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Chapter 1

Topological Manifolds

Manifold Theory

= A Science of Space -

Caleulus Algebra
Topology

What is a space?
What are model spaces?

A differentiable manifold is a topological manifold
with a differentiable structure.
What is a topological manifold?
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1.1 Locally Euclidean Spaces

A topological space M is said to be locally Euclidean® if it is locally homeomor-
phic to a Euclidean space, i.e., for any point p in M, there exists a neighborhood
which is homeomorphic to E"” some nonnegative integer n. This integer n is
called the dimension of M at p.

Theorem 1.1.0.1 (Invariance of Dimension) At each point of a locally Eu-
clidean space M, the dimension is well-defined.?

Proof. Letxz:U — R"™ and y : V — R™ be two homeomorphisms for some
neighborhoods U and V' of p. We may assume that U and V' are open neighbor-
hoods of p. Then?

roy tiyUNV)—=z(UNV)

is a homeomorphism between a non-empty open subset of R”™ and an open
subset of R™. Thus by (a corollary of) the Invariance of Domain (see Appendix),
n=m. g

For a locally Euclidean space M, let dim (M, p) be the dimension of M at p.
Then the map

dim(M, ): M = Z, p— dim(M,p)

is locally constant. The dimension of M is

dim M := sup dim(M, p).
pEM
1.1.0.2 Pure dimensional Space

We say that M is of pure dimension if every component of M has the same
dimension.
Note that pure dimensional locally Euclidean spaces are of finite dimension.

1.1.0.3 Infinite dimensional Space

The “disjoint union” [ [° R™ is locally Euclidean and of infinite dimension.

LAlthough Fuclidean spaces have more structures, we take only topological properties of
them and follow the traditional terminology. A metric space is a Fuclidean space if it is
isometric to a Cartesian space R™ for some nonnegative integer n. All n-dimensional Euclidean
spaces are isometric to each other, and they are all denoted by E™. The Cartesian space R™
is an example of an n-dimensional Euclidean space.

2Since our main interests are smooth manifolds, Invariance of Dimension follows easily
from Linear Algebra: If an open subset of R™ is diffeomorphic to an open subset of R™, then
n=m.

3The composition go f of maps f: A — B and g : C — D is defined on f~1(BnNC).
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1.1.0.4 Zero-dimensional Spaces

Note that R = {0}. If the dimension of M at p is zero, then p is an isolated
point of M, and the trivial map {p} — {0} is the homeomorphism.

A topological space is a locally Euclidean space of dimension zero if and only
if it is a discrete space.

1.1.0.5
The next easy theorem is often useful.

Theorem 1.1.0.6 Let n be a nonnegative integer and let M be a set. Suppose

A is a collection of maps
x:U, - R" (1.1)

such that
(1) each U, is nonempty and M = |J{U, | z € A}
(#9) for any x € A, x is injective and its image x(U,) is an open subset of R™
(#it) for any z,y € A, the composition
zoy ' :y(U,NU,) — z(U, NU,)
is a homeomorphism between open subsets of R™.

Then there exists a unique topology on M such that {U, | x € A} is an open
cover of M and the map (1.1) is a coordinate system for each x € A.
Moreover, this topology is Hausdorff if and only if for any distinct points
p € U, and q € Uy, there exist open subsets V,, C x(U,) and V,, C y(U,) such
that
z(p) € Ve, ylq)€Vy, z ' (Vy)ny (V) =2.

Proof. Letasubset S of M be open if and only if (S N U,) is open in R™ for
every ¢ € A. O

1.1.1 The Line with two origins
Let R, :=R — {0} and
Rt :=Rx {1}, Rf:=R,x {1}, R :=Rx{-1}, R :=R, x {—1}.
Let R* Uy R~ be the quotient space of R* UR™ by the identification map*
R =R, (2,1) (z,—-1).
Then R* Uy R~ is locally R!, but not Hausdorff.

4For topological spaces X, Y, and a continuous map f from a subset A of X into Y, the
space X Uy Y obtained by attaching X to Y by f is the quotient space of the disjoint union
X 1Y, where every point in A is identified with its image. See Appendix “General Topology”
for the basic notions of topology.
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Q
O

The line with two origins

1.1.2 Exercises

1. Show that each point in a locally Euclidean space of pure dimension n has
a neighborhood homeomorphic to R™.

2. Show that a one-to-one continuous map between locally Euclidean spaces
of the same pure dimension is an open map.

3. Show that every locally Euclidean space M is locally connected® and hence
each (connected) component of M is (closed and) open. An open subset
of a locally Euclidean space is also locally Euclidean. In particular, each
component of a locally Euclidean space is also locally Euclidean.

4. Show that a locally Euclidean space is locally compact®.

5 A topological space is locally connected if any neighborhood of an arbitrary point contains
a connected neighborhood.

6 A topological space is locally compact if any point has a compact neighborhood. For a
Hausdorff space X, the following conditions are equivalent [Dugundji, p.238]:

(a) X is locally compact.

(b) for any point p in X and an open neighborhood U of p, there exists a compact neigh-
borhood K of p contained in U.

(c) For any compact set K contained in an open set U of X, there exists a compact neigh-
borhood C' of K contained in U.

(d) X has a basis consisting of relatively compact open subsets.
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11

Euclid of Alexandria by Justus van Gent, 15th century
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1.2 Topological Manifolds

Theorem 1.2.0.1 Let M be a locally Euclidean Hausdorff topological space.
Then the following are equivalent.

(i) M is metrizable.

(ii) M is paracompact.

)
)

(iii) Every component of M is o-compact.”

(iv) Every component of M is a Lindelof space.®
)

(v) Every component of M is second countable.’

Proof. (i) = (ii). This follows from a result of A. H. Stone (1948) which
says that every metric space is paracompact [Dugundji, p.186], [Kelley, p.160],
[Marsden et al], [Munkres 2000], [Willard, p.147].

(ii) = (iii). Note that every closed subspace of a paracompact space is again
paracompact. Thus each component of M is paracompact. Now it suffices to
show that any connected, locally compact paracompact space X is o-compact.

Let U be an open cover of X such that the closure U is compact for every U €
U. Such a cover exists, since X is locally compact. Now since X is paracompact,
we may assume that ¢/ is locally finite.

Let Wy be any nonempty set in ¢/. We construct subsets Wy, k = 1,2, ..., of
X inductively as follows:

Wi = J{U eU |UNWi_; # 2}

Obviously, Wy's are open and Wy ¢ W7 € Wy C .... We claim that X =
Upe; Wy. Since X is connected, it suffices to show that UW} is closed. (Clearly,
it is open and nonempty.) Let p be a boundary point of UW}, in X. Then p € U
for some U € U and hence U N W), # & for some k. This implies that p € Wy 1.
Thus UW}, is closed, and hence X = UW}, = UW.

Now we claim that W}, is compact, by induction on k. Of course, W is
compact. Suppose that Wj,_; is compact. Then W,_; intersects with only a finite
number of U's in U/ and hence W), has a compact closure. Moreover, W), C Wj, 1.
This proves the claim.

(iii) = (@iv).

(iv) = (v).

7A topological space is o-compact if it is a countable union of compact subsets.

8 A topological space is called a Lindeldf space if every open cover has a countable subcover.
cf. [Matsushima)

9 A topological space is second countable if it has a countable basis for the topology. Recall
that a collection B of open subsets is a basis for the topology if and only if each neighborhood of
a point p contains B € B such that p € B i.e., every open subset is the union of a subcollection
of B. Note that a subspace of a second countable space is second countable.
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Note that locally Euclidean space is locally second countable!?, and any sub-
space of locally second countable space is also locally second countable.

Let X be a component of M. It is locally second countable, and hence each
point p in X has a second countable neighborhood U,,.

If X is compact, then there exists a finite number of points pi,...,py in X
such that X = U,, U---UU,,. Thus X is second countable.

If X is a countable union of compact sets X, X5 ..., then each X; is second
countable and hence X is second countable.

(v) = (i). Note that a locally compact Hausdorff space is, obviously, reg-
ular.!' In particular, any locally Euclidean space is regular. Recall Urysohn's
Metrization Theorem [Dugundji, p.195], [Willard, p.166]: A regular and sec-
ond countable space is metrizable.

Thus each component of a locally Euclidean space is metrizable, and hence
every locally Euclidean space is metrizable.'? O

1.2.1 Topological Manifolds

A locally Euclidean Hausdorff space of pure dimension is called a topological
manifold if it satisfies one of the above equivalent conditions.!?
Zero-dimensional topological manifolds are discrete spaces.
A curve is a manifold of dimension 1.
A surface is a manifold of dimension 2.

In the next chapter, we will introduce a differentiable manifold which will
be simply called a manifold.

We need the Hausdorff condition for a manifold because we want the unique-
ness of the solution of an ODE.

1.2.1.1 Compact Exhaustion

In the proof of the theorem (1.2.0.1) we have actually shown that a connected
topological manifold has a compact exhaustion.'* In particular, a locally com-

10A topological space is locally second countable if any neighborhood of an arbitrary point
contains a second countable neighborhood.

11 A topological space X is regular if for any closed set A in X and a point z € X — A there
exist disjoint open subsets U and V of X with z € U and A C V.

12For any metric d on a set X, the new metric d/(1+ d) gives the same topology as d. Thus
there is a metric d on M such that on each component d < 1 and d(p,q) = 1 if p and ¢ are
not in the same component.

13Some authors require the second countable condition. I prefer to include every discrete
space as a zero-dimensional space.

14 A sequence (Cr)$2, of compact subsets of a topological space X is called a compact
exhaustion if

X =|JCr and VK(Cr CInt(Cry1)).
k=1
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pact space is o-compact if and only if it has a compact exhaustion [Dugundji, p.
241].

Theorem 1.2.1.2 Every second countable topological manifold 1 is home-
omorphic to a subset of RY for some positive integer .

Proof. We will prove the case when M is compact.'® Take a finite open cover
U :={Uy,..., U} of M where each U, has a topological embedding'® z; : U; —
R™. Let {p1,...,pr} be a partition of unity subordinate to the cover I/ (index-
wise). Then for each i, define &; : M — R" by

Fi(p) = pix; ifpel;
s 0 if pe M — supp p;.

Now let
fo=(E1, T, pryee s pr) s M = RY (N =k(n+1)).

Then f is continuous.

We claim that f is one-to-one. Let p be a point in M. Since p;(p) + --- +
pr(p) =1, there exists j € {1,...,k} such that p;(p) # 0. Thenp € U;. lf g€ M
and f(p) = f(q), then p;(¢) # 0 and hence ¢ is also in U;. Thus p;(p)z;(p) =
zj(p) = Zj(q) = pi(@)x;(q) = p;(p)z;(q), and hence z;(p) = x;(q), which
implies p = ¢q. Thus f is one-to-one.

Since M is compact, f is an embedding.'” O

1.2.2 Fundamental Group

The first fundamental group of a connected manifold is countable [John Lee,
2011]

1.2.3 Infinite dimensional manifolds

Infinite dimensional topological spaces, e.g., Hilbert spaces, Banach spaces, Frechét
spaces, are all interesting model spaces for infinite dimensional manifolds, al-
though we do not consider them here. See [Lang], for instance.

I5For general case, see [Munkers, 2000].

16 A topological embedding is a map which is homeomorphic to its image.

17A one-to-one continuous map from a compact space into a Hausdorff space is an embed-
ding.
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1.2.4 Exercises

1.
2.
3.

Is the set {(z,y) € R? | xy = 0} a topological manifold?

Show that {0,1,1, 3,...} C R is not a manifold.

Let X be the set of all lines in the plane R?. Make X into a connected

topological manifold. What is the dimension of X? Is X homeomorphic
to an open Mobius band?

. Let P(n) be the set of all n x n real positive definite (symmetric) matri-

ces. Show that, with natural topology on P(n), it is homeomorphic to the
Euclidean space of dimension n(n + 1)/2.

. Let X be the collection of all quadratic polynomials

q(z,y) = a202® + 2a112y + ag2y® + 2(b1z + bay) + ¢

with real coefficients. Identify two quadratic polynomials ¢; and ¢ if there
is a Euclidean motion i.e., an isometry T : R? — R? such that ¢; = T%¢s.
This gives an equivalence relation on X and let M be the quotient space.
Is M atopological manifold? (Hint: To each quadratic polynomial ¢ assign
az ain b
amatrix @ = | a11 a2 b2 |. Show that
b1 b2 C

detQ, det @20 1) g (920 1
a1l aop2 ail  ao2

are complete invariants.)

. What kind of topological spaces do you get by attaching following spaces?

(1) R and R with f(a) =1/a.

(i) R? and R? with f(a,b) = (a,1/b).
(iii) R? and R? with f(a,b) = (1/a,1/b).
(iv) R? and R? with f(a,b) = (1/a,b/a).

. Let M be the collection of all icosahedra inscribed in a given sphere in R®.

What is the dimension of M?
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Chapter 2

Differentiable Manifolds

Uber die Hypothesen welche der Geometrie zugrunde liegen.
(On the hypotheses that lie at the foundation of Geometry)

June 10, 1854, G. E B. Riemann

Bernhard Riemann, 1822—1866

A differentiable manifold is a space where one can talk about tangent vec-
tors, or the velocities of moving particles. One can do calculus on differentiable
(usually non linear) manifolds.

If we want to talk about the acceleration of a particle in a space, forces, and
curvatures, then we need more than a smooth structure, e.g., a parallelism or a
connection.

17
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2.1 Coordinate Systems

What is the coordinates of a point in a space?

Given a topological space M and a point p in M, a (local) coordinate sys-
tem! (or a coordinate map) at p is a one-to-one continuous map

r=(z',...,2"): U = R"

of some open neighborhood U of p onto an open subset of R™ for some non-
negative integer n, such that the inverse map x~! : 2(U) — U is also continu-
ous.?

The ordered collection (z!(p),...,z"(p)) of numbers is called the coordi-
nates of p with respect to the coordinate system z.

This open set U is called a coordinate neighborhood of p, or just a coordi-
nate domain.

If the domain of a coordinate system is the whole space M, then z is called
a global coordinate system. The identity map

z:R" - R"

is an example of a global coordinate system.

A topological manifold is a Hausdorff topological space, each of its compo-
nents can be covered by countably many coordinate domains.

The inverse map of a coordinate map is called a parametrization.

IThe concept of coordinates is due to R. Descartes and P. Fermat, or due to earlier math-
ematical painters in the middle age. The name coordinates is due to G. Leibniz [Coxeter].

2A map f: X — Y between two topological spaces is called a topological embedding? if it is
a homeomorphism onto its image, i.e., f is a continuous one-to-one map such that the inverse
f~1: f(X) = X is also continuous. Thus a coordinate system is a topological embedding
onto an open subset of a Cartesian space.
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2.2 Differentiable Structures

Let M be a topological manifold of dimension n.

2.2.1 Definitions

1. Aset A= {z: U, — R"} of coordinate systems on M is called a smooth
(or differentiable) atlas if
(i) M= UZGA U,, and
(ii) for each z,y € A, the (coordintae) transition map, i.e., the compo-
sition*
roy !
is a smooth (C°) map (between ope subsets of R™).
A coordinate system in a smooth atlas is also called a smooth chart.

2. Two smooth atlases are equivalent if their union is also a smooth atlas.
It should be easy to check that this relation is an equivalence relation.
From now on an atlas means a smooth atlas.

3. An atlas A is said to be maximal if it is not contained properly in any other
atlas, i.e., if y is a local coordinate system on M such that

yox ', zoy !

are smooth for any = € A, then y € A.

Note that any atlas A is contained in a unique maximal atlas A, the com-
pletion of A. In fact, A is the union of all atlases which are equivalent to
A.

4. A differentiable (or smooth) structure on M is a maximal atlas on it.
Or equivalently, we may say that a differentiable structure on M is an
equivalence class of atlases.

A topological manifold M together with a smooth atlas .4 has a unique
differentiable structure which contains A.

5. A topological manifold together with a differentiable structure is called a
differentiable (or smooth) manifold.

Thus if A and A’ are two differentiable atlases on a topological manifold
M, then
(M, A) = (M, A)

if and only if the completion A of A is the same as the completion A’ of
A’

4This composition is a homeomorphism between open subsets of R™.
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We often write a smooth manifold as M instead of (M, .A) when there is no
confusion.
From now on manifolds mean smooth manifolds.

2.2.1.1

If a topological manifold M has a global chart z : M — R", then the singleton
A = {z} is a smooth atlas, since the only transition map
rox !
is the identity map.
Thus any global coordinate system on a topological space defines a smooth
structure.

2.2.2 R"

The set {id : R™ — R"} consisting of the identity map on R" is an atlas (of class
Cc¥).
This atlas gives the standard differentiable structure on R".

2.2.2.1 Finite dimensional vector spaces

Let V be a finite dimensional real vector space.® For any basis b = (by,...,b,)
of V, let b* := (b3,...,b%) be the dual basis of b. Then the isomorphism

b*: V — R™. (2.1)

induces a topology on V, and V is homeomorphic to R™. This topology is inde-
pendent of b.6

The isomorphism (2.1) also defines a smooth structure on V, which is inde-
pendent of the choice of basis, and hence it is a smooth manifold.

For instance, the complex n-space C" and the quaternion n-space H" are
smooth manifolds.

For positive integers m and n, and a ring R, let M,,,(R) be the space of
m X n matrices with entries in R. Then for R = R, C,H, M,,x,(R) is a vector
space over R of dimension mn, 2mn, 4mn, respectively.”

5E.g., the space of all polynomials in one-variable with real coefficients of degree less than
n.
SIn fact, any finite dimensional real vector space V has a unique wector topology, i.e., a
Hausdorff topology which makes the addition and the scalar multiplication continuous [Rudin,
p.16], [Dieudonné, Vol. 2, (12.13.2.ii)].
7 We can identify H" with C27; (21 + jw1, ..., 2n + jwn) — (21, w1, ..., Zn,wn). Then we
have an inclusion
i: men(H) — M2m><2n((c)-

z

—W .
w p ) € M2x2(C). The image

For instance, if z,w € C, then z + jw € H corresponds to (
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2.2.3 Affine Spaces

An affine space modeled on a vector space A is a set A together with a map

AxA—A& (a,b)— ab
such that
1. for any a,b,c € A, %er_c) = at
2. for any a € A, the map
Ou:A K, besab (2.2)
is a bijection.

In other words, an affine space is set A together with a free transitive action
of a vector space A (as an additive group) on it.

Thus for any a, b € A, there exists a unique vector ab € Vsuchthatb = a+ %
orb—a = ab. Each point a in A defines a vectorization (2.2). The topologies on
A induced by vectorizations are all the same and hence every finite dimensional
affine spaces are manifolds.

A Euclidean space is an affine space whose associated vector space is equipped
with an inner product.

2.2.4 Open subsets

Any open subset of a manifold is a manifold.

Since each component of a manifold is open (and closed), it is a manifold.
Thus a manifold is a ‘disjoint union’ of connected manifolds.

For instance, if F' € {R, C,H}, then the vector space M, (F') of n x n square
matrices with entries in F' is a smooth manifold in the canonical way. The group
GL(n, F) of invertible n x n matrices is an open subset of M,,(F') and hence it
is a smooth manifold of dimension dimg (F) x n?. They are called the general
linear groups.

The group GL ™ (n,R) of all n x n real matrices with positive determinant is
a component of GL(n,R). GL(n,R) has two components and each component
is a smooth manifold.

Let k,n be integers such that 1 < k < n.
Let Fi(R™) be the collection of all k-tuple

(Ula"'7vk)

of the inclusion 7 is ~
{X S M27n><2n((c) | JmX = XJn}y

where Jj, is the direct sum of k copies of (Bl (1])
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of linearly independent vectors vy, ..., v, in R”. Then we have a canonical in-
clusion
Fk(Rn) — Mnxk(R) = Mnxk-

Then a matrix X € M,,« is in F;(R") if and only if

S (det(X,))” #0

J

where X ; denotes the J-th k x k-minor of X for J = (j1,...,jk), 1 <j1 < - <
Jr < n. Thus F(R™) is an open subset of M, «; and hence F}(R™) is a smooth
manifold.

In general, if V' is an n-dimensional vector space (over R), then the collection
Fy(V) of all k-tuples of linearly independent vectors in V' is an open subset of
Hk V:=V x-.- x V, since there is a continuous (multilinear) map

—_———

n

k k
[Iv-=Av
and F (V) consists of the inverse images of nonzero elements.

2.2.5 Diffeomorphic Structures

Let A be a smooth atlas on a topological manifold M. If M’ is a topological
manifold and h : M’ — M is a homeomorphism, then

hWA:={zoh|ze A}

is a smooth atlas on M’.

We say that two smooth structures .4 and .A’ on topological manifolds M and
M, respectively, are dif feomorphic if there exists a homeomorphism h : M’ —
M such that h* A = A’ (or equivalently, h* A C A").

For instance, if A is the standard smooth structure on R defined by the iden-
tity map z : R — R, then the homeomorphism 23 : R — R defines a new smooth
structure A’ on R, which is diffeomorphic to the standard one. Note that A’ does
not contain the identity map = : R — R.

2.2.5.1 Remark
If n # 4, then R™ has a unique differentiable structure up to diffeomorphisms.
But R* has uncountably many non diffeomorphic differentiable structures [Tau].

2.2.6 Exercises

1. For each homeomorphism A : R — R, let Ry, be the real line R together
with the maximal C*° atlas A, containing h. Show that R;, is diffeomorphic
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to the standard R. Show that .4y, is not equal to the standard C* structure
of R unless 4 is a diffeomorphism. How many different C*° structures are
there on a topological space R?

2. Ifx : X — Y is a map, then
z* : Map(Y,R) — Map(X,R)

is the pull-back map: z*(f) = f oz for any f € Map(Y,R).

Let n be a positive integer. Show that a connected Hausdorff space M
together with a sheaf F of (real valued partial) functions on M is a smooth
manifold of dimension n if and only if there exists a countable atlas A such
that for any chart  : U — R" in A and any openset V' C U,

F(V) =27 (C*(x(V))).
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2.3 Spheres
The n-sphere
S™ = {(ar,...,apy1) ER™ @+ fafy =1}

is a compact connected manifold® of dimension n.

Fori=1,...,n+1,let
U;-+ = {(al,...7an+1) e S” | a; > 0}, U; = {(al,...,an+1) e S" | a; < 0}

Then these 2(n + 1) open subsets® cover S™. Let ;" be the restriction to U;" of
the projection map

m R 5 R (a1,...,an41) = (a1,..., 5. .., 0n41)

where hatted component means the deleted one. Then the image of = is the
standard open unit ball

B" :={(a1,...,a,) ER" |a +---+ a2 < 1}

in R™. Similarly let z; be the restriction of 7; to U,”. Then we have a smooth
atlas
T + -
A= {27,201, 7,1}

for the sphere S™.

Stereographic projections define anther atlas A’ on the sphere. Let py :=
0,...,0,1) and p_ := (0,...,0,—1) be the north and the south poles of S™.
Then the stereographic projection

Ty Sn—{p+}—>Rn

8 Any subspace S of a metric space (X,d) is a metric space. But the inner metric on S
is more interesting than the induced metric. The distance between two points p and ¢ of S
with respect to the inner metric is the infimum of the length of paths in S joining p and g
(for simplicity, we assume that S is path connected). The length of a path v : [0,1] — S is
the supremum of Zle d(v(ti—1),7v(t:)) for all partitions 0 = t9 < t1 < -+ <t = 1 of the
interval [0,1].

9For each p € 8™, the hemisphere Up :={q € S™ | p-q > 0} is an open neighborhood of p.
These open subsets cover the sphere. Note that —Up =U_p and U, NU_}, = @.
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of S™ from the north pole is given by
1

m(ala"'aan)'

x(ar,...,apy1) =
This map is obviously continuous and its inverse is

(aty. . yapy1) = x_T_l(rl, ceesTh) (27’1, e 2Ty, \T|2 - 1)

S

where |r| = (17 + --- +12)3.

Similarly, we have the stereographic projection
z_:S"—{p_} = R"

of S™ from the south pole. Note that if p : R"*! — R"*! is the reflexion through
the hyperplane R” = {z,,,1 = 0} in R"!, then

T_=x40p on S"—{p_}.

Thus )
x,(al,...,anﬂ): m(al,...,an)
anda”'=poxl',ie,
-1 1 2
@1y ey @ni1) =22 (11, T0) = TR (2r1, ... 2r, 1= |r?)
Note that
z_oxl'(r) = ﬁ =:I(r), r e R} :=R" — {0},
T

where I : R” — R” is the inversion along the unit sphere S”~!. Thusz_ = Iox
on S" — {py,p_}. We have an atlas

A ={ri 2z}
on S".

Two atlases A, A’ on S™ are compatible and they define the same smooth
structure on S™.
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2.3.0.1 Exercises

1. Show that the inversion is orientation reversing, i.e., it has the negative
Jacobian determinant.

2. Show that S™ is connected.

3. Show that
C:={(a1,...,a,) € R" | max{|ay|,...,|an|} =1}

is homeomorphic to the sphere S"~!, and hence it has a smooth structure.
But C' is NOT a smooth submanifold of R™.

4. Show that there is a set-theoretic bijection between S™ and R and hence
R has a topology and smooth structure which is diffeomorphic to S™. Of
course, we are not interested in this smooth structure.



2.4. DIFFERENTIABLE MAPS 27

2.4 Differentiable Maps

What is the use of a differentiable structure?

Since we have ‘objects’, i.e., (differentiable) manifolds, now it is time to in-
troduce ‘morphisms’ between them.

A continuous map ¢ : M — N between manifolds is said to be differen-
tiable (C*>°, or smooth), if for any charts'® z of M and y of N, the composition

yopozx™t,
which is defined on open subset of a Euclidean space with values in a Euclidean
space, is C*°.

The identity maps are smooth. The composition of two smooth maps are
smooth. In particular, the restriction of a smooth map to an open subset is also
smooth.

Diffeomorphisms are defined in a standard way. This concept is the same
as the one we have introduced already. If M and N are diffeomorphic, then we
write it as

M ~ N.

Each chart on a smooth manifold is a smooth embedding, i.e., a diffeomor-
phism onto its image.

The set of self-diffeomorphisms of M is a group, denoted by Diff(M).

Note that a function f : M — R is differentiable if and only if for any (local)
chart = of M, the composition f o x~! is differentiable. The algebra of smooth
functions on M is denoted by C>°(M) and it is a subalgebra of C°(M):

C®(M) c C°(M).
If ¢ : M — N is smooth, we have the pull-back homomorphism

" :C®(N) = C®(M), fr foop.

2.4.0.1 Exercises
1. Show that the exponential map
e:R— S 6 (cosb,sinb)
is a smooth map. Show that it is a local diffeomorphism.
2. Show that the inclusion map S™ — R"*! is smooth.
3. Show thatif p : M — N and ¢ : N — L are smooth maps, then

(Yop) =g o™ : C*(L) = C=(N) = C=(M).

10From now on, a chart on a C> manifold M is a chart in the given differentiable structure
of M.
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4. Let ¢ : M — N be an arbitrary map between smooth manifolds. Let {U,}
be an open cover of M such that the restriction map ¢|U, is smooth for
each a. Show that ¢ is smooth.
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2.5 Projective Spaces

2.5.1 Real Projective Spaces

The real projective space P" := P"(R) is, by definition, the space of all lines
in R"*! through the origin.!! Thus it is the quotient of R?*! := R"**! — {0} by
the action of non zero scalars R, := R — {0}. Let

7 ROTL 5 P (2.3)

be the quotient map.'?
To construct coordinate systems, let

[a17...,an+1] = W(al,...,anﬂ) e P"

be the line through the point (ay, ..., a,+1) € R?T! and the origin in R"**. Now
fori=1,...,n+1,let

Ui = {[ala"'7an+1] € p l @; ?é 0}

Then {U; : i =1,...n + 1} is an open cover of P™ and the coordinate systems

a1 Aij—1 Qi41 An 41
. n
z; U = R", [al,...,an+1]|—> ey s sy

a; a; % Q;

form a smooth atlas.
Note that each z; : U; — R"™ is a homeomorphism and

P" —Uny1 = {[a1,...,0,,0] € P"} = P71,

This is often denoted by
P"=A"UP" L

Thus P" is an n-manifold.'?

The restriction of the smooth map (2.3) to the unit sphere S"* < R?*+! is
surjective, and hence P™ is compact and connected. Since two antipodal points
in S™ maps to the same point in P, P™ is diffeomorphic to the quotient S™ /Z,.

We may regard S™ as the collection of oriented lines through the origin (or
the collection of all directions) in R**!. Then the quotient map

T:S" - P"

means that each line has two orientations.

11We may regard P" as the set of equivalence classes of lines in R”*1, where two lines are
equivalent if and only if they are parallel. For a vector space V, P(V) denotes the set of all
1-dimensional subspaces in V. Thus P?(R) = P(R™*1). Note that PY is a singleton.

12The angles between two lines define a metric topology on the projective space. Thus
projective spaces are Hausdorff spaces.

13 An n-manifold is a manifold of dimension n.
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2.5.1.1 Exercises

1. Show that the map
2

St Sl 22z
descends to a diffeomorphism P! ~ S,

2. The dual projective n-space P*" is the collection of all linear subspaces
of codimension 1 in R"*!. Show that

P" ~ P,

2.5.2 Complex Projective Spaces

The complex projective space P"(C) is the space of all complex lines through
the origin in C"*!. Thus P"*(C) = C?*!/C,, where C**! = C"*! — {0} and C,
denotes the group of non zero complex numbers. If

7 :C' - P(C)
denotes the canonical projection, then the sphere
S ={(21, s 2m) €CVTH P A [z = 1)

projects onto P™(C) and hence P"(C) is compact and connected. There is a
circle action on S?"*! given by
i0 i0 i0
e (21, zng1) (€721, 00, €% 2041)

and hence
Pn((c) ~ SQn+1/Sl.

As before, the subsets
U, := {[21, . .,Zn+1] € Pn(C) L2 75 0}

are homeomorphic to C* ~ R?", for each i = 1,...,n + 1, and hence P"(C) is
a 2n-manifold (or a complex n-manifold).
P1(C) is also called the Riemann sphere.

2.5.2.1 Exercise

Note that S?2 ¢ R? ~ C x R. Show that the map

221%5 2 _ 2
P!(C) - S, [zl,ZQ]H( 2% |z Z2|>

212 + |22 |21 + |22

is a diffeomorphism.
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2.5.3 Quaternion Projective Spaces

The quaternion projective space P"(H) is the space of all quaternion lines
through the origin in H"*!, where H = {ao + a1i + asj + ask : ag, a1, az,a3 €
R} = {z + wj : z,w € C} is the ring of quaternions. It is a compact connected
manifold of dimension 4n. Since the quaternions are not commutative, we have
to fix either a right or a left action.

2.5.3.1 Exercise
Show that the P!(H) is diffeomorphic to S*.
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2.6 Products

The product M x N of two smooth manifolds M and N is a smooth manifold of
dimension n + m, where n = dim M and m = dim N.
If A is the maximal atlas of M and B is the maximal atlas of N, then

AxB={zxy|lze A yebB}
defines the smooth structure on M x N.
The projection maps
pri: M XN — M, pro: M x N = N
are smooth.

If L is a manifold, then a map ¢ : L — M x N is smooth if and only if pr; op
is smooth for i =1, 2.

2.6.1 Tori

The n-dimensional torus

T :=S'x-.-x S!
N————

n

is an n-dimensional compact connected manifold.

2.6.1.1

In [Nelson, p.33], the configuration space of a car moving on a plane is identified
with R? x T2.

2.6.2 Polar Coordinates

The product
R+ X Snil

is a smooth n-manifold, where R, is the space of positive real numbers. This
manifold has a global coordinate system

r:Ry xS" 1 5 RYCR™, (r,2) - rz.

where R? = R™ — {0}.
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2.6.3 Lines in the Plane

Let M be set of all oriented lines in R2. Then M is diffeomorphic to the cylinder

R x S*~ M, (re?)— zcosf+ysing=r.

\

Now the map
a:RxS' R xS (ref) — (—r —e')

is an involution, i.e., o = id, and the quotient

M := R x 8" /a

is the space of all (un-oriented) lines in the plane, which is diffeomorphic to the
Mobius band.
Note that each line in R? x {1} C R? defines a plane through the origin in
R3 and hence
P? — {e}

is a Mobius band.
R™ x 8" —— (R™ x S™)/Zs

l |

S” R pP"
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2.7 Submanifolds of Euclidean Spaces

Let m,n be nonnegative integers. A subset M in R™ is a callled a (smooth)
submanifold of dimension n in R™ if for any point p € M, there exist

(i) an open neighborhood W of p in R™,
(ii) an open set V in R",
(iii) aC*®map h:V — W C R™ such that h(V) =W N M,
which satisfies
(iv) his an immersion, i.e., for any ¢ € V, the vectors

Dihla) == D0 (q), o Dahla) = ()

in R™ are linearly independent,'* and

(v) his (one-to-one and) homeomorphic to its image.

—
\% R"

a AY
Y 7

The homeomorphism 4 is called a local parametrization of M, and its in-
verse h~! is a local coordinate system or a chart for M.

Theorem 2.7.0.1 A submanifold of a Euclidean space is a smooth manifold.

Proof. Since M is a second countable Hausdorff topological manifold, we
have to show that the coordinate transition maps are smooth. Let p € M and let
x,y are two coordinate maps in a neighborhood of p such that z=* and y~! are
smooth immersions. Since y~! : R® --» R™ is smooth, for any projection map
7 : R™ — R", the composition 7 o y~! is smooth.

Note that, from the inverse function theorem (or, inverse mapping theorem),
there exists a projection map 7 : R™ — R” such that the map

goz L:R® --s R™ —» R"

is a local diffeomorphism at x(p). Thus the composition

1

roy™ = (mox) o (roy™)

141n other words, the Jacobian matrix of h at g has rank n. The map h which satisfies the
conditions (iv) and (v) is called an (smooth) embedding.
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is a local diffeomorphism at y(p). O

In fact, Whitney's embedding theorem says that every (abstract) second
countable manifold has an embedding in some Euclidean space.

2.7.1 Graphs
Let U be an open set in R™ and let f : U — R be smooth. Then the graph of f
U= {(z,y) €U xR| f(z) =y} CR""
is a smooth n-manifold, since the parametrization
h:U =T CR"™ . ¢t (t,f(t))
is a one-to-one smooth map such that the vectors
Dih(t), ..., D,h(t)

in R**! are linearly independent for every t € U C R", and its inverse (i.e., the
global coordinate system)

h':T - U<—R"
is continuous, which is the restriction of the canonical projection map 7 : R**! —
R™.

Note that the inclusion
I — R+

is smooth.

2.7.1.1 Exercise

If o : M — N be a smooth map, then its graph
I'={(z,y) e MxN|y=p(x)} CMx N

is smooth manifold diffeomorphic to M, and the inclusion map I' < M x N is

smooth.

2.7.2 Regular Level Sets in a Euclidean space
Let U be an open set in R™ and let
f:U—=R

be a smooth function such that for any p in the zero locus Z(f) of f, grad f(p) #
0. (In this case, we say that the value 0 of f is a regular value of f.) Then Z(f)
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is a smooth hypersurface, i.e., a submanifold of codimension 1, because it s
locally a graph of a smooth map by the implicit function theorem.

Here is a concrete example. For a positive integer g, let

Di :=Di(p1,71), ..., Dg:=D(pg,rg)
be disjoint closed disks in R? centered at the points p1, . . ., p, with radiiry, ..., ry,
respectively. Let Dy := D(po, 7o) be a closed disk in the plane which contains
the previous disks Dy, ..., D, in its interior.

the region with f(x) >0
Let ) ) )
f(x) = (5 = Ix = pol ) (Ix = p1|” =) - (Ix = pg|” = 77)
for x = (x,y) € R?. Then

* f(x) > 0if and only if x is in the interior of the large disc Dy and is in the
exterior of the small discs Dy fork =1,...,g.

* f(x) < 0if and only if either x is in the exterior of the disc Dy or in the
interior of one of the discs Dy, ..., D,.

* f(x) = 0if and only if x lies on one of the boundaries of Dy, Dy, ..., D,.
In this case grad f(x) # 0.

Now let
F(z,y,2z):=2" = f(z,y)  (x,y,2) € R%.

Then 0 is a regular value of F and the zero-level set Z of F' is a compact con-
nected orientable!® surface of genus g.

15¢f. (3.6.2), (6.1.4.2)
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2.8 Partial Derivatives

Let z = (z!,...,2") be a coordinate system at a point p of a manifold M, and
let f be a smooth function defined on M (or defined in an open neighborhood
of p).

-~

Then the (ordinary) i-th partial derivative of the function f o 2! (defined on
an open subset of R™) at a point z(p) is denoted by

4x/

of of 0
50 L) By R or o ) f
fori = 1,2,...,n. Thus if eq,...,e, denotes the standard basis for R" and

ci(t) :== x71(z(p) + te;) is the i-th coordinate curves, for t € R with small |¢|,

OF N — Di(font _d 1 N
52 0) = Dilf 037 )(w) = | (700 )w) +te) = G| flex(t)
For instance,
oz’ 1 (i=j
— 571 —
527 P) = % {0 (i#0
Ify = (y',...,y") is another coordinate system at p, then the chain rule says

that

n

X

(j=1,...,n).

ayﬂ 3yﬂ

oz" i
T ) and ( o
p p

Note that the matrices (

) are the inverses of each other.
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2.8.1 Polar Coordinates

In R, let (x, y) be the standard “identity coordinate system”. Let R? := R?—{0}.
Then the polar coordinate system on R? is a partial map

w:=(r,0):R? >R, xR

such that e o u(z) = (|z],2/|2|), where €(a,t) = (a,e").

R+XR

-"

R2 R, x S!

~

Now we have a relation between the functions on R2:

r =rcosb, y = rsiné.
Then we have
ﬁ — QE + inf—
o = Cos o sin 3y
(2.4)
0 .0 0
% = r ( 31110% +cost98y) .

Although the function 6 is not globally defined (as a continuous function) on
R2, 2 is globally defined.

2.8.2 Chain Rule

Let ¢ : M — N be a smooth map and let g : N — R be a smooth function. Let
x = (z%,...,2") be a chart at a point p of M, and lety = (y',...,y™) be a chart
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at ¢(p) of N. Then

dgop)| _ N~ 99| 9
O? P =1 3y (p) O? P

where ¢ 1=y’ 0 .
2.8.3 Rank of a map
If o : M — N is a smooth map between manifolds, z = (z,...,z") is a coordi-
nate system atp € M, y = (y!,...,y™) is a coordinate system at ¢(p) € N and
@' =y’ o @, then the rank of the matrix

Dt

(550)

is independent of the choice of the chart x and y, and hence we get a notion of
rank of a smooth map. The rank of ¢ at a point p will be denoted by rank (p).
We have the map

rankp: M — Z.

Note that given a point p € M, there exists a neighborhood U of p such that for
anyq e U,
rank ¢(q) > rank ¢(p).

Thus rank ¢ is lower semi-continuous.'%

2.8.4 Exercises

1. (Spherical Coordinates) In R3, let (z,y,2) be the identity coordinates.
Then the spherical coordinates (p, ¢, #) are given by

p= /I2+y2+22
cosp = —2——
Va2 ty2+z?

tanf = ¥
xr

Determine a region where (p, ¢, 6) becomes a diffeomorphism. Compute

(86/) 0% g’g)mterms of(%,a% &)

2. Let k be a real number and let f be a real valued C' function defined on
— {0} such that

Fltx) =t"f(x)

for any positive real number ¢ and x € R® — {0}.

16 A map f from a topological space M to R is lower semi-continuous if for any t € R, the
set {p € M | f(p) <t} is closed (or, equivalently, the set {p € M | f(p) > ¢t} is open) in M.
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(a) Show thatif ¢ > 0, then 38 f
(b) Show Euler's identity

of of
127 o n__J _
T Bt + +x B kf.

(tx) = t*=1 9L (x) foralli = 1,...,n.

(c) For (y?,...,y") € R 1 let

f1(927--~7yn> = f(lay27"'7yn)'

Show that if f;(p) = 0 for some p € R"~!, then

of of _
<axla"'7 axn) (1ap) =0

of1 of1 _
<8y2,...,8yn) (p) =0.

2.8.5 Immersions and submersions

if and only if

Let ¢ : M — N be a smooth map. Then ¢ is called

(i) an immersion'” at p € M, if ranko(p) = dim M, or equivalently, the
vectors

Aot Aot

52r (p) 52 (p)

oo™ dp™

22 (p) 5o (p)

are linearly independent, for any (or for some) local coordinate systems
x=(z,...,2") atpin M and y = (y',...,y™) at p(p) in N.

(ii) a submersion'® at p € M, if rank ¢(p) = dim N, i.e., the vectors

(gﬁ(p),...,gﬁ(p)>, (%ﬁ(p),...,%‘éj(p))

are linearly independent, with respect to some (or any) local coordinate
systems x = (z!,...,2") for M and y = (y',...,y™) for N.

(iii) étale at p € M, if rank p(p) = dim M = dim N,

(iv) an embedding if ¢ is an immersion (at every point of M) and homeomor-
phic to its image.

17We will see soon that an immersion is a map whose derivative is injective at the given
point.

18We will see soon that a submersion is a map whose derivative is surjective at the given
point.
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immersion, one-to-one immersion, embedding

A skew (or irrational) line immersed in a torus

Note that if ¢ is an immersion (resp. submersion) at p, then it is an immersion
(resp. submersion) in a neighborhood of p.

Theorem 2.8.5.1 (Inverse Function Theorem) If ¢ : M — N is étale at
p, then ¢ is a local diffeomorphism at p.

Theorem 2.8.5.2 (Implicit Function Theorem) Let ¢ : M x N — L be
C*, (p,q) € M x N and r = ¢(p,q). If
ep: N L,y opy)

is étale at y = q,'? then there exist a neighborhood U, of p in M, a neighborhood
Vy of ¢ in N, and a C*™ map ¢ : U, — V, such that, for (z,y) € U, x V,
p(z,y) = r if and only if y = ¢(x).

N M x N

19Thus we must have dim N = dim L.
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The following theorem may be found in many standard texts.

Theorem 2.8.5.3 (Rank Theorem) Let ¢ : R™ — R™ be a C* map with
©(0) = 0. If rank(p,0) = k, then there exist a chart x centered® at 0 € R™
and a chart y centered at 0 € R™ such that

yop(a,. .. a™) =" forl1<i<k.
If rank ¢ = k in a neighborhood of 0 € R™, then we can further assume that

Yo', 2™ =0 fork<j<n.

2.8.6 Exercises
1. (Steiner’s Roman Surface) Show that the map
fiP2 o RY (z:y:z2) e (yz, 22,22, 27 + 2y + 3y2) /(2% + 92 + 27)
is an embedding.
2. An immersion is locally an embedding.

3. If o : M — N is a one-to-one immersion and U is a relatively compact?*
open subset of M, then the restriction map

plU—N
is an embedding.
4. A closed?? one-to-one immersion is an embedding.

5. Show that a continuous map from a compact space into a Hausdorff space
is a closed map.

6. Amap f: M — N is said to be proper if the preimage of a compact set
is compact. Show that a continuous proper map from a topological space
into a manifold is a closed map.

7. Show that submersions are open maps.

8. Let f1,..., fr : M — R be smooth functions such that rank(f1,..., fx) =k

at some point p € M. Show that there exist smooth functions fy1,..., fn :
M — R such that (f1,..., fx, fkx1,---, fn) iS @ coordinate system in a
neighborhood of p.

9. Let L, M, N be smooth manifolds, and let g : M — N an immersion. Show
that if f : L — M is a continuous map such that go f : L. — N is smooth,
then f is smooth.

20A chart = at p is said to be centered at p if xz(p) = 0.
21 A subset of a topological space is relatively compact if its closure is compact.
22A map is closed if the image of a closed set is closed.
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2.9 Submanifolds

Theorem 2.9.0.1 Let S be a subset of an n-manifold M, and let k be a positive
integer less than or equal ton. Then for any p € S, the following three conditions
are equivalent:

(i) there exists an open neighborhood U (in M ) such that SNU is the common
zero set of some smooth functions f,..., f¥ on U withrank(f*,..., f*) =
k.

(ii) there exists an open neighborhood U of p in M and a coordinate system
x: U — R™ such that

z(UNS) =a(U)NR"*

(iii) there exists an open neighborhood U of p in M, an open set V in R*~F
and a homeomorphism h : V — U N S such that the map

h:V=>UNS—=U

is an immersion.

A subset S of an n-manifold M satisfying one of the above equivalent con-
ditions is called a (regular or embedded) submanifold®® of M of codimension
k.

Submanifolds of codimension 1 are called hypersufaces.

Submanifolds of codimension n are discrete subsets.

Open subsets on a manifold are submanifolds of codimension 0.

A submanifold S of an n-manifold M of codimension & is a (smooth) mani-
fold of dimension n — k. There exists a canonical differentiable structure on S.
For instance, in the case of (i) in the above theorem, implicit function theorem
supplies the charts.

Submanifolds are always assumed to be equipped with this differentiable
structure. Note that the inclusion map

inc: S—M

23Sometimes one-to-one immersions are called submanifolds. This convention is suitable
for the Frobenius theorem for involutive distributions, and for the Lie Theory. Note that an
immersion is locally an embedding. For other types of submanifolds see [Sharpe] or [Jeffrey
Lee].
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is C*°. The differentiable structure on S is the unique differentiable structure
satisfying the following property: For any smooth manifold N, amap ¢ : N — S
is smooth if and only if the composition

incop: N -8 —M

is smooth.

2.9.0.2 Closed submanifolds

A submanifold S of M is proper if the inclusion map (2.9) is proper. A subman-
ifold is proper if and only if it is a closed submanifold.

Note that if we replace the condition " for any p € S' in the theorem 2.9.0.1
with " for any p € M, then we have a closed submanifold.

2.9.0.3 Exercises
1. Submanifolds are locally closed.?*

2. Show that S™ is a submanifold of R*t!. The differentiable structure as a
submanifold coincides with the standard one.

3. Show that M := {(z,y) € R? | 2% + y® = 1} is diffeomorphic to the unit
circle S*.

4. Show that the manifold given by 2% + y* + 26 = 1 is diffeomorphic to the
sphere given by 2? + y? + 22 = 1 in R3.

5. Let p be a point in a C* manifold M. Take an open neighborhood U of p
and a diffeomorphism ¢ : U — R" such that ¢(p) = 0. Replace U with

—

R := {(z,y) e R" x P(R") : z € y}.

This way, by gluing R" to M — {p}, we obtain a new manifold M, called
the blowing up of M at p. Discuss a differentiable structure on M. Show
that the choice of ¢ and p does not alter the smooth structure (up to dif-
feomorphism) if M is connected.

2.10 Regular Values and Critical Values

Let ¢ : M — N be a smooth map. A point p € M is called a critical point of ¢
if rank p(p) < dim N. Otherwise, p is called a regular point of .

24 A subset S of a topological space X is said to be locally closed at p € S if there is a
neighborhood U of p in X such that SN U is a closed subset of U. S is said to be locally
closed in X if it is locally closed at each p € S. It is easy to see that S C X is locally closed
if and only if S is the intersection of an open subset and a closed subset of X if and only if S
is open in its closure S in X.
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Thus p is a regular point of ¢ if and only if ¢ is a submersion at p.

The image of a critical point is called a critical value.

A point ¢ in N is called a regular value of ¢ if it is not a critical value of ¢.
In particular, if ¢ is not in the image of ¢, then it is a regular value of .

Theorem 2.10.0.1 (Regular Value Theorem) Let q be a regular value of
amap ¢ : M — N. Then ¢~ 1(q) is a submanifold of M of codimension dim N,
unless it is empty.

Theorem 2.10.0.2 (Constant Rank Theorem) If a smooth map ¢ : M —
N has the constant rank k, then each level set of ¢ is a submanifold of M of
codimension k.
2.10.0.3 A cubic plane curve
Given real numbers « and b, consider the polynomial

f(z) =23 + ax +b.

Note that f(x) has a multiple root if and only if 4a® + 276> = 0. We will assume
that
4a3 4 276% # 0.

Then
flxo) =0 = f'(x0) #0.

On R? consider the function

F(z,y) = f(z) - y*

Then the zero set E := {(z,y) € R? | F(x,y) = 0} is a smooth curve in R?.

a=-3,b=1.9 a=-3,b=2 a=-3,b=21
Cuves y2 =23+ ax+b
2.10.0.4 Exercise
Given real numbers a, b, ¢, find the critical points of the map

f:8? =R, (z,y,2) — ax? + by? + c2°.
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2.11 Lie groups

A smooth manifold G together with a group structure is called a Lie group if the
multiplication map

p:GxG—= G, (g192) = 9192

is smooth.2°

Sophus Lie (1842—-1899)

25 A topological space G together with a group structure is a topological group if the multi-
plication map and the inversion map

pn:GxG— G, t:G— G

are both continuous. The 5-th Hilbert problem was the following: Is any locally Euclidean
topological group admits a smooth structure? This problem was answered affirmatively: Any
locally Euclidean topological group admits a unique smooth structure for which the multi-
plication map is smooth. Moreover, any continuous group homomorphism between two Lie
groups is smooth.
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Note that for a,b € G, the left and right multiplication maps
L,:G— G, g~ ag, Ry:G— G, g—gb
are commuting diffeomorphisms of G. Note that
Lap=LaoLy,  Ru=RyoR,
for any a,b € G.
Theorem 2.11.0.1 For a Lie group G, the inversion map
i:G—G, i(g)=9g"

is a diffeomorphism.
Proof. Since the left (and right) multiplication maps are smooth, it suffices to

show that i is smooth on a neighborhood of the identity element e of G.26
Consider the set

S :={(z,y) e G X G| xy =e}.

Then (e, e) € S. The ‘derivative ’ (or the Jacobian matrix with respect to a chart)
of the identity map

G=GxGHB G ye(e,y)— pley) =y

at the identity element ¢ is invertible and hence by the implicit function theorem,
there exist open neighborhoods U and V of e such that the inversioni: U — V
is smooth. O

A map between two Lie groups is called a Lie group homomorphism if it is a
smooth group homomorphism.

2.11.1 Examples

2.11.1.1 General Linear Groups

Letgl(n,R) = J[]"R™ := R" x --- x R™ be the vector space of nxn real matrices.
~—_——

n

Then the map
det : gl(n,R) - R (2.5)

is obviously C>. The general linear group

GL(n,R) := {A € gl(n,R) | det A # 0}

26For any a € G, i = Ry 040 Ly = Lg 010 Rg.
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of rank n is an open subset of gl(n,R) and hence is a C*° manifold. The multi-
plication map

1 GL(n,R) x GL(n,R) = GL(n,R),  (X,Y)— XY

is obviously C* and hence GL(n,R) is a Lie group.

The general linear group GL(n,R) has two components. The identity com-
ponent, i.e., the component containing the identity element, consists of matrices
with positive determinants.

2.11.1.2 Special Linear Groups

Now we compute the derivative of the determinant map (2.5) at A = (aq,...,a,) €
R™ x --- x R"™ in the direction B = (by,...,b,) € R" x --- x R";
Dpdet(A) := %‘0 det(A+tB) = %‘0 det(ay +tby,...,an + tby)

= det(b,as,...,a,) +det(ay, ba,as,...,an) + - +det(a,...,an—1,b,).
If A= (ey,...,e,) = 1,, the identity matrix, then Dy det(1,) = tr(B), i.e.,
Ddet(1,) = tr: gl(n,R) — R.
Thus the determinant map (2.5) is regular at 1,,.

If A is any point in GL(n,R), then

4 det(A+tB) = 4 det(1, +tBA™!) -det A
dt|, dt|,

= tr(BA™!) - det A.

DB det (A)

Thus any nonsingular matrix is a regular point of det. (In fact, f: G — H is a
group homomorphism, then Ly, o f o L, for any g € G, Thus if f is smooth at
the identity element, then f is smooth everywhere.)

Now 0 € R is the only critical value of det and hence the special linear group

SL(n,R) := det ~*(1)

of rank n is a submanifold of GL(n, R).
The multiplication map

SL(n,R) x SL(n,R) — SL(n,R)
is smooth, since we have a commutative diagram

SL(n,R) x SL(n,R) —— SL(n,R)

l l

GL(n,R) x GL(n,R) —— GL(n,R)
o

Thus SL(n, R) is a Lie group of dimension n? — 1.

Special linear groups are connected.
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cosht sinht
H = { (sinht cosht> te R} ’

Show that H is a subgroup of SL(2,R) isomorphic to R.

Exercise. Let

2.11.1.3 Orthogonal Groups

We now show that the orthogonal group®”
O(n):={Aegl(n,R): A*"A=1,}

is a Lie group of dimension (n — 1)n.
For this, define a map

f:gl(n,R) = Sym(n,R) := {4 € gl(n,R) | A* = A}

n(n+1)
2

by f(A) = A*A. Then Sym(n,R) is a linear space of dimension and

d
Dpf(A)= | f(A+1B)=B"A+AB.
0

If A€ O(n), then
Df(A) : gl(n,R) — Sym(n,R)

is surjective, for if C' € Sym(n,R), then with B = AC

Dpf(A)=B*A+4 A*B = _{(AC)*A + A*(AC)} = C.

1
2
Thus A € O(n) is regular and hence O(n) = f~1(1,) is a C*° submanifold of
gl(n,R) of dimension n? — % = "("2_1). The multiplication map is C*> as
before and hence O(n) is a Lie group. Since O(n) C S~ ! x --- x §"~1 O(n) is
compact.

Orthogonal group O(n) has two components. the special orthogonal group

SO(n) := O(n) N SL(n,R)

is the identity component.

2.11.2 Exercises
1. Show that for any = € M, (R),

det(e®) = e*.

Is this identity also true for complex square matrices?

27 A* denotes the transpose of A.
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Show that the derivative of the determinant map det : gl(n,R) — R at
matrix A in the direction V' is
tr(V Adj(A4)),
where Adj(A) denotes the adjoint matrix of A.

Find the derivative of the inverse map ¢ : GL(n,R) — GL(n,R) at a point
A € GL(n,R) in the direction V' € gl(n, R).

[Tau2] Note that the space of 2 x 2 real matrices is isomorphic to R? x R?:

PRXR2GE, (oo (00 ().

xT v u

Then f(x,y,u,v) is of determinant 1 if and only if 2% + y? = u? + v? + 1.
Show that SL(2, R) is diffeomorphic to S! x R2.

Show that the general linear groups
GL(n,C), GL(n,H)
are all Lie groups.

For a complex matrix X, let X* be the conjugate-transpose of X. Show
that the unitary group

Un):={X eM,(C) | X" X =1,}
is a Lie group of dimension n?, and the special unitary group
SU(n) :=U(n) N SL(n,C)
is a Lie groups of dimension n? — 1.

For a quaternion matrix X, let X* be the conjugate-transpose of X. Show
that the (compact) symplectic group

Sp(n) ={XeM,H) | XX =1,}
is a Lie group of dimension 2n? + n.
Show that S3 is diffeomorphic to SU(2).

Show that SO(3), the group of rotations in R3, is diffeomorphic to the
projective 3-space P3(R).

On S3 x S3, consider the identification (x,y) ~ (—x, —y). Show that the
quotient space (S® x S3)/ ~ is diffeomorphic to SO(4).

For a Lie group G, let G° denote the component of G containing the neutral
element e € G. Show that G° is a normal subgroup of G and G/G° is a
discrete Lie group.
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2.11.3 Lie Subgroups

Let G be a Lie group. An abstract subgroup H of G is called a Lie subgroup of
G if there exists a topology and a smooth structure such that the inclusion map
H — G is an immersion and multiplication map H x H — H is smooth.

Note that once a topology on H is fixed, there exists at most one smooth
structure on H.

If H is an abstract subgroup of GG and is an embedded submanifold of G, then
H is a Lie subgroup. In this case, H is called an embedded Lie subgroup of G.

2.11.4 Closed Subgroups

Note that any embedded Lie subgroup of a Lie group is a closed subset.

Theorem 2.11.4.1 (Cartan, von Neumann) Let H be a closed subgroup
of a Lie group G. Then

(i) H is a submanifold of G, and is a properly embedded Lie subgroup of G.

(ii) The quotient space G/H (of left cosets of H in G) has a unique smooth
structure such that for any smooth manifold N, a map ¢ : G/H — N is
smooth if and only if the composition p o : G — G/H — N is smooth,
where m : G — G/H is the quotient map.

(iii) There is a canonical left action of G on G/H.

2.11.5 Action

Given a smooth manifold M, let Diff( M) be the group of all self-diffeomorphisms
of M.
An action (or a left action) of a Lie group G on a smooth manifold M is a
group homomorphism
p: G — Diff(M)

such that the induced map
GxM—M,  (g,p)— (p(9)(p) = gp

is smooth.
Given an action of G on M, and a point p in M, by definition,

* the orbit of p is
Orb(p) :={gp|ge G} C M

* the stabilizer (or isotropy group) of p is
Gp:={9€G|gp=np},

which is a closed subgroup of G.
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An action of G on a manifold M is said to be proper if the map
GxM—MxM, (g,m)— (gm,m)
is a proper map.?®

Proposition 2.11.5.1 An action p: G x M — M is proper if and only if for
any compact subset K of M

Gk ={9€eG|gKNK # &}

is compact. In this case, for any point p in M, the isotropy group G, := {g €
G | gp = p} is compact.

Note that any action of a compact group is proper.

If G is discrete, then an action is proper if and only if for any points p and ¢ in
M, there exist neighborhoods U of p and V of ¢ such that {g € G | gUNV # &}
is finite [Jeffrey Lee, p. 231].

Theorem 2.11.5.2 Let G be a Lie group which acts on a smooth manifold M
smoothly. If the action is free and proper, then there exists a unique smooth
structure on the orbit space G\M such that the map © : M — G\M is a
submersion. In this case, 7 is a fiber bundle map with the fiber G.

For a proof, cf. [Jeffrey Lee, p.236], [Dieudonné, 16.10.3], [Gallier].

Theorem 2.11.5.3 Let G be a discrete group of diffeomorphisms on a smooth
manifold M. If the action is free and proper, then there exists a unique smooth
structure on the orbit space G\M such that the map © : M — G\M is a
covering map.

cf. [Gallot et al., p.30] or [Thurston, p.155].

A smooth action of G on M is properly discontinuous if for any p in M, there
exists a neighborhood U of p such that U N gU = & for any nontrivial g € G [do
Carmo]. Such an action is free.

Theorem 2.11.5.4 IfG acts on M properly discontinuously, then The quotient
G\M is a (Hausdorff paracompact smooth) manifold and the map M — G\M
is a regular covering.

2.11.6 Homogeneous spaces

The action is said to be transitive if for any pair (p, ¢) of points in M, there
exists g € G such that gp = ¢. Thus the action is transitive if and only if the orbit
of a point is the whole space. In this case, M is said to be homogeneous.?

281n particular, the action map G x M — M is proper.
29Though this notion is much older, the term has been coined by Elie Cartan [Freudenthal],
[Cartan, 1894].
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Theorem 2.11.6.1 Let G be a Lie group, which acts transitively on M. Then
there exists a G-equivariant diffeomorphism

M ~G/H

for some closed subgroup H of G.
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2.12 Covering Spaces

An action G on M is said to be proper if the map
GxM—MxM, (g,p)+ (9p,p)

is proper.
An action G on M is free if the isotropy group G, is trivial for any p € M.

Theorem 2.12.0.1 IfG is a discrete group acting smoothly, freely and properly
on a smooth manifold M, then the quotient map

T M— M/G
is a covering map and M /G has a unique smooth structure such that w is
smooth.
2.12.0.2 Tori

Consider the integral lattice Z™ in R™. Then the quotient space R"/Z" is home-
omorphic to T™. In fact the continuous, open, surjective group homomorphism

R™ = T", (r1,...,1rs) — (exp(2miry),...,exp(2mwir,))
has the kernel Z™ which induces a homeomorphism

R"/Z" ~ T".

2.12.0.3 Lens Spaces

Note that the odd-dimensional sphere S?”~! may be regarded as the unit sphere
in C™:

Sl = {21, z0) | 2P+ F |z = 1),
Let ¢ be an integer bigger than 1,

w = e?mi/a
and let pq, ..., p, be positive integers relatively prime to ¢q. Consider the map
f.82nt g2t (21, oy 2n) = (W2, .. wPmzy) .
Then
fi=id
and foreachi € {1,...,¢q—1}, f* has no fixed points. Thus we have a free action

of the cyclic group (f) on S?"~! and the quotient space

L(q:p1,...,pn) =S 1/(f)

is called a lens space.
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2.13 Stiefel Manifolds

For integers k and n such that 1 < k < n, an ordered k-tuple v := (vq,...,vy) of
pairwise orthogonal unit vectors in R" is called an orthonormal k-frame on R".
The Stiefel manifold®® S(n, k) is the set of all orthonormal k-frames in R”. We
may regard S(n, k) as a subspace of M, , the space of all n x k real matrices.
Thus

S(n, k) ={v € My | viv =14},

where 14 is the k x k identity matrix. Thus Stiefel manifolds are compact spaces.
Note that S(1,n) is the (n — 1)-sphere S"~!, and S(n,n) is the orthogonal
group O(n).
Let Sym,, be the space of all symmetric k x k real matrices. Then the deriva-
tive of the map
f: M, x — Sym,, v viv — 1

atv Mn,k: is
dfy(w) = viw + w'v (w € My k).

Thus if v € S(n, k), then for any symmetric k£ x k matrix s, w := %vs € M,y is
a solution of the equation
dfy(w) = s.

Thus S(n, k) is the regular zero level of f, and hence it is a smooth submanifold
manifold M,, ;, of dimension nk — 1k(k + 1).

30Eduard Stiefel, 1909-1978. A Swiss mathematician.
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2.14 Grassman Manifolds

Let V be a finite dimensional real vector space and let Grass (V') be the set of all
k dimensional subspaces of V. There is a canonical injection of Grass (V') into
P(A*V), the space of 1-dimensional subspaces of AFV, the k-th exterior power?!
of V. Then there is a unique differentiable structure on Grass (V') such that a
function on AFV is differentiable if and only if its pull-back to Grass (V) is
differentiable.??

31Readers may consult the appendix for the exterior powers.
32Hermann Giinther Grassmann(1809-1877)
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2.15 Existence of Smooth Functions
By a function we mean a real valued map. The set
C> (M)

of smooth functions on a manifold M is a commutative algebra over R.33
If M,'s are connected components of M, then

ce(M) =[] e (Ma).

If U is an open subset of M, the restriction f [ U of f € C*(M) to U is a
smooth function on U:3*

rst : C°(M) — C*>(U).
This map is neither injective nor surjective, in general.

Observation 2.15.0.1 Let {U, }aca be an open cover of M. If { f } is a family
of functions with f, € C*(U,) for each index a € A such that

fa r(UamUﬂ):fﬂ r(UaﬂUﬂ) (Oé,ﬂGA),

then there exists a unique f € C*°(M) with f | U, = f. for any index «.

2.15.0.2 Functions with compact support
Let
C= (M)

be the subalgebra of C>°(M) consisting of functions with compact support. If M
is compact, then C2° (M) = C>*(M).

If a smooth map ¢ : M — N is proper, then the pull-back map induces a
homomorphism

©*:CP(N) = C(M).
Observation 2.15.0.3 For any open set U in M, there is a canonical inclusion
CE(U) = €2 (M)

by extending trivially. Its image consists of functions on M whose support is
compact and contained in U.

33Eventually, we will concern modules over C*°(M).
341f U = @, then C*°(2) := {0}.
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2.15.1 Bump functions
A bump function for sets K C U C M is a function f € C>°(M) such that
0<f(x)<1, fIK=1, suppfcCU.
If K = U = M, then the bump function is the constant 1 function.

Theorem 2.15.1.1 Given a manifold M, let K be a closed subset of M, and
let U be an open neighborhood of K. Then there exists a bump function f for
KcUcCM.

We will prove the theorem in various steps.
First note that the function p : R — R defined by

_Jo ifx<0
plz) = Yz ifr >0

is a C*° function.

Y

Figure: y = p(z) and y = p(x)

Now the function
p(z)

P = ey ol =)

is an increasing function with

o) = {o ifr <0

1 ifxz>1.
Now if R > 1, then the function

f(@) = p(x)p(R+1—x)

is a bump function which is identically equal to 1 on the interval [1, R] with the
support [0, R + 1].

Lemma 2.15.1.2 For any real numbers r and R with 0 < r < R, there exists
a bump functionn f : R — R for [-r,r] C (=R, R) C R.
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~ Let B"(p) be the open ball in R™ centered at the origin with radius p and let
B™(p) be its closure.

Lemma 2.15.1.3 For any real numbers r and R with 0 < r < R, there exists
a bump functionn f : R™ — R for B"(r) C B"(R) C R".

Proof of (2.15.1.1). Without loss of generality, we may assume that M is
connected.

(Case 1.) Suppose K is compact.

For each point p € U, there exist an open neighborhood U,, of p such that
U, C U and a bump function f, € C>*(M) for U, C U C M.

Since K is compact, there exists a finite number of points, say py,...,p; of
K such that {U,,,...,U,,} covers K. Now let

f=1=0=fp)-- (1= fp)-
Then f € C*>°(M) and
0<f<1l, fIK=1, suppfCU.
Thus f is a bump function for K ¢ U C M.

(Case 2.) Now suppose K is non-compact.

Since we are assuming that M is connected, there exists a compact exhaus-
tion (K;);=1,2.. of M. Then there exists a bump function f; € C>° (M) with
respect to the subsets

o

(Ki+1_ Ki) NK C (Ki+2 —K,;l) NnU

fori =1,2...., where K, := &. Then

is the desired bump function. O

Corollary 2.15.1.4 Let U be an open neighborhood of a point p in a smooth
manifold M and let F' : U — N be a C* map. Then there exist an open
neighborhood V of pinU and aC*>® map F': M — N such that F [V =F [ V.
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Proof. We give two proofs. First, take a diffeomorphism x : V' — R", where
V' is an open neighborhood of p such that V. C U. Then there exists a bump
function p : M — R for V supported in U. Now

- px onU
T =
0 on M — suppp

is a smooth map of M into R™. Then
F:=Foz'o#:M -R" U N

is a smooth map such that F' |= F | V.
Here is another proof. Let y : W — R™ be a diffeomorphism, where W is an
open neighborhood of F(p) in N. Then we have a smooth map

yoF :F'W)nU — R™.

Then there exists a smooth map G : M — R™ which is identically equal to y o F
in a neighborhood V of p. Now F := y~! o G is the desired map. O

2.15.2 Whitney Embedding Theorem

Theorem 2.15.2.1 (Whitney, 1936, 1944) Any n-manifold can be embed-
ded in R?",

For simplicity,*® we will show that any compact manifold M has an embed-
ding into some R”". Let p € M and let U be an open neighborhood of p with a
diffeomorphism x : U — R™. Take a C* function p : M — R with suppp C U
and p = 1 in a small neighborhood of p. Then the map3°

. px onU
Tr =
0 on M — suppp

is a C*> map of M into R™, which is a local diffeomorphism in a neighborhood
of p.

Since M is compact, there exist a finite number of points py,...,pr in M
and C* maps 21, ...,7, : M — R™ such that each z; is a local diffeomorphism
in a neighborhood V; of p;, fori = 1,...,k,and V; U--- UV}, = M. Shrink3”
{V1,...,V}} to open sets {W;,..., Wy} so that

chvl,...,WkCVk, M=WiU---UWyg.

35For the detail, see [Boothby], [Brocker and K. Jinich], [Hirsh] or [Munkers (1966), p.18].
36Note the inclusion C°(U,R™) < C* (M, R"™).
37Compact Hausdorff spaces are normal.
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Now take bump functions p1, ..., pr on M with supp p; C V; and p; [ W; = 1.
Then the map

O = (P1see s PryB1, ey @)t M = RF X R™ x - x R? = RFFAn

is a desired C* map.

To check that ¢ is one-to-one, suppose ¢(p) = ¢(q) for some p,q € M. Since
p € W; CV; for some i, 1 = p;(p) = p;(q). Thus ¢ € V;. Thus Z;(p) = #;(¢) and
hence p = q.

The map ¢ is clearly an immersion.

Since M is compact, ¢ is an embedding. O

In fact, John Forbes Nash (1928—-2015) proved (1954, 1956) that every
second countable Riemannian manifold has an isometric embedding into a Eu-
clidean manifold.

2.15.3 Partition of Unity

On a manifold M, a collection {p, | « € A} of C* functions on M is called a
smooth partition of unity, if

(i) foranya € A,0< p, < 1.
(ii) {supppa | @ € A} is locally finite.
@) Y, pe =1

For an open cover {U, } of M, a C* partition of unity {p,} (with the same index
set) is said to be subordinate to {U,} if supp p, C U, for every .

Lemma 2.15.3.1 (Shrinking Lemma) If {Us}aca is a locally finite open
cover of a manifold M, then there exists an open cover {V,} such that V,, C U,
for each index «.

Proof. We may also assume that U, # & for all « € A. We may also assume
that M is connected. Then M is o-compact. Thus for any compact set K in
M, there are only finitely many «'s such that K N U, # &, and hence A is a
countable set. Arrange the indices so that A = {1,2,3,...}. Then

C1 ZZM*(UQUUgU...)CUl.

Thus there exists an open set V; such that C; < V; < Uy. Now {V;,Us,Us, ...}
is an open cover of M. Let

Cy ::M*(V1UU3UU4U...)CU2.

Then there exists an open set V5 such that Cy < Vo < Us. Now {Vy, V5, Us, ..
is an open cover of M. In this way we have a desired open cover {V,,} of M.

O~
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Theorem 2.15.3.2 For any open cover {U,} of a C* manifold M, there exists
a C partition {ps} of unity subordinate to {Uy,}.

Proof. (Case 1.) Suppose that {U,} is locally finite. Shrink {U,} to an
open cover {V,}. Then by the theorem (2.15.1.1), there exist a bump function
fa €C®(M) for V,, C U,. Now let

I
o Zﬁfﬁ.

(Case 2.) In general, {U, }oc4 has a locally finite open refinement {V)} xca,
i.e., there exists a map i : A — A such that V) C U;(y). Let {¢x} be a partition
of unity subordinate to {V\}. Now for each o € A define

Pa = Z -

Aei—1(a)

By convention, empty sum is equal to 0. Now

supppa C () swpporcC  |J VaC U,
Aei~(a) A€i~1(a)

{supp pa } is locally finite,>® and 3" p, = 1. This completes the proof. 0O

2.15.4 Exercises
1. Show that dim(C>°(M)) = oo if dim M > 1.

2. Let D; and Dy be two C*°-structures on a topological manifold M and
let My = (M, D), My = (M, D). Show that D; = D, if (and only if)
C (M) = C*(My).

3. Let M and N be smooth manifolds and let C°(M, N) (resp. C>(M, N)) be
the set of continuous (resp. C>°) maps from M to N. Show that C*° (M, N)
is a dense subset of C°(M, N) with the compact-open topology.

4. Show thatamap ¢ : M — N is C*° if and only if for any open subset V' of
N and g € C=(V), ¢*(g) := g o ¢ is a C* function on ¢~ 1(V).

5. Let Diff(M) be the group of all diffeomorphisms of M onto itself. Show
that, if M is connected, Diff(M) acts on M transitively.

38 For, if p € M, there exists an open neighborhood W of p such that W N'Vy = 0 for
all X exept for a finite number of \’s. Now if supp po N W # (), then V\ N W # () for some
X € i~ 1(a). Thus there are only finite number of a’s with supp po N W # 0.
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6. (Taylor Expansion) Let f € C>°(M). Show thatifz = (z!,...,2")isachart
on M centered at a point p € M, then there exist g4, ..., g, € C*(M) such

that _
f=f +legi

in a neighborhood of p. In this case, g;(p) = g{i (p).
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2.16 Sard’s Theorem

A subset S of R is said to be of (Lebesgue) measure zero if for any positive
real number e, there exists a countable set of n-balls?* By, B,,... in R” such
that SC BiUByU--- and vol By + vol B + - - - < e.

For instance, the set Q" of rational points in R™ is of measure zero.

Proposition 2.16.0.1 Let A be a measure zero set in R"™. Let U be an open
subset of R" containing A. If ¢ : U — R™ is either Lipschitz or C', then ¢(A)
is of measure zero.

Proof. Let ¢ > 0 be given and take a sequence {Bj, : k = 1,2, ...} of n-balls
By := B"(pg,ry), with center p; and radius ry, such that A C U2 B, and
> Vol(By) < e.

(Lipschitz Case) Let L be the Lipschitz constant of ®. Then

#(AN By) C B"(¢(px), Lrk)-

Now
$(A) C U 6(AN By) C UpB"(d(pr), Lri,)

and
> Vol(B™(¢(px), Lri)) = »_ L™ Vol(By) < L™
k k

Since e > 0 is arbitrary, ¢(A) has measure zero.

(C* Case) Note that U is a countable union of convex compact subsets { K, :
a=1,2,...}. Thus ¢ is Lipschitz on K, and A N K, has measure zero. Hence
¢(A N K, ) has measure zero and ¢(A) has measure zero. This completes the
proof.cf. [Dubrovin et al.], [Milnor, 1969], [John Lee]. O

Corollary 2.16.0.2 “Measure zero” is a C'-diffeomorphism invariant.

A subset S of a smooth n-manifold M is said to be of (Lebesgue) measure
zero if for any chart z : U — R", (U N S) is of measure zero in R™.

Proposition 2.16.0.3 If F : M — N is a C! map between manifolds of the
same dimension, and S is a measure zero set in M, then F(S) is of measure
Zero.

Theorem 2.16.0.4 (Morse (1939), Sard(1942)) Let M be second count-
able. Let ¢ : M — N be a C* map, where k > 1 + max{dim M — dim N, 0}.
Then the set of critical values of ¢ is of measure zero.

39Instead of balls we may use boxes. An n-boz is a product [a1,b1] X -+ X [an,bn] C R™ of
compact intervals.
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For the proof, since the countable union of measure zero sets has measure
zero, we may assume that M and N are open subsets of R™. Let C be the set of
critical points of ¢ and let

olelg
x>

Ci={pe M| (p) =0€R", Va = (ai,...,an) €ZY, |of < i}

fori=1,2,...,k. Then in [Mil;T], the following steps are proved.
Step 0. The image ¢(C — ) has measure zero.
Step 1. The image ¢(C; — C2) has measure zero.

Step k — 1. The image ¢(Cj_1 — C)) has measure zero.
Step k. The image ¢(C},) has measure zero.
We omit the details.

Note that if S is of measure zero in M, then the complement M — S is a dense
subset of M.

Corollary 2.16.0.5 ([Brown]) The set of regular values of a smooth map
¢: M — N is dense in N, if M has at most countable number of components.

Corollary 2.16.0.6 Ifdim M < dim N, then there exists no surjective C' map
from M to N, provided M has at most countable number of components.
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2.17 Morse Functions

Theorem 2.17.0.1 Morse functions form an open dense subset in C*°(M).

cf. Milnor, Lectures on the h-cobordism theorem, Princeton Univ. Press,
1965. p.14.
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2.18 (" Differentiable Structures

Let M be a topological n-manifold.

2.18.1 Definitions

1.

6.

A set*® A of local charts, or local coordinate systems on M is called a
(topological) atlas if {dom(z) | z € A} covers M.

Note that if  and y are local charts of M, then
oyt

is a homeomorphism between open subsets of R™.

. An atlas A of M is said to be of class C* for some k = 0, 1,. .., 00, w, if for

any pair x, y of elements in A, the composition

zoy !

is a C*-diffeomorphism.*!

Note that every atlas is automatically of class C°. Moreover, if k < [, then
a Cl-atlas, i.e., an atlas of class C', is a C*-atlas.

. Two C*-atlases are equivalent if their union is also a C*-atlas.

It should be easy to check that this relation is an equivalence relation.

. An atlas A of class C* is maximal if it is not contained properly in any

other atlas of class C*, i.e., if y : U — R" is a chart such that yoz~ ' is a
C*-diffeomorphism for any = € A, then y € A.

Note that any atlas A of class C* is contained in a unique maximal atlas A
of class C*. In fact, A is the union of all C*-atlases which are equivalent
to A.

. A CF-structure on M is a maximal atlas of class C*. Or equivalently, we

may say that a C*-structure on M is an equivalence class of C*-atlases.

A topological manifold together with a C* structure is called a C*-manifold.

A topological manifold M together with an atlas A of class C* has a unique
C*-structure which contains A.

A topological space has a canonical sheaf C° of continuous functions. One
can define a C*-differentiable structure using a subsheaf of C*-functions [Bre-

don].

40Thus an atlas of M is a subset of all partial homeomorphisms from M to R™, whose
domains are nonempty open subsets of M and whose codomains are nonempty open subsets

of R™.

41 A map is, by definition, of class C¥ if it is an analytic map.
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2.18.2 Diffeomorphic Structures

Let A be a C*-atlas on a topological manifold M, and let h : M — M be a
homeomorphism. Let
hWA:={xoh]|zxec A}

Then h* A is a C*-atlas.

We say that two C*-structures A and A’ on a topological manifold M are
diffeomorphic if there exists a homeomorphism ~ : M — M such that A" =
h* A. This relation among C*-structures is an equivalence relation.

2.18.3 Whitney’s Theorem

It is obvious that any C'-manifold is also C* for k < I.

H. Whitney(1907--1989) proved that any C!-atlas on a topological manifold
M contains a C¥-atlas, which is unique up to diffeomorphism [Hirsch, ch. 2],
[Munkres, §4.7--4.9].



Chapter 3

Tangent and Cotangent
Vectors

3.1 Tangent Vectors

Let M be a manifold of dimension n and let p € M. We say that two (parametrized)
smooth curves ¢y, ¢o : R — M are equivalent at p if and only if

c1(0) =p=1c2(0),  (z0c1)'(0) = (z0cp)(0) €R”

for some (and hence for any) chart x at p. The equivalence class of a curve
¢ : R — M with ¢(0) = p will be denoted by ¢/(0), and is called a tangent
vector of M at p. The set

TM,

of all tangent vectors of M at p is called the tangent space of M at p.! Note
that if p and ¢ are distinct points of M, then T'M,, and T'M, are disjoint.

If c € C*(R, M) and ¢ € R, then ¢/(ty) is the tangent vector of M at c(t¢)
defined by the curve () := c(t + tg).

3.1.0.1 Example

For a finite dimensional real linear space V, the tangent space of V' at any point
p € V has a canonical identification with V, or for better with {p} x V:

TV, ~{p} xV ~V.

To see this let eq,...,e, be a basis for V and let z!,..., 2™ be the dual basis.
Thenz = (z!,...,2") : V — R"is a (global) chart for V. Ifc: R — V is a curve
in V with ¢(0) = p, then

c(t)=> c(t)e;

!Many authors use the notation T, M or M,. Our notation is the same as the one in
[Milnor, 1969] and [Arnold].

69
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where ¢(t) = z(c(t)). We identify ¢/(0) with

dct dc" dc?
-1 —_— —_— = —_— ;
x ( o 0),..., 7 (0)) E o (0)e; € V.
Note that ¢/(0) is independent of the choice of basis of V.

3.1.0.2 Exercise
Prove the following statements.

1. If ¢1,¢2 € C®(R, M) are the same in a neighborhood of 0, then ¢} (0) =
ch(0).

2. For a positive real number ¢, if ¢ : (—¢,€) — M is smooth, then there exists
¢ € C*°(R, M) such that ¢ = con (-5, ).
3.1.1 Derivations

A derivation? of C>°(M) at p is an R-linear map § : C°>°(M) — R such that

3(fg) = (3f)g(p) + f(p)(dg)

for any f,g € C>°(M). The set of all derivations of C>°(M) at p is denoted by
Der(M, p).

Lemma 3.1.1.1 Let § be a derivation of M at a point p in M.
(i) if const is a constant function, 6(const) = 0.
(ii) derivations are local, i.e., if f and g are smooth functions on M which are

identical in a neighborhood of p, then §(f) = d(g).

Proof. (i) is trivial, since (1) = 0.

(i) It suffices to show that if f is identically zero in an open neighborhood
U of p, then §(f) = 0. Take a p € C°>°(M) such that suppp C Uand p=1lina
neighborhood of p. Then pf = 0 and hence

0=24(pf) = (6p)f(p) + p(P)(8f) = o(f)-
0

2Let A be a commutative algebra over a field F and let M be an A-module. Then an
F-linear map
6:A—> M

is called a derivation if

5(ab) = (da)b + a(dd)
for any a,b € A.
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Since derivations are local operators,® we can define 6 f for any f € C>(U),
U being an open neighborhood of p, as follows: Take any f € C>°(M) such that
f = f in a small neighborhood of p. Then

6f=6f

is well-defined, i.e., independent of choice of extension.

3.1.1.2 Examples

(i) Letx = (x',...,2") be a coordinate system at p. Then the partial deriva-
tive operators
0 af
— :C*(M R — =1,...
9 |, (M) =R, fr=om0m)  (G=1...n)

are derivations.
(i) If ¢: R — M is a curve, we have the pull-back map
¢ :C®(M) — C*(R)

which is an algebra-homomorphism. Thus the composition of ¢* with the

derivation p
—| :C®[R R

G| C®
of R at the origin (where ¢ : R — R denotes the identity coordinate map)
is a derivation of M at the point ¢(0).

Now the tangent vector ¢’(0) at p defines a derivation

dcf(o) : COO(M) — R, f — i

= (oo,

0

One can easily see that this definition is well-defined.
Theorem 3.1.1.3 (i) There is a canonical one-to-one correspondence

d: TM, — Der(M,p).

(ii) Der(M,p) is a vector space of dimension n.

Proof. We prove the second assertion first. Obviously derivations form a
linear space. For any chart z at p, it is trivial to see that the derivations

0 0

Ozt p’ T Oxm

p

3Some authors like to use germs of functions.
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are linearly independent, since 6%‘19 (z') = 6.

Now we show that they generate the whole derivations at p. Let f € C>(M).
Then there exist an open neighborhood U (contained in the domain of z) of p
(cf. 2.15.4.6 or Appendix) and smooth functions h,;; € C*°(U) such that

Al +Zm_$ a(zz

Thus for any derivation ¢ at p,

() + 5 S — o (p)a? — 29 ()i ().

,J

Z 6 8x1

Therefore § = 3°, §(2%) 2

ozt

Now we prove the first assertion. To check the injectivity of d, suppose d, =
dy for v = ¢(0) and v = &(0), where ¢, ¢ : R — M satisfy ¢(0) = p = ¢(0). Note

that for any chart z = (z!,...,2"),

. dl . .
dy(2") = | @'(c(t)) = D(a" o 27 a(p) (2 0 ¢)'(0) = proji(z o ¢)’ (0)
0
fori =1,...,n, and similarly for ¢. Since d, = d3, we have

(z0¢)(0) = (z26)(0)

which means that v = .
. o . : 3
To see the surjectivity of d, let ), a’ 5%
curve

» be a derivation at p. Then the

t—a " (z(p) +t(a',...,a") e M

defined for small |¢|, can be used to get a tangent vector v so thatd, = > a’ dﬂ
This completes the proof. D

From now on we will identify tangent vectors and derivations. Thus

dyf =v(f)

for any tangent vector v and any function f. The set of tangent vectors T'M,, is
a vector space of dimension n.
If (z',...,2™) is a chart at a point p of M, then we have the coordinate
curves
a(t), ..., cu(t)

on M, defined for small |¢|, with ¢;(0) = p, ..., ¢, (0) = p. Then

0
/ — ) —
61(0)781:"1) (t=1,...,n).
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3.1.1.4 Classic notion of tangent vectors

In the proof of the above theorem, we have seen that every tangent vector v €
T M, “is” a linear combination of -2 , for any chart x at p. If we take another

Oz
chart & at p, then
. )
= g = ~‘7
v E v : E Gy

0
ozt

p
where

o (i=1,...,n). (3.1)

i ox'
=D 9%

J

Thus if A is a smooth atlas on a manifold M, a tangent vector on M at a
point p € M is an equivalence class of (z,v) € A x R”, where (z,v) ~ (%,0) if
and only if they satisfy the relation (3.1).

3.1.2 Exercises

1. Let U be an open subset of a finite dimensional vector space V,and p € U.
Show that
TU, ~ TV, ~ V.

2. Letc: (—¢,e) = M be a curve with ¢(0) = p and ¢/(0) = 0. Show that
d'(0) e TM,
is well defined.

3. On the unit sphere S? in R3, let r = /22 + 32, the distance from a point
(7,7, 2) on S? to the z-axis. We have a parametrization
R x (—7,7) = St x (-7, 7) — S?
(0,%) — ((cos8,sinh), 1)) — (cosf,sinf,0) costp + (0,0,1) sinp
Show that
d 1 3}

z
ap = 7(_y7230)7 a0 :_7(x7ya0)+r(0voal)'
By T Wloys 7
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3.2 Derivatives of Maps

Let F': M — N be a smooth map between manifolds. Then the derivative of F'
at p € M is the linear map

TF, : TM, — TN, (3.2)

defined by
TF,('(0)) = (Fo¢)(0)

where ¢ is a curve in M with ¢(0) = p.

In terms of derivations, if v € T'M), is a derivation of M at p, then T'F,,(v) is
a derivation of N at F(p) such that

(TFy(v))g =v(ge F), geC*(N).

Now it is clear that T'F), is linear.
If v = (z!,...,2") is a chart of M at p and if y = (y!,...,y™) is a chart of

N at F(p), then { ;2 o) and{%ﬂp),. 0 B

p""’aa:" '.76?/77"
TM, and T'Ng(,), respectively. With respect to these bases, we have

Fi
p
where F? =y’ o F.

Oxd
Itis obvious thatifid : M — M is the identity map, then T'(id),, is the identity
map on 7'M, and

} are bases for
p)

T(GoF),=TGpy) oTF,

for F: M —- Nand G: N — L.

Let U and U’ be open subsets of vector spaces V' and V’, respectively. In
Calculus classes, the ordinary derivative of a smooth map

F:U—=U
at a point p in U is a linear map
DF,:V =V’

which is ‘identical’ to the derivative of a function between manifolds. We use
the following notations for the derivative of F' at a point p:
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TU, TFp TUr
v, dFyp Ve
v v
DF,

Thus for any smooth function f : M — R and a vector v € T'M,,, we have

dfp(v) = v(/).

Note that df, is an element of the cotangent space T'M,, i.e., the dual space of
TM,.

3.2.0.1 Exercise
Let p be a point of M. Show that the map
dp:C¥(M) —TMy, fwdfy

is linear and satisfies the Leibniz rule.
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3.3 Regular Points and Critical Points

Amap F: M — N is an immersion at p € M if and only if the map (3.2) is
injective. Amap F : M — N is a submersion (or regular) at p € M if and only
if the map (3.2) is surjective. Non-regular points are critical points. A point in
the codomain of a function is a regular value if it is not a critical point.

Note that a point p € M is a critical point of a function f € C>*(M), if

df, : TM, — R

is the trivial map.
Note that if p is a local extremum of f, then it is a critical point.
If S is a submanifold of M, then for any p € S, there is a canonical inclusion

TS, — TM,.
If S is the regular zero locus of a smooth function f : M — R, then
TS, = ker(df, : TM, — R).
In general we have the following claim.

Claim 3.3.0.1 Let ¢ : M — N be a smooth map and let ¢ € (M) C N be a
regular value of o so that S := ¢~1(q) is a submanifold of M. Let inc: S — M
be the inclusion map. Then for any p € S, the sequence

T incy,

0TS, 2 M, 225 TN, -0

is exact.

Proof. (1) Ty, is surjective, since ¢ is a regular value.

(2) Tpp o Tine, = T(p oinc), = T(gq) = 0.

(3) T inc, is injective: Take a chart x = (z!,...,2") of M at p, and a chart

y = (y*,...,y™) at q such that
at=pli=ylop, ..., 2™ =¢" =y" o

Then z = (2',...,2" ™) = (#™*! ..., 2") oinc is a chart of S at p. Now

. 0 0 ) o 9
T“(a)‘axw T“<M’>—ax

and hence we are done.
(4) Now exactness is trivial, since dim S + dim N = dim M. O

p
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3.3.1 Examples

@

(ii)

The sphere S"~! is defined by the equation (z')? 4 -+ (2")? = 1 on R™.
Thus the tangent space of S~ at a point p consists of vectors in R which
are perpendicular to p.

Given a := (ay,...,a,) # 0, consider the function
f=az' + -+ apa”
on S"~!. Then f has two* critical points on S"~!. They are +a/|al.

We show that the tangent space of SO(n) at the identity matrix 1,, is the
space of all n x n skew-symmetric real matrices. To see this consider the
defining equation

¢ :GLT(n,R) — Sym(n,R), A~ A*A

where GL™ (n, R) denotes the group of matrices with positive determinant,
and Sym(n, R) denotes the space of all n xn real symmetric matrices. Then

Te1,(X)=X*+X, X eTGLT(n,R), =gl(n,R).

Thus the kernel of Ty, which is the tangent space of SO(n) at 1, is the
space so(n) of skew-symmetric matrices.

3.3.2 Exercises

1.

2.

3.

4.

Show that
d
'(0)=Teo [ —
0700 )
foracurvec: R — M.
Given distinct real numbers a1, ...,ay, let f : S"~! — R be defined by

f(z1,...,2,) =Y _, ax(xx)?. Find all critical points of f.

Note that if A : 8"~' — 8"~! is the antipodal map, then f o A = f and
hence, f descends to a map f : P"~! — R. Find all critical points of f.

Given distinct real numbers a4, ..., a,, find all critical points of

FiPHC) SR, ozl = Ykl /(a4 [2al?)
k=1

Show that there is no map f : P*(R) — R such that f~!(y) = P 1(R)
for some regular value y of f.

4The Euler characteristic of S?~1 is 1 + (—1)"~1.
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5. Let 0 < r < R and let T be the torus in R? given by the equation
2
(\/x2 +92 - R) + 22 =2

Find the critical points of the function z | T: T — R3 5 R.

6. Letw! : M x N — M and 7* : M x N — N be the projection maps and
let (p,q) € M x N.

(i) Show that the map
Tw(lpﬁq) ® Tﬁp’q) :T(M x N)(p.g — TM, ® TN,

is an isomorphism.
(i) Leti}: M — M x N and 2 : N — M x N be the maps

is(x) = (z,q),  ir(y)=(p,y)

forzx € M andy € N. Let
T\Fpq) = T(Foiy)y : TMy — TL,, TyF,q :=T(Foi2)q: TNy — TL,.
Show that

TFpq =T1Epq© TTr(lp,q) +ToFpq) TW(QPJI)'
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3.4 Morse Functions

If p is a critical point of f : M — R, then for any chart (z!,...,2") centered at
p, there exist functions h;; = h;; such that

1< i
F=1p+5 > hija'a?
i,j=1
in a neighborhood of p. In this case,

82
hij(p) = 5 ng (p)-

Now p is said to be non-degenerate if the Hessian matrix

_(_9f
H.fp T <6w1 63:-7' (p)>

(at a critical point with respecp to a chart z) is non-singular. The number of
negative eigenvalues of H f,, is called the index of f at p.”

A function whose critical points are all non-degenerate is called a Morse
function. If f is a Morse function on a compact manifold M, then f has only
finitely many critical points. If ¢ is the number of critical points of f with index
k, then

X(M) = zn:(—l)kck = Z (—1)nd f(@)
k=

0 pECrit(f)

is the Euler-Poincaré characteristic of M. In fact, if C* is the free vector space
generated by the critical points of index k of a Morse function f on M, then
there exists a chain complex

{0} »=C* =0t - ... = O™ = {0}

such that whose cohomology groups are isomorphic to the cohomology groups
H*(M). These cohomology groups will be discussed later. In particular,

e >0 (k=0,...,n)
and we have the Morse inequalities:

o 2
Co—C1 Z bo — bl

co—ci+- A+ (=D, = B —=b' - (=1)""

5in this case, (—1)4f(P) = ind Vf(p), the index of the gradient vector field of f with
respect to any Riemannian metric on M (cf. 3.9.2).
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where b* = dim H*(M) is the k-th Betti number of M, which will be explained
later.
We have
em(f) > bu

where ¢/ (f) is the sum of critical points and b, is the sum of betti numbers.

Morse functions are dense in C>°(M).
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3.5 Transversality

Let L be a submanifold of N. Then a map ¢ : M — N is said to be transversal
to L if for any p € p=1(L),

dipp(TMp) = TNy(p) = TNp(p) /T L(p)

is surjective. In this case, if (M) N L is nonempty, then we must have dim N <
dim M + dim L.

Theorem 3.5.0.1 If o : M — N is transversal to a codimension k submanifold
L of N, then ¢~*(L) is a codimension k submanifold of M, unless it is empty.

Proof. Letp € ¢ !(L). Then ¢(p) € L and hence there exists an open neigh-
borhood U of ¢(p) and a regular map F : U — R¥ such that U N L is the zero set
Z(F) of F. Now V := »~1(U) is an open neighborhood of pand Foy | V — RF
is a regular map. Moreover V N 1(L) = Z(F o ¢ | V). This completes the
proof. O
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3.6 Orientations

3.6.1 Orientation of Vector Space

Let V be a vector space over R of finite dimension n > 1. Two (ordered) bases
v=(v1,...,v,) and w = (wy,...,w,) of V are said to have the same orienta-
tion if and only if they are in the same connected component of the space B(V)
of all basis of V, i.e., there exists ¢ € GL™(n,R) such that w = vg. (Note that
there is a simple transitive action of GL(n,R) on B(V).)

A linear isomorphism [ : V' — V is said to be orientation preserving if for
some (and hence for any) basis v = (v1,...,v,) of V, I[(v) := (I(v1), ..., (vy))
and v have the same orientation. Thus [ preserves the orientation if and only if
det! > 0.

Alinear map [ : V — V is orientation reversing if det ! < 0.

3.6.1.1

An orientation of a vector space V' of dimension n > 1 is a choice of the equiva-
lence class of a basis on V, where two bases are equivalent if they have the same
orientation.

R™ is always oriented with the standard orientation: (e1,...,e,) > 0.

3.6.2 Orientable Manifolds

3.6.2.1 Orientation Preserving Maps

Let U be an open subset of R” for n > 1. A smooth map
F:U—>R"

is orientation preserving at a point p € U if the Jacobian matrix

~(p
Ox? 1<i,j<n

of F at p has positive determinant, i.e., the derivative DF}, : R® — R" is an
orientation preserving isomorphism.

3.6.2.2

An atlas A on a manifold M of dimension n > 1 is said to be oriented if the
coordinate transition map

zoy ':y(U,NU,) = (U, NU,)

is orientation preserving for any chart z : U, — R™ and y : U, — R” in A.

A manifold M is orientable if there exists an oriented atlas A for M. A
manifold M is oriented if an oriented atlas A for M is chosen.

Spheres S™ are orientable.
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3.6.2.3

If a manifold M is oriented, then each tangent space T'M,, is oriented: If (z!, ..., z")
is a positively oriented chart of M at p, then

9
Ozt

0

7...77’,7’
» or

p

is a positively oriented basis for T'M,,.

3.6.2.4

An orientation of a zero-dimensional manifold M is a map from M into {1, —1}.

3.6.2.5 Orientation Preserving Maps

Amap f : M — N between oriented manifolds is said to be orientation pre-
serving at a point p € M if TF, : TM, — T Np(,) is an orientation preserving
isomorphism.

The composition of two orientation preserving maps is orientation preserv-
ing. The composition of two orientation reversing maps is orientation preserv-
ing. The composition of an orientation preserving map and orientation reversing
map is orientation reversing.

Any reflection map along a hyperplane in a Euclidean space E" is an orien-
tation reversing map. Any central (or point) symmetry in a Euclidean space
E™ preserves the orientation if and only if n is even.

The antipodal map —I on S™ is orientation preserving if and only if n is odd.

S'VL S STL
P/I'L
Theorem 3.6.2.6 P" is orientable if and only if n is odd.

3.6.2.7 Exercise

Let p be the north pole on the unit sphere S := {(x,t) € R" xR | |x|*+¢? =1},
where S™ is oriented in the standard way so that (es,...,e,+1) is the positively
oriented basis for the tangent space of S™ at the east pole e;. Show that the

antipodal map

("= () B, (0

is orientation preserving if and only if n is odd.
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3.6.3 Intersection Numbers

Let M, N be submanifolds of L which intersect transversally. We assume that
L, M, N are all oriented. Then the intersection number of M and N is

MoN := Z sgn(M, N, p)
peEMNN

where sgn(M, N,p) = 1if TM,, ® TN, and T'L,, have the same orientation, and
sgn(M, N,p) = —1 otherwise.
Then the intersection number is homotopy invariant [Dubrovin et al.].

Theorem 3.6.3.1 Let M be a compact connected hypersurface in R™. Then
R™ — M has two components, and M is orientable.

3.6.3.2 Lefschetz Numbers

Let M be a compact oriented manifold and let F' : M — M be a self map. A
fixed point p of F is said to be non-degenerate if

det(id —TF,) # 0

i.e., the graph of F intersect with the diagonal A C M x M transverally. In this
case the Lefschetz number of F is

Ap = Z sgn(F, p).

pEFix(F)

Corollary 3.6.3.3 (Brouwer’s fixed point theorem) Any self map on a closed
Euclidean ball has a fixed point.

Proof. Note that the n-ball is homeomorphic to the lower hemisphere S_ of
S™. We will show that any self map F' of S_ has a fixed point. Let 7 : S™ — S_
be a map which is identity on S_. Then the composition

F

s "~ S S_ — 8"

is homotopic to a constant map. Thus it has a fixed point p, which is also a fixed
point of F. cf. [Dubrovin et al.]. O
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3.7 Tangent Bundle

The total space of the tangent bundle of M is the collection

™ = [ M,
peEM

of all tangent spaces of M. The tangent bundle of M is the total space of the
tangent bundle together with the canonical projection map

m:TM — M.
If {xo : Uy, — R"} is an atlas of M, then the map
bo 1 7 HUy) = Uy x R (3.3)
given by

o (sz(p) Ry ) = (p,v'(p),-..,v"(p))
1=1 alp
is bijective and if ¢, : U, N Uz — GL(n,R) is defined by

¢a o d)gl(p’v) = (pa ¢aﬁ(p)v)a

then ¢n5 = (gij
B

Now the next proposition is trivial.®

> , the Jacobian matrix of z,, o xgl.
1<i,j<n

Proposition 3.7.0.1 There exists a unique topology on the total space of the
tangent bundle TM of a manifold M such that for some (and hence for any)
atlas {xo : Uy, — R"} of M, the map (3.3) is a homeomorphism. With this
topology on T'M, it is a topological manifold of dimension 2n. Moreover, there
exists a unique differentiable structure and an orientation on T'M such that the
map (3.3) is an orientation preserving diffeomorphism.

If F: M — N is C®, then
TF:TM — TN (3.4)

is defined by (T'F')(p,v) := TF,(v) for (p,v) € TM. If G : N — L is smooth, we
have
T(GoF)=TGoTF.
If MFD is the category of smooth manifolds and smooth maps, we have a
functor
T : MFD — MFD.

3.7.0.2 Exercise

Show that the map (3.4) is C*°.

6Let X be an arbitrary set and let {Xo} be a collection of subsets of X which covers X.
We assume a topology 7o on X, for each a such that To|Xa N Xg = T3|Xa N Xg for any
o, . Then there exists a unique topology 7 on X such that 7| X, = Tq for all a.
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3.8 Vector Fields

A smooth section” X of 7 : TM — M is called a vector field on M. Thus for
each p € M, X(p) or X, is a tangent vector of M at p for each p in M.

For a chart z : U — R" of M, 52,..., 52 are vector fields on U and any
vector field X on U is a linear combination 3 f' -2 for some f' € C>°(U). In
fact, f* = X (x*).

Note that, for any smooth vector field X and a smooth function f on M,

X(f): M =R, p=X(f)

is a C* function on M.
The set of all vector fields on M is denoted by

X(M)
which is a module over C*°(M).

Lemma 3.8.0.1 X(M) is isomorphic to Der(C*(M)) of all derivations® of
C>® (M), as C*°(M)-modules.
3.8.0.2 Exercises

(i) Show that dimX(M) = co if dim M > 1.

(ii) Show that for any v € T'M,, there exists a vector field X on M such that
X(p) =v.

(iii) Let U be an open neighborhood of a point p in a manifold M, and let X
be a vector field on U. Show that there exists a vector field X on M such

that X = X on some neighborhood of p.

(iv) Show that T'S! is diffeomorphic to S x R.

7A section of a map m: A — Bisamap s: B — A such that mos =1id g.
8A derivation of a real algebra A is an R-linear map D : A — A such that D(ab) =
D(a)b+ aD(b) for any a,b € A.
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3.8.1 Brackets of Vector Fields

Since derivations (of an associative algebra) form a Lie algebra,” X(M) is a Lie
algebra. Thus the (Poisson) bracket [X,Y] of X,Y € X(M) is given by

(X, Y](f) = X(Yf) = Y(X])

for f € C>(M).

Note that if X,V € X(M), then

XoY,YoX :C®M)—C™®(M)

are second order differential operator with the same principal symbol so that
the commutator [X, Y] is a first order differential operator.

Note that

(X, 9Y] = fglX, Y]+ FX(9)Y —gY ()X

for f,g € C>°(M).

If (z1,...,2™) is a chart on M, then

o 0
{aﬁvaxj]—o
foralli,j=1,...,n.

3.8.1.1 Exercise
For each n x n matrix A = (“3") € M,,(R), define a vector field X4 on R" by

0
oxt’

Xa(p)=—-Ap e TR} =R" or Xa=-— Y aja’

7,7=1
Show that [X 4, Xp] = X[4 ). Thus
X :M,(R) = X(R"), A~ X,

is a Lie algebra homomorphism.

3.8.2 Related Vector Fields

Amap F : M — M’ induces a map
TF :TM — TM' .
But, in general, F' does not induce a map F : X(M) — X(M").
We say that a vector field X on M and a vector field X’ on M’ are F-related,

if for any p € M, Tipp(X(p)) = X' (¢(p))-
Note that if X € X(M) and X' € X(M') are F-related, and Y € X(M) and

Y’ € X(M') are F-related, then [X,Y] and [X',Y’] are also F-related.

9A linear space L is called a Lie algebra if it is equipped with a bilinear pairing [ , | :
L x L — L such that [[,I] = 0 and [l1, [l2,13]] + [l2, I3, l1]] + [I3, [{1,12]] = O (the Jacobi
identity) for any [,11,l2,l3 € L. Any (associative) algebra A together with [a,b] := ab — ba,
a,b € A, is a Lie algebra. In particular, gl(A) = End(A) is a Lie algebra, and Der(A) C gl(A)
is a Lie subalgebra.
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3.8.2.1 Vector Fields and Diffeomorphisms

If F: M — N is a diffeomorphism, then we have an isomorphism
F,:X(M)~X%(N)

given by the commutative diagram for X € X(M):

C®(M) —2X— (M)

FT TF*

C>(N) mc (V)

If G : N — L is a diffeomorphism, then

(GoF), =G,0oF,.

3.8.2.2 Exercises
1. Let F: M — N be a diffeomorphism. Then
(i) forany X € X(M) and f € C®(N), (F.X)(f) = X(fo F)o F7L

(ii) F. is a Lie algebra homomorphism, i.e.,
F.[X,Y] = [F.X,F.Y]
for any X, Y € X(M).

2. Given a vector field X on S"~!, define a vector field X on R” by

Xuy:mx(w) (z € RM).

||

Show that
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3.9 Zeros of Vector Fields

Given a vector field X on M, a point p in M is called a zero pont, singular
point, or singularity of X if X, = 0.
3.9.1 Vector Fields on Spheres
On the odd dimensional sphere
S im (a1, 20) €€ [ a4l = 1)
we have a non-vanishing vector field
X(zryzn) = i(z1,...,2n).

Conversely, one can show that if S admits a non-vanishing vector field, then
n is odd. This can be proved using Brouwer's degree theory:'? If X is a unit
vector field on S™, then

F,:S" — 8™, p+— (cost)p + (sinmt) X (p)

defines a homotopy between the identity map and the antipodal map. Thus
1 = deg(id) = deg(—id) = (—1)"*!, which means that n is odd.

Here is another proof, using the Lefschetz fixed point theorem.!! If X is
a unit vector field on S™, then

(- 0X()
h®) = =X ()]

is a homotopy between X : S — S™ and id : S — S™. Hence the Lefschetz
number of X is

Ax =Ag = X(Sn) =14+ (—1)”
Thus if n is even, then X has a fixed point, which is absurd since p L X (p) for

every p € S2. Thus n must be odd.
In particular, we have the following theorem.'?

Theorem 3.9.1.1 Every vector field on an even dimensional sphere has a sin-
gularity.!3

10The degree of a proper map f : M — N between oriented manifolds is the signed number
of points in f~1(q), where ¢ € N is a regular value of f. The signs are determined by the
orientations. Well-definedness of the degree is obtained once we have a theory of integration,
which we will discuss later. Note that regular values are dense in N, by Morse-Sard-Brown’s
theorem [Milnor].

HLet M be a compact manifold and let F : M — M be a continuous map. Then F has a
fixed point if its Lefschetz number

Ap = (=1)Ftr(fs : Hp(M,R) — Hy(M,R))

is nontrivial. In fact, if F' has a finite number of fixed points, then Ap is equal to the sum of
the indices of the fixed points of F'.
12First proved by Poincaré for n = 2 [McGrath]. For the Milnor’s proof, see [Gallot et al.].
13The Euler characteristic of the even dimensional sphere is 2.
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3.9.2 Index of Vector Fields

If a zero p of a vector field X on M is isolated, then we have the integer, called
the index of X at p. If p is a nonsingular point of X, then ind X (p) = 0, by
definition.

Theorem 3.9.2.1 (Poincaré (1885), Hopf (1926)) If M is compact, and
the singular points of a vector field X on M are isolated, then

> ind X (p) = x(M).

pEM

Note that if a compact manifold M has a nonvanishing vector field, then
X(M) = 0. A theorem of Hopf says that if M is a compact connected manifold
with x(M) = 0, then M admits a non-vanishing vector fields.

3.9.3 Parallelizable Manifolds

An n-manifold M is said to be parallelizable if there exist (global) vector fields
X1, ..., X, such that they are linearly independent at each point of M. Thus M
is parallelizable if and only if the tangent bundle is trivial, i.e., TM ~ M x R"
over M.'* In this case, X(M) ~ C°(M)™ as vector spaces over R (but not
necessarily as Lie algebras).

Every Lie group is parallelizable. In particular,

Sl={zeC||z| =1}
and
S*={qeH]||qgl =1}

are parallelizable, since S™ is a Lie group if and only if n = 0, 1, 3.1> For instance,
the vector fields

1, := g, Jq = Jjq, K, :=kq (q € S?)

are mutually perpendicular unit vector fields on S3.
In 1958, Michel Kervaire, and independently by Raoul Bott and John Milnor,
proved that S™ is parallelizable if and only if n = 1,3, 7.
To see that S7 is parallelizable, octonions (or octaves) may help us (cf. Ap-
pendix):
S"={ucO]||u =1}

Given a unit vector u in O, the vectors
ue; (1=1,...,7)

are mutually perpendicular unit tangent vectors of the sphere S” at u. This
shows that S7 is parallelizable.

14The meaning of ‘~’ will be made clear soon.
151f G is a compact connected Lie group with H!(G,R) = {0}, then H3(G,R) # {0}.
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3.10 Cotangent Vectors

For f € C*°(M), the differential'® of f at p € M, denoted by df,, is the collection
of all directional derivatives of f at p, i.e., df, is a (linear) map from T'M,, into
R such that
dfp(v) :==d,(f), veTM,.
Thus we get a map
df : M — TM*
where
™" = [] TM;
peEM

is the cotangent bundle of M, which is the collection of the dual space T'M,; of
TM, forallp € M.

Proposition 3.10.0.1 Let x : U — R™ be a chart on M. The for each p € U,
{dx),...,dx}} is a basis for TM. If f € C*°(U), then

df = aafi da’

T

onU.

3.10.1 Exercises

(i) Let f € C>°(M). Show that p € M is a critical point of f if and only if
df, = 0.

(ii) Show that the cotangent bundle TM* of M is a smooth manifold in a
canonical way.

(iii) Onamanifold M and f € C*°(M), df = 0implies that f is locally constant.

(iv) Show that if f is a smooth function on a compact manifold, then df van-
ishes at some point.

3.10.2 Differential 1-Forms

A smooth section of the cotangent bundle TM* — M is called a covector field
or a differential 1-form on M. The collection of all 1-forms on M will be
denoted by

QM)

16More generally, if V is a vector space and f: M — V is a V-valued C> map on M, then
we have a “V-valued differential” df, : TM;, — V. For instance if z : M — C is a complex
valued function with  and y as real and imaginary parts, then

dz = dx + idy.
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which is a C*°(M)-module.
Note that if w € QY(M) and x : U — R" is a chart on M, then w|U =
S, fidz for some f; € C*°(U).

3.10.2.1 Covector fields on R"

If x is the standard coordinate system on R, then every 1-form on R is of the
form

f(z)dzx

for some function f on R.

Let U be an open subset of R™. Then with the standard coordinate system,
every 1-forms on U is of the form

w= fidz' + -+ fndz"

for some smooth functions f1,..., f, on U.

In general, if M is a parallelizable manifold, then there exist global vector
fields X1,...,X,, on M which are linearly independent everywhere. Now let
01,...,6™ be the dual forms. Then every 1-form on M is a linear combination
of these. Thus

Q' (M) ~C>=(M)".

3.10.2.2

Let
X(M)* := Hom ¢oo (ap) (X(M),C(M)).

Lemma 3.10.2.3 Let X be a vector field on M which vanishes at some point
pin M. Ifl € X(M)*, then I(X), = 0.

Proof. Suppose X = 0in a neighborhood U of p. Then take a bump function
f which is identically equal to 1 in a neighborhood of p and supported in U.
Then fX is a global vector field on M which is identically equal to 0. Thus
0=1I(fX) = fI(X). In particular, by applying p, we have 0 = [(X),.

From this observation, we know thatif Y € X(M) and X =Y in a neighbor-
hood of p, then I(X), = I[(Y),.

Now we consider the original question. Take a local chart z = (z?,...,2")
defined on an open neighborhood U of p. Thenon U, X = > f¢ agi for some

smooth functions f? on U, which vanish at p. Now extend, for each i, f* and
% to a global function f* and a global vector field Y;, respectively, so that they
preserve the original near p. Then

UX)p =1 (Z fin-)p =" Jip)i(Y3), = 0.
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Proposition 3.10.2.4
QY M) ~ X(M)*

as C°°(M)-modules.
Theorem 3.10.2.5 The differential
d:C(M) — QY(M)

is a derivation.

3.10.3 Canonical 1-form on cotangent bundle

The total space of the cotangent bundle 7 : TM* — M has a canoniccal 1-form
o which is defined by

a(v) := a(m)

for any tangent vector v of TM* at a € TM*. If x = (z%,...,2") is a local
coordinate system near p := m(a), thena = >, a; dz* for some scalars a; and
hence obtain a local coordinate system

for the cotangent bundle, where i are local functions on the cotangent bundle

given by
.i( ) = a = 3
#'a)=al| 55 ) =a

(We regard z* as functions defined on the total space.) Then

n
a = E Tt dx".
i=1

3.10.4 Naturality of Differential

A smooth map F' : M — N induces a linear map T'F, : TM, — TNp(,) and
hence its dual map T'F}; : TN,y — TM;. Thus we have a linear map

F*: QYN) = Q' (M)

defined by
(F" (W))p(v) := wp(p) (TFp(v))
forw € QY(N) and v € TM,,.'"

17 Although we have a smooth map TF : TM — TN (not a map F. : X(M) — X(N)
unless F' is a diffeomorphism), we do not have a map TF* : TN* — TM™* unless F is a
diffeomorphism.
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Proposition 3.10.4.1 For a smooth map F': M — N,

F*(fw) = (F*f)(F'w), F*(df) = d(F"[)
for any f € C>*(N) and w € Q*(N).

(M) —4— QY(M)

3.10.4.2 Exercises

(i) Consider the 1-form
w:=xdy —ydx

on R?, and the exponential map
e:R—=8' 0 (cosh,sinh).

Show that
(inco€)*(w) = db

where inc : S! — R? is the inclusion map.
(i) Let
S, :=8'"—{(1,00}, S_:=S8'—{(-1,0)}, Sp:=85.NS_.
On S!, we have “angle functions”
0y : Sy — (0,2m), 0_:5_ — (—m, ).

Show that df, = df_ on Sy. Thus df, and df_ defines a global 1-form
o on S!. Show that there exists no function  on S! whose differential is
equal to 0. Show that if inc : S! < R2 denotes the inclusion map, then

et xdy — ydx
o=inc" | ———— .
x? 4y
Show that
Q'(8') =c>(she.
(iii) Consider the map
0:R* 5 R?  (r,0) — (z,y) = (rcosh,rsinb).
Compute ¢*(z dy — y dx).

(iv) Find a 1-dimensional submanifold S of R? such that inc*(xdx + ydy) = 0,
where inc : S — R? denotes the inclusion map.
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3.11 Lie Algebras of Lie Groups

3.11.1 Invariant Vector Fields on Lie Groups

Let G be a Lie group. A vector field X on G is said to be left invariant if for any
a € @G,
Lau(X) = X,

ie, Xy = (TLy)y(X,y) = Xog forany g € G, ie., X, = (T'Lo)+(Xe).

Clearly a left invariant vector field on G is determined by its value at the
identity element. Conversely, every left invariant vector field on G is obtained
from a vector at the identity element: Let Lie(G) be the tangent space of G at the
identity element e. Then for each v € Lie(G), the vector field v on G defined
by

(v5)g = (TLg)e(v) (9€G)
is a left invariant smooth'® vector field on G.

Thus Lie(G) is isomorphic to the space X% (G) of left invariant vector fields.
Since XL(@) is a Lie subalgebra of X(G), Lie(G) becomes THE Lie algebra of G.

If v1,...,v, is a basis for Lie(G), then the vector fields
L L
V1, e, Uy

are linearly independent everywhere and hence we have the Maurer-Cartan
isomorphism
TG ~ G x Lie(G).

Similarly, a vector field X on G is said to be right invariant if for any a € G,
R..(X) =X,

i.e., (TRq)y(Xy) = Xgo forany g € G, ie., Xo = (T'R,)«(X.). Thus Lie(G) is
isomorphic to the space X#(G) of right invariant vector fields. X%(G) is also a Lie
subalgebra of X(G). The inversion map I : G — G induces linear isomorphism

I:x0@) ~xR(G).
Note that
(X)), I(Y)] = —I[X,Y].

Lemma 3.11.1.1 Let f : G — H be a Lie group homomorphism, and let
v € Lie(G). IfV is the left invariant vector field on G with V. = v and if W is a
left invariant vector field on H with W, = f.(v), then V and W are f-related.

Lemma 3.11.1.2 Let H be a Lie subgroup of a Lie group G. Then Lie(H) is
a Lie subslgebra of Lie(G).

181f v = ¢/(0) for some smooth curve c: R — G, then

GXR—->GxG—G, (g,t)—g-c(t)

L

is smooth and hence v" is smooth.
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3.11.2 The Lie algebra of the general linear group

For a = (a}) € gl(n,R), let 2%(a) = a}. Then (z});<; <, form a coordinate

J J
system on gl(n,R). Now for a € gl(n, T GL(n,R)y,, let A be the left

R) =
invariant vector field on GL(n,R) with A(1,,) = a. Then for g € GL(n,R),

A(g) = ga

or

A= Zxakaz'

1,5,k

Similarly, if B is the left invariant vector field on GL(n,R) with B(1,,) = b =
(0%) € gl(n,R) = T GL(n, R),,,, then

B=)Y = ’biaz-

1,5,k

Now AB(aF) = A(Y, a7bl) = 2, ; #7ajb,, and BA(«?) = 37, ; a}bjal,. Thus
(ah) = Z xf(a?bfl - bfaé).
il

This implies that

p 0
[A,B]= 3 allaft~bia) g

P,q,%,1

and the value of [4, B] at 1,, = () is

> (ajb), - bja )8‘91 .

q,i,l

Thus the Lie bracket [a, b] of a,b € gl(n,R) = Lie(GL(n,R)) is

[a,b] = ab — ba.

3.11.2.1 Exercises

1. Check the Lie algebra of the unitary group U(n).

2. Fora,b € gl(n,R), let A, B be the right invariant vector fields on GL(n, R).
Then

[A, Bl = —[a,b].
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3.11.3 Maurer-Cartan Form

Let G be a Lie group. Then a vector field X on G is said to be left invariant if
forany g € G, (Ly). X = X, i.e,

X(gh) = Lg«(X(h)) (3.5)

for any g,h € G. The above equation implies that a left invariant vector field
is completely determined by its value at a single point. Thus we have a linear
isomorphism between the tangent space T'G. of G at the neutral element e of G
and the linear space of left invariant vector fields on G. Since

Lo [X,Y] = [Lgu X, Ly.Y]

for g € G and X,Y € X(G), the space of left invariant vector fields is a Lie
subalgebra of X(G). Hence we obtain a Lie algebra structure on TG, which is
the Lie algebra of G and denoted by Lie G.

The left translation induces an isomorphism
0, : TGy ~LieG forgeG.

This Lie algebra valued 1-form 6 on G is the (left-invariant) Maurer-Cartan
form of G.

3.11.3.1 Exercise

Letey,...,e, be a basis for TG, and let €', . .., e" be the left invariant 1-forms
on G such that ¢ (e;) = d;. Show that

ete;.

1

0 —

n
1=

3.11.4 Serret-Frenet Formula

Let ¢ : I — R™ be a curve in R™ defined on some open interval I C R, and let
e1,...,e, be orthonormal vector fields along!? c. Thus we have a curve

e(t) == (e1(t),...,en(t))

in the orthogonal group O(n). The derivative €’(t) is a linear combination of
er(t),...,en(t);

n

ei(t) = ei(t)al(t)

i=1

9A wvector field X along a smooth map f: N — M is an assignment

Npr—)X(p) ETMf(p>.

Locally, for some chart y on M, X(p) = >, a (p)aiy'i‘f(P)' Then X is C*° if and only if a®’s
are C*°.
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or ¢/(t) = e(t) A(t), which is a tangent vector of O(n) at e(¢). Thus
e(t)7le!(t) = A(t)

is a tangent vector of O(n) at the identity element. Thus A(t) is a skew-symmetric
matrix.

In fact, if G is a Lie group, I is an open interval and
A: T — Lie(G)

is a piecewise differentiable curve, then there exists a piecewise differentaible
curve

a:l —G
such that

forallt € 1.20

3.11.5 Exercises

(i) Consider

o - fo- (5 2)

~ {¢g=z+wjeH|qg=1} = S3.

z,w€C, |22+ |w)? = 1}

Note that the map

f.C? 5 H, (Z)l—uz—bj:a—jb

is an isomorphism between right C-vector spaces and for any ¢ € S3

i3) = (s (5)):
0 () ()

is a basis for the Lie algebra su(2) of SU(2). Show that

Show that

[1,J]=2K, [J,K|=2I, [KI]=2J

20¢f. Nomizu, p.29
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(ii) Note that the tangent space of S* C H at the identity element is
imH :={zi+yj+ zk | z,y,z € R}

Let I, J, K be the left invariant vector fields associated to the tangent vec-
tors i, j, k, respectively.2! Show that

[1,J]=2K, [JK]=2I, [K,I]=2I.

(iii) Show that T'S3 is diffeomorphic to S? x R3. Show that TP? ~ P2 x R3,

21Thus for any q € S3, Iy = qi, Jq = qj, Kq = gk.
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3.12 Riemannian Metric

A Riemannian metric on a smooth manifold M is an assignment to each point
p € M an inner product

gp =1, ), € (TM, ©® TM,)" = TM; @ TM,
such that for any X,Y € X(M), the map
<X’ Y> : M — R7 p = <X(p)7y(p)>p

is smooth.
Locally, for a coordinate system z', ..., 2", let

0 .
Pl p

Then g;; is C* and the matrix (g;;(p)) is (symmetric and) positive definite. We
also have

0

, —
J
» ox

g:ZgijdxiQQd:Uj.

4,7
Thus a Riemannian metric is a “smooth section of the vector bundle”?? TM* ®
TM*.
3.12.0.1 Submanifolds
Note that a submanifold of a Riemannian manifold inherits a Riemannian metric.
E.g., the sphere S™ has a canonical metric induced from R™*!,
3.12.0.2 Exercise

Describe a Riemannian metric on R™ induced from the stereographic projection
from S™.

3.12.1 Existence of a Riemannian metric

Locally, there exists a Riemannian metric. Thus we have an open cover {U, } of a
manifold M and a Riemannian metric g, on U, for each a. Take a C* partition
{pa} of unity subordinate to {U,}. Then

9= Pada

is a Riemannian metric on M. This proves, in fact, that on any vector bundle,
there exists a Euclidean structure.

22This concept will be explained in chapter 5.
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3.12.2 Musical Isomorphism
A Riemannian metric induces * “musical isomorphisms"
b:TM —TM*,  $=b"':TM* —-TM
b X(M) — QY M), t=b"1: QM) = X(M).
Hence for a vector field X on M, the 1-form b(X) is characterized by
b(X)(Y)=(X,Y), VY eX(M).
Locally, if X = 3 X?-2; then b(X) = 3 X,dz’, where

oz
n
X = Z gi; X7
j=1

Similarly, for a 1-form w on M, a vector field fw is characterized by
w@)={{w,Y), VY eX(M).

Locally, if w = 3" w;da’, then fw = > w' 52, where
j=1
and (g") is the inverse matrix of (g;;).

3.12.2.1 Exercise

Let (V,g) be a finite dimensional inner product space, and letb : V' — V*
be the musical isomorphism. Let g* be the inner product on V* such that b is
an isometry. Show that, if e1,...,e, is a basis for V, e!, ..., e" the dual basis,
gij = glei,e;) and g = g*(e’,e?), then (g*) is the inverse matrix of (g;;).
In particular, if ey, ..., e, is an orthonormal basis for V, then e!,... e" is an
orthonormal basis for V*.

3.12.3 Gradient Vector Field

For a smooth function f on M, the gradient of f with respect to the Rie-
mannian metric g is a vector field on M defined by

V= 4(df).

In other words,
g(grad f, X) = df (X)
for any X € X(M).

Locally,
B af _Z i 0f 0
f_ﬂ(zamidx>_ 29 B Bd

)
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3.12.3.1 Exercise

Let M be a submanifold of a Riemannian manifold (A, §). Then M inherits a
metric g from §. For a tangent vector v of M at a point p € M, let v1 be the
orthogonal projection of v to the tangent space T'M,, of M. Let f:M—Rbea
smooth function and let f = f | M. Show that

grad f(p) = (grad f(p))*.

3.12.4 Lagrange Multiplier

Let M be a Riemannian manifold. Let f : M — R be a C* function and let
¢ = (p1,...,01) : M — RF be a smooth function woth o € R* as a regular
value so that S := ¢~1(0) is a (non empty) submanifold of M of codimension
k. Show that if p € S is a critical point of the restriction map f|S : S — R, then
V f(p) is a linear combination of V¢ (p), ..., Vi (p).

3.12.5 Induced Metric

If o : N — M is an immersion and g is a Riemannian metric on M, then

(0" 9)q(v,w) 1= gy (T, Tpqw), v,w e TN,
defines a Riemannian metric ¢*g on N.
If N is equipped with a Riemannian metric » and ¢ is a diffeomorphism such
that ¢*g = h, then ¢ is called an isometry. Isometires preserve angles.

3.12.5.1 Exercise

On the upper half plane
H:={(z,y) €R? |y >0} ={z€C|Imz >0}

consider a Riemannian metric

1

" (dz ® dz + dy ® dy).

g =

Note that the special linear group

SL(2,R) := {A: (‘CI Z) cdet A = 1}

az+b
cz+d

actson H :
Az

Show that each A € SL(2,R) acts as an isometry on H.
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3.12.6 Length of a curve

Let « : [a,b] — M be a piecewise C! map?® into a connected Riemannian mani-
fold (M, g). Then the length of v is

b
L) = [ 1 @l
The distance between two points p,q € M is

disty(p, q) := inf{L(7) | v : [0,1] = M, piecewise C', (0) = p, 7(1) = ¢}.

As an example, let's computer the distance between two points ai, bi in the
upper half plane H, where a, b are real numbers with 0 < a < b.
Let y(t) = ti for a <t < b. Then+'(t) = i and |7/(¢)|m = +. Thus

bdt b

L(v) = [ = =log-.
(v) 7 T loeg

Thus dist(ai, bi) < log g Now we claim that ~ is the shortest path, i.e.,
NP b
dist(ai, bi) = log —.
a
For if
p(t) ==@t) +yt)i  (2(b),y(t) € R)
is a new path with p(0) = ai and u(1) = bi, then p/(t) = 2/'(¢t) + ¢/'(¢)¢ and

! () > L > L0 Thus

L(p) 2/0 Z((f))dtzlogy(t%:logz.

This shows the claim.

3.12.6.1 Exercise

Show that dist, is a metric on M and the induced topology on M is equal to the
original topology.

3.12.7 Invariant Metrics on Lie Groups

23A map v : [a,b] — M is piecewise C' if it is continuous and there is a partition a = tg <
t; < --- <ty = bsuch that v|[t;—1,t;] = M isC! fori=1,...,k.
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3.13 Complex Manifolds

3.13.1 Holomorphic functions of one-variable

Let C be the field of complex numbers. With respect to the standard coordi-
nate system z = x + yi, where x and y are the real and imaginary parts of z,
respectively, let

0. 1(0 0y 8 _1(0 .0
0z 2\o0x 0y)’ 0z 2\0x 0y)°
A complex valued C'! function f defined on an open subset U of C is said to
be holomorphic if it satisfies the Cauchy-Riemann equation

of
55 = 0.
In this case, we have
of .. f(2)— f(20)
3z 70) = lim ==

forall zy € U.

Theorem 3.13.1.1 (Chain Rule in One Variable) Let f,g : C --» C be
C' maps. We express them with variables so that w = f(z) and u = g(w).

Then
Ou 99 dw  dg dw Ou 99 dw  dg dw

9:  owo:  owo: 0z owoz  ow o
Corollary 3.13.1.2 The composition of two holomorphic functions is holo-
morphic.

3.13.2 Holomorphic functions of several variables
Let n be a positive integer. Then we have the identification
R™ ~C", (2 9%, ... 2" y") = (2 + o, . 2™ ).

Let (21,...,2") be the standard, i.e., the identity coordinate system on C".
We have the corresponding real coordinate system (x!, 4%, ..., 2" y"). Then

oo 1(0 0N o 10 o\ g
0z 2 \ Oa ’aya Tz T 2\ 0z Oy s

A complex valued function f defined on an open subset of C" is called holo-
morphic if it satisfies the Cauchy-Riemann equation

0
87']; =0 ( = 1, . ,TL)
Amap f = (f,..., f™): C" --» C™ is holomorphic if component functions
f,..., f™ are holomorphic.

A bijective map f from an on subset of C™ onto an open subset of C" is called
biholomorphic if f~! is also holomorphic.
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Theorem 3.13.2.1 (Chain Rule in General)

Corollary 3.13.2.2 The composition of two holomorphic maps are holomor-
phic.

3.13.3 Complex Manifolds

A holomorphic atlas on a topological manifold M of dimension 2n is a topolog-
ical atlas A on M such that for any z,w € A, the map

zow !

is biholomorphic.

A topological 2n-manifold M together with a maximal holomorphic structure
is called a complex manifold of (complex) dimension n.

A complex manifold of (complex) dimension 1 is called a Riemann surface.

3.13.3.1 Automorphism group

The group of biholomorphic self maps on a complex manifold M is denoted by
Aut(M). Then
Aut(C) ={az+b|acC*, beC}.

Let H be the upper half plane. Then

az+b
cz+d

Aut(H) = {

a,bc,d, € R, ad — bc = 1} =: PSL(2,R).

3.13.3.2 Complex Projective Spaces

The complex projective line P1(C) is a topological sphere, and

az+b
cz+d

Aut(P*(C)) = { a,b,c,d, € C, ad — be = 1} =: PSL(2,C).

3.13.3.3 Elliptic Curves

Let a and b be complex numbers with
4a® + 27b* # 0.
Then the curve
E:={(z,9) €Cla®+ax+b—y* =0} CcC?>~C?x {1} c P?(C)
is a connected Riemann surface, whose compactification

E:={[z,y,2] € P*(C) | 2® + axz® + bz® — y*2 = 0}
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is a torus. To see this, note that
E=FU{p.} CcP*C).
where p., = [0,1,0] and P?(C), := P?(C) — {[1,0,0]}. The projection map
7:C* = C, (z,9)—y
extends to the projection
7: P?(C), — PY(0), [x,y,2] — [y, 2].
Now consider the surjection

E — P%*(C), — P(C).

E—— F

| |
(C

C —— P!

)

The point-at-infinity co := [1,0] € P(C) is covered by the point-at-infinity
Pos € E.

If a # 0, then there are four points y1, y2, ¥3,y4 in C which are doubly cov-
ered. All other points in C are triply covered.

If a = 0, then there are two points y;,y2 in C which are simply covered. All
other points in C are triply covered.

In any case, we can see that the Euler characteristic of E is

X(E) =0

and hence F is a torus.

3.13.4 Almost Complex Structure

Any complex manifold M is a smooth manifold. The tangent bundle T M has
the canonical automorphism

I:TM — TM, I’ = —id (3.6)
which sends
iHi, iH_i (a=1,...,n)
ox™ oy® oy™ ox™
where (2!, y!,..., 2", y") is the real chart corresponding to a holomorphic chart

(z%,...,2") on M.
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In general, on a smooth 2n-manifold M, an automorphism [ of the tangent
bundle satisfying the relation (3.6) is called an almost complex structure. A
smooth manifold together with an almost complex structure is called an almost
complex manifold.

An almost complex structure I on M is said to be integrable if the Nijenhuis
tensor N : TM ® TM — TM defined by

N(X,Y):=[IX,IY] - I[IX,Y] - I|X,IY] - [X,X], (X,Y € X(M)
is identically equal to zero.

Theorem 3.13.4.1 (Newlander and Nirenberg (1956)) An almost com-
plex manifold (M, I) is a complex manifold if and only if I is integrable.
3.13.4.2

The 4-sphere S* has no almost complex structure [Steenrod].

3.13.4.3 S°
For n # 6, the sphere S™ has a complex structure if and only if n = 0,2. (cf.
Chern, p.77)

Let I be the 7-dimensional space of pure imaginary octonions. Then for the
sphere
SO :={uecl||ul =1}

the endomorphsm
I:7S° =TS8 I,(v):=ww

is an almost complex structure, which is not integrable.
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Chapter 4

Vector Fields and Flows

4.1 Integral Curves

Let X be a smooth vector field! on a smooth manifold M and p € M. Then a
smooth map ¢ : I — M from an open interval I C R containing the origin 0 is
called an integral curve of X with the initial position p, if ¢(0) = p and

for all t € I. With a local chart (x!,...,2"), the above equation is a system of
ODE:

dc’ ; n .

=P ) =1m)

where ¢! =2focand X =Y, (f* ow)aii-

4.1.0.1 Exercise

Show that if ¢(¢) is an integral curve of X, then ¢(—¢) is an integral curve of —X.

4.1.1 Examples

1. Let

1 0 n 0

ozt ox"

be the identity vector field (or, the Euler vector field) on R™: r(z) = x
for € R™. Then for any = € R”

xp = el

LA manifold together with a vector field on it is called a dynamical system.

109
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is the integral curve of r with the initial position x. Show the Euler rela-
tion: for any homogeneous function f on R" of degree &

In particular, on R?

where 7(x1,...,2,) = /22 + - + 22.

2. (Blowing up in finite time) Consider the vector field X (z) = 2% on R.?

Then
1

z(t) = 1_¢

is the integral curve of X with the initial position z(0) = 1.

—co<t<1

0 1
Consider the vector field
Y(z)=1-22

on R. Then
z(t) = tanh(t)

is the integral curve of Y with the initial position 0.

-1 0 1

3. (Complete field) Consider a vector field X (z,y) = (y, z), i.e., X = ya% +
:ca% on R?. Then (cosht,sinht), ¢t € R, is the integral curve of X with the
initial position (1,0).

4. (Annihilator) Let w be a 1-form on M, which annihilates a vector field X
on M, ie., w(X) = 0. Show that if ¢ : I — M is an integral curve of X,
then ¢*w = 0.

5. (Periodic case) Let X = —y% + :ca% on the plane R%. Then c(t) :=
(cost,sint), ¢t € R, is the integral curve with the initial position (1,0).
If we consider an annihilator w = 2(zdx + ydy) = d(r?) of X, then the
image of c is a submanifold i : S < R? such that

0=i*w=1d*(d(r?) = di* (r?).

Thus S is a circle » = constant.

2We may write X = x2 %, if we prefer differential operators.
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4.1.1.1 Exercise

On R? — {(0,0)}, let X (2,y) = — =\ =H7. Show that if c(t) = («(1), y(t)) is an

integral curve of X, then the ratio x(¢) : y(t) is constant. From this observation
conclude that

c(t) = ((1 - 3t)1/3,0) (oo <t <1/3)
is the integral curve of X with the initial position (1, 0).

Theorem 4.1.1.2 Let X be a smooth vector field on M. Then
(1) For any p in M, there exists an integral curve ¢ : I — M of X with the
initial position p.
(2) If 1 : Iy = M and ¢y : Iy — M are integral curves of X with the same

initial position, then ¢; = ¢y on Iy N I5.

(3) For any p in M, there exists a unique maximal integral curve® ¢, : I,, — M
of X with the initial position p. In particular, we have Newton'’s first law:
any integral curve with the nonzero initial velocity has always nonzero

velocity.
(4) Let
=[] L={pt)e MxR|tel,}
peEM
and

.7 — M, (p,t) = cp(t).
If s,t € I,, then s —t € Ig(, ) and

(I)((I)(p, t)vs - t) = (D(pa S)‘

(5) For eacht € R, let
D,={peM|tel,}.

Then
¢t : Dt — D—t; P ‘b(p, t) (41)

is bijective. We have
O,(Dy N Dysy) =D_yND,, Vi,seR
O, 00, =®,,; on Dy, NDs, Dy = M, ¢ = idps, and ®_; = ($;)7 L.
(6) Z isopen in M x R and ® : T — M is smooth.

(7) For eacht € R, D, is open in M and the map (4.1) is a diffeomorphism.

3 1e., if ¢c: I — M is an integral curve of X with the initial position p, then I C I, and
c=c¢p I
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(8) Let I, := (=t~ (p),tT(p)). Then t*,t= : M — (0,00] are lower semi
continuous.

The collection

(s

is called the local 1-parameter group of local diffeomorphisms of M gener-
ated by X, or simply the flow generated by X.*

—supt~(p) <t < sup tT(p) }
peEM peEM

4.1.1.3 Examples

1. (Rotation Fields) On R3, Let

0
L,=—y— —
yay + o
Then
cost —sint 0
R.(t) := | sint cost 0
0 0 1

is the 1-parameter family of diffeomorphisms generated by L..

2. (Linear Vector Fields) Let A = (a’) be an n x n real matrix. Define a vector
field

.0
Xa = Za;-x] Oxt
4,

on R"™. Then for each p € R",

is the integral curve of X 4. The map
P, := ¢4 R"” - R”

is a 1-parameter family of diffeomorphisms of R™.

Note that for an n x n matrix B
[Xa,X5] = —X{a,p

where [A, B] = AB — BA.

4% (M) is the tangent space of Diff(M) at the identity element.
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4.1.1.4 Remark

From the equation

d
%‘I’t(p) = Xo,(p)
we have
L (@11)(0) = S I@D) = X () = (XD)(@elp) = (B (X)) (p)

for p € M and f € C°>°(M). Thus we have the equation

%@; — BT o X 1 CO(M) = C(M).

From this we have, at least formally,

Thus

for f € C¥(R).

4.1.2 Complete Vector Fields

A vector field X on M is said to be complete if every maximal integral curve
of X with arbitrary initial position is defined for all ¢ € R. A complete vec-
tor field X on M generates a global 1-parameter group {Exp(tX) | t € R} of
diffeomorphisms of M.

Theorem 4.1.2.1 Every left invariant vector field on a Lie group G is complete.
Every right invariant vector field on a Lie group G is complete.

4.1.2.2 Exercise

(0) Is the vector field 22 di on R complete?

X

(i) Show that for a vector field X on M, if the domain Z C R x M of the flow
® of X contains (—e¢,€) x M for some e > 0, then X is complete.
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(i) Let X be a vector field on a manifold M and let f be a smooth pos-
itive function on M. Show that the maximal integral curves ®( ,p) :
(=t~ (p),tt(p)) — M and ®( ,p) : (i (p),i*(p)) — M of vector fields
X and X := fX, respectively, with the initial position p € M are the
reparametrizations of each other. Show that

) R 3 0 dt
by e — (Y — @
o= saepy W /Hp) @)

(iii) Let X be the left invariant vector field on SO(n) associated to a skew-
symmetric matrix z € so(n). Show that

®(t,9) = gexp(tz), (t,g) € R xS0(n)
is the flow on SO(n) generated by X.

(iv) Let X be a left invariant vector field on a Lie group G with X, = z. Show
that
Exp(tX) = Rexp(m) G — G,

where Exp(tX) is the flow on G generated by X.

4.1.2.3

For a vector field X on M, the support of X, denoted by supp X, is the closure
of {pe M| X(p) #0}in M.

Theorem 4.1.2.4 A vector field with compact support Is complete. In partic-
ular, every vector field on a compact manifold is complete.

This theorem follows trivially from the next lemma.

4.1.2.5 Definition

Let —0o < a,b < co. Then a curve ¢ : (a,b) — M is said to tend to infinity
ast /b, if for any compact subset K of M, there exists ¢y € (a,b) such that
to < t < bimplies ¢(t) ¢ K. In this case we write

}% c(t) = 0.

Similarly, we have a notion of

li t) = oo.
t{r}zc() 00

Lemma 4.1.2.6 Let X be a vector field on M and let ¢ : (a,b) — M be a
maximal integral curve of X. If b < co, then

li = 0.
lim c(t) = 0o
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Proof. If not, then there exist a compact set K in M and an increasing
sequence {t¢;} tends to b such that c(¢;) € K and {c(t;)} converges, say, to p.
Now take an open neighborhood U of p and € > 0 such that U x (—e,e) C Z.
Then, for k large, c(t;) € U and hence c(t;, + ¢) is defined. This contradicts the
maximality. O

Proposition 4.1.2.7 Let X be a vector field on M. Then there exists a C*
positive function f on M such that fX is complete.

Proof. We may assume that M is connected. Take a compact exhaustion
{K;}32, for M, i.e., each K is a compact subset of M contained in the interior
Int K;4;1 of K;11 and M = UK;. Note that

Ki—-IntK,  CcInt K; 1 — K; o
and hence there exists a nonnegative smooth function p; on M such that
pil(K; —Int K;_1) =1, suppp; C Int K;11 — K;_o,
where Ky = K_; = (). Note that, for each i, there exists ¢; > 0 such that
[t| <€ = Pu(K;) C Kiy1,

where ®,; denotes the flow of X. Now define

oo

f= Z €ipPi-

i=1

Then f is a smooth positive function on M. Now from the above exercise 5.1.(ii),

if p € K;, then
T g < dt
*(p :/ _ z/ a _y
=) T@e)

o dt O dt
tp)= /t-@) @) = / o b

Thus (—1,1) x M is contained in the domain of the flow of fX. Thus again
by the exercise 5.1.(i), f X is complete. O

and

4.1.3 Singularities of Vector Fields

Let X be a vector field on M. Then a pointp € M is called a singularity, singular
point, or a fixed point of X if X (p) = 0.

Regular (i.e., nonsingular) points of a vector field are not very interesting as
we can see in the following proposition.

Proposition 4.1.3.1 If p is a regular point of a vector field X on M, then
there exists a chart (z',...,2") at p such that X = % in a neighborhood of p.
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Proof. Since the statement is local we may assume that X is a vector field on
an open neighborhood U of the origin O in R™. Without loss of generality we
may also assume that X (0) = (1,0,...,0). Let ®; be the flow of X and define

h(tl, e ,tn) = q)tl (O,tg, e 7t71,)
for small (¢4, ...,t,) in U. Then h is a smooth map with ~(O) = O and
Dih(t, ... tn) = X(h(t1,...,tn)) (4.2)

and
D;h(0) =1 (i=2,...,n).

Thus h is a local diffeomorphism at the origin. Let x = h~!. Then the equation
(4.2) says that X = 2. O

We will soon see a generalization of this proposition.
If Vf denotes the gradient field of a function f on a Riemannian manifold
M, then a point p € M is a singularity of V f if and only if p is a critical point of

£.

Proposition 4.1.3.2 Let f be a smooth function on a Riemannian manifold
M. If p € M is a regular point of f, then f increases strictly along the integral
curve cp, of the gradient field V f.

Proof. Note that

d d
— flep(t)) = ( VF(ep(t), —ep(t) ) = [V F(en(t))]* > 0,
dt dt
where the inequality is strict since p is a regular point of V f. O

Proposition 4.1.3.3 Let M be a compact Riemannian manifold, f : M — R
be a smooth map whose critical points are isolated, and v : R — M be a maximal
integral curve of grad f. Then lim;_, . y(t) converges to a critical point of f.

4.1.3.4 Example (Tunnels)

On R® = {(z,y,2)}, project the vector field —Z onto the sphere S? to get a
vector field®

X(xayaz) = (0507 _1) - ((07()’ _1) : (Q?,y,Z))(I,y,Z) = (xz,yz,z:2 - 1)
on S2. Then the integral curve of X satisfies the equation

t=xz, y=vyz, i=2z>—1

5This is the gradient vector field of the height functionz on S2.
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We assume that the initial position is on the equator z = 0. Then

z(t) = — tanht, —o00 < t < o0.
With r = /22 + y2, we have
r? =1— 2% =sech?t, ie., r(t)=secht.

Note that (z,y,0)/r is constant and the integral curve is the great semi-circle
connecting the north and the south poles.
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4.2 Lie Derivatives

Let X be a vector field on M and let {®;} be the flow generated by X. The Lie
derivatives L x (-) with respect to X are defined as follows;
If feC>®(M),then Lxf e C®(M)is

Lxf(p) = d

Sl r@w) e

0

fY € X(M), then LxY € X(M) is

(ExY)y = 2| (@ 0)u(Va)  (0E M)

0

Ifwe QY(M), then Lxw € QY(M) is

(Cxw)y = &

7 D" (Wa, (p)) (peM).

0

Yp

p
In other words,
d d d
= — ¢* Y = — @7 *Y, - = (D* .
'CXf dt 0 tf? ‘CX dt O( t) ,CX(U dt 0 tw

Note that the Lie derivatives
Co(M) £5 ¢ (M),  X(M)ES x(M), QY(M) ES (M)

are all R-linear. More generally, since a vector field moves every “tensor field”
on M, Lie derivative L is defined on the space of tensor fields, which will be
discussed in the next chapter.

Proposition 4.2.0.1 For f,g € C*°(M), X,Y,Z € X(M) and w € QY(M), Lie
derivatives satisfy the following relations;

() Lxf = X[
(i) LxY = [X,Y]
(it}) (Lxw)(Y) = Lx(@Y) —w(LxY)

In particular, we have
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(i-
(ii-
(ii-2

(ifi-1

1) Lx(fg) = (Lxf)g+ f(Lxg)

1) Lx(fY) = (Lxf)Y + f(LxY)

) Lx[Y, Z] = [LxY, Z] +[Y,Lx Z], Lixy)(Z)=[Lx,Ly](Z)
) Lx(df) =d(Lxf), Lx(fw)=(Lxflw+ fLx(w).

Proof. (i) is trivial.

(i) Let p € M. Then there exist a neighborhood U of p and € > 0 such that
the flow ®X of X and the flow ®) of Y are defined on U, for |t| < ¢ and for
|s| < e. We will show that for any f € C>*(M),

(EXY)pf = [X7 Y]pf

Note that
[ny]pf = Xp(yf)_Yp(Xf)
_ 4 Xy 4 y
= G|, YD@XE) - Z| (XN@ )
_ o dy d vax.,_ d| d X gV
= dtodsof(q)s(btp) dsodtof(q)t o, p).
On the other hand
d d
L)l = 4] @X).x,f = dt‘ Yox (o (f 0 %))
0 0
_ d| d X 1Y 5 X
= G| |, @Nerety)
— i i X Y ﬂ Y 5X
- &l (] rexern+ 4| serey
Thus £ = [X,Y].

Here is another proof.® Take a smooth family of smooth functions g; on U
such that

fo®i=[+tg
for |t| < e. Then go = X f and hence

) = Gl @ =gl vgeson
= G U =t00®) = G| V(0% ~Y ()

= X)) =Y (X))

(iii) The identities (iii-1) are easy. From these the third identity follows. This
completes the proof. O

6cf. Spivak
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4.2.0.2 Exercise
Show that
Lixw= fLxw+ w(X)df.
4.2.0.3
Note that if h(s,u) is a smooth function defined for (s, w) near (0,0) such that
D2h(0,0) = 0 = D3h(0,0), then (£)2 (h(t, ) =2 Z|, 2|, h(s,u).
Theorem 4.2.0.4 Given a vector field X,Y on M and a point p in M, let

h(t) == Exp_;y Exp_;x Exp;y Exp, x (P)

Then .
R'(0) =0, §h”(0) =[X,Y],.

4.2.0.5

Let F : M — N be a diffeomorphism and let {®;} be the flow generated by a
vector field X on M. Then {F o &, o F~!} is the flow generated by the vector
field F.X on N.

Theorem 4.2.0.6 Let X and Y be vector fields on M. Then [X,Y] = 0 if and
only if ;¥ 0 @Y = &Y 0 &)X for small t,s € R.

Proof. Since [X,Y] = LxY, [X,Y] = 0 if and only if (®;*).Y =Y for all ¢.
Since the flow generated by (®X).Y is & o ®Y o X, we are done. O

Corollary 4.2.0.7 Let X1, ..., X}, be vector fields on M such that [X;, X;] =0
for 1 < i,5 < k. If X1(p),...,Xk(p) is linearly independent for some point
p € M, then there exists a coordinate system x = (x!,..., ™) in a neighborhood

U of p such that
0

XilU= %5

for1 <j<k.
Proof. Given apoint pin M, take vector fields X1, ..., X, sothat X,... Xj,

..., X, is a frame in some neighborhood U of p. For some ¢ > 0, let ¢! be the
flow on U generated by the vector field X, fori =1, ..., n, for |¢| < e. Note that

1 k
(z)tla e (btk

are commuting vector fields.
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Now consider the map

flor,. . mn) = ¢y, 005, 0. 7 (D)

for (z1,...,2,) € (—€,€) X -+ X (—¢,¢€). Then

0

3 flxy,.. o xn) = Xo(f(21,. .0y 20)) (a=1,...,k)

Tq
and

O 0. 0=t G =X)  (i=1....n)

Bz, ey _dto ((p) = Xi(p t=1,...,n
Thus f is a diffeomorphism in a neighborhood of the origin and hence its inverse
map (z!,...,z2") isachartsuchthatXa:%forazl,...k. O

See chapter 8 for the Frobenius Theorem.

4.2.1 Example
InR? = {(z,y, 2)}, let

00 0,0
T oz Yo Oy 0z

Find all f € C>°(M) such that X(f) =0and Y (f) = 0.

X

First Solution. Note that X and Y are linearly independent everywhere
and [X,Y] =0. Let
U=, V=9, w=2z—1TY

or
r=u, Yy =v, 2 =W+ Uv.
Then 5 P 5 5
— =X, — =Y, — = —.
ou " v T ow 0z
Thus g—j: =0= % implies

for some function g on M.

Second Solution. Note that f is constant along the integral curves of X and
Y. The integral curve of X with the initial position (zg, yo, 20) is (t + o, Yo, tyo +
zp) and the integral curve of Y with the same initial position is (xq, t + yo, txo +
20). These curves form a surface

S:z—xy= 20— ToYo
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and X,Y are tangent to S. Thus f = g(z — xy) for some g € C®(M).

Third Solution. Let w be a 1-form " " perpendicular' to X and Y, e.g.,
w = —ydx — xdy + dz.

(Observe that (1,0,y) x (0,1,z) = (—y,—x,1).) If ¢ : § — R* is the surface
(or the integral submanifold) generated by X and Y, then /*w = 0. But w =
d(z — zy) and hence

S ={z — xy = const.}



Chapter 5

Vector Bundles

A (smooth) map 7 : E — M is a vector bundle over M of rank r if

(1) each fiber E, := 7~ Y(p), p € M, is a (real) vector space of dimension 7,
and

(2) each point in M has an open neighborhood U and a diffeomorphism
¢:ElU:=7"YU)—=UxR",

called a local trivialization or a (vector) bundle chart, such that proj; op =
m and ¢|E, — {p} x R" is a linear isomorphism.

A collection {¢, : 7~ 1(U,) — U, x R"} of bundle charts is called a bundle
atlas if {U,} covers M.

5.0.0.1 Exercises

(1) Let {pq : E|Uy — U, x R"} be a bundle atlas of a vector bundle E over
M. Show that the transition maps ¢ap : Uy N Ug — GL(r,R) defined by

Yo © 95 (p,v) = (D, pap(p)v) for (p,v) € (Ua NUs) xR" (2.1
are smooth. Show that
PaB © Py = Pay onU,NUzNU,
for any indices «, 3, . In particular,
Yaa =11, Pap = Pgq-

(ii) Suppose that F is an abstract set together with a map = : £ — M. Sup-
pose, for some open cover {U, } of M, there exist bijections

Vo : T N (Uy) = Uy x R”

123
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such that proj, op, = m, for all «. If there exists a smooth map
Yap :UaNUg — GL(T, R)

for each indices «, § satisfying (2.1), then there exists a unique topology
and a unique differentiable structure on E such that 7 is smooth and ¢, 's
are diffeomorphisms. Moreover each fiber of F is a vector space of dimen-
sionr and 7 : E — M is a vector bundle.

(iii) The set of all sections of a vector bundle E over M will be denoted by
(M, E)

Show that I'(M, E) is canonically a module over C*°(M).

5.0.0.2 Examples
(i) The tangent and cotangent bundles of a manifold are vector bundles.

(ii) For a real vector space V, the projection map M x V — M is a vector
bundle, called a product bundle. This bundle will be denoted by V). A
section of the product bundle V; — M is just a V-valued C*° function on
M:

D(M, Vi) ~C®(M)@rV

5.1 Vector Bundle Homomorphism

Let7w: E — M and ¢ : F — M be vector bundles over the same base space
M. Then amap f: E — F between the total spaces is called a vector bundle
homomorphism if ¢ o f = 7 and the restriction map f | E, — F, is linear for
each pin M.

Two (vector bundle) homomorphisms can be composed and there exist iden-
tity homomorphisms and isomorphisms.

A vector bundle isomorphic to a product bundle is called a trivial bundle.

The tangent bundle of a Lie group is trivial.

5.1.0.1

The tangent bundle of S?” is non trivial, since every vector field on S?” has a
singularity.

5.1.0.2 Exercises

(i) A vector bundle F is trivial if and only if there exist (global) sections
$1,...,8r of E such that s1(p),...,s,(p) is a basis of E, for each p € M.
Such an r-tuple (s1,...,s,) is called a (global) frame for E.
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(i)

(dii)

Let {¢q : E|U, — U, x R"} be a bundle atlas for a vector bundle E over
M. Then each ¢, defines a local frame s* = (s¢,...,s%) for E over U,
by pulling back the canonical frame for U, x R" — U,. Conversely, any
local frame s® for E over U, defines a local trivialization . Show that

for any indices «, 3,
SﬁZSOé'QOaB onU(,ﬂUg

where {¢.5} are the transition maps for {¢,}. Note that if £ is a C*°
section of F, then

T

U =D &lst = 5", (4.1.1)
i=1
61
forsome §, = | : | € C*®(Uq,R") = C*(Uy) ® R". Show that for any
€
indices «, 8
§a =vapp  onU,NUg. (4.1.2)

Conversely, suppose we are given £, € C*(U,,R") for each a such that
(4.1.2) is true for any indices «, 3. Then {{,} defines a unique global
section ¢ for E such that (4.1.1) is true.

A Euclidean structure on a vector bundle E over a M is a smooth assign-
ment to each point p € M an inner product (, ) on E,. Show that there
exists a Euclidean structure on every vector bundle over a (paracompact)
manifold.

5.2 Pull-back Bundle

Let E be a vector bundle over M. For a smooth map ¢ : N — M, the pull back
bundle of E by ¢ is the bundle

VB :={(g,e) € N x E | e € By}

over N. If s is a local section of E defined over an open subset U of M, then
1*s is a section of y* E defined over the open subset ¢)~1(U) of N. In particular,
the pullback of a trivial bundle is again trivial. Note that if {¢ns : Uy N Uz —
GL(r,R)} is a collection of transition maps associated to some bundle atlas for
E, then ¢* E has the transition maps {¢*pas | 71 (Us) Ny~ (Ug) — GL(1,R)}.
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5.2.0.1 Example

Let P" be the real projective n-space. Then each point p € P" is a line [, in
R, Let

L, = {pxveP"xR" |vel,}
= {(Pl1"'1Pn+1)X(U1,-~-,vn+1)€PnXRn+l|Pz‘vj:]9jvi Vi, j}.

Then L, is called the universal or tautological line bundle over P". The total
space L,, is the blowing up of R"*! at the origin. Fora =1,...,n + 1, let

Ua:{p:(pl:"':pn—i-l)EPnlpa?’éO}-

Then {U,} is an open cover of P™. We have a non vanishing section s, of L,
defined on U, given by

D1 Pn+1
Sa(Pr:i ippy1)=px | —,...,/ .
o 1) (pa pa>

Then the transition maps are given by

Pa
Pap\P) = —-
5(p) >

Thus a section of L,, is a collection of ¢, € C*° (U, ) satisfying

55 = 5049904[3 on Ua N U[g.

This means, in particular, that the line bundle L, is obtained from two copies of
R x R by the gluing process

(R—{0}) xR 5 (t,0) (1,75@) € (R—{0}) x R.

Thus the total space L, is the “Mobius band”.

We now claim that L,, is nontrivial, or equivalently, every section £ of L,
has a zero. Since L, is the pull back of L, under the canonical embedding
P! — P", it suffices to show that L; is nontrivial. Now, if we identify U; and
U, in a standard way, then a section of L, is a pair (f1, f2) of smooth functions
on R such that

f1(1/t) =tfa(t) forallt € R,.

If f1 and f, are non vanishing, then their signatures are constant, which con-
tradicts the above identity. Thus every section of L; (and hence of L,) has a
Zero.
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5.3 Operations of vector bundles

5.3.1 Dual bundles

For a vector bundle £ — M, we have the dual bundle E* — M.

5.3.2 Whitney Sum

For vector bundles £ and F over M, E & F is the “vector bundle” with the fiber
(E@F),=E,&F,

called the Whitney (or direct) sum of E and F.

5.3.3 Tensor Product

For vector bundles FE and F over M, we have the tensor product bundle £ ® F
over M.

5.3.4 Exercises

(1) For vector bundles FE and F over M, obtain new vector bundles
Hom(E, F), AFE,

where AF is the k-th wedge power. Show that if {s;} and {t;} are local
frames for £ and F, respectively, then {s; ® t;} is a local frame for F ®
F. If {sf} is the “dual frame' of {s;}, then {s! ® ¢;} is a local frame for
Hom(E, F) and {s;;, A+ As;, | i1 <--- <} is a local frame for A*E.!

(2) For a vector bundle E over M of rank r, the direct sum
A°E = Z AE
k>0

is the bundle of exterior algebras of E.2 For ¢ € I'(M,A*E) and n €
['(M, A'E), check the anti commutativity

EAn=(=1DFyagece(M NTE).

Thus
I'(M,A°E) = > T(M,A\"E)
k>0
is a graded anti-commutative algebra.

'n fact, for any ‘continuous’ functor F form a category C (e.g., of finite dimensional vector
spaces and linear maps) into a category of D (e.g., of similar sorts) , there exists a corresonding
vector bundle construction [Atiyah, K-theory]

2We use the notation

det

for the line bundle A" E.
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(3) Show that any vector bundle F is isomorphic to its double dual E** canon-
ically.

(4) Show that any real vector bundle F is (non canonically) isomorphic to its
dual E*.

(5) We have already seen that
Q' (M) ~ X(M)*
which is a special case of
(M, E*) ~T(M, E)* := Homee ar)(I'(M, E),C>(M))

for any vector bundle £ — M. This isomorphism is again a special case of
C*(M)-module isomorphism

(M, Hom(E, F)) =~ Hom ¢os (1) (T(M, E), (M, F))

for any vector bundles E and F over M.

5.3.5 Contraction map
The bundles
E®E*, E*®F, Hom(E, E)
are all isomorphic, and the trace map (or the evaluation map)

E*®FE — Ry

is called the contraction map.

5.3.6 Remark

Let V be a finite dimensional real vector space. Then we identify A (V*) with
the space L¥,,V of alternating k-linear forms on V as follows. If ¢*,... &~ € V*
and vy,...,v; € V, then

(€A A (or, . ve) = det(€1(v) = Y sen(0)€ (Vo)) - EF (Vo))
oc€ESy
(5.1)
where S); denotes the group of permutations on {1, ..., k}. In particular, if £,y €
V*, then

(€ Am)(v1,v2) = E(v1)n(v2) = E(va)n (V).
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5.3.6.1 Exercise

Show that if ¢ € A¥(V*) and n € AY(V*), then under the above identification,
we have

(EAN)(v1,- .., Vk41)
= Z sgn(0) E(Vo(1)s - -+ » Vo (k) MV (kt1)s - - + > Vor (kD))

0ESk,1
1
= Z sgn(0) £(Vo(1)s - - -5 Vo (k) MVa(kt1)s - - > Vo (ktl))
T 0€Sky
for vy,..., v € V, where Si; denotes the set of all (k, [)-shuffles.?

5.3.6.2

For a module £ over a commutative ring R, let
AR(E)

be the R-module consisting of all alternating k-linear maps £ x --- x &€ — R.
Now if FE is a vector bundle over M, then the C*° (M )-module isomorphism

D(M,\*(B*)) = D(M, (A" E)*) = Ag () (T (M, E))

is given by (5.1) for sections ¢!, ..., &* for E* and sections vy, . . ., vy, for E.

3A (k,1)-shuffle is a permutation o of {1,2,...,k + I} such that o(1) < --- < o(k) and
o(k+1) <--- <o(k+1). Note that the Laplace expansion of the determinant of an n X n
matrix A = (a;) with respect to the columns Ay, J = (j1,...,Jx) € I} := {(i1,...,ix) | 1 <
i1 < <ip <nd,is

_ Ji - Jn I ¢
det A = Z sgn (il Zn) det A - det Ajc
IGIIZ}
where I¢ = (ip41 < -+ < in) € I, and J® = (jpq1 < -+ < jn) € I'_, are the
complements of I and J in {1,2,...,n}, AS are the k X k minors of A, and A? are the

(n — k) x (n — k) minors of A. Note that sgn(I I¢) = (—1)i+ixtk(+1)/2 3nd hence
c . . .
sgn (‘; ‘I]C) = (=1)J1tdrtit e tip,
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5.4 Orientation

A vector bundle FE of rank r is orientable if there exists a bundle atlas {¢, } such
that the transition maps {¢,s} have values in GL *(r,R). An “oriented atlas ”
induces an orientation on each fiber of E.

5.4.0.1 Remark

Recall that an orientation on a finite dimensional real vector space V is an
equivalence class of (ordered) basis for V. Two basis v = (v1,...,v,) and w =
(wi,...,w,) for V are equivalent if there exists a continuous family u(¢) =
(u1(t),...,un(t)) of basis for V, 0 < ¢ < 1, such that u(0) = v and u(l) = w.
Note that, in this case, there exists a unique continuous curve g(t) € GL(n,R)
such that u(t) = vg(t). Since detg(0) = det1,, = 1 > 0, detg(1) > 0 by the
continuity. Conversely, if v and w are basis for V' such that w = vg for some
g € GL T (n,R), then v and w are equivalent, since GL ™ (n, R) is connected.

Thus an orientation on an n-dimensional real vector space V is a choice of
connected component of A"V — {0}.

A linear isomorphism [ : V' — V is orientation preserving if for some
(and hence for any) basis (v1,...,v,) of V, (I(v1),...,I(v,)) is equivalent to
(v1,...,vy), or equivalently, det! > 0. AC*® map h : U — V from an open
subset U of V is said to be orientation preserving at p € U if the derivative

Dh(p):V =V

is orientation preserving.
The Cartesian space R™ is always equipped with the *standard orientation'.

Theorem 5.4.0.2 A real vector bundle E over M is orientable if and only if
det E' is a trivial bundle.

Proof. Let {¢.3:U,NUg — GL(r,R)} be the collection of transition maps
for E. Thus for each index o we have a local frame

s =(sf,...,8Y)

for E | U,. These frames satisfy the relation
57 = 5%ap
on U,p := U, NUg. Then
§Y =T A Asy

is a local frame for det E over U, and

87 = 5% det pup



5.4. ORIENTATION 131

on Uyg.

Now if E is orientable, then one can choose transition maps having positive
determinants. Let {p, : M — R} be a partition of unity subordinate to the open
cover {U, } of M. Consider the global section

&= Z pﬁéﬁ
B

of det E. If p is a point in M which lies in U,, for some «, then

&) = | D psp) det(pas(p) | 8%(p) # 0.
B

Thus ¢ is nonvanishing and hence det E is trivial.*

Conversely, suppose det F has a nonvanishing section £. Then one can choose
a local frame s* such that §* = £ on U,. Then all transition maps have deter-
minant 1. O

5.4.0.3 Exercise

Note that the Mébius band A/ is the quotient of S! x R by the involution
a:(z,t) = (—z,—t)

Show that M — S! is nontrivial.

5.4.1 Orientable manfolds

A manifold M is orientable if its tangent bundle is orientable. Thus on an ori-
entable manifold M, there exists an atlas {z, : U, — R"} such that the tran-
sition maps z, © :1:/;1 have the positive Jacobian determinant for all o and f.
A manifold M is oriented if an ‘oriented atlas' for M is specified. Then each
tangent space of an oriented manifold is oriented.

Amap ¢ : M — N between oriented manifolds of the same dimension is said
to be orientation preserving at p € M, if the derivative T'¢, : TM), — TNy,
is orientation preserving. Obviously, if ¢ preserves the orientation at p, then
it preserves the orientation in a neighborhood of p. The map ¢ is said to be
orientation preserving if it preserves the orientation at every point of M.

5.4.1.1 Exercise

Let¢p: M — N and : N — L be orientation preserving maps between oriented
manifolds of the same dimension. Show that ¢ o ¢ : M — L is also orientation
preserving.

40ne may use a Euclidean structure for E and local orthonormal frames.
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5.4.2 Example

(1) The n-sphere S™ is orientable. The usual orientation on S™ is given as fol-
lows; Note that the tangent space of S™ at a point p € S™ is

TS} ={veR"" v 1 p}
Then a basis (vy,...,v,) for TS} is "positively oriented' if (p,vy,...,v,) is a
positively oriented basis for R**1,

The antipodal map a : S — S” is orientation preserving if and only if n is
odd.’ To see this it suffices to check at one point, say at p = (1,0,...,0). Then
vy = (0,1,0,...,0), ..., v, = (0,...,0,1) is a positively oriented basis for the
tangent space of S™ at p. Now

Tay(v1) = (0,—1,0,...,0), ..., Tay(v,) = (0,...,0,—1)

is a basis for the tangent space of S™ at —p, which is positively oriented if and
only if (—1)"*! = 1, i.e., n is odd. Note that the stereographic projection of S™
from the north pole preserves the orientation if and only ifr. is odd.

(2) Let w : S® — P™ be the canonical projection of the n-sphere onto the
projective n-space. Suppose that P" is orientable. Then we may choose an
orientation on P” so that « is orientation preserving. Let a : S™ — S” be the
antipodal map. Then 7 = 7o a and hence 7 o a is orientation preserving. Thus a
must preserve the orientation, i.e., n is odd. Thus even dimensional projective
spaces are not orientable. Conversely, an orientation on an odd dimensional
projective space is obtained from the orientation of the odd sphere, where the
antipodal map preserves the orientation.

Note that on a connected orientable manifold there are two different orien-
tations.

5.4.3 Exercise

Does there exist a smooth function f : R? --» R such that zero is a regular value
of f and the zero level surface Z := f~'(0) is diffeomorphic to the Mobius band
M.

5This property is independent of the choice of an orientation of S™.
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5.5 Subbundles and quotient bundles

A subset F of a vector bundle E over M is a subbundle of E, if there exists an
integer £ with 0 < k < r and a vector bundle atlas {¢, : F|U, ~ U, xR"} of E
such that

FN(BE|Us) = 95" (Ua x RY)

where RF < R" in standard way.

5.5.1 Exercises

(i) A subbundle F of a vector bundle F is also a vector bundle and the inclu-
sion F' — E is a bundle homomorphism.

(ii) A bundle monomorphism f : £/ — F is an isomorphism onto a subbundle
of E.

(iii) A subbundle F of E induces a quotient bundle E/F.

(iv) Let H,, be the subbundle of the product bundle P" x R**! — P", which is
the orthogonal complement of the tautological line bundle L,,. Thus each
fiber of H,, over a point p € P" is the hyperplane in R"*! perpendicular
to the line [, C R"*!. Show that H,, ~ L,, ® TP™.
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5.6 Tensor Fields

For a nonnegative integer k, a tensor bundle of a manifold M is a tensor product
EFE=F® - -®F

of vector bundles, where each E; is either the tangent bundle T M or the cotan-
gent bundle TM* of M. Thus

E~TM® @ TM*®1 =, T M@

for some nonnegative integers p and ¢ with p + ¢ = k. When k = 0, F is the
trivial line bundle.

A section of a tensor bundle is called a tensor field of M. The tensor product
of two tensor fields is again a tensor field.

5.6.1 Lie Derivatives of Tensor Fields

If X is a vector field on M and 7 is a tensor field on M, then the flow generated
by X defines the Lie derivative Lx7. It is a tensor field of the “same type' as 7,
uniquely characterized by the following property:

Lx(mi®1) = (Lx1)®T2+71 & (LxT2)
Lx(mi+7) = Lxmi+Lxm
Lx(C(r) = C(Lx(7))

where C' is any contraction operators. The above properties determine the Lie
derivative uniquely once we know its action on functions and vector fields.
We also have
LxoLy —LyoLx =Lxy)

for any vector fields X and Y on M [Gallot et al.].
We will discuss more on the Lie derivatives of differential forms in the next
chapter.



Chapter 6

Differential Forms

6.1 Exterior Differential Algebra

Let M be a manifold of dimension n. A section of the k-th wedge power A*T M*
of the cotangent bundle TM* — M is called a differential form of degree k,
or simply a k-form on M. We denote by Q¥ (M) the C*° (M )-module of k-forms
on M for k = 0,1,.... Then Q°(M) = C>*(M) and Q"*}(M) = Q"*2(M) =
=0, Ifwe QF¥(M) and n € QY (M), then

wAn = (=1)*pAwe Q).

The graded algebra
(M) =) QF(M)

k>0
is called the exterior differential algebra of M.
If v = (x!,...,2") is a local coordinate system on M, then

w = Z wiln_ikdx“ A Adat®

1<i1 < <ig<n

1 ) )
= Z Wiy i dx™ A N d'h

1<it1,.. ik <n

for some uniquely determined smooth functions w;, .. ;, which are skew-symmet-
ric with respect to the indices.

6.1.1 Exercise

Let f : R®> — R be a smooth function. Suppose that S := f~1(0) is a regular
level set. Find a nowhere vanishing 2-form on S.

"'We will soon introduce the exterior differential operator d : Q¥ (M) — QFt1(M). The
notation d is due to E. Kéhler [Cartan].

135
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6.1.2 Remark

We may regard, as we have seen in the last chapter, a k-form w on M as an
alternating k-linear (over C*°(M)) map of X(M) into C*(M);
wiX(M)x - xX(M)— C®(M).

For instance, if ', ..., 6" are 1-forms on M and X1, ..., X}, are vector fields on
M, then ‘
(OY A= ANOFY (X, ..., Xi) = det(0°(X;)).

Thus, if n € Q!(M), then for vector fields X1,..., Xz,; on M,

(w AN 77)(X17 PN >Xk+l)

= Z Sgn(a) . w(XU(l), N 7Xa(k)) . n(Xo(k+1)a ey Xa(k+l))
€Sk,

1
AT Z sgn(o) - w(Xoys - Xo) - M Xoht1)s - -+ s Xo(h1))s

UGSk+l

where Sy, ; denotes the set of all (k, )-shuffles.?
For instance, if w is a 1-form and 7 is an [-form, then

l
(wAN)(Xo, .., X)) =Y (—D'w(X)n(Xo, ..., Xi, ..., X0).
1=0

Theorem 6.1.2.1 There is a unique R-linear map
d:Q*(M)— Q*(M)
such that
(i) it is an extension of d : Q°(M) — QY(M)
(ii) it is an anti-derivation, i.e., for w € Q¥(M) and n € Q*(M),

dwAn) =dwAn+(—1)FwAdny

(iii) d(df) =0 for any f € Q°(M).
Moreover, if w € QF(M) is considered as an alternating multilinear map on the
space of vector fields, then dw € Q*+1(M) and
k

dw(Xo,....Xx) = > (=)' Xi(w(Xo,...,Xi,..., X)) (6.1)

1=0
+ Z (_1)i+jw([Xi7Xj]7X07"'727“‘7)/(;7"'7Xk)
0<i<j<k

for vector fields Xo, ..., X}, € X(M). We also have

dod=0.

2A permutation o in Sy is a (k,l)-shuffle if 0(1) < - -+ < (k) and o (k+1) < --- < o(k+1).
The above identity is the Laplace’s expansion of determinant. cf. 5.3.6.1 or [Spivak, Vol. IJ.
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Proof. Let w € QF(M).
(Uniqueness) Since the property (i) implies that d is a local operator, it suf-

fices to check dw locally. If, for some local chart x = (z!,...,2") : U — R" on
M,

1 , , 1
wlU = o Zwil...z‘kdx“ Ao ANda'™ = o deml
I

where the functions w; are skew-symmetric with respect to indices I = (i1,...,i;) €
{1,...,n}* and da! := daz™* A--- Adx', then by the axioms (i) and (ii), we have

(dw)|U = % S d(wr) A da.
I

(Existence) Now we define dw as in the above formula. Then we have to show
that this definition is independent of the choice of local chart. Thus suppose we
are given a new chart y = (y!,...,y") on U and

1 -
w|U = o ZdeyJ.

Then
1
wlU = o Zw;dml
orr  Ox' .
— klz T y]l"'ayjkdyh/\”./\dyjk
8;10 L Qgte J

Thus we have ,
Oz ox'k
wJ = Z Wr—=—— et

ayh 8y]k
Now
1 - ;g 1 ox't  Oz'k J
EZd(wJ)/\dy = % d(wlayjl...ayjk)/\dy
J I,J
1 Ox™ ox* ox™ Ox'*
= — d(wr) A — ... w ... — ) Ady?
k' ; ( I) (ayjl ay]k ) k' Z I ( yJ1 ayjk> y

1

1 9%zt 9xtz Oxtk dzh Oxi—1 92z

= B A L _ ) dy' A dy”
T IX:]ZwI (f%/layh Oyrz  Oyiw et Qyin k=1 aylayﬂk) s

1
= o > d(wr) Ada
I
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The last identity comes from the fact that "a symmetric matrix and a skew-
symmetric matrix are orthogonal to each other'. This shows the well-definedness.

Now the properties (i) and (ii) can be easily checked. Note that d> = 0 is
equivalent to am‘?i;zj = 3;}’7211.

Finally we will show the relation (6.1). Let A(Xy,..., X)) be the right hand
side of (6.1). Then A is alternating k-linear map over C>°(M). Thus it suffices
to check the identity locally and for X; € {%, R 8%"}, where z!,..., 2" isa
local chart. Now, for w = Zlgi1<m<ik§n Wiy ipgdx Ao Adx™,and 1 < [y <
e < lk < n,

0 0 o0
A (81’10 T Ol ) = Z(_l) ki (wlo...ii.,.lk,)7
=0

since [8?6“ %] = 0. We also have
do = Z dwi, . i Ndz™ A - A da®
i< <l
Owi, .4 , . .
- Z Z#dfﬂ]/\d(b“/\.../\dmzk
i< <ip g €

k ow. ~ .
= 1)k totyeetie o AL ik
| g g (-1) Dy dz'® A -+ Ndx
and hence

0 0 )
* (mzw) =2V g i)
0

This completes the proof. O

The operator d is called the exterior derivative.
In R3, d appears as gradient, curl and divergence.

QOR3) — 5 QYR3) —L 5 Q2(R3) —L Q3(R?)

T I
QOR3) —— XR?) —— X(R?) —— QOR3)

grad curl div

6.1.3 Functoriality

If F: M — N is a smooth map, then we get a pull back
F*:Q%N) = Q*(M).

If w € QF(N), for some k > 0, then F*w € QF(M) and

(F*w)p(v1, .., 0k) 1= wr(p) (Fevt, ..., Fyog)
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for any tangent vectors vy, ..., v in T'M,.
Then F* is a ring homomorphism, commuting with the exterior derivative d.

QF(M) —% QF+1(M1)

F*T TF*

QH(N) —— ()

If G: N — L is a smooth map, then
(GoF)" =F*oG"

and (1d M)* =id Qe (M)-

6.1.4 Volume Forms

A volume form on an n-manifold M is a non-vanishing n-form on M. A manifold
is orientable if and only if there exists a volume form.

If i is a volume form on M, then fu is also a volume form for any positive
function f € C>°(M).

If M is oriented and has a Riemannian metric g, then there exists a canonical
volume form p (or denoted by dv,) such that for each p € M, p, € A"TM,; is

the positive unit vector. Note that if v¢,...,v, € TM,, then

fp(V1, -5 Vn)
is the signed volume of the parallelogram in 7'M, spanned by vy,...,v,. In
particular,

Mp(ela~"7en) =1

for any positively oriented orthonormal basis ey, . .., e, in T M,. Infact, ife], ..., e}
is the dual basis of ey, ..., e,, then

p =€l N---Aey,.

In general, if (X4,...,X,,) is a positively oriented local frame field for the
tangent bundle 7'M and

gi; = 9 (Xi, Xj) (1<i,j<n)

then |g| := det(g;;) is the square of the volume of the parallelogram spanned by
X1,...,X,, at each point on M, and hence locally

p=/1gl0" AN O

where 0!, ..., 0" is the dual frame of X1,..., X,,.
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6.1.4.1 Polar Coordinates

Let y,, be the volume form of R”, i.e.,
un:d:vl/\~~~/\dx”

and let

n
eni=axtdat + -+ 2" da", wp_1 ::Z(— Y et dat A Adai A A da™
=1

Note that the forms u,,, €,,w,—1 are all invariant under the action of SO(n).

With r = \/(:rl)2 + -4 (27)?,
2 Lo 9
€En NWp_1 =7 lin, €n = id(r ), dwn_1 =1 iy,

We also have

1 1
dr = —€,, dr /\( Wn—1) = tn-
r
Note that )
—Wn-—1
r

is, when restricted, the volume form on the sphere S™~!(r) of radius r > 0
centered at the origin. The solid-angle form is defined by

1
Op—1 = r—nwn,l € Qnil(R:),

where R? := R™ — {0}. Note that if ret : R? — S"~! is the obvious retraction
map to the unit sphere and i is the inclusion map S"~! < R", then

ret* i*(wp—1) = On_1-
We have
dop_1 =0, pn =" Ydr Aoy
6.1.4.2 Volume forms of Hypersurfaces

Let f be a smooth function defined on an open subset U of R™. Suppose Z is
the (non-empty) regular zero-level set of f. Then the restriction of

8 f —

z 1 n
A--ANdxi A ANdx

P

to Z is the volume form of Z. To check this, let vq, ..., v, be an orthonormal

basis of
Z,~{veR" | Vf(p) -v=0}
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for p € Z such that Vf(p) Ava A--- Av, > 0. Then

7t
i=1 9

(Z(—l)i_laf.dxl /\---/\JJ?"/\~-~/\dx"> (vay ..., 0p)
P

= (da:l Aeee /\dx”)p (Vf(p),v2,...,vn) = |V f(p)l

This proves the claim.
In particular, Z is orientable.

The above consideration is true for general regular hypersurface Z = f~1(0)
for a function f on an oriented Riemannian n-manifold M. If w is the volume
form on M, then

1 1

—Vf|lw=—(df) e Q"1 (M

v e g @) T

restricts to the volume form on Z, where | is the interior product and * is the
Hodge star, both will be explained soon.
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6.1.5 Lie Derivative of forms
6.1.5.1 Interior Product

Let X be a vector field on M. Then the interior product by X is a unique
C>°(M)-linear map
ix QM) — Q*(M)
such that
(1) forw e QY (M), ix(w) = w(X) € Q°(M).
(2) forw € QF(M) and n € Q*(M),
ix(wAn) = (ixw) An+ (=1)Fw A (ixn).

If we regard w € QF(M) as an alternating k-linear map on the space of vector
fields, then ixw € Q¥~1(M) is given by

(ixw)(Yg,...,Yk) = w(X,YQ,...,Yk)

for vector fields Y5, ...,Y}.

6.1.5.2 Exercise

Show that for vector fields X and Y on M,
ixiy = —iyix.
6.1.5.3 E. Cartan’s Formula

Theorem 6.1.5.4 (Cartan’s Formula) Let Lx : Q*(M) — Q*(M) be the
Lie derivative associated to a vector field X on M. Then

Lx =ixod+doix

Theorem 6.1.5.5 For vector fields X, X1,...X; on M and a differential k-
form w on M, we have

(Lxw)(X1,. ., Xp) = X (w(X1,. 0, Xp)) = D w(Xn, . [X, X X).

i=1

6.1.5.6 Exercise

Show that for vector fields X and Y on M,

Exiy — iyﬁx = Z'[X’y].
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6.1.5.7 Exercise

Note that if X is a vector field along a map ¢ : M — N, then the interior
product
ix : Q%(N) = Q*(M)

is a unique R-linear map such that
(1) forw € QL(N), ix(w) = (¢*w)(X) € QO(M)
(2) forw € QF(N) and n € Q*(N),
ix(wAn) = (ixw) A o™ n+ (=1)"(¢*w) A (ixn).
Show that for w € QF(N), we have ixw € QF1(M) and
(ixw)p(va, - 0k) = Wo(p) (X (0) TPpv2, - -, Tpur)

for v; € TM,, ie.,
(ixw)p = 0" (ix(p)Wo(r))-
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6.2 Hodge Duality
Now the Hodge duality
*: QF (M) — QuF(M)
is characterized by the property
(w,m) vol = w A *xn

for w,n € Q°*(M), where (, ) denotes the Riemannian structure on A*TM*
induced by g (see appendix for the linear algebra). One can see easily that

*2|Qk _ (71)k(n7k)

and hence * is an isomorphism.
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6.3 De Rham Cohomology

A differential form w on an n-dimensional M is called closed if dw = 0, and
called exact if w = dn for some differential form 7. Then exact forms are clearly
closed. The k-th de Rham cohomology space® of M is

 ker(d : (M) - QFFL(M))
HY (M) = {0 0F=1(00) = R (D)

for integers k. If k < 0 or k > n, then H*(M) = {0}. These cohomology spaces
are regarded as the space of obstructions to solve a differential equation

w = d¢§
for a given differential form w. It is easy to see that

H*(M):=Y_ H*(M)
k>0

is a graded anti commutative algebra, called the de Rham cohomology algebra
of M.

For a connected manifold M,
H°(M) ~R.

Theorem 6.3.0.1 If F: M — N is a smooth map, then it induces an algebra
homomorphism
[F*]: H*(N) — H*(M).

If G: N — L is smooth, then
[(GoF)]=[F"]o[G"]
and [ld}kw] = idHO(A4).

Lemma 6.3.0.2 For any t € R, let J; : M — M x R be the t-level map:
Ji(p) := (p,t). Then there exists a linear map

K:Q%(M xR) — Q*(M)
of degree —1 such that
Ji—Ji=Kod+doK

as maps Q°(M x R) — Q°*(M).

3Georges de Rham, 1903-1990.




146 CHAPTER 6. DIFFERENTIAL FORMS

Proof. We follow [Karoubi et al.] or [Spivak]. Let X be the vector field on
M x R such that X,,; := &£ (p,t). Let w € QF(M x R). Then ixw is a time-
dependent (k — 1)-form on M. We define

1
Kw ::/ ixwdt
0

which is an element of Q*~1(M). Note that, if w = W’ + dt A w” where W' is a
time-dependent* k-form on M and w” is a time-dependent (k — 1)-form on M,
then ¢xw = w”. Thus

/

dw = dw' — dt N dw"”, ix(dw) = e dw”.
Now
1 aw/
dKw+ Kdw = / (dw” + 5 dw")dt = Wi — W),
0
which is equal to J; (w) — J§ (w). O

Theorem 6.3.0.3 Suppose Fy, F; : M — N are homotopic smooth maps.
Then the induced homomorphisms

[FG], [FY] - HY(N) — H* (M)

are the same.

Proof. We have a map
F:MxR—>N

such that the composition
M~ MxR L5 N
is equal to F; for t =0, 1. Now
Ff—Fy=(Jf—-J)oF*=(Kod+doK)oF*

as maps Q°*(N) — Q*(M x R) — Q°*(M). Thus on the cohomology level, we
have [F}] = [F]. This completes the proof. O

Corollary 6.3.0.4 (i) If M is contractible, then H*(M) = 0 for k > 0.
(ii) (Poincaré Lemma)® H*(R™) = 0 for k > 0.
(iii) On any manifold, every closed form of degree > 0 is locally exact.

We will see in the next chapter that if M is a connected non-compact n-
manifold, then H" (M) = {0}.

4We say that a differential form n on M X R is time-dependent differential form on M if
ixm = 0, where X is the vertical vector field on M x R.

5The Poincaré Lemma was first stated and proved by V. Volterra in three notes in the
Academia dei Lincei (4) 5 (1889), pp. 158-165, 291-299, 599-611.
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6.3.0.5 Exercises

(i) Let M be an open subset of R™, which is star-like with respect to the origin.
Given a positive integer k and a closed k-form w on M, find a (k — 1)-form
71 such that dn = w.

(ii) Show that H!(S!) ~ R. The ring H*(S') is isomorphic to R[e]/(¢2), the
quotient of the polynomial ring R[e] by the ideal (2).

(iii) Compute the de Rham cohomology algebra H*(R? — {0}).
(ivi) Show that (cf. ch.7)

R ifk=0,n
{0} otherwise.

H*(S™) ~ {

6.3.1 Mayer-Vietoris Sequence

Let U and V' be two open subsets of M with M = UUV. Then we have an exact
sequence of chain complexes:©

{0} =2 QU UV)=QU)aQ* (V) —=Q(UNV)— {0}
= Elusélv),  (w,n) = wluav —nluav
Thus we have a long exact sequence
{0} - HUUV) - HU)® H' (V) - H'(UNV)

— HYUUV) - H (U)o HY (V) - HY(UNYV)
— H*(UUV) - H* U)o H* (V) - H*(UNYV)

+

6A (co)chain compler is a sequence of vector spaces C°, Ot C?,... together with maps
d:C* — CFt1! such that dod = 0. A map f: (C®,d) — (D*,d) between chain complexes is
a collection of maps f: C¥ — D* k=0,1,2,..., such that do f = fod.
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6.4 Vector valued differential forms

Let V be a finite dimensional real vector space. Then for any differentiable map

f:M—->V
we have
df, : TM, =V  (peM)
such that X p
@y (0) = Jim TEONLZIW) 4] g
0

for any smooth curve X (¢) in M with X (0) = p and X’(0) = v.
Now a V-valued differential k-form on a manifold M is an element of
QOF(M, V) := QF(M) ® V. Then for £ € QF(M, V), the exterior derivative

dé € QL (M, V)

is canonically obtained and we get a cochain complex (Q°*(M, V), d), where the
k-th cohomology space H*(M, V') is isomorphic to H* (M) ®@ V.
We have
R CC™®(M)cCQ* (M)
V CC®(M,V) CQ*M,V).
Note that
QN (M, V) =Y QF(M,V)

k>0

has no ring structure in general, but is a module over the ring Q*(M). Similarly

H*(M,V):=Y_ H¥M,V)
k>0

is a graded module over the ring H*(M).

6.4.0.1 Examples

(i) Let M be a surface in R3. Let e;, e; be orthonormal vector fields on M and
let e3 := e1 X eo. Then

3
dej:ij»ei (1=1,2,3)
i=1

for some 1-forms w; These 1-forms satisfy

i,
Wy = —wj.



6.4. VECTOR VALUED DIFFERENTIAL FORMS 149

(ii) Let~(s) be a bi-regular” curve in R3, parametrized by the arclength. Then

t:=%  p=9/1l b:=txp

and we have the Frenet equation

t = Kp
p = —xt 4+ 71b
b = —Tp
(iii) Let p : M < RY be an embedding. Let e, ...,e, be a frame of vector

fields on M. Then .
dp = Z 0 e;
i=1

for some 1-forms 0°. These forms are dual to the frame (e1,...,e,).

6.4.1 Lie algebra valued differential forms
6.4.1.1 Maurer-Cartan Form

Let G be a Lie group and let g be its Lie algebra. Then the left multiplication
gives the isomorphism
0:7TG~Gxg.

This isomorphism is often denoted by
9 dg

and called the (left invariant) Maurer-Cartan form.? It is a g-valued 1-form on
G, which is left invariant.

If (e1,...,e,) is a basis for g, and €!,...,€" are left invariant 1-forms on G
which are dual to (e, ...,e,), then

n
0= Z € ® e
=1
E. Cartan has shown the “Maurer-Cartan structure equation”:

e + %[@,@} =0.

For instance, let

=10 )

"Thus 4 and 4 are linearly independent everywhere.
8Ludwig Maurer (1859-1927) was a German mathematician at Tiibingen University. Elie
Cartan introduced the form in 1904.

xz # 0} C GL(2,R).
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This group of 2x2 nonsingular lower triangular real matrices has 4 components.
Its Lie algebra is generated by

1 0 0 0 0 0
By = (O O)’ Loy = (1 0>, By = <0 1)

[Er1, E21] = —E21,  [Ev1,E2] =0, [E21,E9| = —FEo.

1 /2 0\ /{({dx O dx 0
© - rz(y m) (dy dZ) - (—““" d)

de d dz
= —En+ <_y + y> Ey + —Eo.
x Tz 2 2

with

Now

For any 2 x 2 matrix m, the 1-form

tr(mO)
is left-invariant. Thus the forms
dx ydx n dy dz
x’ xz 2z’ z

are left invariant. Note that these forms are dual to the left invariant vector

fields
0 0 0

Now

0 0 1
de = (dm/\dy + dyndz + ydzAdx 0) = 75[67 9]
Tz 22 T22

6.4.1.2 Extension of brackets

Let g be a finite dimensional real Lie algebra. Then the space

Q°(M,g) = > QF(M,g)
k>0

of g-valued differential forms on M is a graded Lie algebra, i.e., the canonical
bracket
[,]: Q" (M, g) x Q2 (M,g) — QFFr2 (M g)

is bilinear (over C*>°(M)) and
(61,80 = —(—D)"M*2[&, 4]
(61, (62, &]) = [[€1, &), 8] + (1) 72 [&2, [£1, €3]]



6.4. VECTOR VALUED DIFFERENTIAL FORMS 151

for & € QFi (M, g).
We have

[gth](Xla"'7X1<>17~--;Xk1+k:2)

= Z [fl(XO'(l)?"'?XU(kl))3€2(XO'(k‘1+1)?"'7XO'(]€1+1€2))]
o:(ky,k2)—shuffle

for vector fields X, ..., Xg, 1%, on M. In particular, if k; = ko = 1, then

[§1,&](X,Y) = [&(X), &(Y)] — [&(Y), &(X)].
If f: N — M is a smooth map, then

f* [51752] = [f8§17 f*£2]
for any ¢! adn £2.

6.4.1.3 Exercises

(i) Let ey,...,e, be a basis for the Lie algebra of a Lie group G. Then the
structure constants c}; are defined by the relation

lei, e] = cfjek.

We have

and the Jacobi identity implies

NE

m 1 m 1 m 1 o
(Cij Chm T ChiCim T+ Cjkcim) =0

m=1

for any i, j, k, 1. Let €!,...,€" be the left invariant 1-forms on G which is
dual to eq,...,e,. Show that

de* = —% Z cfjei Nel.
]
Let O be the (left invariant) Maurer-Cartan form on G. Show that
de + %[6, 0] = 0.
If © is the right-invariant Maurer-Cartan form, show that
6 - %[é, &) = 0.

(i) Let © be the Maurer-Cartan form on S* C H. Show that £+©? is the volume
form on S°.

(iv) Find all left invariant 1-forms on GL(2,R).
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6.4.2 Cohomology of Lie groups
cf. [DFN, Vol. III, p.90], [Spivak, V]
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6.4.3 De Rham Theorem
6.4.3.1 Singular Cohomology Groups

For a nonnegative integer k, the standard k-simplex /\, is the convex hull of
k + 1 points e; := (1,0,...,0), ..., exr1 = (0,...,0,1) in R¥*1:

A ={(x1,. .., 2pq1) |1+ F a1 =1, 21 > 0,..., 2341 > 0}.
We have inclusion maps
inc; : ANg—1 = Dk, (z1,.. . xp) = (21,0, Ti21,0,24, ..., Tg).

fore=1,...,k+1.
Let C (M) be the free vector space generated by smooth maps form A, into
M. There is a boundary map

81 Cu(M) — Cp_y (M)

which is characterized by the property

k+1

aO'k = Z(—l)i_ldk o inci

i=1
for a singular k-simplex (or a smooth map) oy, : Ay — M. Then we have
000 =0.

Let
Ck (M) := Cp(M)* =: Hom(Cy(M),R).

Then we have a co-chaim complex (C2 (M), 0*). The associated (singular) co-
homology group is denoted by
HE(M).

Theorem 6.4.3.2 (De Rham)

H*(M) ~ HY (M).
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Chapter 7

Integration

7.1 Manifolds with Boundary

7.1.1 Topological Manifolds with boundary

In the definition of a locally Euclidean space, one may replace the Cartesian
space R™ with the “half space”

R” :={(a1,...,a,) € R" | a; <0}

to get a notion of manifold with boundary. Thus a metrizable' topological space
M is called an n-dimensional manifold with boundary if each point p € M has
a neighborhood homeomorphic to an open subset of R™.

Let M be an n-dimensional manifold with boundary and let p be a point on
M such that z(p) € OR™ = {0} x R"~! for some chart = at p. Then, by the
Invariance of Domain, y(p) € OR™ for any chart y at p. Such a point p is called
a boundary point of M and the set M of all boundary points of M is called
the boundary of M. Points in M — OM are the interior points. Manifolds with
empty boundary are just the (ordinary) manifolds (without boundary).

7.1.1.1 Exercise

1. Show that the boundary 9 M of a manifold M with boundary is a manifold
(without boundary), i.e., 9(0M) = 0.

2. For a manifold M with boundary OM, let inc : 9M — M be the inclusion
map. Then the double of M is defined by

double(M) := M Uiy, M.

Show that double(M) is a manifold without boundary:.

IThis condition may be replaced by equivalent ones.

155
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7.1.2 Smooth manifolds with boundary

Amap f : A — R™ defined on an arbitrary subset A of R” is said to be C*
at p € A if there exists an open neighborhood U of p in R" and a C* map
F : U — R™ such that

fTANU=F[ANU.

If f is C* at every p € A, then f is said to be C*.

7.1.3 Derivatives

The derivative
Df,:=DF,:R" -+ R™

of f: A — R™at p € Ais, in general, not well defined. For instance, consider
the case when A is a singleton in R. But, if p € A NInt A, then D, is well
defined.?

7.1.3.1 Exercise

Show thatif f : A — R™ is C* for some subset A C R", then there exists an open
neighborhood U of A in R” and a C* map F : U — R™ such that f = F' | A.

Solution. For each p € A, there exist an open neighborhood U, of p € R”
and a C* map F, : U, —» R™ suchthat F | ANU, = F, | ANU,. Now let
U := UpecaUp, an open submanifold of R™ containing A. Take a C* partition
{pp € C>=(U)} of unity subordinate to {U,} and let

F =Y p,F, €CHU).

peEA

Thus if ¢ € A, then

F(g) =Y pp(@)Fo(@) =D pp(0) F(q) = F(q)-

pEA

This solves the problem. O

2For a subset A of a toplogical space X, the following conditions are equivalent:
(i) bd(int A) =bd A

(ii) intA=A

(ili) there exists an open subset U of X such that U C A C U.
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7.1.4 Definition

Let H be a closed half space® in R”. An atlas on an n-manifold M with boundary
is a map
z:U— H,

defined on an open subset U of M, which is a homeomorphism onto its image.

A C* structure on a topological n-manifold M with boundary is an atlas .A
of M such that for each z,y € A, xoy~! is C* and A is maximal with respect to
this condition. A C> manifold with boundary is a topological manifold together
with a C* structure.

When n > 1, a smooth n-manifold M with boundary is called orientable
if there exists an atlas whose transition maps are all orientation preserving. A
choice of a maximal orientable atlas is called an orientation of M.

An orientation of a 0-manifold M is an assignment of +1 or —1 to each point
of M. Thus an orientation on a 0-manifold M is a map from M into {+1, —1}.

7.1.5 Remarks

1. The boundary OM of a (smooth) manifold M with boundary is a (smooth)
manifold (without boundary) canonically.

2. There exist differentiable maps between smooth manifolds with bound-
ary. Identity maps are differentiable and the composition of differen-
tiable maps are differentiable. Diffeomorphisms are defined in a standard
way.

3. The tangent space of M at a boundary point p is an equivalence class of
two types of curves

et [0,00) = M, c_:(—00,00] > M

passing through p at time ¢ = 0. These curves are equivalent if they have
the same tangent vector at ¢t = 0 in R™ with respect to some (and hence
any) coordinate system. The tangent space T'(0M), is a hyperplane of
T M,,, whose complement consists of inward tangent vectors and outward
tangent vectors.

4. When M is oriented, the boundary M inherits an orientation.

If n, the dimension of M, is greater than 1, then an ordered basis (vo, . . ., v,,)
of T(0M), is positively oriented if for any outward (non zero) tangent
vector v of M at p, (v,vq,...,vy) is a positively oriented basis for T'M,,.

If n = 1, then the orientation at a boundary point p of M is +1 if there
exists a coordinate neighborhood U of p and an orientation preserving
chart  : U — Rc( centered at p. The orientation at p is —1 if there

3Given a hyperplane L in R"?, R™ — L has two components, say Hi and Hy. Then H; UL
and Hg U L are both closed half spaces.
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exists a coordinate neighborhood U of p and an orientation preserving
chart z : U — R>( centered at p.

- +

O——»—0

5. For manifolds with corners see [John Lee].

7.2 Integration of Differential Forms

7.2.1 Compactly Supported Forms

Let M be an n-dimensional manifold. Let Q¥ (M) be the space of all differential
k-forms on M with compact support. Then

Qo (M) = (M)
k>0

is a graded module over the graded algebra Q°* ().

Moreover, if w is a differential k-form on M with compact support, then dw is
a differential (k+1)-form on M with compact support. Hence we get compactly
supported de Rham cohomology algebra

H(M):=> HEIM).
k>0

Note that H? (M) is a graded module over the graded algebra H*(M).
If F: M — N is a proper map,* then we have a chain map

Fr:Q3(N) — Qo(M)

which induces a map
[Fe]: HE(N) — HE(M).
If G: N — L is proper, then
(GoF):=F oGl [(GoF)]=[E]o[G:).

C C

When M is compact, Q2 (M) = Q*(M), and H2 (M) = H*(M).

7.2.1.1 Exercise

Let M be a connected manifold. Then

HO(M) = {0} %fM is non-compact
R if M is compact.
Lemma 7.2.1.2
H!(R') ~R.

4A continuous map F : M — N is proper if lim F(p) = co.
p—o0
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7.2.1.3

We say that two maps Fy, Fy : M — N are properly homotopic if there exists a
map
F:MxR—=N

such that F(p,0) = Fy(p), F(p,1) = Fi(p), and for each t € R, Fy(p) := F(p,t)
is a proper map.

Corollary 7.2.1.4 Let Fy,Fy, : M — N be proper maps. If Fy and F, are
”properly” homotopic, then

[F5le = [FYle - HE(N) — HZ(M).

Proof. Note that from (6.3.0.2) and (6.3.0.3) there exists a map
h:Q"(N)— Q"(M x R) — Q" }(M)

such that
F} —F; =doh+hod: QFN) — QF(M).

Thus for w € Q7(N) with [, w =1,

degFlz/ Fl*w:/ Fiw = deg Fp.
M M

This completes the proof. U

7.2.2 Integration

Now we assume that M is oriented. The integration

SO (M) —» R (7.1)
M

is defined as follows:
Let w € Q7(M). First, assume that supp w is contained in a coordinate neigh-
borhood U C M. Then for a positively oriented chart x : U — R",
wlU=fdz* N Ada"

for some f € C°(U) C C°(M). Then we define

/ w ::/ (z7 ) *w =: fox " duy,,
M n R"L
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where dyi, denotes the Lebesgue measure on R™. One can easily see that [, w
is well defined.®

In general, take a finite number of coordinate neighborhoods {U, } such that
U := U,U, covers suppw and take a partition {p,, : U — R} of unity subordinate
to {U,}. Then pow € Q2 (U,) — Q(M) and we define

/Mw . za: /M Pots.

Note that this new definition agrees with the old definition, namely, when supp w
is contained in a single coordinate neighborhood. Now we claim that the new
definition is independent of the choice of coordinate neighborhoods and the par-
tition of unity. Suppose we take another finite collection of coordinate neigh-
borhoods {V,,} which covers the support of w and the partition {7,} of unity
subordinate to {V,}. Then

LS (2 ) S (S ) -5 e

Thus we have a well-defined map (7.1).
Lemma 7.2.2.1 The integration (7.1) is a linear map.

Proposition 7.2.2.2 Let F': N — M be a diffeomorphism between oriented
manifolds. Then for any w € QI (M),

/ = f MW if F' preserves orientation
w= . . .
N — f MW if F' reverses orientation

Lemma 7.2.2.3 Let M and N be oriented manifolds of dimensions n and m,
respectively. For w € Q"(M) and n € Q"'(N), (mi,w) A (min) € Q2T™(M x N)

" | e = [ o[ (7.2)

where p; : M x N — M and nx : M x N — N are projections.b

Proof. If M and N have global charts z : M — R"™ and y : N — R™, both
positively oriented, then w = fdax' A--- Adz™ and n = gdy' A --- A dy™ for
some functions f € C>°(M) and g € C°(N). Then

(mhiw) A (mxm) = (F o mar)(g o ) dat A= Ada™ Ady' A A dy™

5Recall the change of variable formula for the integration: Let F': U — V be a diffeomor-
phism between open subsets U and V of R", and let g : V' — R be an integrable function.
Then [i, gdpn = [;;(go F) - |det DF| dpn.

6The product of two oriented manifolds has a canonical orientation.
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and hence the left hand side of (7.2) is equal to

/anM(f oz ) (goy™") dpnim = (/Rn f Ox_ldun> </m gox™! dum>

which is equal to the right hand side of (7.2).
In general, we may use partitions of unity. (]



162 CHAPTER 7. INTEGRATION

7.3 Solid Angle

On R", let

r= VDT

Then r is smooth on R? and
d 1§n: iy’ (dr,dry =1
r= - r'dx r,dr) = 1.
Tl:l b b

The solid angle element dO,, (with respect to the origin) is the (n — 1)-form on
R” defined by

40, = — S (-1 atdat A Adrt A A da”

i=1

7.3.1 Angle element

On R? ~ C,, we have
z=rel =z + yi
so that
d
& _ dlogr +id#
z

where df is a closed but NOT exact 1-form although we abuse the notation. Then

_zdy—ydx 1 (dz dz\ . dz
de, = PR _2i< )—an =db.

z z

Note that

1 _ | 1 dz 12
[QWde} B |:27Ti z] € H (R.)-

The restriction of this cohomology class to the unit circle S* is the fundamental
class:

ial(‘) =1.
s 21

For any oriented closed curve I' C R2,

1
— [ do
2w T

is the integer, called the winding number of I" around the origin.
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7.3.2 Polar Coordinates
Let R be the set of all positive real numbers. We have the polar coordinates
q:R?” - Rt x 8" 1, 2z (|2], 2/12]).
Let dA,,_; be the restriction of d©,, to the unit sphere S"~!:
dA,_1:=dO, | 8" ! =inc*dO,,

where inc is the inclusion map S”~'<+R". Then dA,,_, is the volume form on
S”~1. In particular, d®,, is NOT an exact form, although our notation is rather
confusing. Fortunately, dO,, is a closed form.

Lemma 7.3.2.1 Let 7 : R ~ R, xS"~! — S"~! be the retraction map. Then
7 (dAn_y) = dO,.

In particular, d©,, is a closed form.

Proof.

T (dAn_1)
- Z(—w‘—l“’g Az A Ad@ ) Ao Ad(a™ /)
=1
1

= (1) 1g (da' — ztdlogr) A -+ A (dat —/xalogr) Ao A(de™ — 2" dlogr)

= o, +Z(—l)i_ll‘iZ(—l)jl‘jdlogT/\d.’L‘l Ao Adzi Ao ANdzi A Adz

[ j<t
+ Z(—l)i_lmi Z(—l)j_lmjdlogr Adet Ao Adzi Ao ANdwd A A da”
i §>i

= do,

7.3.2.2 Exercise

(1) de,, is invariant under the rotations SO(n) and the positive scalar multi-
plications on R”. It p : R” — R is a positive function, then d©, is invariant
under the multiplication map

p:RY - RY, X > pX.
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(2) (Polar Coordinates) Show that the Hodge dual of dr (on R?) is :

n

1 , , -
*dr = fZ(fl)lflxldxl/\~o/\d:cl/\~~~/\d:c". (7.3)

r
*( dr1> = do,
r

=1
Thus on R”, we have
AV, = da' A Ada" = dr Axdr =" dr A O,

and

Show that
inte(dVy,) = Z(—l)iflxi dz' A Adzi A A da”

where r =}, 279; is the position vector field on R™.” Thus
inty/pn dV,, = dO,,.

(3) Show that d®©,, is a closed non-exact form. Show that the vector field

ro {grad logr (n=2)

rm ﬁ grad ™" (n # 2)

is divergence-free.

(4) Let S"~!(r) be the sphere in R" centered at the origin of radius r > 0.
Then the restriction of (7.3) to the sphere S"~*(r) is the volume form of
Sn—1i(r).®

Proposition 7.3.2.3 Let f € C.(R"). Then forx =r-0 € Ry x S"~! ~ R%,

(z)dz* A--- Ada™ z/ (/ f(r~9)r"_1dr) dA,_1
R™ Sn—1 0

7.3.3 Volumes of Balls and Spheres

Now we compute the volume of the unit sphere S™~!.
2 = / e dV, = / e " ldr A dO,
= Vol(S"™) / ey
0

= Vol(S" 1) % -T'(n/2)

"The Position vector field is often called the Fuler vector field or the identity vector field.
8Since *dr is invariant under the action of the rotations SO(n), it suffices to check
at one point, say at p = (r,0,...,0). Then wp, := inc*(dz? A --- A dz™) satisfies

wp ( 6% ey % ) = 1. This shows that (7.3) is the volume form of S™~1(r).
P P
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where -
'(s) := / e 5Tl dt (s >0)
0

is the gamma function.”

10H
8,
6,
4,
2,
41 ol 1 2 3 4
4,
4!
Gamma Function
Thus
2. /2
Vol(S™ 1) =
M) = Tom)
In particular,
n 2. (27‘(‘)" 2.qn
Vol(S2"+1) = 97 . T Vol(S2") = - : .
ol( )= ol(S™) @n—DI " (n—-L)(n—2)---%

7.3.3.1 Exercises

(1) Letb, and s,,_; be the volume of the unit ball B” and the sphere S"~! in
R™. Show that

b, = lsn71 _ Sn41 L/Q
n 27 (n/2)!
where s! := I'(s + 1) for s > 0. The first formula b,, = %sn,l is also an

observation of Archimedes: A ball is a cone over its sphere. The relation
vol(S™*) = vol(S') x vol(B™)

is also discovered by Archimedes for n = 1: The area of the sphere is
equal to the area of the circumscribed cylinder. In general, the map

(Y1, y2)
vi +u3

St 5, B" x S, (T1,. s Ty y1,Y2) = (T, -, Tp) X

preserves the volume.

9Euler’s gamma function satisfies
1) =1, I'(s+1) = sI'(s) (s >0).

Thus I'(n + 1) = n! for nonnegative integers n. Note that I'(1/2) = /7 ~ 1.77. Thus
(1/2)! = /m/2.
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n |01 2 3 4 5 6 7
by | 1| 2 | 7 | 4n/3 | w2/2 | 8x2/15 | =3/6 | 167%/105
Sp || 2] 2m | 47 | 272 | 872/3 73 1673 /15 /3

Show that

lim b, =0, lim s, = 0.
n— o0 n— oo

(2) Note that we have a Riemannian submersion S?”*+! — CP” with S!-fiber.
Show that the volume of CP" is equal to by, and the volume of S2"+1! is
the volume of CP™ times the volume of S!.

(3) For 0 < r < 1, compute the volume of the * *hyperbolic ball"
M={zeR"||z|<r}

equipped with the metric

_ 4 1 1 n n
9_7(1—|x\2)2 (de" @dx” 4 -+ da" @ dz").
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7.4 Compacted supported Mayer-Vietoris Sequence

Let U and V be two open subsets of M with M = UUV. Then we have an exact
sequence of chain complexes:

{0} = UNV)=QU)dQ(V) - Q(UUV) — {0} (7.4)
and the long exact sequce

{0} - HXUNV) - HX(U)® HX(V) - HX(UUV)
H}UNV) - H (U)®@HXV) - HX(UUYV)
HXUNV) - HX(U)® H:XV) — HZUUYV)

L4l

7.4.0.1

Theorem 7.4.0.2 For any nonnegative integer k
HMY (M x R) ~ H¥(M).

In particular
R ifk=n
{0} otherwise.

HFR™) ~ {

Proof. Letw: M xR — M be the projection. Then by integrating along the
fiber, we get a homomorphism [BT]

7 QMM x R) — QF (M), w;+dmw;’H/w;’dt
R

where w; and w; are compactly supported time-dependent (k + 1)-form and
k-form on M, respectively.
Then the map 7. : Q2T (M) — Q2 (M) satisfies

dmy + med =0
and hence we have the induced map
(7] s HETH(M x R) — H2(M).

We now show that this map is an isomorphism. Take p € C°(R) with
Jg p(t) dt = 1. Consider the map

er QM) — Q2TH(M x R), w = pdt A Aw.
Then de, + e,d = 0 and hence we have a linear map

[e.] : HS(M) — HSTH(M x R).
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Since e, = id,
id = [m]oles] : He (M) — H2(M).

Now we claim that

eyt 00(M x R) — Q2(M x R)
is chain homotopic to the identity map, i.e., there exists a map

K: QM xR) — Q2 (M x R)
such that

dK + Kd = id —e, ..

For w = ' +dt Aw" € QF(M x R), where «’ and w” are time-dependent k and
(k — 1)-forms on M with compact support, the map

Kuw = </; W dt> _ </; (D) dt) o

satisfies this property. O

Theorem 7.4.0.3 (Stokes Theorem) Let M be an oriented n-manifold with
boundary OM and let inc : M — M be the inclusion map. Then for n €

Qui(M),
/dn:/ inc* 7.
M oM

Proof. (Easy Case.) Suppose that M is covered by a single chart x : M —
R™ preserving the orientations and OM = {p € M | z*(p) = 0}. Then

77=Z(—l)i_lfidxl/\---/\d/:;i/\-~-/\dx"
i=1

for some compactly supported smooth functions f; on M,

dnzzaf’d Ao Adz”
=1

and
inc*n = inc*(fr dz® A --- A dz™).

fo - /z
R[] e

/ /flox (0,82, .. t") dt? - - - dt™
= / inc* n,
oM

Now
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which is equal to 0 when oM = ().

(General Case.) Let {z, : U, — R™} be an atlas for M compatible with the
orientation. We will assume that if U,, intersects with the boundary, then

OMNUy = {p € Uy | zL(p) =0}

and
Uo —OM = {p € Uy | z1(p) < 0}

so that for each p € OM,
0

2
0x?

0

’...77
ozn

p p

is a positively oriented basis for T'(OM),.
Now let {p, : M — R} be a partition of unity subordinate to {U,}. Then

Since Za dpa = d(Za pa) = d(l) = 0’
/M dn /M za: padn = /M > d(pan) =Y /Ua d(pan)
= > /8 . inc*(pan) = Y /8 e (pan) = /8 y inc* (> pan)

= [ et

This completes the proof. O

Corollary 7.4.0.4 Let M be a connected n-manifold without boundary.
If M is oriented, then there exists a canonical isomorphism H*(M) ~ R.
If M is non-orientable, then H? (M) = {0}.

Proof. Suppose M is oriented. Note that [, : Q7(M) — R is nontrivial and
hence it suffices to show that d(Q2~!(M)) is the kernel of [,,. By the Stokes
Theorem, d(27~1(M)) is contained in the kernel.

Now suppose w € Q7'(M) and [,, w = 0. We will find an (n — 1)-form 7 on
M with compact support and dn = w.

Take an open cover U := (U; | i € I) of M such that U; is diffeomorphic to
R"™ for each index 7 € I. For each index 14, let ; be a fundamental form on Uj;,
i.e., o; € E(T.l(Uz) C S(T.l(M) and fM oy = «]UL oy = 1.

We now claim that the cohomology class [o;] € H?(M) is independent of
1€l
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Suppose U;NU; # @ for some i, j € I. Then by considering a differential
form 8 € EX(U; NU;) C EX(U;) NEX(U;) C EX (M) with fumUj B=1,we
have

[ai] = [B] = [oy] € HE' (M),
since H? (R™) = {0}.

Now if U; N U; = &, since M is connected, there exists a sequence
Vi,o..,Vm eld such that V; = Ui, Vi = Uj, and Vi N Vs, 75 Dyeery Vi1 N
Vi # @. Thus the cohomology classes [«;] and [«;] are the same as elements
in H}(M).

Let « be a representative of this class [«;].
Now take a partitions of unity (p; | i € I) for the cover (U; | ¢ € I). Then

[piw] = cilas] = cila]

for some constant ¢;. Since 0 = [}, w =3, [;, piw =), ¢;, we have ), ¢; = 0.

Thus [w] =Y [piw] = (O, ¢i)[a] =0 € HI(M).
This shows the first assertion.

Now suppose that M is non-orientable. We will show that if w is a compactly
supported n-form on M, then there exists a compactly supported (n — 1)-form 7
on M such that wg = dn. Using a partition of unity, it suffices to show the case
when wy is supported in a domain of chart zg : Uy ~ R". Let c = on wo (we use
the chart xz( for the integration).

Since M is non-orientable,'? there exists a finite sequence of open subsets

Ui, ..., Ug
of M and diffeomorphisms z; : U; — R™, such that
UsnUy, UinNUs, ..., Ug1nNUg, UxNUp
are all connected and nonempty, the transition maps z; _jox; * (fori =1,... k)

are orientation preserving, and xj oz, ! is orientation reversing. We assume that
each U, is oriented with respect to the chart ;.

Fori = 1,...,k, let w; be an n-form which are compactly supported in U;
and |, y, wi = c. Then from the first assertion there exist compactly supported
(n — 1)-forms 7, such that

wi_lzwierm (Z:].,,k)

and
wp = —wo + dno.
Thus
wo = —wo + d(no +m1 + -+ + k)
Thus wy € dQ?~1(M). This completes the proof. O

10The line bundle det(T'M) — M has no non-vanishing section. Thus for any point p € M,
there exists a loop ¢ : [0,1] — M with ¢(0) = p = ¢(1) such that the parallel translation (with
respect to a connection) of a basis vi A+ Avp € A"(T'M))p along cis —vi A+ A vp.
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Corollary 7.4.0.5 A compact orientable manifold of dimension > 1 is not
contractible.

7.4.0.6 Fundamental Class

The fundamental cohomology class for a compact connected oriented n-manifold
M, is the unique cohomology class w € H™(M) such that

/wzl.
M

7.4.0.7 Exercise

€3]

(3)

(4)

(5)

©)

Show that H?T" (M x R") ~ H2(M).

(Thom Isomorphism) Show that if 7 : £ — M is an oriented vector
bundle of rank r, then

7.t HXT"(E) ~ H2(M).

Let X be a vector field on an oriented n-manifold M and let w € Q7 (M).

Show that
/ Lxw= / i(X)w
M oM

where Lx and i(X) denotes the Lie derivative and the interior product,
respectively.

(Poincaré Duality) Observe the pairing
H*(M) x HM*(M) — HM(M) ~R

on a connected oriented n-manifold M without boundary. Hence we have
a map
PD: H*(M) — HM*(M)*.

The Poincaré duality says that this map is an isomorphism [GHV, p.197].
Show that if M is a compact orientable manifold, then H”*(M) is of finite
dimension.

SHow that
HE([0,00)) = {0}

for any k = 0,1,2,.... Show that for M = [0,1] x (0,1),

2 0 1] 2
o) | R [ {0} | {0}
(M) | {0} [ R | {0}
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Show that the Pincaré duality does not hold in general for manifolds with
boundary.

(7) Show that H? is not a homotopy invariant.

(8) Let M be a compact connected oriented manifold of dimension 2k. Ob-
serve that the intersection form

H*(M) x H*(M) — H**(M) ~ R
is symmetric when k is even, and is skew-symmetric when k is odd.

Theorem 7.4.0.8 If M is a noncompact connected n-manifold, then H" (M) =

{0}.
For a proof, see [Spivak, p. 370] or [John Lee].

7.4.0.9 Euler Characteristic

For a compact manifold M,
v* .= dim H*(M)

is the k-th Betti number of M, and

is the Euler-Poincaré characteristic of M.
When M is an orientable closed!! surface, then

b'(M) =29
where g is the genus of M. Thus x(M) =2 — 2g.

7.4.0.10 Exercise

For an odd dimensional compact manifold M, show that (M) = 0.

Hcompact and connected without boundary
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7.4.1 Integration along Maps

Let M be a manifold with boundary. Let F' : N — M be a proper map from an
oriented k-dimensional manifold N (with boundary). Let 9F = F oinc : ON —
M, where inc : 9N — N denotes the inclusion. For each compactly supported
differential k-form £ on M, define

oL

Proposition 7.4.1.1 Let F' : N — M be a proper map from an oriented k-
manifold. If n € Q¥=1(M), then

Jon= fm
F OF

Proof. [.dn = [y F*(dn) = [y d(F*n) = [,yinc* F*n = [, (OF)*n =
Jor - O
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7.5 Brouwer’s Degree of Maps

In this section, every manifold has no boundary.

Let F : M — N be a proper map between oriented manifolds of the same
dimension n. We will assume that NV is connected.

By Sard's Theorem, there exists a point ¢ € N which is a regular value of F'.
Then the preimage F~!(q) of ¢ is finite, since F is (smooth and) proper.!?

For each regular point p € M of F, define

+1 if F preserves the orientation at p
—1 if F reverses the orientation at p.

sgn(F,p) = {
The "algebraic number'

deg F' := Z sgn(F,p) € Z
pEF~1(q)

of points in F~!(g) is called the degree of F.

Note that the degree of F is a locally constant function of regular values ¢ in
N. We will soon see that this number is independent of the choice of a regular
value.!?

Theorem 7.5.0.1 (Fundamental Theorem of Algebra) Let n be a posi-
tive integer and ay, . . ., a, be complex numbers with a,, # 0. Then the polyno-
mial f(z) = apz™ + -+ + a1z + ag has a root, i.e., a complex number zy such
that f(Zo) =0.

Proof. Note that any polynomial map C — C is proper. We will show that f
is surjective. Note that at a regular point of f, f preserves the orientation. Note
also that a complex number z is a critical point of f : C — C if and only if it is
aroot of f'(z). Thus there are only a finite number of critical points, and hence
the number of critical values of f are also finite. Thus the set of regular values
of f is connected. Since degree is a locally constant function of regular values, it
must be constant. If f is not surjective, then the degree of f is identically equal
to zero, and f is a constant map, which contradicts the assumption a,, # 0. See
the comment after the Corollary 7.5.0.4. O

7.5.0.2 Examples

1. The degree of the identity map (at any value) is 1.

12There exists a continuous map F : S! — S! such that all fibers have the power of
continuum [Dieudonné, 1989].

13 ¢f. L. E. J. Brouwer, Uber Abbildung von Manigfaltigkeiten, Math. Annalen 71 (1912),
97-115.
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2. For a positive integer d, let
f:R—=R

be a polynomial map of degree d. Note that polynomials are proper maps.
If 0 is a regular value of f, then

1 if d is odd and the leading coefficient of f is positive
deg f = < —1 if d is odd and the leading coefficient of f is negaitive
0 ifdiseven.

3. For an integer d, the degree of
f:C, — C,, f(z):zd
is |d|.

Theorem 7.5.0.3 (Brouwer, 1912) The degree of F : M — N is indepen-
dent of the choice of a regular value ¢ € N of F. Moreover

/ F*w:degF-/ w (7.5)
M N
for any w € QF(N). In particular, if w represents the fundamental class of N,
then
deg F' = / F*uw.
M

Proof. Obviously it suffices to show the identity (7.5). Note that for con-
nected oriented n-manifold N (without boundary), the integration map [ :
Q7(N) — R induces the isomorphism

H"(N) ~R.

Since the map

BN Y g on SR, we [ Fre
M
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is linear, there exists a constant ¢ such that

/ Fi*w:c/w
M N

for every w € Q7(NN). Now we show that this constant c is equal to the degree
deg F. Let F~%(q) = {p1,...,px}. Take connected open neighborhoods V of ¢
in N and U; of p; in M, for each i =1, ..., k, such that U;'s are mutually disjoint
and F | U; is a diffeomorphism onto V. Take a w € Q7 (N) supported in V and
[y w=1. Then

= F*w = /F*w: sgn(F, p; /w:degF.
/M ; U ; ( ) 1%

This completes the proof.
For another proof, see [Milnor, 1976] or [Dubrovin et al.]. O

Corollary 7.5.0.4 Let F': M — N be a proper map between orientable man-
ifolds, N being connected. If deg F' # 0, then F' is surjective.

Proof. Note that a proper map into a locally compact Hausdorff space is a
closed map [John Lee]. Thus if F' is not surjective, then deg F' = 0. O

From this corollary, one may prove the Fundamental Theorem of Algebra
7.5.0.1, by showing that any polynomial map f : C — C of degree n extends to
a smooth map f : C — C of the same degree, where C is the Riemann sphere.

Corollary 7.5.0.5 Let F : M — N and G : N — L be proper maps between
oriented manifolds of the same dimension, where N and L are connected. Then

deg(G o F) = degG - deg F.
Corollary 7.5.0.6 Let Fy, Fy : M — N be proper maps between oriented
manifolds of the same dimension n, where N is connected. If Fy and F; are
“properly” homotopic, then deg Fy = deg F}.
Proof. Note that from (6.3.0.2) and (6.3.0.3) there exists a map
h:Q"(N)— Q"(M x R) — Q" 1(M)

such that
Ff—Ff=doh:Q"(N)— Q"(M).

Thus for w € Q7 (N) with [, w =1,

degFlz/ Flw—/ Fjw = deg Fp.
M M
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(Using a partition {p, : M — R} of unity subordinate to an open cover {U, } of
M with compact U,, one can easily see that [, dn = 0 for any n € Q" (M)
with supp dn compact.) This completes the proof. O

Note that when M = N as oriented manifolds, then the degree of a proper
self map F' : M — M is independent of the choice of orientation.

Theorem 7.5.0.7 Let M be the boundary of a compact oriented smooth man-
ifold W of dimension n+ 1. Let F': M — N be a smooth map into a connected
oriented n-manifold N. If f extends to a smooth map F : W — N, then
deg F' = 0.

Proof. Letw be an n-form on N with the total integral 1. Then

def= [ o= [ pu= [ dgre) = [ s =o
O

Theorem 7.5.0.8 (H. Hopf) Let M be a compact connected oriented n-manifold.

Then two maps
FG:M—S"

are homotopic if and only if they have the same degree.

7.5.0.9 Exercise

1. Show that if n is even, then the antipodal map on S™ is not homotopic to
the identity map.

2. Show that, for n > 1, the polynomial map
f:C—C, 2 2"+ ap_ 12" Y+t a1z +ao
is proper and "properly" homotopic to the map z — z".

3. For polynomial functions p(z) and ¢(z) without common zeros, find the
degree of the map

P (C) = PY(C), =z B2,

4. Let S be the Lie group of unit quaternions.'* For an integer k, consider
the map
F .83 83 q—q~.

11f v € H is an imaginary unit vector, then we have de Moivre (?) identity

(cos 0 + vsin0)* = cos kO + v sin k0.
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Show that each imaginary unit vector v € S? is a regular value of F, and
the degree of F'is k.

5. Find the degree of the map
f:80(3) = S0(3), X~ X2

7.5.1 Line Integral

Let I be an interval in R and let ¢ : I — M be a smooth curve in M. Then for a
1-form w on M, the line integral is defined by

/w:z/c*w.
c I

Let v : S' — R? be a smooth map. Then for any point p € (R* —~(S!)), we have
a map

7.5.1.1 Winding Number

(&) —p

w, : St — 8, t—
: I (t) -l

Then the winding humber of v around p is

. 1 .
wind(y,p) = o /S1 w,(df) = degw,,.
Note that

z z

49 _ lyde—xdy 1 (dz dZ
o 2m a224y2  2mi '

7.5.1.2 Theorem of Turning Tangents

7.5.2 Linking Number

A knot is an embedding of S* into R3. The linking number!® L(f, g) of disjoint
knots
fog:S' = R3

is the degree of the map

p:Stx St 82 (s,t) >

7.5.2.1 Exercise
Find the linking number L(f, g) where

f(t) = (cost,sint,0), g(t) = (1,0,0) + (cost,0,sint).

150bserved first by Gauss, 1833. 1. 22. cf. C. Nash, Topology and Physics—A Historical
Survey. cf. [Berger, Gostiaux].
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7.5.2.2

More generally, for compact oriented immersed submanifolds M, N of R?tm+1
of dimensions n, m, the linking number L(M, N) is the degree of the map

a—p

M x N — S™t™, (p,q) — .
lq —pl

Note that
L(M,N) = (=1)"*™L(N, M).

7.5.3 Index of Vector Fields

Let X be a vector field on a manifold M. Let p € M be an isolated singularity of
X. Then we choose a coordinate neighborhood U of p and a chart z : U — R"
with z(p) = 0. Then the vector field X induces a vector field Y := z,X on
a neighborhood of 0 in R™. We choose a small ball B"(¢) so that Y has no
sinularities in B (¢) other than the origin. Now define

Y (ea)

= s, f st
v(a) V()] € , forace

The degree of v : S»~! — S"~! is called the index of X at p, and denoted by
ind(X, p).

Since degree is a homotopy invariant, it is clear that the choice of ¢ is irrele-
vant in the definition of the index. But we have to show that it is independent
of the choice of chart.

7.5.4 Division Ring

For what integers n, does R™ have a bilinear map
ju: R x R” - R"

such that for any non-zero vectors z,y € R", u(x,y) # 0? cf. [Karoubi, Leruste,
p-204]
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7.6 Homology Groups
A singular k-cell in a manifold M (with boundary) is a smooth map from a
closed unit ball B* := {p € R* : |p| < 1} into M. For a commutative ring R with
the unit, let Q (M, R) be the free R-module generated by singular &-cells in M.
Now we define the boundary operator
0: Qk(M, R) — Qkfl(M7 R)
as the unique R-module homomorphism such that
do=ilo—ito
for any o : B — M, where
iy : BF1 5 8k — 9B
are defined by iL(p) = (/1 — |p|%, p)-

Theorem 7.6.0.1 §% = 0 and hence we get homology groups (or R-modules)

Hy(M,R):=>_ Hy(M,R)
k>0

with coefficients in R.

7.6.0.2 Exercise

Show that if M is connected, then Hy(M, R) ~ R.

7.6.1 De Rham Isomorphism

Let Q (M) := Qx(M,R) and define a pairing
(5 ) (M) x QM (M) — R

by (o,w) = [ wforeach o : B* — M. Then this pairing induces a pairing
(,): Hy(M) x H*(M) - R

and a map
DR : H*(M) — Hy(M)*.

Theorem 7.6.1.1 DR is an isomorphism.

For the proof see [War].
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7.6.1.2 Exercise

Let w € Q' (M) satisfy [ w = 0 for any loop o : S — M. Show that w is exact.

Proposition 7.6.1.3 H*(S") ~ R[z"]/(z*").

Proof. We have shown already that H"(S") ~ R ~ H°(S™). We will show
that if 0 < k& < n, then H* = 0. Let w be a representative of an element of
H*(S™) and o : B¥ — S™. Then ¢ is not surjective and hence ¢ is a boundary
and [ w = 0. Thus by the de Rham isomorphism, [w] = 0. This completes the
proof. O
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7.7 Measures

Let M be a topological space and C(M) (or C.(M)) be the space of continuous
functions on M (or with compact support). We equip C(M) D C.(M) with the
compact-open topology.

7.7.0.1 Exercise

If K is a subset of M and Cx (M) denotes the space of continuous functions on
M with support in K, then C.(M) is the union of Cx (M) for all compact subsets
K of M. Show that a linear functional

p:Co(M) =R (7.6)

is continuous if and only if 11 | Cx (M) is bounded for every compact subset K of
M. (For compact K, Cx (M) is a Banach space, with the supremum norm |-| .
Then a linear functional on Cx (M) is bounded if and only if it is continuous.)

7.7.1 Measure

A linear functional (7.6) is positive if u(f) > 0 for every f € C.(M) with f > 0.
A continuous positive linear functional (7.6) is called a measure on M.

7.7.2

Let M be a smooth n-manifold (not necessarily orientable and possibly with
boundary). Then we define a map from Q" (M) into the space of measures on
M. For w € Q" (M),

lw|: Co(M) — R

is defined as follows:

Take an atlas {x,, : U, — R™} of M and a partition {p, : M — R} of unity
subordinate to {U,}. Thenw | U, = wy dzl A--- Adz? for some w, € C®(U,).
Now for f € C.(M), |w|(f) € R is defined by

fdlw| = /pafdw = / Pa | lwal ldzt A~ A da?
[ el = 3 [ pasdil = 3 [ oSl
Z/]R (paf|wa|)ox;1dﬂn-

Again, one can show that this definition is independent of the choice of an atlas
and a partition of unity. Obviously, |w| is a positive linear functional on C.(M).
To see the continuity, let K be a compact subset of M, p be a nonnegative contin-
uous function on M with compact supportand p | K = 1,andlet R = [, pdw|.
Then for any f € Cx (M), |f| < |f|x p and hence

' |t

wI(f)

< [ Vlxcpdiol <RIl
M
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Thus |w| is bounded on Cx (M) for every compact subset K of M and hence |w|
is a measure on M.

7.7.3 Riemannian Measure

Let (M, g) be an oriented Riemannian manifold. Then there exists a unique n-
form dv(g) on M such that for each p € M, dv(g), is the positive unit vector in
A"TM,. Thus we get a measure |dv(g)| on an oriented Riemannian manifold.

Note that
| rlasta= [ ravia)
for any f € C.(M).

If (M, g) is not orientable, then for each p € M, there exists a unique unit
“vector' |dv(g)|, € (A"T'M,;)/{+1}. This defines a measure | dv(g)| on M.
The value

Vol(M.g) = Jim_ [ p|av(g)] € RU{oc)

where p;, € C.(M) converges (uniformly on every compact subsets) to 1 € C(M),
is called the volume of the Riemannian manifold (M, g).

7.7.4 Divergence

We define the divergence of a vector field on a Riemannian manifold M :
div: X(M) — C*(M).
For X € X(M),
Lx dv, = (div X) dv,
for any local volume form dv, on M.
Note that divergence is independent of the orientability of M.

7.7.4.1 Exercise

Let w be the volume form on an oriented Riemannian manifold M.
1. Show that

divX = xd* (X") = \/1@231- (\/@Xi),

where X = ", X*9; and |g| = det(g(9;, 9;)).
2. Let D be a compact neighborhood of a point p in M, and let D; := ®,(D),
where @, is the flow generated by X. Show that
d| vol Dy

i
" o vol D

D—p %
where D approaches p in the sense that the diameter of D approaches to
0.

=div X (p)
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7.7.5 Laplacian

For a function f on M, the (geometric) Laplacian of f is

) 1 0 . Of
= — = —— UL
Af = —divgrad f N ;j B ( lglg 8xj) )

We have a spectrum, a heat equation, wave equation, and the Schrodinger
equation on Riemannian manifolds.

7.7.6 Gaussian Curvature

Let M be an oriented hypersurface'® in R"*!, with the induced metric g. Then
we have an “outward” unit normal vector field v on M, which may be considered
as the Gauss map

v:M— S".

Then
v*(dvgn) = Kdv,

for some smooth function K on M, called the normal curvature!” of M.
Note that K is the product of principal curvatures and

.. Vol(v(Bu(p,€)))
(K (p)| = ll—rf(l) Vol(B(p,€))

where By (p,€) := {q € M | distp(p,q) < €}.
Note that if M is compact,

1
W /M KdVg = deg(V)

is an integer.

Theorem 7.7.6.1 (Hopf, 1926) Let M be a closed*® hypersurface embedded
in R, Let v: M — S™ be the Gauss map. Then

degrv = x (int M),
where int M is the inside of M. If n is even, then
. 1
(it M) = Sx(M).

For interesting stories, see [Gottlieb], [Hopf].

16We may assume that M is immersed in R*+1,
1"When n = 2, it is called the Gaussian curvature.
18compact and connected
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7.7.6.2 Exercises

®

(i)

(iii)

Let (z(t),y(t)) € R? be a curve parameterized by arclength so that (2')? +
(y')? = 1. Then the Gauss map is t — (—y’,2'). Since xdy — ydx is the
volume form on S!, the Gaussian curvature is

K — :v/y” N ;L‘Nyl
Show that |K|? = (2")% + ().
Let M = {(ul,...,u" 2) € R""! | 2 = f(u',...,u")} be the graph of a

smooth map f : R® — R. Then M is a submanifold of R**! and has an
induced metric g. The basic vector fields on M are

0 of .
W_(eﬁ%) (1<j<n)
where eq, ..., e, is the standard basis for R"™. The orientation on M is the
one which makes (u!,..., u") positively oriented. Thus

gij:<8 8>:5 +3fﬁ

Out’ Oud 9 Gui oud

Show that
vol(g) = \/1+ |Vf[2du* A - Adu™.

Show that

(_val)
VI IV

is the " “outward" unit normal vector field on M. Compute the Gaussian
curvature of M. (cf. VIL.6.6)

When V f # 0, show that the unit vector field

v=(-1)"

1 Vf )
X = VS
V1+|VS2 (IVfI V1]
on M is perpendicular to the “level surfaces” {(u,z) € M | z = constant}.

Let V be an inner product space of dimension n. Let f : V — V be a
self-adjoint linear map whose eigenvalues are distinct so that there exists
an orthonormal basis ey, ..., e, of V such that f(e;) = A;e; for some real
number \;, j =1,...,n. Let S(V) be the space of unit vectors in V. Find
the critical points of the map

h:S(V)—R, v (v, f(v)).
Note that h(—v) = v and hence we have the induced map

hiP(V) >R

Find the critical points of h.
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7.7.7 FEuler Class

Let £ — M be an oriented real vector bundle of rank 2r.

7.7.8 Invariant measure on Lie Groups



Chapter 8

Frobenius Theorem

A subbundle D of the tangent bundle T'M of a manifold M is called a distribu-
tion! of M.

A distribution D is involutive if for any section X and Y of E, the Lie bracket
[X,Y] is also a section of D.

A distribution D is (completely) integrable if for any point p € M there
exists a submanifold S of M such that p € S and for any g € S, T'S; = D,,.

Anideal Z of Q* (M) is called a dif ferential ideal if it is d-closed, i.e., dZ C Z.

Given a distribution D on M, let
TF(D) == {w € QF (M) | w(Xy,...,X}) =0 forany X;,..., X, € (D)}
and let
(D) = PIHD).
k=0
Then I(D) is an ideal of Q*(M).

Theorem 8.0.0.1 (Frobenius?) Given a distribution D of M, the following
are equivalent:

(i) D is involutive
(ii) D is integrable

(iii) the ideal Z(D) is a differential ideal.

IThis terminology is also used in the theory of generalized functions with different meaning.

2Ferdinand Georg Frobenius (1849-1917), a German mathematician. Frobenius theorem
was first proved by Alfred Clebsch (1833-1972, German) and Feodor Deahna (1815-1844,
German).
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(iv) if 01,...,0% are linearly independent local 1-forms on M which vanishes
on D, where k is the co-dimension of the distribution D, then

k
o' =y 05 Ao
j=1
for some 1-forms w;

Proof. Since others are rather easy [Morita], we prove (ii) = (i). Fix a point
pin M. Let Yi,...,Y, be a local frame for D in a neighborhood of p. Take a
chart (z!,...,2") near p. Then

T u a
Y= ;gb Oz

for some functions g and h;.> We may assume that

+ > Mg (b=1....7)
i=r+1

det(gy () a<ab<r # 0.

Let (g¢) be the inverse matrix of (¢f) and let* X, = 3, go¥, forb = 1,...,r.
Then for some functions f;,

1=r+1
and hence
" .9
X, Xyl = T —
[ b] i:7z+1 fbal'l

for some functions fi. Since D is involutive, [X,,, X, is also a linear combination
of Xi,...,X,.. Thus [X,, X,] = 0 and hence the corollary (4.2.0.7) implies the
conclusion. O

Corollary 8.0.0.2 (Mayer-Lie system) Let A and B be open subsets of R™
and R™ and let fi: A x B — R be C'-functions for 1 <i <m and 1 <a <n.
Then a system of differential equations

oy’
ox®

= fi(z, .2yt ™) (8.1)

3 We may write as
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is completely integrable® if and only if it satisfies the integrability condition

afa - afa afb - 8fb
oot Z 1= 55 Z
for any i, a,b.

For a general statement between Banach spaces cf. [Dieudonné, Vol. I].

Proof. Consider the 1-forms
e ::dyifo;(x,y)de (i=1,...,m)
j=1

on R™ x R™. These forms are linearly independent everywhere. If the integra-
bility condition holds, then

dOEANOYA - A A =0,

Thus Frobenius theorem says that the system of PDE is completely integrable.
Thus for any (zo,y0) € R™ x R™, thee exists an embedded submanifold

S(ut, .. u™) = (x(ut, . u), (et u™))
of R™ x R™ with S(0,...,0) = (zo,yo) such that
0'=0, -, 0" =0

on S. In other words, we have

3uk Zf; duF

Since S is an immersion, the matrix

oz’ 1 .
ot | — ( 7;) (aﬁ)
BoF YA

is of rank n, and hence (g%) is nonsingular. Therefore, the projection map
S < R™ x R™ — R" is locally invertible. Thus y = f(z) for some f. O

8.0.1 Exercise

Given a 1-form w on an n-manifold M, a function f on M is called an integrating
factor® of w if fw is exact. Show that if w is non-trivial at some point p in M,
and n = 2, then w has an integrating factor in a neighborhood of p.

51.e., for any point (xg,yo) in A x B, there exists a neighborhood U of x¢ and a function
y: U — B such that y(zo) = yo and (8.1) holds at every point of U.
6cf. Spivak, Vol. IV, p.457.
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Chapter 9

Classification of manifolds

Let M be a connected topological manifold (without boundary) of dimension n.

91 n=0

A connected 0-dimensional manifold is a singleton.

9.2 n=1

A connected topological 1-manifold is homeomorphic to either R or S*.

It has a smooth structure and every smooth structure is diffeomorphic to
either R or St.

A connected topological 1-manifold-with-nonempty-boundary is homeomor-
phic to either [0,1) or [0, 1].

For details, see [Berger, Gostiaux], [Dieudonné], [Fuks and Rokhlin, p.139],
[Guillemin, Pollack], [John Lee], [Spivak].

93 n=2

Every topological surface has a unique differentiable structure up to diffeomor-
phism.

9.3.1 Compact Surfaces

A compact connected orientable surface is a “connected sum” T?# --- #T? of g
tori, where g is called the genus.

A compact connected non orientable surface is P2# - - - #P2, the connected
sum of the real projective planes. K := P2#P? is the Klein bottle.
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9.3.1.1 Exercise.
Show that P2#T? is equal to P?#K.

9.3.2

There are three basic geometric surfaces: The sphere S2, the Euclidean plane
E?2, and the hyperbolic plane H2. These are homogeneous surfaces' of constant
Gaussian curvature K > 0, K = 0, and K < 0, respectively?

If M is a surface with a Riemannian metric ds?, then for each point p in M,
there exists a coordinate system (z,y) in a neighborhood U of p such that

ds® | U = p(dz? + dy?)

for some positive function p : U — R. Such a coordinate system is called an
isothermal or conformal coordinate system [Taylor].

Thus if M is orientable, M has a complex structure, and it becomes a Rie-
mann surface.

In general, the universal cover M of M is orientable, and hence M becomes
a Riemann surface. The fundamental group 7 (M) acts on M without fixed
points and the action of each element in 7; (M) is either holomorphic or anti-
holomorphic.

Riemann's uniformization theorem (cf. [Taylor, III], [Dieudonné, Vol. I,
(10.3), Problem 4]) says that every simply connected Riemann surface M is
biholomorphic to either the complex plane C, the upper half plane H, or the
Riemann sphere P!(C).

Case: M ~ C

Case: M ~ H

Case: M ~ P'(C)

LA metric space X is homogeneous if for any two points p and ¢ in X, there exists an
isometry f: X — X such that f(p) = gq.
2¢f. [Bon]
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94 n>5

9.4.1 Topological Poincaré Conjecture

S? x S? is a compact simply connected 4-manifold, but it is not homeomorphic
to S*. The generalized Poincaré conjecture in higher dimension (n > 4) has
three different forms:

* (C,) A compact n-dimensional topological manifold which is homotopic
to S™ is homeomorphic to S™.

e (PL,) A compact n-dimensional PL manifold which is homotopic to S™ is
PL-isomorphic to S™.

* (D,) A compact n-dimensional smooth manifold which is homotopic to
S™ is diffeomorphic to S™, if n < 7.

C,, is true for all n.

? Stallings and Zeeman proved that PL,, is true for n > 5.

S. Smale proved that D5 and Dg are true.

The generalized topological Poincaré conjecture says that “any compact n-
manifold homotopic to S™ is homeomorphic to S®”. This is proved, for n > 5,
by S. Smale (1961), who proved “h-cobordism conjecture” [Fomenko], [Mil;C],
[Nash].

9.4.2 Smooth manifolds

A closed topological manifold of dimension greater than or equal to 5 has at
most finitely many non-diffeomorphic smooth structures [Scorpan].

9.4.3 Exotic Spheres

In 1956, John Milnor showed that there is an exotic differentiable structure on
the topological 7-sphere S7. In 1963, Michael Kervaire and John Milnor found
that the number of non-isomorphic differentiable structures on S7 is 15 (28 if
orientations are conted).

Fork =1,...,28, let

Zy = {(#1, 22, 23, 24, 25) € Cd — {0} | zlﬁkfl + zg’ + z% + zi + zg = 0}.

Then Z,, is a complex manifold of complex dimension 4.
Let

S% :={(21, 22, 23, 24, 25) € C° | |21]® + |22|® + |23]* + |24]® + |25]* = 1}.

Then
SNz,

are all smooth manifolds homeomorphic to S7, and they are NOT diffeomorphic
to each other [Tau2], [Poor].
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9.5 R”

Let n be a nonnegative integer. If n # 4, then R™ has a unique differentiable
structure (up to diffeomorphism).

In fact, every non compact manifolds are smoothable [Quinn].

On R*, there are uncountably many non-diffeomorphic differentiable struc-
tures. In an exotic R*, there exists a compact set which is not in the interior of
a smooth embedded 3-sphere.
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96 n=4

9.6.1 Intersection Forms

Simply connected compact 4-manifolds are completely classified by M. Freed-
man [Fre] by studying the “intersection forms”.

Theorem 9.6.1.1 (Freedman, 1982) Let M, be the collection of homeo-
morphism types of simply connected oriented compact 4-manifolds. Let q be a
unimodular symmetric bilinear form on a finitely generated abelian group.

(i) If q is even, then there exists a unique M € CalMy such that the inter-
section form of M is isomorphic to q.

(ii) If q is odd, then there exist only two M, ,M_ in My such that their
intersections forms are isomorphic to q.

9.6.2 Poincaré Conjecture in 4-d

In particular, he showed that any compact 4-manifold homotopic to S* is home-
omorphic to S%.

9.6.3 Undecidable
9.6.3.1 Fundamental groups of manifolds

9.6.3.2 Halting Problem
Turing(1936) showed that the Halting Problem is unsolvable.

9.6.3.3 Word Problem

Following is the word problem: Is there an algorithm which determines,
whenever a finite set of defining relations for a group G and a word w
are given, whether w is the identity element?

Novikov(1955) showed that the word problem is undecidable.

In 1908, Tietze made a conjecture that the isomorphism problem for groups
is unsolvable. This problem was solved by Adyan in 1957 [Stillwell, 2010].

Theorem 9.6.3.4 (Markov, 1958) If n > 4, then the classification of topo-

logical manifolds of dimension n is impossible.

9.6.4 Smooth 4-manifolds

In general, a topological manifold may have none, several, or infinitely many
non isomorphic differentiable structures.
The number of distinct differentiable structures on S* is not known yet.
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9.6.5 [Es-manifold

Let
Fg:={(x1,...,28) €ER® |22, € Z, 21 = --- = xg mod Z, x1+- - -+, = 0 mod 2}.
Then FEy is a free abelian group with a basis

e1+ey, extes, es+teq, e4+es5 e€5+es, €gter, er+tes,

1
5(e1 —ea+e3—eqg+es+eg—er+eg).

The quadratic form on Ey (induced from the Euclidean structure on R®) is rep-
resented by the matrix

21 0 0 0 0 0 O
1 21 0 0 0 0 O
01 2 1 0 0 0 O
001 21 0 00
0001210 1|SEGL
0O 0 0 01 2 10
00 0 0 01 2 0
00 0 01 0 0 2
with respect to the above basis.
° ° ® ° ° °

This quadratic form is even and positive definite and unimodular (of deter-
minant 1).

Given a compact simply oriented topological 4-manifold M, H?(M,Z) is a
free abelian group of finite rank, and we have an intersection form

Iy : H*(M,Z) x H*(M,Z) — Z,

which is a unimodular integral quadratic form.

Given any unimodular® integral quadratic form ¢, there exists a simply con-
nected topological 4-manifold having ¢ as its intersection form [Freedman, 1982].

V. Rokhlin's theorem (1952) says that the signature of any smooth compact
4-manifold M with a spin structure? is divisible by 16. A simply connected
4-manifold with even intersection form has a spin structure.

Thus Eg-manifold has no smooth structure.

3An integral lattice of determinant 41 is said to be unimodular.
40r equivalently, we (M) = 0 € Ha(M,Z)
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9.6.6 Donaldson’s Theorem

Theorem 9.6.6.1 (Donaldson, 1982) If M is a simply connected compact
4-manifold with positive definite intersection form q, then q is diagonalizable
over the integers.

cf. [Fomenko], [Nash].
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9.7 n=3

M has a unique smooth structure up to diffeomorphism.
Poincaré's original conjecture (1904), was finally solved by Gregory Perel-
man.

Theorem 9.7.0.1 (Perelman (2003)) Any compact simply connected 3-manifold
is homeomorphic to S3.

One of the most famous mathematical questions in the 20th century was
Poincaré's question which asks whether a simply connected compact 3-manifold
is homeomorphic to the 3-sphere.

W. Thurston's geometrization conjecture says that there are eight 3D ge-
ometries:

R}, H® 8% S2xR, H®2xR, Nil, Sol, SLs(R).

Geometrization conjecture implies the Poincaré conjecture.

In 2002--2003, G. Perelman announced the affirmative answer for the ge-
ometrization conjecture through the internet.

9.7.1 Geometric Structure

A metric space X is said to be homogeneous if for any two points p and ¢ in X,
there exists an isometry® f : X — X such that f(p) = q.

A metric space X is locally homogeneous if for any two points p and ¢ in X,
there exist a neighborhood U, pf p, a neighborhood U, of ¢, and an isometry
f :Up, = U, such that f(p) = ¢. cf. [Bon]

A geometric structure on a manifold )M is a complete Riemannian metric
on M which is locally homogeneous.

Theorem 9.7.1.1 (Singer, 1960) A simply-connected complete locally ho-
mogeneous Riemannian manifold is homogeneous.

A simply-connected homogeneous Riemannian manifold is called a geome-
try.

9.7.2 Eight Geometries

Following spaces are complete Riemannian manifolds of constant sectional cur-
vature:

S’VL’ :ETL7 Hn.

5A map between two metric spaces is called an isometry if it is bijective and distance-
preserving.
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9.7.2.1 Nil Geometry

The Nil geometry (or Heisenberg group) is the Lie group

1
Nil := 0 a,b,ceR
0

o = Q
o

together with a left invariant metric.

9.7.2.2 Sol Geometry

The Sol geometry is R? with the Lie group structure
(,y,2) - (2,9, 2)) = (z+ e’ y+ ey, 2+ 2)
together with a left invariant metric.

Theorem 9.7.2.3 There are eight geometries in dimension 3:

—_~—

S3, E3, H?) S?xE! H?xE! Nil, Sol, SLy(R).

9.7.3 Space Form Problem
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Appendix A

Linear Algebra of Tensors

Let R be a commutative ring with the unit element 1. In this chapter every
module is assumed to be an R-module and every homomorphism is an R-module
homomorphism.

A.1 Free module

Let S be a set. Then the free R-module Fr(S) generated by the set S consists of
all maps f : S — R such that the carrier set

carf={se S| f(s) #0}
is finite.
Obviously, Fr(S) is a submodule of all maps from S to R.

There is a canonical injection " : S — Fgr(S) sending s € S to the map
§:S — R which has the value 1 at s and O elsewhere. Thus if f € Fr(5), then

f= > fls)s

s€carr f
Theorem A.1.0.1 (Universal Property) Forany map h from S into a mod-

ule V, there exists a unique module homomorphism h : Fr(S) — V such that
h=ho".

Proof. Let ), r;5; be an element of F(S). Then h: Fr(S) — V has to be
defined as follows:
B <Z riéi) = Zrih(si).
Then  is the desired homomorphism. d
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We will identify an element s of S with § so that Fr(S) consists of all finite
formal linear combinations

181+ -+ 18, (ri,...,tn € R, s1,...8, €9).

Itis easy to see that if 7" is a subset of S, then F(T') is a submodule of F(S5).
A module is said to be free if it is isomorphic to the free module generated by
some set.

A.2 Tensor Products

Let V and W be modules. Then the tensor productof V and W (over R), denoted
by V@ W or V @g W, is defined as follows.

Consider the free module Fr(V x W) generated by the set V' x W and let
Sr(V x W) be the submodule of Fr(V x W) generated by the elements of the
form

(av + a'v', bw + V'w') — ab(v,w) — a'b(v’,w) — ab’ (v, w") — a'b' (v, w")
forany a,b € R, v,v’ € V and w,w’ € W. Then
VoW .=Fr(VxW)/Sg(V x W),

the quotient module of Fr(V x W) by the submodule Sg(V x W).
Let
Q:VxW-VeW

be the composition of the canonical injection inj : V x W — V @ W and the
quotient map quo : Fr(V x W) — Fr(V x W)/Sr(V x W). Usually, we denote

(v, w) =1 v w
for (v,w) € V x W. Itis obvious that ® : V. x W — V ® W is bilinear.

Proposition A.2.0.1 For any bilinear map h from V x W to a module U,
there exists a unique homomorphism h: V @ W — U such that h = ho ®.

Proof. By the universal property of the free module, there exists a unique
homomorphism »' : Fr(V x W) — U such that h = b’ o inj. Now

W[Sr(V x W) =0

and hence there exists a unique homomorphism h:V®W — U such that
h' = hoquo. Thus h = h/ oinj = h o quooinj = h o ®. Now h is bilinear and
such & is unique. O
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A.2.1 Remark

If a module U together with a bilinear map i : V- x W — U satisfies the above
'universal property', then it is isomorphic to the tensor product V @ W.
We may regard V®W as the collection of all formal finite linear combinations

Z U5 ® w
forr; € R, v; € V and w; € W with the relation
(ro+1"0)@ (sw+ sw) =rs(v@w) +rs’(v@w) +r's(v @w) +1's' (v @w')

forr,r’,s,s’ € R,v,v’ € Vand w,w’ € W.

A.2.2 Example

Let R be the field of real numbers. Let X be a topological space and let C(X) be
the R-algebra of continuous (real valued) functions on X. Then for any finite
dimensional vector space V over R, C(X) ®g V is isomorphic to the vector space
C(X; V) of all continuous maps' from X into V.

Proof. Define
i:C(X)xV =C(X;V)
by i(f,v)(z) = f(x)v for f € C(X),v € V and z € X. Then i is bilinear over R.
We now claim that : satisfies the universal property. Let i be any bilinear map

from C(X) x V into a real vector space W. Then define h : C(X;V) — W as
follows; Let ey, ..., e, be a basis for V. Then for ¢ € C(X,V)

¢=> i(¢,¢;)
j=1

for some ¢’ € C(X). Now

h() ==Y h(¢?,e;).

J

Thus C(X; V) is isomorphic to C(X) @ V. Note that the homomorphism 7 is
independent of the choice of the basis for V. O

LA finite dimensional real vector space is isomorphic to R™ for some integer n. The topology
on V is induced from R™ by an isomorphism V ~ R"  which is independent of the choice of
isomorphism.
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A.2.3 Exercises

@)
(i)
(iii)

(iv)

)

(vi)

(vii)

(viii)

Show that for modules V and W, V @ W is isomorphic to W @ V.
Show that if V is an R-module, then V ®g R is isomorphic to V.

Let Z be the ring of integers and let Z,, := Z/mZ for positive integers m.
Show that
Ly @ Loy, =~ Z(m,n)

as Z-modules (or abelian groups), where (m,n) denotes the greatest com-
mon divisor of m and n.

Define the tensor product U @ V @ W of three modules U, V and W. Show
that it is isomorphicto (U@ V)@ W ~U ® (V @ W).

Show that
(@ Vi) @W =a; (V; @ W)

for any family {V;} of modules and a module W, where @& denotes the
'direct sum'.

Assume bilinear maps

Vix Vo= Vs, (vi,v2) = vive
Wi x Wy — Wg, (wl,wz) = wiws.

Show that there exists a unique bilinear map
(V1®W1) X (%@Wg) — V3 W;

such that (v; ® wy)(v2 @ we) = (v1v2) ® (wWiws).
In particular, if V and W are (associative) algebras, sois V @ W.

Suppose that A = @k:o,17.__Ak is a graded-commutative algebra? and L is
a Lie algebra. Show that A ® L is a graded Lie algebra in the sense that

[a’ b] = _(_1)kl [b7 CL]
(_1)mk[a7 [bv CH + (_1)kl [bv [Cv a“ + (_1)lm[07 [av b“ =0

forac A*@L bec A®L ce A" ® L.

Suppose that A = @, A" is a graded-commutative algebra and B is an
associative algebra. Define the commutator

[a,b] = ab — (—1)*ba

fora € AF@Bandb € A'® B, so that ¢ = 1[c, ] for an odd type element
of A® B. Show that A ® B is a graded Lie algebra.

2An algebra A is a graded algebra if it is a direct sum of subspaces AF for k = 0,1,...
such that A® Al ¢ AF+! for any nonnegative integers k and I. A graded-commutative algebra
is a graded algebra A such that ab = (—1)*!ba for any a € A¥ and b € Al
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A.2.4 Multilinear Maps

Let V4,...,V, be modules. Then the tensor product V; ® --- ® V,, consists of
finite formal linear combinations of the elements of the form

V1@ QU
for v; € V}, with the relation
N - -®(rvj+r’v;)®- QU = T(U1®‘ QU - -®vn)—|—r’(v1®~ . -®U§-®- - Quy).

One may define V; ® --- ® V,, explicitly as a quotient module of the free
module Fr(V; x --- x V,,) generated by the set V; x --- X V,.
There is a canonical multilinear map ® : Vi x --- x V,, > Vi1 ® --- @ V.

Theorem A.2.4.1 For any multilinear map h from Vy X - -- x'V,, into a module
W, there exists a unique linear map h : V1 ® ---®V,, — W such that h = ho ®.

A.2.5 Remark
For modules V3, ...,V,, and W, let L(V1,...,V,; W) be the module of all mul-

tilinear maps from V; x --- x V,, into W. Then it is obvious from the universal
property that we have a canonical isomorphism

In particular,

where * denotes the "dual module'.

A.3 Duality
There is a unique homomorphism
0LV @+ QL(Vy; W) = LVI @@V W1 @ --- @ W,,)
such that
6(fi® @ fu) 1 ® - ®vp) = fi(v1) ®- - & fu(vn)

for fj S ,C(‘/J,WJ) and Vj S V}
In particular, we have

Vi oV —— Vi@ @ Va)* —— L(Vi,...,Vu;R).
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A.3.1 Remark
There is a natural homomorphism
v: VW — L(V; W)

such that (v(v* ® w))(v) = v*(V)w, forv e V,v* € V* and w € W.

A.4 Over a field F

From now on R is a field F and every vector space is over F.

Proposition A.4.0.1 Let Vi,...,V,, be finite dimensional vector spaces of di-
mension my, ..., My, respectively.

(1) Let {vj1,...,vjm;} be basis for Vj, 1 < j <n. Then
{v15, @ ®up,, 11 <idy <mq,..., 1<i, <my}

is a basis for V1 ® --- ® V.
(2) If V] is a subspace of Vj, then V{ ®---® V], is a subspace of V1 ®--- @ V.
(3) v:Vi*®Vy — L(V1;Va) is an isomorphism.
(4) If Wy,..., W, are finite dimensional vector spaces, then

G: LMW @ Q@LVy; W) 2 LWV Q- @V W1 @ -+ - @ Wy,)
is an isomorphism. In particular,
SV Vi i-(WVMe -V,)" (4.2)

is an isomorphism.

Proof. (1) Itis clear that {vy ;, ®---Qvy,;, } generates V1 ® - -- ® V;,. To see
the linear independence, suppose

Z Qiy,..in (V14 @ - @y, ) = 0.
i17-~yin
Let {v],...,v],,, } be the dual basis of {v; 1,...,v1,m, }. Now apply
0], @ V@(he @V, 2 Fo(1he eV, ~he-aV,

to get
z @iy, iy (V24 ® - Q@ Uy, ) =0.
J1,22,..0s in
Now inductively we see that all the coefficients are equal to 0.
(2) Since any basis of a subspace can be extended to a basis for the whole
space, it is clear from (1).
(3) and (4) are easy. O
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A.4.1 Remark

Note that under the identification (4.2), if {v] ; } is the dual basis of {v; ;, }, then
{vi;, ® - ®uy,,; }Iis the dual basis of {vy;, ® - ®@vn;, }.

A.4.1.1 Exercise

For a finite dimensional vector space V over a field F, let ¢ : V* ® V — F be the
contraction map. Show that the composition map

End(V)~V*®@V - F

is the trace map.

A.5 Inner Products
Now we consider a finite dimensional vector space over R together with a (pos-
itive definite) inner product
(,):VxV =R
Then the "musical isomorphism'
b:V V™

is defined by b(v)(u) = (v,u) for u,v € V. The induced inner product on V* is
the one such that b is an isometry. Thus if {v4,...,v,} is an orthonormal basis
for V, then the dual basis {v7,..., v} } is also orthonormal.

The inverse of b is denoted by .

If W is also an inner product space, then the musical isomorphisms of V' and
W induce an isomorphism

VW =V"W*~(VeW)
which in turn induces an inner product on V @ W. Thus
(v@w,v @w') = (v, (w,w')

and if {vy,...,v,} and {wy,...,w,} are orthonormal bases for V and W, re-
spectively, then {v; ® w;} is an orthonormal basis for V @ W.

A.5.1 Exercises

(1) Using the isomorphism v : V* @ W — L(V;W), describe how inner
products on V' and W induce an inner product on £(V;W). Show that
if f € L(V; W), then

1/2
1= (Zum)?)

for any orthonormal basis {vy,...,v,} for V.
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(2) Use identifications Vi* ®@ --- @ V; ~ (V1 @ - @ Vi)* ~ L(V,...,Vi;R)
to describe inner products on these spaces induced by inner products on
V1,...,Vi. Show that

(V1@ @up,ur @ - @ug) = (v1,u1) - -~ (Vk, Up)

and
1/2
1= (1 @i ))
for f € L(Vi,...,Vi;R) and orthonormal basis {V} ;, } of V.

A.6 Tensor Algebra

Let ®*V be the tensor product of k copies of a finite dimensional vector space
V over a field F and let

R°V = Z QFV,
k=0
where ®°V = F. Then ®*V becomes an (associative) graded algebra (over IF)
with the multiplication
®: (@FV) x (&'V) —» @V
characterized by

(M ®  QU) @ (V1 ® - QUy) = V1 @ @V @ Vg1 @+ @ Vg

Let L*(V) := L(V, ..., V;F) be the space of all k-linear maps V x- - -xV — F.
Then we have the following identifications;

QF(V*) ~ (@FV)* ~ LF(V).

A.6.1 Exercise

Using the identification above, translate the multiplication
®: (V™) x @ (V*) = " (V™)

into the multiplication on other spaces. In particular, show that if f € L*(V)
and g € L!(V), then

(f®@g)(vr, -y vkpt) = f(or,- 5 0k) - g(Vkgr, -, Vhpt)

forv; e V.
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A.7 Symmetric Tensors

Let V be a finite dimensional vector space over a field F of characteristic 0. Let
Sk be the group of permutations of the set {1,2,...,k}. Then for o € S} and
(v1,...,v;) €V x --- x V, define

(1}17 e ,’Uk,)a = (Uoh ey ng).
Then this right action induces a linear action on ®*V;
(v1®...®vk)‘7 = V1 @ Q Vok-

The elements of ®*V invariant under this action are called the symmetric ten-
sors. They form a subspace ®’§ymV of @*V.
The averaging process

1
Symy(v1 ® -+ - @ vg) 1= o Z(vl®-~®vk)”
" o€eSy

gives rise to a projection of ®*V onto ®*, V

sym "’ *

A.7.1 Exercise

Let L, (V) be the space of all symmetric k-linear maps of V x --- x V' — F.
Show that under the identification ®@*(V*) ~ L*(V), @k, (V*) corresponds to
L%,,.(V). Show that

Symy (f)(v1,...,v%) = %Zf(vgl,...,vok)

for f € LF(V).

A.8 Alternating Tensors

Let V be a finite dimensional vector space over a field F of characteristic 0. Let
Sk, be the group of permutations of the set {1,2,...,k}. Then we have another
linear action of S, on ®*V;

(V1@ ®uk) X 0> sgn(o)(vy @ @vg)°.

foro € Sj, and (vy,...,v;) € V x---x V. The elements of ®*V invariant under
this action are called the alternating tensors. They form a subspace ®F,,V of
®FV.

The averaging process

1
Altg(v1 @ -+ - @ vg) == o Z sgn(o)(v1 ® - @ vg)?
: €Sk

gives rise a projection of ®*V onto ®*,, V.
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A.8.1 Exercises

(1) Let L*,, (V) be the space of all alternating k-linear maps of V x - -+ x V —
F. Show that under the identification ®*(V*) ~ L¥(V), ®%, (V*) corre-
sponds to L¥,, (V). Show that

Alte(f) (01, 03) = %ngn(o)f(vgl,...,vgk)

for f € L*(V).

(2) Show that for z € ®*V and o € Sk, (Altg(2))? = sgn(o)Alty(z) =
Altk(z").

(3) If V is an inner product space (over R), then with the induced inner prod-
uct on ®@*V, ker(Alty,) and ®¥,, (V) are perpendicular.
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A.9 Grassmann’s Exterior Algebra

Let V be a vector space over a field F. Then for any linearly independent vectors
Viye-., Uk in V,
[ VARERWAN )/

is an equivalence class of the oriented parallelepiped. If wy, ..., wy are linearly
independent vectors in V, then

WL N\ ANwg =01 A+ Nvg

if and only if the parallelepiped generated by (wq, . . . , wy ) and the parallelepiped
generated by (v, ..., vx)

(i) are in the same k-dimensional subspace of V' and

(ii) have the same orientation and the same k-dimensional volume in the sense
that there exists g € SL(k, F) such that (wq,...,wx) = (v1,...,0)g.

In fact, for any positive integer k, there exists a vector space, denoted by A*V/
together with a multilinear map

AV x-oox Vo AV (o, o) o A Ay (A1)

k
such that v; A --- A vy = 0 if and only if (vy,...,vx) is a linearly dependent
collection of vectors. Moreover, the map (A.1) satisfies a universal property: If
p:V x.-xV — W is a multilinear map such that p(vy,...,v;) = 0 if and
only if (v1,...,vx) is a linearly dependent collection of vectors, then there exists

a unique linear map  : A*V — W such that p = o A.

A9.1

Let V be a finite dimensional vector space over R. Then the k-th alternating,
exterior or wedge power of V, denoted by AFV, is a vector space consisting of
linear combinations of

[ VARERWAN )/

for vy, ..., v € V with the relations
VIA AN NN Ao = =01 A AU A Ao A e AN og
forl1 <:<j<kand
v A A (v avy) A Ay
= VA A A Avgta(vr A AN A )

wherea € Rand j =1,... k.
In other words, A*V is the quotient space of @*V by the subspace N, gen-
erated by the elements of the form

U1®"'®Uk

where v; = v;41 for some i € {1,...,k—1}.
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A.9.2 Exercise

Show that N = Y72, Nj is the (homogeneous) ideal of ®*V generated by
elements of the form v ® v for v € V. Thus

AV =®°V/N =Y Akv
k
is naturally an (associative) algebra over R, where A°V := R and A'V := V.

This algebra is called the exterior (or Grassmann) algebra of V. The product of
elements w and 7 in A®V is denoted by w A 7.

A.9.3

The natural map of V x --- x V into A¥V is denoted by A. Then A : V x --- x
V — AFV satisfies the universal property that any alternating k-linear map of
V x --- x V into a vector space W factors through a unique linear map of A*V/
into . This gives the canonical identification

L(/\kV; W) ~ L’;lt(V; wW).

In particular, we have
(N*V)* = L, (V).

A.9.3.1 Remark
We have a (splitting) short exact sequence
0= Ny —» @V 5 AV 50

and Ny = ker Alty,. Thus AFV is isomorphic to ®*,,V (non canonically). Under
this isomorphism v; A - - - A vy corresponds to

1
Altk(vl & .- ®’Uk) = nggn(a) “Vo(1) @+ Q Vg (k)-

We will not identify these two elements.
Theorem A.9.3.2 (i) Foro € S and vy,...,v; €V,
Vo(1) A=+ NUg(ry = (880 0) - 01 A+ Ay
(ii) Ifw € AV and n € A'V, then w An = (—1)Fn A w.
(iii) If {e1,...,en} is a basis for V, then
{eg, Ao Negy, | 1<idp < -+ < <n}

is a basis for A¥V. In particular, dim(A®V) = 2".
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(iv) The map
5 AF(V*) = (AFV)*
characterized by
S A Av)(vr A+ Avg) = det(v] (v)))

is an isomorphism.

A.9.3.3 Exercises

(i) Showthatwvy,...,v; € Vislinearly independent if and only if v A- - -Avy, #

0.
(ii) Letp € A?V. Show thatif p A p = 0 € A*V, then there exist a,b € V such
that p = a A b.
A.9.4

Let f : V — W be a linear map between finite dimensional vector spaces. Then
we have the induced linear map

NEFARY 5 AR

characterized by (AFf)(vy A -+ Awvg) = f(v1) A= A fug).

A.9.4.1 Exercises
1. Show that A®f =}, AEf AV — A®W is a ring homomorphism.
2. For an endomorphism f : V — V|, let
ck(f) =tr (A" f AV = AFV) (k=0,...,n).
Show that
det A1y + f) = A" + e (HA" - en1(HX+ enlf).

A.9.5 Inner Products
Let V be an inner product space. We define the inner product on A*V so that
(Vi A Ao, wr A= Awg) = det((v;, wy))
for vy,...,vg, w1,...,wx € V. Then
o A A gl

is equal to the volume of the parallelepiped in V' spanned by vy, ..., v;. Thus if
e1,...,ey, is an orthonormal basis for V, then

{ei, NoovNegy 1<y <+ <ip<n}

is an orthonormal basis for A¥V.



214 APPENDIX A. LINEAR ALGEBRA OF TENSORS

A.9.5.1 Exercise (Pythagoras Theorem)

(1) Forvectorswvy,...,v, in R"*! let P be the parallelepiped spanned by these
vectors, i.e.,

PZ{t1U1—|—"'—|—tnvn|0§t1,...,tn§1}.

Foreach k € {1,...,n+1}, let P; be the image of P under the orthogonal
projection onto the k-th hyperplane

{(a17' .. 7(177,—',-1) S Rn+1 | ap = 0}

Let |P| be the n-dimensional volume of P and |Px| be the n-dimensional
volume of P,. Show that

PP =P+ + [P

Is it clear from this fact that the area of the parallelogram in R? generated
by the vectors (a1, a2, as) and (b1, b, bs) is equal to the square root of

2
a2 as
by b3

2
ay as
by b3

2
ap a2

o
bi be '

(2) Let1 <r < n be integers and let
T ={01-Jr) [ 1< <+ <jr <n}.
Foreach J € J and v = (v!,...,0") € R", let
vl = (v, 0.

Let|vi A - -+ A v,.| be the r-dimensional volume of the parallelepiped spanned
by the vectors vy, ...,v, € V. Show that

log A Aw* = Z ’vlJ/\-~-/\v;]’2.
JeJ

A.9.6 Interior Products

Let i : V — V** be the canonical inclusion. Thus for each v € V, we have a
linear map

i(v): V' >R
given by i(v)(§) = &(v) for £ € V™.

Proposition A.9.6.1 For each v € V, there exists a unique extension of i(v) :
V* - R C A*V* as an anti derivation

i(v) : APV = ATV,
This linear map is called the interior product. We have
i(v1)i(v2) = —i(v2)i(v1)

for any vi,v2 € V.
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A.9.6.2 Remark
If we regard ¢ € AF(V*) as an element of (AFV)* ~ Lk, (V), then
f(vlv s 7Uk) = ’i(’Uk) U Z(U1)§

forvy,...,vx € V.

A.9.6.3 Exercises
Let V be an n-dimensional real vector space.
(i) For vy,...,v; € V, define a map
i(vr A Avg) = i(vg) -+ i(v1)
on A*V*. Show that this map is well-defined. Thus for every o € A*V*
we have a map
i(a) : AVF = ATV
Note that if « € APV and 5 A? V, then
i(a A B) = i(8) oi(a) = (~1)Mi(a) 0 i(8).
(ii) Let w € A"(V*) be an orientation form, i.e., w # 0. Show that
ARV S ARV, aesi(a)w

is an isomorphism for every k = 0, ..., n. Show that, if ey, ..., e, is a basis
for V and €', ..., €" is the dual basis and w = ¢! A --- A €?, then

n
fl(U):Z(—l)iviel/\.../\ei/\._./\en

=1

where v = )", v'e;.
(iii) Assume an inner product on V. For w € V*, let
e(w) : AV = AV, E wAE.
Show that e(w) is the adjoint of i(w*) and
i(whe(w) + e(w)i(w?) = |w|?id
on A*V™*.
Show that for any a € A*V,
i) = e(a®)?

where o’ € A*V* is the dual of a with respect to the inner product and
e(§) denotes the exterior multiplication.
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A.10 Hodge Duality

Suppose V is an oriented inner product space of dimension n. Let vol € A"V
be the “positive ” unit vector, i.e., vol = e; A - - - A e,, for any positively oriented
orthonormal basis e, ..., e, of V.3

Define, for 1 <i; < --- <1 <m,

*(eiy Ao Neg) =8gN(it, - ooy iky Thg1s - in) €y Ao Aei,

where {i1,..., 0k, ikt1,- -y in} ={1,...,n}.
Then by linearity we have the Hodge star map

x: ARV 5 AR

This map is well-defined, independent of the choice of basis, and characterized
by the relation
(w,m) vol = w A *n

for any w,n € A*V.

A.10.0.1 Exercises
(i) Show that on APV,

*2 = ( 1)p(n—p) _J—id ifpisoddand n is even
- ~ |+id otherwise.

(ii) For any v € V, consider the linear map
v' VSR, w = (v,w).

Let
int,: : AV — AV

the linear map which extends v and has the anti-derivation property:
intyr(wAN) = (inty: w) A+ (—1)Pw A (int,: )
for any w € APV and ny € A*V. Show that

*v = int,: (vol).

(iii) Show that for any w € A"V,

inty: = (—1)""7P) xext(w)* : APV — APV

3 There is a canonical isomorphism
dV : A"V - R
such that dV (vol) = 1.



Appendix B

Quaternions and Octonions

B.1 Quaternions

Let I be a 3-dimensional vector space with a basis 4, j, k, and let
H:=RaIl.
We have an associative multiplication map on H with the relation
i? =52 =k? = ijk = —1.

With this structure an element of H is called a quaternion. Quaternions were
discovered in 1843 by Willian Rowan Hamilton (1805—1865).!

A quaternion ¢ is a some of real number ¢ and a vector v € I, in a unique
way. We define the conjugation of ¢ as

q:=t—w.

An element of [is called a pure quaternion and is characterized as a quaternion
g such that

q=—q.
There is a natural inclusion
C—H
and .
H=CoC

where C is the space generated by j and k. Note that

c-c=¢C, Cc-c=¢C, cC-C=C

and for any z € C and g € C
z2q = qZ.

LGauss’s discovery of quaternions in 1819 was not published until 1900.

217
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If we identify (z,w) € C? with z + jw € H, then

z,w) (2 ,w) = (22 +ww', zw —wz
(z,w) - (2, w') = (22 )

i.e., the quaternion inner product is the sum of Hermitian inner product and the
symplectic product.
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B.2 Octonions

Let I be a 7-dimensional vector space over R with a basis ey, ..., er, and let
O=ReoL

Define a (non-associative) bilinear multiplication map
O0x0—-0 (B.1)

such that e = 1 € R C O is the identity element and the multiplication table is
as follows:

€1 €2 €3 €4 €5 €6 €7
€1 -1 €3 —€2 €5 —€4 —er €g
es || —eg | —1 el € e7 —ey | —es5
es ) —e1 | —1 er —eg es —ey
eqs || —es | —eg | —er | —1 el es es
€5 €4 —e7 €6 —€1 -1 —€3 €9
€6 €7 €4 —€j5 —€9 €3 -1 —€1
(&rd —€g €5 €4 —E€3 —€9 €1 -1

This table may be drawn as the next figure:?

o

e

The elements of O (with this multiplication) are called octonions or octaves.
Note that

ep-ev=—e,-€, (1<p<v<T).
With e; =1, es = j, e3 = k, we have an inclusion
H—O

of algebras and
O=HeoH

where H is the space spanned by

€4, €5 = i€4, €g — j€4, er = k‘€4.

2Thus figure is drawn on the Gino Fano(1871—1952)’s projective plane.
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We have

H-H=H H-H=H HH=H HH=H

and following identities:

w =07 q(@p) = (eqa)p, (pa)ee =plean),
(1p1)(P2¢2) = @2(p1p2)q1,  (p1p)p2 = P2(pp1)

for any quaternions ¢, g1, g2 and p,p1, p2 € H.
Now the multiplication map (B.1) becomes

(q1,p1)(q2,p2) = (12 — P2 P1, P21 + D1 @2)-

The conjugation on H extends to O by

Then

=vu

<

for any octonions u and v. We have octonion inner product
(u]v) :=av

and
lul? := (u | u) >0

for nonzero u. Thus O is a division algebra.
We also have

|uv] = Ju] |v]

for any u,v € Q. Note that for any v € O

(u,ue,) = |“|26M = —(uey, u)

Re (ue,,, ue,) = |u|?6,,, = Re (e u, e, u)

forl < pu,v<T7.
We have the alternative law

u(uv) = (uu)v, u(vv) = (wv)v
for any u,v € Q. Note that the alternative law implies
(uv)u = u(vu)

for any u,v € Q.
Here is a multiplication table (with respect to the basis 1,4, j, k, [, il, jI, kl):
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v (ag, a1, az,as,aq,as, ag, az)

w (—a1, a9, —as, az, —as, as, a7, —ag)
Jv | (—az,as,a9, —a, a67—a7,a4,a5)
kv (—as, —as, a1, ag, —ar, ag, —as, as)
lv (—aq,as,ag,az, a9, —ai, —ag, —ag)
(il)v | (—as, —a4, a7, —ae, a1, ag, az, —az)
(v | (—ag,—ay, —ayg,as, a2, — ag,ao,al)
(k;l)v ( ar, a6, —as5, —Q4,0a3, a2, — al,ao)
vl ( a1, aop,as, —ag, a5, —a4, (17,(16)
vj | (—a2,—as,a9,a1,ae,a7, —a4, —as)
vk (—as, a2, —ay, ag, ar, —ag, a5, —ay)
vl (—aq, — —a6,—a7,a0,a1,a2,a3)
v(il) | (—as,a4, —ar, a6, —ay, ag, —as, az)
v(jl) | (—as, a7, a4, —as, —az, as, ap, —az)
U(kl) ( az, a65a5;a47_a37_a27a17a0)

B.2.0.1 Cross Product

Let I be the 7-dimensional space of pure imaginary octonions. Then the cross
product of two u, v € I is defined by

1
uX = i(uv—vu)eﬂ.
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Appendix C

Calculus

C.1 Differentiable Functions
Let V and W be finite dimensional vector spaces over R.> A functione: V --» W
defined in a neighborhood of the origin 0 of V' such that
lim |e(v)|/|v] =0 and e(0)=0
v—0
is denoted by o(v), where we use any norms | - | on V and W.
Let U be an open subset of V. A map
fU—=W (C.1)
is differentiable at a point p in U if there exists a linear map
Df(p): V=W

such that
fp+v) = f(p) =Df(p)v+ o(v).
If f is differentiable at p, then the linear map D f(p) is unique and is called
the derivative of f at p. Moreover, f is continuous at p and

Dof(p) = Df(plo = | f(p-+0)
0

foranyv e V.

C.1.0.1 Coordinate Expressions
C.1.0.2

The map (C.1) is said to be differentiable if it is differentiable at every point
of its domain. In this case, we have a map

Df:U — L(V,W),

1We may assume that V and W are Banach spaces.
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where L(V, W) is the vector space of linear maps from V' to W.

C.1.0.3 Exercises

1. Show that if f : V — W is a linear map, then

Df(p) =f
for every pin V.

2. Let V4, Vo, W be finite dimensional vector spaces. Show that if f : 1} x
Vo — W is a bilinear map, then

D f(u1,u2)(v1,v2) = f(v1,u2) + f(u1,v2)

for uy,v; € V7 and us, vo € V5. Find a formula for multilinear maps.

C.1.1 Chain Rule

Let V, W, X be finite dimensional vector spaces. Let V; and W; be open subsets
of V and W, respectively. Suppose that f : V; — Wy C W is differentiable at
p € Vi and g : W7 — X is differentiable at ¢ := f(p). Thengo f : V3 — X is
differentiable at p and

D(go f)(p) = Dg(qg) o Df(p): V = W — X.

C.1.2 Continuously Differentiable Functions
Let U be an open subset of V. A differentiable map (C.1) is said to be (of class)
ctif

Df:U — L(V, W)

is continuous.

Theorem C.1.2.1 Let vy,...,v, be a basis of V. A differentiable map (C.1)
is C! if and only if the directional derivatives

Dy f,....Dy, f:U—=>W

are continuous.

C.1.3 Many times Differentiable Functions
C.1.3.1 C”* functions

A continuous function is said to be C°. For positive integers k, a map (C.1) is
said to be C* if D f is C*~1.
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Theorem C.1.3.2 If (C.1) is C? at a point p, then
D*f(p) € L*(V,W)
is symmetric.

Theorem C.1.3.3 Let vy,...,v, be a basis of V. The map (C.1) is C* if and
only if for any nonnegative integers ay, . . . , o, satisfying the condition aq +- - -+
ay = k, the partial derivatives

D311-~-D;":f:U—>W

exist and are continuous.?

C.1.4 Infinitely differentiable functions

Let U be an open subset of a finite dimensional vector space V. A differentiable
function f : U — R is said to be C! if for any v € V, D, f € C°(U).

Let C!(U) be the space of all C! functions on U. Then a differentiable function
f:U — Rissaid tobe C?if D, f € C}(U) forany v € V.

Inductively, a function f on U is C**1 if D, f € C*(U) for any v € V.

A function f on U is infinitely differentiable if it is C* for every positive integer
k. Then f is C* if D, " f exists for every k = 0,1,2,....

C.1.4.1 Taylor’s Theorem

Lemma C.1.4.2 Let U be a convex open neighborhood of the origin in R™.

(i) Let f € CF(U) for some k € {1,2,...}. Then there exist gi,...,gn €
C*=Y(U) such that

f@)=[0) +a'gi(2) + -+ 2"gn(x)
for any x € U. In this case

9:(0)=D;f(0), i=1,...,n.

(b) Let f € C>°(U). Then there exist h;; = hj; € C>*(U), 1 < 4,5 < n, such
that

F@) = JO) + Y Duf 010 + 5 Y atehy (o)

for all x € U.

2 The number of elements of the set {(a1,...,an) € {0,...,k} | a1 + - + an = k} is
(n+k—1)
r )
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Proof. Proof is obvious from the identity:

f(ac)—f(O):/o %f(tm)dt:/ Zachtm )dt = le/ D;f(tx)d

C.2 Inverse Function Theorem
Theorem C.2.0.1 (Inverse Function Theorem)

Theorem C.2.0.2 (Implicit Function Theorem) Let M,N,L be smooth
manifolds,
F:MxN—L

be a C* map, (p,q) € M x N, and r = F(p,q). If
(TQF)(p7q) : TNq — TLT

is an isomorphism, then there exist an open neighborhood U of p in M, an open
neighborhood V of ¢ in N, and a C* map

G:U—=V
such that for any (z,y) € U x V
F(z,y)=r — y = G(x).

In this case,
TG, = _(TQF(p,q))_1 o TiFp,q)-

Moreover, if F is C* for some positive integer k, so is G.

N M x N

qe /\9\/ — or

—

ce
<
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Proof: Consider the map
F:XxY—>XxZ (x,y) v (z, f(z,y)).

Then
DF(.ro,yo) : T($o7yo)(X X Y) — T(wo,zo)(X X Z)

is an isomorphism. Thus there exist an open neighborhood U of z( in X, an
open neighborhood V of g in Y, an open neighborhood W of 2, in Z, and a C*
map

G:W—->UxV

which is the inverse of F'. Note that
G(z,2) = (2, m2(G(z, 2)).

Let
9(x) := m2(G(z, 20))
forz € U. Then g : U — V is the desired map.
Note that for any = € U,

0= Df(x,g(x)) = Dif(2,9(2)) + D2f(x,9(x)) o Dg(x) = 0

and hence
Dg(x) = —(Daf (2, 9(x))) ' D1 f(, 9(x)).
Thus if f is C*, then so is g.
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Appendix D

General Topology

Alexander's Horned Sphere, drawn by Bill Mayers

D.1 Topological Spaces

A topology on a set X is a collection 7 of subsets of X such that
l.oeT,XeT
2. iffUeTandV eT,thenUNVeT
3. if Sisasubsetof 7,then|yS € 7.

A topological space is a set X together with a topology 7 on it. In this case,
each element of 7 is called an open subset (or sometimes " “open set") of (X, T).
Topological space (X, 7)) is often denoted simply by X.

D.1.1 Trivial Topology

A trivial topology on a set X consists of the empty set and X.

229
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D.1.2 Discrete Space

A topological space is discrete if every subset is open. This topology is called
the discrete topology.

D.2 Continuous Maps

Amap f: X — Y between topological spaces is said to be continuous if f=1(V)
is open in X for any open set V in Y.

The set of all continuous maps from X into Y is denoted by C(X,Y).

The set of all continuous maps from X into R is often simply denoted by
C(X). A continuous map f : X — Y induces an algebra homomorphism

ff:CY)—=>C(X), g—golf.

1topolog9 & (continuous functions)

D.3 Subspace

If Y is a subset of a topological space (X, 7), then
TIY ={YnU|UeT}

is a topology on Y. This topology is called the subspace topology. Thus a subset
V of Y is open if and only if V =Y N U for some open subset U of X. A subset
K of Y is closed if and only if K =Y N L for some closed subset L of X.
Note that the subspace topology is the smallest topology' such that the in-
clusion map
inc:Y — X

is continuous. A map f : Z — Y is continuous if and only if the composition
incof : Z—>Y — X

is continuous.

D.4 Category

A category C consists of a class Obj(C) of objects and a set of morphisms
Mor(X,Y) for each pair of objects X and Y such that

1. For any objects X,Y, Z, the composition map
o:Mor(X,Y) x Mor(Y, Z) — Mor(X, Z), (f,9)—gof

is given.

LA topology 71 on a set is smaller (or weaker) than the topology 72 on the same set if
Ti CTa.
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2. If f e Mor(X,Y), g € Mor(Y, Z), and h € Mor(Z, W), then
(hog)og=hol(gof)
3. For each object X, there exists an element 1x € Mor(X, X) such that
folx=f, 1xog=y
for any f € Mor(X,Y) and g € Mor(Z, X).

A morphism f € Mor(X,Y) is called an isomorphism if there exists g €
Mor (Y, X) such that

fog=1ly, gof=1x.

D.4.1 TOP

The objects of the category TOP are topological spaces, and for each pair of
objects X and Y, Mor(X,Y) consists of continuous maps from X into Y.
Compositions of two continuous maps are continuous.
An isomorphism is called a homeomorphism.

D.5 Sheaves

Let G be the category of all groups and the group-homomorphisms.
A presheaf S of groups on a topological space (X, T) is an assignment

S§:T —0bj(G), U~ SU)
together with restriction maps
ri  S(V) — S(U)
for each inclusion U — V such that

1. foranyopensetsU C V C W

7‘5 or‘V/V = ’I‘E/.

2. for any open set U, r] : S(U) — S(U) is the identity map.

3. 8(o) is the trivial group.
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D.5.1 Sheaf
A presheaf S of groups on a topological space X is a sheaf if
1. for any collection {U, } of open sets and for any f, g in S(U), the condition
Vo, flUsa=g]Ua,
implies f = g, where U = J, Ua, f | Ua =rg_(f),and g | Uy = _(9)-
2. for any collection of { f, € S(U,)} such that
(fa) T UanUs) = (fp) | (Ua N Up)
for any indices « and S, there exists an element f € S(U) such that f |

D.5.2 The sheaf of continuous functions

For any open set U on a topological space X, let
cu)

be the algebra of all continuous real valued functions on U. Then we have a
sheaf C of continuous functions on X.

D.6 Metric Space

Given a set X, a map
d: XxX—-R

is called a metric (or a distance function) if
1. d(z,y) >0
2. d(z,y) =0ifand only if x = y
3. d(z,y) = d(y,z)
4. d(z,y) +d(y, z) > d(z, z).

A set X together with a metric d is called a metric space.?

2This beautiful definition is due to M. Fréchet(1878-1973) in his doctorial thesis, 1906 [BvR].
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D.6.1

Given a positive real number r, and a point p in a metric space (X, d), an open
ball of radius r centered at p is

B(p,r) :={q€ X |d(p,q) <r}.

A subset of a metric space is open if it is a union of open balls.

These open sets define a topology on X.

Thus every metric space is a topological space. For instance, R with the
Euclidean metric is a topological space.

D.6.2

If d is a metric for a set X, then

~ d
d:=——:
1+d
is also a metric for X such that the distance between any two points on X is less

than 1. Note that d gives the same topology as d on X.

D.6.3

A topological space is metrizable if there exists a metric whose topology is equal
to the given topology.

D.7 Neighborhoods

For a point p in a topological space X, a subset N of X is called a neighborhood
of p if there exists an open subset U such that p € U C N.

In a topological space X, let V,, be the collection of all neighborhoods of p
in X. Then the family NV := {N, | p € X} satisfies the following conditions for
allp e X:

1. X e N, (or NV, # ©)

2. forany U e N,,, p e U (ie.,p € NN)
3.UL,UzeN, = UnNUzeN,
4. UeN,, UcCcVcX = VEeN,

5. foranyU e N, {¢ € U | U € N} € N, (i.e., for any U € N, there exists
V € N, such that U € N, for any ¢ € V)
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Given a set X, a neighborhood system of X is an indexed family N = {N, |
p € X} of collections of subsets of X which satisfies the above five conditions.

A neighborhood system N of a set X determines a unique topology on X
such that for every p in X, N, is the collection of neighborhoods of p. (cf. [Hart
et al.], [Bredon])

(topolog@ & @eighborhood systenD

D.8 Closed Sets

A subset K of a topological space X is said to be closed if its complement X — K
is an open subset of X.

Amap f: X — Y is continuous if and only if f~*(C) is closed in X for any
closed subset C of Y.

D.8.1 Closure

The closure of a subset S in a topological space X is the smallest closed subset
in X which contains S.

A subset of a topological space is dense if its closure is the whole space.

A topological space is separable if it has a countable dense subset.

D.8.2 Interior, exterior, and boundary

For a topological space X and a subset A of X, the interior of A is the largest
open set of X contained in A. The exterior of A is the largest open set of X
contained in X — A. The interior and the exterior of A is denoted by int A and
ext A, respectively. Thus

ext A = int(X — A), int A = ext(X — A).

The boundary of A is the intersection of the closures of int A and ext A.

D.9 Cover

A collection U of sets is locally finite in a topological space X if for any point
p € X, there exists a neighborhood N of p such that the number of sets U € U
such that U N N # & is finite.

A collection U of sets is a cover of a set X if X C (JU.

A cover V of a set X is a subcover of a cover U if V C U.

A cover V of X is a refinement of a cover U of X if for any V € V there
existsa U € U such that V C U.
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D.9.1 Indexed family

A family (U,)aca of sets indexed by a set A is just a set-valued function U
with domain A.

An indexed family (U, ).ca of subsets of a topological space X is said to be
locally finite if for any point p € X, there exists a neighborhood N of p such
that the number of indices o € A such that U, N N # & is finite.

An indexed family (U, )aca of subsets of a topological space X is said to be
point-finite if for any point p € X, the number of indices « € A such that
p € U, is finite.

A locally finite family is point-finte.

An indexed cover of a set X is an indexed family (U,)qc such that

XC |JUa=J{UalacA}

a€cA

An ordinary cover is an indexed cover with the trivial (i.e., identity) indexing.
An indexed cover (Vj)sep of a set X is a subcover of an indexed cover
(Ua)aeA if B C A.
An indexed cover (V) e g of X is a refinement of an indexed cover (U, )aca
of X if for any 8 € B there exists a o € A such that V3 C U,.

D.10 Compact Space

A topological space X is said to be compact if every open cover of X has a finite
subcover.

Theorem D.10.0.1 1. A closed subset of a compact space is compact.
2. A compact subspace of a Hausdorff space is closed.
3. A continuous image of a compact space is compact.
4. Any continuous real valued map from a compact space has a maximum.

5. Every compact subset of a metric space is bounded.

D.11 Paracompact Space

A Hausdorff space X is paracompact? if every open cover ¢ of X has a locally
finite open cover which is a refinement of /.

Observation D.11.0.1 If X is a paracompact space, then for any indexed
open cover (Uy)aca of X, there existsalocally finite indexed family (Vi )aca
of open subsets of X such that V,, C U, for each a € A.

3This definition is due to J. Dieudonné (1944). The line with two origin is non-HausdorfF
paracompact and has no property of the partition of unity.
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A closed subspace of a paracompact space is paracompact.
Compact Hausdorff spaces are paracompact.
By a theorem of A. H. Stone (1948), metrizable spaces are paracompact.

D.11.1 Partition of unity

A partition of unity subordinate to an open cover U of a topological space X is
a collection of continuous functions ¢y : X — R for each U € U such that

1. foreachU € U, py >0
2. foreach U e U, supppy C U
3. the collection {supp ¢y | U € U} is a locally finite
4 Yveurv =1
In this case, the collection
{int(supppv) | U € U}

is a locally finite open cover of X which is a refinement of /.

A partition of unity subordinate to an indexed open cover (U,)aca of a
topological space X is a collection of continuous functions ¢, : X — R for each
a € A such that

1. foreacha € A, ¢, > 0
2. for each o € A, supp g, C U,
3. the indexed family (supp ¢a)ac4 is a locally finite

4. ZOLGA Pa = 1

Theorem D.11.1.1 Given a topological space X, the following conditions are
equivalent:

1. X is paracompact.

2. For any indexed open cover (U, )aca of X, there exists a partition of unity
subordinate to (Uy)acA-

3. For any open cover U of X, there exists a partition of unity subordinate
toU.

Corollary D.11.1.2 Let X be a paracompact space. If A and B are disjoint
closed subsets of X, then there exists a continuous function f : X — R such
that f]|A=0and f | B=1.
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D.12 Separation Axioms

A topological space X is said to be
1. T; if every point is closed.

2. Hausdorff (or Tb) if for any distinct points p and ¢ in X, there exist a
neighborhood U, of p and a neighborhood U, of ¢ such that U, and U, are
disjoint.

On a Hausdorff space, every sequence (or a het) of points has at most one
limit point.

A topological space X is Hausdorff if and only if the diagonal
{(z,z) |z € X}
is a closed subset of X x X (cf. D.14).

3. regular if for any point p in X and a closed subset K of X which does not
contain p, there exist disjoint open sets U and V' of X such that p € U and
K C V. Aregular Hausdorff space is called a T5-space.

4. normal if for any disjoint closed sets K; and K3, there exist disjoint open
sets U; and U, such that K; C U; and Ky C Us.

A normal Hausdorff space is called a Ty-space.

Note that a topological space X is normal if and only if for any pair of a
closed subset C' and a neighborhood U of C' there exists a neighborhood V' of C'
such that the closure V is contained in U.

For subsets A and B of a topological space X, we write A < B if A C int B.
Thus for any pair (A, B) of subsets of a normal space X with A <« B, there exists
a subset V of X suchthat A < V « B.

Theorem D.12.0.1 For a Hausdorff space X, the following are equivalent:
(i) X is normal.

(ii) (Urysohn’s Lemma) If A and B are nonempty disjoint closed subsets of X,
then there exists a continuous function f : X — [0,1] such that f | A=0
and f | B=1.

(iii) (Tietze extension theorem) For any closed set A C X and a continuous
function f : A — [0, 1], there is a continuous extension f : X — [0,1] of f.

(iv) (Shrinking Lemma)* If {Uy, ..., U} is an open cover of X, there exists an
open cover {Vi,...,Vi} of X such that for each i € {1,...,k} the closure
of V; is contained in Uj;.

4If the Axiom of Choice is allowed, we may use arbitrary point-finite open cover for the
shrinking lemma.
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A support supp f of a function f : X — R is the closure in X of the set
{z € X | f(x) # 0}. Let A be a closed subset of a topological space X and let
U be a neighborhood of A in X. Then a continuous function f : X — [0,1] is a
bump function for A supported in U if f | A =1 and supp f C U.

Corollary D.12.0.2 Let X be a normal Hausdorfl space, A be a closed subset
of X, and U be a neighborhood of A. Then there exists a bump function for A
supported in U.

Proof. Let V be an open neighborhood of A such that V C U. Then A and
X — V are disjoint closed subsets of X. Thus there exists a continuous function
f: X — [0, suchthat f | A =1and f | (X —V) = 0. Thus the set
{r € X | f(x) # 0} is contained in V and hence supp f € V C U. This
completes the proof. O

By D.11.1.2, paracompact spaces are normal.
(metrizable ) = | paracompacD = @D = @3) = @2) = @D

D.13 Bases for topology

A collection B of open sets of a topological space X is a basis (or a base) for
the topology if any open set in X is a union of elements in B.

A topological space is second countable if it has a countable basis. Euclidean
spaces are typical examples of second countable spaces.

Any second countable topological space X is first countable, i.e., each point
in X has a countable basis for its neighborhoods.

Any second countable topological space is separable.

A second countable space X has the Lindelof property, i.e., any open cover
of X has a countable subcover.

D.14 Product Spaces

If {X,} is an indexed family of topological spaces, then the topology of the
product X := [], X, is the smallest topology such that the projection maps
mo ¢ X — X, are all continuous. Thus the collection

{H U, | U, is an open subset of X, and U, = X,, for almost all a}
[e3

is a basis for the topology of X.
This topology is the unique one such that a map f : Y — X is continuous if
and only if the composition 7, o f is continuous for all projection maps 7.
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D.15 Quotient Spaces

Let ~ be an equivalence relation on a topological space X, andlet7 : X — X/ ~
be the projection. Then a subset U of the quotient X/ ~ is defined to be open
if (and only if) 7=(U) is open in X. This defines a quotient topology on the
X/ ~, which is the finest® topology on the quotient which makes 7 continuous.
A map f from X/ ~ to a topological space Y is continuous if and only if the
composition f o7 : X — Y is continuous.
If X/ ~ is Hausdorff, then the graph of the relation

Pi={(z,y) e X x X |z ~y}

is a closed subset of X x X.
If " is closed in X x X and the projection map 7 : X — X/ ~ is open, then
X/ ~ is Hausdorff.

D.16 Connectedness

A topological space is connected if it is not the union of two disjoint nonempty
open subsets, or equivalently, it is not the union of two disjoint nonempty closed
subsets.

A space is connected if and only if there are no closed-and-open subsets ex-
cept the whole space and the empty set.

A space X is connected if and only if any continuous map f : X — {0,1} is
constant.

If Y is a connected subset of a topological space X, then the closure Y of Y’
in X is also connected.

D.16.1 Connected Component

Two points in a topological space X are said to be in the same (connected)
component if they are contained in the same connected subset of X. This is an
equivalence relation and any equivalence class is a connected component.
Each connected component of X is a closed subset of X.
If X is locally connected, each connected component of X is also an closed
subset of X.

D.16.2 Path Connectedness

A topological space X is path connected if for any two points p and ¢ in X,
there exists a continuous map ~ : [0, 1] — X such that v(0) = p and (1) = q.
Path connected spaces are connected.

51f 71, T2 are two topologies on the same set, then T3 is finer (or stronger or larger) than

Tyif Ty C Ta.
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A topological space X is locally path connected if for any neighborhood U
of any point p in X, there exists a path connected neighborhood V' of p such that
VcU.

A connected and locally path connected space is path connected.

D.16.3 Simply connected space
Given a topological space X, two (continuous) paths
Fg:00,1] =X, f(0)=g(0), f(1)=g(1)
are path-homotopic if there exists a continuous map
F:[0,1]x[0,1] = X
such that
FO,0)=f1),  FOH)=g), F0)=/[0), F1)=/fQ1)

forall ¢ € [0, 1].
A path connected space X is simply connected if any two paths with the
same initial and the same terminal points are path-homotopic.

D.17 Invariance of Domain

Proof of the following theorem of L. E. J. Brouwer(1881—-1966) may be found
in many books on algebraic topology.®

Theorem D.17.0.1 (Invariance of Domain, 1910) A one-to-one continu-
ous image in R™ of an open subset of R™ is open.

Corollary D.17.0.2 If a non-empty open subset of R™ and an open subset of
R™ are homeomorphic, then n = m.

Proof. Suppose that U is a non-empty open subset of R™ and V is an open
subset of R™ which is homeomorphicto U. Let f : U — V be a homeomorphism.
If m < n, then The composition

UL v rm R

is a continuous injection and hence V' must be open in R” by the Invariance of
Domain. But R™ is nowhere dense” in R”, and hence we have a contradiction.
Thus n > m. By symmetry, m > n and hence n = m. O

SE.g., [GH], or https://terrytao.wordpress.com/2011/06/13/brouvers-£fixed-point—-and-
invariance-of-domain-theorems-and-hilberts-fifth-problem/

7 A subset of a topological space is nowhere dense if the interior of its closure is empty.
Thus the complement of a nowhere dense subset is dense.
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D.18 Covering Spaces

Given a continuous map ¢ : X — Y, asubset V of Y is said to be evenly covered
by ¢ if ¢~ (V) is the union of family (U,,) of disjoint subsets of X such that

gl Uy:Uy =V

is a homeomorphism for all index a.

A continuous map ¢ : X — Y is called a covering map if every point in ¥’
has an evenly covered neighborhood.

If ¢ : X — Y isacovering map, then every point y € Y has an evenly covered
open neighborhood V and ¢~*(V) is a union of disjoint open subsets of X, each
of them are homeomorphic to V.

A covering map is a local homeomorphism. It is a surjective open map, and
hence is a quotient map.

A connected, locally path connected, simply connected space X is called a
universal covering space of Y if there exists a covering map from X onto Y.

Every connected and locally simply connected space has a universal covering
space.

Let G be a group of homeomorphisms on a topological manifold A such that
for any point p in M there exists a neighborhood U of p such that

(g€ G| UNGU # 2} = {idy ).

Then the quotient map
M — M/G

is a normal (i.e., regular) covering map [cf. Massey, p.165], and G is the group
of covering transformations.
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