( 1.8) if s < 0. Also, if s = 0, then the only possibility is
that u = 0.

b) s > 0.

Let P be orthogonal projection in L?(£2) onto the subspace spanned
by ¢1. Thus Pu = (Jouéi)¢ for all v € L*(Q). Let u = v + w,
v = Pu, w = (I — P)u. Since the operator P commutes with A, we
have that equation 1.5 is equivalent to the pair of equations

(a) Aw+ (I —P)bv+w)t —a(v+w)”) = 0,

(b) Av + P(b(v + w)* — a(v+w)") = séy. (1.10)

First observe that for fixed v, the equation ( 1.10.a) has a unique
solution w(v). Write g,(w) = b(v + w)* — a(v + w)~ and observe that
g’ < b. Now suppose we had two solutions wy,w; for some fixed v.
Then

A(w; — ws) + (I — P)(go(w1) — gu(w2)) = 0. (I.11)
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Taking the inner product of ( I.11) with w; — w; we obtain that

_/ [V (w; - “’2)|2 + /(gu(wl) — gu(w2)) (w1 — wz) =0.

Now, for any w € L?, w = Yan¢, and fw? = Y a2 [|Vé,|? =
5 Ana. I wlgy, then [|Vw]? = 3 A > Ag 32 a2 = Ay [ |wl2.
n=1 n=2 n=2

Thus

/[V(w1 —wy)[* > Asgflwy — wa||? and |g,(w1) — go(w2)|? < blwy — wyl.
Therefore
Aaf|wy —wy* < /lV(wl — wy)|?
= [ 1g.(w1) = go(ws)llwr — wa] < By — s

But b < Ay, and this implies that w; = w,. Thus we have proved that
every solution of ( 1.10.a) is unique. Now note that w = 0 is a solution
of ( 1.10.a) for any v € PH, v > 0 or v < 0 everywhere in Q. Thus if
v>0, bvt —av™ = bv and if v < 0, bvt —av™ = av. In either case we
have (I — P)(bv* — av™) = 0 and thus w = 0 satisfies

A0+ (I — P)(bv* —av™) = 0.
Thus equation ( 1.8) is reduced to
Av + P(bv* —av”) = s¢y

where v = ¢¢y, c € R.

Case 1. ¢ > 0. In this case, we have

—Ac+bec=s, c=
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Case 2. ¢ < 0. In this case, we have

S

—Aic+ac=s, c=——0,
a—)\l

- and therefore ( 1.8) has exactly two solutions. This concludes the proof

of Theorem 1.5. .

Theorem 1.5 raises many more questions then it answers. One is,
what happens if the equation is not piecewise linear but only satisfies
A < )\ < B, where A = 3_lir_n°o ﬂsﬂ, B = slian i%l

A second natural question is, what exactly is the role of ;. The
ezistence of two solutions to ( 1.8) for s > 0 only depended on a < A; <
b. On the other hand, the statement that the obvious solutions were
the only ones possible depended heavily on the fact that b < A,.

The first of these questions is the one that will occupy us for the

remainder of this chapter.

I.4 The nonlinearity crosses the first eigen-
value

Frequently in this area, it is the case that one can easily prove something
for the piecewise linear case, whereas obtaining the same result for
the nonlinear equation requires more detail. The following results are

a good example of this. Throughout this section, we will study the
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equation

Au+ f(u)

u

td + h(z) in Q

0 on 3(’2,‘ (1.12)

assuming that k € C*(2) and 0N is at least C?. We shall write A =
lim &SSZ, and B = lim ﬂsﬁ) and we shall be considering the case

§— —00 §—+400

where A < A\ < B.
We shall use the techniques of upper and lower solutions. We shall

say that an upper solution U to the equation
Au+ F(z,u)=0 in Q, u=0 on 00

satisfies

AT+ F(z,7) <0 in Q, v >0 on dQ

and a lower solution u satisfies
Au+ F(z,u) >0 in 9, u <0 on dN.

We write L = —A, with Dirichlet boundary conditions.

LEMMA 1.1  For fized s, we can always find a lower solution to equa-
tion (1.12) if A< A\ < B.

Proof. Choose € = &—2_—’4 and choose M € R so that f = fo + fi
where fo > (A+ €)ufor all u < 0and f; > M for u < 0 (This is

possible since lim f SS = A). Let w be the solution of

§——00

Aw=-M+h inQ, w=0 on 0N



14 PATRICK J.MCKENNA

and let u = w + c¢y, where ¢ will be chosen later, in such a way that

u < 0. Then

But S0~ ot~ h@) 2 (M) = (272 ot = a1 >0

if ¢ is chosen sufficiently large and negative. This proves the lemma. =

One important step in the proof was the choice of ¢ so that c¢: +w
could be made negative. This uses heavily the fact that Q is C?. We

are not sure if this would work on a square, for example.

LEMMA 1.2 For given h(z), there exzists so such that if s > so, then

equation ( 1.12) has an upper solution.
| Proof. Choose w so that
Aw = h(z) — f(0) in (, w=0 on Q.
Then if s is so large that s¢; > f(w) — f(0), we have
Aw + f(w) — f(0) — s¢1 — h(z) + f(0) <0

so we can take 7 = w. n

Lemma L1 and 1.2 combined show that equation ( 1.12) has both

an upper and lower solution for large s.

LEMMA 1.3  There exists a real number S(h) so that if s < S(h),

equation ( 1.12) has no solution.
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Proof.  Let so = min(f(z) — Az). This minimum exists since

A < A1 < B. Now write equation ( 1.12) as
(A4 A)u+ f(u) — Mz = séy + h(z).

Multiply by ¢, and integrate. We obtain

30/¢1</(f )\IU¢1—8

Thus if s < s f #1, equation ( 1.12) has no solution. =

LEMMA 1.4 For fized s (or for s in a bounded interval) there is an a
priori bound in C***(Q) on solution of ( 1.12).

Proof. We prove that there exists R(p) such that if h € C*(Q) and
sup |h| < g, then ||lu||i4a < R(g), where ||u|| denotes the C'**~ norm

of u. Suppose not! Then there exists a sequence u,, h, sup |h,| <

&, |un]] = oo so that
Lun + f(un) = s¢1 + ha.

Let w, = ﬂ%ﬂﬂ Then w, are bounded in C'**, and there exists a
n

subsequence (still called wn) such that w, — w strongly in C*, and

hy
L (o) = A2t 50

Lw, +
[[un]

™ (113)

It is easy to see that
1

l[en |

and thus by virtue of ( 1.13), w, — w in C?** and

Aw + Bwt — Aw~ = 0 in Q,
w = 0 on Of).

F(|lun]|w) — Bw* — Aw™ in C*()
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By Theorem L5, this implies that w = 0. But this contradicts the
fact that ||w,|| = 1 and w, — w in C'**(Q) since we already know

w, — w in C?***(9). .

We now prove an abstract theorem about upper and lower solutions

and Leray-Schauder degree theory.

LEMMA 1.5 Let v,w satisfy v,w € C***(Q)
(1) Lv > F(z,v),
(i) Lw< F(z,w),
(i) v<w in4, v=w=0 on 0.

Then v < w in §, and in the Banach space
E ={uec C"*(Q) | ulsq = 0}
there ezists R > 0 such that the Leray-Schauder degree
deg(u — L™'F(z,u),intK,0) =1

where K = {u € E | v(z) < u(z) < w(z),||ul| < R}‘.

Proof. Let
~ Fla,u(@)), if u(z) > (),
F(z,u) = F(z,u(z)), ifv(z) <u(z) < w(z),
F(z,v(z)), if u(z) < v(z).

Let u— L™ F(z,u) = 0. Suppose u(z) > w(z). Let zo be the maximum

of u — w. Then

0 = Au(zo) + F(z,u(z0)) = A(u — w)(2o) + Aw + F(z0,w(x0)).
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But A(u—w)(zo) < 0 and Aw+ F(zo,w(z0)) < 0 which is a contradic-
tion. It is then an easy consequence of the strong maximum principle
that

Oov Ou Ow
on " 9n " on

This is necessary to show that the set K has interior.

v(z) < u(r) <w(r) inQ, on 09.

Now, since the operator u — L‘lf‘(x,u) is absolutely bounded,

we can choose () so that it maps Bp into itself, and thus
d(u — L7'F(z,u), B,0) = 1.

However by the maximum principle, if uL‘lﬁ'(a:,u), then v € int K.
This implies that deg(u — L™'F(z,u), BR\K,0) = 0, and finally this
implies that deg(u — L~'F,int K,0) = 1. Since F(z,u) = F(z,u) on

K, the degrees will be the same on K, and the lemma follows. "

LEMMA 1.6  If uy is a solution of equation ( 1.12) for t = t,, then u,
is an upper solution of ( 1.12) fort > t;.

Proof.
Auy + f(u1) —t¢r — h(z) = (t1 — t)$1 < 0
be the strong positivity of ¢;. "
We now have a local result on the degree (roughly speaking) on a

region between an upper and a lower solution. Our next task in study-

ing (I.12) is to calculate the degree on a sufficiently big ball.
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LEMMA 1.7 Given anyto, there exists Ro(to) such that R > Ro, t <o
implies ‘

deg(u — L™Y(h + t¢, — f(u)), Br,0) = 0.
Proof. The proof uses lemmas 1.3 and 1.4. Consider the homotopy
G(t,u) =u— L7 (k1 + tdy — f(u)). (I.14)

Choose Ro so large that ( 1.14) has no zero in Bg, for t = —T' (we
know that this can be done by Lemma 1.3) and so large that ( 1.14)
has no zeros on 0Bpg, for —T < t < to (which can be done by the a
priori bound in Lemma 1.4). Since deg(G(—T,u), Br,,0) = 0 as we

know there are no zeros of G(—T,u), and by homotopy,
deg(G(—Ta u)’ BRO, 0) = deg(G(T7 U), BRo ’ 0)

for all =T <t < tg, the lemma follows. =

 We have now assembled the major ingredients of the main theorem

of this section.

THEOREM 1.6 If lim ﬁsfl =A, lim f(s)=B, and —o0o < A<
s s—400

— —00

M < B < oo, then there exists to(h) such that the equation

Au+ f(u) = tgr+h in :

u = 0 on Of2 (1.12)

has
no solutions  if t <1,

at least one solution i =1,
at least two solutions  if > to.
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Proof. The proof is a series of observations of the preceding lem-
mas. If ¢ is sufficiently large and positive, we can find upper and lower
solutions and hence a region K where the degree is +1. Lemma 1.6
shows that the set of ¢ for which we can find upper solutions is an un-
bounded interval ¢ > #;,. Lemma 1.1 shows that this interval is not
the whole real line since we can find ¢ large and negative for which no
solution (and therefore no upper solution) exists. Thus we can always
find to(h) such that if ¢t > to(h) upper solutions exist, and if ¢ < to(h)
then upper solutions do not exist.

Therefore for any ¢t > ty, we find a region K which the degree of
u— L7'F(z,u) is +1. We then find a ball containing K on which the
degree is zero by Lemma 1.6. We know there are no solutions on 9K
and thus the degree on Br\K is —1. Thus for ¢ > to, we can conclude
that there are always at least two solutions.

It is now an easy argument in compactness to show there is one

solution at t = t3. Choose t, — ty, u,, solutions of
Aup + f(un) =thdr +h in Q, u=0 on 9N

and observe by the a priori bounds that there exists a subsequence
(still called u,) which converge to u. One can then conclude that u is a

solution of ( I.12) with ¢ = t,. This concludes the proof of the theorem.m

We shall have some historical remarks on this theorem at the end
of the chapter. But we should remark that some of the hypotheses can
be weakened. In [K-W], it was observed that A = —oo is permitted,
and in [A-H],[D], it was observed that A = +o0o is permitted with

certain restrictions on the growth rate of f at plus infinity. In [A-H],
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the restriction was that f(s) ~ S (¥5) at plus infinity. The latest, and
presumably optimal result from [Sol] and using variational methods
is that f(s) can have growth rate almost S (¥%). This is a common

restriction when using variational methods.

I.5 At most two solutions - the nonlinear
case

In the last section, we saw that A < A; < B was sufficient to produce
at least two solutions. It is natural to ask if in any circumstances this
is exact, since we have seen that it can be exact in the piecewise linear
case. In order to obtain an easy result of this type, we recall some
results on eigenvalues comparison theorems. In Chapter III, we return

to this subject with some more advanced techniques.

Consider the eigenvalue problem

Au+p(z)u+yu = 0 in
u = 0 on 01,

where p is Holder continuous, 7 is a real parameter. By uniform elliptic-
ity, there are eigenvalues 7; < 75 < --+ < v, — +00. By smoothness
of p, 0 the associated eigenfunctions belong to C***({2). By the strong

maximum principle, «; is simple and the associated eigenfunction never

vanishes.
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If we consider a second eigenvalues problem
Au+p(z)u+4(u)=0 inQ, u=0 ondQ,

then § < p = 7 < Fi.

Now consider the equation
Au+ F(z,u) =0 in Q, u=0 on 0N. (I.15)

LEMMA 1.8 If%% < Az on (—00,00) X §, then any two solutions of
(I.12) must satisfy w(z) — v(z) # 0 in Q.

Proof. Let z = v — w. Then z satisfies

Az +q(z)z=0
where ¢(z) = [y —aa%(x,w + s(v(z) — w(z)))dz. There exists ¢ so that

g < ¢ < A;. Let 4,~ denote the eigenvalues of

(a) Au+q(z)u+yu = 0,
0.

(b) Au+cu+yu = (L13)

The eigenvalues of (b) are (A, — ¢) so 72 > 0. But 5, > ~,, which
implies that 4; = 0, since the fact that z is a solution of (b) with v = 0
means that y; = 0 for some i. If z is the first eigenfunction, then z

must be non-vanishing, which proves the lemma. .

LemMa 19 If 9E(z,u) < ), for all (a,u) € (—00,00) x Q, and if
%5 is strictly increasing (or decreasing) in u, then equation (1.12) has

at most two solutions.
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Proof.  Suppose there exists at least three solutions, uy,us,us.
Then by the previous lemma these solutions must be ordered so we
assume that uy(z) < uz(z) < uz(z) in Q. Nowlet y = uz —uy, 2 =
uy — uy. Then just as before, y and z must satisfy.

(a) Ay+Q(z)y=0 Q = fo ZE(s,u1 + s(us — w1))ds,
(b) Az+q(z)z=0 q= ol %u (s,u1 + s(uz — wy))ds.
(L14)

Now the assumption that % is strictly increasing, together with the
ordering assumption on the u;’s says that ¢(z) < Q(z).
Multiplying (a) by y, (b) by z and integrating, using the boundary

conditions, we obtain
0—/(yAz—sz /yz(q Q) >0

which is a contradiction. Thus there are at most two solutions to equa-

tion (1.12). .

Thus we have the following theorem, by combining Lemma 1.8 with

Theorem 1.6.

THEOREM 1.7 If f/(—o0) = A, f'(+00) = B, where A< A\ < B < Ay
and f"(s) > 0, then there exists to(h) such that if t > to(h) then the

equation
Au+ f(u)=té+h in, u=0 on N
has exactly two solutions.

We remark that it is possible to show that if t = ¢o(h) then the equa-
tion has exactly one solution. One way is to use a global Lyapunov-

Schmidt argument as in section 2, and show that the function defined
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on span {¢;} must have a unique minimum.

In later chapters we shall return to the question of finding exact
numbers of solutions. Here we pose a question : Is there any general-
ization of Lemma [.7 and 1.87 For example, is it possible that if f” > 0
and % < A3 then there are at most four solutions? Or possibly if
f” > 0 and %5 < )y, then there are at most three solutions? There

are few results in this area.

1.6 More than two solutions

In the last section, we considered the equation
Au+ f(u) =td1 + h(z) in Q, u=0 ondQ (I.12)

under the assumption that f'(—oo0) = a < Ay < b = f'(+00) < Ay,
and f"(s) > 0 for all s. We showed that in this case, for large ¢, the
equation always had exactly two solutions. We also know that if
a < Ay < b then there are always at least two solutions. In this section,
we use elementary degree theoretic methods to show that if & > ), then
we may expect more solutions at least for ¢ large. The idea of this main
result of this section is conceptually simple, as can be seen best in the

case of the piecewise linear equation

Au+but —au™ =té; on Q, u=0 on 0N.
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Here we can exhibit two solutions

v = (bjAl) ¢1 and =(a—fxl> é1-

Each of these solutions ought have a local Leray-Schauder degree asso-

ciated with them. How does one calculate the Leray-Schauder degree

of the solution to the linear equation
Aug + buy = ¢, 7
One simply writes it as
ug — (=A) H(bug — ¢1) =0

and counts the number of negative eigenvalues of I—(—A)~'bI which, if
Ay < b < Az is two, all other eigenvalues {1 - )%} being positive. Thus,
roughly, we ought to say that for any finite dimensional approximation,
the sign of the determinant ought to be positive and thus the local
degree ought to be +1. A similar line of reasoning gives that the local
degree of

Auy + auy = ¢y

should be +1 since all eigenvalues will be positive. Now, if there is any
justice, since the solutions of the piecewise linear problems are really
solutions of the linear problem, we should conclude that the degree of
the nonlinear map ought to be the same as the “linearized” problem and
thus we ought to have two small non-intersecting balls with degree +1.
Since the degree on an arbitrarily large ball is 0, by excision we ought
to have that the degree on the big ball minus the two small balls is —2.
This should guarantee the existence of at least three, and generically

four solutions.
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The remainder of this section is an effort to make this line of reason-
ing precise. The difficulties are two-fold : First we must deal with the
non-linear and not piecewise-linear equation and it is not clear what
should replace u; and uz. Second, linearizing things is not that easy if
we do it in L?(). This section shows one way round this difficulty in
L*(Q). In Chapter III, we show another way to attack it.

Our next theorem is that there exist solutions of the semilinear
problem close to the u; and u; of the piecewise linear problem. As
usual, A; are the eigenvalues of the Laplacian with Dirichlet boundary
conditions, each repeated as often as its multiplicity. Obviously, we can

rewrite
Au+ f(u) =td; + h(z) as u — (—A) " (f(u) — 8¢, — h(z)) = 0.

THEOREM 1.8  Let f be Lipschitzian with Lipschitz constant L. Let
li{l_n i%ﬂ = b, where A\, < b < A\41. Then there exists € > 0, sg > 0

such that the Leray-Schauder degree
deg(u — (—A)7'(f(u) — s¢1 — h), B,(56),0) = (-1)",

where 6 = (A + b)~1¢y = b_—ﬁﬁ

Proof. The proof depends on an elementary equicontinuity lemma.

LEMMA 1.10 Let K be a compact set in L*(Q0). Let ¢ > 0 a.e. Then
there exists a modulus of continuity § : R — R depending only on K
and ¢ such that

ne %)*H <8(n) forallp € K.
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Proof. For any ¢ € K, let ¢, = |[¢| — % Since 0 < ¥, < 9, and
since ¥,(z) — 0 as n — 0 a.e., it follows that ||¢),|| — 0 for all
¥ € K. We shall show that given € > 0, there exists o > 0 such that
if % € K, then ||thy|| < 2¢ for all n € [0,]. Choose {;, i =1,---,N}
as an e-net for K. Choose a so that ||(¥i)e]| < € for i = 1,..., N.
Then for any 3 € K, there exists 1k, 6, ||6]| < € such that ¢ = g + 6.
Since (a + b)t < a* + b+, we have ||tba|| < (¥K)a + |6] and therefore
lnll < |I¥all + ||6]] < 2¢. This concludes the proof of the lemma. =

Proof of Theorem
Let R = (A +b)™', and let g(u) = f(u) — bu. Then we can rewrite
(L9), after multiplying across by regrouping and R, as

u = t0 + Rh + Rg(u) = Su.

Since f was Lipschitz, we can choose A > 0 so that |g(u) — g(v)| <
Alu—v|. By earlier calculations on the norms of diagonal operators, we
can see that if 8 = min(b— A, A1 — b), then the operator norm of R,
| R|| equals % Let B be the unit ball in L?(R2) and let K = R(B). Let
§ : R — R be the modulus of continuity of Lemma I1.10 corresponding
to 6 and K, and of course §(n) — 0 as n — 0. Choose ¢ > 0,9 <0
so that

A+ B) < gy (0190 <,

that is, choose € > 0 to satisfy the first inequality and choose ¢ > 0 to

(115)

satisfy the second. The function g can be written g = go+ g1+ g2 where
the g; satisfy (i) |go(u)| < g|ul, (i) g1 is bounded, and (iii) g, = 0 for
u >0, |g2(u) — g2(v)] < Alu—v|. Now let u € t0+teB. From (i) above
we have ||go(u)|| < qt(]|0]] + €), since |lu|| < t(]|0]| + €). We also have
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IR]l + llgr(w)]| < %;teﬂ for t > 1o if o is sufficiently large. And finally,
we have ||g2(u)|| < A]ju~||. Now since u = t0 + tev for some v € B, we
have ||u~|| = ||(t0 + tev)~|| < Ate + Zl‘-teﬂ + qt(]|0]| + €). But we choose
418 + &) < % s0 we have ||+ g(u)]| < te(A + B).

Since K = R(B), Su = t6 + Rh + Rg(u) can be written Su =
t0 + te(A + B)1p for some ¢ € K. Since if u is a solution of (1.9), then

u = Su and the previous lemma implies

[u™ll = ¢lI(6 + e(A+ B)e)7Il < te(A+ B)b(e(A + B))
o e
~ 4A

and we conclude that if u satisfies (1.9), and u € t0+teB, then ||g,(u)|| <
Allu| £ ng Now recalling that ||h + g(u)|| < ||g2(w)]| + %teﬂ, we can
conclude that if u is a solution of (1.9), u € t0 + teB, we have

|R(h + g(u))|| < %te.

Thus any solution of (1.9) satisfying u € t0 + te B must belong to t0 +
%teB, since u = t6 + R(h + g(u)). This statement works equally well if
we replace g(u) by A(h 4+ g(u)), 0 < XA < 1. Thus the equations

u= (—A)"l(bu —AMh+g(u)) — s¢1)

have no solution on the boundary of the ball By (t6) for 0 < X < 1.
Therefore the degree

deg(u — (=A)7 (bu — (h + g(u)) — té1, Bi(10),0)
is defined and independent of A for 0 < A < 1. For A = 0, we have

deg(u — (—A) 7' (bu — t¢1), By(t0),0) = (=1)".



28 PATRICK J.MCKENNA

This is true since if we take finite dimensional approximations on the
spaces P,H = span{¢, - - ¢n}, then for m > n +1, we have that the
finite dimensional degree, the sign of the determinant of the linear map
is precisely the minus one to the power of number of negative eigenval-

ues of I—b(—A)~!, which is n. This concludes the proof of the theorem.=

COROLLARY TO THEOREM 1.8. If lim ﬂsfl = a, there exists
§——00

to > 0,e > 0 so that
D
(“A)OI(f(u) —h— 3¢1)a Bte(ty), 0) =1,

deg(u —
where 0 = a—i‘ﬁ;.

Now we need a couple of lemmas which are close to those of section
3, the only difference being that we are in L?(Q) instead of C*(Q) and
thus, Sobolev estimates are used instead of Schauder estimates. The
proofs are left as an exercise for the reader (L*(f2) estimates will also

be given in Chapter IV).

LEMMA 1.11  Assume that |f(u)| < a+clu| and f(u) —Au > €|u|—b,
and that ||h|| < r, s < so where a,b,¢,c,r, 30 are positive constants.
Then there exists C, depending only on a,b, €, c,r,so, so that any solu-
tion of (1.9) satisfies ||u|| < C.

LEMMA 1.12  There exists Ry depending only on a,b,c,r,¢€,to so that
deg(u — (—A)7'(f(u) — h — t¢1), Br(0),0) = 0

for all R > Ry and t < 1.
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We can now state our main theorem on the existence of more than

two solutions.

THEOREM 1.9 Assume h € L*(Q) and Jim i%?l = a, slixgloo ﬁs‘ﬁ =
b, where a < Ay, Ay < b < Ay1. Then there exists ty so that if t > 1,
equation (1.9) has at least two solutions if n is odd and at least three

solutions if n is even.

Proof.  Theorem 1.8 guarantees the existence of two balls B; =

B(t0) and B, = B(t0), such that
deg(u — (=A)7'(f(u) — t¢1 — h(z)), B1,0) = (-1)",

deg(u — (=A)"'(f(uv) — t¢, — k), By, 0) = +1.

Moreover, if € < min{(A; — a)™!,(b — A;)~!}, then they are disjoint.
This gives two solutions. If n is even, choose Bg so large that By con-
tains B; and B; and the degree is zero on Bg. Since our map has no
zeros on  B;UJB,, by excision, we have the degree on Bgp—(B;UB;) is
—2. This proves the existence of at least three solutions, and concludes

the proof of the theorem. .

We conclude this theorem with some remarks. It is worth looking
briefly at the generality of Theorem I.9.
We studied an equation on L?*(Q) of the type

Lu+ f(u) = té1 + h

under the assumptions that L is a invertible self-adjoint operator with

compact inverse, with eigenvalues \; — 400 and with a positive first
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eigenfunction. No assumptions on smoothness were made on ¢;,h or
f. These facts will be worth noting in Chapter II, when we tackle more
general classes of operators. Although we can see many improvements
on Theorem 1.9 for an elliptic operator with Dirichlet boundary condi-
tions and some regularity assumptions, using variational methods and
eigenvalue comparison theorems, Theorem 1.9 remains unimproved in
this generality in the more general operator theoretic case, ekcept when
Ay < b < Az, this problem remains open.

This theorem led the authors to speculate that if A, < b < An4q,
then for sufficiently large ¢, equation (1.9) has at least 2n solutions.
This proved to be true in the O.D.E. case, but not true in general.

Also still open is the case where f'(+00) = +o00, (presumably with
growth less than the critical exponent). Kwong [KWO] has shown that
in the O.D.E. case, the number of solutions increases without bound as

s — +00.

Questions raised by Theorem 1.9

Theorem 1.9 raises many questions, some of which remain unan-
swered today. For example, the theorem shows that there are at least
three solutions if )‘7‘ < b < Ay1 and n is even. Surely, we would be
led to conjecture, these solutions also exist if n is odd and greater than
1.

This was solved quickly in the elliptic case, but in the more general,
non-selfadjoint case, it remains unproven.

The theorem also shows that for “most” h, (using Sard’s Theorem)
there are at least four solutions if Ay, < b < Agnq1. Some results on

this are available in the elliptic (variational) setting, but in the P.D.E.
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case, to the best of our knowledge, it is not even known if there are at

least three solutions for large s.

1.7 Historical remarks

Theorem I.1 and 1.2 are in Hammerstein [H], who was the first to see

the importance of the first eigenvalue, although earlier work goes back
to Picard in the 1890’s.

Theorem 1.3 and 1.4 are due to Dolph [D]. The first result on cross-
ing the first eigenvalue was in [A-P]. The first to see the importance
of decomposing the right hand side into t¢, + k appear to have been,
independently, Kazdan and Warner [K-W], and Berger and Podalak
[B-P]. Kazdan and Warner also were first to notice that the methods
of upper and lower solutions could be used here. The combined use of
degree theory and upper and lower solutions, as used in Theorem 1.6

was due independently to Amann and Hess [A-H], and Dancer [Da).

The first version of Theorem 1.8 showing the existence of at least
three solutions for large ¢ was given in C'*+* by the authors [L-Mcl].
Later, with a view to obtaining extensions to the case of non-compact

inverse and the non-selfadjoint case, a proof in L?(Q2) was given by

McKenna and Walter [Mc-W].

Concluding Remarks
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Although, as I have repeatedly emphasized, this chapter was about
the second order elliptic problem, the methods were operator-theoretic,

and could possibly generalize to some of the linear operators treated in
Chapter II.



Chapter II

More general operators

The purpose of this chapter is to extend the last result of Chapter I
to other equations where the linear part is not just the Laplacian. We
shall treat three separate cases, first a semilinear heat equation, then a
semilinear string equation, and finally a vibrating beam equation. The

third is the most interesting.

33
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I1.1 Periodic solutions of a semilinear equa-
tion with source terms

We look for weak solutions of the equation
u; = Lu + f(u) — sé1 — h(z,t) m QxR (IL.1)

which vanish on 89 and are periodic in ¢t with period T

We assume that the eigenfunctions ¢; of L are an orthonormal basis
for L*(Q) with eigenvalues —\;, A\; > 0,\; — 400, and that ¢,(z) >
0,z € Q. These are the assumptions of this Chapter. We shall work
with the complex Hilbert space Hy = L*(Q x (0,T)), equipped with

the usual inner product
2
<v,w>"= / /Qv(:v,t)ﬁ(x,t)dwdt
0

and norm ||v|| =< v,v >*2. Later we shall switch to the real subspace
imt

Hy. The functions ¢,,, = Mj—z—k—, n>1m=0,£1,+2,... are
s

a complete orthonormal basis for H*. Let }-* denote sums over the

indices m,n. Every v € H* has a Fourier expansion

*
v = E Vrmn Pmns

with 3 |vmal? = ||IV]1%, Ymn =< v, @ma >*. A weak solution to the

boundary value problem (II.1) is, by definition, a function u € H sat-

isfying Lu € H,i.e. = |[umn|*(m? + A2) < oo satisfying (IL.1) in H.
For real o # )\, the operator R = (L + a — D,)~" denoted by

Rrmn

u=Rh — Up, = ——
A, +a—:1n
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is a compact linear operator on H* and the operator norm of R, ||R|| =
ch——l—An[’ where A, is an eigenvalue of —L closest to a.

From now on, we restrict ourselves to the real subspace H and
observe that it is invariant under R.

Our first theorem is a non-self-adjoint version of Theorem I.8.

THEOREM II.1  Assume that f' is bounded, that f'(+00) = « satisfies
An < a < Apy1 and that h € H. Then there exists sy > 0, € > 0 such
that the Leray-Schauder degree

deg(u — (=L + Do) 7' (f(u) — s¢1 — h), B} (s6),0) = (-1)*  (IL2)
for s > so. Here B denotes a ball of radius r in H and

0=—(—L—a+D) ¢ = d

Q—Al.

REMARKS.  Before we begin the outline of the proof, we shall
provide a little motivation. The idea here is that, since the operator
is real, complex eigenvalues occur in conjugate pairs. Now when we
evaluate the sign of the determinant, as in Chapter I, we shall have
a number of real negative eigenvalue, plus an infinite number of real
positive eigenvalues, plus an infinite number of conjugate pairs of com-
plex eigenvalues. However, the determinant of two complex conjugate
eigenfunctions is always positive, so we do not expect the complex

eigenvalues to affect the computation of the degree.

Proof.  The first part of the proof, where we show there are no

solutions on the bbundary of the ball in question is the same as that of
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Theorem 1.8. we shall just indicate the changes, so we can be sure the
degree is defined. v

Let R be the operator (=L — a + D;)™!, let A = (D; — L)™', and
let g(u) = au — f(u). Then the periodic problem (II.1) is equivalent to

u = s0 + Rh + Rg(u) = Su. (I1.3)

Let B* be the open unit ball in H, let K = R(B*). It follows that any
solution u € s8 4 s € B, of (IL.3) belongs to sf + %seﬁ* and this holds
when h + g(u) is replaced by A(k + g(u)), 0 < A < 1. Solutions of the

corresponding equation (II.3) are solutions of
u = A(—s¢1 + aul(h + g(u)))
and it follows that if G = B (s0,),
deg(u — A(—sé1 + o, — (R + g(u))), G,0) = deg(u — A(au — s¢,), G, 0).

Now by substituting v = u — s, and using u — A(au — s¢;) = u—sb +

a(Au — s8), we observe that
deg(u — A(au — s¢1),G,0) = deg(v — aAv, seB*,0).

Thus, to prove the theorem, we have to show that this degree is (—1)".
To do this, we calculate the degree on finite dimensional subspaces

which we now choose. The functions

1

¢on = ﬁ(bn(x)

= %%(w)cosmt m=123...
1

rm = ——=¢n(z)sin mt

mn \/7_‘,
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form a real orthonormal basis for H. If h € H, then h = Y hpp@mn in
H* and h can be expanded in terms of @,,, hS,,., b2, with the identities

1

Tz (bl + [hemnl?)

it follows that
1 1 1
2 < in —— < _—
and by the definition of degree

deg(v — aPAv, seB*,0) = deg(v — aAv, seB*,0)

for large p, since the operator PA is of finite rank, with its range
contained in PH.

Taking the functions ¢on, ¢5,,., 95,1 < m,n < p, as a basis H,, the
equation v 4+ aP Av becomes a matrix equation on the space H,, of the
form

(I+aC)x=0 for z € R, g=p(2p+1)

where Iq is the identity matrix of rank ¢,C is a ¢ x ¢ block diagonal
matrix C = diag(Cy,---,C,) and each C, is a 2p + 1 by 2p + 1 block

diagonal matrix given by

C, = diag (- Al Atny Ay
Now let D = I + aC = diag(Dy,---, D,) where

D, = diag (1 o 12—aA1,,,---,12—aA,,,,).

A’

Since det D, = (1 - )‘Q) a1y *  * Gpp, Where det(l; — @Apy,) = apmyn > 0,
we finally get for large p that

sign det D = sign (1 — ﬁ) (12 = (=1)™.
A Ap
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Recalling that A\, < & < An41. Since sign det D is equal to deg(v +
aPv, seB*,0) for large p, the theorem is proved by letting p — +o00.

COROLLARY I1.1  If f' is bounded, and @ = f'(—o00) < A1, then there

ezist positive constants so, € such that
deg(u — (D — L)™' (f(u) = s¢1 — h), B;(s0),0) = 1

for s > sq, where § = .afﬁfi)‘—l <0.

LEMMA II.1  Assume that |f(u)| < a+ clu|, f'(—o0), f'(+00) exist,
that f(u) — \yu > €|u| — b, and that b € H satisfies ||h|| < r where
a,b,c,r, € are positive constants. Then there exists C' depending only

on a,b,c,r, € such that
D= Lu+ f(u) —s¢1 — h
u(z,t + 27) = u(z,t)
satisfies ||ul| < c.

Proof. Suppose not. Then there exist u, with ||u,|| — oo which

satisfy the equation. Now let v, = ”%:-", and v, satisfies

1
Dw, = Lv, + nu—”f("”n“vn) — hn(z,1).

Since fn(u)—Au > €|u| — b, we can conclude, by multiplying across by

¢, and integrating, that

< Dyu, — Lun — /\1un,¢1 >= f(un) — /\lun,¢1 > —< hn,¢1 >
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and thus

o
v

[ (elual = b3 = 11

> ¢ [up—b[o:-r

from which we conclude that if v, = ¢,¢ + z,, then the ¢,’s are

bounded. Now,

oo = (D= A (P llunlon) - 27

-
el [l

and one can check that the v,’s are precompact in H since, by virtue of
|f(u)| < a+ c|u|, we have that m(f(||un||vn) — hy) is bounded and
(D;:—A)tisa compact operator. Therefore, there exists a convergent
subsequence, still called v,, converging to v. Since v, = m(cnqﬁl +
z,) and the ¢,’s are bounded, it follows that vl¢;. Since f(s) =
f'(+o0)st — f'(—o0)s™ + fi(s) where f—l(sfl — 0 as s — 400, we
have that

1
[|unll

(f(llunllo) = hn) — f/(+00)v* — f'(—o0)v~
and
(D; — L)v = f'(+o00)vt — f'(—o0)v™

or

(Dt = L = A)v = (f'(+00) = M)v™ — (f'(=00) — A)v™.

Since (f'(+00)—A)vt —(f'(—00)—=A1)v; > €|v| after multiplying across

by ¢; and integrating by parts, we obtain a contradiction. "
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"LEMMA 11.2  Let s; € R under the assumptions of the preceding
lemma, there exists C; > 0, depending on s; and the constants of

Lemma II.1, such that
deg(u — (Dy — Lu) ™ (f(u) — (h + s¢1)), B3(0),0) = 0
for s < 81 and B > c.

The proof of Lemma II.2 is the same as those for the self-adjoint
case, as done in Chapter I. There are no solutions on the boundary of
the ball for s < sy, by the previous lemma. Therefore, by homotopy,
the degree is the same for all s < sy, and since it must be zero for large

negative s, it must be zero for all s < s;.

We have now assembled all the ingredients for our first existence

" theorem.

THEOREM I1.2 Let h € H*. Assume f' is bounded, f'(—o0) <
M, A < f(+00) < Any1. Then there exists sy so that if s > s,
the equation (I1.1) has at least two 2w-periodic solutions if n is even,

and at least three if n is odd.

The proof is by now obvious. The degree on a large ball is zero.
By Theorem I1.1, we can find a ball near 8, on which the degree of the
map

u— (D¢ = L)7(f(u) = (sé1 + h(z)))
is 1, and a ball near #, on which the degree is (—1)*. Now, if these are
both in a ball on which the degree is zero, we have two solutions if n is

odd, and three if n is even. This concludes the proof.
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We conclude with some open problems.

PROBLEM. 1. Can we remove the assumption that n is odd in

Theorem II.2 and still get at least three solutions?

PROBLEM. 2. Can we get four solutions? The answer is yes if T

is sufficiently small and n = 2, but is now known otherwise.

'PROBLEM. 3. What happens if f'(+00) = +00. Do there exist

at least two solutions? How about more then two?

PROBLEM. 4. What about more general periodic-parabolic linear
operators? These are known to have a positive first eigenvalue, cite

Hess, Lazer.

II.2 Periodic solutions of semilinear wave
equations

The purpose of this section is to study the existence of 27-periodic
solutions of the equation

—U + Uze + f(u) = ssinz + h(z,t)

u(0,t) = u(m,t)=0 (IL.4)

where we assume that fis‘iz — a(d), 0 <a <13 <b)asa —

—00(b — 00).
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As usual in this problems [B-N], we assume that f is monotone in-
creasing. The difficulty which arises in this type of problem is that the
linear operator does not posses a compact resolvent, and thus some ad-
ditional work is necessary before classical Leray-Schauder degree theory
can be used. With apologies to the reader, we will prove do this work
in an abstract setting. The reason for this will be clear at the end of

the chapter.

Thus we let H = Ly([0,7] x [-,7]), and assume that D(L) C H,
L : D(L) — H; and that L is self-adjoint. We assume that —L pos-
sesses the eigenvalues {);,7 € Z} and that Ao = 0,); < A; if ¢ < 7,
and \; — 400 as 1 — 400 and \; — —oco0 as ¢ — —oo. We
assume that \g is of infinite multiplicity and that every other eigen-
value is of finite multiplicity. Finally we assume that ), is simple, that
the eigenfunction corresponding to A; is ¢1(z) and satisfies é1(z) > 0
in (0,7), and that if @, is another eigenfunction of L, then there ex-
ists €, > 0 such that ¢;(z) £ €,¢n(z,t) > 0 in (0,7) x (-7, 7). (We
interject a comment at this stage; the reader should check these “ab-
stract hypotheses” against the example in the beginning of the section.
Also, the assumption that ¢; depends only on z is not necessary, and
it would be enough to allow it to depend on z,t and to require that

¢1($7t) >0, z€ (0,77'), te (-—7‘(’,7!')).

Now we prove some results on the existence of 27-periodic solutions

of the equation

—Ugy + uge + f(u) = H(z,t) = ssinz + h(z,t),

u(0,1) u(m,t) = 0. (IL.4)
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We study the abstract operator equation
Lu+ f(u) = s¢; + h(z,t) = H(z,1). (I1.4.a)

Let H; be the direct sum of the eigenspace corresponding to the eigen-
values A;, ¢ < 0. Note that since ); are the eigenvalues of — L, it follows
that L is monotone on the invariant subspace H;. Let P be orthogonal

projection onto Hy. Let Hy = (I — P)H. We write (I1.4) as
Lu + f(u) = ssinz + h(z,t)

with the additional assumption
(a) h(z,t) € PH.
(b) oo >M > f'(u) > g > 0 for some o, M (IL5)
(c) I g(x) € Ly(0,7) then g(z) € PH.

Let w = (I — P)u, v = Pu, and write the problem as

(a) Lw+(I-P)f(v+w)=0

(b)  Lv+ Pf(v+w)=ssinz + h(z,t) (IL6)

Now fix v and regard (II.6.a) as an equation in w € (I — P)H. As-
sumption (I.5.b) guarantees that for each v, equation (I1.6.b) has a
unique solution w(v). This can be proved by the methods of Chapter
I, Theorem 1, and the contraction mapping theorem, or by monotone
operator theory. Furthermore w(v) depends continuously on v, with
Lipschitz constant depending on a and M. Thus we have reduced the

problem
Lu+ f(u) = s¢1 + h(z,1)

on the space H, the problem

Lv+ Pf(v+ w(v)) = ssinz + h(z, t). (IL7)



44 PATRICK J.MCKENNA

Tuporem 113 If lim L8 = b and tim L = @ and ) <

usr—co U
a,b < \iyq for some i > 0, then equation (11.4.a) has a solution for any

right handstide.

Proof. It is easy to see by the methods of Chapter I that there
exists B,C,D, B < 1 such that if a = )"'—_’-2&"—1, then

J(=L — oIy (f () — au — H(z, )]l < Bllull* + Cllull + D.
We can write (IL.7) as
v= (=L —al) ' P(f(v + w(v)) — a(v + w(v) — H(z,t)).
Recall Pw(v) = 0. This gives
I(=L = a)™(f(v +w(v)) — aw)|* < B*(|o]* + [[w()]I*) + es[lv]l + 2
for some ¢;,cz,... (recall w is Lipschitz continuous in v,w(0) = 0).
Write E = —L — al, write g(u) = f(u) — au. Then the fact that w
satisfies (I1.6.a) means that
w(v) = B(I - P)g(o + w(»))
and thus
I1E7 g(v + w())II* = [E7"Pg(v+w@)I* + |E7(T = P)g(v + w(v))|®
lw()II* + |IEH(I = P)g(v + w(v))|?
< BY(Jloll® + lle@)I*) + edlloll + ca.

From this, we can conclude that for B < 1,

I(=L—al) P(f(v+w(v))—a(v+w(v))—H(z,t))|I* < Bllv|*+ci[|v]|+es
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for a new c3. Thus, choosing R sufficiently large that
BR?* + ;R + ¢3 < R?,

we can conclude that the ball of radius R in H; is mapped into itself

by the map
v — (=L — aI)7'P(f(v + w(v)) — av — H(z,t)). (I1.8)

Furthermore, since A\; — 400 are the eigenvalues of —L on the space
H,, we see that the operator (—L—al)~1is compact. Thus, by Schauder
fixed point theorem we can conclude that the map in (I1.8) has a fixed
point and, equivalently, that (I1.4.a) has a solution for all H(z,t). This

proves the theorem. .

REMARKsS. It is sufficient for the existence of all solutions that
f' >0, instead of f' > a > 0. However the proof then becomes tech-
nically messy, as the map v — w(v) is no longer single valued, but
in fact set-valued. The map v — P f(v + w(v)) is continuous in the
sense of taking strongly convergent sequences {v,} into weakly conver-
gent sequences. This, combined with the compactness of (—L — a)™!
is enough to do the job. For details, see [McK 1]. We also remark that
if for some i, A; < f'(s) < Aiy1 for all s, then (I.4.a) has a unique
solution for all right hand sides. Now we go on to the case where

O<G<A1, /\,‘<b<A,’+1.

THEOREM I1.4  Assume that (I11.6) is satisfied and that \y < b <
Ak+1, k > 1. Then there exists sy such that for s > s, and 0 < € < ¢
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(eo depending on s) the Leray-Schauder degree
deg(v — L™ (s¢1 + h — P(f(v + w(v)))), Bye(s9),0) = (=1)*

— T ﬂﬁl 1 _ 14 _ 1
where b= lim L&) 6= (L4074 = ;B >0.

s— 400

REMARK. It ought to be clear from the context that the ball B,(s9)

is in the space Hj.

Proof. Much of this proof is very similar to that of Theorem 1.8
of the first chapter. We assume that v satisfies (IL.7) or equivalently

v=L"(s¢1 +h— Pf(v+w(v))
then writing R = (L + b)™! and g(u) = bu — f(u), it follows that
v = s¢ + Rh + RPg(v + w(v)).

Now let v = s + sew, ||v]| < 1. Write g = go + g1 + g2 exactly as in
the first chapter, w(s@) = 0 since Pf(s¢) = 0. Hence

v+ w(v) == 3& + sev + U)(SQ’E + 366) - w(S(]‘;)

and so ||v + w(v) — s¢|| < se(1 +r), where r is the Lipschitz constant
for the function w(v), which the reader may check is %/11—’ where M and

a; are given in (I1.5). It follows that

I(v + w(v))7|| < se(l +r),

and

1k + (g0 + 90)(v + w(v))]| < %seﬁ
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llg2(v + w(v))|| < Ase(1 +r)

for large s, where 8 = || R||, and
| Ik + 90+ w(@)]] < seA’ for s> s0,
where A’ = (14 7)(A+ 8). Now suppose v = s¢ + seB is a solution of
v = 3¢ 4+ Rh 4+ RPg(v + w(v)).

Then v = s + sed'y, ¥ € R(B). This is not exactly what we need
in order to apply the method of Chapter I. What we need, in order to
estimate ||(v+w(v))~||, and declare it small, is that v+w(v) = s¢+seX
for X € K for a suitable choice of a compact set K. Then we can get
a suitable modulus of continuity for K. It is intuitively clear that such
a K must exist, since w(v) is a Lipschitz map from the compact set
s¢ + seA'R(B) and w(s¢) = 0.

Finding K requires a little care however. Consider w(sq~$+6t/)), Y E
R(B), with § — 0+. It follows from the Lipschitz condition, and from
w(sq~5) = 0 that

lw(sé +80) < rél|ll-

Let wg be the solution of
Lwo 4 (I — P)f'(s)(¥ + wp) = 0. (I1.9)

(Why must wp exist?) If w(s@+8w) is written in the form w(sp+6w) =
6(wo + w1), then

§L(wo +w1) + (I — P)f(s¢ + 6(xp + wo + w1)) = 0.
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Now

f(s+ 8( + wo + w1)) — 6f/(s8)(¥ + wo) — f(s9)

= f(s¢+ 8% +wo+wr1)) — f(s+ 6(t + wo)) + f(sé + 8( + wo))
~5f'(s9)(% + wo) — f(s9)

= Fiéw, + F26(¢ + wo)

where Fy = Fi(z,6) > oy and

fa(z,8) = /Ol[f'(Sq; +87(¢ + wp)) — f'(sp)ldr — 0 as 6§ — 0.

Hence
§Lwy + (I — P)f(s¢+ 8(x + wo + w1)) — 6(I — P)f'(s6)(4 + wo) = 0.

Multiply the last equation by w; and observe that (w;, Lw;) > 0. We
get that
6(Frwy + Fa(y + wo),wr) <0

or

ar||wr|| L |[Fa( + wo)]] — 0 as 6§ — 0+.

Thus %-w(s:f: + 6Y) — wp as 6 — 0+ and the solution wy = wo(?)
of (I1.9) satisfies ||wo(y)) — wo(¥')|| < || — ¢'||. Thus the set {wo(v) :
¥ € R(B)} is precompact and finally we have that

Ky = {%w(3$+ §9):0 <8< 8, WeRB)

is precompact. Now we can say that there exists a compact set K C H

such that for any v = s¢ + seA'p, ¥ € R(B), we have

v+w(v) =s¢+seX,«—z€ K (I1.10)
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for 0 < € <1, with s > so fixed. If §(n) is the modulus of continuity

corresponding to K, then

(v + ()|l < sll(¢ + eX)7|| < seb(e) < %ﬁ» 0 <e< e,

if € is chosen so small that

4
<
seb(e) < se s

for 0<e<e.

Thus
loa(o + w) < Al(w + wle)) | < 220

and therefore

IRP(h + g(a))] < Sse.

Thus
v =3¢+ Rh+ RPg(v+w(v)), v€ sd+seB

implies v € s¢ + 2seB and thus
v —v—LY(s¢ + h— Pf(v+ w(v)))

has no zeros on the boundary of Bsc(3<z~5). This applies, a fortiori, if g
and h are replaced by A\g and A\, 0 < X < 1.

Thus, to prove the theorem, we need only consider
deg(u — L7 (s¢1 — bu), Bye(s¢),0)

and it is clear, by the arguments of Chapter I, that this degree is (—1)*
fAr<b< /\k+1- n
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COROLLARY 11.2  If we replace the assumption Ay, < b= lim ﬂsﬁl <

§—+00

Ae41 by the assumption 0 < b < Xy, and all other assumptions are

satisfied, then there exists so > 0 such that for s > so, and € small,
deg(v — L™ (s¢1 + h — Pf(v + w(v))), Bse(s9),0) = 1
where the meanings are the same as in the theorem.

Proof. Exactly as in the theorem. "

LEMMA I1.3  Under the hypothesis f(u) > Mu+ €|u| and (11.6), there

exists C depending only on oy, M,r, such that any solution to
Lu+ f(u)=h
with h € H and ||h|| < r satisfies ||u|| < C.

Proof. By now this should be fairly familiar, so we present an

outline. Suppose ||u,|| — +00, u, satisfies
Lu, + f(un) = hn.

Let u, = cp¢1 + T, where z, L ¢; and conclude, multiplying across by

#, and integrating, that c,’s are bounded. Let p, = |lu,||, @, = %ﬂ
n
Then
_ 1 _ h
Lu, + —'f(pnun) = —.
Pn Pn

Observe that ||u,|| = 1 and if @, = v, + w(v,), then
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By compactness, we may conclude that v, and thus @, converge in
H. Let @ = lim%,, and f = limﬂ%l. We know that (a) @ is
perpendicular to ¢, since the ¢; component of %, tended to zero and

(b) that w satisfies
Li+ f=(La+Ma)+f—\a=0.

However, Lu + A\1% must be perpendicular to ¢; and f — A\ u > €[], so
F — M\ cannot be perpendicular to ¢, unless @ = 0. This contradicts
the fact that ||@|| = 1. Thus we have a contradiction, and the theorem

is proved. "

Now that we have an a priori bound, we can prove, by observing

that there are no solutions of (IL.7) for large negative s and we obtain

LEMMA I1.4 Let s € R. Under the assumptions of Theorem II.4
and Lemma I1.3, there exists a constant C' (depending on s and the

constants of Lemma I1.3) such that
deg(v — L™ (s¢1 + h — Pf(v +w(v))), B5(0),0) = 0
for p>C.

Proof. Exactly the same as in Chapter L. "
Finally we put all these lemmas together again as in Chapter I, to

obtain the main theorem of this section.

THEOREM II.5 Under the assumptions of Theorem 11.4 on f and h,
and assuming that 0 < a = lim f(s) <A and Ay < b= lim ﬂsﬂ <

s——00 S §——00
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Akt1, k > 1, then there exists sg > 0 such that for s > so, the equation
(IL.4.a) has at least two solutions if k is even and at least three solutions

if k is odd.

Proof. The proof is the same as the one given in Chapter I. We

have two solutions g ¢l)\1 and — 151/\1 and the degree on a small ball
about each of them is (—1)* and +1 respectively. This gives two so-
lutions. Now choose a big ball containing both so that the degree on
the big ball is zero. Excise the two smaller balls. The degree on the
remaining region is —2 if k is even. This gives the third solution and

proves the theorem.

REMARKS.  We are not sure if the requirement A € (I — P)H
is necessary certainly it simplified the calculations. Nor do we know
whether the theorem can be proved if one allows a; = 0. From the
remark at the end of the previous section, one would think there is
some hope of remaining the strict monotonicity requirement, which
has not been needed in the literature [B-N], [McK], [Wi].

The big question is — can one obtain four solutions, as Hofer did in
the elliptic case, by use of the mountain pass theorem? This result de-
pended heavily on regularity. A simpler question is, can one obtain at
least three solutions when £ is odd, as Solimini did [Sol] for the elliptic

problem.

One can use critical point theory in this situation as did Brezis, with
the Ekeland-Lasry dual formulation, to obtain a variational problem on

PH. One could hope to show that, in this context, the mountain pass
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was degenerated or of the wrong Morse index.

Now we study the equation (I.4). In this case, all our hypotheses
on L are satisfied and ¢; = sinz, A\; = 1,); = 3, 3 = 4, )\, = 5 etc.
If h(z,t) is even in t on [—, x|, then (IL4) has at least three solutions
for large s, if 0 < f'(—00) < A1, A2 < f'(+00) < A3. This is done
by restricting ourselves to the smaller symmetric subspace, in which A,
has multiplicity one. It also has three solutions if A3 < f’(+00) < A4
since in the big space, A\; has multiplicity 2 and A3 has multiplicity 1.

(There is a slight confusion here in that A\, < f/(+00) < Ap
means in the theorem that we are counting eigenvalues as often as the
multiplicities, whereas, when we say A, = 3, A3 = 4, )\, is only counted
once. If the reader has followed this far, we feel sure he or she is not

thrown off by this minor point.) Physically, the equation
—Uy + Ugp + but — au™ = ssin z,

u(0,t) = u(m,t) = 0,
u(z,t+ 27) = u(z,t)

corresponds to a string with stretching creating a restoring force and
with a repulsive force proportional to the distance from equilibrium.
This is decidedly non-physical. If we consider the case a,b < 0 then we
have a string with two restoring forces, one that of stretching and the
other an asymmetric spring restoration term, with the force propor-
tional to the distance from rest. The ssinz term is just a loading. In

this case, one can prove that if -1 < b< 0, and —1 —€ < a < —1, then
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for s large positive the solution is unique, whereas for s large negative,
there are three solutions, two of which are oscillatory. The technique
is via reduction, by the contraction fixed point theorem, to the space
spanned by {sin z,cos mt} and, as we see in Chapter II, a careful study

of the two dimensional map.

II.3 A symmetry theorem and some ap-
plications

In this section, we prepare for the study of the suspension bridge equa-
tion by proving a symmetry theorem which is of independent interest.
This theorem is, (as far as we know), the most general application of

the basis idea of Theorem I1.5.

Let H be the Hilbert space L%(Q2). We assume that the operator L
is self-adjoint, D(L) C H and L : D(L) — H.

A1 We assume L possesses an invariant subspace H; C H, that is
L(Hy) C H, L(H}) C HE.
Let o denote the spectrum of L, let oy denote the spectrum of

L restricted to H; and let o, denote the spectrum of L restricted

to Hy. Of course 0 = o1 U 05.
We require %(m,u) to be piecewise smooth in u. Let [a, ]

be an interval which contains the range of %(u,m) for all u €
(—o00,00) and all z € Q.
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We make the following assumptions on the nonlinear operator

A2 a and b are finite and the intersection of [a, b] with o3 is empty.

A3 The operator u — f(u(-),) maps the space H; into itself.

THEOREM I1.6  Under the assumptions A1, A2, A3, every solution

of
Lu = f(u) (I1.11)

belongs to H,.

REMARK. As we shall see, in the applications sections, the space
H, will usually be defined to be a space of functions satisfying a sym-
metry property. The fact that it is invariant under f reflects the fact
that f also has these symmetries. The conclusion then is, (with the
appropriate restrictions on f), that all solutions also have these sym-

metries.

Proof of Theorem II.6. Let P be orthogonal projection on
'H,. Then equation (IL.11) is equivalent to the pair of equations (we

suppress the z term in f).
(I = P)Lu = (I - P)f(u), (IL.12)

PLu = Pf(u), (IL.13)
which we rewrite, letting v = Pu, w = (I — P)u, as

(i) Lw = (I - P)f(v+w),

(i) Lu = Pf(v+ w). (I1.14)
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(Note that the assumption H; guarantee that P commutes with L.)
Rewrite (II.14.1) as

(L= 7w = (I = P)(f(v+1w) = 7(v + )

wheré v = a—g—b.

Note that, by the assumptions on %, the function g(u) = f(u) —
~yu must be globally Lipschitz with Lipschitz constant M < b_—_2—__q_

Therefore we can conclude that

10+ w0) =10+ 1) = (F(0 +w2) = 3w+ w)l| € 252 = ]

for all w € (I — P)H.

Also, if Ly = L(I— P) is regarded as an operator on H; = (I-P)H,
then since the spectrum of L, is outside the interval [a, b], it follows that
the operator norm ||(Ly — yI)™!|| is strictly less than (b—g—a)—l.

Thus the map

w— (Ly = 9D)7 (I = P)(f(v + w) = (v + w))

is a contraction on the space Hj, and we can conclude that for each
fixed v, there exists a unique w(v) which satisfies (II.14.1).

Now observe that w(v) = 0 satisfies (II.14.i), for any choice of v.
This is true since (I — P) f(v) = 0 since f(v) € H; if v € H;. Therefore,

every solution of (II.11) must be a solution of the equation
Lv=PNv, where Nv= f(v), andv€ H,

from which we conclude that all solutions must be in H;. This con-

cludes the proof of the theorem. .
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REMARKS. The same method proves a similar theorem for normal

operators. We replace assumption A1 by

A1’ The closed disk, centered at (a—%—b,O) with radius b_—2—_a, does
not intersect the spectrum of the operator L restricted to the

invariant subspace Hj.

A2’ H, = Hj is invariant under L and the nonlinear map v — f (u).
These assumptions are enough to ensure that the theorem is true

if L is normal.

We now proceed to some simple applications.

Some immediate corollaries.
a) Even-odd symmetries.

We consider first the ordinary differential equations
u'+ f(u) =h(z),  u(0)=u'(r)=0. (I1.15)

EXAMPLE 1. If A(z) = ¢ (a constant) and f’(s) < 1 for all s, then
the only solutions of (II.15) are constants.

Proof. Take PH = H; to be the constant functions. "

Bxawrin 2.1 be) = (5 ) on (0.5) and (017 <
f'(u) < (2n41)?, then all solutions u of (I1.15) satisfy u(z) = u (725 - m)
for z € (O, 725)
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Proof. Take H; = span{l, cos 2z, cos 4z, ...}. This space is invari-
ant under f and the spectrum of L, is {1,32,9%,...}. Clearly H; and
H, are invariant under L and H; is invariant under any map of the
form u — f(u) (or v — f(u,z) with f (u,g-— :c) = f(u,z) for all
z €9, u € (—o00,00)). n

EXAMPLE 3. If h(z) = —h (% - w) on (0, 72"-) and (2n)? < f'(u) <
(2n +2)? and f(u) is odd about %, then all solutions of (I1.15) satisfy
u(z) = —u (g— - w)

Proof. Take H; = span{cosz,cos3z,...}. Of course this is invari-
ant under L and f, provided that f is odd in u (and z). .

Examples 2 and 3 have the obvious analogues for the Dirichlet prob-

lem.

II.4 The suspension bridge equation

In this section, we develop some of the ideas from the previous sec-
tion for a different type of equation, that of a non-linearly supported
vibrating beam.

We consider a one-dimensional beam of length L suspended by ca-
bles. When the cables are stretched, there is a restoring force which is
assumed to be proportional to the amount of the stretching (Hooke’s
law). But when the beam moves in the opposite direction, then there

is no restoring force exerted on it.

If u(x,t) denotes the displacement in the downward direction at
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position = and time ¢, then a simplified model is given by the equations

Ut + Klu:v:va:x + I{2u+ = W(‘T) + Ef(:t, t)’

u(O,t) =u(L,t) =0, um((),t) = uge(L, 1) = 0. (I1.16)

Here W(z) is the weight per unit length at z, and f(z, ) is an externally
imposed periodic function. In [A2] these equations were considered un-
der the assumption that W(z) = Wy sin &%, which allowed the partial
differential equation to be reduced by separation of variables to an or-
dinary differential equation. It was then shown that, if K, is large, then
large numbers of highly oscillatory solutions could exist.

The purpose of this paper is to study periodic solutions of Problem
(I1.16) under the more realistic assumption that the weight per unit
length is constant, W(z) = Wy, 0 < z < L.

By obvious changes of variables, Problem (I1.16) can be reduced to

Ust + Upzze + 0ut = 1+ €eh(z,t) in (—%, 72"-) x R, (IL17)
u (:i:%,t) = Ugy (:i:g—,t) =0.

We shall assume that % is even in z and ¢ and periodic with period T,
and we shall look for 7-periodic solutions of (I1.17). Our methods apply
to more general restoring forces (instead of bu*) and weight functions
(instead of w =const.), but we shall not elaborate on this.

Part of our analysis concerns the steady-state case of (I1.17). A
positive force ¢ produces a steady-state deflection w(z) satisfying

w® +bwt =c¢ in (—g, g) ,

(1) ()0

Physical intuition suggests that w is positive, as the beam deflects un-

der the load, and one would also expect that the externally imposed
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n-periodic force eh(z,t) produces small oscillations of the order of mag-
nitude € around the steady-state solution. We shall demonstrate that
for certain ranges of b additional highly oscillatory 7-periodic solutions,
which change sign, also exist.

The mathematical situation is now somewhat similar to that of the
semilinear wave equation. There are two principal differences. First,
because of the additional symmetries, the inverse of the linear operator
is now compact. Second, the nonlinearity is not crossing the eigenvalue
with the positive eigenfunction (—1,sin 7z) so we have to use a different
technique to obtain an a priori bound. The reader will be struck by
how similar the rest of the proof is.

Let L be the differential operator
Lu= Ut + Ugzgs-

The eigenvalue problem for u = u(z,t)

. T T
Lu=MAu in »(—5, 5) x R,
T T
" (i§,t> = u, (:I:E,t) —0, (IL18)

u(z,t) = u(—z,t) = u(z,—t) = u(z,t + )

(the last line indicates that u is even in ¢t and z and w-periodic in t)
has infinitely many eigenvalues \,,, and corresponding eigenfunctions

®mn (m,n > 0) given by
Amn = (2n4+1)*—4m?,  ¢pn = cos2mit-cos(2n+1)z (m,n =0,1,2,...).
We remark that all eigenvalues in the interval (—19,45) are given by

do==15<do=-3<Ap=1<Ayq =17. (II].Q)
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The normalized eigenfunctions are denoted by

_ _Pmn_ -
mn ”d’mn”, ”¢On“ \/i

Let Q be the square [—%, g—] X [—g—, g—] and H the Hilbert space defined
by

where ||| = —

3 for m > 0,

H = {u€ Ly(Q) : uis even in = and t}.

The set of functions {6,,,} is an orthonormal base in H.
We consider weak solutions of problems of the type
Ut + Uggpe = f(u,z,t) in (—%’ 22"_) X R’
u(£5,t) = ug (£5,1) =0,

u even and w-periodic in ¢ and even in z.

(I1.20)

A weak solution of (II.20), which is also called a solution in H, is of

the form
U = Z Cmnbmn with Lu = Z AmnCmnOmn € H7

i.e., with "¢ A2 < oo, which implies u € H. Our functions f will

mn’® ' mn

be such that u € H implies f(u,z,t) € H. For simplicity of notation,

a weak solution of (I1.20) is characterized by
Lu = f(u,z,t) in H. (I1.20")

Our main result is the following:

THEOREM I1.7 Let h € H, ||h]| =1 and 3 < b < 15. Then there
exists €g > 0 such that if |€| < €y the equation

Lu+but=14+¢h in H (I1.21)

has at least two solutions.
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First we use the symmetry theorem of Section 3 to obtain an a pri-

ort bound.

LEMMA II.5 For —1 < b < 15 the problem
Lu+bu*t=0 in H (11.22)
has only the trivz’alA solution u = 0.

Proof. The space H; = span{cos cos2mt;m > 0} is invariant
under L and under the map u — but. The spectrum o, of L restricted
to H, contains A\jo = —3 and does not contain any other point in the
interval (—15,1). The spectrum o3 of L restricted to H; = Hj- does not
intersect the interval (—15,1). From Theorem II.7, we conclude that
any solution of (IL.22) belongs to Hj, t.e., it is of the form y(t) cos z,
where y satisfies

y' +by" +y=0.

Any nontrivial periodic solution of this equation is periodic with period

T T
=+ T #T

vb+1

This shows that there is no nontrivial solution of (I1.22). .

The next lemma establishes a priori bounds for solutions of (I1.21).

LEMMA I1.6 Let h € H with ||h|| = 1 and « > 0 be given. There
exists Ry > 0 (depending only on h and a) such that for all b with
—14+a <b<15—a and all € € [—-1,1], the solutions u of (I1.21)
satisfy ||u|| < Ro.
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Proof. If not, then there exists a sequence (by, €,,u,) with b, €

[a— 1,15 — a], |en| <1, ||up]| — oo such that
u, = L7 = but + enh).

The functions w, = "%’L" satisfy the equation

e ( Lt -f’i—h) .
[l

[[unll

Now L~1is a compact operator. Therefore we may assume that w, —
wo and b, — by € (—1,15). Since |lw,|| =1 it follows that ||wo| =1
and

wo = L™ (—=bowd) or Lwg+bow =0 in H.

This contradicts Lemma II.5 and proves the lemma. .

LEMMA II.7 Under the assumptions and with the notations of Lemma
IL.6,
dLg(u - L_l(l — but + éh),BR,O) =1

for all R > Ry, where drs denotes the Leray-Schauder degree.
Proof. 1If b =0, we have
dLs(u - L_l(l + Ch), BR,O) = 1,

since the map is simply a translation of the identity and since ||L=(1+
eh)|| < Ro by Lemma I1.6. .
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The general result follows in the usual way by invariance under ho-

motopy, since all solutions are in the open ball Bg,.

Now we turn attention to the steady-state solutions of equation
(I1.21). We need the following somewhat surprising result of Schroder
[Sch]. |

THEOREM 11.8 The Green’s function for the boundary value problem

o (53). ()= (D) -
y @ +by = f(z) in (2,2, yl£5)=y"(£5) =0

4
is nonnegative if and only if -1 < b <o = %—, where & is the smallest

positive zero of the function tanz — tanhz. We have k = 3.9266 and

co = 9.762.

This result implies that for a positive right hand side f the solution
y is nonnegative if b < ¢, while for b > ¢o there are positive functions
f for which the solution takes also negative values. But for constant f

we have the following result.

LEMMA I1.8 For all b > —1, the unique solution y of the boundary

value problem

oot (5. (55) v ()
v+ by in 2,2,yi2 yiz 0

is positive in (——g—, 72[) and even in z.
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Proof. For b < ¢ the result follows from Theorem I1.8. We give a

proof which is valid for b > 4. It is convenient to write b = 434, a = %ﬂ

and to introduce a function

o--o()

The function y is a solution of (I1.24) if and only if z satisfies

M442=0 in |g|<a,  2(ta)=

1 " — n

and the inequality y > 0 is equivalent to z(z) < z(%a) for |z| < a. The

solution z of (I1.24') is explicitly given (up to a positive constant) by

z(z) = 855050 + cCcoCo,

where

s=sinz, S =sinhz, c=cosz, C = coshz, sy =sina, Sy =sinha,....

We assume that a > 721.' (that is b > 4). For0 <z < a — % we have
z(a) > 5§ and z(z) < CCy since |sso| + |eco| = | cos(a + )| < 1; hence

the inequality z(z) < 2(a) follows from

CCO<S§¢-:,'1+CCO<C§¢=>E,I-—<CO—C.
0

This is certainly true since Cy — C > cosh 727- —1>1.5.

In order to prove that z(z) < z(a) holds also for a — 5— <z<a,we

show that 2’ is positive in this interval. We get

Z’

= (cS+5C)s050 + (—sC + ¢S)coCo

= SSo(cso — sco + 850 + ccp) + Segecy + Soessg — sco(€So + €05 + eep)
= SSo(sin(a — z) + cos(a — z)) + Seo(c — s)co + Soe(so — ¢o)s — epesco
= A1+ A+ A3+ Ay
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Here we have used the notation e = e™%, eg = e~ and the equations
S+e=C,So+e =0Cp. For0<a—-z < g— the first term A; is > S.S,.
Furthermore
A3 20 for 5 <ac<m,
|As] < V28, <0.2945, for a >,
|Az] < €S <0.208 for 2 <a< i,
Ay 20 for%wﬁaﬁ%’;r,
|Az] < V2€0S < 0.0285 for a > %r,
Ay 20 forF<ac<m,
|A4] < eeg <0.01 fora>m.

These inequalities show that indeed 2z’ > 0fora—z < Z,a > Z. Hence
q 2 2

Lemma II.8 is proved. "

REMARK. The case 0 < b < 4 can be dealt with directly by using

the decomposition
y@ + 4% = (D* + V28D + 28°)(D* — V28D + 26%)y.

It is easy to see, by calculating the first eigenvalues of y"” £ V28y +
2B%y = 0 with Dirichlet boundary conditions, that the inverse of each
of these operators remains positive if 0 < § < 1, that is, if 0 < b < 4.
The case —1 < b < 0 is simple because the inverse of M = D* with the
given boundary values is a positive operator, hence the right hand side
of the equivalent equation y = M~'(1 — by) is increasing and contrac-

tive.

An easy consequence of Lemma I1.8 is

LEMMA I1.9 For —1 < b the boundary value problem

T T T

“) + 1 —_ = E): ”( —):
yY+byT=1 in (2,2), y(:l:2 Yy :l:2 0 (IL.25)
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has a unique solution y, which is even and positive and satisfies

y' (——%) >0 and o (g) <0.

Proof. The solution y of the linear problem (I1.24) is positive, hence
it is also a solution of (II.25). Uniqueness follows from the contraction
principle in the following familiar way. The eigenvalues of My = My,
where M = D* with the boundary conditions given in (I.24), are
all > 1. Hence, for any ¢ < 1,||(M — ¢)7|| = T%_c' Any problem
My = f(y,z,t) with ¢ < f, < 1 — € has a unique solution, since so-
lutions y are characterized by y = (M — ¢)7*f(y,,t) — cy], where
the right hand side is Lipschitz continuous with a Lipschitz constant

l—e—c
< I < 1. (]

In passing from the unperturbed equation (e = 0) to the perturbed

equation (I1.21), the following lemma is needed, which was first used
in [L-McK7].

LEMMA I1.10 Let K be a compact set in Ly = Ly(2), and let ¢ € L,
be positive almost everywhere. Then there exists a modulus of continuity

6 depending only on K and ¢ such that

(|| — ¢)*|| <né(n) forn >0 and € K.

The following short proof of this lemma was suggested by R. Lem-
mert of Karlsruhe. The function f, : K — R given by

Fa®) = (18] — )| (¥ € K;n=1,2,3,...)
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are continuous, and the sequence (f,) is decreasing with lim f,() = 0
(pointwise) for every 1 € K. It follows from Dini’s theorem that the

convergence is uniform. Therefore the function §(n) defined by

-4y

is increasing in 7; furthermore ¢ (%) — 0, which shows that ¢ is a

§(n) = max

modulus of continuity.
Now we come to the key step in the proof of our theorem. The

reader will notice that it is very similar to the proof of Theorem I.8.

LEMMA I1.11 Assume that3 < b < 15. Then there existy > 0,69 > 0
such that ‘
drs(u— L7'(1 — bu' + €h), B,(y),0) = —1

for |€| < €0, where y is the unique positive solution of (I11.25).

Proof. Let K be the closure of L™!(B), where B is the closed unit
ball in H. Clearly K is compact. Let 8(n) be the modulus of continuity
corresponding to K and y (see the preceding lemma). We note that
|IL=Y| = 1. Let u be a solution of (IL.21). Using the notation u = y+¢
and ||¢|| = v, we see easily that

Lo=ch+by—bly+d)t =ch—bs—by+9)5  (1L.26)
here we have used the identity u = ut — u~. It follows that

é € (0 +2by)K for || < €. (I1.27)
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We assume that €g < 4. Then ¢ = % has the properties ||| = 1 and
¥ € (2b+1)K. Since 9 is in a compact set and different from zero and

since —b is not an eigenvalue of L, we get
inf |14 + L7y = & > 0;
hence ||¢ + L~1b¢|| > av. It follows from (I1.26) that
¢+ L 'bp = L7 (eh — by + ¢)7). (11.28)
Since w € K satisfies ||(nw — y)*|| < né(n), we get from (11.27)

&+ )71 = lI(=¢ =) "Il < (&0 + 267)8(e02b7).

Denoting the two sides of equation (I1.28) by S; and S, and keeping in
mind that ||L7!|| = 1, we get for ¢ < ymin (1, %)

1 1 1
IS0 2 @y and [IS;]| < e+ (2by + 5a7)é(2by + 5av).

Now we choose ¥ > 0 so small that the right-hand side is < ay. It
follows that for this value of 4 there is no solution of (I1.21) of the form
u=y+ ¢ with ||| = 7.

The same conclusion holds for solutions u = y + ¢ of the equation
Lu+bu=1+Aeh—bu), where0 <A<

Here, A = 1 gives equation (II.21), while for arbitrary A the function
¢ = u — y satisfies (I1.28) with a factor A on the right side. Hence we
have the same conclusion: There is no solution u = y+ ¢ with ||¢|| = ~.

Since the degree is invariant under a homotopy, we get

drs(u—L7'(1 — but + €h), B,(y),0) = drs(u — L7'(1 — bu), B,(y),0).
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- The equation u — L~}(1 — bu) = 0 has the unique solution » = y, and

the degree on the right-hand side is equal to
drs(u+ L™"bu, B,(0),0).

The eigenvalues p of the operator u + L™ bu are connected with the

eigenvalues A of L by

u+L’1bu=pu<=>Lu= 17}

p—1

or p=1+ % It follows from (II.19) that there is just one negative
eigenvalue p which corresponds to A;g = —3. Thus the usual method of
approximating on finite-dimensional subspaces spanned by eigenvectors
with dimension going to infinity (see [N]) shows that the desired degree

is —1, as asserted in Lemma IL11.

Proof of Theorem IL.8. Equation (II1.21) can be written in the

form
Su:=u— L1 —but +¢€h)=0.

The degree of Su on a large ball of radius R > Ry is +1 by Lemma
I1.7. We know from Lemma II.11 that the degree on the ball B,(y) is
—1. Choosing R > R, so large that B,(y) C Bg, we can conclude that

ds(Su, BR\B,(y),0) = 2.

Therefore, equation (I1.21) has at least two solutions, one in B, (y) and

one in Bg\B,(y). This concludes the proof of Theorem II.18. .

It is natural to ask if the phenomenon of multiple solutions contin-

ues to occur for large values of b. The next theorem gives a partial



More general operators 71

answer to this question.

THEOREM II.9  Suppose the eigenvalue A, is simple and N and N’
are the nearest eigenvalues to the left and right of Ao, respectively.
Then equation (I1.21) has at least two solutions for b in (X', Ano), or it

has at least two solutions for b in (A0, A").

Proof. The proof of Theorem II.9 runs parallel to that of Theo-
rem II.8. Lemma II.5 and Lemma II.6 hold for M’ < b < )", and the
proofs carry over. Instead of Lemma IL7 we can conclude, by virtue of
the a priori bound, that the degree given there is defined and constant
for M < b < A". The reasoning of Lemma IL11 is valid in each of
the intervals (X', A;0) and (Ao, A”). The degree is 41 on one of these
intervals and —1 in the other interval. Hence, for b in one of these ‘
intervals, we have the same situation as in the proof of Theorem III.6,
namely different degrees on a large ball and a small ball contained in

the large ball. .

It is still an open problem as to whether at least two solutions exist
for b > 15. One can also ask whether more solutions exists, if & > 15.

We remark that considerably more is known in the case that the load
is not constant, but is distributed as W(z) = Wycosz. In particular,
many additional solutions are obtained for all positive values of b. In
addition, stability results are established in [L-McKS6].

It would be interesting to include viscous damping in equation

(IL.16). The methods of this paper do not seem to apply to this case
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as H is not invariant under change of the damping term. Clearly, some
additional hypotheses on h(z,t) are required.
We also remark that the linear problem
Au+bu = f(z) in Q,
u = Au=0 on Of)
needs more study. Namely, we should be able to estimate the value
¢() with the property that for 0 < b < ¢(Q) the inverse operator
is positivity preserving (we remind that in the one-dimensional case
Schroder’s Theorem 1.8 gives a complete answer to this question).
In [McK-W1], it was conjectured that this constant ¢(f) is largest

among all regions of a given volume, when Q is a ball.



Chapter III

The contraction mapping
theorem and finite
dimensional problems

In this chapter, we begin the study of the proof of the existence of at
least four solutions, and if f'(+00) > A3, of more than four solutions.
The flavor of this chapter is fairly abstract, insofar as we shall be making

few assumptions on the operator A in the equation
Au+ f(u) = té, + h, h € L*(Q). (IT1.1)

Of course the reader will think of the Laplacian, with Dirichlet bound-
ary conditions on a bounded region in R™. Throughout the chap-
ter, A is a operator from L*(Q) — L?*(Q) with compact inverse,
with eigenvalues —);, each repeated as often as its multiplicity, with
0< M <A<\ < - — 400. We assume the first eigenfunction
¢1 satisfies ¢1(z) > 0 for all z € Q and that there exists ¢ so that
$1(z) £ €0go(z) >0, Vz € Q.

The plan of the chapter is as follows. In section 1, we prove the

existence of at least four solutions to the piecewise linear equation. In

73
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section 2, we extend the results to the nonlinear equation, proving that
if f'(—00) > Ay, A2 < f'(+00) < A3, then for large ¢, (IIL.1) has at least
four solutions. In section 3, we consider the case where the multiplicity

of A3 in odd, and produce five (and generically six solutions).
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ITI.1 The piecewise linear case

THEOREM III.1  Ift >0, a < A;, A2 < b < )3, then the equation
Au+ but — au™ = t¢, (I11.2)

has at least four solutions.

Proof. The general plan of the proof is somewhat similar to that of
Theorem 1.5. We use the contraction mapping theorem to reduce the
problem from an infinite dimensional one in L?(f) to a finite dimen-
sional one. Last time it was the one dimensional subspace spanned by
¢1. This time it is the two dimensional subspace spanned by {¢, ¢,}.

Thus if ¢ € L*(Q), then g = 2 Cn¢n, where [|g|* = S c2. Let
Pg = c¢1¢1 + co¢2, so that P is orthogonal projection on the space
spanned by @1, ¢,, and of course, since Ag = — Y \,c,¢n, we have that
P and I — P commute with A. Thus, letting u = Pu+(I—P)u = v+w,
where v = Pu, w = (I — P)u, we have that (II1.2) is equivalent to

(i) Aw+ (I —-P)(b(v+w)t —a(v+w))
(i) Av+ P(b(v +w)t —a(v+w)7)

0,
ty.

o

(I1L3)

We look on this as a system of two equations in the two unknowns
v and w.

Let us show that for fixed v, (II.3.i) has a unique solution w = 0(v),
and that, furthermore, 6(v) is continuous in terms of v. This step is
similar to the proof of Theorem 1.1, and the reader should notice that

an abstract version of (I.1) would prove this.
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Choose s > 0,€¢ > 0 so that —p+ €< a,b< Az3—e. Let y = ’\—32—;ﬁ

Write (II1.3.1) as
(A—7)w=~(I-P)(bv+w)* —a(v+w)” —7(v+w)

or equivalently
w=(A=7)7"(I - P)g,(w),
where
go(w) = b(v +w)" —a(v +w)” — (v +w).

An elementary calculation gives that

0s0) = (] < (22— ] oy =

since |a — 4|, |b—7] £ (1\3-;—& - e). Thus we can conclude that, if || ||

is the norm in L%(9), ||gu(w1) — gu(w2)|| < (5\—3%'—/& — 6) ||lw1 — w2l as
in the proof of Theorem L1, it is easy to check that ||[(A —~)~}(I —
P)| = )\?%—_7, since the operator (A — 4)~}(/ — P) has eigenvalues
0,0,(—A3 — )71, (—=Ag — p)~! and the largest of these is, in absolute
value (A3 + u)~*. Therefore, for each fixed v € PH, we have that the
map T, : (I — P)H — (I — P)H given by

Ty(w) = (A=) (I = P)(b(v + w)" = a(v +w)™ = (v + w))

satisfies

i)~ o < (2) (22 - ) o =

and thus is a contraction, with constant 1 — )\32T6ﬂ Thus there exists
“a unique fixed point (v) satisfying (IIL.3.i). It is left as an exercise to

verify that 8(v) is Lipschitz continuous, with constant 1£_c
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Therefore we have reduced the Problem II1.2 to the study of an

equivalent problem
Av+ P(b(v + 0(v))T — a(v 4+ 0(v))”) = s¢, (I1L.4)

defined on the two dimensional subspace PH spanned by {#;, ¢}
While one feels instinctively that (II1.4) ought to be easier to solve,
there is the disadvantage of an implicitly defined term #(v) in the equa-
tion. However, in our case, it turns out that we know #(v) for some
very important v’s.
If v > 0or v <0, then (v) = 0. For example, let us take v > 0
and 6(v) = 0. Then equation (II1.3.i) reduces to

A0+ (I - P)(bvt —av™) =0

which is satisfied because v* = v, v~ = 0 and (I — P)v = 0, since
v e PH.

Since v = ¢, ¢; 4242, there exists a cone C; defined by ¢; > 0, lea] <
€oc1 s0 that v > 0 for all v € C; and a cone C3, ¢; <0, |¢;| < €ley| so
that v <0 for all v € C,.

Thus, we do not know 8(v) for all v € PH, but we know w = 0 for
v € C1 U (y, and we need to study the map

v — ®(v) = Av + P(b(v + 0(v))* — a(v + 8(v))7).

First we consider the image of the cone C;. If v = ¢,¢; + ¢y, > 0, we

have

D(v) = —Mc1dr — Aacady + b(er1¢r + c262)
= (b= A1)erdr + (b— X2)cods.
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Thus the images of the rays ¢;¢1 * €oc1¢2 can be explicitly calculated
and they are

(b - )‘1)01¢1 + (b - )\2)6061¢2,

or in other words the rays

b— A
di1$1 % € (b — Aj) d1¢1.

Thus ® maps C, into the cone

b— A
D, = {d1¢1 +dydy, d1 20, |dy| < € (b— /\j)}

and we can represent this in figure 1.

I (1)
{01}

IC1>I'V\ B(IV) Figure 1.

Similarly for C; we can explicitly calculate the image under ®. If ¢ <0,

q’(01¢1 + €ocl¢2) = (a - /\1)01 ¢1 £ €o(a — /\2)Cl¢2

and we have figure 2.

L
l 11
K
PR
2 O(1I) Figure 2.

Thus, ®(v) = t¢; has one solution in each of the cones Cy, (3, namely

12031 té

bo X a= X At this stage we need a lemma.
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LEMMA III.1  There exists d > 0 so that

(2(c161 + c262), 61) 2 dlc]. | (1IL5)

Proof. Let us write f(u) = bu* — au~ for brevity. Then
O(c141 + &262) = A(cr61 + e262) + P(f(créhr + 292 + (e, c2)).
So if u = ¢1¢ + ca¢hy + 0(cy, c2), then
(®(c161 + c26h2), d1) = (A + M)(erds + eadha), d1) + (F() — Mu, ¢1).

The first term is zero because (A+ A;)¢; = 0 and A is self-adjoint. The
second term satisfies f(u)—Au > y|u|, where y = min{b—\;, \; —a} >
0. Therefore (®(ci¢1 + c202), é1) > 7 [ |u|d1. Now there exists d > 0
so that y¢; > d|¢;| and therefore

7 [Tulés] 2 d [lullgal 2 dl [udl = di(u, 65)
which concludes the proof of the lemma. "
We are now in a position to describe the behavior of ® in the com-

plement of the two cases C; and C,. Let us consider the image under

® of ¢4, + 3¢, with ¢; > €|ey|, ¢; = k for some k& > 0.

L (1

Nz
,m Figure 3.

The lemma tells us that the image ®(L) of ¢; = k, |¢;| < %k must

lie to the right of the line ¢; = dk, and must therefore cross the positive

¢1 axis in the image space.
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Thus we have shown that if u = c1¢y + k¢2 + 0(c1, k), k > 0,
la] < (%), then u satisfies, for some ¢;, Au + but — au™ = s¢, for

some s > dk and k positive. Letting & = (%) u, we see that @ satisfies
At + bt — ati = t¢y.

Similarly one shows the existence of another solution  satisfying Au +

bg*’ —au” = t¢, with (u, #2) < 0. Thus we have four solutions, one in
each of the four cones, which C;,C, divide the ¢;, ¢, plane into. This
concludes the proof of Theorem III.1. "

REMARKS. Later, we will see more specialized and technically
sophisticated proofs of four solutions, one of which gives ezactly four,
another which works for all b > X,, not just A, < b < A3. However, this
remains the most elementary and general. The proof depended very
heavily on the fact that we reduced the equation to a two-dimensional
equation. It is natural to suspect that some version of this method
would work if @ < A, A3 < b < Ay, and we reduced the problem to
one on the space spanned by {4, ¢2,¢3}. We would again know &
explicitly on two cones, but then the complement would no longer be
disconnected. Perhaps instead of considering images of rays in the
complement of the cone, one should consider images of planes. If A, =
A3, we may only get four solutions for a slightly perturbed problem,

but in the case of simple eigenvalues, it would be natural to expect six.
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II1.2 At least four solutions - the nonlin-
ear case

In the last section, we depended very heavily on the exact form of
the piecewise nonlinearity. In this section, we return to the study of
equation (I.1) for large ¢t. We would like to say that, in some sense,
Theorem III.1 was stable under perturbation, which is after all, the
relationship of the nonlinear equation with large ¢ to the piecewise
linear. If we were content to consider the case where f’(s) < A3 for all
s, then the task would be fairly simple. We would show that the reduced
two-dimensional picture remained largely unchanged as c; and ¢, were
made very large. However, we regard that restriction as somewhat
artificial, restrictions on the derivative being only used previously for
obtaining upper bounds in the number of solutions.

On the other hand, if we abandon the restriction f’ < M3, then
we cannot just consider the two dimensional reduction any since no
longer would there be a unique solution to equation (II1.3.i) and thus
no reduced problem.

Our plan is the following; we first convert the two dimensional state-
ments in section 1 into degree theoretic statements in the space L%(12),
and then show that these results can be perturbed to give the result
for the nonlinear equation with large t.

Our first lemma is a degree theoretic interpretation of Theorem
IIL1.

Recall that ¢y, ¢, satisfy ¢;(z) — €o|da(z)| > 0 for all z € Q. Also
recall that if ® : PH — PH is defined in Theorem III.1 then there
exists d > 0 satisfying the conditions of Lemma III.1.
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The map ® : PH — PH takes the value ¢;, once in each of the
four different regions of the plain. The next lemma gives information

on the degree of the map in these regions.

We define F : RZ — R? by
F(s1,82) = (t1,t2) if v = 5141 + $202, ®(v) = t161 + t262.

LEMMA II1.2 Let p = (1,0). Let r be so large that r > 1, r(b—Ay) >
1, r(\ —a) > 1, reg > 1 and rdeg > 1, where d and € come from

section 1. Let

D, = {(s1,%2)|0 < 81 < 7;|s2] < €0€1}

Dy, = {(s1,82)|[81] < ry€ls1| < 32 < €7} (IIL6)
Ds = {(s1,82)] =1 <31 <0,]s2]| < ¢€|s41]} )
Dy = {(s1,82)||s1] < 7, —eor < —eolsa}

If deg(F, Dy, p) denotes the Brouwer degree of F' with respect to Dy and
p for 1 < k <4, then d(F, Dy, p) is defined for 1 < k < 4 and

deg(F, Dy, p) = (=1)**".

Proof.

First consider D;. If (s1,s5) € D and v = 816, +32¢2, then 6(v) = 0.
On D, the map F(s1, s2) is given by F(s1,32) = ((b—A1)s1, (b— A2)s2).
Since 1 < r(b— A;) the equation F(s;, s3) = p has the unique solution
(s1,82) = ((b— A1)7%,0). Since the determinant of the linear diagonal

map is positive, we have
deg(F, Dlap) =1L

In the case of D3, we have the diagonal map with two negative entries,

(a — M), (a — A;) and the determinant is also positive near the unique
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solution in this region given by ((a— A;)™*,0), so again deg(F, Ds,p) =
1.

Now consider D;. The boundary of D, consists of three line seg-
ments;

(i) a ray in the first quadrant R;.

(ii) a ray in the second quadrant R,.

(iii) a line segment L of s; = €or, parallel to the s; axis.

As we observed in the proof of Theorem III.1, the image of R; under
F will be a straight line segment in the fourth quadrant, the image of
R, will be a straight line segment in the fourth quadrant and the image
of L will be to the right of the line s; = 1, by virtue of the requirement.

Now consider the linear map u — Bu, where B is given by

1 0 0 1
5=y 2[5 o]
The image of Ry under B, BR;, will be a straight line in the first
quadrant, so if 0 < A < 1, we have

ABs + (1 = A\)F(s) # p, s =(81,82) € Ry.

The image of the ray R; under B is in the fourth quadrant and again

we have
ABs+ (1= A)F(s) # p, s = (s1,82) € Ry.
Finally, if s € L, then s3 = ¢or > 1 so
Bs € {(s1,82)]s1 > 1}

and thus ABs + (1 — A\)F(s) # p for s € L. By the usual homotopy
argument,

deg(Fa D2>P) = deg(B’ Dz,P)-
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But we know that Bs — p has exactly one zero in D, and the sign of

the determinant of B is —1. Thus
deg(F) D2,p) = -1

The proof for Dy is similar so we leave it as an exercise for the reader.

Using the definition of the degree of a mapping on an arbitrary fi-

nite dimensional space, we obtain, letting V = PH;

LEMMA II1.3 If for1 < k <4,
Up = {veV]v=s1¢1+ s2¢2, (81,52) € Dy}
and T :V — V is defined by
Tv = PA (b(v + 6(v))* — a(v + 6(v))")

then

deg (1 +T,U,, —%) = (—1)k+.,
1

We have now calculated the degree of the two dimensional map on
the various regions. But we remind ourselves that the two dimensional
map is obtained from the infinite dimensional map by using the con-

traction fixed point theorem. Qur aim now is to perturb the equation
Au + but —au™ = sé,.

To do this, and arrive at the full non-linearity f equation, we could

proceed in two ways. We could restrict the class of f under discussion
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so that they satisfied f' < A3 — e. Then each perturbed problem could
be reduced to a two dimensional problem which could be viewed, for
large s, as a perturbation of the piecewise linear problem.

The reader will soon see that this would be extremely restrictive.
What we do instead is to deduce, from our knowledge of the two di-
mensional degree, a result on the degree of the associated map on the
infinite dimensional space. This can then be perturbed by small per-
turbations, which perturbations need only be continuous.

Let Nu = A~ (but — au™).

LEMMA II1.4  LetUg, 1 <k <4, and T be as in the preceding lemma.
If r; > 0 is sufficiently large, and for 1 < k < 4

Y = {u € LYQ)|Pu e Uy, ||(I - P)u < r3), (IIL7)

then the Leray-Schauder degree d (I + N, Y%, -%) is defined and

d (I + N, Y, —ﬁ> =d(I+T,U,, f—i) = (=1)**1,

Proof.  The proof of this lemma comes in several steps. First, we
observe that there exists r; > 0 such that if v € Uy, 1 < k < 4, and
w = (1-38)(I - P)N(v+w), then ||w|| < r;. This is because, as already
observed, the map w — (1 — s)(I — P)N(v + w) is a contraction on
(I - P)H, for s, 0 < s < 1. Now choose r, > 71, and Y} as defined in
(ITL.7), for some fixed k. Define h; : Y x [0,1] — L? by

ha(u,s) = (I — P)N(v+w) + PN(v + w + s(8(v) — w)),
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where v = Pu, w = (I — P)u. We obtain
u+ hi(u,s) # —?l for (u,s) € Yk x [0,1].
M

There are two possibilities to consider in u € 0Y;. One is that u = v+w
with v € Uy, ||w|| < 72, s € [0,1], and u + hy(u,s) = gL In this
| case,
w+ (I —P)Nv+w)=
and
v+ PN(v+w+s(f(v) —w)) =—+

The first of these implies w = 6(v), and the second 1mplies v+ PN(v+
6(v)) =v+ N(v) = —%, which contradicts the fact that v € 9Uy.
Now suppose v € Uy, w € (I — P)H, |lw|| =r;. 0 < s <1and
__9
u+ hi(u,s) = %, then

w+ (I —P)Nv+w)=0,

so w = 0(v) and ||w|| < r1 < re, which is a contradiction. This shows
that u + hi(u,s) # % for all (u,s) € dYx x [0,1], and it follows by

homotopy invariance of degree that

d 1+N,Yk,—ﬁ =d|I+hi(1),Ys,— AN
Al A1
Now let kg : Yi x [0,1] — L*(2) be defined by
ho(u,s) = (1 — s)(I — P)N(u) + PN(v+0(v)), v= Pu.

Ifvedly, we(I-P)H, 0<s<1, u=v+w,and uthy(u,s) = %,
then

v+ T(v) =v+ PN(v+0(v)) = Plu+ hy(u,s)) = —
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which contradicts the fact that there are no solutions if v € 9U;. If

u=v+w, vE€ U, we (I - P)H, |w|=r,, then
0=(—P)(u+hs(u,s)) =w+(1—-3s)(I—-P)Nv+w),

which would imply that ||w|| < ry, which is a contradiction. Therefore,
u+ ho(u,s) # %, for (u,s) € 0Y; x [0,1]. Since hy(u,1) = hy(u,0), we

infer by homotopy invariance that

AT+ N, Yy =22 = d(T + hy(,1), Y5 - 20,
/\1 Al

Let B be the open ball of radius ry in (I—P)H. If u € Y, v = Pu,w =
(I — P)u, then u + hy(u,1) = v+ PN(v + 0(v)) + w.

Thus we see that the map v — u+ hy(u, 1) is uncoupled on PH @
(I — P)H and is the identity on (I — P)H. Therefore by the product
property of degree,

d(I + N,Y;, —%) =d (I + T, Uy, —%) = (=1)**1, (I11.8)
1 1
This concludes the proof of Lemma II1.4. "

REMARKS. What we have just proved can be put into an abstract

context. Assume one has an operator equation
Lu+ N(u)=0 (I11.9)

on a Hilbert space H. Assume that there exists P, commuting with L,

so that

H=PH®(I—-P)H, uveH, v=Pu w=(I-P)u,
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and (IIL.9) is equivalent to

i) Lw+(I-P)Nv+w) = 0

i) Lv+PN(v+w) = 0. (ITL.10)

Assume that for fixed v, (I11.10.1)) may be solved uniquely and contin-
uously for w = 0(v) and that for bounded v, there exists an a prior:

bound for §(v). Then

LEMMA II1.5 (THE PRrISM LEMMA)  Given a bounded region U C
PH such that
v+ L'PN(v+0(v)) =0 (TI1.11)

has no solution on OU, andr > 0 so thatv € U, Lw+(1—s)N(v+w) =
0,0<s<1,imply|w| <r, thenif Y ={u: PueU,|([I-Pu| <r},

we have
d(w+ L7'PN(v +6(v)),U,0) = d(u + L™'N(u), Y, 0).

Finally, having proved Lemma II1.4, we are in a position to produce

solutions to the semilinear problem
Au + f(u) = s¢1 + hi(z) (111.12)

instead of the piecewise linear one,
Au+but —au™ =¢1, a<A, M<b<. (111.2)

Then, as before, if f;(u) = but — au™, we have

f(¢) = fi(¢Q) + fo(¢), with lim fol0) _

0. I11.12.
B, e (II1.12.a)
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We rewrite (I11.12) as

Az + fi(z) + f"—(jz—) = ¢:(z) + h—i—‘ﬂ  (IIL12.b)

In view of (III.13), we consider (IIL.14) as a perturbation of (II1.2). Let

N,(z) = A! (fl(z) + _fo(%)_ - g—)
and let
N(z) = A7(f1(2)).

Then it is easy to verify that
Jim [IN(2) = N(2)] = 0

uniformly for z in bounded subsets of L?(Q2).
Finally, we have everything in place to prove the main result of this

lecture.

THEOREM II1.2  Let f satisfy (111.12.a). There exists sq so that s > So
implies that
Au + f(u) = s¢1(z) + h(z)

has at least four solutions.

Proof. We have established that
z+N(z)=—% forall z€ oYz, 1<k<4.
1
Since 0Y} is closed and bounded, and N is continuous and compact,

there exists n > 0 such that

z+N(z)+%"217 if n € oY;.
1
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Now choose sg so that

|INs(2) — N(2)|| < g for z € Yy, 1<k<4.

Then
z4 N(2) + (1 = X)(N,(2) = N(2)) + % 2> g‘
1
for 0 < X < 1, from which we conclude
d (I+ NS,Y,C,—%) =d (I + N,Yk,—fﬁl) = (-1, 1<k<4
1 1

This proved the theorem, since we have at least one solution in Y, 1 <

k <4. =

I11.3 Existence of more than four solu-
tions

The plan to demonstrate the existence of more than four solutions is
as follows:

We have already produced four regions of non-zero degree if a <
A1, A2 < b < As. We show that these regions have the same degree even
if b = \3. We show that there are no solutions on the boundary of
our regions Y;, even if b = A3. This allows us to shows that there are
no solutions if A3 < b < A3 + €. This in itself would only demonstrate
the existence of four solutions. However, the solution E%{ is now
contained in a small ball on which the topological degree is —1 which

is inside a prism Y; with topological degree +1. This means that Y3
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must contain at least two and generically three solutions and thus the
total number of solutions will be at least five and generically six.

To carry out this plan, we need some technical lemmas.

LEMMA II1.6 If A\, < ¥ < V', there exists r3 so that if b’ < b < b"
and Au + but — au™ = ¢y, then ||u|| < rs.

Proof. Left as an exercise to the reader. It can be done by
contradiction, as in the earlier estimate. It can also be done by splitting
the equation into PH and (I — P)H, where P is a projection onto
{#1--- én} with ¥ < A,. Then one equation is coercive on (I — P)H

and this gives a bound in terms of Pu. This proves that
| Pul| — 400 implies (Au + but —au™, ¢;) — +oo.

The next lemma is just a “uniform” restatement of the previous

Lemma I1.4.

LEMMA III.7  Letr satisfyr > 1, 1 < (A= A))r, 1 < (A —a)r, 1 <
€or, and 1 < epdr. Let Dy, Uy be as before (Lemma I11.2, 111.3). If rs
is chosen so that Au+but —au™ = ¢; and Xy < b < A3 imply ||u|| < rs,
and Zy = {u € L*(Q)|Pu € Uy, ||(I — P)u|| <r3} fork=1,...,4 and
K : L*(Q) X [A2,00) — L*(Q) is defined by K (u,b) = A~ [bu* —au™],

then
#

d (I + K(.,b),Zk,—X-> = (=) ! for Ay < b< Ay
1

and k=1,...,4..
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Proof. This is just the observation that we can choose the region
7, in such a way that as long as A\; < b < A3, the estimates for the proof
of Lemma II1.4 still hold. We have the degree defined for A, < b < As.
The next task is to show that the degrees remain defined if b = A3. To

do this, we must show that
Au+but —au™ = ¢

has no solution on the boundaries of Zy, k =1,...,4.
Note that there are no solutions if ||(I — P)u|| = rs. Similarly, there

are no solutions if | (, ¢3) | = €d, since then
(Au+ but —au™,¢;) > 1

by Lemma IIL1.

Therefore if there are solutions, they must be of the form

u=ci$1+ 202 +w

with ¢; = Fepcy.
Again, there are no solutions of this form with w = 0, since in this
case u > 0 or u < 0 and we have solutions to the linear equation. Now

let us suppose
u=0v+w, v = ¢1¢1 £ €c1 02,

Au+but —au” = ¢,.

Then taking projections, we have, for any -,

(A+7)w+ (I = P)(f(v+w) = (v +w) - f(v) = yv) = 0.
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Recall f(v) is equal to either bv or av depending on whether ¢; is

positive or negative. Now choose v = a, and we have
(A+ 7w+ (I = P)(ks — a)l(o + w)* — v*] = 0.

But ||(A + 7)w| = (A3 — a)|jw|| and ||(v + w)* — v*|| < [|w|| unless
v+w >0, v > 0. Now unless v+ w > 0 and v > 0 we have a

contradiction, since

(A3 = a)llw]] < [I(A+7)w|l
= (A= a)ll(I = P)((v +w)* —v*)]|
< (A —a)llwl.

On the other hand, if v+w > 0, v > 0, then taking P of Au+f(u) = ¢,
we get f(u) = bu, and hence

Av + bv = ¢y,

and we know this has no solution for v = ¢;¢; + €yc;¢,. We have now

proved the following.

LEMMA II1.8 If Z; are as defined in Lemma II1.7, then we have

d (I + K(-, A3), Zk, —%—) = (=1)k*1,

Thus the equation
Au+ dut —au™ = ¢

has at least four solution. Furthermore, by the same reasoning as be-

fore, we have ||z+I((z, A3)|| 26> 0forallz€ dZ, k=1,...,4. This
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has no solutions on 8Zk, k = 1,...,4, if A\3 < b < A3+ €. From this we

conclude that

d (1 + K(-,b), Zs, —%) = (—1)**!

for A3 < b < A3 + e. However, by Theorem 1.8 of Chapter I, we may
. )
now choose a small ball B with center FLLJ\‘] so that

d (1 + K(-,b), B, —ﬁ) = -1,
M

if the multiplicity of A3 is odd. This ball can be chosen properly con-

tained in Z; and with no zeros of I + K(:,b) + % on the boundary.
This gives, by excision that the degree

d (1 + K(-,b), Z, —%-) =2,
1

since

d (1 + K(-,b),Zy, —ﬁ) = +1.

This allows us to conclude that Z; must contain at least two solutions

and that the equation
Au+ but —au™ = ¢

has at least five solutions for A\3 < b < A3 + . Put in the usual
perturbation argument with ﬂosfl — 0 as |s] — 400, and we have

proved;

THEOREM II1.3  Let A3 be of odd multiplicity. Then there exists € >
0, to >0 so thatifa < A1, A3 < b< A3+ € andt > i,

lim —[@:b, lim ®=a,
s—+4+00 8 §——00 8§
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then the equation

Au+ f(u) = té; + h(z)

has at least five (and generically siz) solutions.

In concluding this section, we ought remark that we are left in the
same situation that we were in at the end of Chapter I. There, we knew
there were at least three and generically four solutions for large t, if
f/(=00) < A1, A2 < f'(+00) < A3. Now we know there are at least
four always.

We know that if f'(—o0) < A1, A3 < f/(+00) < A3+, then there are
at least five and generically six solutions if A3 is of odd multiplicity.
If A3 has multiplicity one, Solimini was able to show there are exactly

six solutions.

ITI1.4 More general operators

To emphasize the generality of the method of this chapter, we apply

these methods a non variational problem, already studied in Chapter II.

Here we look for T-periodic solutions of
Dyu = Lu+ f(u) — s¢; — h(z,1) (IT1.13)
which we consider as a perturbations of the problem

Diu = Lu + but — au™ — s¢,. (IT1.14)
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The object is to reduce the study of (II1.13) to a map on a two-
dimensional subspace spanned by ¢;(z) and ¢5(z) with ¢ an ¢ > 0 so
that ¢;(z) £ ed2(z) > 0, all z € Q. |

To do this, we need to introduce the orthogonal projection P onto
the subspace spanned by ¢o;(z), ¢o2(z) and the orthogonal projection
I — P onto the space spanned by ¢o,, n >3 and ¢2,,,, ¢5.,., m > 1.

As before, (II1.13) is equivalent to, writing w = (I — P)u,v = Pu,

(1) w = (Dy=L)(I-P)fi(v+w)

(i) Dw = L,+Pfi(v+w) (111.15)

The key ingredient here is that for fixed v € PH, equation (III.15.i)
should have a unique solution w = 6(v) in (I — P)H. To ensure this,

we must have an additional assumption on T'. If o is the spectrum of
D, — L, then recall that o = {)\n + 2—2—%@, n>1, m> 0} and when it
comes to estimating ||(D; — L —aI)~!(I — P)|| we observe, since D, — L

is normal that

I(De = L —al)™(I-P)|

. -1
= dist(a,{(/\n:!:ﬁ;m——a> | mZO,nZ?}).

Thus for (IIL.5.i) to have a unique solution, we require that there

exist a so that the map
w — (Dy — L —al) (I — P)(b(v + w)* — a(v + w)~ — a(v + w))

be a contraction. For this to occur, we must require that there exist
a circle C of radius r and center a such that C contains the points
on the real line a, b, A1, A; and does not contain any other point of the

spectrum of D; — L.
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Once this detail is handled, all the other calculations of Chapter III
go through in a routine manner, in particular the calculations of degree

and the use of the Prism Lemma and one has the following:

THEOREM I11.4  Let h € H. Assume f'(—o0) = a, f'(+00) = b exist
and are finite. There exists To such that if T < Tp and a < Ay, Ay <

b < A3 where Ay is simple, then the equation

D = Lu+ f(u) — s¢; — h(z,t)
u(z,t+T) = u(z,T)

has at least four solutions for sufficiently large s.

Moreover, there exists € such that if A3 is of odd multiplicity and
Az < b < A3 + ¢, then the equation has at least five (and generically

six) solutions for e sufficiently large s.

We remark that there is still a lot missing from the non-self ad-
joint operator. Surely the restriction that T is sufficiently small is not
necessary. One can also apply these methods to the semilinear string
equation to get at least five solutions (I think). This has not been

done.

Can these finite dimensional methods be used to generate four (or

more) solutions when b > X3? This seems hard.

Can we get ezactly four solutions if b < \3?



98 PATRICK J.MCKENNA

II1.5 Nonlinearities crossing higher eigen-
values

The reader will have noted that in Chapter I, we started with Hammer-
stein’s and Dolph’s theorems, when the nonlinearity remained strictly
below the first eigenvalue, and strictly between two eigenvalues. We
have spent some time exploring the case where the first eigenvalue and
the first two or three eigenvalues are crossed. In this section, we con-
sider the case of crossing other eigenvalues than the first. It would be
surprising if there were not some analogous results in this case, and

there are.

Throughout this section we shall continue to study the operator
equation

Au+but —au " =h in L2(Q)

where A is self-adjoint, has eigenvalues —\;, A\; — +o00, Ay > 0, the
eigenfunction ¢, associated with \; is strictly positive in (2, all ¢;’s are

regular.

One important point : In the following, we drop our practice
of counting each eigenvalue as often as its multiplicity, and count each
distinct eigenvalue only once.

Note that all eigenfunctions corresponding to eigenvalues other than

A; must change sign in .

LEMMA II1.9 Given a > 0, A\, < @ < Au41, there exists by = by(a)
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satisfying Any1 < b < Aut2, and a constant k < 1 such that if \yy <
b< b, F:L¥Q) — L*N) is given by

F(u) = bu* — au” and c=ﬁ1—t12+—a,
then
I(=A = eI)7H(F(u) — cu)|| < klu] (IIL.16)

for all u € L*(Q).

Proof. Let H = L*(Q). Let P be orthogonal projection of H onto
the finite dimensional subspace of H spanned by the eigenfunctions of
— A corresponding to An4q.

Since a non-zero element of PH is continuous and changes sign on

(2, there exists ¥ > 0 so that
+? = max{ /Q (6%)2dz|6 € PH, 6] = 1} < 1.
Since the eigenvalues of the compact self-adjoint operator
(—A—c)"Y(I - P): L*(Q) — L*}Q)

are (Ay, —c)" ! with m #n +1, if k; = max{(c— A\,)7}, (Apg2 — )7},
then
(=4~ )™ (I = P)|| = ks. (I11.17)

Similarly, ||(=A — ¢)7'P|| = (A1 — ¢)"! = k; and, of course, k; < k;.
Let Any1 < b < Any2, and we claim that if k% = k2(b) = {y2%k? +
(1 —=~?)k2}(b—c)?, then (II1.16) holds for all u € L%(R2). To prove this,

note that sinceb—c > Ay —c=c—a.

(c—a)|u| S (b—cut +(c—a)u” < (b—c)|lu| a.e. on Q‘
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for all u € L%(Q). Therefore if u € L*(Q2), then
|| F(u) — cqu <(b— c)||u||2 (IT1.18)

Let v; = P(F(u) — cu), v, = (I — P)(F(u) — cu) and let z be given by
lv2|l = z(b — ¢)||u||. From (IIL.18), we see that

loall? < (0= O)lull® = loall* = (1 = 2*)(b = ) ||ull*

and therefore

I(=A-) ' (F(u) —cw)| = (A=) ull* + (A=) 'o|?

< (K(1 - 2?) + k32®)(b— o)*||ull”.
If 22 > 1 — 42, then since
ky > kg, K21 — 2%) + k22? k2 + 2?(k2 — k?)
< R4 —7) (k- k)
kD 4+ (1 — ).

Thus (II1.16) holds with k = k(b). If 2> < 1 — 42, then noting that
F(u) — cu > 0, we have

[lol|? /(F(u) —cu)yy < /(F(u) e
(/(F(“) - cu)z)%(/(v+)2)%

(b= lullyllvdl|-

INA

IA

Therefore ||vy||2 < (b — ¢)?4?||u||? and so

A= (P — el < Kl + Kl
< (KP4 (1 =2)k3) (b — c)*|lull®.
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so again (II1.16) holds.
Note that as b | A\,;;, we have

k(b) — 7* + (1 = )k (Ang1 — €)%,

Since k3(Any1 — ¢)? < 1, we have 42 + (1 — ¥2)k2(Any1 — ¢)? < 1 and
from thus we can infer the existence of a number b; in (A,41, Apy2) such

that k(b) < 1 for A,4; < b < b;. This proves Lemma II1.9. "

LEMMA II1.10  Let k* satisfy k < k* < 1. Given h € L*(Q), there
exists Ry = Ro(h) > 0 such that if ||u|| > Ry, then

(=4 —c) Y (F(u) — cu— h)|| < k*||ul|. (I11.19)

Consequently, if R > Ry, Bp = {u € L*(Q)|||u| < R} and N :
L*(QY) — L*() is the compact operator defined by Nu = (—A —
¢)"Y(F(u) — cu — h) then

deg(I — N, Bg,0) = 1.

Proof.  From (IIL.15), we can check that if Ry = ”(_12*__6;0_%“,
then the first assertion of the lemma is true. If 0 < s <1, and ||u|| > Ry,
then

= sN @)l > (1= k)[ul] > 0.
Thus by homotopy, deg(f — N, Bg,0) = deg(I, Bg,0) = 1. This proves

the second assertion of the lemma. n

As in earlier sections of this chapter, we shall be primarily concerned

with the equation

Au+ but —au™ = t¢,. (I11.20)
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If t > 0, this equation has as a solution Z = E—t_%

LEMMA III.11  If M4, is an eigenvalue of multiplicity k > 1, then
there exits r > 0 so that if

B.(Z) ={u€ L*(Q)|lu— 2| < r}

and if
Tu=(—A—-c¢)"Y((b-c)ut — (a — c)u™ —tey)

with ¢ as above, then
deg(u - TU,B,.(Z),O) = (_'1)k°

Proof.  The proof is almost identical to that of Theorem L5 in
Chapter I. One simply show that I — T is homotopic on a suitably
chosen ball, to I — (—A —¢)~*(bI) and proceeds to note that this linear

operator has exactly k eigenvalues less than zero. .

LEMMA II1.12 If ).y, is an eigenvalue of odd multiplicity, A, < a <
A1 and b € (Any1,b1(a)) then the boundary value problem

Au+but —au™ = ¢
has at least two solutions.
Proof. Choose a ball of radius r so that

deg(I = T, B,,0) = (-1)F = -1
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where T is as in the preceding lemma. Now choose R sufficiently large
that
deg(I — T, Bg,0) =1

and Bp properly contains B,. Then deg(I — T, Br\B,,0) = +2 and we
can conclude the existence of at least two solutions in Bg. This proves

the lemma. n

Note that if t = 0, the a priori estimate of (III.15) shows that
u = 0 is the unique solution of (III.19). It is a nice measure-theory
exercise to show that the same remains true if ¢ < 0. Thus Lemma
II1.12 shows that if A,;; is of odd multiplicity, then for ¢ < 0 we have
exactly one solution, and for ¢ > 0, we have at least two and generically
three solutions. It is reasonable to suspect that one ought to be able
to prove at least three solutions. Now we use the Prism Lemma of the
last section to do this in the case of a simple eigenvalue. This time,
we decompose the space H = L?(f2) into the orthogonal complements
PH and (I — P)H, where PH is the span of ¢,,,, the eigenfunction
corresponding to A,y;. Recall that if a,b satisfy A\,1; < a, b < Ay,
then we can decompose the equation (II1.10) Au + but — au™ = t¢, or

the equivalent equation
u=(—A—c) " ((b—c)ut —(a—c)u™ —t$,) = Tu

as the pair of equations

i) (I-Pwu = (I-P)Tu

(i) Pu = PTu. (IL.21)

If we write u = v + w, where v = $¢n41,wLdny1, then for each fixed

v (or s) the equatlion (II1.21.4) w = (I — P)T(s¢n41 + w) has a unique
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solution w*(t), by the contraction mapping theorem (This bears the
same relationship to the decomposition in Section 1 of this chapter
that Dolph’s theorem bears to Hammerstein’s theorem). »

Thus equation (II1.20) is equivalent to v = PT(v +w*(v)) or equiv-

alently, after taking inner products with ¢,
®(s) =5 — (T(sbn41 + w*(8)), dnt1) = 0. (111.22)

Now we are in the position of the Prism Lemma of Section 2, except
that in this case, the space is one dimensional. This will give us more

information.

Let us first restate the Prism Lemma in the form which we intend

to use it here.

LEMMA II1.13 Let 51,5, € R such that ®(s1) # 0,®(sz) # 0. Then
there exits o sufficiently large that if

D = {u € L*(Q)|Pu = $¢n41, 8 € (81,82), (I — P)u|| < ra}

then the Leray-Schauder degree deg(I — T, D,0) is defined and

0 if ®(s1)P(s2) >0
deg(I - T,D,0) = { 1 if B(s1) <0, ®(s2) >0 .
-1 zf@(sl) > 0, @(32) <0

Proof. The proof is virtually the same as in Section 2. The addi-
tional factor is that you can calculate the degree of a map on an interval

by the signs of the function at the two end points. .
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The next lemma takes advantage of the one dimensional character
of the map ®. Recall that in Lemma II1.12, we had a ball with topo-
logical degree —1 inside a ball with topological degree +1. In a one
dimensional space, this would be enough to guarantee the existence of

three solutions, since its graph would have to appear as in Figure 4.

Figure 4.

LEMMA II1.14 With the assumptions of Lemma II1.12, and the addi-
tional assumption that A, is simple, there exits real numbers 7;, ; =

1,...,4 and r; > 0 such that 7; < 7,44, ¢ =1,2,3, and if
Dy = {u € L¥(Q)|Pu = s¢pns1, 5 € (Thy i), ||(I — Pu|| < ra}

then
deg(I — T, Dy,0) = (=1)**!,  k=1,2,3.

Proof.  According to Lemma III.10, there exists R so that all

solutions of u — T'u = 0 satisfy ||u|| < R and deg(I — T, Bg,0) = 1. Let

r9,T1, T4 be chosen so that if
D = {u € L*(Q)|Pu = $¢ny1, m <5< 74, ||(I — P)ul| < ry},
then Br < D, |lw*(s)|| < re, all s € (11,74). By excision,
deg(I — T, D,0) = deg(I — T, Bg,0) = 0.

Therefore, by Lemma II1.13, we must have that ®(r;) < 0 and ®(7,) >
0. Since (¢1,¢ny1) = 0 and Z = t_l -, We see that Z = (I — P)Z,
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and therefore Z = (I — P)T(Z). By the definition of w, it follows
that W*(0) = Z and ®(0) = 0. According to Lemma IIL.11, Z is an
isolated solution of u — T'(u) = 0. Since s¢,41 + w*(s) is a solution of
u—T(u) = 0 if and only if ®(s) = 0, it follows that s = 0 is an isolated
zero of ®(s).

Now we use the Prism Lemma again. If
D2 = {’U, € L2(Q)|Pu = S¢n+1, T < 8 < T3, “(I - P)’LL” < 7‘2},

then since Z is the only solution of u — T'(v) = 0 in D, and the Leray-
Schauder index of u —T'(u) = 0 at Z with respect to zero is —1 we have
deg(I — T, D3,0) = —1. Therefore, according to the Prism Lemma
I11.13, we have

®(ry) > 0, o(m3) < 0.

If D, and D5 are defined as in the statement of Lemma II1.14 we must

have that deg(I — T, Dx,0) = (—1)F*!, and this proves the lemma. =

Thus we have proved the following :

THEOREM II1.5 Given a € (A, \ny1) there exists by € (Any1, Ang2)
such that if M\,4+1 has odd multiplicity, then the equation

Au+but —au™ =t¢; (I11.2)

has at least one solution for t negative and at least two solutions for t

positive.
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Moreover, if t > 0, and if A\,4; has multiplicity one, then (II1.2) has
at least three solutions.

We remark that it is possible, by the work in this section, to give

constructive estimates on b;,.

It is also possible to show that for negative ¢, the equation has
exactly one solution. Note that Lemma III.19 shows that for t = 0,
u = 0 is the unique solution. This method, with some complications,

will also give exactly one solution for ¢ negative.

Theorem IIL5 can also be extended to the semilinear equation,
where the conclusions would hold for ¢ large negative and large pos-
itive instead of merely positive or negative.

One can also do a two dimensional reduction to the space spanned
by ¢1 and ¢,4+1, and do a winding number proof as in Section 2. This
would be fun, but seems to give no additional information beyond that

given by the methods if this section.

ITI1.6 Some geometric interpretations

Let us discuss briefly a geometric interpretation of the results of this
chapter if f'(—o0) < A; < f'(400) < Ag, then for s large positive
equation (III.1) has two positive solutions, and for s large negative, it
has no solutions. This is vaguely suggestive of a simple fold on the
Banach space, and indeed this was proved in [B-C], with the additional
assumptions 0 < f'(—o0) < Ay and f'(s) > 0. How then can we

interpret Theorem III.1 and the zero-four phenomenon? We know the
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reduced two dimensional equation looks like Figure 3.

I !

!

v 1 Figure 5.

And this might suggest a double fold. However, this would not fit in

with the one-three phenomenon as we cross one higher eigenvalue.

The one-three phenomenon is more suggestive of a cusp, of a singu-

larity that appears as in Figure 6.

(T-P)H
Figure 6.

This conjecture actually gives a unified description of the zero-four
and one-three solutions. When we cross A, a fold is created. When
we cross Ag a cusp is created. The map in Figure 5 is merely the
composition of a cusp where R, goes into the third quadrant and R
goes into the second quadrant, followed by a fold, which maps them

both into the right half plane.

Of course all this is speculation. None of these theorems have been

proved.
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III.7 Historical remarks

The proof of at least four solutions in the case f'(+o00) > ), was first
given using variational methods by Hofer [Ho]. There it was assumed
that f'(—o0) < A1, A2 < f'(4+00), f'(+00) # A, for any n. Later
but independently, the authors proved the existence of at least four
solutions if Ay < f'(+00) < As and at least five (generically six) if
A3 < f'(+00) < A3+ €. Then Solimini [Sol] showed, first that one
could remove the restriction f’ (4+00) # A, from Hofer and established,
under hypotheses that will be elaborated in Chapter III, that if A, <
J'(+00) < A3, there were exactly four solutions, and if A3 < f'(+00) <
A3 + €, there were exactly six (assuming A; and A3 are both simple).
Dancer [DAN1], later gave another proof of the existence of at least

four solutions in the Hofer situation.

II1.8 Results on a floating beam equa-
tion

The purpose of this section is to describe a study of the effect of non-
linear oscillations in floating beams. For more details see [L-McK9).
In naval architecture, a ship is frequently modeled as a floating beam.
However, the nonlinear effects that occur when the ship is partly out of
the water, (known in the literature as ‘bottom slamming’) or partly sub-
merged (known as wetting) have not been the subject of much study.

Thus, one would expect the predictions of linear theory to be quite
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accurate for small oscillations but not necessarily for large ones.

Although no catastrophic failures of ships have been directly at-
tributed to large-scale oscillations of ships, the authors have come across
at least one case in the literature which we feel can only be explained by
the presence of large-scale flexings. This is the case of the destruction
of the U.S.S.Orion.

As described in [BMR], on 2 December 1925 this ship was steaming
out of the Chesapeake Capes, very nearly head on into a winds of force
9 which has been blowing onshore for at least 24 hours. The draft of
the ship was 29.8 feet forward and 31.2 feet aft. The charted depth
in the area being crossed by the ship was at least 35 feet. The waves
were reported by the ship personnel to be 150 feet long and 10 feet high.
Within 10 minutes of the time that the upset course was taken, the ship
began to experience ‘excessive vibration’. Although the record is not
clear, the ship was undoubtedly pounding its forefoot on the bottom
at this time. Following every impact, the hull would vibrate for a few
seconds, probably until just before the next impact. Although slowed
to half speed, the ‘vibrations’ continued to from 20 to 40 minutes.. ..
The ship was turned around in the sea and taken back to port, where
its bottom was found to be pushed upwards and fractured. The inner
bottom, for a distance of from about 25 to 130 feet abaft the stem, was
found to be buckled and distorted.

Despite the reported small size of the waves relative to the ship, the
bow apparently pounded on the sea bed intermittently for about 20
minutes. The final damage was so severe that the ship was unloaded,
~ decommissioned at once, and never again put back into military service.

Given that this represents a forced oscillation problem, it seems
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clear that flexing of the ship must have played a role in this curious
oscillation that seemed to favor one end of the ship. It would be difficult
to explain what sort of forcing term could have created this effect in
the linear theory.

The other thing that seems clear from the admittedly sketchy ac-
counts that are available to us is that the frequency of the forcing term
cannot have been as important as one would expect it to be if one was
seeking to explain this phenomenon as one of linear resonance. The
first action taken by the ship’s crew was to reduce speed by half, which
would have the effect of reducing the frequency of the forcing term.
(This is standard seafaring practice when dealing with any threatening
rigid body motion of the ship.)

In this section, we consider a nonlinear model, which takes into ac-
count that the ship may be partly lifting out of the water or partly
submerged but not both. We show that this causes large amplitude
oscillations that would not be predicted by the linear theory. These
oscillations occur in a wide range of frequencies, and frequently several
different periodic oscillations can coexist for the same forcing term. In
this situation, whether the ship goes into large or small oscillations
depends on the initial conditions. Furthermore, numerical results indi-
cate that the magnitude of the oscillations increases as one decreases
the frequency of the forcing term. It is also a striking feature of this
model that asymmetric solutions, with oscillations favoring one end are
predicted in the presence of almost symmetric forcing data.

The authors also feel that this may be an explanation for catas-
trophic failures such as that of the wreck of the S.S. Edmund Fitzger-
ald, usually explained by the failure of the hatches in the presence of
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an (otherwise unobserved) ‘wall of water’. It is easy to imagine that
a series of large waves would push the ship into a large flexing motion
which would have precisely the effect of popping the hatches at the
center of the ship.

First consider a rectangular block of cross-section A floating in wa-
ter. Assume that the difference in density between the block and water
is p. Let U(t) denote the depth of the bottom of the block as it floats.
Assume that the block is floating high in the water, so that it may lift
out of the water but is never submerged. Then the force pushing the
block up in the water is given by pU(t)A if U is positive and zero if U
is negative. Thus, if there is an external forcing term, as well as the

force of gravity, the equation satisfied by the block is given by

02U
for suitable constants b and c.
Now, if we consider the case, not of a floating block, but a floating

beam of length L, it is clear that the equation will be of the form
Uy + Upgze + 6U; + aUt = c+ f(z,1) (I11.23)

where now, U = U(z,t), where 0 < z < L and where the ends of the

beam satisfy free-end boundary conditions, i.e.,
Upz(0,1) = Upy(Lyt) = Upzs(0,t) = Upeo(L,t) = 0.

The constant a is a measure of the cross-section of the beam, and the
constant & represents the viscous damping in the beam.
Now, the purpose of this paper is to examine periodic solutions of

this equation, subject to the free-end boundary conditions. In order to
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approach this problem, we must first gather some information on the
operator LU = Uy + Ugye, With these boundary conditions. First, we
consider the case where the interval is (0, 7).

In turn, to do this, we must first understand the ordinary differential

operator

Ly=y®, y@—y®_0 z-0r (I11.24)

with the additional symmetry condition that U is symmetric about
g—. This operator is a self-adjoint operator with an infinite sequence of
eigenvalues );, and their associated eigenvectors ¢;.

The functions ¢; are given by normalizing multiples of

qAS,- = a; cos (1/; (a: — g)) + b; cosh (V,' (x — g)) (I11.25)

where the v; are the successive zeros of tanh (2275) + tan (’—/271) and
a(t) = cosh (%E) and b(z) = cos (ZQE) The corresponding A are given
by Ai = v}, i > 0. Of course, Ao = 0, with the corresponding ¢o = 1.
(Recall that the eigenfunction (a: - 172[) is ruled out by the symmetry
condition). The functions {@;, ¢ > 0} are an orthonormal basis for the
Hilbert space H = L*(0,7) N {functions even about g—}

If we are interested in periodic solutions of periodic 2 of the partial
differential equation, we will look in the space H = H, & L(0,27) N
{functions even in t}. By our earlier remarks, we have an orthonor-
mal basis of this space given by ®,,, = ¢,,(z)cosnt, m,n > 0, with
associated eigenvalues A, ,,.

The unbounded operator L is a self-adjoint operator on the space
H and the functions ®,,4(z,t) = ¢m(z)cosnt, m,n > 0 are eigen-

functions of L with eigenvalues A,,, = —n? + A,,. Note that an easy
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calculation gives that the v; rapidly approach 2m — %, m=1,2,...
and thus the A,, , rapidly approach (2 (m - %))4 —n?,

Now, if we are interested in the problem on the z-interval (O, %), we
will have the corresponding Hilbert Space H, with the eigenfunctions
(still denoted ®,, ) given by ®,, , = dm(gz) cos nt, m,n > 0 with asso-
ciated spectrum n? — (2 (m — %) q)4 (modulo the first few eigenvalues
which are calculated by a secant method).

Thus, we can conclude that if the interval which we are consider-
ing is (O, %) where ¢ is a rational number with an odd exponent, on
the orthogonal complement of the subspace spanned by the constants,
(which is the eigenspace corresponding to the eigenvalue zero), the op-
erator L has a bounded, compact inverse and for various values of g, we
can explicitly calculate the first few negative eigenvalues of L. Because
the eigenvalues of L go to infinity in modulus rapidly, we need only
calculate the first few values, if we are interested, (as we shall be in the
next section) in the first and second negative eigenvalues.

It is instructive to find the first and second negative values for a few
values of ¢q. For example, if ¢ = 1, then the first negative eigenvalue of
L corresponds to v; = 1.50561869 and n = 3. This is a flexing motion
about the center of the beam of period 237[ and thus if we are using
a forcing term of period =, this would correspond to a superharmonic
solution. On the other hand, if we consider the case ¢ = 0.75 (the longer
boat), then the first negative eigenvalue corresponds to v, = 3.50001049
and n = 7. This is a multi-noded motion of short period. The second
eigenvalue is —2.37405777.

Again, lengthening the beam still further (q = %) leads to a first

negative eigenvalue —2.98493242 whose motion is the same as the case
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qg=1.

To summarize, the spectrum of the operator L is extremely sensitive
to length. We can say that if the length is an rational multiple of the
period 7, there are many situations where we get a first and second
negative eigenvalue separated from each other by a large interval. This
is precisely the situation which we shall study by theoretical methods
in the next section.

Some comments about the model are in order at this stage. If we
assume that there is no forcing term, f, then equation (II1.23) has a
unique steady state solution, u(z,t) = f{ and this is globally attracting.
If f is small and the solution u of (II.23) is of the same order of
magnitude as f (i.e., we are not in a situation of linear resonance) then

to solve (II1.23) we need only solve the linear equation
Ust + Usgze + 6Us + aU = ¢ + f(z,1). (I11.26)

Therefore, we can find periodic solutions of (II1.23) simply by find-
ing the well-understood solutions of the linear equation. These solutions
will be (away from resonance) of the form ﬁ + 4 where 4 is of the same
order of magnitude as the forcing term f(z,t). This is what we would
call the intuitively obvious solution. ..a small forcing term results in a
small perturbation about equilibrium.

However, if the forcing is small, then one can ask two related non-
linear questions : first, is this the only periodic motion and if other
periodic solutions exist, are they stable?

Second, one should also seek to answer the question of what will
happen if the forcing term f becomes large enough to force the naturally

occurring linear solution out of the positive range, and thus cease to be a
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true solution of the actual nonlinear problem. We can give quantitative
and qualitative answers to the ‘small forcing’ problem in certain ranges
of the parameters but only present some numerical results about the
second.

The equation assumes that no nonlinear effects occur until the ship
actually lifts out of the water and that the motion is purely linear un-
til this happens. If in fact, this would only be the case if the beam
had a rectangular cross-section. If the cross-section of the boat was
triangular, then the restoring force due to flotation would be propor-
tional to ((u(z,t)*)?, and therefore the nonlinear effects would occur
immediately. This is more likely to occur at the front of the rear of the
ship and would add to the likelihood of oscillation with favors one end
occurring, if it exists.

We now prove a theorem which uses these methods.

Let Q be a bounded domain in R™, let H denote a real Hilbert space
which is a closed subspace of L?(2) where we denote the usual L?-inner
product by (, ). Let L : D(L) C H — H be a self-adjoint operator.

We shall discuss an abstract operator equation
Lu + bu® = ¢y (I11.27)

which we shall later relate to the differential equation.

We make the following assumptions :

A. 1
dimker(L) =1 and ker(L) = {syo|s € R} (I11.28)

A. 2 b>0,c> 0 and there exists Y; € H with ¥; not = 0 such that
Ly = —atp; where 0 < a < b;
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A. 3 There erists a number d > 0 such that if |s| < d, then for all
z €}

Yo + sy > 0;
A. 4. There exists numbers r; and ry with
r<—-b<0<r (I11.29)

such that if V is the two-dimensional subspace of H spanned by
Yo and ¢y, Ly is the restriction of L to the invariant subspace V+*

of H and o, denotes the spectrum of Ly, then

o1 C (—o0,r1) U (r,00).

Using assumptions (A. 1) and (A. 3), we find by inspection the
obvious solution u = 5%'2 of (II1.27). The following result gives us two

more solutions which are less obvious.

THEOREM II1.6  There exist solutions uy and us of (II1.27) such that
(u1,91) >0, (ug,%2) <0,

Proof. The proof will be based on two lemmas. First, using global
Lyapunov-Schmidt method we shall reduce the study of (II1.27) to the
geometrical analysis of a mapping of the two-dimensional space V into
itself. For this reason, we shall refer to V as the Reductive base

space, (RBS). Let P : H — V denote orthogonal projection.
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LEMMA II1.15 Given v € V, there exists a unique w € W = V*+ such
that
Lw + (I — P)b(v + w)* = 0. (I11.30)

If we denote w by 0(v), then the mapping 0 : V. — W is Lipschitzian.

Proof. If w € W, then (II1.30) is equivalent to
b + b
L + 5| w= —(I=P){blv+w)" — §(v +w)o. (I11.31)

Since the spectrum of Lﬁ-g is contained in (—-—oo, ri+ %) U (r2 + %, oo) ,
it follows from (A. 4) that L; + (g) I is invertible and

b\ ! ' -1 -1 9
Z < z
(L1+2) _max{ }<b

mn+3 ’
Therefore (II1.31) is equivalent to
b\
w=— (Ll + 5]) (I — P)bN(v + w) = K,(w),

1°+é
T

2

where N : H — H is defined by N(u)(z) = QJE,EEM It follows

that K, : W — W is Lipschitzian with Lipschitz constant ¢ =
-1

% (Ll +- %I) < 1. Therefore, there exists a unique solution of

(I11.30), which we denote by 6(v).

A standard argument shows that for all v;,v; € V' we have

c

10(v1) = 6(,)l| <

1= c||v1 — vyl

and the proof is complete. .
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If u is a solution of (I11.30) and Pu = v and (I — P)u = w, then
it follows by application of (I — P) to (IIL.26) that (II1.28) holds and
thus, w = 6(v). Applying P to (I11.26) gives

Lv + Pb(v + 0(v))* = cpo. (I11.32)

Conversely, if (II1.31) holds, then v = v + 6(v) is a solution of (IIL.27).
We now make a geometric study after mapping F of the RBS into
itself where F' is defined by

F(v) = Lv + Pb(v + 0(v))*. (IT1.33)

We consider the sectors & = {sthg + tth1|s > 0, |t| < ds}, and —S =
{sho + tip1]s <0, |t| < ds}, in the RBS. According to (A.3),if v € S,
then v(z) > 0 for all z € Q.

LEMMA II1.16  Ifv € § and v = sy + ty)y, then 6(v) = 0 and
F(v) = bstho+ (b— a)typy. Ifv e -8 and v = sipg + tyhy, then O(v) =0
and F(v) = —aty,.

Proof. Ifv e S, then v >0 on Q and therefore
(I — P)bot = (I — P)bv = 0.

Therefore, w = 0 is a solution of (I11.30), so, by uniqueness, 6(v) = 0.
It follows that if v = sty + 1), then

F(v) = Lv+ Pbv = Lv 4 bv = bstpp + (b — a)tefy.

Similarly, if v € —&, then v(z) < 0 on Q, so v* = 0, from which it
follows that w = 0 is a solution of (II1.30). Therefore §(v) = 0 so
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F(v) = Lv = —aty,. This proves the lemma. "

To carry out the proof of the theorem, we analyze what the mapping

F does to the two straight-line segments
1
{S%'H/)ll— 7S s < 3}

and

1
SRS s
Let gx : (—%,211) — R, k = 1,2 be defined by

91(3) = (¢1,F(3¢0 + 'wl))’

92(8) = (%1, F(stpo — 1))

Since both _3¢°+ ¥ and —-dz/)o — 1), belong to —S§, it follows from
Lemma III. 14 that ¢, ( ) (Y1, —ahy) < 0 and g, ( ) (1, atpr) >
0.

Similarly, since both %@bo + 9, and %t/)o — 1; belong to S, Lemma
11114 implies that g (§) = (¥1, Jtbo + (b—a)hr) = (b— ) (1, %1) > 0
and g; (zll) = —(b— a)(¢1,¢1) <0.

By continuity, we infer the existence of numbers s; and s; in the
interval (—%, 211) such that g;(s1) = g2(s2) = 0.

This means that F(s;% +%1) = 1190 and F(s11 — 1) = 7Yato for
certain numbers 74; and 7,. We assert that both y; and ~; are strictly

positive. In fact, we have

7 (%0, o) = (3o, Lv1) + b(o, (v1 + 0(v1))*) = b(tbo, (v1 + 8(v1))™).

Since 1o > 0 and (vy + 6(v1))*(z) > 0 for = € Q, it follows that v, > 0,
unless (v; + 0(v))*(z) = 0. But, if (v + 0(v1))*(z) = 0 then v, = 0,
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and

otpy = L(s1%ho + 1) = F(s1ho + t1) = 0,

which is a contradiction. This shows that 4; > 0 and a similar argument
shows that v, > 0.

To finish the proof of the theorem, we note that as a consequence
of the positive homogeneity of degree one of the function { — (*, we
can conclude that if v € V, w € W and (II1.30) holds, then (II1.30)
will remain true if v is replaced by kv and kw for any £ > 0. This
means that for v € V, 0(kv) = kf(v), k > 0. Since this implies that
F(kv) = kF(v) for all v € V and k > 0, it follows that if we set
Oy = %(31¢0+¢1) and v, = %(311/’0—1/’1), then F(v,) = F(b;) = cto.

From previous considerations, we see that if u; = 9, + 0(,), u, =
02+0(9;), then both u; and u, are solutions of (I11.27). Since (u1,%1) >
0 and (u2,%1) < 0, the proof is complete. .

Now we show how the abstract theorem of the previous subsection
can be applied to the periodic flexing of the floating beam. We shall

be considering the equation
Utt + Ua:a;z:a: + alUt =¢ (III34)

on the interval (0, L) with the free-end boundary conditions described
in the second section. ’

Case 1. If, for example, we take L to be of length =, then the
reductive base space will be spanned by the constants (which are the
1o) and the function #; will be given ¢;(z)cos(3t), with correspond-

ing eigenvalue —3.86122036. The next negative eigenvalue corresponds
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to ¢1(x) cos(4t), and is —10.86122040. If we define L to be the op-
erator Lu = uy + Uggee defined on the space H = closure span of
{#m(z)cosnt, m > 1,n > 0}. |

Thus, we are looking for periodic solutions of (II1.34) which are even
in ¢, even about the mid-point of the beam, and are periodic of period
2x. Therefore, what the main theorem of the previous section shows
is that if 3.86122036 < a < 10.86122040, equation (II1.34) has at least
two large amplitude oscillatory solutions with a non-zero component
of period 2T Tt is a standard result that if 0 < e < 3.86122036,
the equation (II1.34) has at most one solution, the obvious u = <.
Thus, when a crosses the eigenvalue —3.86122036, we create additional
solutions for a wide range of values of a.

Case 2. Now, if we increase the length of the beam to 327[, the first
negative eigenvalue is —2.98493242 and the second is —6.35766602. The
range of a for which the solutions exist may have become smaller.

Case 3. If we consider the interval to be of length ZGE’ then the
absolute value of the first negative eigenvalue is 1.22621465 and solu-
tions are known to exits if a exceeds this value and remains lower that
6.22621441. We should emphasize at this point that what we know for
certain is that solutions definitely exist if 1.22621465 < a < 6.22621441,
and definitely do not exist if a is less than 1.22621465 (and, of course,
greater than zero). It is a limitation of the method of proof that we

‘can say nothing about the case where a is greater that 6.22621441.

Case 4. The case of the interval being of length 1—31 is interesting.
In this case, the first negative eigenvalue is —0.02660656 and thus if
a is greater than —0.02660656, and less than 0.57441235, we know

that large-scale flexing solutions exist. Furthermore, the proof actually



Directions for further research and study 123

shows that they have a component of the form Ay(x)cos(3t). This
is a higher-frequency multi-noded oscillation and is presumably more
dangerous than the simpler motions described earlier.

We conclude this section with some remarks. Although the theorem
only deals with the unforced equation, it is possible to use the same
methods to prove a similar theorem with a small forcing term of the
form €f(x,t), so long as the forcing term satisfies the same symmetry
restrictions that were used in the theorem. Notice that our methods
give no information on the case where the periodic is not a rational
multiple of the length.

Numerical computation suggests that the solutions are indeed sta-
ble. However, thus seems to be difficult to prove. Numerical solutions
indicate that there are solutions which favor one end. Can one prove
that these exist ? How about for larger values of b ? Can one find more

solutions ?
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Chapter IV

Directions for further
research and study

We remark that these lectures have focused exclusively on degree the-
oretic methods for nonlinear boundary value problems.
We point out here several other methods which can be used and

also several other problems.

(i) Variational methods.
These have been used by Solimini [SOL], Hofer [HOF] and others

on the problem

Au + f(u)

u

s¢1+ h(z) in Q,
0

but less commonly on other types of semilinear equations. Hofer got
four solutions if b > X3, b # A4 by showing that (a) there was a moun-
tain pass solution and (b) that the mountain pass solution has degree
—1. '

125
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(ii) Ordinary differential equation methods.

These have been used in [L-McK1] to show at least 2n solutions for
the boundary value problem in one dimension, via shooting, and also
crossing higher eigenvalues [L-McK4]. They have also been used to
study the periodic boundary value problem case, and to obtain results
an stability, see [L-McK5].

A subset of O.D.E. methods are the methods of global bifurcation,
which have been used [RUF] to get a different proof of 2n solutions and
crossing higher eigenvalues. Two recent results are of interest in 1992,
[KWO] who gets unbounded numbers of solutions,vif f'(+00) = 0o, and
[CDS] who get exactly 2n solutions for the piecewise linear O.D.E.

(iii) Maximum principle methods.
These can be used for the Laplacian with Dirichlet boundary con-

ditions to get results on exact number of solutions (e.g. exactly four

of a < A, Ay < b< X3). See [SOL] and [L-McK4] for more details.

(iv)Numerical studies.

Numerical methods arise in two ways. First, can one use standard
nonlinear methods to give more information on the structure of the
solution set of some of these problems? A start on this way made in
[CIM] using continuation methods.

Second, can one develop new numerical max-min methods to find
the additional oscillatory solutions where existence is proved in this

paper. Progress in this direction has been made recently by [CM] for
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the elliptic case and [CMR] for the hyperbolic case. A large amount of

work remains to be done in this area.

(v) Problems in R™.
This is an intriguing area in which the only information comes from

calculus. Suppose we look for travelling wave solutions of
Ust + Uggee + but =1 on (—o00,0).
Then we must look four solutions of the form 1 + y(z — ct) and get
y W4y +(1+y)t—1=0.

In [McK-W3], it was shown, via calculus, that this problem appears
to have many solutions y(z) which go to zero exponentially fast as
|#] — 400, if 0 < ¢ < /2. How can this result be generalized ?
Can one prove that there are an infinite number of solutions (ignoring
translations)?

Can one generalize this result to the case where f(u) is “like” (1 +
y)* — 1, (or perturb this result in any way)?

Can one generalize this result to equations on RN ? In this case, it
is not clear what the appropriate restriction on C is. Can there ANY

other results on RN? Can one establish stability of the travelling waves
established in [McK-W3] ?
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