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PREFACE

These lecture notes are designed to present basic tools in the research
area related to algebra, algebraic geometry, and number theory. The
lectures were given at Seoul National University in 1990.

It is a great honor that this book is selected to be the first volume
of the lecture notes series of the Research Institute of Mathematics at
Seoul National University. We hope this book can help the readers to
overcome the gap between the graduate courses and the actual research
in the above mentioned subjects.

We are indebted to many people — Professors Y. Ko, J.M. Chung,
Y.H. Cho, L.-S. Lee, to name a few — for their mvaluable helps ; espe-
cially to Professor O.K. Yoon, the director of RIM at SNU. Our thanks
also go to Mrs. Park for her excellent TeXing of our manuscripts.
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Introduction

The purpose of this lecture is to give a short introduction to the
cohomology theory of groups, which plays a critial role in abstract
class field theory, as formulated by Artin and Tate. With this in mind,
some examples are taken from number fields. You may ignore them if
you have never studied number fields before since they are not required
for later use in this context.

I would like to put some emphasis on the first section of this lecture
note. The first half of the first section consists of boring definitions.
But you have to get through them. Once you get used to those defi-
nitions, you are half way through. I also recommend you to read the
construction of cohomology theory carefully appearing in the second
half of the same section. It not only gives you confidence in computing
cohomology groups but also has many similarities to other cohomology
theories. The remaining sections are treated shortly. It does not mean,
however, that they are less important than the first one. The philoso-
ply is that once you have a good understanding of the first section, the
rest will be natural and interesting. So I left many of the details as
exercises. Since they will be used later, I encourage you to try all of
them. '

My sincere thanks are due to professors R. Gold and K. Rubin at
Ohio State University. This lecture note is based on two lectures I took
from them. .

§1. Cohomology of finite groups

Let G be a finite group. By a G-module we mean an abelian group
A on which G acts (equivalently, A is a Z[G]-module). For given G-
modules A and B, a group homomorphism u : A — B is called a
G-homomorphism if it preserves the G-actions; that is,

u(oa) = ou(a) Vo € G, a € A.

Denote by Homg(A, B) the set of all G-homomorphisms A — B and
by Homgz(A, B) the set of all group homomorphisms. We can make
the abelian group Homz(A, B) into a G-module by defining

o.f =cofoal, ie., (0.f)(a) =af(c™a) Va € A, o € G.
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Note that
Homg(4, B) = Homz(A, B)®
where M€ means the set of elements of M which are invariant under

G.

DEFINITION 1.1. A G-module A is called G-regular if there is p €
Homz(A, A) such that

Z oop(c™ra) =aVa € A.
g€G

REMARK. For any z in a G-module M, the norm of z, written by
Nz, is defined by
Nz = Z oz.
o

Under this definition, the condition in Definition 1.1 simply states that
N p= 1 A-

EXERCISE 1.1. Show that Z[G] is G-regular.

(Hint : Define p: ) ny,o —ny-1).

For any two G-modules A, B, the abelian group A ®z B is a G-
module under o(a ® b) = oca ® ob.

EXERCISE 1.2. If A is G-regular, then for any G-module B, A ®z B
is G-regular, Hence, in particular, Z[G] ® B is G-regular for any B.

Now we introduce some terminologies taken from homological alge-
bra. But all the definitions are given only for G-modules. A functor,
for example, means a functor (in usual sense) from the category of
G-modules to the category of abelian groups.

DEFINITION 1.2. A connected sequence of functors {F'},<i<s is a
collection of functors so that for every short exact sequence (will be
abbreviated by s.e.s. from now on)

E:05ASB5C—0

of G-modules, there is a homomorphism (called the connecting homo-
morphism)

0% : FY(C) —» F'*Y(A) for a<i<b.



DEFINITION 1.3. A connected sequence of functors {Fi}aSiSb is
called cohomological (resp. exact cohomological) if

(i) For each s.es. E:0— A LBLC— 0, the sequence

a ‘ i-1 % Flw Fio) o
F*(A) - ... = F""}(C) — F'(A) — F'(B) —— F'(C)

0 .
— F¥(4) = -+ = F(C)
is a complex (resp. exact).

(i) If
E:0 - A 5 B 35 C -0

b
E:0 - A %5 B 5L C -0

has exact rows and commutative squares, then
. 3% .
F{(C) —— F(4)
F‘(v)l lF‘“(a)
) 8 ,
F'(C') N F1+I(AI)

commutes for a < i < b.

REMARK. Condition (ii) in the definition 1.3 plus the definition of
a functor guarantees the conmutativity of

— Fi-1(C) — Fi(A) — F{(B) — F{C) — Fit(4) —

! ! ! ! !

— Fi—l(cl) — Fi (A’) — Fi(BI) — Fi(cl) — Fi+1(AI) -

DEFINITION 1.4. Let {F'} and {H'} be two connected sequences
of functors. Let ¢* : F* — H* be a morphism. The collection ¢ = {¢'}
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is said to be a morphism of connected sequence {F"} 2 {H'} if for

anys.e.sO—-»A—uvB-:C—>0,

Fi(C) —— F¥*i(4)
"“C)J l«o‘“(A)

. L) .
H(C) —— H't'(A)
is commutative.

REMARK. Definition 1.4 and the definition of a morphism of func-
tors imply the commutativity of

— F~Y(C) — Fi(4) — F(B) — F(C) — F+i(4) —

! l ! ! !

—~ H"Y(C) — H(A) — H'B) - H(C) - H*(4) —

DEFINITION 1.5. A functor F is called effaceable if for every G-
module A, there is a G-monomorphism A 2 Bsothat (u) =0 and

coeffaceable if for every G-module A, there is a G-epimorphism B S
so that F(u) = 0.

DEFINITION 1.6. If {F'},_; ; and {H *}i=1,2 are connected sequences
of functors and if ¢! : F! — H! is a morphism of functors, then any
morphism ¢? : F?2 — H? so that

o ={p",0*} : {F'}lic12 = {H'}iz1 2

is a morphism of connected sequence is called an extension (upward)
of ¢! to F? — H?. Conversely if ¢? is given then any ¢! : F1 —
H?! so that {¢1,¢?} is a morphism of connected sequence is called an
extension (downward) of (2.

Now we give a lemma (without proof) on the extension of morphisms
of functors that is of fundamental importance.



MAIN LEMMA.

(a) Suppose {F'}i=1,2 is an exact cohomological sequence with F*
effaceable. Suppose {H i};=1,2 is cohomological. Then any morphism
¢! : F' — H? has a unique extension ¢? : F? — H?2.

(b) Suppose {F#};1,2 is cohomological and {H*};=1,2 is exact co-
homological with H! coeffaceable. Then any morphism ¢? : F? — H?
has a unique extension ¢! : F1 — H'.

EXERCISE 1.3. For any G-module A, let Fg(A) = A®/NA, where
A ={a€ Alca=aVo € G} and NA={Na|a€ A}.

Show that Fg is well defined and that Fg is a functor.

DEFINITION 1.7. A cohomology theory for G-modules is an exact
cohomological sequence {F™}_oo<n<oo Of functors satisfying (i) F° =~
Fg and (ii) F*(A) =0 for any G-regular module A and for all n € Z.

By (i), we mean there is a morphism ¢ : F* — Fg so that for each
A, p(A) : F°(A) — Fg(A) is an isomorphism.

THEOREM 1.1. There exists a unique cohomology theory for G-
modules up to isomorphism (The terminology “isomorphism” will be-
come clear in the proof of the uniqueness).

Proof of uniqueness. We need a lemma: if F(A) = 0 for every G-
regular module A, then F is both effaceable and coeffaceable.

Proof of lemma. Define a G-homomorphism u : Z — Z[G] by

u(1)=N=Za.

oc€G

Then u is a monomorphism, since u followed by h is the identity on Z,
where h : Z|G] — Z is defined by h(}_ n,0) = n;. For any A, we have

®1
Z@A~A"% 7(0] 0 A

Then p ® 14 is a G-monomorphism, since (g ®14)0(h®14) =1. By
Exercise 1.2, F(Z[G] ® A) = 0, so F is effaceable. For coeffaceable, we
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can prove in the same way by defining € : Z[G] — Z by &(}_nqo) =
Y-ngand l:Z — Z[G] by I(1) = 1¢.

Suppose {F™},ez and {H"},ez are two cohomology theories. The
above lemma shows that each F™ and H" is effaceable and coeffaceable.
By axiom (i),

F° ~ Fg, H' ~ Fg.

Then there is an isomorphism ¢° : FO — H°, Let 4° be its inverse.
Then, by the main lemma, ¢° extends uniquely to ¢? : F4 — HY for
all ¢ € Z and 9° extends uniquely to 7 : H9 — F9 for all ¢ € Z.
Then ¢? 017 extends p°04® = 150 and 17 0¢? extends 1° 0¢® = 1p0.
But clearly the extension of the identity map is the identity map. So
by the uniqueness of extension,

Ylo9? = 1ps and p? 0 9p? = 1y,.
So ¢ is an isomorphism for all q. This proves the uniqueness.

Proof of existence.
Let G® = G x -+ x G be the n fold cartesian product of G. Let

Xn = @(01)"' 16n)eGnZ[G][al7 o 70'n]
be the free Z[G]-module on symbols [0, - ,0,] and
Xo = Z[G][]

be free Z[G]-module of rank 1 on symbol [-]. We define G-homomorphism
dn: Xpn — Xp_q forn>2by

dn[al’02a"' ’Un] = 0'1[0'2a°" ’Un]
n—1
+ Z(—l)i[al,"' 3 0i0i41, """ ’an] +(—1)n[al7"' ,Un—I]
=1
and dl . X1 hand Xo by dl[O'] = 0’[] - []

Also define ¢ : Xy — Z by €[] = 1.
Note that Z is a Z[G]-module with the trivial action. So

s(z neol]) = Z neoel] = Zn,a ‘1= Z Ne-

Then -



EXERCISE 1.4.

dn dl [
e X, — X=X — X —2Z2-0

is exact (Hint : Define a Z-homomorphism s,—; : Xp—3 — X, by

- Sn-1
O'O[Ul,"' 3Un—l] = [O'Oaal’“' aan—l]’

and p:Z — Xg by
u(1) =[]
Then dp41 08y +8p—10dn =1x,,d10sg+pody =1x,.)
Define X_, by X_,, = Homz(X,—1,Z) for n > 1. Then
EXERCISE 1.5.
do d_; d_p

..._)Xn_)Xn_l _.)..._)Xo _;X_l _}X_2_)..._)X_n_)...

is exact, where dy[-] = € and d,(f) = fod, for any f € X_,,. (Hint :
define s_,, as before.)

For a given G-module 4, let A, = Homg(X,,A). Then we easily
get a complex :

a5 _, oy
""_’An—l —)An_')An-l-l_""-

Define ,
F*(A) = Kerd2/Imd2 |, n e Z.

We claim that this is the one we are looking for. For this, we have to
check

(i) {F™} is a connected sequence of functors which is exact cohomo-
logical.

(i1) F™(A) = 0 for any G-regular module A and Va € Z.

(iii) F°(A) ~ AC/NA.

Proof of (i). Let u: A — B be a G-homomorphism. Then the map
A, — B, defined by f — u o f induces a homomorphism F"(u) :
F"(A) — F*(B). We leave the details to the reader to show that F™
is indeed a functor. Suppose 0 - A — B — C — 0 is a G-module
s.e.s. Then
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EXERCISE 1.6. 0 —» A,, — B, — C,, — 0 is exact for all n.
Thus we get an exact sequence of complexes

b

0 - A,y - By = Chy — 0

I

0 - A, —-» B, - C, —- 0

I

0 - An+1 - Bn+1 b n+l 0

[

which induces the exact sequence

cor = F"(A) = F*(B) — F*(C) — F*™1(4) 5 ... .

Proof of (ii). First, we show that F*(Z[G]®z A) =0foralln € Z
and for any G-module A. For this, we need

EXERCISE 1.7. -
Homg(B,Z[G] ® A) ~ Homz(B, A)

for any G-modules A and B. (Hint : Define ¢ : Homg(B, Z[G]® A) —
Homgz(B, A) and % : Homgz(B, A) — Homg(B,Z[G] ® A) as follows.
As was mentioned earlier, we have a map h : Z|G] ® A — A. Define

o(f) =ho f and Y(9)(b) = ) o0 @ og(c7'b).)

oc€EG
Hence we have

— Homg(Xn-1,Z[G]® A) — Homg(X,,Z[G]® A) —

! !

— Homgz(X,-1,4) Angt Homgz(X,,A) Sp

!
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HOInG(Xn+1-, Z[G] ® A) -

!

Homz(X,,.H, A) —
Therefore F*(Z[G] ® A) ~ Ker A, /ImA,_;. But

EXERCISE 1.8.
+++ = Homgz(X,—1,A4) = Homz(X,,A) - Homz(Xp41,4) — - -
is exact for all n. (Hint : Consider s,) This shows

F™(Z[G) ® A) = 0.

Now suppose A is any G-regular module. Let p : A — A so that
Np=14. Define l: Z[G]® A — A by

l(oc @ a) =op(c™"a)

and A : A — Z[G] ® A by

A(a)=N®a=Za®a.

Then ! and A are G-homomorphisms satisfying [ o A = 14. Thus
F*(l) o F*(A) = lpn(4). So F"(}) is an injection. But we know
that F*(Z[G] ® A) = 0. This proves (ii).

Proof of (i1). While we are proving this, we will also calculate F~!
and F! explicitely. We analyze X_;,X_o,dg,d_;,0_2,0_1,0 and 0,
one by one. ‘

(a) X—-1 : By definition, X_; = Homz(Xo,Z), where X, = Z[G][]
has a free Z-basis composed of elements o|-]. Define a Z-homomorphism

7(-) : Z[G][] — Z by

1 fo=r1

T(:)(ol]) = {
0 ifo#mT.
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Then 7(-) form a free Z-basis for X_,;. So
X1 =®recZ(’) = Z[G)(")

is a free Z[G]-module on symbol (-).
(b) X_2 : Similarly, define a Z-homomorphism (o) : X; — Z by

1 ifp=rando=pu

(o )(plu]) = {

0 otherwise.

Then
X2 = ®r,0e6Z7(0) = BrecZ[G)(0)

is a free Z[G]-module on symbols (0)seq-
(c) do : do[] =€, where e = 3 cq0(-) = N(-) (check this). Hence
do[] = N(-).
(d) d-y : d—; is a G-homomorphism X_; — X_,.
0 ifo=1
d-1(-)[o] = ()drlo] = () o[ - []) = {
1 ifo#l.

Check that Y (7 — 1)(7~!) € X_; has the same value on each [o].
Hence d_;(-) = Y, (r = 1)(=71).
Next we analyze 0_5,0_1,0 and 0;. Note that

Homg(Xn,A) = {maps: G" — A} forn > 1

Homg(Xy,A) = {maps:[] > A} =4
Homg(X_1,A) = {maps:(-) = A} = A, and
Homg(X_,,A) = {maps: G*™! — A}.

(e) 0-2 : Homg(X_-3,A) = {maps : G - A} - Homg(X_1,4) =
A. Take f € Homg(X_3,A). So f is identified with a map G — A.
0_2(f) is determined by its value at (-).

6_a(£)() = fod-a()
= (3 (e~ 1)(e™))

=Y (e =1f(c7").
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(f) -1 : Homg(X-1,4) = A —» Homg(Xo,A) = A. Take a € 4,
which comes from f, € Homg(X_1, A) with f,(-) = a. Then
3_1(a) = 6_1fa . .Xo — A.
a—Jfa[’] = fado['] = fo(N(-)) = Nfa(-) = Na.
Hence 0_;(a) = Na.

(g) 8y : Homg(Xy,A) = A —» Homg(X;,A) = {maps : G — A}.
Take a € A coming from f, € Homg(Xy, A) such that f,[] = a.

30a=6ofa ZXI — A.
8o falo] = fadi[o] = fa(o[] - []) =0a—a= (0 = 1)a.
Hence ya is the map from G to A such that (Gpa)(o) = (0 — 1)a.

(b) 81 : Homg(X1,A) = {maps : G - A} — Homg(X32,4) =
{maps: G x G — A}. Take f: G — A.

(al f)(aa T) = fd; [07 T]
= f(olr] = [o7] + [])
= of(r)— f(om) + F(o).

Therefore,
Imo_, = {Z(a —1)f(c7Y)| f € {maps : G — A}}

= {Z(U —1)as |as € A} = IA (notation)

Kerd_; = {a € A|Na =0} = yA (notation)
Imd_; = {Na|a € A} = NA (notation)
Ker 3y = {a € A|(Bpa)(0) = (6 —1)a =0 Vo}

={a€ Aloa=aVo} = A®

Im 3y = {maps G L Al f(o) = (o — 1)a for some a € A}

Ker 9; = {maps G 4 Al f(er)=0of(r) + f(o) Yo, € G}.
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Elements of Ker 0; are called crossed homomorphism and those of Im 8,
are called trivial crossed homomorphisms. Summarizing all the discus-
sion :

F_I(A) = NA/IAa
F°(A) = A°/NA4,

{crossed homo}

F(4) =

{trivial crossed homo}"

This finishes the proof of theorem and more.

From now on, we shall write H"(G, A) for F"(A) and u, for F™(u)
for each u : A — B. The object from here on is to find as much
mformatmn about the groups H*(G, A).

EXAMPLES.
(1) Suppose a group G with g elements acts on A trivially, then

H™Y(G,A)=,A={a€ A|ga=0}
H%(G,4) = 4/gA, gA = {ga|a € 4}
H'(G, A) = Homz(G, A).

(2) Let F be a Galois extension of a field K. Let G = Gal(F/K).
Then
HY(G,F*)=0.

Proof. Let ¢ : G — F* be a crossed homomorphism. We want
a € F* such that (o) = (6—1)a = %—- Vo. By the linear independence

of characters, ) ¢(o)o is not 0. Hence there exists an element z € F*
such that b = ) ¢(0)z? # 0. Then

" =) p(a)e”)"
= Z Tp(o)z™
P(70) o
Z o) *
1
="
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So o(1) = ZI-:: Take a = il)-

(3) Under the same situation as in (2),

H"(G,F)=0foralln € Z.

Proof. By the normal basis theorem, there exists an element O € F
such that {O? |¢ € G} is a basis for F over K. So

F~o,KO0° ~ K[G],

which is G-regular (why ?). Hence H*(G, F) = 0.
EXERCISE 1.9. Let #(G) = g. Then

gH (G,A) =0 VA, Vi.

(Hint: Main lemma. Also note that a multiplication by an integer is a
morphism). ' '

EXERCISE 1.10. Let u: A — B be a G-homomorphism. Then
(i) u—1: H"Y(G, A) - H™Y(G, B) is defined by

u—1(a+ IA) = u(a) + IB.

(i) uo : H%(G,A) —» H°(G, B) is defined by

up(a + NA) = u(a) + NB.

(iii) uq : HY(G,A) —» HY(G, B) is defined by
ul(.f) =uof,

where f and u o f are the reductions of f and u o f by trivial
crossed homomorphisms.
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EXERCISE 1.11. Let 0 » A — B — C — 0 be a G-module s.e.s.
Then

(i) 07! : H™Y(C) — H°(A) is defined as follows : Take ¢ € nC.
Choose b € B such that v(b) = c. Take the preimage a of Nb under u.
Then 8~}(c + IC) = a + NA.

(ii) 8° : H%(C) — H'(A) is defined as follows : Ve € CC, choose
b € B such that v(b) = c. Define f.: G — A by f.(0) = a,, where
u(ay) = (o — 1)b.

EXERCISE 1.12. For each G-module A, define a functor H by H(A)
= AC. Then H is an left exact functor i. e., for any s.es. 0 - A —
B—-(C—-0,

0— A% - B¢ - C€¢
is exact. Moreover there exists a unique exact cohomological connected
sequence of functors {H™ }n>o such that

H™(A) = H*(G,A) forn > 1
H°(A) = H(A) = AC.

(Hint: just follow the proof of theorem keeping n > 0.)

§2. Cyclic case and the Herbrand quotient

Let G be any finite group (cyclic or not) and fix ¢ € G. We define
a morphism ¢} : H(G,*) - H™1(G,*) as follows : For a given G-
module A, define

vo(4): H'(G,A) —» H™Y(G, 4)

by ©3(f) = f(o). This is well defined. Indeed, Nf(c) = Y.7f(o) =
2 (f(ro — f(r)) = 0 and if f is a trivial crossed homomorphism, say
f(o) = (6 — 1)a for some a, then go,(f) f(e)=(0c—1)a € IA. By
the main lemma, this morphism ¢} extends (up and down) uniquely
to

0o H'(G,+) = H'™(G, ).

This does not give much information about H'(G, A) in general.
But when G is cyclic and o is a generator of o, these morphisms {? }
turn out to be quite useful.
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Let G = (o) be a finite cyclic group, and let:, g = #G. Define
¥;'(A): HTY(G,A) - H'(G, A)

by $-1(A)(a) = fa, where fo : G — A is defined by fu(o) = (0"~ +
-+ 4+ 0 + 1)a. One can check that ;! : H™Y(G,*) = H(G,*) is a
well defined morphism. By the main lemma, ¥, ! extends to

¥yt HY(G,*) = H(G, ).

It is easy to see ¢, 0l = id, p, 0¢;! = id. Hence by the uniqueness
of the main lemma ¢! (A) is an isomorphism V: and for any G-module
A. Therefore ,

THEOREM 2.1. Let G = (o) be a finite cyclic group. Then

AG/NA if i = even

Hi(GaA) = {
NA/IA if 1 = odd

Note that when G = (o) is cyclic, IA = (¢ — 1)A.

EXERCISE 2.1. Suppose H'(G, A) is perlodlc with period 2 for ev-
H°(G,A) ifi=even
ery A, i.e.,, H(G,A) = { . Then G is a cyclic
HY(G,A) ifi=o0dd
group. (Hint: Consider

0-Z-Q—-Q/Z—-0

with trivial G-actions. Also use H'(G,Q/Z) = Homgz(G,Q/Z) =
G/IG,G)).

EXAMPLES.

(1) Hilbert Theorem 90 : Let F be a cyclic extension of K. Then
H-Y(G,F) =0and H™Y(G, FX) = 0. First part was treated in §1 and
the second part comes from H (G, FX) = HY(G,FX) = 0.

(2) Given a number field L, we denote the ideal group, principal
ideal group and ideal class group of L by I, Py and C, respectively.
Also let Ef be the unit group of O, the ring of integers of L. Let F,



Introduction to group cohomology 17

K be two number fields such that F' is a Galois extension of K with
the Galois group G.

From the s.e.s. 0 = Ep — FX — Pp — 0, we have (see Ex 1.12) a
long exact sequence

0 - E§ — FX° o P — HY(Ep) — HNFX) -
[
[ ﬂ
HY(Pr) — HYEp) — H*FX) -
So we get
0— Ex — KX — PS — HY(Er) — 0
{ 0 — HY(Prp) - H*(Ep) — H}(FX) - ..

Therefore, H'(Ep) = P§ [Pk, and H'(Pr) = Ker(H?*(Er) — H*(F™)).
From 0 — P — Ir — Cr — 0, we have

0—- PE - I8 - CS - HY(Pr)— H'(Ifp) — --- .

It is a fact that H'(G, Ir) = 0. But it is an easy exercise that

EXERCISE 2.2. If G is cyclic, then HY(G, Ir) = 0.
Anyway, we have

0 — Pg/Px — IS /Px — CE& — H(Pp) — 0.

The first term P§ /Py was already studied : PS/Px = H'(EF). For
the second term, look at

0— Ix/Px — IS /Py — IS [Ix — 0.

Ix/Pk = Ck, and I /Ix = ®,Z/epZ, where p runs through all the
prime (nonzero) ideals of Of and e, is the corresponding ramification
index. Hence if the class number of K is 1, then the above sequence
becomes

0— Hi(EF) — @pZ/eyZ — C§ — Ker(HY(Er) — H*(FX)) - 0.
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Even if Ck is not trivial, we have the following Genus formula :

pep)? [Ker(H*(Er) — H?(FX))]
#(H'(EF))

#(cg) = #(cx) &

In particular, if G is cyclic,

p€p) ¥ [Ker(H(EF) —» HY(KX))]
[NEp : Eg7'] .

#(c§) = #(0x) T

We give a very special example when F = Q(v/—d) is an imaginary
quadratic field and K = Q. The followings are easy to check.

( HY(Ef) = Er/E} =Z7/27
IG/Ix = (Z/2Z)", where r = #ramified primes

Cﬁ = (CF)2 = 2 — torsion of CF

| Ker(H°(EF) — H(FX))=0.

Hence

0— Z/2Z — (Z/2Z)" - (Cr)2 = 0
is exact, therefore (Cr)y ~ (Z/2Z) 1.
EXERCISE 2.3. (1) Work out when F is real quadratic. (2) As a

consequence, when F' = Q(,/p) with p = 1 (4), Ne = —1 if ¢ is the
fundamental unit.

DEFINITION 2.1. Let G be a finite cyclic group. For any G-module
A, define the Herbrand quotient h(A) of A by

#HO(G, A)

HA) = 5 )

if 1t exists.

EXERCISE 2.4. (1) If A is finite, then h(A) = 1. (2) For a s.es.
0> A— B — C — 0, if two of h(A), h(B) and h(C) are defined,
then so is the third, and h(B) = h(A)R(C).
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EXAMPLES. (3) Let F, K be number fields, where F is a cyclic
extension of K with the Galois group G. Then h(OF) = 1, where Op
is the ring of integers of F.

Proof. By the normal basis theorem, there exists & € O such that
F» the Ox-module generated by {a”|s € G}, is of finite index in
Op. Hence from the s.e.s.

O — OF - O = Op/0O% — 0,
we have h(Ofp) = h(OR)h(Op/O%) = h(O%) by Ex 2.4. But O =
Ok(G] is G-regular. Hence H'(O%) =0 V. :

(4) Let F, K and G as in Example (3). Then h(Ef) = [F.R]> Where
EF is the unit group of F. This is true in general. But we prove only
when K = Q and F is totally real, or K = imaginary quadratic.

Proof. There exists a unit ¢ € Ep such that the subgroup E' gen-
erated by {¢” |0 € G} is of finite index in Er with Ne = 1. So from

0 — E' — E — finite — 0,

h(Er) = h(E') = h(2[G)/2N) = 5Z = ML — 1

(5) In the example (2), if we assume that the class number of K is
1, then we have an exact sequence:

0— HY(Ep) - @©,Z/pZ — C§ — HY(G, Pr) — 0.

Suppose that (¥G,#Ex) = 1. Then H%(G, Er) = 0 (why ?), which
implies H'(G, Pr) = 0 and #H'(G, Er) = #G. Therefore, #(CS) =

#(@pZ/epZ)[*(G) = 3.

§3. Some basic maps

Let H be a subgroup of G. Since any G-module can be thought of
as an H-module, we may consider H'(H, *) as functors of G-modules.
The following lemma will be used throughout this section, especially
when we use the main lemma stated in §1.
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- LEMMA 3.1 If A is a G-regular module, then A is H-regular.

Proof. Let G = U,esHs be a coset decomposition. Let p: A — A
be such that Ngp = 14. Define p' = Y ,cgs-p. Then Nyp'(a) =
S i@ = Y Yoase(sTla) = D ) (19)e((39) M) =
~EH ‘ ~Y€EH seS Y€EH s€S
Z opo~(a) = a.
c€G

EXERCISE 3.1. Check that {H"(H,*)} is an exact cohomological
sequence of G-functors which is both effaceable and coeffaceable as
G-functors. '

_Let 0 € G. Define a morphism

oo(A) : H(H, A) — H%0cHo™', A)

by [a] — [oa], check this is well defined and is a morphism. Since
H™(H, *) is both effaceable and coeffaceable, we can extend this mor-
phism to all levels

on(A): H*(H,A) — H"(cHo ™, A).

Obviously o,’s are isomorphism (o~! yields the inverse).

EXERCISE 3.2. If 0 € H, then o, : H"(H,A) — H"(H, A) is the
identity map for all n € Z.

REMARK. If H is normal in G, H"(H,A) becomes a G-module,
hence a G/H-module by the above map 0.

We now define two morphisms ; restriction and corestriction. Let

H be a subgroup of G. Define
resc’™ : HY(G,A) —» H°(H, A)

by [a] — [a]. Check this is well defined and is a morphism. By the
main lemma, res;’” can be extended to arbitrary level;

res¢H : H*(G,A) — H™(H, A).
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EXERCISE 3.3. (i) res™" : HY(G,A) — H(H,A) is defined by
[f] = [fla].
(i) res®? : H™1(G, A) — H™1(H, A) is defined by [a] > [>ses sal,
where G = UyesH s is a coset decomposition.
Define
corese’® : H(H,A) —» H%(G, A)

by [a] — [3,cssa], where G = U,essH is a coset decomposition.
Again this a well defined morphism which can be extended to arbitrary
levels

cores?® : H*(H, A) — H™(G, A).

PROPOSITION 3.1. res, and cores, are transitive and commute with

0n. Namely, the following four diagrams are commutative. Let H <
K <G.

res® X
H™(G,A) — H"(K,A)
(2) resG:H \x /resK-H
' H™(H,A)

HYG,A) =" Hr(K,4)
(ZZ) coresH,G \ /coresH-K

H™(H, A)

HYK,A) —— H™H,A)

(i) a,,l la,,
H"(oKo™',A) — H™oHo™ 1, A)

H"(K,A) —— H"(H,A)

cores

(iv) a,.l ldn

H" (oK '|A) —— H"(cHo™!, A)

cores
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~ Proof. Check these diagrams at level n = 0 and use the main lemma.
Details are left as exercises.

Suppose H is normal in G. Then from (iii), (iv) in Poposition 3.1
(with K = G), we have the following commutative diagrams.

H™(G,A) —— H"(H,A)

an=idl 1611

H"(G,A) —— H"(H,4)

and
~ H™(G,A) «—— H"(H,A)

cores

onmid | e

H™(G,A) —— H"(H,A)

ores

Thus Yz € H*(G, A), on(resz) = res(tdz) = resz. Hence resz in
fixed under G. Similarly, 0,2 — = € Ker(cores) for any z € H"(H, A).
Therefore we obtain

COROLLARY. Suppose H is normal in G. Then

(1) Im(resG H) ¢ H”(H A)¢ = H™(H, A)¢/H
(ii) IcH™(H, A) C Ker(cores?:%).

Therefore res and cores induce

(i)’ resGH : H"(G, A) —» H"(H, A)C/H
(i)' corestG : H™(H,A)/IcH"(H, A) — H™(G, A).

Now we compose res and cores in both ways.

(a) cores o res

Let m = (G : H). Then
: coresg ° reso ([a]) = m|a]
for any [a] € H°(G, A). Thus

corest% o resg H — m = multiplication by m.
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Therefore

cores,,H’G ) resG H-m

for all n € Z by the main lemma. Namely, the following is commuta-
tive;
H™(G,A) = H"(H,A)
Xm \ ‘ /cores
H"(G,A)
EXERCISE 3.4. Let #(G) = g. Then gH"(G, A) = 0 for aln € Z
and for any G-module A. (Hint : Take H = (0)).

(b) res o cores

resg '™ o corest"%([a]) = resg 7 ([Y sa]) = [T sa]. Define
Xo: HY(H, A) — H'(H, 4)

by [a] — [Y"sa]. Then ) is a morphism which can be extended to
arbitrary level

A H"(H,A) — H"(H, A).

Since Ag = resg" ’Hocoresg{ 'C the following is commutative for all n € Z;

H™H,A) “B°  H™G,A)

A N\ res
H"(H,A)

EXERCISES 3.5. If H is normal in G, then A\, = Y, ¢ sn.

For any abelian group R and for any prime p, let R, be the p-
component of Rie. R, = {x € R|p™z = 0 for some m} So if R is
finite, then R, is the Sylow p-subgroup. Note that for any two Sylow
p-subgroup G and G}, of G,

H"(G,, A) H™(G,, A)
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since they are conjugate. Fix a Sylow p-subgroup G, of G. Let n, =
(G : Gp). From n, = cores o res, we have the following commutative
diagram.

H™(G, A), = H"(Gp, A)
np \l /cores
Hn(Ga A)P

EXERCISE 3.6. Check the above diagram.
But n, : H*(G, A), — H"(G, A), is an isomorphism. Hence
res : H*(G, A), — H"(Gp, A)

is 1-1 and
cores : H"(Gp, A) —» H"(G, A),p

is onto. Therefore we proved

PROPOSITION 3.2.
(i) H*(G, A) = ®&,H"(G, A)p, = @pcores(H"(Gy, A))
(ii) So if H*(G,, A) = 0 for all p, then H"(G,A) = 0.

Suppose Gp is normal in G. Then
‘ res: HY(G, A), —» H"(Gp, A)®

is an isomorphism. To see this, look at the following commutative
diagram

H™(Gp,A)¢ % H"(G,A),
An \ /7‘88
H™(G,, A)¢

But A, = ) ,c58n = np ON H™(Gp, A)C, which is an isomorphism.
Thus res is onto. Therefore

PROPOSITION 3.3. If Gp is normal in G, then
H™(G,A), ~ H*(G,, A)°.
Hence, if G is normal for all p, then
H™Y(G, A) ~ @,H"(G, A)p ~ ®pH"(Gp, A)°



Introduction to group cohomology 25

EXERCISE 3.7. Let H be a subgroup of G. Let #(H) = h and
(G : H) = m. Suppose (h,m) = 1. Then

(i) res : H*(G,A)r — H"(H,A) is 1-1 and cores : H"(H,A) —
H™(G, A)y is onto, where H™(G, A) = {z € H™(G, A) | hz = 0}.

(ii) If H is normal in G, then res : H"(G, A)r, — H"(H, A) is an
isomorphism. .

We introduce the inflation map. Let H be a normal subgroup of

G. For any G/H-module B, B has a natural G-module structure by
ob = b for any o € G. Define a morphism

¢1: H(G/H,B) - H(G, B)

by [f] + [f o 7], where 7 is the canonical projection 7 : G — G/H.
Check this is well defined and is a morphism of G/H-functors. By the
main lemma, ¢; has unique extensions

¢n : H(G/H,B) — H*(G, B)

for all n > 1. (Caution : we cannot extend ¢; downward. Why ?).
Let A be a G-module. Then A¥ is a G/H-module, hence a G-

module. So
¢n : H(G/H,A®) - H™(G, AH)

is defined for n > 1. From the inclusion map i : A — A, we also have
in : H*(G, A®) — H™(G, A).

The composition i, 0 ¢, : H*(G/H,AH) — H"(G, A) is called the
inflation map for n > 1.

EXERCISE 3.8.

(i) Let w : A —» B be a G-homomorphism. Then the following
diagram is commutative (i.e. the inflation map commutes with the
induced maps).

inflation

H™(G/H,AH) =%, g~@G, A)

.,,,l &

inflation

H™(G/H,BH) —, H"(G, B)
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(ii) For a s.es. 0 = A - B — C — 0, suppose H!(H,C) = 0 so
that
0—-AH L, BH L, CcH

is exact. Then the inflation map commutes with the connecting homo-
morphisms. Namely the following is commutative.

inflation

HYG/H,cH) =2 Hn(g,0)

o| Jo

inflation

H™(G/H, AH) 2228 got1(g, A)

THEOREM 3.1 (FUNDAMENTAL EXACT SEQUENCE). For any G-
module A,
flatio
(1) 0 — HY(G/H, A®) 2% 116, 4) 2% HY(H, A) is exact.

inflation

(2) 0 —» H*(G/H, A"y —— H"(G, A) —>H"(H A) is exact if
HYH,A)=0for1<g<n.

Proof of (1). It is easy to show that

EXERCISE 3.9. (i) inflation is injective (ii) resoinflation = 0. Hence
it is enough to show that Ker(res) C Im(inflation). Take [f] € H!(G, A)
such that res([f]) = 0in H(H, A). This means f : G — A is a crossed
homomorphism such that f|g is a trivial crossed map, in other words
f(h) =(h —1)a, for some a € Aand forall h € H. Let g : G — A be
the trivial crossed map such that g(¢) = (¢ — 1)a with the same a as
before. Define [ : G — A by l(¢) = f(c) — g(0). Then as elements of
HY(G,A), [f] = [I]. Since l|g =0, (ko) = hl(c) + I(h) = hi(c) and
l(ho) = l(oh') = ol(h') + {(0) = (o). Thus l(c) € AH for all 0 € G
and {((Ho) = l(0). Hence [ fuctors through G/H with images in AH,
Define

f:G/H — AH

by f(&) = (o). Then inflation ([f]) = [f].
Proof of (2). We use the induction on n. We have a s.e.s.

0> A>Z[G|®A— B —0,
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where u(a) = N®a and B = Z[G|®A/u(A). Since H(H,Z[GI®A) =0
Vi,

HY(H,B)~ H™(H,A) =0
for 1 < ¢ < n — 1. Hence, by the induction hypothesis,

inflation

0— H"(G/H,B") — H"(G, B) = H"!(H, B)
is exact.
Since H(H, A) = 0,
0— 4% 5 (Z[G] @ 4)F — BH ¢
is a s.e.s. One can easily show that

EXERCISE 3.10. If A is G-regular, then A” is G/H -regular. There-
fore, H'(G/H,BH) ~ H**Y(G/H, AH) for all i. Hence from the com-

mutative diagram
0 — H"Y(G/H,BH) ™3 gn-y@q B) % g -1(g,B)
H(G/H,AH) ™ gr@4) = A, A),
we get the desired exact sequence.
REMARK. (i) There is a map, called transgression,
tr: H'(H,A) — HY(G/H, AY)
which makes the following exact;
inf es r
0— HY(G/H,A") 5 HY(G, 4) = BY(H, )5 &
inf
HY(G/H,A") 5 g2(G, 4).

Similarly, one can define tr on higher levels.

(ii) Suppose H is a normal sylow subgroup of G, or more generally,
suppose ((G : H),#(H)) = 1. Then it is an immediate consequence of
the above theorem and the proposition 3.3 that

0 — H™(G/H,A%) 2 H"(G, 4) X% H™(H, 4)C -

is exact Yn > 1.
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EXERCISE 3.11. Define tr in the above Remark so that the sequence
described there becomes exact.

§4. Tate-Nakayama Theorems

In this section, we prove two of three Tate-Nakayama theorems that
are useful in the abstract study of class field theory (class formations).
The remaining one will be proved in §5.

DEFINITION 4.1. A G-module A is said to be cohomologically trivial
if H*(H,A) =0 for all n € Z and for any subgroup H of G.

EXAMPLES. (i) Any G-regular module is cohomologically trivial

(i) Let #(G) = g. Suppose 4 is uniquely divisible by g, i.e., A X, A
is an isomorphism. Then A is cohomologically trivial.

EXERCISE 4.1. Justify (ii). (Hint: the inverse map of the multipli-
cation by g is of norm 1, hence A is G-regular). In particular, Q is
cohomologically trivial.

THEOREM 4.1 (FIRST TATE-NAKAYAMA THEOREM). Let A be a
G-module so that, for some integer r, H "(H,A)= H™'(H, A) = 0 for
all subgroups H of G. Then A is cohomologma]ly trivial.

Proof. Since H™(G, A) = @®pcores(H"(Gp, A)) by proposition 3.2,
we may assume that G is a p-group for some prime p.

Step 1. If H%(H,A) = H3(H,A) = 0 for all subgroup H, then
HY(H,A)= H*(H,A) =0 for all H.

Proof of Step 1. Let #(G) = p*. We use the induction on k. If
k = 1, then G is cyclic, so we are done. Assume this for k¥ — 1. For
any proper subgroup H, H(H,A) = H*(H, A) = 0 by the induction
hypothesis. So it remains to prove H'(G, A) = H*(G, A) = 0. Take a
normal subgroup K of G of index p. Then

inf res
0— H"(G/K,A¥) — H"(G,A) — H™(K,A) =0
is exact for 1 < n < 4. Therefore

H™(G/K,A¥) ~ H"(G, A)
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for 1 < n < 4. But H%(G, A) = H3(G,A) = 0. So HY(G/K,AX) =
H3(G/K,A¥) =0. H'(G/K,AX) = H*(G/K, AX) = 0 since G/K is
cyclic. Hence H'(G, A) = H*(G,A) =0.

Step 2. If H"(H,A) = H™t'(H, A) = 0 for all H, then H™"'(H, A)
= H"+2(H, A) = 0 for all H. Note that the theorem follows from this
by using step 2 successively.

Proof of step 2. We can construct a s.e.s.
E,:0-B;—-R - A—0,

where R; is G-regular and B; = Ker(R; — A). This was done earlier.
Then we have ’
H"(H,A) ~ H"''(H,B,)

for any subgroup H of G. Do the same for B, namely take
E2:0—->Bz—+R2—*B—+O
with Ry G-regular. Then
. H™Y\(H,By) ~ H™*(H, B,)

for all H. Clearly continuing this process gives that for any integer
q > 0 there is a G-module B, so that

H"(H,A) ~ H"V(H, B,).

EXERCISE 4.2. For any q > 0, there is a G-module B_; so that
H"(H,A)~ H" 1(H, B_,) for all subgroup H of G.
Hence for any q € Z, there is a G-module B(= By) so that

H"(H,A) ~ H"(H, B)

for all n and all subgroup H of G. Our assumption is H"(H,A) =
H™1(H, A) = 0 for all subgroups H of G. Choose a G-module B so
that

H"(H,A) ~ H"(H, B)

with r + ¢ = 2. So H?(H,B) = H*H,B) = 0. Thus H'(H,B) =
H™"Y(H,A)=0and H*(H,B) = H™t*(H,A) = 0 by step 1.
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REMARK. This theorem can be strengthened : if H ’(G,,,A) =
H™1(G,,A) = 0 for all Sylow subgroups of G, then A is cohomo-
logically trivial. (See Serre : Local fields).

THEOREM 4.2 (SECOND TATE-NAKAYAMA THEOREM). Let u : A
— B be a G-homomorphism and u,(H) : H*(H,A) — H"(H, B) be
its induced homomorphism on the cohomology of any subgroup H of
G. If, for some integer r, we have

(i) u,(H) is an epimorphism for all H
(i1) ur41(H) is an isomorphism for all H, and
(iii) wur42(H) is a monomorphism for all H ,

then u,(H) is an isomorphism for all subgroizp H of G and all n € Z.
Proof. Consider ‘

0 A % Bo(4® Z[G]) 5 Coker(a) — 0
where a(a) = (u(a),a ® N) and «, 8 are projections. For convenience,
we let C = B ® (A ® Z[G]) and A' = Coker(a). Note that

H"(H,B)~ H"(H,C)

for all n € Z and all H. We denote H"(H,*) by H"(*) to simplify
notations. We have the following exact and conmutative sequence;

o
—

~ H(4) % HYC) B omrany B oty C greo)
N\ [= . [rrsn
H™(B) | \ H™1(B)

ﬁ:il Hr+1(AI) 8&‘ Hr+2(A) 01:.__1_2 Hr+2(c) -

Upg2 ' l”"‘"z

H™+%(B)
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Since u, is onto, a, is onto, whence 8, = 0. Since Ur41 1S an isomor-
phism, so is @41, whence 9, = 8,41 = 0. And since u, 4 is 1-1, so is
Qr42, whence 9,4; = 0. Therefore H"(A') = H™1(A’) = 0. Since this
is true for all subgroup H of G, by the 1** Tate-Nakayama theorem,
A' is cohomologically trivial. Hence

an s H"(H, 4) — H™(H,C)

is an isomorphism for all H and all n € Z. This implies the 2"¢ Tate-
Nakayama theorem for u,, = 7, 0 a,,.

REMARK.

(i) Let u : A — B be a G-homomorphism so that u,(H) : H*(H, A)
— H"(H,B) is an isomorphism for n = r and n = r + 1 for some
integer r and for all subgroups H of G. Then u,(H) is an isomorphism
for all n and all H. (See Evans ; An extension of Tate’s theorem of
cohomological triviality, Proceedings of Amer. Math. Soc).

(ii) There are modules (Evans, same paper) A and B such that
H™(H,A) ~ H"(H,B) for n =r and n = r + 1 and all subgroups H
of G, but yet H*(H, A) % H"(H,B) for all n. It is, of course, that the
isomorphisms for n = r and n = r + 1 are only group isomorphisms

and are not induced by any G-homomorphism A LB
(iii) One can find in Serre’s book (Local fields) that there is a state-
ment of the second theorem involving only Sylow subgroups.

EXERCISE 4.3. Give an example of a group G and a module A such
that H"(G, A) = H™'(G, A) = 0 for some r but H"(G, A) # 0 for all
n. (Hint : Consider 0 - Z — Q — Q/Z — 0).

§5. Cup product

We only give an axiomatic characterization of the cup product with-
out the proof of existence or uniqueness, then use those axioms to prove
the third Tate-Nakayama theorem. It turns out in pratice that it is the
axims not the existence proof (even if can be done explicitly) that is
useful.

The group G is fixed in what follows and for the sake of notation we
write H"(A) in place of H"(G, A). All the tensor products are over Z
and ® = ®z.
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DEFINITION 5.1. The cup product is d collection of homomorphisms
(A, B) : HP(A)® H'(B) —» H***(A® B)

defined for all integers p and ¢ and pairs A, B of G-modules that satisfy
the following four axioms (we userally write ¢ instead of p?'7( A, B)).

(1)if A 2, Cand B - D are G-homomorphisms, then the following
diagrams commute: :

H?(A)® HI(B) —— H?*(A® B)
| ..,,@11 l(u@l)m
H?(C) ® HY(B) ——— H™1(C @ B)
and '
H?(4) @ HI(B) ——— HP1(A® B)
1®v,l | l(l@v)p+q
H?(A)® HY(D) ——— HP1(A® D)

(ii) 9?0 is induced by the natural map A% ® B¢ - (A® B)C given
bya®b— a®b.

) ifE:0— A 2 B % ¢ — 0is exact and if, for some D,
E®D:0— AQRD =, B®D >, C ®D — 0 is exact, the following
diagram commutes:

P, q

H?(C)® HY(D) —— HM1(C ® D)

3},’;@11 ' la%'glp
pPtie
HPY(A)® HY(D) —— HP*1*1(AQ D)
(iv)ifE:O-—>A—u—>B—v+C—->0isexact and if, for some D,

D®E:O—>D®A—IEZ>D®B1—®1>D®C—>0isexact,thenthe
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following diagram commutes:
¢qu
H?(D)® H1(C) — HM(CQC)
[reor vy [E
v+
H?(D)® Hi+1(4) 25 Hr+¥i(Dg A)

that is
At 0 pP = (=1)PpP+ o (1® BY).

These axioms describe the cup product uniquely. Other notations
for the cup product are

Pi(zRy)=zVyorzy

for z € H?(A) and y € H?(B). Under the notation V, axions (iii) and
(iv) read, for example,

d(zVy)=0zVy,
0(zVy)=(-1)zV 0y.

Choose a G-module A and an integer p and keep them fixed. Then
for any G-module B and any integer ¢ we have

P71 : H?(A) ® HY(B) — HP*Y(A® B).
Choose z € HP(A) and define a homomorphism
% :HY(B) —» H**(A® B)

by ©1(y) = ¢P*9(z ® y). In particular take p = 0. Then H°(A) =
ACG /N A, so for every element a € A% (@ =a+ NA € H°(A)) we have

pl:HY(B)— HY(A® B).

We will describe this map explicitely. Meanwhile, we need
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~ EXERCISE 5.1. For any G-module A, there are exact sequences 0 —
A—-R—->B—->0and0— B'"—- R — A — 0 where R and R’ are
G-regular and the sequences are Z-split.

PROPOSITION 5.1. ¢ is the induced map (v,)q, where o : B —
A ® B is defined by ,(b) = a®b.

Proof. For q = 0, it is nothing but the axiom (ii). Suppose it is true
for all B and for 0 <n < q. Choose E:0 —- B — R — C — 0, Z-split
with R = G-regular. Then AQE:0 -+ AQB -+ AQR—- AQC — 0

is exact, so by axiom (iv), we have a commutative diagram;
H(A)@HI"Y(C) — HY1(A®C)

| |

~ H°(A)® HY(B) —  H%(AQ®B).
Also the diagram

0—$B—->R—+C—+0

lm | la/)a | lqv..

0 - A®RB — AQR —-» A®C — 0

commutes so we have the following commutative diagram;

q-1
9%

H(C) B HYB)

l(wa)q-x | l(zpa)q .
o

q-1

HI"Y(A®C) 8 HI(AQB)

Choose z € HY(B). Then there is y € H?"!(C) so that 8y = z. Then
pi(z) = ¢"(@a®z) = ™10 (1@9)(@a®y) = do 1 (a@y) =
3ol (y) = A(a)g-1(y) = (¥a)g8(y) = (Ya)g(z). So ¢ = () for
any B.

For negative dimensions, the procedure is exactly the same except
taking £:0—-C - R— B — 0.
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PROPOSITION 5.2. For any ¢ € HP(A) and y € HY(B), tVy =
(—=1)?y V z under the natural identification A® B with B® A.

Proof.

Step 1. p=¢ =0: Axiom (ii) :

Step 2. ¢ =0, p>0: Supposeltlstruefor0<l<p Takea
Z-split exact sequence

E:0--A—-R—-A"-0.
Then )
Hq'l(A') ~ HI(A).

Hence for a given z € HY(A), thereis 2’ € H97!(A') such that 0z’ = .
Thus zVy = (0z')Vy = 8(z' Vy) = d((-1)P~ V0 vz) = d(yVa') =
(-1)°y vz =yVuz.

Step 3. ¢ =0,p < 0: Same procedure w1th E:0-A —>R—
A—0.

Step 4. ¢ < 0, p = arbitrary : Suppose it is true for all p when
g <1<0. Consider a Z-split sequence

E:0-B'"-R—-B-0.
Then for z € HP(A), y € H1(B),
Az Vy) = (—-1)Pz V dy = (~1)P(~1)P@*+Day v & = (~1)P18(y V z).

Since 0 is an isomorphism, z V y = (=1)?y V z.
Step 5. ¢ > 0, p = arbitrary : Same procedure.

Now we are ready to introduce the third Tate-Nakayama theorem.
We have, for any G-module A and for a given a € H?(G, A),

¢l : HY(G,Z) — HP™(G, A)
given by £ — a V z. Then for any subgroup H of G define
fa(H): H"(H,Z) — H"*?P(H, A)

by T (resa) V z, that is f2(H) = Pres(a)-
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THEOREM 5.1 (THIRD TATE-NAKAYAMA THEOREM). Let A be a
G-module so that for some integer ¢ and for all subgroups H of G we
have (a € H?(G, A)).

(i) fi4(H) is an epimorphism
(i) fIt'(H) is an isomorphism

(iii) f2*?(H) is a monomorphism.

Then f2(H) is an isomorphism for all n and all H.

Proof. We use the induction on p. It is an easy exercise to check the
case p = 0. (Use proposition 5.1 and the 2"¢ Tate-Nakayama theorem).

Suppose a € H?(G, A) and that the theorem is true for all [ so that
0 <! < p. Take
: E:0-A-R—-A" >0

which is Z-split exact sequence with R = G-regular. We claim that
the following is commutative (@' is taken so that Ja' = a).

H”(H, Z) fai)H) Hn-l-p—l(H’ AI)
f2(H) N /8
H™P(H, A)

This is true because f*(H)(z) =resaVz =res(0a’') V£ = O(resa’) V
= O(resa’ V z) = Of % (H)(z).

But 9 is an isomorphism and so f7,(H) satisfies the hypothesis (i),
(i), (iii) of the theorem. By the induction hypothesis, fz.(H) is an
isomorphism for all n and all H, but then so is f3(H).

To show this for p < 0, choose an exact sequence E : 0 — A’ —
R — A — 0 and proceed as usual.

Now we get a very important corollary which is used strongly in the
axiomatic treatment of class field theory (see Artin-Tate : class field
theory).

THEOREM 5.2. Suppose for some G-module A we have
(i) HY(H,A) = 0 for all subgroups H of G
(ii) H%(H,A) = cyclic group of order #(H) generated by res(a),
where (a) = H%(G, A).
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Then fr(H): H*(H,Z) — H"*?(H, A) is an isomorphism for all n
and all H.

Proof. Look at f2(H) for -1 <n < 1. For n = -1,
f;YH): HY(H,Z) —» H'(H,A) =0
is onto, and for n =1,
fUH): H'(H,Z)=0— H*(H,A)

is one to one. For n = 0, we have the following. We know H°(H,Z) =
Z/hZ, where h = #(H). Also H?(H, A) = (resa) is cyclic of order h.
So we must show
fY(H):Z/hZ — (resa)

is an isomorphism. For @ € Z/hZ, fi(H)(@) =resaVa=aVresa =
p2(res @) = (q)2(res @), where ¢, : A — A is the multiplication by a
i.e., ¢ — az. Thus fO(H)(a) = ares a. Hence f(H) is an isomorphism.
Apply the 37¢ Tate-Nakayama theorem to finish the proof.

REMARK. If the hypothesis of theorem 5.2 holds, the case n = —2
is of most interest for class field theory:

fo2(H): H™Y(H,Z) = H/H' = H°(H,A) = A¥/NyA.
Then the module A determines the group H.

EXERCISE 5.2. For = € H?(G,A), y € HY(G,B), res(z V y) =
resz Vresy

EXERCISE 5.3. For z € H?(G,A), y € HY(H, B), cores(reszVy) =
T V coresy.

§6. Semi local theory _

Suppose A = II, A, is a direct product of G-modules. Then A is a
G-module under o(a,) = (0ay). Let 7o : A — A4 be the projection
onto the at? coordinate. Then clearly 7, is a G-homomorphism, hence
induces

(Ta)n : H*(G,A) = H"(G, Aq).
Then we have a homomorphism

mnt H*(G,A) = I H"(G, Ap).
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EXERCISE 6.1. Show that 7}, is an isomorphism for all n.

DEFINITION 6.1. A set S is said to be a G-set if G acts on S tran-
sitively.

Let S be a G-set. For each P € S, let Gp = {0 € G|oP = P},
which is a subgroup of G.

EXERCISE 6.2. Suppose P' = 7P for 7 € G. Then Gp» = rGp7™1.

Let {Ap|P € S} be a collection of abelian groups indexed by S
such that for each o € G, we have a homomorphism o : Ap — Agp
so that 1 : Ap — Ap is the identity map and the following diagram
commutes; .

A'p ' — Ao.p

re N r

Arc'P

Then o : Ap — Aop is an isomorphism.

Let A =1IIpcsAp. Then A can be made a G-module as follows : if
a = (ap) € A, then define oa to have P-component (0a)p = oa,-1p.
Then (i) 1a = a (ii) o(ra) = (¢7)a (iii) o(a + a') = ga + od".

EXERCISE 6.3. Prove (ii). Also for any P, we have Ap is a Gp-
module.

PROPOSITION 6.1. H*(Gp,Ap) ~ H"(Gp/,Ap:) for any two P,
P'eS.

Proof. Left as an exericise.

For any P € S, we have the projection map 7p : A — Ap whichis a
Gp-homomorphism, and so induces (7p)n : H*(Gp, A) = H*(Gp, Ap).
Also we have restriction res : H"(G,A) —» H"(Gp,A). Define h, =
(tp)n ores : H*(G,A) - H*(Gp, Ap).

THEOREM 6.1. h, : H*(G,A) — H"(Gp,Ap) is an isomorphism
for alln and any P € S.

Proof. Left as an exercise.
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I. Quadratic Forms over Fields

" 1. Abstract Theory of Quadratic Forms

Let F be a field with chF # 2. Let V be a quadratic space, i.e., V
is a finite dimensional vector space over F' equipped with a symmetric
bilinear form B : V xV — F. Let Q : V — F be the quadratic map
associated to B, i.e.,

Q(w)= B(z,z), Yz € V.

Fix a basis 1, -+ ,z, for V over F. Then for z = 12,4 -+a,z, €
V, we have

a

Q(z) =Y _ Q(z:i)al + ) B(wi,z;)aia; = (a1, ,an) Mg
i=1 i#) |
an

where Mg = (B(zi,z;)) is the symmetric n X n matrix associated to

DEFINITION1.1. The discriminant dV of V is defined to be det M Q>
which is well-defined modulo (F*)%. A quadratic space V is said to be
regular if dV # 0.

One can easily check that a quadratic space V is regular if and only
if radV = 0, where radV = {z € V|B(z,V) = 0}

DEFINITION1.2. Let V, V' be quadratic spaces with quadratic maps
Q, @', respectively. A linear transformation o : V. — V' is called a
representation if Q'(cz) = Q(z), Yz € V. A bijective representation is
called an isometry. We set

O(V,V')={o:V — V' isometry}
O(V) = O(V, V).

O(V) is called the orthogonal group of V.



Introduction to Quadratic Forms 43

We say that V is represented by (or, isometric to) V' if there exists
a representation (or, isometry) from V into (or, onto) V' and write
VoV (or, V>V

For a € F, let (a) denote a one dimensional quadratic space Fz
with Q(z) = a. Note that if V' # 0, then V has an orthogonal basis
Z1,...,&y such that

V = F$1.LF(II2_L ce _LF:En jad (al)_l_(az)_l_ ce J.(Oln)

where a; = Q(z;), B(zi;zj) = 0, Vi # j. For a subspace U of V, we
define the orthogonal complement U* of U by

U*={ze€eV|B(z,U) =0}.

It is easy to see that if U is a regular subspace of V, then U splits V,
ie,V=ULlU*.

DEFINITION1.3. A non-zero z € V is called an isotropic vector if
Q(z) = 0 and an anisotropic vector otherwise. V is called an isotropic
space if it contains an isotropic vector and an anisotropic space other-
wise. V is said to be totally isotropic if every non-zero vector of V is
isotropic. V is said to be universal if Q(V) = F.

A quadratic space H of dimension 2 is called a hyperbolic plane
0 1
if there exists a basis z1,z, for H for which My = ) It

10
is easy to see that a binary quadratic space H is hyperbolic if and

only if dH = —1 if and only if H is isotropic and regular. Note that
a hyperbolic plane is universal. One can easily prove the following
structure theorem of regular quadratic spaces.

THEOREM1.4. Let U be a maximal totally isotropic subspace of a
regular space V. If dimU =r, then

V~H1lH,1---1H,. 1V,

where H; are hyperbolic planes for alli = 1,...,r and V} is anisotropic
or null.

V is called a hyperbolic space if Vj = 0. Note that if V' is isotropic,
then V is universal. We state the following theorem due to Witt [W]:
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THEOREM1.5(WITT). (1) Let U, W be isometric regular subspaces
of V. Then U*, W* are isometric.

(2) Let V, V' be isometric regular spaces. Let U be any subspace of
V and 0 : U — V' be an injective representation. Then there exist a
prolongation of o to an isometry :V — V'.

The dimension r of a maximal totally isotropic subspace U of a reg-
ular space V is an invariant of V, called the index of V and denoted by
indV. Indeed, if W is another maximal totally isotropic subspace of V
such that dim U < dim W, then there exists an injective representation
o : U — W, which can be prolonged to an isometry : V — V. Since
U=06"YW),dimU = dim W as asserted.

Let V be a regular quadratic space from now on unless specified
otherwise. o € O(V) is called a rotation if det 0 = 1 and a reflection if
det o = —1. Note that deto = £1, Yo € O(V). Let

Ot(V)={o€0(V)|deto =1}.
O1(V) is a subgroup of O(V) such that (O(V): 0*(V))=2. It is a

well-known fact that every isometry o € O(V) is a product of at most
n(= dim V') symmetries, where a symmetry 7, € O(V) is a reflection
defined by

Te(y) =y — %?é—;’z—y))w, Yyev,

for any given anisotropic vector = of V.

2. The Algebras of Quadratic Forms

Let A be an algebra over F. We say that A is central if the center of
Ais F1, and that A is simple if A contains no non-trivial proper two-
sided 1deals So every division algebra is simple. We state Weddeburn’s
Theorem :

THEOREM2.1(WEDDERBURN). Let A be a central simple algebra
over F. Then there exist a unique positive integer n and a unique
central division algebra D = D4 (up to algebra isomorphism) such
that

A~ M, (F)® D ~ M,(D).

Proof. See [L] for a detailed proof.
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DEFINITION2.2. Let A, B be central simple algebras over F. We
say that A, B are similar, write A ~ B, if D4 ~ Dp.

Note that if A ~ B and dim A = dim B, then A ~ B.

REMARK2.3. Br(F) = {central simple algebras over F}/ ~ is a
group, called the Brauer group, under @. It is known that Br(R) ~

{£1}, Br(F,) ~ 0, and Br(k,) ~ Q/Z, where k,, is the p-adic com-
pletion of a number field ¥ at a prime spot p.

DEFINITION2.4. Let V be a regular quadratic space over F. An
algebra A is said to be compatible with V if A contains V as a subspace
and ¢? = Q(z)1,, Yz € V. An algebra C, which is compatible with V,
is called a Clifford algebra of V if for any algebra A compatible with
V, there ex1sts a unique algebra isomorphism ¢ : C — A such that
pr=1zx,"z€V.

Such C always exists uniquely up to isomorphism. In fact, C is
generated by V' with dim C' = 2". A basis of C is

{z3*-- 28" |e; =0or 1},

which we call the derived basis from z;,--- ,z,, where V = Fz, L ---
1l Fz,.

DEFINITION2.5. Let 0 =7y, -+ - 7, € O(V). We define

6(0) = Q(u1)--- Q(ur)

and call it the spinor norm of o.

"The spinor norm 6 is well-defined modulo (F*)2. Note that 6(c) #0
and 6(o7) = 6(0)f(7). One knows that 8(c) = det(
O*(V) if the determinant is not zero. We set

)forcrE

0'(V) = {o € 0H(V)|8(0) = 1}.
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DEFINITION2.6. Let V = F1, + Fz; + Fz3 + Fz3 be an algebra
satisfying 22 = al,, z% = Bl,, 132 = z3 = —x27; for o, 8 € F*.
V is called a quaternion algrbra, denoted by (a,8) = (911,?_[3) For

z=a0l, + a1T + azx2 + a3r3 € (a,ﬂ), we define

T =al, —a1z1 — azx2 — azTs3
Nz =23 = (a — d?a — a2B + ddaf)l,
Tz =2z+Z =2al,.
We denote the set of pure quatarnions by (a, 8)° = Fz1 4 Fz2 + Fas.
It is easy to show that (e, ) is central simple and (1,-1) ~ My(F).
If V ~ (a)L(B) is a regular quadratic space over F, then (a,f) is

isomorphic to the Clifford algebra C of V.
We now give a quadratic structure to (a, 3) as follows :

1
‘ B(w,,y)lv = '2'T(5'7g) a'ndv Q(z)l, = Nz.
Then d(a,B) =1 and ’
(a,8) = F1, L(a, B)°
= Flv J_F.’BlJ_F.'L'zJ_F:lIg
= () L(-a)L(-B)LeB).
The followings are easy to verify :

THEOREM2.7. (1) Let C, D be quaternion algebras. Then C, D are
isomorphic if and only if C, D are isometric if and only if C°,D° are
isometric.

(2) Let a, 8 € F*. Then (a, ) ~ (1,-1) if and only if (a, B) is not
a division algebra if and only if (, ) is isotropic if and only if (e, B)°
is isotropic if and only if (a) L(B) represents 1. :

(3) Let a, 3,7, A, p € F*. Then the followings hold :

 (La)~(1,-1) ~ (a,—a) ~ (a,1 — a)
(ﬂaa) ~ (a, B) =~ (axzaﬂﬂ?)
(a,aﬂ) =~ (aa '—ﬂ)
(a,8) ® (@,7) = (a, B7) ®(1,-1) ~ (e, 87)
(a)ﬂ) ® (CY, ﬂ) ~ (1a _1)
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DEFINITION2.7. Let V ~ (a;)L--- L{an) be a regular quadratic
space. We define the Hasse algebra SV of V by

SV = Q)(ai, d;)
i=1
where d; = a1 - - @;.
SV is unique up to isomorphism. It is easy to see that SV ~
®1$,~S]—Sn(a;, O{j) and that SV ~ SU ® (dU, dW) ® SWifV = UlW.

THEOREM2.8. Let V,V' be regular quadratic spaces of dimn, 1 <
n < 3. Then

V ~ V' if and only if dV = dV' and SV ~ SV'.

Proof. It is enough to prove the sufficiency. For n = 1, there is
nothing to prove. Let n = 3. By scaling, we may assume dV = dV' =1
and then

V > (—a) L{-B) L(aB) ~ (a, B)°
V' (=) L(=6) L(78) ~ (v,6)°

for some a, B,7,6 € F*. From SV ~ SV’ follows (e, 8) ~ (7, 6) and
hence (a, B) = (v, 6) as algebras. So by Theorem 2.7-(1),

V (e, ) (v,6) = V.
Now for n = 2, the theorem follows by applying Witt’s Theorem to
W=V1i(1)~V'L(1) =W
THEOREM2.9. Let F be a field with the property that every regular

quadratic space of dimension > 5 over it is isotropic. Then two regular
quadratic spaces V, V' over F is isometric if and only if

dimV =dim V', dV =dV’', and SV ~ SV'.

Proof. 1t is enough to prove the sufficiency. Let dimV = dim V' =
n. For n = 1,2,3, the theorem follows from Theorem 2.8. So assume
n > 4. We use induction on n. Consider V L(—1), which is isotropic
by hypothesis. Obviously, 1 € Q(V') and hence (1) splits V, i.e., V =
(1) LU for some (n — 1)-ary subspace U of V. Similary, V' = (1) LU’
for some (n — 1)-ary subspace U' of V'. U ~ U’ follows immediately
from induction hypothesis, which proves V ~ V.
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3. Hasse-Minkowski Theorem

DEFINITION3.1. Any n-ary regular quadratic space V over R can
be written in the form V ~ (1)L--- 1(1) L(-1)L--- L(—1), where

P q
p+q = n. V is said to be positive (negative) definiteif ¢ =0 (p = 0). V
is said to be definite (indefinite) if pg = 0 (pg # 0). We set ind*V = p,
ind~V = ¢, and ind V = min(p, q).

For regular spaces V,V' over R, we have V' — V' if and only if
ind*tV < ind*V' andind~V <ind~V'. V ~ V' ifand only if ind*V =
ind*V' and ind~V = ind~V'. Note that there are exactly two non-
isomorphic quaternion algebras over R, namely,

-1,-1
(R

) and (2

REMARK3.2. Any n-ary regular quadratic space over C is of the
form V o~ (1).L--- L{1). So for any regular spaces V,V' over C, we
have V — V' if and only if dimV < dim V' and V ~ V' if and only
if dimV = dim V'. Furthermore, we have only one quaternion algebra
up to isomorphism over C, namely,

Let F be a local field with a prime spot p. We let O = O(p),
p = m(p), and U = U(p), be the ring of integers of F' at p, the
maximal ideal of @, and the unit group of O, respectively. One can
easily prove the following :

(Local Square Theorem) For any a € O, 1+ 4ma is a square, where
7 is a prime element of F.

Ariy ¢ € F can be expressed in the form é = n? + a for at least one
pair 7, a € F. We define the quadratic defect 6(§) of £ by

5= (] <O

a€F;é=n%+a
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It is well-known that for a unit ¢ € F,
Oor O if p is non-dyadic
o
0,40,4p7,--- (% p  if pis dyadic.
Also known that there exists A € U with §(A) = 40. Of course,

40 = O if p is non-dyadic. Note that §(¢) = 0 if and only if £ is a
square.

DEFINITION3.3. Let F' = R, C, or a local field and let p = real,
complex, or prime spots, accordingly. For a,3 € F*, we deﬁne the
Hilbert symbol

1 if a? 4+ Bn* =1 for some ¢,n € F
(@B _ {
—1 otherwise.

For a regular space V ~ (a;).L --- L{a,), we define the Hasse symbol

- ai,di
SrrV = l I(_p )
i=1

where d; = a; - - - a;.

REMARK3.4(HILBERT RECIPROCITY LAw). For any o, 8 € F*,
a, B
II( —<-)=1

and for any regular quadratic space V,

IS,V =1
2]

Note that a quaternion algebra (%é) is a division algebra if and

a,p

only if (— ) —-1.
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We come back to the case when F' is a local field with a prime spot
p. We fix m,A as above. We have the following very useful property :
If V is a binary space over F' with dV a prime element, then for any
v € F* |V represents either v or Ay but not both.

A A
From this, it is easy to see that (W;) ) = -1, (6,@ y=1,% €U,
and that every quaternion division algebra is isomorphic to (W’—)

So there are exactly two non-isomorphic quaternion algebras over F,
namely,

(%:—,A-) and (l’—l—;,——l)

Combining these facts, one obtains the following : If V is an anisotropic
quaternary space over F, then dV =1 and

V & (1) L{~A) L{r) L{—7A)

Therefore, V' is universal if dim V' = 4 and hence V is isotropic if V is
regular over F' with dimV > 5.

THEOREM3.5. Let V,V' be regular spaces over a local field F' with
a prime spot p. Then

(1) V — V' if and only if
V'~V when dimV' = dimV,
V'~ VL1(dV-dV') when dimV' =dimV + 1,
V!~ V1H when dimV' =dimV + 2 and dV' - —dV.

Here H is a hyperbolic plane.
(2) V ~ V' if and only if

dimV =dim V', dV = dV', and S,V = S,V".

Proof. (1) It is enough to prove the sufficiency. Let r = dim V' —
dim V. When r = 0,1, it is trivial.
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Let » > 3 and let

Veag)l... L{ay)
V' (B L LB,

Since (1) L{Bn+1)L(Bn+2)L(Bn+3) represents o,
V'~ (1) L(Ba) L... L(Bn) L{ynt1) L ... L{vm).
Repeating this process, one concludes that M

V'~ (aq)L... L{an) L{6nt1)L ... L{6m),
which implies V — V. S :

Now let r = 2. If dV' = —dV, then the theorem follows from the
given condition. So we assume dV' # —dV. Since dim(V'LH) —
dimV = 4, we have V — V' LH and hence V1W ~ V'1 H for some
quaternary space W. dW # 1 implies that W is isotropic. So W ~
Wi L Hy, where H; is a hyperbolic plane. According to Witt’s Theorem,
V1W; ~ V' and hence V — V',

(2) Clear from the above and Theorem 2.9.

Let F be a global field and o € F. We list the following two standard
results from algebraic number theory :

(Global Square Theorem) a is a square if and only if a is a square
at almost all spots on F. ‘

(Local-Global Norm Theorem) Let E be a quadratic extension of F'.
Then a is a global norm if and only if « is a local norm at every spot
on F.

Let V be a quadratic space over a global field F' and let p be a prime
spot on F. By V,, we denote the quadratic space F,V over F,, the
p-adic completion of F' at p.

THEOREM3.6. A regular quadratic space over a global field F is
isotropic if and only if it is isotropic at every spot on F'.

Proof. It is enough to show the sufficiency. Let V be a regular n-ary
quadratic space over a global field F. We may assume n > 2. Fix an
orthogonal basis z1,...,z, for which V >~ (aq)L--- L{an), a; € F*.



52

Let n = 2. dV, = ajaz = —1. So —oqa; is a square at each p.
Hence —aja5 is a square in F by GST. So dV = —1, that is, V is a
hyperbolic plane, which is isotropic.

Let n = 3. By scaling, we may assume V ~ (—a)}LP, P ~ (1) L(—2)
with B non-square. (If B is a square, then P is a hyperbolic plane.)
Since V,, is isotropic, P, represents o at each p. So a = f; — ﬂnz, for
some &, 1, € F,, i.e., ais a local norm from E = F(y/P) to F at each
p. So a is a global norm, i.e., a = ¢2 — Bn? for some €,n7 € F. This
proves that V is isotropic.

Let n = 4. Assume dV = 1. Then any regular ternary subspace U
of V is isotropic because U,, is isotropic at each p. (This is because
V, is isotropic and dV,, = 1.) So V is isotropic. Now assume dV #
1. Let V = Fay1lFzo 1l Fz3 1 Fay, Q(z;) = iy, ¢ = 1,2,3,4. Let
B = ajazazay, E = F(\/B). (EV)p is isotropic for any spot P on E
because V,, is isotropic for any p on F. But d(EV) = 1 because {3 is
a square in F and this implies EV is isotropic. It follows immediately
that V is isotropic.

Let n > 5. We use induction on n. Let U = Fz11lFzy, W =
Fz3l..-1Fz, suchthat V=U1lW. Let

T = {p on F | W,is anisotropic }.

Clearly, T is a finite set. There exists p, € FX for any p € T such
that p, € Q(Up), —pp € Q(W,). By Chinese Remainder Theorem
or Weak Approximation Theorem, one can find g € F* such that u
is close to p,, Yp € T. Since (FX)? is open in F)X, p € pp(F))?,
Vo € T. Write V =~ (p')L(u)LW. Then (u) LW is isotropic since
—p € —p(FY)? € QW,), Vo € T, and W, is isotropic at every
p € T. This completes the proof.

REMARK3.7. An n-ary regular quadratic space over a function field
is isotropic if n > 5.

THEOREM3.8( HASSE-MINKOWSKI). Let V, V' be regular spaces over
a global field F. Then,

(1) V- V'ifand only if V, =V, for all p on F.

(2) V~ V'if and only if V,, ~ V,, for all p on F.

Proof. (1) It is enough to prove the sufficiency. Let a € F* be
represented by V, for any p. Then (—a) LV, is isotropic at any p and
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hence (—a) LV’ is. This proves the theorem when dimV = 1. We use
induction on dimV. Let dimV > 2. For any nonzero a € Q(V), we
may write V =~ (—a) LW and V' ~ (—a)LW'. Since V,, — v, for
all p, W, — W,, for all p. So W — W' by induction hypothe31s and
hence V — V',

(2) Clear from (1).
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I1. Quadratic Forms over Rings

4. Claséiﬁcatibn of Lattices over Local Fields

~ Let F be a global field or a local field, chF' # 2, O the ring of
integers of F, U the group of units of F, and I the group of nonzero
fractional ideals of F. B

DEFINITION4.1. Let V be a vector space over F' with dimV = n.
An O-module L in V is called a lattice in V if L C Oz +- - - + Oz, for
some basis 1, -+, for V. A lattice Lison V if FL = V. We define
rankL = dim FL. A lattice L is said to be free if L = Oz; +---+ Oz,
for some basis z1,--- ,z, for FL. We call z;,--- ,z, a basis for L in
this case and define dim L = r = dim F'L = rankL.

The followings are basic properties on lattices.

THEOREM4.2. (1) There exists a basis 1, -+ , &, for FL such that
L=Az +--+ Az,

where A; = {a € F|az; € L} € I, called the coefficient of z; with
respect to L. Furthermore, one can find a basis 21,22, ,2, for FL
such that

L=Az+0zn+ -+ 0z,

where A is the coeflicient of z; with respect to L. Note that every L
is free if O is a p.i.d.

(2) For lattices L, K on V, there exists a basis ¢, -+ ,z, for V such
that

L=A1.'l'1 +'“+~Anmn
K = A]Blil'] + - +Aan$n

where A;,B; € I and B, C B,_; C -+ C B;. The fractional ideals
Bi,--- ,B, are uniquely determined by L and K, called the invariant
factors of K in L.

Let F be a global field and p a prime spot. Let O, and U,, denote
the ring of integers of F}, and and the group of units of O, respectively.
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Let L be a lattice in a vector space V over F. By the localization of L
at p, we mean an O,-module generated by L, denoted by L,,. Clearly
L, is a lattice in V,,. So for L = A;z; + -+ + A,z,, the localization
of L at p is given by

Lp - Al,pxl +--- 4 An,pxn

where A,, denotes the closure of A in F, for A € I.

DEFINITION4.3. Let K, L be lattices on V' where V is a regular n-
ary quadratic space over F', a global or a local field. We define K ~ L
if K = oL for some o € O(V). This is an equivalence relation and we
call the equivalence class of L the class of L, denoted by clsL. Similary,
we define clst L, the proper class of L, to be the set of all lattices K
on V satisfying K = oL for some o € O (V). We define

O(L)={oc€eO(V)|eL=1L}
O*(L) = O(L)n O (V).
O(L) and O*(L) are called the orthogonal group and the proper or-
thogonal group, respectively, of L.
Note that |

clsL = cls* L if and only if (O(L) : 0*(L)) = 2.

So clsL = clstL if O(L)N O~ (V) # ¢. We say that L is regular if FL
is regular. '

We now define several invariants of a lattice L in V over F, which
are necessary in what follows, where F' is a global or a local field. The
scale sL of L is an O-module generated by B(L,L). The norm nL of
L is an O-module generated by Q(L). Note that

2sL C nL C sL.

If we assume L is a non-zero regular lattice, then sL, nL are fractional
ideals of F'. The volume of vL of L is defined by

vL = A% A2det(zy, - , ;)
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where L = A1y + --- + A,z, for some basis z,,--- ,z, for FL and
det(zy,- -+ ,z,) = det(B(z;,z;)). It is easy to see that vL is well-
defined and that

vL C (sL)".

A lattice L in V is called an A-modular lattice (A € I) if
sL=A and vL = (sL)"

where r = rankL. L is said to be unimodular if L is O-modular. The
dual lattice L* of L is deﬁned by

| L' ={z € FL|B(z,L) C O}.
fL=Az +--+ Az, then
=A'y + -+ ANy,

where y1,--- ,yr is the dual basis of z1,--- ,z, for FL. Note that L is
A-modular if and only if AL* = L. So L is unimodular if and only if
L'=1L.

Let L be a lattice with sL = A and J an A-modular sublattice of L.
Since F'J is regular, F'J splits FL,i.e., FL = FJ LU for some subspace
U of FL. Pick any z € L and write t =y + 2, withy € FJ,z € U.
Then -

B(y,J)=B(z,J)CsL=A

implies y € J since J is A-modular. Now z = z —y € LNU. Therefore,
we may conclude that

L=J1lK

for some sublattice K(= LNU) of L, i.e., J splits L in this case.

We now assume that F is a local field with a prime spot g, and let
V be a regular quadratic space over F. Let L be a regular lattice in
V. Obviously, L is free in this case. It is a well-known fact that L can
be split into 1-and 2-dimensional modular lattices as follows : If there
exists ¢ € L such that Q(z)O = sL, then take J = Oz ; if not, choose
z,y € L such that B(z,y)O = sL and take J = Oz + Oy. Then J is
an sL-modular sublattice of L and J splits L, i.e., L = JLK. Note
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that sK C sL. Repeat this procedure for K,---. Regrouping those
components suitably, we have

L=Ly1Ly1---1L;
with a proper chain of fractional ideals
3L1 D 8L2 Do :)SLt

where L; are s L;-modular. We call such a splitting a Jordan splitting of
L. Assume L=L;l---1L; = K;1.-- LK, be two Jordan splittings
of L. Then they are of the same type in the sense that

t=r,sL; =sK;,dim L; = dim K,
nL; = sL; if and only if nK; = sK;, Vi =1,2,... ¢
Note that the last condition is redundunt if p is non-dyadic.

We give the following theorem on classification of lattices over non-
dyadic local fields. .See [O] for a detailed proof.

THEOREM4.4. Let L, K be regular lattices of the same Jordan type
on a regular quadratic space V over a non-dyadic local field F with
Jordan splittings ’

L=Ly1---1L,
K=K l---1K,.

Then
clsL = clsK if and only if FL; ~ FK;, Yi=1,--- ,t.

We need more definitions to deal with lattices over dyadic local
fields. Let F' be a dyadic local field and let L be a lattice in a regular
space V over F. The norm group gL of L is defined by

gL =Q(L) + 2sL.

Clearly,
2sL C gL C nL.
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A norm generator v of L is defined to be a scalar of largest value in g L.
v is determined uniquely up to multiplication by a unit square modulo
w = w(L*T), a fractinal ideal introduced in the below. One can easily
check that v is a norm generator of L if and only if v € gL C vO, i.e.,
v € gL with vO =nlL.
The weight wL of L is defined by
wL =p-mL+2sL
where mL is the largest fractinal ideal of F' contained in gL. Of course,
gL is not necessarily a fractional ideal of F. For a nonzero fractional
ideal A of F, LA is a sublattice of L defined by
LA = {z € L|B(z,L) C A}.
One can easily check that
LA = AL'N L.
Let L=L;1Ly1---1L; be a Jordan splitting of L. Then
t, dim L;, sL;, wi = w(L*L), y;
are called the fundamental invariants of the Jordan splitting, where v;
is a norm generator of L*L for each i. Any two Jordan splittings of the
same lattice have the same fundamental invariants. So we may regard

the invariants are of the lattice.
Note that

wp D Dwe
a1

U
U
2

where g; = g(L*%?). Also note that

gi = g(L*1) = v,0? + w;.
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We define F; by

‘ > 6(ap) if ord,v; + ord,vy; is odd
(sL;)*F; =

E 6(aﬂ) + 2p%(ordpu;+9rd,v.~+1+‘2ordps‘L.;) otherwise

where the summation is over a € g¢;, 3 € gi+1. The following formula
is useful in determining F; :

Vivi+10 if ord,v; + ord,viqg is odd
(sLi)*Fi = { 6(vivig1) + viwigs + vip1wi
+2p%(ordpu.~+ord9u.'+1+2ord‘,aL;) otherwise.

The following remarkable theorem due to O’Meara provides a tool
for classifying lattices over dyadic local fields. See [O] for a detailed
proof.

THEOREM4.5. . Let L, K be regular lattices over a dyadic local field
F having the same fundamental invariants. Let

L(,') =L1l---1L;
K(,') =Kil---1K;

for each i =1,2,...,t, where

L=L1l---1L,
K=K1_L"'.LKt

are given Jordan splittings. Then clsL = clsK if and only if for 1 <
1 <t-1
(1) dL(;) = dK(;) - €* (mod F;) for some ¢ € U, and
(2) FL(,-) — FK(,-)_L(V,'+1) if F; C 41/,-+1wi—_,_11,
FL(,-) — FK(,')_L(I/,‘) if F; C 41/,~wi-1.
We now introduce an effective way of computing the above invari-
ants.
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Let L be a lattice on V over a local field F' with a prime spot p.
Since L is free, L = Oz, + --+ + Oz,. Then sL is the largest among
B(z;,z;)O and nL is the largest among Q(z;)O and 2(sL). A norm
generator v of L can be obtained as follows : If nL = 2(sL), take any
v € F satisfying vO = 2(sL); otherwise, take v = Q(x;) for which
Q(z;)O is the largest. As for the weight wL, one can use the following
formula :

wL =Y v6(Q(z;)/v) +2(sL).
J

One can get a Jordan splitting of L as follows :

(case 1) p : non-dyadic
We may assume @Q(z1)O = sL by adjusting given basis if necessary.
Take y; = 72,(zi) € L, =2,--- ,n. Then

L=0z;1(0yz + -+ + Oyy).

Repeating this procedure for Oy; + - - - + Oyn, we can obtain an or-
thogonal basis for L. Regrouping these basis vectors suitably, we get a
Jordan splitting.

(case 2) p : dyadic

If there exists z; with Q(z,)O = sL, do the same as above. Oth-
erwise, Q(z;)O is properly contained in sL for all . Then there exist
ry,z2 such that B(zy,z2)O = sL. Taking y; = z; + €iz1 + niz2 for
some &;,m; € O, 1 =3, ,n, we have ‘

L =(0z; + Oz2)L(Oys + -+ + Oyy).
Repeating and regrouping as above, we get a Jordan splitting.

5. Genus and Spinor Genus

Let V be an n-ary regular quadratic space over F, a global field or
a local field. Let p be a spot on F. We fix a basis zy,--+ ,z, for V.
Forz =aijz1 + -+ anzn €V, a; € F, we define

lello = max lad,.



Introduction to Quadratic Forms 61

Similary for o € LF(V), ozj =Y aijTi, a;j € F , we define

lolle =, max laijlo = max lloz;ll,

where Lr(V') is the space of F-linear maps from V to V.
Then V, Lr(V) become normed vector spaces, hence topological
vector spaces. Note also that all the following maps are continuous :

z - |lzllp, =~ Q(z), (z,y) — B(z,y)
& — 7, (for anisotropic z), (0,7)+ o7, 0+ deto

o +— o~ (for invertible o), o+ ||o]|,.

REMARKS.1. Let F be a local field with a prime spot p.

(1) Let 0 € O(V). Since deto = +1, we have ||| > 1. On the
other hand, oL C L implies ||o|| < 1. Therefore, ||o|| = 1, oL = L.
And hence

O(L) ={o € O(V)|[lo]| = 1}.

(2) Let

L=0z 4+ 40z,
L'=0z} +---+ 0z,

and let 0 € O(V) be close to 1. Then ||o —1||' < 1 implies ||o||' = 1 and
oL' = L', where || || is the norm with respect to the basis z},...,z",.

(3) Let oL = L' for 0 € O(V') and let 7 € O(V) be close to 0. Then
|l7"'o—1|| < ||77||-|lo—7|| < 1 implies 7~'¢L = L,oroL = 7L = L'.

Let F' be a global field and let p € QF, where QF is the set of all
non-trivial spots on F. For 0 € Lp(V), we define 5, : V, = V,, in a
canonical manner, and call it the localization of o at p. It is easy to
see that

O(V), CO(Vy), O+(V)p C 0+(Vp), o'(V), C 0'(Vy), VP € Qr
and that
O(L)y C O(L,), 0¥(L), C O*(L,), ¥p < .
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DEFINITIONS.2. We set
Jr = {t = (ip)pear | liplp = 1 for almost all p € QF}

and call it the idele group of F, which is a subgroup of [] pcar Fo-
The diagonal image of F* in Jp is called the subgroup of principle
ideles, denoted by Pr.

DEFINITIONS.3. We set
Jv ={2 = (Zp)pear | Zp € 0*(V), Yo € QF
such that |||, =1 for almost all p € QF}

and call it the group of split rotations of V.

Notice that Jy is independent of the choice of a basis (on which || ||,
is dependent). We set ,

Ty ={Z = (Zp)pear € Jv|Zp € 0'(Vy) p € Qr}.

It is easy to see that J}, contains the commutator subgroup of Jy. Con-
sider a map O (V) — Jy defined by o — (0,)peqp- Since ||o,ll, =1
for almost all p € QF, this map is well-defined. We denote the image
by Py and call it the subgroup of principal split rotations.

Let

JL={Z =(Zp)pear € Jv|Zp € 0+(Lp)a VP < oo}

and let Py, be the diagonal image of O% (L) in Jy under the map above.
Then one can easily see that '

P, =PynJg.

Let o '
D =6(0*(V))c F*

and let Pp be the diagonal imagé of D in Jp, where 0 is the spinor
norm map in Definition 2.5.
We set

JII; = {i = (ip)pear € Jr|ip € 9(O+(Lp)), VP < oo}.
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REMARKS5.4. Let £ = (X,)peny € Jv. Let L be a lattice on V.
Then ¥ ,L,, is a lattice on V,, for each p < oo. It is known that there
exists a unique lattice K on V such that K, = ,L,, Yp < co. We
denote this K by ¥ L. From this we may rewrite Ji by

Jp={SeJy|SL =L}

DEFINITIONS.5. Let K, L be lattices on V. We write K € genL
(the genus of L) if there exists £, € O(V,,) such that $,L, = K,,
Vp < oo, and write K € gen* L (the proper genus of L) if £, can be
taken from O%(V,,), Vp < oo.

From the definition follows immediately that
genK = genL if and only if clsK, = clsL,, Vp < 00
gentK = gen™ L if and only if cls* K, = clstL,, Yp < oo.

It is well known that the class and the proper class of a lattice are
identical over a local field and therefore, we may conclude that

genL = gen™ L.
Hence, K € genL if K = XL for some ¥ € Jy, i.e.,
genL = {ZL|Z € Jv}.

DEFINITION5.6. We write K € spnL (the spinor genus) if there
exists ¢ € O(V), &, € O'(V,,) such that 0,5,L, = K,, "p < oo,
and write K € spn™ L (the proper spinor genus) if o can be taken from
o+(V).

As above, we have
spnL = {6ZL|oc € O(V), Z € Jy}
spnTL = {6XL|oc € OF(V), T € Jy }.
Note that

elsL C spnL C genL
clsT™L C spn™L C gentL(= gen L).
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DEFINITION5.7. We call the. number of classes in the genus of L the
class number of L and denote it by h,. We define g, to be the number
of spinor genera in the genus of L and call it the spinor number of

L. Similary define h}, g} to be the numbers of proper classes, proper

spinor genera, respectively, in the proper genus of L which is identical
with the genus of L.

Clearly h, > g, and h} > g7. In any given class, there are one
or two proper classes. Hence we have h, < h} < 2h,. Similary
g; < g} <2g,. One can check easily that

S(spn L) = spn(EL) and X(spn* L) = spn™(ZL), VS € Jy.
Form this, we may conclude gt = 2¢, or gF =g¢,.

6. Class Number and Spinor Number

In this section, we introduce some important theorems on the class
numbers and the spinor numbers of lattices. We start with the following
classical theorem.

THEOREM6.1. h, is finite.

Proof. In fact, lattices in the same genus have the same volume,
scale, norm, and one can prove that the number of classes with given
rank, scale, and volume is finite. We skip the detailed proof here.

THEOREM6.2. g7 divides (Jr : PpJF) and
gF = (v : JyPvJL).
In particular, if n > 3, then

gt =(Jv:JyPvJL)=(Jr: PpJL).

Proof. Note that J{, PvJi, is a normal subgroup of Jy. From defi-
nitions follows that ‘

spnt(Z1L) = spnT(Z2L) if and only if Tz € 1 Jy PvJL.
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Therefore, gt = (Jv : Jy PvJ ). We consider a map
&:Jy - Jp/PpJk

defined as follows : Let ¥ € Jy. Then X,L, = L, so that 6(X,) C
Up(FX)? for almost all p. Now choose an idele i = (i,) € Jr with
i, € 8(Z,), Yp € Qp, and set ®(Z) = iPpJg. If j is another idele
associated to ¥ in this manner, then j € ¢JZ. Since J& C J fp’ C PpJL,
® is a well-defined group homomorphism. Since Ji, Py Jr, is the kernel
of ®, the first assertion follows.

If n > 3, then one can show that ® is surjective, from which follows
the second assertion.

It is known that g} = 27 for some integer 7 > 0 and that for any
integer r > 0 one can find a lattice L with g} = 27.
Let Qo denote the set of all infinite prime spots on F' and let

=1l v.x I F
p<oo PEQ o
THEOREMG6.3. Assume that Jr = PpJg°. Then
spntL = genL if (0 (L,)) 2 Up(FY)?, Yp < co.
Proof. For all p < oo, J C JE because (0T (Ly)) 2 Uy (F))?,

Vo < 0. So (Jp : PpJE) < (Jr : PpJ®) =1 and hence g} =1, i.e.,
spntL = genL(= gen*L).

THEOREMG6.4. Let V be a regular quadratic space over a global field
F with dimV > 3 and let L be a lattice on V. Assume V,, is isotropic
for some p € Qo (V is indefinite). Then
spntL = clsTL and spnL = clsL.
In addition, if Jr = PpJg and L is modular, then

clstL = genL.



66

Proof. We prove spnL = clsL. The proper case can be done sim-
ilary. Let K € spnL. Then K, = 0X,L,, for some ¢ € O(V) and
Ty € 0'(Vp), Yp < 0o. Since 071K € clsK, we may assume o = 1
so that K, = ¥,L,, Vo < oo. Fix a basis z1,...,%, and let M be
the lattice M = Ozy 4 --- + Oz,. Since K, = L, = M|, for almost
all p, the set T of finte prime spots at which K, = L, = M, does
not hold is finite. Then one can find (by applying so called the Strong
Approximation Theorem for Rotations) p € O'(V') such that ||p||, =1
for all finite p ¢ T and ||p — ||, is arbitrary small at any p € T.
This implies (pL),, = K, for all p < co. Hence pL = K, or K € clsL.
This proves the first assertion.

The second assertion is clear from the first and Theorem 6.3.

THEOREMG6.5. Let V be a regular guadratic space over Q with
dimV > 3 such that V,, is isotropic (V' is indefinite). Let L,K be
modular lattices on V such that L, K have the same norm and scale.
Then

clstL =clstK.

Proof. From Theorems 4.4 and 4.5 follows that genL = genK. On
the other hand, one can easily check that Jq = PpJg. So From the
second part of the above theorem follows that

clstL = genL = genK = cls* K.

DEFINITION6.6. Let K, L be lattices in a regular quadratic space
over a global field F. We say that K is represented by genlL if K, —
L,,Yp < oo, and write K — genL. One can define K — gentL
similary, but we know that K — gentL is just same as K — genL.
We say that K is represented by spnL (or by spntL) if XK C L for
some o € O(V) (or 0 € O*(V)) and ¥ € J{,, and write K — spnL
(or K — spntL). Finally, We say that K is represented by clsL (or
by clstL), write K — clsL (or K — clstL), if 6K C L for some
o € O(V) (or 0 € OF(V)).

We list the following remarkable theorem on a local-global relation
of representations of lattices.
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THEOREMG6.7(HSIA-KITAOKA-KNESER). Let dim FL > dim FK +
3. Then

K — genL if and only if K — spn™¥L.
In particular, if V is indefinite, then

K — genL if and only if K — clstL.

Proof. See [HKK] for a detailed proof of the first assertion. The sec-
ond assertion follows immediately from the first asserion and Theorem
6.4. -
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DEFINITION. (k,v) is a local field if it is complete w.r.t. the nor-
malized discrete valuation v and its residue class field is finite. (k any
field, v : k — Z U {00} is a normalized discrete valuation if

i) (k) = 2, 1(0) = oo
ii) Yz,y € k,v(z +y) > min(v(z), u(y))
i) v(e) + v(y) = v(zy)) |

KNOWN. Local fields fall into two types :

(a) In characteristic 0, they are finite extensions of Q.
(b) In char p > 0, they are the Laurent series fields in one variable
with coefficients in a finite field i.e., (Fq((T)),vr)

NoTATION. O = {z € k|v(z) > 0} the valuation ring, p = {z €
k|v(z) > 0} the maximal ideal, t = O/p the residue class field = F,.
Fix # € k s.t. v(m) = 1, called a prime element of k. Then p" =
On™ = {z € k|v(z) > n}’s are the ideals of k (n = 0,+1,+2,---),
U = {z € k|v(z) = 0} the unit group.

FAcTS. a) (k,v) local field. Then k is a non-discrete, totally dis-
connected, locally compact field.

0=p03p3p233pn3'

open compact subgroups of k¥ and form a neighborhood base of 0.
b) kX a non-discrete, totally disconnected, locally compact group
(with the induced topology).

U=U'>U'=1+4pDU?=14p*>---DU"=14p"D---

open compact subgroups and form a neighborhood base of 1.

(k,v) p-field with residue field t = O/p =F,
structure of kX : kX =% x U

KNOWN. kX D V = the set of all (¢ — 1)-st roots of 1 = the set of
all roots of 1, prime to p, and the canonical map O — O/p induces

vV = (0/p)X.
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V U {0} is a complete set of representatives for @ /p.
EX =72 xV x U;.

One can put Z,-module structure on any abelian pro-p-group G =
H(_II_IG.‘, G; finite abelian p-groups. In particular, U; = li_r_nUl /U, is a
Z,-module.

a) chark = 0: U; & WGBZ:, d = [k:Qp], W = the set of all
p-power roots of 1 in k, which is a finite cyclic group of Uj.

b) chark = p : U; 2 the direct product of countably infinite copies
of Z,.

(k',v")/(k,v) finite extension of local fields. Then ' |k = ev for
some positive integer e, called the ramification index and denoted by
e =e(k'[k). Also, f = f(k'/k) = [t' : t] i.e., if t = Fy then t' = F ;.
Can show :

giwlj(i =1,---,f, ] =0,---,e— 1)

forms a basis for the free O-module ©' where ¢; are elements of O
whose residues are a basis for ¢’ over ¢. This implies (k' : k] = ef.

DEFINITION. k'/k unramified if e = 1, f = n, and k'/k totally
ramified if e =n, f=1.

FacTs. v(r) =v/(x') = 1.
k'/k unramified <  is a prime element of &',

k'/k totally ramified < Ny /x(n') is a prime element of k.

k C k' C k" finite extension of local fields. e(k"/k) = e(k'[k)e(k" /K,
f(K"[k) = f(K'[k)f(K"/k') = k" /k unramified (totally ramified) <
both k"/k' and k'/k are unramified (totally ramified).

PROPOSITION. (k,v) local field with t = F,. ¥ integer n > 1, 3 an
unramified extension k'/k of degree n (unique up to an isomorphism
over k). k' is a splitting field of X" — X over k and cyclic extension
of degree n. In fact,

Gal(K'[k) = Gal(t'Jt).



72

DEFINITION.
Gal(K'[k) — Gal(t' [t)(p — (w = w?))

is called the Frobenius automorphism of the unramified extension K[k,
and characterized by

¢(y) =y mod p', Yy € O

k'/k finite extension of local fields with [k : k] =ef

Let ko be the splitting field of X ¢’ _ X over k, in k'. Then it is the
maximal unramified extension in k', called the inertia field of k'[k.

GENERAL PICTURE.

(k,v) : local field with t =F,

Q) : a fixed algebraic closure of k

4 : the unique extension of v to Q

(Q, ) : the completion of (2, )

F : algebraic extension of k in {2

pr:plF _
F : the closure of F in £}

pp:B|F
DEFINITION. F algebraic extension of k in Qie., k C F C Q. Flk
unramified if

e(k'/k) = 1for all k C k' C F with [k': k] < oo.
F/k totally ramified if
f(k'/k) =1 for all k C k' C F with [k': k] < oo.

KNowN. Y integer n, 3 a unique unramified extension kJ}, of degree
nin Q ie.,

k. = k(Vy), Vo = the group of (¢" — 1) — th roots of 1 in (2.

Note : k7, C kT". & n|m. Put

K= UnZlk:r = kurv
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the unique maximal unramified extension of k in Q. For n|m,

Z/mZ ——— Gal(k™[k) —— Gal(t™/t)

! l !

Z/nZ —— Gal(k?,/k) —— Gal(t"/t)
is commutative, where the first isomorphism of the bottom row is given
by (a mod n) — 2. ‘
Z = limZ/nZ = 1I,Z, = Gal(k../k)
& Gal(tk/t)
Again, the unique ¢ € Gal(ky,/k) satisfying
vr(a) = a’modpy (a € Ok)

is called the Frobenius automorphism of k (or ky./k). Note that ¢y is
a topological generator of Gal(k,,/k). Also, note that

F/k is totally ramified < FNk,, = k.

General Reference of the sequel: }

Lubin and Tate, “Formal complex multiplication in local fields”,
Ann. Math., 81(1965).

Serre, “Local class field theory” in Algebraic # theory (edited by
Cassels and Frolich), Academic Press (1976).

Basic facts about Formal Power Series :
R commutative ring with 1. Vf,g € R[[X3,--- , Xn]], write

f =g (mod deg d)
if f — g contains only terms with total degree > d. Let f € R[[Xy,---,
Xall, 91,---9n € R[[Y3,--+,Yy]] with g; = 0 (mod deg 1). Then
fo(g1, -+ ,9n) is well defined. '

Assume further that R is a topological ring. Put the topology on
R[[X1,--+,X,]] so that

Y Gipin Xit e X o {Giy iy e i 0
is a homeomorphism' f € Oﬂ[[Xh ot 7Xn]]7 g1, ,9n € OQ[[lfh Tt
Y]] with constant terms in pg. Then fo(gy,---, gn) converges in the
above topology. In particular, for a;, -+ ,a, € ra, flag, -+ ,ay) is

well defined in Og.
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MAIN LEMMA. pg(m) = pg(me) =1, fi, f2 € Og[[X]] are s.t.

A(X) = mX, f2o(X) = mX (deg?),

Co fl(X) = fz(X) E,Xq(modpf(),
L(X17” ° ,Xm) = aIXl + M + ame, aJE Of(

is s.t.

mL(X1, -+, Xm) = 1L?(X1, -+ , Xm).
Then 3 ! power series F = F(Xy, -, Xm) € Ogl[X1, -+, Xm]] s:t.

F =L (deg2), fioF =F¥%o f,.

Proof. Yn > 1, Construct F}, of total dégree <nin Og[X1, -+, Xm]
s.t.
froFa=F¢of (deg (n+1)) and

'Fn+l = F, (deg (n +1)).
For n = 1, let F; = L. Then lim,_,o F;, = F is the desired one.

R any commutative ring with 1.

DEFINITION. F(X,Y) € R[X,Y]] is a formal group law over R

(1-dimensional commutative) if

i) F(X,Y)=X +Y(deg2)

i) F(F(X,Y),2)=F(X,F(Y,2))

i) F(X,Y) = F(Y,X) |

iv) F(X,0)=X and F(0,Y)=Y

v) Aip(X) € M = XR[[X]] such that F(X,ip(X)) =0
(iv) and v) are consequences of i), i) and iii))

(Good Reference : Hazewinkel, “Formal Groups and Applications”,
Academic press (1978)) :

EXAMPLE. Go(X,Y)=X+Y,Gn(X,Y)=X+Y + XY
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DEFINITION. F,G formal group laws over R. f(X) € M is a mor-
phism from F to G (and denoted by f : F — G) if foF = Go f.
Further, if f is invertible in M, i.e.,

fofl=flof=X
then f~': G — F and wesay f: F S Gan isomorphism i.e.,
Ff=foFof'=0G.

FacTs. Hompg(F,G) is a subgroup of the abelian group Mg where
Mg = M with the addition

ftag =G o(f,9) = G(f(X),9(X)).

Moreover, Endg(F) is a ring with the addition f+rg and the multi-
plication fog.

_ CONVENTION.. For simplicity, both the unique extension of ¢ to
K = ky, and ¢ will be denoted by . Put R = Og. For each prime
element 7 of K,

Fr ={f € R[[X]]| f(X) = 7X(deg2), f(X) = X*(pg)}-

Put F= |J Fn
ng(m=1
PROPOSITION. (a) ¥f € Fr, 3! formal group law F;(X,Y) over R
such that
f (0] Ff = F}P (o] f
(b) Let f € Fr. Ya € O = O, I [a]s(X) € R[[X]] such that
laly = aX(deg2), folaly = [alf o f.
(c) a + [a]s defines an injective ring homomorphism of

O — Endg(Fy).
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(d) Let f € Fx, f' € Far. Then 36 invertible in M = X R[[X]] such
that
flo6=06%0f, F{ =Fp, [a]} = [alp (Ya € O).

Proof. (a) Apply the main lemma with m; =m =7, fi = fo = f,
L(X,Y)=X+Y.

(b) Apply the main lemma withmy =my =7, fi = fo = f, I(X) =
aX.

(d) Need the facts :

-1
0—+(’)k—>(9,~(—¢——->01?—>,0,

1 - U(k) » U(R) 25 U(R) - 1

are exact.
Suppose 7' = n£, £ € U(K). Find n € U(K) such that n¥~! = £.
Then
' L(X) = nL¥(X) for L(X) = nX.

Apply the main lemma with fy = f', fo=f, m ==, mp ==, L(X) =
nX. 3! 6(X) € R[[X]] such that

6(X) =nX(deg2) and f' 08§ =60 f.

Let m = pg be the maximal ideal of . Let f € F. Then my is
the set m with the addition a+¢8 = Ff(a,B), scalar multiplication
a-fa=afa)a,B € maecO=0)ie., msis an O-module. For
integer n > —1, put

W}‘:{aémf|p"+1-fa=0}
={a€mf|7r"+1 -fa=0}.

We have a chain of O-submodules of my :

O)=W;'CW)CcW}C---CWpC---CWy= |J W}

n=>-1
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NOTE. f' another one in F. Then 3 § € X R[[X]] invertible such
that

F} =_Ff', [a]% = [a] -

Thus

myg — mg(a— 6(a))

is an isomorphism of O-modules. Also, it induces O-isomorphisms

WP = Wh, Wy = Wy

PROPOSITION. a) For f € F and i > 0, let

fi=f*, gi=fioficro-- 0 f, 9-1(X) = X.

Then W2 ={a€em|gn(a)=0},n>-1.
b) Fixm > 1, k C k' = k. C Q, 7 a prime element of ¥'. Then
actually

F5(X,Y) € O'[[X, Y]], [al¢(X) € O'[[X]] fora € O.

Gn=fnogn-1=f* 0gn_1=7"ga1 +47_,
= (19" 4+ g271)9n-1 = hngn-1 = hn(X)hn-1(X)- - - ho(X)X,

where f(X) = X + X? € O'[X] belongs to F.
by) h, monic separable polynomial of deg(q — 1)q™, irreducible in
K[X].
bz) gn monic separable polynomial of deg¢™*! in O'[X], wp =
{a € Q| gn(a) = 0}. So [W}| = ¢"*! and K'(WE)/k' finite
Galois extension.
b3) Let ag € Q be such that h,(ap) = 0. Then oy € Wz,

a0 ¢ WP, (g = 1)g" = [K(eo) : K] = [K(W}) : k], 7¢" =
N(—a0) = Ni(ap) /i (—0).
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c)Let feF. :
c1) [Wp:0]=¢"*, n>-1.
c;) Fix ag € W}, ag ¢ W}, n > 0. Then W} = O -5 ap and
a — a -5 ag induces the isomorphism

O/p™ 5 Wi
cs) p' s Wi = W}""‘ for 0 < i <n.
d) O — End(W}) (a+ (B + a5 B)) induces
O/p"*! = End(W})

and

U/U,-H.l -:) Aut(W}‘)

Proof. c),d) follow from a),b).
‘a) For n = —1, clear. If f' and O are as before, then

Flo=6°0f=flog” =6 o f,
ie, fi = 6" o fio 0—*" and hence
gy =fhofoyo-0fy=0"" 0gaof\.

Reduce to the case of f(X) = 7X +X7, 7 a prime element of k (f € F).
Since f = 7X(deg2) and fo f = f¥o f,

f=[7r]f, fi =f, gn =f°f°"'0f=[‘lrn+l]f.
Thus W} = {a € ms| 7" -f a = 0} = {a € m | gn(a) = 0}.
b) See that
gn(X) =a X +---+ X = an+1(P'), a, = witet+e"
C ha(X) =7 4 (@ X 4o+ XTI = XD (),

Note that h, is a Eisenstein polynomial and hence irreducible in

K[X). dhp/dX = (¢ —1)a?” X972 4 ... #0. So h,(X) is separable.
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EXAMPLE. k = Qp, m = p. Then f(X) = (1+ X)? -1 = pX +
BX*+---+XPeF FXY)=(1 + X)(1+Y)—1is a formal
group law over R = O such that fo F = F¥o fie., F = Fy. For
a € Z,, define

n !
n=0 : n

By definition, for a € Z, [a]f(X) € R[[X]] is the unique one satisfying
jaly = aX(dew2), f o [als = [al¢ o f.
CHECK. [d]; = (1+X)*-1=3Y72, (3)X", a € Z,.

Now,

Wi ={a€py] [P"“]f(a) =0}
={a€ps|(1+a)"" =1}
={¢-1|¢eq, " =1}

and Q,(WF) is the cyclotomic field of p"*+!-th roots of 1, which is a
totally ramified abelian extension, with

Gal(Qy(W})/Qp) — Aut(WJ) = ZX /(1 4 p™+'2Z,).

REMARK. k' =k} C Q, O' = the valuation ring of k'. 7, 7, prime
elements of k', f1, f € O'[[X]], and L € O'[X1, -+ ,Xmm]. Then one
can show that actually F(X,- - ,Xn) € O'[[X1, -+ , X ]| in the main

lemma.

SOME EXTENSIONS. f € F, W Cms=m C Q. See that K(W})
is a finite Galois extension over K and it does not depend on the choice
of feF. Put L" = K(W}?), for every f € F,n > —1. So we have a
sequence in ):

K=L"'cIL’C.--cI"¢C LcQ,
L = the union of all L™, n > —1= K(Wjy), for any f € F.

N
N
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PROPOSITION. For n >0, 3 a natural homomorphism
| - 6":U =U(k) = Gal(L"/K)
such that for u € U, every f € F, a € W§,
5"(w)(@) = u+y o = [ul(a)
and induces an isomorphism
U/Upp1 — Gaj(_i"/f{).
(In particular, L™ /K is an abelian extension of degree [L" : K| =
(a—1)q") _ ,~
Also, L/K is an abelian extension and 3 a topological isomorphism

6 : U — Gal(L/K) by passing to inverse limits.

RELATIVE LUBIN-TATE GROUPS. For integer m > 1, O™ = the
valuation ring of k™., 7 a prime element of k], F» C R[[X]], R = Ok,
as before. Put

Fit = F=NO™[[X]],
F™ = the union of F for all prime elements 7 of k
F>° = the union of F™ for all integers m > 1.

m
ur?

See that ky,(W}') depends only on m,n,, and is independent of f €
F.

Also, K(W?) depends only n, and is independent of f € F>°.

Put

k™ = ky (W§), for any f € 7',
L™ = K(W}), for any f € F*.
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PROPOSITION. a) L™ is the closure of L™ in QQ,
I*=KL", K=KnL" GalL"/K) > Gal(L"/K).
b) L™ = Kk3™, ky = KNky", and

Gal(L™/k™) = Gal(L"/k™") x Gal(L"/K)
= Gal(K/k™) x Gal(k™" k™).

c) L* [k, L™ /K, k" [k, k™ kD abelian extensions and

(L% : K] = (™™ k2] = (g — 1)g, k™" : K] = m(q — 1)g"

PROPOSITION. For n > 0, 3 a homomorphism
§":U =U(k) = Gal(L"/K)

such that Vf € F®, ueU,a € W2, 6"(u)a = u -5 @, and induces an

isomorphism

U/Unt1 — Gal(L™/K).

Moreover, similarly we have

én U =U(k) — Gal(kz»" [ky:

for © a prime element of k. inducing the isomorphism

U/Unt1 — Gal(k™"™ [k

and this isomorphism induces

Uit1/Unpr — 62(Uipr) = Gal(k™ [k™), for 0 <i <n.
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PROPOSITION. 7 a prime element of kL.
a) kmm/kD totaIIy ramified finite abe11an extenszon and ™ €
N (k'" n / km
b) f € Fr, aGW , a g W™ -1, Thena1sapr1meelementof
km® and k7" = kIt (a), 0"‘ " =0"a].
c) The compIete set of conjugates of a over k = W}'\W}"’1 .
d) For 0 < ¢ < n, the complete set of conjugates of a over k™ =

—i-1
a+ Wf }'
Again, 7 is a prime element of k
k;"rr_;k,'r"’flgk{p»og...(_:k::;"g...gk:‘mgg,
ku,=K=L'lQLOQ---QL"_C_---QLQQ

See

k> = k. (Wy), for any f € F*,
L = ky(Wy), for any f € F>.

PROPOSITION. L/k abelian extension and L = ky k", k. =
kyr NEFH®. kT is a mamma.l totally ramified extensmn of km. in L,

and
Gal(L/k™ )— Gal(L/k™*) x Gal(L/kyy)
=5 Gal(kur/k) x Gal(kT> [k
Also, 3 topological isomorphisms
6:U S Gal(L/kuy),
bz U = Gal(k™>™ k™

For simplicity, we put kL™ = k?, n > —1.

Also, for m =1 and 7 € k = kL, put kx = kL’*. By the above
proposition, L = kyrkz, k = kur N kx, k totaIIy rmmﬁed mamma]
extension of k in L, and

Gal(L/k) = Gal(L/kx) x Gal(L/kyr)
=5 Gal(kur /) x Gal(ky/k),
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bp: U = Gal(ky/k).

One can show that L = k,; and hence
Gal(L/k) = Z x U(k).
PROPOSITION. For any prime element 7 of k,

N(kz/k) = (7) x Upy1, n > —1.

COROLLARY. Let 7 be as in the above. Then N(k./k) = (), More

generally, if F is totally ramified extension of k in Q containing k. then
N(F/k) = (r).

REMARK. For these, we need Coleman’s Norm Operators.

Coleman’s Norm Operator :
™ € k= ku, by = k", § = O[[X]], $* = {¢(X) € S|9(0) € U},
Fa=FxNS> f: Note: [r]; = f.

LEMMA. h(X) a monic polynomial in O[X] such that
h(X)=1O2,(X — a;), a; distinct in Pq.

If f(X) is a power series in O[[X]] such that f(a;)=0,Yi=1,--- ,m
then f(X) = h(X)g(X) for some g € O[[X]].

LEMMA. g € S such that g(W?) = 0. Then g(X) = [r]sh(X) for
some h(X) € S.

Proof. Reduce to f(X) = 7 X + X? = [n]; and apply the above
lemma and the fact that W3 = the set of all roots, in Q, of a separable
polynomial f.

From now on, we fix f € 7}, = F, NS and omit the subscript f in
everything. O, = the valuation ring of k? = k(W™), p,, its maximal
ideal, t, = O,/pn. For a € W™, note that F¢(X,a) = X+a is a
well-defined series in Oy [[X]], since a € p, Cm N k™.

For g € 8, g(X+a) is also well-defined, since X +a = o (deg1).
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LEMMA. g € S satisfies g(X+7) = g(X), Yy € W°. Then 3 h € S
such that g = ho[rx].

Actually, such an h is unique in view of :

LEMMA. Let g=ho|r]forg,h € S.
Yn >0, gEOmodp'f@hE~0modp".
Thus g = 0 & h = 0.
Let h € S. Put
| hi(X) = I ewo (X +7) € Oo[[X]].
Since all ¥ € W°, v # 0 are conjugate over k,

kS = hy, o € Gal(k2/k)
and hence h;(X) € S.

From the associativity of the formal group law,
ha(X+7) = ba(X), Yy € W,
Thus by the above lemmas 3! N(k) = Ng(h) such that
N(h) o [7] = I A(X +7).

The map N = Ny : S — S is called the Coleman’s norm operator.
Properties of N :
a) N(hlhz) = N(h])N(h2), Vhl,hz € S.
b) N(h) = h mod p.
~¢) he X'SX fori > 0= N(h) € X'SX.
d)h=1 mod p', i>1= N(h)=1 mod p*'.
In general, we define

N°(h) = h, N*(h) = N(N""!(h)), forn > 1.

Then .
a) N*(h) o [r"] = Hyewnr-1A(X+a)
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b) If h € X'SX(i > 0),
N™H(h)/N"(h) € S and
N™1(h) = N*(h) mod p"*!, n>0.
Now, choose a € W, a ¢ W"™!, n > 0. Put
a;=1""".a= [r""']’(a), 0<:<n.

Then o; € Wt a; ¢ Wi~l. Saw that o; is a prime element of ki,
0; = Olai, pi = Oia;. | |

LEMMA. ,3, € 7"~ 'poO,, 0<i<n JheS= 0[[X]] such that
k() = B, Yi=1,-

Proof. Put
g9i(X) = [x"H[x*]/[x*+], i =0,--- ,n.
See that )
(a;) = ™ ey, ifj=1
g% = 0, otherwise.

Since B; = T "ipeQ; = 7"~ 'aOO[a,], we can write §; = " tagh; (ai),
hi € O[X]. Then h =" gih; is the desired one.

Main proposition of Coleman in [1].

PROPOSITION. £ € U(kZ), and let

= Nn,i(&) = Nk;‘/k;(ﬁ)’ 0<:<n.

3 a power series h(X) € O[[X]] such that & = h(a;), 0 < i < n.

Proof. Since { € U(kZ) C O, = O[a], we may write £ = hl(a), hi €
O[X]. Clearly, h; € SX.

Know ;

N (hy) o [177 = Lyhy (X 47), v € W1,
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Put X =a:
N""H(hy)() = Dyhi(a+7) = Npi(hi(a)) = Nui(€) = &
If hy = N*(hy) € SX, then
N™=i(hy) = N™=H1(hy) = - = N"(hy) = ha(p" ).
Put X =a;:& = hz(a,-) mod (p"""‘l) |
Thus B; = & — ha(a;) € 7r""+10 C 7" ipy O;.

By the above lemma, ﬁ, = ha(a.)
Then h = hs + hs is the desired one.
Fundamental theorems in local class ﬁeld theory

NOTE. It is instructive to compare all of the following results with
the cohomological treatment in “Algebraic numbers and functions” by
E. Artin.

We will grant that L = L = ke in Q. In view of the isomorphism

Gal(kgp/kx) — Gal(kyr/k),
3! or € Gal(kqp/kx) such that

) "’bﬂ'lk'ﬂ' = Pk d’wlkn =1

Moreover, ki is the fixed field of ¥ in kqp. Fix a prime element
of k and write ¢ = tn,. Since Gal(kqs/k) is abelian, we can define a
homomorphism ‘

p: kX — Gal(kqp/k)
given by - '
au(m € Z,u € U) — $p™§(u™")

where 6 : U — Gal(k,p/kur) is the previously introduced isomorphism.
p is called either Artin or Norm residue map. Clearly,

p(:l:) Ikur = '»bm | kyr = 9011?, m = V(:L')
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FAcTs. (a) The above p = pi : kX — Gal(k,s/k) is the unique
homomorphism satisfying

pik(7) =, for all prime elements = of .

Proof. Since kX is generated by prime elements of k, the uniqueness
is clear. For the asserted, apply the following lemma for 7/ =7, m =1

; if 7' is a prime element of k' = k%, m > 1 and ¢ = Ny /i(n'), then

p(z) is the unique element o of Gal(k,p/k) such that
o |kur = @i, 0| k7™ =1.
(b) px induces a topological isomorphism
U Gal(kap/kyr) given by u — 8(u™1).
For any prime element 7 of k, it also induces
U S Gal(ky/k), given by u s &x(u1)

and 6, is the previously introduced one.
(c) For z = n™u(m € Z,u € U), 7 any prime element of k,

pr(z) = pr(m)" p(u) = Y7é(u™") and
Pk("’) | kur =ty Ikur = @k -

Thus these two properties hold true for any prime element 7 of k.

(d) px is injective and continuous in the v-topology of X and Krull
topology of Gal(k,p/k).

Proof. Suppose pi(7™u) = 1. Then ¢} = pr(7™u) | kyr = 1. Since
¢k is of infinite order, m = 0 and hence §(u~!) = px(u) = 1. Since
¢ is an isomorphism, © = 1. Continuity follows from the topological

isomorphism U 4 Gal(kqap/kyr) and the openess of U.
(e) The image of pi is a dense subgroup of Gal(kqs/k).

Impy = {0 € Gal(kap/k)| 0|kur = ¢F for some integer m}.
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In particular, if o | kyr = @k, then 3! prime element 7 of k such that
o = pi(m).

Functorial properties of Norm Residue Maps :
(a) For a finite extension k'/k of local fields,

k'X —— Gal(k!,/k')
Ny /,,l | lres is commutative.
kX ——— Gal(kqs/k)

Proof. By using the inertia field of the extension ¥'/k, we may as-
sume that k'/k is either unramified or totally ramified. Consider each
case. | ’

(b) Suppose o : (k,v) 5 (K',v'") ie., o=k Sk andv=1oo0.
Extend o to an isomorphism of fields o : kg = k!,, and define an
isomorphism -

o* : Gal(kap/k) — Gal(k’,/k' given by 7 — oro L.
ab

Then o :
X — Gal(kqs/k)
ol lo' is commutative.
KX 2, Gal(k!,/K)
(c) Let

Q, = the maximal galois extension of (k,v) in Q

= the separable closure of & in 2.

For a finite separable extension k'/k, put

G = Gal(,/k),
H = Gal(,/F),
G’ = Gal(Q/kas),
H' = Gal(Q,/k.;).
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Then [G : H] = [k’ : k] = n, and G’ and H' are topological commutator
subgroups of G and H, respectively.

Let {r1,---,7n} be a set of representatives for the set of all right
cosets of H in G i.e., G = UL, Hr; (disjoint).

For each 0 € G and 7 (1 < i < n),

3! hi(o) € H and i’ (1 <i' < n) such that 7;0 = hi(o)ry.
Then we have the well-defined homomorphism
toyn : G — H/H' (o I hi(o)H' € H/HY),

called the transfer (Vorlagerung in German) map. Since H/H' is
abelian, tg,y induces
G/G' - H/H'

which is again denoted by the same symbol.
From now on, for each finite separable extension k'/k, ty /k will
denote either of the following homomorphisms ;

Gal(Q,/k) — Gal(kl, k'), Gal(kap/k) — Gal(k.,/k').

Properties of transfer map :
(a) For k g k' g k”, tk"/k = tk”/k’ Otkl/k.
(b) For 0 € G = Gal(Q,/k),

n=[k'":k]=[G;H], ty/x(0)G' = oG

i.e., tg k(o) | kap = o™ | kap (pf : restrict 1o = hi(o)7! to kep and note
Gal(kqs/k) is abelian) ‘

(c) If k¥'/k is Galois and ¢ € H = Gal(Q,/k'), then tr k(o) =
II.(ror~')H', where T ranges over a set of representatives for G /H
(pf: H 9 G = 10 = (rior] V)7, 1ot € H)

(d) If k' /k is cyclic and (¢H) = G/H = Gal(k'/k), then te k(o) =
o"H'ie., ty(o) | kyy = o™ |k, (pf: G = UL, Ho' (disjoint). Thus Y3,

; {eai+1, ifi<n and o"€e H
olo =

o"o, ifi=n

)
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Denote by (k'/k) the diagram:-

kX 2, Gal(kas/k)
L e
KX 2, Gal(k, /K"
LEMMA. If (k'/k) is commutative, then
okt Gal(kap/k) — Gal(kyy k')
is injective.

Proof. Suppose ty/k(0) = 1 and extend o to an automorphism of
£, again denoted by o. By (b) above,

0‘# | kap = t,;//k(d) I kep =1.

Since Gal(kyr/k) ~ 7 is torsion frée, o € Gal(kep/kur). Thus 0 =
pi(u) for some u € U. By commutativity of (¥'/k),

pr(u) = tr/k(pr(u)) = tey(o) =1.

Since pys induces U’ = Gal(kl,/k,.), u —lando=1.

COROLLARY. For k C k' C k",
() If (k" /k") and (k'/k) are commutative, so is (k" /k).
(ii) If (k" /k') and (k" /k) are commutative, so is (k'[k).

Proof. (i) is trivial. For (i1), use the above lemma.

THEOREM. For any ﬁmte extension k' [k of local fields and z € kX
pr(@) | (K Nkap) = 1 & = € N(K'/F)
Proof. (<) If £ = Np ('), 2’ € k'X, then by’functoriality (a)

o(@) | (k' N kas) = prr(2') | (K' O kap) = 1.
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(=) Since Gal(k.pk'/k") 5 Gal(kqp/k'Nkqas), pr(z) can be extended
to an automorphism in Gal(kqsk'/k') and then to an automorphism o
of Gal(k!,/k'). Put

k™ = (K 0 kab) O kur = &' O kur

Then pi(z) | kT = 1i.e., a power of pJ* over kJJ;.. Since Gal(kj,,./k') =
Gal(kur/ED] ) (e — ©F), 0|kl is a power of . By Facts (e),
o = pw (') for some z' € k'X.

Thus by functoriality (a) again,

pr(z) = 0 | kap = pe(Nio /i (2")).
Since py is injective, z = N/ (z').

THEOREM. For any finite separable extension k'[k, the diagram
(k'/k) is commutative.

Proof. 1% reduction : Since 3 a finite Galois extension k"/k such
that k C k' C k"', one can reduce to Galois case by the above cor (ii).

274 reduction : Using ramification groups, one can show that Gal(k’/k)
is always solvable for a finite Galois extension of local fields. Thus we
may assume k'/k is abelian by cor (i).

REMARK. We grant the following facts : (k'/k) is commutative if
k'/k is unramified, and pi () = tpr /i (pr(2)) if k' /k is finite Galois and
z € N(k'/k).

Let n =[k' : k], E = k2., E' = EK', and let 7 be a prime element
of k. Then
(ox(7)|E) = Gal(E/k) and
pE(T) = tE/k 0 pi(T)

by the 15 remark. By properties of transfer (d),

pe(r) | k' =tg o pr(m) | '
= pi(m)" | ¥
=1
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Thus pg(7)|E'=1=> 7 € N(E"/E) by the above theorem. By the

ond remark,

pe(m) = tE"/E(PE("')) =tpE o te/k o pr(T)
= tpr /k(pr(T))-

For any finite abelian extension k'/k, py /k is the composite

KX 255 Gal(kap/k) —> Gal(K'/k) = Gal(kas/k)/Gal(kas/K').

THEOREM. For a finite abelian extension k'[k, py/x induces the
isomorphism

kX IN(K' [k) = Gal(K'/k).
Also, N(K'/k) = p*(Gal(kas/k')) and

Gal(kop/k') = the closure of p(N(k'/k)) m Gal(kap/k).

Proof. Recall that for any finite extension k'/k
pr(z) | k' Nkap =1 & z € N(K'[k).
Hence Ker pii/x = N(K'/k). Since pi(k*X) is dense in Gal(kos/k) and
Gal(kqs/k') is open in Gal(kas/k), prr/i is surjective. The second
statement is clear. Since Gal(kqp/k') is closed and pp(N(K'/k)) C

Gal(kq/k'),
pk(N(k'/k))_ C Gal(kab/k').

Since kX /N(k'/k) — Gal(kqy/k)/Gal(kqs/k') is given by
aN(k'/k) — pr(a)Gal(kes/k')
ie., pr(aN(k'/k)) C pr(a)Gal(kqs/k') and
pi(kX) is dense in Gal(kyp/k), we must have

pr(aN(K'[k))™ = pr(a)Gal(kas/K').
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COROLLARY. For any finite abelian extension k'/k, we have the
fundamental equality in local class field theory i.e.,

(kX . N(E'JE)] = [k : k).

COROLLARY.
(i) For any finite extension k'/k,

N(K'[k) = N(k' 0 kas/k),

(KX : N(K'/JE)] < [k : K],

and equality holds iff k' [k abelian.
(ii) If k' /k is finite and k" /k finite abelian, then

N(k'/k) S N(K"/k) & k C k" C K.

(iii) If ¥'/k is finite abelian and k C k" C k', then the isomorphism
kX /N(K'[k) = Gal(k'/k) induces

N(E"/E)/N (K [k) = Gal(k'/E").

Proof. (i) Use the fact that for any finite extension k'/k
pk(w)lk' Nkyp =1z € N(k'/k)
and the above corollary.

(ii) Use the 2* statement in the above theorem.
(iii) Follows from the commutativity of

kX/N(K'[k) —— Gal(k'/k)

! !

KX IN(K" Jk) —— Gal(k"/k) .
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REMARK. For a prime element 7 of kK, m > 1,n > 0,

N(EP™) = (x™)  Unia

THEOREM. (the existence and uniqueness theorem in local class
field theory)

For any closed subgroup H of kX with finite index, there exists a
unique k'/k finite abelian extension such that H = N(k'[k).

Proof. Let m = [kX : H], and let 7 a prime element of k. Then
7™ € H and H NU(k) is a closed subgroup of U(k) with
Uk :HNU®K) =[UKH : H <X : H]=m
=H NU(k) is open U(k) -
=3n 20 such that Un+1 C H NU(k) C H

Thus
N(E™™) = (™) X Upq1 C H C KX,

Since kX /N (k™" /k) — Gal(k™"/k), 3 a field k', k C k' C k™" such’
that N
H/N(kz""[k) — Gal(kz""/k'),

which is induced by pgm.m .
By the above cor (iii),

N(K'[K)[N (k7" [k) = Gal(ky" /'),
also induced by pgmn/g. Thus H = N(k'/k) and k' /k is abelian.

Uniqueness follows from the above cor (ii). -

COROLLARY. There exists an order reversing 1-1 éorrespondence
between {finite abelian extensions k'/k in Q} and {closed subgroups
of finite index in k*X}. Moreover,

k' C k" e N(K'/k) D N(E"/k),
N(K'k" k) = N(K'/k) N N (K" [k),
N(K' NE"/k) = N(K' /)N (K" /).
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Proof. k' — N(k'/k) is the correspondence.
By the above cor (ii),

' C k" & N(K'[/k) D N(k"[k).

Clearly,
N(K'k"/k) C N(K'/k)N N(K" /).
Conversely, if z € N(k'/k) N N(k" /k), then pi(z) fixes k' and k" and
hence does k'k" i.e.,
pr(z) € Gal(kap /K'K") =z € N(k'k"/k).
Clearly,
N(E'Nk"/k) D N(kK' /)N (K" [ k).

But
[N(K'NK"/k): N(K'[k)] = [£' : k' N k"],

[N(K'/R)N (K" /k) : N(K'/k)] = [N (K" /) : N(k'[k) O N (K" k)]
= [N(K"/k) : N(K'k" [K)]
— [klkll . kll]
= [k : k' NE"].

Explicit Forms of the Norm Residue Symbol :

DEFINITION. Let (k,v) be a local field with a prime element 7 of k.
By a m-sequence of k we mean a pair (f,w = (wn)n>0)

where f € F1, (Wn)nxo C Wy = UnW§
such that

wOEWO, Wo #Oa wn=f(wn+1)=7r'fwn+la n 2> 0.
f
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REMARK. (a) Since 7 -5 W}’“"l = W}, for a given f € F3, a -

sequence always exists.
(b) Actually, w, € W¢, wy, ¢ W}‘_l, We=0 5w

DEFINITION. If (f' w' = (wy)n>0) is another m-sequence, then an
invertible h(z) € M = XO[[X]] is an isomorphism of (f,w) to (f',w")
if

hofoh™ = f', h(wy) =w,, n>0.

We write h : (f,w) AR (f',w"). Moreover, h induces the following
isomorphisms over O:

Fy 5 Fpy, WP S W3, Wy 5 W

LEMMA. Let (f,w = (wa)n>0) be a w-sequence. If g(X) € O[[X]]
is such that g(w;) =0 for 1 <i < n, then

[7"*]¢ | Xg(X) in O[X]].

In addition, ifg(w;)g; 0 for all : > 0, then g(z) = 0.

Proof. Since W} - W}—l are the conjugates of w; over k£ and ¢ has
coefficients in O, ‘

g(wi) =0=g(B)=0, "B e Wy —W;™".

Thus X g(X) is such that ag(a) = 0 for all « EHW}‘ = [7" 1] | X g(X).
Since f = [r]s € (7, X) is the unique maximal ideal of O[[X]],

(7" =[rlg oo 0 [nly € (m, X)"H.
Thus if g(w;) =0, ¢ > 0, then

Xg(X) e (mX)"t, n>0= Xg(X)=0=g(X)=0.
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LEMMA. For (f,w = (wn)n>0), (f,w' = (w},)n>0) m-sequences of

k, 3! isomorphism h : (f,w) = (f',w"). Moreover, if w = w', then

h(X) = X so that f = f'.
Proof. 36(X) € O[[X]] such that

6(X) = X (deg2), and 6o f = f' o 8.

If w" = (8(wn))n>0, then 6 : (f,w) = (f',w'") and hence we may
assume f = f' for the existence. Since w!, € wWg— W}"l and W¢ =
o *f Wn, )

Jun € U(k) such that u, -5 w, = w),

and u, is unique up to modulo Upy; = 1 +p"tl. Form > n > 0,
U *§ Wy = w), and

Up *f Wp = Wy, = Uy = Up(mod Upyy, multiplicative).
Thus Ju € U such that

U = up (mod Upyy), n>0and u jWn = w).

If h = [u]f, then ho foh™ = [uru~!]; = f and h(w,) = w!,. It
is enough to show : w = w' = h(X) = X for uniqueness. Since
9(X) = h(X) — X satisfies g(w;) =0, g(X) = 0 by the above lemma.

DEFINITION. A 7-sequence (f,w = (wn)n>0) is normed if

Npn(wm) = Nim jkn(wm) = wyg, forall 0 <n <m.

REMARK. The normedness of (f,w) depends only on f. Actually,
(f,w) is normed & [r]4(X) = I, ewo(X+7)

ie., Ny(X)=X.

Proof. (<) Since w,41+ fW}’ is the complete set of conjugates of
Wp41 over kX

| Nn+1,n(wn+1) = Hyew;’(wnﬂ'i‘f’)’) = [”]f(wn+1) = Wp.
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(=) I g(X) = [7](X) - Hﬂ,eW?(X-{'-f'y), then for n > 0
| g(wnq1) = wp — Nat1,n(Wnt1) =0 and 79(,"‘00) =0,
since T - § wo € Wf_l =0,0€¢ wo-i—fW}’ =Ww7.
Let B = hm._(k )X with respect to

N s (Bf)% = (B2)%, 0<n <m,
- andlet Ny = Ngnjp, n20. -
Since Nn(ﬂn) = Npn(Bm), for all m,n > 0, |
define v(f) = v(Ny(B,)), for any n >0.

In particular, v(w) = 1 for a normed 7-sequence ( f,w), since k2 /k
is totally ramified. Clearly, .

v(BB') = v(B) + (') for B, B € B
and B is generated by the §'s with v(8) = 1.
THEOREM. (i) For a w-sequence (f,w) and ﬂ € B with u(ﬂ) =0,
3 ¢(X) € O[[X])¥ such that {(wn) = Bn, n > 0.
(ii) If (f,w) is normed and B € B is such that v(f) = | then
N 4(X) € X'O[[X]}¥ such that H(wn) = Bn, n 2 0.

iPr;oof. Bn is a unit of k7, since 0 = v(B) = ¥(Nn(Bn))- Thus
3t,.(X) € O[[X]] such that ta(w;) = B, 0 <i < n.
Since (tp41 —ta)(wi) =Bi— i =0,0<i < n '
Xtny1 = Xt (mod [x"T1]4).

Smce [1r"+1]f € (m,X)"*!, the limit lim, .. Xt, exists in O[[X]],
which can be written as Xt, t € O[[X]]. Then

Xt = Xt, (mod [r"*']f) and
- Wat(wy) = wptp(wp) = Wabhp ie., H(wy) = Bn.

Clearly, t € O[[X]]* and is unique by the 1%* of the above lemmas.
(ii) follows from (i).
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REMARK. For a fixed w-sequence (f,w),
3t ¢4(X) € X'O[[X]]¥ such that t5(wn) = fn, n >0,
for each § € B with v(f) = . Uniqueness = tgg = tgtg, 8,0' € B.

Claim :

{(s,8)18 € B,v(B) =1}
=the set of all normed 7 — sequences for £,
where for 8 € B, v(B) =1 f3 =t‘,g,ofot;1 € FL. |
Proof. Since tg € XO[[X]]X, ts is invertible in M. tg(w,) =
Br,n 20 »

= (fg,p) is a normed 7 — sequeﬁcé and tg: (‘f,w) 5 (f8,B)-

By 24 lemma of the above, f3 is the unique series in O[[X]] such that
(fs, B) is a m-sequence. So fg depends only on § and is independent of
(f,w). Conversely, if (f',w') is any normed n-sequence, then v(w') =
1, w' € B and hence (fy,w') is a normed 7-sequence, and

(f'aw') :) (fw'aw’) = f’ = fw'
by the 2" lemma.

Let 7 be a prime element of (k,v), f € FL, pn the maximal ideal of
k2 (n > 0).

LEMMA. Let n > 0. For a € p,,
3¢ € my = pg such that S f€=o.

Then k7(¢)/k? is abelian, [k2(€) : k2] | g™+, kR(&) depends only on «
(independent of the choice of such a §).

Proof. Reduce to f(X) = 71X + X9 [rx"t!]; = fo--ofisa
polynomial of degree ¢"*! in O[X]. Thus it has a solution ¢ € mjy.
Clearly,

§-i-fo" is the set of all roots of [r"*!]; —a =0 in @,
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kn(&)/k™ is finite Galois independent of €. For o € Gal(kz(€)/kz),
ot =a= 1" yo() =aie, o(f)—sE € WF
and for o, 7 € Gal(kz(¢)/ky),
ar(6)—s¢
=(0(&)=r&)+0(r(€)=6)
=(0(€)=s)+5(r(6)=5¢) e,
Gal(kz(€)/kz) = Wi(o = o(€)—5£)
is an injective homomorphism, and hence Gal(k}(€)/ky) is abelian.
For a € p,, B € (k*)X, define the pairing
(s Ing = Pa X (k)™ — W} by
(@, B)n,s = Pn(B)(E)— 16,

where p,, is the Artin map of k2, 7"*! .; ¢ = a. This is well-defined,
since if 71 .; ¢' = @, then

€' € E+sWE = pu(B)(E)—5E' = pa(B)(€)—E-

Properties of of (, )n,s:
(i)
(artaz,B)n = (a1, 8)n+(0z, B)n,
(0, B182)n = (@, B1)aH(a, B2)n,
(a-a,B)n=a-(a,f)n, a €0.

(i) (a,B)n =0« B € N(kp(€)/k3), 7t € =a.
(iii) If Ny(X) = X and a a prime element of k7, then (a, &), 5 = 0.
(iv) For 0 < n <m,

(77" 5 &, 8")m = (&, Nn,n(B'))n

for o € pn, B' € (k7)X. ,
(v) Let f,f' € Fi, h: Fy = Fy over O. Then

h((aa ﬂ)n,f) = (h(a), ﬂ)n,f’ for a € ps, B € (k:)x
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Let Ay = 1_}_1_’n Pn, With respect to

Pn = pm (@ 7™ " ra)for 0<n <m.

Then Ay is an O-module.
Define
(,)r:Af xB— W; by

(o, B)f =: (atn, Bn)n,s, if a is represented by ay, € p,.
This well-defined in view of (iv), and satisfies bimultiplicativity,

(a °f a’ﬂ).f =a-y (a’ﬂ)fa a€O0,
h((a,B)5) = (h(a),B)p for h: Fy = Fyr over O.

From now on, assume (k, v) is a p-field with characteristic 0 (due to
the existence of logarithm). 3! isomorphism over k

Xo: Fy 55 G, (e, Ao(X4FY) = Mo(X) + o(Y))
such that A¢(X) = X (deg 2).
Clearly, A : Fy AR G, is the unique isomorphism over k such that
MX) = uX (deg2), for A = udg, u € U(k),

called logarithms of F¥.
In fact,

oo
AX) = %X”, caa=u,c, €0, n>1.

n=1
If f'e F}and h: Fy = Fy isomorphism over O, then

h(X)=u'X (deg2), u' € U(k),
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and hence
Aoh: Fp 5 Ga, Aoh(X) = uu'X (deg2)

ie., Aohisalsoa loganthm
Propertles of a logarithm A of F:

(i) A(«) converges in 2 for any o € my. In particular,
‘o€ P = /\(a) € km
(i1) /\(a+f,3) @) +A(B),Ma s a) = aX(a), for a, B € my, a €

Fix a normed w-sequence (f,w = (Wn)n>0), A a logarithm of Fy,
t3(X) the unique power series such that t,g(wm) = Bm, m > 0.

Define
1 th(wa)
N(wn) tg(wn)’

8(B)a =

Note : 6(B)n € k2.

Properties of é:

() 6(BF")n = &(B)n + 5(ﬂ'),,, B,p'€B
(ii) &(B)n € pat
(iii) For m >n >0,

Tm,n(‘s(ﬂ)m) = 7|'m_-"fs(ﬂ)n (Tm,n : k,’? — k,',.' the trace)
Define

n >0, for 3 € B.:

2a(an, 8) = =y Ta(A(@n)é(B)n) € k,

where Ty, : k — k the trace. zp(an, ) is indeﬁendent of the choice of

A

Properties of z,:
For a,,a!, € pn, 5,8 € B,

(i) | |
mn(an'i'a:-uﬂ) = xn(amﬂ) + xn(a'n,ﬂ)?
il'n(an,ﬂﬂ') = xn(am ﬂ) + wn(amﬂl),
wn(a f Qp, :3) = axn(an, ﬂ)a a€O.
(ll) xm(ﬂm-n *f Gn, ,3) = Wm.‘nxn(an,ﬂ), 0<n<m.
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Define [, |w : Af X B — Wy by
@) 0Bl = zn(amB) s wn |

= [T O @] -

g ey 1 faem)]
_ [,,m+1 To(\am) 5y t,,(w,,,)], n

for sufficiently large m, since in view of (ii), a,, represents a and
Tm(am,B) € O for sufficiently large m, () is independent of m for all
sufficiently large m.

Then [, ]y is a pairing and

[a' °f a’ﬂ]w =a-f [a7ﬂ]w’ ac o.

Moreover, if (f',w') is another normed m-sequence and h : (f,w) =

(f',w"), then h induces the isomorphism Fj = Fyi over O, O-isomor-
phisms

Wi S Wy, Ay = Agr, and h((e, Blw) = [h(a), Blur.

THEOREM (MAIN THEOREM). For any normed w-sequence of k, o €
Af’ :H € B: )
(a’ ﬂ)f = [a’ IB]w-

Moreover, if a is represented by a, € p,, then

20 = = Ta(N@n)6()n) € O

and

(@B)s = [y To(\(@n)S(B)n)]. wn.

Proof. We may assume v(8) = 1 by using the multiplicativity of 2"¢
component, since B is generated by all 3’s with v(8) = 1. Since tg :
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(f,w) = (£3,8), b((@,B)5) = (h(a),B)s» h(ler, Blw) = [h(e), Blur,

it’s sufficient to show :
(e, w)5 = [a, w]y for (f,w) a normed 7 — sequence of k,

which will be proved in the lemma below. For the 2" statement ; if «
is represented by a, € p,, then z,, € O and

(Ol, ﬂ)f = [a’ ﬂ]w =Tm f Wm 'fOI‘ m large.

But

Tm f Wn = (anaﬂn)n,f € W? = ! f T f Wy = 0
= a1 fTm € pm+l = antl 'f (,n.m—nxn) € pﬁt+1 =z, € 0.

LEMMA. For (f,w) a normed w-sequence of k, (a,w)¢ = [a, w]y for
every a € Ay. ' '

Proof. Until the end of proof, “= mod 7*"*+” means
3 an integer ¢, independent of n, such that the congruence holds.

Step 1. For a prime element o' of k7, (¢',a'), = 0, which is stated
before. '

Step 2. Since ay, = #™ " - a, for m > n, a, — 0 rapidly and
hence a,+w, is a prime element of k* for n large. By step 1 and
bimultiplicativity,

0= (an’i’wman'i'wn)
= (O‘n'i'wm'wn(l + 'Yn))
= (0tn, Wn)H(n, 1 +70)F(wa, L+ 7a),

if we write an-i—wn = wn(1 + 7n)
Step 3. For large n, (an,1+ Yn)n = 0. Recall that m > n,

(C,’lm,‘]- + 7m)m = (an,Nm,n(l + 7"1))"*
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Asm — o0, am = 0= 95 = 0 = Npu(l +79m) — 1. Since the
Artin map is continuous, (am,1 + Ym)m — 0. But for n large, a is
represented by a, and (an, Ny ,n(14+vm))n € W2 by definition. Since
W}‘ is discrete,
(em;1 4+ Ym)m = 0 for large m.
Step 4.

(atn, Wn)n = —(wn,1+ “Yn)n by step 2 and 3
== [pn(1 + V) (W2nt1)—Won41]

(since 7" *1 . wyp41 = wy, and by definition)
= Want1—pk(Na(1 + 7)) (w2n41)
(by norm compatibility of Artin map, where pi : kX — Gal(k,s/k))
=[1 = Na(14+72)7"] - wan41

(since py, induces U(k) — Gal(kqp/kyr), given by u §(u~1))
Step 5. For a € Ay, 3¢’ = () integer such that for any n > ¢/,

a is represented by ap € p,, satisfying p(an) >n —c'.

(*) For v € my,

p(m - v) 2 min(p(7?), p(7y)) = min(gpu(y), u(y) + 1).

Since [7]f = X? (modp), [v]f =7X +--- € XO[[X]].
If u(y) < 725, then p(m - v) > gu(y). Thus

(++) 3 j > 0 such that p(7? -v) >

—7 for large j.

By (*) and (*x),

p(r* - 9) > p(n? - y) +1 24, i 2 0.
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fais represented by a;, put
o y=aj,e=j+in=itj+i
‘Step 6. Gra.ﬁt that
D(kz/k)=p"'pg O,
po the maximal ideal of k2 = 7="0,, Cc D(k*/k)~!.

antwn, = wy(1 +'yn), 7,, = ;— + Z cijo, wJ , ¢ij € O.
NP ‘

Since l‘(an/wn) < ”(cijaith;—l)’
p(vn) = plan) — p(wn) 2 n—¢ -1,

with the ¢ in step 5
Put
c=3c +3+e, e=v(p) > 1, integer. |

Assume that n is large enough Since y, € 7" n=c' =10, T (D(k?/k)™1)
co,

Toa(1m) =0 (modn?"‘c"l)
= 0 (mod w"~°)
=0 (mod ™)
Also, '
To(72) =0 (mod7r3"'2°"‘2)
=0 (mod 73"°)
Now,
1—-Np(1+ 7,,)—1 =1-T,(1-v.+ 712;)0 (7r3’f“3°"3)
=1- a(]- - +72)° (7r3"“°)

=) -5 () - }:Zvn 152 (7*"7°)

= Ta(7n) — §Tn(’7n) - §(Tn(7n))2 (72"°)
= Tn(vn) (7r3n—c)
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Step 7. For u(v) > e,

p(r'13) 2 2u(7) —e, j 2 2.
Ifj=p*', a>0, (j',p) =1, then
w(¥’15) = ju(y) = u(j) = ju(y) — ae.
If a =0, then it’s true. For a > 1,
#(Y 13) = 2u(y) + e = (j — 2)u(y) — (a — 1)e
> (j —a—1)p(y), and

j;l-aZpa—l—aZOforaZI.

an'i‘wn = wn(l + 7n) =
AMag) + AMwy)
= A('wn(]' + 7n))

_th : (1 +7n)'

=1
~d

—zc. i +7,,+z(] NE-)

By the above,
w(Ya/3) = 2p(vm) — €
>2n—c —-1)—ce
and hence
Man) + A(wn) = warn X (wn) + A(wy) (727 =D=¢)
/\(an) = wn7n/\'(w ) (7‘,2(n—c'-—1)—e)
Tn = ’\(an)/wn’\,(wn) (”Z(n— ¢-1- e—l)

T () = Ta(Man)8(w),) (r272¢'—¢=3)
= Tn(Man)6(w)n) (7377°),
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since §(w)n = 3w yor € Pn -

1 —1

1 1
;an(7n) eE0=> an(A(an)a(w)n) € O and
;}_F—IT,,(A(a,,)é(w)n) = 0 (7"*1), since n large enough = 3n—c > 2n+42.

10.

11

Step 8. By step 4,

(am wn)n = [1 - Nn(l + 'Yn)_ll * Won+1

= n(')'n) *W2n41

1 1
- 7rn+1'Tn(’Yn) Wy

1
= an("/n) Wy

- ;;lﬁTn(A(an)6(w)n)  wn

= [a, W]w-
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§1. Weil-Chatelet (WC) groups

Let G be a commutative algebraic group over a field k. Suppose
X is a variety over k on which G operates. Further we assume the
G-action is trivial with respect to the “étale site” of spec k, i.e., there
is a finite separable extension K of k such that

XKXGK—+XK

is isomorphic to the G-action on itself. Here Gk denotes the base
extension of G to the field K. A variety X over k with an action of a
commutative algebraic group G such that it is trivial with respect to
the étale site of spec k is called a principal homogeneous space (P.H.S)
for G over k.

Note that the k-rational points G(k) of G acts on X (k) simply and
transitively, i.e., for any z,y in X (k) there is a unique g € G(k) such
that Xg = y. Hence we get a subtraction map

X(F) x X (k) — G(F).

We will denote the image of (z,y) by z™1y.
Let X; and X, be two P.H.S’s for G over k. We want to define their

G
“sum” ; let X; X X3 be the quotient of X; x X, under the G-action
(X1,X2)g = (z197, 229).
. G .
We endow a G-action on X; x X, via
(z1,22)g = (219, 22)(= (21, T29))-

Then X; x X; becomes a P.H.S [W].

Two P.H.S’s X; and X, are said to be equivalent if there is an
isomorphism of X; onto X, defined over k¥ which is compatible with
the group action. A P.H.S is trivial if it is equivalent to the G-action
on itself.
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PROPOSITION 1. The set of all equivalence clases of P.H.S’s for G
over k form a commutative group.

Proof. If X is a P.H.S for G. Then we define a P.H.S X~ by modi-
fying the G-action of X

X " xG- X"

(9,z) — zg .

Then X ~ becomes the inverse to X with respect to the sum operation.

See [W] for detail.

The group of all equivalence classes of P.H.S’s for G over k is called
the Weil-Chdtelet group for G over k, and we denote this group by
WC(G/k).

PROPOSITION 2. A PH.S X for G over k is trivial if and only if
X(k) # ¢.

Proof. Suppose X is trivial. Then there is an isomorphism ¢ : G —
X defined over k. The identity e € G is a k-point by the defenition of
an algebraic group. Since ¢ is defined over k, ¢(e) is a k-point of X.
Conversely suppose pg be a k-point of X, then the map

p:G—- X

defined by ¢(g) = pog is an isomorphism over k.

Note that any element of WC(G/k) is of finite order. In fact if X
is a P.H.S and let ) .., z; be a positive cycle of dimension 0 which
is rational over k. Let X,, be a P.H.S which represents the class nX.
Then there is “canonical” map

Xx--xX-oX,

sending (z1,--- ,Zn) to a k-rational point of X,. Hence by the above
proposition X, must be trivial.
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THEOREM 1. Let A be an abelian Vanety overkand X € WC(A/k).
Then there is an isomorphism ,

Pi®(X) — A
which respects the action of the Galois group G(k/k). In particular,

Pic(A) = A(k).

- Proof. (Sketch). The sum map
Div’(X(k)) — A(k)
which sends E:;l ni([Pi] — [Po‘]) to Y- ni(P; — Ppy) is surjective. The

kernel of this map is precisely the principal divisors. And this map
respect the G(k/k)-action. .

§2. WC groups and Galois, étale cohomology

In this section we will relate the WC group with various cohomology
groups [S,LT].

PROPOSITION 3. Let X be a P.H.S for G-over k and K/k be a Galois
extension such that X is trivial. Let G = Gal(K/k). Then

X = Gk /6.

Proof. Consider the fiber product diagram

Xk — X

l l

Spec K ——— Spec(k)

Since Spec K — Speck is Galois with group G, X — X is also Galois
with group G. But since X = Gk, we have X = Gk /G.
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Let K/k be a Golois extension with group G. Let z € X(K), o € G.
Then using the subtraction map of section 1, we can write

27027 =g,

for some g, € G(K). The assignment o — g, defines a 1- cocycle In
fact, z°7 = xgaf On the other hand, we have
=(27)" =(29,)" =27g] = TYrgg-
Hence we have
Jor = grgs-
Therefore we get a map from the set of P.H.S’s with a K-rational points
to the Galois cohomology group H YK [k,G).

PROPOSITION 4. There is an isomorphism between H'(K / k. ,G(K))
and the set of P.H.S’s for G over k which have K -rational points. In

particular,

WC(G/k) = H(k/k,G).

Proof. Let G be the Galois group Gal(K/k). It {9s} is a cocycle,
then we define the G-action on Gk by go = gg,. Then the P.H.S we
look for is X = Gk /G (cf. Proposition 3).

Note that we have reprove the fact that WC(G/k) is a torsion group
since the Galois cohomology group is torsion [KJ].
Now we relate WC groups with étale cohomology groups [M].

THEOREM 1. Let X = Spec(k), and let G = Gal(k/k). Then
H'(X4,G) = H'(G,Q).

Proof. There is a categorical equivalence,
{Sheaves on X4} < {Discrete G — modules};

for a sheaf S on X, a discrete G-module hm S(K), where K runs over

all finite seperable extension of k, and for a given G-module M, we
associate the sheaf Sy on X deﬁned by

SM(K) MGa.l(k/K)

The cohomology group H'(X¢:, —) and H'(G, —) are the right derived
functors of U + I'(U, S) and M — MG respectively.
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§3. WC groups over a finite field

Throughout this section k will be a finite field of ¢ = p" elements
We will show that a P.H.S over a finite field is trivial [S2].

Let G be a (commutative) algebraic group over k. Let ¢ : G — G
be the Frobenius map which is given by

(,0(930,"' ' Tn) =(w(q)"" ,:I:g,)

in its homogeneous coordinates. Note that this map is not k-linear. In
order to make this map to be k-linear we introduce k-scheme structure
on G which will be denoted by G4: As a topological space, G, is the
same as G and if U C G, affine open with coordinate ring A, then the
k-action on A is givne by

(a’f) —alf.

Now the map described above becomes k-linear and we denote it by
F. We have a commutative diagram,

F
¢ —— G,

,l - l,r
Spec k —L Speck.

LEMMA 1. Let G be a connected algebraic group over k. Then the
map of G to G, sending g to F(g)g™" is surjective.

Proof. For any h € G, we define.
up : G — G,

by un(g) = g 1hF(g). Note that the differential of F vanishes. Hence
d(up) = d(g~1)hF(g). Therefore d(u) is surjective for all h ; up is
generically surjective. Let aUj be an open set contained in up(G), and
let z € G. Since G is connected, we can choose an element ¢t in U, NUk.
Writing t = g~ 12Fg, we have t = h™'F(h). Then z = u™'Fu with
u=hg!
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PROPOSITION 5. Every P.H.S X for G over a finite field k is trivial.

Proof. Let = € X. There is g € G(k) such that z = F(z)g. By
Lemma 1, there is b € G such that ¢ = F(h)h™!. Hence zh =
F(z)F(h). On the other hand since X x G — X is defined over k, we
have F(z)F(h) = F(zh). Hence zh = F(zh). Therefore zh € X (k).

Next we will prove a stronger result which implies Proposition 5.

THEOREM 2. Let k be a finite field of q elements and K be a finite
extension of k. Let G = Gal(K/k). Then

H™G,G(K))=(0)Ym>1.

Proof. Since G is cyclic H™(G,G(K)) depends only on the points
of m [KJ]. For m = 1, we have to show that every 1-cocycle is of the
form = — z9. Let’s write g9 the image of g under the Frobenius map.
Let g € G(K) be a cocycle so that

(+) Y =gttt g =0
o€G

where n = [K : k]. Then by Lemma 1, ¢ = 27 — z for some = €
G(k). Using (*) we see that z = 29" . Hence z € G(K). That is
HY(G,G(K))=0.

Now since G(K) is a finite group and G is a cyclic group we have that
the Herbrand quotient A(G(K)) = 1 [KJ]. Therefore H%(G,G(K)) = 0.

§4. Brauer groups

Let K/k be a Galois extension with group G, and let A be a G-
module. Then we have the inflation map

inf '
H*(Q/H, AH) - H*(g/H’,AH )
whenever H < H'AG [KJ]. We define the Brauer group, Br(k) of a

field k to be lim H 2(K/k,K*) where the limit is taken over all finite

Galois extension of k. Theorem 2 says that the Brauer group of a finite
field is trivial.
Let us recall the Wedderban-Artin theorem [S1].
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THEOREM 3. Let A be a finite dimensional k-algebra. Then the
following conditions are equivalent.

(i) A has no nontrivial two sided ideal and its center is k, i.e., A
is a central simple k-algebra.
(i) A ® k= M(n,k) for some n.
(iii) A & M(n,D) where D is a division algebra with center k.

Two central simple algebras are said to be equivalent if their as-
sociated division algebras are k-isomorphic. Let A; be the set of all
equivalence classes of central simple k-algebras. Then A; becomes an
abelian group which is the “classical Brauer group”. Of course, the
classical Brauer group coincide with the cohomological definition of
Brauer group. The standard results on Brauer group are [S1];

(i) If k is algebraically closed then Br(k) = 0.

(ii) Br(R) = Z/2Z which is generated by the real quatenion algebra.

(iii) The Brauer group of a p-adic local field is canonically isomorphic
to Q/Z.

§5. Over local fields

When A is an abelian variety over a p-adic local field k, Tate proved
[T] that WC(A/k) is isomorphic to the continuous character group of
its dual abelian variety A. Throughout this section k i3 a p-adic local
field even though sometimes it is unnecessary.

First we introduce a pairing on zero cycles on abelian varieties [L].
Let A, B be abelian varieties over a field k. Let Z(A) be the group
of zero cycles of degree zero, and let S : Z(A) — A be the sum map.
Form an exact sequence,

0 — Y(A) - Z(4) > A — 0.
Let D € Div(A x B), A€ Y(A) and B € Z(B). We define D(A) to be
D(A) = Pry(D.A x B)

which is a divisor of B. Now if A € Y(A) then D(A) is a principal
divisor on B, say D(A) = (g), where g is a rational function on B. We

define
D(.A, B) = g(B) = Hg(b)ordb(B)
b

where the product is taken over all support of B. Then we have [L].
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THEOREM 4 (LANG’S RECIPROCITY). For A € Y(4), B € Y(B),
we have

D(A,B) ='D(B, A).
From this one deduces the Weil’s reciprocity law.

COROLLARY (WEIL’S RECIPROCITY). If f and g are two rational
functions on a smooth curve with disjoint support, then

1((9)) = g((£)):

Throughout this section we will use the notation A; to denote the
k-rational points of A for typographical reason. , -

Let o be a class in WC(A/k), b € By and D € Div(4 x B). Repre-
sent a as a cocycle (a,) in H'(Gx/x, Ak). Now lift a, to a, in Zk(A).
Then

(601),,-1- =0ar — Qpr + Qg4
is an element of Yx(A). Choose a lift b in Zi(B) of b € Bi. We define
Co,r = D((60)0,r,b).

Then (co,r) is a 2-cocycle of Gg i with values in K*. Using Lang’s
recipocity one shows that this is well defined. Summing up, corre-
sponding to D € Div(A x B), we defined a pairing,

D :WC(A/k) x By — H*(G,k*)
where G = Gal(k/k).
We have a canonical isomorphism (§4),
Br(k) = HX(G, i) 5> Q/z.

In particular, we will take B = _fi = Pic°(A), and D a Poincaré divisor.
Using the isomorphism H?(G, k*) & Br(k) we have a pairing
exp(2~i)

(,):WC(A/k) x Ay — Q/Z ——— C*,

or

hi : WC(A/k) — A} = Homcont(Ax, C*).
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THEOREM 5 (TATE). If k is a p-adic local field then the map
hi : WC(A/k) — A}

is a isomorphism.

For the rest of this sectlon ‘we sketch Tate s proof of the theorem.
We first need

THEOREM 6 (LUTZ-MATTUCK). Let A be an abelian va,n'ety over
k of dimension r. Then Ay contains a subgroup A}, of finite index such
that A} = O}. Further if K/k is a finite Galois extenswn with group
g, then we can choose an isomorphism A' =0kasag -1somoxphzsm

Now by [KJ], we have
h(Ak) = h(Ak) = H(Ok)" = 1.

Hence [H'(G, Ak) : 0] = [H°(G, Ak) : 0].

For an abelian group X, write ¢(X) = [X : mX]/[Xm; 0] where X,
is the kernel of X — X. Then q is additive with respect to exact
sequences and g = 1 for a finite abelian group. We have

||k

1
q(Ax) = g(4} )—q((’?k)' e
k
where |m|x = [Ok : mO]™L. Since [(Z/mZ)*" : 0] = [Am : 0] = m?" if
A C Ag, we conclude that ;
m? ‘
(1) [Ax: mA] = (—)" if An C Ai.

Consider an exact sequence
m
0—-An—>A—A->0

on the étale site of spec(k), to get a cohomology exact sequence,

m 6
02 A, NA, — Ay — A —

— WC(Am/k) — WC(A/k) — WC(A/k) —
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Therefore we get a short exact sequence
0 — Ar/mA; - WC(An/k) = WCr(A/k) = 0
Now suppose A,, C Ak, B, C Bi. Then G = Gal(k/ k) acts trivially

on A,,. Hence
WC(Am/k) = H (G, Am)
= HomCont(ga Am)
= Hom(k*/k*", Am)
= Hom(k*/k*" ,(Z/mZ)*").

Hence

(WC(AmfE) : 0] = [k k"2 = (,—,’%)2'

since pm C k* (This follows from nondegeneracy of Weil’s pairing.)
Therefore we conclude that
m?2

@) WOn(ask): 0= (o

" if A, C Ag and B,,, C B;.

Now we use,

LEMMA. Let m be a prime, A,, C A, B,, C By and b € By. If for
any o € WC,(A/k) we have (a,b) =1, then b € mB;.

See [T] for a proof.
For any X we will write X,,, (resp. X(m)) for the m-torsion (resp.
m-primary) part of X.

PROPOSITION 6. If Ay, C Ag and By, C By, then (hi),, is bijective
and hi(m) is injective.

Proof. By (1) and (2), the domain and the range of
(h&)m : WCm(A/k) = (Bi)m = (Bi/mBx)*

have the same number of elements, namely (m?/|m|;)”. The above
lemma implies that (h)m is injective ; hg(m) is injective. Hence (ht)m
is bijective.
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Let K/k be a Galois extension with group Gx. We have the-com-
mutative diagram

H'(G, Ak) ——— WC(A/F)

hx/kl hkl
H%Gk,Bg)* —— B

The inf map is injective the map [KJ]. Now interchanging the role of
A and B we get

ilK/k : H'(Gk,Bx) — H°(G, Ak)*.
LEMMA 2. Let A,, C Ai, B,, C By and K/k be cyclic. Then
hk/x(m) and h k/k(m) are isomorphisms.
Proof. Since the map inf and h j(/k(m) are injective, we have hg/x(m)
is injective. Similarly h K/k(m) is also injective. The index computa-
tion shows that the domain of hg/i(m) and the range of hg/r(m)

have the same number of elements. Therefore hg/i(m) and h K/k(m)
are isomorphisms.

LEMMA 3. Suppose k C K C L with K/k cyclic and L/k arbitrary
Galois. If h/x(m), hgyx(m), and kg (m) are bijective, then hik(m)
is bijective.

Proof. We apply the five lemma to the m-primary part of the fol-
lowing diagram [KJ].

0 —— HY(K/k,A) —— HY(L/k,A) —— H'(L/K,A)°

hx/»l hlel hL/xl

0 —— H°(K/k,B)* —— H°(L/k,B) —— (H°(L/K,B)")°

Y HYK[k,A) —— H(K/k,A)

iz;f,,,j i»;f,kj
*

—— H\(K/k,B) —— H'(K/k,B)"
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-PROPOSITION 7. If L/k is a Galois extension and if A, C Ay,
B,, C B, then h L/k(m) is an isomorphism.

Proof. Local Golois groups are solvable.

Now we get rid of our assumptions that A4,, C Ak, B,, C By usmg'
K = k(Am, Bn).

PROPOSITION 8. The map hi(m) is surjective.
Proof. See [T].

LEMMA 4. Suppose K[k is cychc Ifhx(m) and hK(m) are mjec-
tive, then hi(m) and hi(m) are injective.

Proof. Let G = Gal(K/k). Consider the diagram

0 —— HYG,Ax) —s WC(A/k) —=— WC(A/K)

b ) b

0 —— H°G,Bx)* —— B} —— B

Since hr(m) is surjective and hx(m) is injective we see that hgx(m) is
surjective. Similarly, we also have that & k/k(m) is surjective. Now the

index argument shows that hg/x(m) and h K/k are injective. Daigram
chasing shows that injectivity of hi(m) follows from that of hg(m).
Similarly for hg(m).

Now apply the above lemma to K = k(Am, Bp) to prove our asser-
tion of the theorem that WC(A/k) = (Ax)*.

§6. Shafarevich groups and duality

Throughout this section K will be a mumber field. Let My be the
set of all places of K (including the places at infinity). The Shafarevich
group 111(A/K) is defined by

LLL(A/K):Ker(WC(A/K)—-% 1‘[ WC(A/K,))
vEMg
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where K, is the local field at v. The Shafarevich group measures the
failure of the Hasse principle.

A conjecture asserts that the group 111(A/K) is finite. Rescently,
people found many examples of elliptic curves whose LL1 group is
finite.

In 1962, Tate [T1] (Cassels for elhptlc curves) defined an altematmg
pairing

111(A/K)x LLI(A/K) > Q/Z

and showed that its kernel is the divisible elements. We will sketch the
construction of the pairing following [M1].
We will return to our convention to denote X r for the base extension

of X to F for F/K.
Let a € 111 (A/K). Represent a by a PH.S X over K. We form

an exact sequence
0—- K*— K(X)*—-Q -0,

where Q is defined to be the cokernel of K* — K*(X). Taking coho-

mology we have a commutative diagram,

Br(K) —— H'Gk,K(X)") —— H(Gx,Q) — 0

| | | » |

0 ®rBr(Ky) ——— @vH?*(Gv, Ko(X)*) —— @uH*(G:,Q)

The zero at the top right comes from the fact that H"(Gx, K*) = 0 if
r is odd bigger than 2. The zero at the lower left follows by composing
the injections,

Br(K,) — Br(Xg,) — Br(K,(X));
injéctivity of the first map follows from local triviality of X and injec-

tivity of the second is a general theorem.
Now consider the other part of the exact sequence

0 —» Q — Div’(Xz) — Pic®(Xg) — 0.
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This yields the diagram,
— H'(Gk,Div’(Xg)) — H'(Gk,Pic®(Xg)) - H)Gk,Q) -—

||

 LLI(A/K) = H'(Gk, Ag)

!

- ®H(Gy, A) - ©H*G,,Q) —

Let o' € LLI(A/K). Send it to b in H*(Gk,Q). Then in the first
diagram, we can lift it to " € H?(Gx,K(X)*) and send it to b €
®H?(G,, K,(X)*). By local triviality of X, it comes from @,c, €
®vBr(K,). We can view c, as an element of Q/Z (§4). Finally we

define
(a,d') =) ¢, €Q/Z.
THEOREM 7 (TATE). The pairing
(1) LLL(A/K) x LLL(A/K) - Q/Z
is alternating and its kernel consists of all divisible elements of 111

group, i.e., if (a,a') = 0 for all a' then there is an arbitrary large integer
N and b€ 11L1(A/K) such that a = Nb.
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I. Generalities

A. Cubic equations and elliptic curves

Let k be a field of char k # 2,3. Usually k will be a number field,
the field of complex numbers or a finite field. Using linear coordinate
changes we can reduce a cubic polynomial to the form,

(1) v+ a1zy + azy = z° + agxz? + a4z + ag, a; € k,

which we call a Weierstrass form. We will say that the cubic given

equation, by substuting y into (1/2)(y — a1z — a3) and completing the
square, to ‘

(1)  y? =42 4 bya® + 2byz + be.
Further, we can replace (z,y) by (55382, 1) to get
(2) y? = 2% + 2Tcqz — 5dcs.

If k is algebraically closed, we may rewrite (1) in the following forms,

(3) (i) y? = z(z — 1)(z — A), X #0,1 (Legendre form.)
(ii) y* =2*(z +1)
(iii) y? = 3.

When k = R, we can sketch the graphs;

(i) (i) (iii)

A N

/
- N\

(Warning : One should not depend too heavely on these pictures.)
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We want to “compactify” the zero set of these cubic equations. For
this, we view these cubic equations defined on

P2 ={(X:Y:2)ek®- (0,0,0)I(X:Y:Z) =(aX:aY:aZ),a € k*},

which is “compact”. (Indeed, P% is compact.) Now we homogenize
the cubic equation ; for example, (2) becomes,

(2) Y?Z = X% - 21c,X 2% — 628,
and (3)(i) becomes,
) Y?Z = X(X - Z)(X ~ \Z), A#0,1. ets..

If f is a homogeneous cublc, then f(aP) =a3f(P)for P = (Po, Py,
P,) and a # 0. Hence the zero set of a homogeneous cubic is well
defined and being a closed subset of a compact set it is again compact.
We notice that P2 is gotten by adding the line at oo,

L°°={(X:Y:Z)GP2|Z=0}

to the affine plane A2. In fact, P2 — Lo, = {(X : Y : 1) € P?} = A2,
The cubic equations are chosen so that they intersect Lo, at Just one
point (0 : 1 : 0)(= o0), with multiplicity 3.

The zero set of the eq. (2’) in P? is called an elliptic curve over
k provided A = (¢ — c2)/1728 74 0 (we do not need to assume char
k # 2,3). The condition on A is equivalent to that the cubic curve
F = 0 is nonsingular i.e., Fx(P) # 0 or Fy(P) # 0 for all P on the
curve. If k = C, one can use implict function theorem to prove that a
nonsingular curve is a one dimensional complex (orientible) manifold.
Also this is equivalent to that F' can be reduced into (3’) with X # 0, 1.

B. j-invariant
We say that two elliptic curves E, E' are isomorphic over k if one
can transform the equation of E to that of E' by linear change of

coordinates over k. There is an easy criterion for two elliptic curves to
be isomorphic; we define

J(E)= ci/A in (2’) and

i® =2 G2 @),

which we call that j-invariant of an elliptic curve E. Elliptic curves are
classified by their j-invariants [S,H].
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THEOREM. Two elliptic curves are isomorphic (over k) if and only
if they have the same j-invariant. Futher, if j € k, then there exists
an elliptic curve E defined over k( ]) such that j = j(E).

The above theorem says when & is a,lgebra,lcally closed, the moduli
space of elliptic curves is k(= A}).

EXAMPLES Dy +y=2% A= —27, j=0.

2)y2=23+z, A=—-64, j=1728= 2833,

Hence, in char k 95 2,3, these are elhptlc curves and they are not
isomorphic.

(3) (The Fermat curve.) X?° +Y3 = 2%, A = -1/27, ] = 0.
(Replace X by z + z and set z = —1/3 to get 22 — (1/3)z = y® — 1/27
which is the form (1).) ,

Hence, the elliptic curves (1) and (3) are isomorphic if char k # 2,3.

C. Group structure on elllptlc curves

We can give a group structure on an elliptic curve. For thls we use,
the Bezout’s theorem [F] when k is algebraically closed.

THEOREM. If k is algebraically closed, two curves (i.e., zero set of a
homogeneous polynomial in P2) of degree m,n resp. intersect exactly
at mn points counting multiplicities, if they do not “overlap”.

A rational function is a quotlent of two homogeneous polynomials
of the same degree. Hence, it is a well defined function on P? provided
its denominator is not zero.

COROLLARY. The number of zeros of a rational function is the same
as number of poles on a curve.

To define a group structure on an elliptic curve E we choose a base
point O = (0 : 1: 0), the point at co which will play the role of identity.
For P,Q on E, let us denote the line in P? passing through P and @
by Lpg. Then, by Bezout, Lpq intersect with E at the third point,
say R. And Log intersect at the third point S. Now we define,

[Pl +(Q=1S]

One checks [F,S] that this operation is associative and commutatlve
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—
N

\
The group law on a cubic curve

We can view Lpg, Lor as a “function” on P2?. Consider f =
Lpg/Lor (this is indeed a function). Then,

(f)o = (the zero set of f on E) = P+ Q + R,
(f)oo = (the pole set of f on E)=R+0 + S.

Hence we get,
div(f) = (divisor of f) =(f)o — (floo=P+Q—-S -0 =0.

Thus, [P] 4+ [Q] = [S] implies that P + @ — S — O is a divisor of the
rational function f = Lpg/Lor.
Even if k is not algebraically closed, one can show that the set of

k-points,
Ek)={(X:Y:2)e E|X,Y,Z €k}

is also a group.

II. Complex elliptic curve

Throughout this chapter k will be the field of complex numbers
C. Let C be a nonsingular curve given by a homogeneous polynomial
of degree n in P2. Then, as in the case of an elleptic curve it is a
two dimensional real orientible manifold. Its genus g can be easily
computed by the formula,

_(n=1)(n-2)
g= 5 :

Hence if n = 3, we get ¢ = 1. Topologically, we know that genus 1
(orientable) two dimensional manifold is a torus.
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THEOREM (RIEMANN’S EXISTENCE THEOREM). Every complex one
dimensional manifold (=Riemann surface) is an algebraic curve. Le.,
it is given by zeros of polynomial equations.

A. Elliptic functions, Weierstrass p-function

A complex torus is given by C/A, where A = Zw, + Zw;, w; € C.
One can normalize the generators [wy,ws] for the lattice so that it
becomes [1,7] with Im(7) > 0.

L o

— Fundamental Domain

7

1

An elliptic function is a complex meromorphic function (i.e., it has
Laurent series expansion at every point) such that f(z +w) = f(2) for
all lattice point w in Z + 7Z.

We notice that the set of all elliptic functions form a field. Also,
notice that if an elliptic function has no pole then it is a constant. In
fact, if it has no pole it is bounded on a fundamental domain, and the
periodicity implies that it is bounded on C. Liouville theorem says it
must be a constant. Furthermore, residue theorem says that an elliptic
function has at least a pole of order 2.

An example of an elliptic function is the Weierstrass p-function [A];

pe) = 55+ Y=o — 7

~ where Y denote the summation over all w € A — {0}. Its derivative is
_ 9
!
P()=),
w€A (z - w)
and the Laurent series expansion of p(z) at 0 is given by
p'(2) = (=2)/2® + 6542 + 20s62% + - -

which is also elliptic. (Of course, one needs to check the convergence.)
Let g, = 60s4 and g3 = 140s¢. Then g, = 60 Y '(1/w?), and g3 =
140 3'(1/w®). We have [A,L],
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THEOREM. The field of meromorphic functions is C(p(z),p'(z))
with the relation,

(P'(2))* = 4(P(2))° ~ 92p(2) — g3.

This is the cubic equation for an elliptic curve we would like to have.
Using this we will explain why Riemann’s existence theorem should be
true in case of an elliptic curve; consider the map

~ C/A-P?
z— (p(2) : p'(2) : 1).

This map is well defined for all z except on the pole set of p and p'.
One can prove that this map induces a bijection of C/A onto the zero
set of y?> = 4z — g2z — g3 in P%, and the natural group structure on
C/A is the same as the previous one on an elliptic curve. In this case,
the j-invariant becomes

' 3
§(r) = 1728 2, where A = g} — 27¢}.

B. Abel’s theorem

We saw that a meromorphic function has the same number of zeros
as its poles. Hence, we can write its divisor as

div(f) = Z((Pi) -(@4)), P;,Q; € C.

What is the necessary and sufficient condition for a divisor ) ((FP;) —
(Qi)) to be a divisor of a meromorphic (=rational) function ?

THEOREM (ABEL). A divisor )., ((P;)—(Q:)) (n > 1) is a divisor
of a meromorphic function if and only if ) P; = Y} Q; modulo the
lattice A.

For a proof of this theorem we refer [F].
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III. Arithmetic aspects:

A. Rational points

Let K be a number field (a finite extention of Q, so you may think
K = Q) and let A be the ring of integers (in case K = Q, A = Z).
Suppose E is an elliptic curve whose defining equation has coefficients
in K. Then, our question is “how many solutions with coordinates in
K are there?” The solutions in K-coordinates are called the K-points
of E and is denoted by E(K). We first have [S],

THEOREM (MODELL-WEIL). If E is an elliptic curve defined over a

number field K, then the group of K-points on E is an abelian group
of finite rank.

EXAMPLES. (1) Since Fermat’s theorem is known to be true for
n = 3, we know X3 + Y3 = Z3 has three Q-points; (1 : —1 : 0),
(1:0:1) and (0:1:1). Hence, the group of Q-points is Z/3Z.

(2) If E is given by y2 + y = 2% — z, then E(Q) = Z, [H, p.336].

In general, computing such group is very difficult. Examples of
elliptic curves so far we found, have rank at most 12. A conjecture
asserts that there exist elliptic curves E such that the rank of E(Q) is
arbitrarily large.

In contrast to the results of elliptic curves, in 1983, Faltings (Inv.
Math. 1983) proved the Modell’s conjecture:

THEOREM. If C is a nonsingular curve defined over a number field
K, and if the genus is bigger than 1 (e.g., a plane curve whose degree
is bigger than 3), then C has only finitely many K-points.

B. Integral points

When an affine elliptic curve (=nonéingular cubic in z,y) is defined
over a ring of integers A, how about the solutions with coordinats in

A?

THEOREM (SIEGEL). If a nonsingular cubic in two variables is de-

fined over A, then it has only finitely many solutions with coordinates
in A.
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C. Elliptic curve over a finite field

Suppose an elliptic curve E is defined over A4, the ring of integers.
Let p be a prime ideal of A, then A/p is a finite field k with ¢ = p”
elements. We can reduce the cubic equation mod. p to get E' over k.
(This corresponds to looking at a fiber of a certain map.) The reduced
elliptic curve E' may or may not be nonsingular. However, if E' is
nonsingular, we have [S].

THEOREM (E. ARTIN, HASSE). The number of k-points on E' is
given by the formula,

#(E'(k)) =1-Tr(7) +g,

where m is the Frobenius endomorphism. It differs from 1 + q by at
most 2,/q.
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